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To the Student

Picture yourself as a homeowner whose only tools are a set of screwdrivers. You are
perfectly capable of driving screws into or out of wood. But what about other jobs
around the house? A screwdriver is not useful for banging a nail into the wall or cutting
a board in two. Other tools are needed, and for larger jobs, power tools are essential.

In many ways this situation is analogous to standard mathematics courses in
which the emphasis has been almost completely on algebraic methods. These meth-
ods give you a powerful set of tools—you can collect like terms, factor various ex-
pressions, cancel common factors, expand powers of binomial terms, multiply out
polynomials, and so forth. But there are many jobs requiring mathematics that can-
not be solved at all using only algebraic methods. For such problems other mathe-
matical tools, including graphical and numerical methods, are far more useful.

For instance, suppose a doctor wants to study a patient’s heartbeat using an
EKG or a patient’s brainwaves using an EEG. There are no known formulas to ex-
press these quantities algebraically, but the doctor certainly can get critical infor-
mation about a patient by interpreting the graphs produced by these devices.
Suppose an engineer develops a new tread design for automobile tires and wants to
test its braking effectiveness for a car going 20, 30, 40, 50, and 60 miles per hour.
There is no exact formula for either the braking distance or the time until the car
comes to rest—too many unpredictable factors are involved. All the engineer has
is a set of measurements from the experimental runs, and he or she must make
decisions based on an understanding of what information the data provides.

Both cases illustrate themes that run through this book. We focus on the appli-
cations of mathematics to situations all around us and on the function concept that
allows us to study these phenomena. That’s why this book is titled Functioning in the
Real World. In this course you will learn to use a combination of algebraic, graphical,
and numerical methods, depending on which is the most helpful tool in any given
context. You will develop an understanding of the mathematical concepts and learn
how to apply them to realistic problems, and not merely perform operations me-
chanically. You will learn to interpret results, not just obtain answers. You will use
technology as a tool for answering the kinds of questions that arise naturally. But this
tool is not intended merely to give you answers; technology will help you learn the
mathematics. Above all, you will increase your ability to think mathematically so that
you can apply mathematics in many other arenas—in other math courses, in courses
in other disciplines, in your eventual careers, and in all other aspects of your life.

To do all this, you will look at a much wider variety of topics than you probably
have seen in previous math courses. You also will face much more varied types of
problems than you might have encountered before. Many of these problems will re-
quire you to think about the mathematics, not just redo a worked-out example from
the text with the numbers changed slightly. To do such problems, you will have to und-
erstand the mathematical ideas, not merely memorize solutions. To gain that under-
standing, you will have to pay careful attention in class and read the text thoroughly.

Real-world problems, such as the realistic applications in this book, involve far
more than solving an equation that someone hands you. Instead, you face a situation
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from which you have to identify and extract the mathematical component (which
usually means creating an equation), you then have to solve that equation (perhaps
using pencil and paper or more likely some kind of technology), you have to inter-
pret the results to make sure that they make sense and are realistic, and finally you
have to communicate your answers to other people.

In some ways, this course will be more challenging than others you have taken,
but it certainly will be much more rewarding because you will see the value of
mathematics all around you. We’d like to give you some suggestions that will make
things easier for you in this course:

� Read the book. It was written for you and is very readable.

� Work in teams outside of class. Students are very good at explaining mathe-
matical ideas to one another in terms that they understand.

� Attacking problems in teams is not only a good learning strategy but also
the way people in science, engineering, business, and other fields function in
the real world.

� Ask questions in class. Many of the problems are ideal for class discussions,
but it is very hard for a teacher to answer questions no one asks.

� Feel free to suggest your own interpretations. Many of the problems can be
approached in very different ways, and different students (and instructors)
are likely to come up with different solutions depending on their viewpoint.

� Talk to your instructor during office hours if you need help. Your professor
understands that this is a demanding course for some students and will be
happy to work with you. But you must seek out the help.

� If you use a graphing calculator, carry it to class and use it often to add a
graphical dimension to whatever you are studying.

� Some of you already may use more sophisticated computer programs, the
mathematical power tools that are widely available today. These might in-
clude software packages, such as DeriveTM, MathematicaTM, or MapleTM,
that can perform virtually any algebraic operation or a spreadsheet, such as
ExcelTM, that organizes data and produces sophisticated graphs quickly and
easily. Become comfortable with this software as soon as you can so that
they are familiar tools throughout the course.

� Realize that the most powerful and effective tool you have is your mind. It
does things no machine is capable of doing—thinking, understanding, cre-
ating, and interpreting.

Remember, a carpenter equipped with all the right tools is able to build almost
anything. Likewise, a student equipped with all the right mathematical tools and
the knowledge and judgment to select the right one is prepared for almost any-
thing. Above all, we hope that you will have a very exciting and rewarding experi-
ence as you are Functioning in the Real World.

To the Instructor

The mathematics curriculum is in the process of change to establish a better bal-
ance among geometric, numerical, symbolic, and verbal approaches. There is a
much greater emphasis on understanding fundamental mathematical concepts, on
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realistic applications, on the use of technology, on student projects, and on more
active learning environments. These approaches tend to make greater intellectual
demands on the students compared to traditional courses that place heavy empha-
sis on rote memorization and manipulation of formulas.

With support from the National Science Foundation, the Math Modeling/
PreCalculus Reform Project developed a new precalculus or college algebra/
trigonometry experience with the following goals:

� Extend the common themes in most of the calculus reform projects.

� Reflect the common themes for new curricula and pedagogy as called for in
the MAA/CUPM recommendations, the AMATYC Crossroads standards
recommendations, and the NCTM Standards recommendations.

� Focus more on mathematical concepts and mathematical thinking by
achieving a balance among geometric, numerical, symbolic, and verbal ap-
proaches rather than focusing almost exclusively on developing algebraic
skills.

� Provide students with an appreciation of the importance of mathematics in
a scientifically oriented society by emphasizing mathematical applications
and models.

� Introduce some modern mathematical ideas and applications that usually
are not encountered in traditional courses at this level.

� Provide students with the skills and knowledge they will need for subse-
quent mathematics courses.

� Reflect the major changes in the mathematical needs of other disciplines
and so provide students with the skills and knowledge that they will need
for courses in the disciplines.

� Make appropriate use of technology without becoming dominated by the
technology to the exclusion of the mathematics.

Philosophy of the Project

To accomplish these goals, we have adopted several basic principles advocated by
most leading mathematics educators.

Students should see the power of mathematics.

Most students take precalculus or college algebra/trigonometry courses at the col-
lege level because they are prerequisites for future math courses or for courses in
one of the client disciplines or as general education requirement, not because they
are turned on by the elegance of mathematics. When students see interesting and
significant applications, they see the power of mathematics and so are willing to
put in the effort needed to learn the subject.

Such applications are the primary focus of the Functioning in the Real World
course. For instance, in Chapter 2, we build mathematical models for the growth of
populations and for the decay in the level of a medication in the blood. In Chapter 3
we analyze the data related to the Challenger disaster showing how mathematics could
have been used to decide against the launch that day. In Chapter 4 we analyze the
spread of AIDS to determine what kind of mathematical model best describes its
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growth. In Chapter 7 we see how periodic phenomena in nature, such as temperatures,
tides, or hours of daylight over the course of a year, can be modeled mathematically.

Students should focus on mathematical ideas, 
not mathematical calculations.

Our goal is to achieve mathematical understanding, which too often is lost when
students concentrate on routine computations that can, should, and in practice
will be done by machine. Computer Algebra Systems (CAS) now perform virtually
any type of manipulation we could ever expect a student to do. Even if such sys-
tems are not necessarily incorporated into the new calculus courses, their existence
has major implications about what is important to teach. Further, graphing calcu-
lators allow us to study considerably more complicated problems from a geometric
or numeric perspective than conventional problems that require factoring artifi-
cially constructed functions. Consequently, there is less need to develop as broad a
level of manipulative skills in precalculus courses as in the past. However, the alge-
bra that arises in contexts and modeling throughout the book is very substantial,
especially the properties of exponential and logarithmic functions. Rather than fo-
cusing on producing students who are little better than imperfect organic clones of
CAS systems, we emphasize the power of the human mind to inquire, explore, an-
alyze, and interpret.

Technology certainly has a role in the Functioning course. We use graphing
technology to compare the growth behavior of different members within a family
of functions or to compare the behavior among different families of functions.
This theme comes up repeatedly throughout the book. Another technological
theme is to find the equation of the function (linear, exponential, power, logarith-
mic, trigonometric, logistic, and so on) that best fits real sets of data. In Chapter 5
we use technology to generate and display solutions of difference equations and in-
vestigate their dependence on initial conditions.

Whether you choose to have your students use graphing calculators, CAS,
spreadsheets, or other computer packages, technology should be used to motivate
and explain the mathematical ideas, not just to produce answers. Whatever tech-
nology you and your students use, we firmly believe that the overriding focus
should remain on the mathematics and not on the machinery.

Students should DO mathematics, not just passively 
watch mathematics.

The typical mathematics course involves classroom lectures and homework. But
mathematics is all around us, and the best way to appreciate its power and useful-
ness is to apply it directly. To achieve this, we suggest having students do several
mathematical projects either individually or in small groups. Such projects give the
students the opportunity to “get their hands dirty” by:

� formulating mathematical questions

� collecting appropriate sample data

� analyzing that data

� drawing conclusions based on the analysis

� preparing reports, which promote the organization of ideas as well as their
communication skills

x Preface
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For instance, when we look at linear functions early in Chapter 2, students can be
asked to select a set of data of interest to them and estimate, by eye, the equation of
the line that best fits the data. In Chapter 3, students can be asked to fit a variety of
functions (linear, exponential, power, and logarithmic) to a set of data and make
predictions based on the results. (See the Instructor’s Resource Manual for addition-
al suggestions related to each chapter.) The results of doing projects increase the
students’ level of enthusiasm for the subject matter and their understanding of the
mathematical ideas.

Students should be exposed to a broad view of mathematics.

Traditional precalculus courses focus exclusively on preparing students for calculus,
particularly in terms of the algebraic skills they may need. The Functioning course is
intended to prepare students for mathematics in a more general sense. We have in-
corporated a variety of nontraditional topics in the course that simultaneously in-
troduce new mathematical ideas while advancing the students toward a calculus
experience.

� The laboratory sciences routinely use mathematics to analyze laboratory
data, but rarely explain the underlying mathematical foundations—students
may use semi–log paper or log–log paper to produce the appropriate results
without understanding why. Throughout the book, we emphasize the con-
cept of fitting functions to data using real-life situations, which motivates
the mathematical ideas as well as providing contexts in which to develop
important algebraic skills at a high level. For example, in Chapter 3 we ana-
lyze the growth of the U.S. population via an exponential function; in Chap-
ter 5 we return to the U.S. population and attempt to fit it with a logistic, or
inhibited growth, model.

� In most calculus reform courses the emphasis on differential equations has
greatly increased. We extensively discuss difference equations in Chapter 5 to
introduce most of the comparable ideas and models in a discrete setting.
This discussion reinforces critical ideas on functional behavior and the mod-
eling of real-world phenomena while providing opportunities for honing
important algebraic skills. We return to the study of difference equations in
supplementary Chapter 12 (available on the web at www.aw.com/ggts).

� Probabilistic reasoning has become increasingly important in recent decades,
and we use it in supplementary Chapter 11 (also available on the web) and
we use it in the service of reinforcing other previous ideas and methods
from the study of functions.

What’s New in the Second Edition

In the second edition, we have tried to build on the strengths of the first edition. The
new edition contains a wealth of new applications, examples and problems, and all
real-world data sets have been updated. All concepts and methods are approached
using the Rule of Three: graphically, symbolically, and numerically.

The new edition has been reorganized and completely rewritten to provide a
slower pace through topics that some students find challenging. It also contains a
more prominent role for algebraic topics, where the algebraic steps involved in der-
ivations are now highlighted to assist students who may have forgotten some of the
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algebra they learned in prior courses. Many of the problem sets now include col-
lections of problems, called Exercising Your Algebra Skills, to give those students
who need it some practice with routine algebra. The book also includes a consider-
ably expanded treatment of trigonometry and the use of the trig functions as mod-
els of periodic behavior; there are now three chapters devoted to these ideas and
methods.

In particular, some of the major changes in the second edition are:

Chapter 2: Families of Functions The long section on linear function has been
split into two shorter sections to slow the pace. Similarly, the treatment of expo-
nential functions has been slowed by presenting the material in two sections, one
on exponential growth functions where the motivating illustration remains popu-
lation growth, and the other on exponential decay functions where the unifying
application is the level of a medication in the bloodstream. Both of these applica-
tions then serve as the key themes in later chapters on difference equation models.

Chapter 3: Fitting Functions to Data Many new examples, particularly relating
to power functions, have been added and considerably more emphasis has been
placed on the judgmental issues and mathematical reasoning involved in deciding
which function is the best fit to a set of data. A new optional section on multivari-
able linear regression has been added.

Chapter 4: Extended Families of Functions The material has been reorganized
to bring together all the discussions related to polynomial functions. New sections
have been added that relate the ideas on shifting and stretching functions to oper-
ations on tables of data. A new section has been added on the logistic and surge
functions as applications of the material on building new functions from old.

Chapter 5: Modeling with Difference Equations The introduction to difference
equation models has been totally rewritten and reorganized. The two unifying
themes are models for the level of a medication in the blood and population growth.
The more challenging material, particularly the heavy manipulative topics involving
methods for determining closed form solutions, has been moved to Chapter 12.

Chapter 6: Introduction to Trigonometry A new chapter on right angle tri-
gonometry has been written for those students who need an exposure to this mate-
rial. The development starts with the tangent ratio, because it makes more sense in
most applications to consider the adjacent and opposite sides. The chapter in-
cludes the law of sines and the law of cosines.

Chapter 7: Modeling Periodic Behavior This chapter presents the use of the
trigonometric functions as models for periodic behavior.

Chapter 8: More About the Trigonometric Functions This chapter presents
more advanced ideas on the trigonometric functions, especially trigonometric
identities, complex numbers and DeMoivre’s theorem, and the use of DeMoivre’s
theorem in understanding some chaotic phenomena.

Chapter 9: Geometric Models The material on the conic sections has been split
into several sections, one on the ellipse and another on the hyperbola and parabo-
la. Additional applications of the hyperbola have been added.
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Chapter 10: Matrix Algebra and its Applications A new section introducing
geometric and physical vectors has been added for those instructors who only have
time to develop these ideas. Additional examples and problems have been added
that link matrix methods more directly to previous topics in the book, including
functions, trigonometry, and finding equations of conic sections.

Chapter 11: Probability Models In the first edition, we had integrated some
ideas on probability throughout the text. However, all reports from users that we re-
ceived indicated that, unfortunately, very few people were able to take advantage of
this material because of time pressures. Accordingly, we collected all of this material
into a chapter on probability models. We have also added a new section introducing
the normal distribution and its uses. Because relatively few instructors have the time
to get to this chapter, it is being posted on the web at www.aw.com/ggts, where it is
available for downloading. Wherever appropriate, we refer to this chapter, or indi-
vidual sections, as a supplementary chapter or supplementary sections.

Chapter 12: More About Difference Equations As mentioned, the more so-
phisticated ideas and methods on difference equations have been combined into the
new Chapter 12. Moreover, additional sections have been added introducing sever-
al models based on systems of difference equations; these include the predator-prey
model and a model for competitive species. This supplementary chapter is also
available for downloading from the web at www.aw.com/ggts.

The Intended Audiences

The materials in this book were developed with different courses in mind:

1. An alternative to the usual one- or two-semester precalculus course de-
signed to prepare students for calculus, one that is in the spirit of the
MAA’s CUPM recommendations and AMATYC’s Crossroads Standards.

2. An alternative (perhaps as a course in mathematical modeling) to a one-
or two-semester course in college algebra and trigonometry.

3. An alternative to traditional high-school precalculus courses, one that is in
the spirit of the NCTM Standards and the recommendations of the Pace-
setter curriculum project.

4. An alternative to related courses that often are used as a terminal or cap-
stone mathematics course.

5. An alternative to a precalculus-level course for education majors.

We presume that the students taking this course have had a reasonably good mathe-
matical background at the level of intermediate algebra and a previous exposure to
some right-angle trigonometry and logarithms (but likely remember very little of it).

As an alternative to traditional precalculus and college algebra/trig courses, the
Functioning course certainly provides a strong preparation for a standard calculus
course. However, the primary emphases we have adopted make the approach par-
ticularly well-suited as preparation for virtually any calculus course. We put a
strong emphasis on:

� the applications of the mathematics

� mathematical reasoning and understanding of mathematical concepts, not
just symbol manipulation
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� the use of the Rule of Three: Topics are approached geometrically, numeri-
cally, and symbolically wherever possible

� the use of verbal reasoning and communication skills

Overall, we believe that it is very important to emphasize repeatedly why you
are teaching a course with a very different approach. Students need to be reminded
of the reasons why you are expecting more of them and asking them to do different
things. Pointing out the limitations of purely algebraic methods or the power of
modern technology to solve problems that could not be touched just a few years
ago helps. Pointing out the type of traditional manipulative operations that now
can be done easily by machine also helps. Most importantly, remind students that
they now need to develop the thinking skills to know the questions to ask, to decide
which tools to use for answering those questions, and to develop the ability to in-
terpret and communicate these solutions.

Suggested Time Frame

The suggested pacing below is for a one-semester course that meets four hours per
week. By including the optional sections and Chapters 10–12, this text can give a
two-semester sequence that provides a strong foundation in precalculus ideas and
in applied mathematics, particularly discrete mathematics. The text lends itself to
many other possible courses and the suggested timetable can provide instructors
with some guidance of the time needed for various topics.

xiv Preface

Chapter 1 Functions in the Real World
1–1.5 Weeks

Chapter 2 Families of Functions
3 weeks
Section: 2.2 and 2.3 Class hours: 3

2.4 and 2.5 3
2.6 1
2.7 2
2.8 (optional) 0.5–1
2.9 1

Chapter 3 Fitting Functions to Data
2–2.5 Weeks
Section: 3.1 and 3.2 Class Hours: 2

3.3 1.5–2
3.4 1.5–2
3.5 1.5–2
3.6 (optional) 1
3.7 (optional) 1

Much of this chapter can be assigned as independent
reading. However, we suggest spending some of the
first week talking about and developing the critical
ideas on the behavior of functions and introducing stu-
dents to the function concept from geometric, numeri-
cal, symbolic, and verbal points of view.

This chapter is critical in helping students to reach the
same plateau of mathematical background and to make
the transition to a new way of looking at and thinking
about mathematics. You should give students time to
reorient themselves.

This chapter provides the link between mathematics
and the real world. It shows where functions come
from, reinforces ideas about the behavior of families of
functions, and provides the opportunities to develop
important algebraic skills. Section 3.6 may be assigned
as reading.
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Chapter 4 Extended Families of Functions
2.5–3 Weeks
Section: 4.1 Class hours: 1.5

4.2 1.5
4.3 0.5–1
4.4 (optional) 0.5–1
4.5 (optional) 1
4.6 1.5
4.7 1.5
4.8 (optional) 1
4.9 (optional) 1

Chapter 5 Modeling with Difference Equations
1.5–2.5 Weeks
Section: 5.1 Class hours: 1.5

5.2 1.5–2
5.3 1.5–2
5.4 1.5–2
5.5 1.5

Chapter 6 Introduction to Trigonometry
1.5 Weeks
Section: 6.1 Class hours: 1

6.2 1–1.5
6.3 1
6.4 1.5
6.5 1.5

Chapter 7 Modeling Periodic Behavior
2–2.5 Weeks
Section: 7.1 Class hours: 2

7.2 3–4
7.3 1.5
7.4 1–1.5

Chapter 8 More About the Trigonometric Functions
2 Weeks
Section: 8.1 Class hours: 2–2.5

8.2 2
8.3 1.5
8.4 (optional) 1.5

Chapter 9 Geometric Models
2.5–3 Weeks
Section: 9.1 Class hours: 0.5

9.2 1.5
9.3 2
9.4 2
9.5 (optional) 1.5
9.6 (optional) 1
9.7 (optional) 1.5

This chapter extends the idea of families of functions to
polynomials. It also introduces the idea of constructing
new functions from old, including operations on func-
tions and shifting and stretching functions.

This chapter develops and analyzes models for describ-
ing: • population growth • logistic growth • eliminating
drugs from the body • radioactive decay • Newton’s
laws of heating and cooling • geometric sequences and
their sums. If pressed for time, you may wish to select
some, but not all, of the models discussed.

This chapter presents a brief introduction to right
angle trigonometry, including some of the simplest and
most common trig identities.

This chapter uses trigonometric functions to model pe-
riodic phenomena. The four parameters in sinusoidal
functions are introduced and developed in contexts in-
volving periodic phenomena.

This chapter • examines the relationship between the
trigonometric functions • approximates sine and cosine
functions with polynomials • examines the properties
of complex numbers • explains chaotic phenomena.
Coverage of Section 8.4 may take several class hours,
particularly if you wish to include live computer graph-
ics demonstrations.

This chapter includes analytic geometry, the conic sec-
tions, parametric curves, and curves in the polar coor-
dinate system. The two parts of this chapter, Sections
9.1–9.4 (analytic geometry) and Sections 9.5–9.7 (polar
coordinates and parametric curves) can be considered
as minichapters that could be covered independently, if
so desired.

xv

Detailed suggestions can be found in the Instructors Resource Manual.
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Supplements

� The Instructor’s Solutions Manual (available through http://suppscentral.
aw.com) contains complete solutions to all problems for instructors.

� The Student Solutions Manual (ISBN 0-201-61137-6) contains complete
solutions to selected problems, particularly nonroutine problems.

� The Instructor’s Resource Manual (available through http://suppscentral.
aw.com) contains

— detailed suggestions for topic selection and pacing for the course,

— additional problems and examples,

— ideas for classroom activities,

— suggestions for student projects related to each chapter,

— suggestions for computer laboratory exercises and assignments, and

— samples of tests, exams, and project assignments.
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Linear Strictly increasing when 
The more positive the slope, the faster the rate of in-
crease.

Strictly decreasing when 
The more negative the slope, the greater the rate of
decrease.

Exponential Strictly increasing when the growth factor 
(for ) The larger c is, the faster the function grows.

Strictly decreasing when the decay factor 
The smaller c is, the faster the function decays toward
zero.

Exponential graphs are always concave up.

Power Strictly increasing when 
The larger p is, the faster the function grows beyond

If the graph is concave up—it grows more
and more rapidly.
If the graph is concave down—it grows
more and more slowly.

Strictly decreasing for when 
The more negative p is, the faster the function decays
toward zero.
If the graph is concave up, for 

Logarithmic Strictly increasing.
Logarithmic graphs are always concave down.x � 0

y � log x

x � 0.p � 0,

p � 0.x � 0

0 � p � 1,

p � 1,
x � 1.

p � 0.y � xp

0 � c � 1.

c � 0
c � 1.y � cx

m � 0.

m � 0.y � mx � b

Function Equation Behavior Graph
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x

y

a > 0

x

y

a < 0

x

y

a > 0

x

y

a > 0

x

y

x

y

a < 0

Quadratic One turning point (the vertex) 
(polynomial Concave up when 
of degree 2) Concave down when 

Cubic Typically, two turning points 
(polynomial One inflection point 
of degree 3) Rises toward as 

when 
Falls toward as 

when 

Quartic Typically, three turning points
(polynomial Typically, two inflection points
of degree 4) Rises toward as 

when 
Falls toward as 

when a � 0
x S ���

a � 0
x S ���

y � ax4 � bx3 � cx2 � dx � e

a � 0
x S ���

a � 0
x S ���

y � ax3 � bx2 � cx � d

a � 0
a � 0

y � ax2 � bx � c

Function Equation Behavior Graph
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Real World
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FIGURE 1.1

Functions Are All Around Us

The notion of function is a fundamental idea in mathematics. Functions are the basis
of most mathematical applications in nearly all areas of human endeavor. To see how
functions can arise in unexpected places, look at the graph shown in Figure 1.1.

1.1

This graph appears in many introductory biology textbooks. It shows the re-
sults of a study comparing the masses of various mammals and birds with their
metabolic rates. The biologist who conducted the study first plotted the data—the
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raw measurements on body mass (measured in kilograms) and metabolic rate
(measured in watts)—on a graph and then drew a line that passes very close to most
of the points. What does this graph show? It is clear from the pattern of the data
points that there must be some relationship between the body mass and the meta-
bolic rate of mammals and birds. If there were no relationship, the points would not
fall into such a clear pattern. Thus we conclude that, in some way, the metabolic rate
of an organism depends on the mass of that organism. Such a relationship is a
function, and we say that metabolic rate R is a function of body mass W.

Informally, a function is a rule that associates a set of values of one quantity
with a set of values of another quantity. Functions are usually represented in four
different ways:

1. by formulas or equations,

2. by graphs,

3. by tables, and

4. in words.

For instance, a function might be expressed as a mathematical formula such as
which gives the area A of a square in terms of its side s. The equation might

be which gives the distance D you travel at a constant rate of 50 mph in
terms of the time t that you drive. A function might be given as a graph, as in the
relationship between metabolic rate R as a function of body mass W of various or-
ganisms illustrated in Figure 1.1. A function might be given as a table of data. For
instance, you compute your income tax for the Internal Revenue Service by using a
table—for each level of taxable income, there is a corresponding tax levied, as
shown in Figure 1.2. The rule for a function might be expressed in words, as in

D � 50t,
A � s2,

Gord.3896.01.pgs  4/24/03  9:23 AM  Page 2



1.1 Functions Are All Around Us 3

“The cost of postage is 37 cents for the first ounce and 23 cents for each additional
ounce.”

Typically, when a functional relationship exists between two quantities, the
values of one of the quantities depends on the values of the other quantity. That is:

A function is a rule that assigns to each value of one quantity precisely one
related value of another quantity.

But, if one value of a quantity leads to two or more values of the other quantity, the
relationship between them is not a function. For instance, consider the relationship
between the number of home runs that a batter has hit by the end of the baseball
season and the number of runs he has batted in (RBIs). How many RBIs are asso-
ciated with 10 home runs? Many different players hit 10 home runs say, but each
likely had a different number of RBIs, so this relationship is not a function.

Representing Functions with Formulas and Equations

When you think of functions, the first thing you probably think of is a relation-
ship between two quantities that is given by a formula, such as which
gives the area A of a circle in terms of its radius r. Similarly, the ideal gas law from
chemistry, which says that expresses the pressure P of a gas as a func-
tion of its temperature T, where V is the volume of the container that holds the
gas and k is a constant. The conversion between Fahrenheit and Celsius tempera-
ture readings, expresses the functional relationship between the
two temperature scales.

Frequently, when we observe that one quantity is a function of another, we
would like to determine an appropriate formula that expresses this relationship. For
example, throughout most of human history, people believed that objects fall at a
constant speed. Then, in about 1590, Galileo realized that this belief might not nec-
essarily be true. He also had the insight to realize that this conjecture could be tested
experimentally. Galileo conducted his now-famous experiments of dropping objects
from the top of the Tower of Pisa and found that they fell at ever-increasing rates and
that the weight of the objects didn’t affect how fast they fell. Galileo’s study of the re-
lationship between the distance that an object falls and the time it takes to fall was the
key connection for Newton that enabled him to develop his theories of motion that
transformed the physical sciences. Based on either Newton’s laws of motion or the
analysis of data from such an experiment, a formula for the height y of an object
dropped from the top of the 180-foot-high Tower of Pisa is where t
is the number of seconds since the object was dropped. We show where this formula
comes from later in the book.

Representing Functions with Graphs

Many effective ways are used to display functions graphically in everyday life—in
newspapers, magazines, and scientific, business, and government reports. The
graph of a function is valuable because it displays accurate information about a
quantity while simultaneously giving an overview of the behavior of that quantity.
In particular, a graph can show any trends or patterns in the process being studied.

The graph shown in Figure 1.3 shows the increase in life expectancy in the Unit-
ed States in years since the beginning of the twentieth century. This graph is a func-
tion of time t because, for any given year, there is a single value for the life

y � 180 � 16t2,

F � 9
5 C � 32,

P � kT>V,

A � pr2,
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FIGURE 1.3

expectancy of a child born in that year. From the graph, for example, we can esti-
mate that a child born in 1900 would have had, on average, a life expectancy of
about 47 years, and that a child born in 1990 would have a life expectancy of about
75 years. The rise in life expectancy is a remarkable achievement due to advances in
science and medicine and improvements in lifestyles. However, there are also some
unfortunate aspects connected with living longer. Can you think of any?

From this graph, not only can you observe the rising trend, but you can also
look ahead to predict life expectancies in the not-too-distant future. Note that life
expectancy is not merely increasing, but it is actually increasing more slowly as
time goes by.

What is the significance of this growth pattern for life expectancy if it continues? ❐

Functions are displayed graphically in many ways in newspapers and maga-
zines. Keep an eye out for them in your daily activities.

Representing Functions with Tables

Consider the following table of values, which shows the acceleration of a Pontiac
Trans Am. The table gives the time in seconds needed to reach different speeds.

Think About This

Although you may not have thought of something such as this as being a func-
tion, the time t needed for a Trans Am to achieve a certain speed v is a function of
the speed. There may not be an explicit formula for this time as a function of the
final speed, but it nevertheless satisfies the definition of a function: For each final
speed v, there is a unique time t needed for a Trans Am to accelerate to that speed.

We can plot these points and connect them with a series of straight line seg-
ments or even by a smooth curve, as shown in Figure 1.4. Note that the times de-
pend on the speeds. Thus we plot the speeds on the horizontal axis and the times
needed to achieve those speeds on the vertical axis. Also, you should realize that the
values in the table represent only the actual measured points. Drawing a smooth
curve through the points requires making assumptions about what happens be-
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1.1 Functions Are All Around Us 5
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Date 19 20 21 22 23 24 25 26 27 28 29

Temperature 109 113 114 113 113 113 120 122 118 118 108(�F)

Note that a single high-temperature reading is associated with each day, so high tem-
perature is a function of the day. This function makes sense only for the 11 days—
June 19 through June 29—and its values consist of the high-temperature readings
108, 109, 113, 114, 118, 120, and 122.

However, the date is not a function of the high temperature because a given
temperature (say, was reached on more than one date (in this case the 20th,
the 22nd, the 23rd, and the 24th).

The function that associates the high temperature in Phoenix with the corre-
sponding day of the month can be depicted graphically by plotting the individual
points, as shown in Figure 1.5, so again we have represented the same function by
both a table and a graph. The points in the figure can be joined by a series of line
segments or by a smooth curve to give a sense of an overall trend or pattern, as
shown in Figure 1.6. However, doing so requires some careful thought. When we
connect the points, we are not indicating that this graph represents temperature as
a function of time; we are just connecting the maximum temperatures recorded
each day, and the curve shown gives absolutely no information about the tempera-
ture at any intermediate time. In fact, the actual graph of temperature versus time
would typically show the type of oscillatory effect depicted in Figure 1.7.

Representing Functions with Words

Functions are expressed verbally in many different ways. The maximum load that a
jet plane can lift is related to its wingspan. The number of different species that can
live on an island depends on the size of the island. The population of the world over

113° 2

tween those points. The curve is just an artist’s rendition of what the pattern could
be; the actual pattern might have some minor variations. Note that we have now
represented the same function by both a table and a graph.

Estimate the time needed for a Trans Am to accelerate from 0 to 45 mph and from
0 to 75 mph. Which estimate do you think is more accurate? Why? ❐

Now consider the following daily high temperatures in Phoenix during a se-
vere heat wave in June 1990.

Think About This
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time is a function of time. If money is borrowed at simple interest (no compound-
ing), the amount of interest earned is a multiple of the amount borrowed.

Why Study Functions?

Any situation involving two quantities usually raises several questions:

1. Is there a functional relationship between the two quantities?

2. If there is a relationship, can we find a formula for it?

3. Can we construct a table or graph relating the two quantities, especially if
we can’t find a formula?

4. If we can find a formula, or if we have a graph of the relationship, or if we
have a table of values relating the two quantities, how do we use it? That is,
how can knowledge of the function aid in understanding the relationship
between the two quantities or allow us to make predictions or informed
decisions about one of the variables based on the other?

Figure 1.1 clearly suggests a relationship between metabolic rates R in mammals
and birds and their body mass W. This same relationship can then be used to predict
the metabolic rate of other species—say, lions or Kodiak bears—based on knowledge
of their mass. This relationship could even be used to predict the metabolic rate of an
extinct pterodactyl from estimates of its body mass made from its skeletal remains.

6 CHAPTER 1 Functions in the Real World
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However, it could not be used to predict the metabolic rate for a crocodile because a
crocodile is neither a mammal nor a bird; the relationship observed in Figure 1.1 for
mammals and birds may not apply to reptiles.

Based on the graph shown in Figure 1.1, would you use the relationship to predict
the metabolic rate for extinct mammoths, which were slightly larger than today’s
elephant? ❐

Think About This

1.1 Functions Are All Around Us 7

Problems

1. Which of the following relationships are functions
and which are not? Explain your reasoning. For
those that are functions, identify which of the two
quantities depends on the other. Again, explain
your reasoning.

a. The number of miles driven in a car versus the
number of gallons of gas used.

b. The price of a diamond versus the number of
carats.

c. The major league baseball player who has a certain
number of home runs at the end of the season.

d. The student who has a specific score on the SAT
in a particular year.

e. The amount of rain that falls on any particular
day of the year in Seattle.

f. The day of the year on which given amounts of
snow, in inches, fall in Buffalo.

2. Match each of the following functions with a corre-
sponding graph. Explain your reasoning.

a. The population of a country as a function of
time.

b. The path of a thrown football as a function of
time.

c. The distance driven at a constant speed as a
function of time.

d. The daily high temperature in a city as a func-
tion of time over several years.

e. The number of cases of a disease as a function of
time.

f. The percentage of families owning VCRs as a
function of time.

3. The following graphs show the noise level of a
crowd of college students watching their school’s
basketball team playing at home in the champi-
onship finals for the league title. Match the three
graphs with the corresponding scenarios (reactions)
and then draw a graph for the remaining scenario.

a. Our team started slowly but eventually began to
pull away.

b. It was a disaster from start to finish.

(i) (ii)

(iii) (iv)

(v) (vi)

(i) (ii)

(iii)
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8 CHAPTER 1 Functions in the Real World

c. The score kept seesawing back and forth, but we
finally won on a three-point shot at the buzzer.

d. Our team started well, then the opposition took
the lead, but we finally won.

4. Consider the scenario: “You left home to run to the
local gym. You started at a constant rate of speed
but sped up when you realized how energetic you
felt. About halfway there, you began to tire, so you
started slowing down.” Sketch a graph of your dis-
tance from home as a function of time.

5. Sketch a graph of your distance from home as a
function of time for each situation.

a. You drove steadily across town, speeding up as
traffic diminished until the road turned into a
highway.

b. You drove steadily toward town but slowed down
as the traffic increased. Eventually you inched
forward around a car that had broken down be-
fore you could resume normal speed.

c. You drove steadily but realized you had left
something behind, so you returned home and
then drove all the way to school without any
further trouble.

d. You drove steadily across town but then had a
flat tire; after changing it, you drove much faster
so that you wouldn’t be too late for class.

6. For each of the scenarios in Problem 5, sketch a
graph of the total distance you’ve traveled as a func-
tion of time.

7. Consider again the graph in Figure 1.3. Write a
paragraph or two interpreting what the increase in

life expectancy over the past century means. For ex-
ample, you might consider it in terms of your own
expected life span compared to those of your chil-
dren and grandchildren. Alternatively, you might
consider the effects on the overall distribution of
people of different ages in the population at large,
or you might discuss the question of whether there
is a natural limit to how long the human life span can
be extended in the future. Compare the values for life
expectancies in the United States in Figure 1.3 with
the values for life expectancies of other nations
given in Appendix G.

8. Which table of values represents a function and
which doesn’t? Explain your reasoning.

a.

b.

9. The Dow-Jones average of 30 industrial stocks is
probably the most closely watched measure of stock
market performance. Below are the Dow values at
the beginning of each year from 1980 to 2000.

Write a short paragraph describing the behavior of
the stock market over this period of time. When did
it rise? When did it fall? Which years would have
been the best times to buy stocks? Which would
have been the worst times to do so?

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

Dow 839 964 875 1047 1259 1212 1547 1896 1939 2169

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Dow 2753 2634 3169 3301 3758 3834 5177 6447 7965 9184 11358

Source: Wall Street Journal.

x 0 3 6 1 5 2 4

y 8 6 2 2 4 5 3

x 0 2 3 4 1 3 5

y 8 4 7 2 6 10 9

Describing the Behavior of Functions

Functions are used to represent quantities in the real world. Because most of these
quantities change over time or depend on some other quantity, we need some ter-
minology to describe the behavior of the function—that is, how the function
changes. We can describe the behavior of a function in two different ways.

1.2
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1.2 Describing the Behavior of Functions 9

Increasing function Decreasing function

FIGURE 1.8

Increasing and Decreasing Functions

The first and most immediate aspect of behavior is whether the function is in-
creasing or decreasing. The graph of a function is increasing if, as you look from left
to right, the vertical values get larger; that is, the graph rises. We also describe this
behavior as growth. Similarly, the graph of a function is decreasing if, as you look
from left to right, the vertical values get smaller; that is, the graph falls. We also de-
scribe this behavior as decay. Figure 1.8 illustrates these characteristics.

For instance, the world’s population is growing. Therefore the function that
expresses the population over time is an increasing function. Also, the heavier a car
is, the lower its gas mileage will be. Therefore the function that relates gas mileage
to the weight of a car is a decreasing function.

Of course, not every quantity merely increases or decreases. Often, a quantity
will rise some of the time and fall some of the time, such as the height of a bouncing
ball, the value of the Dow-Jones average, or the high temperature recorded in a par-
ticular location each day of the year. Thus a function whose graph looks like the one
shown in Figure 1.9 increases for some values of the variable and decreases for oth-
ers. Here the function rises (increases) to a maximum or largest value compared to
nearby points, then falls (decreases) to a minimum value compared to nearby
points, and then rises again. We call any point where the behavior of the function
changes from increasing to decreasing or from decreasing to increasing a turning
point of the function. Turning points occur at points where a function reaches a
local maximum (the value where the function is larger than any nearby value) or a
local minimum (the value where the function is smaller than any nearby value).

Increasing

Increasing

Decreasing

Turning point

Turning point

FIGURE 1.9

Turning points

t = 4t = 0

0

t = 6 t = 10

y

t
FIGURE 1.10

Note that a function increases or decreases over an interval of values on the hori-
zontal axis; it has a turning point at a particular point corresponding to a single value
along the horizontal axis. Figure 1.10 shows a function of t decreasing from to

increasing from to decreasing from to and then in-
creasing after This function has turning points at and t � 10.t � 6,t � 4,t � 10.

t � 10,t � 6t � 6,t � 4t � 4,
t � 0
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10 CHAPTER 1 Functions in the Real World

Sketch the graph of a different function having the same behavior. ❐

We describe a function that is always increasing or always decreasing (it has no
turning points) as being strictly increasing or strictly decreasing.

Concavity: How A Function Bends

There is a second aspect to a function’s behavior. Figure 1.11 shows two increasing
functions. How do they differ? In Figure 1.11(a), the function isn’t merely increasing;
it is actually increasing faster and faster as time goes by. Think of the curve as bending
upward. For instance, population growth typically follows this type of growth pattern.
The function shown in Figure 1.11(b) is also increasing, but it is increasing more and
more slowly as time goes by. Think of the curve as bending downward. For instance,
the increasing human lifespan previously depicted in Figure 1.3 grows in this way.

Think About This

Bending upward

Bending downward

(a) (b)FIGURE 1.11

Now look at the two decreasing functions in Figure 1.12. The function shown
in Figure 1.12(a) decreases very rapidly at first and then more slowly as time pass-
es—it is decreasing at a decreasing rate. For instance, if a pollutant is released into a
lake, the level of pollution in the lake will decrease ever more slowly as time goes by.
Like the function shown in Figure 1.11(a), this curve is also bending upward. The
graph in Figure 1.12(b) also decreases, but it is decreasing slowly at first and then
more and more rapidly—it is decreasing at an increasing rate. For instance, if an ob-
ject is tossed off the roof of a tall building, its height above ground will decrease in
this manner as it speeds up in its descent because of the effects of gravity. Note that
this curve is bending downward, as is the curve shown in Figure 1.11(b).

Bending upward

Bending downward

(a) (b)FIGURE 1.12

We use the term concavity to describe the way a function bends. Curves that
bend upward, such as those shown in Figures 1.11(a) and 1.12(a), are concave up.

Gord.3896.01.pgs  4/24/03  9:23 AM  Page 10



1.2 Describing the Behavior of Functions 11

Note that one curve is increasing and that the other is decreasing, so concavity is a
completely different concept from increasing/decreasing. Similarly, curves that
bend downward, such as those shown in Figures 1.11(b) and 1.12(b), are concave
down. Again, note that one is increasing and the other is decreasing. Figure 1.13(a)
illustrates the two types of concave up behavior, and Figure 1.13(b) illustrates the
two types of concave down behavior.

Imagine a ball bouncing up and down across the floor in front of you. Is the path
of the ball concave up or concave down? ❐

Just as a function can be increasing over one interval and decreasing over an-
other, a function can be concave up over one interval and concave down over an-
other. For instance, think of the behavior of the Dow-Jones average. This function
is increasing during some time intervals and is decreasing during other time inter-
vals, as shown in Figure 1.14. It is also concave up over some time intervals and is
concave down over other time intervals.

Think About This

Concave downConcave up

(a) (b)FIGURE 1.13

A point on a graph where the concavity changes from concave up to concave
down or vice versa is called a point of inflection or an inflection point. In Figure 1.15,
we show two curves, one having a point of inflection where the curve changes
from concave up to concave down and the other where the curve changes from
concave down to concave up. Observe that neither point of inflection occurs at
the turning points where the curve reaches a local maximum or a local mini-
mum, so turning points are not the same as inflection points.

Note that the function on the left in Figure 1.15 grows faster and faster to the left
of the inflection point and then grows slower and slower to the right of the inflection
point. As a result, the function is growing most rapidly at the inflection point.
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FIGURE 1.14
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12 CHAPTER 1 Functions in the Real World

What happens at the inflection point of the function on the right in Figure 1.15? ❐

We summarize the preceding information about functions as follows:

Think About This

A function of x is increasing if the values of the function increase as x
increases.

A function of x is decreasing if the values of the function decrease as x
increases.

The graph of an increasing function rises from left to right.

The graph of a decreasing function falls from left to right.

The points where a function changes from increasing to decreasing or
from decreasing to increasing are the turning points.

The graph of a function is concave up if it bends upward.

The graph of a function is concave down if it bends downward.

The points where the concavity changes from concave up to concave
down or from concave down to concave up are the points of inflection
or inflection points.

In addition, the rate of change and concavity of the graph of a function are re-
lated in the following ways.

If the graph of a function is increasing and concave up, it is increasing at
an increasing rate.

If the graph of a function is increasing and concave down, it is increasing
at a decreasing rate.

If the graph of a function is decreasing and concave up, it is decreasing at
a decreasing rate.

If the graph of a function is decreasing and concave down, it is decreasing
at an increasing rate.

A function grows fastest or decays fastest at a point of inflection.

Concave up Concave up

Concave down Concave down

Point of inflection Point of inflection

FIGURE 1.15
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EXAMPLE 1
Identify all intervals where the function f shown in Figure 1.16 is

a. increasing;

b. decreasing;

c. concave up;

d. concave down.

Then indicate all points where the function has a

e. turning point;

f. local maximum;

g. local minimum;

h. point of inflection.

Solution For a–d, the task is to find the intervals of x-values where the different types of
behavior occur. We begin by redrawing the graph and introducing all the points 

where the behavior of the function changes, as shown in Figure 1.17.

a. The function is increasing for values of x between and and again between and
as shown in Figure 1.17(a).

b. The function is decreasing between and and again between and as shown
in Figure 1.17(a).

c. The curve is concave up between and and again between and as shown
in Figure 1.17(b).

d. The function is concave down between and between and and again from
to as shown in Figure 1.17(b).x9 ,x8

x6 ,x4x2 ,x1

x8 ,x6x4x2

x7 ,x5x3x1

x9 ,
x7x5x3

x9x2 , . . . ,
x1 ,

1.2 Describing the Behavior of Functions 13

FIGURE 1.16

(b)

x

y

x1 x2 x3 x4 x5 x6 x7 x8 x9

FIGURE 1.17 (a)

x

y

x1 x2 x3 x4 x5 x6 x7 x8 x9

Next, we look for particular points on the curve.

e. The turning points for this function are at at and at 

f. The function has a local maximum at (when compared to other nearby
points); the function also has a local maximum at and again at 

g. Similarly, the function reaches a local minimum at (when compared to other
nearby points) and again at 

h. The points of inflection occur where the concavity changes, which happens at
at at and at 

�

x � x8 .x � x6 ,x � x4 ,x � x2 ,

x � x7 .
x � x3

x � x9 .x � x5

x � x1

x � x7 .x � x5 ,x � x3 ,
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14 CHAPTER 1 Functions in the Real World

EXAMPLE 2
Two functions are defined in the accompanying tables of values. Describe the behav-

ior of each function.

Solution Both functions are obviously increasing as x increases. Note that the first
function grows first by 5 (from 6 to 11), then by 4 (from 11 to 15), and then by 3 (from
15 to 18), so it is growing at a decreasing rate. Therefore it is concave down. The second
function, however, grows by larger and larger amounts—first by 5 (from 6 to 11), then
by 6 (from 11 to 17), and then by 7 (from 17 to 24)—so the function is increasing at an
increasing rate and thus is concave up. Plot the points to verify both behaviors.

�

Periodic Behavior

Another behavior pattern for functions is extremely common in real life. Many
natural processes have the property of being periodic—that is, the pattern repeats
over and over. We see this in the height of tides that rise and fall in the same pat-
tern roughly every 12 hours in most coastal locations. It also occurs in the pattern
of temperature readings in any location from one year to the next. Spotting a pe-
riodic function from its graph is easy: The identical pattern appears repeatedly.
For instance, consider the following data based on historical records giving the av-
erage number of tornados reported in the United States, per month, in a typical
year.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Tornados 16 24 60 111 191 179 96 66 41 26 31 22

Source: National Oceanic and Atmospheric Administration.
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FIGURE 1.18

x 1 2 3 4

y 6 11 15 18

Figure 1.18 shows a graph of these points. Note, either from the table or the
graph, how the values increase from a minimum level of tornado sightings in Janu-
ary to a maximum number in May and then decrease toward the minimum as the
year ends. Because these values are based on historical averages, this cycle will like-
ly repeat yearly with little change from one year to the next. It is therefore a rough-
ly periodic phenomenon. Figure 1.19 shows a smooth curve that captures the
longer term behavior of this roughly periodic function.

x 1 2 3 4

y 6 11 17 24
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FIGURE 1.19

Problems

1. Which of the functions are strictly increasing,
strictly decreasing, or neither?

a. The cost of first-class postage on January first of
each year.

b. The time of sunrise associated with each day of the
year.

c. The high temperature associated with each day
of the year.

d. The closing price of one share of IBM stock for
each trading day on the stock exchange.

e. The area of an equilateral triangle in terms of its
base b.

f. The height of a bungee jumper t seconds after
leaping off a bridge.

g. The height of liquid in a 55-gallon tank h hours
after a leak develops.

h. The daily cost of heating a home as a function of
the day’s average temperature.

i. The world record times for running the 100 meter
dash.

2. Consider the function shown in the accompanying
graph. Use two different colored pens or pencils.
With one, trace all parts of the curve where the

function is increasing. With the other, trace all parts
of the curve where the function is decreasing. Then
mark all turning points on the curve.

3. Consider the function shown in the accompanying
graph. Use two different colored pens or pencils.
With one, trace all parts of the curve where the func-
tion is concave up. With the other, trace all parts of
the curve where the function is concave down. Then
mark all points of inflection on the curve.

4. Sketch the graph of a single smooth curve that is
first increasing and concave up, then increasing
and concave down, and finally decreasing and con-
cave down. Mark all turning points and points of
inflection on your curve.

5. Sketch the graph of a single smooth curve that is
first decreasing and concave up, then increasing
and concave up, and finally increasing and con-
cave down. Mark all turning points and points of
inflection on your curve.

6. Sketch a possible graph of the temperature in your
hometown over an entire week as a function of time.
On the graph indicate all the turning points. Where
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16 CHAPTER 1 Functions in the Real World

is the temperature function increasing? Where is it
decreasing? Where is the temperature function con-
cave down? Where is it concave up?

7. Each year the world’s annual consumption of water
rises, as does the amount of increase in water con-
sumption. Sketch a graph of the annual world con-
sumption of water as a function of time.

8. A human fetus grows rapidly at first and then grows
with decreasing rapidity. Draw a graph showing the
size of a fetus as a function of time.

9. Sales of microwave ovens grew slowly when they
were first introduced and then increased dramati-
cally as more people appreciated their usefulness.
Eventually, sales began to slow as most households
already owned one. Sketch the graph of microwave
oven sales as a function of time. Indicate the loca-
tion of the point of inflection.

10. Sales of VCRs grew slowly at first and then in-
creased tremendously as people came to accept
them widely. Eventually new sales began to level off
as market saturation neared. Sketch a possible
graph of the percentage of U.S. homes owning a
VCR as a function of time, paying careful attention
to the behavior of the function. Indicate any turn-
ing points and points of inflection.

11. The Environmental Protection Agency (EPA) mon-
itors the levels of industrial pollutants in many
lakes and rivers. The following graphs show the
level of pollutants L in four different lakes as a func-
tion of time t. For each, write a short paragraph ei-
ther from the point of view of the EPA bringing
charges against a company for polluting or from the
point of view of a company defending itself against
such charges.

13. The Apollo-12 mission involved a flight to the
moon (250,000 miles from Earth), five circular or-
bits about the moon, and a return to Earth.

a. Assume (incorrectly) that the spacecraft traveled
at a constant speed between the Earth and the
moon. Sketch a rough graph of the distance from
Earth as a function of time.

b. Assume (correctly) that the spacecraft’s speed
diminished the farther it got from Earth’s gravity
until it neared the moon and then increased due
to the moon’s gravitational force. The behavior
of the spacecraft’s speed reversed on the return
trip. Sketch a rough graph of the spacecraft’s dis-
tance from the Earth as a function of time.
(Think concavity!)

14. Water is being poured, at a constant rate, into vases
having the shapes shown. Sketch a graph showing

t

L

t

L

t

L

t

L

a.

x y x y x y

1 36 10 160 3 84

2 31 15 172 7 74

3 27 20 189 11 61

4 24 25 209 15 45

5 22 30 243 19 22

a.

b.

12. Each part of the table of values below defines a func-
tion. Determine the concavity of each function.

b.

d.c.
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1.2 Describing the Behavior of Functions 17

—3 —2 —1 1 2 3

a.

15. Decide which functions in a– j are periodic. (As-
sume that the graphs continue indefinitely to the
left and right in the same pattern.)

16. Janis trims her fingernails every Saturday morning.
Sketch the graph of the length of her nails as a func-
tion of time. Is this process periodic?

c.

d.

b.

—3 —1 1 2 3

c.

—3 —2 —1 1 2 3

d.

—3 —2 —1 1 2

e.

—3 —2 —1 1 2

f.

—3 —2 —1 1 2

g.

—2 —1 1 2

1

h.

—1 1 2

1

i.

1 2 3

j.

10 30

the level of the water as a function of time, paying
careful attention to concavity. What is the signifi-
cance of each of the points of inflection, if any?
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18 CHAPTER 1 Functions in the Real World

17. Craig is a perfectly normal individual with a pulse
rate of 60 beats per minute and a blood pressure of
120 over 80. Thus his heart is beating 
minute and his blood pressure is oscillating between a
low (diastolic) reading of 80 and a high (systolic)
reading of 120. Sketch the graph of his blood pressure
as a function of time. Be sure to indicate appropriate
scales on each axis.

18. a. The thermostat in Sylvia’s home in Baltimore is set at
during the winter. Whenever the temperature

drops to (roughly every half-hour), the furnace
comes on and stays on until the temperature reaches

Sketch the graph of the temperature in her house
as a function of time. Be sure to indicate appropriate
scales on each axis.

b. Gary, who lives in upstate New York, also has his
thermostat set to come on at How will a
sketch of the temperature in his house differ from
the one you drew in part (a) for Sylvia’s house?

c. Jodi, who lives in central Florida, likewise has her
thermostat set to come on at How will a
sketch of the temperature in her house differ
from the other two?

19. Astronomers have been observing sunspots on the
face of the sun for centuries. These dark spots on
the sun, which are accompanied by the release of
bursts of electromagnetic radiation that disrupt

66°.

66°F.

70°.

66°
66°F

60 times>

Representing Functions Symbolically

A function is a rule that associates one and only one value of a quantity (say, y) with
each value of another quantity (say, x). The quantities x and y are variables. We use a
single letter, such as f, g, or h, as the name of a function. The particular formula for
the function, if it is known, is usually written as It is read as “y equals f of
x” or possibly “y is a function of x.” For instance, the function f that takes any real
number x and squares it can be written as

Some particular values of this function are

In each case we replaced the variable x in with the indicated value,
and so on, and then evaluated the expression and so on.

Similarly, the function g that takes the square root of any nonnegative real
number x can be written as

y � g 1x 2 � 2x .

A13B
2,32,x � 1

3 ,x � 3,
f 1x 2 � x2

f 1p 2 � p2 � 9.8696.f 1�0.01 2 � 1�0.01 2 2 � 0.0001;

f 10.02 2 � 10.02 2 2 � 0.0004;f 1�5 2 � 1�5 2 2 � 25;

f A13B � A13B
2 � 1

9 ;f 13 2 � 32 � 9;

y � f 1x 2 � x2.

y � f 1x 2 .
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radio and TV signals, occur in periodic cycles. The
accompanying figure is a graph of the number of
sunspots observed each year.

a. Estimate the period of the sunspot cycle.
b. Estimate when the next two peaks will occur in

the cycle.
c. Suppose that you were required to come up with a

reasonable estimate for the maximum number of
sunspots that will occur during the next peak in
the cycle. How might you create such an estimate
based on the information given in the figure?
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1.3 Representing Functions Symbolically 19

For instance, some values of this function g are

But does not make sense because it isn’t possible to take the square
root of a negative number in the real number system. That is, the function g is not de-
fined for 

The function h that gives the reciprocal of any nonzero number x can be 
written as

Some values of this function h are

But does not make sense because division by 0 is not possible. That is, the
function h is not defined at 

To work with functions requires some terminology. In the form we
call x the independent variable because it can take on any appropriate value. We
call y the dependent variable because its value depends on the choice of x.

You can use letters other than f, g, or h to represent functions; other common
choices are F, G, or and so on. You can use letters other than x to repre-
sent the independent variable; other common choices are t (for time), (for an
angle), and r (for radius). Similarly, you can use letters other than y to represent the
dependent variable; for instance, you can use A for area, D for distance, P for pop-
ulation, and C for cost.

The area A of a circle is a function of its radius r—for each radius r, there is one
and only one area A. We write this function as Here r is the inde-
pendent variable, A is the dependent variable because the area depends on the
choice of r, and f is the function. The distance D that a car moves in t hours at a
steady speed of 50 miles per hour (mph) is given by Here t is the
independent variable, D is the dependent variable, and g is the function.

Suppose that you toss a ball straight up with an initial velocity of 64 feet per
second. The function

gives the height in feet of the ball above ground level after t seconds, until the instant
that the ball hits the ground. Picture what happens. As the ball rises, it slows due to
the effect of gravity. Eventually it reaches a maximum height and then begins to fall
back to the ground. As the ball falls, its speed increases, again because of gravity.

Now let’s see how the function f gives the height of the ball above ground at any
time t. After half a second, when the ball is 28 feet above the ground because

After 1 second, it is at a height of

y � f 11 2 � 6411 2 � 1611 2 2 � 48 feet.

y � f A12B � 64A12B � 16A12B
2 � 32 � 4 � 28 feet.

t � 1
2 ,

y � f 1t 2 � 64t � 16t2

D � g 1t 2 � 50t.

A � f 1r 2 � pr 2.

u

f 3 ,f 2 ,f 1 ,

y � f 1x 2 ,
x � 0.

h10 2

 h1�0.125 2 � � 
1

0.125 � �8.

 h1200 2 � 1
200 � 0.005;

 h15 2 � 1
5 � 0.2;

y � h1x 2 � 1
x  .

x � �25.

g 1�25 2 � 1�25

 gA14B � 3 1
4 � 1

2 .

 g 10.04 2 � 20.04 � 0.2;

 g 116 2 � 216 � 4;
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20 CHAPTER 1 Functions in the Real World

After 2 seconds, it is at a height of

which happens to be the maximum height the ball reaches. After 3 seconds, the
height is

and the ball is on its way down. After 4 seconds, the ball is back at ground level because

Domain and Range of a Function

In each of the preceding functions, there were some natural limitations on the pos-
sible values for both the independent variable and the dependent variable. The ball
is released at time and returns to the ground at seconds. It therefore
makes no sense in this problem to think about what happens before time or
after time Thus the permissible values for t are between 0 and 4 seconds.
Furthermore, the ball rises to its maximum height of 64 feet and then falls back to
the ground. Therefore the only meaningful values for the height of the ball are be-
tween and feet. (Of course, it is more realistic to think of throwing a
ball upward from about 4 or 5 feet above the ground rather from ground level—
we used ground level here just to simplify the mathematics.)

Similarly, the function makes sense only if the independent
variable x is not negative. The possible corresponding values for y must be positive or
zero. The function makes sense only if x is not zero. The possible
corresponding y-values of this function can be any number other than 0 because there
is no value of x such that Finally, for the function there
is no limitation on the possible values of x, but there certainly is a limitation on the
corresponding values for because they can never be negative.

For any function f, the set of all possible values for the independent variable is
called the domain of f ; the set of all possible values for the dependent variable is
called the range of f.

Typically, the domain and range consist of intervals of values for the inde-
pendent variable and the dependent variable, respectively. For instance, with the
function representing the height of the ball, the domain consists of the interval
from to and the range consists of the interval from to 
We can also use inequalities to write these intervals expressing the domain as

and the range as 
Because each of these intervals contains endpoints ( and for the

domain and and for the range), they are called closed intervals. We
can also write these intervals using interval notation, so that the domain is the
closed interval [0, 4] and the range is the closed interval [0, 64]. We use square
brackets to indicate that the endpoint value is included in the interval.

If one or both endpoint values is not included in an interval, we use paren-
theses instead of square brackets. For instance, if an interval is where
both endpoints are not included, we write it in interval notation as the open in-
terval (3, 6). (Caution: Don’t misinterpret this notation as the coordinates of the
point with and The symbols are identical, but the meaning should
be clear from the context.)

y � 6.x � 3

3 � x � 6,

y � 64y � 0
t � 4t � 0

0 � y � 64.0 � t � 4

y � 64.y � 0t � 4t � 0

y � x2

y � f 1x 2 � x2,y � 1>x � 0.

y � h1x 2 � 1>x

y � g 1x 2 � 1x

y � 64y � 0

t � 4.
t � 0

t � 4t � 0

f 14 2 � 6414 2 � 1614 2 2 � 0.

y � f 13 2 � 6413 2 � 1613 2 2 � 48 feet,

y � f 12 2 � 6412 2 � 1612 2 2 � 64 feet,
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1.3 Representing Functions Symbolically 21

An interval can also contain one endpoint, but not the other, as in 
We write this in interval notation as where the square bracket on the right
indicates that is included and the left parenthesis indicates that is not
included. For instance, the domain of the function is the interval

which indicates that ; it is closed on the left, and extends toward , but
never reaches , and so is open on the right.

EXAMPLE 1
Find the values of the function at 1, 2, , and 4. What is the
domain and range of this function?

Solution For each of the given values of x in the domain of this function, the corre-
sponding y-values in its range are

Note that you can take the square root of any positive value of x or of 0, so the domain of
the function g consists of all nonnegative numbers. Similarly, the square root of any such
number is positive or 0, so the range of g also consists of all nonnegative numbers.

We can use inequality notation to write for the domain and for the
range. Alternatively, using interval notation, we have for the domain and 
for the range.

�

EXAMPLE 2
Discuss the range of the function

when the domain for F is restricted to the set of all positive numbers.

Solution We start by looking at the graph of the function F, as shown in Figure 1.20.
Note that the function is decreasing rapidly to the right of It has a turning point atx � 0.

y � F1x 2 � x �
1
x

30, � 230, � 2
y � 0x � 0

 y � g 14 2 � 24 � 2.

 y � g 1p 2 � 2p � 23.14159 . . . � 1.77245;

 y � g 12 2 � 22 � 1.41421 . . . ;

 y � g 11 2 � 21 � 1;

 y � g 114 2 � 3 1
4 � 1

2;

 y � g 10 2 � 20 � 0;

p1
4 ,x � 0,y � g 1x 2 � 1x

�
�x � 030, � 2 ,

y � g 1x 2 � 1x
x � �2x � 8

1�2, 8 4 ,
�2 � x � 8.

0
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10

0 1 2 3 4 5
x

y

FIGURE 1.20
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x1

x2 y2

y1
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y4
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x4
x5

Domain Range

f

FIGURE 1.21

Definition of a Function

A function f is a rule that assigns to each permissible value of the inde-
pendent variable x one and only one value of the dependent variable y.

The domain of f is the set of all possible values for the independent variable.

The range of f is the set of all possible values for the dependent variable.

Final speed, v (mph) 30 40 50 60 70

Time, t (sec) 3.00 4.29 5.52 7.38 9.81

EXAMPLE 3
Discuss the domain and range for the function relating acceleration time t to final speed
v for a Trans Am, based on the following set of data.

about and then it increases slowly thereafter. Try different values for x with your
calculator to verify that this result is indeed the case numerically. Also, extend the graph
farther to the right with your function grapher to see that this pattern continues indefi-
nitely. It turns out that the smallest possible value for y, which is exactly, corre-
sponds to at the turning point. For any other value of x, the value for y is larger.
Therefore the range of F is all values 

�

You can visualize a function f as an operation that transforms each value x from
its domain into the corresponding value y in its range. Figure 1.21 illustrates how
each point x in the domain is transformed into a single point in the range. Thus is
transformed into We also can say that is carried into or that is mapped into

Similarly, is carried into and is mapped into Note that and are
both transformed into which is perfectly legitimate for a function. Each x-value
must be mapped into a single y-value, although it is certainly possible for several dif-
ferent x’s to be mapped into the same y. Think about the function 
where both and are transformed into y � 4.x � �2x � 2

y � f 1x 2 � x2,

y4 ,
x5x4y3 .x3y2x2y1 .

x1y1x1y1 .
x1

y � 2.
x � 1

y � 2

x � 1,

We now summarize the preceding ideas in a formal definition of a function.
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Solution The independent variable is the final speed v, so the domain of this function
consists of all possible speeds. We therefore might conclude that the domain would be 0
to 70 mph; however, if we want to use the function to predict the time needed to reach a
higher speed, we would need a somewhat larger domain—say, 0 to 100 mph. It probably
isn’t reasonable to think of speeds any faster than that. The dependent variable is the time
t needed for a Trans Am to accelerate to a given speed, v. If we use only speeds between 0
and 70 mph, the associated range would be 0 to 9.81 seconds. If we use the extended do-
main of v of 0 to 100 mph, however, the associated range might be more like 0 to 20 sec-
onds. It takes about 2.5 seconds to accelerate from 60 to 70 mph. The pattern suggests
that it will take even more time to accelerate from 80 to 90 mph and still more time to go
from 90 to 100 mph. Thus an estimate of 20 seconds to accelerate from 0 to 100 mph is
reasonable.

�

Consider the relationship between people and their telephone numbers. Is this
relationship a function? If there is even one person who has two different telephone
numbers, the relationship does not satisfy the definition and so is not a function.
But a person’s height is a function of the person—each individual has one and only
one height at any particular time.

Often a verbal description of a function includes the idea of proportionality
from elementary algebra. Recall that y is proportional to x means that 
for some constant of proportionality k. For instance, the area of a circle is pro-
portional to the square of the radius because and is a constant (it is
the constant of proportionality). Similarly, y is inversely proportional to x if

where k is a constant of proportionality.
Throughout this book, unless some restriction is indicated, we assume that all

functions discussed are defined (either mathematically or practically) on the
largest possible domain that makes sense.

y � k . 1>x � k>x,

pA � pr 2

y � k . x,

Problems

1. Which of the relationships are functions and which
are not? For those that are not functions, explain
why. For those that are functions, identify the inde-
pendent and dependent variables and give a reason-
able domain.

a. The cost of first-class postage on January first of
each year since 1900.

b. The weight of letters you can mail with 2,
postage stamps.

c. The time of sunrise associated with each day of the
year.

d. The time of high tide associated with each day of
the year.

e. The high temperature associated with each day
of the year.

f. The closing price of one share of IBM stock each
trading day on the stock exchange.

g. The area of a rectangle whose base is b.

3, . . . 
n � 1,

h. The area of an equilateral triangle whose base is b.
i. The height of a bungee jumper t seconds after

leaping off a bridge.
j. The time it takes the bungee jumper to reach a

height H above the ground.
k. The number of baseball players who have n

home runs in a full season.
l. The height of liquid in a 55-gallon tank h hours

after a leak develops.
m.The daily cost to a family of heating their home

versus the average temperature that day.

2. The balance B, in thousands of dollars, in a CD ac-
count at a bank is a function of time t, in years, since
you opened the account, so 

a. What does tell you? What are appro-
priate units?

b. Is f an increasing or decreasing function of t?
c. Discuss the concavity of f.

f 14 2 � 2

B � f 1t 2 .
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1Note that when you enter this expression in a calculator or most
computer programs, you must key the expression in as 
Pay careful attention to when you need to use parentheses in any
such expression.

1> 1x^2 � 4 2 .

3. The height H in inches of a child is a function of the
child’s age a, so 

a. What does tell you? What are appro-
priate units?

b. Is f an increasing or decreasing function of a?
c. Discuss the concavity of f.

4. The surface area S of a sphere of radius r is times
the square of the radius. Write a formula for S as a
function of r.

5. The pressure P of a gas in a container of fixed size is
proportional to the temperature T of the gas. Write a
formula for the pressure as a function of temperature.

6. The pressure P of a gas held at a constant tempera-
ture in a container is inversely proportional to the
volume V of the container. Write a formula for the
pressure as a function of volume.

7. The force of gravity F between two objects is in-
versely proportional to the square of the distance d
between the objects. Write a formula for F as a
function of d.

8. When a cup of hot coffee is left to cool on the table
where the air temperature is the change in
the temperature T of the coffee is proportional to
the difference between the temperature of the coffee
and the room temperature. Write a formula for 
as a function of T.

9. Kim has a peanut butter sandwich on white bread
each day. The number of calories C in the sand-
wich, as a function of the number of grams P of
peanut butter, is 

a. What is What does it mean?
b. What is 
c. How many calories come from the bread alone?
d. Explain why using makes no sense.
e. What is a reasonable domain and range for this

function?

10. Suppose that Jim wants his peanut butter sandwich
on rye bread instead of white bread. Rye bread con-
tains 85 calories per slice. What would be the corre-
sponding formula for the number of calories in
Jim’s sandwich?

11. The number of calories in a peanut butter and jelly
sandwich on white bread is 
where P and J are the number of grams of peanut
butter and jelly, respectively.

a. How many calories are in a sandwich with 24 g
of peanut butter and 20 g of jelly?

C � 150 � 6P � 2.7J,

P � �1

f 130 2?f 120 2?f 115.5 2?f 110 2?
f 11 2?

C � f 1P 2 � 150 � 6P.

	T

	T70°F,

4p

f 110 2 � 50

H � f 1a 2 .
b. Suppose that Adam is on a diet and wants to

limit his calorie intake from a peanut butter and
jelly sandwich to a maximum of 300 calories.
Find two reasonable combinations of amounts
of peanut butter and jelly that produce a sand-
wich with exactly 300 calories.

c. Which is more caloric, a gram of peanut butter
or a gram of jelly? Explain how you know.

12. A car rental company charges a fixed daily rate for a
midsize car plus a charge for each mile more than
100 miles that the car is driven per day. A formula
for the cost of a rental car driven more than 100
miles is where
m is the number of miles that the car is driven.

a. Find What does it mean?
b. Find and 
c. What is a reasonable domain and range for this

function?

13. Suppose that you throw a ball upward, with an initial
velocity of from the roof of a 120-ft-high
building.

a. Sketch a possible graph of the height of the ball
as a function of time, as you visualize it.

b. Suppose that the height of the ball as a function
of time is given by

Find the height of the ball when when

c. Find and What do they represent?
d. Use your function grapher to estimate how long

it takes for the ball to reach its maximum height.
What is the maximum height?

e. How long does it take until the ball first hits the
street below?

f. What are the domain and range for this function?

14. For the function find the values cor-
responding to 4, 6, 10.

15. For the function1

find Why did we skip
Are there any other values of x that should

be skipped? What is the domain of this function?
x � 2?

F15 2 .F14 2 ,F13 2 ,F11 2 ,F10 2 ,

F1x 2 �
1

x2 � 4
 ,

t � 2,
f 1t 2 � t2 � 5,

H13 2 .H12 2
t � 4.

t � 1;

H1t 2 � 120 � 60t � 16t2.

60 ft>sec,

f 1500 2 .f 1200 2 ,f 1150 2 ,
f 1100 2 .

35 � 0.251m � 100 2 ,c � f 1m 2 �
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Connecting Geometric and Symbolic Representations

One of the most significant advances in mathematics is based on the idea of con-
necting the geometric and symbolic representations of functions. It allows you to
think of functions from a visual rather than an exclusively symbolic perspective.

Begin by drawing two perpendicular axes, as shown in Figure 1.22, whose
point of intersection O is the origin. The horizontal axis represents values of the
independent variable (in this case, x); by convention, these values increase from left
to right, as indicated by the arrow. The vertical axis represents values of the
dependent variable (in this case, y); by convention these values increase upward, as
indicated by the vertical arrow. The two axes divide the plane into four quadrants:
the first quadrant (I), the second quadrant (II), the third quadrant (III), and the
fourth quadrant (IV). Whenever appropriate, indicate the units used for each vari-
able and label the axes accordingly.

This representation is called a rectangular or Cartesian coordinate system, and it
is a way of associating points in the plane with ordered pairs of numbers. Every
point P in the plane can be represented by an ordered pair of numbers, Al-
ternatively, every ordered pair, such as or represents a
point in the plane. We call the coordinates of the point P. In mathematics,
the letters x and y generally represent the independent and dependent variables, re-
spectively. However, in any given context, you should use letters that suggest the
quantities being studied.

Consider again the function

which represents the height, at any time t, of a ball tossed vertically upward with
initial velocity of 64 feet per second. The formula for the function f gives the verti-
cal height y of the ball at any instant t. When and the corresponding
point is the origin. Further, as we calculated before, f 11 2 � 48,f 112 2 � 28,10, 0 2

y � 0t � 0,

y � f 1t 2 � 64t � 16t2,

1x, y 2
123.84, 21.02 2 ,127, 1 2 ,12, 5 2 ,

1x, y 2 .

1.4

x

y

II I

III IV

O(0, 0)

FIGURE 1.22

16. For the function

find Why did we skip
Are there any other values of x that should

be skipped? What is the domain of this function?

17. For the function find the values
corresponding to 16, 25, 100. Are there any
values for s that will make the function come out
negative? What does that tell you about the range of
g? What is its domain?

18. For the function find the value
of the dependent variable that corresponds to a
value of the independent variable of 4. Find the
value of the independent variable that corresponds
to a value of the dependent variable of 6.

z � f 1q 2 � q3 � 5,

s � 4,
g 1s 2 � s � 1s ,

x � 3?
g 1�1 2 .g 14 2 ,g 12 2 ,g 11 2 ,g 10 2 ,

g 1x 2 �
x2 � 4

x2 � 9
 ,

19. For the function find
three different values of x between 1 and 8 for
which Then find at least two noninteger
values of x for which 

20. A simple substitution code in which each letter is re-
placed by a different letter can be thought of as a
function f whose domain is the letters of the alphabet
A, B, . . . , Z. Suppose that 

and 

a. What is 
b. What is the solution to the equation f 1x 2 � R?

f 1Z 2?
f 1Y 2 � N.f 1X 2 � U,f 1W 2 � I,

f 1V 2 � G,f 1U 2 � R,f 1T 2 � Y,f 1S 2 � F,
f 1R 2 � C,f 1Q 2 � W,f 1P 2 � L,f 1O 2 � A,
f 1N 2 � O,f 1M 2 � H,f 1L 2 � Q,f 1K 2 � Z,
f 1J 2 � S,f 1I 2 � J,f 1H 2 � T,f 1G 2 � P,
f 1F 2 � B,f 1E 2 � X,f 1D 2 � V,f 1C 2 � K,
f 1B 2 � D,f 1A 2 � M,

f 1x 2 � 0.
f 1x 2 � 0.

f 1x 2 � x3 � 8x2 � 15x � 1,
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The graph of a function consists of all points in the plane
whose coordinates satisfy the equation of the function.

1x, y 2y � f 1x 2

and which give rise to the points 
and in the coordinate system. These six points are plot-

ted in Figure 1.23.
1t, y 214, 0 213, 48 2 ,12, 64 2 ,

11, 48 2 ,112 , 28 2 ,f 14 2 � 0,f 13 2 � 48,f 12 2 � 64,

We can determine many other ordered pairs satisfying the equation
(Simply pick any other value for t between 0 and 4 and calculate

the associated value of y by using the equation.) Each such ordered pair can be
plotted as a point in the coordinate system. When all possible points are plotted,
they form the curve shown in Figure 1.24. This curve is the graph of the function f.
It consists of all points in the plane whose coordinates satisfy the given equa-
tion. Thus we have a direct connection between the graph of a function and its al-
gebraic equation. The graph of a function is therefore another representation of
the same function. Note that the graph shown in Figure 1.24 represents the height
of the ball at any time t; it doesn’t show the path of the ball, which goes straight up
and then down.

1t, y 2

y � 64t � 16t2.
1t, y 2

A table of values for a function is also useful when you’re creating a hand-drawn
graph of the function f from the formula It provides a simple method of
organizing the values of the independent variable x and the associated values of the
dependent variable y that produce each point to be plotted. The number of points
that you need to calculate for a table to draw a reasonable graph of a function de-
pends on how complicated the behavior of the function is. For a line, all you need is
two points because two points completely determine a line. We used six points to
produce the graph of the height of the thrown ball shown in Figure 1.24. For com-
parison, a graphing calculator uses about 100 points to construct a curve.

When drawing the graph of a function, you should determine several key points.
One point is where the graph crosses the vertical axis. You can easily find this point if
you have a formula for the function: Just set the independent variable x equal to zero
in the algebraic formula for the function and calculate the corresponding y-value. Al-
though often desirable, finding the point(s) where the curve crosses the horizontal
axis is usually more complicated. To find them, set the dependent variable y equal to
zero and then solve the resulting equation. For the function representing the height
of the ball, we can factor the expression for y and then set 

y � 64t � 16t2 � 16t14 � t 2 � 0.

y � 0:

y � f 1x 2 .
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Time t (sec) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Height y (ft) 0 28 48 60 64 60 48 28 0

When you solve this equation for t, you get either or The time is
the instant when the ball is first released, so At the instant when the
corresponding value for y, which represents the height of the ball, is also zero. That
is, at time the ball has come back to the ground. You can see the pattern for
the values of this function (and thus the pattern for the height of the ball) in the
following table.

t � 4,

t � 4,y � 0.
t � 0t � 4.t � 0

EXAMPLE 1
Determine the domain and range of the function shown in Figure 1.25.

–2 3

–4

8

x

y

O

FIGURE 1.25

Solution Note that the axes shown are labeled x and y; x is the independent variable,
and y is the dependent variable. Further, observe that the graph extends from at
the left to at the right, so the domain of this function is from to 3. We can
write this domain in terms of inequalities as Similarly, the graph extends
vertically from a low of to a high of so the range is 

�

In many situations, we typically start with a set of data collected from some exper-
iment or from measurements taken on some process. We then graph the data to get a
feel for the behavior of the quantity. Often, we try to connect the points on the graph
with a smooth curve to get a better indication of the behavior of the quantity. Finally,
we would like to obtain an equation for a function that fits these data points because
many questions can be answered far more easily and accurately when an equation is
available. We illustrate this methodology in Examples 2–4.

EXAMPLE 2
The snow tree cricket, which lives in the Colorado Rockies, has been studied by field
biologists who have gathered the following measurements on how the chirp rate de-
pends on the air temperature.

�4 � y � 8.y � 8,y � �4
�2 � x � 3.

�2x � 3
x � �2

Temperature T 50 55 60 65 70 75 80

Rate R 40 60 80 100 120 140 160(chirps>min)

(�F)

Plot the points to determine the kind of trend in the data.
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Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Population 12.94 13.32 13.70 14.10 14.51 14.93 15.36 15.81 16.27 16.74 ?
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Solution Plotting these data points gives a visual dimension, as shown in Figure 1.26. Note
that the chirp rate is growing at a constant rate as the temperature increases. Moreover, the
corresponding points in the figure seem to fall into a straight line pattern, as indicated by
the line drawn through them. In Chapter 2, we discuss how to find the equation of this line
and how to predict the chirp rate R of the cricket based on the temperature T, or vice versa.

�

EXAMPLE 3

The following table of values gives the population, in millions, of the state of Florida
since 1990.

a. Plot the data points and describe the behavior pattern.

b. If this trend continues, estimate the population in the year 2000.

Solution
a. The graph of this set of data is shown in Figure 1.27. The growth pattern clearly is not

a straight line pattern; rather, the population grows ever faster. The function is both in-
creasing and concave up.

b. The increase from 1997 to 1998 was million, and the increase
from 1998 to 1999 was million. As a result, we could estimate16.74 � 16.27 � 0.47

16.27 � 15.81 � 0.46
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Time (sec) 0 1 2 3 4 5 6 7 8

Height (ft) 1250 1234 1186 1106 994 850 674 466 226

that the increase from 1999 to 2000 might be about 0.48 million, so our prediction for
the year 2000 is about million people. We determine a formula
for this function in Chapter 2 so that we can make such a prediction in a much simpler
and more confident way.

�

EXAMPLE 4
The following table of values shows measurements, at different times, of the height of an
object dropped from the top of the 1250-foot-high Empire State Building. Construct a
graph of the height as a function of time and describe its behavior.

16.74 � 0.48 � 17.22

Solution The graph of the height of the object versus time in Figure 1.28 shows that
the object is falling ever faster as time goes by. The function is decreasing and concave
down. Again note that the graph represents the height of the object, not its path, which
is straight down.

�

Although we could estimate from either the table or the graph how long it
takes the object to hit the ground or to pass, say, the 30th floor, we could answer
such questions more precisely if we knew the formula for the function.

In Examples 2–4, we simply connected the points to construct a smooth curve
that seemed to fit the pattern. Doing so, however, can sometimes lead to serious er-
rors. Suppose that we had some data on the turkey population of the United States
taken on January 1 each year. It would likely show a growth trend similar to that in
Example 3 on the population of Florida. However, a little thought will convince
you that this population will change quite drastically about the middle of Novem-
ber each year. The smooth curve drawn using the January 1 turkey census data
would therefore be a rather poor description of the actual population over all in-
termediate times.
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FIGURE 1.28
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Nevertheless, the idea of connecting a series of points to form a curve is precisely
how a computer or graphing calculator produces the graph of a function. We strong-
ly urge you to become comfortable with using a graphing calculator or a computer
program to investigate the graph of any desired function given by a formula. The vi-
sual dimension invariably provides a wealth of information about the behavior of the
function, and we continually turn to graphical images throughout this book.

Connections Between Geometric, 
Numerical, and Symbolic Representations

We have shown that a function can be represented in a variety of ways—as a formula
giving a symbolic representation, as a graph giving a geometric representation, as a
table giving a numerical representation, or in words giving a verbal representation.
The first three ways (formula, graph, or table) are the most useful, but each approach
provides a very different perspective.

The problem is: Can you always move back and forth between these different
representations? Figure 1.29 illustrates schematically the interrelationships between
the three most useful representations—symbolic, geometric, and numeric—by ar-
rows. Ideally, you should be able to start with any one of these representations for a
function and shift to the other two representations. Some of these shifts are very sim-
ple. If you know a formula for a function, you can create a table of numerical values.
Similarly, if you know a formula, you can create its graph at the push of a button,
using a graphing calculator or computer graphics program or even by hand, as the
graph of a function consists of all points that satisfy the equation of the func-
tion. If you have the graph of a function, you can easily read off a set of points on the
curve and so produce a table of values. If you have a table of values, you can easily
plot the points and connect them with an appropriate, usually smooth, curve to gen-
erate a graphical representation.

Unfortunately, the two remaining shifts in perspective are considerably more
complicated. If you start with a table of values, how do you produce a formula for
the function? Similarly, if you start with the graph of a function, how do you con-
struct a formula for it? Both shifts can be extremely difficult, but fortunately mod-
ern technology provides the tools by which you can create reasonably accurate
formulas. That often is the key step in most real-life applications of mathematics.

Does Every Curve Represent a Function?

Let’s consider one last question: Is every curve the graph of some function
Consider the five curves shown in Figure 1.30. Are they all the graphs of

functions? That is, does each value of the independent variable x correspond to one
and only one value of the dependent variable y? We can test a curve in the follow-
ing way. Imagine a vertical line moving across the curve from left to right so that it
passes through every possible value of x in the domain. If, for each x, the line cross-
es the curve at only one point, there is exactly one y-value for that x and so the
curve represents a function. If the vertical line crosses the curve at more than one
point for any value of x, the curve does not represent a function. This criterion,
called the vertical line test, shows that the curves (a), (b), and (c) are all graphs of
functions. However, when the vertical line test is applied to curves (d) and (e), the
line crosses both curves at more than one y-value and thus neither are graphs of
functions.

y � f 1x 2?

1x, y 2

30 CHAPTER 1 Functions in the Real World

Symbolic

Geometric Numeric

FIGURE 1.29
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Problems

1. Which of the following graphs are functions? For
each function, (a) give its domain and range,
(b) identify where it is increasing or decreasing, and
(c) identify where it is concave up or concave down.

a. What are the coordinates of the points P, Q, and R?
b. Is the point on the curve?
c. Is the point on the curve?
d. What is 
e. Find x if
f. Is true or false?
g. Find y when 
h. Find x when 
i. Solve for x.
j. Solve for y.f 10 2 � y

f 1x 2 � 0
y � 2.
x � 2.

f 14 2 � �1
f 1x 2 � �1.

f 15 2?
15, �2 2
1�2, 5 2

(i) (ii )

–4 5

1

2

x

y

5
–1

1

2

t

y

(iv)

–1 5
–1

1

2

T

Q

(iii )

–1 5
–1

1

2

r

P

(v)

–1 5
–1

1

2

z

w

2. The following questions all relate to the accompa-
nying graph of a function y � f 1x 2 .

3. The accompanying graphs are based on the set of
data above, but something is wrong with each graph.
What was done incorrectly in each instance?

t 1970 1980 1990 1991 1992 1993 1994 1995

400 300 210 190 175 162 150 135f (t)
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’70 ’80 ’90 ’91 ’92 ’93 ’94 ’95

50

0

100

150

200

250

300

350

400

x

y

(b)

(a)

0 50 100 150 200 250 300 350 400

1970

1975

1980

1985

1990

1995

x

y

1970 1975 1980 1985 1990 1995

400

0

350

300

250

200

150

100

50

x

y

(d)

1970 1975 1980 1985 1990 1995

135

0

150

162

175

190

210

300

400

x

y

(c)

4. Refer to the function f relating the snow cricket’s
chirp rate to the air temperature in Example 2.

a. What is 
b. Solve 
c. In a complete sentence, tell what the equation

means.

5. For the function find the val-
ues of y corresponding to 4, 5.
Plot the corresponding points and connect them
with a smooth curve. Then use your function gra-
pher to graph the function. How do the two graphs
compare? Find the values of the function corre-
sponding to and indicate the
location of the corresponding points on the curve
you drew.

6. For the function use an appropriate
set of values for t and the corresponding y values to
get a feel for the behavior of the curve when you
draw and connect the points. How does your sketch
compare to what you see when you use your func-
tion grapher?

7. Repeat Problem 6 for 

8. One of the functions f or g in the following table of
values is concave up and the other is concave down.
Which is which? Explain how you know.

h1s 2 � s3 � 7s � 5.

g 1t 2 � 9 � t2,

x � � 
5
2x � 3

2 ,x � 1
2 ,

�1, . . . ,�2,x � �3,
f 1x 2 � x2 � 3x � 2,

f 162 2 � 88

f 1x 2 � 120.
f 160 2?

x 4 5 6

10 ?? 20f (x)

x 30 40 50

12 20 ??f (x)

x 5 10 15 20

80 70 62 56

80 70 58 43g(x)

f (x)

9. A function whose values are given in the fol-
lowing table is increasing and concave up. Give a
possible value for f 15 2 .

f 1x 2

10. A function whose values are given in the fol-
lowing table is increasing and concave down. Give a
possible value for f 150 2 .

f 1x 2
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11. For the function shown in the accompanying fig-
ure, indicate

a. the intervals of x-values where the function is
increasing.

b. the intervals where the function is decreasing.
c. all points x where the function has a turning

point.
d. all points x where the function has a local

maximum.
e. all points x where the function has a local

minimum.
f. all points x where the function has points of

inflection.
g. the intervals of x-values where the function is

concave up.
h. the intervals where the function is concave down.
i. approximately where the function is increasing

most rapidly.
j. approximately where the function is decreasing

most rapidly.
k. the location of any zeros of the function (points

where the curve crosses the x-axis).
l. For any of parts (a)–(k) that asks for intervals,

write the interval both in terms of inequalities
and interval notation.

x 0 0.5 1.0 1.5 2.0 2.5 3.0

62.3 28.4 6.8 4.3 11.9 33.2 14.7 2.3 11.7�5.2�38.8�12.5f (x)

�0.5�1.0�1.5�2.0�2.5

d. Near what x-values is the function at a local
minimum?

e. Between what pair of successive x-values is the
function increasing most rapidly?

f. Between what pair of successive x-values is the
function decreasing most rapidly?

g. Over what intervals is the function concave up?
h. Over what intervals is the function concave down?
i. Near what x-values does the function have points

of inflection?
j. Estimate the location of any zeros of the function.

13. Functions f, g, and h in the following table are in-
creasing functions of x, but each function in-
creases according to a different behavior pattern.
Which of the accompanying graphs best fits each
function?

x

1 11 30 5.4

2 12 40 5.8

3 14 49 6.2

4 17 57 6.6

5 21 64 7.0

6 26 70 7.4

h(x)g(x)f (x)

x

y

x1 x4 x5 x6 x7 x8 x9 x11 x14

12. Consider the data below. Assume that these values
represent a sample of values for a smooth, or con-
tinuous, function.

a. Over what intervals of x-values is the function
increasing?

b. Over what intervals is the function decreasing?
c. Near what x-values is the function at a local

maximum?

14. Functions f, g, and h in the following table are de-
creasing functions of t, but each function de-
creases according to a different behavior pattern.
Which of the accompanying graphs best fits each
function?

(a) (b) (c)
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15. Sketch the graph of a function that passes through
the point and is

a. increasing and concave up for and in-
creasing and concave down for 

b. increasing and concave up for and de-
creasing and concave up for 

c. decreasing and concave up for and in-
creasing and concave up for 

d. decreasing and concave up for and de-
creasing and concave down for 

16. Sketch the graph of a single smooth curve that sat-
isfies all the following conditions.

a. b. f 15 2 � �2f 10 2 � 4

x 
 0.
x � 0

x 
 0.
x � 0

x 
 0.
x � 0

x 
 0.
x � 0

10, 1 2

c. f has a turning point at 
d. f is decreasing from 3 to 5.
e. f is increasing for 
f. f is concave down from 0 to 4.
g. f has a point of inflection at 

17. Consider the function for 

a. Is f increasing or decreasing?
b. Is f concave up or concave down?

18. Consider the function for 

a. Is f increasing or decreasing?
b. Is f concave up or concave down?

19. For the function find the values of y cor-
responding to 1, 2, . . . , 6. Plot the correspon-
ding points and connect them with a smooth curve.
Then use your function grapher to graph the func-
tion. How do the two graphs compare? Find the val-
ues of the function corresponding to 

and indicate the location of the corresponding
points on the curve you drew. What is the domain?

20. For the function

calculate Plot the corre-
sponding points and connect them with a smooth
curve. Then use your function grapher to graph the
function. How do the two graphs compare? Find the
values of the function corresponding to 

and indicate the location of the corre-
sponding points on the curve you drew. What is the
domain?

x � 5
2x � 3

2 ,
x � 1

2 ,

f 18 2 .f 12 2 , . . . ,f 11 2 ,f 10 2 ,

f 1x 2 �
x

x � 1
 

x � 5
2

x � 3
2 ,x � 1

2 ,

x � 0,
f 1x 2 � 1x ,

x � �3.f 1x 2 � x3 � 7

x � 3.f 1x 2 � x2 � 4

x � 7.

x 
 5.

x � 3.

A model is a representation that highlights the most important characteris-
tics of an object or process.

Mathematical Models

A model is an image or representation of an object or process. A diagram of the
human circulatory system is a model of the veins and arteries in the human body;
the picture can be used to help us understand how blood circulates throughout the
body. Similarly, an architect’s sketch of a proposed shopping center is a model of
the actual center; a wooden model built to scale is a still more realistic representa-
tion for that shopping center.

1.5

Models can be found everywhere: the tide tables used by fishermen; a comput-
er scientist’s flowchart for a new program; plastic replicas of jet fighters; and many,
many more. Because our focus here is on mathematics, the models we present are

(a) (b) (c)

t

1 200 30 5.4

2 180 27.6 5.2

3 164 25.2 4.8

4 151 22.8 4.1

5 139 20.4 3.1

6 129 18.0 1.8

h(t)g(t)f (t)
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Formulation

Interpretation

Math
Model

Real
World

FIGURE 1.31

mathematical models. A mathematical model is a representation of a process ex-
pressed by a formula, an equation, a graph, a sequence of numbers, or a table of
values. Once we have developed any such mathematical representation, we can use
it to examine the behavior of the actual process.

For example, the equation for the motion of the ball thrown vertically upward
from ground level with an initial velocity of

is a mathematical model that describes one important aspect of the motion of that
ball—its height at any time t. There may be other aspects of the motion that may not
be captured in this mathematical model (such as releasing it from some initial height
above the ground or the effects of air resistance). These other factors may likely re-
quire development of a more sophisticated model, but often a simple model gives a
reasonably accurate first approximation.

How can we use mathematics to describe the real world via a mathematical
model? We begin by looking at some process in the real world, such as the motion
of a ball thrown upward, the growth of a population, or a person’s reaction to a
drug. Typically, the process of trying to explain what is happening requires some
simplifying assumptions. For instance, in modeling the motion of a ball, we as-
sumed that the only force acting on the ball is the force of gravity and ignored the
negligible effects of air resistance. (Of course, if the ball were replaced with a bal-
loon, a feather, or a piece of paper, this assumption would be invalid.)

After making reasonable assumptions, we then express the process in a mathe-
matical form, which leads to a mathematical representation of the process in terms
of a formula, an equation, a graph, or a table. This mathematical model then has to
be interpreted. Does it truly seem to reflect what happens in the real world? Does
the behavior of the function mirror the behavior of the process? If so, we can use
the mathematical model to describe of the process under study and as the basis for
predictions about the process. If the model doesn’t adequately reflect the actual
process, we may have done something wrong—overlooked some important aspect
of the situation or ignored some critical factor; made some erroneous assump-
tions; or made an error in our work. We illustrate this interplay between mathe-
matics and the real world via mathematical modeling schematically in Figure 1.31.

y � f 1t 2 � 64t � 16t2,

64 ft>sec,

The concept of function is closely connected to the idea of a mathematical
model, and most mathematical models are expressed as functions. Let’s look at an
example of this process. Researchers have studied the relationship between the
level of animal fat in women’s diets and the death rate from breast cancer in differ-
ent countries. Some of their data are shown in the following table, which gives the
average daily intake of animal fats in grams per day and the age-adjusted death rate
from breast cancer per 100,000 women. We begin by looking at these data, first as
a set of numerical values in the table and then visually on a graph, as shown in
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Figure 1.32. There is obviously a relationship between the death rate and the daily
fat intake. Clearly the death rate D increases as the daily fat intake F increases, so D
is an increasing function of F. Moreover, the points fall into a straight line pattern.

It turns out that the equation for this line is

and we use this equation as our mathematical model in the following example.

EXAMPLE 
The average daily animal fat intake in Mexico is grams and the average daily an-
imal fat intake in Denmark is grams. Predict the death rate from breast cancer
per hundred thousand women in Mexico and Denmark.

Solution We use the mathematical model to predict that the death rate from breast
cancer in Mexico for the average daily fat intake will be

Mexican women.

Similarly, for the average daily fat intake grams in Denmark, the equation
predicts a death rate of

Danish women.

�

The type of prediction for the death rate for breast cancer in Mexico is
called interpolation because we are predicting the value of a quantity using a
measurement within the set of data. The type of prediction for the death rate in
Denmark is called extrapolation because we are predicting the value of a quanti-
ty beyond the set of data.

In Section 2.2, we show how to find an equation such as the one relating the
death rate to the daily fat intake. Once we have such an equation as a mathemat-
ical model, we can base some informed judgments on it. This model is based on
the average daily intake in each country, which can vary tremendously among

D � 0.21135 2 � 1 � 26 per 100,000

F � 135

D � 0.2123 2 � 1 � 3.6 per 100,00

F � 23

F � 135
F � 23

D � f 1F 2 � 0.2F � 1,

Country Japan Spain Austria U.S. U.K.

Daily fat intake(grams) 20 40 90 100 120

Death rate per 100,000 3 7 17 19 23
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1.5 Mathematical Models 37

individuals. Even so, there is obviously a link between consumption of animal
fat and the incidence of breast cancer. Thus the mathematical relationship indi-
cates that women should drastically reduce their daily animal fat intake to re-
duce their chance of breast cancer. Furthermore, knowing that such a link exists,
researchers have since been conducting follow-up studies to determine why the
link exists. They have also found links to other items in the diet as well as in the
environment. Thus, the incidence of breast cancer depends not just on a single
variable but on a number of different variables, so it is a function of several in-
dependent variables. Many situations that you encounter in real life are exam-
ples of functions of more than one variable. Although the study of such
functions is somewhat beyond the scope of this book, we introduce and briefly
discuss functions of several variables in Section 3.8.

Parameters and Mathematical Models

Consider again the formula for the height y at any time t of an object dropped from
the top of the 180-foot-tall Tower of Pisa: In comparison, the com-
parable formula for the height of an object dropped from the top of the 555-foot-high
Washington Monument at any time t is

and the height of an object dropped from the top of the 1821-foot-high CN tower
in Toronto at any time t is

Each of these functions has the same structure mathematically; what differs among
them is the leading number that represents the initial height from which the object
is dropped. Based on these specific functions, we can hypothesize a general formu-
la for the height y at any time t of an object dropped from any initial height 

In this formula the height y clearly is a function of time t— they are the depend-
ent and independent variables, respectively. The quantity can also take on different
values, but it isn’t a variable in the same sense that t and y are. Although can take
on different values, in any particular situation it has just one value—in this case the
initial height of the object. That value doesn’t change even though the variables t and
y change during the event. A quantity such as is called a parameter. Note that each
value of yields a different function, although each function has the same form.

Now suppose that you’re driving steadily at a rate of 40 mph; the relationship
between the distance D you travel and the time you drive is If you drive at
a steady 50 mph, the relationship is and if you drive at a steady 65 mph, the
relationship is Obviously, distance is a function of time. The independent
variable is time t, the dependent variable is distance D, and we write the function as

This relationship holds for any choice of speed r and gives a slightly differ-
ent function, but one having the identical form, for each possible value of r. The
quantity r is a parameter in the formula for this distance function.

How Accurate is a Mathematical Model?

Recall that a mathematical model is only a mathematical description of a process,
not the process itself. So, every model carries with it some degree of inaccuracy. For
instance, we used the formula as a mathematical model for they � 64t � 16t2

D � r . t.

D � 65t.
D � 50t,

D � 40t.

y0

y0

y0

y0

y � y0 � 16t2.

y0 :

y � 1821 � 16t2.

y � 555 � 16t2,

y � 180 � 16t2.
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1. An uncooked chicken (temperature of ) is
placed in a hot oven at a temperature of to
cook. The chicken is removed when its internal
temperature reaches Sketch a possible graph
for the temperature T of the chicken as a function
of time t. What would be appropriate values for the
domain and range of this function? Describe the
behavior (increasing/decreasing, concavity) for the
graph.

2. A warm can of soda is placed in a refrigera-
tor at a temperature of and left there to cool.36°

180° F 2

180°.

350°
70° F Sketch a graph of the temperature T of the soda as

a function of time t. Identify appropriate intervals
for the domain and range of this temperature
function. Describe the behavior (increasing/de-
creasing, concavity) of this function.

3. An Olympic diver dives off the 10 meter platform,
enters the water cleanly, and rises slowly to the sur-
face. Sketch a possible graph for the height of the
diver above water level as a function of time. What
might be appropriate values for the domain and
range of this function? (Estimate how long it will

Problems

height at any time t of an object thrown vertically upward with an initial velocity of
With this model, we can find how long it takes for the object to come

back to the ground. That occurs when so we solve the equation

We factor out the common factor of 16t to get

so that the object is at ground level when (when the object is initially re-
leased) or (when it has come back to the ground).

However, according to the laws of physics, the coefficient of is actually one
half of the Earth’s gravitational constant. Its value is not precisely but rather
more like so the solution is not quite accurate. Instead, we really
should say that t is about 4 or that it is approximately equal to 4, which we write
symbolically as We can improve on this estimate by using the more accurate
value of for the coefficient of and then solving the equation

The only common factor now is t, so that

giving either or which is correct to three decimal places.
How many decimal places are reasonable for this answer? We could use more decimal
places when we divide out the fraction—say or even —
but when we are measuring time in seconds, both results are unrealistic levels of accu-
racy and should be avoided. Even using the three decimal places in may be
too many, both from a practical point of view—think about timing in Olympic events
where time is usually measured to the hundredth of a second—and from a mathe-
matical point of view—we used only one decimal place in the coefficient, In
any context, you should determine a reasonable number of decimal places for your
final answer, both practically and in terms of the number of digits used.

In fact, rarely in applied situations do you get an “exact” answer such as or
Even when you do get an exact answer involving a radical or a fraction,

you should usually convert it to a decimal, which automatically introduces another
level of inaccuracy. Thus or or But

is an irrational number and its decimal equivalent is an infinite, nonrepeating
decimal. Just because your calculator displays 10 or 12 decimal places does not nec-
essarily mean that the result is exactly that number.

18
18 � 2.82842712.18 � 2.8284318 � 2.828

x � 18 .
x � 5

�16.1.

t � 3.975

t � 3.97515528t � 3.97516

t � 64>16.1 � 3.975,t � 0

t 164 � 16.1t 2 � 0,

64t � 16.1t2 � 0.

t2�16.1
t � 4.

t � 4�16.1,
�16,

t2
t � 4

t � 0

16t 14 � t 2 � 0

y � 64t � 16t2 � 0,

y � 0,
64 ft>sec.
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probably take the diver to reach the water from the
platform.) Describe the behavior of this function.

4. Repeat Problem 3 by sketching the graph of the
diver’s height above the diving platform as a func-
tion of time. How does the shape of this graph com-
pare to the one you drew in Problem 3?

5. Police sometimes use the formula 
as a model to estimate the speed s in miles

per hour that a car was going on dry concrete pave-
ment if it left a set of skid marks d feet long. Using
this model, estimate the speed of a car whose skid
marks stretched

a. 60 ft. b. 100 ft.
c. 140 ft. d. 200 ft.
e. Suppose that you’re driving at 60 mph on dry con-

crete pavement and slam on your brakes. How long
will your skid marks be, according to this model?

6. When a basketball player takes a long shot, the
height H of the ball above the floor can be modeled
by the equation where t
is the number of seconds since the ball was released.

a. Use your calculator to estimate the maximum
height that the ball reaches, correct to two deci-
mal places.

H1t 2 � �16t2 � 24t � 7,

124d
s � f 1d 2 �

b. The rim of the basket is 10 feet above the floor.
Use your calculator to estimate all times t when
the ball is at the height of the rim.

7. At the beginning of this section, we gave the equa-
tion for the height y of a ball thrown vertically up-
ward from ground level with initial velocity 64 feet
per second,

as a function of time t.

a. Suppose that the initial velocity of the ball is
80 feet per second, Write a comparable formula
for the height y as a function of time t.

b. If you think of the initial velocity of the ball as
a parameter, write a formula for the height y as a
function of time t with any initial velocity 

8. In each expression for a function, identify which
letters represent variables, which letters represent
functions, and which letters therefore represent
parameters.

a.
b.
c.

d. Q � k1m 2 �
am

bm2 � c

z � h1t 2 � abt
z � g1t 2 � atb
y � f 1x 2 � ax3 � bx2 � cx � d

v0 .

v0

y � f 1t 2 � 64t � 16t2,

Chapter Summary

In this chapter we introduced you to functions, their importance, and some of
their uses. Specifically we showed you how to work with functions in the following
ways.

� How functions arise in the real world.

� How functions can be represented in different ways—by graphs, by tables,
by formulas, and in words—and how to move from one representation to
another.

� How to identify whether a relationship between two variables given by an
equation, a graph, or a table is or is not a function.

� How to decide which is the independent variable and which is the dependent
variable.

� What the domain and range of a function are.

� The important characteristics about the behavior of functions—where they
increase and decrease, where their turning points are, where they are con-
cave up and concave down, where their points of inflection are, and whether
they are periodic.

� How to interpret concavity—whether the growth (increase) or decay (de-
crease) in a function is speeding up or slowing down.

� How mathematics is used to model phenomena in the real world.

Gord.3896.01.pgs  4/24/03  9:24 AM  Page 39



40 CHAPTER 1 Functions in the Real World

Review Problems

1. In determining the amount of radiation to apply
to a tumor site, doctors take into account the
depth of the tumor within the body. What is the
independent variable and what is the dependent
variable in such a relationship? Give reasons for
your answer.

2. The accompanying graph describes the loudness
of a crowd watching a baseball game during the
ninth inning. Write a scenario that might explain
what was happening on the field as the inning
progressed.

1 2 3 4 5 6
Outs

Loudness

x 1 2 3 4 5 6

10 10 12 14 18 25f (x)

x 11 15 9 20 15 8

12 13 13 15 16 17g(x)

3. An experimental form of insulin is being adminis-
tered every 4 hours to a person with diabetes. The
body uses or excretes about 40% of the drug over
the 4-hour period. Draw a graph that shows the
amount of the drug in the body as a function of
time over a 24-hour period.

4. Populations tend to grow steadily until there are too
many members for the space and resources avail-
able. Then the population size levels off. Sketch a
function that gives population size as a function of
time.

5. Determine whether each table of values could rep-
resent a function. If not, explain why not.

a.

b.

Budget ($ millions) 10.0 3.4 27.0 6.2 9.7

Attendance (millions) 1.0 0.5 2.0 0.6 1.3

Budget ($ millions) 7.0 4.8 18.0 6.5 13.0

Attendance (millions) 1.0 1.1 4.0 0.6 3.0

Budget ($ millions) 9.0 15.7 7.0 3.2 14.7

Attendance (millions) 0.5 1.3 1.0 0.5 2.7

7. The table of values shows the number, in millions,
of prerecorded cassette tapes sold in the United
States in various years between 1982 and 1998.

a. Draw a graph of the number of cassettes sold as
a function of the year since 1982.

b. In approximately what year did the sales of cas-
settes reach its maximum? 

c. During which year, approximately, did the sale
of cassettes change most rapidly? Most slowly?

Year 1982 1985 1990

Cassettes sold 182.3 339.1 442.2

Year 1993 1994 1995

Cassettes sold 339.5 345.4 272.6

Year 1996 1997 1998

Cassettes sold 225.3 172.6 158.5

Source: 2000 Statistical Abstract of the United States

6. The table of values shows the budget and attendance
at 15 U.S. zoological parks. Write a short description
of how attendance and budget are related.

8. For the function find 
and 

9. During the 1990s, the average cost of a new car
bought in the United States can be approximated by
the function where C
is the cost of the car and t is the number of years
since 1990. (Source: 2000 Statistical Abstract of the
United States)

a. Determine the average cost of a car purchased in
1995.

b. If this trend continues, estimate the average cost
of a car in 2003.

c. According to this function, the average cost of a
new car was increasing, on average, $659.70 each
year after 1990. Use this information to calculate

C � f 1t 2 � 659.7t � 15598,

f 1a 2 .f 1�3 2 ,f 11.01 2 ,f 11.1 2 ,f 11 2 ,
f 10 2 ,f 1x 2 � 3x2 � 2x � 1,
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b. Sketch a graph of this function showing
the cost of sending in 2003 a first-class letter as a
function of the weight w of the letter in ounces.

15. Consider the roller coaster shown in the accom-
panying figure. The points A, B, C, D, E, and F di-
vide the curve representing the track into por-
tions that are increasing and concave up, increas-
ing and concave down, decreasing and concave
up, and decreasing and concave down. For each of
the five portions of the track, A to B, B to C, and
so on, (a) identify the mathematical behavior of
the curve, and (b) describe whether the speed of
the cars is increasing at an increasing rate, increas-
ing at a decreasing rate, decreasing at a decreasing
rate or decreasing at an increasing rate. In each
case, explain your answer.

F1w 2 ,how many years it would take for the average
price of a new car to reach $20,000.

10. A study of the relationship between the average
longevity (in years) and the gestation period (in
days) for a sample of animals shows that the ani-
mals’ average longevity L can be predicted reason-
ably well as a function of the gestation period t by
the function where t is the ges-
tation period in days.

a. Estimate the lifetime of a chipmunk whose ges-
tation period is 31 days.

b. The gestation times in the study extend from 15
days (opossum) to 645 days (elephant). What
would the range of the average longevity be if
the given function were a good predictor?

c. Use your function grapher to graph the func-
tion. Is it increasing or decreasing? Is it concave
up or concave down?

d. Use the graph to estimate the gestation period of
an animal whose average longevity is 15 years.
(Hint: Find the point on the graph where )

e. The gestation time for humans is 9 months, or
about 270 days. What does the formula predict
for the average longevity of human beings? Can
you think of any reasons why the value you ob-
tained is so inaccurate?

11. The domain of the function 
is all real numbers.

a. Use your function grapher to estimate the coor-
dinates of the turning point.

b. What is the range of this function?

12. The domain of the function is all
real numbers.

a. Use your function grapher to estimate the coor-
dinates of the point of inflection.

b. What is the range of this function?

13. Give the domain of each of the following functions.

a. b.

c. d.

14. The U.S. Postal Service rates for first-class mail in
2003 were 37¢ for the first ounce and 23¢ for every
additional ounce.

a. Construct a table showing the cost of postage to
mail a first-class letter weighing 0 to 1 oz, 1 to 2 oz,
2 to 3 oz, 3 to 4 oz, and 4 to 5 oz.

h1x 2 �
x2 � 4

x2 � 9
.g1x 2 �

x2 � 4

x2 � 9
.

f 1x 2 � 2x2 � 16 .f 1x 2 � 2x � 5 .

f 1x 2 � x3 � 9

f 1x 2 � 4x2 � 3x � 5

L � 15.

L � f 1t 2 � 1.04t0.49,

A

B

C

D

E

F

16. Picture a water slide at an amusement park. The
slide starts at an initial height above the pool and
smoothly drops to water level. The slide is first con-
cave down, then concave up, then concave down,
and finally concave up.

a. Sketch a graph of the slide’s height H above
water level as a function of horizontal distance x.

b. Suppose that you go down the slide in a sitting
position. Sketch a graph of the height of your
eye above the water as a function of horizontal
distance x.

c. Sketch the graph of the height of your eye above
the water as a function of time t.

d. Sketch the graph of your speed as a function of
time t.

17. Pacific coast salmon hatch in rivers and then mi-
grate to the ocean where they live most of their

H0
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42 CHAPTER 1 Functions in the Real World

lives. Eventually, they migrate back up the same
river to spawn and then die. The accompanying
graph shows the number of chinook salmon, in
various years, that pass a particular point on one
waterway near Seattle as they wend their way up-
stream to spawn. (The U.S. Department of Fish-
eries keeps accurate counts in its efforts to
maintain a healthy salmon population.) Based on
this graph, write a paragraph explaining why the
number of salmon who swim upstream here is a
roughly periodic function of time. What is the pe-
riod? What does this graph suggest about the life
span of the chinook salmon?
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(a) (b) (c)

x x x

(d) (e) (f)

x

y

x

y

x

y

FIGURE 2.1

Families of Functions

Introduction

Functions are fundamental to mathematics and its applications. Although there
are many different types of functions, most of our work focuses on just a few: func-
tions that are simple and yet sufficiently powerful to meet our needs. These types
of functions can be thought of as families of functions because the members of each
family are closely related to one another in terms of their essential properties. We
have described several distinct behavior patterns already as phenomena that

1. increase at a fixed rate and so go up by the same amount each fixed time
period;

2. decrease at a fixed rate and so go down by the same amount each fixed time
period;

3. increase at an increasing rate and so are concave up;
4. increase at a decreasing rate and so are concave down;
5. decrease at an increasing rate and so are concave down;
6. decrease at a decreasing rate and so are concave up.

Figure 2.1 illustrates these behavior patterns.

2.1
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44 CHAPTER 2 Families of Functions

To model such phenomena and make predictions based on the models, you need
to know families of functions that behave in each of these six ways. In this chapter, we
present the families of linear functions, exponential functions, and power functions, as
well as several other useful families, that possess these behavior patterns. In later
chapters, we consider other families of functions, including polynomial functions and
trigonometric functions, that exhibit more complex behavior patterns.

As discussed in Section 1.3, we use the letters x and y generically for the inde-
pendent and dependent variables, respectively. However, in any specific context, we
use letters that directly suggest the quantities under discussion.

Linear Functions

The simplest and probably most useful family of functions are the linear func-
tions. These functions model any quantity that increases steadily or decreases
steadily—that is, it goes up or down by a fixed amount for any fixed change in the
independent variable. The graph of such a function is always a straight line.

Linear Functions That Pass Through the Origin

The simplest type of linear function is of the form which can be inter-
preted as y is proportional to x. For example, suppose that you go to a deli to
buy some roast beef that is selling at If you purchase 1 pound,
the roast beef costs if you purchase 2 pounds, it costs

If you buy N pounds, the cost is so the cost C
of the roast beef is proportional to the number of pounds N that you buy. The mul-
tiple 5.99 is the constant of proportionality. We also say that the cost of the roast beef
is a linear function of the number of pounds of roast beef purchased.

Similarly, the distance D that a car travels at a constant speed of 50 mph is pro-
portional to the number of hours t driven, so the number of miles traveled is

As another illustration, it is reasonable to assume that the quantity G of garbage
produced in a city is proportional to the number of people P living there, so that

for some constant multiple k. In fact, the average amount of garbage
produced annually in the United States is about so

A mathematical model for the quantity G of garbage produced annu-
ally in a city whose population is P is therefore pounds.

EXAMPLE 1
Suppose that gas costs (a) Create a function, as a table, as a graph, and as
a formula, to represent the cost C of G gallons of gas. (b) Create comparable functions if
the price of gas rises to and to and compare them to one another.

Solution

a. If gas costs the cost for 1 gallon is $1.50, the cost for 2 gallons is $3.00, the
cost for 3 gallons is and so on. We therefore get the following table
of values for this function.

3 � 1.50 � $4.50,
$1.50>gal,

$2.00>gal$1.75>gal

$1.50 per gallon.

G � 1500P
k � 1500.

1500 pounds per person,
G � kP,

D � 50t.

C � 5.99N,C � 5.99 � 2 � $11.98.
C � 5.99 � 1 � $5.99;

$5.99 per pound.

y � mx,

2.2

G (gal) 1 2 3 4 5 . . . 10 . . . 20 . . .

C ($) 1.50 3.00 4.50 6.00 7.50 . . . 15.00 . . . 30.00 . . .
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When we plot these points, as shown in Figure 2.2, they all fall onto a line that passes
through the origin (the cost of 0 gallons of gas is $0). To find an equation for this line, we
note that, because each gallon of gas costs $1.50, the cost for buying G gallons must be

C � f 1G 2 � 1.50 � G � 1.50G.

b. If the cost of gas rises to the corresponding function would be

Similarly, if the cost of gas rises to the function would be

The graphs of all three of these linear functions are shown in Figure 2.3. Note that all
three lines pass through the origin, but that each is inclined at a slightly different
angle. In particular, the greater the cost for a gallon of gas, the steeper the line, which
makes sense because filling a tank costs more.

C � h1G 2 � 2.00 � G � 2.00G.

$2.00>gal,

C � g 1G 2 � 1.75 � G � 1.75G.

$1.75>gal,

�

The Graph of a Linear Function 
That Passes Through the Origin

The graph of any linear function of the form is a line that passes through
the origin, as shown in Figure 2.4. What distinguishes one line from another is the
constant m, which represents how much y changes for a given change in x. A large
value for m, either positive or negative, means that y changes by a large amount for
a fixed change in the variable x. A small m means that y changes relatively little for

y � mx
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x

y m large and positive

m small and
positive

m negative

∆y
large

∆y small

∆x
∆y negative

FIGURE 2.4

a fixed change in x. A positive value for m means that y gets larger as x gets larger. A
negative value for m means that y gets smaller as x gets larger.

We use the Greek letter (delta) to represent a change in any quantity. Hence
means the change in x, and means the change in y. The quantity

is called the slope of the line. More generally, the slope of a line is

The letters used for the independent and dependent variables reflect what
those quantities are and often are different from x and y. For instance, based on the
data in the preceding table of values for the cost of gasoline, the independent vari-
able G is the number of gallons of gas purchased and the dependent variable C is
the cost of the gas. The slope of the line, based on the first two points, is

We get the identical value for the slope if we use any two of the points.

The Meaning of Slope

The slope of a line indicates how fast the linear function is changing. For the gaso-
line example the slope of 1.50 is the cost, $1.50, of each additional gal-
lon of gas. For the roast beef example the slope, 5.99, is the cost per
pound, so each additional pound of roast beef costs an additional $5.99. If the roast
beef is on sale for $3.99, the cost of the roast beef goes up more slowly as the weight
of the purchase increases, and the slope is smaller. Similarly, if the price of roast beef
goes up to the cost goes up more rapidly, and the slope is steeper.

In general, whenever a linear function (or a line) arises in some context, the
slope of that line should be given in terms of units. For instance, if we use a linear
function to model the growth in the U.S. prison population over time, the units for
the slope of the line might be the number of new prisoners per year.

Suppose that a car gets 25 mpg. Then

Number of miles driven � 25 miles per gallon � number of gallons used,

$6.99>lb,

C � 5.99N,
C � 1.50G,

m �
�C

�G
�

3.00 � 1.50

2 � 1
�

1.50

1
� 1.50.

m �
change in dependent variable

change in independent variable
 .

m �
change in y

change in x
�

�y

�x
�

rise
run

�y� x
�
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or

Therefore the expression “25 miles per gallon” actually describes the slope of a lin-
ear function. The units of the slope are always a ratio: the units of the dependent
variable divided by the units of the independent variable.

Because the slope indicates how fast a line rises or falls, it is also known as the
average rate of change, or simply the rate of change. For a linear function, the rate
of change is always constant and is equal to the slope. For a nonlinear function,
which may be concave up or concave down, the rate of change is not constant, as
we demonstrate later in this chapter.

Lines That Don’t Pass Through the Origin

Next let’s consider lines that don’t pass through the origin. The equation of any
such line has the form

where

m is the slope of the line and

b is the vertical intercept.

The vertical intercept b represents the value of y when x is zero, because
The vertical intercept is sometimes called the y-intercept. A

vertical intercept of zero corresponds to the special case which is
the equation of a line that passes through the origin, as we discussed previously.

EXAMPLE 2
Graph the line and describe it.

Solution The line has a slope of 3, so it rises 3 units for each increase of 1 unit to the
right. It has a vertical intercept of so the line crosses the y-axis 4 units below the ori-
gin. The graph of this line is shown in Figure 2.5.

�4,

y � 3x � 4

y � mx,1b � 0 2
b � b.y � m . 0 �

y � mx � b,

25 miles per gallon �
number of miles driven

number of gallons used
 .

�

The graphs associated with the equations

y � f 1x 2 � 2x � 1,  y � g 1x 2 � 2x � 1, and y � h1x 2 � 2x � 2
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FIGURE 2.6
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FIGURE 2.7

are shown in Figure 2.6. The three lines are parallel because they all have the same
slope, and so all rise 2 units for each 1 unit increase to the right. But their
vertical intercepts are different: and respectively.b � 2b � 1,b � �1,

m � 2,

The graphs associated with the equations

are shown in Figure 2.7. Note that, because all three lines cross the y-axis at the
point all have the same y-intercept, However, the three lines have dif-
ferent slopes and so behave differently. The functions f and g are increasing as you
move from left to right (as x increases), whereas the function h is decreasing as x
increases. Moreover, the line is increasing more rapidly than
the line because it has a larger slope. Again, the slope of the
line determines whether a line rises or falls and how rapidly it does so.

y � f 1x 2 � 2x � 1
y � g 1x 2 � 3x � 1

b � 1.y � 1,

y � f 1x 2 � 2x � 1,  y � g 1x 2 � 3x � 1, and y � h1x 2 � �2x � 1

In summary, when the slope m is positive, the line rises as x increases from left
to right and the linear function is increasing; the larger m is, the faster the line rises.
When the slope m is negative, the line falls as x increases from left to right and the
linear function is decreasing; the more negative the slope, the faster the line drops.
(However, because a line doesn’t bend, either up or down, it is neither concave up
nor concave down.)

We can express the slope of a line,

m �
change in y

change in x
�

�y

�x
�

rise
run

 .
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n 1 2 3 4 5 . . .

C 87 167 247 327 407 . . .

n

C

7
∆n

∆C

m =         = 80
∆C
∆n

FIGURE 2.8

in another way. If and are two points on the line, then

where the order of the coordinates must be the same in both and Therefore
the equation for the slope becomes

Now let’s explore these ideas in terms of the real world.

EXAMPLE 3
A wholesale supplier quoted the following costs, C, in dollars, for graphing calculators,
depending on the number n of units ordered.

m �
�y

�x
�

y2 � y1

x2 � x1
 .

�y.�x

�x � x2 � x1 and �y � y2 � y1 ,

1x2 , y2 21x1 , y1 2

Find a linear function that models the costs and discuss the meaning of the slope and
vertical intercept.

Solution Note that the cost for each additional calculator after the first is $80. The $87
charged for the first calculator consists of the $80 for the calculator and shipping, plus an ad-
ditional $7 that covers the fixed cost for processing the order. This amount remains fixed no
matter how many units are purchased. Therefore the cost C of buying n calculators can be
written as the linear function The slope, 80, represents the increase in
the total cost for each additional unit ordered—every time n increases by 1, C increases by
80. That is, the rate at which the cost is increasing is $80 per calculator sold. The vertical in-
tercept, 7, is the fixed cost for any size order. Figure 2.8 depicts the slope as the ratio

or simply per calculator.m � $80

m �
�C

�n
�

rise
run

�
167 � 87

2 � 1
� 80,

C � f 1n 2 � 80n � 7.

�

The value was based on the two points and If you cal-
culate the slope by using any two points on the line, you get the same value. It is this
fact—that the slope, or rate of change, is the same at every point—that makes a line
straight. If the rate of change varies from one point to another, then the function is
not linear.

The form for the equation of the line that we found in Exam-
ple 3 is known as the slope–intercept form and usually is written as y � mx � b

C � 80n � 7

12, 167 2 .11, 87 2m � 80
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FIGURE 2.9

because it highlights the slope of the line and the vertical intercept

The slope–intercept form is very useful for displaying the equation of a line.
However, it is usually a poor choice for finding the equation of a line because the
vertical intercept is often difficult to determine. Even when we can find the vertical
intercept, it may have little to do with the situation we’re studying. Example 4
demonstrates an easy way to apply the slope–intercept form.

EXAMPLE 4
A plumber charges $50 for a service call to come to the job and $70 per hour for labor.
(a) Find a linear function for the plumber’s charges for a job taking t hours (disregard-
ing the costs for any parts). (b) What is the meaning of the slope in this function?

Solution

a. The plumber charges $50 just for coming. For each hour on the job, the charge is an
additional $70, so a job lasting t hours costs an additional 70t dollars. Therefore the
total cost is

b. The slope of this line, 70, is the charge for each hour of labor and its units are dollars
per hour.

�

Usually, a much better method for determining an equation of a line is the
point–slope form. It is based on the idea that a line is determined by its slope m and
one point on the line. Suppose that is any other point on the line, as
shown in Figure 2.9. Because

m �
�y

�x
�

y � y0

x � x0
 ,

1x, y 21x0 , y0 2

C � 50 � 70t.

b � 7.
m � 80

we can multiply both sides by to get

In summary we have the following formula.

y � y0 � m1x � x0 2 .

1x � x0 2

Gord.3896.02.pgs  4/24/03  9:25 AM  Page 50



2.2 Linear Functions 51

Point–Slope Formula for the Equation of a Line

The equation of the line with slope m that passes through the point is

y � y0 � m1x � x0 2

1x0 , y0 2
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FIGURE 2.10

Temperature, 50 55 60 65 70 75 80

Rate, R 40 60 80 100 120 140 160(chirps>min)

T (�F)

For instance, the line through the point with slope 4 is

You are almost always better off using the point–slope form rather than the
slope–intercept form to find the equation of a line. In Example 5 we revisit the
snow tree cricket from Example 2 in Section 1.4.

EXAMPLE 5
The following set of measurements relate the snow tree cricket’s rate of chirping, in
chirps per minute, to the temperature, in Fahrenheit.

y � 2 � 41x � 5 2 .

15, 2 2

a. Find a function that models the chirp-rate as a function of temperature.

b. Discuss the reasonableness of the model and give reasonable values for the domain
and range.

Solution

a. The chirp rate is increasing steadily, so it is an increasing function of the temperature T.
In particular, the chirp rate goes up for every increase in tempera-
ture. Equivalently, the chirp rate goes up for every increase in tem-
perature. Figure 2.10 shows that the corresponding points clearly fall in a linear pattern.
In other words the chirp rate R as a function of temperature T is a linear function.

1°F4 chirps>min
5°F20 chirps>min

Because two points determine a line, we can use any two of the given points—
say, and —to find the equation for this line. Using these two points,
as shown in Figure 2.11, we find that the slope of the line is

m �
�R

�T
�

140 � 60

75 � 55
�

80

20
� 4.

175, 140 2155, 60 2
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This value for the slope means that, for each increase in temperature, the cricket
chirps 4 more times per minute. Thus, if the temperature goes up the cricket
chirps 20 more times per minute; if it goes up the cricket chirps 40 more times
per minute, and so on.

Next we apply the point–slope formula to find the equation of the line, using
any point on the line. If we pick the point used earlier, we obtain

Adding 60 to both sides of this equation, we get

This equation tells us that the vertical intercept is (when ). Of
course, a chirp rate of is meaningless! Was the formula wrong? No. But it
makes sense to describe the snow tree cricket’s chirp rate only for temperatures be-
tween, or possibly near, the given set of readings—that is, from to It does
not make real-world sense to use this linear relationship far outside of this interval,
such as at The formula doesn’t predict sensible chirp rates for temperatures less
than when R becomes negative. It doesn’t hold at temperatures high enough to
cook the cricket either. Because temperatures in the Colorado Rockies aren’t likely to
rise above there is a natural domain for this function:

This function is strictly increasing, so we can find the corresponding range:

Thus

b. How reasonable are these results? At the equation predicts that a snow tree
cricket will chirp or which we might de-
cide  is a bit unreasonable. Thus, even though the linear model predicts this value, we
might want to rethink whether extending the linear model as far as makes
sense when the upper limit of the data values is As we’ve said previously, it
is often misleading to extrapolate too far beyond the actual data values.

�

So far we have used the temperature to predict the chirp rate, and we thought
of the temperature as the independent variable and the chirp rate as the dependent

T � 80°F.
T � 100°F

4 times per second,240 times per minute,
100°F,

Range of f � all values R from 0 to 240 or 0 � R � 240 or 30, 240 4 .

f 140 2 � 4 . 40 � 160 � 0 and f 1100 2 � 4 . 100 � 160 � 240.

40 � T � 100 or 30, 100 4 .
Domain of f � all values between 40°F and 100°F or

100°F,

40°F,
0°.

80°F.50°F

R � �160
T � 0R � �160

R � f 1T 2 � 4T � 160.

 � 4T � 220.

 R � 60 � 41T � 55 2

155, 60 2

10°F,
5°F,

1°F
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The slope-intercept form for the equation of a line is

where m is the slope, or rate of change of y with respect to x,

and b is the vertical intercept, or value of y when 

The point–slope form for the equation of a line with slope m that passes
through the point is

y � y0 � m1x � x0 2 .

1x0 , y0 2

x � 0.

m �
�y

�x
�

rise
run

 ,

y � mx � b,

variable. However, we could reverse the role of the variables and think of temper-
ature as a function of chirp rate. How we view a relationship determines which
variable is dependent and which is independent. Thinking of temperature as a
function of chirp rate would enable us to approximate temperature for given
chirp rates. To do so, we again start with the formula

and solve it algebraically for T as a function of R. We add 160 to both sides to obtain

and then divide both sides by 4 to get

This linear function has slope and vertical intercept 40, except now the inde-
pendent variable is R. So, if you ever encounter a snow tree cricket who is chirping
merrily away, knowing this equation can help you determine the local temperature
just by using your watch. Count the number of chirps in a one-minute interval and
apply the formula to calculate the temperature.

We summarize the important information about linear functions as follows.

1
4

T �
1

4
 1R � 160 2 �

1

4
 R � 40 � g 1R 2 .

4T � R � 160

R � f 1T 2 � 4T � 160

Note that in the slope-intercept form for the equation of a line, there are
two parameters, the slope m and the vertical intercept b. So linear functions are
a two-parameter family of functions. We determine the equation of a particular
line by finding the values of the two parameters.

EXAMPLE 6
During the early years of the Indianapolis 500 race held annually on Memorial Day, the
average winning speed increased as shown in the following table. Find a formula to
model these values.

Year 1919 1922 1925

Average speed (mph) 88 94.5 101

Source: World Almanac and Book of Facts.
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3 6

88

0

94.5

101

t

S

m =         = 2.17
∆S
∆t

run = 3

rise = 6.5

FIGURE 2.12

Solution The average winning speed starts at 88 mph and increases at the rate of 6.5 mph
each three years. Because the average winning speed S increases consistently by 6.5 mph
every three years, S is a linear function of time over the period 1919 to 1925, as shown in
Figure 2.12. The slope of this line is

Slope �
rise
run

�
�S

�t
�

6.5

3
� 2.17,

which shows the rate at which the winning speed increased each year. Let t be the
number of years since 1919. Using the initial point gives the equation of this
line as

or

In this formula, t represents the number of years since 1919 and S is the speed in miles
per hour. Note that we would get the same result if we used the slope–intercept form.

�

You may wonder whether this linear trend continued beyond 1925. Let’s
compare what it predicts with what actually happened. The fastest average win-
ning speed in the Indy 500 was 186 mph in 1990, when years after 1919.
Using the linear equation we predict an average speed of 242 mph
in 1990. Clearly, although speeds have increased dramatically, they haven’t kept
up with the linear function we constructed based on just a few early data points.
Further, this model again illustrates the danger of extrapolating too far from the
given data.

What does this information indicate about how long the 500-mile race takes?
How much longer did it take the winning car to drive the 500 miles in 1919 than
it took in 1990? ❐

Because the data in the table are given only at specific points (every 3 years),
we say that the data are discrete. However, because the function 
makes sense for all possible values of t, we treat the variable t as though it were
continuous (or defined for all points). The graph shown in Figure 2.12 is of a con-
tinuous function because it is a solid line including infinitely many points, not

S � 2.17t � 88

Think About This

S � 2.17t � 88,
t � 71

S � f 1t 2 � 2.17t � 88.

S � 88 � 2.171t � 0 2 � 2.17t,

10, 88 2
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Distance d (ft) 20 40 60 80 100

Probability of success P (%) 90 80 70 60 50
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FIGURE 2.13

just the three distinct points representing the winning speeds in the race in three
particular years.

EXAMPLE 7
Search and Rescue teams are often called on to find lost hikers in remote areas in the
Southwest. Members of the search team walk through the search area parallel to each
other at a fixed distance d between searchers. Experience has shown that the team’s
chance of finding those who are lost is related to the distance of separation d. The clos-
er together the searchers are, the better are their chances of success. Based on a num-
ber of simulated missions, the percentage of lost people who were found was used to
assess the probability of finding someone based on various separation distances, as
shown in the following table of values. Find a formula to model these probabilities.

(These values correspond to searches conducted in the relatively open terrain of the
Southwest; searchers in other regions where there is dense forest or undergrowth
would have to use much narrower separation distances to achieve comparable levels of
success.)

Solution Because the value for the probability of success P decreases as distance d
(the independent variable) increases, the function is a decreasing function
of d. The data indicate that each 20 foot increase in distance causes the probability of
success P to decrease by 10%. Because this fact holds for any successive pair of
points, P is a linear function of d, and the graph of the probability of success versus
distance is a line, as shown in Figure 2.13. Based on the two data points (20, 90) and
(100, 50), say, the slope of this line is

m �
�P

�d
�

50 � 90

100 � 20
�

�40

80
� � 

1

2
 .

P � f 1d 2

The negative sign reinforces the fact that P decreases as d increases. The slope is the rate
at which P is decreasing as d increases.
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To find the equation of the line, we use the point–slope formula. We choose any one
of the given points—say, —and obtain

Adding 90 to both sides of this expression, we get

�

Pick any one of the other points in Example 7 and show that you get the same
equation for P. ❐

What is the meaning of the vertical intercept, Suppose that so
that the searchers are walking shoulder to shoulder; we would expect everyone to
be found, or What is the horizontal intercept? When we have

or According to the model, the value repre-
sents the separation distance at which no one is found. This outcome is unreason-
able because, even when the searchers are far apart, the search will sometimes be
successful. What this situation suggests is that, somewhere outside the data given,
the linear relationship ceases to hold. As in the Indy 500 example, extrapolating too
far beyond the given data may not make sense.

Some Useful Facts

Several facts about lines are useful to remember.

1. Parallel lines have the same slope. That is, the quantities they represent are
growing at the same rate.

The lines and are all parallel. What is
their common slope? ❐

2. Perpendicular lines have slopes that are negative reciprocals.

The lines and having slopes of 2 and respec-
tively, are perpendicular to each other. Sketch their graphs to convince yourself of
this fact. Similarly, the lines and which
have slopes of 0.162 and respectively, are perpendicular to
each other.

Write the equation of a line that is perpendicular to (Of course, your
answer will likely be different from your classmates’ choices.) ❐

3. The point where any two lines cross is known as their point of intersection.
The x- and y-coordinates of this point must satisfy both equations simul-
taneously. You find the point of intersection by solving the system of si-
multaneous equations either algebraically or graphically. (See Appendix B
and C for a discussion of ways to solve such systems of equations.)

y � 5
4 x � 7.Think About This

�6.173 � �1>0.162,
y � �6.173x � 1.03,y � 0.162x � 7.4

� 
1
2 ,y � � 

1
2 x � 3,y � 2x � 9

4x � y � 15 � 0y � 4x � 11,y � 4x � 3,Think About This

d � 200d � 200.0 � � 
1
2 d � 100,

P � 0,P � 100.

d � 0P � 100?

Think About This

P � f 1d 2 � � 

1

2
 d � 100.

 � � 

1

2
 d � 10.

 P � 90 � � 

1

2
 1d � 20 2

120, 90 2
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(i) (ii) (iii)

(iv) (v) (vi)

x

y

x

y

x

y

x

y

x

y

x

y

1 2 3 4 50

1

2

3

x

y

10 20 30 40 500

100

200

300

t

P

Problems

1. Match each equation with its graph. (Note that the
scales of the graphs are different.)

a. b.
c. d.
e. f.

2. Estimate the slope of each line. Then use the slope
to find an equation of the line.

y � 3y � 1
2 x

y � �3x � 4y � �2x � 4
y � x � 3y � x � 2

3. Find the equation of the line passing through each
pair of points.

a. b.
c. 13.52, 4.96 2 , 1�1.91, 8.36 2

11, �2 2 , 13, �2 211, �2 2 , 12, 5 2

4. The graph of Fahrenheit temperature F versus Cel-
sius temperature C is a line. Water boils at 
and and freezes at and 

a. Sketch the graph of the line.
b. Find the slope of the line relating the two tem-

perature scales.
c. Find the equation of this line.
d. Use the equation to find the Fahrenheit temper-

ature that corresponds to 
e. Use the equation to find the Celsius temperature

that corresponds to 
f. When is the Fahrenheit temperature the same

numerical value as the Celsius temperature?

5. In 1990, 442.2 million prerecorded cassette tapes and
865.7 million CDs were sold in the United States. In
1998, 158.5 million cassettes tapes and 1,124.3 mil-
lion CDs were sold. Assume (incorrectly) that the
pattern of sales for both items is linear.

a. Find the equation for the number of cassette
tapes sold as a linear function of time.

b. Find the equation for the number of CDs sold as
a linear function of time.

c. What is the practical significance of the slopes in
parts (a) and (b)?

d. If the trends in sales of both items were indeed
linear, find when the number of CDs sold over-
took the number of cassette tapes sold.

e. Use the data given to find the total number of both
CDs and cassette tapes sold in 1990 and 1998 and
use these values to find the equation for the total
number of sales of both items combined as a lin-
ear function of time.

f. Use the fact that, in 1995, 272.6 million cassette
tapes and 272.6 million CDs were sold to explain
why assuming that the sales trends were linear is
incorrect.

6. The charges for a taxi ride are an initial charge of
$1.80 and $0.75 for each mile driven.

a. Write a formula for the charge for a taxi ride as a
linear function of the distance traveled.

b. What is the meaning of the slope of this linear
function?

c. What is the cost of a 12-mile trip?
d. Suppose that you have only $15. How far can

you go in the taxi? (Assume that you will give a
$2 tip out of the $15 you have.)

98.6°F.

30°C.

0°C.32°F100°C
212°F

a.

b.
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7. A long-distance telephone company charges to
place a call from Los Angeles to London and for
each minute.

a. Write the equation of a linear function that mod-
els this situation.

b. What is the practical significance of the slope?
Of the vertical intercept?

c. What is the cost of a 26-minute call?
d. Suppose that there is a 30% discount on the

rates for calls made in off-peak hours. Repeat
parts (a)–(c).

8. (Continuation of Problem 7) A competing long-
distance company claims that it is cheaper because
its rates on the Los Angeles to London call are 
to place the call and for each minute.

a. For the 26-minute call in Problem 7(c), which
carrier is actually cheaper?

b. Graph both lines. What does the point where
they intersect signify?

c. Find the length of call at which the second com-
pany becomes more expensive than the first.

9. A disk jockey (DJ) charges a flat fee of $120 per
party plus $60 for each hour of the party. A sec-
ond DJ charges $100 per party plus $75 for each
hour.

a. For each DJ find a formula that gives the cost of
hiring the DJ as a function of the number of
hours the party lasts.

b. Sketch the graphs of both functions on the same
set of axes.

c. How do you decide which DJ costs less?

10. The net income of the Apex Company was $240 mil-
lion in 1980 and has been increasing by 

since. Over the same period, the net income
of its chief competitor, the Best Corporation, has
been growing by starting with
$300 million in 1980. Which company earned more
in 1990? When did Apex surpass Best?

11. According to the IRS, the formula which
gives income tax as a function of taxable income, ap-
plies only for single taxpayers with taxable incomes
up to $21,450. The IRS tax table states: “If the taxable
income is over $21,450, But not over $51,900, Enter
on Form 1040: of the amount
over 21,450.”

a. Rewrite this statement as an equation that can be
used to calculate your taxes. What are the do-
main and range of the resulting function?

$3,217.50 � 28%

T � 0.15I,

$20 million per year,

per year
$30 million

36¢
15¢

30¢
40¢ b. What is the practical meaning of the value you

get for the slope?
c. Sketch a single graph showing both tax formu-

las. Is there any discrepancy?

12. When filing income tax returns, many people can
claim deductions for depreciation on items such as cars
and computers used for business purposes. The idea is
that the value of such an asset decreases, or depreciates,
over time. The simplest method used to find the depre-
ciated value is called straight-line depreciation, which
assumes that the item’s value decreases as a linear func-
tion of time. If an $1800 computer system depreciates
completely in five years, find a formula for its value as a
function of time. What is it worth after three years?

13. The Athabasca glacier in southern Alberta, Canada, is
part of the largest mass of ice in the Rocky Mountains.
(Tourists who visit the Jasper and Banff National
Parks can take a side trip out onto the actual glacier.)
Over the past 120 years, the glacier has been steadily
“withdrawing” at a rate of about 15 meters per year, as
it slowly melts.
a. Express the approximate position of the south-

ernmost extent of Athabasca as a function of
time, measured in years from 1900. Measure its
position northward from the U.S.–Canada bor-
der, which was about 300 kilometers south of the
glacier in 1900.

b. If the current rate of withdrawal has been in ef-
fect indefinitely, how long ago did the toe of the
glacier extend over the border?

c. Can the function in part (a) continue to apply
for the next million years? Why or why not?

14. Jen is typing her term paper for Psych 101. She types
the body of the paper at the rate of

for 30 minutes, then takes a 5-minute
break, and comes back to do the references at a rate of

for 12 minutes.
a. Sketch the graph of Jen’s typing rate as a func-

tion of time.
b. Sketch the graph of the total number of words

she types as a function of time.
c. Find the equations of the different line segments

you drew in part (b).

15. A bicyclist pedals at the rate of for 20 min-
utes, then slows to for 6 minutes, then
races at for 4 minutes, and cools down at

for 5 minutes.
a. Sketch the graph of the bicyclist’s rate as a func-

tion of time.

500 ft>min
1200 ft>min

500 ft>min
1000 ft>min

20 words per minute

per minute
35 words
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Exercising Your Algebra Skills

Solve each equation for the appropriate variable.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12. 6z � 5 � 4z � 114k � 7 � 9k � 8

�1.3w � 12.8 � 22.74.7q � 5.1 � 24.5

5 � 4p � �79 � 3x � 6

5.4x � 7.2 � 0.818y � 7 � 22

8x � 7 � 154x � 3 � �5

3x � 8 � �75x � 7 � 12

13. 14.

15. 16.

Find (a) the slope and (b) the x and y intercepts of each
line in Problems 17–20.

17. 18.

19. 20. 3y � 2x � 4 � 04x � 7y � 5 � 0

2x � 3y � 82x � 3y � 8

1.351t � 75 2 � 83.21t � 1980 2 � 1700

214 � 3w 2 � 7312x � 5 2 � 4

Linear Functions and Data

Determining Whether a Set of Data Is Linear

When you encounter tables of data relating two quantities, you will often need to
determine whether a linear relationship exists between the two variables. You could
plot the data points to see if the points fall into a linear pattern, but this approach is
imprecise. Alternatively, you could decide whether a function given by a
table of values is linear by examining the data. If the data fall into a linear pattern,

y � f 1x 2

2.3

b. Use the graph from part (a) to determine the
total distance biked.

c. Sketch the graph of the distance traveled as a
function of time.

d. Find the equations of the different line segments
you drew in part (c).

16. The points P, Q, and R lie in order from left to right
on the graph of a function f that is increasing. If the
slope of line segment PQ is less than that of line
segment QR, is the curve concave up or concave
down? Explain your reasoning.

17. Find the equation of the line that passes through
the point and is

a. parallel to the line 
b. perpendicular to this line.

18. Find the equation of the line that passes through
the point and also passes through the point of
intersection of and 

19. The algebraic method of elimination for solving a
system of linear equations involves adding a multiple
of one equation to another equation to eliminate one
of the variables. Consider the system of two equations
in two unknowns:

(1)

(2)

a. Plot the two lines carefully on a sheet of graph
paper and determine the point of intersection.

2x � y � 8.

3x � 4y � 1

y � 3x � 6.y � �2x � 1
16, 4 2

y � 5x � 3.

16, 4 2

b. Solve the two equations algebraically.
c. Add two times Equation (2) to Equation (1) to

get a new linear equation. Plot that line on the
same graph you created in part (a). What do you
observe about the three lines?

d. Add three times Equation (2) to Equation (1)
and plot that line on the same graph. What do
you observe about the four lines?

e. Add four times Equation (2) to Equation (1) and
plot that line on the same graph. What do you
conclude from this result?

f. Find an appropriate multiple of Equation (2)
that, when added to Equation (1), will eliminate
the x-term. What will the graph of the resulting
line look like when x has been eliminated?

20. The point is on the circle 

a. Find the equation of the line that is tangent to
the circle at this point.

b. Find the points where the line intersects the x and
y axes. (Hint : The line tangent to a circle at a point
is always perpendicular to the radius at that
point.)

21. a. Of the following three linear functions, which
two represent perpendicular lines?

i. ii.
iii.

b. For the two lines that are perpendicular, find the
point of intersection.

8x � 6y � 7
2x � 5y � 103x � 4y � 12

x2 � y2 � 25.13, 4 2
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you should get the same slope no matter which pair of points you use. This reason-
ing gives a simple criterion for determining linearity: See whether the differences in
y-values are constant for equally spaced x-values.

EXAMPLE 1
The following two sets of data represent values for a linear function and a nonlinear
function. Identify which is the linear function. Find the equation of the line and the con-
cavity of the nonlinear function.

If the x-values are uniformly spaced and there is a constant difference
among the y-values, the data fall into a linear pattern.

FIGURE 2.14

x

1.0 7.0

1.2 7.8

1.4 8.6

1.6 9.4

1.8 10.2

2.0 11.0

2.2 11.8

f (x) x

1 2

2 3

3 6

4 11

5 18

6 27

7 38

g(x)

You can visualize this principle by thinking of a long plank of wood and a
flight of stairs. If the steps all have the same height—say, 8 inches, and the same
depth, you can lay the plank on the stairs and it will touch the edge of each one, as
illustrated in Figure 2.14. The plank plays the role of a line. But, if the stairs have
different heights or depths, the plank won’t touch every one of the edges—those
edges do not fall in a linear pattern.

Solution In both sets of values, the x-values are evenly spaced, so we can proceed to
examine the successive differences in the values of the two functions, which we write
as and For instance, for the function f the difference between the first
two values is Continuing in this manner, we obtain the data on the
next page.

7.8 � 7.0 � 0.8.
�g 1x 2 .�f 1x 2
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x

1 2

2 3

3 6
5

4 11
7

5 18
9

6 27
11

7 38

3 � 6 � 3

1 � 3 � 2

�g(x)g(x)

x

1.0 7.0

1.2 7.8

1.4 8.6
0.8

1.6 9.4
0.8

1.8 10.2
0.8

2.0 11.0
0.8

2.2 11.8

0.8 � 8.6 � 7.8

0.8 � 7.8 � 7.0

�f (x)f (x)

Because the difference is a constant 0.8 between the values of the function f, we conclude
that this set of data is indeed linear. The slope of the line through these points is

Further, using the first point and the point–slope form for the equation of a line,
we find that the equation of the line is

When we add 7 to both sides of this expression, we get

Suppose that we try the same analysis on the values for the function g.

y � 4x � 3 � f 1x 2 .

 � 4x � 4.

 y � 7 � 41x � 1 2

11, 7 2

m �
�y

�x
�

�f 1x 2
� x

�
0.8

0.2
� 4.

The differences are not constant, so we conclude that these points don’t fall into a
linear pattern and hence no line passes through them. Consequently, the function g can-
not be a linear function. In fact, because the differences are successively larger, the func-
tion is growing faster than a linear function grows. Because the function g is increasing
at an increasing rate, it is concave up.

�

So far, we have given you information on some process or quantity that clearly
is a linear function. In practice, however, you may face a situation in which you
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62 CHAPTER 2 Families of Functions

simply assume that one quantity grows or decays in a linear manner. Or you may
even encounter a set of data that appears to be roughly linear in nature, but the
particular data points do not precisely fall on a line. We illustrate both situations in
Examples 2 through 4.

EXAMPLE 2
In 1990, the United States imported $495 billion worth of goods. In 1998, the United
States imported $912 billion worth of goods. (Source: 2000 Statistical Abstract of the
United States.)

a. Assuming that the growth in imports followed a linear pattern, find an equation of
the linear function that models U.S. imports.

b. What is an appropriate domain for this model?

c. Use the model to predict the amount of imports in the year 2005.

d. Predict when the United States will import $1 trillion worth of foreign goods ac-
cording to this model.

Solution
a. For convenience, we take the independent variable t to be the number of years since

1990 and measure imports I in billions of dollars. We therefore have two points
and for our linear model, as shown in Figure 2.15. The slope of the

line through these points is

m �
912 � 495

8 � 0
� 52.1;

18, 912 210, 495 2

t

I

495

912

0

8

912 – 495

t = 8FIGURE 2.15

that is, imports have been growing at a rate of Using the point–
slope form for a line and the point yields 

or equivalently the slope–intercept form 

b. The data extend from 1990 when to 1998 when A reasonable domain
might be from to allowing us to predict 5 years before and after the
data points.

c. Assuming that this linear trend continues, we predict that the value of foreign goods
that will be imported in 2003, when years after 1990, is

I � 52.1113 2 � 495 � $1172.3 billion.

t � 13

t � 13,t � �5
t � 8.t � 0

I � 52.1t � 495.

I � 495 � 52.11t � 0 2 ,

10, 495 2
$52.1 billion per year.
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d. Using this linear model, we have to solve for the value of t when

If we subtract 495 from both sides of this equation, we obtain

so that

or sometime late in 1999.

�

In Example 2 we arbitrarily chose to count years from 1990. Let’s see what hap-
pens if we choose a different baseline.

EXAMPLE 3
As in Example 2, the United States imported $495 billion worth of goods from abroad in
1990 and $912 billion in goods in 1998. Assuming that the growth in imports followed a lin-
ear pattern, find an equation of the linear function that models U.S. imports based on using
the independent variable t to represent (a) the number of years since 1900 and (b) the
number of years since year 0. For each model, state an appropriate domain and compare
each model to the one constructed in Example 2. (c) Use each model to predict the
amount of imports in 2003.

Solution In Example 2, we took the independent variable t to be the number of years
since 1990, or equivalently used in 1990, and constructed the linear model

a. Now suppose that the independent variable t is the number of years since 1900. We
therefore have the two points and The slope of the line through
these points is

which is the same value obtained before. Using the point–slope formula and the
point gives the equation of this linear function as

or

Although the slope remained the same, the vertical intercept changed dramatically.
The reason is that we now think of the line as “starting” in 1900, not 1990, so it has
been climbing for 90 years at the rate of A reasonable domain
for this linear model might be from to 

b. Now suppose that the independent variable t is the number of years since the year 0.
Our two points are now and and the slope of the line
through these points is

m �
912 � 495

1998 � 1990
� 52.1,

11998, 912 2 ,11990, 495 2

t � 103.t � 85
$52.1 billion per year.

I � 52.1t � 4194.

I � 495 � 52.11t � 90 2

190, 495 2

m �
912 � 495

98 � 90
� 52.1,

198, 912 2 .190, 495 2

I � 52.1t � 495.

t � 0

t � 505>52.1 � 9.7,

52.1t � 505

I � 52.1t � 495 � 1000 billion 1�1 trillion 2 .
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which again is the same value. Using the point–slope formula and the point 
the equation of this linear function is

or

There has been a huge change in the vertical intercept because this line has been
climbing at a rate of for almost 2000 years! An appropriate do-
main for this linear function might be from to 

c. Using any one of the three linear models, the first with the second with
and the third with we obtain the identical prediction for the total

value of imports into the United States of about billion in 2003.

�
So, which of these three models is correct? In one sense, all three are correct be-

cause they give the same predictions. In another sense, they are all wrong, because the
equation by itself, without reference to what the variable t stands for, is incomplete—
if we don’t specify the meaning of the variable or its “starting” point, someone using
the equation to make predictions may well use a different interpretation. We get very
different answers from the first model,

if we use and Therefore we should write the three
models as

or

or

Capturing a Linear Pattern in Data

In most applications of linear functions in the real world, you will typically have far
more than two points; in fact, you will often have a relatively large set of points that
fall into a roughly linear pattern. In Example 4 we illustrate how to deal with this
important situation.

EXAMPLE 4
The following table of values gives some measurements for the rate of chirping (in

) of the striped ground cricket as a function of the temperature.chirps>sec

I � 52.1t � 103,184,  where t is the number of  years since the year 0.

I � 52.1t � 4194,  where t is the number of  years since 1900,

I � 52.1t � 495,  where t is the number of  years since 1990,

t � 2003.t � 103,t � 13,

I � 52.1t � 495,

I � $1172
t � 2003,t � 103,

t � 13,

t � 2003.t � 1985
$52.1 billion per year

I � 52.1t � 103,184.

I � 495 � 52.11t � 1990 2

11990, 495 2 ,

89 72 93 84 81 75 70 82 69 83 80 83 81 84 76

20 16 20 18 17 16 15 17 15 16 15 17 16 17 14

Source: Adapted from George W. Pierce, The Songs of Insects. Boston: Harvard University Press, 1948.

Chirps>sec

T (�F)

Even though the measurements presented for the snow tree cricket in Chapter 1 fell
exactly onto a straight line, Figure 2.16(a) shows that comparable measurements for
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2.3 Linear Functions and Data 65

the striped ground cricket clearly do not. The difference may be due to errors in
measurement; it may be that the striped ground cricket is less sensitive to tempera-
ture; or perhaps the snow tree cricket has more mathematical aptitude to get the sit-
uation right. Even though the points for the striped ground cricket do not fall
precisely on a line, they do fall in a roughly linear pattern. Find an equation that cap-
tures this linear pattern.

Solution Suppose that we take a piece of black thread (or a clear plastic ruler), hold it
taut, and move it back and forth over the points in Figure 2.16(a). Each possible orienta-
tion for the thread represents a different line. We can then select an orientation that
seems, by eye, to give the best match or fit to the linear pattern in the data. Usually we
want roughly half the points to be above the thread and half below it, so that the line
passes “midway” between the points and follows the overall trend. Such a line superim-
posed over the data points is shown in Figure 2.16(b). (Obviously, different people will
come up with slightly different lines.) We now estimate the equation of this line that
captures the overall trend of the chirp rate function.

In Figure 2.16(b) this line seems to pass through the points and 
(Note that these points are on the line; we chose them for convenience. The points used
are not necessarily actual data points. In fact, unless the line drawn happens to pass
through a data point, you should not use any of the data points to estimate the slope.)
Using these two points, we find that the slope of the line is approximately

This means that the chirp rate increases about for each increase in
temperature. Further, because the line apparently passes through the point we
conclude that the equation of the line is

or, when simplified,

C � 0.23T � 1.64.

C � 14 � 0.231T � 68 2 ,

168, 14 2 ,
1°F0.23 chirp>sec

m �
19 � 14

90 � 68
�

5

22
� 0.23.

190, 19 2 .168, 14 2

Temperature (°F)

(b)
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FIGURE 2.16 

�
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100 20

5

r

c

r + 4c = 20

FIGURE 2.17

In applying this “black thread method” to find the equation of the line, you must
use two points that are on the line you draw. Do not use data points that are not on the
line and do not force a line by drawing one that must pass through any of the data
points. Note that the result you get is just an estimate for the equation of the line that
visually best fits the linear trend in the data. In Chapter 3, we introduce methods for
finding the equation of the one line that is the best fit to a set of data in a certain sense.

Implicit Linear Functions

We now consider a somewhat different type of situation, in which two quantities are
related but in such a way that we can’t necessarily identify which variable is independ-
ent and which is dependent. An ongoing debate at all levels of government concerns
the allocation of money among different programs. Because typically only a fixed
amount of money is available, the more that is spent on one program, the less there is
to spend on other programs. Let’s look at a simple case involving just two competing
programs, funding road and highway repairs versus funding day-care centers.

EXAMPLE 5
Suppose that we have a total of $1,000,000 available to divide between day-care centers,
which cost and road repaving, which costs Find an
equation of a linear function relating the number of day-care centers and the number of
miles of road to be repaved. What are the domain and range of this function?

Solution Let c be the number of day-care centers and r be the number of miles of road to
be repaved. Then the amount of money spent on road repaving is $50,000r (it costs $50,000
to repave each mile), and the amount spent on day-care centers is $200,000c (it costs
$200,000 for each day-care center). Assuming that all the available money is spent, we get

amount spent on centers amount spent on repaving 1,000,000

200,000c 50,000r

or equivalently, when we divide both sides by 50,000,

This equation is called the budget constraint. To graph this equation, we first find the points
at which the graph crosses the axes (the intercepts), as shown in Figure 2.17. If then

so that At the other extreme, if we have so
that c � 5.

0 � 4c � 20,r � 0,r � 20.r � 410 2 � 20,
c � 0,

r � 4c � 20.

� 1,000,000�

��

$50,000>mile.$200,000>center,

Because all the money not spent on road work is used for day-care centers, the num-
ber of centers funded is a function of the number of miles of roads repaved. That is, c is a
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2.3 Linear Functions and Data 67

function of r, and we can solve the budget constraint equation for c. We
subtract r from both sides of the equation and get

We then divide both sides by 4 and obtain

Similarly, the number of miles repaved is a function of the number of centers funded,
so r is a function of c. We can solve the budget constraint equation for r by subtracting 4c
from both sides to get

To determine the applicable domain and range, we recognize that r makes sense only
for values between 0 and 20, whereas c makes sense only for values between 0 and 5.
Which of these is the domain and which is the range depends on which variable we think
of as the independent variable and which as the dependent variable.

�
Note that the budget constraint equation

is an example of a third way of writing the equation of a line, called the normal form
of a line. In general, an equation of the form is the normal form of a
line. It is algebraically equivalent to either the point–slope form or the slope–intercept
form. For instance, if

then

and when we divide both sides by 5, we get

a line that has slope and vertical intercept 
To graph a line given in normal form, the easiest way is to find and plot both

the vertical and the horizontal intercepts and connect them with a straight line.
Thus, to find the vertical intercept of we set and solve

to get To find the horizontal intercept, we set and solve
to get The resulting graph is shown in Figure 2.18.x � 5.3x � 15

y � 0y � �3.�5y � 15
x � 03x � 5y � 15,

�3.3
5

y � a
1

5
b 13x � 15 2 � a

3

5
b x � 3,

5y � 3x � 15

3x � 5y � 15,

ax � by � c

r � 4c � 20

r � g 1c 2 � 20 � 4c.

c � f 1r 2 �
1

4
 120 � r 2 � 5 �

1

4
 r.

4c � 20 � r.

r � 4c � 20

–1 1 2 3 4 5 6

–3

–4

–2

–1

1

2

3

y

x

3x − 5y = 15

FIGURE 2.18
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x 4 5 6 7

y 1.557 1.614 1.671 1.728

200

400

600

500 60 70 80
x

y

t 1990 1993 1994 1995 1996 1997 1998

E 43.0 52.5 58.2 62.5 68.3 72.4 76.0

Source: 2000 Statistical Abstract of the United States.

t 50 60 70 80 90

23.2 23.9 24.6 25.2 25.9L(t)

t 75 80 85 90 95

125.1 127.5 129.9 132.3 134.7Q(t)

x 5 6 7 8 9

y 77 71 65 59 53

a.

b.

c.

i.

ii.

Incidentally, as a function, an equation such as is called an
implicit function. It is a function, but neither variable, x nor y, is given explicitly in
terms of the other.

ax � by � c

Problems

1. Determine which of the functions are linear. For
any linear function, find the equation of the line
and use it to predict the next entry to extend the
table of values.

2. The data in each table of values lie along a line.

a. For each set of data, carefully plot the points on
graph paper, estimate by eye the slope and verti-
cal intercept, and use these values to approxi-
mate the equation of the line.

b. Then find the equation of the line algebraically.
How close was your estimate?

b. Find the correct equation of the line.

5. In 1980 (when ), $26.5 billion were spent on
water pollution prevention and cleanup in the
United States. In 1990, $33.1 billion were spent.

a. Construct the linear function giving the amount
spent on water pollution as a function of time t,
where in 1980.

b. Use the linear function to estimate the amount
spent in 2002.

c. Repeat parts (a) and (b) if in 1900.

6. Inspector Clueless, while investigating the murder
of Mr. Jones, found the murderer’s size footprint
in a flower bed. The inspector mutters something
about the killer being “a man who is %#$#$&&#
tall.” If the equation of the best-fit line relating shoe
size to height in inches is deci-
pher Clueless’s muttering.

7. The table of values shows the total value, in billions
of dollars, of electronics and electronic components
produced in the United States during the 1990s.

S � 0.51H � 25.2,

11 
1
2

t � 0

t � 0

t � 0

a. Use graph paper to plot these data and use the
black thread method to sketch the best-fit line.

b. Estimate the slope of this line and tell what it
means.

3. Find the equation of a linear function that fits this
set of values.

4. a. Explain why the equation of the line shown in
the accompanying figure is not y � 10x � 200.

x 1 2 3 4

y 1.81 3.34 4.87 6.40

x 1 2 3 4

y 1.08 0.69 0.30 �0.09
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H n

Empire State Building (New York) 1250 102

John Hancock Tower (Boston) 788 61

Sears Tower (Chicago) 1450 110

NationsBank Plaza (Dallas) 921 72

TCBY Tower (Little Rock) 546 40

Peachtree Center (Atlanta) 374 31

Place Ville Marie (Montreal) 620 45

Source: World Almanac and Book of Facts.

Weight (lb) 2100 2200 2400 2500 2800 3000 3200

Mileage (mpg) 37 34 29 27 26 25 23

Source: Student project.

c. What is your best estimate for the equation of
this line?

d. Use this line to estimate the total value of elec-
tronics and electronic components produced in
2004.

8. The table shows the height H in feet and the num-
ber of stories n in some notable buildings.

a. Which variable, H or n, is the independent vari-
able and which is the dependent variable?

b. Plot these points carefully on a sheet of graph
paper and use the black thread method to locate
and draw the line that seems to best fit the data
points.

c. Estimate the equation of this line.
d. What is the meaning of the slope of this line?
e. Use your answer to part (c) to estimate the num-

ber of stories in a building 860 feet tall.
f. What is your best estimate of the height of a

building that has 96 stories?

9. The table of values at the bottom of the page gives
data relating a car’s gas mileage to its weight.

a. Plot these points carefully on a sheet of graph
paper and use the black thread method to locate
and draw the line that seems to best fit the data
points.

b. Estimate the equation of this line.

c. Use your answer to part (b) to estimate a car’s 
gas mileage if it weighs 2350 pounds, 3100 pounds,
1950 pounds.

d. What is your best estimate of the weight of a car
that gets 32 mpg?

10. A student who works as a waiter in a restaurant
records the cost C of meals and the tip T left by cou-
ples. His data for one evening are as follows.

C ($) 28.55 31.04 32.76 33.38 36.10 38.54

T ($) 4.25 4.50 5.00 5.00 5.50 6.00

Source: Student project.

a. Plot these points on a sheet of graph paper and
draw the best line you can to fit the points. Explain
your choices of the independent and the depend-
ent variable.

b. Suppose that the equation for this function is
In terms of this mathemati-

cal model, what is the increment in the tip for
each $1 increment in the cost of the meal?

c. What does the slope of the line in part (b) rep-
resent? What significance does the vertical in-
tercept have?

d. Suggest possible values for the domain and
range of this function.

11. You have a fixed budget of $30 to spend on nuts and
Gummi Bear™ candy for a party. The nuts cost

and the candy costs 

a. Write an equation expressing the relationship
between the number of pounds of nuts and of
Gummi Bears that you can buy if you spend
your budget completely. This equation is your
budget constraint.

b. Graph the budget constraint, assuming that you
can buy any fractional amount of a pound. Label
the intercepts.

c. What are the domain and range for this function?
d. Suppose that your roommate chips in an addi-

tional $30 for the party. Graph the new budget
constraint on the same set of axes used for the
budget constraint graphed in part (b).

$2 per pound.$3 per pound,

T � 0.18C � 0.93.
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70 CHAPTER 2 Families of Functions

9.

Solve each equation in normal form for y in terms of x.
Identify the slope in each case.

10. 11.

12. 13. 2x � 7y � 95x � 4y � 10

6x � 5y � 304x � 5y � 20

F � mv2

r  , for v

e. Keep the original budget at $30 and suppose
that the Gummi Bears go on sale for half the
price. Sketch the new budget constraint on the
same axes used in part (d).

f. Keep the original budget at $30 and suppose
that the price of nuts suddenly doubles be-
cause of a frost in the Southeast. Sketch the
new budget constraint on the same axes used
in part (d).

12. For the implicit equation of a line 
find the following.

a. An explicit function that gives p as a function
of q.

b. The slope of the line in part (a).
c. An explicit function that gives q as a function

of p.
d. The slope of the line in part (c).

13. a. Find the slope and vertical intercept of each line
given in normal form.

b. Draw the graphs of the two lines on the same axes.
c. Find the point of intersection of the two lines

i. graphically;

ii. numerically by trial-and-error;
iii. algebraically.

14. Repeat Problem 13 for the two lines

3y � 2x � 12 and 4x � 5y � 21.

3y � 2x � 12 and 4x � 5y � 20.

4p � 3q � 5,

15. Suppose that a function f is increasing and concave up
and that and Which val-
ues are possible and which are impossible? Explain.

a. b.
c. d.
e. f.
g. h.
i.

16. Suppose that a function f is decreasing and con-
cave up, and that and 
Which values are possible and which are impossi-
ble? Explain.

a. b.
c. d.
e. f.
g. h.
i.

17. Draw the graph of a function f that is decreasing
and concave up. Mark three points on the curve: P
near the left, Q near the center, and R near the right.
These points determine three line segments: PQ,
QR, and PR.

a. List the three line segments in the order of in-
creasing slopes.

b. List the three segments in the order of increasing
steepness.

18. Repeat Problem 17 if the function is decreasing and
concave down.

f 15 2 � 110
f 15 2 � 105f 15 2 � 100
f 115 2 � 60f 115 2 � 55
f 115 2 � 50f 111 2 � 72
f 111 2 � 75f 111 2 � 78

f 112 2 � 70.f 110 2 � 80

f 140 2 � 200
f 140 2 � 150f 140 2 � 100
f 1100 2 � 500f 1100 2 � 450
f 1100 2 � 400f 165 2 � 280
f 165 2 � 275f 165 2 � 270

f 170 2 � 300.f 160 2 � 250

Exercising Your Algebra Skills
Solve each formula for the indicated variable.

1. 2.

3. 4.

5. 6.

7. 8. F � mv2

r  , for rT � 2p 3 l
g , for l

F �
GmM

d
2  , for dK � 1

2 mv2, for v

K � 1
2 mv2, for mA � pr2, for r

C � 2pr, for rA � bh, for h

Exponential Growth Functions

The population of Florida was 12.94 million in 1990 and has been growing as
shown in the following table of values. Let’s see if we can find a mathematical pat-
tern for the way in which this population is growing. If the population grows linear-
ly, the changes or increases in population from one year to the next, would all be
the same. Let’s check these differences.

�P,

2.4
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2.4 Exponential Growth Functions 71

Year Population

1990 12.94

1991 13.32
0.38

1992 13.70
0.40

1993 14.10
0.41

1994 14.51
0.42

1995 14.93
0.43

1996 15.36
0.45

1997 15.81

0.38 � 13.32 � 12.94

�P

Not only are the successive differences not constant, they are increasing. This
makes sense because as the population grows, there are more people to have babies.
Consequently, Florida’s population has been growing at a faster than linear rate.
We therefore need a concave up function to model this population over time.

Instead of taking differences, suppose that we take ratios of successive terms.
To do so, we divide the population in any year by the population in the preceding
year. This quotient gives

and so on. If you check the population figures for the subsequent years through
1997, you will find that each year the population grew by the same factor of
about 1.029.

Because the ratios of successive population values are constant, we have, for
any year,

or

If this trend continues, we can estimate Florida’s population in 1998 as

The fact that Florida’s population next year is 1.029 times this year’s popula-
tion is equivalent to saying that

 � population this year � 0.029 . population this year.

 � 11 � 0.029 2 . population this year

 Population next year � 1.029 . population this year

Population in 1998 � 1.029 . population in 1997 � 1.029 . 15.81 � 16.27.

Population next year � 1.029 . population this year.

Population next year

Population this year
� 1.029

 
Population in 1993

Population in 1992
�

14.10 million

13.70 million
� 1.029,

 
Population in 1992

Population in 1991
�

13.70 million

13.32 million
� 1.029,

 
Population in 1991

Population in 1990
�

13.32 million

12.94 million
� 1.029,
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Growth factor �  1 �  growth rate

0 20 40 60 80
t
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P(t) = 12.94(1.029) t

20

40

60

80

100

120

140

FIGURE 2.19

In other words, each year between 1990 and 1997, Florida’s population grew by
about from one year to the next. The number 2.9% is called the
annual growth rate for the population.

Whenever the successive ratios are constant (here they all are 1.029), the func-
tion is an exponential function.

We now find an equation for this exponential function where t is the
number of years since 1990. The starting population, when is 
which we write as Then

when or 13.32;

when or 13.70;

when or 14.10;

and so on. In general, after t years, the population of Florida is

This equation is called an exponential growth function with base 1.029. The
name exponential is used because the independent variable (in this case, t) occurs in
the exponent. The base (in this case, 1.029) is called the growth factor. It gives the
population each year as 1.029 times the population in the preceding year. The quan-
tity is the associated annual growth rate. Note the relationship be-
tween the growth factor and the growth rate.

0.029 � 2.9%

P1t 2 � P0
. 11.029 2 t � 12.9411.029 2 t.

P13 2 � 1.029 . P12 2 � 1.029 . 11.029 2 2 P0 � 11.029 2 3 P0 ,t � 3,

P12 2 � 1.029 . P11 2 � 1.029 . 11.029 . P0 2 � 11.029 2 2 P0 ,t � 2,

P11 2 � 1.029 . P0 ,t � 1,

P0 .
P10 2 � 12.94,t � 0,

P1t 2 ,

0.029 � 2.9%

In this formula, you must write the growth rate as a decimal, not as a percent. For
instance, if the growth rate for a process is each year, the associated
growth factor is 

Assuming that Florida’s population continues to grow with the same exponen-
tial pattern for the next 80 years, we can graph this population function as shown
in Figure 2.19. The function obviously is increasing. Moreover, the graph grows
faster and faster as time goes on, so the curve is concave up. This behavior is typi-
cal of an exponential growth function. Compare this function’s behavior with that
of an increasing linear function. Because a linear function grows at the same rate at
every point, its graph is a line. However, exponential growth functions such as this
one are curves that may seem to climb slowly at first but eventually climb extreme-
ly rapidly. This type of behavior explains why there is widespread concern about

1 � 0.04 � 1.04.
4% � 0.04
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2.4 Exponential Growth Functions 73

Formula for an Exponential Growth Function

P is an exponential growth function of t with base if

where is the initial quantity (when ) and c is the growth factor by
which P changes when t increases by 1 unit.

Because we can write where a is the growth rate written as
a decimal.

c � 1 � a,c � 1,

t � 0P0

P1t 2 � P0c
t,

c � 1,

0
t

B(t)

3%

4%

5%

FIGURE 2.20

the exponential growth of the world’s population: Eventually there won’t be
enough land, food, and water to sustain everyone.

The graph shown in Figure 2.19 is only an approximation to the actual graph
of Florida’s population. We can’t have a fraction of a person, so the graph theoreti-
cally should be jagged with small steps up or down each time someone is born,
dies, or moves into or out of Florida. However, on a scale of millions of people,
such changes are insignificant, and our smooth curve actually is a good approxi-
mation to the population.

We summarize the formula for an exponential growth function and its param-
eters as follows.

For example, if a quantity (e.g., the balance in your bank account) is growing at
5% per year, the growth rate and the associated growth factor is

The corresponding formula for the balance B in the account as a
function of time t is

where represents the initial or starting balance.
The growth factor c in any exponential growth function plays a role

similar to the slope in a linear function. The larger the growth factor c, the faster
the exponential function grows. Figure 2.20 shows a series of exponential growth
curves, with growth rates a of 3%, 4%, and 5% and corresponding growth factors c
of 1.03, 1.04, and 1.05. All start with the same initial value at time but the
larger the growth factor, the faster the curve grows. A curve corresponding to a
growth factor of 1.033, say, would lie between the curves for the growth factors of
1.03 and 1.04; the curve corresponding to a growth rate of 2.6% would lie below
the lowest of the three curves.

t � 0,

y � P0c
t

B0

B1t 2 � B0
. 11.05 2 t,

c � 1 � a � 1.05.
a � 5% � 0.05
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The coefficient in an exponential function plays a role similar to the
vertical intercept for a line. If we set we get

because any number (other than 0) raised to the zero power is 1. Thus the initial
or starting value of the exponential growth function represents the height at
which the exponential function crosses the vertical axis (when ). Figure 2.21
shows the graphs of three different exponential growth curves:

and All have the same growth factor, 1.03, and so the
same growth rate, but all have different initial values. Note how all
three curves have similar shape, but each crosses the vertical axis (at ) at a dif-
ferent height.

t � 0
0.03 � 3%,
y � 6011.03 2 t.y � 3011.03 2 t,

y � 1011.03 2 t,
t � 0

P0

y � P0c
0 � P0

t � 0,
y � P0c

tP0

Comparing Linear and Exponential Growth

The key fact about linear growth is that a linear function grows at a constant rate.
That is, every time the independent variable x, say, increases by 1, the linear function
grows by the same amount (equal to the slope), as illustrated in Figure 2.22(a). In
contrast, the key fact about exponential growth is that an exponential function grows
by a fixed percentage. Suppose that the growth factor is 1.20 so that the growth rate is
20%. Then every time the independent variable x increases by 1, the exponential
function grows by the same multiple, 1.2, as illustrated in Figure 2.22(b). The corre-
sponding values are then and so on, and these values
eventually grow very rapidly as the exponent increases. As a result, eventually any ex-
ponential growth function will outstrip any linear function.

11.2 2 3 y0 ,11.2 2 2 y0 ,1.2 y0 ,y0 ,
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0 8
t

M(t)

93.7

111.52

FIGURE 2.23

Applications of Exponential Growth

In Examples 1 and 2 we apply the ideas and definitions on exponential growth.

EXAMPLE 1
In 1995, the population of Mexico was 93.7 million and growing at a rate of 2.2% a year.

a. Find a formula for the population of Mexico at any time t.

b. Predict the population of Mexico in 2003.

Solution

a. Because the annual growth rate for Mexico is the corresponding
growth factor is Let t be the number of years since 1995 and

be the population of Mexico in millions. Then a formula for the Mexican pop-
ulation at any time t since 1995 is

b. Assuming that this exponential growth pattern continues until 2003, we have 
years after 1995. We predict that the population of Mexico will be

as shown in Figure 2.23.

M18 2 � 93.711.022 2 8 � 111.52 million people,

t � 8

M1t 2 � 93.711.022 2 t.

M1t 2
c � 1 � 0.022 � 1.022.

2.2% � 0.022 � a,

�

EXAMPLE 2
During one of New York City’s recent financial crises, someone discovered a million dol-
lar loan the city made to the U.S. Government in 1812. At first it appeared that the loan
had not been repaid. For a 6% annual compound interest rate, what would this amount
have become by the year 2000?

Solution The 6% growth rate corresponds to a growth factor of so that t years
after 1812, the amount would be

For 2000, and the resulting balance would be

As depicted in Figure 2.24, that would easily have solved the municipal finance problem
for many years to come. Unfortunately for New York City, the loan was later found to
have been repaid, with interest, in 1815.

 � $57,214,047,000.

 b1188 2 � 1,000,00011.06 2 188

t � 2000 � 1812 � 188,

b1t 2 � b0
. 11.06 2 t � 1,000,00011.06 2 t.

c � 1.06
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�

How much interest did New York City receive in 1815 from this loan? ❐

Doubling Time

One of the special characteristics of any exponential growth function is that it has
a unique doubling time—the time needed for the exponential function to double.
We illustrate this concept in Example 3.

EXAMPLE 3
Assuming that the exponential model for Florida’s population cre-
ated at the beginning of this section continues to hold far into the future, estimate the
population of Florida in (a) 2014, when (b) 2038, when and (c) 2062,
when 

Solution We use exponential growth model

to predict the following values.

a.

b.

c.

�

Let’s look at what these predicted population values indicate. After 24 years,
Florida’s population has doubled. After roughly another 24 years (i.e., ), it has
doubled again. After roughly another 24 years (i.e., ), the population has dou-
bled yet again. Therefore we say that the doubling time of Florida’s population is
about 24 years: If you take the population in any given year and compare it to the
population 24 years later, you will find that it has doubled.

To extrapolate far into the future, we must assume that the population continues to
grow exponentially at the same rate of 2.9% per year. The farther we project into the
future, the riskier our prediction becomes because other factors can affect the growth
rate. What are some? ❐

Think About This

t � 72
t � 48

P172 2 � 12.9411.029 2 72 � 101.35 � 8 . 12.94

P148 2 � 12.9411.029 2 48 � 51.04 � 4 . 12.94

P124 2 � 12.9411.029 2 24 � 25.70 � 2 . 12.94

P1t 2 � 12.9411.029 2 t

t � 72.
t � 48;t � 24;

P1t 2 � 12.9411.029 2 t

Think About This
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Every population that grows exponentially has a fixed doubling time that de-
pends only on the growth rate or the growth factor, not on the size of the popula-
tion. The world’s population, with an annual growth rate of about 1.5%, has a
doubling time of about 38 years. (We show how to calculate doubling times later.)
The current population is about 6 billion, so there will be about 12 billion people
in 38 years and roughly 24 billion people in 76 years, all competing for an ever di-
minishing amount of resources. As another way of looking at it, if you live to be
76, the world’s population will quadruple during your lifetime.

The doubling time T for any exponential growth process is the same at any
point on the curve; that is, if you pick any point on the exponential curve, the
value for y will always increase to 2y (it has doubled) after T time units. You can vi-
sualize what this means by looking at Figure 2.25.

Predicting with Exponential Growth Functions

The purpose of creating an expression for an exponential growth function is to an-
swer predictive questions about the quantity being modeled, as we illustrate in Ex-
amples 4 and 5.

EXAMPLE 4
Estimate when the population of Florida will reach 20 million.

Solution Our formula for the population of Florida is and we want
the value of t when the curve reaches a height of 20. We therefore must solve the equation

for t. We can solve this equation numerically by using trial-and-error by substituting dif-
ferent values of t until we get a value for that is very close to 20. (Your cal-
culator may have a table feature that allows you to generate a table of values and zoom in
with smaller and smaller steps to find the value of the independent variable that pro-
duces a given value—20 in this case—for the dependent variable.) 

A simpler approach is to solve the equation graphically by drawing the graph of the
function on a function grapher and tracing along the curve to determine when the func-
tion reaches a height of 20, as shown in Figure 2.26. If necessary, this approach could
also involve zooming in to increase the level of accuracy. Alternatively, we could graph
the two functions, and and find the point of intersection
using a function grapher. Whichever way we proceed, the solution is approximately

years from 1990 or early in 2005. (We develop an algebraic approach using log-
arithms for solving such an equation that yields an exact answer in Section 2.8.)
t � 15.2

y � 20,y � 12.9411.029 2 t

12.9411.029 2 t

12.9411.029 2 t � 20

P1t 2 � 12.9411.029 2 t,

1t, y 2
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�

EXAMPLE 5
Estimate the doubling time for the population of Florida.

Solution We again use the exponential growth model and we
now must find how long it takes for the population to double, that is, to reach

We therefore have to solve the equation

for t. We solve this equation graphically by looking for the intersection of the two curves
and as shown in Figure 2.27. This point is at 

so the doubling time for Florida’s population is about years.24 
1
4

t � 24.2465,y � 25.88,y � 12.9411.029 2 t

12.9411.029 2 t � 2 � 12.94 � 25.88

2 � 12.94 � 25.88.

P1t 2 � 12.9411.029 2 t

�

So far, we have thought of exponential functions as starting at time In
reality, the formula for any exponential function can be interpreted for negative
values of the independent variable, as we demonstrate in Example 6.

EXAMPLE 6
Use the model we constructed for the population of Florida to predict what the popula-
tion was in 1980.

Solution Our formula for the population of Florida is

P1t 2 � 12.9411.029 2 t,

t � 0.

0 15.2
t

P(t)

12.94

20

FIGURE 2.26
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where t is the number of years since 1990. The year 1980, 10 years before 1990, therefore
corresponds to The formula predicts that the population in 1980 was

million people,

as illustrated in Figure 2.28. Note that this result is considerably below the 1990 popula-
tion value of 12.94 million people, as we would expect.

P1�10 2 � 12.9411.029 2�10 � 12.9410.75135 2 � 9.72

t � �10.

�

Just as the domain of a linear function theoretically is the set of all real num-
bers from to the domain of an exponential function is likewise theoreti-
cally from to Of course, in any real-world setting, there may be practical
limitations to the domain. For instance, it wouldn’t make sense to use the function
to extrapolate the population of Florida 200 years into the past, as Florida became
a state only in 1845. Moreover, as we’ve stated before, extrapolating far into the fu-
ture or the past is risky because the trend in the data may not hold.

Also, Example 6 indicates that, when the values for the exponential
growth function continue to decrease from right to left. Figure 2.29 shows the typ-
ical graph of an exponential growth function with Note how it
grows in the expected way toward the right and decays to 0 toward the left. The rea-
son is that, as we move farther to the left of the vertical axis, the values of x become
ever more negative. Suppose that we write Recall one of the basic proper-
ties of exponents:

b�z �
1

bz  .

x � �z.

k � 0.y � kc x,

t 	 0,

�
.�

�
,�
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Consequently,

As the exponent becomes ever more negative,

the values become ever smaller and eventually approach 0. We say that the curve
approaches the negative x-axis asymptotically because it never reaches 0 in any fi-
nite time interval. We call the horizontal axis a horizontal asymptote for the graph
of the exponential decay function. The range of any exponential growth function

with is therefore all positive values for y.

Finding an Exponential Function Through Two Points

We know that two points determine a line (because one and only one line can pass
through the two points). Similarly, two points also determine an exponential func-
tion in the sense that one and only one exponential function passes through the
two points, provided that the y-values for the points are either both positive or
both negative. Suppose that we have any two points and where

and so the second point is to the right of and above the first
point and both points are above the x-axis, as shown in Figure 2.30. One and only
one exponential growth curve passes through the two points.

0 	 y1 	 y2 ,x1 	 x2

1x2 , y2 2 ,1x1 , y1 2

k � 0,y � kc 
x,

 1.029�100 � 0.05734,

 1.029�30 � 0.42417,

 1.029�20 � 0.56454,

1.029�10 �
1

1.02910 � 0.75135.

By drawing several sketches, convince yourself why it is not possible to draw an ex-
ponential growth curve through two points when one is above the x-axis and the
other is below the x-axis. Also, if the two points are both below the x-axis, what
should you expect about the sign of the coefficient k in ❐

We now determine a formula for the exponential function that passes through
two points. Doing so also gives us a way to find the growth rate for any exponential
process. For the equation of an exponential function values for the two
parameters k and c must be determined, which is why we use two points. We
demonstrate how to do so in Example 7.

EXAMPLE 7
The number of cell phones in use worldwide grew from 11 million in 1990 to 319 mil-
lion in 1998.

y � kc 
x,

y � kc 
x?

Think About This
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a. Assuming that the growth pattern was exponential, find the annual growth rate for
the number of cell phones in use and the equation of the exponential function that
models the number of cell phones in use.

b. Predict the number of cell phones in use in 2003.

Solution

a. Let t represent the number of years since 1990 and P the number of cell phones (in mil-
lions) in use. We then have the two points and The exponential growth
function has the form

where the constants and c must be determined. Substituting the coordinates of the
point into the function gives

because Thus the exponential function becomes Using the point
gives

Solving for gives

Just as we solve for x by taking the square root of 10 or solve for x by
taking the cube root of 10, we solve for c by taking the eighth root of 29. (We
discuss the details more formally in Section 2.7.) Thus

(Verify that by taking the eighth power of 1.5234.) For the growth
factor of 1.5234, the annual growth rate in the number of cell phones in use is

Moreover, the exponential function that models the growth in the
number of cell phones is

where t is the number of years since 1990.

b. Because 2003 is 13 years after 1990, we set as shown in Figure 2.31. We then
use this exponential model to predict that the number of cell phones in use in 2003 is

or about 2.618 billion.

P113 2 � 1111.5234 2 13 � 2618.0 million,

t � 13

P1t 2 � 1111.5234 2 t,

0.5234 � 52.34%.

18 29 � 1.5234

c � 28 29 � 1.5234.

c8 � 29
x3 � 10x2 � 10

c8 �
319

11
� 29.

c8

P18 2 � 11c8 � 319.

18, 319 2
P1t 2 � 11ct.c0 � 1.

P10 2 � P0c
0 � P0 � 11,

10, 11 2
P0

P1t 2 � P0c
t,

18, 319 2 .10, 11 2

�
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By letting t represent the number of years since 1990, we simplified the work in
Example 7 to give the vertical intercept as one of the points. If we can’t do
so, things become more complicated, as shown in Example 8.

EXAMPLE 8
Find the equation of the exponential function that passes through the points 
and 

Solution The desired exponential function has the form where we must
find the correct values for the parameters k and c. Using the point we have

Using the point we have

From the first of these two equations, we solve for k and get We substitute this
term into the second equation to get

and so

Therefore

and the desired exponential function is as shown in Figure 2.32.f 1x 2 � 411.5 2 x,

k �
6
c

�
6

1.5
� 4,

c �
9

6
� 1.5.

kc2 � a
6
c
b  c2 � 6c � 9,

k � 6>c.

f 12 2 � kc2 � 9.

12, 9 2 ,

f 11 2 � kc1 � kc � 6.

11, 6 2 ,
f 1x 2 � kc 

x,

12, 9 2 .
11, 6 2

10, 11 2

�

Determining Whether a Set of Data Is Exponential

Recall the simple criterion that determines whether a set of data follow a linear
pattern: The successive differences in the dependent variable must be constant
when there is a constant difference between values of the independent variable.
Similarly, we can determine whether a table of data values follows an expo-
nential pattern by looking at the successive ratios of the y values.

1t, y 2
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If the ratios of the successive values of the dependent variable are constant for
equally spaced t values, the y values follow an exponential pattern: y � k c 

t.

x y

0 20.0

1 21.0

2 22.10

3 23.2775

4 24.6425

5 26.2650

x y

0 20.0

1 21.0

2 22.05

3 23.1525

4 24.3101

5 25.5256

Solution We apply the criterion for an exponential pattern and examine the ratios of
successive terms for each function. For the first function the ratios are

and

The successive ratios are not constant, so this function cannot be exponential.
For the second function the ratios are

and

These ratios are essentially constant (the last two vary slightly because the entries listed
in the table were rounded), so we conclude that this function is indeed exponential.

�

Rules for Exponents

Because exponential functions involve working with exponents, all the usual alge-
braic rules for manipulating exponents apply. As a reminder, we list some of the
fundamental definitions and algebraic rules for exponents.

26.5256

24.3101
� 1.04999.

24.3101

23.1525
� 1.04999,

23.1525

22.05
� 1.05,

22.05

21.0
� 1.05,

21.0

20.0
� 1.05,

26.2650

24.6425
� 1.0658.

24.6425

23.2775
� 1.0586,

23.2775

22.10
� 1.0533,

22.10

21.0
� 1.0524,

21.0

20.0
� 1.05,

The common ratio is precisely the growth factor for the exponential growth
process if the t values increase by 1 unit. For instance, with Florida’s population
values from one year to the next, we found that the common ratio was 1.029,
which is the growth factor, and that the associated growth rate is 0.029, or 2.9%
per year.

EXAMPLE 9
One of the following functions is exponential and the other isn’t. Determine which is the
exponential function. The values are rounded to four decimal places.
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Definitions and Rules for Exponents

Property Example

1.

2.

3.

4.

5.

6.

7. 101>3 � 23 10101>2 � 210 ,a � 0a1>n � 2n a ,

10�3 �
1

103 �
1

1000
a � 0a�n �

1

an  ,

10�1 �
1

10
a � 0a�1 �

1
a

 ,

100 � 1a0 � 1

1103 2 2 � 103 . 103 � 106 � 103.21ax 2 y � axy

105

102 �
10 . 10 . 10 . 10 . 10

10 . 10
� 103 � 105�2a � 0

ax

ay � ax�y,

 105 � 103�2
 103 . 102 � 110 . 10 . 10 2 . 110 . 10 2  �ax . ay � ax�y

t 0 1 2 3

300 308 320.2 335.5L(t)

t

P
A

B
C

D

x 0 1 2 3

y 1000 1200 1440 1728

b.

c.
t 0 10 20 30

200 208 216.32 224.97Q(t)

Problems

1. The accompanying graph shows population growth
curves for four different nations. Which nation

a. has the greatest growth rate?
b. has the smallest growth rate?
c. has the largest initial population?
d. has the smallest initial population?
e. Which nations have the same growth rate?

2. Determine which of the functions are exponential.
For any exponential function, find the equation of the
function and use it to predict the next entry to extend
the table of values.

a.

3. Anne opens a bank account with $1200 at 4% annu-
al interest. Bill opens an account with $1000 at 4.5%
annual interest. Christine opens an account with
$1500 at 3.8% annual interest. Doug opens an ac-
count with $1200 at 4.5% annual interest. Elka
opens an account with $1300 at 4.25% annual inter-
est. Sketch a graph showing the balances in the five
accounts over time on the same set of axes. Be sure
to label which account belongs to which person.

4. Use the exponential growth function 
to make a prediction for 2000 if (a) t is

the number of years since 1980, (b) t is the number
of years since 1900, (c) t is the number of years
since the year 0.

5. In 1990, the United States imported $495 billion
worth of goods. In 1998, the United States import-
ed $912 billion worth of goods. Assuming that the
growth in imports has been following an exponen-
tial growth pattern, find an equation of the expo-
nential function that models U.S. imports when

a. the independent variable t represents the num-
ber of years since 1990.

b. the independent variable t represents the num-
ber years since 1900.

c. the independent variable t represents the num-
ber of years since the year 0.

12511.04 2 t
f 1t 2  �
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d. For the three functions you created in parts
(a)–(c), which parameters changed and which re-
mained the same? Explain why the changes oc-
curred. Explain why the parameters that stayed
the same didn’t change.

e. Use each model from (a)–(c) to predict the
amount of imports in 2005.

Source: 2000 Statistical Abstract of the United States.

6. Match each formula with the corresponding table
of values.

a.
b.
c. y � c11.03 2 s

y � b11.05 2 s
y � a11.1 2 s

2.4 Exponential Growth Functions 85

s 1 2 3 4 5

2.20 2.42 2.66 2.93 3.22g(s)

s 3 4 5 6 7

3.47 3.65 3.83 4.02 4.22h(s)

s 2 3 4 5 6

1.06 1.09 1.13 1.16 1.19f (s)

ii.

iii.

7. In 1980, a total of $119 trillion was spent on food
and drinks in the United States. In 1994, the total
spent was $274 trillion.

a. Find the equation of the exponential function
that can be used to model the total spent on food
and drinks in the United States as a function of
the number of years since 1980.

b. Use your model to predict the amount spent in
1990.

c. What is your prediction for the total sales of
food and drink in 2004?

d. Estimate when the total sales will reach $500 tril-
lion if this exponential trend continues.

8. The 1990 population of Arizona was 3.7 million
and growing at an annual rate of 1.7%.

a. Find an expression for the population at any
time t.

b. What will be the population in 2005?
c. Estimate the doubling time for this population.

9. The 1995 population of Venezuela was 21.8 million
and growing at an annual rate of 2.6%.

i.

0 1 2 3 4 5 6 7

100

200

300

400

500

600

700

800

t

P (thousands)

a. Find an expression for the population at any
time t.

b. What will be the population be in 2005?
c. Estimate the doubling time for this population.

10. The 1995 population of France was 58.1 million
and growing at an annual rate of 0.3%.

a. Find an expression for the population at any
time t.

b. What will be the population in 2010?
c. Estimate the doubling time for this population.

11. In 1990, 1.36 billion metric tons of carbon dioxide
were emitted into the atmosphere in the United
States. In 1998, 1.595 billion metric tons were emitted.

a. Construct the exponential function giving the
amount of carbon dioxide emitted into the at-
mosphere as a function of the number of years
since 1990.

b. Use the exponential function to estimate the
amount emitted in 2004.

12. The population graph shown in the accompanying
figure is growing exponentially.

a. Use the graph to estimate the doubling time of
the population.

b. Verify graphically that the doubling time does
not depend on where you start on the graph.

13. The world’s population passed 6 billion in late 1999
and is increasing at a rate of about 1.5% per year.

a. Find the world’s population 15 years later if this
trend continues.

b. Estimate how long it will take the world’s popu-
lation to double.

14. Find a formula for the balance in a bank account in
which $100 was deposited at 6% annual interest
compounded for 10 years.
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15. Find the balance after 1 year if $100 is deposited at
an annual rate of 6% compounded quarterly in-
stead of yearly. What is the balance after 10 years?
(Hint: What is the interest rate for each 3-month
period?)

16. In 1998, the population of the United States was
about 268.2 million with an annual growth rate of
0.7%. At the same time, the population of Mexico
was about 100.1 million with an annual growth rate
of 2.2%. If these growth rates continue, use either
graphical or numerical methods to estimate when
the population of Mexico will overtake that of the
United States.

17. According to an article in the New York Times on
May 27, 1990, a wealthy Pennsylvania merchant
named Jacob DeHaven loaned $450,000 to the
Continental Congress in 1776 to rescue the troops
at Valley Forge. The descendants of Mr. DeHaven
sued the U.S. government for what they believed
they were owed. The interest rate in effect in 1776
was 6% per year. How much did the family stand to
collect in 1991, assuming that interest is com-
pounded annually?

18. The lily pads in a pond grow in such a way as to
double the area of the pond that they cover daily.

a. If the lily pads exactly cover the entire pond on
the 25th day, how much of the pond do they
cover on the 24th day?

b. Write an exponential function that models the
fraction of the pond covered on any particular day.

c. If the area of the pond is 40,000 sq ft, find the
area covered by the lily pads on the initial day.

d. What area of the pond is covered by the lily pads
at the end of 1 week?

19. Let be an exponential function of x. If
and find

a. the growth factor;
b. the growth rate;
c. the value of the function when 
d. a formula for 

20. The Dow-Jones average of 30 industrial stocks is
the most famous measure of performance of the
New York Stock Exchange. At the beginning of 1995
the Dow was 3834, and at the beginning of 2000 it
was 11,358. Assuming (incorrectly) that the Dow
increased continuously over these 5 years and that
the pattern is exponential, find the exponential
function that models the behavior of the Dow be-

f 1x 2 .
x � 10;

f 18 2 � 28.8,f 17 2 � 25.6
f 1x 2

tween 1995 and 2000. What would you predict as
the value for the Dow at the beginning of 2004?

21. Repeat Problem 20, using the facts that the Dow
was 964 at the beginning of 1981 and was 11,358 at
the beginning of 2000.

22. a. Suppose that you’re an aggressive stockbroker
who is trying to convince a little old lady to in-
vest her life savings with you. What argument
would you make based on your work on either
Problem 20 or 21 to convince her.

b. Now suppose that the little old lady is your
grandmother. What argument would you make
based on your work on either Problem 20 or 21
to convince her to be more conservative.

23. An exponential function f is such that 
and Which of the values are possible
and which are impossible?

a. b. c.

24. The net income of the Acme Company was $240 mil-
lion in 1990 and has been increasing at an annual
rate of 10% per year since. Over the same period,
the net income of its chief competitor, the Finest
Corporation, has been growing 8% annually from
an income of $300 million in 1990. Which was the
richer company in 2000? Does Acme ever surpass
Finest? If so, estimate when.

25. (Extension of Problem 24) Suppose that Finest
grew by a fixed amount of $25 million per year
since 1990 while Acme grew exponentially at an an-
nual rate of 10%. By using trial and error, estimate
when Acme surpassed Finest.

26. When Steven was 5 years old, his grandmother de-
cided to set up a trust account to pay for his college
education. She wanted the account to grow to
$80,000 by Steven’s 18th birthday. If she was able to
invest her money at 6% per year, how much did she
have to put into this trust account? (Note: This
amount is known as the present value of the invest-
ment. The $80,000 is known as the future value.)

27. In Example 7 the number of cell phones in use in-
creased 29-fold, from 11 million in 1990 to 319 mil-
lion in 1998. This is equivalent to a 3000% increase
over that 8-year period. Explain what’s wrong with
the reasoning that says: If the number of cell phones
increased by 3000% over the 8 years, the annual
growth rate is of 3000% or 375%.

28. Show that x5>3 �
x5

x3

1
8

f 12 2 � 981f 12 2 � 881f 12 2 � 800

f 14 2 � 1250.
f 10 2 � 512
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a. numerically, by finding at least one value of x for
which the two expressions are different;

b. graphically, by comparing the graphs of the two
functions and y � x5>x3.y � x5>3

Exercising Your Algebra Skills

Simplify the following.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.
w�7

w�4

w�4

w�7

b15

b�6

r8

r�4

a5 . a�3x�5 . x3

a15

a6a8 . a4

x4 . x2x5 . x3
11. 12.

13. 14.

15. 16.

Perform the following operations:

17. 18.

19. 1a3 � b 2 2
1a3 � b 2 21a3b5 2 4

1a8 2�41x3 2 5
1x5 2 3z2>3z�5>3

y2>3y4>3x�1>2x3>4

Exponential Decay Functions

Prozac is one of the most widely used drugs to treat extreme depression. Once a med-
ication such as Prozac has been absorbed into the bloodstream, it eventually is elimi-
nated from the body by the kidneys, which purify the blood by filtering out foreign
chemicals. For now, let’s assume that a person takes a single dose of Prozac and that it
has been completely absorbed into the blood. It is reasonable to assume that, during
any fixed time period, a fixed percentage of any medication, including Prozac, is re-
moved from the bloodstream as the kidneys process the blood. In particular, the kid-
neys eliminate approximately one-fourth of the Prozac in the bloodstream during
any 24-hour period, so that 75% of the drug remains. (Note that this rate is specific to
Prozac and that other medications are washed out of the body at different rates.)

Suppose that the original dosage of Prozac is 80 mg (milligrams). We want
to develop a formula for the amount present at any time t. Clearly, it must
be a decreasing function because the level of the drug in the bloodstream is de-
caying over time.

We start with After the first 24 hours, one quarter of 80 mg, or
20 mg, of the Prozac is eliminated, leaving three quarters of the 80 mg, or 60 mg, of
the Prozac in the bloodstream. After one 24-hour period, when the amount
of Prozac in the system is

After a second 24-hour period, the kidneys remove 25% of the remaining 60 mg of
Prozac, so 15 mg are eliminated, leaving 75% of the remaining 60 mg of Prozac.
Thus, when 

After the third 24-hour period, 25% of the remaining Prozac is eliminated, leaving

Similarly,

D 14 2 � 0.75D 13 2 � 10.75 2 4180 2

D 13 2 � 0.75D 12 2 � 0.7510.75 2 2180 2 � 10.75 2 3180 2 .

D 12 2 � 0.75160 2 � 0.7510.75 2 180 2 � 10.75 2 2180 2  mg.

t � 2,

D 11 2 � 0.75180 2 � 60 mg.

t � 1,

D10 2 � 80 mg.

D1t 2

2.5
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and

In general, after t days the amount of Prozac in the bloodstream is given by

This function has the same form, as the exponential growth functions
presented in Section 2.4 except that the base c is 0.75, which is less than 1. It is an ex-
ample of an exponential decay function, and its graph is shown in Figure 2.33. Note
that the behavior is that of a decreasing, concave up function. Each step down is small-
er than the previous one. This result makes sense because, as the amount of Prozac re-
maining in the bloodstream gets smaller, there is less of the drug left to eliminate, and
the amount of decrease in drug strength diminishes every successive day.

y � kct,

D 1t 2 � 8010.75 2 t.

D 15 2 � 0.75D 14 2 � 10.75 2 5180 2 .

You can see this numerically by calculating the values of the function previ-
ously given:

which is a decreasing, concave up pattern. If you continue these calculations, you will
find that the values eventually approach 0 asymptotically; that is, the drug level never
reaches 0 in any finite time interval, as illustrated in Figure 2.34. Thus, the horizontal
axis is a horizontal asymptote for the graph of the exponential decay function.

In general, the graph of any exponential decay function, with
is a decreasing, concave up curve that approaches 0 as t gets larger and

larger. In comparison, the graph of any exponential growth function, with
is an increasing, concave up curve. Because the base c for an exponential

decay function is between 0 and 1, we call it the decay factor.
Often, we are told that a process is decaying at a given rate—say, 12% per year.

The is known as the decay rate and the associated decay factor c is

where the decay rate must be written as a decimal. Thus

because 88% (or 0.88) of the original amount is left. By comparison, for exponen-
tial growth, recall that

Growth factor � 1 � growth rate.

c � 1 � 0.12 � 0.88,

Decay factor � 1 � decay rate,

12% � 0.12

c � 1,
y � kct,

0 	 c 	 1,
y � kct,

D 14 2 � 25.3125, . . . ,D 13 2 � 33.75,D 12 2 � 45,D 11 2 � 60,D 10 2 � 80,
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2.5 Exponential Decay Functions 89

Note that whether we have an exponential decay function such as 
for the level of Prozac or an exponential growth function such as 
for the population of Florida, it is still an exponential function and the same techniques
that we introduced in Section 2.4 apply. The only difference is that, for an exponential
growth function, whereas for an exponential decay function,

EXAMPLE 1
Find the amount of Prozac in the bloodstream after 1 week.

Solution We use the formula for the exponential decay function,

we previously constructed. After 1 week, days, so the level of Prozac will be

or about 

�

EXAMPLE 2
Estimate how long it takes until the level of Prozac in the bloodstream drops to 2 mg.

Solution Using the formula for the level of Prozac, we have to find t so that

Using either numerical or graphical methods, we find that days, as shown in
Figure 2.35.

t � 12.8

D 1t 2 � 8010.75 2 t � 2.

10 
2
3 mg.

D 17 2 � 8010.75 2 7 � 10.679,

t � 7

D 1t 2 � 8010.75 2 t,

0 	 c 	 1.c � 1,

y � 12.9411.029 2 t
y � 8010.75 2 t

�
We summarize the formula for an exponential decay function and its parame-

ters as follows.

0 12.8
2

80

t

D(t)

FIGURE 2.35

Formula for an Exponential Decay Function

P is an exponential decay function of t with base c, if

where is the initial quantity (when ) and c is the decay factor by
which P changes when t increases by 1 unit. Because we write

where a is the decay rate, written as a decimal.c � 1 � a,
0 	 c 	 1,

t � 0P0

P1t 2 � P0c
t,

0 	 c 	 1,
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The larger the decay rate a, and hence the smaller the decay factor c, the faster
the exponential decay function approaches 0, as illustrated in Figure 2.36.

For example, if a quantity is decreasing at the rate of 12% per hour (e.g., the ef-
fectiveness of a medication in the body), the decay rate is and the decay fac-
tor is This reflects the fact that, if 12% of the quantity is removed
each hour, then 88% of the quantity remains at the end of the hour. The correspon-
ding formula for the exponential decay function that models the quantity Q is

where is the initial amount of the quantity at time 

Half-life

Just as the doubling time for an exponential growth process is the time needed for
the quantity to double, the half-life for an exponential decay process is the time T
needed for the quantity to be reduced by half. You can visualize what this means by
looking at Figure 2.37.

t � 0.Q0

Q1t 2 � Q0
. 10.88 2 t,

c � 1 � a � 0.88.
a � 0.12

Note that the half-life T for any specific process is the same at any quantity
level; no matter which point you select, the quantity will decrease to after
T time units.

1
2 
y1t, y 2
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2.5 Exponential Decay Functions 91

EXAMPLE 3
Estimate the half-life of Prozac in the bloodstream following an 80 mg dose.

Solution The exponential decay function that models the amount of Prozac in the blood-
stream is

We want to find the time t needed for this level to drop to so we must
solve the equation

Using either numerical or graphical methods, as shown in Figure 2.38, we get
Therefore, no matter what level of Prozac is in the blood at any specific

time, the level will be down by half about 2.4 days, or 58 hours, later.
t � 2.4 days.

8010.75 2 t � 40.

112 280 � 40 mg,

D 1t 2 � 8010.75 2 t.

�

Radioactive Decay

One of the characteristics of any radioactive substance, such as radium or urani-
um, is that it transforms, or decays, to some other element, often lead, as time pro-
gresses. This decay is accompanied by the release of energy, called radioactivity,
which can be detected and measured. More specifically, the rate at which an ele-
ment decays is distinctive for that element. That is, during any fixed length of time,
the same percentage of the mass of a radioactive element will decay. For instance,
over the course of any 100-year period, approximately 4.3% of any radium present
will decay to lead, leaving 95.7% of the radium at the end of 100 years, as illustrat-
ed in Figure 2.39. Thus, if someone had put aside grams of radium in theR0 � 100

t

D(t)

80

2.40

80
1
2( )

FIGURE 2.38

Time

Q
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nt
ity

down 4.3%

down 4.3%

down 4.3%

FIGURE 2.39
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year 1900, we would expect to find only grams by the year 2000. By
the end of a second century, the amount of radium left would be

and by the end of a third century it would be

In general, the amount of radium present after t centuries is modeled by the
exponential decay function

for any t.
Alternatively, because is the decay rate for this exponential

decay process, the decay factor is Thus, if the initial amount
of radium is we can use the general formula for an exponential decay func-
tion to get 

Figure 2.40 shows a graph of the amount of radium as a decaying exponen-
tial function of time. The amount of radium begins decreasing relatively rapidly,
then decreases more slowly, and eventually approaches the time axis as a hori-
zontal asymptote.

10.957 2 t R0 .R1t 2 �
R0 ,

1 � 0.043 � 0.957.
4.3% � 0.043

R1t 2 � 10.957 2 t R0

R13 2 � 0.957 R12 2 � 10.957 2 3 R0 .

R12 2 � 0.957 R11 2 � 10.957 2 2 R0

R11 2 � 95.7

EXAMPLE 4
Estimate the half-life of radium.

Solution We want to determine the value of t for which

We first divide both sides of this equation by to obtain

If we now use either numerical or graphical methods, as shown in Figure 2.41, we find
that centuries. That is, the half-life for radium is approximately 1577 years.
(The actual value for its half-life is closer to 1590 years; our calculations were based on
the fact that approximately 4.3% of the radium decays to lead each century, and this
rounding produced an error.)

t � 15.77

10.957 2 t �
1

2
 .

R0

R1t 2 � 10.957 2 t R0 �
1

2
 R0 .
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�

What is the actual percentage of radium that decays into lead each year, based on
its half-life of 1590 years? ❐

In all of the examples so far, time is the independent variable. Example 5 illus-
trates a situation in which the independent variable in an exponential function
may represent some other quantity.

EXAMPLE 5
The strength of any signal in a fiber-optic cable, such as the type used for telephone and
other communication lines, diminishes 15% every 10 miles.

a. Find an expression for the strength of a signal remaining after a given number of 10-
mile lengths.

b. How much of the signal is left after 100 miles?

c. How far does a signal go until its strength is down to 1% of the original level?

Solution
a. If the signal diminishes by 15% every 10 miles of cable, after each 10-mile stretch,

only 85% of the original signal strength remains. Let be the initial strength of some
signal and let be the strength of the signal remaining after n 10-mile lengths.
Therefore, after the first 10-mile length of cable 85% of is left, so

Similarly, after the second 10-mile length 85% of the signal strength
remaining after the first 10-mile length, is left. That is,

Continuing this pattern, we get

and so on. After n 10-mile lengths of a cable,

S1n 2 � S0
. 10.85 2n,

 S13 2 � 10.85 2S12 2 � 10.85 2 10.85 2 2S0 � 10.85 2 3S0 ,

 S12 2 � 10.85 2S11 2 � 10.85 2 10.85 2S0 � 10.85 2 2S0 ,

 S11 2 � 10.85 2S0 ,

 S10 2 � S0 ,

S12 2 � 0.85S11 2 .

S11 2 ,1n � 2 2 ,

S11 2 � 0.85S0 .

S01n � 1 2 ,
S1n 2

S0

Think About This
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which is an exponential decay function with decay factor 

b. After 100 miles, or ten-mile lengths, the fraction of the original signal
strength remaining is

so just under 20% of the original signal strength is left.

c. To find out how far the cable can go until only 1% of the signal strength is left, we
must find the value of n for which the strength remaining is or

If we divide both sides of this equation by the initial signal strength we get

Solving this equation either numerically or graphically, as shown in Figure 2.42, we
find that Therefore the signal deteriorates by 99% after about 28 ten-mile
lengths, or about 280 miles.

n � 28.

10.85 2n � 0.01.

S0 ,

S1n 2 � S0
. 10.85 2n � 0.01S0 .

0.01 S0 ,

S110 2 � S0
. 10.85 2 10 � 0.1969 S0,

n � 10

c � 0.85.

�

In practice, this model suggests that fiber-optic signals need to be boosted if they
are to go any great distance. For instance, if a booster station can clearly detect a
signal at 1% of its original strength, such stations would have to be located every
280 miles. Suppose that the equipment used can clearly detect a signal at 0.1% of
its original level. How far apart would the booster stations have to be? ❐

Determining Whether a Set of Data Is Exponential Growth 
or Exponential Decay

In Section 2.4, we presented a simple criterion for recognizing that a set of data fol-
lows an exponential growth pattern: The successive ratios of the values of the de-
pendent variable y are constant for equally spaced t values. The same criterion
applies if the values of y are decreasing in an exponential decay pattern. In this
case, the common ratio is precisely the decay factor for the process if the values of
t increase by 1 unit. In general, the ratio criterion works whether the data values are
increasing or decreasing. A common ratio greater than 1 gives the growth factor for
an exponential growth process; a common ratio less than 1 gives the decay factor
for an exponential decay process.

Think About This
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Finally, we consider some parallels between the family of linear functions and
the family of exponential functions. The general formula for a linear function is

and the general formula for an exponential function is so
both are two-parameter families. For linear functions the more important param-
eter usually is the slope, and its sign determines whether the function increases or
decreases. For exponential functions the more important parameter is the growth
or decay factor c, and whether its value is greater than 1 or less than 1 determines
whether the exponential function increases or decreases.

The following problems include both exponential growth and exponential
decay situations because you need to learn to distinguish between them.

y � kc 
x,y � mx � b,

t 0 1 2 3

300 240 190 150L1t 2

t 0 10 20 30

400 288 207.36 149.30Q(t)

x

y

x

y

x

y

x

y

x

y

x

y

x 0 1 2 3

y 2000 1800 1620 1458

x

y

x

y

x

y

x

y

b.

Problems

1. Determine which of the six functions could be expo-
nential functions of the form and which
cannot be exponential. Explain your reasoning.

f 1x 2 � kc 
x

2. Determine which of the functions are exponential.
For any exponential function, find the equation of
the function and use it to predict the next entry to
extend the table of values.

a.

3. Which of the following pairs of points can deter-
mine an exponential function of the form 
and which cannot. For those that can, sketch the
graph of the exponential function and indicate the
sign of A and whether the growth or decay factor c
is greater than or less than 1.

y � Ac 
x

4. Decide which situations represent exponential
growth, exponential decay, linear increase or de-
crease, or none of these patterns.

a. The value for a rare bottle of wine goes up $50
each year.

b. The value for a piece of sculpture increases 15%
each year.

c. A 3-year labor contract calls for yearly increases
of $800.

c.

(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c) (d)
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(i)

(vii)
(vi)

(v)

(iv)

(iii)

(ii)

t

Price

x

y

(2, 12)

(1, 6)

x

y

(0, 4)

(2, 36)

x

y

(1, 2)

(–1, 8)

d. A 3-year labor contract calls for an increase of
5% the first year, 4% the second year, and 3% the
third year.

e. The value of a car drops by 40% each year.
f. The average cost of a home computer for the first-

time buyer has been dropping by $300 each year.
g. The number of new cases of a disease reported

over the last decade has been dropping by 12%
each year.

5. The accompanying figure shows the graph of the
price of each of seven collectible toys as a function
of time. Match each scenario with one of the graphs
and write a brief scenario for each of the remaining
graphs.

a. The price of the toy increased by 10% each year.
b. The price of the toy increased by 6% each year.
c. The price of the toy dropped by $5 each year.
d. The price of the toy remained steady.

6. Find possible equations for the exponential func-
tions graphed in (a)–(c).

7. In 1980, about 27,700 cases of tuberculosis were
reported in the United States. In 1997, there were
19,900 such cases. Source: U.S. Centers for Disease Con-

trol and Prevention.

a. Write an exponential decay function that models
the number of reported cases of TB as a function
of time.

b. Predict the number of cases in 2004.
c. Estimate how long it will take for the number of

reported cases to drop to 10,000.

8. In 1940, there were 6,102,000 farms in the United
States. By 1997, the number of farms had dropped
to 1,912,000.

Source: 2000 Statistical Abstract of the United States.

a. Assuming that the pattern of decay is exponen-
tial, find the equation of a model that can be
used to predict the number of farms.

b. Use your model to predict the number of farms
in 1980. How close is your prediction to the cor-
rect value of 2,440,000 farms?

c. Predict the number of farms in 2005.
d. If the trend continues, estimate when there will

be 1 million farms.
e. Write a paragraph describing the long-term im-

plications if this trend continues.

9. When a person smokes a cigarette, about 0.4 mg of
nicotine is absorbed into the blood. About 35% of
the nicotine is washed out of the blood every hour.
a. Find the equation of a function that models

the level of nicotine in the blood after a single
cigarette.

b. Use your model to estimate how long it takes for
the amount of nicotine in the blood to drop to
0.005 mg.

10. The amount of the drug ampicillin (a form of peni-
cillin) in the bloodstream decreases by about 42%
every hour.

a. If the dosage of ampicillin is 250 mg, write a
function that can be used to model the level of
ampicillin in the blood as a function of time, if
one dose is taken.

(a)

(b)

(c)
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b. How much ampicillin is left in the blood after
5 hours?

c. Estimate how long it will take for the level of
ampicillin to drop to 1 mg.

11. A hospital patient is administered 3 mg of mor-
phine to control his pain. About 31% of the mor-
phine in the blood is washed out every hour.

a. Construct a function that models the level of
morphine in the blood after one dose.

b. How much morphine remains in the blood after
4 hours?

c. Estimate how long it will take for the amount of
morphine left to drop to 0.2 mg.

12. The level of pollution in the Great Lakes is a major
concern to environmentalists.

a. In Lake Erie, about 38% of the pollutants are
washed out each year if no pollutants are added.
Write a function that models the level of pollu-
tants in the lake as a function of time.

b. How long will it take for 90% of the pollutants to
be washed out of Lake Erie if no further pollu-
tants are added?

c. In Lake Superior, about 0.053% of the pollutants
are washed out each year if no further pollutants
are added. Write a function to model the level of
pollutants in Lake Superior as a function of time.

d. How long will it take for 90% of the pollutants to
be washed out of Lake Superior if no further
pollutants are added?

13. One of the major concerns about above-ground
nuclear testing is that it produces strontium-90, a
radioactive element whose half-life is 29 years and
which has worked its way into the food chain. That
is, strontium-90 from fallout is deposited on grass,
eaten by cows, carried into their milk, and eventual-
ly finds its way onto the kitchen table. Suppose that,
as a result of a single nuclear explosion, the amount
of strontium-90 in a particular valley exceeds
health limits by a factor of 10. Estimate how long it
will take for the strontium-90 to decay to the safety
level.

14. Carbon-14, a radioactive form of carbon, is used in
the carbon-dating process to measure the age of ob-
jects. About 0.012% of the carbon-14 decays into
carbon-12 every century.

a. Write a function for the amount of carbon-14
remaining in an object that originally contained

grams of carbon-14.C0

b. What percentage of the carbon-14 remains after
a thousand years.

15. The filter in a swimming pool removes 30% of all
impurities in the water every hour it operates.

a. Find an expression for the level of impurities left
in the pool after n hours, if no further impurities
are added.

b. How much is left after 5 hours?

16. Use the information in Example 5 to estimate the
half-life of a signal in a fiber-optic cable. What does
it mean?

17. One of the major problems associated with any organ
transplant is the long-term risk of rejection, despite
patients’ taking anti-rejection drugs for the rest of
their lives. The percentage of individuals who have
not rejected a transplanted organ can be modeled by
an exponential decay function as a function of time in
years. According to one study, the half-life of kidney
transplants done in 1988 was 9.1 years; according to
another study, the half-life of kidney transplants done
in 1996 was projected to be 13.3 years. Is this later re-
sult good or bad news? Explain your reasoning.

18. According to a medical study, the half-life of kidney
transplants was 13.3 years.

a. Write a formula for an exponential function that
can be used to model the percentage of kidney
transplant recipients who haven’t rejected the
kidney as a function of time.

b. What percentage of kidney transplant recipients
do you predict will still have their new kidneys
functioning after 10 years?

c. How long will it take until the percentage of kid-
ney transplant recipients having their new kid-
neys will be down to 20%?

19. Treatments for different kinds of cancer are usually
reported in terms of the percentage of patients who
survive for 5 years after receiving the treatment, be
it surgery, chemotherapy, or radiation therapy. The
percentage who survive can be modeled by a expo-
nential decay function. The 5-year survival rate for
early stage malignant melanoma, a particularly se-
vere type of skin cancer, is 80%.

a. What percentage of patients having this treat-
ment will survive 10 years?

b. Use the information given to write an exponen-
tial decay function that models the percentage of
patients treated for melanoma who survive any
given length of time t in years.
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x

y

(1, 5)

(0, 0)

10

c. What is the half-life for survival among patients
having this treatment?

20. The 5-year survival rate for stage I lung cancer (the
mildest and earliest form) treated by surgery is 60%
to 70%.

a. Use the middle value of 65% to write an expo-
nential decay function that models the percent-
age of patients treated for stage I lung cancer
who survive any given length of time t in years.

b. What is the half-life for survival among patients
having this treatment?

c. Repeat parts (a) and (b), using the lowest sur-
vival rate of 60%.

d. Repeat parts (a) and (b), using the highest sur-
vival rate of 70%.

21. In 1990, 442.2 million prerecorded cassette tapes and
865.7 million CDs were sold in the United States. In
1998, 158.5 million cassettes tapes and 1,124.3 mil-
lion CDs were sold. Assume for now that the patterns
of sales for both items are exponential functions.

a. Find the equation for the number of cassette
tapes sold as an exponential function of time.

b. Find the equation for the number of CDs sold as
an exponential function of time.

c. What is the practical significance of the growth
or decay factors and growth or decay rates in
parts (a) and (b)?

d. If the trends in sales of both items were indeed
exponential functions, estimate when the num-
ber of CDs sold overtook the number of cas-
sette tapes sold.

22. An exponential function f is such that 
and Which of the values are possible and
which are impossible.

a. b. c.

23. Suppose that a scientist has some initial amount 
of a radioactive substance whose half-life is meas-
ured on a scale of days.

a. Sketch the graph of the amount of this substance
present as a function of time.

Use the concavity of your graph from part
(a) to answer the following questions.

b. Suppose that you measure the amount of the
substance after 10 days and find that 800 grams
are left and after 11 days that 750 grams are left.
Use this information to estimate the number of
grams remaining after 20 days. Is the actual
value higher or lower than your estimate? How
do you know?

R0

f 13 2 � 65f 13 2 � 51f 13 2 � 24

f 15 2 � 6.
f 11 2 � 96

c. Suppose that you are told that the amount of the
substance present after 30 days is 400 grams. Use
this information and the amount left after
10 days to estimate the amount present after
20 days. Is the actual value higher or lower than
your estimate? How do you know?

d. How might you use the results from (b) and (c)
to come up with a better estimate of the amount
of radioactive material present after 20 days?

24. A certain radioactive isotope has a half-life of 20 days.
Suppose that 800 mg are present initially and con-
sider a 60-day time period. Let represent the aver-
age daily rate of decrease of the isotope over the full
60-day period, let be the average daily rate of de-
crease over the first 30-day period, and let be the
average daily rate of decrease over the last 30 days.
List these three rates in increasing order without
calculating their values.

25. The function shown in the accompanying figure is a
modified exponential function of the form 

with Find appropriate values for the
three constants A, B, and c.

c 	 1.B . cx,
y � A �

r3

r2

r1

26. You have been asked to design a slide at a water
amusement park that extends vertically from point
A to point B. A person sliding down it will speed up
due to the force of gravity. For the three possible
shapes of the slide shown, along which will a person
make the trip from A to B most rapidly? Give rea-
sons for your answer. (The specific curve along
which an object will slide without friction from A
to B in the shortest possible time is known as the
brachistochrone and was first solved by Jacques
Bernoulli in about 1700.)

(i) (ii) (iii)

A

B

A

B

A

B
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2.6 Logarithmic Functions 99

Exercising Your Algebra Skills

Simplify the expressions by using properties of exponents.

1. 2.

3. 4.

5. 6.

7. 8.
43x

4�3x

10�3x

102x

2�4 . 2�3w35 . 3�2a

4�2 . 43x53 . 5x

1

2
u

. 1

2
v2m . 2n

9. 10.

Write each expression as the product of two terms, one
an exponential term and the other a constant.

11. 12.

13. 14. a
1

2
b

4x�3

103x�1

5x�23x�2

10.7x 2 1012x 2 5

Logarithmic Functions

In Section 2.4, we constructed an exponential function to approximate the popula-
tion (in millions) of Florida as

where t is the number of years since 1990. Using this model, we can predict Flori-
da’s population at any given time, assuming that the growth rate remains 2.9%
each year.

In Example 4 of Section 2.4, we estimated (using both numerical and graphical
methods) that Florida’s population will reach 20 million in early 2005, when

This problem involved finding the value of t for which

Because this exponential function is always increasing, we know that there
must be only one value of t when We can always find an approximate value
for t numerically or graphically, as we did in Sections 2.4 and 2.5. We now develop
an algebraic approach for solving such equations exactly rather than approximate-
ly. We want a process that extracts the variable t from the exponent in This
process involves a new function called the logarithm. As with exponential func-
tions, logarithms have a base b. Although logarithms can have any base b (denoted

), we work primarily with logarithms to base 10.logb

P � kct.

P � 20.

f 1t 2 � 12.9411.029 2 t � 20.

t � 15.2.

P � f 1t 2 � 12.9411.029 2 t,

2.6

For instance,

because 2 is that power of 10 needed to produce 100, or Also,

because 3 is that power of 10 needed to produce 1000, or Similarly,

log1010.1 2 � log1010�1 � �1

103 � 1000.

log101000 � log10103 � 3

102 � 100.

log10100 � log10102 � 2

Definition of Logarithms to Base 10

The logarithm to the base 10 of x is that power of 10 needed to produce x.

log10 
x � y means 10 

y � x.
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Fundamental Logarithmic-Exponential Identities

 10log x � x,   for all x � 0

log110x 2 � x,   for all real x

log1c 
x 2 � x . log c,  c � 0

A proof of this formula can be found in any algebra textbook.

EXAMPLE 1
Solve for x in the equation 

Solution To extract x from the exponent, we take the logarithm of both sides of the
equation:

We use the above fundamental property of logarithms to get

log13x 2 � x . log 3 � log 8,

log13x 2 � log 8.

3 
x � 8.

because and is the power to which 10 must be
raised to produce 0.1, or 

The logarithm to the base 10 of x, is usually written simply as log x. Be-
cause the logarithm is a function, it would be preferable to write rather than
just log x. But is not standard usage, so we avoid it. However, we do use
parentheses for expressions such as 

The definition of the logarithm also gives two useful formulas.
log15x 2 .

log1x 2
log1x 2

log10 
x,

10�1 � 0.1.
�10.1 � 1>10 � 1>101 � 10�1

Because these formulas hold for all appropriate values of x, they are called
identities. Think about the two results to be sure that you understand them thor-
oughly. For the first identity, is that power of 10 needed to produce 
Clearly, that power must be x itself. For instance, For the sec-
ond identity, the exponent in is log x. In other words, log x is the power of 10
that gives the number x. For instance, The second property allows
us to undo an equation involving logarithms. We discuss why the second identity is
restricted to positive values of x later in this section.

Using the Logarithm

The principal reason for introducing logarithms here is to solve equations of the form

for the variable x in the exponent when the quantities c and A are known. For in-
stance, we might want to solve for the variable x in the exponent. To do so,
we apply the following fundamental property of logarithms.

3x � 8

c 
x � A

10log 50.7 � 50.7.
10log x

log1101.234 2 � 1.234.
10x.log110x 2
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2.6 Logarithmic Functions 101

0

1

8

x = 1.893FIGURE 2.43

where log 3 and log 8 are both just numbers. Finally, we divide both sides by log 3 to ob-
tain

using a calculator. The graph of the function is depicted in Figure 2.43. To verify this re-
sult, we substitute into the original equation and get

We would have gotten 8 exactly if we hadn’t rounded log 8>log 3 � 1.893.

31.893 � 8.0018.

x � 1.893

x �
log 8

log 3
� 1.893,

�

We now show how to obtain an exact solution to the question on the growth of
Florida’s population posed at the beginning of this section.

EXAMPLE 2
Determine when the population of Florida will reach 20 million.

Solution We begin with the equation

Dividing both sides of the equation by 12.94, we get

We now take logarithms of both sides and use the fundamental property of logarithms
to get

Dividing both sides by gives

which is the exact solution. When we perform the actual calculations, we get 
Thus Florida’s population will reach 20 million about years after 1990, or early in
2005, as depicted in Figure 2.44.

15 
1
4

t � 15.23.

t �
log120>12.94 2

log11.029 2
 ,

log11.029 2

log11.029t 2 � t log11.029 2 � log a
20

12.94
b .

11.029 2 t �
20

12.94
 .

P � f 1t 2 � 12.9411.029 2 t � 20.
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0

12.94

20

t

P(t)

15.2FIGURE 2.44

�

In the solution to Example 2, we intentionally left the quantity in the form 
to avoid possible rounding errors when dividing it out. What happens to the
final answer if you perform the division operation early in the solution and
round differently? See what happens, for instance, if you use or

or ❐

In Example 3 of Section 2.5, we estimated numerically and graphically that
the half-life of Prozac is approximately 2.4 days based on the exponential decay
function

that models the amount of Prozac in the bloodstream following an 80 mg dose. We
now show how to obtain the exact answer using logarithms.

EXAMPLE 3
Determine the half-life of Prozac in the bloodstream.

Solution To find the half-life exactly, we must find the time t needed until the original
80 mg drug level falls to 40 mg. Therefore we must solve the equation

If we divide both sides by 80, we get

We now take logarithms of both sides and use the fundamental property of logarithms
to find

When we divide both sides by we get

Thus, no matter what level of Prozac is in the blood at any given time, the level will drop
by half about 2.4 days later, as illustrated in Figure 2.45.

t �
log10.5 2

log10.75 2
� 2.4094.

log10.75 2 ,

log10.75 2 t � t log10.75 2 � log10.5 2 .

10.75 2 t �
40

80
� 0.5.

8010.75 2 t � 40.

D 1t 2 � 8010.75 2 t

20>12.94 � 1.546.20>12.94 � 1.55
20>12.94 � 1.5

20>12.94Think About This
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t

D(t)

80

2.40

80
1
2( )

FIGURE 2.45

Properties of Logarithms

1.

2.

3. log1A>B 2 � log A � log B

 log1A . B 2 � log A � log B

log1Ax 2 � x . log A

�

Properties of Logarithms

To use logarithms, you need to know their basic properties.

Proofs of all three of these properties can be found in any algebra textbook.
The first property is the tool we used to extract a variable from the exponent.

The second property lets us simplify the logarithm of a product by writing it as the
sum of the individual logarithms; for instance,

Check this result on your calculator. Also,

The third property lets us simplify the logarithm of a quotient by writing it as
the difference of the individual logarithms; for instance,

Check this result on your calculator. Also,

Is the same as Why or why not? Try it on your calculator
to see. ❐

Is the same as Why or why not?
Graph both and to see whether it is true. ❐

Note that all three properties of logarithms apply to logarithms with any base
b, not just the base 10. Furthermore, these properties give us some alternative tools
for solving some of the problems that we have already encountered. In Example 4,

y � 3>log xy � log11000 2 >log1x 2
log 1000 � log x?log11000 2 >log1x 2 � 3>log xThink About This

1log 9 2 > 1log 4 2?log19>4 2Think About This

log a
1000

x
b � log 1000 � log x � 3 � log x.

log a
9

4
b � log 9 � log 4.

log1100x 2 � log 100 � log x � 2 � log x.

log15 . 12 2 � log 5 � log 12.
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x

y

(1, 0)

log x not defined log x positive

log x negative

y = log x 

FIGURE 2.46

we show how to use the second and third properties of logarithms to determine
once more when the population of Florida will reach 20 million.

EXAMPLE 4
Find when Florida’s population will reach 20 million by using properties of logarithms.

Solution We again have to solve the equation

In Example 2, we began by dividing both sides by 12.94. Instead, suppose that we start by
taking logarithms of both sides of the equation:

To solve for t, we subtract log 12.94 from both sides of the equation:

Dividing by we get

which is the same result as in Example 2.

�

Behavior of the Logarithmic Function

For any value of there is a single corresponding value of log x, so log x is a func-
tion of x. We call this function the logarithmic function or simply the log function.

Let’s now consider the behavior of the log function. Recall that the logarithm
of a number x represents that power of 10 needed to produce x. Because no power
of 10 ever produces 0 (10 raised to what power is 0?), log 0 is undefined. Similarly,
because every power of 10 is positive, log x is not defined for negative values of x.
Thus the domain of the logarithmic function is 

However, it is possible to have a negative power of 10, so log x can be negative.
For instance, means that Thus the range
of the logarithmic function includes both positive and negative values. Figure 2.46
demonstrates that the logarithm of a number between 0 and 1 is negative and that

log 0.56234 � �0.25.10�0.25 � 0.56234

x � 0.

x � 0,

t �
log120>12.94 2

log11.029 2
� 15.23,

log11.029 2 ,

log A � log B � log a
A

B
bt . log11.029 2 � log 20 � log 12.94 � log a

20

12.94
b .

log1Ax 2 � x log A log 12.94 � t . log 1.029 � log 20.

log1AB 2 � log A � log B log 12.94 � log11.029 2 t � log 20;

 log 312.9411.029 2 t 4 � log 20;

12.9411.029 2 t � 20.
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2.6 Logarithmic Functions 105

the logarithm of any number larger than 1 is positive. Finally, because 
(since ), the range of the log function consists of all real numbers.

We use these ideas to examine the behavior of the log function 
First, let’s look at some values for this function. We know that

and so on. Clearly, log x is an increasing function, at least for Because the
successive values grow more and more slowly, it is concave down. In fact, the most
significant feature of the growth pattern for the logarithmic function is that it
grows extremely slowly. Note what happens with the above values for the log
function—to gain just one unit vertically requires going 10 times as far horizon-
tally. Thus you need an extremely large value of x to make log x large. For instance,
what value of x is needed to make By the definition, x must be 
because Consequently, it takes an incredibly long time for the
log curve to reach a height of 100. The log function goes to infinity as x increases,
although it does so exceedingly slowly.

The log function is not defined for or for negative values. But what hap-
pens for small positive values of x? Consider the values

and so on. As x gets closer and closer to 0, log x becomes more and more negative.
Thus the line (the y-axis) is a vertical asymptote of the graph of be-
cause the curve gets closer and closer to this line as x gets closer and closer to 0, but
the curve never reaches it. This vertical asymptote reinforces the fact that the loga-
rithmic function is not defined for and so the graph of has no
y-intercept. It does, however, have an x-intercept at because as
illustrated in Figure 2.46.

Comparing Exponential and Logarithmic Functions

From the definition of the logarithm, it is clear that there is a close interrelation-
ship between and the exponential function To investigate this
relationship, we start with the graphs of the two functions shown in Figure 2.47.
Both are clearly increasing functions. The exponential function is concave up,
whereas the log function is concave down. However, the main difference in their
growth patterns is that the exponential function grows extremely rapidly
but the logarithm function grows extremely slowly.y � log x

y � 10x

y � 10x.y � log x

log11 2 � 0,x � 1
y � log xx � 0,

y � log xx � 0

 log10.000001 2 � log110�6 2 � �6,

o
 log10.001 2 � log110�3 2 � �3,

 log10.01 2 � log110�2 2 � �2,

 log10.1 2 � log110�1 2 � �1,

 log11 2 � 0,

x � 0

log110100 2 � 100.
10100log x � 100?

x � 1.

 log 1,000,000 � 6,
o

 log 1000 � 3,

 log 100 � 2,

 log 10 � 1,

 log 1 � 0,

f 1x 2 � log x.
100 � 1

log 1 � 0
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y = log x 

y = 10x 

x

y

(1, 10)

(10, 1)
(0, 1)

(1, 0)
FIGURE 2.47

y = log x 

y = x 

y = 10x 

(1, 10)

(b, a)

(a, b)(10, 1)
(0, 1)

(1, 0)
x

y

FIGURE 2.48

Figure 2.48 shows something striking about the graphs of the two functions
and They are reflections of each other about the diagonal line

and thus are symmetric about this line (see Appendix D). Let’s see why.
We know that

so the point is on the graph of By the definition of the logarithm,

But tells us that the point satisfies the equation so the
point is on the exponential graph The points and 
are reflections of each other about the line In general, if the point is
on the graph of then

This expression is equivalent to saying that

which means that the point is on the graph of the exponential function
Hence the log graph and the exponential graph are reflections of each

other about the line We investigate this phenomenon in more depth in
Section 2.9.

Applications of Logarithmic Functions

Logarithms have many applications. For instance, chemists use a quantity known as
the pH to measure how acidic a water solution is. The pH is based on the concentra-
tion of hydrogen ions (measured in moles per liter) in the solution. The hydrogen-
ion concentration of pure water is moles per liter. Thus the pH of pure water is

which is used as the reference point for a neutral solution. Water solutions whose
pH values are less than 7 are said to be acidic, whereas water solutions with pH val-
ues greater than 7 are said to be basic or alkaline. The lower the pH, the more acidic
the solution; the higher the pH, the more basic the solution. Orange juice, which is

pH � �log1concentration 2 � �log110�7 2 � �1�7 2 log 10 � 7 . 1 � 7,

10�7

y � x.
y � 10x.

1b, a 2

10b � a,

log a � b.

y � log x,
1a, b 2y � x.
11, 10 2110, 1 2y � 10x.11, 10 2

10x � y,11, 10 2101 � 10

log 10 � 1 means 101 � 10.

y � log x.110, 1 2

log 10 � 1,

y � x
y � log x:y � 10x
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2.6 Logarithmic Functions 107

somewhat acidic, has a hydrogen-ion concentration of moles per liter
and so its pH is

Hydrochloric acid, with a hydrogen-ion concentration of moles per liter, has
a pH of 1, which indicates that it is extremely acidic. In comparison, household
ammonia, with a pH of 11.5, is extremely basic.

Human blood has a hydrogen-ion concentration of What is its pH? Is
blood slightly or extremely basic? ❐

Note that each one-point decrease in pH represents a tenfold increase in the
hydrogen-ion concentration.

The crust of the Earth is composed of about 20 rigid plates that “float” on liq-
uid magma (the molten material beneath the Earth’s crust). The study of this phe-
nomenon is called plate tectonics. A geologic fault, such as the famous San Andreas
Fault in California, is the space between two plates. As plates move, they bump into
one another and sometimes one plate passes slightly under another, causing the
upper plate to shift and heave. The result is an earthquake on the Earth’s surface.
There are about a million earthquakes, mostly very minor, each year. American
seismologist Charles Richter developed a way of measuring the intensity of an
earthquake. The Richter scale is based on the idea that there is a minimum notice-
able, or threshold, level of earthquake intensity, denoted by The energy involved
in a threshold level earthquake is approximately equal to the energy released by
10,000 atomic bombs. Any stronger quake has an intensity denoted by I. The
Richter scale relates the magnitude R of an earthquake to its intensity, or

That is, the magnitude given by the Richter scale measurement is the logarithm of
the ratio of the actual intensity to the threshold level.

The largest recorded earthquake, which occurred in Japan in 1933, had magni-
tude on the Richter scale. Let’s see just how powerful this quake was. We
have

so when we take powers of 10 of both sides of the equation,

Therefore this quake had an intensity almost 800 million times greater than the
threshold level!

How are different measurements on the Richter scale related? For instance, if the
measurement for one earthquake is double that of another, how much greater is it?
What does a one point change in magnitude represent?

10log 1I>I02 �
I

I0

� 108.9 � 794,328,235.

R � log a
I

I0

b � 8.9,

R � 8.9

R � log a
I

I0

b .

I0 .

4 � 10�8.Think About This

10�1

 � �0.301 � 4 . 1 � 3.7.

 � �log 2 � 1�4 2 log 10

 � �log 2 � log110�4 2
 pH � �log12 � 10�4 2 � � 3 log 2 � log110�4 2 4

2 � 10�4
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EXAMPLE 5
How does a magnitude 5 earthquake on the Richter scale compare to a magnitude 6 quake?

Solution If we have

We undo the logarithm by taking powers of 10 of both sides of the equation and use the
fundamental identity

to get

For we get so the intensity of a magnitude 5 quake is
100,000 times the threshold level. This quake’s energy is equivalent to roughly

or 1 billion, atomic bombs exploding simultaneously.
Similarly, consider an earthquake measuring on the Richter scale. We now get

The intensity of this quake is 1 million times the threshold level. Thus an increase of
1 Richter unit corresponds to a tenfold increase in the intensity of the earthquake.

�

Suppose that one earthquake has a reading twice that of another on the Richter
scale. How much stronger is it? Is it four times as strong? Is the relative intensity the
same? Does it depend on the value for R? Let’s compare to to see what
happens. With we have

so when we take powers of 10 of both sides of the equation,

and therefore

Hence a magnitude 4 quake is 10,000 times the intensity of the threshold level. For
we have

so that

10log 1I>I02 �
I

I0

� 102

log a
I

I0

b � 2

R � 2,

I � 104 . I0 .

10log 1I>I02 �
I

I0

� 104

log a
I

I0

b � 4,

R � 4,
R � 2R � 4

I>I0 � 106 � 1,000,000.

R � 6
100,000 � 10,000 � 109,

I � 100,000I0,I>I0 � 100,000,

10log 1I>I02 �
I

I0

� 105 � 100,000.

10log x � x

log a
I

I0

b � 5.

R � 5,
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Definition of Logarithms to Base c

The logarithm to the base c of x is that power of c needed to produce x.

logc x � y means cy � x,  x � 0.

Properties and Identities for the Natural Logarithm
1.

2.

3.

4.

5. eln x � x,  if x � 0

ln e 
x � loge 

e 
x � x

ln1A>B 2 � ln A � ln B

ln1A . B 2 � ln A � ln B

ln1Ap 2 � p ln A

and therefore

Hence a magnitude 2 quake is 100 times the intensity of the threshold level. Con-
sequently, a magnitude 4 quake is actually times stronger than a
magnitude 2 quake.

Changing Bases

Throughout this book, we work with logarithms to the base 10 to undo expo-
nential functions of the form However, as we stated earlier, it is pos-
sible to have bases other than 10—say, or —as the base for an
exponential function Each possible base gives rise to a corresponding
logarithmic function. For instance, we could work with logarithms to the base 2,
written log2x.

y � kc 
x.

c � 1.029c � 2
y � k . 10x.

104>102 � 100

I � 102 . I0 .

In practice, there is one particular base other than 10 that is widely used: the
number The logarithm corresponding to base e is called the
natural logarithm. It is especially important in calculus and many of the sciences.
Even though we could write the natural logarithm as it is customarily writ-
ten ln x.

Although we have because 
Similarly, whereas we have because

We previously said that all the properties of logarithms apply no matter what
base is used. Thus the following are properties of the natural logarithm.

2.718284.6052 � 100.003.e4.6052 �
ln 100 � 4.6052log10 100 � 2,10.0001.

2.718282.3026 �e2.3026 � ln 10 � 2.3026log1010 � 1,

loge x,

e � 2.71828. . . . 

If different bases are used, we must be able to convert either an exponential
function or a logarithm in one base into an exponential function or a logarithm in
a different base. That is, for any number x, how do we convert from to or
convert log x to ln x and vice versa? Let’s first look at converting bases of exponen-
tial functions.

10xcx
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EXAMPLE 6
We found that the population of Florida can be modeled by the exponential function

Convert this function to an equivalent expression that involves
(a) base 10 and (b) base e.

Solution

a. Suppose that we try to find the appropriate power q so that

Using properties of logarithms, we take logs of both sides and get

The formula for the population of Florida becomes

since Alternatively, we might think of this result as coming from

b. To convert the formula for the Florida population to an equivalent formula using
base e, we use the property 

Therefore

�

We have three formulas for the population of Florida:

These three formulas are mathematically equivalent—only the bases are different.
Graph these three functions using your function grapher to convince yourself that
they are identical, except perhaps for slight differences due to rounding.

In general, to convert an exponential function from base c to base 10,
where we write so that To convert an exponential
function from base c to base e, where we write so that

Now let’s consider how to convert a logarithm in one base to a logarithm in
another base. We begin by looking at some typical values of log x and ln x,
rounded to four decimal places, as shown in the following table. To see if there is
any clear relationship between the two sets of logarithmic values, we plot the val-
ues of ln x versus log x, as shown in Figure 2.49.

The graph shows that there is a linear pattern. The line passes through the ori-
gin, so its vertical intercept is 0 and we can write

for some constant of proportionality m.You can also see this from the ratio of ln x and
log x for any value of x—in every case, the ratio is approximately 2.3026. Check this

ln x � m log x

m � ln c.
c � em,y � kemx,y � kc 

x
m � log c.c � 10my � k . 10mx,

y � kc 
x

 P1t 2 � 12.941e0.0286t 2 .
 P1t 2 � 12.941100.0124t 2 ;
 P1t 2 � 12.9411.029 2 t;

P1t 2 � 12.9411.029 2 t � 12.941e0.0286t 2 .

11.029 2 t � 1eln 1.029 2 t � 1e0.0286 2 t � e0.0286t.

eln x � x:

10t log 11.0292 � 110log 11.0292 2 t � 11.029 2 t.

log11.029 2 � 0.0124.

P1t 2 � 12.9411.029 2 t � 12.94110q 2 � 12.94110t log11.0292 2 � 12.941100.0124t 2 ,

t log11.029 2 � q log 10 � q . 1 � q.

11.029 2 t � 10q.

12.9411.029 2 t.P1t 2 �
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FIGURE 2.49

x log x ln x

1 0 0

2 0.3010 0.6932

3 0.4771 1.0986

4 0.6021 1.3863

5 0.6990 1.6094

6 0.7782 1.7918

7 0.8451 1.9459

8 0.9031 2.0794

9 0.9542 2.1972

10 1 2.3026

on your calculator by using several different values of x. Note that Figure 2.49 shows
the values of ln x plotted against those of log x. If we plotted either ln x against x or log
x against x, we would get the usual graph of a logarithmic function—one that is in-
creasing and concave down. Only the graph of ln x versus log x results in a line.

The value of the constant of proportionality is also the slope of
the line through the points shown in Figure 2.49. Thus we can write

for any x. Because 2.3026 appears in the last row of the preceding table as the value
of ln 10, we can rewrite this relationship as

or equivalently,

Rewriting this equation to highlight the base of the logarithm, we get

In fact, if we perform the identical analysis with any other base (say, c instead of e), we
obtain the comparable result for changing between base 10 and base c, for any c; or

log10 
x �

logc x

logc10
 .

log10 
x �

loge x

loge10
 .

log x �
ln x

ln 10
 .

ln x � 1ln 10 2 log x,

ln x � 2.3026 log x

m � 2.3026

Problems

1. The graphs of the following functions may surprise
you. Use your function grapher to graph each func-
tion and then explain what you see and why, using
the properties of logarithms.

a. b. y � log12x 2 � log1x 2y � log 102x

c. d.
e. f.

2. Use your function grapher to draw simultaneously
the graphs of and

For each function, use the propertiesy � log15x 2 .
y � log13x 2 ,y � log12x 2 ,

y � log110>6x 2y � log 3x
y � 10log 1x 

22y � log 10x2
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112 CHAPTER 2 Families of Functions

of logarithms to explain why you get the graphs
you do.

3. The population of Argentina was 34.6 million in
1995 and was growing exponentially at an annual
rate of 1.3%.

a. Find an expression for Argentina’s population
at any time t, where t is the number of years
since 1995.

b. What population would you predict for 2005 if
the present trend continues?

c. Use logarithms to find the doubling time exactly.

4. The population of Kenya is growing exponentially. Its
population was 23.3 million people in 1988 and
28.3 million in 1995.

a. Find an expression for the population at any time
t, where t is the number of years since 1988.

b. What would be the population in 2005?
c. Use logarithms to find the doubling time.

5. Because of ardent fishermen during the summer
months, the population of fish in a lake is reduced
by 10% each week. Find the half-life of this dwin-
dling fish population, using logarithms.

6. The Best Company earned $50 million in 2000,
and its income is growing at a rate of 2% per year.
The Acme Corporation earned $30 million that
year, and its income is growing at a rate of 6.5%
per year. When will Acme overtake Best in annual
income?

7. a. Find the doubling time for annual growth rates
of 3%, 4%, 5%, 6%, and 7%.

b. Consider the doubling time d as a function of
growth rate r. Plot your results from part (a) and
decide what type of function seems to fit the be-
havior pattern you observe.

8. Bankers use a technique called the Rule of 70 to esti-
mate the doubling time for money invested at differ-
ent interest rates, dividing 70 by 100 times the interest
rate. Thus for an interest rate of
bankers estimate the doubling time to be

Use your results from Problem 7 to test the accura-
cy of this method.

9. Determine when the cost of first-class postage for a
letter will reach $1, given that first class postage rose
to in 1990 and to in 2002.

Problems 10–13 are based on the carbon dating
process to measure the age of objects. Carbon-14, a ra-

37¢29¢

70

100 . 0.10
�

70

10
� 7 years.

10% � 0.10,

dioactive form of carbon, decays into carbon-12 with a
half-life of 5730 years.

10. The famous Cro-Magnon cave paintings are found
in the Lascaux Cave in France. If the level of car-
bon-14 radioactivity in charcoal in the cave is ap-
proximately 14% of that of living wood, estimate
the date when the paintings were made.

11. The level of carbon-14 in a charred roof beam found
in a 1950 excavation of an ancient Babylonian city is
about 61% of the level in living wood. Estimate when
the fire occurred.

12. The well-preserved body of a Stone Age man was
found in melting snow in the northern Italian Alps
in 1991. Examination of a tissue sample from the
body indicated that 47% of the carbon-14 present
in the body at the time of death had decayed. When
did the man die?

13. Several groups of scientists were allowed to test the
Shroud of Turin, the supposed burial cloth of
Jesus, in 1991. They found that the cloth contained
91% of the amount of carbon 14 contained in
newly made cloth of the same material. Based on
this information, how old is the Shroud of Turin?

14. A radioactive substance decays exponentially so that
after 10 years, 40% of the initial amount remains.

a. Find an expression for the quantity remaining
after t years.

b. How much will be present after 25 years?
c. What is the half-life of the substance?
d. How long will it be before only 2% of the origi-

nal amount is left?

15. In an effort to reduce the breeding rate of a strain of
pesticide-resistant mosquitoes in the southeastern
United States, a group of scientists released large
numbers of sterilized male mosquitoes to mate with
the fertile females who would consequently produce
no offspring. Suppose that effort reduced the mosqui-
to population by 2% per month.

a. What percentage of the original population 
would remain after 1 year?

b. How long would it take to lower the population
by half?

c. How long would it take for the population to fall
to 10% of the original level?

16. In computer science, the efficiency of algorithms
(methods for accomplishing a certain task) are
often analyzed by how long it takes to perform the
operation with n objects. Typically, as n increases,
the time involved for the operation increases signif-

P0

R0
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2.7 Power Functions 113

icantly. Two algorithms used to put a set of names
in alphabetical order are compared. For one algo-
rithm, the time needed to order n names, as a func-
tion of n, is The time for the second
algorithm, as a function of n, is 
Which method is faster? Explain.

17. How much stronger is a magnitude 6 earthquake
than a magnitude 3 earthquake?

18. How much stronger is

a. a magnitude 7 quake than a magnitude 5 quake?
b. a magnitude 7 quake than a magnitude 4 quake?

19. Let be the minimum (or threshold) level of
sound that can be heard by human beings. If the in-
tensity of a particular sound is I, the magnitude of
the sound, measures in decibels d, is given by

a. Normal conversation measures about 60 decibels.
How much more intense is this level than the
threshold level?

d � 10 log a
I

I0

b .

I0

S1n 2 � n log n.
B1n 2 � 1

2 n2.

b. A loud noise of about 150 decibels will cause
deafness. How much more intense is this level
than the threshold level?

c. An aircraft taking off has a loudness level of
about 120 decibels. How much more intense is
this level than the threshold level?

d. How loud (that is, how many decibels) is a
sound whose intensity is 1 million times the
threshold level?

e. The noise level from a rock band is about 100 bil-
lion times higher than the threshold level. What
is the decibel measure of this noise level?

20. Convert the formula for the level of
Prozac in the bloodstream following an initial dose of
80 mg to equivalent formulas with base 10 and base e.

21. The population of the world can be modeled by the
function where t is the number of
years since 1999. Convert this formula to equivalent
formulas with base 10 and base e.

P1t 2 � 611.015 2 t,

D1t 2 � 8010.75 2 t

Exercising Your Algebra Skills

Simplify each expression by using the properties of
logarithms.

1. 2.

3.

4. 5.

6.

Solve each expression for x.

7. 8.

9. 10.

11. 12. 910.17 2 x � 0.251210.86 2 x � 3

311.04 2 x � 50.4x � 0.6

1.05x � 27x � 11

10log1x 
22

log 10x 
2

log1x>y 2 � log1y>x 2
log x2 � log y3 � log x � log y2

log x � log 1xlog x � log x2 � log x3

13. 14.

15. 16.

Without using a calculator, evaluate each term.

17. log 1,000,000 18. log 0.001

19. 20.

Determine which of the following are true for all values
of x and which are not by using algebra.

21.

22.

23. log11>x 2 � �log x � log11 2
log1x2 � 1 2 � log1x2 2 � log11 2
log1x2 � 1 2 � log1x � 1 2 � log1x � 1 2

log 210log11>10,000 2

log x � 0.5log x � 2

310.7 2 x � 610.5 2 x411.05 2 x � 511.04 2 x

Power Functions

The area A of a circle with radius r is given by

The surface area S of a sphere with radius r is given by

(Picture a tennis ball whose surface is made up of four roughly circular regions, as
shown in Figure 2.50). The volume V of the sphere is given by

V � h1r 2 �
4

3
 pr3.

S � g 1r 2 � 4pr2.

A � f 1r 2 � pr2.

2.7
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114 CHAPTER 2 Families of Functions

Exponential function Power function

Variable

Constant

y = kcx y = kxp

FIGURE 2.51

Tennis ball cover split apartFIGURE 2.50

Similarly, the inverse square law of gravitation describes how the force of grav-
ity of one object on any other object in the universe varies with distance. In partic-
ular, the gravitational force F on a unit mass at a distance d from the center of the
Earth is given by

where k is a positive constant.
All four of these functions are examples of power functions, so called because

the independent variable is raised to a constant power. In each case, the dependent
variable is a constant multiple of some power of the independent variable. In gen-
eral, a power function is any function of the form

where k and p are any constants, positive or negative. (Compare this expression for
a power function with an exponential function of the form where the in-
dependent variable x is the exponent and the base c is a constant, as shown in Fig-
ure 2.51.) Note that the family of power functions is a two-parameter
family with parameters p and k.

y � kxp

y � kc 
x,

y � f 1x 2 � k xp,

F �
k

d2 or F � kd�2,

The definition of a power function includes the special case where 
which gives the linear function that passes through the origin. The
definition also includes functions such as

as well as the case where p is a positive or negative fraction or a decimal, such as

y � x1>2,  y � x1>3,  y � x3>2, and y � x�2.83.

y � x2,  y � x3, and y � x4,

y � kx1 � kx
p � 1,

Gord.3896.02.pgs  4/24/03  9:25 AM  Page 114



2.7 Power Functions 115

W
ei

gh
t

Span

W = 0.15S 9/4 

FIGURE 2.52

In algebra, fractional exponents are usually introduced purely as a means for sim-
plifying operations with terms involving radicals. Recall that

and, in general,

Power functions of the form arise naturally in many appli-
cations. For instance, biologists have found a relationship between the weight W of
large flying birds and their wingspan S. This relationship can be modeled by the
power function

This function gives the weight that can be supported by a given wingspan.
For example, the wingspan S of a condor is about 10 feet. According to this
model, its weight is approximately

To perform this calculation we must either first raise to the ninth power
and then take the fourth root of the result, so that

or first take the fourth root of S and then raise the result to the ninth power, so that

Symbolically, we write

When you use a calculator to evaluate such an expression, be careful to use paren-
theses around the fractional exponent, as in

0.15*10^(9/4);

without the parentheses, the rules for the order of operations will give you a very
different answer.

The graph of the power function is shown in Figure 2.52. Note
that the pattern is that of an increasing, concave up function; thus, as the wingspan
S of a bird increases, its weight W increases even more rapidly. Consequently, heav-
ier birds require relatively smaller wingspans in order to fly, which is likely contrary
to intuition.

W � 0.15S9>4

S9>4 � 24 S9 � 124 S 2 9.

W � 0.15110 2 9>4 � 0.15 3 110 2 1>4 4 9 � 0.15 31.778279 4 9 � 27.

W � 0.15110 2 9>4 � 0.15 3 110 2 9 4 1>4 � 0.15 31,000,000,000 4 1>4 � 27

S � 10

W � 0.15110 2 9>4 � 27 lb.

W � f 1s 2 � 0.15S9>4.

y � f 1x 2 � k xm>n

xm>n � 2n xm � A2n x  B
m

.

x1>2 � 2x ,  x1>3 � 23 x ,  x5>8 � 28 x5
 ,
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x

y

(1, 1)

y = x

y = x–2

y = x1/2

y = x2

0FIGURE 2.53

x

y

(1, 1)

y = x3 y = x2

y = x2.5

0
(a) p > 1

FIGURE 2.54

(1, 1)

x

y

0
(b) 0 < p < 1

y = x1/2

y = x3/4

y = x1/4
(1, 1)

x

y

0
(c) p < 0

y = x–1
y = x–2

y = x–3

The largest known bird is the Steller’s eagle, with a wingspan of 8 feet. Estimate the
weight of an adult Steller’s eagle. ❐

Aeronautical engineers use the same principle—based on a similar relation-
ship between wingspan and the weight of a plane—when designing new aircraft.

Behavior of Power Functions for 

Recall that for exponential functions the value of the base c in leads to dif-
ferent behavior patterns—exponential growth when and exponential decay
when Similarly, the behavior of power functions depends on the size of
the constant power p in To simplify things initially, we let so that
we can consider the more basic power function 

The three different behavior patterns for power functions are illustrated in Fig-
ure 2.53: the graphs of and (along with the graph of
for reference) for Note how the graph of (with ) is increasing and
concave up; that of (with ) is increasing and concave down, and that of

(with ) is decreasing and concave up. The specific values 
(when we get a line through the origin) and (when we get a horizontal line at
height are critical in separating one kind of behavior from another.y � 1 2

p � 0
p � 1p � �2y � x�2

p � 1
2y � x1>2

p � 2y � x2x � 0.
y � xy � x�2y � x1>2,y � x2,

y � xp.
k � 1y � k xp.

0 	 c 	 1.
c � 1

y � kc 
x

x � 0

Think About This

Let’s investigate these cases in more detail by looking at a variety of different
power functions of each type. Figure 2.54(a) shows the graphs of three related
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2.7 Power Functions 117

1. If the power function is increasing and concave up.

If the power function is increasing and concave
down.

If the power function is decreasing and concave up.

2. Every power function passes through the point 

3. If the power function passes through the origin.

If the power function rises toward the positive y-axis
as x gets closer to 0 (the y-axis is a vertical asymptote) and decays to-
ward the positive x-axis as x approaches 
.

y � xpp 	 0,

y � xpp � 0,

11, 1 2 .y � xp

y � xpp 	 0,

y � xp0 	 p 	 1,

y � xpp � 1,

power functions, and all of which behave in the same
manner as Similarly, Figure 2.54(b) shows the graphs of three other
power functions, and all of which behave in a pat-
tern similar to that for Finally, Figure 2.54(c) shows the graphs of

and all of which behave in a third manner, similar to

These graphs suggest the following facts about power functions for x � 0:
y � x�2.

y � x�3,y � x�2,y � x�1,
y � x1>2.

y � x3>4,y � x1>2,y � x1>4,
y � x2.

y � x3,y � x2.5,y � x2,

Statement 2 is true because 1 raised to any power is 1 (that is, for any p).
The first part of Statement 3 is obvious because 0 raised to any positive power will
be 0 (that is, for ). As for the second part of Statement 3, if the power
p is negative, we can write it as so that

using one of the basic rules for exponents from algebra. Obviously, we can’t have
because the quotient is not defined at 0. However, the closer x is to 0,

the closer is to 0 also, and therefore the larger is. That is, the graph of any
power function of the form must always rise and approach the
positive y-axis as x approaches 0. The y-axis is a vertical asymptote for these
curves because they approach it more and more closely but never reach it. Also, if

as x increases, becomes smaller and eventually ap-
proaches 0. So the x-axis is a horizontal asymptote for any power function with

Behavior of Power Functions for 

It is also evident from Figure 2.54 that the behavior patterns for these power func-
tions are different when x is between and compared to when 
Again, the point serves as a demarcation between the different behaviors. To
see the differences more clearly, in Figure 2.55 we zoom in on all the graphs shown
in Figure 2.54 to examine what happens when for different values of p. (In-
cidentally, in all these cases, you should think of x as the variable and p as a param-
eter that takes on a fixed value to produce a particular curve whose values depend
on x.)

Figure 2.55 suggests the following additional fact about power functions.

x � 1

11, 1 2
x � 1.x � 1x � 0

x � 1

p 	 0.

xp � x�q � 1>xqp 	 0,

y � xp � x�q
1>xqxq

1>xqx � 0

xp � x�q �
1

xq  ,

p � �q
p � 00 

p � 0

1p � 1

Gord.3896.02.pgs  4/24/03  9:25 AM  Page 117



118 CHAPTER 2 Families of Functions

TABLE 2.1

4 25 100 400

8 125 1000 8000

16 625 10,000 160,000

32 3125 100,000 3,200,000y � x5

y � x4

y � x3

y � x2

x � 20x � 10x � 5x � 2

Thus, for instance, when 

and also

These relationships are shown numerically in Table 2.1 for For each
value of not only do the higher powers of x get larger, but they get larger
much faster.

x � 1,
p � 0.

x�5 	 x�4 	 x�3 	 x�2.

x5 � x4 � x3 � x2,

x � 1,

We can prove this fact algebraically. For instance, if and we multiply
both sides of this inequality by the positive term we get

so that

This comparison gets more pronounced as x gets larger and larger. Compare the
values in the table for and As x gets ever larger (i.e., as x approach-
es infinity, denoted by ), any positive power completely overwhelms, or
dominates, any smaller power.

Now let’s look at the case when For each value of Table 2.2
shows that, not only do the negative powers of x get smaller as x increases, but the
more negative the power, the faster the function dies out.y � xp

x � 1,p 	 0.

x S 

x � 20.x � 10

x4 � x3.x3 . x � x3 . 1

x3,
x � 1

x

y

(1, 1)

y = x3

y = x2

y = x2.5

0
(a) p > 1

FIGURE 2.55

(1, 1)

x

y

0
(b) 0 < p < 1

y = x1/2

y = x3/4

y = x1/4

(1, 1)

x

y

0
(c) p < 0

y = x–1

y = x–2

y = x–3

4. If the larger p is, the larger is when 

If the more negative p is, the more rapidly dies out as x
increases.

xpp 	 0,

x � 1.xpp � 0,
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2.7 Power Functions 119

TABLE 2.2

0.25 0.04 0.01 0.0025

0.125 0.008 0.001 0.000125

0.0625 0.0016 0.0001 0.00000625

0.03125 0.00032 0.00001 0.0000003125y � x�5

y � x�4

y � x�3

y � x�2

x � 20x � 10x � 5x � 2

5. If or the larger p is, the smaller is when 

If the larger p is, the larger is when 0 	 x 	 1.xp0 	 p 	 1,

0 	 x 	 1.xpp 	 0,p � 1

x

y

(1, 1)

y = x3y = x2

y = x2.5

0
(a) p > 1

FIGURE 2.56

(1, 1)

x

y

0
(b) 0 < p < 1

y = x1/2

y = x1/4

y = x3/4

(1, 1)

x

y

0
(c) p < 0

y = x–1

y = x–2
y = x–3

Behavior of Power Functions for 

The preceding conclusions are based on what happens to power functions when
Now let’s see what happens to these same power functions when 

as shown in Figure 2.56. Note that the behavior patterns are reversed from those when
In particular, the graphs suggest the following fact about power functions.x � 1.

0 	  x 	 1,x � 1.

0 �  x � 1

Thus, for instance, when x is between 0 and 1,

and

Thus, as x approaches 0, the more positive the power p, the faster a power function
dies out near the origin. Similarly, the more negative the power p, the faster a
power function grows toward infinity as x approaches 0.

What do the graphs of and look like? How do they
behave compared to the line ❐

What do the graphs of and look like? How do they
compare to one another? ❐

y � x�0.01y � x0,y � x0.01,Think About This

y � x?
y � x1.01y � x0.99 � x 199>1002Think About This

x�2 	 x�3 	 x�4 	 x�5.

x5 	 x4 	 x3 	 x2,
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Applications of Power Functions

In Sections 2.2 and 2.3, we dealt with many situations that led to equations involv-
ing linear functions. In Sections 2.4–2.6, we similarly explored some situations
leading to equations involving exponential functions of the form

In many of these situations, we had a value for y and had to solve for the un-
known t in the exponent by using logarithms. Similarly, situations often arise that
lead to equations involving power functions of the form

where a value for y is given and we have to solve for the unknown x, which in this
case is raised to a constant power.

As we discussed in several simple examples in previous sections, we solve the
power function equation by taking the square root of both sides of the equa-
tion to get (To envision the two solutions, imagine the graph of the function

It reaches a height of 25 in two places, one for and another for )
Similarly, we solve the equation by taking the cube root of both sides of
the equation to get

Similarly, we solve the equation by taking the 7th root of both sides of the
equation (equivalently by raising both sides to the power):

EXAMPLE 1
A bald eagle weighs about 16 pounds. Use the relationship to estimate its
wingspan.

Solution We have to solve for the eagle’s wingspan S corresponding to 
in the equation

We first divide both sides by 0.15 to get

To solve for S, we have to undo the power, which we do by raising both sides of this
equation to the power:

or about 8 feet.

�

In Example 2 we show how these ideas about power functions arise in the con-
text of one of the most useful applications of radioactive decay. Scientists routine-
ly use a process known as carbon-dating to establish the age of fossils. It is based on
the fact that carbon-14 decays to carbon-12 with a half-life of 5730 years.

1S9>4 2 4>9 � S1 � S � 106.6674>9 � 7.968,

4
9

9
4

S9>4 � 106.667.

0.15S9>4 � 16.

W � 16 pounds

W � 0.15S9>4

x � 27 50 � 501>7 � 1.7487.

1
7

x7 � 50

x � 23 27 � 3.

x3 � 27
x � 0.x 	 0y � x2:

x � 5.
x2 � 25

y � k xp,

y � kct.
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EXAMPLE 2
Crater Lake in Oregon was formed as the result of a volcanic eruption. A charcoal sam-
ple from a tree that burned during the eruption contains about 46% of the carbon-14
found in live trees.

a. What is the decay factor for carbon-14?

b. What was the approximate date for the formation of Crater Lake?

Solution Because the half-life of carbon-14 is 5730 years and slightly more than 50%
of the radioactive carbon has disintegrated, we expect that the time involved is some-
what more than 5730 years; we might estimate, say, about 6000 years. Now let’s find out
more precisely.

a. The exponential decay function that models the radioactive decay process is

for some initial quantity of the radioactive carbon and some decay factor 
Because the half-life of carbon-14 is 5730 years, we substitute into the ex-
pression for the function to get

so that

We solve this equation for c by extracting the 5730th root of to get the decay factor:

b. We know that

We now have to find how long it takes for the carbon-14 to decay to the point where
only 46% of is present. Thus we want to find t when

Dividing through by gives

To solve this exponential equation, we take logs of both sides and get

Therefore

or about 6471 years ago, as shown in Figure 2.57. We thus conclude that Crater Lake
was formed in roughly 4471 B.C.

t � log10.46 2 >log10.99988 2 � 6470.685,

log10.99988 2 t � t log10.99988 2 � log10.46 2 .

10.99988 2 t � 0.46.

R0

R1t 2 � R0
. 10.99988 2 t � 0.46R0 .

R0

R1t 2 � R0
. 10.99988 2 t.

c � a
1

2
b

1>5730

� 0.99988.

1
2 ,

c5730 �
1

2
 .

R15730 2 � R0c
5730 �

1

2
 R0

t � 5730
c 	 1.R0

R1t 2 � R0c
t
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�

Note that we solved two very different mathematical problems in Example 2. In
part (a), we had the power function equation and solved for c by taking the
5730th root. In part (b), we had the exponential function equation 
and solved for t by using logarithms. In general, we take roots to undo powers and so
solve equations of the form involving power functions. Similarly, we use loga-
rithms to extract variables from an exponent and so solve equations of the form

involving exponential functions.
Unfortunately, neither operation will do anything useful to solve an equation

such as

which involves both an exponential function and a power function. This equation
can be solved numerically or graphically to find an approximate solution that is ac-
curate to any desired degree of accuracy, by using a graphing calculator or a com-
puter graphics program. (We ask you to solve it as a problem at the end of the
section.) But, the equation cannot be solved algebraically to find an exact solution.

Fitting Power Functions to Two Points

We have seen that two points determine a line or an exponential function because
only one line or one exponential function passes through those points. Similarly,
two points also determine a power function, which we illustrate in Examples 3–5.

EXAMPLE 3
Find the power function that passes through the points and 

Solution A power function is of the form for some constants k and p. We sub-
stitute the coordinates of the first point into this expression to obtain

Therefore the expression for the power function reduces to We use the second
point, to determine the power p. When we substitute the coordinates 
and we get

We divide both sides of this equation by 5 to obtain

4p � 12.

514 2 p � 60.

y � 60,
x � 414, 60 2 ,

y � 5xp.

k . 11 2 p � k � 5.

11, 5 2
y � kxp,

14, 60 2 .11, 5 2

3x � x4,

bx � A

xn � A

10.99988 2 t � 0.46
c5730 � 1

2

0

R0

0.46(80)

t

R(t)

6471FIGURE 2.57
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To extract the unknown p from the exponent, we take logs of both sides to get

so that

Consequently, the power function that passes through the two points and is

As depicted in Figure 2.58, this function is increasing and concave up.

y � 5x1.792.

14, 60 211, 5 2

p �
log 12

log 4
� 1.792.

log14p 2 � p log 4 � log 12,

�

Example 4 illustrates a somewhat more complicated situation.

EXAMPLE 4
Find the power function that passes through the points and 

Solution When we substitute the coordinates of the first point into the equation
of a power function we get

which involves both unknowns k and p. Similarly, when we substitute the coordinates of
the second point we get

To eliminate one of the unknowns, we divide the second equation by the first:

Because

the preceding equation becomes

We solve for p by using logarithms:

log 2p � p log 2 � log 12

2p � 12.

4p

2p � a
4

2
b

p

� 2p,

k . 4p

k . 2p �
4p

2p �
60

5
� 12.

k . 4p � 60.

14, 60 2 ,

k . 2p � 5,

y � k xp,
12, 5 2

14, 60 2 .12, 5 2
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FIGURE 2.59

so that

The desired power function is therefore To determine the value of k, we
use the first point and obtain

Therefore

and the power function, which is shown in Figure 2.59, is

y � 0.41667x3.584963.

k �
5

23.584963 � 0.41667,

5 � k . 23.584963.

12, 5 2
y � k . x3.584963.

p �
log 12

log 2
� 3.584963.

�

EXAMPLE 5
Biologists have long observed that the larger the area of a region, the more species in-
habit it. The relationship is best modeled by a power function. The island of Puerto Rico
contains 40 species of reptiles and amphibians on its 3459 square miles. The nearby is-
land of Hispaniola (comprising Haiti and the Dominican Republic) contains 84 species
on 29,418 square miles.

a. Determine a power function that relates the number of species of reptiles and am-
phibians on a Caribbean island to its area.

b. Use the relationship from part (a) to predict the number of species of reptiles and
amphibians on Cuba, which measures 44,218 square miles.

Solution

a. We want a power function of the form where S is the number of species, A
is the area in square miles, and k and p are constants that must be determined. Using
the information on Puerto Rico, where and we have

(1)

which involves both p and k. The data on Hispaniola, and give

(2)k . 129,418 2 p � 84,

S � 84,A � 29,418

k . 13459 2 p � 40,

A � 3459,S � 40

S � kAp,
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so we now have two nonlinear equations in the two unknowns k and p. We can elim-
inate the unknown k by dividing Equation (2) by Equation (1). We then get

We cancel the common factor k to get

Using one of the properties of exponents, we find that this equation reduces to

To solve for p, we take logs of both sides of this exponential equation to get

from which we find that

Substituting this value into Equation (1) gives

so that

Thus the power function that models the number of species of reptiles and amphib-
ians on a Caribbean island having area A is

Note from the graph of this function shown in Figure 2.60 that it is an increasing, concave
down function, which is what we would expect from a power function with p � 0.3466.

S � 2.3739A0.3466.

k �
40

13459 2 0.3466 � 2.3739.

k . 13459 2 0.3466 � 40,

p �
log12.1 2

log18.505 2
� 0.3466.

log18.505 2 p � p log18.505 2 � log12.1 2 ,

a
29418

3459
b

p

� 18.505 2 p � 2.1.

29418 
p

3459 
p � 2.1.

k . 129418 2 p

k . 13459 2 p
�

84

40
� 2.1.

b. For the area of Cuba, 44,218 square miles, we use this formula to estimate that there are

or about 97 reptile and amphibian species on Cuba.

�

S � 2.3739144218 2 0.3466 � 96.745,
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x
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y

y = x

y = x3y = x5
y = x4

y = x2

y = x6

(a) Odd powers (b) Even powersFIGURE 2.61

Power Functions with Integer Powers

So far, we have restricted our attention to power functions with because most
power functions of the form with rational exponents are not defined when

However, if the power is an integer, either positive or negative, the power
function (n an integer) is well defined for all values of x, both positive and
negative. So, when the power is an integer, we extend the domain to include all real x.

Let’s look at the case where the power n is a positive integer so that these power
functions include for all real x. Note
from Figure 2.61 that the graphs of these power functions fall into two groups: func-
tions with odd powers and functions with even powers.

y � x5, . . . ,y � x4,y � x3,y � x2,y � x,

y � xn
x 	 0.

y � xm>n
x � 0

Even Positive Integer Powers

We look at the even power functions: , as shown in Fig-
ure 2.61(b). Their common characteristics are the following.

� All even power functions decrease at first (until ) and then increase as
x increases from left to right, so all are U-shaped with a turning point at the
origin.

� The higher the power n, the flatter the curve is as it passes through the origin.

� All the even powers are concave up everywhere, so they do not have a
point of inflection.

� Not only does each curve pass through the origin and the point but
each one also passes through the point [because if n is
an even integer].

� All even power functions are symmetric about the y-axis (the left and right
halves of the curves are mirror images.) (See Appendix D.)

Examine some of the even power functions on your own, using your function
grapher, to convince yourself that these properties are valid.

Odd Positive Integer Powers

Next, let’s examine the power functions with odd powers:
, as shown in Figure 2.61(a). They have the following characteristics in

common.
y � x5, . . . 

y � x3,y � x,

1�1 2n � 11�1, 1 2
11, 1 2 ,

x � 0

y � x6, . . . y � x4,y � x2,

Gord.3896.02.pgs  4/24/03  9:26 AM  Page 126



2.7 Power Functions 127

(i)

(1) (3)

(2)

x

y

x

y

(ii)

(4)

(6)

(5)

x

y

(iii)

(7)
(9)

(8)

x

y

x

y

x

y

x

y

x

y

x

y

� They all are increasing everywhere as x increases from left to right.

� If all the odd power functions are concave down when and
concave up when This change in concavity at means that every
odd power function except the line has a point of inflection at
the origin, where it is growing most slowly.

� The higher the power n, the flatter the curve is as it passes through the origin.

� Not only does each curve pass through the origin and the point but each
one also passes through the point [because if n is an
odd integer].

� All odd power functions are symmetric about the origin; that is, the portion
of each curve in the third quadrant is the mirror image of the correspon-
ding portion in the first quadrant.

Examine some of the odd power functions on your own, using your function
grapher, to convince yourself that these properties are valid.

1�1 2n � �11�1, �1 2
11, 1 2 ,

y � x1 � x
x � 0x � 0.

x 	 0n � 1,

Problems

1. Which of the pairs of points shown can determine a
power function of the form and which
cannot. For those that do, sketch the graph of the
power function, indicate the sign of the coefficient
k, and tell whether the power p is less than 0, be-
tween 0 and 1, or greater than 1.

y � kxp

2. Match each formula for a power function with one of
the graphs. Explain the reasons for your decisions.

a. b. c.
d. e. f.
g. h. i.

3. Identify which of the functions in parts (a)–(n) are
exponential functions, which are power functions,
and which are neither. Give the reasons for your
decisions.

a. b.

c. d.

e. f. f 1q 2 � 1.09q � 4.37f 1t 2 � 5t�3.7

f 1x 2 � � 

3

x2.4f 1x 2 �
1

11.4 2 x

f 1x 2 � 4011.05 2 xf 1x 2 � 40x1.05

y � x0.4y � x0.6y � x0.8
y � x1.4y � x1.6y � x1.8
y � x�1.4y � x�0.2y � x�0.8

(a) (b)

(c) (d)

(e) (f)
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128 CHAPTER 2 Families of Functions

x 1 2 3 4 5

4.80 5.76 6.91 8.29 9.95g(x)

x 2 3 4 5 6

8.71 12.04 15.16 18.12 20.96f (x)

x 2 4 6 8 10

9.19 21.11 34.34 48.50 63.40h(x)

x 3 3.5 4 4.5 5

28.8 39.2 51.2 64.8 80.0f (x)

x 3 3.5 4 4.5 5

10.80 17.15 25.60 36.45 50.00h(x)

x 3 3.5 4 4.5 5

4.39 5.01 5.71 6.51 7.42g(x)

g. h.

i. j.
k. l.
m. n.

4. Match each formula with its corresponding table of
values.

a. b. c.

i.

y � 411.2 2 x.y � 5x0.8y � 4x1.2

f 1u 2 � 711.62 2�uf 1w 2 � w2 . 3w
f 1x 2 � xxf 1z 2 � z . z3>5
f 1r 2 � 4

3pr3f 1s 2 � 2s2 � 3

f 1t 2 � 5 2tf 1t 2 � 1210.35 2�t

ii.

6. For each relationship, (i) identify which of the quan-
tities should be considered the independent variable
and which the dependent variable; (ii) write an
equation expressing the dependent variable in terms
of the independent variable to create a power func-
tion that represents the relationship; and (iii) sketch
a rough graph of the function based on the value of
the power p.

a. If a car is traveling at a constant rate, the distance
d that it travels is proportional to the time t that
it travels.

b. The distance d that an object falls under the in-
fluence of gravity is proportional to the square
of the time t that it is falling.

c. According to the ideal gas law, when a gas is kept
at a constant temperature, the pressure P is in-
versely proportional to the volume V.

d. The force F of gravity between two objects is in-
versely proportional to the square of the distance
d between them.

e. The square of the diameter d of the long bone in
the leg of many animals is proportional to the
cube of the length L of the bone.

f. The cube of the surface area S of many verte-
brate mammals is proportional to the square of
their body mass m.

g. The fourth power of the rate R at which air flows
into and out of the lungs of many vertebrate
mammals is proportional to the cube of their
body mass m.

h. The fourth power of the speed s at which many
mammals can trot is proportional to their body
mass m.

i. The cube of the speed s at which most birds fly is
proportional to the square of their body mass m.

j. The square of the swimming speed s of most
species of fish is proportional to the length L of
their bodies.

k. The fifth power of the radius r of the shock wave
after the explosion of a nuclear bomb is propor-
tional to the square of the time t since the bomb
exploded.

7. Use the formula relating the weight of a large flying
bird to its wingspan to explain why a 15 pound
turkey with a wingspan of about 2.5 feet can’t soar
like an eagle.

8. A full grown African vulture has a 9-foot wingspan.
Based on the model relating weight to wingspan, how
much does a vulture weigh?

9. The largest known flying creature, with a wingspan of
40 feet, was the pterosaur that lived 65 million years
ago. Assuming that the formula for birds also applies
to flying dinosaurs, estimate the weight of an adult
pterosaur. What can you conclude from your answer?

10. Find a formula expressing the volume V of a sphere
as a function of its surface area S.

11. Find the power function that passes through the
following pairs of points.

a. and b. and 
c. and d. and 
e. and f. and 

12. Police sometimes use the formula to
estimate the speed s in miles per hour that a car was

s � 230kd

15, 8 212, 20 214, 5 211, 10 2
16, 30 215, 20 214, 10 211, 3 2
14, 8 211, 3 214, 6 211, 3 2

iii.

5. Data from three different functions are shown in
the tables of values. One function is exponential,
one has the form and one has the form

Which function is which?

i.

y � bx3.
y � ax2,

ii.

iii.
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2.7 Power Functions 129

going if it left a set of skid marks d feet long. The
coefficient k depends on the road conditions (dry
or wet) and the type of pavement. For instance,

for dry concrete, for wet concrete,
for dry tar, and for wet tar.

a. A car left a set of skid marks 120 feet long on dry
concrete. How fast was it going?

b. Suppose that the concrete pavement in part (a)
was wet. How fast was the car going?

c. If the car in part (a) left skid marks 240 feet long,
how fast was it going?

d. Suppose that a car is going 50 mph on a dry tar
surface when the driver slams on the brakes.
How far will it skid?

e. Suppose that the tar pavement in part (d) was
wet. How far will the car skid?

13. Scientists are actively investigating the potential of
using windmills to generate electricity. They have
found that, for moderate wind speeds, the power P in
watts generated by a windmill is related to the wind
speed v in miles per hour according to the equation

a. How much power is generated by a steady wind
at 10 mph?

b. How much power is generated by a steady wind
at 20 mph?

c. Based on your results in parts (a) and (b), by
what factor does doubling the wind speed in-
crease the power generated?

d. Compare the power generated by a steady wind
at 5 mph to that of a steady wind at 10 mph.
Does doubling of the wind speed increase the
power generated by the same factor found in
part (c)?

e. Suppose that a certain community has power
needs for an additional 250 kilowatts of electric-
ity and can anticipate winds on the average of
12 mph. How many windmills would be needed
to meet the added electric demand?

f. What wind speed would be needed to light a
100-watt light bulb?

14. a. Use your function grapher to plot on the same
screen the graphs of the power functions 

and for the interval Deter-
mine an appropriate range for y so that all powers
will be distinguishable in the viewing rectangle.

b. Plot the same graphs for and deter-
mine an appropriate range for y.

c. Plot the same graphs for and de-
termine an appropriate range for y.

�20 � x � 20

�2 � x � 2

�0.2 � x � 0.2.x8x5,
y � x2,

P � 0.015v3.

k � 0.5k � 1.0
k � 0.4k � 0.8

15. a. Use your function grapher to plot on the same
screen the graphs of the power functions 

and for the interval Deter-
mine an appropriate range for y so that all powers
will be distinguishable in the viewing rectangle.

b. Plot the same graphs for and deter-
mine an appropriate range for y.

c. Plot the same graphs for and deter-
mine an appropriate range for y.

d. What happens if you use the interval

16. What happens to

a. as as 
b. as as 
c. as as 
d. as as 
e. as as 
f. as 

17. In 1990, 442.2 million prerecorded audio cassette
tapes were sold, and 865.7 million CDs were sold in
the United States. In 1998, 158.5 million cassette
tapes were sold, and 1,124.3 million CDs were sold.
Assume for now that the patterns of sales for both
items are power functions.

a. Find the equation for the number of cassette
tapes sold as a power function of time.

b. Find the equation for the number of CDs sold as
a power function of time.

c. If the trends in sales of both items were indeed
power functions, find when the number of CDs
sold overtook the number of cassette tapes sold.

18. In the accompanying figure let R be the radius of
the Earth (about 3960 miles). Find an expression
for the distance D to the horizon from a point at a
height of H miles above the Earth’s surface. (Hint:

x S 0?x�3
x S �
?x S 
?x�3

x S �
?x S 
?�x1>3
x S �
?x S 
?x1>3
x S �
?x S 
?�x3

x S �
?x S 
?x3

�2 � x � 2?

0 � x � 20

0 � x � 2

0 � x � 0.2.x1>4x1>3,
y � x1>2,

R
R

DH
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H

0.1 mile

1 mile

10 miles

100 miles

D � 2H2 � 7920HD � 89 2H

Recall that, for a circle, any tangent line is perpendi-
cular to a radius.)

19. The observation deck of the Empire State Building in
New York is 1250 feet high. If you’re standing there,
complete the phrase:“On a clear day, you can see. . . .”
(Hint: Use the formula you created in Problem 18.)

20. Ultra high frequency (UHF) TV transmissions trav-
el along a line of sight from a transmitter as far as
the horizon. In the Chicago area, the UHF stations
broadcast from a transmitter atop the 1454-foot

high Sears tower. What is
the greatest distance that someone could receive a
UHF signal from the tower?

21. Suppose that a mast 250 feet (about mile) high is
being planned for the Sears tower to extend the
broadcast range of UHF stations. How much far-
ther would the signal extend? How much larger a
receiving area would be covered?

22. NASA’s space shuttles orbit the Earth at altitudes of
about 200 miles. Find the maximum line-of-sight
transmission distance from the shuttle to the sur-
face of the Earth. Approximately how large a receiv-
ing area on the Earth is in range of this shuttle?

23. Communications satellites orbit the Earth in geosyn-
chronous orbits (carefully chosen heights and veloc-
ities so that they appear to be permanently above a
fixed point on the surface of the Earth as the Earth
rotates). Suppose that such a satellite is in orbit at a
height of 23,000 miles above a point on the equator.
The radius of the Earth is about miles, so
the distance around the equator is approximately

miles. Consequently, a point on the
equator is rotating at a velocity of about 1037 mph.
Find the orbital velocity of such a communication
satellite in a geosynchronous orbit.

24. Explain why it isn’t possible to have a communica-
tions satellite whose signals cover a full half the
Earth’s surface.

25. Using miles for the radius of the Earth, the
formula you found in Problem 18 for the line-of-
sight distance to the horizon from a height of H miles
is When
H is small, the term seemingly has little effect onH2

1H2 � 2RH � 1H2 � 7920H .D 1H 2 �

R � 3960

24,8802pR �

R � 3960

1
20

1
4 mile 21 � 0.275 mile �

the value of D, so you might be tempted to ap-
proximate the distance D using the simpler for-
mula Determine whether
using this approximation is reasonable by completing
the following table comparing the estimated value for
this distance with the actual value.

891H .D �  27920H �

26. a. Find, correct to three decimal places, all values of
x for which by graphing the two func-
tions and (Hint: Use different
windows to convince yourself that you have lo-
cated all points of intersection of the two curves.)

b. Repeat part (a) by creating the function 
and looking for all the points where 

27. Consider the function and let P be the
point on the curve where R be the point
where and Q be the midpoint where 
Find the slopes of the three line segments PQ, QR,
and PR. How does the slope of PR compare to the
slopes of the other two segments?

28. Repeat Problem 27, using the function 
Does the relationship among the three slopes you
found in Problem 27 also hold for g?

29. Consider the function and let P be the
point where Q be the point where

and R be the point where 
for any quantity . Find the slopes of the three
line segments PQ, QR, and PR. Show that the slope
of PR is the average of the other two slopes.

30. Consider the sequence of values 
and and use it to provide a reason for defining

What about 

31. By trial and error, determine the largest power of 10
that your calculator can handle. What is the small-
est positive number?

10�1?100 � 1.
101

102,103,104,105,

h � 0
x � a � 2h,x � a � h,

x � a,
f 1x 2 � x2

g 1x 2 � x3.

x � 1.x � 2,
x � 0,

f 1x 2 � x2

y � 0.3xx4 �
y �

y � 3x.y � x4
x4 � 3x

Exercising Your Algebra Skills

Use the properties of exponents to evaluate each term
(do not use a calculator).

1. 2. 9�1>291>2

3. 4.

Simplify.

5. 6. x6 . x�8x4 . x3

8�4>384>3
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7. 8.

9. 10. a�2>3 . a5>3x3>4 . x5>4

z12

z�9

r8

r4 11. 12.

13.
a5>3

a�2>3

a�2>3

a5>3

x3>4

x5>4

Comparing Rates of Growth and Decay

Most of the families of functions that we’ve discussed in this chapter—linear, ex-
ponential, and logarithmic—are either strictly increasing or strictly decreasing. If
we restrict our attention to nonnegative values of x, power functions also are either
strictly increasing or strictly decreasing. Let’s summarize what we know so far.

2.8

Linear Strictly increasing when 
The more positive the slope, the faster the rate of in-
crease.

Strictly decreasing when 
The more negative the slope, the greater the rate of
decrease.

Exponential Strictly increasing when the growth factor 
(for ) The larger c is, the faster the function grows.

Strictly decreasing when the decay factor 
The smaller c is, the faster the function decays toward
zero.

Exponential graphs are always concave up.

Power Strictly increasing when 
The larger p is, the faster the function grows beyond

If the graph is concave up—it grows more
and more rapidly.
If the graph is concave down—it grows
more and more slowly.

0 	 p 	 1,

p � 1,
x � 1.

p � 0.y � xp

0 	 c 	 1.

c � 0
c � 1.y � cx

m 	 0.

m � 0.y � mx � b

Function Equation Behavior Graph

x

y

y = mx + b
m > 0

x

y

y = x p

0 < p < 1

y = x p

p > 1

x

y

1

y = cx

c > 1

x

y

1

y = cx

c < 1

x

y

y = mx + b
   m < 0
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132 CHAPTER 2 Families of Functions

Strictly decreasing for when 
The more negative p is, the faster the function decays
toward zero.
If the graph is concave up, for 

Logarithmic Strictly increasing.
Logarithmic graphs are always concave down.x � 0

y � log x

x � 0.p 	 0,

p 	 0.x � 0

This summary of information compares the growth or decay rate of one func-
tion in a family to that of other functions in the same family. In this section, we
look at two other ways to compare rates of growth. At a local level, we look at how
fast a single function is growing or decaying at different points. At a global level,
we look at how quickly functions in one family grow or decay compared to how
quickly functions in a different family grow or decay. In particular, we want to an-
swer two questions: (1) which family of functions grows fastest? and (2) which
family of functions decays to zero fastest?

Exponential Versus Linear Functions: Which Grow Faster?

We saw in Section 2.4 that any exponential growth function with 
will eventually grow faster than any linear function with positive slope. The rea-
son is that the multiplicative effect of the growth factor c in an exponential func-
tion is greater than the additive effect of the slope in a linear function. Similarly,
any exponential decay function will eventually decrease more slowly than any
linear function with a negative slope.

Exponential Versus Power Functions: Which Grows Faster?

Power functions of the form and exponential growth functions of
the form both grow rapidly as x increases. But, do they grow at
roughly the same rate, or does one grow much faster than the other?

Consider and for We know that every power function of
the form with passes through the origin and that every exponential
curve of the form crosses the vertical axis at So let’s begin by com-
paring these two functions for small values of x. The local, or close-up, view, in Fig-
ure 2.62 shows that, between and the graph of is above the
graph of but that the power function seems to be growing more rapidly. If
we extend the interval somewhat, we find that by the power function has
surpassed the exponential function. (Where does that happen?) On a somewhat
larger scale, Figure 2.63 reveals that the power function continues to pull away
from the exponential function.

x � 2
y � x4

y � 2xx � 1,x � 0

y � 1.y � cx
p � 0y � xp

x � 0.y � x4y � 2x

c � 1y � c x,
p � 1y � xp,

c � 1y � kcx

x

y

1

y = log x

y = x p

p < 0

x

y
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0 1

1

2

x

y

y = 2x

y = x4

FIGURE 2.62

y = 2x

y = x4

0 3

30

x

y

FIGURE 2.63

However, in Figure 2.64, which shows the interval from to the ex-
ponential curve has again overtaken the power curve. (Where does that happen?)
The still larger view from to in Figure 2.65 shows that, for large x-val-
ues, is insignificant compared to In fact, is growing so much
faster than that its graph appears almost vertical in comparison to the rela-
tively slow growth of Verify this comparison numerically by trying several
different values of x—say, and (but don’t go too far
because you may exceed your calculator’s capacity).

x � 50x � 10,x � 2,x � 1,
y � x4.

y � x4
y � 2xy � 2x.y � x4

x � 25x � 0

x � 20,x � 0

20

250,000

x

y

y = 2x

y = x4

FIGURE 2.64
25

2,000,000

0
x

y

y = 2x

y = x4

FIGURE 2.65

Use your function grapher to find, correct to two decimal places, all the points
where and intersect. ❐

This behavior pattern is typical of any power function with 
compared to any exponential function for Although the exponen-
tial function starts more slowly than the power function for small values of x, the
exponential function eventually dominates for any value of and so
it always wins the race toward infinity.

Plot and for with to see where the ex-
ponential function overtakes the power function. ❐

You have already seen that a positive constant multiple doesn’t change the overall
shape or behavior of a function. For instance, the power function has the
same shape as the power function but it grows more rapidly because the firsty � x4,

y � 5000x4

0 � y � 300,0000 � x � 20y � x5y � 3xThink About This

p � 1,y � xp

c � 1.y � c x,
p � 1y � xp,

y � x4y � 2x
Think About This
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x

10 1.62889

100 131.501

1000

10,000 10,00010 � 1104 2 10 � 10407.816 � 10211

100010 � 1103 2 10 � 10301.5463 � 1021

10010 � 1102 2 10 � 1020

1010

g (x) � x10f (x) � (1.05)x

x

2000

1500

1499

1498 5.6901 � 10315.5153 � 1031

5.7282 � 10315.7911 � 1031

5.7665 � 10316.0806 � 1031

1.024 � 10332.3911 � 1042

g (x) � x10f (x) � (1.05)x

y = 1.05x

500 1000 15000
x

y

6 × 1031

y = x10

FIGURE 2.66

is 5000 times larger for any x value. We’ve already shown that the exponential function
eventually overtakes the power function It also eventually overtakes the

power function it just takes longer. The only question is: Where does that
happen? In the long run, the exponential function invariably wins the race to infinity.

EXAMPLE 1
Estimate the point x where finally overtakes 

Solution We know that the power function grows very rapidly and that the
exponential function has a fairly small growth factor of 1.05. Let’s look at
their respective function values numerically for different values of x.

f 1x 2 � 1.05x
g 1x 2 � x10

g 1x 2 � x10.f 1x 2 � 1.05x

y � 5000x4;
y � x4.y � 2x

From this comparison, it is evident that the exponential function has overtaken the
power function sometime after but long before where 

has far exceeded the value of Suppose we narrow our search by try-
ing a few additional values of x.

g 1x 2 � x10.11.05 2 x
f 1x 2  �x � 10,000,x � 1000

We conclude that the exponential function finally overtakes the
power function just before as illustrated in Figure 2.66. If we zoom
in, either numerically on the table or geometrically on the graph, we find that the point of
intersection of the two functions occurs near and y � 5.71169 � 1031.x � 1498.718

x � 1499,g 1x 2 � x10
f 1x 2 � 11.05 2 x

�
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2.8 Comparing Rates of Growth and Decay 135

Now let’s compare a decaying exponential function and a power function
with a negative exponent. Consider and Both
graphs eventually approach the x-axis as a horizontal asymptote, but which one
approaches the x-axis faster? We could compare them graphically or numerical-
ly by trying several large values of x, such as or Alternatively,
we can reason that, because is eventually larger than we know that

is eventually smaller than So the graph of
eventually falls below the graph of as shown in Figure 2.67.y � x�2,y � 112 2

x
x�2 � 1>x2.10.5 2 x � 112 2

x � 1>2x
x2,2x

x � 1000.x � 100

y � x�2 � 1>x2.y � 112 2
x � 10.5 2 x

This behavior pattern is typical. All decaying exponential functions invariably
approach 0 faster than any power function with a negative exponent as A
power function could begin dropping at a faster rate when compared to an expo-
nential function; for instance, compare with However, as

the exponential function eventually decays faster than the power function
to win the race toward 0. The only question is: When does the decaying exponen-
tial function overtake the decaying power function on the way to zero? As we have
demonstrated, this point of intersection can be approximated with any desired de-
gree of accuracy by using either numerical or graphical methods.

Logarithmic Functions Versus 
Power Functions: Which Grows Faster?

We know that a logarithmic function and a power function with power 
both increase and are concave down. A table of values for reveals that
the logarithm grows very slowly as x increases beyond Figure 2.68 shows thex � 1.

f 1x 2 � log x
0 	 p 	 1

x S 
,
y � 0.9x.y � x�100

x S 
.

0

y = x –2

y = 2–x

x

y

FIGURE 2.67

x

y

(1, 0)(0, 0)

y = x1/3

y = log x

FIGURE 2.68
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136 CHAPTER 2 Families of Functions

Comparisons When x is Large
Concave Up Growth Functions

Power functions with power grow faster than linear functions with
slope 

Exponential functions with growth factor grow faster than power
functions with power 

Concave Down Growth Functions

Power functions with power grow more slowly than linear
functions with slope 

Logarithmic functions grow more slowly than power functions with
power 

Decay Functions
Exponential functions with decay factor decay more rapidly

than power functions with power p 	 0.
0 	 c 	 1

0 	 p 	 1.

m � 0.
0 	 p 	 1

p � 1.
c � 1

m � 0.
p � 1

graphs of and In fact, log x grows more slowly than any positive
power of x. In the long run, any power function with beats the logarith-
mic function in the race toward infinity.

Compare the behavior of different power functions (for example, or
to on your function grapher to convince yourself of how

slowly the log function grows. ❐

Furthermore, both logarithmic functions and power functions with power
grow more slowly than linear functions with slope The reason

is that the linear function is a power function with which grows
faster than any power function with a smaller power p.

In summary, we have the following facts:

p � 1,y � x
m � 0.0 	 p 	 1

y � log xy � x1>10 2
y � x1>2Think About This

0 	 p 	 1
y � x1>3.y � log x

Average Rate of Growth

We have often described an increasing, concave up function as “increasing faster
and faster” or “increasing at an increasing rate,” although we never precisely de-
fined what this means. We now formalize this concept by building on what we
know about lines. One of the main characteristics of a linear function is that it
grows (or decays) at a constant rate. That is, for each fixed increase (say, ) in the
independent variable x, the line rises (or falls) the same amount no matter what
point on the line we use, as shown in Figure 2.69. The constant ratio is the
slope of the line.

Now let’s try this with an exponential growth function At dif-
ferent points on the curve, move the same horizontal distance to the right and
determine the corresponding vertical change as shown in Figure 2.70. At point
P, there is a relatively small change in y; at point Q, the corresponding change in y
is somewhat larger; and by the time we get to point S, the corresponding change in
y is considerably larger.

�y,
�x

y � f 1x 2 � kcx.

�y>�x
�y

�x

Gord.3896.02.pgs  4/24/03  9:26 AM  Page 136



2.8 Comparing Rates of Growth and Decay 137

x

y

∆x

∆y ∆x

∆y
∆x

∆y ∆x

∆y

FIGURE 2.69 0
x

y

∆x
P

Q
R

S

∆x

∆x

∆x

FIGURE 2.70

For instance, suppose that and that we take steps of size
We start at where When we move to the

right, we get to at a height of The change in height is
as shown in Figure 2.71.�y � 1.095 � 1 � 0.095,

1.20.5 � 1.095.x � 0.5
�x � 0.5y � 1.20 � 1.x � 0,�x � 0.5.

y � f 1x 2 � 1.2x

We now repeat this process, starting at where 
We again move to the right, getting to the point and

The corresponding change in height is now
as shown in Figure 2.71. Thus the same size step to

the right has resulted in a considerably larger increase in the change in height of the
exponential growth function.

Repeat the preceding argument by starting from the point and moving to
the right by How does the change in y compare to the values of that
we found? ❐

To measure how rapidly this, or any other function is increasing (or
decreasing), we consider the ratio called the average rate of change of the
function over an interval, which we discussed briefly in Section 1.1. We have

In the special case where the function is linear, this ratio is simply the slope of the line.

EXAMPLE 1
Find the average rate of change of the linear function between 
and x � 9.

x � 1f 1x 2 � 3x � 5

Average rate of change of f  from x1 to x2 �
�y

�x
�

f 1x2 2 � f 1x1 2
x2 � x1

 .

�y>�x,
y � f 1x 2

�y�x � 0.5.
x � 3Think About This

�y � 1.5774 � 1.44 � 0.1374,
y � f 12.5 2 � 1.22.5 � 1.5774.

x � 2.5�x � 0.5
y � f 12 2 � 1.22 � 1.44.x � 2

x = 0.50 x = 2 x = 2.5

1

1.44

1.095

1.5774

x

y

y = 1.2x

∆x = 0.5

∆x = 0.5

∆y = 1.5774 – 1.44 = 0.1374

∆y = 1.095 – 1 = 0.095

FIGURE 2.71
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x0 x0 + ∆x
x

y

y = f (x)

∆x

∆y = f (x0 + ∆x) – f (x0)

f (x0 + ∆x)

f (x0)

m =
f (x0 + ∆x) – f (x0)

∆x

FIGURE 2.72

Solution The average rate of change is

which is the slope of the line.

�

EXAMPLE 2
Find the average rate of change of the exponential function (a) between

and and (b) between and 

Solution

a. The average rate of change of between and is

b. The average rate of change of between and is

�

Note how the average rate of change between and 2.5 is considerably
larger than that between and 0.5. The function is growing ever faster as we
move to the right.

Instead of thinking of the average rate of change of a function from
to we can also think of it as the average rate of change from any point 

to We then have

as illustrated in Figure 2.72. Geometrically, the average rate of change is the slope
of the line segment through the two points and 
The more positive this slope is, the faster the curve is increasing. Thus, for an in-
creasing, concave up function, the average rate of change increases as we move
from left to right.

1x0 � �x, f 1x0 � �x 2 2 .1x0, f 1x0 2 2

Average rate of  change �
f 1x0 � �x 2 � f 1x0 2

�x
 ,

x � x0 � �x.
x � x0x2 ,x1

y � f 1x 2

x � 0
x � 2

f 12.5 2 � f 12 2
�x

�
1.5774 � 1.44

0.5
�

0.13744

0.5
� 0.27488.

x � 2.5x � 2f 1x 2 � 1.2x

f 10.5 2 � f 10 2
�x

�
1.095 � 1

0.5
� 0.19.

x � 0.5x � 0f 1x 2 � 1.2x

x � 2.5.x � 2x � 0.5x � 0
f 1x 2 � 1.2x

f 19 2 � f 11 2
�x

�
13 . 9 � 5 2 � 13 . 1 � 5 2

9 � 1
�

32 � 8

8
�

24

8
� 3,

If is a decreasing function, the average rate of change will be negative, just
as the slope is negative for a decreasing linear function.

f 1x 2
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2.8 Comparing Rates of Growth and Decay 139

What is the average rate of change of from to ❐

EXAMPLE 3
Find the average rate of change of between and 

Solution In going from to we have a step of as depicted in Fig-
ure 2.73. Therefore the average rate of change between and is

f 12.4 2 � f 12 2
�x

�
log 2.4 � log 2

0.4
� 0.19795.

x � 2.4x � 2
�x � 0.4,x � 2.4,x � 2

x � 2.4.x � 2f 1x 2 � log x

x � 1.02?x � 1f 1x 2 � x�1 � 1>xThink About This

Problems

1. Use your function grapher to graph and
Determine appropriate x- and y-scales to

obtain the diagrams shown below.

2. a. For what values of x is 
b. For what values of x is 
c. For what values of x is 

3. Use your function grapher to estimate when 
overtakes as they both decay to zero.

4. Estimate where finally overtakes 
on their “turtle versus snail” race toward infinity.

5. For each linear function, find the average rate of
change on the indicated intervals.

log x
g 1x 2  �f 1x 2 � x0.15

y � x�610.6 2 x
y �

4x � x4?
3x � x3?
2x � x2?

y � 2x.
y � x3 a. between and 

b. between and 
c. between and 
d. between and 
e. between and 

6. Prove that the average rate of change for any linear
function on any interval from to

is equal to the slope m.

7. Find the average rate of change of (a) be-
tween and (b) between and

and (c) between and Put them
in ascending numerical order.

x � 2.x � 1x � 2,
x � 0x � 1,x � 0

f 1x 2 � x2

x2

x1f 1x 2 � mx � b

x � 5x � 24x � 3y � 12
x � 3x � �2f 1x 2 � �3x � 4

x � 5x � 2f 1x 2 � �3x � 4
x � 3x � �2f 1x 2 � 4x � 9

x � 5x � 2f 1x 2 � 4x � 9

20 2.4
x

y

∆x = 0.4

∆y = 0.380 – 0.301 = 0.079

y = log x

log 2 = 0.301

log 2.4 = 0.380
m = 0.380 – 0.301

0.4

FIGURE 2.73

�

x

y

y = 2x

y = x3

(a)

x

y

y = 2x

y = x3

(b) y

y = 2x

y = x3

(c)

Gord.3896.02.pgs  4/24/03  9:26 AM  Page 139



x

y

P

Q

R

140 CHAPTER 2 Families of Functions

x

y

x = a

A

8. Consider the function 

a. Find the average rate of change of f between
and 0.01.

b. Find the average rate of change of f between
and 1.01.

c. Find the average rate of change of f between
and 2.01.

d. Based on your results from parts (a)–(c), can you
predict the average rate of change of f between

and 3.01? between and 4.01?
e. What happens to your answers in parts (a)–(c) if

instead of 0.01?

9. a. In parts (b), (c), and (d), you are asked to find
the average rate of change of be-
tween and 1, between 1 and 2, and be-
tween 0 and 2. Before calculating these values,
predict the numerical order, from smallest to
largest, of these three quantities.

b. Find the average rate of change of f between
and 1.

c. Find the average rate of change of f between
and 2.

d. Find the average rate of change of f between
and 2.

10. The functions and intersect at 
and at the functions and in-
tersect at and at In general, for

the graphs of and inter-
sect at two points except for one specific value of p
(with ) for which the curves intersect at only
one point. Use your function grapher and trial and
error to locate the one special value of p (accurate
to two decimal places) for which the curves 
and intersect at only one point.

11. a. Use the three points P, Q, and R shown on the
accompanying graph of to determiney � f 1x 2

y � px
y � xp

p � 1

g 1x 2 � pxf 1x 2 � xpx � 0
x � 2.478.x � 3

y � 3xy � x3x � 4;
x � 2y � 2xy � x2

x � 0

x � 1

x � 0

x � 0
f 1x 2 � 1x

�x � 0.001

x � 4x � 3

x � 2

x � 1

x � 0

f 1x 2 � x2. the three line segments PQ, QR, and PR. List
these line segments in the order of increasing
slope (smallest to largest).

b. Repeat part (a) if the function is increasing and
concave down instead.

12. Consider the function f shown and the point A at
on the curve. Determine the point:x � a

a. B at giving the interval from a to b over
which the change in f is least.

b. C at giving the interval from a to c over
which the change in f is greatest.

c. D at giving the interval from a to d over
which the average rate of change in f is least.

d. E at giving the interval from a to d over
which the average rate of change in f is greatest.

x � e

x � d

x � c

x � b

Inverse Functions

Countries using the metric system report temperatures in degrees Celsius. Thus an
American visiting Canada who wants to know the temperature in degrees Fahren-
heit must be able to convert the Celsius readings to Fahrenheit readings by using
the formula

F �
9

5
 C � 32.

2.9

Gord.3896.02.pgs  4/24/03  9:26 AM  Page 140



2.9 Inverse Functions 141

In this relationship the Fahrenheit measurement is a function of the Celsius
measurement. Canadian visitors to the United States face the reverse problem: They
must convert Fahrenheit readings to Celsius readings. They can do so by solving the
preceding formula algebraically for C as a function of F, getting the related function

These two functions have the effect of undoing each other. For that reason, they are
called inverse functions.

In general, we write the inverse of a function f as and read it as “f inverse.”
The inverse of a function f is a function that reverses or undoes f. The two func-
tions relating F and C, which give temperature conversions between the two sys-
tems of measurements, represent a pair of inverse functions.

Suppose that we have a function that represents some quantity or
process of interest to us. Typically, we can ask two types of predictive questions.
The first question is: Determine the value of y corresponding to a particular
value of x. All we need do is substitute the value of x in the expression for the
function. The second question is: Determine when the quantity achieves a par-
ticular level—that is, find the value of the independent variable x that produces a
given value for the dependent variable y. Here we must undo the given function,
which is what the inverse function is all about. To be able to answer this question
requires the existence of an inverse function and the ability either to find its
equation algebraically or to estimate its values graphically or numerically.

When a function is given in a table, finding the inverse function is trivial, as we
demonstrate in Example 1.

EXAMPLE 1
Table 2.3 gives the average distance D from the sun (in millions of miles) for each of the
planets as a function of its average speed S (in miles per hour). Find the inverse function.

Solution For this function, we think of the average speed S of each planet as the inde-
pendent variable and the average distance D from the sun as the dependent variable, so

y � f 1x 2

f �1

C �
5

9
 1F � 32 2 .

TABLE 2.3

Planet Speed Distance 

Mercury 4,110 36.0

Venus 7,671 67.2

Earth 10,605 92.9

Mars 16,153 141.5

Jupiter 55,171 483.3

Saturn 101,164 886.2

Uranus 203,459 1782.3

Neptune 318,790 2792.6

Pluto 418,744 3668.2

D � f (S)
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TABLE 2.4

Planet Distance Speed 

Mercury 36.0 4,110

Venus 67.2 7,671

Earth 92.9 10,605

Mars 141.5 16,153

Jupiter 483.3 55,171

Saturn 886.2 101,164

Uranus 1782.3 203,459

Neptune 2792.6 318,790

Pluto 3668.2 418,744

S � f �1(D)

�
In general, if is a point on the graph of a function then 

must be a point on the inverse function Thus, finding the inverse for
any function given in a table is trivial, assuming that the inverse function exists.

For relatively simple functions given by formulas, determining the inverse func-
tion for a given function f is straightforward. We just solve the original expres-
sion algebraically for the independent variable in terms of the dependent variable,
as illustrated in Example 2.

EXAMPLE 2
Find the inverse function to the Celsius to Fahrenheit conversion function 

Solution To find the inverse function, we first subtract 32 from both sides of the equa-
tion and get

Multiplying both sides of the equation by gives

So is the inverse function.

�

Many functions, however, do not have an inverse, as we show later. Even when
a function f does have an inverse, it is not always possible to find a formula for the
inverse algebraically. Fortunately, as Examples 3 and 4 indicate, most of thef �1

C � 5
9 1F � 32 2

C �
5

9
 1F � 32 2 .

5
9

9

5
 C � F � 32.

F � 9
5 C � 32.

f �1

x � f �11y 2 .
1b, a 2y � f 1x 2 ,1a, b 2

The corresponding inverse function simply reverses the role of the two vari-
ables. Thus the average distance D from the sun of each planet is now the independent vari-
able and the average speed S of each planet is the dependent variable. We write 
Table 2.4 simply interchanges the columns for S and D from Table 2.3, as shown.

S � f �11D 2 .

f �1D � f 1S 2 .
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2.9 Inverse Functions 143

common functions that we have discussed do have inverses and we can find ex-
pressions for them algebraically.

EXAMPLE 3
a. Find the inverse function for the exponential function that

models the population of Florida, where t is the number of years since 1990 and P is
the population in millions.

b. What does this inverse function tell us?

c. What are reasonable values for the domain and range of this inverse function?

Solution

a. Since we have to solve for t as a function of P. First, we divide
both sides by 12.94:

To solve for t, we take logs of both sides of this equation:

Therefore

We can stop here or we can use properties of logarithms to simplify this expression.
Using the property that the logarithm of a quotient is the difference of the logs, we get

or, using the approximate values of and we have

This logarithmic function is the inverse to the function modeling Florida’s population.

b. The inverse function gives the number of years since 1990 (the value of t) that it takes
for the population of Florida to reach any given level P.

c. For the inverse function, the independent variable is the value of the population P
and the dependent variable is the number of years t since 1990. Therefore the domain
of the inverse function consists of all reasonable values for P—say, from 5 million to
a maximum of 50 million people. The range consists of all corresponding values of t.
To find these values, we use the equation for the inverse function that we obtained in
part a. If we substitute into the preceding equation, we get

According to this model, the population of Florida was 5 million about 33 years be-
fore 1990, or in 1957. Similarly, substituting yields

t � f �1150 2 � 80.545 log150 2 � 89.669 � 47.2,

P � 50

t � f �115 2 � 80.545 log15 2 � 89.669 � �33.4.

P � 5

t �
log1P 2 � 1.1119

0.0124
� 80.545 log1P 2 � 89.669.

log 1.029,log 12.94

t � f �11P 2 �
log1P 2 � log112.94 2

log11.029 2

t �
log1P>12.94 2

log11.029 2
� f �11P 2 .

log a
P

12.94
b � log11.029 2 t � t log11.029 2 .

P

12.94
� 11.029 2 t.

P � 12.9411.029 2 t,

P1t 2 � 12.9411.029 2 t
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so the population of Florida will reach 50 million about 47 years after 1990, or in
early 2037. Consequently, a reasonable range for the inverse function is t from 
to 47.2 years, which corresponds to about 1957 to about 2037.

�

In general, the inverse of any exponential function will be a logarithmic func-
tion (and vice versa) because the logarithm undoes the exponential function.

EXAMPLE 4
We have shown that the power function can be used to model the
weight W of large birds as a function of their wingspan S.

a. Find the inverse function for f.

b. What does the inverse function tell us?

c. What wingspan would allow a 15 pound turkey to fly?

d. What is a realistic domain and range for the inverse function?

Solution

a. We have

To solve for S, we first divide both sides of the equation by 0.15:

To find S, we must undo the power, so we raise both sides of this equation to the 
power:

using properties of exponents. Therefore the inverse function is

b. The inverse function gives the wingspan S in feet needed to support in flight a bird
that weighs W pounds.

c. If a turkey weighs 15 pounds, this formula predicts that, in order for the turkey to fly,
it would need a wingspan of

Since this is about three times the actual wingspan of a turkey, it isn’t able to fly.

d. For the original function f, the independent variable is the wingspan S and the de-
pendent variable is the weight W of a bird. For the inverse function the inde-
pendent variable is the weight W and the dependent variable is the wingspan S. If we
consider reasonably large birds that weigh between 2 pounds and 20 pounds, say, the
domain for the inverse function will be between and To find the
corresponding range, we use the equation for S we obtained in part (a):

Thus the range of the inverse function is from about 3 feet to almost 9 feet.

�

 f �1120 2 � 2.324120 2 4>9 � 8.80.

 f �112 2 � 2.32412 2 4>9 � 3.16;

W � 20.W � 2f �1

f �1,

S � 2.324115 2 4>9 � 7.7436 feet.

S � 16.667 2 4>9 W 4>9 � 2.324 W 4>9.

1S9>4 2 4>9 � S � 16.667W 2 4>9,

4
9

9
4

S9>4 � W>0.15 � 6.667 W.

W � f 1S 2 � 0.15S9>4.

W � f 1S 2 � 0.15S9>4

�33.4
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2.9 Inverse Functions 145

To solve for the variable x from a power function we extract the
pth root. That is,

if then

If p is a fraction whose denominator is even, we must have as the
domain for f.

The inverse of a power function is another power function.

To solve for the variable x from an exponential function we take
logarithms. That is, for 

if then

The inverse of an exponential function is a logarithmic function and vice
versa.

x � f �11 y 2 � log y.y � f 1x 2 � 10x,

c � 10,
y � c x,

x � 0

x � f �11 y 2 � y1>p
 .y � f 1x 2 � xp,

y � xp,

Note that the inverse function to the power function 
turned out to be another power function, In general,
the inverse of any power function, if it exists, is a power function.

Further, note how the powers of the two functions and
compare algebraically: Each power is the reciprocal of

the other. This result is analogous to what happens with We solve for x by ex-
tracting the cube root to get Thus the inverse function for 

is Similarly, if we need to find the value of x for which

then

If we need to determine the value of the base b for which

then

To verify these results, just calculate and Although these
numbers may seem bizarre to you, we perform such operations routinely in later
chapters because they allow us to answer some interesting questions.

Examples 3 and 4 illustrate two important, though different, situations. To
extract an unknown variable that appears as the base in a power function

take the corresponding pth root of both sides of the equation. To extract
an unknown variable that appears in the exponent of an exponential function

take the logarithm of both sides of the equation. We summarize this in-
formation as follows. Be sure that you understand the difference between these
two situations.

y � c x,

y � xp,

10.99965 2 2004.11.03074 2 175

b �
2004B1

2
� a

1

2
b

1>2004

� 0.99965.b2004 �
1

2
 ,

x �
1752200 � 2001>175 � 1.03074.x175 � 200,

x � y1>3 � f �11 y 2 .f 1x 2 � x3
y �x � y1>3 � 13 y .

y � x3:
S � f �11W 2 � 2.324W 4>9

W � f 1S 2 � 0.15S9>4

S � f �11W 2 � 2.324W 4>9.
W � f 1S 2 � 0.15S9>4

Extracting the appropriate root from the preceding functions was quite sim-
ple. Unfortunately, complications can arise, depending on the behavior of the
function, as we illustrate in Example 5.

EXAMPLE 5
The function models the height y of a ball thrown
straight up as a function of time t. Find how long it takes the ball to reach a height of
35 feet.

y � f 1t 2 � �16t2 � 48t � 6
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0 2.160.84
t

y

y = 35

y = —16t2 + 48t + 6

FIGURE 2.74

x

y

y = f (x)

x = f –1(y)

f

f –1FIGURE 2.75

Solution For the desired height of feet, we want to find the corresponding
value of t, so we have to solve the equation

Figure 2.74 shows the graph of the function Note that the horizontal line corre-
sponding to the height crosses the curve twice, once when seconds (on
the way up) and again when seconds (on the way down).t � 2.16

t � 0.84y � 35
f 1t 2 .

�16t2 � 48t � 6 � 35.

y � 35

�

Example 5 illustrates the fact that not every function has an inverse. In this case,
two different values of t correspond to a height of 35 feet. Consequently, the func-
tion does not have an inverse because t is not a func-
tion of y—at least one value of y leads to two different values of t. That is,
we can’t undo the effects of the original function f uniquely. We discuss this situa-
tion in more detail later.

We have said that a function f and its inverse undo each other. To show
what this means, suppose that we start with a number x in the domain of f. The
function f carries x into the corresponding value of in the range of f, as il-
lustrated in Figure 2.75. Similarly, if we start with any value of y in the range of f ,
then maps y into the value of x associated with it so that That is,

and y � f 1x 2 .x � f �11 y 2

f �11 y 2 � x.f �1

y � f 1x 2

f �1

1 y � 35 2
y � f 1t 2 � �16t2 � 48t � 6

Again, consider Figure 2.75. For the original function f, the circle on the left rep-
resents the domain of f (the allowable values of x) and the circle on the right rep-
resents the range of f (the corresponding values of y). For the inverse function

the circle on the right represents the domain of (the allowable values of
y) and the circle on the left represents the range of (the corresponding values
of x).

In particular, suppose that is any specific value of x and that so
that f transforms into If we follow this by applying to we get

returning to the original value. That is, undoes the effect of f
on any value (We consider the idea of applying one function after another in
detail in Section 4.6.)

x0 .
f �1x0f �11y0 2 � x0 ,

y0 ,f �1y0 .x0

y0 � f 1x0 2 ,x0

f �1
f �1f �1,

Gord.3896.02.pgs  4/24/03  9:26 AM  Page 146



2.9 Inverse Functions 147

If f and are inverse functions,

for any x:

for any y: y  
  f �1   

 "  x � f �11x 2   
  f   

 "  y � f 1 x 2 .

x  
  f   

 "  y � f 1x 2   
  f �1   

 "  x � f �11 y 2 ;

f �1

–5 0 5

25

x

y

y = x2

FIGURE 2.76

Similarly, if is any specific value of y and then 
That is, f undoes the effect of on any value 

We can represent these ideas pictorially as follows.
y0 .f �1

f 1x0 2 � y0 .x0 � f �11 y0 2 ,y0

For instance, the exponential function and the logarithmic function are inverses of
each other, which simply restates the relationships

and

Consider the model for the population of Florida and its
inverse

(from Example 3.) Select any year—say, 1996 when —and verify that if
then ❐

Determining the Existence of an Inverse Function

Based on the results of Example 5 on the height of a ball thrown vertically upward,
we know that not every function f has an inverse In particular, no power func-
tion with an even power can have an inverse. To see why, consider the function

whose graph is the parabola shown in Figure 2.76. The inverse func-
tion, if it exists, should give the value of x that produces any given height y. Sup-
pose that we start at a height of Clearly, there are two different points on
the parabola at a height of 25, one corresponding to and the other corre-
sponding to We cannot reverse the process uniquely to get only one value
of x for a given y, so y is not a function of x and does not have an inverse.f 1x 2 � x2

x � �5.
x � �5

y � 25.

f 1x 2 � x2,

f �1.

t � f �11P 2 .P � f 1t 2 ,
t � 6

t � f �11P 2 �
log1P 2 � log112.94 2

log11.029 2

P � f 1t 2 � 12.9411.029 2 tThink About This

10log y � y.log110x 2 � x

However, we can restrict the domain of this function to produce a partial in-
verse. Suppose that we limit our attention to nonnegative values of x and consider
the function for In this case, if we take any positive value for yx � 0.g 1x 2 � x2,
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x

y

y = x3

y = x

y = √x
3

FIGURE 2.77

x

y

y1

y2

x1
x2

Strictly increasing

x

y

y4

y3

Increasing and decreasing
on different intervals

FIGURE 2.78

(say, ) we can undo the function g by taking the square root and accepting
only the nonnegative value, Thus the function with domain re-
stricted to has an inverse, Alternatively, if we restrict our do-
main to values of we could also uniquely undo the results of squaring and
get the inverse 

Is there a simple criterion to determine whether a function f has an inverse?
Definitely! Again, we know that the function has an inverse if we re-
strict its domain to either or It does not have an inverse if we allow
the domain to include both positive and negative values for x. When we restrict
the domain to we consider only the right-hand side of the parabola where
the function is strictly increasing. When we restrict the domain to we con-
sider only the left-hand side of the parabola where the function is strictly decreas-
ing. In both instances, the restricted function has an inverse. On the one hand,
when we allow both positive and negative values for x, the function first decreases
and then increases and thus does not have an inverse. On the other hand, the
function has an inverse without any restrictions on
x. We also know that this function is strictly increasing for all values of x, as shown
in Figure 2.77.

x � h�11  y 2 � 13 yh1x 2 � x3

x � 0,
x � 0,

x � 0.x � 0
f 1x 2 � x2

h�11  y 2 � �1y .
x � 0,

g�11  y 2 � 1y .x � 0
g 1x 2 � x2x � 5.

y � 25,

These observations suggest a simple criterion for functions to have an inverse:
The function must be either strictly increasing or strictly decreasing. We call such a
function monotonic. Compare the two functions shown in Figure 2.78. The one on
the left is strictly increasing and, for any desired height y, we can undo the effect of
the function and come back to a unique x that produced that particular y. In con-
trast, the one on the right increases and decreases over different intervals. There are
some heights, such as and that occur several times, so different x-values cor-
respond to the same y-value. Thus it is not possible to find the unique x that pro-
duces a particular y-value.

y4 ,y3
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y = log x 

y = x 

y = 10x 

(1, 10)

(b, a)

(a, b)(10, 1)
(0, 1)

(1, 0)
x

y

FIGURE 2.79

In summary, all linear, exponential, and logarithmic functions have inverses
because they are either strictly increasing or strictly decreasing. Any power func-
tion that is restricted to also has an inverse.

There is an alternative criterion analogous to the Vertical Line Test that we dis-
cussed in Section 1.4 for determining whether a curve represents a function. Recall
that a curve represents a function if every vertical line crosses the curve at most
once. In other words, for any value of x, one and only one value of y corresponds to
that x. In an analogous way, we can use a Horizontal Line Test to determine
whether a function has an inverse: If every horizontal line crosses the curve at most
once, a function f has an inverse In other words, for any height y, one and only
one value of x corresponds to that height.

Behavior of the Inverse Function

At times, expressing both f and as functions of the same variable is desirable so
that their graphs can be drawn on the same set of axes and their behaviors com-
pared easily. For instance, we previously showed that

and

are inverse functions. Instead, let’s write these two related functions so that both
are functions of the same independent variable, x:

and

Figure 2.77 displayed the graphs of both f and Notice that the graphs of the
function and its inverse are mirror images of each
other about the line (Note that, if we didn’t interchange x and y for the in-
verse function, the two formulas and would represent iden-
tical curves, so that we would see only one curve.)

Similarly, the exponential function and the logarithmic function
are inverse functions. If we can solve for x by taking the

logarithm of both sides to get

We now interchange the variables so that x is also the independent variable for the
inverse function and write Again, note that the graphs of
these two functions are mirror images of each other about the line as shown
in Figure 2.79.

y � x,
y � f �11x 2 � log x.

log y � log 10x � x � f �11y 2 .

y � f 1x 2 � 10x,y � log x
y � 10x

x � 13 y � y1>3y � x3
y � x.

f �11x 2 � 13 x � x1>3f 1x 2 � x3
f �1.

y � f �11x 2 � 23 x .y � f 1x 2 � x3

x � f �11 y 2 � 23 yy � f 1x 2 � x3

f �1

f �1.

x � 0
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x

y

y = 10−x y = 10x

y = x

FIGURE 2.80

In general, the graphs of a function f and its inverse are always mirror im-
ages of each other about the line For the inverse to exist, the function f must
be either strictly increasing or strictly decreasing. Consequently, the graph of the in-
verse function also is monotonic, and both functions increase or both decrease.

However, there are no clear patterns for the concavity of f and Both f
and can be concave up, both can be concave down, each can have opposite
concavity, or both can have no concavity (if their graphs are lines).

Note that is not the same as For instance,

if then

whereas which is not the same as (Check their graphs
to convince yourself.) Similarly,

if then

but which is not the same as (Check their graphs to
convince yourself.) Figure 2.80 shows the graphs of and 
The graphs are not mirror images of each other about the line Using the
symmetry condition, describe where the graph of the inverse function of g would be
in Figure 2.80.

y � x.
1>g 1x 2 � 10�x.g 1x 2 � 10x

log x.1>g 1x 2 � 1>10x � 10�x,

g�11x 2 � log x,g 1x 2 � 10x,

x1>3.1> f 1x 2 � 1>x3 � x�3,

f �11x 2 � x1>3,f 1x 2 � x3,

1> f 1x 2 .f �11x 2

f �1
f �1.

f �1

y � x.
f �1

Finding the Inverse Function

Suppose that we know that a function f has an inverse because it is either strict-
ly increasing or strictly decreasing. Can we always find the inverse function 
If the formula for the function is quite simple, we might be able to undo the
equation algebraically to obtain a formula for For instance, we demonstrat-
ed earlier that we can undo the conversion formulas between the Fahrenheit and
Celsius temperature scales, getting

and

the algebra is simple because the relationship is linear. Similarly, we can undo the
equation of an exponential function to get the logarithmic function and vice versa
so that

and for 

Also, we can undo the relationship between the squaring and square root functions
algebraically, obtaining

and for x � 0.h�11x 2 � 2x ,h1x 2 � x2

x � 0.g�11x 2 � log x,g 1x 2 � 10x

f �11x 2 �
5

9
 1x � 32 2 ;f 1x 2 �

9

5
 x � 32

f �1.

f �1?
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1

g–1(x)

g(x)

y = x

y = 1

x = 1

FIGURE 2.81

In Example 6, we illustrate these ideas with a somewhat more complicated function.

EXAMPLE 6
For the function with domain find Analyze the behav-
ior of g and 

Solution As shown in Figure 2.81, the graph of the function g is strictly decreasing, so
its inverse exists. And because the domain of g is we know that Thus

must be larger than 1, and therefore the range of g must be y � 1.1 � 1>x
1>x � 0.x � 0,

g�1.
g�1.x � 0,y � g 1x 2 � 1 � 1>x

Next, let’s find a formula for the inverse function. If

Taking the reciprocal of both sides, we get

Interchanging the roles of x and y to use the same independent variable yields

The graphs of the function g and its inverse are also shown in Figure 2.81. As expect-
ed, they are mirror images of the other about the line 

Further, the original function g is a decreasing function; it decays from a vertical as-
ymptote at toward a horizontal asymptote of The graph of also decreases
from a vertical asymptote at toward a horizontal asymptote of Note that the
vertical and horizontal asymptotes are interchanged and that both curves are concave up.

�

Unfortunately, solving for an inverse function algebraically, as we did in Exam-
ple 6, usually is not possible. Hence, we usually have to resort to numerical or
graphical methods to estimate values for the inverse function; that is, given a par-
ticular value for y, we can determine the corresponding value of x by examining ei-
ther the graph of the original function or successive numerical estimates.

EXAMPLE 7
For the function (a) explain why exists and (b) estimate the value
of f �1110 2 .

f �1f 1x 2 � 2x � 3x,

y � 0.x � 1
g�1y � 1.x � 0

y � x.
g�1

x � 1.y �
1

x � 1
� g�11x 2 ,

y � 1.x �
1

y � 1
� g�11y 2 ,

1
x

� y � 1.

y � 1 � 1>x,
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Solution

a. As shown in the graph of f in Figure 2.82, the function appears to be strictly increas-
ing, which means that the inverse function exists.

Problems

1. Which of the following functions have inverses?
Explain why or why not. For any function having
an inverse, describe what the inverse function
tells you.
a. The height of water after t minutes in a child’s

pool that you are filling at a steady rate, using a
garden hose.

b. Your distance from New York on an airplane flight
from New York to San Francisco as a function of
the time t since takeoff.

c. The height of the student who is numbered n on
your instructor’s class roster.

d. The amount that the nth customer in line at
Burger Heaven pays for lunch.

b. Unfortunately, for the expression it is not possible to solve for x in terms
of y, so we are unable to find a formula for even though we do know that ex-
ists. Graphically, the curve clearly passes the level at some point x, so we must
estimate, either numerically or graphically, the value of x for which We
know that and that so the desired
value of x must be between 1 and 2. We can zoom in either by checking further nu-
merical values or by examining the graph of the function between 1 and 2, as shown in
Figure 2.83. Either way, we find that so f 11.73 2 � 21.73 � 31.73 � 10.007.x � 1.73,

f 12 2 � 22 � 32 � 4 � 9 � 13,f 11 2 � 2 � 3 � 5
f 1x 2 � 10.

y � 10
f �1f �1,

y � 2x � 3x,

�
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x 0 1 2 3 4 5

2.94 2.48 2.05 1.84 1.44 1.12f (x)

Final speed, v (mph) 30 40 50 60 70

Time, T (sec) 3.00 4.29 5.52 7.38 9.81

–2 –1 1 2 3 4 5

–1

1

2

3

4

5

x

y

x

y

0

(a)

0
x

y(b)

0
x

y(c)

x

y

0

(d)

e. The length of the fingernail on your right index
finger if t is the number of hours since you last
clipped your nails.

f. The amount spent by a family to heat their home
if T is the temperature at which they set the
thermostat.

g. The depth of the snow on a person’s front lawn
in Buffalo as a function of the time t elapsed
from October 1 to the following March 1.

h. The total amount of snow that falls on the per-
son’s lawn in part (g) as a function of the time t
elapsed from October 1 to the following March 1.

2. For the function f shown in the accompanying fig-
ure, estimate the value for x that corresponds to

a. b.
c. d.

Then plot the resulting points and use them to
sketch the graph of the inverse function 

3. Consider the function f with values given in the fol-
lowing table.

f �1.

y � �1.y � 5;
y � 2;y � 0;

5. The table of values gives the time T needed for a
Trans Am to accelerate from zero to the indicated
final speed v.

a. Explain why this set of data represents a func-
tion and why it has an inverse.

b. Explain what the inverse function tells you. What
is Estimate the value of

6. We know that 1 inch is equivalent to about 2.54 cen-
timeters.

a. Write a formula for the function f that gives an
object’s length C in centimeters as a function of
its length I in inches.

b. Find a formula for the inverse function and
explain what tells you, in practical terms.

7. Find the inverse function of

8. Find the inverse function of

9. Suppose that the temperature of an object is being
measured to the nearest degree on both the Fahren-
heit and Celsius scales. In general, which reading
would you expect to be more accurate? Why?

10. For each function f shown, sketch the graph of the
inverse function on the same set of axes.f �1

f 1t 2 � 50110 2 0.1t.

p1t 2 � 11.04 2 t.
f �1

f �1

f �117 2 .f �115.52 2?

a. What is the domain of f ? What is the range?
b. Create a table of values for What are its do-

main and range?

4. Use your function grapher to decide which functions
have inverses. For those functions that do, estimate
the value for 

a.
b.
c. d.
e. f. f 1x 2 � 2x � x3f 1x 2 � 2x � x3

f 1x 2 � 2x � x2f 1x 2 � 2x � x2
f 1x 2 � x3 � 2x2 � 5x � 5
f 1x 2 � x3 � 9x2 � 5x � 5

f �1110 2 .

f �1.

11. Suppose that a function f is increasing and concave
up. By thinking of its inverse as the reflection about
the line explain why is also increasing. Is
it concave up or concave down? What happens if f is
increasing and concave down?

f �1y � x,
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154 CHAPTER 2 Families of Functions

12. Repeat Problem 11 if the function f is decreasing
and concave up; the function f is decreasing and
concave down.

13. On the same set of axes, sketch the graph of
that corresponds to the function f shown in the ac-
companying figure.

f �1

Exercising Your Algebra Skills

Solve for the unknown in each equation.

1. 2.

3. 4.

5. 6.

7. 8.

For Problems 9–12, solve for the independent variable
in terms of the dependent variable for each function.

9. 10.

11. 12. L � g1t 2 � 12510.92 2 tQ � g 1w 2 � 27w�3>4

y � f 1t 2 � 1211.06 2 ty � f 1x 2 � 12x7>2

210.75 2 t � 1411.02 2 x � 7

25c9 � 817b8 � 32

m1995 � 40.84k � 0.20

0.07t � 3c25 � 14

For Problems 13–16, solve for the indicated variable in
each formula to find the inverse function.

13. for a 14. for m

15. for V 16. for vK �
1

2
 mv2,P � kVT,

E � mc2,F � ma,

Chapter Summary

In this chapter, we covered the following ideas and approaches relating to families of
functions.

� Important behavior characteristics of four important families of functions—
linear functions, exponential functions, logarithmic functions, and power
functions.

–2 –1 1 2 3 4 5

–2

–1

1

2

3

4

5

x

y

f

14. Use the quadratic formula 

to solve the quadratic equation 
from Example 5 modeling the height of a

ball. What is the significance of the two roots of
this equation?

6 � 35
�16t2 � 48t �

t �
�b  2b2 � 4ac

2a

15. The level of Prozac in the blood can be modeled
by the function 

a. Find a formula for the inverse function.
b. Use the inverse function to determine how long it

will take until the level of Prozac drops to 25 mg.

16. The temperature of a chicken cooking in an oven
can be modeled by the function 

a. Find a formula for the inverse function.
b. Use the inverse function to determine how long

it will take until the temperature of the chicken
reaches 

17. In Problem 20 of Section 1.3 we introduced a func-
tion f that represents a simple replacement code in
which each letter of the alphabet is replaced by a
different letter according to

and

a. Explain why this function has an inverse 
b. Use the inverse to decode the message

JF  YTJF  HMYT?

f �1.

f 1Z 2 � E.f 1Y 2 � N,f 1X 2 � U,f 1W 2 � I,
f 1V 2 � G,f 1U 2 � R,f 1T 2 � Y,f 1S 2 � F,
f 1R 2 � C,f 1Q 2 � W,f 1P 2 � L,f 1O 2 � A,
f 1N 2 � O,f 1M 2 � H,f 1L 2 � Q,f 1K 2 � Z,
f 1J 2 � S,f 1I 2 � J,f 1H 2 � T,f 1G 2 � P,
f 1F 2 � B,f 1E 2 � X,f 1D 2 � V,f 1C 2 � K,
f 1B 2 � D,f 1A 2 � M,

175°.

31010.99 2 t.
T1t 2 � 350 �

P1t 2 � 8010.75 2 t.
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� How to find the slope and the equation of a line.

� What the slope of a line means.

� A criterion for knowing when a set of data follows a linear pattern.

� How to estimate the equation of a line that captures the linear pattern in a set
of data.

� How to set up and solve problems involving linear processes.

� The behavior of exponential growth and exponential decay functions.

� What the growth and decay rates and the growth and decay factors mean.

� A criterion for knowing when a set of data follows an exponential pattern.

� How to find the doubling time for an exponential growth process and the
half-life for an exponential decay process.

� How exponential behavior compares to linear behavior.

� How to find the exponential function that passes through two points.

� How to set up and solve problems involving exponential processes.

� The behavior of logarithmic functions.

� How to set up and solve problems involving logarithmic functions.

� How to use logarithms with bases other than 10.

� The behavior of power functions when the power is greater than 1, between
0 and 1, and negative.

� How to find the power function that passes through two points.

� How to set up and solve problems involving power functions.

� How power function behavior compares to exponential behavior.

� How logarithmic function behavior compares to power function behavior.

� How to determine whether a function has an inverse.

� What the inverse function tells you.

� How to set up and solve problems involving inverse functions.

x

y

x

y

x

y

1. For each of the curves shown, suggest any types of
functions that might have the indicated behavior
pattern. If you suggest an exponential function, in-
dicate whether the base c is greater than 1 or less

Review Problems

than 1. If you suggest a power function, indicate
whether the power p is positive or negative and
whether p is greater than 1 or less than 1.

(a) (b) (c)
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x y

0 3

1 5.1

2 7.2

3 9.3

x y

0 5

1 7

2 9.8

3 13.72

x

y
A

B

C

D

E

0
x

y

F G

H
I

2. Identify each function as linear, exponential, log-
arithmic, or power. In each case, explain your
reasoning.

a. b.

c. d.

e. f.

g. h.
i. j.

k. l.
m. n.

5x � 3y � 15y � 1>1x

y � x0.7y � 10.7 2 x
y � x1.05y � 1.05x

x

y

x

y

x

y

x

y

x

y

x

y

3. Match each formula for a function with one of the
graphs (A)–(L). Because more than one function
from the same family appears, match each member
of that family to the most appropriate graph.

a. b.
c. d.
e. f.
g. h. y � 511.03 2 xy � 510.97 2 x

y � 510.92 2 xy � �x � 3
y � 2x � 3y � 3 � 2x
y � 2x � 3y � 3x � 3

x

y

J

L

K

0

4. The accompanying figure shows the graphs of the
values of shares of 7 stocks as functions of time.
Match each scenario with one of the graphs and
write a brief scenario for each of the remaining
graphs.

i. j.
k. l. y � x0.25y � x�2.5

y � x2.5y � 511.08 2 x
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7. a. The profits of Alamo Paper Company are grow-
ing by $100,000 each year. In 1990, its profits
were $1.5 million. Determine the profit func-
tion where t represents the number of
years since 1990. Draw a graph of and
determine the year in which profits first exceed
$2 million.

b. Ord Paper Company had profits of $950,000 in
1990, and its profits are growing at the rate of
10% each year. Determine when its profits first
exceed $2 million.

c. Use your function grapher to determine when the
profits of Ord first exceed the profits of Alamo.

8. When the bald eagle was formally put on the en-
dangered species list in 1967, there were about 800
of the eagles in the United States. As a result of
eagle protection and restoration efforts, the bald
eagle was removed from the list in 1994 when its
population was just over 8000.

a. Determine the doubling time of the eagle popula-
tion assuming the growth pattern is exponential.

b. Estimate the number of bald eagles in the United
States in 2005, assuming that the growth trend
continues.

c. When can you expect the eagle population to
reach 20,000?

9. In preparing a holiday cranberry mold, a cook
added boiling water at F to the fruit and gela-
tin mixture, which was then poured into the mold
and put into a refrigerator. After 30 minutes,
the temperature of the mixture was The tem-
perature at time t (in minutes) is given by

where a is a constant.
What is the temperature of the mixture 3 hours after
the mold was put in the refrigerator?

10. From 1980 to 1998, the number of workers, in mil-
lions, covered by Social Security can be approxi-
mated by a linear function of time t. Use the data in
the table below and the black thread method to find
the equation of a line that fits the data.

Use this linear function to estimate the number
of workers covered by Social Security in 2005.

F1t 2 � 17211 � a 2 t � 40,
F1t 2

148°.
40°

212°

y � P1t 2
P1t 2 ,

(2)

(7)
(6)

(5)

(4)

(3)

(1)

t

Price

a. The value of the stock increased 12% per year.
b. The value of the stock increased 8% per year.
c. The value of the stock dropped by $4 each year.
d. The value of the stock increased by $6 each year.
e. The value of the stock remained steady.

5. The points and
are plotted in the accompanying figure and

a line is drawn through them.
15, 100 2

14, 50 2 ,13, 20 2 ,12, 5 2 ,11, 1 2 ,

1 2 3 4 5

1

5

20

50

100

a. What is wrong with the graph as it is drawn?
b. Draw a correct graph of these points and sketch

a smooth curve that passes through them.
c. Describe the behavior pattern in the function

based on these points. Identify a possible type of
function that might be an appropriate model for
these values. Explain your reasoning.

6. A function is exponential with known values
and Determine the function

and give the growth factor.
F13 2 � 8.5.F10 2 � 5

F1t 2

Year 1980 1985 1990 1992 1993 1994 1995 1996 1997 1998

Workers (millions) 140.4 150.9 164.0 167.5 169.1 170.7 172.9 174.8 177.0 179.1

Source: 2000 Statistical Abstract of the United States
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158 CHAPTER 2 Families of Functions

x

y

(2, 7)

(4, 18)

x

y

(–3, 21)

(0, 8)

x

y

(–3, 21)

(0, 8)

Year 1980 1990 1994 1995 1996

Deaths 2492 4506 7828 8000 8431

Source: 2000 Statistical Abstract of the United States

t Linear Model Exponential Model

0 $17,700 $17,700

5 ? ?

10 ? ?

15 ? ?

17 $37,000 $37,000

25 ? ?

30 ? ?

11. The following table shows the number of deaths in
the United States resulting from accidental poison-
ing by drugs and medications in various years. Use
the black thread method to find the equation of a
linear function that fits the data. What is the slope
of the line? What does this slope represent? Use the
equation to predict the number of deaths from ac-
cidental poisoning in 2003.

12. Find possible equations for the function represent-
ed by each graph.

e. Use both models to predict the amount of taxes
collected in 2010. Which model seems more ac-
curate? Explain.

14. The median family income I in the United States
was about $17,700 in 1980 and rose to about
$37,000 in 1997. Let t be the number of years since
1980.

a. If you assume that the increase in family income
has been linear, find an equation for the line rep-
resenting income I in terms of t. Use this equa-
tion to complete the second column of the table.

b. If you assume that the increase in family income
has been exponential, find an equation of the
form to represent family income levels
since 1980 and complete the third column of the
table.

c. On the same set of axes, sketch the graphs of the
functions you obtained in parts (a) and (b).

d. Use the equations from parts (a) and (b) to pre-
dict the median family income in 2003 for both
types of growth.

e. Suppose that both predictions from part (d)
seem unreasonable. Can you suggest any other
types of functions that might be a better fit?

15. (Continuation of Problem 14) Suppose that you
learn that the median family income in 1990 was
about $28,900.

a. Which of the two models in Problem 14 now
seems more accurate?

b. If you plot the three data points corresponding to
1980, 1990, and 1997, how would you describe
the shape of the graph of median family income
as a function of time? What is the significance of
this shape?

I � I0c 
t

13. In 1990 (when ), the IRS collected $1055 bil-
lion in taxes. In 1995, the IRS collected $1573 billion.

a. Construct the linear function giving the amount
of taxes collected by the IRS as a function of time t.

b. Use the linear function to estimate the amount
of taxes collected in 2003.

c. Construct the exponential function giving the
amount of taxes collected as a function of time t.

d. Use the exponential function to estimate the
amount of taxes collected in 2003.

t � 0

a.

b.

c.
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16. For each function, draw the inverse function, if one
exists, on the same axes. If the function has no in-
verse, explain why.

17. For each function, give its domain and find the in-
verse function.

a. b.

18. The function is either linear or exponential.
From the values in the table, decide which is the
correct type and find a formula for F.

F1x 2
g 1x 2 � x3 � 6f 1t 2 � 0.5log12t � 4 2

19. Match each of the functions f, g, and h in the table
to the behavior described as

a. increasing, straight line.
b. increasing, concave down.
c. increasing, concave up.

x 1 2 3 4 5

6 9 13.5 20.25 30.375F(x)

x

y

x

y

x

y

x 1 2 3 4 5

2.70 3.64 4.92 6.34 8.96

1.4 4.6 7.8 11.0 14.2

5.10 5.19 5.27 5.34 5.40h(x)

g(x)

f (x)

20. a. Since 1960, the price of an ice cream cone in one
southern city has been growing approximately ex-
ponentially according to the function 
If the price of a one-scoop cone was in 1960
and $1.80 in 2000, (i) determine the function f
and (ii) predict what the price of such a cone will
be in 2005.

b. The average price of a ticket to a first-run movie
was $2.00 in 1960. This price has been growing
exponentially and in 2000 was $9.00. Which of
the prices, for ice cream or for movies, is grow-
ing faster?

c. When can you expect the ice cream and movie
prices to be the same if they each continue to
grow in the same way?

d. How much would a ticket to the movies cost at
the time you found in part (c)?

e. Would you use your model to predict the answer
you got in parts (c) and (d)? Explain.

21. The aim of a college administration is to reduce
the number of students who need remedial work
in English by 10% each year. At the time the policy
was put into place, 1600 students were enrolled in
remedial English classes. If this program is suc-
cessful, how many students will be enrolled in re-
medial English in 3 years? How long will it take for
the number of students enrolled in such classes to
be reduced to one section of 15 students?

22. The level of a drug in the bloodstream decreases at
a rate of 30% of the drug per hour. Assume that
the initial dose is 150 mg. How long does it take to
bring the drug level down to under 20 mg? How
long does it take to bring the drug level down to
5% of the original level?

20¢
f 1t 2 � Act.

a.

b.

c.
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Introduction to Data Analysis

When the space shuttle Challenger exploded some 90 seconds after launch on Jan-
uary 28, 1986, it left the entire nation in a state of shock. The shuttle accident was
especially traumatic to the many school children who were watching the launch
live on television because Christa McAuliffe, a teacher, was a member of the crew.

The Challenger explosion also left behind many unanswered questions. Among
the most important were:

� What went wrong?

� Could the problem have been anticipated?

� If it could have been anticipated, why wasn’t it?

The first question is technical, the second is mathematical, and the third is politi-
cal. In this section, we address the first two questions.

The Challenger disaster involved two factors: a component known as an O-ring
and the air temperature at launch. The O-ring is a very thin ring (37.5 feet in diame-
ter but only 0.28 inches thick) that seals the connections, or joints, between different
sections of the shuttle engines. The locations of the six O-rings are indicated by the ar-
rows shown in Figure 3.1. On the morning of the Challenger launch, the air tempera-
ture was 31°F, which was considerably colder than the temperature at any previous
launch. In fact, the coldest temperature recorded at any previous launch was 53°F.

The Rogers Commission, which studied the Challenger disaster, focused on the
O-rings as a possible cause of the explosion because there had been problems with
O-rings on previous flights. In fact, the night before the launch, some of the project
engineers, as part of the standard prelaunch routine, had thought about the six
O-rings and questioned whether the Challenger should lift off because of the pre-
dicted overnight temperatures. The reasoning that went into the flight decision is
worth considering because it demonstrates the important role that mathematical
analysis can play in making informed decisions.

Twenty-four shuttle flights preceded the Challenger flight. On seven of them,
relatively minor problems had occurred with the O-rings. In reviewing these previ-
ous incidents, the engineers examined the data shown in Figure 3.2. Note that the

3.1

3

Fitting Functions to Data

FIGURE 3.1
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FIGURE 3.3

horizontal axis indicates the air temperature at launch, and the vertical axis gives
the number of O-rings affected. Each black dot represents a particular shuttle
launch. Thus the shuttle launched at 53°F experienced problems with three differ-
ent O-rings. Even though the graph shows one dot for 70°, two shuttles actually
were launched at this temperature and both had problems with one O-ring. Never-
theless, examination of this graph (as the shuttle engineers probably did) reveals
no consistent pattern indicating that the lower the air temperature at launch, the
more likely there will be O-ring problems. In fact, note that the shuttle launch at
75°F had problems with two different O-rings. (Interestingly, it was the previous
launch of the Challenger.) Consequently, the data didn’t give the engineers any
solid reason for canceling the Challenger launch the following morning.

Unfortunately, the engineers didn’t realize that the data in Figure 3.2 is just
part of the story. It reflects only those launches during which there were O-ring
problems. What is missing are those launches that were trouble-free. From the full
set of data for all 24 previous shuttle flights shown in Figure 3.3, a striking pattern
emerges: Almost all the problem launches occurred at low temperatures, and all
the problem-free launches occurred at temperatures above 65°F. These results sug-
gest that problems with O-rings are unlikely on warm days, but there may likely be
a problem on a cool day. And, the predicted temperature of 31°F when the
Challenger was due to lift off was far colder than the temperature for any previous
launch. Had the engineers looked at all the data, there is no way that they could
have allowed the Challenger to lift off.

Moreover, we can go beyond just an eyeball examination of the data in look-
ing for trends. Recall that in Chapter 2 we introduced the “black thread method”
for estimating the line that is the best fit to a set of data points. The graph of the
data points is known as a scatterplot. In Figure 3.3 the scatterplot represents the
number of O-ring problems as a function of air temperature. A line is not a good
fit to this set of data because the pattern is clearly concave up. Instead, a curve
such as the one shown superimposed over the data points in Figure 3.4 suggests
a decaying exponential function or a power function with Although ex-
trapolating beyond the region of the data points (in this case from 53°F to 80°F)
usually is risky, there is little doubt that launching the Challenger at 31°F was
even riskier!

Most scientific, engineering, and technical work involves collecting and work-
ing with data and, more important, basing decisions on what can be inferred from

p � 0.
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FIGURE 3.5

the data. To make intelligent decisions, you must understand all the information
that a set of data imparts. Thus you need techniques for displaying the data in a
form that makes it easy to extract the relevant information. Unfortunately, these
techniques haven’t been a major focus in past mathematical and technical training.

The Challenger situation illustrates the changing role of mathematics and how
people use it. Applying mathematics is not a matter of “Here’s an expression. Fac-
tor it.” or “Here’s an equation. Solve it.” Rather, in the real world you will often face
a situation about which a decision must be made. You need to be able to view that
situation mathematically (i. e., create an appropriate mathematical model), identi-
fy the appropriate question to ask, obtain the solution (often with some electronic
tool), interpret the solution in terms of the original problem, and communicate
that solution effectively to others. The emphasis is much more on reasoning and
judgment, not just on mechanical operations.

In Chapter 2 we discussed families of functions that have various behavior pat-
terns. In this chapter, we consider the problem of finding the function that best fits
a set of data. If the data fall into a roughly linear pattern, either increasing or de-
creasing, we want to find the line that is the best possible fit to the data. Similarly, if
the data fall into certain nonlinear patterns, we want to find the function that best
fits the data. Figure 3.5 shows three different data sets that clearly are not linear
patterns. Figure 3.5(a) shows an increasing, concave up pattern that could be mod-
eled by either an exponential growth function with base or a power function
with power Figure 3.5(b) shows a decreasing, concave up pattern that could
be modeled by either an exponential decay function with base or a power
function with power Figure 3.5(c) shows an increasing, concave down pat-
tern that could be modeled by either a power function with power or a
logarithmic function. Once we have written a formula for the function that fits a
set of data, we can then use it to answer questions of a predictive nature.

The techniques that we discuss here are the methods by which we construct func-
tions. With this approach, preventable disasters such as the Challenger explosion aren’t
likely to recur.

0 � p � 1
p � 0.

c � 1
p � 1.

c � 1
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FIGURE 3.6

Year 1990 1993 1994 1995 1996 1997

Gross receipts 39.98 49.80 53.50 57.18 60.28 63.01

Source: 2000 Statistical Abstract of the United States.

Linear Regression Analysis

We now consider fitting a line to a set of data from a somewhat more sophisticated
viewpoint than the black thread method. We now want to determine the single best
line to fit a set of points.

Suppose that we have a set of n measurements on two presumably related
quantities x and y: . . . , where and are the coordi-
nates of the first point, and are the coordinates of the second point, and so on.
For instance, the coordinates might represent people’s heights and weights; stu-
dents’ high school averages and college GPAs; or the gross receipts (box office,
cable and broadcast TV, videotapes, etc.) of the movie industry, in billions of dol-
lars, in different years, as given in the following table.

y2x2

y1x11xn , yn 2 ,1x2 , y2 2 ,1x1 , y1 2 ,

3.2

We now write the equation of a line in the form instead of the
more usual form to give a better match to the display on most calcu-
lators. As always, the coefficient of the independent variable represents the slope,
and the constant gives the vertical intercept regardless of the letters used.

The key to finding this line is the phrase “comes closest to all the points.” The
most common interpretation of this phrase is that the sum of the squares of all the
vertical distances from the points to the line should be a minimum, as shown in

y � mx � b
y � ax � b

We begin by drawing a scatterplot of the data, as shown in Figure 3.6(a). The
data appear to fall in a roughly linear pattern with a positive slope. We can draw
many different lines that all seem to capture the overall pattern of the points in the
scatterplot, as shown in Figure 3.6(b). However, none of them can possibly pass
through all the points. In fact, a good fit line may not necessarily pass through any of
the points. Our objective is to determine the best linear fit to this set of data: the one
line that comes closest to all the data points.
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FIGURE 3.7

y1 − (a + bx1)

y = a + bx

y2 − (a + bx2)

(x1, y1)

(x2, y2)

x

y

a + bx1

a + bx2

FIGURE 3.8

Figure 3.7. (If we used only the actual vertical distances, rather than their squares,
some would be positive, others would be negative, and they would tend to cancel
each other when added.) We discuss these vertical distances, called residuals, in
more detail in Section 3.6.

Suppose that the equation of the best-fit line is where a and b are,
for now, unknown constants. For the first data point the point on the line
with the same x-coordinate has height Hence the vertical dis-
tance from the data point to the line is as illustrated in Figure 3.8.
For the second data point the vertical distance to the line is similarly

and so on for the rest of the data points. The corresponding
squares of these vertical distances, for each of the n points, are

. . . ,

To measure how close the line comes to all n data points, statisticians use the sum
of the squares of these differences:

Exactly one line corresponds to a minimum value for the sum of these squares.
It is known as the least squares line, or more commonly, the regression line. The
formulas1 for the coefficients a and b in the equation of the regression line are built
into most sophisticated calculators, usually under the STAT (statistics) menu and
may be marked as LinReg or LinR. Routines for these calculations also are widely
available in many computer packages, including spreadsheets such as Excel™.

To find the equation of this line with your calculator, you typically have to ac-
cess the STAT menu, select the data option, clear any old data, enter the new data,
and then go back to the main STAT menu and select calculate linear regression.
Most calculators will give you values for the coefficients a and b in the regression
equation and the value of a third quantity that we discuss later in this
section. See the detailed instructions in your calculator’s manual.

y � ax � b,

3y1 � 1ax1 � b 2 4 2 � 3y2 � 1ax2 � b 2 4 2 � . . . � 3yn � 1axn � b 2 4 2.

 3yn � 1axn � b 2 4 2.3y1 � 1ax1 � b 2 4 2,  3y2 � 1ax2 � b 2 4 2, 

y2 � 1ax2 � b 2 ,
1x2 , y2 2 ,

y1 � 1ax1 � b 2 ,
y � ax1 � b.x � x1

1x1 , y1 2 ,
y � ax � b,

1The regression coefficients are

where number of data pairs of the x’s, the
square of the sum of the x’s, and of x and y in each pair.g 1xy 2 � the sum of the products

1 gx 2 2 �gx2 � the sum of the squares1x, y 2 ,n �

a �
ng 1xy 2 � 1 gx 2 1 gy 2

n1 gx2 2 � 1 gx 2 2
 and b �

1 gx2 2 1 gy 2 � 1 gxy 2 1 gx 2

n1 gx2 2 � 1 gx 2 2
 ,
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FIGURE 3.9

Year 0 3 4 5 6 7

Gross receipts 39.98 49.80 53.50 57.18 60.28 63.01

We illustrate how to apply these ideas in Example 1.

EXAMPLE 1
(a) Find the equation of the regression line that best fits the data on gross receipts of the
movie industry, in billions of dollars, as a function of time. (b) What does the slope of
this line mean in this context? (c) Use this function to estimate the gross receipts in 2003.

Solution

a. Let the independent variable x represent the number of years since 1990 and let the
dependent variable y be the gross receipts, in billions of dollars, for each year. We
have the following table of values.

�

In general, when working with years or other “large” numbers, scaling them
down as we did in Example 1 usually is helpful. For instance, we let x be the num-
ber of years since 1990.

We next look at a somewhat more complicated example based on the data pre-
sented in Table 3.1 giving world record times (in minutes: seconds) for the mile
run and the year the record was set.

We enter these values for x and y into the statistics routine of a graphing calculator or
computer and run the linear regression routine. The calculator or computer re-
sponds with the equation of the regression line

The graph of this line superimposed over the scatterplot of the data is shown in Fig-
ure 3.9. Note that the line seems to be an excellent fit to all the data points.

b. The slope, 3.3435, of this regression line tells us that the gross receipts of movies are
increasing, on average, by about each year.

c. Having this linear model for the gross receipts as a function of time, we use it to pre-
dict the receipts in 2003, when years since 1990. We then get

y � 3.3435113 2 � 40.027 � $83.49 billion.

x � 13

$3 
1
3 billion

y � 3.3435x � 40.027.
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TABLE 3.1 World Records in the Mile Run

Year Record time Winner

1911 4:15.4 John Paul Jones, United States
1913 4:14.6 John Paul Jones, United States
1915 4:12.6 Norman Taber, United States
1923 4:10.4 Paavo Nurmi, Finland
1931 4:09.2 Jules Ladoumegue, France
1933 4:07.6 Jack Lovelock, New Zealand
1934 4:06.8 Glen Cunningham, United States
1937 4:06.4 Sidney Wooderson, Great Britain
1942 4:06.2 Gunder Haegg, Sweden
1942 4:06.2 Arne Andersson, Sweden
1942 4:04.6 Gunder Haegg, Sweden
1943 4:02.6 Arne Andersson, Sweden
1944 4:01.6 Arne Andersson, Sweden
1945 4:01.4 Gunder Haegg, Sweden
1954 3:59.4 Roger Bannister, Great Britain
1954 3:58.0 John Landy, Australia
1957 3:57.2 Derek Ibbotson, Great Britain
1958 3:54.5 Herb Elliott, Australia
1962 3:54.4 Peter Snell, New Zealand
1964 3:54.1 Peter Snell, New Zealand
1965 3:53.6 Michel Jazy, France
1966 3:51.3 Jim Ryun, United States
1967 3:51.1 Jim Ryun, United States
1975 3:51.0 Filbert Bayi, Tanzania
1975 3:49.4 John Walker, New Zealand
1979 3:49.0 Sebastian Coe, Great Britain
1980 3:48.9 Steve Ovett, Great Britain
1981 3:48.8 Sebastian Coe, Great Britain
1981 3:48.7 Steve Ovett, Great Britain
1981 3:47.6 Sebastian Coe, Great Britain
1985 3:46.5 Steve Cram, Great Britain
1993 3:44.4 Noureddine Morceli, Algeria

EXAMPLE 2
(a) Find the equation of the regression line that best fits the data in Table 3.1 on the
world records for the mile run as a function of time. (b) What does the slope of this line
mean in this context? (c) Use this function to estimate the world record in 2005.

Solution

a. Let the independent variable x represent the number of years since 1900 and let the de-
pendent variable y be the time, in minutes, of each record-breaking mile run. The times
given in Table 3.1 are in the form minutes : seconds, so it is necessary to recalculate
each value in terms of minutes. For instance, the first entry of 4:15.4, or 4 minutes and
15.4 seconds, is equivalent to minutes. Making this conversion
for all values in the table, we obtain

4 � 15.4>60 � 4.2567
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Using either a calculator or computer program, we get the equation of the regression
line as

Figure 3.10 shows the graph of this line superimposed over the scatterplot of the
data; the line seems to fit all the data points well.

y � �0.00663x � 4.335.

b. The slope, of this regression line tells us that the world record is dropping,
on average, by 0.00663 minutes, or 0.498 seconds, each year.

c. Assuming that this linear model for the world-record times in the mile run contin-
ues to hold, we can use it to predict the world record in 2005, when years
since 1900. We then get

or about 3 minutes and 38.3 seconds.

�

Does the world record time of 3 minutes and 38.3 seconds in 2005 calculated in Ex-
ample 2 seem reasonable? What is the predicted value for the world record in the mile
run in 2500 based on the linear model? Is that value reasonable? Similarly, what hap-
pens if you predict back to 1492? Do you get a reasonable value? Why or why not? ❐

Recall that, if you use the equation of the regression line to predict values of y
corresponding to values of x within the interval of data values (called interpolating),
the results are usually quite reasonable. Recall also that, if you try to use the regres-
sion equation well beyond the interval of data values (called extrapolating), the re-
sults become extremely questionable. Thus you should not extrapolate too far into
either the future or the past. The domain of the mathematical model should not be
extended too far beyond the given data.

The Correlation Coefficient

There is another major concern regarding the use of the regression equation. If you
take any set of measurements relating two variables, you can always construct the re-
gression equation based on the data. However, the results are completely meaningless if

Think About This

y � �0.006631105 2 � 4.335 � 3.639 minutes

x � 105

�0.00663,

x 11 13 15 . . . 93

y 4.2567 4.2433 4.2100 . . . 3.7400
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FIGURE 3.11

the two variables are not linearly related or even are totally unrelated. For example, you
could collect data on people’s telephone numbers and their social security numbers,
construct a scatterplot, and calculate the corresponding regression equation. But the
two variables are unrelated, so the results of predicting people’s social security numbers
from their phone numbers would be of no value.

Therefore we need a way to determine whether, in fact, a linear relationship ex-
ists between two quantities. The most common way of detecting such a relation-
ship is by using a quantity known as the linear correlation coefficient, or simply the
correlation coefficient. This quantity is denoted by r and is always a number be-
tween and 

� Values of r close to indicate a high degree of positive correlation be-
tween x and y. That is, they are likely related via a linear relationship, and
the regression line will have positive slope. For example, we would expect a
high positive correlation between a company’s profits and its sales: As sales
go up, profits usually go up also.

� Values of r close to indicate a high degree of negative correlation between
x and y. They are likely related by a linear relationship, and the regression line
will have negative slope. For instance, there is a high negative correlation be-
tween a car’s gas mileage and its weight—as weight goes up, gas mileage goes
down, and vice versa. Similarly, there is a high negative correlation between
the literacy rate and the infant mortality rate in any nation.

� Values of r close to 0 indicate little or no correlation, and we would con-
clude that there is no linear relationship between the variables. For in-
stance, there is no correlation between students’ social security numbers
and their telephone numbers.

You can visualize the different cases by looking at the scatterplots shown in
Figure 3.11. In Figure 3.11(a), the data points lie more or less along a rising line
and the value of the correlation coefficient will be positive and relatively close to 1.
In Figure 3.11(b), the points are scattered about a downward-sloping line, which
means that the correlation coefficient is negative and relatively close to In Fig-
ure 3.11(c), there is no clear pattern for the points, and so the correlation coeffi-
cient is relatively close to 0, indicating that there is no linear relationship between
the variables.

�1.

�1

�1

�1.�1
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2The correlation coefficient is:

r �
n1 gxy 2 � 1 gx 2 1 gy 22n1 gx2 2 � 1 gx 2 2 2n1 gy2 2 � 1 gy 2 2 

As with the calculation of the regression coefficients, the correlation coeffi-
cient2 usually is obtained either with a computer program or a calculator, not by
hand. The important thing is knowing how to interpret the results, not how to cal-
culate the regression equation and the correlation coefficient.

EXAMPLE 3
Find the correlation coefficient for the data on the mile run records and interpret it.

Solution When we enter the recalculated data values from Example 2 in a calculator or
program, we get a correlation coefficient of The fact that r is negative sim-
ply reflects the downward trend in the data and the negative slope in the equation of the
regression line The value of is extremely close to

which suggests that there is negative correlation between the world record in the
mile run and the year.

�

Incidentally, if the data points all lie exactly on a line, the regression line found
by the calculator or program actually passes through the points and the correlation
coefficient is either 1 or depending on whether the slope is positive or negative.

Determining When the Level of Correlation Is Significant

To use the correlation coefficient properly, you must be able to distinguish between
significant correlation and no correlation. Typically a set of data represents just a
sample from a much larger population of possible data values. For instance, if we
were studying the relationship between gas mileage and vehicle weight, we certain-
ly couldn’t collect data on every car on the road—only on a random sample of all
cars. Presumably the sample would be representative of all cars, but there is no
guarantee of that. It is conceivable that we chose an extremely unrepresentative
sample. What’s worse, there usually is no way of telling simply by looking at the
values that a sample is unrepresentative.

No statistical conclusion is ever 100% certain because that would require en-
compassing every conceivable sample from a population and that is not possible.
Statisticians have developed a set of techniques that allow us to draw conclusions
that are correct with 95% certainty or, equivalently, that are correct 95% of the
time, to account for the possibility that a sample may contain several very unrepre-
sentative observations. (Statisticians also work with 90% and 99% levels of certain-
ty, but we consider only 95% certainty here.)

Suppose that you have a random sample of n data points and use either a com-
puter program or a graphing calculator to graph the scatterplot and calculate both
the regression line and the correlation coefficient r. If the points on the scatterplot
clearly do not appear to fall in a linear pattern, you should expect that there is little
or no linear correlation between the two variables. Even if the pattern seems to be
roughly linear, you must still use the information provided by the correlation coef-
ficient to decide whether it indicates a significant level of correlation between the
two variables.

�1,

�1,
r � �0.9899y � �0.00663x � 4.335.

r � �0.9899.
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TABLE 3.2 Critical Values of r

n n n

3 0.997 13 0.553 27 0.381
4 0.950 14 0.532 32 0.349
5 0.878 15 0.514 37 0.325
6 0.811 16 0.497 42 0.304
7 0.754 17 0.482 47 0.288
8 0.707 18 0.468 52 0.273
9 0.666 19 0.456 62 0.250

10 0.632 20 0.444 72 0.232
11 0.602 21 0.433 82 0.217
12 0.576 22 0.423 92 0.205

rnrnrn

–1 –0.632 0.632 +1

Positive
Correlation

Negative
Correlation  No Correlation

FIGURE 3.12

The size of the sample also comes into play here. If we take a relatively small
sample—say, values—and this sample contains a nonrepresentative data
point, that point will have a significant impact on the results. If the sample con-
tains random values, the effect of a single nonrepresentative data point will
likely be diluted. If the sample consists of random values, the effect of any
single nonrepresentative data point is almost certain to be negligible.

Table 3.2. contains a partial set of so-called critical values for the correlation co-
efficient r. These critical values separate what we interpret as correlation from
what we interpret as no correlation. These critical values change, depending on
the size of the sample, n—the larger the sample size, the smaller the critical value.
We write to indicate the critical value of r based on n data points.rn

n � 500
n � 50

n � 5

To use the table, compare the value of r from the sample data to the correspon-
ding critical value shown in the table. For instance, a sample of size has a
critical value of If the correlation coefficient for the data is greater than
0.632—say, —we can conclude with 95% certainty that there is positive
correlation between the two variables. If the correlation coefficient for the data is
less than —say, —we can conclude with 95% certainty that
there is negative correlation between the two quantities being studied. But, if the
value for r is between and —say, or —we
cannot conclude that there is any linear correlation between the two variables. In
other words there does not appear to be a linear relationship between x and y. Fig-
ure 3.12 illustrates the process. Of course, there still may be a nonlinear functional
relationship between x and y; we examine such cases later in this chapter.

r � �0.583r � 0.446�0.632�0.632

r � �0.685�0.632

r � 0.758
r10 � 0.632.

n � 10rn

Note that the critical value for a sample of size is whereas
the critical value for a sample of size is As we pointed out, a
larger sample is more likely to be representative of the population, so the evidence
for correlation does not have to be quite as great. With a small sample, the value for
r must be very close to 1 or for us to conclude with any certainty that there is
correlation. For instance, the critical value for a sample of size is r3 � 0.997.n � 3

�1

r10 � 0.632.n � 10
r20 � 0.444,n � 20
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A more extensive table of critical values for r is reproduced on the inside back
cover for easy reference.

EXAMPLE 4
Decide whether there is a significant level of correlation between the world record times
for the mile run and the year in which the record was set in Examples 2 and 3.

Solution In Example 3 we found that the value for the correlation coefficient was
based on the entries in Table 3.1. The corresponding critical

value is then Because the value for the data is more negative than this
critical value (i.e., closer to ), we conclude that a significant level of correlation ex-
ists between the two variables.

�

In our examples, we consistently use X as the independent variable and Y as the
dependent variable for the output from either the computer or calculator. We then
have to interpret what the X- and Y-variables represent in the context of each indi-
vidual situation.

EXAMPLE 5
A study is conducted to determine the relationship between a person’s height in inches
and shoe size, based on the following set of data pairs:

a. Determine the value of the correlation coefficient and decide whether it is significant.

b. Find the equation of the regression line relating height to shoe size, based on this sample.

c. Use the equation to predict the most likely shoe size for a person who is 70 inches tall
and for someone who is 61 inches tall.

d. Use the equation to predict the most likely height of a person whose shoe size is 9.

Solution

a. Using a calculator or software package, we find that the correlation coefficient for
this set of data is which suggests a high degree of positive correlation be-
tween a person’s height and shoe size. Because there are data points, the
critical value for r is from Table 3.2. Because we can
conclude with 95% certainty that a significant level of positive correlation exists
between a person’s height and shoe size.

b. Figure 3.13 shows the scatterplot of the data and the graph of the associated regression
line. The equation of the regression line, as given by either a calculator or computer, is

,

which is equivalent to

for a person’s shoe size S as a function of the person’s height H in inches.

c. Using this regression equation for a person who is 70 inches tall, we estimate that the
shoe size corresponding to is

S � 0.51170 2 � 25.016 � 10.684 � 10 
1
2 .

H � 70

S � 0.51H � 25.016

Y � 0.51X � 25.016

0.951 � 0.632,r10 � 0.632
n � 10

r � 0.951,

166, 9 2 , 163, 7 2 , 167, 8 
1
2 2 , 171, 10 2 , 162, 6 2 , 165, 8 

1
2 2 , 172, 12 2 , 168, 10 

1
2 2 , 160, 5 

1
2 2 , 166, 8 2 .

�1
r32 � �0.349.

n � 32r � �0.9899,
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Similarly, for we estimate that the corresponding shoe size is

d. For a shoe size of we need to solve for H in

We add 25.016 to both sides of the equation to get

so that

We conclude that the person is about inches tall.

�

In the context of Example 5, it seems sensible to think of shoe size as a function
of a person’s height. Thus we chose height H as the independent variable. However, it
is also appropriate to interchange the roles of S and H and think of height H as a
function of shoe size S.

Suppose that you have determined, with 95% certainty, that there is a high de-
gree of linear correlation between two variables. What does that tell you? In Exam-
ple 5, a high correlation coefficient means that there is a linear relationship between
H and S. That is, the two variables can be related with a linear equation—namely,
the regression equation. However, the fact that two quantities are correlated and
that a linear relationship exists does not mean that there is a cause-and-effect rela-
tionship between them. For example, several studies have found a high positive cor-
relation between teacher salaries in a school district and the amount of alcohol
consumed by the students. That is, if teacher salaries are low, the level of student
drinking also is low; if teacher salaries are high, considerable drinking is going on. Is
it reasonable to conclude that one causes the other? Could the level of student
drinking be reduced by lowering teacher salaries in a district?

A positive correlation between two quantities says nothing more than that a lin-
ear relationship exists between them. Other factors could contribute to both. For in-
stance, high teacher salaries typically reflect a school district in a relatively affluent
community where the students are likely to have relatively large amounts of their
own money to spend on alcohol.

66 34

H � 34.016>0.51 � 66.7.

0.51H � 9 � 25.016 � 34.016,

S � 0.51H � 25.016 � 9.

S � 9,

S � 0.51161 2 � 25.016 � 6.094 � 6.

H � 61,
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EXAMPLE 6
One of the most famous moments in the history of science was Galileo’s reported experi-
ment of dropping various objects from the top of the 180 foot high Leaning Tower of Pisa
and discovering that they fell at the same rate, regardless of their weight. The following
table gives the speed v, in feet per second, of an object dropped from the top of the tower
measured at half second intervals until it hits the ground. The negative values for the speed
simply reflect the convention that velocity is considered positive when an object is moving
upward and negative when an object is moving downward. Note how the object starts to
fall slowly and then accelerates. (Incidentally, these values are considerably more accurate
than anything Galileo could have measured at the end of the fourteenth century.)

a. Does the correlation coefficient indicate a significant level of correlation between the
two variables?

b. Find the line that best fits the experimental data, giving the speed v as a function of time t.

c. What is the significance of the slope in the equation of the line that fits this data?

Solution

a. We start with the scatterplot of the data as shown in Figure 3.14 and observe that
the pattern looks extremely linear. The value for the correlation coefficient is

The correlation coefficient is negative because the trend in the data
is downward, so the slope of the regression line should be negative. The fact that
the value for r is so close to means that there is a significant level of correlation
between the two variables and that the regression line almost perfectly fits the data
points. The speed of the falling object at any time is a linear function of t.

�1

r � �0.999997.
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FIGURE 3.14

Time, sec 0 0.5 1.0 1.5 2.0 2.5 3.0

Speed, ft/sec 0 �96.1�80.2�64.1�47.9�32.1�16.0

b. Using a calculator or computer package, we obtain the equation of the line that
best fits this data as

or, in terms of the variables in this situation,

Note that the constant term 0.01786 is very close to zero, and we know that the velocity
of any falling object at time zero is zero. The slight discrepancy occurs because of possible

v � �32.05t � 0.01786.

Y � �32.05X�0.01786,
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TABLE 3.3

Artist Title Dimensions (cm)

da Vinci Mona Lisa
Rubens Landscape with the Chateau of Steen
Goya The Third of May, 1808
Rembrandt Self Portrait
Vermeer Young Woman with a Water Jug
T. Rousseau A Meadow Bordered by Trees
Millet The Gleaners
Constable The Haywain
Manet The Fifer
Monet Regatta at Argenteuil
Renoir Le Moulin de la Galette
Degas Prima Ballerina
Cassatt The Bath
Cezanne Still Life with Apples
Seurat The Bathers
Van Gogh The Starry Night
Picasso The Old Guitarist
H. Rousseau The Dream
Matisse The Joy of Life
Chagall I and the Village
Dali The Persistence of Memory 24 � 33

191.5 � 151
171.3 � 238

200 � 300
121.3 � 82.7

73.7 � 92.1
202 � 300.3

43.5 � 54
100.3 � 66

58.3 � 42
130.7 � 175.3

47.5 � 74.3
160 � 97.5

130.1 � 185.4
83.8 � 111.8
41.6 � 61.9
45.7 � 40.6

133.6 � 103.8
270 � 410

134.5 � 236.7
77 � 53.5

inaccuracies in measurements or rounding errors. We conclude that a better model for
the speed of a falling object might be

c. The slope of the regression line is Because v is measured in feet per second
and t is measured in seconds, the units for the slope are feet per second per second or
feet per second squared, written The slope is negative because the object is
falling downward ever faster. The specific value for the slope, approximately

is the acceleration due to gravity.

�

EXAMPLE 7
Psychologists claim that the human mind has a preference for rectangles having a certain
shape with the longer side approximately 1.6 times the shorter side. (The exact value used is
known as the golden ratio, which is equal to ) If this claim is correct,
we might expect that artists would have naturally used this ratio in their paintings because
it is visually pleasing. Table 3.3 shows a selection of art masterpieces and their actual di-
mensions, in centimeters. Draw the scatterplot and find the regression line that best fits the
data. What evidence does this result provide that artists instinctively use the golden ratio? 

11 � 15 2 >2 � 1.618.

�32 ft>sec2,

ft>sec2.

�32.05.

v � �32.05t.

Solution To simplify things, we ignore the fact that some paintings are in portrait style
(taller than they are wide) while others are in landscape style (wider than they are tall).
We use the shorter dimension W (for width) as the independent variable and the longer
dimension H (for height) as the dependent variable. The scatterplot for the data is
shown in Figure 3.15. The corresponding correlation coefficient is which in-
dicates a high degree of linear correlation between the two variables. The associated re-
gression line, which is superimposed over the data in the scatterplot, is 

r � 0.9894,
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FIGURE 3.15

The slope of the regression line is 1.5104, which is fairly close to the golden ratio 1.618.
Also, the line passes relatively close to the origin, so the slope is approximately equal to
the ratio of height to width. Note that the points are all clustered fairly tightly about the
regression line, so we can conclude that most of these artists used a proportion close to
the golden ratio for these canvases.

�

So far we have investigated only the possibility that a linear relationship exists
between two variables. We then used the correlation coefficient to detect and meas-
ure only the strength of the linear relationship. In the following sections, we con-
sider ways of detecting, measuring, and calculating a nonlinear (exponential,
power, or logarithmic) relationship between two quantities.

H � 1.5104W � 7.0017.
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Problems

1. Match each value for the correlation coefficient r
with its scatterplot (i)–(v).

a. b.
c. d.
e. r � 0.998

r � 0.837r � 0.434
r � �0.781r � �0.962

gord.3896.03.pgs  4/24/03  9:53 AM  Page 176



3.2 Linear Regression Analysis 177

Speed (mph) 30 40 50 60 70 80

Time (sec) 3.6 5.0 7.0 9.1 11.9 15.2

T (°F) 89 72 93 84 81 75 70

Chirps 20 16 20 18 17 16 15

T (°F) 82 69 83 80 83 81 84 76

Chirps 17 15 16 15 17 16 17 14

Source: Adapted from George W. Pierce, The Songs of Insects. Boston:
Harvard University Press, 1948.

Year 1960 1965 1970 1975

Percentage 4.4 5.7 7.7 8.3

Year 1980 1985 1990 1995

Percentage 10 10.2 12.2 13.7

Source: 2000 Statistical Abstract of the United States.

T 33.2 40.6 45.3 51.8 58.4

R 4.71 4.80 4.93 5.02 5.17

T 63.8 71.0 76.9 80.6 90.1

R 5.34 5.39 5.52 5.55 5.75

2. Suppose that you have data on each of the following
pairs of variables. For which pairs would you expect
the correlation coefficient to be close to for
which would you expect r to be close to and for
which would you expect r to be close to 0?

a. A young child’s height and weight.
b. The age of a car and its book value.
c. A child’s shoe size and the number of words in

the child’s vocabulary.
d. The number of hours per week that a student

studies and the amount of money spent on food
each week.

e. The number of hours per week that a student
studies and the resulting GPA.

f. The number of cartons of cigarettes sold in the
United States and the tax revenue on cigarettes.

g. The number of hours a person sleeps nightly, on
average, and the number of push-ups the person
can do.

3. What is wrong with each statement?

a. The correlation coefficient for the number of
push-ups an athlete can do and the time it takes
the athlete to run a mile is 1.25.

b. For a set of data, the regression equation is
and the correlation coef-

ficient is 
c. If the correlation coefficient for a set of

data is negative, it follows that the smaller x is,
the smaller y will be.

4. The following table gives some measurements on
the rate of chirping (per second) of the striped
ground cricket as a function of the temperature.

1x, y 2
r � 0.87.

Y�6.592�2.158X
1x, y 2

�1,
�1,

Determine the equation of the line that best fits this
set of data. How does it compare to the equation we
estimated by eye in Example 4 of Section 2.3? Does
the value of the correlation coefficient indicate a
high degree of correlation between chirp rate and
air temperature?

5. According to a leading road and track magazine,
the following information gives the time in seconds
for a Mercedes to accelerate from zero to the indi-
cated speed in miles per hour:

Does the corresponding correlation coefficient in-
dicate a significant level of linear correlation be-
tween the two variables? If so, determine the
equation of the regression line that best fits the
data. Estimate how long it would take a Mercedes to
accelerate to 45 mph and to 90 mph. Which is more
likely to be accurate? Why?

6. The following table gives the percentage of the U. S.
gross domestic product (GDP) spent on health care
over the years.

Is there a significant level of linear correlation be-
tween these two variables? If so, what is the regres-
sion line? Estimate the percentage of GDP spent on
health care in 2000. If current trends continue,
when will 20% of GDP be spent on health care?

7. Repeat Problem 6, using 60, 65, 70, . . . , 90 for the
years instead of 1960, 1965, . . . How do the results
for the equation of the line of best fit and for the
correlation coefficient change? What would happen
if you used 0, 5, 10, . . . , 30 for the years instead?

8. The electrical resistance R of a piece of metal de-
pends on the temperature T of the metal. An exper-
iment was conducted by measuring the resistance
in ohms in a piece of wire at different temperatures
in degrees Celsius. The results were as follows:
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Team Payroll Wins Team Payroll Wins

New York Yankees $113.37 87 Toronto Blue Jays 59.22 83

Atlanta Braves 95.01 95 Tampa Bay Devil Rays 55.16 69

Los Angeles Dodgers 94.22 86 San Francisco Giants 54.24 97

Boston Red Sox 93.87 85 Houston Astros 52.00 72

New York Mets 89.75 94 Chicago Cubs 51.08 65

Arizona Diamondbacks 80.76 85 Chicago White Sox 36.94 95

Cleveland Indians 78.72 90 Philadelphia Phillies 36.68 65

St. Louis Cardinals 72.38 95 Cincinnati Reds 35.13 85

Seattle Mariners 62.55 91 Milwaukee Brewers 33.77 73

Texas Rangers 61.36 71 Oakland A’s 32.69 92

Detroit Tigers 60.60 79 Pittsburgh Pirates 31.94 69

Baltimore Orioles 59.22 74 Montreal Expos 27.97 67

Anaheim Angels 58.74 82 Florida Marlins 25.86 79

Colorado Rockies 56.05 82 Kansas City Royals 24.47 77

San Diego Padres 54.68 76 Minnesota Twins 15.82 69
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Determine the correlation coefficient and the
equation of the regression line that best fits the
data. Does the value for the correlation coefficient
suggest a linear relationship between the two
quantities?

9. Consider the data in Example 5 on shoe size versus
height.

a. Interchange the roles of H and S to consider S as
the independent variable and then find the cor-
responding linear regression equation and corre-
lation coefficient.

b. How is this correlation coefficient related to the
one we obtained in Example 5?

c. In Example 5, we found 
Solve this equation algebraically for H as a func-
tion of S.

d. Explain why the results in (a) and (c) differ.
(Hint: The linear regression equation is based on
minimizing the sum of squares of the vertical
distances from the points to the line.)

10. Many baseball fans are concerned that the team
owners with the most money are able to “buy” the
best players and so dominate their leagues. The

S � 0.51H � 25.016.

table below shows the total payroll, in millions of
dollars, for each of the major league teams during
the 2000 baseball season and the number of games
each team won out of the maximum of 162.

a. Find the equation of the line that best fits the
number of wins during the 2000 baseball season
as a function of a team’s payroll.

b. Is there a significant level of correlation between
the two variables?

c. Based on your linear model in part (a), how many
wins would $100 million have bought during this
season?

d. Do the regression equation and the correlation co-
efficient support or contradict the claim that the
teams with larger bankrolls are buying more wins?

e. Write a short essay with your views on this
issue. Be sure to include appropriate mathemat-
ical arguments, based on your findings in parts
(a) and (b).

11. The great chemist Mendeleev once conducted an
experiment relating the solubility of sodium nitrate
in water to the temperature of the water, in degrees
Celsius. He obtained the data on the next page.
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Temperature 0 4 10 15

Solubility 66.7 71.0 76.3 80.6

Temperature 21 29 36 51 68

Solubility 85.7 92.9 99.4 113.6 125.1

a. Based on the scatterplot of the data and the
value of the correlation coefficient, is it rea-
sonable to use a linear function to model this
relationship?

b. Find the equation of the linear function that
best fits these data.

c. Use your model to estimate the solubility at a
water temperature of 40°C.

d. Explain why using the linear model to predict
a value for the solubility S when 
would not be appropriate.

T � �5

e. What might be appropriate values for the do-
main and range of this linear function?

12. The table at the bottom of the following page
gives Olympic gold medal times, in seconds, for
the 100-meter freestyle for men and women. For
each data set, find the best-fit line. What is the
practical significance of each line’s slope? Be-
cause the slopes are different, determine the
point where the two lines intersect and tell what
this point means. Is it reasonable?

13. In a standard experiment conducted in introducto-
ry physics class, an object was dropped and its
speed v measured every tenth of a second. The fol-
lowing table gives the speed, in centimeters per sec-
ond, at different times. Find the equation of the
line that best fits the data. What are the units for
the slope?

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

v 0 �979.9�881.7�783.8�606.1�587.8�490.2�391.8�295.6�196�98

14. Use the fact that 1 inch equals 2.54 cm to verify that
the value you obtained for the slope in Problem 13
(the acceleration due to gravity in the metric sys-
tem) is equivalent to the value we obtained in Ex-
ample 6 (U. S. customary units of measurement).

15. A spring is mounted from the ceiling and hangs
straight down. When a mass is attached to the end of
the spring, as shown in the accompanying figure, the
spring lengthens. The following data values were ob-
tained in an experiment where different masses m,
in grams, were attached and the associated lengths
L, in centimeters, of the spring were recorded.

m 0 100 200 300

L 0 3.9 7.9 12.0

m 400 500 600 700

L 16.0 20.1 24.1 28.2

a. Decide which variable is independent and which
is dependent.

b. Does the correlation coefficient indicate a sig-
nificant level of linear correlation between the
two variables?

a. Find the equation of the line that best fits these
data.

b. Assuming that the trend continues, predict the
average surface temperature in 2020.

c. Find the equation of the line that best fits the ex-
perimental data.

d. What are the units for the slope of the line? What
is the significance of the slope?

e. Adjust the equation of the line so that it passes
through the origin. (Note: The resulting relation-
ship is known as Hooke’s law after the British sci-
entist Benjamin Hooke and the slope, which
depends on the particular spring used, is called
the spring constant.)

16. The following table gives estimates for the average
temperature, in degrees Celsius, at the Earth’s sur-
face, worldwide, in different years.

Year 1880 1900 1920 

Temperature 13.8 13.95 13.9

Year 1940 1960 1980 1999

Temperature 14.15 14.0 14.2 14.4
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17. The following table shows the trend in worldwide
grain production (wheat, rice, and corn, primarily),
in millions of tons.

a. Find the equation of the linear function that best
fits these data.

b. What does the model predict for the amount of
grain produced in 2010?

c. When does the model predict that the total
amount of grain produced will reach 2000 mil-
lion tons?

d. Write a paragraph describing the implications
of the fact that grain production is growing
roughly linearly while the population is grow-
ing roughly exponentially.

WOMEN’S TIMES

Year Swimmer Time

1912 Fanny Durack (AUST) 82.20

1920 Ethelda Bleibtrey (US) 73.60

1924 Ethel Lackie (US) 72.40

1928 Albina Osipowich (US) 71.00

1932 Helene Madison (US) 66.80

1936 Hendrika Mastenbroek (NETH) 65.90

1948 Greta Andersen (DEN) 66.30

1952 Katalin Szoke (HUN) 66.80

1956 Dawn Fraser (AUST) 62.00

1960 Dawn Fraser (AUST) 61.20

1964 Dawn Fraser (AUST) 59.50

1968 Margo Jan Henne (US) 60.00

1972 Sandra Neilson (US) 58.59

1976 Kornelia Ender (E GER) 55.65

1980 Barbara Krause (E GER) 54.79

1984 Nancy Hogshead (US) 55.92

1988 Kristin Otto (E GER) 54.93

1992 Zhuang Yong (CHI) 54.65

1996 Le Jingyi (CHI) 54.50

2000 Inge de Bruijn (NETH) 53.83

MEN’S TIMES

Year Swimmer Time

1908 Charles Daniels (US) 65.60

1912 Duke Kahanamoku (US) 63.40

1920 Duke Kahanamoku (US) 61.40

1924 Johnny Weissmuller (US) 59.00

1928 Johnny Weissmuller (US) 58.60

1932 Yasuji Miyazaki (JAP) 58.20

1936 Ferenc Csik (HUN) 57.60

1948 Walter Ris (US) 57.30

1952 Clarke Scholes (US) 57.40

1956 Jon Hendricks (AUS) 55.40

1960 John Devitt (AUS) 55.20

1964 Don Schollander (US) 53.40

1968 Michael Wenden (AUS) 52.20

1972 Mark Spitz (US) 51.22

1976 Jim Montgomery (US) 49.99

1980 Jorg Woithe (E GER) 50.40

1984 Rowdy Gaines (US) 49.80

1988 Matt Biondi (US) 48.63

1992 Aleksandr Popov (USSR) 49.02

1996 Aleksandr Popov (USSR) 49.02

2000 Pieter van den Hoogenband (NETH) 48.30

Olympic Gold Medal Times in Swimming

Year 1965 1970 1975 1980

Amount 905 1079 1237 1430

Year 1985 1990 1995 1999

Amount 1647 1769 1713 1855

Source: Lester R. Brown et al., Vital Signs 2000: The Environmen-
tal Trends That Are Shaping Our Future.
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Year 1950 1960 1970 1975 1980

Cars 8 13 23 25 29

Year 1985 1990 1993 1995 1997 1999

Cars 32 36 34 36 38 39

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.
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18. Use of the automobile has sparked immense
changes in human culture, both for good and for
bad. The following table shows the growth in the
number of cars in use throughout the world, in mil-
lions, since 1950.

c. According to this model, predict the cost of a
plan that provides 2000 free minutes.

20. Consider the four points and
Two reasonable guesses for the best-fit line are

(a) the diagonal line passing through and
and (b) the horizontal line Using the

criterion that the best-fit line is the one with the
minimal value for the sum of the squares of the ver-
tical distances from each of the points to the line, de-
cide which of these two lines is a better fit. Find the
actual best-fit line by using your graphing calculator.
How high is the value for the correlation coefficient?

21. The accompanying graph shows the scatterplot for
the points and along
with the line y � 20x � 30.

14, 114 213, 93 212, 68 2 ,11, 48 2 ,

y � 1
2 .11, 1 2
10, 0 2

11, 1 2 .
11, 0 210, 1 2 ,10, 0 2 ,

Fitting Nonlinear Functions to Data

Although linear regression and correlation are extremely powerful methods, not all
relationships between two quantities are linear. If a scatterplot suggests a known
nonlinear pattern, you need the ability to fit the appropriate function, such as an
exponential function, a power function, or a logarithmic function, to the data.

Just as graphing calculators and software packages can calculate the equation
of the line that best fits a set of data, they can also find the equation of: (1) an ex-
ponential function of the form (or the form which is the format
used by most calculators); (2) a power function of the form (or the form

which is what most calculators show); or (3)a logarithmic function of the
form ln x that fits the data. We show how to find such functions in the
examples in this section.

y � a � b
y � axb

 ,
y � kxp

y � abx,y � acx

3.3

a. Find the equation of the linear function that best
fits these data.

b. What is the significance of the slope of this line?
c. What does the model predict for the number of

cars in use worldwide in 2025?
d. When does the model predict that the number

of cars in use will reach 50 million?

19. An ad for wireless phone service listed the following
prices for monthly service:

$19.99 for 325 free minutes

$29.99 for 750 free minutes

$39.99 for 1100 free minutes

$79.99 for 3000 free minutes

a. Find the equation of the linear function that best
fits these data.

b. What is the practical significance of the slope
and the vertical intercept?

a. Find the sum of the squares associated with this
line.

b. What changes would you make (increase or de-
crease) to the slope and/or the vertical intercept to
get a better fit?
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182 CHAPTER 3 Fitting Functions to Data

TABLE 3.4 U.S. Population (1780–1900)

Decade Year Population Ratio

0 1780 2.8 1.39 � 3.9�2.8
1 1790 3.9 1.36
2 1800 5.3 1.36
3 1810 7.2 1.33
4 1820 9.6 1.34
5 1830 12.9 1.33
6 1840 17.1 1.36
7 1850 23.2 1.35
8 1860 31.4 1.27
9 1870 39.8 1.26
10 1880 50.2 1.25
11 1890 62.9

1.21
12 1900 76.0
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FIGURE 3.16

EXAMPLE 1 The Growth of the U.S. Population from 1780 to 1900
The population of the United States, in millions, from 1780 to 1900, is shown

in Table 3.4. The corresponding scatterplot of population versus time is shown in
Figure 3.16.

a. Find an appropriate function that best fits these population data and discuss its char-
acteristics.

b. Find the correlation coefficient and discuss its significance.

Solution

a. To simplify the calculations, we let the independent variable t represent the number
of decades since the year 1780. That is, 1780 corresponds to 1790 corresponds
to and so on until 1900, which corresponds to 

The growth pattern for the U.S. population shown in Figure 3.16 clearly is not
linear; it is concave up. Based on our discussions of population growth in Chapter 2, we
expect the pattern is likely exponential. To check, we calculate the ratio of successive
terms, as shown in Table 3.4. The ratios are roughly constant, which suggests that the
pattern is roughly exponential. The discrepancies may be due to other factors (polit-
ical or economic, say), which could give the population a spurt in one decade while
slowing its growth during another time period, such as during the Civil War.

t � 12.t � 1,
t � 0,
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3.3 Fitting Nonlinear Functions to Data 183

To determine an exponential function that fits these population values, we enter the
data in a calculator, say, and select exponential regression. The calculator responds
with the values of the parameters and for an exponential func-
tion of the form so the function is

or equivalently, in terms of our variables,

where t is the number of decades since 1780.
The growth factor, 1.321, is very close to most of the ratios of successive popula-

tion values we calculated in Table 3.4. This value indicates that the U.S. population
was growing at a rate of about 32.1% per decade from 1780 to 1900, which is about
3% per year.

b. Figure 3.17 shows the original population data with this exponential function super-
imposed. The curve fits the data well. Moreover, the corresponding correlation coef-
ficient is very close to 1. For the data points, the table on the inside
back cover gives the critical value of so the level of correlation is defi-
nitely significant. Therefore the exponential function is a good fit to the population
data from 1780 through 1900.

r13 � 0.553,
n � 13r � 0.998

P1t 2 � 3.06911.321 2 t,

Y � 3.06911.321 2X
y � abx,

b � 1.321a � 3.069

�

For each of the decades 1, 12 since 1780, use the exponential function
to create a table of predictions for the U.S. population based

on this model. Use these values to then calculate the error between the actual value
of the population and this predicted value for each decade. ❐

We could also analyze this set of population data by letting t represent the
year itself, or letting t represent the number of years since
1780 Each produces equivalent exponential functions with
different bases, but each function is an appropriate model for the situation. As a re-
sult, you must be careful to keep track of what the variables used represent.

You may wonder why we have considered only the U.S. population up to 1900
and not beyond. The reason is that the population does not follow an exponential
pattern quite as closely thereafter. Various factors, such as limitations on immigra-
tion, changes in lifestyle reflected in smaller families, and the end of westward ex-
pansion came into play during the twentieth century to slow the rate of population

0, 10, 20,  . . . 2 .1t �
1t � 1780, 1790,  . . . 2

P1t 2 � 3.06911.321 2 t
 . . . ,t � 0,Think About This
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t 0 20 40 60 80 100 120 140 160 180 240 300

L 2950 2600 1550 1100 900 725 600 510 440 300 250 225

Source: Douglas Brown & Tom Timchek; unpublished manuscript.

1000

2000

3000

0 60 120 180 240 300

Time (minutes) from absorption

L
ev

el
 o

f 
L

-D
op

a

L

t

FIGURE 3.18

growth. We introduce a more sophisticated mathematical model for population
growth that takes such factors into account in Chapter 5 and consider the question
of fitting a better mathematical function to the data on the U.S. population up to
the present day.

The methods we used in Example 1 also apply to situations that can be mod-
eled by an exponential decay function, as illustrated in Example 2.

EXAMPLE 2 Level of a Drug in the Body
L-Dopa is a drug used to control the symptoms of Parkinson’s disease. The following
data give the amount L of L-Dopa in the bloodstream, in nanograms per milliliter, t
minutes after the drug was absorbed into the blood.

Find an exponential function that models the level of L-Dopa in the blood as a function
of time and check its correlation coefficient for significance.

Solution The scatterplot shown in Figure 3.18 suggests that a decaying exponential
function is a reasonable model. An alternative might be to use a decaying power func-
tion with a negative power p. But a power function has a vertical asymptote at and
we are told that a fixed amount of the drug is in the blood at time Therefore a
power function would not be an appropriate choice.

t � 0.
t � 0

Using a calculator, we find that an exponential decay function that fits these data is

which indicates that the level of L-dopa in the blood decreases by almost 1% every
minute. This function is superimposed over the data in Figure 3.19 demonstrating a rea-
sonably good fit. The corresponding correlation coefficient is it is negativer � �0.9545;

L1t 2 � 2147.810.9909 2 t,
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because the trend in the data is decreasing. Also, the critical value of r with data
points is indicating that the fit is good.r12 � 0.576,

n � 12

�

We next consider fitting a power function to a set of data.

EXAMPLE 3 Number of Species on an Island
Biologists have long observed that the larger the area of a region, the more species that
inhabit it. The following table gives some data on the area (in square miles) of various
Caribbean islands in the Greater and Lesser Antilles and estimates on the number of rep-
tile and amphibian species living on each. (Note that Trinidad has been omitted because
the island is exceptionally rich in species and tends to distort the data. Trinidad is only 7
miles off the coast of Venezuela, and many species have been able to emigrate easily from
the mainland to the island.)

a. Determine a function that models the relationship between the number of species N
living on one of these islands and the area A of the island and find the correlation co-
efficient.

b. The area of Barbados is 166 square miles. Estimate the number of species of reptiles
and amphibians living there.
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Island Area N

Redonda 1 3

Saba 4 5

Montserrat 40 9

Puerto Rico 3459 40

Jamaica 4411 39

Hispaniola 29,418 84

Cuba 44,218 76
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Solution

a. It is reasonable to think that the number of species depends on the area of the island,
so area A is the independent variable and the number of species N is the dependent
variable. Figure 3.20 shows the scatterplot of the data. Don’t be misled by the fact that
the last point is somewhat lower than the preceding one; it is not reasonable to expect
that a larger area will necessarily be home to fewer species, so the trend should not
turn back down. Note that the points corresponding to the first few entries in the table
are very close together because of the large horizontal scale needed. The points appear
to lie on top of one another, which can very easily distort our perception of the actual
pattern in the data.

The overall data pattern suggests either a power function with a positive power
or a logarithmic function, both of which are increasing and concave down.

However, a theoretical island of zero area would be home to no species, so the func-
tion should pass through the origin. Consequently, the model of choice is a power
function.

Using a calculator to construct a power function to fit these data, we obtain

In Figure 3.21 this function is superimposed on the original data and captures the
trend in the data reasonably well. The corresponding correlation coefficient

indicates a very high level of correlation between the variables.r � 0.998

N � 3.055 A 0.310.

p � 1

b. The area of Barbados is square miles, so the model predicts that

or about 15 species of reptiles and amphibians live there.

�

Biologists have found that comparable results apply for virtually any other en-
vironment, large or small, and for any other species. Typically the power p is rela-
tively close to 0.3. Because biologists use the rule of thumb that a
tenfold increase in the size of an environment leads to roughly double the number
of species inhabiting it.

100.3 � 1.995,

N � 3.055 1166 2 0.310 � 14.902,

A � 166

gord.3896.03.pgs  4/24/03  9:54 AM  Page 186



3.3 Fitting Nonlinear Functions to Data 187

Year 1983 1984 1985 1986 1987 1988 1989 1990

Number of AIDS Cases 4,589 10,750 22,399 41,256 69,592 104,644 146,574 193,878

Year 1991 1992 1993 1994 1995 1996 1997 1998

Number of AIDS Cases 251,638 326,648 399,613 457,280 528,144 594,641 653,084 701,353

Source: U.S. Centers for Disease Control and Prevention.

EXAMPLE 4 The Spread of AIDS
The following table shows the accumulated total number of reported cases of AIDS in
the United States since 1983. Find an exponential function that can be used to model the
spread of AIDS and check its correlation coefficient for significance.

Solution The scatterplot of the data points is shown in Figure 3.22. The pattern is in-
creasing and concave up for the most part. However, note that the rate of growth seems
to be diminishing in the last couple of years shown. It is reasonable to model the growth
in the total number of reported cases of AIDS with an exponential function where the
independent variable is the time t since 1980 and the dependent variable is the number
of cases of AIDS A.

The exponential function to fit this data, obtained by using a calculator, is

,

where t is measured in years since 1980. The growth factor of 1.3626 indicates that the
overall growth rate is over 36% per year. The corresponding correlation coefficient is

Based on data points, the critical value for r is so there
is a significant level of correlation, which suggests that this function fits the data well.
However, when we superimpose this exponential function over the data, as shown in
Figure 3.23, the curve doesn’t match the pattern of the data. In particular, the exponen-
tial function grows more slowly than the number of cases of AIDS from 1987 to 1994
and thereafter grows much more rapidly.

�

Because the spread of AIDS has been slower than exponential growth, it
makes sense to try a different model—say, a power function—which we illustrate
in Example 5.

r16 � 0.497,n � 16r � 0.9483.

A1t 2 � 5413.511.3626 2 t
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EXAMPLE 5 The Spread of AIDS (Continued)
Find a power function that can be used to model the spread of AIDS and compare the
results to those obtained with the exponential function in Example 4.

Solution We use the data in Example 4, with t representing the number of years since
1980 and A the total number of cases of AIDS in the United States. Using a calculator, we
obtain the power function that fits these data:

The corresponding correlation coefficient is which is considerably higher than
the value of for the exponential function. This result suggests that the power
function fits the data better than the exponential function. Superimposing this power func-
tion over the data, as shown in Figure 3.24, confirms that the power function fits the data bet-
ter than the exponential function. However, like the exponential function, the power function
also is growing more rapidly than the number of cases of AIDS over the last few years shown.

r � 0.9483
r � 0.9961,

A1t 2 � 233.287t2.865.

�

Together, Examples 4 and 5 illustrate an important point: When faced with a set of
data, you should not be content to consider only one type of function as a potential
model if there are several different families of functions that have the same behavior
pattern. Rather, it would make sense for you to examine what happens when you fit var-
ious types of functions to the data and then decide which one is the best fit. We return
to this example later in the book to show the effects of using other functions as models.

In Section 1.1, we discussed the growth in life expectancy over the years since
the beginning of the twentieth century. The graph showing this trend is presented
in Figure 3.25. Let’s investigate this situation.
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Year, t 1900 1915 1930 1945 1960 1975 1990 2000

Life Expectancy, L 47.3 54.5 59.7 65.9 69.7 72.6 75.4 76.4

Source: 2000 Statistical Abstract of the United States.

EXAMPLE 6 Increase in Life Expectancy
The following table gives the life expectancy for children born in the United States in the
years shown since the beginning of the twentieth century.

a. Find an appropriate function to fit these data and check its correlation coefficient for
significance.

b. Predict the life expectancy of a child born in 2008.

Solution

a. The increasing, concave down pattern shown in Figure 3.26 suggests that either a power
function with or a logarithmic function would be an appropriate choice for
a model. However, the function modeling life expectancy clearly cannot pass through
the origin (life expectancy was not 0 in the year 0), so a power function is not an appro-
priate choice. Note that the data values are growing more and more slowly over time, so
we might expect that a logarithmic function would be a reasonable model for the data.
Using a calculator, we find that the logarithmic function that fits these data is

L � 561.93 ln t � 4192.2,

0 � p � 1

where t is the actual year. The result is given in terms of the base , which we
discussed in Section 2.6. Superimposed over the data in Figure 3.27, this function is a
reasonably good fit. The corresponding correlation coefficient is The critical
value for data points is so we have a high level of positive correlation.

b. When the logarithmic function predicts a life expectancy for someone
born in 2008 of

�

EXAMPLE 7
An object is dropped from the top of the 1450-foot-high Sears Tower in Chicago. The
following set of measurements show how far the object has fallen after each second.

L12008 2 � 561.93 ln 12008 2 � 4192.2 � 81.2 years.

t � 2008,

r8 � 0.707,n � 8
r � 0.9820.

e � 2.71828
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Find a function that gives the distance the object has fallen after any time t.

Solution From the scatterplot shown in Figure 3.28, it is clear that our best choices are
either an exponential function or a power function because the pattern is increasing and
concave up. However, at time the object has fallen a distance of 0 feet, so the curve
should pass through the origin. Thus an exponential function is not appropriate. Using
a calculator, we find that the power function fit is

with a correlation coefficient which suggests a virtually perfect fit.r � 0.999999,

D � 16.004t1.99977

t � 0

Time (sec) 1 2 3 4 5 6 7 8

Distance Fallen (ft) 16 64 144 256 401 574 786 1022

�

In fact, the actual formula for the distance fallen, based on an application of
Newton’s laws of motion, is precisely

The coefficient 16 is measured in feet per second per second. Because this coefficient
actually is one half the quantity known as the acceleration due to gravity (denoted by

), we can write the formula as

Usually, knowing how high the falling object in Example 7 is above the ground
is far more important than how far it has fallen. If the object is dropped from a
height of 1450 feet and the distance it falls in t seconds is then subtracting the
distance fallen from the initial height of 1450 feet gives

as the object’s height above the ground at any time t. We now can easily answer the
question of how long it takes for the object to hit the ground. We set the height

and solve the resulting equation for t:

 t � 290.625 � 9.5 sec.

 t2 �
1450

16
� 90.625

 16t2 � 1450

H � 0,

H � 1450 � 16t2

16t2,

D �
1

2
gt2.

g � 32 ft>sec2

D � 16t2.
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(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii)

Problems

1. For each scatterplot, select the type of function—
exponential, power, or logarithmic—that is the
most reasonable candidate to fit the data or decide
that none are appropriate.

2. For each table of values, select the type of func-
tion—linear, exponential, power, or logarithmic—
that is most likely to fit the data.

a. b.

Thus it takes about 9.5 seconds until impact.
In general, if an object is dropped from any initial height its height y above

ground level at any time t is given by

In the preceding examples, we illustrated the power of regression methods to
create a function to model a set of data. However, a number of other important is-
sues remain. First, we didn’t discuss how the different functions are calculated,
based on the data. Second, a number of problems can arise if you enter certain
kinds of numbers into either a calculator or computer program and then ask the
machine to calculate the best-fit function. In order to know what kinds of numbers
to avoid, you have to understand how the different functions are calculated. Third,
if certain kinds of numbers have to be avoided, you need a way to circumvent the
problems that can arise and create functions to fit the actual data values. Fourth,
most calculators use one method to find the equations of the functions that fit a set
of data, whereas some mathematical software packages, such as Derive™ and
Maple™, use a very different method. As a result, different functions from the same
family of functions will be obtained, depending on the technology employed.
Again, which function is the best to use requires an understanding of the methods
employed. Fifth, in each of the preceding examples, we were able to decide on a sin-
gle function to use. However, recall how when we weren’t satisfied with the results
of fitting an exponential function to the data on the spread of AIDS, we then tried
a power function. When you try different functions, how do you decide which
function is the best choice if all are appropriate mathematical models?

We discuss all these issues in the following sections. In this section, we focused
on creating a single function to fit a set of data and using that function to answer
predictive questions in that context.

y � y0 � 16t2.

y0 ,

x y

1 14.8

2 7.4

3 3.6

4 1.9

5 0.9

x y

1 14.5

2 11.3

3 8.2

4 4.9

5 1.6
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Island Herm Sark Alderney Guernsey Jersey

Area 1.3 5.2 7.9 63.5 116.3

Species 2 2 3 5 9

Source: Kevin Mitchell et al., Mathematical Models of Biological Systems. 1998.

c. d.
x y

1 2

2 9.8

3 25.1

4 48.2

5 161.5

x y

1 2.8

2 4.8

3 8.1

4 14.3

5 24.5

x y

1 0

2 5.5

3 8.7

4 11.2

5 12.8

x y

1 5

2 6.0

3 6.8

4 7.4

5 7.7

e. f.

Region Area Species

Tiburon Peninsula 5.9 370

San Francisco 45 640

Santa Barbara area 110 680

Santa Monica Mountains 320 640

Marin County 529 1060

Santa Cruz Mountains 1386 1200

Monterey County 3324 1400

San Diego County 4260 1450

Source: Kevin Mitchell et al., Mathematical Models of
Biological Systems. 1998.

3. In Example 1, we created an exponential model for
the growth of the U.S. population from 1780 to 1900.

a. Use the model to predict the population in 1820
and 1850.

b. Calculate the error of using this model to predict
the population in 1820 and 1850 by comparing
the values of the function to the actual popula-
tion values in the table.

c. Use the model to predict the U.S. population in
1920 and 1950.

d. How large are the errors in these estimates? (The
actual U.S. population was 105.7 million in 1920
and 150.7 million in 1950.)

e. Based on these values, has the U.S. population
been growing faster or slower than the exponen-
tial model?

4. The Caribbean island of Guadeloupe covers 687 square
miles. Estimate the number of species of reptiles and
amphibians that live on the island according to the
model in Example 3.

5. How large a Caribbean island would be necessary,
according to the model created in Example 3, to
support 25 species of reptiles and amphibians?

6. Use the model created in Example 4 to estimate
(a) the total number of cases of AIDS in the United
States through 2001 and (b) the year in which the
total number of cases reaches 1 million.

7. Use the model created in Example 2 to estimate
(a) the amount of L-dopa in the blood after t �

200 minutes and (b) the length of time required
for the level of L-dopa in the blood to drop to
100 nanograms per milliliter?

8. Use the model created in Example 6 to estimate
(a) the life expectancy of a child born in 2004 and
(b) the year in which the life expectancy of a new-
born will be 85 years?

9. The table shows the number of species of nonflying
mammals living on various islands in the English
Channel, as well as the areas of the islands, in square
kilometers.

a. Find the power function that models the num-
ber of species on these islands as a function of
area.

b. How large an island would be needed to support
15 species of nonflying mammals?

10. The table shows estimates for the number of species
of plants in different coastal regions of California
and the area, in square miles, of each region.

a. Find the power function that models the num-
ber of plant species in coastal regions of Califor-
nia as a function of the area of the region.

b. The area of Baja California is 24,210 square
miles. What is your prediction for the number of
species of plants in Baja?
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Year High School Grads

1900 95

1910 156

1920 311

1930 667

1940 1221

1950 1200

1960 1858

1970 2889

1980 3043

1990 2586

2000 2839

Source: Digest of Education Statistics 2000,
U.S. Department of Education.

Speed (mph) 30 40 50 60 70

Time (sec) 3.00 4.29 5.52 7.38 9.81

c. The actual number of plant species in Baja Cali-
fornia is about 1450. Because Baja California is
considerably south of the other regions listed in
the table, what does that suggest to you about the
importance of latitude (north–south distance) to
the validity of the model?

11. The accompanying table shows the number of
households, in millions, with cable television in
various years.

a. Find a linear function, an exponential function,
and a power function that fit these data using t
as the number of years since 1975.

b. Using each function, predict the total number of
households with cable TV in the year 2005.

c. Which prediction do you think is most reason-
able? Explain.

12. The table gives the total number, in thousands, of high
school graduates in the indicated years since 1900.

a. Let t be the number of years since 1890. Deter-
mine the best linear, exponential, and power
functions to model the number of high school
graduates as a function of t.

b. Use each function to predict the number of high
school graduates in 2010. Which prediction
seems the most reasonable? the least reasonable?

c. Use each function to predict the year in which
there will be 5 million high school graduates.

d. Which function seems to give the most reason-
able prediction? the least reasonable?

13. The table gives the number of violent crimes per
100,000 people in the United States since 1960.

a. Find the best linear and exponential fits to this
set of data, where t represents the number of
years since 1950.

b. Use both models to predict the number of vio-
lent crimes, per 100,000 people, that occurred in
2000.

c. With both models, predict when the number of
violent crimes will reach 1000 per 100,000 people.

d. What is the doubling time for the exponential
model?

14. According to Motor Trend magazine, the following
data are the times (in seconds) it takes a Trans Am
to accelerate from zero to the indicated speed.

a. Determine the best linear, exponential, and
power functions to model the acceleration time
as a function of the final speed.

b. Estimate how long it will take a Trans Am to ac-
celerate to 45 mph; to 80 mph; to 90 mph.

c. Which estimated time is most likely to be accu-
rate? (You might want to compare these data to
the corresponding information about the Mer-
cedes in Problem 5 of Section 3.2.)

Year 1977 1980 1983 1986 1988

Number 12.1 17.7 34.1 42.2 48.6

Year 1990 1992 1994 1996 1998 2000

Number 54.9 57.2 60.5 64.7 67.0 68.5

Source: World Almanac and Book of Facts.

Year 1960 1965 1970 1975

Number of Crimes 175 200 360 490

Year 1980 1985 1990 1995

Number of Crimes 580 550 750 685

Source: FBI, Crime in the United States.
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15. According to the U.S. Department of Education,
the following data are the numbers, in thousands,
of college degrees awarded during the indicated
year from 1900 to 1995.

c. What is the significance of the positive slope for
the linear fit?

d. What is the significance of the growth factor in
the exponential fit being greater than 1?

18. The Dow-Jones average of 30 major industrial
stocks is probably the most widely watched meas-
ure of the stock market. The following table shows
the Dow-Jones average at the beginning of each
year since 1980.

a. Find the best linear, exponential, and power
functions to fit these values for the Dow, using t
to represent the number of years since 1979.

b. Which of the three functions seems to best fit
these data? Explain.

c. What is your prediction, based on this function,
for the current value of the Dow? Check a newspa-
per or listen to the business news on the radio or
television to find out how close your prediction is
to the actual value.

d. The Dow closed above 4000 for the first time on
February 23, 1995. Which of the three models
comes closest to predicting that date?

e. The Dow closed above 5000 for the first time on
November 21, 1995. Which of the three models
comes closest to predicting that date?

f. Based on your best-fitting function, when do
you predict the Dow will first reach 14,000?

19. The following table shows the cumulative number of
HIV infections, worldwide, in millions, since 1980.

a. Assuming that the number of people infected with
HIV is growing exponentially, find the exponen-
tial function that fits these data, where the variable
t represents the number of years since 1979.

b. What is the growth factor in your function and
what does it mean?

c. Predict the number of people who will have
been infected with HIV by 2005.

a. Determine the best linear, exponential, power,
and logarithmic functions to model the number
of college graduates as a function of t, the num-
ber of years since 1890.

b. Use each of the four functions to predict the
number of college graduates in 2005.

c. Which of the four predictions seems the most
reasonable? the least reasonable?

d. Use each of the four models to predict the year in
which there will be 2 million college graduates.

e. What is the doubling time for the exponential
model?

16. a. Compare the results in Problem 15 to the results
in Problem 12 concerning the number of high
school graduates as a function of time. In partic-
ular, for the two exponential growth models,
which model is growing faster?

b. If you project forward indefinitely with both
models, when will the number of college diplo-
mas awarded surpass the number of high school
diplomas awarded? Discuss the reasonableness of
this scenario.

17. a. Use the set of data from Problem 12 on high
school diplomas awarded and the data from
Problem 15 on college degrees awarded to create
a table consisting of the number of college de-
grees and the number of high school diplomas
awarded each year from 1900 to 1990.

b. Determine the linear, exponential, power, and
logarithmic functions that fit these data to con-
struct four models relating the number of college
degrees awarded as a function of the number of
high school diplomas awarded the same year.

Year 1900 1910 1920

College Graduates 30 54 73

Year 1930 1940 1950 1960

College Graduates 123 223 432 530

Year 1970 1980 1990 1995

College Graduates 878 935 1017 1165

Source: U.S. National Center for Educational Statistics.

Year 1980 1981 1982 1983 1984 1985 1986

Dow 839 964 875 1047 1259 1212 1547

Year 1987 1988 1989 1990 1991 1992 1993

Dow 1896 1939 2169 2753 2634 3169 3301

Year 1994 1995 1996 1997 1998 1999 2000

Dow 3758 3834 5177 6447 7965 9184 11,358

Source: Wall Street Journal.
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d. How does the growth in the number of people
infected with HIV compare to the growth of this
exponential function? That is, does the function
grow faster or slower than the actual data?

e. Find the power function that fits these data,
where the variable t represents the number of
years since 1979.

f. Predict the number of people who will have
been infected with HIV by 2005.

g. How does the growth in the number of people
infected with HIV compare to the growth of this
power function? That is, does the power func-
tion grow faster or slower than the actual data?

h. Does the exponential function or the power
function seem to fit the data better? Explain your
reasoning.

20. The following table shows the cumulative number
of deaths from AIDS worldwide, in millions, since
1984.

function that fits the data, where the variable t
represents the number of years since 1979.

b. What is the growth factor in your function and
what does it mean?

c. Predict the total number of people who will have
died from AIDS by 2005.

d. Find the power function that fits the data, where
the variable t represents the number of years
since 1979.

e. Predict the number of people who will have died
from AIDS by 2005.

f. Does the exponential function or the power
function seem to fit the data better? Explain.

21. A growing percentage of the world’s population is now
living in urban areas, as shown in the following table.

a. Find the equation of the linear function that best
fits the data, where t is the number of years since
1945.

b. Predict the percentage of the world’s population
that will live in urban areas in 2020, based on the
linear function.

c. Find the equation of the exponential function
that fits the data.

d. Predict the percentage of the world’s population
that will live in urban areas in 2020, based on the
exponential function.

e. Find the equation of the power function that fits
the data.

f. Predict the percentage of the world’s population
that will live in urban areas in 2020, based on the
power function.

g. Which of the three functions appears to fit the
data best? Which of the three functions appears
to give the most reasonable prediction for the
percentage of the world’s population living in
urban areas in 2020? Which gives what appears to
be the least reasonable prediction? Explain.

22. The following table shows worldwide consumption
of natural gas, measured in the equivalent of mil-
lions of tons of oil, over time.

a. Assuming that the number of deaths from AIDS
is growing exponentially, find the exponential

Year 1980 1981 1982 1983 1984

Number 0.1 0.3 0.7 1.2 1.7

Year 1985 1986 1987 1988 1989

Number 2.4 3.4 4.5 5.9 7.8

Year 1990 1991 1992 1993 1994

Number 10.0 12.8 16.1 19.7 23.8

Year 1995 1996 1997 1998 1999

Number 28.3 33.5 38.9 44.1 49.9

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.

Year 1984 1985 1986 1987

Number 0.1 0.2 0.3 0.5

Year 1988 1989 1990 1991 1992 1993

Number 0.8 1.2 1.7 2.4 3.3 4.4

Year 1994 1995 1996 1997 1998 1999

Number 5.7 7.3 9.2 11.3 13.7 16.3

Source: Lester R. Brown et al.,Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.

Year 1950 1955 1960 1965 1970

Percentage 29.7 31.6 33.6 35.5 36.7

Year 1975 1980 1985 1990 1995 1999

Percentage 37.8 39.4 41.2 43.2 45.3 47.0

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.
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Pressure 0.61 1.22 2.34 4.25 7.38 12.34 19.93 31.18 47.37 70.12 101.32

Temp. 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100°

Source: CRC Handbook of Chemistry and Physics, 1996.

a. Find the equation of the linear function that
best fits the data, where t is the number of years
since 1940.

b. Predict the worldwide consumption of natural
gas in 2020, based on the linear function.

c. Find the equation of the exponential function
that fits the data.

d. Predict the worldwide consumption of natural
gas in 2020, based on the exponential function.

e. Find the equation of the power function that fits
the data.

f. Predict the worldwide consumption of natural
gas in 2020, based on the power function.

g. Which of the three functions appears to fit the
data best? Which of the three functions appears
to give the most reasonable prediction for the
worldwide consumption of natural gas in 2020?
Which gives what appears to be the least reason-
able prediction? Explain.

23. As the pressure of a liquid goes up in a confined
space (say, in a pressure cooker), the boiling point
also goes up. The following table gives the tempera-
ture T of the boiling point of water, in degrees Cel-
sius, at various vapor pressures, P, in kilo-pascals.

a. Find the logarithmic function that fits the data.
How good is the fit?

b. Use your function from part (a) to find the boiling
point of water when the vapor pressure is 6.2 kilo-
pascals.

c. What vapor pressure is needed if the boiling
point of the water is 120°C?

How to Fit Exponential and 
Logarithmic Functions to Data

In Section 3.2, we developed the ideas of correlation and linear regression that
allow us to determine whether a linear relationship exists between two variables,
and if so, to find the equation of the regression line that best fits the data. In Sec-
tion 3.3, we considered the natural extension of these ideas to fit nonlinear func-
tions such as exponential, power, and logarithmic functions to a set of data.
However, the approach we used there was just to quote the results obtained from a
calculator or a spreedsheet. Let’s now look at how the calculator finds these equa-
tions. In the process, you will come to understand some of the cautions we men-
tioned at the end of Section 3.3.

One of the key approaches used in practice when a set of data does not fall in a
linear pattern is the following three-step process.

1. Transform the data in some way so that the resulting transformed values
fall in a roughly linear pattern. We call this linearizing the data.

2. Once the data have been linearized, find the regression line and correlation
coefficient for the transformed data.

3. Undo the transformation by using the appropriate inverse function to produce
the equation of the nonlinear function that fits the original set of data.

Here, we consider modeling a data pattern with an exponential or a logarithmic
function; in Section 3.5, we consider modeling a data pattern with a power function.

3.4

Year 1950 1960 1970 1975

Natural Gas Used 187 444 1022 1199

Year 1980 1985 1990 1995 1999

Natural Gas Used 1406 1640 1942 2116 2301

Source: Lester R. Brown et al.,Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.
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TABLE 3.5 Logarithms of Population Values

Decade Population log(population)

0 2.8 0.447
1 3.9 0.591
2 5.3 0.724
3 7.2 0.857
4 9.6 0.982
5 12.9 1.111
6 17.1 1.233
7 23.2 1.365
8 31.4 1.497
9 39.8 1.600

10 50.2 1.701
11 62.9 1.799
12 76.0 1.881

Fitting Exponential Functions to Data

Let’s begin by considering the population of the United States, in millions, from 1780
to 1900, as shown in Table 3.4 (Example 1 of Section 3.3) with the corresponding scat-
terplot in Figure 3.29. Again, the independent variable t is the number of decades
since 1780. As we showed there, the successive ratios are fairly constant, which sug-
gests that the pattern is roughly exponential. The calculator gives the exponential
function as with a correlation coefficient of Now
let’s see how this function is actually obtained, using transformations.

r � 0.998.P1t 2 � 3.069 11.321 2 t

EXAMPLE 1
Construct the exponential function that fits the data on the U.S. population from
1780–1900, using the transformation approach.

Solution To determine the exponential function that fits the population values shown
in Table 3.4, we first transform the population data by taking the logarithm of each pop-
ulation value, as shown in Table 3.5. (We discuss the reason for doing so later.)

The resulting scatterplot of log(population) versus time in decades, shown in Figure 3.30,
now indicates a roughly linear pattern. Checking the differences in successive values under
log(population) in Table 3.5 reveals that they are roughly equal. We therefore find that the
best linear fit to this set of transformed data, using the ideas from Section 3.2, is
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where Y and X is the number of decades since 1780.
The corresponding correlation coefficient is Comparing this value to

the critical value of from the table on the inside back cover shows that, with
95% certainty, there is positive correlation between the decade and the logarithm of the
population from 1780 through 1900. Note that the value for the correlation coefficient,

for the linear fit to the transformed data values is exactly the same value that
a calculator gives as part of its exponential regression calculations.

However, in the regression equation the independent variable
X represents t and the dependent variable Y represents log P. That is, the regression equa-
tion actually represents

We now undo the original transformation (the logarithm) of the data by applying the
inverse function, which is an exponential function with base 10, and by using the appro-
priate properties of exponents. We obtain

where t is the number of decades since 1780. This new equation has the form for an
exponential function. This expression is identical to the exponential function that the
calculator gives automatically.

�

Why the Transformation Approach Works

Let’s explore why we took the logarithm of the population values. Suppose that the
scatterplot for a set of data appears to follow an exponential pattern so that we
hope to fit an exponential function of the form to the data for
some constants c and k. If we take logarithms of both sides of this equation and use
properties of logs, we get

Because log c and log k are constants, this expression has the form

where

Thus, if y is an exponential function of x, then log y is a linear function of x, and
this transformation (taking the logarithm of the y values) linearizes the data, as il-
lustrated in Figure 3.31. We then find the coefficients a and b using the linear re-
gression technique. Finally, we undo the transformation by taking powers of 10 of
both sides of the equation and apply the appropriate properties of exponents and
logarithms to get the desired exponential function, as illustrated in Example 1.

Example 2 demonstrates that this approach—based on transforming the data
values from to —actually works.1x, log y 21x, y 2

Y � log y,  a � log c, and b � log k.

Y � aX � b,

 � 1log c 2x � log k.

log Ap � p log A � log k � x log c

log AB � log A � log B � log k � log1cx 2
 log y � log1kcx 2

y � f 1x 2 � kcx

P0c
t

 10u.p � 110u 2 p � 3.06911.321 2 t,
 10u�v � 10u . 10v � 100.121t . 100.487

 10log u � u P � 10log P � 100.121t�0.487

log P � 0.121t � 0.487.

Y � 0.121X � 0.487,

r � 0.998,

r13 � 0.553
r � 0.998.

� log1population 2

Y � 0.121X � 0.487,
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Y = (log c)X + log k

x

y

(x, y)

(X, log y)

y = kcx

(a)

X (= x)

Y (= log y)

(b)FIGURE 3.31
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EXAMPLE 2
Show that the linearization technique works for points on the exponential function

Solution We select the points on the curve corresponding to (so that
and as shown in Figure 3.32(a). These

points give us the first two columns in the following table. When we transform this set of
data by taking the logarithms of the y-values, we get the third column.
The scatterplot of the transformed data points shown in Figure 3.32(b) sug-
gests that the points appear to lie exactly on a straight line. If we take any two of the

1x, log y 2

x � 4,x � 3,x � 2,x � 1,5 . 20 � 5 2 ,y �
x � 0y � 5 . 2x

y � 5 . 2x.

transformed points, we find that the slope of the line joining them is 0.301. Further-
more, the y-intercept is Thus the equation of the line through the trans-
formed data points is which is equivalent to

We now undo the logarithm by taking powers of 10 on both sides of this equation:

which is effectively the exponential function that we started with when round-
ing errors are eliminated.

�

We summarize this approach as follows.

y � 5 . 2x

 � 5.000311.9999 2 x,
 10u.p � 110u 2 p � 1100.301 2 x15.0003 2

 10u�v � 10u . 10v � 1100.301x 2 1100.699 2
 10log u � u 10log y � y � 100.301x�0.699

log y � 0.301x � 0.699.

Y � 0.301X � 0.699,
b � 0.699.

x y log y

0 5 0.699

1 10 1

2 20 1.301

3 40 1.602

4 80 1.903
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FIGURE 3.33

Virtually every graphing calculator has a built-in routine as part of its statis-
tics capabilities to find the exponential function that fits a set of data based on this
procedure.

Caution: In the process of transforming to log y versus x, all the y-values must
be positive because the logarithm is not defined for negative or zero values.

Many scientific software packages, as well as most spreadsheets, contain rou-
tines that will fit an exponential (or other) function to a set of data. However, some
mathematical software packages, such as Derive™, Maple™ and Mathematica™,
calculate a best fitting exponential function by applying the least squares criterion
directly. They find the values for k and c in that minimize the sum of the
squares of the vertical deviations between the data points and the curve, as illus-
trated in Figure 3.33. The results obtained by using this method can be somewhat
different from the results obtained with the transformation approach to linearize
the data values. We use the transformation approach throughout the book and all
answers shown are based on it. Also, whenever we speak of a best fitting (nonlin-
ear) function, it is in the context of the transformation approach.

y � kc x

If the data appear to follow an exponential pattern 

1. plot log y versus x to linearize the data;

2. find the best linear fit,

to the transformed data; and

3. undo the logarithmic transformation by taking powers of 10.

1x, log y 2

log y � ax � b,

y � kcx,1x, y 2

The transformation method also applies to situations that can be modeled by
an exponential decay function, as demonstrated in Example 3.

EXAMPLE 3
The following table and the graph shown in Figure 3.34 give the amount L of L-Dopa in
the bloodstream, in nanograms per milliliter, t minutes after the drug was absorbed into
the blood. Find an exponential function that models the level of L-Dopa in the blood as
a function of time, using the transformation approach.
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t 0 20 40 60 80 100 120 140 160 180 240 300

L 2950 2600 1550 1100 900 725 600 510 440 300 250 225

Source: Douglas Brown and Tom Timchek; unpublished manuscript.

t 0 20 40 60 80 100 120 140 160 180 240 300

log L 3.470 3.415 3.190 3.041 2.954 2.860 2.778 2.708 2.643 2.477 2.398 2.352
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Y = log L

FIGURE 3.35

Solution In Example 2 of Section 3.3, we found that the calculator gave

as the exponential decay function that best fits these data.
To find this exponential function by using the transformation approach, we first

look at log L versus t.

L1t 2 � 2147.810.9909 2 t

The corresponding scatterplot, shown in Figure 3.35, is reasonably linear. Applying a
calculator’s linear regression routine to this transformed data, we find that the resulting
regression equation that is the best linear fit to this transformed data is

Y � �0.00396X � 3.3320,

where The corresponding correlation coefficient is Note that
both the slope and the correlation coefficient are negative because the trend in the

r � �0.9545.Y � log L.
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FIGURE 3.36

data is decreasing. Also, the critical value is indicating a significant level of
correlation.

Because we transformed the data by plotting log L versus t, the linear function we
got actually represents

To undo the logarithm transformation, we take powers of 10 on both sides:

so that the exponential decay model is

which is identical to the expression that the calculator gave.

�

Fitting Logarithmic Functions to Data

Suppose now that a set of data falls in the increasing, concave down pattern shown
in Figure 3.36. Such a shape might suggest a logarithmic function of the form

y � f 1x 2 � a log x � b.

L1t 2 � 2147.810.9909 2 t,

 � 2147.8 . 10.9909 2 t
 10u.p � 110u 2 p � 110�0.00396 2 t . 2147.8

 10u�v � 10u10v � 10�0.00396t . 103.3320

 10log u � u L � 10log L � 10�0.00396t�3.3320

log L � �0.00396t � 3.3320.

r12 � 0.576,

(This scatterplot may also suggest a power function with we consider
such cases in Section 3.5.) This expression for the logarithmic function suggests
that we should transform the original data set by comparing y to log x rather than
comparing y to x.

However, most calculators and computer packages that perform this calcula-
tion use natural logarithms with base e rather than logarithms with base 10. Thus
we actually fit logarithmic functions of the form

to the data. So, to linearize data that follows a logarithmic pattern, we plot y versus
ln x.

In Example 6 of Section 3.3, we created the logarithmic function
to model the growth in life expectancy over the years

since the beginning of the twentieth century. The graph of this trend is shown in
Figure 3.37.

4192.2L � 561.93 ln t �

y � f 1x 2 � a ln x � b

0 � p � 1;
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Year, t 1900 1915 1930 1945 1960 1975 1990 2000

Life Expectancy, L 47.3 54.5 59.7 65.9 69.7 72.6 75.4 76.4

Source: 2000 Statistical Abstract of the United States.

ln t 7.5496 7.5575 7.5653 7.5730 7.5807 7.5883 7.5959 7.6009

L 47.3 54.5 59.7 65.9 69.7 72.6 75.4 76.4
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EXAMPLE 4
The following table shows the trend in life expectancy for children born in the years
shown since the beginning of the twentieth century. Find the best logarithmic function
to fit these data.

Solution To fit a logarithmic function to the data, we need to compare life expectancy
L to the natural logarithm ln t of the year, as follows.

The graph of the transformed data shown in Figure 3.38 appears to be reason-
ably linear and the best linear fit to this transformed data is

Y � 561.93 X � 4192.2,

1ln t, L 2
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which really represents

Because this expression already gives L as a function of t, we need not detransform the
equation in order to solve for L. Figure 3.39 shows this function superimposed over the
data, and it is a reasonably good fit, though it doesn’t bend as much as the data set does.
The corresponding correlation coefficient is which indicates a high level of
positive correlation compared to the critical value Incidentally, note that this
function is identical to the one found by calculator in Example 6 of Section 3.3.

�

We summarize this approach as follows.

r8 � 0.707.
r � 0.9820,

L � 561.93 ln t � 4192.2.

204 CHAPTER 3 Fitting Functions to Data

If the data appear to follow a logarithmic pattern,

1. plot y versus ln x to linearize the data; and

2. find the best linear fit,

to the transformed data.

y � a ln x � b,

Incidentally, a plot of either log y versus x (for an exponential fit) or y versus
log x (for a logarithmic fit) is known as a semi-log plot. You may have used semi-log
paper in some of your laboratory courses to plot experimental data that follow ei-
ther an exponential or a logarithmic pattern.

Problems

In each problem use the transformation approach to find the
exponential or logarithmic function that best fits the data.

1. (a) Repeat the analysis of the growth of the U.S.
population presented in Example 1, but concen-
trate on the period from 1780 to 1890 instead of
1780 to 1900. (b) Does this exponential function
give a better fit? How do you know?

2. The accompanying graph shows the number of
deaths per 100,000 women in the United States from
both stomach cancer and lung cancer since 1930.
Both sets of data appear to be exponential functions.

a. Find the best exponential function that fits each
set of data.

b. What are your estimates for the number of
deaths per 100,000 women from each type of
cancer in 2005?

c. About how many women died in 1990 from
stomach and lung cancer according to these
models if there were approximately 100 million
adult women in the United States at that time?

Year

D
ea

th
s 

pe
r 

10
0,

00
0 

w
om

en

Stomach cancer Lung cancer

1930 1940 1950 1960 1970 1980 19900

5

10

15

20

25

30

35

d. Can you give any reasons why the trend for
stomach cancer (like that for most other can-
cers) is decreasing exponentially, while the trend
for lung cancer is rising exponentially?

3. The table shows the growth of the federal debt in
billions of dollars from 1940 to 2000.

a. Determine the exponential function that best
fits these data.
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b. Use this model to predict the federal debt in
2005.

5. Use the data in Problems 3 and 4 including the fact
that the U.S. population was 281.4 million in 2000
to construct a set of values representing the average
amount of the national debt per person in the Unit-
ed States every 10 years from 1940 to 2000. Deter-
mine an appropriate function that best fits these
data. If these trends continue, estimate your share
of the debt in 2005.

6. The table at the bottom of the page shows the me-
dian family income, in current dollars, in the Unit-
ed States from 1970 to 1992.

a. Determine the best exponential function to fit
these data on median family income by year.

b. Use your result in part (a) to predict the median
family income in 2000 and in 2005.

c. Using your model, determine when median
family income will reach $50,000.

d. What is the doubling time for the exponential
model?

e. Consult the current edition of the Statistical Ab-
stract of the United States to find the correct
value for the median family income in 2000.
How close is your prediction in part (a) to the
actual value?

7. Suppose that the pattern you found in Problem 6
for the growth in median family income continues
without change. In addition, suppose that infla-
tion “remains under control” for the foreseeable
future and is limited to about 3% per year. Write a
short interpretation of what these two trends, if
they continue without change, mean in terms of
the standard of living in 20 years.

8. The table shows the Dow-Jones average for 30 indus-
trial stocks at the beginning of each year since 1990.

Year 1940 1950 1960 1970 1980 1990 2000

Debt 651 257 291 381 909 3207 5686

Source: 2000 Statistical Abstract of the United States.

4. The table shows the growth of the U.S. population
in millions from 1940 to 1990.

a. Determine the exponential function that best
fits these data.

b. Use this model to predict the U.S. population in
2000.

c. According to the 2000 census, the actual U.S. pop-
ulation in 2000 was 281.4 million. Did the model
give a reasonably accurate prediction? Explain.

Year 1970 1975 1980 1985 1990 1993 1995 1997 1999

Median family income 9,867 13,719 21,023 27,735 35,353 36,959 40,611 44,568 48,950

Sources: 2000 Statistical Abstract of the United States and U.S. Bureau of the Census.

a. Find the exponential function that best fits these
data.

b. What is your prediction, based on this function,
for the current value of the Dow? Check a news-
paper or listen to the business news on the radio
or television to find out how close the prediction
is to the actual value.

c. The Dow closed above 4000 for the first time on
February 23, 1995. How close did the model
come to predicting that date?

d. The Dow closed above 5000 for the first time on
November 21, 1995. How close did the model
come to predicting that date?

e. Based on your best fitting function, when do you
predict the Dow will first reach 14,000?

f. How do the results of this problem compare to
those of Problem 18 in Section 3.3, which was
based on the value of the Dow-Jones average
from 1980 to 2000?

Year 1940 1950 1960

Population 131.7 150.7 179.3

Year 1970 1980 1990

Population 203.3 226.5 248.7

Year 1990 1991 1992 1993 1994

Dow 2753 2634 3169 3301 3758

Year 1995 1996 1997 1998 1999 2000

Dow 3834 5177 6447 7965 9184 11,358

Source: Wall Street Journal.
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Year 1975 1980 1985 1990

Solar energy 1.8 6.5 22.8 46.5

Year 1993 1995 1997 1999

Solar energy 60.1 78.6 125.8 201.3

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental
Trends That Are Shaping Our Future.

9. In Problem 18 of Section 3.3, you were asked to find
the exponential function that best fits the Dow-
Jones average from 1980–2000.

a. Suppose that your grandmother wants to invest
heavily in the stock market. Write a paragraph
based on the results of Problem 8 above or Prob-
lem 18 of Section 3.3 and your interpretations that
might convince her to be more conservative.

b. Suppose that you are the aggressive stockbroker
who is trying to convince her to invest heavily.
Write another paragraph based on the results
from either Problem 8 above or Problem 18 of
Section 3.3 that might convince her to let you in-
vest her life savings for her.

10. The table shows worldwide car production, in
millions.

c. According to your model, what do you predict
for the total wind energy generating capacity in
2010?

12. The table shows the worldwide production of photo-
voltaic cells used for collecting solar energy over
time. The units are the energy equivalent of the cells
in megawatts.

a. Find the exponential function that best fits these
data.

b. What is the doubling time for this exponential
function? Explain what it means.

c. Write a paragraph comparing the growth rate for
the total energy equivalent of the photovoltaic
cells to the growth rate for the total wind energy
generating capacity in Problem 11. What is the
likely long-term significance of this difference?

d. According to your model, what do you predict
for the total energy equivalent of the photovolta-
ic cells produced in 2010?

13. There is considerable discussion worldwide about
the growing levels of carbon dioxide in the
atmosphere because of its effects on global warm-
ing. The table below shows the atmospheric con-
centrations of in parts per million, over time.

a. Find the equation of the exponential function
that best fits these data.

b. What is the doubling time for this exponential
function? Explain what it means.

c. What does the model predict for the atmospher-
ic concentration of in 2010?

d. When does the model predict that the carbon
dioxide concentration will reach 400 parts per
million?

CO2

CO2 ,

1CO2 2

Year 1950 1960 1970 1980 1990 1999

Cars 9 14 22 30 38 39

Source: Lester R. Brown et al., Vital Signs 2000: The Environmen-
tal Trends That Are Shaping Our Future.

a. Find the exponential function that best fits this
data.

b. According to your model, what do you predict
for the number of cars produced in 2010?

11. The table shows worldwide wind energy generating
capacity, in megawatts, over time.

a. Find the exponential function that best fits the
data.

b. What is the doubling time for this exponential
function? Explain what it means.

Year 1960 1970 1975 1980 1985 1990 1993 1995 1997 1999

Concentration 316.7 325.5 332.0 338.5 345.7 354.0 357.0 358.8 363.9 368.4

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends That Are Shaping Our Future.

CO2

Year 1980 1985 1988 1990

Wind Energy 10 1020 1580 1930

Year 1992 1995 1997 1999

Wind Energy 2510 4820 7640 13840

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.
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a. Find the equation of the exponential function
that best fits these data.

b. What is the doubling time for this exponential
function? Explain what it means.

c. What does the model predict for the number of
international tourists in 2010?

d. When does the model predict that the number
of international tourists will reach 1 billion?

15. The table shows the growth in the number of tele-
phones, in millions, in use throughout the world
since 1960.

14. Tourism is a booming global pastime and has be-
come an important economic base for many na-
tions. The following table shows the growth in the
number of international tourist arrivals, in millions,
since 1950.

a. Find the equation of the exponential function
that best fits these data.

b. What is the doubling time for this exponential
function? Explain what it means.

c. What does the model predict for the number of
phones in use in 2020?

d. When does the model predict that the number
of phones in use will reach 1 billion?

e. The exponential function can
be used to model the growth of the world’s pop-
ulation. Clearly, the growth factor for the popula-
tion is considerably smaller than the growth
factor for the number of phones. If both trends
continue, when will there be one phone for every
person living? (Hint: Think about units.)

16. The table shows the growth in the number of cell
phones, in millions, in use throughout the world
since 1985.

P1t 2 � 3.611.013 2 t

a. Find the equation of the exponential function
that best fits these data.

b. What is the doubling time for this exponential
function? Explain what it means.

c. What does the model predict for the number of
cell phones in use in 2020?

d. When does the model predict that the number
of cell phones in use will reach 1 billion?

17. The table below shows the growth in the number of
computers connected to the Internet, in thousands,
throughout the world since 1985.

a. Find the equation of the exponential function
that best fits these data.

b. What is the doubling time for this exponential
function? Explain what it means.

c. What does the model predict for the number of
computers that can access the Internet in 2020?

d. When does the model predict that the number
of computers that can access the Internet will
reach 250 million?

Year 1950 1960 1970 1975 1980

Tourists 25 69 166 223 286

Year 1985 1990 1993 1995 1997 1999

Tourists 328 459 519 569 620 657

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.

Year 1960 1970 1975 1980 1985

Telephones 89 156 229 311 407

Year 1990 1993 1995 1997 1998

Telephones 520 606 691 788 844

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.

Year 1985 1988 1990 1991 1992

Cell Phones 1 4 11 16 23

Year 1993 1994 1995 1996 1997 1998

Cell Phones 34 55 91 142 215 319

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.

Year 1985 1988 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Internet 
Connections 2.3 80 376 727 1313 2217 5846 14,352 21,819 29,670 43,230 72,398

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends That Are Shaping Our Future.
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Exercising Your Algebra Skills

Several sets of data have been linearized to find the best
exponential fit. The calculator gives the following equa-
tions for the lines that best fit the transformed data.
Undo the transformations to get the corresponding
exponential functions.

1.

2. Y � 1.3010 � 0.0128X

Y � 0.7782 � 0.0219X

3.

4.

5.

6.

7.

8. Y � �1.581 � 0.903X

Y � 0.8525 � 1.2733X

Y � �1.3015 � 0.7840X

Y � 0.3522 � 1.0843X

Y � �0.3010 � 0.0706X

Y � 1.0729 � 0.0223X

How to Fit Power Functions to Data

Suppose that we have a growth pattern in a set of data that seems to be less extreme
than exponential growth or exponential decay or one that is concave down. We
might then suspect that a power function of the form where k and
p are two constants to be determined, is the most appropriate model. As with the
exponential function in Section 3.4, we need a way to linearize the data with an ap-
propriate transformation so that we can apply linear regression techniques. We
then undo the transformation to find the power function that fits the original data.

To begin, we take logarithms of both sides of the equation and use
properties of logs:

Because both log k and p are constants, we can interpret the equation

as saying that log y is a linear function of log x. That is,

is of the form

where

Therefore, if y is a power function of x, we can linearize the original data set by tak-
ing the logarithms of both the x- and y-values. Thus, if y versus x follows a power
function pattern, log y versus log x will follow a linear pattern. We then apply the
linear regression technique to determine a and b and finally undo the transforma-
tion to get the desired values for and 

EXAMPLE 1
Show that the linearization technique works for points on the power function curve
y � 5x2.

k � 10b.p � a

a � p and b � log k.

Y � aX � b,

log y � a log x � b

log y � log k � p log x

 log1up 2 � p log u � log k � p log x

 log1u . v 2 � log u � log v � log k � log1xp 2
 log y � log1kxp 2

y � k . xp

y � f 1x 2 � kxp,

3.5
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Solution We select the points on the curve corresponding to (so
and These points give the first two columns in the

following table. Figure 3.40 shows the curve through these points. When we transform this
set of data by taking the logarithms of both the x- and y-values, we get the other two
columns in the table.

x � 4.x � 3,x � 2,y � 5 . 12 � 5 2 ,
x � 1y � 5x2

Figure 3.41 shows the transformed data points and they appear to lie
on a line. Taking any two of the transformed points gives the slope of the line as 2. Fur-
thermore, the y-intercept is so

p log x � log xp � log x2 � 0.699.

 log y � 2 log x � 0.699

b � 0.699,

1log x, log y 2 ,

We undo the logs by taking powers of 10 on both sides of the equation:

So the original data points do indeed lie on the curve 

�

We now apply these ideas to a variety of real world examples.

y � 5x2.

 10log u � u � 5 . x2.

 10u�v � 10u . 10v � 100.699 . 10log x2

 10log u � u 10log y � y � 101log x2�0.6992
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Island Area N

Redonda 1 3

Saba 4 5

Montserrat 40 9

Puerto Rico 3459 40

Jamaica 4411 39

Hispaniola 29,418 84

Cuba 44,218 76
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Island Area N log A log N

Redonda 1 3 0 0.48

Saba 4 5 0.602 0.70

Montserrat 40 9 1.602 0.95

Puerto Rico 3459 40 3.539 1.60

Jamaica 4411 39 3.645 1.59

Hispaniola 29,418 84 4.469 1.92

Cuba 44,218 76 4.646 1.88

EXAMPLE 2
In Example 3 of Section 3.3, we used data on the number of species of reptiles and am-
phibians living on different Caribbean islands in the Greater and Lesser Antilles to find a
relationship between the number of species N and the area A of the habitat. We found
the power function Find this function, using the transformation ap-
proach for the data given in the following table.

N � 3.055A0.310.

Solution Figure 3.42 shows the scatterplot for these data. The increasing and concave
down pattern suggests a power function with as the model of choice, as discussed
in Example 3 of Section 3.3. This choice is reinforced because such a function passes through
the origin and, if there were an island with area, it would be home to species.

To fit a power function to the original data using the transformation ap-
proach, we extend the preceding table to include two additional columns, one for log N
and the other for log A. We calculate these quantities and then plot log N versus log A, as
shown in Figure 3.43.

N � kAp
N � 0A � 0

0 � p � 1

These points fall in a roughly linear pattern. Using the linear regression routine on a
calculator, we find that the equation of the regression line for the transformed data
points (log A, log N) is

In the present context, this equation is equivalent to

p log u � log up � log1A0.310 2 � 0.485.

 log N � 0.310 log A � 0.485

Y � 0.310X � 0.485.
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If the data appear to follow a power function pattern 

1. plot log y versus log x to linearize the data;

2. find the best linear fit,

to the transformed data; and

3. undo the logarithmic transformation by taking powers of 10.

log y � a log x � b,

y � kxp,

To solve for N, we use properties of exponents and logarithms:

Thus we have the power function which is the same function we found
in Section 3.3 using a calculator regression routine for the power function. When we su-
perimpose this power function over the original data values as shown in Figure 3.44, it
fits the data well. In fact, the correlation coefficient for the data is which also
indicates that the fit is extremely good.

r � 0.9982,

N � 3.055A0.310,

 10log u � u � A0.31013.055 2 .
 10u�v � 10u . 10v � 10log1A0.3102 . 100.485

 10log u � u N � 10log N � 103log 1A0.3102�0.4854

�

We summarize this approach as follows.

EXAMPLE 3
The following table gives the takeoff weights, in thousands of pounds, of various jet liners
(weight of the plane plus fuel plus passengers) and their wingspans, in feet.

a. Decide which variable is the independent variable and which is the dependent vari-
able.

b. Find a power function that fits these data, using the transformation approach.

Solution

a. An aeronautical engineer designing a new plane would likely start with the desired
load, obtain the total weight, and then calculate the wingspan needed to support
that load. Thus the weight W is the independent variable and the wingspan S is the
dependent variable.
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Airplane Weight Wingspan

Boeing 707 330 145.7

Boeing 727 209.5 108

Boeing 737 117 93

Boeing 747 805 195.7

Boeing 757 300 156.1

DC8 350 148.5

DC9 121 93.5

DC10 572 165.4

Source: Michael Taylor (ed.), Jane’s Encyclope-
dia of Aviation. Crescent Books, 1993.
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b. Figure 3.45 shows the scatterplot of the data with S as a function of W. The pattern is
increasing and concave down, so a power function with a power p between 0 and 1 is
reasonable. Also, it makes sense to have a function that passes through the origin—a
plane that weighs 0 pounds will have a wingspan of 0 feet. To find the power function,
we first transform the data by plotting log S versus log W, as shown in Figure 3.46. The
pattern of the transformed data is quite linear, and the line that best fits it is

Y � 0.3942X � 1.157

The correlation coefficient is which indicates a high level of correlation
between the variables. In this context, this linear function is equivalent to

We find S by taking powers of 10 on both sides of this equation:

 10log u � u � W 0.3942114.35 2 ,
 10u�v � 10u # 10v � 10log 1W 0.39422 . 101.157

 10log u � u 10log S � S � 103log 1W 0.39422�1.157 4

p log u � log up � log1W 0.3942 2 � 1.157.

 log S � 0.3942 log W � 1.157

r � 0.9688,
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which is the desired power function. Figure 3.47 shows this function superimposed
over the original data points, and it fits the measurements well.
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FIGURE 3.47

�

Summary of Curve Fitting Procedures

If the data appear to follow an exponential pattern,

1. plot log y versus x to linearize the data;

2. find the best linear fit, to the transformed data; and

3. undo the transformation, using the inverse function.

If the data appear to follow a power function pattern,

1. plot log y versus log x to linearize the data;

2. find the best linear fit, to the transformed data;

3. undo the transformation, using the inverse function.

If the data appear to follow a logarithmic pattern,

1. plot y versus ln x to linearize the data; and

2. find the best linear fit, to the transformed data.y � a ln x � b,

y � k ln x � d,

log y � a log x � b,

y � kxp,

log y � ax � b,

y � kcx,

Cautions When Transforming Data with Logarithms

You should be aware of one major problem when using any of the curve fitting
procedures involving logarithmic transformations of the data. Recall that the loga-
rithmic function is defined only for values of x greater than 0. Thus, if
any of your data values are 0 or negative, you cannot take their logarithms. Often
you can circumvent this difficulty by redefining the independent variable. For ex-
ample, suppose that the data represent values of a quantity versus time starting in
1950. You could count the years since 1950, but then 1950 corresponds to 
which causes a problem when you take logs. Alternatively, you could count the
years since 1900 because 1950 then corresponds to which circumvents the
problem of log 0 being undefined. For that matter, you simply could count the
years from 1949 so that 1950 corresponds to You could even use the full year
1950 itself, although having creates potential rounding errors owing tot � 1950

t � 1.

t � 50,

t � 0,

y � log x
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x 0 1 2 3 4 5

y 0 400 410 430 460 500

the size of the numbers, as we previously discussed. Whatever you do, be sure to
keep track of what your independent variable represents.

Cautions when Fitting Power Functions to Data

Some serious problems can arise when you are fitting power functions to data.
Consider the data values shown.

The scatterplot shown in Figure 3.48 indicates clearly that the pattern in the data is
increasing and concave up. Using a calculator, we find that the power function that
best fits these data is with correlation coefficient The
correlation coefficient indicates a fairly good fit (the critical value for r with 
data points is ). However, superimposing the graph of this power function
on the scatterplot, as shown in Figure 3.49, indicates that this function is concave
down. This result is also evident because the power Clearly, this
power function completely misses the trend in the data. Let’s see why.

p � 0.129 � 1.

r5 � 0.878
n � 5

r � 0.907.y � 387.43 x0.129,

We know that every power function with a positive power p passes through the
origin. Although five points are listed in the preceding table, the act of fitting a
power function to the data automatically introduces the origin as an additional
point, as shown in the following table.

Worse, considering the large jump from the origin to the point (1, 400), we see that
any power function that attempts to follow the trend in all six points must be con-
cave down. As a result, a power function is not an appropriate model to use for this
set of data.
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3.5 How to Fit Power Functions to Data 215

In general, whenever you attempt to fit a power function to a set of data, you
must look at the numbers and the scatterplot to decide whether a power function
is an appropriate model. You must also keep in mind that the point (0, 0) is auto-
matically added to the data if the pattern is increasing.

You can circumvent this problem if you adjust the original data values before
fitting a power function and then undo the adjustment after the fact. To avoid the
large jump from the origin to the given data values, first adjust or shift the y-values
down (we discuss such shifts formally in Section 4.4) by reducing each y-value in
the original table by 399. We then get the values in the following table.

0 1 2 3 4 5
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500

550

y

x
FIGURE 3.50

x 1 2 3 4 5

y 400 410 430 460 500

1 11 31 61 101Y � y � 399

Using a calculator, we find that the power function that best fits these adjusted
values is The corresponding correlation coefficient

is considerably larger than the value obtained for the unad-
justed values. More important, the power is now which is greater than 1
and this function is concave up and so better captures the trend in the data. Final-
ly, having shifted all the y-values down by 399, we now adjust the function up by
adding the same amount, 399 to the expression and so obtain

The result is not a pure power function because of the additional term 399. Figure 3.50
shows this function superimposed over the original data points; it is a much better fit
to the original data, especially the first few data points.

y � 1.1877 x2.86 � 399.

p � 2.86,
r � 0.907r � 0.995

Y � y � 399 � 1.1877x2.86.

In general, we recommend the following approach when fitting a power func-
tion to a set of data. Unless there is a natural origin for the data (as there was in Ex-
ample 2 on the number of species of reptiles and amphibians on an island—a
theoretical island with zero area would have zero species), you should think about
adjusting your data values by shifting the y-values down (or up) by some appropri-
ate amount. Unfortunately, there is no simple rule to know by how much to adjust
the y-values—it depends on the data you have. In practice, it may be a good idea to
try different adjustments in the y-values to see which accomplishes the best fit.
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After you have found the best power function for the adjusted data values, undo
the shift by adding (or subtracting) the same amount back in the expression.

There is another complication to keep in mind when you fit a power function
to data. In Examples 2 and 3 of Section 2.3, we considered data on U.S. imports in
1990 ($495 billion) and in 1998 ($912 billion) and constructed the line through
these two points, using first in 1990, then in 1900, and finally in
year 0. In each case, the slope of the resulting line was the same, although the ver-
tical intercept changed to reflect the starting point. Further, no matter which
equation we use, we get the same prediction for a particular year. This principle
holds in general for the line through any points.

Similarly, in Problem 5 of Section 2.4, you were asked to examine the same
issue with exponential functions. You should have found that in all three cases the
growth factor remained the same, although the vertical intercept for the three ex-
ponential functions did change to reflect the starting point. Also, you will get the
same predictions for a given year by using any of these equations.

Unfortunately, this principle does not carry over to power functions. If you
change the meaning of the independent variable (say, t) the function changes total-
ly. Recall that every power function with power passes through the origin.
Thus, when you find the equation of an increasing power function passing through
two points or the power function that fits three or more points, that function auto-
matically passes through an additional point at the origin.

Imagine what happens when you have data points between the years 1991 and
2000, say. Your choice of what t represents means that you are repositioning the
“origin” and the resulting power function is forced through a different extra point
(the new “origin”). For instance, if you let t represent the number of years since
1990, the origin is very close to the data points. If you let t represent the number of
years since 1900, the origin is quite far from the data points. And if you let t repre-
sent the year itself, the origin is extremely far from the data points. In each case,
you will get a power function with very different values for the parameters p and k
in Moreover, any predictions based on one expression will be different
from those based on a different expression. We illustrate this by fitting a power
function to the two data points on U.S. imports.

EXAMPLE 4
In 1990, the United States imported $495 billion worth of goods from abroad. In 1998, the
United States imported $912 billion worth. Assuming that the growth in imports follows
a power function pattern, find an equation of the power function that models U.S. im-
ports by using the independent variable t to represent (a) the number of years since 1989,
(b) the number of years since 1900, and (c) the number of years since year 0. (d) Compare
the results obtained from the three approaches. (e) Use each model to predict the amount
of imports in 2005.

Solution

a. With in 1989, we have the points (1, 495) and (9, 912). Using a calculator, we
find that the corresponding power function is with correlation
coefficient 

b. With in 1900, the points are (90, 495) and (98, 912). Using a calculator, we
find that the corresponding power function is with correla-
tion coefficient r � 1.

G21t 2 � 4.69 . 10�12t7.176
t � 0

r � 1.
G11t 2 � 495t0.278

t � 0

y � kxp.

p � 0

t � 0t � 0t � 0
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c. With in the year 0, the points are (1990, 495) and (1998, 912). Some calculators
give the corresponding power function as with correla-
tion coefficient Other calculators give an overflow error because the numbers
are too large.

d. Note that all three choices led to a correlation coefficient of which suggests
that each of the three functions perfectly fit the data. However the three coefficients
and the three powers bear no relationship to one another. In fact, the power func-
tion in part (a) has which is between 0 and 1, so that power function is
increasing and concave down. The power functions in parts (b) and (c), in com-
parison, both have powers greater than 1, so they are increasing and concave up.
Figures 3.51(a)–(c) illustrate these results.

e. With in 1989, the year 2005 corresponds to and the function from part
(a) yields

With in 1900, 2005 corresponds to and the function from part (b)
yields

With in the year 0, we have and the function in part (c) gives

G312005 2 � 1.736110�500 2 12005152.312 2 � 1553.083.

t � 2005t � 0

G21105 2 � 4.69110�12 2 . 1057.176 � 1497.019.

t � 105t � 0

G1116 2 � 4951160.278 2 � 1069.918.

t � 16t � 0

p � 0.278,

r � 1,

r � 1.
G31t 2 � 1.736 . 10�500t152.312

t � 0
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D

E

Body Weight 123 130 148 166 182 197

Weight Lifted 750 776 851 912 966 1023

Source: Thomas A. McMahon and John Tyler Bonner, On Size and
Life. Scientific American Library: 1983.

b. Using this function, estimate the distance from
the left end of the dial to radio station 880; to
radio station 1270.

c. What station would be 6 cm from the left end of
the dial?

d. Determine whether the same function fits the
comparable set of readings on your radio.

e. Determine the function that fits the readings on
the FM band on your radio.

4. Weight-lifting competitions are divided into body
weight classes. Championships are often based on
the total weight each lifter can lift in the press, the
snatch, and the clean-and-jerk. The table shows the
total weight W, in pounds, lifted in several body-
weight classes as a function of the body weight B, in
pounds, of the lifter.

a. Explain why a power function would be an ap-
propriate fit for these data.

b. Find the power function that best fits these data.
c. What total weight could be lifted by a 225 pound

super-heavyweight lifter according to this model?
d. What total weight could be lifted by the prover-

bial 98-pound weakling?

5. The running speed of animals appears to be related
to their overall body lengths. The table gives the
lengths L of various organisms, in centimeters, and
their top running speed S in centimeters per second.

a. Explain why a power function would be the
function of choice to model this data.

Problems

1. Use the model created in Example 3 relating the
wingspan of a jet aircraft to its total load to answer
the following questions.

a. If a new jet is being designed to have a total take-
off load of 500 thousand pounds, what wing-
span will be necessary to support the load?

b. A super-jumbo jet is being designed to carry a
total weight of 1.2 million pounds. What wing-
span will be needed to support it?

c. The wingspan of a jet is 175 feet. What is the
maximum takeoff weight that can be supported?

2. In Example 3, we constructed a model where the
wingspan S of a jet is a function of its total weight W.
Interchange the roles of S and W so that the weight is
a function of the wingspan. Use the data in Example 3
to find the corresponding power function. How do
the parameters in this new power function compare
to those in the power function in Example 3?

In Problems 3–13, use the transformation approach to
find a power function that fits the data.

3. Marc notices that the radio frequency numbers on
the AM dial of his stereo don’t seem to lie in a linear
pattern. He measures the distances, in centimeters,
from the extreme left end of the dial to each of the
numbers printed and gets the readings shown in
the accompanying figure.

a. Determine the power function that relates the
distance D to the station numbers n shown.

The results clearly are very different and, given the actual data values, the prediction
based on the formula from part (a) with t representing the number of years since
1989 appears to be the most accurate.

�
Example 4 emphasizes that, whenever you work with a power function, you

must think very carefully about the variable you are using and consequently your
choice of origin. If you have more than two data points, it might also make sense
for you to try some different interpretations for the independent variable—for in-
stance, years since 1989, years since 1988, and years since 1987 to determine which
function best fits the data.
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Animal Length (cm) Speed (cm/sec)

Clover mite 0.08 0.85

Ant 0.42 6.5

Deer mouse 9.0 250

Zebra-tail lizard 15.0 720

Eastern chipmunk 16.0 480

Iguana 24.0 730

Gray squirrel 25.0 760

Red fox 60.0 2000

Cheetah 120.0 2900

Source: Thomas A. McMahon and John Tyler Bonner, On Size and
Life. Scientific American Library: 1983.

Animal Length (cm) Speed (cm/sec)

Fruit fly 0.2 190

Horse fly 1.3 660

Hummingbird 8.1 1120

Dragonfly 8.5 1000

Bat 11.0 690

Common swift 17.0 2550

Flying fish 34.0 1560

Pintail duck 56.0 2280

Swan 120.0 1880

Pelican 160.0 2280

Source: Thomas A. McMahon and John Tyler Bonner, On Size
and Life. Scientific American Library: 1983.

b. Find the power function that best fits these data
according to this model.

c. Estimate the length of an animal that could run
at a speed of 1500 cm/sec.

d. If this model applies to humans, estimate the
best running speed for a man who is 6 feet tall.
(Hint: ) Based on your an-
swer, does this model apply to humans? Explain.

6. The flying speed of animals also appears to be relat-
ed to their overall body length. The accompanying
table gives the lengths L of various organisms, in

1 inch � 2.54 cm.

centimeters, and their top flying speed, S, in cen-
timeters per second.

a. Find the power function that best fits these data.
b. Estimate the top flying speed for a bird that is 80 cm

long according to this model.
c. Estimate the length of a bird that could fly at a

speed of 2000 cm/sec.
d. Estimate the flying speed of a pterodactyl that

was approximately 240 cm long.

7. The swimming speed of animals also appears to be
related to their overall body length. The table gives
the lengths L of various organisms, in centimeters,
and their top swimming speed S in centimeters per
second.

Animal Length (cm) Speed (cm/sec)

Paramecium 0.02 0.1

Water mite 0.13 0.4

Goldfish 0.7 75

European dace 10.0 130

Herring 30.0 440

Penguin 75.0 380

Tuna 98.0 2080

Dolphin 220.0 1030

Blue whale 2600 1030

Source: Thomas A. McMahon and John Tyler Bonner, On Size
and Life, Scientific American Library: 1983.

a. Find the power function that best fits these data.
b. Estimate the best swimming speed for a fish that

is 50 cm long according to this model.
c. Estimate the length of a fish that could swim at a

speed of 1000 cm/sec.

8. The table gives the weights, in pounds, of a variety of
full-grown flying birds and their wingspans in feet.

a. Decide which variable is the independent vari-
able and which is the dependent variable.

b. Find a power function that fits these data.
c. If a falcon has a wingspan of 3.3 feet, predict its

weight based on your model.
d. If a turkey weighs 15 pounds, predict the

wingspan it would need in order to fly.
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Angle 3 5.7 13.7 22.9 28.6 40.1

Velocity 1.3 2.0 3.1 4.0 4.7 5.7

Source: Thomas A. McMahon and John Tyler Bonner, On Size
and Life, Scientific American Library: 1983.

A

a. What is the independent variable and what is the
dependent variable? Explain.

b. What is the range for the function relating these
two variables?

c. Find the power function that best fits these data.
d. What velocity is a bicyclist going if the angle of

lean is 50° from the vertical?
e. If a bicyclist is going 3.5 meters per second, what

angle from the vertical is needed to stay on the
circle?

11. Consider a bicyclist riding around a circular track
with a constant velocity. To keep making the turn,
the bicyclist and the bike must lean sideways toward
the center of the circle. The angle of lean to the ver-
tical is related to the radius of the circle. The table
shows the radius r in meters, and the angle A to the
vertical in degrees.

a. What is the independent variable and what is the
dependent variable? Explain.

b. What is the range for the function relating these
two variables?

c. Find the power function that best fits these data.

Bird Weight Wingspan

Vulture 18.7 9.3

Eagle 12 7.5

Horned Owl 5 5.0

Golden Eagle 13 7.3

Red tailed hawk 4 4.0

Harris hawk 2.6 3.2

Turkey vulture 6.5 6.0

Whooping Crane 16.1 7.5

Bald Eagle 16 7.5

Condor 22 9.9

Blue-footed booby 4 3.0

Crow 1 2.9

Source: U.S. Fish and Wildlife Services.

Island Area Number of Species

New Guinea 312,000 540

Borneo 290,000 420

Philippines 144,000 368

Celebes 70,000 220

Java 48,000 337

Ceylon 25,000 232

Flores 8870 143

Timor 18,000 137

Source: Kevin Mitchell et al., Mathematical Models of Bio-
logical Systems. 1998.

9. The table gives the number of species of birds living
on various islands in the East Indies versus the area,
in square miles, of each island.

d. A habitat for 200 species of birds is to be estab-
lished in this region of the world. How large must
the habitat be to support that many species?

10. Consider a bicyclist riding around a circular track
with a constant radius. To keep making the turn,
the bicyclist and the bike must lean sideways toward
the center of the circle. The angle A of the lean from
the vertical is related to the velocity of the bike. The
table shows the velocity v in meters per second and
the angle A to the vertical in degrees.

a. Decide which variable is the independent variable
and which is the dependent variable.

b. Find a power function that fits these data.
c. The island of Sumba, which has an area of 4600 square

miles, is in this region. Estimate how many species of
birds live on Sumba.
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Angle 38.4 34.4 29.8 24.6 20.6

Radius 0.8 0.9 1.05 1.3 1.74

Source: Thomas A. McMahon and John Tyler Bonner, On
Size and Life, Scientific American Library: 1983.

Range 250 500 1000 1500 2000 2500 3000

Time 3 4 5 6.5 9 11 16

Source: Student project.

d. What radius circle is needed for a bicyclist lean-
ing 15° from the vertical?

e. If a bicyclist is going around a circle that has a
radius of 1.5 meters, what angle from the vertical
is needed for the byciclist to stay on the circle?

12. The following table shows the total worldwide car-
bon emissions, in millions of tons of carbon, from
fossil fuel burning over the years.

a. Find the equation of the power function that
best fits these data.

b. What does the model predict for the amount of
carbon emitted by burning fossil fuels in 2010?

c. When does the model predict that the total
amount of carbon emitted from burning fossil
fuels will reach 7000 million tons?

a. Determine the power function that fits these data.
b. An enemy tank is at a distance of 1750 meters.

How long will it take for an M1A1 tank crew to
locate, identify, and then fire at the target?

c. If it takes 10 seconds for an M1A1 tank crew to
fire at a target, what is the range to the target?

d. An allied tank is 3000 meters away. How long does
the crew of an M1A1 tank have to realize that the
target is actually a friend and avoid firing at it?

13. Dennis is a gunnery officer for M1A1 Abrams tanks in
the National Guard. He has determined the distance,
in meters, to a potential target and the time, in sec-
onds, needed to locate, identify, and fire at that target.

Exercising Your Algebra Skills

Several sets of data have been linearized to find the best
power fit. The following equations are for the lines that
best fit the transformed data. What are the correspon-
ding power functions?

1.

2. Y � 0.6990 � 0.7X

Y � 0.9031 � 1.5X

How Good Is the Fit?

Throughout this chapter, we have looked for the function within each appropri-
ate family of functions that best fits a set of data values in the least squares sense.
If the data points fall in a linear pattern, we use the regression line. If the data
points fall in some other recognizable pattern and if appropriate software is
available, we can apply the least squares criterion directly to construct the best fit

3.6

3.

4.

5.

6.

7.

8. Y � �0.817 � 2.015X

Y � 0.8525 � 1.2733X

Y � �1.3015 � 0.7840X

Y � 0.3522 � 1.0843X

Y � �0.2218 � 0.4X

Y � 1.0792 � 1.5X

Year 1950 1960 1970 1975 1980

Carbon Emissions 1612 2535 3998 4518 5156

Year 1985 1990 1993 1995 1997 1999

Carbon Emissions 5271 5946 5896 6212 6349 6307

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends That Are
Shaping Our Future.
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222 CHAPTER 3 Fitting Functions to Data

function in any particular family. Alternatively, we can use the built-in routines
of graphing calculators or spreadsheets to find the function that best fits the
data, based on the transformation approaches described in Sections 3.3 and 3.4.

In doing any of these things, we face two problems:

1. being able to assess how well a particular curve fits the set of data; and

2. deciding which function is a better fit when there are several reasonable
candidates.

Unfortunately, there is no single, clear-cut way of resolving these problems. In this
section, we look at several different ways to make such decisions.

Interpreting the Correlation Coefficient

Comparing the quality of the best fit in one family of functions to the best fit in
another involves some deep and subtle issues and we can only touch the surface
here. First, recall that the correlation coefficient measures only how well the best
linear function fits any set of data, be it the original or the transformed data. If r
is not close enough to either or there is no point in using that function as
a model to describe the pattern in the data.

Suppose that we have sufficiently high values for r for several different families of
functions—say, linear, exponential, and power. It is tempting to think that the func-
tion having the largest value for r is the best fit among them, but unfortunately that
is not necessarily the case, especially if the values for r are relatively close—say, 0.93,
0.95, and 0.90. Thus you should not make a decision about which function is the best
fit by using r as the only criterion.

Interpreting the Residuals

The residuals associated with a particular fit provide considerably more information
about how good the fit is and how to compare different fits for the same set of data.
Recall that, for a linear fit to the original data, the residuals are the differences between
the actual y-values and the predicted values based on the regression line, as shown in
Figure 3.52(a). When we transform the data and obtain the regression line for the
transformed data, then the residuals are the differences between the transformed data
values (Y) and the predicted values based on the regression line for the transformed
data The differences between the original y-values and the predict-
ed values based on the detransformed function—say, an exponential function—are
not residuals; they are called errors, as shown in Figure 3.52(b).

For a linear fit, if the actual height is y and the predicted value given by the regres-
sion line is the corresponding residual is If a
data point lies above the regression line, the residual is positive; if a data point lies
below the regression line, the residual is negative, as shown in Figure 3.53. If the fit is
good, roughly half the residuals should be positive and roughly half should be negative
because the regression line should pass, more or less, midway between the data points.

We plot the residuals corresponding to the data in the scatterplot shown in Figure
3.53 on a different set of axes as shown in Figure 3.54. This plot is called a residual plot,
Points on the horizontal axis of the residual plot represent data points with zero resid-
ual—that is, data points that fall exactly on the regression line. Whenever a data point
lies above the regression line, the residual is positive and the associated point in the
residual plot is above the horizontal axis by that amount. Similarly, whenever a data

y � yp � y � 1ax � b 2 .yp � ax � b,

1 y � mX � b 2 .

�1,�1
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point lies below the regression line, the residual is negative and the associated point in
the residual plot is below the horizontal axis by that amount. (Note that the horizontal
axis shown in the residual plot has no direct relationship to the regression line.)

EXAMPLE 1
In Example 1 of Section 3.2, we looked at the gross receipts of the movie industry, in bil-
lions of dollars, in different years since 1990 based on the following table.
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224 CHAPTER 3 Fitting Functions to Data

We now plot the residuals in the corresponding residual plot shown in Figure 3.56.
As we indicated the first residual point lies slightly below the horizontal axis because the
actual data point lies slightly below the regression line. The same is true of the second
point. The third, fourth, and fifth points all lie above the horizontal axis because each
corresponds to a point that lies above the regression line in Figure 3.55. Finally, the last
point lies below the horizontal axis because the actual data point lies below the height
predicted by the regression line.

Year 0 3 4 5 6 7

Total Receipts y 39.98 49.80 53.50 57.18 60.28 63.01

Predicted 40.03 50.06 53.40 56.74 60.09 63.43

Residual 0.10 0.44 0.19 �0.42�0.26�0.05

yp

Year 0 3 4 5 6 7

Total Receipts 39.98 49.80 53.50 57.18 60.28 63.01

Source: 2000 Statistical Abstract of the United States.
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We found the regression line to be where t is the number of years
since 1990. Use this equation to calculate the residuals and create the residual plot.

Solution We show the scatterplot of the data with the regression line 
superimposed in Figure 3.55. Now consider the first data point, where 

and billion dollars. The predicted height of the corresponding point on the
regression line is

yp � 3.343510 2 � 40.027 � 40.027 � 40.03.

y � 39.98
t � 0� 40.027

y � 3.3435t

y � 3.3435t � 40.027,

This predicted value (the height to the line when ) is larger than the actual value
39.98, so the data point lies below the regression line. The residual for this point is then

so the corresponding point in the residual plot that we draw later will lie below the hor-
izontal axis there. We perform comparable calculations for each of the remaining data
points and list the results in the following table.

y � yp � 39.98 � 40.03 � �0.05,

t � 0
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Interpreting a Scatterplot

Figure 3.57 shows both a scatterplot and the associated residual plot for a set of
data in which a linear function fits the data well. Note that the regression line es-
sentially passes through the middle of the cluster of data points so that roughly half
the points lie above the regression line and roughly half lie below it. Also, note that
in the residual plot roughly half the residuals are positive (corresponding to data
points above the regression line) and roughly half are negative (corresponding to
data points below the regression line). Moreover, the residuals seem to be scattered
randomly both above and below the horizontal axis; there does not appear to be
any pattern to their locations.

In contrast, consider the scatterplot and the associated residual plot shown in Fig-
ure 3.58. The data fall in a linear pattern, but the regression line does not appear to be
a particularly good fit; it is distorted by the presence of two points that are far from the
line. How does this poor fit show up in the residual plot? Again, note that roughly half
the residuals are above the horizontal axis and roughly half are below it. However, this
time the fact that most of the residuals on the left are negative (because most of the
data points on the left fall below the regression line) is significant. Similarly, most of
the residuals on the right are positive. Thus rather than being scattered randomly
above and below the horizontal axis, the residuals have a pattern. This pattern in the
residuals indicates that the fit is not good.

Consider now the scatterplot of a different set of data and its associated resid-
ual plot shown in Figure 3.59. The data values can likely be modeled by either an
exponential growth function or a power function with For comparison, the
regression line is superimposed on the scatterplot, even though the line does not

p � 1.
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capture the trend in the data. Note that the data points on the left lie above the line,
the points in the middle lie below the line, and the points on the right lie above the
line. This behavior is reinforced by the residual plot in which the points fall into a
U-shaped pattern with the middle residual points falling below the horizontal axis.
As was the case in Figure 3.58, the existence of this pattern indicates that the linear
fit is not a good one.

Figure 3.60 shows the best exponential fit to the data in Figure 3.59 and the
residual plot associated with the transformed data. The exponential curve is a good
fit to the data. Also, the residuals are small with no obvious pattern; they are scat-
tered about the horizontal axis in an apparently random pattern.

In general, just by looking at the scatterplot, you may not be able to see that a
particular curve fits a set of data well. We have demonstrated previously that the
scales of the graph can distort an image when either or both variables extend over
a very large interval of values, preventing us from recognizing either a good or a
bad fit. We can overcome this difficulty by examining and interpreting the residual
plot associated with the regression line for the transformed data.
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� If a particular fit is good, the residuals should display no pattern.

� If the residuals do display a pattern (e.g., rising and falling, U-shaped, or pe-
riodic), the fit is likely not a good one and you should look further for a bet-
ter fit among other families of functions.

� If the residuals are extremely large numerically, you should be suspicious of
the fit, even if the fit on the scatterplot looks good.

Furthermore, if only one or two residuals are extremely large compared to all
the others, that might indicate an error in keying in data values, errors in the actu-
al measurement, or highly unrepresentative values, called outliers. Check your val-
ues to be sure that there is no input error. If there is none, you might want to
experiment by removing the outliers from the data set and recomputing the re-
gression equation to determine whether there is a dramatic improvement in the fit.
However, any final report you write on your results should mention the apparent-
ly unrepresentative outliers, even if you don’t use them in the calculations.

Once you have convinced yourself that you have found an appropriate fit for
the data, the linear correlation coefficient r provides a measure of the degree of
agreement. However, keep in mind that you can calculate a correlation coefficient
for any set of data, either a set of original values or a transformed set of values.
Several different fits for the same set of data may have a significant level of correla-
tion. (Think about the graphs of functions: Over a relatively small interval, a line,
an exponential function, and a power function may appear almost identical, but
when you extend them sufficiently, they clearly move away from one another.)

Thus a good strategy is first to find the best fit and only then consider the as-
sociated correlation coefficient to verify that it is significant. You can, and probably
should, try different fits for a set of data, one after the other, until you come up
with the best curve among the families of linear, exponential, power, and logarith-
mic functions. Of course, a set of data may not fall in any of these patterns, but a
great many reasonable data sets do. In later chapters, we extend these ideas to cases
in which the possible patterns include quadratic and higher degree polynomials,
periodic functions, or other common patterns. Two or more different patterns
may apply to different portions of a set of data. For instance, a pattern could start
with linear growth and later appear to have exponential growth.

Interpreting the Sum of the Squares

Probably the best way to compare two or more functions to decide which is the
better fit to a set of data is based on the least squares criterion. The objective in
fitting any function, whether linear or nonlinear, to a set of data is to minimize
the sum of the squares of the differences between the actual heights y of the data
points and the predicted heights based on the function. That is, for
each of the data points look at the vertical distances,

from the point to the curve and then calculate
the sum of the squares of these vertical differences:

(where indicates the sum of all the terms for each value of i from 1 through
n as discussed in Appendix A3.) This quantity is often calculated automatically in
many mathematical software packages. It is also fairly easy to calculate using a

gn
i�1

a
n

i�1

3yi � f 1xi 2 4
2

 n, . . .,yi � f 1xi 2 , for i � 1, 2, 3,
1xn , yn 2 , . . .,1x2 , y2 2 ,1x1 , y1 2 ,

yp � f 1x 2
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228 CHAPTER 3 Fitting Functions to Data

graphing calculator in the statistics or table mode. If functions from several differ-
ent families fit a set of data well, you could then compare the sum of the squares for
each function and select the function having the smallest sum of squares value as
the best fit among the choices.

However, the sum of the squares should be only one of several criteria used.
The fact that the sum of the squares is smaller for one function than for another
function doesn’t necessarily mean that it is the best fit to the data. Other factors
about the situation may not be reflected in the data. For instance, you may have
measurements on the growth of bacteria in a test tube that might suggest exponen-
tial growth, but you know that such growth cannot continue indefinitely, so an ex-
ponential function will model the population only for a short while. You should
examine the scatterplot for the presence of outliers that will distort any predicted
model. You should look at the residual plots to see if there is any pattern to the
residuals that will provide additional insight into which function is the best fit.

Another quantity is often used in the sciences to measure how well a function fits
a set of data. Instead of looking at just the sum of the squares of the vertical distances
between the data points and the approximating function, finding the average of this
sum over all the data points and then taking the square root of the result may be con-
venient. Doing so gives the root-mean-square (RMS) value associated with the func-
tion. It is calculated from the formula

In some sense, this measures the “average” distance of the data points from the
curve. The smaller the average distance is, the better the fit.

Statisticians use a slightly different measure of the average distance of the
points from the curve, called the standard error of the estimate. It is given by

This discussion about which fit is the best—and the lack of consensus about
how to determine it—reinforces the point we made at the beginning of this section
that the issues are subtle and clearly depend on the set of data you are studying.
Each set of data has to be approached and examined on its own merits.

Kepler’s Third Law of Planetary Motion: An Application

In 1619, Johannes Kepler published his third law concerning the motion of the plan-
ets around the sun. This law expresses the relationship between the average distance
D of a planet from the sun and the period t (the length of a year) for that planet to
complete a full orbit about the sun. Kepler’s work was based on the best experimen-
tal data available at the time. In fact, astronomers then weren’t aware of the existence
of the three outer planets: Uranus, Neptune, and Pluto. We use the following current
data to determine the relationship between D and t, where D is the average distance
of each planet from the sun, in millions of miles, and t is the length of its year, in days.
To give you some perspective, the Earth takes 365 days (its year) to complete a full
orbit about the sun and the average distance to the sun is 92.9 million miles.

First, we must decide which is the independent variable and which is the de-
pendent variable. Although time is usually the independent variable, in this case it
makes more sense to think of the length of the year t for a planet as a function of

B gn
i�1 3yi � f 1xi 2 4

2

n � 2
 .

B gn
i�1 3yi � f 1xi 2 4

2

n
 .
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the planet’s distance D from the sun—the farther a planet is from the sun, the
longer it takes to complete a full orbit.

We next look at the scatterplot of the data, as shown in Figure 3.61 where the av-
erage distance D from the sun is plotted along the horizontal axis and the period t is
plotted along the vertical axis. By eye, it appears that the points fall in a roughly lin-
ear pattern, so we first investigate the results of fitting a linear function to this data.

Planet Period t Distance D

Mercury 88 36.0

Venus 225 67.2

Earth 365 92.9

Mars 687 141.5

Jupiter 4,329 483.3

Saturn 10,753 886.2

Uranus 30,660 1782.3

Neptune 60,150 2792.6

Pluto 90,670 3668.2

EXAMPLE 2
Find the linear function that best fits the data on planetary motion and discuss how
good the fit is.

Solution The linear regression equation for this data set is

or equivalently in terms of our variables here,

The correlation coefficient is which indicates a high level of correlation be-
cause the critical value for data points is 

Figure 3.62 shows this line superimposed over the data points. Although at first glance
it appears that the data points fall in a linear pattern, actually they do not. Consider the scale
for the scatterplot. The horizontal scale extends from 36 million miles out to 3668 million

r9 � 0.666.n � 9
r � 0.9887,

t � 24.038D � 4584.52.

Y � 24.038X � 4584.52,
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Distance Actual Predicted period 
Planet D period t

Mercury 36.0 88 3807.1

Venus 67.2 225 3194.1

Earth 92.9 365 2716.4

Mars 141.5 687 1870.1

Jupiter 483.3 4,329 7033.1

Saturn 886.2 10,753 16,718.0

Uranus 1782.3 30,660 38,258.4

Neptune 2792.6 60,150 62,544.0

Pluto 3668.2 90,670 83,591.7 7078.3

�2394.0

�7598.4

�5965.0

�2704.1

�1183.1

�2351.4

�2969.1

�3719.1

actual � predictedt � 24.038D � 4584.5
Residual �

(or 3.668 billion) miles. Furthermore, all the data points fall rather far from the regression
line. These discrepancies may seem small to the eye, but they actually are enormous consid-
ering the size of the quantities involved. Hence the residuals—the differences between the
actual values and the predictions based on the linear function—may be quite large.

Using the linear regression equation, we predict values for the length of the year for
each planet based on its distance from the sun and so find the corresponding residuals.
They are shown in the following table.
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Note that the predictions for the length of a year for the four innermost planets are neg-
ative, which means that the year has a negative number of days! In fact, the most accu-
rate prediction based on the linear regression model (i.e., the smallest residual) is off by
1870 days! As we said previously, the apparently small discrepancies between the data
points on the scatterplot and the regression line actually are immense when we take the
scale into account. Consequently, we conclude that the linear fit is definitely not appro-
priate for this set of data, despite the high level of correlation.

�
When we examine the scatterplot of the planetary data with the regression

line superimposed, as shown in Figure 3.62, there clearly is a concave up pattern
to the data. This pattern suggests that we should use either an exponential growth
function or a power function with In Example 3, we show what happens
with the exponential function.

p � 1.
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EXAMPLE 3
Find the exponential function that best fits the data on planetary motion and discuss
how good the fit is.

Solution The exponential regression equation for this data set is

or equivalently in terms of our variables here,

The correlation coefficient is which indicates a relatively high level of corre-
lation. Comparing it to the critical value based on data points indi-
cates a significant level of correlation, although the correlation is considerably lower
than that for the linear fit. We show the exponential function superimposed over the
scatterplot in Figure 3.63, and observe that it is not a particularly good fit.

n � 9r9 � 0.666
r � 0.8937,

t � 484.17611.00172 2D.

Y � 484.17611.00172 2 x

To check the accuracy of this function, we look at the errors—the differences between
the actual values and the predicted values—we get when using this exponential formula. Re-
call that, when we are working with a linear function, the errors are the same as the residuals
but the term residual applies only to a linear fit. We show these errors in the following table.

Distance Actual Predicted Period 
Planet D Period t

Mercury 36.0 88 515.1

Venus 67.2 225 543.4

Earth 92.9 365 568.0

Mars 141.5 687 617.5 69.5

Jupiter 483.3 4,329 1,111.0 3218.0

Saturn 886.2 10,753 2,220.3 8532.7

Uranus 1782.3 30,660 10,356.5 20,303.5

Neptune 2792.6 60,150 58,782.2 1367.8

Pluto 3668.2 90,670 264,694.8 �174,024.8

�203.0

�318.4

�427.1

Actual � Predictedt � 484.176 11.00172 2D
Error �
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Distance Actual Predicted year 
Planet D Year t

Mercury 36.0 88 88.1

Venus 67.2 225 224.6

Earth 92.9 365 365.1

Mars 141.5 687 686.2 0.8

Jupiter 483.3 4,329 4,331.2

Saturn 886.2 10,753 10,753.7

Uranus 1782.3 30,660 30,669.0

Neptune 2792.6 60,150 60,148.1 1.9

Pluto 3668.2 90,670 90,547.6 122.4

�9.0

�0.7

�2.2

�0.1

0.4

�0.1

actual � predictedt � 0.4079 D1.4999
Error �

The best prediction, for the length of the year on Mars, is off by almost 70 days. The
worst prediction, for Pluto, is off by more than 174,000 days and this error is almost twice
the actual length of the year there. Consequently, we conclude that the exponential fit is
very poor for this set of data, despite the fact that the correlation coefficient is significant.

�
In Example 4 we show what happens with the power function.

EXAMPLE 4
Find the power function that best fits the data on planetary motion and discuss how good
the fit is.

Solution The power regression equation for this data set is

or equivalently in terms of our variables here,

The correlation coefficient is which indicates an almost perfect fit. The
power function superimposed over the scatterplot, as shown in Figure 3.64, certainly ap-
pears to be an excellent fit.

r � 0.9999999,

t � 0.4079 D1.4999.

Y � 0.4079 X 1.4999,

To verify the accuracy of this fit, we again look at the errors obtained when we use
the power function to predict the length of each planet’s year.
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The predictions for five of the planets are accurate to within a fraction of a day. Even
the worst prediction—that for Pluto—is off by only 122.4 days; although that may seem
like a fairly large amount, consider it in terms of the magnitude of the correct value,
90,670 days. As a percentage, this result is off by only or about one
tenth of 1%.

�

Finally, we compare how well each of the three functions created in Examples
2, 3, and 4 fit the data on planetary motion by considering the sum of the squares
of the deviations. For the linear function, we need the vertical distance from each
of the points to the line (the residuals shown in the last column of the table in Ex-
ample 2). We square these residual values and then add them. Therefore, for the
linear function, we have

For the exponential function, we similarly find the vertical distance from each
point to the curve (the error value shown in the last column of the table in Exam-
ple 3), square each of these error values, and then add them. The result is

Finally, for the power function, we likewise sum the squares of the error values
from the last column of the table in Example 4 to obtain

Summarizing these results, we have the following.

For the linear function: sum of the squares 

For the exponential function: sum of the squares 

For the power function: sum of the squares 

The value of the sum of the squares for the power function is quite small, especial-
ly considering the size of the numbers involved. (In fact, almost the entire value of
15,081.48 comes from the contribution of Pluto, for which the error is 122.4, so
that ) In contrast the sum of the squares for the linear function
is extremely large and that for the exponential function is astronomical. Therefore,
based on the sum of squares criterion, the power function is also by far the best fit
to these data.

Let’s look a little closer at the equation for the power function obtained in Ex-
ample 4, The power 1.4999 is certainly greater than 1 as we ex-
pected. However, numerically it is virtually equal to 1.5, so we write the equation as

This equation is known as Kepler’s third law of planetary motion.

In practice, measuring the length of the year for a planet is relatively easy, especial-
ly for the inner planets whose years are reasonably short. You do so by determining
how long it takes to make a complete revolution about the sun. However, measur-
ing the distance from the sun is much harder. Rewrite the equation for Kepler’s
third law to express the distance D as a function of the length of the year t. ❐

Think About This

t � 0.4079D1.5.

t � 0.4079D1.4999.

122.42 � 14,981.8.

� 15,081.48.

� 3.0782 � 1010

� 192,035,629

Sum of squares � 1�0.1 2 2 � 10.4 2 2 �  . . . � 1122.4 2 2 � 15,081.48.

 � . . . � 1�174,024.8 2 2 � 3.0782 � 1010.

 Sum of squares � 1�427.1 2 2 � 1�318.4 2 2

Sum of squares � 3807.12 � 3194.12 �  . . . � 7078.32 � 192,035,629.

0.00135 � 0.135%

gord.3896.03.pgs  4/24/03  9:54 AM  Page 233



234 CHAPTER 3 Fitting Functions to Data

0.1

–0.1

Residual

(a)

0.1

–0.1

Residual

(b)

Residual

(i)

Residual

(ii)

Problems

1. The best-fit line is constructed for each of four sets
of nonlinear data, whose patterns can be roughly
described as

a. increasing and concave up;
b. increasing and concave down;
c. decreasing and concave up;
d. decreasing and concave down.

Match each description with one of the two resid-
ual plots (i) and (ii) shown in the column at the left.
Explain your answer in each case.

2. Three different types of functions are fitted to a set
of data based on the three residual plots (a)–(c)
shown below and at the top of the next column.
Decide which function best fits the data.

Actually, there is a more interesting form for the relationship between the
length of the year and the average distance of the planets from the sun. The power
1.5 in the function can be written as the fraction so that

Squaring both sides of this equation, we get

which is the form in which Kepler’s third law usually is expressed.
Astronomers discovered the planet Pluto in 1930 after observing some minor

perturbations in the orbit of Neptune. They hypothesized that these discrepancies
could be accounted for by the existence of a previously unknown outer planet.
Knowing the timing of the perturbation, the astronomers knew approximately
where to look for this unknown planet by using predictions based on Kepler’s
third law. Similarly, they have used the law to estimate how far newly discovered
planets are in their orbits about other stars.

t2 � 10.4079D3>2 2 2 � 0.1664D3,

t � 0.4079D3>2.

3
2
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0.1

–0.1

Residual

(c)

3. Consider the points (0, 1), (1, 3), (2, 6), (3, 8) and
(4, 10).

a. The line fits these points reasonably
well. Calculate by hand the residuals and the sum
of their squares.

b. The line fits the data slightly bet-
ter. Calculate the sum of the squares and com-
pare it to the value you found in part (a).

c. Find the equation of the regression line for the
data. Then calculate the sum of the squares for
it. How does it compare to your results in parts
(a) and (b)?

4. A line is fit to different sets of data, and the follow-
ing residual plots are obtained. Assume that in each
case the residuals are all relatively small, so you are
to consider only the patterns.

y � 2.5x � 1

y � 2x � 1

(i) (ii)

(iii) (iv)

a. Decide which, if any, of the residual plots indicate
that a linear fit is appropriate for the actual data.

b. For any residual plot that indicates that a linear
fit is likely not appropriate, decide whether the
pattern in the original data is increasing and con-

cave up, increasing and concave down, decreasing
and concave up, decreasing and concave down,
or none of the above.

c. From among the families of functions that you
have studied so far, decide which types of func-
tions would be appropriate for each of the actual
data sets that you listed in part (b). State what you
would expect of the values of the parameters for
exponential functions and for power functions.

5. The Statistical Abstract of the United States contains
data on the median starting salaries of people based
on their level of education in six categories: did not
complete high school, high school graduate, associ-
ate’s degree, bachelor’s degree, master’s degree, and
Ph.D. Those who didn’t complete high school had
approximately years of education; those who
have only a high school diploma have years
of education. Similarly, for an associate’s de-
gree, for a bachelor’s degree, for a
master’s degree, and for a Ph.D. The follow-
ing table relates the median starting salary S in
1999 to the number of years E of education:

E � 20
E � 18E � 16

E � 14
E � 12

E � 10

a. Find the equation of the regression line for the
data. What is the meaning of the slope in this
context?

b. Use the equation from part (a) to calculate the
residuals associated with each data value and
construct the residual plot. Does the residual
plot indicate that the regression line fits the data
well? Explain.

c. Calculate the sum of the squares associated with
the regression line.

6. For the data in Problem 5

a. find the equation of the exponential function
that fits the data and state the meaning of the
growth factor in this context;

b. calculate the sum of the squares associated with
the exponential function you found in part (a);
and

c. the residuals for the exponential function 
in part (a) are based on the linear equation,

S � AcE

E 10 12 14

S $16,053 $23,594 $32,468

E 16 18 20

S $43,782 $52,794 $74,712
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Calculate the residuals
and draw the associated residual plot. Does the
residual plot indicate that the exponential func-
tion fits the data well? Explain.

7. For the data in Problem 5:

a. Find the equation of the power function that fits
the data.

b. Calculate the sum of the squares associated with
the power function you found in part (a); and

c. The residuals for the power function fit 
in part (a) are based on the equation,

Calculate the residuals and
draw the associated residual plot. Does the resid-
ual plot indicate that the power function fits the
data well? Explain.

8. Use the data in Problem 5 and the results from
Problems 5–7:

a. By looking at the way the linear function from
Problem 5, the exponential function from Prob-
lem 6, and the power function from Problem 7 fit
the data, which of the three functions appears to
be the best fit?

b. By comparing the correlation coefficients for the
linear function from Problem 5, the exponential
function from Problem 6, and the power function
from Problem 7, which of the three functions ap-
pears to be the best fit?

c. By comparing the sum of the squares for the lin-
ear function from Problem 5, the exponential
function from Problem 6, and the power function
from Problem 7, which of the three functions ap-
pears to be the best fit?

p . 1log E 2 .log A �
log S �

S � AEp

log A � 1log c 2E.log S � d. By comparing the residual plot for the linear
function from Problem 5, the exponential func-
tion from Problem 6, and the power function
from Problem 7, which of the three functions ap-
pears to be the best fit?

e. Based on the criteria in parts (a)–(d), which of
the three functions do you conclude is the best
fit? Explain your decision.

9. Assume that each of the planets from Mercury to
Neptune revolves about the sun in a roughly circu-
lar orbit.

a. Extend the first table in Example 2 to include the
average speed of each planet in its orbit. (Hint: If
you know the average distance from a planet to
the sun, what is the approximate distance that it
travels in its orbit around the sun?)

b. Find the best fit to this set of data on the speed of
a planet as a function of the length of the planet’s
year from among linear, exponential, and power
functions.

c. Explain how the formula you found in part (b)
can be directly determined algebraically from
Kepler’s third law.

10. Using the transformation approach of Section 3.5,
the power function in Example 4 can be found from

Show that you get the same result by using proper-
ties of logarithms when you write this function as

log D � log1t0.667 2 � 0.2596.

log D � log1t0.667 2 � 0.2596.

Linear Models with Several Variables

So far, we have studied situations in which one variable (y) depends on another (x).
In the real world, things aren’t always this simple and we often encounter situations
in which one quantity depends on two or more other independent variables. For ex-
ample, when the weather report gives the windchill factor during the winter, that
value depends on both the air temperature and the wind speed, so it is a function of
two independent variables. Similarly, when you take out a car loan, the monthly pay-
ment depends on the amount borrowed, the interest rate, and the length of the loan,
so there are three independent variables. A study conducted at a college found that
student performance in math classes could be accurately predicted from a combina-
tion of the student’s score on a placement test, the student’s age, gender, SAT score,
high school GPA, number of years since the previous math course, grade in that
course, and several other variables. Actually, each of a dozen independent variables
contributed valuable information, and a model based on all of them produced the
most accurate predictions.

3.7
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3.7 Linear Models with Several Variables 237

Serum Cholesterol y Weight Systolic Blood Pressure 

152.2 59.0 108

158.0 52.3 111

157.0 56.0 115

155.0 53.5 116

156.0 58.7 117

159.4 60.1 120

169.1 59.0 124

181.0 62.4 127

174.9 65.7 122

180.2 63.2 131

174.0 64.2 125

Source: Wayne W. Daniel, Biostatistics: A Foundation for Analysis in the Health Sciences, 4th ed.,
New York: John Wiley & Sons, 1987.

x2x1

Recall that we fit a line to a set of data points by using the least squares
criterion and constructing the corresponding linear function To do so
we minimize the sum of the squares of the vertical distances to the desired line to
obtain the line of best fit, as shown in Figure 3.65.

Here, we have a set of ( y) data points in three dimensions and want to
construct the linear function that best fits the data. The equation of a linear func-
tion of two independent variables and can be written as

where a, b, and c are three constants. The graph of any such equation is a plane in
three-dimensional space. Now, instead of fitting a line to a set of data1x, y 2

y � ax1 � bx2 � c ,

x2x1

x2 ,x1 ,

y � ax � b.
1x, y 2

In general, suppose that we have a single variable y that depends on any num-
ber of independent variables Statisticians often refer to independ-
ent variables as explanatory variables. To keep things simple, however, we focus on
the case of a single variable y that depends on two independent variables and 
so that 

Suppose that we want to determine whether a relationship exists between a per-
son’s serum cholesterol level and the person’s weight and systolic blood pressure.
(The systolic reading is the first, or higher, number in a blood pressure measure-
ment, such as 120 over 80; the smaller number is the diastolic reading.) We collect a
set of data on a random sample of individuals from some population group—say,
young males. The data in the accompanying table, for a sample of 11 apparently
normal males between the ages of 13 and 16, shows the weight of each of these indi-
viduals in kilograms (independent variable ) and the systolic blood pressure of
each (independent variable ), as well as their serum cholesterol level in mg/100 cc
(the dependent variable y). If there is a relationship between serum cholesterol level
and the other two variables, we can use it to predict serum cholesterol levels for
other members of this population group, based on weight and blood pressure.

x2

x1

y � f 1x1 , x2 2 .
x2 ,x1

xn . . . . ,x2 ,x1 ,
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FIGURE 3.65

FIGURE 3.66

points in two dimensions, we need to fit a plane to a set of ( y) data points
in three dimensions. We want to find the best-fit plane—the specific plane for
which the sum of the squares of the vertical distances to the desired plane is a
minimum, as shown in Figure 3.66.

x2 ,x1 ,

It turns out that there is a single plane that satisfies this criterion of coming
closest to all the data points in three-dimensions; it is known as the regression
plane. The process of finding the equation of this plane is called multivariate re-
gression or multiple regression. (If there are more than two independent variables, a
natural extension is used, although it isn’t possible to visualize the “hyperplane” in
four or more dimensions that best fits these data points.)

The arithmetic involved in any multivariate regression tends to be extremely te-
dious, but the method is so widely used that a routine is available in almost any statis-
tical software package and in most spreadsheets. (It is not yet available on the
common hand-held calculators.) We aren’t concerned with the mechanics of calculat-
ing these quantities but simply cite the results obtained by using appropriate software.
In the problems at the end of this section, we similarly assume that you have access to
software that will perform the calculations for you.

EXAMPLE 1
(a) Find the multivariate regression equation expressing serum cholesterol level as a
function of both body weight and systolic blood pressure. (b) Interpret the coefficients
in the multivariate regression equation. (c) Use the regression equation to predict the
serum cholesterol level of a male in the 13- to 16-year-old age group who weighs 60 kg
and whose systolic blood pressure is 123.
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3.7 Linear Models with Several Variables 239

Solution

a. Using an appropriate software package, such as the Excel™ spreadsheet (we present
details on how to use it at the end of this section), we find that the multivariate re-
gression equation is

or equivalently

b. To interpret this equation, let’s see what happens to the values for the cholesterol level
when we change each of the independent variables, weight or systolic blood pressure.
In particular, suppose that a person’s weight increases by 1 kg. According to the for-
mula, the cholesterol level y will increase by 0.6297 units. Alternatively, suppose that a
person’s systolic blood pressure increases by 1 unit. In that case, the cholesterol level
y will increase by 1.1315 units. Thus an increase of 1 unit in blood pressure has a con-
siderably larger impact on cholesterol level than an increase of 1 unit in weight has on
cholesterol level. That is, the systolic blood pressure apparently has a greater effect on
cholesterol level than weight does for a 1-unit increase in each quantity.

c. According to this model, we predict that the serum cholesterol level for an individual
who weighs and whose systolic blood pressure is

or about 169 mg/100 cc.

�
Note how the coefficients and play the same role in

this multivariate regression equation that the slope m plays in
the equation of a line We can think of the regression plane as having
two different slopes, one in the direction and another in the direction, and they
indicate how quickly the dependent variable increases for a given change in either 
or respectively. Imagine balancing a book with one corner on a table by holding
it at the opposite corner. Suppose that the point on the table is the origin and that

and are drawn on the table. The cover of the book forms a plane in
three-dimensional space and you draw two lines on the cover of the book, one par-
allel to the and the other parallel to the as shown in Figure 3.67. The
lines are inclined at two different angles and so have different slopes, one with re-
spect to the and the other with respect to the For that reason, you
may want to think of the equation of the regression plane in the form

y � m1x1 � m2x2 � c,

x2-axis.x1-axis

x2-axis,x1-axis

x2-axes x1-

x2 ,
x1

x2x1

y � mx � b.
y � ax1 � bx2 � c

b � 1.1315,a � 0.6297

y � �7.6419 � 0.6297 160 2 � 1.1315 1123 2 � 169.315,

x2 � 123x1 �  60 kg

x2

x1

Cholesterol level � �7.6419 � 0.6297 1weight 2 � 1.1315 1systolic blood pressure 2 .

y � �7.6419 � 0.6297x1 � 1.1315x2,

z

y
x

O

FIGURE 3.67
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240 CHAPTER 3 Fitting Functions to Data

where and are the slopes in the and directions, respectively.
Also note that, in making the prediction in part (c) of Example 1, we took val-

ues for the independent variables and that were within the ranges of the data
set. Had we used values that were well outside the ranges of the data—say,

and —we would have considerably less confidence in the ac-
curacy of the prediction.

The Multiple Correlation Coefficient

In addition to finding the equation of the plane that best fits the set of data points
in three-dimensional space, we also need a way of measuring how good the fit is.
With data points (where we think of y as a function of x), we used the linear
correlation coefficient r as such a measure. With two or more independent vari-
ables, we instead use a quantity known as the multiple correlation coefficient, denot-
ed by R. Like r, R also takes on values between and 1, and the closer it is to
either or the stronger the linear relationship between y and the linear com-
bination of the independent variables.

Furthermore, the square of the multiple correlation coefficient, is known as
the coefficient of determination. The value of provides some extremely useful in-
formation about the extent to which the multivariate regression equation explains
the relationship between the dependent variable y and the independent variables 
and (if there are two) or (if there are more than two). In particular,
the value of indicates the percentage of the variation in the data that is explained
by the linear relationship. For instance, if say, then 85% of the variation
is explained by the linear function. (A similar interpretation applies to the square
of the usual correlation coefficient with data points.)

As with the multivariate regression equation, both the multiple correlation co-
efficient and the coefficient of determination are typically calculated as part of the
output of both spreadsheets and statistical software.

EXAMPLE 2
For the data in the preceding table relating serum cholesterol level to an individual’s
weight and systolic blood pressure, find and interpret both the multiple correlation co-
efficient and the coefficient of determination.

Solution Using an appropriate software package, we find that the coefficient of deter-
mination is

and so the multiple correlation coefficient is

The multiple correlation coefficient is reasonably close to 1, so we conclude that a high de-
gree of linear correlation exists between the dependent variable y and the two independent
variables and (Statisticians have developed a table of critical values for R comparable
to the critical values for r, but we won’t go into that here.) Moreover, the value 
indicates that about 85% of the variation in serum cholesterol levels in this population
group can be “explained” by these two variables.

�

R2 � 0.8508
x2 .x1

R � 0.9224.

R2 � 0.8508

1x, y 2
r2,

R2 � 0.85,
R2

xn . . . ,x2 ,x1 ,x2

x1

R2
R2,

�1,�1
�1

1x, y 2

x2 � 140x1 � 70 kg

x2x1

x2x1m2m1
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3.7 Linear Models with Several Variables 241

In Example 2 the value for the coefficient of determination indi-
cates that about 85% of the variation observed is explained by the two variables,
weight and systolic blood pressure. Thus, about 15% of the variation is not explained
by these two variables. We can explain a greater amount of the variation by introduc-
ing an additional variable, perhaps the number of hours that each individual in the
study spends exercising each week, as we might expect that cholesterol levels also de-
pend on the level of physical activity. In that case, we would be working with three in-
dependent variables and and would obtain a linear regression equation that
relates serum cholesterol level to all three. Incidentally, when we do so, the coeffi-
cients of the original two independent variables will almost certainly change.

Each time we introduce an additional variable, we get a larger value for the coeffi-
cient of determination, although the increase might be minimal. At the same time, we
also increase the complexity of the model, and there are often drawbacks to doing so.

Performing Multivariate Regression in Excel

Because the Excel spreadsheet is so widely available, we briefly introduce its use for
performing a multivariate regression analysis. In Excel the dependent variable is al-
ways denoted by y, and the different independent variables are always denoted by x.
Think of the two independent variables as and You begin by entering the given
data values in the first three columns labeled A, B, and C, as shown in Figure 3.68.

x2 .x1

x3x2 ,x1 ,

R2 � 0.8508

FIGURE 3.68

Once you have entered all the data values, click Tools on the top line and
scroll down to the last entry, Data Analysis. . . . (We indicate the computer
displays in a different font, for emphasis.) If Data Analysis . . . doesn’t ap-
pear, you will have to install the Excel Analysis ToolPak™ before proceeding. To in-
stall it, go to the Tools menu and click Add-ins. If Analysis ToolPak is listed,
just click it to permanently install it. If Analysis ToolPak isn’t listed in the
Add-Ins dialog box, click Browse and locate the drive and folder names and the
file name Analys32.xll for the Analysis ToolPak—it usually is located in
the Library\Analysis folder.

When you click Data Analysis . . . , you will see a long list of available
statistical procedures in alphabetical order. Scroll down until you reach
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FIGURE 3.69

Regression and then either double click it or single click and then click OK.
Doing so brings up the window shown in Figure 3.69.

In this window, you first have to enter the Input Y Range—the cells in which
the values of the dependent variable y have been entered. The simplest way to do so
is to click the icon at the right end of the box; that brings you back to the original
spreadsheet, and you can highlight the entries down the first column (the y values)
under A and then press Enter. You then have to enter the Input X Range—the
cells in which the values of the two (or more) independent variables have been en-
tered. Again, click the icon at the right end of the box and then highlight the entries
in the second and third columns under B and C and press Enter.

Finally, you have to enter the Output Range—where the results of the regres-
sion calculations will be printed on the spreadsheet.You don’t want them printed over
the data values in the first three columns, so you probably would want them printed
starting, say, in column E. Click the white circle to the left of Output Range and then
click the icon at the right end of the box. Designate a block of cells starting at the top
of column E and extending down and to the right by highlighting the first cell under
E; then press Enter. Finally, in the Regression window, press OK.

Excel will then print a large amount of information, as shown in Figure 3.70.
Only a few of these entries are of interest to us; the rest are used for more sophisti-
cated statistical analysis. In particular, note that the first block of output is called
Regression Statistics and that the first two numbers under it are labeled
Multiple R and R Square—the values for the multiple correlation coefficient R
and the coefficient of determination,

The third block of output starts with three lines labeled Intercept, X Vari-
able 1, and X Variable 2. The entries to their right give the coefficients. In
particular, if the regression equation is the intercept is the
constant coefficient c, the value corresponding to the first X Variable is the co-
efficient a for and the value corresponding to the second X Variable is the
coefficient b for Once you have these values, you can write the multivariate re-
gression equation.

x2 .
x1 ,

y � ax1 � bx2 � c,

R2.
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FIGURE 3.70

Problems

1. A study was conducted relating the heights of
teenage boys y to the length of their radius bones 
and the length of their femur bone as shown in
the accompanying table. (All measurements are in
centimeters.)

x2 ,
x1 

a. Use an appropriate software package to calcu-
late the coefficient of determination and the
multiple correlation coefficient. How much of
the variation in height is explained by the
length of the two bones?

b. Find the equation of the plane that best fits the
data.

c. Use your equation from part (b) to predict the
height of a teenage boy whose radius measures
25.50 cm and whose femur measures 49.90 cm.
How close does your prediction come to the
boy’s actual height of 172 cm?

2. The windchill factor is an adjustment made to tem-
perature readings to take into account the effects of
the wind and so indicate how cold it feels. The follow-
ing table gives the windchill factors associated with
different combinations of air temperature in degrees
Fahrenheit and wind speeds in miles per hour.

a. Use an appropriate software package to calculate
the coefficient of determination and the multi-
ple correlation coefficient. How much of the
variation in the windchill factor is explained by
the two independent variables?

b. Find the equation of the plane that best fits the
data. (Note: The actual formula used to calculate
the windchill factors isn’t a linear function.)

c. Use your equation from part (b) to predict the
windchill factor corresponding to a temperature
of 18°F and a 22 mph wind.

y

149.0 21.00 42.50

152.0 21.79 43.70

155.7 22.40 44.75

159.0 23.00 46.00

163.3 23.70 47.00

166.0 24.30 47.90

169.0 24.92 48.95

174.5 25.80 50.30

176.1 26.01 50.90

176.5 26.15 50.85

179.0 26.30 51.10

Source: Wayne W. Daniel, Bio-
statistics: A Foundation for Analy-
sis in the Health Sciences, 4th ed.,
New York: John Wiley & Sons, 1987.

x2x1
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Temperature

Wind Speed 35 30 25 20 15 10 5 0

5 33 27 21 16 12 7 0

10 22 16 10 3

15 16 9 2

20 12 4

25 8 1 �44�36�29�22�15�7

�39�31�24�17�10�3

�31�25�18�11�5

�22�15�9�3

�5

y

1.6 2.2 2.5

1.0 1.5 3.2

1.4 1.6 5.0

2.6 3.4 4.4

1.2 2.0 4.4

1.5 1.9 3.3

1.6 2.2 3.2

2.3 3.3 3.3

2.1 2.4 3.7

0.7 0.9 3.6

Source: Wayne W. Daniel, Biostatis-
tics: A Foundation for Analysis 
in the Health Sciences, 4th ed., New
York: John Wiley & Sons, 1987.

x2x1

d. Suppose that the air temperature is 8°F and the
windchill factor is Use the equation of the
plane to predict the wind speed.

e. Which variable, temperature or wind speed, has
a greater effect on the windchill factor? Explain.

3. A study was conducted on a group of people with
pulmonary function problems to relate their forced
expiratory volume, in liters per second, to their vital
lung capacity in liters, and to their total lung ca-
pacity in liters.x2 ,

x1 ,

�30.

a. Use an appropriate software package to calculate
the coefficient of determination and the multi-
ple correlation coefficient. How much of the
variation in forced expiratory volume is ex-

plained by the two independent variables?
b. Find the equation of the plane that best fits the

data.
c. Use your equation from part (b) to predict the

forced expiratory volume of an individual whose
vital capacity is 2.6 liters and whose total lung ca-
pacity is 3.9 liters?

d. Which variable, vital lung capacity or total lung
capacity, has a greater effect on forced expiratory
volume? Explain.

4. A study was conducted on the weight w, in kilo-
grams, of 14 patients with primary type II hyper-
lipoproteinemia (a genetic disorder that leads to
massively high cholesterol levels) just prior to the
start of medical treatment. For each patient, the
total cholesterol level and the triglyceride level

were recorded, in milligrams per 100 cubic cen-
timeters, as shown in the table at the top of the
next page.

a. Use an appropriate software package to calculate
the coefficient of determination and the multi-
ple correlation coefficient. How much of the
variation in weight is explained by the levels of
cholesterol and triglyceride?

b. Find the equation of the plane that best fits the
data.

c. Use your equation from part (b) to predict the
weight of a patient with primary type II hyper-
lipoproteinemia who has a cholesterol level of
332 and a triglyceride level of 186. How close
does your prediction come to the actual reading
for this patient, who weighed 78 kg?

5. As part of a study to investigate the relationship be-
tween stress y and several other variables, the ac-
companying data were collected on a random
sample of 14 corporate executives. In this table,
measures the size of the firm (the number of

x1

x2

x1

gord.3896.03.pgs  4/24/03  9:54 AM  Page 244



Chapter Summary 245

302 336 220 300 382 379 331 332 426 399 279 410 389 302

139 101 57 56 113 42 84 186 164 205 230 160 153 139

w 76 97 83 52 70 67 75 78 70 99 75 70 77 76

Source: Wayne W. Daniel, Biostatistics: A Foundation for Analysis in the Health Sciences, 4th ed., New York: John Wiley & Sons, 1987.

x2

x1

employees), measures the number of years in the
present position, is the annual salary in thou-
sands, and is the person’s age.

a. Use an appropriate software package to calculate
the coefficient of determination and the multiple
correlation coefficient when y is considered as a
function of and only. How much of the vari-
ation in the measure of stress is explained by
these two variables only?

b. Find the equation of the plane that best fits the
data on y as a function of and only.

c. Use your equation from part (b) to predict the
stress level of a corporate executive whose com-
pany has 484 employees and who has been in the
present position for 8 years.

d. Repeat parts (a)–(c) if you now take into ac-
count the three independent variables,
and In particular, how much more of the
variation in stress level is explained by includ-
ing the third variable? Predict the stress level for
the individual in part (c) if

e. Repeat parts (a)–(c) if you now take into ac-
count all four independent variables. In partic-
ular, how much more of the variation in stress
level is explained by including the fourth vari-
able? Predict the stress level of the individual in
parts (c) and (d ) if x4 � 40.

x3 � 81.

x3 .
x2 ,x1 ,

x2x1

x2x1

x4

x3

x2

Chapter Summary

In this chapter, we introduced you to regression analysis. Specifically, we showed
you how to find the best fit line or curve for the various families of functions and
interpret the results in the following ways.

� How to find the regression, or least squares, line that is the best linear fit to a set
of data.

� How to interpret the correlation coefficient as a measure of how good the
linear fit is.

� How to use the linear regression equation for making predictions.

� How to find the exponential function, power function, or logarithmic func-
tion that best fits a set of data.

� How to transform a set of data to linearize it if the underlying pattern is an
exponential function, a power function, or a logarithmic function.

y

101 812 15 70 38

60 334 8 60 52

10 377 5 60 27

27 303 10 94 36

89 505 13 92 34

60 401 4 67 45

16 177 6 66 50

184 598 9 92 60

34 412 16 74 44

17 127 2 68 39

78 601 8 82 41

141 297 11 124 58

11 205 4 71 51

104 603 5 78 63

Source: Wayne W. Daniel, Biostatistics: A Foundation for
Analysis in the Health Sciences, 4th ed., New York: John
Wiley & Sons, 1987.

x4x3x2x1

gord.3896.03.pgs  4/24/03  9:54 AM  Page 245



246 CHAPTER 3 Fitting Functions to Data

Review Problems

1. The table shows the budget and attendance (both in
millions) at 15 zoological parks in the United
States. Find the best-fit function from among lin-
ear, exponential, power, and logarithmic functions
for the attendance as a function of the budget. How
good is the fit?

Problems 2–6 are based on the data below showing total
expenditures, in billions of dollars, for both health and
public education in the United States for the years
shown.

2. (a) Find the best linear, exponential, power, and
logarithmic functions that can be used to model the
total health expenditures in the United States as a
function of the number of years since 1979. (b) Use
each model to predict the amount spent on health
expenditures in 2004. (c) Of the four predictions,
which seems the most accurate and which is the
least accurate. Explain your reasoning.

3. (a) Find the best linear, exponential, power, and
logarithmic functions that can be used to model the
total expenditures on public education in the Unit-
ed States as a function of time since 1979. (b) Use
each model to predict the amount spent on public
education in 2004. (c) Of the four predictions,
which seems the most accurate and which the least
accurate. Explain your reasoning.

4. Consider the linear functions you created in Prob-
lems 2 and 3.

a. Interpret the slope in each case.
b. Use the two functions to estimate when expen-

ditures for health care first exceeded those for
public education.

5. Consider the exponential functions you created in
Problems 2 and 3.

a. Interpret the base in each case.
b. Use the two functions to estimate when expendi-

tures for health care first exceeded those for public
education.

6. Find the linear function that best fits health care ex-
penditures as a function of education expenditures.
What is the meaning of the slope of this line?

7. The table on the next page gives the relationship be-
tween the average longevity (in years) and the ges-
tation period (in days) for a sample of animals. The
data indicate that the animals’ average longevity
can be predicted reasonably well as a function of
the gestation period.

� How to undo the transformation to produce the best-fit exponential or
power function.

� How to interpret the residuals to assess how well a linear function fits the
original data or the transformed data.

� How to interpret the sum of squares to assess how well a function fits a set
of data.

� How to use the best fitting nonlinear function for making predictions.

� How to fit a linear function of several variables to a set of data.

Year 1980 1985 1990 1992 1993 1994 1995 1996 1997 1998

Health Expenditures 247.3 428.7 699.4 836.5 898.5 947.7 993.7 1042.5 1092.4 1146.1

Public Education 345.1 378.7 486.0 506.7 517.6 527.9 541.9 554.4 569.5 583.8

Source: 2000 Statistical Abstract of the United States.

Budget 10.0 3.4 27.0 6.2 9.7

Attendance 1.0 0.5 2.0 0.6 1.3

Budget 7.0 4.8 18.0 6.5 13.0

Attendance 1.0 1.1 4.0 0.6 3.0

Budget 9.0 15.7 7.0 3.2 14.7

Attendance 0.5 1.3 1.0 0.5 2.7
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Animal Gestation Longevity

baboon 187 20

black bear 219 18

house cat 63 12

dog 61 12

cow 284 15

elephant 660 35

giraffe 425 10

gorilla 258 20

horse 330 20

kangaroo 36 7

lion 100 15

monkey 166 15

mouse 19 3

opossum 13 1

rabbit 31 5

sea lion 350 12

squirrel 44 10

human 270 76

Source: The Universal Almanac.

Year 1970 1975 1980 1985 1987 1988

Credit 133.8 207.5 355.4 601.6 692.0 742.1

Year 1989 1990 1991 1993 1994 1995

Credit 791.8 809.3 796.7 863.9 988.8 1131.9

Source: World Almanac and Book of Facts.

a. Find the linear, exponential, power, or logarith-
mic function that best predicts longevity as a
function of gestation period.

b. Use your function grapher to graph the best-fit
function.

8. The U.S. Postal Service charges 37¢ for first-class
postage for the first ounce of mail and 23¢ for every
additional ounce. What linear function, based on
weights 1, 2, . . . , 10 oz, best models this situation?
Explain why this function does not give the exact
charge for an 8.5-oz letter.

9. Consumer credit data from 1970 through 1995
show the following amounts of outstanding con-
sumer credit (in billions of dollars) in the United
States at the end of each year.

a. Find the linear function that best fits the data.
b. Use the model from part (a) to predict the

amount of outstanding consumer credit at the
end of 1992.

c. Determine the year in which the outstanding
consumer credit first will exceed $1.5 trillion.

Year 1983 1984 1985 1986 1987 1988 1989 1990 1991

Number of flights 5.0 5.4 5.8 6.4 6.6 6.7 6.6 6.9 6.8

Year 1992 1993 1994 1995 1996 1997 1998 1999 2000

Number of flights 7.1 7.2 7.5 8.1 8.2 8.2 8.3 8.6 9.0

Source: 2000 Statistical Abstract of the United States.

10. The number of airline flights generally has risen
during the past 20 years. Flights (in millions) are
given for the years 1983–2000 in the table below:

a. Find the exponential function that fits the data.
b. How well does the exponential function fit the

data?
c. Predict when the number of airline flights will

first exceed 10 million per year.

11. The table on the next page shows the height H in
feet and the number of stories n of some notable
buildings.

a. Find the linear, exponential, power, or logarith-
mic function that best relates a building’s height
to its number of stories.

b. What is the significance of the slope of the linear
function?
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b. Note that the times when the ball reaches its
maximum heights also appear to follow a linear
pattern. Find the best linear fit to these times as a
function of n, where now when 
etc. What is the meaning of the slope?

c. Note that the maximum heights don’t follow a
linear pattern. Find the best nonlinear function
that fits these data values, as a function of n,
from among the families of functions you have
studied in this chapter. For the exponential fit,
what is the significance of the base you obtain?

d. Find the best fit for the maximum heights H as a
function of time t.

e. Use the results you obtained in parts (a)–(d) to
predict the corresponding values for the time
and height on the next bounce of the ball.

14. In October 2002, astronomers reported the discov-
ery of a new body half the size of Pluto in an orbit
that takes 105,120 days to complete a full revolution
about the sun at a distance of about 4 billion miles
from the sun. Verify whether this object, named
Quaoar after a Native American god, satisfies Ke-
pler's Third Law from Example 4 in Section 3.6.

15. In October 2002, a pilot flying a small plane in south-
west Alaska reported spotting a bird with a wingspan
of 14 feet. Based on Problem 8 in Section 3.5, how
much would this newly discovered bird weigh?

n � 0,H � 9

248 CHAPTER 3 Fitting Functions to Data

H n

Empire State Building (New York) 1250 102

John Hancock Tower (Boston) 788 61

Sears Tower (Chicago) 1450 110

NationsBank Plaza (Dallas) 921 72

TCBY Tower (Little Rock) 546 40

Peachtree Center (Atlanta) 374 31

Place Ville Marie (Montreal) 620 45

Source: World Almanac and Book of Facts.

c. On average, how many feet are allocated to each
story?

12. Draw a scatterplot for each of the functions f, g, and
h in the table. For each set of data, decide whether
the pattern of data is linear, exponential, or loga-
rithmic. Explain your choices.

x 1 2 3 4 5 6

6 4 2 0

5.4 4.86 4.374 3.937 3.543 3.189

0.863 1.612 2.194 2.669�0.194�2h(x)

g(x)

�4�2f (x)

9

7.2

2.36
2.95

5.76

4.61

3.69

0.75 6.956.195.334.373.292.09
1.42 6.575.764.853.832.69

t

H

13. An experiment is conducted in which a ball is
dropped from an initial height of 9 feet and its sub-
sequent height above floor level as a function of
time is recorded and displayed, as illustrated in the
accompanying figure. When the curve is traced, the
measurements shown on the graph indicate the
times when the ball hits the floor, the times when
the ball reaches its maximum heights, and the val-
ues of these maximum heights.

a. Note that the times when the ball hits the floor
appear to follow a linear pattern. Find the best
linear fit to these times as a function of the num-
ber of the bounce; that is, bounce number 
occurs at time and so on. What is the
meaning of the slope?

t � 0.75,
n � 1
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4

Extended Families 
of Functions

Introduction to Polynomial Functions

Samantha has been keeping track of the price of the stock of HyperTech Corpora-
tion since her grandmother gave her several shares as a gift. She has plotted the
stock values, as shown in Figure 4.1, and wants to construct a mathematical model
that represents the price of the stock. Clearly, a linear function, an exponential
function, a power function, or a logarithmic function is not a reasonable candidate
because none have this kind of behavior pattern. To better capture the trend in the
stock prices, Samantha needs a function that changes both its direction and its
concavity, as illustrated in Figure 4.2.

Note that the graph increases, then decreases, and finally increases again. Thus,
the graph has two turning points, one at the local maximum point and the other at
the local minimum point. Also, the curve initially is concave down and then is con-
cave up, so the graph has one point of inflection, where the concavity changes.

In this section, we introduce a new family of functions, the polynomial func-
tions, that possess this type of more complicated behavior. A polynomial function,
or polynomial, is any finite sum of power functions with nonnegative integer
powers. For instance,

(1)y � 3x � 5;

4.1

Time

St
oc

k 
pr

ic
e

FIGURE 4.1

Time
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oc

k 
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e

FIGURE 4.2
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FIGURE 4.3

(2)

(3)

(4)
(5)

are all polynomials.
The degree of a polynomial is the highest power of the variable present.

Hence, the degree of Polynomial (1) is 1, the degree of Polynomials (2) and (3) is 2,
the degree of Polynomial (4) is 3, and the degree of Polynomial (5) is 8.

The constant multiples in each term in any polynomial are called its coefficients.
In particular, the coefficient of the highest power term is the leading coefficient.
Thus, in Polynomial (1), the coefficients are 3 and and the leading coefficient is 3;
in Polynomial (2), the coefficients are 6, 1, and and the leading coefficient is 6.
Note that, in Polynomial (3), the leading coefficient is (it is not necessarily the
first coefficient). As we show in Section 4.2, the sign of the leading coefficient
determines the overall behavior of the polynomial.

Another way to describe a polynomial is to say that it is a linear combination of
power functions because, as we noted, it is made up of a sum of power functions.
In this sense, power functions are the basic building blocks we use to construct any
polynomial.

If a polynomial has degree 1, it is a linear function of the form,
where a and b are constants and Its graph is a line with slope and
vertical intercept b.

If a polynomial has degree 2, it is called a quadratic function and it has the
form

where a, b, and c are constants and With three coefficients in the equation,
the set of all quadratic functions is a three parameter family of functions. The
graph of any quadratic function is a curve called a parabola. Such curves abound
in the real world—in the path of a fly ball in baseball, in the shape of the main sup-
port cable in a suspension bridge such as the Golden Gate Bridge or the George
Washington Bridge, or in the cross sections of a TV satellite dish, as depicted in
Figure 4.3.

If a polynomial has degree 3, it is called a cubic function and its graph is called
a cubic. In general, a cubic function has the form

y � ax3 � bx2 � cx � d,

a � 0.

y � ax2 � bx � c,

m � aa � 0.
y � ax � b,

�3
�7

�5

 y � 10x8 � 7x5 � 3

 y � 4x3 � 5x2 � 7x � 12;

 y � 6 � 8x � 3x2;

 y � 6x2 � x � 7;
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FIGURE 4.4
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FIGURE 4.5

where a, b, c, and d are constants and For example, the graph of the cubic
is shown in Figure 4.4. This graph is typical of a cubic

function, having two turning points and one inflection point.
If a polynomial has degree 4, it is called a quartic function and its graph is

called a quartic. In general, a quartic polynomial has the form

where a, b, c, d, and e are constants and The graph of the quartic
is shown in Figure 4.5. This graph is typical of a

quartic polynomial. Notice that it has three turning points and two inflection points.

How many parameters are there in the family of cubic polynomials? In the family
of quartic polynomials? In the family of polynomials of degree n, for any n? ❐

The Zeros of a Polynomial

A key piece of information about any polynomial function is the value or values
of the variable x that make the function zero. These values are known as the
zeros of the polynomial. For instance, the zeros of the quadratic polynomial

are and because

and

From a different point of view, if we set the expression for the polynomial func-
tion equal to zero, we have an equation and the solutions to this equation are called
the roots. So, corresponding to the quadratic polynomial we
have the quadratic equation

Factoring this expression gives

The two solutions of this equation, and are the roots of the quadratic
function.

Note that a function has zeros, that an equation has roots, and that there is a di-
rect correspondence between them. The zeros of a function f occur at precisely the
same points as the roots of the equation f 1x 2 � 0.

x � 4,x � 2

1x � 2 2 1x � 4 2 � 0.

x2 � 6x � 8 � 0.

P1x 2 � x2 � 6x � 8,

P14 2 � 42 � 614 2 � 8 � 0.P12 2 � 22 � 612 2 � 8 � 0

x � 4x � 2P1x 2 � x2 � 6x � 8

Think About This

y � x4 � 5x3 � 2x2 � 6x � 4
a � 0.

y � ax4 � bx3 � cx2 � dx � e,

y � x3 � 3x2 � 8x � 4
a � 0.

Gord.3896.04.pgs  4/24/03  9:57 AM  Page 251
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EXAMPLE 1
Find the zeros of the quadratic function and the roots of the corre-
sponding quadratic equation both graphically and algebraically.

Solution The graph of the quadratic function is shown in Figure 4.6.
Note that the graph crosses the x-axis twice: once when and again when So,
graphically, we conclude that these are the zeros of the function. If we consider the asso-
ciated quadratic equation

its roots are and x � 3.x � 2

x2 � 5x � 6 � 0,

x � 3.x � 2
y � x2 � 5x � 6

x2 � 5x � 6 � 0,
P1x 2 � x2 � 5x � 6

1 2 3 4
x

y

y = x2 − 5x + 6

FIGURE 4.6

Alternatively, we can solve this equation algebraically. We start with the associated
quadratic equation

We can factor the quadratic expression on the left as

Recall that, when the product of two factors is zero, one or the other or both must be zero,
so we have either or leading to the roots and Because
they are the roots of the quadratic equation, they are also the zeros of the quadratic polyno-
mial 

�

If the coefficients in a quadratic are appropriately chosen, we may be able
to find the roots of a quadratic equation by algebraic factoring, as we did in
Example 1. If the coefficients are not just right— say,

or even — the factoring approach won’t
work. The same principle applies to polynomials of higher degree, but the al-
gebra typically becomes much more complicated as the degree of the polyno-
mial increases. Consequently, factoring is far less likely to work when the
degree of a polynomial is 3 or higher.

The two roots for any quadratic equation

always can be found from the quadratic formula.

a � 0,ax2 � bx � c � 0,

5x2 � 3x � 17 � 011.02013 � 0,
15.46031x �4.35709x2 �

P1x 2 � x2 � 5x � 6.

x � 3.x � 2x � 3 � 0,x � 2 � 0

1x � 2 2 1x � 3 2 � 0.

x2 � 5x � 6 � 0.
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The Quadratic Formula

x �
�b � 2b2 � 4ac

2a

This formula is derived in any algebra textbook.

EXAMPLE 2
Find the zeros of the quadratic polynomial 

Solution With and the quadratic formula gives the roots of
the associated quadratic equation as

The result is a pair of irrational numbers. Thus, the roots are

and

�

The quadratic formula was essentially known to the ancient Babylonians, some
4000 years ago. However, not until about 1540 did Italian mathematicians Tartaglia
and Cardano discover a comparable, although considerably more complicated, for-
mula for the three roots of any cubic equation. Not long after that, another Italian
mathematician, Ferrari, discovered an even more complicated formula that gives
the four roots of any quartic equation. (These formulas are programmed into some
calculators and software packages.) Finally, in 1824, Danish mathematician Abel
proved that no general formula could exist that would give the roots of any polyno-
mial equation of fifth or higher degree. When we encounter polynomials of higher
degree, we usually have to resort to numerical methods to find the roots. We illus-
trate this approach in Example 3 for a polynomial of degree 3.

EXAMPLE 3
Find, correct to four decimal places, all the zeros of the cubic polynomial 

Solution The graph of this polynomial is shown in Figure 4.7. Note that it crosses the
x-axis three times and that each of these points is a zero of the polynomial. By zooming
in on each point in turn, using a function grapher, we estimate that the zeros are located
at approximately and This last value for x
suggests that the third zero may be precisely. To determine whether that is indeed
the case, we substitute into the formula for the cubic and find that

Q12 2 � 12 2 3 � 312 2 2 � 812 2 � 4 � 8 � 12 � 16 � 4 � 0,

x � 2
x � 2

x � 2.00000.x � �0.43845,x � �4.56155,

x3 � 3x2 � 8x � 4.
y � Q1x 2  �

x �
3 � 229

2
� �1.19258.x �

3 � 229

2
� 4.19258

 �
3 � 229

2
 .

 �
3 � 29 � 1�20 2

2

 x �
�1�3 2 � 21�3 2 2 � 411 2 1�5 2

211 2

x2 � 3x � 5 � 0
c � �5,b � �3,a � 1,

P1x 2 � x2 � 3x � 5.
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so is precisely the zero. Because we were asked to give the three zeros correct to
four decimal places, we conclude that and 

�

We found three zeros for the cubic polynomial in Example 3 based on its
graph in Figure 4.7. But, how do we really know that there are no additional zeros?
We could expand the viewing window and examine the graph from to

say, or perhaps from to and maybe other zeros will
come into view. Unfortunately, this kind of exploratory approach never completely
closes the door on the possibility that other zeros might exist if only we look further.
Instead, we need to know something about the behavior of polynomials in general,
which will give us information on how many zeros a particular polynomial has and
some indication of where to look for them. We discuss this in the next section.

x � 1000,x � �1000x � 100,
x � �100

x � 2.x � �0.4385,x � �4.5616,
x � 2

Problems

1. What is the degree of each polynomial?

a.
b.
c.
d.
e.
f.

2. What is the leading coefficient of each polynomial
in Problem 1?

3. Which values of x are zeros of the polynomial
and which are not?

a. b. c.
d. e. f.
g.

4. Consider these polynomials.

a.
b.
c. P1x 2 � 8 � 5x2 � 6x3

P1x 2 � �6 � 5x2 � 8x3
P1x 2 � 6x3 � 5x2 � 8

x � �3
x � �2x � �1x � 0
x � 1x � 2x � 3

P1x 2 � x3 � 2x2 � 3x

P1x 2 � 10 � 4x � 5x3 � 3x6
P1x 2 � �4x3 � 9x2 � 12
P1x 2 � x5 � x8
P1x 2 � 6x � 5x2
P1x 2 � 5x4 � 6x3 � 7x � 11
P1x 2 � 6x3 � 5x2 � 8

d.
e.
f.
g.
h.
i.
j.
k.
l.

For each polynomial in (a)–(l), indicate whether it is a

i. quadratic polynomial,
ii. cubic polynomial,
iii. quartic polynomial,
iv. quadratic polynomial whose leading coefficient

is 4,
v. cubic polynomial whose leading coefficient is

or
vi. quartic polynomial whose leading coefficient is

�6.

�6,

P1x 2 � 3 � 6x4
P1x 2 � 3x4 � 5x3 � 8x � 6
P1x 2 � 6x4 � 5x3 � 8x � 3
P1x 2 � 8 � 5x � 4x2
P1x 2 � 4 � 3x2
P1x 2 � �4x2 � 5x � 8
P1x 2 � 3x2 � 5x � 4
P1x 2 � 6x3 � 5x2 � 8
P1x 2 � �8x3 � 5x2 � 6
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y = x3 + 3x2 − 8x − 4

FIGURE 4.7
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5. The table gives some values for a polynomial P.
Identify possible roots of the corresponding poly-
nomial equation.

4.2 The Behavior of Polynomial Functions 255

x

227 21 0 0

x 0 1 2 3 4 5

16 23 0 0 166�32P(x)

�8P(x)

�1�2�3�4�5

x

y

points? Estimate, correct to two decimal places, all
the turning points.

10. For the quartic polynomial in Problem 8, how
many turning points are there? how many inflec-
tion points? Estimate, correct to two decimal
places, all the turning points.

6. The figure to the right shows the graph of a polyno-
mial. How many zeros does it have?

7. Estimate, correct to three decimal places, all the zeros
of the polynomial 

8. Estimate, correct to three decimal places, all the zeros
of the polynomial 

9. For the cubic polynomial in Problem 7, how many
turning points are there? how many inflection

P1x 2 � x4 � 4x3 � 5x � 1.

P1x 2 � 2x3 � 6x2 � 5x � 3.

Exercising Your Algebra Skills

Add or subtract each pair of polynomials by combining
like terms.

1.

2.

3.

4.

5.

6.

Multiply each pair of polynomials.

7. 8. x14x � 2 2x13x � 5 2

110 � 4x � 5x3 � 3x4 2 � 15x4 � 6x3 � 7x � 11 2
110 � 4x � 5x3 � 3x4 2 � 15x4 � 6x3 � 7x � 11 2
15x4 � 6x3 � 7x � 11 2 � 1�4x3 � 9x2 � 12 2
15x4 � 6x3 � 7x � 11 2 � 1�4x3 � 9x2 � 12 2
16x3 � 5x2 � 8 2 � 16x � 5x2 2
16x3 � 5x2 � 8 2 � 16x � 5x2 2

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

Raise each polynomial to the indicated power.

19. 20.

21. 22.

23. 24. 1x � 10 2 212x � 6 2 2
12x � 5 2 21x � 2 2 2
1x � 3 2 21x � 1 2 2

1x � 21 2 1x � 21 21x � 2 2 1x � 2 2
1x � 3 2 1x � 3 21x � 5 2 1x � 5 2
1x � 4 2 1x � 3 21x � 2 2 1x � 3 2
1x � 2 2 1x � 5 21x � 1 2 1x � 3 2
x16 � 5x 2x17 � 3x 2

The Behavior of Polynomial Functions

The behavior of a polynomial depends on the ideas we introduced in Section 4.1:
the degree, the zeros, and the sign of the leading coefficient of the polynomial. Let’s
see how.

Quadratic Polynomials

We begin by analyzing the behavior of quadratic functions. The graph of any quad-
ratic function is a parabola that opens either upward or down-
ward. The sign of the leading coefficient a in

determines whether the parabola opens upward or downward and so determines
the overall behavior of the parabola. When the leading coefficient is positive, the

y � ax2 � bx � c

y � ax2 � bx � c

4.2
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parabola opens upward and is concave up. When the leading coefficient is negative,
the parabola opens downward and is concave down. To understand why, think
about what happens when x gets very large—say, or Then is
much larger, on the order of 10,000 or 1,000,000. Therefore the term eventual-
ly overwhelms any contribution from the linear term bx or the constant term c.
Thus, when a is positive, the quadratic term is extremely positive and the parabola
opens upward. Similarly, when a is negative, the quadratic term is extremely nega-
tive and the parabola opens downward.

For instance, the parabola has a positive leading coeffi-
cient and so opens upward—when x becomes large, either positively or negatively,
the overall effect is positive. In contrast the parabola has a negative
leading coefficient and so opens downward—when x becomes large, either posi-
tively or negatively, the overall effect is negative. Check the graphs of both func-
tions on your function grapher to convince yourself of the behavior in each case.
Moreover, whichever way the parabola opens, as x increases indefinitely in either
direction, the parabola either increases toward infinity or decreases toward nega-
tive infinity, as illustrated in Figure 4.8.

y � 20 � 4x2

y � 5x2 � 20x � 300

ax2
x2x � 1000.x � 100

256 CHAPTER 4 Extended Families of Functions

x

y

x

y

Leading coefficient > 0 Leading coefficient < 0FIGURE 4.8

Every parabola has one turning point—also called its vertex. For instance, the
parabola has its vertex at the origin, because that is the location of the turn-
ing point. If a parabola opens upward, the turning point corresponds to the mini-
mum value of the function. If a parabola opens downward, the turning point
corresponds to the maximum value of the function. In addition, the parabola is al-
ways symmetric about the vertical line through its turning point, so the left and
right halves of the parabola are mirror images of one another. (See Appendix D for
a discussion of symmetry.)

Next, let’s examine the effects of the other two terms (the linear term and the
constant term) in the formula for a quadratic function. Figure 4.9 shows the graphs
associated with the quadratic functions and

The leading term determines the basic behavior of the quadrat-
ic function, so all four open upward. However, the other terms affect the location
of the graph. The constant term 6 in raises the parabola by
6 units (if the constant term is negative, the parabola would be lowered instead). Use
your function grapher to experiment with this effect on the graph of the parabola by
changing the constant term. For instance, how do the graphs of
and compare to the graph of Be sure to look aty � x2 � 5x � 6?y � x2 � 5x � 2

y � x2 � 5x � 7

y � x2y � x2 � 6

y � x2 � 5x � 6.
y � x2 � 5x � 6,y � x2 � 6,y � x2,

y � x2

Gord.3896.04.pgs  4/24/03  9:57 AM  Page 256



enough graphs to convince yourself of the effect of the constant term. We investigate
this effect in detail in Section 4.7.

The effect of the linear term is more complicated because it involves both ver-
tical and horizontal shifting of the parabola. We don’t go into that here but do so in
Section 4.7.

Furthermore, as we showed in Section 4.1, the two roots of any quadratic
equation

can always be found from the quadratic formula

These two roots could be real numbers (as in Examples 1 and 2 in Section 4.1) or
the roots could be a pair of complex numbers of the form and

where ( and are the Greek letters alpha and beta, respec-
tively). A pair of complex numbers such as these is called a pair of complex conju-
gates. Complex numbers are discussed in Appendix E.

EXAMPLE 1
Find the roots of the quadratic equation 

Solution Using and in the quadratic formula, we get

 x �
2 � 21�2 2 2 � 411 2 12 2

211 2

c � 2b � �2,a � 1,

x2 � 2x � 2 � 0.

bai � 1�1x � a � bi
x � a � bi

x �
�b � 2b2 � 4ac

2a
 .

ax2 � bx � c � 0

4.2 The Behavior of Polynomial Functions 257

x

y

x

y

x

y

x

y

y = x2

y = x2 + 6

y = x2 − 5x + 6 y = x2 + 5x + 6

6

–3 –22 3FIGURE 4.9
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1 2 3 4
x

y

y = x2 − 5x + 6

FIGURE 4.10

We now divide through by 2 and find that the two complex roots of the quadratic are
and 

�

Because every quadratic equation has two roots, every quadratic function has ex-
actly two zeros. Let’s see what this means in terms of the graph of the quadratic func-
tion. Consider again the quadratic polynomial whose graph is
shown in Figure 4.10. This polynomial has zeros at and because we can
factor the quadratic as

x2 � 5x � 6 � 1x � 2 2 1x � 3 2 .

x � 3x � 2
P1x 2 � x2 � 5x � 6,

x � 1 � i.x � 1 � i

 �
2 � 2�4

2
�

2 � 2i

2
 .

 �
2 � 24 � 8

2

But the graph shows that the parabola crosses the x-axis at the points 
and Thus, just as the point at which a line crosses the x-axis gives the root of
a linear equation, the points at which a parabola crosses the x-axis give the real
roots of a quadratic equation, as illustrated in Figure 4.11 (a) and (b), respectively.

x � 3.
x � 2

x

y

Root

(b)

x

y

Root

(a)FIGURE 4.11

If we know that a parabola crosses the x-axis at a point then is a
zero of the associated quadratic function and is a factor of the quadratic ex-
pression. You can locate the real roots of any quadratic to any desired level of accu-
racy with your graphing calculator or with the quadratic formula, so you can
always find the linear factors.

x � r
x � rx � r,
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4.2 The Behavior of Polynomial Functions 259

Depending on the orientation of the parabola (opening up or down) and the po-
sition of the turning point, a parabola may not touch the x-axis at all. This is the case
with the graph of as shown in Figure 4.12. For such a parabola, the cor-
responding quadratic equation still has two roots, but they are complex roots. If a
quadratic equation has complex roots, they must occur in conjugate pairs of the
form This property follows directly from the quadratic formula for the case
where the term inside the radical, is negative. The expression is
called the discriminant of the quadratic. When the discriminant is positive, the two
roots are real numbers. When the discriminant is negative, the two roots are complex
numbers. Finally, when the discriminant is zero, there is a double real root.

b2 � 4acb2 � 4ac,
a � bi.

y � x2 � 6,

For instance, the discriminant for is so
the two roots are complex and they occur in pairs. From the quadratic formula, the
roots are

We have already demonstrated that a parabola can cross the x-axis at two
points (corresponding to two real roots) or that it may not ever cross the x-axis
(corresponding to a pair of complex conjugate roots). A third possibility is that
the parabola could be tangent to the x-axis; that is, it can touch the axis and
bounce back without ever crossing the axis. For instance, consider the quadratic

 � � 

2 2�6

2
� � 26 i.

 �
� 2�24

2

 x �
�0 � 202 � 411 2 16 2

211 2

02 � 411 2 16 2 � �24 � 0,y � x2 � 6

In general, for any quadratic function 

� the real roots of the quadratic equation corre-
spond graphically to the points where the associated parabola cross-
es the x-axis, and

� the real roots of the quadratic equation corre-
spond algebraically to the linear factors of the quadratic polynomial.

ax2 � bx � c � 0

ax2 � bx � c � 0

f 1x 2 � ax2 � bx � c,

–4 –3 –2 –1 1 2 3 4

5

10

15

20

x

y

FIGURE 4.12
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–1 1 2 3 4 5

2

4

6

8

10

x

y

FIGURE 4.13

function If you apply the quadratic formula, you will find that
the discriminant and the two roots are 
and as shown in Figure 4.13. Use your function grapher to zoom in on this
point and note how the parabola just touches the x-axis at Thus, the quad-
ratic function has two roots, but because they are equal, is a double root.

Try changing the value of the constant term in slightly from 4—
say, to 4.01 and then to 3.99. What happens to the graph in each case? What is the
value of the discriminant in each case? ❐

We summarize these ideas about quadratic polynomials as follows.

y � x2 � 4x � 4Think About This

x � 2
x � 2.

x � 2,
x � 2b2 � 4ac � 1�4 2 2 � 411 2 14 2 � 0

y � x2 � 4x � 4.

Characteristics of Quadratic Polynomials 

� A quadratic polynomial has degree 2 and has precisely 2 zeros.

� A parabola has precisely one turning point, its vertex.

� A parabola opens upward if the leading coefficient a is positive; it opens
downward if the leading coefficient a is negative, as shown in Figures 4.14
(a)–(f).

� The corresponding quadratic equation of degree 2 has precisely
2 roots. They may be real or complex.

� The complex roots occur in pairs of complex conjugates,
where as illustrated in Figures 4.14 (a) and (d).

� The real roots correspond to the points where the parabola crosses the
x-axis, as illustrated in Figures 4.14 (b) and (e), or where the parabola
touches the x-axis, as illustrated in Figures 4.14 (c) and (f).

� You can always find the real roots graphically by using your function
grapher to zoom in on the points where the parabola crosses or
touches the x-axis.

� The real roots correspond to the linear factors of the quadratic
expression.

� You can always find the roots, real or complex, by using the quadratic
formula.

i � 1�1,
x � a � bi,

y � ax2 � bx � c
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4.2 The Behavior of Polynomial Functions 261

Cubic Polynomials

Next, we consider the characteristics of cubic polynomials having the form

where a, b, c, and d are constants and The graph of the cubic polynomial
is shown in Figure 4.15, which is typical of a cubic func-

tion. The cubic rises toward positive infinity in one direction and drops toward
negative infinity in the other. Also, this particular cubic has two turning points and
crosses the x-axis at three points, so it has three real zeros. Moreover, the curve has
one point of inflection, is concave down on one side of the point of inflection, and
is concave up on the other.

y � x3 � 3x2 � 8x � 4
a � 0.

y � ax3 � bx2 � cx � d,

As with a quadratic function, the sign of the leading coefficient in a cubic al-
ways determines the overall behavior pattern of the function. If the leading coeffi-
cient is positive, the cubic increases as x increases (except possibly for a relatively
small dip between the two turning points), as shown on the left in Figure 4.16. If

(a) (b) (c)

(d) (e) (f)

x

y

x

y

x

y

x

y

x

y

x

y

a > 0 a > 0a > 0

a < 0 a < 0a < 0

FIGURE 4.14

x

y

Turning point

Point of
inflection

Turning point

FIGURE 4.15
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The real roots of a cubic equation correspond graphically to the points at
which the associated cubic curve crosses the x-axis.

The real roots of a cubic equation correspond algebraically to the linear
factors of the cubic polynomial.

x

y

a > 0

x

y

a < 0

FIGURE 4.16

x

y

FIGURE 4.17

the leading coefficient is negative, the cubic decreases as x increases (except for a
possible rise between the two turning points), as shown on the right in Figure 4.16.

If a cubic has three real roots, its curve crosses the x-axis at the correspon-
ding three points. If it has only one real root, the curve crosses the x-axis only
once, as shown in Figure 4.17.

In general, a cubic function has three zeros, and the
corresponding cubic equation

has three roots. The roots can all be real numbers or can consist of a single real
number and a pair of complex conjugate numbers. Each of the real roots corre-
sponds to a linear factor of the corresponding cubic expression. Any complex con-
jugate roots must occur in pairs and correspond to a quadratic factor of the cubic
polynomial.

ax3 � bx2 � cx � d � 0

y � ax3 � bx2 � cx � d
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4.2 The Behavior of Polynomial Functions 263

EXAMPLE 2
Analyze the behavior of the cubic function

Solution The cubic has the three linear factors— and —so it
has three real zeros: at and corresponding to each of the three
factors. Consequently, its graph crosses the x-axis at and as shown in
Figure 4.18. Further, the leading term being the highest power present, even-
tually dominates the other terms as x increases. Because the leading coefficient 1 is posi-
tive, the cubic must increase toward as and decrease toward as

Verify this result graphically by using your function grapher and numerically
by substituting some large positive and negative values for x.
x S ��.

��x S ���

x3 � 1 # x3,
�5,�2,x � 1,

x � �5,x � �2,x � 1,
1x � 5 21x � 2 2 ,1x � 1 2 ,

f 1x 2 � 1x � 1 2 1x � 2 2 1x � 5 2 � x3 � 6x2 � 3x � 10.

�

Although there is a formula for calculating the roots of a cubic equation, it is
considerably more complicated than the quadratic formula and is seldom used. If the
cubic polynomial happens to factor simply, you can find the zeros directly because
each factor corresponds to a zero. However, that is not likely to happen. Usually, the
simplest way to find the real roots of a cubic equation is to approximate them by
using your function grapher—just keep zooming in on the points where the curve
crosses the x-axis until you find the roots to whatever degree of accuracy you desire.

We summarize these ideas about cubic polynomials as follows.

x

y

y = x3 + 6x2 + 3x − 10

FIGURE 4.18

Characteristics of Cubic Polynomials

� A cubic polynomial of degree 3 has precisely 3 zeros.

� A cubic has at most two turning points.

� A cubic typically has one inflection point.

� A cubic increases (rises upward) to the right as x increases if the lead-
ing coefficient a is positive; it decreases (falls downward) to the right
as x increases if the leading coefficient a is negative.

� The corresponding cubic equation of degree 3 has precisely 3 roots.
The roots may all be real or one real and two complex.

y � ax3 � bx2 � cx � d
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Figure 4.19 illustrates most of the possible cases for a cubic polynomial. In Fig-
ures 4.19 (a) and (b) there are three distinct real roots when the leading coefficient
a is either positive or negative. In Figures 4.19 (c) and (d) there are three real roots,
but one of them is repeated, so the x-axis is tangent to the cubic at the correspon-
ding point. These two graphs correspond to when the leading coefficient 
similar graphs can be drawn when Figure 4.19 (e) shows a cubic with a
triple real root and note how the curve flattens as it crosses the x-axis. Think
about the graph of as it passes through the origin. Finally, in Figures 4.19
(f)–(h) there is one real root and a pair of complex roots, again when You
can draw similar graphs when a � 0.

a 	 0.
y � x3

a 	 0;
a � 0.

a 	 0;

Moreover, it turns out that every cubic is symmetric about its inflection
point. Imagine a cubic with a hinge at its inflection point—if you take either half
of the curve and rotate it about that hinge, it will eventually be a perfect fit to the
other half of the curve.

Prove that any cubic polynomial of the form is symmetric about its in-
flection point at the origin by showing that for any value of x—say, —
then ❐

Polynomials of Degree n

The ideas discussed for polynomials of degree 2 (quadratics) and degree 3 (cubics)
can be extended to polynomials of any degree n, where n is a positive integer. In
particular, they have the following characteristics.

f 1�h 2 � �f 1h 2 .
x � h 	 0

f 1x 2 � ax3Think About This

(a) (b) (c)

(e) (f) (g)

x

y

x

y

x

y

x

y

x

y

x

y

a > 0 a > 0a < 0

a > 0

x

y

a > 0a > 0

(d)

(h)

x

y

a > 0

a > 0

FIGURE 4.19

� The complex roots occur in pairs of complex conjugates,
where 

� The real roots correspond to the points where the cubic crosses the
x-axis.

� You can always find the real roots graphically by using your function
grapher to zoom in on the points where the cubic crosses the x-axis.

� The real roots correspond to linear factors of the cubic expression.

i � 1�1 .
a � bi,
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4.2 The Behavior of Polynomial Functions 265

Sketch the graph of a fifth degree polynomial with five real roots and a positive
leading coefficient. Sketch the graph of a fifth degree polynomial with three real
roots and a negative leading coefficient. ❐

EXAMPLE 3
Suppose that a polynomial has roots at 1, 3, and 6. Find a possible formula
for it and describe its behavior.

Solution The polynomial has five real roots, so its degree must be at least 5; it might be
higher if there are complex roots or repeated roots. The five corresponding linear factors
are and If these are the
only roots, one possible formula for this polynomial is

although any constant multiple A of this expression would be an alternative formula.
We can determine the value of the multiple A if we know the vertical intercept of

the polynomial—or any other point on the curve. If the multiple A is positive, the graph
of the polynomial has the behavior shown in Figure 4.20. Note that rises toward �P1x 2

P1x 2 � 1x � 4 2 1x � 1 2 1x � 1 2 1x � 3 2 1x � 6 2 ,

1x � 6 2 .1x � 3 2 ,1x � 1 2 ,1x � 1 2 ,1x � 1�4 2 2 � 1x � 4 2 ,

�1,x � �4,

Think About This

Characteristics of Polynomials of Degree n

� A polynomial of degree n has precisely n zeros.

� A polynomial of degree n has at most turning points.

� A polynomial of degree n has at most points of inflection.

� If the leading coefficient is positive, the polynomial rises toward 
to the right as and if the leading coefficient is negative, the
polynomial falls toward to the right as 

� The corresponding polynomial equation of degree n has precisely n
roots, which may be real or complex.

� The complex roots occur in pairs of complex conjugates,
where 

� The real roots correspond to the points where the curve crosses or
touches the x-axis.

� You can always find the real roots graphically to any desired level of
accuracy by using your function grapher to zoom in on the points
where the curve crosses the x-axis.

� The real roots correspond to linear factors of the polynomial expression.

i � 1�1 .
a � bi,

x S �.��
x S �,

��

n � 2

n � 1

–4 –1 1 3 6
x

y

FIGURE 4.20
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P(x) = (x + 1)(x − 2)(x − 4)2

–2 –1 1 2 3 4
x

y

FIGURE 4.21

as and that falls toward as Alternatively, if the constant mul-
tiple A is negative, this behavior is reversed; the graph drops toward as and
rises toward as Can you explain why this is the case?

�

What if a polynomial has a double or repeated factor? For instance,

has roots at 2, and 4, but is a double root because 
is a repeated factor. Note that its graph, as shown in Figure 4.21,

falls to touch the x-axis at where it flattens and then rises again. Zooming in
on the curve about this point reveals that the x-axis is tangent to the graph at

just as the x-axis is tangent to the parabola at the origin.y � x2x � 4,

x � 4
1x � 4 2 1x � 4 2

1x � 4 2 2 �x � 4x � �1,

P1x 2 � 1x � 1 2 1x�2 2 1x�4 2 2 � 0

x S ��.��
x S ���

x S ��.��P1x 2x S �

The polynomial has a triple factor. Examine its graph to see
what happens near that triple root. First, try to predict what will happen, based on
your knowledge of the behavior of near the origin. ❐

EXAMPLE 4
Use the fifth degree polynomial from Example 3 to demonstrate why it must have four
turning points and three inflection points.

Solution Let’s trace the polynomial’s curve in Figure 4.20 slowly from left to right. The
function starts rising as we move to the right and crosses the x-axis at the first root at

It must cross the x-axis again at so there must be a turning point be-
tween these two roots. Similarly, there must be a turning point between the roots at

and and in fact, there is a turning point between each successive pair of
roots. Because there are five real roots, there must be four turning points.

Now let’s consider inflection points. We begin with the first two turning points, one
near where the curve is concave down and the next near where the
curve is concave up. The change in concavity means that there must be an inflection
point between the successive turning points. In fact, between each successive pair of
turning points, there is a point of inflection. Because there are four turning points, there
must be three inflection points.

�

Things may not be quite so simple if there are complex roots or multiple roots.

x � �0.2x � �3

x � 1,x � �1

x � �1,x � �4.

y � x3

y � 1x � 1 2 1x � 2 2 3Think About This
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4.2 The Behavior of Polynomial Functions 267

The End Behavior of a Polynomial

The end behavior of any polynomial depends on the sign of the leading term because,
as x approaches or the leading term eventually dominates all other terms.
For instance, consider the polynomial When x is very
large, the term will overwhelm all other terms. The graphs of the functions

and for x between and 4 and y be-
tween and 100 are shown in Figure 4.22; the two curves look quite different.
Figure 4.23 presents a slightly larger view, where x is between and 6 and y is be-
tween and 950. Here the two curves look more similar than in the preceding
view. In the much larger view presented in Figure 4.24, where x is between 
and 25 and y is between 0 and 500,000, there no longer is much difference be-
tween the two curves. The term dominates the behavior of the polynomial, and
the effect of the lower power terms is negligible.

2x4

�25
�50

�6
�25

�3Q1x 2 � 2x4P1x 2 � 2x4 � 6x3 � 7x � 10
2x4

P1x 2 � 2x4 � 6x3 � 7x � 10.
��,��

In general, for any polynomial, when x is large enough, the curve is indistin-
guishable from the curve corresponding to just the leading term. In other words, in
the large, the behavior of any polynomial is virtually identical to that of the power
function consisting of the leading term. You can see the end behavior easily on your
function grapher if you use a reasonably large viewing window.

On the one hand, if the viewing window is too large, the location of the turn-
ing points and the zeros of a polynomial is a local aspect of the graph and can be
easily missed. On the other hand, if the viewing window is too small, the overall
growth pattern of the polynomial is lost. For instance, by focusing too closely on
one particular turning point or root, you may lose sight of all the others. Rarely
does a single view suffice to show all the important details of a function. There-
fore, as a matter of routine, you should use the information given in several dif-
ferent views on your calculator or computer to sketch a rough hand-drawn graph
of the function, called the complete graph, which highlights the key information,
even if you intentionally do not draw it to scale.

We expect you to use your function grapher to produce the graph of a poly-
nomial, but you should interpret with care what the calculator or computer
shows. Usually, the important characteristics of any function—and a polynomial
in particular—are

Q(x) = 2x4

P(x)

–4 –2 2 4
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FIGURE 4.23
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x

y

FIGURE 4.25

� the end behavior (is it increasing or decreasing as or ),

� the intervals over which the function is increasing or decreasing,

� the locations of the turning points,

� the intervals over which the function is concave up or concave down,

� the locations of the points of inflection, and

� the locations of the real zeros.

EXAMPLE 5
For the polynomial shown in Figure 4.25, answer the following questions.

a. How many real roots are there?

b. How many turning points are there?

c. How many inflection points are there?

d. What is the minimum degree of the polynomial?

e. How many complex roots does it have?

f. What is the sign of the leading coefficient?

x S ��?x S �

Solution

a.–c. The graph shown in Figure 4.25 reveals five real roots that correspond to the five
points where the curve crosses the x-axis. It also shows six turning points and five
inflection points.

d. Because the number of turning points is typically 1 less than the degree of the
polynomial and the number of inflection points is 2 less than the degree, we con-
clude that the polynomial shown is at least a seventh degree polynomial.

e. Because there are five real roots and the degree of the polynomial is at least seven,
there must be at least two complex roots.

f. The graph eventually falls toward as so we conclude that the leading
coefficient must be negative.

�

EXAMPLE 6
Factor the polynomial 

Solution This polynomial is a quartic, so it has precisely four roots. We know that the
linear factors of the polynomial correspond to its real roots, and the graph shown in Fig-

P1x 2 � x4 � 5x3 � 7x2 � 8x � 3.

x S �,��
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4.2 The Behavior of Polynomial Functions 269

ure 4.26 reveals that there are four real roots. As a result, there cannot be any complex
roots. We can locate each of these real roots to any desired level of accuracy, using either
numerical or graphical methods. Correct to four decimal places, the roots are

and The third of these results,
suggests that the root might be precisely. To verify that this is true, we

substitute into the formula for the polynomial and find that

P11 2 � 11 2 4 � 511 2 3 � 711 2 2 � 811 2 � 3 � 1 � 5 � 7 � 8 � 3 � 0.

x � 1x � 1.0000,
x � 5.9377.x � 1.0000,x � �0.3105,x � �1.6272,

–2 –1 1 2 3 4 5 6 7

–150

–100

–50

x

y

FIGURE 4.26

(If you do the same with the other three values, which are just approximations to the
roots, the value of the polynomial will only be close to, but not quite equal to, zero.)

The corresponding linear factors are therefore roughly 
and so the polynomial can be factored, approximately, as

�

P1x 2 � x4 � 5x3 � 7x2 � 8x � 3 � 1x � 1.6272 2 1x � 0.3105 2 1x � 1 2 1x � 5.9377 2 .

1x � 5.9377 2 ,1x � 1 2 ,
1x � 0.3105 2 ,1x � 1.6272 2 ,

1. The overall trend in the growth of the gross domes-
tic product (GDP) has been upward except for a
small dip. Sketch a graph representing the value of
the GDP as a function of time. What type of func-
tion might model it? What can you conclude about
any of the coefficients?

2. The overall pattern in the growth of the Dow-Jones
Industrial Average over the past 10 years has been
one of increase except for three sharp, but relatively
short-term, drops. Sketch a graph representing the
value of the Dow as a function of time. What type of
function might model it? What can you conclude
about any of the coefficients?

3. Each graph represents a polynomial. For each one:

a. What is the minimum possible degree of the
polynomial? Why?

b. Is the leading coefficient of the polynomial posi-
tive or negative? Why?

Problems

(i) (ii)

x

y

x

y

(iii) (iv)

x

y

x

y

4. Each table gives some values for a polynomial. What
is the minimum degree of each polynomial? Based
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x 1 0 1 2 3 4 5

y 145 16 27 11 24 16 41 78�9�

��2�3

(i) (ii)

(iii)

tangent

(v) (vi)

(iv)

y

x
31

2

–3

y

x
–1 3

1

5. Match each polynomial expression a–f with its
graph (i)–(vi). Use your knowledge about roots; do
not use your function grapher.

Based on your knowledge about roots and factors,
sketch the graph of each polynomial function in Prob-
lems 6–9. Do not use your function grapher.

6.

7.

8.

9.

10. The polynomial 
can be factored as 

a. What is the degree of the polynomial?
b. What are the real roots? The complex roots?
c. What happens as As 
d. What is the maximum number of turning points

you expect? Explain.
e. What is the maximum number of points of in-

flection? Explain.

11. Determine cubic polynomials that represent the ac-
companying graphs.

x S ��?x S �?

1x � 1 2 12x � 1 2 1x � 3 2 1x2 � 2x � 2 2 .1x � 2 2
P1x 2 �21x3 � 12x2 � 22x � 12

P1x 2 � 2x6 � 5x5 � 8x4 �

f 1x 2 � 51x � 4 2 21x2 � 25 2
f 1x 2 � �51x2 � 4 2 1x2 � 25 2
f 1x 2 � 51x2 � 4 2 1x2 � 25 2
f 1x 2 � 1x � 2 2 1x � 1 2 1x � 3 2

12. Each graph represents a function. For each one,
(i) read off approximate intervals over which the
function is increasing and over which it is de-
creasing; (ii) estimate intervals over which the
function is concave up and concave down; and
(iii) find a possible formula for the function.

on the values given, what can you conclude about
the sign of the leading coefficient in each case?

a.

b.

x 0 1 2 3 4 5

y 145 16 12 21 2 �48�3�9�5

�1�2�3

x

y

1 4–4
x

y

20 4–2

a.
b.
c.
d.
e.
f. f 1x 2 � 1x � 2 2 1x � 4 2 1x � 3 2 2

f 1x 2 � 3x3 � x4
f 1x 2 � 1x � 1 2 1x � 1 2 1x � 3 2 1x � 3 2
f 1x 2 � 1x � 1 2 1x2 � 4 2
f 1x 2 � 1x � 1 2 1x � 2 2 12 � x 2
f 1x 2 � 1x � 1 2 1x � 3 2 1x � 3 2

a. b.

a. b.
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4.2 The Behavior of Polynomial Functions 271

(i) (ii)

(iii) (iv)

13. For each polynomial, (a) determine the number of
real roots and the number of complex roots; and
(b) find all real roots correct to three decimal places.

i.
ii.
iii.

iv.

14. Determine which of the graphs suggest the end be-
havior for each polynomial.

42x � 6
P1x 2 � x6 � 9x5 � 26x4 � 41x3 � 71x2 �

 11x2 � 12x � 6
P1x 2 � x6 � 4x5 � 6x4 � 16x3 �
P1x 2 � x5 � 4x4 � 6x3 � 6x2 � 27x � 27
P1x 2 � x4 � 8x2 � 9

a.
b.
c.
d.
e.
f. g.
h. i.
j.

15. a. The graph of the polynomial 
in Figure 4.22 suggests that there

are three turning points. Use your function gra-
pher to locate them to 3 decimal place accuracy
by zooming in on the graph.

b. Estimate all intervals over which is increas-
ing or decreasing.

c. Estimate the locations of all points of inflection.
d. Estimate all intervals over which is concave

up or concave down.
e. Estimate all real roots.

16. Describe the end behavior of each function. Specif-
ically for the graph of each function f, (i) as 
does or why? and (ii) as 
does or why?

a. f 1x 2 � �3x3 � 70x2 � 20.

��?f 1x 2 S �
x S ��,��?f 1x 2 S �

x S �,

P1x 2

P1x 2

6x3 � 7x � 10
P1x 2 � 2x4 �

y � 19 � 6x3 2 3
y � 19 � 6x2 2 3y � 19 � 6x3 2 2
y � 19 � 6x2 2 2y � 100 � x4

y � �4x9 � 6x6 � 5x3 � 35
y � �x7 � 4x6 � 3x4 � 6x3 � 7x � 9
y � 3x8 � 4x5 � 6x3 � 5x2 � 6
y � �4x6 � 3x4 � 7x3 � 8x2 � 4x
y � 5x5 � 8x4 � 2x2 � 3x � 4

b.
c.
d.
e.

17. Find the equation of a quadratic polynomial that
has a real root at and a turning point at

18. A cubic polynomial P has turning points at 
and 

a. What is the behavior of as 
b. Where is the point of inflection? (Hint : Recall that

a cubic is symmetric about its point of inflection.)

19. Suppose that a quadratic polynomial has roots at
and 

a. Write a possible formula for the quadratic
function.

b. Use the fact that a quadratic is symmetric about
the vertical line through its turning point to de-
termine the x-coordinate of the turning point of
this quadratic function.

c. Suppose that the quadratic has a maximum
value of 20. What must be its equation?

d. Suppose that the quadratic has a minimum value
of instead. What must be its equation?

20. An apple is tossed from ground level straight up at
time with velocity Its height at time
t is Find the time when it hits
the ground and the instant when it reaches its high-
est point. What is the maximum height?

21. The height s (in cm) of an object above the ground
at time t (in seconds) is given by

where represents the initial velocity and g is a
constant, the acceleration due to gravity.

a. At what height does the object start?
b. How long is the object in the air before it hits the

ground?
c. When will the object reach its maximum height?
d. What is that maximum height?

22. a. Sketch a smooth graph of today’s air tempera-
ture from midnight to midnight.

b. When is it a minimum? A maximum?
c. When does it have a point of inflection?
d. What type of polynomial might be a good match

to the curve you drew?

v0

s � v0t �
1

2
 gt2,

f 1t 2 � �16t2 � 64t.
64 ft>sec.t � 0

�20

x � �2.x � 6

x S �?P1x 2
15, 12 2 .

11, 4 2

11, 5 2 .
x � 2

f 1x 2 � 4x4 � 5x5 � 6x6.
f 1x 2 � x4 � x5.
f 1x 2 � �3x4 � 20x3 � 5x2 � x � 20.
f 1x 2 � 20x4 � 3x3 � x2 � 1000.
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x

y

d
d – f (–h)

x = –h x = h

f (h) – d

a b
x

y

y = f (x)

∆x = b – a

∆y = f (b) – f (a)

f (b)

f (a)

m =
f (b) – f (a)

b – a

x 0 1 2 3

0 3 0 0 15�3y � f (x) � x3 � 4x

�1�2

b. Prove that any cubic polynomial of the form
is symmetric about its

inflection point at by showing alge-
braically that, if you take any value of x—say,

—then as
illustrated in the accompanying figure. (Note:
The same ideas apply to an arbitrary cubic
polynomial when the term is present, but
the proof is considerably more complicated.)

25. Recall that the average rate of change of a function f
over an interval to (see Section 2.8) is
defined as the slope of the line segment connecting
the endpoints of the curve on that interval, or

as illustrated in the accompanying figure. The table
gives some values for the function 

a. Find the average rate of change of f from
to 

b. Calculate the average rate of change of f between
each successive pair of points in the table; that is,

x � 3.x � �2

f 1x 2 � x2 � 4x.


y


x
�

f 1b 2 � f 1a 2
b � a

 ,

x � bx � a

bx2

f 1h 2 � d � d � f 1�h 2 ,x � h 	 0

10, d 2
f 1x 2 � ax3 � cx � d

e. What function would be a better choice if you
expand the domain to include the temperatures
for yesterday and tomorrow?

23. Factor the polynomial 
using zeros that are correct to two decimal places.

24. a. Prove that any cubic polynomial of the form
is symmetric about its inflection

point at the origin by showing algebraically that,
if you take any value of x—say, —
then f 1�h 2 � �f 1h 2 .

x � h 	 0

f 1x 2 � ax3 � cx

P1x 2 � x3 � 5x2 � 3x � 7,

between and between 
and and so on. What is the average value
of all these slopes?

c. Extend the table to include the point and
repeat parts (a) and (b). Does the same result
hold?

d. Extend the table farther to include 
Show that the same result holds.

e. Does the same result hold for any function and
any set of points? State this result as a potential
theorem.

26. Prove the result you conjectured in part (e) of
Problem 25. Let f be defined on an interval from a
to b. The average rate of change of f is

Let

be any set of uniformly spaced points so that

27. Find all polynomials p of degree that satisfy
each set of conditions.

a.
b. and 
c.
d.

(Hint: Think about the graphs.)

p10 2 � p11 2
p10 2 � p11 2 � 1

p12 2 � 2p10 2 � p11 2 � 1
p10 2 � p11 2 � p12 2 � 1

� 2


x �
b � a

n
 .

x0 � a, x1 , x2 , . . . , xn � b

f 1b 2 � f 1a 2
b � a

 .

x � �3.

x � 4

x � 0,
x � �1x � �1,x � �2
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4.3 Modeling with Polynomial Functions 273

Time 0 0.5 1.0 1.5 2.0 2.5 3.0

Height 180 176 164 144 116 80 36

Exercising Your Algebra Skills

Factor each of the following polynomial expressions as
completely as possible. (Note that not all are factorable.)

1. 2.

3. 4.

5. 6. x2 � 4x � 4x2 � x � 12

x2 � x � 12x2 � 7x � 12

x2 � 4x � 5x2 � 7x � 12

7. 8.

9. 10.

11. 12.

13. 14. x3 � 36xx3 � 10x2 � 25x

x3 � 4x2 � 3xx3 � x2 � 20x

x2 � 36x2 � 100

x2 � 25x2 � 6x � 9

Modeling with Polynomial Functions

As we mentioned in Example 4 of Section 3.2, one of the most famous moments in
the history of science was Galileo’s reported experiment of dropping various ob-
jects from the top of the 180-foot high Leaning Tower of Pisa and discovering that
they fell at the same rate, regardless of their weight. Instead of looking at the speed
of a falling object, we now look at the height H, in feet, of an object falling from the
top of the tower at various times t, as given in the table.

4.3

Note how the object starts falling slowly and then accelerates. (Incidentally, these
values are considerably more accurate than anything Galileo could have measured
at the end of the fourteenth century.)

The ideas we introduced in Chapter 3 on fitting linear, exponential, power, and
logarithmic functions to a set of data can be extended to fitting polynomial func-
tions to data. All graphing calculators have the capability to fit quadratic, cubic,
and quartic polynomials to any set of data; spreadsheets such as Excel™ can fit
polynomials up to degree 6, and specialized software packages allow polynomials
of any finite degree. However, the approach used to determine a best-fit polynomi-
al is different from the types of transformations we used in Sections 3.4 and 3.5. In
fact, it is based on the idea of fitting a linear function of several variables to a set of
data, as we discussed in Section 3.7. As we also discussed there, the correlation co-
efficient does not apply directly. Instead, statisticians have developed a comparable
measure of the goodness of fit, known as the coefficient of determination, which is
denoted by Its value is provided by most calculators and software. It always lies
between 0 and 1, and the closer is to 1, the better is the fit; a value of 1 indicates
a perfect fit.

EXAMPLE 1
(a) Find an equation for the height of an object falling from the top of the 180-foot high
Leaning Tower of Pisa as a function of time. (b) Then use the formula to calculate how
long it takes for the object to hit the ground.

Solution

a. We show the scatterplot of the data for height H as a function of time t in Figure 4.27
and observe that the pattern in the data resembles the right half of a parabola with

R2
R2.
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FIGURE 4.27
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FIGURE 4.28

negative leading coefficient. Using the quadratic function regression routine on a cal-
culator, we obtain the equation

The corresponding value for the coefficient of determination is suggest-
ing that the parabola apparently is a perfect fit to the data, as shown in Figure 4.28.

b. The object hits the ground when To find how long it takes, we must find the
value of t for which

We can solve this quadratic equation graphically, with the quadratic formula, or by
direct algebraic means. Algebraically, we add to both sides of this equation to
obtain

so that

When we take the square root of both sides, we get Because sec-
onds makes no real-world sense, we conclude that it takes about 3.35 seconds for the
object to hit the ground.

�

Let’s look at the equation for the height at any time when
the object is falling from the top of the 180-foot high tower. Note that the constant
term 180 equals the height of the tower. We rewrite the function as

which indicates that the height starts at 180 feet, when and decreases there-
after. In general, if an object is dropped from any initial height and is affected
only by the force of gravity, its height at any time t is given by

Now suppose that an object is not simply dropped but instead is tossed up-
ward with some initial velocity—say, What do we expect? Obviously, the
object starts off rising until it reaches a maximum height and then falls back until
it hits the ground. The larger the initial velocity, the higher the object goes. In Ex-
ample 2, we construct a function to model such a situation.

40 ft>sec.

H1t 2 � H0 � 16t2.

H0

t � 0,

H1t 2 � 180 � 16t2,

H � �16t2 � 180

t � �3.35t � �3.35.

t2 �
180

16
� 11.25.

16t2 � 180

16t2

H � �16t2 � 180 � 0.

H � 0.

R2 � 1.00,

H � �16t2 � 180.
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t 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

H 180 196 204 204 196 180 156 124 84 36
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FIGURE 4.29
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FIGURE 4.30

EXAMPLE 2
When an object is thrown vertically upward with an initial velocity of from the
top of the 180-foot high Tower of Pisa, the following set of measurements of its height as
a function of time are obtained.

40 ft>sec

a. Find an equation of a function that can be used to model the height of the object as a
function of time.

b. Estimate how long it takes for the object to reach its maximum height and what that
maximum height is.

c. How long does it take for the object to fall back to the ground?

Solution

a. The scatterplot of the data shown in Figure 4.29 indicates that the pattern for the
height H as a function of time t looks like a portion of a parabola with a negative
leading coefficient. Using a calculator to fit a quadratic function, we find that the
quadratic function that best fits the data is

Note that the coefficients of the constant and linear terms are essentially the same as
the initial height 180 feet and the initial velocity 40 feet per second, respectively.
Moreover, the coefficient of the quadratic term is the same, as in Example 1.
This function superimposed over the scatterplot shown in Figure 4.30 reveals that it
is an excellent fit to the data. The associated coefficient of determination is 
providing additional evidence that the fit is virtually perfect.

R2 � 1.0,

�16,

H1t 2 � 180 � 40t � 16t2.

b. To estimate the time it takes for the object to reach its maximum height and the value
for that maximum height, we need merely trace along the curve to find the coordi-
nates of the turning point; or we can use the routine for locating the maximum for a
function that is on many calculators. Either way, the coordinates are seconds
and feet.

c. To find the time it takes for the object to return to the ground, we solve the equation

H1t 2 � 180 � 40t � 16t2 � 0.

H � 205
t � 1.25
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The height of an object thrown vertically upward with initial velocity from
an initial height at any time t is

H1t 2 � �16t2 � v0t � H0 .

H0

v0

x

y

FIGURE 4.31

We can do this either graphically or by the quadratic formula. Using the quadratic
formula with and gives

Consequently, we get two possible values for t: seconds and seconds.
The second value makes no sense physically, so the realistic solution is seconds.

�

In general, we can say the following.

t � 4.83
t � �2.33t � 4.83

 �
�40 � 213120

�32
 .

 �
�40 � 21600 � 11520

�32

 t �
�40 � 2402 � 41�16 2 1180 2

21�16 2

c � 180b � 40,a � �16,

If there is no initial velocity, so that this formula reduces to the expression
we had previously for the height of any object falling under the influence of gravity.

The questions that we would want to answer about any object thrown upward
into the air are:

1. How high does it go?

2. How long does it take to reach its maximum height?

3. How long does it take to return to the ground?

The Path of a Projectile

Picture the path of a long home run in baseball or the path of a perfect pass in foot-
ball or the arch of the high-pressure stream of water from a supershooter water
gun. In each case, the path looks something like the curve shown in Figure 4.31,
whose shape suggests a parabola or possibly some higher degree polynomial curve
with a negative leading coefficient. (If a strong wind is blowing, the path may not
be quite so symmetric and the analysis of the shape of the path is considerably
more complicated than that described here.)

v0 � 0,
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FIGURE 4.32

Using various kinds of technology, such as time-lapse photography or a video
camera, we can capture a set of data on the path of such a projectile. For instance,
the following set of data consists of measurements for the path of a long fly ball in
baseball, where the height y of the ball depends on the distance x from home plate.
Both sets of measurements are in feet.

The ball rises to a maximum height of about 124 feet. More important, the ball
travels a horizontal distance of about 400 feet until it comes back down into the out-
fielder’s glove, hits the ground or fence, or lands in the stands. To determine what
happens, we need an equation for the path of the ball, which we find in Example 3.

EXAMPLE 3
(a) Determine the equation of a function that models the path of the baseball based on
the preceding data. (b) If the fence 400 feet from home plate is 8 feet high, will the ball
clear the fence to be a home run?

Solution

a. Because the shape of the data, as shown in the scatterplot in Figure 4.32, suggests a
parabola, we begin by fitting a quadratic function to the data. The result is the quad-
ratic function

y � �0.003x2 � 1.202x � 3.936,

which is shown superimposed over the scatterplot and is an outstanding fit to the
data. As expected, the leading coefficient is negative. Moreover, the corresponding
value for the coefficient of determination is which provides additional
evidence that the quadratic function is an excellent model to use.

b. In order for the ball to be a home run, it must clear the 8-foot high fence when it is
400 feet from home plate. Therefore we substitute into the equation of the
parabola and find that

That is, when it reaches the fence, the ball’s height is somewhat less than 5 feet, so it
wouldn’t be a home run, as shown in the smaller view in Figure 4.33.

y � �0.0031400 2 2 � 1.2021400 2 � 3.936 � 4.736.

x � 400

R2 � 0.9999,

Gord.3896.04.pgs  4/24/03  9:57 AM  Page 277



278 CHAPTER 4 Extended Families of Functions

Year 1983 1984 1985 1986 1987 1988 1989 1990

Number of AIDS Cases 4589 10,750 22,399 41,256 69,592 104,644 146,574 193,878

Year 1991 1992 1993 1994 1995 1996 1997 1998

Number of AIDS Cases 251,638 326,648 399,613 457,280 528,144 594,641 653,084 701,353

Source: U.S. Centers for Disease Control and Prevention.

1983 1986 1989 1992 1995 1998

150

0

300

450

600

750

t

A

Year

N
um

be
r 

of
 A

ID
S 

ca
se

s
(t

ho
us

an
ds

)

Exponential function

FIGURE 4.34

�

Fitting Polynomials to Data

The concept of fitting a polynomial function to data is one that applies in all walks
of life, not just in the physical situations we encountered in Examples 1–3. We il-
lustrate two other cases in Examples 4 and 5.

EXAMPLE 4
The table shows the accumulated total number of reported cases of AIDS in the United
States since 1983.

H = 8
y = 4.736

x = 400FIGURE 4.33

Determine a function that fits the data well and interpret the behavior of the function.

Solution In Example 4 of Section 3.3, we explored the possibility that the growth in the
total number of reported cases of AIDS in the United States follows an exponential pat-
tern. The resulting best-fit exponential function, found with a calculator, was

where t is measured in years since 1980. The corresponding correlation coefficient
is quite close to 1, suggesting that this function is a very good fit. But, when we

superimpose this exponential function over the data points, as shown in Figure 4.34, the
curve doesn’t fit the data well.

r � 0.9483

A � 5413.511.3626 2 t,
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Alternatively, suppose that we use the capability of the calculator to fit a polynomial
to this data. Most calculators allow us to fit polynomials of degree 2, 3, or 4 to a set of
data, and we can easily experiment with different degrees. When we do so, we find that a
cubic polynomial is an excellent fit to this set of data. The calculator gives the best cubic
function, rounded to one decimal place, as

where t is again the number of years since 1980. When we superimpose this polynomial
over the AIDS data points shown in Figure 4.35, we get an exceptionally good fit, which
certainly is a far better fit than the exponential function shown in Figure 4.34.

A � �221.9t3 � 9261.8t2 � 62275.9t � 122988.9,

This graph strongly suggests that the number of cases in the spread of AIDS fol-
lows a cubic pattern. (When scientists discovered this several years ago, they were ex-
cited because polynomial growth is much slower than exponential growth, which is
the trend that they too had expected.) The corresponding coefficient of determination,

provides further evidence of how well the cubic function fits the data.
We know from the formula for the cubic that the leading coefficient is negative, so

the cubic will eventually approach The larger view in Figure 4.36 suggests that the
cubic passed its inflection point in about 1995 or 1996 and that the growth in AIDS has
begun to slow somewhat since then. The graph also shows that the function will reach a
turning point in about 2003.

��.

R2 � 0.99996,

�

However, recall that the data represent the total number of AIDS cases reported in
the United States, so the cubic can’t actually turn and begin to decline; it can only slow
and, at best, eventually level off. Thus we demonstrate again how dangerous extrapo-
lation with a mathematical model can be. The model only describes the situation
based on the data points; it is not a guarantee of the actual process, especially for ex-
trapolating into the future or the past.
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FIGURE 4.37
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Let’s look at another example of fitting polynomials to data. Figure 4.37 shows
a picture of the famous Gateway Arch in St. Louis. Its shape suggests a portion of a
downward opening parabola. Let’s see if we can determine a specific function that
best models the arch.

EXAMPLE 5
Determine a polynomial function that fits the Gateway Arch well.

Solution To find an appropriate function, we need some measurements for the arch.
Overall, the arch stands 630 feet tall, and the distance between its two legs also is 630 feet.
We superimpose a grid on the arch, as shown in Figure 4.38, and choose the coordinate
system so that the vertical axis passes through the center of the arch. We then construct
the following table of estimates of the height H corresponding to various horizontal dis-
tances x. We make our estimates from the middle of the arch; slightly different results
might occur if we use values from the inner edge or the outer edge. We ask you to inves-
tigate these possibilities in the problems at the end of this section.

x 0 100 150 200 250 300 325

H 0 100 330 500 570 610 630 610 570 500 330 100 0

�100�150�200�250�300�325
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The first thing we notice from both the figure and the table is that the measurements
are symmetric about the vertical axis As a result, we would expect that the best-fit
parabola has no x term. When we enter the data into the quadratic regression routine of
a calculator, we find the quadratic function that best fits the data is

We plot this function over the data points, as illustrated in Figure 4.39, and conclude
that it is a reasonably good fit, though certainly not a great one. Among other things, the
curve rises much too high above the central data point and the pattern of data points
flattens out far more than the parabola does near the center.

H � �0.0064x2 � 0x � 699.01.

x � 0.

In our discussion of power functions with integer powers in Section 2.7, we pointed
out that the higher the power, the flatter the curve as it passes through the origin. This
result suggests that we should use a higher degree polynomial than a quadratic. From the
basic shape of the arch, we know that a cubic would not be appropriate—it doesn’t have
the correct behavior. How about a quartic polynomial? When we try it, the calculator re-
sponds with the equation

When we superimpose this function over the data points, as shown in Figure 4.40, it ap-
pears visually to be an exceptionally good fit to the shape of the arch. The coefficient of
determination for this fit is which also indicates that it is a very good fit.
(Actually, the true shape of the arch is a curve known as a hyperbolic cosine, which you
may encounter in calculus.)

R2 � 0.9953,

H � 1�3.27 � 10�8 2x4 � 0x3 � 0.00282x2 � 0x � 644.25.

�

Gord.3896.04.pgs  4/24/03  9:57 AM  Page 281



282 CHAPTER 4 Extended Families of Functions

Horsepower 138 172 203 216

Revolutions 
per Minute 2000 2500 3000 3500

Horsepower 209 182 144 98 42

Revolutions 
per Minute 4000 4500 5000 5500 6000

Source: Student project.

Year 1950 1960 1970 1980 1990 2000

Percentage 6.9 5.4 4.8 6.2 7.9 10.4

Source: 2000 Statistical Abstract of the United States.

Problems

1. We showed in the text that the cubic function

is an excellent fit to the total number of reported
cases of AIDS in the United States from 1983 to
1998, where t is the number of years since 1980.

a. Based on this model, what is the prediction for
the total number of cases through 2000?

b. Check a recent copy of the Statistical Abstract of
the United States or an almanac to see how accu-
rate the prediction in part (a) is.

c. If this cubic pattern continues, how many total
cases would you expect by 2004?

d. When would you expect a total of 850,000 cases
of AIDS, based on this model?

2. Find the equations of the best quadratic and quar-
tic functions to fit measurements taken at the outer
edge of the Gateway Arch instead of at the middle.

3. Repeat Problem 2 with measurements taken at the
inner edge of the arch instead of at the middle.

4. The table shows the percentage of the U.S. popula-
tion that is foreign born in various years.

a. What is the minimum degree polynomial that
you would use to model this data?

b. Find that polynomial and use it to estimate the
time when the percentage of foreign-born peo-
ple in the United States was a minimum. What
was that minimum percentage?

y � �221.9t3 � 9261.8t2 � 62275.9t � 122988.9

5. The accompanying figure shows a grid superim-
posed on the image of the McDonald’s arches.

a. Decide on a scale that you can use to estimate
measurements on the arches. (Hint: Think about
where you want to set up your coordinate axes.)

b. Use your estimated measurements to determine
the equation of a polynomial that best fits one of
the arches. (Hint: Think again about where you
want to set up your coordinate axes.)

c. Can you use the formula you obtained for one
of the arches to construct a formula for the
other arch? Explain.

6. The table gives the horsepower generated on a
Chevy 383 car engine at different rpm.

a. Which variable is the independent variable and
which is the dependent variable?

b. What is the equation of the quadratic function
that relates these two quantities?

c. What does your model predict for the horse-
power generated by this engine at 4800 rpm?

d. If the engine puts out 165 horsepower, what is
the possible value for the rpm according to this
model?

7. Car enthusiasts know that it’s not horsepower that
is significant, but rather the amount of torque that
an engine puts out that really matters in how quick-
ly a car moves forward. The table gives the torque,
in foot-pounds, generated at different rpm values
for a Chevy 383 engine. From among the usual
families of functions (linear, exponential, power,
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Torque 363 361 355 324

Revolutions 
per Minute 2000 2500 3000 3500

Torque 275 213 151 93 36

Revolutions 
per Minute 4000 4500 5000 5500 6000

Source: Student project.

Year 1970 1975 1980

Population (millions) 24.71 28.76 30.35

Year 1985 1990 1995

Population (millions) 29.48 26.14 24.85

Source: 2000 Statistical Abstract of the United States.

Velocity (fraction of c) 0 0.1 0.2

Mass 1 1.0050 1.0206

Velocity (fraction of c) 0.3 0.4 0.5

Mass 1.0483 1.0911 1.1547

Distance from 
Support Column 0 1000 2150

Estimated Height 500 150 20

Distance from 
Support Column 3000 4000 4300

Estimated Height 100 400 500

Year 1960 1970 1975 1980

Price 11 9 37 64

Year 1985 1990 1995 2000

Price 40 28 20 32

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.

8. a. Create a single table based on the information
given in Problems 6 and 7 relating the amount of
torque generated to the horsepower for the
Chevy 383 engine.

b. From among the usual families of functions (lin-
ear, exponential, power, quadratic, and cubic), find
the one that seems to be the best fit to this data.

9. The table shows the number of 18- to 24-year-olds
in the United States in recent years. Find the quad-
ratic function that best fits this data set and use it to
predict the number of people in this age range in
(a) 2000 and (b) 2005. Which prediction would you
have more confidence in?

10. According to the theory of relativity, the mass M of
an object increases as its velocity v increases so that

Suppose that the mass of an object is 1 unit
when it is at rest The table gives the mass
of the object at different speeds that are expressed
as fractions of c, the speed of light (about 186,280
miles per second). Find the best quadratic fit to this
set of data.

1v � 0 2 .
M � f 1v 2 .

11. While approaching the Verrazano Bridge in New
York City, Ken noticed that the main cable looks
like a parabola, as illustrated in the accompanying
figure. As his car crawled across the bridge in heavy
traffic, he estimated the following heights, in feet, of
the cable above the road and the distance, in feet,
starting from one of the vertical support columns.

Find an equation of the parabola that best fits Ken’s
estimates. (Think how to set up the coordinate axes.)

12. The table shows the price of a barrel of oil, in dol-
lars, in different years.

a. What type of function is reasonable to use as a
model for the price of oil as a function of time?

b. Find the equation of the polynomial function of
appropriate degree to fit the data.

c. What does your model predict for the price of a
barrel of oil in 2005?

d. Use the graph of your function to estimate the lo-
cation of the turning points for the function. Ac-
cording to this model, what was the maximum
price of a barrel of oil between 1960 and 2000
and when did it occur? What was the minimum
price and when did it occur?

quadratic, and cubic), find the one that seems to be
the best fit to these data.
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13. The table shows the trend in worldwide grain pro-
duction (wheat, rice, and corn, primarily), in kilo-
grams per person. The pattern in the data suggests
that a quadratic function is an appropriate model for
grain production per person as a function of the year.

b. Let t be the number of years since 1890. Deter-
mine the best polynomial function of the degree
that you decided was appropriate in part (a) to
model the number of high school graduates as a
function of time t.

c. Use this function to predict the number of high
school graduates in 2010.

d. Use this function to predict the year in which
there will be 5 million high school graduates.

15. The table, collected from a chemistry lab experi-
ment, gives the density D of water, in grams per
milliliter, at various temperatures T, in °C.

a. Find the equation of the quadratic that best fits
these data.

b. Based on the model, what was the maximum
level of grain production per person worldwide?

c. What does the model predict for the amount of
grain produced per person in 2010?

d. Write a paragraph describing the possible rea-
sons for this trend and the implications if the
trend continues.

14. The table gives the total number, in thousands, of
high school graduates in the indicated years since
1900. In Problem 12 of Section 3.3, we asked you to
find the best linear, exponential, and power func-
tions to fit these data. If you examine the data care-
fully, you should expect that a polynomial function
would be a better fit.

Year 1965 1970 1975 1980

Amount 
per Person 270 291 303 321

Year 1985 1990 1995 1999

Amount 
per Person 339 335 301 309

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.

Year 1900 1910 1920

High School Grads 95 156 311

Year 1930 1940 1950 1960

High School Grads 667 1221 1200 1858

Year 1970 1980 1990 2000

High School Grads 2889 3043 2586 2839

Source: Digest of Education Statistics 2000, U.S. Department of Education.

Temperature, T

Density, D 0.99987 1.00000 0.99973

Temperature, T

Density, D 0.99823 0.99567 0.99224

Temperature, T

Density, D 0.98324 0.97183 0.95838

Source: John R. Holum, Elements of General and Biological Chemistry,
8th ed. New York: John Wiley & Sons, 1991.

100°80°60°

40°30°20°

10°4°0°

a. Find a quadratic function that fits these data.
b. Use your function from part (a) to find the den-

sity of water at 
c. Find the temperature at which the density of

water is 0.99100 grams per milliliter.

16. The height of an object falling from an initial height
of is given by the formula

with units of feet and seconds. What is the equivalent
formula based on the metric system of units with me-
ters and seconds? (Hint: )

17. Galileo conducted his famous experiment in
which he dropped objects from the top of the
180-foot high Leaning Tower of Pisa in about
1590. His goal was to obtain experimental data to
show that all bodies fall with equal velocities.
How long did it take for the objects that he
dropped from the tower to hit the ground?

18. The Eiffel Tower is 300 meters tall. How long would
it take an object dropped from its top to hit the
ground?

1 foot � 0.3048 meters.

y � y0 � 16t2,

y0

70°C.

a. What degree polynomial function is a good can-
didate to fit these values? Explain.

Gord.3896.04.pgs  4/24/03  9:57 AM  Page 284



4.4 The Roots of Polynomial Equations: Real or Complex? 285

tangent

tangent

x

y

x

y

x

y

x

y

x

y

x

y

FIGURE 4.41

The Roots of Polynomial Equations: Real or Complex?

The Roots of Quadratics

In Section 4.1, we stated that, for any quadratic equation,

we can always find its roots by using the quadratic formula

Further, the roots may be two distinct real numbers, a repeated real root, or a pair of

complex conjugate numbers of the form where as illustrated in

Figure 4.41.

i � 2�1 ,a � bi,

x �
�b � 2b2 � 4ac

2a
 .

a � 0,ax2 � bx � c � 0,

4.4

Most students think that complex roots occur very rarely. In this section we in-
vestigate how frequently they do arise. To do so, we consider many different quad-
ratic equations and find the percentage of them that do have complex roots. A
quadratic equation has complex roots when its discriminant,

is negative. The quadratic formula then requires taking the square root of
that negative discriminant to produce two complex numbers. For instance, for the
quadratic equation the discriminant is 
so the roots will be complex. The quadratic formula gives the roots as

or and Thus we can use the sign of the discriminant as the
criterion to decide whether any particular quadratic has complex roots.

To come to any meaningful conclusions about the percentage of quadratics that
have complex roots, we must examine a very large number of quadratics. Doing so
requires using a computer or calculator program rather than hand computation.

x � 1 � i.x � 1 � i

x �
�1�2 2 � 24 � 8

2
�

2 � 2�4

2
�

2 � 2i

2
� 1 � i,

1�2 2 2 � 411 2 12 2 � �4,x2 � 2x � 2 � 0,

b2 � 4ac,
ax2 � bx � c � 0
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TABLE 4.1

Interval for a, b, Percentage with
and c, Complex Roots

All in [0, 5] 70
All in [0, 10] 73
All in [0, 20] 74
All in [0, 50] 74.5
All in 37.4
All in 37.5
All in 37.8
All in 37.7
All in 37.5
[0, 5], [0, 5], 0
[0, 5], [0, 5] 703�5, 0 4 ,

3�5, 0 4
3�50, 50 4
3�20, 20 4
3�10, 10 4
3�5, 5 4
3�3, 3 4

a � 0

Even the simplest case—when the quadratic has integer coefficients—has infinitely
many possible quadratics, so the best we can do is examine a finite selection of
them. Let’s examine all possible quadratics where the coeffi-
cients a, b, and c are integers from 0 to 5, say, but We write this in interval no-
tation as We then use a computer program that considers all possible integer
values for a, b, and c in this interval and keeps track of how many of the quadratics
have complex roots, using the discriminant criterion. Similarly, we can investigate
all possible integer coefficients in various other intervals, the results of which are
shown in Table 4.1.

30, 5 4 .
a � 0.

y � ax2 � bx � c

Therefore, rather than being a rarity, complex roots actually occur with sur-
prising frequency. In fact, almost three-fourths of quadratics whose coefficients are
all nonnegative integers have complex roots. Even allowing for negative values al-
most 40% have complex roots.

There is one exception in Table 4.1. If the constant coefficient c is negative while a
and b are both positive, the quadratic apparently always has two real roots. Can you
explain why? Can you give another example where the quadratic always has two
real roots? Look at the discriminant. (Note that we have checked only specific inte-
ger values for a and b between 0 and 5 and c between and 0, so we can’t gener-
alize to what may happen over all similar intervals of values.) ❐

We suggest that you conduct your own investigations of these ideas if an ap-
propriate program is available or if you want to write a fairly short program for
your calculator. Think about the following questions.

� With integer coefficients, what happens as the size of the interval increases?
Does the frequency of complex roots stay roughly the same or does it in-
crease or decrease significantly?

� What happens if you use different ranges of values for each coefficient?

Don’t be too generous in your choices when you begin; such systematic
processes tend to take a long time. For example, if you want to check all quadrat-
ics where a, b, and c are integers between 0 and 10, say, you are actually having the
computer or calculator investigate 1210 different equations. (There are 10 possible

�5

Think About This
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values for a since the equation would not be quadratic if a were zero. There are 11
possible values for b and 11 for c, which leads to different
cases.) If you ask for all integers from 0 to 100 on each of the coefficients, the com-
puter or calculator will investigate different quadratics. It may take all
night to complete this study of more than one million cases.

We should also find out what happens when the quadratic has noninteger
coefficients, either rational numbers or irrational numbers. In such cases, we
can’t simply check all possible equations because there are infinitely many pos-
sibilities, even for any finite interval. Instead, we use a random selection process
to generate large numbers of quadratics with randomly selected (noninteger)
coefficients in desired intervals, test each for the nature of its roots, and keep
track of how many of the roots are complex. (We perform just such an analysis
in Supplementary Section 11.3 as part of our study of probability.)

The Roots of a Cubic Function

We next consider an arbitrary cubic equation

where a, b, c, and d are any four real numbers and Recall that, just as a
quadratic equation has two roots, a cubic equation has three. They can be either
real or complex roots. Recall also that any complex roots must occur as a pair of
complex conjugates, and Thus, for any cubic equation, the three
roots may be either three real numbers, or a single real number and a pair of com-
plex conjugate numbers.

Moreover, we know that the real roots correspond geometrically to points
where the cubic crosses the x-axis. If there are three distinct real roots, the cubic
crosses the x-axis in three places, as illustrated in Figures 4.42(a) and 4.42(b). If
there is a double real root and a separate real root, the x-axis is tangent to the cubic
at the point corresponding to the double root and the curve crosses the x-axis at

a � bi.a � bi

a � 0.

ax3 � bx2 � cx � d � 0,

100 � 1012

10 � 11 � 11 � 1210
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the point corresponding to the other real root, as depicted in Figures 4.42(c) and
4.42(d). If there is a triple real root (as with ), the cubic flattens as it crosses
the x-axis at the single point, as shown in Figures 4.42(e) and 4.42(f). Finally, if
there is a single real root and a pair of complex conjugate roots, the cubic crosses
the x-axis once, as illustrated in Figures 4.42(g) and 4.42(h). Thus a cubic can have
either three real roots or one real root.

We have demonstrated that quadratic equations are likely to have complex
roots. How likely is it for a cubic equation to have complex roots? To answer this
question, we again use a computer program to investigate many different cu-
bics. First, though, we must devise a test comparable to using the sign of the dis-
criminant in the quadratic formula to decide whether a particular cubic has
complex roots.

Suppose that a cubic has three real roots. In that case, the curve crosses the
x-axis at three points if the three roots are distinct, it crosses the axis at two
points if there is a double real root, and it crosses the axis at one point if there is
a triple real root. The cubics shown in Figure 4.43 all have the same shape; the
only difference is the height of the turning points. The cubic on the left has its
first turning point above the x-axis and its second below; therefore it has three
real roots. The second cubic has both turning points above the x-axis and so
must have one real root and a pair of complex roots. The third cubic has both
turning points below the x-axis, so it also must have one real root and a pair of
complex roots.

y � x3

A further case occurs when the x-axis is tangent to the curve at one of the turn-
ing points; such a cubic has a double real root, so it cannot have a pair of complex
roots and its third root must be real. The final case is when the two turning points
coincide along the x-axis; this case corresponds to a triple real root. Therefore, in
order to have two complex roots, a cubic must have both turning points above the
x-axis or both below it.

When you study calculus, you will be able to determine that the two turning
points of the cubic are located at

provided that (This formula clearly resembles the quadratic formula.)

Verify graphically that this formula gives the approximate location of the turning
points of the cubic ❐y � x3 � 4x2 � 4x � 5.

Think About This

b2 � 3ac  0.

x �
�b � 2b2 � 3ac

3a
 ,

y � ax3 � bx2 � cx � d � 0
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y2 = f (x2)

x1 x2

FIGURE 4.44

TABLE 4.2

Intervals for a, b, c, and d, Percentage of Complex Roots

All in [0, 5] 94.54
All in 78.43
All in 78.74
All in 78.93
[0, 4], [0, 4], [0, 4], 88.4
[0, 4], [0, 4], [0, 4] 74.8
[0, 4], [0, 4], [0, 4] 88.4
[0, 4], [0, 4], 44
[0, 4], [0, 4] 44
[0, 4], 74.83�4, 0 43�4, 0 4 ,3�4, 0 4 ,

3�4, 0 4 ,3�4, 0 4 ,
3�4, 0 4 ,3�4, 0 4 ,

3�4, 0 4 ,
3�4, 0 4 ,

3�4, 0 4
3�5, 5 4
3�4, 4 4
3�3, 3 4

a � 0

In intervals of the form for all four coefficients, the proportion of complex
roots seems to be essentially the same regardless of the value of k. Does that make
sense? Imagine what would happen if you have a particular cubic and multiply each
coefficient by 10, say. Wouldn’t you expect the same type of roots? In fact, wouldn’t
you expect the identical roots? ❐

When we studied the nature of the roots of quadratics, we saw that the two roots are
always real whenever and Are there any simple combinations of values
for the coefficients in a cubic that likewise guarantee real roots? (What
about and ) ❐

It turns out that for polynomials of higher degree, the likelihood of complex
roots is even greater than for quadratics or cubics, but we won’t investigate these
cases.

a 	 0?c � 0,d � 0,
a, b, c, and d

a 	 0.c � 0
Think About This

3�k, k 4Think About This

Call these two x-values and Because we know the equation of the cubic
curve,

we can determine the heights of the two turning points:

and

Once we have calculated these values, we need only check whether both are posi-
tive or both are negative to conclude that the cubic has complex roots, as illustrat-
ed in Figure 4.44. If the two y-values have opposite signs or if either is zero, the
cubic has three real roots. We use this criterion in our investigation.

We apply this criterion to cubics with integer coefficients a, b, c, and d with-
in various intervals of values. In Supplementary Section 11.3 we investigate cases
with randomly generated noninteger values for a, b, c, and d within any desired
intervals of values, provided that 

In Table 4.2 we list the results of performing this investigation with all possible
integer coefficients in the indicated intervals of values. This table indicates that a
cubic with integer coefficients seems even more likely to have complex roots than a
quadratic does.

a � 0.

y2 � f 1x2 2 .y1 � f 1x1 2

y � f 1x 2 � ax3 � bx2 � cx � d,

x2 .x1
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290 CHAPTER 4 Extended Families of Functions

Using Information on the Nature of the Roots

We next turn to an application for which knowing the nature of the roots of a poly-
nomial is crucial. Home thermostats and automobile cruise controls are examples
of control systems that engineers use to control a process. In such devices, when the
system deviates slightly from the specified level, it should return to that level auto-
matically—the temperature shuts off or the car stops accelerating. Such a system is
called stable. Often, control systems are described mathematically by a polynomial.
A control system is stable if

1. all the real roots are negative, and

2. all the complex roots have negative real parts.

A control system having any positive real roots or having complex roots whose real
parts are positive is unstable. That is, the system does not return to the specified
level when small changes are introduced.

EXAMPLE 
A control system is described by the cubic polynomial Deter-
mine whether the system is stable or unstable.

Solution The graph of this cubic polynomial is shown in Figure 4.45. Its associated
cubic equation has only one real root, so it must therefore have a
pair of complex conjugate roots. Moreover, it is evident that the real root is negative. If
we zoom in on the point where the curve crosses the s-axis, we find that the root appears
to be located near We can determine whether the root is exactly by
evaluating

which shows that the root is precisely 
The problem we now face is to determine the complex roots. We know the real root

so the corresponding linear factor is We can therefore factor the poly-
nomial by dividing it by using the technique of long division for polynomials
from algebra:

Thus, is the quadratic factor, so that the original cubic polynomial is

We now apply the quadratic formula to find the complex roots of the quadratic factor:

 s �
�2 � 222 � 4 . 1 . 2

2 . 1

P1s 2 � s3 � 3s2 � 4s � 2 � 1s � 1 2 1s2 � 2s � 2 2 .

1s2 � 2s � 2 2

        s2 � 2s  �   2

1s � 1 2 � s3 � 3s2 � 4s � 2

      s3 �    s2

            2s2 � 4s

            2s2 � 2s

                  2s � 2

                  2s �  2

                      0

1s � 1 2 ,
1s � 1 2 .s � �1,

s � �1.

 � �1 � 3 � 4 � 2 � 0,

 P1�1 2 � 1�1 2 3 � 31�1 2 2 � 41�1 2 � 2

s � �1s � �1.

s3 � 3s2 � 4s � 2 � 0

P1s 2 � s3 � 3s2 � 4s � 2.
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Problems

1. Consider all quadratics with and the coeffi-
cient of the linear term so that they take the
form What percentage of these quad-
ratics should have two real roots?

2. Consider all quadratics of the form 
with What percentage of them should have
real roots?

3. Show that, if each coefficient in the quadratic
is multiplied by 10, the resulting

discriminant is multiplied by 100. What would you
expect to happen to the discriminant if each coeffi-
cient were multiplied by the same number k? How
do the roots of the two quadratics compare?

4. Consider all fourth degree polynomials of the form

where, for simplicity, you may consider 

a. Based on the general graph shown without axes,
how likely do you think it is (roughly 10%, 25%,
50%, 75%, or 90%) for such a polynomial to

a 	 0.

y � ax4 � bx3 � cx2 � dx � e,

y � ax2 � bx � c

c � 0.
y � ax2 � bx

y � x2 � c.
b � 0

a � 1 have four real roots? four complex roots? Ex-
plain your answers.

b. How would your answers change if

5. For each of the following cubic equations, use your
function grapher to produce the graph and zoom in
to estimate where the two turning points are locat-
ed. Then apply the formula

from the text (based on )
to verify that the values given by the formula match
the points you found graphically.

a.
b.
c.
d.
e.

6. a. Determine the location of the turning points for
the cubic What are
the maximum and minimum values for this
function?

b. Use the fact that a cubic is symmetric about its
point of inflection to determine the location of
the point of inflection of the cubic in part (a).

7. If a different control system is described mathemati-
cally by each polynomial, determine whether it is sta-
ble or unstable.

y � x3 � 3x2 � 2x � 10.

y � �4x3 � 3x2 � 5x � 4
y � �4x3 � 3x2 � 5x � 4
y � 5x3 � 3x2 � 6x � 8
y � x3 � 7x2 � 2x � 6
y � x3 � 4x2 � 8x � 3

y � ax3 � bx2 � cx � d

x �
�b � 2b2 � 3ac

3a

e � 0?

–4 –3 –2 –1 1 2 3 4

–50

–25

50

100

25

75

s

P(s)

FIGURE 4.45

The two complex roots are therefore and Because the real parts
of both complex roots are negative, and the real root is negative also, the control system
is stable.

s � �1 � i.s � �1 � i

 �
�2 � 2�4

2
�

�2 � 2i

2
 .
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x y

0 1
1

1 2
3

2 5
5

3 10
7

4 17
9

5 26

�y

A set of points lies on a line if the differences between successive y-values are
all equal when the x-values are uniformly spaced. The slope of that line

is the constant difference between successive y-values divided by the uniform
spacing between successive x-values.

m �

y


x

Finding Polynomial Patterns

In Section 2.2, we developed a criterion for determining whether a set of m points
follows a linear pattern when the x-values are uni-

formly spaced.
1xm , ym 21x2 , y2 2 , . . . ,1x1 , y1 2 ,

4.5

We now consider the related problem of determining whether a set of points
follows a quadratic, a cubic, or a higher degree polynomial pattern. Suppose that
we have the points and which actually
lie on the parabola We construct the table at the left of differences of
the y-values. Obviously, the values are not constant. In fact, they clearly follow a
linear pattern because the differences between successive values (the differences
of the differences) are all constant. The differences of the differences, are
called the second differences and are written If we extend the previous table to
include the second differences of the y-values, as shown in the table below, we get a
constant value for all the second differences.

In general, we have the following criterion based on uniformly spaced x-values.


2y.

1
y 2 ,


y

y

y � x2 � 1.
15, 26 2 ,14, 17 2 ,13, 10 2 ,12, 5 2 ,11, 2 2 ,10, 1 2 ,

A set of points lies on a quadratic 
if the second differences of the y-values are all constant when the x-values

are uniformly spaced.
bx � c

y � ax2 �1xm , ym 21x2 , y2 2 , . . . ,1x1 , y1 2 ,

a.
b.
c. P1s 2 � s2 � 5s � 3

P1s 2 � s2 � 5s � 12
P1s 2 � s2 � 6s � 8 d.

e. P1s 2 � s3 � 3s2 � 7s � 5
P1s 2 � s3 � 4s2 � 12s

x y

0 1
1

1 2 3

2 5 5
2

3 10 7
2

4 17 9
2

5 26

2 � 3 � 1

�2y�y
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4.5 Finding Polynomial Patterns 293

In the problems at the end of this section we ask you to explore the significance of
this constant second difference.

EXAMPLE 1
Show that the points and lie on a parabola.
Then find the equation of the parabola by using regressions methods.

Solution We construct a table of second differences.

15, 52 214, 30 2 ,13, 14 2 ,12, 4 2 ,11, 0 2 ,10, 2 2 ,

1 2 3 4 5

10

0

20

30

40

50

60

x

y

FIGURE 4.46

Because the differences of the differences are constant, the points follow a quadratic pat-
tern of the form

where the coefficients a, b, and c must be determined.
Thinking of the points as data values and using the curve fitting routines of a calcu-

lator, we find that the quadratic function that best fits the data is

The corresponding coefficient of determination is which suggests a perfect fit to
the data. Figure 4.46 shows that the graph of this parabola apparently passes through all
six points. Test this result by substituting each value in the formula that we created.

R2 � 1,

y � 3x2 � 5x � 2.

y � ax2 � bx � c,

x y

0 2

1 0
4

2 4
10

6

3 14
16

6

4 30
22

6

5 52

6 � 4 � 1�2 2
�2 � 0 � 2

�2y�y

�

Alternatively, we could find the equation of the quadratic function that fits
these points by using algebraic methods, as we demonstrate in Example 2.

EXAMPLE 2
Find the equation of the parabola that passes through the points 

and using algebraic methods.15, 52 2 ,14, 30 2 ,13, 14 2 ,
12, 4 2 ,11, 0 2 ,10, 2 2 ,
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Solution As in Example 1, we have to find the three coefficients a, b, and c in the equa-
tion of the quadratic function Substituting the coordinates from the
first point and gives

so and therefore the equation of the parabola becomes Using
the second point we get

and so

(1)

Using the third point we get

or

Dividing both sides of this equation by 2 yields

(2)

Equations (1) and (2) are a system of two linear equations in two unknowns.
We can solve for a and b by using the usual algebraic methods. We subtract Equa-

tion (1) from Equation (2) to get

Substituting this value into Equation (1) gives

.

So, as before, the desired quadratic is

You can easily verify that the last three points satisfy this function.
Alternatively, we can solve this system of two equations in two unknowns by using

the matrix methods described briefly in Appendix C and also find that and
Thus the equation of the parabola again is 

�

We can extend these ideas to develop similar criteria for deciding when a set of
m points follow a polynomial pattern of degree n for
any n. For instance, we have the following criterion for n � 3.

1xm , ym 21x2 , y2 2 , . . . ,1x1 , y1 2 ,

y � 3x2 � 5x � 2.b � �5.
a � 3

y � 3x2 � 5x � 2.

3 � b � �2 or b � �5

a � 3.

2a � b � 1.

4a � 2b � 2.

 � 4a � 2b � 2,

 4 � a # 122 2 � b # 12 2 � 2

12, 4 2 ,

a � b � �2

0 � a # 112 2 � b # 11 2 � 2 � a � b � 2,

11, 0 2 ,
y � ax2 � bx � 2.c � 2

2 � a # 10 2 � b # 10 2 � c,

y � 2x � 0
y � ax2 � bx � c.

A set of m points lies on a cubic 
if the third differences (differences of the differences of

the differences) of the y-values are all constant when the x-values are uni-
formly spaced.

ax3 � bx2 � cx � d
y �1xm , ym 21x2 , y2 2 , . . . ,1x1 , y1 2 ,

Show that the points and 
lie on a cubic polynomial by creating a difference table that extends to the third dif-
ferences. ❐

13, 25 212, 8 2 ,11, 3 2 ,10, 4 2 ,1�1, 5 2 ,1�2, 0 2 ,1�3, �17 2 ,Think About This
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4.5 Finding Polynomial Patterns 295

Sums of Integers

We use the preceding ideas on differences and polynomial patterns to develop a
number of formulas involving sums of numbers that arise frequently in mathe-
matics. Among them are the sum of the first n integers

and the sum of the squares of the first n integers

Let’s begin with the expression for the sum of the integers. We let denote the
sum of the first n integers:

For instance, We want a formula for for any value of
n. We derive it in two ways.

The first is a particularly simple way that involves a nice trick. If

we can also write this sum in the reverse order as

We now add these two equations together term by term in the following way:

166666644666626664664666663

n times

Because there are n of these terms on the right side, we have

Dividing both sides by 2, we obtain

which gives the following general result.

Sn �
n1n � 1 2

2
 ,

2Sn � n1n � 1 2 .

 � 1n � 1 2 � 1n � 1 2  � 1n � 1 2 � . . .  � 1n � 1 2 � 1n � 1 2 .

Sn � Sn � 31 � n 4 � 32 � 1n � 1 2 4 � 33 � 1n � 2 2 4 � . . . � 3 1n � 1 2 � 2 4 � 3n � 1 4

Sn � n � 1n � 1 2 � 1n � 2 2 � . . . � 3 � 2 � 1.

Sn � 1 � 2 � 3 � . . . � 1n � 2 2 � 1n � 1 2 � n,

SnS4 � 1 � 2 � 3 � 4 � 10.

Sn � 1 � 2 � 3 � . . . � n.

Sn

12 � 22 � 32 � . . . � n2.

1 � 2 � 3 � . . . � n

The sum of the first n integers is

(3)1 � 2 � 3 � . . . � n �
n1n � 1 2

2
 .

EXAMPLE 3
Find the sum of the first 100 integers:

Solution Using Formula (3) with we get

�
1 � 2 � 3 � . . . � 100 �

1001101 2
2

� 5050.

n � 100,

1 � 2 � 3 � . . . � 100.
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296 CHAPTER 4 Extended Families of Functions

We can also write Formula (3) in summation notation (see Appendix A3):

Alternatively, we can derive this result by using either the ideas on fitting func-
tions to data or algebraic methods, as shown in Example 4. The advantage of deriv-
ing this formula in other ways is that it demonstrates techniques that can be applied
to more complicated cases for which the trick we used previously doesn’t work.

EXAMPLE 4
Derive the formula for the sum of the first n integers by using (a) curve fitting methods
and (b) algebraic methods.

Solution We again write the sum of the first n integers as 
Thus the sum of the first integer is the sum of the first two integers is

the sum of the first three integers is and when
we continue and so on. If we form a table of second differ-
ences with these entries, we get the following.

S6 � 21,S5 � 15,S4 � 10,
S3 � 1 � 2 � 3 � 6,S2 � 1 � 2 � 3;

S1 � 1;
Sn � 1 � 2 � 3 � . . . � n.

a
n

k�1

 k � 1 � 2 � 3 � . . . � n �  
n1n � 1 2

2
 .

The second differences are all constant, so the desired pattern is a quadratic func-
tion of n. Thus where a, b, and c are constants that we must now
determine.

a. Using the regression features of a calculator, we find that the quadratic function that
best fits these points is

as before. All the points lie on this curve, as we can verify by substituting the coordi-
nates of the points into the equation.

b. Using the point in the quadratic function we get

and so

a � b � c � 1.

S1 � 1 � a # 112 2 � b # 11 2 � c,

Sn � an2 � bn � c,S1 � 1n � 1,

 �
1

2
 n1n � 1 2 ,

 �
1

2
 n2 �

1

2
 n

 Sn � 0.5n2 � 0.5n � 0

Sn � an2 � bn � c,

2Sn

n

1 1
2

2 3
3

3 6
4

1

4 10
5

1

5 15
6

1

6 21

1 � 3 � 2

�2Sn�SnSn
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When we have so that

and hence

Similarly, when and we have

so that

We therefore have a system of three linear equations in three unknowns:

Using the matrix techniques from Appendix C, we find that

which is the same set of coefficients we found in part (a).

�

There is one difficulty with both derivations in Example 3. We used both meth-
ods to derive a formula for the sum of the first n integers, which is supposed to be true
for any n. But, in fact, we based both derivations on just the first six values that we cal-
culated for which we showed followed a quadratic pattern by looking
at a table of second differences. The catch is that we can’t know for sure, just by look-
ing at examples, that all subsequent values for continue to follow a quadratic pat-
tern. So the “proof” really isn’t legitimate unless we can demonstrate that it applies to
every value of n, not just the first six. We do so in Example 5.

EXAMPLE 5
Show that all the values for for all values of n, fall in a
quadratic pattern.

Solution To show that all values of fall in a quadratic pattern, we must demonstrate
that the second differences are always constant for any value of n. Let’s consider any
value of n, so that the sum of the first n integers is

If we take the next integer, and form the sum of the first integers, we get

The difference between and is

because all other terms cancel.
Similarly, the sum of the first integers is

Sn�2 � 11 � 2 � . . . � n 2 � 1n � 1 2 � 1n � 2 2 .

n � 2


Sn � Sn�1 � Sn � n � 1,

Sn�1Sn

Sn�1 � 11 � 2 � . . . � n 2 � 1n � 1 2 .

n � 1n � 1,

Sn � 1 � 2 � . . . � n.

Sn

Sn � 1 � 2 � 3 � . . . � n,

Sn

S6 ,S2 , . . . ,S1 ,

a �
1

2
  ,    b �

1

2
  , and c � 0,

 9a � 3b � c � 6.

 4a � 2b � c � 3;

 a � b � c � 1;

9a � 3b � c � 6.

S3 � 6 � a # 132 2 � b # 13 2 � c,

S3 � 6,n � 3

4a � 2b � c � 3.

S2 � 3 � a # 122 2 � b # 12 2 � c,

S2 � 3n � 2,
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The difference between this total and is

because, again, all other terms cancel. As a result, the second difference, or difference of
the differences, is just

for any value of n. Therefore all values of have a constant second difference and con-
sequently, no matter what value of n we select, the sum of all the differences must follow
a quadratic pattern.

�

Sums of Squares of Integers

We now find a formula for the sum of the first n squares,

We have

and so on. For simplicity, we also use the sum of the squares of the first zero terms,
Arranging these values in a table, we obtain the following.S0 � 02 � 0.

S4 � 30,    S5 � 55,  and  S6 � 91,

S1 � 1,   S2 � 12 � 22 � 5,   S3 � 12 � 22 � 32 � 14,

Sn � 12 � 22 � 32 � 42 � . . . � n2.

Sn


Sn�1 � 
Sn � 1n � 2 2 � 1n � 1 2 � 1,

Sn�2 � Sn �1 � 
Sn�1 � n � 2,

Sn�1

The third differences are all constant, so these data values follow a cubic
pattern; that is, the formula for the sum of the squares of the first n integers is a
cubic function

Using polynomial regression, we find the cubic polynomial that fits the points
and has coefficients 

(or ), (or ) and 
which essentially is 0. Therefore the cubic

function that fits the data is

Sn � a
1

3
bn3 � a

1

2
bn2 � a

1

6
bn � 0.

�3.5 � 10�12 � �0.0000000000035,
d � �3.5E 1�12 2  �1

6c � 0.16666667b � 0.5 � 1
2 ,1

30.33333333
a �16, 91 215, 55 2 ,14, 30 2 ,13, 14 2 ,12, 5 2 ,11, 1 2 ,10, 0 2 ,

Sn � an3 � bn2 � cn � d.


3Sn

n

0 0

1 1
4

2 5
9

5
2

3 14
16

7
2

4 30
25

9
2

5 55
36

11

6 91

2 � 5 � 3
3 � 4 � 1

1 � 1 � 0

�3Sn�2Sn�SnSn
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4.5 Finding Polynomial Patterns 299

The sum of the squares of the first n integers is

(4)a
n

k�1

 k2 � 12 � 22 � 32 � . . . � n2 �
n1n � 1 2 12n � 1 2

6
 .

We factor out the common factors n and and then factor the resulting quad-
ratic to get

which is more commonly written as

Alternatively, we could solve for the coefficients of the cubic polynomial
algebraically.

Using and 
Therefore we have

Further

when and 

when and 

when and 

These results give a system of three equations in the three unknowns a, b, and c; we
have already determined that Using matrix methods to solve this system of
equations, we again get and 

In general, we have the following formula.
c � 1

6 .b � 1
2 ,a � 1

3 ,
d � 0.

S3 � 14:     27a �  9b �  3c � 14n � 3

S2 � 5:     8a �  4b �  2c � 5n � 2

S1 � 1:     a �  b �  c � 1n � 1

Sn � an3 � bn2 � cn.

S0 � 0, we get 0 � d.n � 0
Sn � an3 � bn2 � cn � d

Sn �
n1n � 1 2 12n � 1 2

6
 .

 � a
1

6
bn12n � 1 2 1n � 1 2 ,

 � a
1

6
bn 32n2 � 3n � 1 4

 Sn � n c a
1

3
bn2 � a

1

2
bn � a

1

6
b d

1
6

EXAMPLE 6
Find the sum of the squares of the first 100 integers:

Solution Using Formula (4) with we get

�

Note that, although Formula (4) is true for all values of n, we have only estab-
lished it for 1, . . . , 6 by using both of these approaches. As with the sum of
the first n integers, we must prove that the sum of the squares of the first n integers
follows a cubic pattern for every possible value of n. We do so in Example 7.

n � 0,

12 � 22 � . . . � 1002 �
1001101 2 1201 2

6
� 338,350.

n � 100,

12 � 22 � . . . � 1002.
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EXAMPLE 7
Prove that the sum of the squares of the first n integers, for any n, follows a cubic pattern.

Solution To do so, we have to show that the third differences of are all constant, for
any value of n. We write

so that

We begin by forming the first differences of each successive pair. In each case, all terms
but one cancel, leaving us with

Each of these first differences is a quadratic function of n. We now form the second dif-
ferences by taking the difference of each successive pair of first differences:

Finally, we find the third differences by forming the difference between these last two ex-
pressions and get

which is constant for all values of n. That is, the sum of the squares of the first n integers
follows a cubic pattern for every value of n.

�

EXAMPLE 8
When cannonballs are stacked in a pyramidal pile, as shown in the accompanying figure,
they are organized from the top layer down as follows: A single ball is at the top of the
pile; four balls are in the second layer, arranged in a square to support the single ball on
top; nine balls are in the third layer, arranged in a square of size 3 by 3 that supports the
second layer; and so on. How many cannonballs are in a pile that is 10 layers high?

Solution The number of cannonballs is

We can evaluate this total using Formula (4) for the sum of the squares of the first n in-
tegers with Thus

�
 � 385 cannonballs.

 �
10111 2 121 2

6

 12 � 22 � 32 � . . . � 102 �
10110 � 1 2 32110 2 � 1 4

6

n � 10.

12 � 22 � 32 � . . . � 102.


2Sn�1 � 
2Sn � 
3Sn � 12n � 5 2 � 12n � 3 2 � 2,

 
Sn�2 � 
Sn�1 � 
2 Sn�1 �  1n
2 � 6n � 9 2 � 1n2 � 4n � 4 2 � 2n � 5.

 
Sn�1 � 
Sn � 
2Sn � 1n2 � 4n � 4 2 � 1n2 � 2n � 1 2 � 2n � 3;

 Sn�3 � Sn�2 � 
Sn�2 � 1n � 3 2 2 � n2 � 6n � 9.

 Sn�2 � Sn�1 � 
Sn�1 � 1n � 2 2 2 � n2 � 4n � 4;

 Sn�1 � Sn � 
Sn � 1n � 1 2 2 � n2 � 2n � 1;

 Sn�3 � 12 � 22 � . . . � n2 � 1n � 1 2 2 � 1n � 2 2 2 � 1n � 3 2 2.
 Sn�2 � 12 � 22 � . . . � n2 � 1n � 1 2 2 � 1n � 2 2 2;
 Sn�1 � 12 � 22 � . . . � n2 � 1n � 1 2 2;

Sn � 12 � 22 � . . . � n2

Sn
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4.5 Finding Polynomial Patterns 301

Example 9 illustrates some additional applications of these ideas to find the
total for a quantity when the individual amounts are known. In it we use the fol-
lowing basic properties of sums of numbers:

(5)

and

for any constant m. (6)

We ask you to prove these two results in the problems at the end of this section.

EXAMPLE 9
A study of the financial records of a company finds that its monthly revenues, in thou-
sands of dollars, are modeled by the function where x is
the number of months since the start of the study and Find the total revenue for
this company over its first 10 years of operation.

Solution The 10-year period is equivalent to 120 months. We need to add the rev-
enues in month 1, in month 2, in month 3, . . . , in month 120.
Doing so, we get

where the variable k takes on all values between 1 and 120. Using Property (5) of sums,
we simplify the preceding equation and get

Using Property (6), we get

The first term involves the sum of the squares of the first 120 integers, so

The second term involves the sum of the first 120 integers, so

The third term involves the sum of 120 ones, so

Therefore the total revenue for this company over the 10-year period is

thousand dollars, or about $4.568 million.

�

R � 0.0011583,220 2 � 0.0217260 2 � 321120 2 � 4568.42

a
120

k�1

 1 � 120 . 11 2 � 120.

a
120

k�1

 k �
1120 2 1121 2

2
� 7260.

a
120

k�1

 k2 �
1120 2 1120 � 1 2 12 . 120 � 1 2

6
� 583,220.

R � 0.001a
120

k�1

 k2 � 0.02a
120

k�1

 k � 32a
120

k�1

 1.

R � a
120

k�1

 0.001k2 � a
120

k�1

 0.02k � a
120

k�1

 32,

R � R11 2 � R12 2 � . . . � R1120 2 � a
120

k�1

 10.001k2 � 0.02k � 32 2 ,

R1120 2R13 2R12 2R11 2

x  1.
R1x 2 � 0.001x2 � 0.02x � 32,

a
n

k�1

 1m . ak 2 � m . a
n

k�1

 ak ,  

a
n

k�1

 1ak � bk 2 � a
n

k�1

 ak � a
n

k�1

 bk
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x

0 0 1 1 3

1 6 0 1

2 2 13 5 3

3 12 22 22 9

4 28 33 57 19

5 50 46 116 33

�2

k(x)h(x)g(x)f (x)

x 0 1 2 3 4 5 6 7

y 40 34 24 22 40 90 184 344

15′

4200′ 200′

546′

Problems

1. In Examples 1 and 2, we found the parabola that
passes through the points 

and Suppose now that the
points are and

instead.

a. Show that these points do not lie on a parabola.
b. Attempt to repeat the procedure used in Exam-

ple 2 to see what goes wrong.

2. Determine which sets of values come from a quad-
ratic function and which come from a cubic func-
tion. For those that come from a quadratic function,
determine the equation of the quadratic.

15, 52 2
14, 30 2 ,13, 15 2 ,12, 4 2 ,11, 0 2 ,10, 2 2 ,

15, 52 2 .14, 30 2 ,13, 14 2 ,
12, 4 2 ,11, 0 2 ,10, 2 2 ,

3. The following measurements were taken on a quan-
tity that follows a cubic pattern. However, one of
the values was recorded in error. Find the incorrect
entry and correct it. (Hint: It isn’t necessary to actu-
ally determine the formula for the cubic.)

a. Find a formula for the terms in the third diago-
nal: 1, 3, 6, 10, 15, . . . , in terms of the row num-
ber n.

b. Find a formula for the terms in the fourth diago-
nal 1, 4, 10, 20, . . . , in terms of the row number n.

5. Construct the quadratic polynomial that passes
through the points and Use it
to estimate the value of the underlying function
when and when 

6. The main support cable of a suspension bridge is a
parabola. For the Golden Gate bridge, suppose that
the cable’s lowest point is 15 feet above the roadway.
Use the dimensions shown in the accompanying
figure to find an equation of the cable for the Gold-
en Gate bridge.

x � 3.x � 0.5

12, 9 2 .11, 4 2 ,10, 1 2 ,

4. Consider the array of numbers known as Pascal’s tri-
angle in which each row begins and ends with 1 and
each intermediate entry is simply the sum of the two
numbers diagonally above it in the previous row.

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

The rows are numbered 2, . . . The second di-
agonal consists of the entries 1, 2, 3, 4, 5, and 6, . . .

n � 1,

7. Find (a) the sum of the first 25 integers, (b) the sum
of the first 100 integers, and (c) the sum of the first
1000 integers.

8. Find (a) the sum of the squares of the first 25 integers
and (b) the sum of the squares of the first 50 integers.

9. Suppose that the produce manager in a supermar-
ket receives a delivery of 1000 large grapefruit,
which he wants to display in a pyramid with a
square base. How many layers are needed?

10. a. Find the sum of the integers from 83 through
225, inclusive.

b. Find the sum of the squares of these integers.

11. The annual rainfall R, in inches, in a particular region
in year t since the start of the last century can be mod-
eled by the formula 
Find the total rainfall from 1900 (when )
through 2000 in that region.

12. Cannonballs are sometimes stacked in rectangular
piles. The accompanying figure shows the fourth
layer of a stack of n rectangular layers.

a. Suppose that such a stack ends with a single row
of two balls at the top. Devise a formula in sum-

t � 0
R1t 2 � �0.02t2 � 1.8t � 42.
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4.5 Finding Polynomial Patterns 303

Fourth layer

mation notation for the number of balls in a stack
n layers high.

b. Use the properties of summations to expand the
formula you found in part (a).

c. Suppose that a stack of cannonballs ends with a
single row of three balls as the top layer. Devise a
formula for the number of balls in a stack n lay-
ers high.

d. Use the summation formulas from parts (a) and
(c) to predict the result if the top layer consists of
a single row of four balls.

13. a. Consider the function Construct a
table of values for the function if 0,
1, 2, 3 and extend it to a table of differences until
you can construct a formula for for this
function.

b. Repeat part (a) for the function to de-
vise a formula for 

c. Repeat part (a) for the function to de-
vise a formula for 

d. Based on your results in parts (a)–(c), predict a
formula for when 

14. For the sequence of numbers . . . ,
show that

a.
b. for any n.

15. Suppose that a set of data values 
. . . has uniformly spaced x-values and

constant second differences so that the
points follow a quadratic pattern 
Use the result of Problem 14 to show that the
leading coefficient is

(Hint: Write and and
use the first three points to construct a system of
linear equations in a, b, and c.)

16. Because the sum of the first n integers follows a
quadratic pattern and the sum of the squares of the
first n integers follows a cubic pattern, you might

x2 � x0 � 2
xx1 � x0 � 
x

a �
1

2
 


2y

1
x 2 2
 .

y � ax2 � bx � c.

2y � k

1
x 21x2 , y2 2 ,
1x1 , y1 2 ,1x0 , y0 2 ,


2yn � yn�2 � 2yn�1 � yn ,

2y0 � y2 � 2y1 � y0 .

yn�2 , . . . 6,yn�1 ,
yn ,y2 ,y1 ,5  y0 ,

y � ax5.
5y


4y.
y � ax4


3y.
y � ax3


2y

�1,x � �2,
y � ax2.

conjecture that the sum of the cubes of the first n
integers

follows a quartic polynomial pattern.

a. Calculate values for for 1, 2, . . . , 7.
b. Use a table of differences to show that these val-

ues follow a quartic pattern.
c. Find a formula for the sum of the cubes of the

first n integers.

17. Find the sum of the cubes of the first 25 integers.

18. By writing out

show that

and

for any constant m.

19. A Pythagorean triple is a set of three integers a, b, and
c that satisfy the Pythagorean theorem 
and hence represent the sides of a right triangle.
The following is a list of the first five Pythagorean
triples 1an , bn , cn 2 .

a2 � b2 � c2

a
n

k�1

 1m . ak 2 � ma
n

k�1

 ak ,   

a
n

k�1

 1ak � bk 2 � a
n

k�1

 ak � a
n

k�1

 bk

a
n

k�1

 bk � b1 � b2 � . . . � bn ,  and a
n

k�1

 1m . ak 2 ,

a
n

k�1

 ak � a1 � a2 � . . . � an ,

n � 0,Sn

Sn � a
n

k�1

 k3 � 13 � 23 � 33 � . . . � n3

(There are infinitely many Pythagorean triples.) No-
tice that, for any n, and 

a. Construct a table of differences to determine the
pattern in the terms.

b. Find a formula for for each value of n, based
on the pattern from part (a).

c. Show that the resulting triple forms a
Pythagorean triple for any integer n.

d. What is the next Pythagorean triple following
the ones shown in the table?

1an , bn , cn 2 ,

bn 

bn

cn � bn � 1.an � 2n � 1

n

1 3 4 5

2 5 12 13

3 7 24 25

4 9 40 41

5 11 60 61

cnbnan
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x

y

y = 2–x

y = x2

FIGURE 4.47

y = x2 + 2–x

x

y

FIGURE 4.48

Building New Functions from Old: 
Operations on Functions

The functions that we’ve considered so far, such as and
can be thought of as building blocks from which we can construct other,

more complicated functions. In a simple case, we can take the power functions
and and the constants 3, 4, and to create the quadratic function

as a linear combination of power functions. In fact, we can
think of any polynomial as a linear combination of power functions. In this sec-
tion, we investigate how to generate larger classes of functions by applying simple
operations (e.g., addition, subtraction, multiplication, and division) to the basic
families of functions that we already have discussed.

Sums and Differences

Let’s begin with the sum of two functions. The function

is the sum of the two functions and Their individual
graphs are shown in Figure 4.47. If we “pile” one set of y-values on top of the other
and add, we get the graph of the sum as shown in Figure 4.48. You can verify that
this result is indeed the case by plotting the sum function on your function grapher.

y � 2�x � 1>2x � A12B
x.y � x2

f 1x 2 � x2 � 2�x

f 1x 2 � 3x2 � 4x � 5
�5y � x2y � x

y � log x,
y � 10x,y � x5,y � 1x,

4.6

Note the behavior of the sum Because decays rap-
idly as x increases, its contribution becomes less and less significant, and the quadrat-
ic term eventually dominates in the sum when x is large. As a result, toward the right,
the graph quickly becomes indistinguishable from a parabola. For negative values of
x, both functions become large, but grows much faster than does and so the ex-
ponential term dominates on the left.

In general, we write

for the sum of two functions and That is, for each value of x, we add the
values of and to produce the value of For instance, if
and then S13 2 � f 13 2 � g 13 2 � 15 � 4 � 19.g 13 2 � 4,

f 13 2 � 15S1x 2 .g 1x 2f 1x 2
g 1x 2 .f 1x 2

S1x 2 � f 1x 2 � g 1x 2

x22�x

y � 2�x � A12B
xy � x2 � 2�x.
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4.6 Building New Functions from Old: Operations on Functions 305

Similarly, we construct the difference of two functions by taking the difference
between their values for each possible value of x. In general, we write

for the difference of two functions. Thus, if and then
Graphically, if we subtract from 

and the difference is just the difference in height between the
two curves for each value of x.

Products of Functions

For the product of the two functions and we use the same
interpretation as with sums and differences of functions. Thus the product of the
two functions

means that, for each permissible value of x, we multiply the corresponding func-
tion values. So, if and then 

What does the graph of the product function look like? Unlike the sum and
difference of two functions, there is rarely a direct graphical interpretation of the
product of two functions. However, you can produce the graph of the product of
two functions on your function grapher and then analyze the behavior of that
graph. For instance, consider

We know that, for large positive x, grows ever larger and approach-
es zero. We also know that an exponential function with a positive exponent grows
much faster than a power function does. Similarly, an exponential function with a
negative exponent decays much faster than a power function with a negative
power. Together, these facts indicate that, in the product the exponential
term drives the product toward zero as x increases. For values of both func-
tions grow without bound, so their product becomes infinitely large. By using your
function grapher, you can obtain the result shown in Figure 4.49.

Let’s look at a real-life example of a product of two functions. Lyme disease is
caused by a bacterial infection transmitted by blood-sucking ticks. When a person is
infected, the body produces antibodies to fight the bacteria. Figure 4.50 shows the
level of concentration of the antibody in the bloodstream as a function of the num-
ber of weeks since the first infection. Note that the pattern is remarkably similar to

x � 0,
x2 . 2�x,

y � 2�xy � x2

P1x 2 � f 1x 2 . g 1x 2 � x2 . 2�x.

P13 2 � f 13 2 . g 13 2 � 15 . 4 � 60.g 13 2 � 4,f 13 2 � 15

P1x 2 � f 1x 2 . g 1x 2

g 1x 2 � 2�x,f 1x 2 � x2

D1x 2f 1x 2 	 g 1x 2 ,
f 1x 2g 1x 2D13 2 � f 13 2 � g 13 2 � 15 � 4 � 11.

g 13 2 � 4,f 13 2 � 15

D1x 2 � f 1x 2 � g 1x 2

x

y

y = x2 . 2–x

FIGURE 4.49

A
nt

ib
od

y 
le

ve
l

Weeks since infection
x

y

FIGURE 4.50
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306 CHAPTER 4 Extended Families of Functions

the behavior of the function for This pattern suggests that
such functions, known as surge functions, might be appropriate as mathematical
models to describe the antibody level, both for Lyme disease and possibly other in-
fections. We explore some applications of surge functions in Section 4.9.

Quotient of Functions

When we consider the quotient of two functions

there is a complication that we must take into account. The quotient is undefined
at any point where the denominator is zero, and typically a vertical asymptote
occurs there. We illustrate this behavior in Example 1.

EXAMPLE 1
Sketch the graph of the function

Solution We begin analyzing the behavior of this function by looking at what happens
when the denominator is zero. That occurs when and

so the quotient is not defined there. When you take values of x very close to
either of these two points, the corresponding values for the quotient become ex-
tremely large, positively or negatively. To see this result, first consider points near 
Suppose that x is slightly larger than 1. So

if then 

if then 

if then 

Hence, as x approaches 1 from the right (or from above) through values of x that are
slightly larger than 1, y becomes ever larger and approaches 

Now suppose that x is slightly smaller than 1. So

if then 

if then 

if then 

Hence, as x approaches 1 from the left (or from below) through values of x that are
slightly smaller than 1, y approaches 

By a similar analysis around the point you can verify that, as x approaches
from the right, the function approaches whereas, if x approaches from the

left, the function approaches Therefore it is not surprising that this quotient func-
tion has vertical asymptotes at and 

We next analyze the end behavior—what happens to this function as x becomes large,
both positively and negatively. Suppose, for instance, that The value of the
function then is

Q11000 2 �
1,000,001

999,999
 � 1.000002,

x � 1000.

x � �1.x � 1
��.

�1��,�1
x � �1,

��.

y � Q10.999999 2 � �999,999.5.x � 0.999999,

y � Q10.9999 2 � �9999.5;x � 0.9999,

y � Q10.999 2 � �999.5;x � 0.999,

�.

y � Q11.000001 2 � 1,000,000.5.x � 1.000001,

y � Q11.0001 2 � 10000.5;x � 1.0001,

y � Q11.001 2 � 1000.5;x � 1.001,

x � 1.
Q1x 2

Q1x 2x � �1,
x � 1x2 � 1 � 1x � 1 2 1x � 1 2

Q1x 2 �
x2 � 1

x2 � 1
 .

g 1x 2

Q1x 2 �
f 1x 2
g 1x 2

 ,

x 	 0.f 1x 2 � x2 . 2�x
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4.6 Building New Functions from Old: Operations on Functions 307

which is extremely close to 1. Actually, adding 1 to in the numerator and subtracting
1 from in the denominator really has little effect on the value of the function when x
is 1000. If x were even larger—say, 1,000,000—adding or subtracting 1 from would
have a negligible effect. Thus for large values of x, the numerator is dominated by the 
term and the denominator is dominated by the term, so the quotient behaves like

when x is large. As a result, this quotient function gets closer and closer to a height of 1,
so that it has a horizontal asymptote of as x approaches 

What happens as x approaches Again, for large negative values of x, the 1 in the
numerator and the in the denominator are negligible and again dominates both
the numerator and the denominator. Thus there is also a horizontal asymptote of
as x approaches 

We next look for the points where the curve crosses the two axes. It crosses the y-axis
when so Where does the curve cross the x-axis? For that
to happen, y must equal 0, so the numerator has to be 0. Because the numerator for 

is never 0 for real values of x, the quotient cannot be 0 anywhere. Hence the curve
never crosses the x-axis. The complete graph of this function is shown in Figure 4.51.
x2 � 1,

Q1x 2 ,
Q10 2 � 1> 1�1 2 � �1.x � 0,

��.
y � 1

x2�1
��?

�.y � 1

Q1x 2 �
x2

x2 � 1

x2
x2

x2
x2

x2

y = x2 + 1
x2 − 1

–1 1
x

y

FIGURE 4.51

�

Rational Functions

Example 1 illustrates most of the ideas involving the behavior of quotients of func-
tions in general and quotients of polynomials in particular. The quotient (or ratio)
of two polynomials is called a rational function. We assume that any common fac-
tors in the numerator and the denominator have been canceled and therefore that
the rational function is expressed in simplest form.

The following are some of the important facts about rational functions.

Behavior of Rational Functions 

� The zeros of the numerator correspond to zeros of the rational
function ; its graph crosses the x-axis at these points.R1x 2

P1x 2

R(x) � P(x)>Q(x)
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We illustrate these ideas in Examples 2 and 3.

EXAMPLE 2
Analyze the behavior of the rational function

Solution Here, has zeros when its numerator so that and
the graph crosses the x-axis at these two points. Also, the denominator is zero when

which creates a vertical asymptote there. Suppose that x approaches 2 from the
right (with values slightly larger than 2); for instance,

if then 

if then 

if then 

Thus, when x approaches 2 from the right, approaches Similarly, when x app-
roaches 2 from the left, approaches (try some values of x slightly less than 2—
say, or ).

You can locate the vertical asymptotes of a rational function by finding the roots of the
denominator, but you must check what happens on either side (in this case at 
and for example) to determine the sign of the function on each side of the verti-
cal asymptote. Doing so lets you decide whether the curve rises toward or drops toward

on each side of the vertical asymptote.
Next, consider the end behavior of For large values of x, the numerator is domi-

nated by the leading term and the denominator is dominated by the leading x term. As a
result, for large values of x, the quotient behaves like For instance,

if then 

if then 

if then 

The larger x is, the closer is to x and, for large positive values of x, the graph in-
creases toward 

Similarly, for large negative values, the quotient behaves like and
the graph tends toward ��.

y � x2>x � xR1x 2
��.

R1x 2

R11000 2 � 1002.003006.x � 1000,

R1100 2 � 102.0306;x � 100,

R110 2 � 12.375;x � 10,

y � R1x 2 � x2>x � x.
x2

R1x 2 .
��

��
x � 1.999,

x � 2.001

x � 1.9999x � 1.99
��R1x 2

��.R1x 2

y � R12.00001 2 � 300004.00001.x � 2.00001,

y � R12.001 2 � 3004.001;x � 2.001,

y � R12.01 2 � 304.01;x � 2.01,

x � 2,

x � � 1,x2 � 1 � 0,R1x 2

R1x 2 �
x2 � 1

x � 2
 .

� The zeros of the denominator correspond to the points where
the rational function is not defined; its graph usually has a verti-
cal asymptote at these points.

� The highest power term in the numerator dominates the numer-
ator for large values of x, either positive or negative.

� The highest power term in the denominator dominates the de-
nominator for large values of x, either positive or negative.

� For large values of x, either positive or negative, the rational function
behaves like the highest power term of the numerator divided by

the highest power term of the denominator. The result may be a hori-
zontal asymptote or the values may approach or as x increases ei-
ther positively or negatively.

���

R1x 2

Q1x 2

P1x 2

R1x 2
Q1x 2
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20
x

y

y = x2 − 1
x − 2

FIGURE 4.52

�

Graph both the original quotient function and the
limiting function in the same fairly large viewing window—say, from 
to 1000 for both x and y—on your function grapher. What do you observe? ❐

Getting all the important details on the behavior of a rational function from a
single view in your function grapher is often almost impossible. Try it for the func-
tion in Example 2 and see what types of information may be lost because of
the scale you use for the domain and range.

EXAMPLE 3
Analyze the behavior of the rational function

Solution Here, was formed by interchanging the numerator and denominator of
the rational function in Example 2, but the behavior of the two functions is quite
different.

Note that has only one zero at when the numerator is zero. It has two ver-
tical asymptotes, one at and the other at when the denominator is zero.
Let’s see what happens on either side of the asymptotes. When say, we have

so we conclude that the curve drops toward as x approaches 1
from the right. Similarly, when we have and the curve
rises toward as x approaches 1 from the left. Similarly, when we have

and the curve drops toward as x approaches from the
left. Also, when and the curve rises toward as x
approaches from the right. Use your calculator to check these conclusions numeri-
cally with other values of x on either side of and on either side of

Further, the numerator is dominated by x and the denominator is dominated by so
for large values of x, the rational function behaves like Therefore, for
large positive values of x, the function is positive and decays toward the x-axis as a hori-
zontal asymptote. Similarly, for large negative values of x, the function is negative and rises
toward the x-axis as a horizontal asymptote.

y � x>x2 � 1>x.
x2,

x � �1.x � 1
�1

��S1�0.999 2 � 1500.25,x � �0.999,
�1��S1�1.001 2 � �1499.75

x � �1.001,��
S10.999 2 � 500.75x � 0.999,

��S11.001 2 � �499.25,
x � 1.001,

x � �1x � 1
x � 2S1x 2

R1x 2
S1x 2

S1x 2 �
x � 2

x2 � 1
 .

R1x 2

�1000y � x
R1x 2 � 1x2 � 1 2 > 1x � 2 2Think About This

Figure 4.52 displays all this behavior in the complete graph of R.
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y = x − 2
x2 − 1

–1 1 2
x

y

FIGURE 4.53

r

240 – r

FIGURE 4.54

The complete graph of is displayed in Figure 4.53.S1x 2

�

As before, though, we urge you to examine the behavior carefully with your
function grapher to see how viewing the overall characteristics depends on the
window you use.

Examine the graphs of the quotient function and the limiting function
in the same large viewing window. What do you observe? ❐

We next consider a real-world application that involves rational functions.

EXAMPLE 4
According to the law of universal gravitation, the gravitational force between any two
objects of mass and is

where r is the distance between the objects and G is the gravitational constant. Envision
a spacecraft traveling from the Earth to the moon, a distance of about 240,000 miles. Be-
cause the mass of the Earth is roughly 81 times that of the moon, the Earth’s gravita-
tional effect on the spacecraft will be greater than that of the moon’s until the spacecraft
is quite close to the moon, when it’s gravity becomes dominant. Determine the distance
from the Earth when the two gravitational forces exactly balance each other.

Solution We begin with a sketch of the situation, as shown in Figure 4.54, where r rep-
resents the distance, in thousands of miles, from the Earth to the spacecraft. Hence

F �
Gm1m2

r2  ,

m2m1

y � 1>x
S1x 2Think About This
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4.6 Building New Functions from Old: Operations on Functions 311

is the distance from the moon to the spacecraft. Let be the mass of the space-
craft, be the mass of the Earth, and be the mass of the moon. The Earth’s gravita-
tional force on the spacecraft is

and the moon’s gravitational force on the spacecraft is

Both and are rational functions of r. Because the Earth is 81 times as massive as the
moon, We rewrite as

The two gravitational forces are equal when

Dividing both sides of this equation by (because none of these quantities are zero)
gives

Cross-multiplying yields

We expand the expression on the right by squaring the binomial term and obtain

Collecting like terms and simplifying, we have the quadratic equation

Dividing through by the common factor 80, we get

Using the quadratic formula, we find that the roots of this quadratic equation are
and These answers are distances in thousands of miles from the Earth.

Because the moon is about 240 thousand miles from the Earth, the only reasonable an-
swer is the first. Therefore the two forces balance at a point about 216 thousand miles
from the Earth and about 24,000 miles this side of the moon. The second solution,
270,000 miles from the Earth, corresponds to a point beyond the moon where the effects
of the moon’s gravity and the Earth’s gravity are numerically the same, though both
forces are in the same direction.

�

A Function of a Function

There is yet another way in which we can construct new functions from simpler
functions. In Example 5 of Section 2.2, we showed that the rate R at which a snow
tree cricket chirps is a function of the temperature T, and we found a mathematical

r � 270.r � 216

r2 � 486r � 58,320 � 0.

80r2 � 38,880r � 4,665,600 � 0.

r2 � 8112402 � 480r � r2 2 � 811240 2 2 � 811480 2r � 81r2.

r2 � 811240 � r 2 2.

81

r2 �
1

1240 � r 2 2
 .

Gm0m2

81Gm0m2

r2 �
Gm0m2

1240 � r 2 2
 .

Fe �
Gm0181m2 2

r2  .

Fem1 � 81m2 .
FmFe

Fm �
Gm0m2

1240 � r 2 2
 .

Fm

Fe �
Gm0m1

r2  ,

Fe 

m2m1

m0240 � r

Gord.3896.04.pgs  4/24/03  9:57 AM  Page 311



312 CHAPTER 4 Extended Families of Functions

x u = G(x)
y = F(u)
   = F(G(x))

G F

FIGURE 4.55

model for this relationship as the function However, the air
temperature doesn’t remain constant, but actually varies with the time of the day, so
the temperature T is really a function of time t: As a result, the chirp rate,
though a function of the temperature T, is actually a function of time t. That is, we
have two functions:

If we substitute into the expression we get

We call this type of situation a function of a function or a composite function.
Let’s look at this notion from a different perspective. Consider the function

To see what it means, suppose that Then

For 

To evaluate this function in each case, we actually performed two successive steps:
(1) for each value of x, we evaluated the expression and (2), we took the
square root of the result. The reason is that we are really working with two func-
tions successively: first the “inner” function and then the “outer” function

where The final function f is therefore a function of a function.
Let’s set up the mathematical framework for this concept. Suppose

that we let where Here, where in turn
Consequently,

Our original function f is the result of applying the functions G and F
successively. This composite function is sometimes written as 
and read “F of G”.

In general, for two functions F and G, the composite function is the
result of evaluating the two functions successively, as depicted in Figure 4.55. We
start with a value of x, which is carried into a value u by the first, or inner, function
G, which in turn is carried to a value y by the second, or outer, function F. For this
method to make sense mathematically, the domain of the outer function F must
include the range of the inner function G.

F1G1x 2 2

F � Gy � F1G1x 2 2

y � F1u 2 � F1G1x 2 2 � F1x3 � 1 2 � 2x3 � 1 .

u � G1x 2 � x3 � 1.
y � F1u 2 � 1u,u � G1x 2 .y � F1u 2 ,

u � x3 � 1.1u,
x3 � 1

x3 � 1;

f 12 2 � 223 � 1 � 29 � 3.

x � 2,

f 11 2 � 213 � 1 � 22 .

x � 1.f 1x 2 � 2x3 � 1 .

R � f 1T 2 � f 1g 1t 2 2 .

R � f 1T 2 ,T � g 1t 2

R � f 1T 2 � 4T � 160 and T � g 1t 2 .

T � g 1t 2 .

R � f 1T 2 � 4T � 160.

Using composite functions, we can construct many other types of functions by
using the basic functions as building blocks.
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4.6 Building New Functions from Old: Operations on Functions 313

EXAMPLE 5
Find two functions f and g so that 

Solution Think about how you would evaluate this function for any value of x—first,
triple the x value because of the 3x term and then take that power of 10. That is, the lin-
ear function 3x is used as the exponent for the exponential function with base 10. So the
first, or inner, function is followed by the second, or outer, function

The result gives as required.

�

EXAMPLE 6
Find two functions f and g so that 

Solution Here, the quadratic function is used as the argument of the log
function. So the first, or inner, function is the quadratic and the sec-
ond, or outer, function is the log function Using the same approach as
in Example 5, we get as required.

�

Are the same?

Is the order important in forming the composition of two functions? That is, is
the same as Again consider

where

If we interchange the order to form we get

which clearly is not the same as By substituting a couple of
values for x—say, or you can see that the results are numerically dif-
ferent. In general, except in rare cases,

However, if F and G are inverse functions, the equality does hold.

EXAMPLE 7
In Example 6 we chose and Find and

Solution We have

whereas

Clearly, they are very different functions.

�

g 1 f  1x 2 2 � g 1log x 2 � 1log x 2 2 � 5 log x � 2.

f 1g 1x 2 2 � f 1x2 � 5x � 2 2 � log 1x2 � 5x � 2 2 ,

g 1 f 1x 2 2 .
f 1g 1x 2 2g 1x 2 � x2 � 5x � 2.f 1x 2 � log x

G1F1x 2 2 � F1G1x 2 2 .

x � 2,x � 1
F1G1x 2 2 � 2x3 � 1.

G1F1x 2 2 � G12x 2 � 12x 2 3 � 1 � x3>2 � 1,

G1F1x 2 2 ,
u � G1x 2 � x3 � 1 and y � F1u 2 � 2u .

f 1x 2 � 2x3 � 1 � F1G 1x 2 2 � F � G 1x 2 ,

G � F ?F � G

F � G and G � F

f 1g 1x 2 2 � f 1x2 � 5x � 2 2 � log 1x2 � 5x � 2 2 ,
y � f 1x 2 � log x.

g 1x 2 � x2 � 5x � 2
x2 � 5x � 2

y � f 1g 1x 2 2 � log1x2 � 5x � 2 2 .

f 1g 1x 2 2 � f 13x 2 � 103x,y � f 1x 2 � 10x.
g 1x 2 � 3x

y � f 1g 1x 2 2 � 103x.
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Applications of Composite Functions

We next consider a real-world application of composite functions in Example 8.

EXAMPLE 8
When a kicker punts a football, it’s path can be modeled by the quadratic function

where the height y and the horizontal distance
downfield x from the point where the ball is kicked are measured in yards. Furthermore,
the horizontal distance x from the kicker is given by where t is measured
in seconds.

a. Find an equation giving the height of the football as a composite function of time t.

b. Determine the hang-time for the football—how long it remains in the air after being
punted.

Solution

a. The path of the ball is the parabola shown in Figure 4.56, where 
The graph shows that the ball carries somewhat more than 50 yards from

the point where it is kicked, which is usually about 10 yards behind the line of scrim-
mage. Using the formula for x as a function of t, we can form the
composite function giving the height y as a function of t:

Note that this is also a quadratic function of t with a negative leading coefficient.

 � �5.33t2 � 23t � 1.

 �
�144t2

27
� 23t � 1

 y � f 1x 2 � f 1g 1t 2 2 � �
112t 2 2

27
� 1.92112t 2 � 1

x � g 1t 2 � 12t

1.92x � 1.
y � f 1x 2 � �x2>27 �

x � g 1t 2 � 12t,

y � f 1x 2 � �x2>27 � 1.92x � 1,

b. The hang-time for the football is the value of t when the ball comes back to the ground.
It is the zero of the composite function, so we must solve the quadratic equation

Equivalently, if we multiply both sides by we get

Using either graphical methods or the quadratic formula, we find that 
(A second solution to the quadratic equation gives a negative value for

t, which makes no sense in this context.)

�

4.36 seconds.
t �

5.33t2 � 23t � 1 � 0.

�1,

�5.33t2 � 23t � 1 � 0.
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�

x

0 1 3

1 0 1

2 3 0

3 2 2

g(f (x))f (g(x))f (x)>g(x)f (x) # g(x)f (x) � g(x)g(x)f (x)

Solution The values of the functions for four specific values of x—namely, 1, 2,
and 3—are defined in the table. The first open column asks for the difference between
the two functions for each value of x. For instance, when the first entry for this
column is and so on down that column. The second open
column asks for the product of the two functions for each value of x. When we
get and so on down the column.

The third open column asks for the quotient of the two functions. When we
have and so on. However, because the quotient is not de-
fined when so we enter UNDEF in the corresponding position in the table.

The fourth and fifth open columns ask for values for the composite functions
and In the fourth column, the function g is applied first and then the

function f is applied. When we need to form To do so we evaluate
first and then take so the first entry in the fourth column

is 2. For the next entry, we start with and form Because we get
Similarly, we get the remaining two entries in this column.

To fill in the entries in the last column, we reverse the order of operations of the two
functions and apply first f, followed by g. Starting with we now need Be-
cause we have Similarly, when we need 
Because we have Incidentally, for each of the four values
of x,

We now have the completed table.
f 1g 1x 2 2 � 1g 1 f 1x 2 2 .

g 1 f  11 2 2 � g 10 2 � 3.f 11 2 � 0,
g 1 f  11 2 2 .x � 1,g 1 f  10 2 2 � g 11 2 � 1.f 10 2 � 1,

g 1 f  10 2 2 .x � 0,

f 1g 11 2 2 � f 11 2 � 0.
g 11 2 � 1,f 1g 11 2 2 .x � 1

f 1g 10 2 2 � f 13 2 � 2,g 10 2 � 3
f 1g 10 2 2 .x � 0,

g 1 f 1x 2 2 .f 1g 1x 2 2

x � 2,
g 12 2 � 0,f 10 2 >g 10 2 � 1>3 ,

x � 0,
f 10 2 . g 10 2 � 1 . 3 � 3,

x � 0,
f 10 2 � g 10 2 � 1 � 3 � �2,

x � 0,

x � 0,

x

0 1 3 3 2 1

1 0 1 0 0 0 3

2 3 0 3 0 UNDEF 1 2

3 2 2 0 4 1 3 0

�1

1
3�2

g(f (x))f (g(x))f (x)>g(x)f (x) # g(x)f (x) � g(x)g(x)f (x)

EXAMPLE 9
Two functions f and g are defined in the following table. Use the values given in the table
to complete it. (If any operations are not defined, write “UNDEF.”)
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316 CHAPTER 4 Extended Families of Functions

Problems

1. For and find

a. b.

c. d.

e. f.
g. h.
i. j.

k. l.

m. n.
o. p.

2. Repeat Problem 1 for and 

3. Repeat Problem 1 for and 

4. Two functions f and g are defined in the table at the
bottom. Use the values given to complete the table.
If any of the entries are not defined, write “UNDEF.”

5. The functions f and g have the values 
and

Which expressions, (a)–(g), are correct,
which are incorrect, and which, if any, are not
defined?

a. b.
c. d.
e. f.
g.

6. Two functions f and g are given in the accompany-
ing figure. The six graphs (a)–(f) represent f � g,

f 14 2 >g 14 2 � 5
f 14 2 . g 14 2 � 16f 14 2 � g 14 2 � 0
f 12 2 � g 16 2 � 8g 1g 16 2 2 � 8
f 1g 16 2 2 � 35f 16 2 � f 14 2 � 2

g 16 2 � 2.
g 14 2 � 4,g 12 2 � 8,f 16 2 � 35,20,f 14 2  �

f 12 2 � 10,

g 1x 2 � log x.f 1x 2 � 10x

g 1x 2 � 1x .f 1x 2�x2 � 4

g 1g 1x 2 2 .f 1 f 1x 2 2 .
g 1 f 1x 2 2 .f 1g 1x 2 2 .

f 1x 2
g 1x 2

 .f 1x 2 . g 1x 2 .

f 1x 2 � g 1x 2 .f 1x 2 � g 1x 2 .
g 1g 15 2 2 .f 1 f 15 2 2 .
g 1 f 15 2 2 .f 1g 15 2 2 .

f 15 2
g 15 2

 .f 15 2 . g 15 2 .

f 15 2 � g 15 2 .f 15 2 � g 15 2 .
g 1x 2 � 1

x  ,f 1x 2 � 3x � 4 and Decide which is
which and give reasons for your answers.

g> f .f >g,f . g,g � f ,f � g,

x

0 1 0

1 2 3

2 3 1

3 0 2

f �1(x)g(f (x))f (g(x))f (x) # g(x)g(x)> f (x)f (x)>g(x)f (x) � g(x)g(x)f (x)

1 2 3 4 5

–1

–0.5

–1.5

0.5

1

1.5

x

y

g(x)

f (x)

(a) (b)

1 2 3 4 5

–2
–1

1
2

x

y

1 2 3 4 5

–2
–1

1
2

x

y

(e) (f)

1 2 3 4 5

–2
–1

1
2

x

y

1 2 3 4 5

–10

10

x

y

5

–5

(c)

1 2 3 4 5

–2
–1

1
2

x

y

(d)

1 2 3 4 5

–10

10
5

–5

x

y

x

y

(a)

f

g

x

y

(b)

fg

7. For the pairs of functions f and g shown, sketch the
graph of the function y � f 1x 2 � g 1x 2 .

8. For the pairs of functions f and g shown, sketch the
graph of the function y � f 1x 2 � g 1x 2 .
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4.6 Building New Functions from Old: Operations on Functions 317

9. The graphs of three functions, (a)–(c), are shown in
the accompanying figure.

Sketch a rough graph of (i) (ii) log f, and (iii)
If any portion of a graph is not defined, mark it on
the x-axis.

10. For each function (a)–(d), sketch the graph of log f.
If any portion of a graph is not defined, mark it
along the x-axis.

f 2.2f,

12. Match each function with its graph.

a. b.

c. d.

e. f. y �
1x � 1 2 1x � 4 2

x2 � 4
y �

x3 � x

x2 � 4

y �
x2 � x � 6

x2 � 1
y �

9 � x2

x2 � 4

y �
x2 � 1

x2 � x � 6
y �

x2 � 1

x2 � x � 6

x

y

(a)

f

g

x

y

(b)

f g

11. Often in technical books and articles, graphs are
shown for log y as a function of x, as in the follow-
ing graphs. In each case, given the graph of log y as
a function of x, sketch the graph of y as a function
of x.

(a) (b)

x

y

x

y

(c)

x

y

(a) (b) (c)

x

y

x

y

x

y

(d)

x

y

(a) (b)

x

y

x

y

(c)

x

y
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(ii)

–2 1

2

4
x

y

(i)

–2 1–1 2
x

y

(iii)

–2

–1 1

3
x

y

(iv)

–2

–1 1

3
x

y

(v) (vi)

–2 3
x

y

–3 3
–2 2

x

y

318 CHAPTER 4 Extended Families of Functions

For Problems 15–18, determine functions F and G such that
There are different correct answers to this

question; however, do not use or 

15. 16.

17. 18.

19. The time t that a traffic light should remain yellow
depends on the speed limit s on the road. The func-
tion where t is measured in
seconds and s is the speed in feet per second, is used
to determine the length of the yellow cycle. Note that

a. How long is the yellow cycle if the posted speed
limit is 30 mph?

b. How long is the yellow cycle if the posted speed
limit is 50 mph?

c. What are reasonable values for the domain and
range of this function?

d. Suppose that the traffic department using this
formula wants to increase the length of the yel-
low cycle somewhat. Should it increase or de-
crease the values of each of the two parameters
20 and 70 to do so?

e. Rewrite the formula for t as a rational function
by combining all the terms over a common de-
nominator.

20. According to Einstein’s theory of relativity, the
mass M of an object increases as its speed increases
according to the formula

where is the mass of the object when it is at
rest and c is the speed of light (about
186,282 miles per second). Suppose that an object has
a rest mass of

a. Construct a table of values for the mass of the
object for each of the following speeds expressed
as a fraction of the speed of light: 0.5c,
0.9c, 0.95c, 0.99c, and 0.999c.

b. Sketch a graph showing the behavior of the mass
of an object as its speed approaches the speed of
light.

c. What is the mathematical significance of the
speed of light? What is the physical significance
of the speed of light in the context of the speeds
of moving objects?

21. Some physicists hypothesize the existence of parti-
cles called tachyons that exist only at speeds greater

v � 0,

M0 � 1 unit.

1v � 0 2
M0

M � f 1v 2 �
M021 � 1v2>c2 2

� M0 a1 �
v2

c2b
�1>2

,

30 mph � 44 ft>sec.

t � 1 � s>20 � 70>s,

h1x 2 � 3 � log xh1x 2 � log1x � 3 2
h1x 2 � 1x � 5 2 4h1x 2 � x4 � 5

G1x 2 � x.F1x 2 � x
h1x 2 � F1G1x 2 2 .

13. For the two functions f and g that are defined by the
graphs shown, find (a) (b)
(c) and (d) g 1 f 1�1 2 2 .f 1g 1�1 2 2 ;

g 1 f 11 2 2 ;f 1g 11 2 2 ;

g(x)

–3 –2 –1 1 2 3

–3

–2

–1

1

2

3

y

f (x)

–3 –1 1 2 3

–3

–2

–1

1

3

x

y

14. For the functions f and g that are defined by the
graphs in Problem 13, sketch the graph of
(a) and (b) g 1 f 1x 2 2 .f 1g 1x 2 2
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4.6 Building New Functions from Old: Operations on Functions 319

than that of light. The slower that a tachyon moves,
the greater is its mass; the speed of light is a lower
limit on the possible speed of a tachyon. Sketch a
graph of the mass as a function of speed for all pos-
sible values of Indicate which region corre-
sponds to normal particles and which to tachyons.

22. According to Newton’s laws of motion, the speed of
an object can be changed only by applying a force.
Also, the greater the mass of an object, the more
force is needed to accelerate it to a given velocity in
a fixed amount of time. Suppose that an object is to
be accelerated from speed 0 to almost the speed of
light.

a. Sketch the graph of the force needed to acceler-
ate it as a function of the velocity v. Pay careful
attention to concavity.

b. Sketch the graph of the velocity as a function of
the force needed, paying careful attention to
concavity.

23. a. Graph the two functions and
Are they the same?

b. Repeat part (a) with and
Are they the same?

c. Can you find any value for a for which 

24. a. Graph the two functions and

Are they the same?

b. Repeat part (a) with and 
Are they the same?

c. Can you find any value for a so that 

25. For the function (a) what is 
(b) (c) (d) Continue to apply
the function f repeatedly to the previous result, ex-
pressing all your answers as fractions. Do you ob-
serve any pattern in the values for the numerators
and denominators of the fractions that you’re gen-
erating? (e) Now look at the decimal representa-
tions of the fractions that you generated in parts
(a)–(d). Do they appear to be approaching a fixed
value?

26. For any two linear functions and
is the same as g � f ?f � gg 1x 2 � cx � d,

f 1x 2 � ax � b

f 1 f 1 f 11 2 2 2?f 1 f 11 2 2?
f 11 2?f 1x 2 � x � 1

x  ,

1

x � a
�

1
x

�
1
a

 ?

y �
1
x

�
1

5
 .y �

1

x � 5

y �
1
x

�
1

4
 .

y �
1

x � 4

x � a?2x2 � a2 �

y � x � 2.
y � 2x2 � 4

x � 5.
y � 2x2 � 25

v  0.

27. The volume of a sphere is given by and its
surface area is given by 

a. Find a formula for the volume as a function of
the surface area. Interpret the result in terms of a
composite function.

b. Find a formula for the inverse function of the
function you found in part (a). What does it tell
you?

28. The degree of polynomial P is m and the degree of
polynomial Q is n, where 

a. What is the degree of
b. What is the degree of
c. What is the degree of
d. What is the end behavior of
e. What is the end behavior of

29. In Problem 20 of Section 1.3, we introduced a func-
tion f that represents a simple replacement code in
which each letter of the alphabet is replaced by a
different letter according to 

and 

Suppose that we now have a second such code de-
fined by the function g:

and 

a. Find b. Find 
c. Find d. Find 
e. Find 

30. The algebraic method of elimination for solving a
system of linear equations involves adding a multi-
ple of one equation to another equation to eliminate
one of the variables. Consider the system of two
equations in two unknowns:

(1)
(2)

a. Plot the two lines carefully on a sheet of graph
paper and determine the point of intersection.

b. Solve the two equations algebraically.

 y � 7 � x.
 y � 4x � 3

f �11g�11A 2 2 .
g 1g 1K 2 2 .f 1 f 1P 2 2 .
f 1g 1A 2 2 .g 1 f 1A 2 2 .

g 1Z 2 � F.g 1Y 2 � O,
g 1X 2 � I,g 1W 2 � V,g 1V 2 � M,g 1U 2 � S,
g 1T 2 � D,g 1S 2 � Q,g 1R 2 � X,g 1Q 2 � A,
g 1P 2 � J,g 1O 2 � B,g 1N 2 � Z,g 1M 2 � G,
g 1L 2 � W,g 1K 2 � R,g 1J 2 � C,g 1I 2 � Y,
g 1H 2 � N,g 1G 2 � H,g 1F 2 � U,g 1E 2 � L,
g 1D 2 � E,g 1C 2 � T,g 1B 2 � K,g 1A 2 � P,

f 1Z 2 � E.f 1Y 2 � N,f 1X 2 � U,f 1W 2 � I,
f 1V 2 � G,f 1U 2 � R,f 1T 2 � Y,f 1S 2 � F,
f 1R 2 � C,f 1Q 2 � W,f 1P 2 � L,f 1O 2 � A,
f 1N 2 � O,f 1M 2 � H,f 1L 2 � Q,f 1K 2 � Z,
f 1J 2 � S,f 1I 2 � J,f 1H 2 � T,f 1G 2 � P,
f 1F 2 � B,f 1E 2 � X,f 1D 2 � V,f 1C 2 � K,

f 1B 2 � D,f 1A 2 � M,

Q>P ?
P>Q?

P . Q?
P � Q?
P � Q?

m � n.

S � 4pr2.
V � 4

3 pr3
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320 CHAPTER 4 Extended Families of Functions

e. Add four times Equation (2) to Equation (1) and
plot that function on the same graph. What can
you conclude from this result?

f. Find an appropriate multiple of Equation (2)
that, when added to Equation (1), will eliminate
the x term. What will the graph of the resulting
line look like when x is eliminated?

c. Add two times Equation (2) to Equation (1) to
get a new linear function. Plot its graph on the
same graph you created in part (a). What do you
observe about the three lines?

d. Add three times Equation (2) to Equation (1)
and plot that function on the same graph. What
do you observe about the four lines?

Building New Functions from Old: Shifting, 
Stretching, and Shrinking

In Section 4.6, we created new functions from known functions by extending the
standard arithmetic operations of addition, subtraction, multiplication, and division
to functions. We also created new functions by using composition of functions. In
this section we introduce several other ways in which we can build new functions
from a single function. Suppose that we have the function We can form a
related function by changing either the independent variable x or the dependent vari-
able y by multiplying it by a constant or by adding or subtracting a constant from it.

Shifting Functions

We can shift functions up and down or left and right. The former involves trans-
forming the y-variable, and the latter involves transforming the x-variable.

Shifting Up and Down We first investigate the effect on any function 
of adding a constant to y or subtracting a constant from y.

EXAMPLE 1
Consider and the related functions 
and What is the effect of the constant in each case?

Solution All these functions are shown in Figure 4.57. Clearly, each constant shifts the
basic parabola up or down by the corresponding amount that is added or sub-
tracted. For instance, the curve lies 1 unit above for each value of x,
whereas lies 2 units below it.y � x2 � 2

y � x2y � x2 � 1
y � x2

y � x2 � 5.
y � x2 � 2,y � x2 � 3,y � x2 � 1,y � f 1x 2 � x2

y � f 1x 2

y � f 1x 2 .

4.7

x

y

y = x2 − 5

y = x2 − 2

y = x2 + 1
y = x2

y = x2 + 3

–5

–2

1

3

FIGURE 4.57

�
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4.7 Building New Functions from Old: Shifting, Stretching, and Shrinking 321

In general, the following principle holds for any function of x, assuming b 	 0.

We can get a different feel for what is happening if we rewrite each of these ex-
pressions by moving the constant term to the left side. For instance, is
equivalent to which emphasizes the fact that it is the variable y, or the
height, which is being affected by the constant.

We can therefore rephrase the vertical shift principle for any function of x,
assuming as follows.b 	 0,

y � 1 � x2,
y � x2 � 1

Shifting Left and Right Next we investigate the effect on of adding a
constant to x or subtracting a constant from x.

EXAMPLE 2
Consider and the related functions and

where we replace x by or respectively. What is
the effect of the constant in each case?

Solution The resulting graphs are shown in Figure 4.58. Each of these changes causes a
horizontal shift. For instance, has a double zero at so the graph of

is shifted to the right by 1 unit. Similarly, has a double zero at
so the graph of is shifted to the left by 2 units.y � x2x � �2,

y � 1x � 2 2 2y � x2
x � 1,y � 1x � 1 2 2

1x � 2 2 ,1x � 3 2 ,1x � 1 2 ,y � 1x � 2 2 2,
y � 1x � 3 2 2,y � 1x � 1 2 2,y � f 1x 2 � x2

y � f 1x 2

Vertical Shift

Replacing with shifts the graph of up by the amount b.

Replacing with shifts the graph of down by the
amount b.

f 1x 2f 1x 2 � bf 1x 2
f 1x 2f 1x 2 � bf 1x 2

Vertical Shift

Replacing y with shifts the graph of up by the amount b.

Replacing y with shifts the graph of down by the amount b.f 1x 2y � b

f 1x 2y � b

�

y = x2 y = (x − 3)2y = (x − 1)2y = (x + 2)2

–2 1 3
x

y

FIGURE 4.58
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322 CHAPTER 4 Extended Families of Functions

In general, the following principle holds for any function of x.

Thus, for instance, the graph of has the identical shape as the graph
of but is shifted to the right by 2 units. Similarly, the graph of

has the same shape as the graph of but is shifted to the left
by 3 units. Check these and other graphs on your function grapher.

In summary, when we replace x by or we are changing x and so
produce a horizontal effect. When we replace y with or we produce a
vertical effect.

When we combine a horizontal shift (replace x by ) and a vertical shift
(replace y by ), we effectively have a diagonal shift. For example, consider the
graph of or equivalently It involves a
change in x (x is replaced by ) and a change in y (y is replaced by ). So,

corresponds to shifting the parabola four units to the
right and seven units up. This produces a parabola whose vertex is at as
shown in Figure 4.59.

Similarly,

is the equation of a circle with radius r centered at the origin (see Appendix A6).
We should then expect that

is the graph of a circle with radius r that has been shifted 5 units to the right and 3
units up. It is therefore the equation of a circle with radius r centered at the point

The new circle is produced from the original circle by a combination of a
horizontal shift (5 units to the right) and a vertical shift (3 units up), as shown in
Figure 4.60.

15, 3 2 .

1x � 5 2 2 � 1  y � 3 2 2 � r2

x2 � y2 � r2

14, 7 2 ,
y � x2y � 1x � 4 2 2 � 7

y � 7x � 4
y � 7 � 1x � 4 2 2.y � 1x � 4 2 2 � 7,

y � b
x � a

y � b,y � b
x � a,x � a

y � 1x,y � 1x � 3
y � 10x,

y � 10x�2

Horizontal Shift

Replacing x with shifts the graph of to the right by the amount 

Replacing x with shifts the graph of to the left by the amount a 	 0.f 1x 2x � a

a 	 0.f 1x 2x � a

x

y

(0, 0)

P(5, 3)

5

3
x2 + y2 = r2

(x − 5)2 + (y − 3)2 = r2

FIGURE 4.60

x

y

(0, 0)

(4, 7)

4

7

y = x2

y = (x − 4)2 + 7

FIGURE 4.59
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4.7 Building New Functions from Old: Shifting, Stretching, and Shrinking 323

Stretching and Shrinking Functions

We can stretch and shrink functions vertically and horizontally. Vertical stretching
and shrinking involves multiplying a function by a constant, whereas horizontal
stretching and shrinking involves multiplying the independent variable by a constant.

A Constant Multiple of a Function We can also create a new function from a
given function by multiplying the function, or equivalently the y-value, by a con-
stant. For example, consider the two functions and Both are
exponential decay functions, as shown in Figure 4.61. The function passes
through the point whereas the transformed function passes
through the point so you might be tempted to think of the second function
as resulting from a vertical shift of the first. However, think about what each looks
like for large values of x; both curves have the x-axis as a horizontal asymptote.
Therefore the relationship between them cannot be a vertical shift. In particular, the
height for every point on the curve is five times the height of the corre-
sponding point (with the same value for x) on the curve The effect of the
constant multiple 5 is to increase the height all along the curve by a factor of 5. If we
multiply the original function by 20, the curve will be stretched to a new curve that
is everywhere 20 times as tall.

y � 2�x.
y � 5 . 2�x

10, 5 2 ,
y � 5 . 2�x10, 1 2 ,

y � 2�x
y � 5 . 2�x.y � 2�x

If instead we multiply the original function by the curve will shrink to a new
curve that is one fourth the original height for each value of x. Finally, if we multi-
ply the function by a negative constant, such as the curve is stretched by a fac-
tor of 3, but it is also flipped upside down across the horizontal axis. Figure 4.62
shows the graphs of and Not only is the graph of the second
function flipped upside down across the x-axis, but it also moves downward much
faster (three times as fast) than the first function rises. Verify this result on your
function grapher with some other functions.

y � �3 1x .y � 1x

�3,

1
4 ,

x

y

y = 2–x

y = 5 ⋅ 2–x

1

5

FIGURE 4.61

1 2 3 4

–6
–5
–4
–3
–2
–1

1
2

x

y

y = √x

y = –3√x

FIGURE 4.62
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324 CHAPTER 4 Extended Families of Functions

In general, we have the following principle.

We illustrate an application of some of these ideas in Example 3.

EXAMPLE 3
Suppose that a chicken is taken from the freezer at and put directly into an oven kept
at a constant temperature of After 30 minutes, the temperature of the chicken is

Construct a function to model the temperature of the chicken as it cooks in the
oven.

Solution The temperature of the chicken rises rapidly at first and then increases ever
more slowly the closer the chicken’s temperature comes to the oven temperature of
Eventually, the temperature of the chicken levels off at the temperature setting for the
oven. The temperature T, in plotted against time t, in hours, looks like the graph
shown in Figure 4.63. (This description is actually an oversimplification because the
temperature rise will temporarily stop at the freezing point of while the ice melts.
Also, the chicken should be removed from the oven when its temperature reaches about

or it will begin to burn.)180°,

32°

°F,

350°.

110°F.
350°F.

0°F

The horizontal line representing the temperature of is a horizontal asymptote
because the curve gets ever closer to this line as time goes by, but never quite reaches it.
The rate at which the temperature of the chicken increases slows as it approaches (if
we left the chicken in the oven that long), so the curve is concave down.

We want to model this process by creating a formula giving the temperature T as a
function of the time t. Simplistically we will find a mathematical model by inspecting

350°

350°

Vertical Stretching and Shrinking

Multiplying a function by a constant changes the height of its graph by that
multiple, but it does not change the general shape.

If the multiple is greater than 1, the height is increased.

If the multiple is a number between 0 and 1, the height is decreased.

If the multiple is negative, the curve is flipped over across the horizontal
axis.

10 2 3

350°

t

T

Time (hours)

Te
m

pe
ra

tu
re

 (
°F

)

FIGURE 4.63
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4.7 Building New Functions from Old: Shifting, Stretching, and Shrinking 325

the graph of the process and deciding which type of function has the right shape. In Sec-
tion 5.4 we demonstrate how to construct such a function directly.

The graph in Figure 4.63 appears to be an exponential decay function turned upside
down so that it rises toward the oven temperature instead of dropping asymptoti-
cally toward the horizontal axis. We can form such a function from a pure exponential
function by using a negative coefficient (to turn the curve upside down) and a
vertical shift so that the curve approaches 350 instead of 0. Thus a formula for T might
look like

where t is in hours and As t increases, the term approaches 0, and the en-
tire expression approaches 350.

What might be possible values for A and c? We know that at time the chicken’s
temperature is when it comes out of the freezer, so

Thus and the formula becomes

Furthermore, the temperature of the chicken after half an hour is This
value yields

So we have

Squaring both sides of this equation gives

Consequently, our formula for the temperature becomes

where t is measured in hours.
This function is an upside down exponential: As t increases, gets ever small-

er, so increases and gets ever closer to 1. That is, as 
Consequently,

confirming that the graph has a horizontal asymptote at 

�

Verify the behavior of the preceding function on your function grapher. Look at
the overall shape and then zoom in to verify the height of the asymptote. Estimate
by eye from the graph when T reaches when it reaches and when it
reaches and ❐

In general, consider the function where We
know that as t increases, decays toward zero so that the function approaches a
limiting value of L. The question is: How does it approach L—from above or from

ct
0 � c � 1.y � f 1t 2 � L � Act,

349°. 340°,300°,
250°,180°,

Think About This

T � 350.

T � 350 31 � 10.47 2 t 4 S 350,  as t S �,

t S �.1 � 10.47 2 t S 11 � 10.47 2 t
10.47 2 t

T � 350 � 35010.47 2 t � 350 31 � 10.47 2 t 4 ,

c � 0.47.

 c1>2 � 240>350 � 0.686.

 3501c1>2 2 � 350 � 110 � 240;

T112 2 � 350 � 3501c1>2 2 � 110.

T112 2 � 110°.

T � 350 � 3501ct 2 .

A � 350

T10 2 � 350 � Ac0 � 350 � A � 0.

T � 0
t � 0,

350 � Act
ct0 � c � 1.

T � 350 � Act,

y � Ac x

350°
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326 CHAPTER 4 Extended Families of Functions

below? First, whenever the values of the function are less than L. As the
term decreases, the amount subtracted from L decreases, and the values of the
function increase toward L in a concave down manner, as illustrated by the upper
curve in Figure 4.64. This was the case with the temperature of the chicken in the
oven. Second, whenever the values of the function are greater than L and
so decrease toward it in a concave up manner, as illustrated by the lower curve in
Figure 4.64.

A 	 0,

Act
A � 0,

This type of function is used as the mathematical model for many different
real-world processes.

A Constant Multiple of the Independent Variable Finally, we investigtate the ef-
fects of multiplying the independent variable x by a constant.

EXAMPLE 4
Consider the cubic function and the related functions 

and What is the effect of the constant multiple in each case?

Solution Figure 4.65 shows the graphs of and 
The cubic passes through the origin and has

two turning points. If you trace along the curve, you will find that one turning point
is at and the other at (We could also locate the turning points by using
the formula presented in Section 4.4.) The corresponding local maximum (at

) is at a height of and the local minimum (at ) is at a height of

The cubic also passes through the ori-
gin and has two turning points, one at and the other at The correspon-
ding local maximum is at and the local minimum is at Hence the
heights are the same; they just occur sooner. In fact, the curve for traces out
the identical vertical values as but does so twice as fast.

Figure 4.66 shows the graphs of and 
The local maximum for now occurs at and the

local minimum occurs at Again, the same heights are achieved, but the curve
is traced out four times as fast as 

Figure 4.67, shows the graphs of and 
but we had to extend the window to show the details. The function

achieves its local maximum at and its local minimum at The
curve traces out the identical heights, but does so half as fast as y � f 1x 2 .y � f 112 x 2

x � 4.x � �4y � f 112 x 2

1
8 
x3 � 6x, 12112 x 2  �

y � f 112 x 2 � 112 x 2 3 �y � f 1x 2 � x3 � 12x
y � f 1x 2 .y � f 14x 2

x � 1
2 .

x � � 
1
2y � f 14x 264x3 � 48x.1214x 2  �

y � f 14x 2 � 14x 2 3 �y � f 1x 2 � x3 � 12x
f 1x 2 ,

y � f 12x 2
y � �16.y � 16,

x � �1.x � 1
y � f 12x 2 � 12x 2 3 � 1212x 2 � 8x3 � 24x

y � �16.
x � 2y � 16x � �2

x � �2.x � 2

y � f 1x 2 � x3 � 12x12x 2 3 � 1212x 2 .
y � f 12x 2  �y � f 1x 2 � x3 � 12x

y � f 112 x 2 .y � f 14x 2 ,
y � f 12x 2 ,y � f 1x 2 � x3 � 12x

t

y

L

A > 0

A < 0

FIGURE 4.64
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–4 –3 –2 –1 1 2 3 4
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–10
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x

y

f (x)

f (2x)

(–2, 16)

(2, –16)

(–1, 16)

(1, –16)

FIGURE 4.65

–4 –3 –2 –1 1 2 3 4

–50

–40
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–20

–10

40
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x

y

f (x)

f (4x)

(–2, 16)

(2, –16)

(–   , 16)1
2

(   , 16)1
2

FIGURE 4.66

–8 –6 –4 –2 2 4 6 8

10

20

40

50

x

y

–50

–40

–30

–20

–10

40

50 f (x)

(–2, 16)

(–4, 16)

(2, –16)
(4, –16)

f(   x)1
2

FIGURE 4.67

�

We summarize the ideas on stretching and shifting functions horizontally as
follows.

Horizontal Stretching

Multiplying the independent variable x by a constant k changes the speed at
which the graph is traced out, but it does not change the general shape.

If the multiple k is greater than 1, the graph of is traced out k
times faster than 

If the multiple k is between 0 and 1, the graph of is traced out
more slowly than 

If the multiple k is negative, then the curve is reflected across
the y-axis.

y � f 1kx 2
y � f 1x 2 .

y � f 1kx 2
y � f 1x 2 .

y � f 1kx 2

EXAMPLE 5
For the function draw the graph of and locate its turning
points.

Solution Figure 4.68 shows the graphs of the two functions. The graph of
has the same basic shape as the graph of but is flipped upside down across they � f 1x 2 ,

y � f 1�3x 2

f 1�3x 2f 1x 2 � x3 � 12x,

1 2 3 4

–25

–20

–5

5

10

15

20

25

x

y

–4 –3 –2 –1

f (x)f (–3x)

(–2, 16)

(2, –16)(–   , –16)2
3

(   , 16)2
3

FIGURE 4.68
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328 CHAPTER 4 Extended Families of Functions

x-axis and is traced out 3 times as fast. As before, the turning points for are at
and The turning points for are at a local

minimum, and at a local maximum.

�

EXAMPLE 6
A function f is defined in the following table. Use the values given in the table to com-
plete it. If any entries are not defined, mark them “UNDEF.”

123 , 16 2 ,
1� 

2
3 , �16 2 ,y � f 1�3x 212, �16 2 .1�2, 16 2
y � f 1x 2

x

0 1

1 0

2 3

3 2

3f (x)f (2x)f (x � 1)f (x) � 1f (x)

Solution The values of the function for 1, 2, and 3 are defined in the table. The first
open column asks for a vertical shift when the function’s values are reduced by 1 for each
value of x. For instance, when the first entry is asking for 
and so on down that column.

The second open column asks for a horizontal shift of 1 unit to the right, because x
is replaced by Thus, when we want but there is no
way to determine this value from the information given in the table; that is, the function
is not defined for so we record it in the table as “UNDEF.” However, when 
we want and so on down the column.

The third open column asks for values when the independent variable is doubled. So,
when we need similarly, when we need

However, when which is not defined. When
is also not defined.

Finally, the last open column asks for 3 times the value of the function. When 
we need and so on down the column. The completed table follows.3 . f 10 2 � 3 . 1 � 3,

x � 0,
f 12 . 3 2 � f 16 2x � 3,

f 12 . 2 2 � f 14 2 ,x � 2,f 12 . 1 2 � f 12 2 � 3.
x � 1,f 12 . 0 2 � f 10 2 � 1;x � 0,

f 10 2 � 1,f 11 � 1 2  �
x � 1,x � �1,

f 10 � 1 2 � f 1�1 2 ,x � 0,x � 1.

f 10 2 � 1 � 1 � 1 � 0,x � 0,

x � 0,

x

0 1 0 UNDEF 1 3

1 0 1 3 0

2 3 2 0 UNDEF 9

3 2 1 3 UNDEF 6

�1

3f (x)f (2x)f (x � 1)f (x) � 1f (x)

�
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4.7 Building New Functions from Old: Shifting, Stretching, and Shrinking 329

Problems

x [ f (x)]2

3 5

4 2

5

6 3

7 8

�1

f (x � 1)f (x) � 35f (x)f (x)

1. A function f is defined in the table above. Use the
values given to complete the table. If any of the en-
tries are not defined, write “UNDEF.”

2. A function is defined by the accompany-
ing graph. Match each transformation of f with one
of the graphs (i)–(vi).

a. b.
c. d.
e. f. y � f 1x � 2 2y � f 1x 2 � 2

y � f 1x � 2 2y � f 1x 2 � 2
y � 2f 1x 2y � f 12x 2

y � f 1x 2

3. For the functions f and g that are defined by the
graphs shown, sketch the graph of

a. b.
c. d.

e. f(x)+1. f. g a
1

2
 xb .

f 1x � 1 2 .f 1x � 1 2 .
g12x 2 .2g1x 2 .

1 2 3 4

–1

–2

–3

1

2

3

x

y

–4 –3 –2 –1

y = f (x)

2 4

–3

3

–4 –2
x

2 4

3

–4 –2
x

(v) (vi)

2 4

–3

3

y

–4 –2
x

2 4

–3

3

y

–4 –2
x

(i) (ii)

2 4

–3

3

y

–4 –2
x

(iii)

2 4

–3

3

y

–4 –2
x

(iv)

f (x)

–3 –1 1 2 3

–3

–2

–1

1

3

x

y

g(x)

–3 –2 –1 1 2 3

–3

–2

–1

1

2

3

x

y

4. Consider the function 

a. Write an equation for the function that you get
when you stretch the graph of f by a factor of 2

y � f 1x 2 � x2.
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330 CHAPTER 4 Extended Families of Functions

and then shift it up 3 units. Call this new func-
tion F and sketch its graph.

b. What is the equation you get if you reverse the
order of the two operations in part (a)? Call this
new function G and sketch it.

c. What is 

5. a. Translate the line to a line with slope m
that passes through the point 

b. Repeat part (a) if the new line passes through the
point What do you call this new equation?

6. a. Translate the parabola to a parabola with
vertex at 

b. Repeat part (a) if the new parabola has its vertex
at the point 

7. For the function f shown, sketch the graph of

a. b.
c. d.
e. f. y � f 1x 2 � 1y � f 1x � 1 2

y � f 1x � 1 2y � f 1x 2 � 1
y � 2f 1x 2y � �f 1x 2

1x0, y0 2 .

15, 12 2 .
y � x2

1x0, y0 2 .

15, 12 2 .
y � mx

F � G?

8. The graphs of three functions (a)–(c) are shown in
the accompanying figures. Sketch the graph of

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) y � f 1x � 2 2
y � f 1x 2 � 2y � f 1x 2 � 2

y � f 1x � 2 2y � �2f 1x 2
y � 2f 1x 2y � �f 1x 2

9. Consider the function f in the table. If this function
is shifted 4 units to the right and 7 units upward,
construct the corresponding table for the trans-
formed function.

10. a. Use the graphs of and to
sketch a rough graph of the product 

b. Estimate the values of x for which and
the values for which 

c. Because log x grows exceedingly slowly, the prod-
uct grows only slightly faster than x does.
Use your function grapher to decide whether

ever grows faster than than than
What does this investigation suggest to you

about the rate of growth of compared to
power functions 

11. If and h is a constant, find

a. b.

c. d.

e. What is the value of the expression in part (d)
if and if if if

12. a. An unbaked apple pie is taken from the counter
in a kitchen where the temperature is and
placed in an oven. Suppose that, after 60 min-
utes, the temperature of the pie is Sketch
a graph of the temperature of the pie as a func-
tion of time.

b. The pie is removed from the oven and placed
back on the counter. Suppose that it takes anoth-
er 60 minutes for its temperature to come back

180°F.

70°F

h � 0.0001?
h � 0.01?h � 0.1?x � 5

f 1x � h 2 � f 1x 2
h

 f 1x � h 2 � f 1x 2

f 1x � h 2f 1x 2 � h

f 1x 2 � x2 � 3x � 4

xp?
x log x

x1.05.
x1.1,x1.5,x log x

x log x

log x 	 x.
log x � x

P1x 2 � x log x.
g 1x 2 � log xf 1x 2 � x

0 1 2 3 4

–1

1

x

y

y = f (x)

(2, 1)
x

y

y = f (x)

10

2

y

y = f (x)

10

2

x

y

y = f (x)

x 0 1 2 3

y 24 16 11 8 9

x 4 5 6 7

y 15 27 39 35

�1

a. b.

c.
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down to Sketch a graph of the temperature
of the pie as a function of time.

c. When the first pie is removed from the oven, a
second, unbaked pie is put in the oven to bake.
Sketch a graph of the sum of the temperatures
of the two pies as a function of time over the
60-minute period.

d. Find a formula that models the temperature of
the pie, while it cools, as a function of time.

13. A Thanksgiving turkey is taken from the refrigera-
tor at a temperature of and placed in a hot
oven at to cook. After 1 hour, the internal
temperature of the bird is Write a possible
formula for the temperature of the turkey as a func-
tion of time, in minutes.

14. In an attempt to claim responsibility for winning
the war against the growing national balance of
trade deficit, the president presented a graph simi-
lar to the one shown to illustrate the trend in the
annual deficit.

124°F.
350°F

40°F

70°F. a. Based on this graph, sketch the graph of the total
national debt as a function of time.

b. Does your graph have any points of inflection? If
so, what do they represent?

c. Do you agree or disagree with the president’s as-
sertion that the war has been won? Explain.

15. Use your function grapher to graph the functions
for 2, 3, 4, 5, and estimate

the location of the turning point for each curve for
Then perform a linear regression analysis on

the x-values of these turning points, as functions of
n. Is the linear fit appropriate? What does it predict
for Is it accurate compared to the actual
graph?

16. Use your function grapher to graph the functions
for 0.4, 0.5, 0.6, and 0.7. Esti-

mate the location of the turning point for each
curve by zooming in on it. Then determine the func-
tion from among the usual families of functions—
linear, exponential, and power—that best fits these
data as a function of the base a.

17. Describe how you might use the results of Problems
15 and 16 to find a function of the form

that matches the function for the level
of Lyme disease antibody in the bloodstream dis-
cussed in Section 4.6 (see Figure 4.50).

18. Find conditions on the coefficients a, b, and c in
if P is to satisfy each equation

for all values of x.

a. b.
c. P12x 2 � 2P1x 2

P1x 2 � �P1x 2P1x 2 � P1�x 2

P1x 2 � ax2 � bx � c

f 1x 2 � xpax

a � 0.3,f 1x 2 � x2ax,

n � 1.5?

x 	 0.

n � 1,f 1x 2 � xn10.5 2 x,

D
ef

ic
it

Year

1990 1991 1992 1993 1994
x

y

Exercising Your Algebra Skills

For the function find a simplified
expression for

1. 2. f 13x 2 .f 12x 2 .

f 1x 2 � x2 � 5x � 3, 3. 4.

5. 6.

7. 8. f 1x2 2 .f 12x � 1 2 .

f 1x � 2 2 .f 1x � 1 2 .

f a
1

2
 xb .f 14x 2 .

Using Shifting and Stretching to Analyze Data

The ideas on shifting and stretching functions in Section 4.7 can be applied to cre-
ate functions that fit sets of data that do not quite fall into the standard behavior
patterns, such as exponential growth or decay, that we have discussed.

4.8
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Hot Cold

FIGURE 4.69
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FIGURE 4.70

TABLE 4.3 Experimental Data: Temperature versus Time

Time Temperature Time Temperature Time Temperature

1 42.3 13 12.51 25 9.29
2 36.03 14 11.91 26 9.16
3 30.85 15 11.54 27 9.16
4 26.77 16 11.17 28 9.04
5 23.58 17 10.67 29 8.91
6 20.93 18 10.42 30 8.83
7 18.79 19 10.17 31 8.78
8 17.08 20 9.92 32 8.78
9 15.82 21 9.8 33 8.78

10 14.77 22 9.67 34 8.78
11 13.82 23 9.54 35 8.66
12 13.11 24 9.42 36 8.66

1°C 2

Analyzing a Cooling Experiment

Suppose that an experiment is conducted to study the rate at which temperature
changes. A temperature probe (a thermometer connected to a calculator) is first
heated in a cup of hot water and then removed and placed in a cup of cold water, as
illustrated in Figure 4.69. The temperature of the probe, in is measured every
second for 36 seconds and recorded in Table 4.3; the data are also displayed in the
scatterplot in Figure 4.70.

°C,

EXAMPLE 1
Find a function that fits the data from the temperature cooling experiment.

Solution The pattern depicted in Figure 4.70 is that of a decreasing, concave up func-
tion, so we might consider either a decaying exponential function or a power function
with However, a power function is not a good model for the process because it has
a vertical asymptote at time whereas the function we want must have a finite value
when So the more appropriate model would be an exponential decay function.

But there is a catch. Any exponential decay function decreases to zero, but the tem-
perature readings decay to the temperature of the cold water (which cannot be for
then the water would be frozen). From the experimental data, the temperature of the

0°C,

t � 0.
t � 0,

p � 0.
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4.8 Using Shifting and Stretching to Analyze Data 333

cold water is about How do we construct a function that decays to about 8.6
rather than to 0? Probably the most reasonable approach is to subtract 8.6 from each of
the temperature readings to obtain a new set of data that decays to zero. This approach is
equivalent to performing a vertical shift downward of 8.6 (i.e., replacing the temperature
T with ) to produce the transformed data shown in Table 4.4.T � 8.6

8.6°C.

The scatterplot of the transformed data, shown in Figure 4.71, looks like an expo-
nential decay pattern that tends toward 0. Using a calculator, we find that the exponen-
tial function that best fits the transformed data is

y � T � 8.6 � 35.439410.848 2 t.

The graph of this function is shown superimposed over the transformed data in Figure 4.71,
and there appears to be extremely close agreement. The corresponding correlation coeffi-
cient is which is very close to 

Having found the exponential function that best fits the transformed data, we now
have to undo the transformation. We simply add the same amount, 8.6, to the function

to create the final expression

This function is shown superimposed over the original temperature data in Figure 4.72,
and it is an exceptionally good fit to the temperature readings. In particular, note how
this function approaches the limiting value of about 8.6 for the temperature readings as
t increases.

T1t 2 � 8.6 � 35.439410.848 2 t.

y � T � 8.6

�1.r � �0.9948,

4 8 12 16 20 24 28 32 36
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FIGURE 4.71

TABLE 4.4 Transformed Data: versus Time

Time Time Time

1 33.7 13 3.91 25 0.69
2 27.43 14 3.31 26 0.56
3 22.25 15 2.94 27 0.56
4 18.17 16 2.57 28 0.44
5 14.98 17 2.07 29 0.31
6 12.33 18 1.82 30 0.23
7 10.19 19 1.57 31 0.18
8 8.48 20 1.32 32 0.18
9 7.22 21 1.20 33 0.18
10 6.17 22 1.07 34 0.18
11 5.22 23 0.94 35 0.06
12 4.51 24 0.82 36 0.06

T � 8.6T � 8.6T � 8.6

1T � 8.6 2
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�

Analyzing the Challenger Data

At the beginning of Chapter 3, we considered data relating the number of incidents
involving O-ring problems on space shuttle launches to the air temperature at
launch. These data eventually were used to identify the O-rings as the likely cause
of the Challenger disaster. We now use this set of data as a case study to illustrate
the process of data analysis when it is necessary to shift the data values.

Recall that the dependent variable was the number N of O-ring problems or
“incidents” as a function of launch temperature T. The data are shown in the fol-
lowing table.
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FIGURE 4.72

Figure 4.73 shows the scatterplot for this data along with a curve superimposed
over the data points to indicate the nature of the relationship, which appears to be
a decaying exponential. However, this curve is only an artist’s rendering of the ap-
parent relationship. We want to obtain a formula for such a function.

T 53 57 58 63 66 67 67 67 68 69 70 70

N 3 1 1 1 0 0 0 0 0 0 1 1

T 70 70 72 73 75 75 76 76 78 79 80 81

N 0 0 0 0 2 0 0 0 0 0 0 0

N
um

be
r 

of
 O

-r
in

gs
 a

ff
ec

te
d

Temperature (°F)
30 40 50 60 70 80 90

0

1

2

3

4

FIGURE 4.73
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The resulting exponential regression equation giving as a function of T is

which is shown superimposed on the scatterplot, in Figure 4.74. Finally, we solve for N by
subtracting 1 from both sides to get the exponential function that can be used to model N
as a function of T:

which is shown superimposed over the original scatterplot in Figure 4.75. It appears to
capture the trend in the data reasonably well.

N � 13.4110.967 2T � 1,

N � 1 � 13.4110.967 2T,

N � 1

4.8 Using Shifting and Stretching to Analyze Data 335

EXAMPLE 2
Find a function that can model the data on the number of O-ring incidents as a function
of the air temperature.

Solution The decreasing, concave up pattern in the scatterplot in Figure 4.73 suggests
either a decaying exponential function or a power function with The power func-
tion does not make sense, however, because there is no vertical asymptote at Fit-
ting an exponential function to the set of data by using the transformation approach
used by calculators and spreadsheets involves plotting the logarithm of the number of
incidents log N versus the temperature T. But because the values for N include 
we cannot take the logarithm of 0—it is not defined!

One way to circumvent this problem is to shift the data values up to avoid the zeros.
The simplest approach is to increase each value of N by 1, replacing N by and
then comparing to T. We first construct the exponential function that best fits the
resulting set of data to obtain the exponential regression equation relating to T.
We then shift back down to obtain an expression for N in terms of T. The data values
that we work with are given in the following table, and the associated scatterplot of

versus T is shown in Figure 4.74.N � 1

N � 1
N � 1

N � 1

N � 0,

T � 0.
p � 0.

T N T N

53 3 4 70 0 1

57 1 2 70 0 1

58 1 2 72 0 1

63 1 2 73 0 1

66 0 1 75 2 3

67 0 1 75 0 1

67 0 1 76 0 1

67 0 1 76 0 1

68 0 1 78 0 1

69 0 1 79 0 1

70 1 2 80 0 1

70 1 2 81 0 1

N � 1N � 1
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EXAMPLE 3
(a) Find a function that fits these data on velocity as a function of time from among the
usual candidates. (b) Improve on the fit by using an appropriate shift.

Solution

a. The data falls in an increasing, concave down pattern, as shown in Figure 4.76. The
potential candidates for a function having such a pattern are either a power function
with or a logarithmic function. However, a log function is not defined at

Also, both functions grow indefinitely, while the values for the skydiver’s ve-
locity approach terminal velocity, which is a horizontal asymptote. What’s worse, we
don’t know what this limiting value for the terminal velocity is. Thus neither function
can be a good fit.

t � 0.
0 � p � 1

Temperature (°F)

N
um

be
r 

of
 O

-r
in

gs
 a

ff
ec

te
d

50 55 60 65 70 75 80
–0.5

0

0.5

1

1.5

2

2.5

3

T

N

FIGURE 4.75

�

The graph certainly suggests that the likelihood of trouble with the O-rings will
increase dramatically with falling temperature. However, we know that there is a dan-
ger in extrapolating far beyond the range of data values. But the overall trend is so dra-
matic and the potential loss in terms of both human life and hardware is so extreme
that there shouldn’t have been a launch if the data had been analyzed in this way.

Terminal Velocity in Skydiving

Matthew is a skydiving enthusiast. He knows, from his reading and from first-hand
experience, that the faster he is falling, especially in a spread-eagled position, the
greater the air resistance, so that eventually his speed reaches a maximum, known
as the terminal velocity. He also found the following set of data on the downward
velocity v, in feet per second, of a skydiver at different times t, in seconds, after
jumping out of a plane.
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FIGURE 4.74

t 0 1 2 3 4 5 6 7 8 9 10 11 12

v 0 16 46 76 104 124 138 148 156 163 167 171 174

Source: Student project.
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Moreover, we cannot use a calculator or spreadsheet program to fit a power func-
tion to the data because of the first point —their regression routines all use the
transformation approach, which involves having to take the log of 0. However, if we
delete the point we can fit a power function to the remaining data. Figure 4.76
shows the graph of the best-fit power function (obtained using a cal-
culator) superimposed over the scatterplot of the data. The corresponding correla-
tion coefficient is which is fairly close to 1. The power function is a
reasonable fit, but it clearly becomes less good when extended to the right.

b. The pattern in the data suggests an upside down exponential decay function that
rises toward a horizontal asymptote. Suppose that we conjecture a value for the ter-
minal velocity by mentally extending the preceding table. We might extrapolate that
the limiting value is about We then subtract each velocity value from this
supposed limit (replacing v with ) to obtain the transformed data shown in
the following table. Effectively, this transformation is equivalent to a vertical shift
with a flip across the horizontal axis due to the multiple of �1.

180 � v
180 ft>sec.

r � 0.962,

v � 23.2t 
0.908

10, 0 2 ,

10, 0 2
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FIGURE 4.76

The scatterplot of these transformed data is shown in Figure 4.77. The decreas-
ing, concave up pattern in this transformed data suggests either a decaying exponen-
tial function or a power function with however, the latter has a vertical
asymptote at zero, so it is not an appropriate candidate. A calculator gives the expo-
nential function that best fits this transformed data as

with a correlation coefficient of Figure 4.78 shows this function super-
imposed over the transformed data, and it is a very good fit.

r � �0.9963.

y � 180 � v � 226.2510.7492 2 t

p � 0;

t 0 1 2 3 4 5 6 7 8 9 10 11 12

180 164 134 104 76 56 42 32 24 17 13 9 6180 � v
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338 CHAPTER 4 Extended Families of Functions

We undo the transformation algebraically by solving for the velocity v to get

The graph of this function is shown superimposed over the original data in Figure 4.79,
demonstrating a much better fit than the power function in Figure 4.76. This conclu-
sion is further borne out by the correlation coefficient which is consid-
erably closer to than the correlation coefficient for the power function
was to 1.

r � 0.962�1
r � �0.9963,

v � 180 � 226.2510.7492 2 t.
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�

The value of that we chose for the terminal velocity was reasonable,
but it was just an intelligent guess. Had we chosen a somewhat different value, we
would have obtained a somewhat different function. With a little experimentation,
you should be able to get a still better fit.

In Example 3, an exponential function was a very good fit to the transformed
data, although the values for did not fall precisely in an exponential decay
pattern. Sometimes, a set of values fall precisely in an exponential pattern as they
grow or decay toward a horizontal asymptote. The problem we face in such cases is
not knowing exactly what that horizontal asymptote is, as was the case in Example 3.
If the transformed data do fall in an exponential pattern, we can determine the
limiting value precisely.

Suppose that a set of values is such that the values either
fall toward an unknown limiting value L or rise toward L in a purely exponential
manner, as shown in Figure 4.80. In particular, suppose that each of the values is
below the unknown horizontal asymptote L, so that the set of transformed values

L � x4 , . . . L � x3 ,L � x2 ,L � x1 ,L � x0 ,

x4 , . . . x3 ,x2 ,x1 ,x0 ,

180 � v

180 ft>sec

n

xn

L

FIGURE 4.80

decays toward zero in an exponential decay pattern. As a result, we know that the
successive ratios should be a constant, say k. That is,
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4.8 Using Shifting and Stretching to Analyze Data 339

where k is the constant, although unknown, ratio. Consider the first of these
equalities:

We can solve this equation algebraically for the unknown limiting value L by
first cross-multiplying to get

Expanding these terms gives

Subtracting from both sides of this equation and then collecting like terms yields

so that

(1)

provided that the denominator In fact, if the numbers 
approach L in an exponentially decaying manner precisely, the com-

parable expression—using any three successive values of the x’s, not just the first
three—gives the same value for L. If the values are not exact, however—even if the
discrepancies are due to rounding—quite different values could arise with every
group of three successive values for the x’s.

EXAMPLE 4
Prozac is prescribed for individuals suffering from depression. Typically, a patient takes
a dose of Prozac once a day and, for extreme depression, the dosage is 80 mg. The levels
of Prozac in the blood on successive days following the start of treatment are given in the
following table. (Note that the last two values are rounded to four decimal places.) It
turns out (we investigate this result in detail in Section 5.1) that the level of Prozac P
rises toward a horizontal asymptote in a precisely upside down exponential decay man-
ner as a function of the number of days n. Find the value of this horizontal asymptote,
assuming that the course of treatment continues.

x4 , . . . x3 ,x2 ,
x1, x0 ,x0 � 2x1 � x2 � 0.

L �
x0x2 � x1

2

x0 � 2x1 � x2

 ,

1x0 � 2x1 � x2 2L � x0x2 � x1
2

 ,

L2

L2 � 2x1L � x1
2 � L2 � x0L � x2L � x0 x2 .

1L � x1 2
2 � 1L � x0 2 1L � x2 2 .

L � x1

L � x0

�
L � x2

L � x1

 .

L � x1

L � x0

�
L � x2

L � x1

�
L � x3

L � x2

� . . . � k,

Solution We start with a scatterplot of the data, as shown in Figure 4.81, where the
points appear to be approaching a horizontal asymptote at a level somewhat above
300 mg. We call this level L.

These values fall in an upside down decaying exponential pattern as they rise toward
the horizontal asymptote, so we can use Equation (1) with the first three values 

and to find that

L �
x0x2 � x1

2

x0 � 2x1 � x2

�
801185 2 � 1402

80 � 21140 2 � 185
� 320.

x2 � 185x1 � 140,
x0 � 80,

n 0 1 2 3 4 5 6 . . .

P 80 140 185 218.75 244.0625 263.0469 277.2852 . . .
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If instead we use the second, third, and fourth values, so that and
we obtain

If we use the last three values shown, so that and
we obtain, in the same way, As you will see in Section 5.1

when we develop a complete mathematical model for the level of Prozac in the blood,
the limiting value is 320 mg.

�

Horizontal Shifts

We next consider some applications involving horizontal shifts. As Example 5
demonstrates, that’s just what we’ve been doing when we changed the scale in the
independent variable.

EXAMPLE 5
The following data fall in a linear pattern. Determine the line that passes through the
points (a) when t represents the number of years since 1980; (b) when t represents the
number of years since 1900; (c) when t represents the number of years since year 0.
(d) Explain how the three expressions compare by using ideas on shifting functions.

L � 320.0001.x2 � 277.2852,
x1 � 263.0469,x0 � 244.0625,

L �
x0x2 � x1

2

x0 � 2x1 � x2

�
1401218.75 2 � 1852

140 � 21185 2 � 218.75
� 320.

x2 � 218.75,
x1 � 185,x0 � 140,

Solution

a. We rescale the values of the independent variable so that t represents the number of
years since 1980.

0
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L
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FIGURE 4.81

t 0 5 10 15 20

y 30 40 50 60 70

t 1980 1985 1990 1995 2000

y 30 40 50 60 70

Note that each 5 years, the value of y increases by 10, so we have a line with slope

m �

y


t
�

10

5
� 2.
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The equation of the line then is

b. We now rescale the values in the table so that t represents the number of years since
1900.

t � number of years since 1980.y � 30 � 21t � 0 2 ,

These data values also lie on a line whose slope is so the equation of the line is

c. Finally, we use the original values given in the table where t represents the number of
years since the year 0. The slope is still so the corresponding equation of the
line is

d. We now compare the three equations. In each case, the slope is because all three
lines increase at the same rate. If we expand all the equations to put them in slope–
intercept form, we get

and

respectively. Note the great differences in the vertical intercepts for the three lines.

Let’s focus on the equation in part (a), as a baseline, where t rep-
resents the number of years since 1980. We first compare it to the equation in part (b),

The second equation is the result of a horizontal shift to the
right of 80 years—moving from a “starting point” of in 1980 to a “starting
point” of in 1900. Similarly, compare the first equation to the third equation in
part (c), which involves a horizontal shift of 1980 years to
the right. So scaling the values of the independent variable is equivalent to a horizon-
tal shift by the amount of the scaling.

�

Let’s look at a more realistic example to see how these ideas on horizontal
shifts apply when we fit an exponential function to data.

EXAMPLE 6
The following table shows the growth, in millions, of cellular phone users since 1985.
Find the exponential function that best fits these values (a) when t represents the
number of years since 1985; (b) when t represents the number of years since 1900;
(c) when t represents the number of years since year 0. (d) Explain how the three ex-
pressions compare, using ideas on shifting functions.

y � 30 � 21t � 1980 2 ,
t � 0

t � 0
y � 30 � 21t � 80 2 .

y � 30 � 2t,

y � 2t � 3930,y � 2t � 130,y � 2t � 30,

m � 2

t � number of years since year 0.y � 30 � 21t � 1980 2 ,

m � 2,

t � number of years since 1900.y � 30 � 21t � 80 2 ,

m � 2,

t 80 85 90 95 100

y 30 40 50 60 70

t 1985 1988 1990 1991 1992 1993 1994 1995 1996 1997 1998

C 1 4 11 16 23 34 55 91 142 215 319

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends That Are Shaping Our Future.
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Solution

a. We first scale the years so that t represents the number of years since 1985, giving the
transformed set of data.

A calculator gives the exponential function that best fits the data as

The corresponding correlation coefficient is 

b. We next scale the years in the original data so that t represents the number of years
since 1900.

r � 0.99925.

t � number of years since 1985.C � 1.06311.555218 2 t,

t 0 3 5 6 7 8 9 10 11 12 13

C 1 4 11 16 23 34 55 91 142 215 319

t 85 88 90 91 92 93 94 95 96 97 98

C 1 4 11 16 23 34 55 91 142 215 319

Again, a calculator gives the exponential function that best fits the modified data as

The corresponding correlation coefficient again is 

c. Finally, the exponential function that best fits the original data where t represents the
number of years since the year 0 is

The corresponding correlation coefficient once more is 

d. The growth factor, 1.555218, is the same in all three expressions. It indicates that
the use of cellular phones is growing, on average, by 55.5% per year, whichever
model we construct. The correlation coefficient is also the same in all
three models. It indicates that the fit in all three cases is equally excellent. Only the
constant coefficient changes from one expression to the next, and it reflects the
vertical intercept of each curve.

We now look at the equation for the exponential function in
part (a), where t represents the number of years since 1985. If we perform a horizontal
shift of 85 years to the right so that t represents the number of years since 1900, the for-
mula for the function becomes

which is virtually identical to the expression in part (b).
Similarly, if we perform a horizontal shift of 1985 to the right in the equation in

part (a), so that t represents the number of years since the year 0, the formula for the
exponential function becomes

 � 2.0934 � 10�38111.555218 2 t,
 � 31.063 � 11.555218 2�1985 4 11.555218 2 t

bu�v � bubv C � 1.06311.555218 2 t�1985 � 1.06311.555218 2 t # 11.555218 2�1985

 � 5.299988 � 10�1711.555218 2 t,
 � 31.063 � 11.555218 2�85 4 11.555218 2 t

bu�v � bubv C � 1.06311.555218 2 t�85 � 1.06311.555218 2 t # 11.555218 2�85

C � 1.06311.555218 2 t

r � 0.99925

r � 0.99925.

t � number of years since year 0.C � 2.092 � 10�38111.555218 2 t,

r � 0.99925.

t � number of years since 1900.C � 5.2999 � 10�1711.555218 2 t,
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which again is virtually identical to the expression in
part (c). (The differences are due to rounding.)

�

This principle—scaling the values of the independent variable is equivalent to
a horizontal shift in the function—applies to the linear, exponential, and polyno-
mial families of functions, but it does not apply to power functions. Let’s see why.

Recall that an increasing power function always passes through the origin, and
that a decreasing power function always has a vertical asymptote at 0. When we fit
a power function to a set of increasing data, the origin is automatically added as an
extra point. Suppose that we now scale the values of the independent variable x to
form a new independent variable X. When we then attempt to fit a power function
to the transformed values, a different “origin” is added automatically. This new
“origin” for X is much closer to the shifted data set than the origin for the original
data was, as illustrated in Figure 4.82.

C � 2.092 � 10�38111.555218 2 t

Consider, for instance, the following data.

Clearly, these are points on the curve and, if we applied a power function
regression routine, that is precisely the equation we would get. This curve certainly
passes through the origin for the original variable x. It also passes through
each of the data points, as shown in Figure 4.83.

10, 0 2

y � x2

x

y

X

y

(a) Original x's (b) Shifted x'sFIGURE 4.82

x 1 2 3 4

y 1 4 9 16

1 2 3 4 5

5

0

10

15

20

x

y

FIGURE 4.83

Let’s now shift the data horizontally to the right by 10 units to get the corre-
sponding table of values for the new variable X � x � 10.
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If we apply a power function regression routine, we get the function 
This function passes through the new origin for X, as shown

in Figure 4.84. But it misses all the data points. The resulting curve has been flat-
tened enormously to force the new origin to become a point on the graph. As a re-
sult, the power for this transformed function is 11.43 rather than 2 for the original
function Recall that, for power functions the higher the power p,
the flatter the curve as it passes through the origin. Thus the resulting new power
function is distorted compared to the original power function, reflecting the differ-
ent origin.

y � xp,y � x2.

1.496 � 10�12X 11.43.
y �

As we mentioned in Chapter 3, if we use different scales for the independent vari-
able with a power function, not only does the appearance of the function change, but
also, and far more important, the predictions based on using the different forms differ.
Let’s look at what happens when we use the two preceding functions to predict the next
value in each table. In the first case, When we get In the second
case, The corresponding value of X is 
and we get a dramatically different prediction. If we shifted x by other
amounts, we would get still different predictions each time. The farther we shift from
the original data, the worse this difference gets.

Thus, although power functions are useful, you must use them with extreme
caution and careful thought.

Using Stretches

The ideas on stretching functions from Section 4.7 also have direct application
when we fit functions to data. In Example 1 in Section 3.3, we created the function

to model the growth of the U.S. population from 1780 to 1900, where P is meas-
ured in millions and t is measured in decades since 1780. Actually, we measured P
in millions for convenience. If we count the number of people, the corresponding
function would then be

Clearly, these two expressions differ by a factor of 1,000,000, and one function is
therefore stretched into the other by this constant multiple of the function.

P1t 2 � 3,069,00011.321 2 t.

P1t 2 � 3.06911.321 2 t

y � 41.462,
X � x � 10 � 15,y � 1.496 � 10�12X 11.43.

y � 25.x � 5,y � x2.

3 6 9 12 15

5

0

10

15

20

x

y

FIGURE 4.84

X 11 12 13 14

y 1 4 9 16
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Moreover, when we created the function for the U.S. population, it was con-
venient to use t to represent the number of decades since 1780. However, it might
be more meaningful to have a function in which the independent variable repre-
sents the number of years since 1780 instead. If we use the data values for P from
Section 3.3 but count the years 10, 20, . . . rather than decades, we get the
function

compared to

How do these two expressions compare? We know that each decade consists of
10 years, which suggests a constant multiple of 10 for the number of years. So, if we
start with the first expression for the population where t is measured in years
and multiply the independent variable t by 10, we get

which is the same expression as Whenever we convert the
units for the independent variable, from years to centuries, from hours to days,
from inches to centimeters, and so on, we actually are stretching or shrinking the
function horizontally.

P21t 2 � 3.06911.321 2 t.

 � 3.06911.321 2 t,
apu � 1ap 2u � 3.069 3 11.02823 2 10 4 t

 P1110t 2 � 3.06911.02823 2 10t

P11t 2

t � number of decades since 1780.P21t 2 � 3.06911.321 2 t,

t � number of years since 1780,P11t 2 � 3.06911.02823 2 t,

t � 0,

Time, t 0 5 10 15 20

Temperature, T 200 163 139 118 108

Problems

1. In the analysis of the data on the cooling experi-
ment, we assumed that the water temperature was

and so subtracted 8.6 from each of the data
values. Assume that the water temperature is 
instead. Find the corresponding function to fit the
original data. Does it appear to be a better or worse
fit to the data?

2. Instead of adding 1 to each value of N, as we did
with the Challenger data in this section, suppose
that you add some other quantity (say, 2) to each
value. How do the results compare to those ob-
tained earlier?

3. A cup of hot coffee at is left on the table in a
room to cool. The temperature readings on

the coffee at different times as it cools to are as
follows.

70°F
70°F

200°F

8.65°C
8.6°C

4. While watching his VCR, Ken noticed that the
counter seems to move much faster near the begin-
ning of the tape than toward the end of the tape, so
he knows that the readings are not linear. To find
the actual pattern, he records the counter reading
every 15 minutes and obtains the following set of
data relating the counter reading to the elapsed
time, in hours.

a. From among exponential, power, and logarith-
mic functions, find the function that best fits the
data giving the VCR counter reading in terms of
the elapsed time.

b. Using the function from part (a), what would
you predict the reading to be after 3 hours?

Time 0 0.25 0.50 0.75 1.0

Reading 0 445 817 1162 1448

Time 1.25 1.5 1.75 2.0 2.25 2.5

Reading 1732 2005 2260 2503 2721 2942

Find the exponential function that best fits the data.
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Pressure, P 0.61 1.22 2.34 4.25 7.38 12.34 19.93 31.18 47.37 70.12 101.32

Temperature, T

Source: CRC Handbook of Chemistry and Physics, 1996.

100°90°80°70°60°50°40°30°20°10°0°

Time

Logistic growth model

Leveling off

Slowing down

Exponential growth

FIGURE 4.85

The Logistic and Surge Functions

In this section, we consider two other families of functions—the logistic and the
surge functions—that frequently arise as mathematical models in a wide variety of
applications.

The Logistic Function

A great many processes start out growing exponentially, but eventually other factors
come into play to slow the rate of growth, causing a leveling off, as shown in Fig-
ure 4.85. Most populations grow in this manner, and many diseases spread in a
comparable pattern. The use of new technological innovations, be they new elec-
tronic devices such as microwave ovens, cellular phones, or DVD players and new
medical products, also spread this way. Such a pattern is called a logistic curve, and
the associated function is called a logistic function.

4.9

c. Suppose that the label on a VCR tape indicates
that a certain program Ken recorded runs from
1600 through 3400 on the counter. How long
will that program run?

d. Suppose that the VCR tape is a 6-hour tape. Pro-
grams already recorded end at a counter reading
of 4200. How much time is left on the tape for
the next recording?

5. In Problem 23 of Section 3.3 we looked at how the
boiling point (the temperature T) of water in a con-
fined space (say, in a pressure cooker) depends on
the pressure of the vapor water. The table gives the
boiling point of water, in degrees Celsius, at various
vapor pressures, in kilo-pascals.

a. From a scatterplot of the data of T versus P, it ap-
pears that the boiling point of water approaches a
horizontal asymptote as the pressure P increases.
This behavior might suggest an upside down ex-
ponential function of the form 
with Assume that the horizontal asymp-
tote is at Use this value to transform
the data and find the corresponding exponential
function.

b. Use your function from part (a) to find the boil-
ing point of water when the vapor pressure is
6.2 kilo-pascals.

c. What vapor pressure is needed if the boiling
point of the water is 105°C?

T � 110°.
c � 1.

y � A � Bct,
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FIGURE 4.86

Logistic processes can be modeled mathematically in several different ways,
and we look at one in considerable detail in Section 5.3. For now, we consider the
family of functions of the form

where A, B, and C are positive constants and is the base of the natu-
ral logarithm system that we introduced in Section 2.6. In most practical situations,
the constant A typically is very large, the constant C is fairly large, and the constant B
is usually between 0 and 1. Let’s first analyze the behavior of this family of functions.

This function actually is the quotient of two functions, so we have to reason in
the same way that we analyzed the behavior of rational functions in Section 4.6. In
particular, because the numerator is a positive constant, the function has no real
roots and thus never crosses the t-axis. Also, in the denominator, both the constant
A and the exponential decay function are positive, so the denominator is never
zero and the function has no vertical asymptotes. Furthermore, when t is negative
or when t is positive and relatively small, the term is extremely large com-
pared to 1. Thus the denominator behaves like and therefore
the function behaves like

At first (when t is small) this function grows like an exponential function: To
the left, it approaches 0 as and to the right, as t increases, it is increasing
and concave up. As t gets larger, however, the term decays toward 0, so that the
function behaves as if

which is a constant. That is, the function eventually (when t is larger) grows more
slowly, so there is an inflection point. Beyond that point, the curve levels off and
approaches a limiting value at the height of C. Thus this type of function has the
shape shown in Figure 4.85 and so is called a logistic function. In Figure 4.86 we
show the graph of the function

f 1t 2 �
500

1 � 200e�0.5t  .

f 1t 2 �
C

1 � Ae�Bt �
C

1 � A . 0
� C,

e�Bt
t S ��,

f 1t 2 �
C

1 � Ae�Bt �
C

Ae�Bt �
CeBt

A
 .

f 1t 2
1 � Ae�Bt � Ae�Bt,

Ae�Bt

e�Bt

e � 2.71828 . . . 

f 1t 2 �
C

1 � Ae�Bt  ,

It has the shape of a logistic curve, eventually leveling off at a height of about 500.
In Example 1 of Section 3.3, we found that the growth in the U.S. population

from 1780 to 1900 closely followed an exponential growth pattern with a growth
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rate of 32.1% per decade. Corresponding to the best fit exponential curve, we had
a correlation coefficient of However, we pointed out that this exponen-
tial pattern doesn’t apply during the twentieth century because the growth rate has
slowed dramatically for various reasons. This behavior suggests that a logistic func-
tion may be a better choice than an exponential function for modeling the U.S.
population over the entire time period since 1780.

EXAMPLE 1
(a) Find a logistic function to fit the following data on the growth of the U.S. population,
in millions, since 1780. Let t represent the number of decades since 1780. (b) What does
the function predict about the eventual maximum population of the United States?
(c) Use the function to predict the U.S. population in 2020.

r � 0.998.
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FIGURE 4.87

Year Population Year Population

1780 2.8 1900 76.0

1790 3.9 1910 92.0

1800 5.3 1920 105.7

1810 7.2 1930 122.8

1820 9.6 1940 131.7

1830 12.9 1950 150.7

1840 17.1 1960 179.3

1850 23.2 1970 203.3

1860 31.4 1980 226.5

1870 39.8 1990 248.7

1880 50.2 2000 281.4

1890 62.9

Solution

a. We begin with the scatterplot of the data shown in Figure 4.87, which indicates that
population growth appeared to slow during the latter part of the twentieth century.
The successive ratios of the population values also indicate that the rate of population

Gord.3896.04.pgs  4/24/03  9:58 AM  Page 348



4.9 The Logistic and Surge Functions 349

1750 1800 1850 1900 1950 2000

50

0

100

150

200

250

300

350

t

P

Year

Po
pu

la
tio

n 
(m

ill
io

ns
)

FIGURE 4.88
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FIGURE 4.89

b. To find the limiting population predicted by this logistic function, we have to deter-
mine what happens as As t increases, the term approaches 0, so that
the quotient approaches 659.45 million people.

c. Based on this model, the population in 2020, when decades, will be

million people.

�

The Surge Function

Picture what happens when a medication is first administered to a patient. The ef-
fective level of the drug in the bloodstream initially is zero. The drug level then
rises rapidly toward a maximum as it is absorbed into the blood. Finally, the drug
level decays slowly as it is washed out of the body by the kidneys that filter impu-
rities from the blood. The overall pattern has the shape shown in Figure 4.89.
Similarly, a new advertising campaign produces an immediate jump in sales, but

P124 2 �
659.45

1 � 92.05e�0.1981242 � 367.42

t � 24

e�0.198tt S �.

growth slowed from over 20% per decade at the beginning of the twentieth century to
about 10% per decade at the end.

We now want to fit a logistic curve to these data. Some calculators have the capa-
bility of fitting the best logistic function of the form discussed here to a set of data in
the least squares sense. When we use this routine on the U.S. population values, we
get the function

This function, superimposed over the population data in Figure 4.88, appears to be
an excellent fit to the data.

y � P1t 2 �
659.45

1 � 92.05e�0.198t   .
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then the effects of the ad campaign tend to die out slowly over time. The resulting
pattern can also be represented by a curve like that shown in Figure 4.89.

Both of these processes are examples of a surge function, which can be writ-
ten as

where A, p, and are three parameters. For realistic situations, we consider
only This formula for a surge function actually is the product of a power
function and an exponential decay function because For instance, Fig-
ure 4.90 shows the graph of the surge function S1t 2 � 100t2.510.75 2 t.

b � 1.bttp
t  0.

b � 1

S1t 2 � Atpbt,

The coefficient A determines the maximum height of the curve. For the surge
function shown in Figure 4.90, this maximum is slightly more than 1800. The
power function term reflects the initial impetus and, in fact, the power p deter-
mines the location of the maximum value of the function. For this surge function,
the maximum occurs at about The decaying exponential term is re-
sponsible for the eventual slow decay. Also, remember that an exponential function
dominates any power function for large t so that, in the product of the two func-
tions, the exponential decay eventually overwhelms the growth in the power func-
tion term.

EXAMPLE 2
The drug L-dopa is administered to people suffering from Parkinson’s disease to relieve
symptoms such as extreme tremors and rigidity. To be effective, fairly high doses are re-
quired because only a small portion of a dose actually lasts in the body long enough to
be effective. The side effects of the large doses can be reduced by administering another
drug in conjunction with L-dopa. The following table shows the level of L-dopa L in the
blood, in nanograms per milliliter, as a function of time t, in minutes.

btt � 8.5.

tp

t 0 20 40 60 80 100 120 140 160 180 200 220 240 300 360

L 0 300 2700 2950 2600 1550 1100 900 725 600 510 440 300 250 225

5 10 15 20 25 30

400

0

800
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1600

2000

t

S

S(t) = 100t2.5(0.75)t

FIGURE 4.90

A plot of these points is shown in Figure 4.91, which suggests the pattern for a surge
function. Find the equation of a surge function that models the data.

Solution The plot of the data indicates that the surge function reaches its maximum at
about where the maximum value is approximately 3000. The function also has
two points of inflection, one on either side of the peak. From the table of data, the great-
est increase in L occurs between and so we estimate that one inflectiont � 40,t � 20

t � 60,
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FIGURE 4.91

point occurs at say. The greatest decrease in L occurs between and
so we estimate that the other inflection point occurs at about 

We write as the general equation of a surge function, where A, p, and b
are the three parameters whose values we have to determine. Unfortunately, routines to
find these parameters are not built into any calculators or directly into any software
packages, so we have to find an indirect way of estimating their values. To do so we
apply a transformation approach similar to that used in Sections 3.4 and 3.5. Thus, if

when we take logs of both sides, we get

Therefore, if L is a surge function of t, log L is a linear function of t and of log t. Thus, we
extend the preceding table to include values for log t and log L.

log1up 2 � p log u � log A � p log t � t log b.

log1u . v . w 2 � log u � log v � log w log L � log1Atpbt 2 � log A � log tp � log bt

L1t 2 � Atpbt,

L1t 2 � Atpbt
t � 90.t � 100,

t � 80t � 30,

Note that the first entries for log t and log L are marked UNDEF because the logarithmic
function is not defined.

Because log L is a linear function of both t and log t, we can use the values from this
table in a program that performs multivariate linear regression, as discussed in Sec-
tion 3.6. The linear function that best fits these data is

where and The regression equation is equivalent to

We undo the transformation, as we did in Sections 3.4 and 3.5, by taking powers of 10 on
both sides of this equation:

10log u � u � 31.6510.9848 2 tt1.1591.

log up � p log u � 131.65 2 110�0.00667 2 t # 110log t1.1591

2
10u�v � 10u . 10v � 1101.5004 2 110�0.00667t 2 1101.1591 log t 2
10log u � u 10log L � L � 101.5004�0.00667t�1.1591 log t

log L � 1.5004 � 0.00667t � 1.1591 log t.

X2 � log t.X1 � t

Y � 1.5004 � 0.00667X1 � 1.1591X2,

t 0 20 40 60 80 100 120 140 160 180 200 220 240 300 360

L 0 300 2700 2950 2600 1550 1100 900 725 600 510 440 300 250 225

log t UNDEF 1.3 1.60 1.78 1.90 2.00 2.08 2.1 2.2 2.2 2.3 2.3 2.3 2.4 2.56

log L UNDEF 2.4 3.43 3.47 3.41 3.19 3.04 2.9 2.8 2.7 2.7 2.6 2.4 2.4 2.35
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Therefore our model for the surge function is

The graph of this function superimposed over the original data set for the level of L-dopa
in the blood is shown in Figure 4.92. It is not a particularly good fit to the data, especial-
ly for t between 0 and about 100 minutes. It reflects the overall pattern in the data but
not very accurately. Moreover, the corresponding coefficient of multiple determination
is so which is reasonably close to 1. It is close enough for there
to be a significant level of correlation.

R � 0.8292,R2 � 0.6876,

L1t 2 � 31.65t1.159110.9848 2 t.
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FIGURE 4.92

Problems

1. The growth pattern in human height or weight devel-
opment from birth through age 18, say, usually follows
a logistic growth pattern. The table gives the typical
height, in centimeters, of a male and a female in the
50th percentile for height at different ages, in years.

a. From the table, estimate the typical height of full
grown males and females in the 50th percentile
(assuming full growth occurs by age 18).

b. If you have access to a calculator or software
package that fits a logistic function to a set of
data, find a pair of logistic functions that can be
used to model the heights of both males and fe-
males as a function of age t for those in this 50th
percentile group.

c. What do the formulas from part (b) predict
about the typical heights of full grown males and
females in the 50th percentile?

4 102.9 101.6

5 109.9 108.4

6 116.1 114.6

7 125.0 120.6

8 127.0 126.4

9 132.2 132.2

10 137.5 138.3

11 143.3 144.8

12 149.7 151.5

13 156.5 157.1

14 163.1 160.4

15 169.0 161.8

16 173.5 162.4

17 176.2 163.1

18 176.8 163.7

Source: U.S. Department of Health, Education, and Welfare, NCHS
Growth Curves for Children, Vital and Health Statistics, National
Health Survey. Washington, D.C.: U.S. Government Printing Office.

Age Males Females

0 50.5 49.9

1 76.1 74.3

2 87.6 86.5

3 96.5 95.6
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t Population

0 1.763

10 1.893

20 2.030

30 2.118

40 2.158

50 2.347

60 2.378

70 2.585

80 2.888

90 3.139

100 3.483

110 3.800

120 4.168

130 4.566

140 4.785

150 5.136

160 5.522

170 5.9004

Source: Raymond Pearl, The Biology of
Population Growth. New York: Knopf,
1925.

2. Sweden has one of the longest collections of census
records of any country. The table to the right shows
the Swedish population, in millions, starting in
1750 when through 1920 when 

a. From the table, estimate the population of Swe-
den at the point of inflection when 

b. If you have access to a calculator or software
package that fits a logistic function to a set of
data, find a logistic function that can be used to
model the population of Sweden as a function of
time t.

c. What does the formula from part (b) predict
about the maximum possible population of
Sweden?

d. Consult the population table in Appendix G to
see how well the logistic function you found in
part (b) predicts the actual population in 2002.

3. Consider the surge function 
(see Figure 4.90). Without using your function gra-
pher, predict how the graph of each surge function
(a)–(d) compares to this function in terms of the
location of the turning point and the rate at which
the function decays to 0.

a.

b.

c.

d. f 1t 2 � 100t2.510.80 2 t
f 1t 2 � 100t2.510.70 2 t
f 1t 2 � 100t210.75 2 t
f 1t 2 � 100t310.75 2 t

S1t 2 � 100t2.510.75 2 t

t � 110.

t � 170.t � 0

Chapter Summary

In this chapter, we introduced several additional families of functions and ways to
build new functions out of old functions. More specifically, we described:

� How quadratic, cubic, quartic, and higher degree polynomials behave.

� How the real roots of a polynomial equation relate to the linear factors.

� How the real roots of a polynomial equation relate to the graph.

� How the number of turning points and the number of inflection points re-
late to the degree of a polynomial.

� How the end behavior of a polynomial depends on the sign of the leading
coefficient.

� How to find the real roots of a polynomial graphically, numerically, and—in
the case of quadratic functions—algebraically.
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354 CHAPTER 4 Extended Families of Functions

� How polynomial functions arise as models in the real world.

� How to fit polynomial functions to sets of data.

� The relative frequency with which complex roots occur.

� How to interpret the higher order differences of a set of numbers to deter-
mine polynomial patterns in sets of data.

� How to find the sum of the first n integers and the sum of the squares of
the first n integers.

� What it means to add, subtract, or multiply functions to form new func-
tions.

� The behavior of rational functions.

� What it means to have a function of a function.

� The effects of shifting, stretching, and shrinking on a function.

� How to interpret shifting and stretching of functions in terms of fitting
functions to data.

� How logistic and surge functions behave.

� How to use logistic and surge functions as models.

Review Problems

x

y

f

x

y
f

x

y

f

Sketch the graph of each function without using your
function grapher.

1.

2.

3.

4.

Factor each polynomial to determine its roots alge-
braically.

5. 6.

7.

8. Use the quadratic formula to verify your answers to
Problems 5–7.

9. A quadratic function f has its vertex at the point
and What is 

10. A cubic function f has its inflection point at 
and What is 

11. Estimate the location of the turning points of the
graph of the function 

12. Determine the graphs of each pair of functions f
and g and use them to draw the graph of

a.
b.

13. Analyze the behavior of each rational function in-
cluding identifying all zeros, vertical asymptotes,

g 1x 2 � x2f 1x 2 � 2x3 � 4,
g 1x 2 � 3x � 2f 1x 2 � x2 � 5,

f � g.

y � x3 � 4x2 � 5.

f 110 2?f 12 2 � 12.
16, �4 2 ,

f 12 2?f 18 2 � 4.15, 19 2 ,

R1x 2 � x3 � 3x2 � 2x

Q1x 2 � 2x2 � 9x � 5P1x 2 � x2 � x � 6

G1x 2 � 1x � 3 2 1x � 2 2 1x � 4 2 2
F1x 2 � 1x � 2 2 1x � 3 2 1x � 4 2 1x � 1 2
g1x 2 � 12 � x 2 1x � 3 2 1x � 1 2
f 1x 2 � 1x � 3 2 1x � 2 2 1x � 4 2

and end behavior as x approaches and Esti-
mate all turning points graphically.

a. b.

c. d.

14. For each function shown, sketch the graph of

i. ii.
iii. iv.
v. vi. �f 1x � 4 2f 1x � 3 2

f 1x � 3 2f 1x 2 � 4
3f 1x 2�f 1x 2

T1x 2 �
x2 � 4

x2 � 9
S1x 2 �

x2 � 4

x2 � 9

Q1x 2 �
x2 � 4

x2 � 9
R1x 2 �

x2 � 4

x2 � 9

��.�

a.

c.

b.

Gord.3896.04.pgs  4/24/03  9:58 AM  Page 354
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15. Suppose that and 
Find the following.

a. b.

c. d.

e. f.

g. h.

i. j.

k. l.

16. Suppose that 
and that 
Find the following quantities for 

1, 2, and 3.

a. b.

c. d.

17. Repeat Problem 16(a)–(d) for the functions f and g
shown in the graphs below for 2, 3, and 4.x � 1,

f 1x 2
g1x 2

f 1x 2 � g1x 2

g1 f 1x 2 2f 1g1x 2 2

x � 0,g13 2 � 3.
g12 2 � 2,g11 2 � 0,g10 2 � 1,f 13 2 � 0
f 12 2 � 3,f 11 2 � 2,f 10 2 � 2,

f 1x 2
g 1x 2

g 1x 2 f 1x 2

g 1g 1x 2 2g 1 f 1x 2 2
f 1 f 1x 2 2f 1g 1x 2 2

f 13 2
g 13 2

g 13 2 f 13 2

g 1g 13 2 2g 1 f 13 2 2
f 1 f 13 2 2f 13 2 � g 13 2

1x � 2 2 .1x � 1 2 >
g 1x 2  �f 1x 2 � 2x2 � 1 18. The return in dollars on an investment seems to

be well approximated by the function 
whereas the return on another in-

vestment is modeled by Deter-
mine for which values of the second
investment is better than the first.

19. Evaluate the sum

20. A polynomial has four turning points.

a. How many inflection points must it have?
Explain.

b. What is the minimum degree of the polynomial?
c. What is the minimum number of real roots that

the polynomial can have? Explain your answer
with a sketch of a polynomial to illustrate what
can happen.

d. What is the maximum number of real roots that
the polynomial can have? Explain your answer
with a sketch of a polynomial to illustrate what
can happen.

e. Are there any other values for the number of real
roots between the minimum number in part (c)
and the maximum number in part (d) that the
polynomial can have? Explain your answer with
a sketch of a polynomial to illustrate what can
happen.

21. The accompanying figure shows the graph of a
fourth degree polynomial. Use regression methods
to find a possible formula for this polynomial.

3 � 6 � 9 � 12 � 15 � . . . � 300.

t 	 0
G1t 2 � 7.8t � 3.5.

2t2 � t � 4.2,
F1t 2  �

10 2 3 4

1

2

3

4

x

y

f (x)

(i)

1 2 3 4

1

2

3

4

x

y

0

g(x)

(ii)

–3 –2 –1 1 2 3

–20

–16

–12

–8

–4

4

8

12

16

x

y

22. The table that follows gives some values, rounded
to the nearest integer, for a rational function.

a. Sketch a possible graph of this rational function

b. Find a possible formula for this rational function.
R1x 2 .
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23. Each function shown in the accompanying figure
can be interpreted as a shift applied to an exponen-
tial, a power, or a logarithmic function.

a. Identify which is which.
b. Write a possible formula for each function.

24. The table gives the total number of cell phone sub-
scribers, in millions, in the United States since 1990
and the average local monthly bill, in dollars, for
cell phone service.

a. Find the exponential growth function that best
fits the data on the number of subscribers as a
function of time since 1990.

b. Find the exponential decay function that best fits
the data on the average monthly bill as a func-
tion of time since 1990.

c. The total industry revenue each year is the pro-
duct of the number of subscribers and the aver-
age monthly bill for service. Use the results of
parts (a) and (b) to write a function that models
the total cell phone revenue as a function of time
since 1990. What is the growth or decay factor
for this revenue function?

d. Extend the table to include a row that gives the
total annual revenue in the cell phone industry.
Then find the exponential function that best
fits the data on the annual revenue as a func-
tion of the number of years since 1990. How
does this result compare to the one you found
in part (c)?

(i) (ii) (iii)

(iv) (v) (vi)

x

y

x

y

x

y

x

y

x

y

x

y

–10

7 9

5

5

–4

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Subscribers 4.37 6.38 8.89 13.07 19.28 28.15 38.20 48.71 60.83 76.28

Average bill 83.94 74.56 68.51 67.31 58.65 52.45 48.84 43.86 39.88 40.24

Source: 2000 Statistical Abstract of the United States.

x 0 1

10 0 UNDEF 0 0

x 2 3 4 5 6 7

UNDEF 0 18 UNDEF 0 21R(x)

�3R(x)

�1�2�3�4
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5

Modeling with 
Difference Equations

Eliminating Drugs from the Body

Prozac is one of the most widely prescribed drugs used to combat extreme depression.
Typically, a patient takes a Prozac tablet once a day. As we discussed in Section 2.5,
once a medication has been absorbed into the bloodstream, it is washed out of the sys-
tem by the kidneys, which purify the blood by filtering out foreign chemicals.

For now, let’s assume that a person takes a single 80 mg dose of Prozac and
that it has been completely absorbed into the blood. During any 24-hour time pe-
riod, the kidneys eliminate approximately 25% of the Prozac in the bloodstream,
so that 75% of the drug remains. As we showed in Section 2.5, the amount of
Prozac in the bloodstream based on a single 80 mg dose can be modeled by the ex-
ponential decay function

where t measures the number of 24 hour periods since the Prozac was taken. The
graph of this function is shown in Figure 5.1.

D1t 2 � 8010.75 2 t,

5.1
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FIGURE 5.1

In particular, After one 24 hour period, assuming no additional
Prozac is taken, After 2 days, and
so on. These particular points are highlighted in Figure 5.1.

D12 2 � 8010.75 2 2 � 45,D11 2 � 8010.75 2 � 60.
D10 2 � 80.
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358 CHAPTER 5 Modeling with Difference Equations

The collection of values so obtained,

is called a sequence—it is a set of numbers in a particular order. Thus, a sequence is
a function that is defined on a set of nonnegative integers such as 
The corresponding range is some set of real numbers, such as the levels of Prozac,
determined by the rule for the sequence. In other words, for each positive integer,

there corresponds a real number that is the nth term in the
sequence. We can write the sequence for the levels of Prozac in the blood as

to emphasize that it is a function.
Although sequences are functions, a special notation is used for them instead

of the usual functional notation. For instance, with the Prozac model, we write
instead of instead of and so on. The gen-

eral, or nth, term in the sequence is then written as instead of where
Unless we’re working in a context where some other letters are

more appropriate (such as for the level of a drug), we denote the nth term in a
sequence by which represents 

Keep in mind that, when you work with a sequence such as for the level of
Prozac in the system, you are looking only at the value of the function at the start
of each 24-hour period. What happens in between isn’t considered because the
process is basically discrete. Graphs such as the one shown in Figure 5.1 with a
smooth curve superimposed over the points in the sequence are convenient for vi-
sualizing a trend, but can sometimes be misleading. Such a curve can completely
miss anything else that may happen from one value of n to the next.

Repeated Drug Dosages

In practice people often use a drug such as Prozac on a maintenance basis—they
take a fixed dose of the medication every time period, rather than a single initial
dose. It might be a repeated daily dose of Prozac or some high-blood-pressure
medication or a repeated dose of a cold medication every 4 hours. In such cases,
the exponential decay model is not realistic. What can we then say about the
amount of medication in the body as a function of time?

Suppose that a person takes 80 mg of Prozac each day, starting on some partic-
ular day. After the first 24 hours, 25% of the Prozac, or 20 mg, is eliminated, leav-
ing 75%, or 60 mg and then the next day’s dose adds 80 mg to that amount.
Therefore, after the first 24 hours, the amount of Prozac in the body is

or considerably more than the original dose!
During the second 24 hour period, the kidneys eliminate 25% of the 140 mg of

Prozac present, or 35 mg, leaving 75% of the 140 mg of Prozac present, or 105 mg.
Then the person takes the next dose of 80 mg. Thus, after two 24 hour periods, the
amount of Prozac in the body is

After 3 days, the level of Prozac is

D3 � 0.751185 2 � 80 � 218.75 mg,

D2 � 0.751140 2 � 80 � 105 � 80 � 185 mg.

D1 � 60 � 80 � 140 mg,

Dn

5x0 , x1 , x2 , . . . 6.xn ,
Dn

n � 0, 1, 2, . . . 
D1n 2 ,Dn 

D11 2 � 60,D10 2 � 80, D1 � 60D0 � 80

D10 2 , D11 2 , D12 2 , . . . 

D1n 2n � 0, 1, 2, . . . ,

n � 0, 1, 2, . . . 

580, 60, 45, 33.75, 25.3125, . . . 6,
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FIGURE 5.2

and so on, indefinitely. The corresponding sequence of Prozac levels is

Note how the level of the drug keeps rising, but in a concave down manner, as illus-
trated in Figure 5.2.

Does the foregoing explanation suggest that the level of Prozac in the bloodstream
keeps rising indefinitely? If so, is that reasonable? ❐

Let’s look at a slightly different way to describe this process. The initial dose is
During the first 24 hour time period, 25% of this amount is removed

from the blood, leaving 75% of and the person then takes the next dose of 80 mg.
Thus

Similarly, during the second day, 25% of the Prozac is eliminated, leaving 75% of
and the person then takes another 80 mg dose, so that

Again, after the third day,

In general, at the end of days, for any value of n,

This equation shows the relationship between the level of Prozac on any two succes-
sive days. In particular, if we know the amount of Prozac in the body after n days,
this equation allows us to calculate the amount of Prozac present the following day.

We call an equation such as that relates the successive
terms in a sequence a difference equation. As you will see, it is an effective way to
model drug concentrations in the body. (Note that some authors reserve the term
difference equation only for equations that explicitly involve the difference

between successive values in a sequence; we adopt the more common,
broader use of the term for any relationship between and .)

In the drug model, the initial dose of Prozac was Therefore, if we
set in the difference equation we determine to be

D1 � 0.75D0 � 80 � 0.75180 2 � 80 � 140 mg.

D1Dn�1 � 0.75Dn � 80,n � 0
D0 � 80 mg.

xnxn�1

xn�1 � xn

Dn�1 � 0.75Dn � 80

Dn�1 � 0.75Dn � 80.

n � 1

D3 � 0.75D2 � 80.

D2 � 0.75D1 � 80.

D1 ,

D1 � 0.75D0 � 80.

D0 ,
D0 � 80 mg.

Think About This

580, 140, 185, 218.75, 244.0625, 263.0469, . . . 6.
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FIGURE 5.3

When we obtain,

When we get,

Continuing in this way, we get

and so on. Over time, the amount of the drug in the body is given by the sequence of
numbers

Figure 5.3 shows the graph of these points, connected by a smooth curve. This se-
quence of numbers is the solution to the difference equation; we refer to it as the
solution sequence.

580, 140, 185, 218.75, 244.0625, 263.0469, 277.2852, . . . 6.

 D6 � 0.75D5 � 80 � 277.2852 mg;

 D5 � 0.75D4 � 80 � 263.0469 mg;

 D4 � 0.75D3 � 80 � 244.0625 mg;

D3 � 0.75D2 � 80 � 0.751185 2 � 80 � 218.75 mg.

n � 2

D2 � 0.75D1 � 80 � 0.751140 2 � 80 � 185 mg.

n � 1

Note that each successive term, although larger than the preceding value, has
grown by somewhat less than the term before. That is, the change from to is 60
mg; the change from to is 45 mg; the change from to is 33.75 mg, and so
on. The curve drawn through the points in Figure 5.3 is concave down, and the suc-
cessive values seem to be leveling off. That is, the drug level continues to rise but at a
less steep rate. The overall pattern is characteristic of an upside-down exponential
decay process. Rather than gradually dying out toward the horizontal axis as a hori-
zontal asymptote (as an exponential decay function does), this process gradually rises
toward the limiting amount of drug in the body as a horizontal asymptote. By contin-
uing this process numerically, we find that the limiting amount L appears to be very
close to 320 mg. We say that the terms of the sequence converge to this limiting value
in the sense that they get closer and closer to L the farther we go in the sequence.

Generating the successive terms of this type of iteration process on either a cal-
culator or a spreadsheet is quite simple. On a calculator, simply enter the starting
value for the sequence and press Enter. Then enter the iteration formula, using 2nd
ANS as the variable. For instance, using the Prozac model, you would enter the initial
dose 80 and then the formula for the difference equation in
the form

Dn�1 � 0.75Dn � 80

D3D2D2D1

D1D0
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5.1 Eliminating Drugs from the Body 361

0.75*ANS+80.

When you press Enter, you get the next value of the sequence, or 140. Then each time
you press Enter, you get the following value. Try this process to see how simple it re-
ally is.

In terms of the original problem, the limiting value L represents the maximum
level of Prozac that will be reached in the body. This horizontal asymptote is
known as the maintenance level for the drug. Once that level of Prozac has been
reached, the amount in the body will remain constant at that level every 24 hours,
so long as the same dose is taken repeatedly every 24 hours.

The curve shown in Figure 5.3 is actually incorrect; it was obtained by simply con-
necting the points to demonstrate the overall pattern. However, it completely ig-
nores what happens during the 24 hours between successive doses. Sketch a more
detailed curve that accurately reflects what happens. ❐

In practice, researchers determine the specific level L of a medication that is most
effective, considering factors of both safety and effectiveness. An initial dose of, say, 80
mg of the medication means that for some period of time, the amount in the blood-
stream is below the optimal level. As a result, doctors often prescribe an initial dose
higher than the normal dose so that the drug level approaches the maintenance level L
more rapidly. For instance, an initial dose of 240 mg followed by daily doses of 80 mg
will achieve the desired level quickly. However, the safety of prescribing such a large
dosage, especially as the first dose of the drug, must be considered.

EXAMPLE 1
Suppose that the initial dose of Prozac is 160 mg (instead of 80 mg) but that all subse-
quent doses are 80 mg.

a. Find the first six terms of the solution sequence.

b. How does this solution compare to the one we had before?

Solution

a. We still have the same difference equation model,

but now the initial dose is Therefore

if

if

if

Continuing in this manner,

and so on. Thus the levels of Prozac in the bloodstream are now given by the solution
sequence

b. By changing the initial dose we get a different sequence of values. That is, the dif-
ference equation has a different solution sequence that depends on the initial value

D0 ,

5160, 200, 230, 252.5, 269.375, 282.031, 291.523, 298.643, 303.982, . . . 6.

 D6 � 0.75D5 � 80 � 291.523 mg;

 D5 � 0.75D4 � 80 � 282.031 mg;

 D4 � 0.75D3 � 80 � 269.375 mg;

D3 � 0.75D2 �  80 � 0.751230 2 � 80 � 252.5 mg.n � 2:

D2 � 0.75D1 �  80 � 0.751200 2 � 80 � 230 mg;n � 1:

D1 � 0.75D0 � 160 � 0.751160 2 � 80 � 200 mg;n � 0:

D0 � 160 mg.

Dn�1 � 0.75Dn � 80,

Think About This
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What happens if the level of drug in the system gets very high? We explore this
situation in Example 2.

EXAMPLE 2
Suppose that a person takes an initial dose of 500 mg of Prozac and thereafter takes the
usual 80 mg daily.

a. Find the corresponding solution sequence.

b. Discuss the behavior of the solution.

Solution

a. We again use the same difference equation,

but now the initial dose is so thatD0 � 500,

Dn�1 � 0.75Dn � 80,

362 CHAPTER 5 Modeling with Difference Equations
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we choose. However, the behavior of this solution is essentially the same—it is an in-
creasing, concave down function that rises toward the same limiting value of

as shown in Figure 5.4.L � 320 mg,

0
n

D

Time (days)

D
ru

g 
L

ev
el

 (
m

ill
ig

ra
m

s)

2 4 6 8 10 12 14

50

100

150

200

250

300

350

FIGURE 5.4

gord.3896.05.pgs  4/24/03  10:02 AM  Page 362



5.1 Eliminating Drugs from the Body 363

if

if

if

and so on. Thus the levels of the drug in the bloodstream are now given by the solution
sequence

b. Figure 5.5 shows these points, which fall in a decreasing, concave up pattern that ap-
parently approaches the same limiting value but from above rather than
from below.

�

Consequently, if the drug level rises too high, some counteracting effects re-
duce the level. Thus the process that we have described can’t lead to an infinite drug
level in the body. In fact, our difference equation model predicts that, if the level
ever exceeds the maintenance level for the drug, the drug level will decrease as sub-
sequent daily doses are taken.

Again, note that by changing the initial condition in the difference equa-
tion, we obtain a different solution sequence.

Determining the Maintenance Level L

We estimated the maintenance level for Prozac as being about 320 mg by looking at
the successive values we calculated in the solution sequence. We now determine the
limiting value L for Prozac precisely by using the following argument.

Suppose that, for some value of n, reaches the limit L so that all successive
levels of Prozac are the same. Thus for a large enough n, we assume that both

and Substituting these values into the difference equation for
the Prozac drug model,

we obtain

Hence the limiting value is

We developed all these ideas in the context of a single drug whose level in the
bloodstream decreases at a particular rate. In actuality, different drugs are “washed
out” of the blood at different rates. For example, aspirin is removed quite rapidly: Its
level is reduced by about 50% every 29 minutes. In fact, all drugs are rated by how
long it takes for 50% to be eliminated from the body, which is known as the biological
half-life or simply the half-life of the drug. Thus the half-life of aspirin is 29 minutes.

In the usual 4-hour time period between successive 325 mg doses of aspirin, how
much of the aspirin in the blood would be removed by the kidneys? ❐

Think About This

L �
80

0.25
� 320 mg.

L � 0.75L � 80 so that 0.25L � 80.

Dn�1 � 0.75Dn � 80,

Dn � L.Dn�1 � L

Dn

D0

L � 320 mg,

5500, 455, 421.25, 395.938, 376.953, 362.715, 352.036, 344.027, 338.020, . . . 6.

D3 � 0.75D2 � 80 � 395.938 mg;n � 2:

D2 � 0.75D1 � 80 � 421.25 mg;n � 1:

D1 � 0.75D0 � 80 � 455 mg;n � 0:
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80 140 185 218.75 244.0625 263.0469 277.2852Dn
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n 0 1 2 3 4 5 6

80 140 185 218.75 244.0625 263.0469 277.2852

240 180 135 101.25 75.9375 56.9531 42.7148320 � Dn

Dn

Finding a Formula for the Solution

In the preceding situations, we worked with the terms in the solution sequences of
the difference equation

for different values of the initial dose Thus, if the initial dose is the
corresponding solution sequence is But we did not find
a formula for this solution as a function of n. (In Supplementary Chapter 12 we de-
velop a powerful technique for finding formulas for the solution sequences to such
difference equations. For now, we construct such a solution by using some of our
previous ideas about functions.)

EXAMPLE 3
Find a formula for the solution sequence to the drug model difference equation for
Prozac, based on an initial dose 

Solution We can think of the values in the solution sequence as a set of data values.

D0 � 80.
Dn ,

Dn � 580, 140, 185, . . . 6.
D0 � 80,D0 .

Dn�1 � 0.75Dn � 80

(We could use more values, but these will suffice.) Recall that the shape of the curve shown
in Figure 5.2 is like an upside-down exponential decay function. Because the values for 
approach a limiting value of as a horizontal asymptote, we can shift each 
value to obtain the corresponding values of as shown in the following table and
in Figure 5.6.

320 � Dn ,
DnL � 320 mg
Dn

Note how the values of in the bottom row decay as n increases. If we continue
the process further, these differences approach 0 as n gets larger (because approaches
320 as n increases). It therefore makes sense to fit a decaying exponential function to

Dn

320 � Dn
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5.1 Eliminating Drugs from the Body 365

as a function of n. (We would not use a decaying power function because the
data start with a finite value of 240 when )

Using a calculator, we find that the exponential function that best fits these data is

The corresponding correlation coefficient is which suggests a virtually perfect
fit. If we solve for the level of Prozac , we obtain

The numbers in this expression suggest that the “correct” formula for the solution might
be

We later show that this formula holds for every possible value of n, not just for the few
particular values of n we used in constructing the best-fitting exponential function.

�

Constructing the Solution in General

We now extend the preceding solution formula to solve the comparable difference
equation for any medication with any fixed periodic dose. Suppose that the kid-
neys remove a fixed percentage of a medication every time period, leaving a frac-
tion a, in the bloodstream. Also, suppose that the repeated dose is an
amount B. The corresponding difference equation then is

(In our previous development with Prozac, we had and ) For any
value of a between 0 and 1 and any positive value of B, the successive terms in the
solution sequence for have behavior comparable to that shown in Figure 5.2
assuming is less than the maintenance level: The solution sequence is an in-
creasing concave down function, and approaches a horizontal asymptote. If your
graphing calculator displays solutions of difference equations, select some typical
values for a and B and check out the behavior of the solution.

Because the level of the medication in the blood rises toward the maintenance
level L, we can solve for L in this general case by realizing that, should this level ac-
tually be achieved, then both and Therefore

Hence the maintenance level is

The formula for that we constructed previously for Prozac was 
based on and with an initial value In this

expression, 320 is the limiting value and 0.75 is the decay factor a.
The coefficient 240 is the difference between the limiting value L and
the initial dose These results suggest that the general formula for the solution
sequence is

for any value of n, with parameters a, B, and D0 .L � B> 11 � a 2 ,

Dn � L � 1L � D0 2a
n

D0 .
320 � 80,

L � B> 11 � a 2
D0 � 80.B � 80,a � 0.7524010.75 2n,

Dn � 320 �Dn

L �
B

1 � a
 .

L � aL � B, so that L � aL � L . 11 � a 2 � B.

Dn�1 � L.Dn � L

D0

Dn

B � 80.a � 0.75

Dn�1 � aDn � B.

0 � a � 1,

Dn � 320 � 24010.75 2n.

Dn � 320 � 239.9997810.7500007 2n.

Dn

r � �1,

320 � Dn � 239.9997810.7500007 2n.

n � 0.
320 � Dn
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Level of Medication in the Bloodstream

Assumptions
� The kidneys remove a fixed proportion, of a medication from

the bloodstream every time period.

� The repeated dosage of this medication every time period is B.

Mathematical Model
� Difference equation:

� Maintenance level for the medication:

� Solution: Dn � L � 1L � D0 2a
n

L � B> 11 � a 2
Dn�1 � aDn � B

1 � a,

EXAMPLE 4
Verify that the preceding expression for is indeed a formula for the solution sequence
of the difference equation for every value of n.

Solution To verify that the expression for is actually a formula for the solution se-
quence, we must show that it satisfies the difference equation

for every value of n. Thus we substitute and the corresponding
expression when n is replaced by into the difference
equation. The left-hand side of the difference equation becomes

The right-hand side becomes

However,

Therefore the right-hand side becomes

which is identical to the left-hand side. Thus the expression

is a formula for the solution sequence and it holds for all possible values of n.

�

We summarize the preceding results as follows.

Dn

Dn � L � 1L � D0 2a
n

 � L � 1L � D0 2a
n�1,

 � aL � 1L � D0 2a
n�1 � L � aL

 � aL � 1L � D0 2a
n�1 � L . 11 � a 2

 aDn � B � aL � 1L � D0 2a
n�1 � B

L �
B

1 � a
 so that B � L . 11 � a 2 .

 � aL � 1L � D0 2a
n�1 � B.

 � aL � a . 1L � D0 2a
n � B

 aDn � B � a 3L � 1L � D0 2a
n 4 � B

Dn�1 � L � 1L � D0 2a
n�1.

n � 1,Dn�1 � L � 1L � D0 2a
n�1

Dn � L � 1L � D0 2a
n

Dn�1 � aDn � B

Dn

Dn�1 � aDn � B
Dn
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FIGURE 5.7

We developed this mathematical model by simplifying the situation considerably.
First, when a person takes a medication, a certain amount of time is needed for it to be
completely absorbed into the blood, as well as to reach the intended part of the body.
Second, the rate at which a particular drug is washed out of the blood depends on
many factors, including a person’s weight, metabolism, and the state of the kidneys
and liver, all of which are involved in the elimination process. You definitely should
not make any medical judgments about the effectiveness of a drug based on the sim-
plified models of this section.

Summary

Let’s summarize some of the fundamental ideas about difference equations.

1. A difference equation relates the successive terms—say, and —of a
sequence. For instance, it might be

2. The solution to a difference equation is a sequence (which is a function
of n) that satisfies the difference equation. For a given initial value for
the sequence, we can always calculate every successive value of the solu-
tion sequence by using the difference equation directly.

3. For every possible initial value there is a different solution sequence to
the difference equation. Figure 5.7 shows the graphs of several different so-
lution sequences to the difference equation for the drug
model, based on different initial doses. Note that, whenever the initial
dose is less than the limiting value L, the pattern is increasing and concave
down, approaching L as a horizontal asymptote. Note also that, whenever
the initial dose is greater than L, the pattern is decreasing and concave up
and approaches L as a horizontal asymptote.

x0

x0

xn�1 � axn � B

x0 ,

5x0 , x1 , x2 , . . . 6

x0 

xn�1 � 1.2xn � 3.5 or xn�1 � �0.6xn � 2n.

xn�1 xn

4. Although the solution sequence can always be expressed in terms of the
specific numbers in the sequence, as determined from the difference equa-
tion, it is desirable, whenever possible, to write the solution as a formula
for in terms of n. Such a formula is called a closed form expression for
the general term Thus a solution sequence can be defined

a. in closed form with a formula for in terms of n,
b. by the actual sequence of numbers or
c. by a difference equation that relates successive terms of the sequence.

Think of these ideas in terms of the drug-level model we developed. The
same ideas apply to each of the difference equation models we develop
throughout the remainder of this chapter.

5x0 , x1 , x2 , . . . , xn, . . . 6,
xn

xnxn .
xn
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368 CHAPTER 5 Modeling with Difference Equations

Finally, the formula we developed for the solu-
tion sequence to the difference equation for the drug
model can be applied to many other situations. To do so, we rewrite it in a
somewhat more general way. Using as the dependent variable gives the
difference equation

Also, not every difference equation of this form has solutions with a hori-
zontal asymptote. The solutions may grow toward , so we write

in place of L. With this terminology, the solution to the differ-
ence equation becomes

When we multiply out the first equation and collect like terms in a differ-
ent manner, we get

In summary we have the following result.

xn �
B

1 � a
�

B

1 � a
 an � x0a

n �
B

1 � a
 11 � an 2 � x0a

n
 .

 �
B

1 � a
� ax0 �

B

1 � a
b an.

 xn �
B

1 � a
� a

B

1 � a
� x0b an

B> 11 � a 2
�

xn�1 � axn � B.

xn

Dn�1 � aDn � B
Dn � L � 1L � D0 2a

n

The complete solution to the difference equation

where a and B are constants, is

If the solution can be written as

where

is the limiting value for the solution as n S �.

L �
B

1 � a

xn � L � 1x0 � L 2an,

0 � a � 1,

xn �
B

1 � a
 11 � an 2 � x0a

n.

xn�1 � axn � B,

This formula for the solution applies only to difference equations of the particular
form Thus, it applies to the difference equation

but it does not apply to the difference equation

because 3n is not a constant.

xn�1 � 1.05xn � 3n

xn�1 � 1.05xn � 3,

xn�1 � axn � B.
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Problems

1. Suppose that the kidneys remove 30% of a drug from
the bloodstream every 4 hours. If a person takes a sin-
gle dose of 16 mL, find the amount of the drug in the
body after 12 hours and after 24 hours. How long does
it take for the level to drop below 1 mL? below 0.01 mL?

2. Suppose that the person in Problem 1 takes repeated
doses of 16 mL of the same drug every 4 hours.
What is the drug level after 12 hours? after 24 hours?
What is the limiting value for the dosage?

3. Suppose that an initial dose of Prozac is 
followed by daily doses of 80 mg.

a. Calculate the first six terms of the solution se-
quence. What do you observe about them?

b. Can you explain this result?

4. Suppose that the kidneys remove 25% of a drug in
the bloodstream every time period and that the ini-
tial dose is 48 mL followed by 16 mL doses every
time period thereafter. How long will it be until the
drug level in the bloodstream exceeds 60 mL?

5. Recall that Figure 5.3 ignores the removal by the
kidneys of the Prozac during each 24-hour time
period. Sketch a more accurate graph of the level of
Prozac in the bloodstream versus time.

6. The accompanying graph shows the level of a med-
ication in the bloodstream just after each repeated
dose of 16 mL is taken. Sketch the graph of the drug
level of the same medication just before the next dose

D0 � 320 mg

is taken. How do the two graphs compare? Use the
two graphs—drawn on the same set of axes—to con-
struct a graph showing the actual level of the medica-
tion in the bloodstream at all times, not only at the
times just before or just after the medication is taken.

7. The drug dosage for a certain drug is 10 mg per day,
and the initial dose is also 10 mg. If the kidneys re-
move 60% of the drug every 24 hours, find the
maintenance level for the medication.

8. Suppose that the daily dosage of the drug in Prob-
lem 7 is halved to 5 mg per day. Find the mainte-
nance level. Is the maintenance level also halved?

9. Suppose that the person in Problems 7 and 8 de-
cides to take 10 mg every second day instead of 5
mg each day. Does the patient achieve the same

Furthermore, a difference equation of the form

starting at when is also known as a forward difference equation because it ex-
presses the next value in a sequence in terms of the current value You can
think of it as “looking forward” to where you are going. We can also write a backward
difference equation in which the current value in a sequence is written in terms of
the previous value Think of it as “looking backward” where you came from. The
comparable difference equation is

You can convert a forward difference equation to an equivalent backward differ-
ence equation by replacing n with everywhere that n appears, and vice versa.
Either way, you get the identical solution sequence, either as a collection of values
or as a formula in terms of n.

Many calculators have the capability to calculate successive terms in the solu-
tion sequence for a difference equation and to plot the solution as part of their
Sequence Mode. Check your calculator manual for specific instructions.

n � 1

xn � axn�1 � B, n � 1.

xn�1 .
xn

xn .xn�1

n � 0,x0

xn�1 � axn � B, n � 0,
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370 CHAPTER 5 Modeling with Difference Equations

maintenance level for the medication? Explain why
or why not.

10. Two 5-grain aspirin tablets contain 650 mg of the
drug. With aspirin’s half-life of 29 minutes, how
much is left in the bloodstream after 2 hours? How
long does it take for the level to be equivalent to 10
mg of aspirin? If an individual takes two tablets every
4 hours, what is the maintenance level of the aspirin?

11. Some studies have shown that taking one aspirin
tablet per day significantly reduces a person’s risk of
heart attack or stroke. If a person follows this regimen,
find the maintenance level of the aspirin in the blood.

12. The maintenance level for a certain drug is 600 mg. A
patient starts with an initial dose of 100 mg and re-
peats it daily. Sketch the graph of the level of the drug
in the bloodstream as a function of time. Suppose
that and Use the graph to de-
termine which values are possible for the drug level
and which are impossible.

a. b.

c. d.

13. The daily dosage for a certain medication is 200 mL
and the maintenance level is 500 mL. A person taking
this medication reaches a level of 450 mL in 10 days.
Let represent the average daily rate of increase of
the drug level over the full 10-day period, let be the
average daily rate of increase over the first 5-day peri-
od, and let be the average daily rate of increase over
the last 5 days. Without calculating their values, list
these three rates in increasing order. (See Problem 24
of Section 4.1.)

14. Suppose that your car has a 14-gallon gas tank that
you fill as soon as the level drops to half-full. Also,
every time you fill up, you add one quart )
of an additive that mixes thoroughly with the gas
and is then used up along with the gas.

a. Write a difference equation that models the
amount of the additive in the tank from one
fill-up to the next.

b. Use the difference equation to calculate the amount
of additive in the tank over the first 10 fill-ups.

c. Sketch the graph of as a function of n based
on the values from part (b). What does the be-
havior of the function suggest?

d. Find the limiting value for the amount of the ad-
ditive in the tank as n increases indefinitely.

e. Find the closed form solution of the difference
equation.

An

An

114 gallon

r3

r2

r1

D12 � 560D12 � 540

D7 � 460D7 � 440

D10 � 520.D5 � 400

f. How would the difference equation and the lim-
iting value change if you fill up when the tank is
40% full instead of 50% full?

g. How would the limiting value change if your gas
tank holds 16 gallons instead of 14 gallons and
you fill up when the tank is half full?

Write the first six terms of each sequence whose general
term is given.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27–38. Decide which sequences in Problems 15–26 seem
to converge and which clearly do not. Give reasons
for your decision. For those that you’re not sure
about, what could you do to come to a decision?

39–50. Plot the points for each of the sequences in
Problems 15–26. Decide which appear to be strictly
increasing or strictly decreasing and which are con-
cave up or concave down.

51. Consider the sequence E whose general term is

a. Calculate the first 10 terms of this sequence and plot
them. Does the graph suggest an eventual limit?

b. Calculate and
What does the limit of the sequence 

appear to be if you let n increase indefinitely?

52. Consider the sequence again. Use
your calculator to evaluate 
and Keep track of all the results obtained.
What do you observe about the terms of this se-
quence? What is your best estimate for the limiting
value? Continue the process of taking larger and larg-
er values for n—say, up to You will find, de-
pending on your calculator, that the terms eventually
jump to 1 instead of continuing as you would expect,
owing to calculator round-off. By trial and error, can
you find the point where that occurs on your calcula-
tor? If so, what is it?

n � 1015.

e100,000,000 .
e10,000,000 ,e1,000,000 ,e1000 ,

en � 11 � 1>n 2n

en e1,000,000.
 e100,000,  e10,000 , e1000 ,e500 ,e100 ,

en � a1 �
1
n
b

n

, for n � 1, 2, . . . 

1n, xn 2

pn � 1 � 10.2 2npn � 1 � 10.2 2n

yn �
log n

n
 , n � 1yn �

1
n

 , n � 1

an �
n2

2nan �
2n

3n

xn �
n2�1

n2�2
xn � n3 � 10

xn � n2 � 5xn � 1
2 n

xn � 3n � 5xn � 4n
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5.2 Modeling with Difference Equations 371

53. Consider the sequence What is
the limiting value for the sequence as How
is this limiting value related to the one in Problem
51? (Hint: There is a simple arithmetic relationship.)

54. Repeat Problem 53, using the sequence
How is the limiting value related to the

one in Problem 51? Based on this result, conjecture
what the limiting value is for as n S �.11 � 5>n 2n

11 � 2>n 2n .
gn �

n S �?
f n � 11 � 1>n 2n. 55. What is the limit of the sequence 

?

56. Suppose that the successive terms of a sequence are
increasing and that the graph drawn through the
corresponding points is concave up for all n. Can the
sequence converge to a limit? Explain your answer.

n S �
hn � 11 � n 2 1>n as

Modeling with Difference Equations

As we have previously discussed, a mathematical model for a process is an expres-
sion or an equation that represents that process. Sometimes we simply create a
formula to fit a set of data. Often, especially in the sciences, we try to determine
the underlying principles or assumptions on which a process is based and then
attempt to find a relatively simple mathematical relationship that reflects those
principles or assumptions. For instance, in football, when a quarterback throws a
long pass down the field, the path of the ball can be represented by a simple
mathematical formula involving a quadratic function relating the height y to the
horizontal distance x—a model based on one of Newton’s laws of motion.

Throughout this chapter, the models we develop are difference equations such
as that models the level of Prozac in the bloodstream. The solu-
tion sequences to such difference equations can be given in two ways: either as a
collection of numbers such as 
based on an initial value say, or as a formula such as

a function of n that holds for every value of n.

Exponential Growth and Decay Models

The population of the world passed 6 billion people in 1999 and was growing at
a rate of about 1.5% per year, so the growth factor was 1.015. Assuming that this
trend continues, we can model the earth’s population with the exponential
growth function where t is the number of years since 1999 and
the population is in billions of people. Alternatively, if we use n to represent the
number of years since 1999, we can write this exponential function in sequence
notation as We know that a set of numbers follows an exponential
pattern if the successive ratios are all constant. That is, for any n,

or when we multiply by 

starting with when in 1999. This difference equation is a model for
the world’s population. It tells us that each term in the population sequence 
is precisely the same multiple, 1.015, of the preceding term.

P � 5Pn6
n � 0P0 � 6

Pn�1 � cPn � 1.015Pn ,

Pn ,

Pn�1

Pn

� c � 1.015,

Pn � 611.015 2n.

611.015 2 t,P1t 2 �

Dn � 320 � 24010.75 2n,

D0 � 80,
580, 140, 185, 218.75, 244.0625, 263.0469, 277.2852, . . . 6

Dn�1 � 0.75Dn � 80

5.2
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372 CHAPTER 5 Modeling with Difference Equations

The difference equation for exponential growth or decay

has as its solution the exponential sequence

where is the starting value for the sequence.x0

xn � x0c
n,

xn�1 � cxn

Let’s now look at the reverse of the preceding argument. Suppose that each
term in a sequence is a constant multiple c of the preceding term. That is,

or, in general which is a difference
equation for the sequence for any value of n. What does this result mean?

EXAMPLE 1
Find a formula for the solution sequence to the difference equation

for any constant 

Solution Starting with the initial term corresponding to we have

and so on. This process leads to an obvious formula for the general term of the solution
sequence,

�

Thus the solution to any difference equation of the form is an expo-
nential function or Such a sequence is known as a geometric
sequence or an exponential sequence in which the ratio of successive terms is a
constant, equal to c, because each term is the same multiple of the preceding term.

xn � x0c
n.xn � cnx0

xn�1 � cxn

xn � cnx0 , for any n � 0, 1, 2, . . . 

 x4 � cx3 � c . 1c3x0 2 � c4x0 ;

 x3 � cx2 � c . 1c2x0 2 � c3x0 ;

 x2 � cx1 � c . 1cx0 2 � c2x0 ;

 x1 � cx0 ;

n � 0,x0

c � 0.

xn�1 � cxn

xn�1 � cxn ,x1 � cx0 , x2 � cx1 , x3 � cx2 , . . . ,
X � 5xn6

Recall that, whenever the constant multiple the values for get succes-
sively larger; whenever c is between 0 and 1, the subsequent values become succes-
sively smaller. We presented some illustrations of this property in Chapter 2.

What happens if ❐

From a somewhat different perspective, the equation is a difference
equation for exponential behavior and the formula is the solution se-
quence. Whenever we have exponential growth, and whenever 
we have exponential decay. Thus in any sequence in which each term is a constant
multiple of the preceding term,

is an exponential function of n and xn � x0c
n.xn

xn�1 � cxn ,

0 � c � 1,c � 1,
Pn � P0c

n
Pn�1 � cPn

c � 0?Think About This

xnc � 1,
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5.2 Modeling with Difference Equations 373

Alternatively, suppose that If we subtract from both sides of the
difference equation, we get

where Note that, if then and it is the growth rate; if
then and this gives the decay rate. The expression on the

left, is simply the difference between successive values, so we can write

Because we can rewrite any such equation as a difference in this way, we call it a
difference equation.) This difference equation indicates that, for any exponential
process, the successive differences are always a fixed multiple of the quan-
tity itself.

For reference, we recast the previous difference equation for expo-
nential growth or decay in this alternative format.

xn�1 � cxn

aPn	Pn

	Pn � Pn�1 � Pn � aPn .

Pn�1 � Pn ,
a � c � 1 � 00 � c � 1,

a � 0c � 1,a � c � 1.

Pn�1 � Pn � cPn � Pn � 1c � 1 2Pn � aPn ,

PnPn�1 � cPn .

The difference equation for exponential growth or decay

has as its solution the exponential sequence

where is the starting value for the sequence.x0

xn � x0
. 11 � a 2n � x0c

n,

	xn � axn

Writing difference equations in this form is often helpful because the for-
mulation lets us think of the change in a quantity from one stage to the next instead
of how one value depends on the preceding value.

We now consider several examples that demonstrate the use of these ideas re-
lating to difference equations for growth and decay.

EXAMPLE 2
Suppose that you deposit $1000 in a bank account paying 5% interest, compounded an-
nually. Write a difference equation to represent the balance in your account after any
number of years and find an expression for the balance at any time from the difference
equation.

Solution From the discussion of exponential growth in Chapter 2, we know that the
balance in the account after any number of years is given by We now
look at this situation from the point of view of difference equations.

Let the original balance be After 1 year, the original $1000 balance has
earned 5% of $1000, or in interest, so the new balance is

Symbolically,

By the end of the second year, the balance has grown to

b2 � b1 � 0.05b1 � 1.05b1 .

b1 � b0 � 0.05b0 � 1.05b0 .

b1 � 1000 � 0.0511000 2 � 11 � 0.05 21000 � 11.05 21000 � 1050.

0.0511000 2 � $50
b0 � 1000.

b1t 2 � 100011.05 2 t.

	xn
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For the difference equation

a formula for the solution sequence is

where is the initial value for the solution sequence.x0

xn �
B

1 � a
� ax0 �

B

1 � a
b an,

xn�1 � axn � B,

Similarly, by the end of third year, the balance is

In general, by the end of the for any n, the balance in the account is

which is the difference equation relating the balance in any year to the balance the next year.
Because this is a difference equation for exponential growth, we immediately know

that the solution after n years is given by

For the initial deposit the balance after n years is

which is identical to the expression for the exponential growth model.

�

Before going on, let’s recall the formula at the end of Section 5.1.

bn � 100011.05 2n,

b0 � 1000,

bn � b0
. 11.05 2n.

bn�1 � bn � 0.05bn � 1.05bn ,

1n � 1 2st year,

b3 � b2 � 0.05b2 � 1.05b2 .

If the constant B is 0 in the difference equation then this
equation reduces to which is the difference equation for an exponen-
tial process. The formula for the solution sequence similarly reduces to 
or the exponential function that we would expect.

Modeling an IRA Account We next consider how to use a difference equation to model
the growth of an IRA account in which a fixed amount of money is invested each year.

EXAMPLE 3
At age 25, Alison sets up an IRA retirement savings account. She invests $3000 annually
into an account that earns 5% interest per year.

a. Write a difference equation that models the balance in her account after n years.

b. Find a formula for the solution sequence to the difference equation.

c. Find the balance in her account on her 60th birthday. How much of this balance is at-
tributed to contributions and how much to accrued interest?

Solution

a. We denote the balance in the account after n years by During the succeeding year,
the balance grows by 5% of and is then augmented by the next contribution of
$3000. Therefore the balance after years is

Bn�1 � Bn � 5% of Bn � 3000 � Bn � 0.05Bn � 3000 � 1.05Bn � 3000,

n � 1
Bn

Bn .

Bn

xn � x0a
n,

xn�1 � axn ,
xn�1 � axn � B,
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5.2 Modeling with Difference Equations 375

which is a difference equation model for the balance in the account.

b. Note that the difference equation has the same form as the
difference equation with and initial condition

The solution to this difference equation is

Figure 5.8 shows the graph of this solution sequence, with the continuous exponen-
tial function superimposed.

 � 63,00011.05 2n � 60,000.
 � �60,000 � 13000 � 60,000 2 11.05 2n

 � � 

3000

0.05
� a3000 �

3000

�0.05
b 11.05 2n

 Bn �
3000

1 � 1.05
� a3000 �

3000

1 � 1.05
b 11.05 2n

x0 � 3000 � B0 .
B � 3000,a � 1.05,xn�1 � axn � B,

Bn�1 � 1.05Bn � 3000

c. At age 60, Alison’s IRA account will have been in existence for . There-
fore the balance in the account will be

Of this total, the amount contributed at $3000 per year is 
so the account actually earned about $182,509 in interest.

�

Modeling a Population with Harvesting We now introduce a population
growth model in which part of the population is removed each time period.

EXAMPLE 4
A poultry farm has 30,000 chickens whose growth rate is 20% per month. Suppose that
5000 chickens are killed (harvested) each month for shipment to stores.

a. Write a difference equation to model this situation.

b. Write a formula for the solution sequence for the difference equation.

c. Discuss the behavior of the solution function and explain the long-term population
pattern of the chickens at the farm.

d. What would happen if 8000 chickens are harvested monthly?

e. Determine the number of chickens that should be harvested monthly to maintain a
constant population from one month to the next.

3513000 2 � 105,000,

B35 � 63,00011.05 2 35 � 60,000 � 287,508.97.

n � 35 years
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Solution

a. Let be the chicken population in the nth month. During that month, the population
grows by 20% and 5000 chickens are harvested. Thus the difference equation model is

b. We use the formula for the solution sequence with and to get

 � 25,000 � 5,00011.20 2n.

 � 25,000 � 130,000 � 25,000 2 11.20 2n

 �
�5000

�0.20
� a30,000 �

�5000

�0.20
b 11.20n 2

 Cn �
�5000

1 � 1.20
� a30,000 �

�5000

1 � 1.20
b 11.20 2n

B � �5000a � 1.20

Cn�1 � 1.20Cn � 5000,   C0 � 30,000.

Cn

c. The graph of this function with the continuous function superimposed is shown in
Figure 5.9. Note how it grows in a concave up pattern. The solution function is a mod-
ified exponential function with a vertical shift of 25,000 and a growth factor of 1.20, so
the chicken population at the farm is increasing at an increasing rate. Clearly, this
growth pattern can’t continue indefinitely.

d. If 8000 chickens are harvested each month instead of 5000, the formula for the solution
becomes

This solution is an upside-down exponential growth function that has been shifted
up by 40,000, as shown in Figure 5.10. Note that it drops ever more quickly, indicat-
ing that the chicken population will die out very rapidly.

 � 40,000 � 10,00011.20 2n.

 � 40,000 � 130,000 � 40,000 2 11.20 2n

 Cn �
�8000

1 � 1.20
� a30,000 �

�8000

1 � 1.20
b 11.20 2n
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e. To maintain a constant chicken population from one month to the next requires
harvesting the number of chickens that will exactly counterbalance their monthly
growth. If the farm starts with 30,000 chickens and they grow at a monthly rate of
20%, 6000 new chickens will be hatched. Therefore, if 6000 older chickens are killed
monthly, there is no net increase or decrease.

�

Modeling the Level of Pollutants In Examples 5(a)–(e) we consider the level of
contaminants in a lake under a variety of circumstances to illustrate how models
with difference equations can arise. We also show how the solution to the differ-
ence equation model can be used to determine the behavior pattern for the level
of contamination over time.

EXAMPLE 5(a)
Initially, 600 lb of a contaminant are dumped into a lake, and 10% of it is washed away
each year. Find a formula for the level of contaminant present after any number of years.

Solution Let represent the level of contaminant present after n years; we know that
Because 10% of the contaminant present is washed out of the lake during any

year, 90% of the amount present at the start of any year will be left a year later. Therefore
the situation is modeled by the difference equation

This is a difference equation for exponential decay, so we know that the solution is

This exponential decay function tells us that the level of contaminant will slowly fall over
time, as shown in Figure 5.11.

Cn � 60010.9 2n.

Cn�1 � 0.9Cn ,  C0 � 600.

C0 � 600.
Cn

�

EXAMPLE 5(b)
Initially, there are 600 lb of the contaminant in the lake, 10% of it is washed out each
year, and a manufacturing plant annually dumps 100 lb of the contaminant into a river
that feeds into the lake. Find the level of contaminant present after any number of years.

Solution The amount of contaminant present in the lake is reduced by 10% during a
year, so 90% of the amount present each year remains in the following year. However,
this amount is then increased by an additional 100 lb each year. This situation is mod-
eled by the difference equation

Cn�1 � 0.9Cn � 100,  C0 � 600.
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Note that the form of the difference equation is identical to the equations that we devel-
oped previously for the Prozac drug level model and the IRA account balance. Using the
formula for the solution to such a difference equation with and —start-
ing with an initial level of —gives a formula for the solution sequence

or

Its graph is shown in Figure 5.12. To understand the graph, note that the exponential term
dies out as n increases. But, because this term is subtracted from 1000, the solution

rises toward 1000 as a horizontal asymptote, which is the limiting value for the contaminant.
40010.9 2n

Cn � 1000 � 40010.9 2n.

Cn �
100

1 � 0.9
� a600 �

100

1 � 0.9
 b 10.9 2n,

C0 � 600
B � 100a � 0.9

�

EXAMPLE 5(c)
The situation is the same as in Example 5(b), but now the plant increases its annual pro-
duction and thus increases the amount of the contaminant it dumps by 50 lb each year,
starting with the initial level of 600 lb.

Solution The 50-pound per year increase in the amount of contaminant dumped into
the river means that 100 lb are dumped the initial year, 150 lb the following year, 200 lb
the year after that, and so on, following this pattern of linear growth. Thus during the
nth year, the company will dump of the contaminant into the river
that feeds the lake. As before, 90% of the contaminant in the lake at the start of any year
remains at the end of that year and is then augmented by the additional amount
dumped into the river. The difference equation that models this situation is

100 � 50n pounds
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5.2 Modeling with Difference Equations 379

Note that this difference equation has a form different from the preceding two: The term
on the right, is no longer a constant but is now a linear function of n, so the
formula that we previously developed doesn’t apply. We show in Supplementary Section
12.3 that a formula for this solution sequence is

Note that this formula consists of a decaying exponential term and a linear term with pos-
itive slope. Although the exponential term slowly dies out, the linear term continues to in-
crease as time passes. Over the long term, the level of contaminant eventually increases in a
roughly linear pattern with a slope of 500 lb per year, as shown in the graph in Figure 5.13.

�

EXAMPLE 5(d)
The situation is the same as in Example 5(b), except that the plant now increases the amount
of contaminant dumped into the river by 20% per year starting with the initial level of 100 lb.

Solution The yearly increase in contaminant dumped into the river is now given by the
exponential function so the difference equation modeling this situation is

We show in Supplementary Section 12.3 that the solution sequence is

The first term is an exponential decay function that eventually dies out, while the second
term is an exponential growth function. Early on, the decay term makes a contribution,
but because its coefficient is smaller than the growth term’s coefficient

the contribution is minimal and rather quickly diminishes. The overall be-
havior pattern is one of roughly exponential growth in the amount of contaminant, as
illustrated in Figure 5.14. The eventual exponential growth factor is about 1.2 (verify this
result by calculating a pair of successive terms in the solution for moderately large values
of n—say, and ), so the annual growth rate is eventually about 20%.n � 21n � 20

1�333.3 2 ,
1�266.7 2

Cn � a
800

3
b 10.9 2n � a

1000

3
b 11.2 2n.

Cn�1 � 0.9Cn � 10011.20 2n,  C0 � 600.

10011.20 2n,

Cn � 460010.9 2n � 4000 � 500n.

100 � 50n,

Cn�1 � 0.9Cn � 100 � 50n,  C0 � 600.

�

EXAMPLE 5(e)
The situation is the same as in Example 5(b), with the plant initially dumping 100 lb of the
contaminant, but EPA regulations require that it reduce the level of dumping by 25% per year.
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Solution The amount dumped into the river is now represented by the decaying expo-
nential function so the corresponding difference equation is

In Supplementary Section 12.3 we show that the solution sequence is

Both terms decay to zero exponentially, so the level of contaminant will eventually die
out. The graph of the solution sequence in Figure 5.15 shows a surprising pattern in
which the level of contaminant first increases and then dies out. Let’s see why. Suppose
that we calculate the first few terms of the solution sequence:

Cn � a
3800

3
b 10.9 2n � a

2000

3
b 10.75 2n.

Cn�1 � 0.9Cn � 10010.75 2n,  C0 � 600.

10010.75 2n,

Obviously, both and decrease as n increases, but the second term de-
creases more rapidly because its decay factor 0.75 is considerably smaller than the
decay factor 0.90 of the first term. As a result, when n is small ( or 2), the second
term has a much greater effect on the result than it does when n gets larger—the
amount subtracted from the first term is relatively large at first but then quickly di-
minishes. As less is subtracted away, the solution increases somewhat at first; however,
eventually the second term has minimal effect and the first term decays toward zero, as
we expect. In particular, and 

�

The Fibonacci Model for Population Growth We next consider one of the earliest
mathematical models for a biological process, developed by Italian mathematician
Fibonacci, who lived about 1200 A.D. Fibonacci constructed a simple model for pre-
dicting the local rabbit population based on the following assumptions.

1. Newborn rabbits mature in 1 month.

2. Once they have matured, rabbits have litters monthly.

3. Each litter consists of one male and one female.

C30 � 53.58.C20 � 151.88,C10 � 404.12,

n � 1

10.75 2n10.9 2n

 C4 � a
3800

3
b 10.9 2 4 � a

2000

3
b 10.75 2 4 � 831.06 � 210.94 � 620.12.

 C3 � a
3800

3
b 10.9 2 3 � a

2000

3
b 10.75 2 3 � 923.4 � 281.25 � 642.15;

 C2 � a
3800

3
b 10.9 2 2 � a

2000

3
b 10.75 2 2 � 1026 � 375 � 651;

 C1 � a
3800

3
b 10.9 2 1 � a

2000

3
b 10.75 2 1 � 1140 � 500 � 640;
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5.2 Modeling with Difference Equations 381

The first two assumptions are fairly accurate, but we can argue about the third
assumption on a variety of grounds. First, rabbit litters tend to be considerably
larger than 2. However, there is a certain mortality rate for newborn rabbits
(they can’t run fast enough to escape from the predators in the neighborhood)
that lowers the number per litter that survive to maturity. Second, expecting one
male and one female to survive from each litter is unreasonable. However, if we
consider a large population of rabbits, the numbers of males and females for the
entire population average out to about a 50–50 split per litter.

Let’s start with one pair of newborn rabbits—one male, the other female—on
January 1 of some year, By February 1, the original pair are now mature and ready
to do what rabbits do best: produce new rabbits. On March 1, there are two pairs
of rabbits, the original pair and their first set of offspring. By April 1, the original
pair has produced another litter while their first litter has matured and is ready to
enter the family business. Thus there are now three pairs of rabbits, two mature
and one newborn. However, by this stage, things are starting to get complicated,
so we use the diagram shown in Figure 5.16 to keep track of the rabbits. Let the
symbol denote an immature pair and represent a mature breeding pair.

Date Rabbit pairs

January 1

February 1

March 1

April 1

May 1

June 1

July 1

or

or

or

Number of pairs

1

1

2

3

5

8

13

FIGURE 5.16

Consider the rabbit population on July 1, say, which consists of 8 mature pairs
and 5 immature pairs. Note that the number of mature pairs, 8, is equal to the
total number of pairs in June, the preceding month. Also, the number of imma-
ture pairs, 5, is equal to the population 2 months earlier on May 1. Therefore the
rabbit population on July 1 is equal to the population on June 1 (mature) plus the
population on May 1 (immature). This pattern is not coincidental, and it persists
indefinitely—in each month, the rabbit population is equal to the sum of the
population values the preceding two months. Let’s see why.

The population in the current month consists of breeding pairs and new-
born pairs. The number of breeding pairs this month is equal to the total popula-
tion last month––all are still alive and all are now mature. Now think aboutPn�1

Pn
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Fibonacci Sequence
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These numbers arise in a surprising variety of ways—in nature (e.g., the arrange-
ment of petals on sunflowers and the number of rings in seashells), in economics,
in human psychology, and in art (see Example 7 of Section 3.2). However, here we
continue to focus on the constantly growing rabbit population of old Italy.

EXAMPLE 6
Construct a table based on Fibonacci’s model for the rabbit population over the first
30 months and discuss the growth in this population.

Solution Starting with the initial values the Fibonacci difference equa-
tion gives the values presented in the table and the graph shown in Figure 5.17 for the
first 30 months.

P0 � P1 � 1,

the number of newborn pairs this month. Every rabbit alive two months ago,
was mature last month and so gave birth to a new litter this month. Therefore the
number of newborn pairs this month must be equal to the total population two
months ago. So for any 

This is a difference equation relating the successive population values.
Alternatively, instead of considering the current population in terms of

the preceding two months’ populations (a backward difference equation), we
look at the population two months ahead which is determined by the cur-
rent population and next month’s population As a result, we can rewrite
the difference equation in the equivalent forward form

starting with It is known as the Fibonacci difference equation or the
Fibonacci model. Note that with either form we get the population values

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . .

This particular sequence of numbers is called the Fibonacci sequence.

P0 � P1 � 1.

Pn�2 � Pn � Pn�1 ,  n � 0,

Pn�1 .Pn

Pn�2 ,

Pn

Pn � Pn�1 � Pn�2 .

n � 2,

Pn�2,
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5.2 Modeling with Difference Equations 383

Both the table and Figure 5.17 show a population explosion among the rabbits very
quickly. After the first few entries in the table, the ratio of successive terms is approxi-
mately 1.618. For example, and so on. These out-
comes suggest that, eventually, the growth pattern is roughly exponential with a growth
rate of

�
These numbers are, if anything, conservative because each litter will likely con-

tain more than two rabbits. However, deaths among the rabbits have been ignored.
Consequently, the Fibonacci model for the rabbit population may not be a partic-
ularly good match to the actual population.

Based on Fibonacci’s model, Italy clearly would have had a major overpopula-
tion problem with rabbits in his time, let alone by now. Because that hasn’t hap-
pened, something is wrong either with the mathematical model or the assumptions
on which it is based. Actually, the mathematical model is fairly accurate—at least up
to a point. So long as the rabbit population remains relatively small, the model gives
numbers that reasonably estimate the population. However, it shouldn’t be carried
too far because no process can continue to grow exponentially indefinitely. Instead,
other factors that act to curb the growing population must be taken into account.
For example, as the number of rabbits increases, so too will the number of foxes and
other predators that live off them. In turn, the larger numbers of predators eventu-
ally reduce the rabbit population. Also, when the rabbit population grows too large,
they quickly consume most of the available food supply and there won’t be enough
food to sustain such a large population. The result is starvation until the population
decreases to a more sustainable size. We discuss the mathematical details of this
more realistic type of scenario in Section 5.3.

A difference equation that relates one term of a sequence to the preceding
term is called a first order difference equation. It is the primary type of difference
equation we cover in this chapter and in Supplementary Chapter 12. A difference
equation such as Fibonacci’s that relates one term to the preceding two terms 
and is called a second order difference equation.xn�1

xnxn�2

xn

xn�1

0.618 � 61.8% per month.

377>244 � 1.618,233>144 � 1.618,

Month Pairs Month Pairs Month Pairs

0 1 11 144 21 17,711

1 1 12 233 22 28,657

2 2 13 377 23 46,368

3 3 14 610 24 75,025

4 5 15 987 25 121,393

5 8 16 1,597 26 196,418

6 13 17 2,584 27 317,811

7 21 18 4,181 28 514,229

8 34 19 6,765 29 832,040

9 55 20 10,946 30 1,346,269

10 89
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Problems

1. In Example 3 about Alison’s IRA account, (a) what
would the account be worth at age 65 instead of age
60? and (b) what would it be worth at age 65 if she
started the account at age 20 instead of age 25.

2. Repeat the calculations in Example 3 and in Problem
1 if the rate of return for the IRA account is 6% in-
stead of 5%.

3. In Example 4 about the population of chickens, we
assumed that there were 30,000 chickens on the
farm and a growth rate of 20% per month. We
showed that, if the owner kills 8000 chickens a
month, the population eventually will die out. As-
suming that the owner doesn’t notice this develop-
ing problem, how long will it be until no chickens
are left?

4. Suppose that the population of a certain species of
fish in a lake grows exponentially with a growth rate a.
Write a difference equation to model each situation.

a. The fish population grows exponentially.
b. Fishermen catch and remove 100 fish from the

lake each year.
c. Fishermen catch and remove 40% of the fish

from the lake each year.
d. The number of fish that fishermen remove from

the lake each year is proportional to the square
root of the number of fish in the lake.

e. Fishermen remove 40% of the fish each year, and
the state’s wildlife department restocks the lake
with 500 fish each year.

5. Jack and Jill are setting up plans for a retirement
fund. Write a difference equation for the balance 
in this account for each of the scenarios they are
contemplating.

a. They deposit $2000 in an account guaranteed to
pay 6% interest per year.

b. They deposit $2000 initially in an account that
pays 6% interest per year and then deposit an
additional $1000 each year.

c. They deposit $2000 initially in the account pay-
ing 6% per year and then increase their contri-
bution by $1000 each year.

d. They deposit $2000 initially into the account
paying 6% per year and then increase their con-
tribution by 10% each year.

6. Claire has $80,000 in a retirement fund that pays
6% interest per year.

bn

a. If she plans to withdraw $10,000 yearly, write a
difference equation for the balance in the account.

b. How long will it take for the balance in the ac-
count to be depleted if she withdraws $10,000
every year?

c. Suppose that she plans to withdraw 20% of the
account balance every year. Write a difference
equation for the balance in the account.

d. How long will it take for the balance to be de-
pleted with this withdrawal plan?

e. Is there a fixed amount she can withdraw from
the account every year without diminishing the
balance? If so, find it.

7. Marine biologists estimate that there were about
8000 bowhead whales in the waters near Alaska in
1992 and that they were growing at an annual rate
of 3%. Alaskan Eskimos are allowed to catch about
50 whales per year.

a. Write a difference equation giving the popula-
tion of the whales from one year to the next.

b. Calculate the projected whale population each
year until 2005.

c. Determine the largest number of whales that the
Eskimos could catch each year without the whale
population going into decline.

d. Suppose that the Eskimos are petitioning the
government to increase their annual whale har-
vest and you are acting as their representative
before the panel making the decision. What ar-
guments would you use to justify increasing the
annual harvest?

e. Suppose that you were representing a conserva-
tion group opposed to increasing the annual
whale harvest. What arguments would you use
to request a denial of the petition?

8. A company expects the productivity of new em-
ployees to increase each day as they gain experience.
When a new person starts “cold,” the company ex-
pects the employee to produce items per hour.
The following day, hourly production should in-
crease by one item per hour to the day after
that, production should increase by 2 items per
hour; then by 3 items per hour; and so on.

a. Write a difference equation to model this situation.
b. Find an expression for the solution to this differ-

ence equation for any number of days n.

P0 � 1;

P0
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5.3 The Logistic or Inhibited Growth Model 385

c. Write a paragraph discussing whether this ex-
pectation for continued improvement seems to
be sensible.

9. Psychologists have found that, when a person learns a
new body of knowledge, the amount of new knowl-
edge gained in any time period is proportional to the
amount that the person does not know. That is, it is
easier to improve when you know a little than it is to
improve when you know a lot. Suppose that Greg,
while preparing for the SAT vocabulary test, is trying
to learn 400 new words from a set of flash cards.
a. Write a difference equation for this learning

model based on the number of words that
Greg knows out of the 400 total on the nth pass
through the deck.

b. Is the constant of proportionality in the differ-
ence equation positive or negative? Is it less than
1 or greater than 1?

c. Write a paragraph explaining why it is reason-
able to expect Greg to learn more words during
the first few passes through the deck of cards
than through later passes through it.

d. Sketch a graph of the possible number of new
words that Greg learns as a function of the num-
ber n of passes through the deck based on this
learning model.

10. Repeat the calculations associated with Fibonacci’s
rabbit model for the first year, assuming an initial
population of 10 pairs of newborn rabbits. How do
your values relate to those presented in the text?

11. Suppose that a particular breed of rabbits take
2 months to mature instead of 1 month, but that
Fibonacci’s other assumptions still hold. Calculate the
rabbit population each month during the first year.

Wn

12. Tribbles are adorable, furry little creatures. The only
trouble with tribbles is that they breed like tribbles.
Specifically, suppose that a tribble matures in 3 days
and then reproduces asexually daily by splitting off
a new tribble on the fourth day and every day there-
after.

a. Construct a difference equation for the tribble
population, starting with one newborn tribble,
by expressing in terms of and 
(Hint: Let newborn tribble, day old
immature tribble and mature tribble and
keep track of the number of each over the first
10 days.)

b. Use the difference equation to calculate the trib-
ble population during the first 15 days, based on
an initial newborn tribble the first day.

c. Examine the ratio of successive terms to deter-
mine whether the tribble population appears to
be growing exponentially. If it does, what is the
exponential growth rate?

d. Using the result of part (c), estimate the tribble
population after a full year.

e. Assume that the human population of the Earth
is currently 6 billion and growing exponentially
at an annual rate of 1.7%. Estimate when every
human being alive will have a tribble of his or
her own.

13. Consider the difference equation 
for any constant multiple k. Show that the solution
is always a quadratic function of n. (Hint: Use a re-
sult from Section 4.5.)

14. Consider the difference equation 
for any constant multiple k. Show that the solution
is always a cubic function of n.

xn�1 � xn � kn2,

xn�1 � xn � kn,

� �
� �^ �

Tn�2 .Tn�1 ,Tn ,Tn�3

The Logistic or Inhibited Growth Model

In Section 5.2 we demonstrated that a population growing exponentially satis-
fies the difference equation

for all values of n. A formula for is

where c is the growth (or decay) factor.
Alternatively, if we subtract from both sides of the difference equation, we get

or

	Pn � Pn�1 � Pn � aPn ,

Pn�1 � Pn � cPn � Pn � 1c � 1 2Pn � aPn ,

Pn

Pn � cnP0 ,

Pn

Pn�1 � cPn

Pn

5.3

gord.3896.05.pgs  4/24/03  10:02 AM  Page 385



386 CHAPTER 5 Modeling with Difference Equations

Time

Po
pu

la
tio

n

Exponential growth

Leveling off

FIGURE 5.18

The Logistic or Inhibited Growth Model

or

where b is much smaller than a.

Pn�1 � 11 � a 2Pn � bPn 

2
 ,	Pn � Pn�1 � Pn � aPn � bPn

2

In the 1830s, the Belgian biologist Verhulst developed a simple extension of the
exponential growth model to reflect this situation. He introduced an
extra term in the difference equation—one that serves to decrease the rate of growth
in the population—to account for this leveling-off effect. Verhulst and other scien-
tists who have since studied such processes have observed that these processes can be
modeled by subtracting a term that is proportional to the square of the population.
Thus we use the expression for the change in 

where b is the inhibiting constant, which typically is much smaller than the growth
rate a. Alternatively, if we add to both sides, we can rewrite this difference equa-
tion as

In either form, the resulting process is known as the logistic growth model or the
inhibited growth model. Note that, if the logistic growth model reduces to
the exponential growth model.

b � 0,

Pn�1 � 11 � a 2Pn � bPnˇ

2
 .

Pn

	Pn � Pn�1 � Pn � aPn � bPnˇ

2
 ,

Pn ,

	Pn � aPn

where a is the growth (or decay) rate. In this form, the difference equation tells us
that, for any exponential process, the successive differences are always a fixed mul-
tiple—the growth (or decay) rate—of the quantity itself.

The Logistic Growth Model

The exponential growth model is effective in predicting the growth of most popula-
tions over the short run. However, if any growth process were to continue indefinitely,
other factors come into play to slow down, or inhibit, the rate of growth. We now
modify the exponential growth difference equation to model a situation in
which a population starts growing exponentially, then slows, and eventually levels off
as the population reaches the maximum size that can be sustained by the environ-
ment. This type of behavior is illustrated in Figure 5.18.

	Pn � aPn
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5.3 The Logistic or Inhibited Growth Model 387

To work with this logistic growth model, we must get some feel for appropriate
values for the inhibiting constant b. You may want to experiment, using your
graphing calculator (if it has difference equation capabilities) or appropriate com-
puter software. For instance, suppose that the exponential growth rate is for a
species such as rabbits that breeds rapidly and that the inhibiting constant is

These values give a graph similar to the one shown in Figure 5.18, and a
curve with this shape is called a logistic curve. However, if you try instead,
say, the result will be quite different. (We discuss the resulting type of chaotic
behavior in Supplementary Section 12.8.) In fact, with a little experimentation,
you will find that the model is an effective description of inhibited population
growth when b is much smaller than a.

EXAMPLE 1
Consider the logistic model with and for a rabbit population, where n
represents the number of months. If the initial rabbit population is pair, use the
difference equation to calculate the population over the first 16 months. What does the
maximum sustainable population appear to be?

Solution With and the logistic difference equation is

Therefore, using and we get

Continuing with and we get

and so on. Continuing this process, we obtain the following table of values and the graph
shown in Figure 5.19.

 P3 � 2P2 � 0.0004P2 

2 � 214 2 � 0.0004142 2 � 8;

 P2 � 2P1 � 0.0004P1 

2 � 212 2 � 0.0004122 2 � 4;

n � 3,n � 2

P1 � 2P0 � 0.0004P0 

2 � 211 2 � 0.0004112 2 � 2.

P0 � 1,n � 0

Pn�1 � 11 � a 2Pn � bPn 

2 � 2Pn � 0.0004Pn 

2
 .

b � 0.0004,a � 1

P0 � 1
b � 0.0004a � 1

b � 3
b � 0.04.

a � 1
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Note that the population increases to a maximum of 2500 and seems to remain at that
level. Note also that the population grows rapidly to about half this maximum during the
first 11 or so months and then grows more slowly thereafter until it reaches the 2500 level.

�

Month Number of Pairs Month Number of Pairs

0 1 9 463

1 2 10 840

2 4 11 1398

3 8 12 2014

4 16 13 2406

5 32 14 2496

6 63 15 2500

7 125 16 2500 

8 243
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This behavior pattern is typical of the logistic model: An initial spurt in the
population is followed by a slower rate of growth and then an eventual leveling off
to a constant fixed population known as the maximum sustainable population or
the limit to growth. (This type of horizontal asymptote is similar to what happens
with the maintenance level for a drug discussed in Section 5.1.)

The logistic curve changes from concave up to concave down, so it has one
point of inflection. We know that one characteristic of a point of inflection is that
the function is growing most rapidly or decreasing most rapidly there. To deter-
mine roughly where the point of inflection occurs, we can examine the table to es-
timate where the largest increase in the population occurs by looking at the
differences in successive values of the population. In the preceding table the popu-
lation has its largest increase during the 11th month when it jumps from 1398 to
2014, an increase of 616.

EXAMPLE 2
In illustrating the logistic model, we used and How does the behavior
of the solution sequence change if we use and instead?

Solution The corresponding results (rounded to the nearest integer) based on the lo-
gistic difference equation over the first 20 months are shown
in the following table.

Pn�1 � 2Pn � 0.000032Pn 

2

b � 0.000032a � 1
b � 0.0004.a � 1

The resulting pattern, shown in Figure 5.20, has the same logistic shape as that
shown in Figure 5.19. In fact, the first few population values are the same as in the
previous table because we start with the same initial population the initial
growth rate a is the same, and the inhibiting term has minimal impact while the pop-
ulation is small. Also, because b is now smaller than before, the population grows at a
faster rate for a longer time and so the population now has a higher maximum sus-
tainable level—31,250—than in Example 1. Further, the point of inflection now oc-
curs during the 14th month when the population grows from 12,751 to 20,299.

�

P0 � 1,

Month Number of Pairs Month Number of Pairs

0 1 11 1,982

1 2 12 3,839

2 4 13 7,206

3 8 14 12,751

4 16 15 20,299

5 32 16 27,412

6 64 17 30,779

7 128 18 31,243

8 255 19 31,250

9 508 20 31,250 

10 1,007
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5.3 The Logistic or Inhibited Growth Model 389

The maximum sustainable population occurs at the level of P � a>b � L.

The Maximum Sustainable Population

To understand the behavior of the solution of the logistic difference equation, let’s
choose a constant b that is much smaller—say, by a factor of —than a. So
long as the population remains relatively small, the inhibiting term, in
the logistic difference equation

is negligible compared to the exponential term, Therefore, initially, the equa-
tion is essentially equivalent to the difference equation

for exponential growth. As grows larger, the inhibiting term becomes
larger at a faster rate and so has an ever-greater impact on reducing the value of

Hence the change in begins to decrease. Of course, the fact that the
change decreases does not necessarily mean that itself gets smaller; it simply
doesn’t grow as fast. Moreover, the values for eventually approach a horizon-
tal limit, with no further population growth.

Now let’s find a formula for the maximum sustainable population. At this max-
imum level, there should be no change in so that the difference between succes-
sive terms, should be zero. Therefore we set the right-hand side of
the logistic equation to 0 and obtain

Because we must have so that

Pn �
a

b
 .

a � bPn � 0,Pn 
 0,

aPn � bPn 

2 � Pn1a � bPn 2 � 0.

	Pn � aPn � bPn 

2
	Pn � Pn�1 � Pn ,

Pn ,

Pn

Pn

Pn	Pn .

�bPn 

2Pn

	Pn � aPn

aPn .

	Pn � aPn � bPn 

2

�bPn 

2
 ,Pn

1>1000

This ratio represents the maximum possible population and is the value, or
height, of the horizontal asymptote where the population stabilizes forever. In Exam-
ple 1 we used and so that In Example 2 we
used and so that These values agree with
what we got numerically.

What if the original population is larger than the maximum sustainable pop-
ulation? For instance, in Example 1, if the initial population were greater than 2500,
what would the model predict? In general, for any n, suppose that 
When we multiply both sides of the inequality by the positive constant b,
we get so that Because 

and the population is decreasing. Thus the phrase maximum sustainable population
means just what it says: There are too many organisms for the environment to sup-
port, and the population will decline due to starvation, predators, and other inhibiting
factors. The graph for this scenario is shown in Figure 5.21. You may want to explore
this situation further, using a graphing calculator or computer program.

	Pn � aPn � bPn 

2 � 1a � bPn 2Pn � 0

Pn � 0,a � bPn � 0.bPn � a
Pn � a>b

Pn � L � a>b.

P0

L � a>b � 31,250.b � 0.000032a � 1
L � a>b � 2500.b � 0.0004a � 1
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The Point of Inflection

We next locate the point of inflection, at which the logistic curve changes concavi-
ty. It represents the point at which the population is growing most rapidly, so we
want to find where the change in the population, is greatest, as
shown in Figure 5.22. To the left of this point, the logistic curve is concave up, so
not only is the population increasing, but it is also increasing at an increasing rate

To the right of this point, the logistic curve is concave down, so the
population is increasing at a decreasing rate At the point of inflec-
tion, the population is growing most rapidly, so must be a maximum. Biologi-
cally, the most vigorous growth in a population occurs just before decline sets in.

	Pn

3	1	Pn 2 � 0 4 .
3	1	Pn 2 � 0 4 .

	Pn � Pn�1 � Pn ,

Let’s now find a formula for the location of the point of inflection for the solu-
tion sequence of the logistic difference equation,

Although we typically think of as a function of time n, this equation also express-
es the change, in the population as a quadratic function of the population size

as shown in Figure 5.23. Note that the parabola opens downward because the
leading coefficient, is negative. Furthermore, the quadratic equation

has two real roots, one when and the other when which is the
limit to growth. At both of these extremes, is zero and the population isn’t
growing. Moreover, because a parabola is symmetric about its vertex, the maximum
value for occurs at the midpoint of this interval, which is when is half of L, or

This maximum value for corresponds to the point of inflection.	Pn
1
2 1a>b 2 .

Pn	Pn

	Pn

Pn � L � a>b,Pn � 0

aPn � bPn 

2 � Pn1a � bPn 2 � 0

�b,
Pn ,

	Pn ,
Pn

	Pn � aPn � bPn 

2
 .
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5.3 The Logistic or Inhibited Growth Model 391

The point of inflection occurs at the level of P � 1
2 1a>b 2 � 1

2 L.

EXAMPLE 3
Find the point of inflection for the rabbit population in Example 2. How does it match
what we observed by comparing values in the table?

Solution In Example 2, based on and the maximum sustainable
population was so the point of inflection must occur at a height of

We previously observed that the point of inflection occurred during the 14th
month when the population grew most rapidly, jumping from 12,751 to 20,299. Hence the
value obtained from the formula agrees well with our previous observation on the data.

�

The solution sequence of any difference equation consists of a discrete set of
numbers, so it isn’t reasonable to expect that any one of them will precisely equal 
Thus the best we can usually do is to estimate the location of the point of inflection
from a table of data values.

We can summarize the logistic growth model as follows.

1
2 L.

1
2 L � 15,625.

L � 31,250,
b � 0.000032,a � 1

We’ve looked at only one specific application of the logistic model concerned
with population growth for a single species. The same mathematical model applies
to most other species—only the values of the constants a and b change.

EXAMPLE 4
A bacterial culture grows according to the logistic model with and If
there are initially 500 bacteria in the culture, find (a) the number present for 
(b) the limiting population for the culture, and (c) the location of the point of inflection.

Solution

a. Because the bacterial culture satisfies the logistic model, we know that

 � 1.4Pn � 0.00008Pn 

2
 ,

 Pn�1 � 11 � a 2Pn � bPn 

2

n � 1, 2, . . . , 6,
b � 0.00008.a � 0.4

Summary of the Logistic Growth Model

The logistic difference equation is

or

where a is the initial growth rate and b is the inhibiting constant.

The maximum sustainable population is 

The point of inflection occurs when

Pn �
1

2
 L �

1

2
 a

a

b
b .

L � a
b .

Pn�1 � 11 � a 2Pn � bPn 

2
 ,	Pn � aPn � bPn 

2
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starting with Therefore we find successively that

We rounded each successive entry to the nearest whole number because we’re dealing
with the number of bacteria in the culture.

b. The maximum sustainable population is

c. The inflection point occurs at

or when the population passes the 2500 level, as depicted in Figure 5.24. Note that the
first six terms of the sequence grew to almost one-half the maximum value. Howev-
er, considerably more than another six terms will be required to get close to the lim-
iting value. For example, and P18 � 4984.P12 � 4680

1

2
 a

a

b
b �

1

2
 15000 2 � 2500,

a

b
�

0.4

0.00008
� 5000.

 P6 � 1.412015 2 � 0.0000812015 2 2 � 2496.

 P5 � 1.411582 2 � 0.0000811582 2 2 � 2015;

 P4 � 1.411214 2 � 0.0000811214 2 2 � 1582;

 P3 � 1.41915 2 � 0.000081915 2 2 � 1214;

 P2 � 1.41680 2 � 0.000081680 2 2 � 952 � 37 � 915;

 P1 � 1.41500 2 � 0.000081500 2 2 � 700 � 20 � 680;

P0 � 500.

�

This type of mathematical modeling is the foundation for most of the projections of
limits on world population growth. Moreover, because the growth factor contains
the exponential growth rate a, you might also want to interpret some of these ideas in
the context of the values given in the population table in Appendix G. In particular, you
might explore the results of using some of the growth rates shown for different countries
and assume different values for the inhibiting constant b to see the effects on the limits to
growth. Remember, though, that b should be much smaller than a.We discuss how to es-
timate values for a and b, based on actual population data, later in this section.

Behavior of the Logistic Function

Let’s now examine the behavior of the solution to the logistic difference equation in
greater detail. Suppose that the maximum sustainable population for an environ-
ment is The point of inflection then occurs at the level where Pn � 500.L � 1000.

1 � a
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Case 1: If the initial population is less than 500, the population will begin growing
in a concave up manner. When it passes a height of 500, the concavity changes
and the population continues to grow, but in a concave down manner as it ap-
proaches its horizontal asymptote at the level of 1000, as shown in Figure 5.25.

P0

Case 2: If the initial population is between 500 and 1000, it starts above the
point of inflection. The logistic curve grows toward the limit to growth,
1000, in a concave down manner, as shown in Figure 5.25.

Case 3: Suppose that the initial population is greater than the maximum
sustainable level of 1000. This can occur if there is a sudden influx of
immigrants, an unexpected baby boom, or a change in conditions such
as a drought or famine that reduces the maximum sustainable level. The
resulting logistic curve starts above the limiting value of 1000 and de-
creases toward 1000 in a concave up manner, as shown in Figure 5.25.

Case 4: Finally, if the initial population value precisely equals the limiting
value L, all subsequent values remain the same. To see this, we consider the
logistic difference equation

when Then

There is no change, so the population remains constant thereafter. For this
reason, the limiting value is also considered the equilibrium because the
population remains balanced at that level. (The maintenance level for a
drug is also an equilibrium.)

Although we typically think of a logistic curve as the S-shaped curve corre-
sponding to initial population values below the inflection point, the other cases are
also logistic curves because they are solutions to the logistic difference equation.

More generally, suppose that we have the logistic model

with limiting value and point of inflection at height If we factor out
the coefficient b from the right-hand side of the difference equation, we get

	Pn � b . a
a

b
� PnbPn � b1L � Pn 2Pn .

1
2 L.L � a>b

	Pn � aPn � bPn 

2 � 1a � bPn 2Pn ,

	Pn � a . a
a

b
b � b . a

a

b
b

2

�
a2

b
� b . a

a2

b2b �
a2

b
�

a2

b
� 0.

Pn � L � a>b.

	Pn � aPn � bPn 

2

P0

P0

P0
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Now suppose that, for some value of n, then Therefore
Because we see that must be smaller

than That is, the solution must be decreasing at such a point. We illustrate this
behavior in the top region shown in Figure 5.26 where the arrows are all pointing
downward to indicate the direction for the solutions.

Pn .
Pn�1	Pn � Pn�1 � Pn ,	Pn � b1L � Pn 2Pn � 0.

L � Pn � 0.Pn � L;

Next, suppose that, for any value of n, so Therefore
and so must be larger than That is, the solution

must be increasing. We show this behavior in the two middle regions of Figure
5.26 where the arrows are all pointing upward to indicate the direction of the so-
lutions. However, the slopes of the arrows crossing the level for the inflection
point are steeper than those below or above that level because the logistic curve
increases most rapidly at its inflection point.

Finally, although this case is not realistic as a model for population growth, suppose
that for some n.Then and therefore Con-
sequently, must be smaller than and the solution must be decreasing.We show this
behavior in the bottom region of Figure 5.26 where all the arrows are pointing downward.

The cases we consider here with the logistic difference equation model are some-
what simplistic. For instance, if the values for a and b are larger than the ones we have
used, the solution can overshoot the equilibrium level L for some value of n. Howev-
er, once there, the succeeding term must decrease toward (or actually even past) the
equilibrium. Thus it is possible to obtain a solution that oscillates above and below
the equilibrium level while still converging to it. In many ways, this scenario is more
realistic than the ideal one we portrayed, in which the solution strictly increases to-
ward L. A real population is likely to grow beyond its limits, then decrease below the
maximum sustainable level, and oscillate in this manner thereafter.

Applications of Logistic Growth

The mathematical ideas used in the logistic model for population growth can be
applied to many other situations, as Examples 5 and 6 illustrate.

EXAMPLE 5
Suppose that 4000 people are in a university dormitory complex when one student starts
a rumor at 9 A.M. Saturday morning. If each person who hears the rumor passes it on to
two other people every hour, how long will it be until everyone has heard it?

Solution At first thought, this situation might seem like an exponential growth model
because, seemingly, the number of people who have heard the rumor triples every hour.

PnPn�1

	Pn � b1L � Pn 2Pn � 0.L � Pn � 0Pn � 0

Pn .Pn�1	Pn � b1L � Pn 2Pn � 0
L � Pn � 0.0 � Pn � L,
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5.3 The Logistic or Inhibited Growth Model 395

In practice, the number of people who hear the rumor does grow roughly exponentially
for a while, but eventually the people who are passing the rumor on will find it difficult,
if not impossible, to encounter two people who haven’t yet heard it.

We must change the underlying exponential formulation to introduce an inhibiting
term. The number of new people who hear the rumor after hours (i.e., the change
in the number who have heard it during the past hour) depends not just on how many
people have already heard it, but also on the number of people left of the original 4000
people, who haven’t heard it. That is, the change in is proportional
to both and which leads to the difference equation

where m is the constant of proportionality. Adding to both sides of the equation, we get

where we have written and to emphasize that this is a logistic model.
Initially, and, because each person tells two new people, and 
The limiting value is so

The resulting difference equation is

The following table shows the number of people (rounded to the nearest whole person)
who have heard the rumor after each hour, based on this logistic model. The graph of
these solution points is shown in Figure 5.27. Thus we conclude that the 4000 students
will have heard the rumor in about 9 hours.

Pn�1 � 3Pn � 0.0005Pn 

2
 .

b �
a

L
�

2

4000
� 0.0005.

L � a>b � 4000m>m � 4000,
1 � a � 3.a � 2P0 � 1

b � ma � 4000m

Pn�1 � 11 � 4000m 2Pn � mPn 

2 � 11 � a 2Pn � bPn 

2
 ,

Pn

Pn�1 � Pn � mPn
. 14000 � Pn 2 � 4000mPn � mPn 

2
 ,

14000 � Pn 2 ,Pn

Pn ,	Pn ,14000 � Pn 2 ,
Pn

n � 1
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Time Number

0 1

1 3

2 9

3 27

4 80

5 238

6 686

7 1823

8 3807

9 4174 

�

The final value displayed, 4174 when actually overshot the limiting
value of 4000. As we said before, once a value of a logistic sequence exceeds L, the
following value determined by the difference equation will be smaller because

and, in fact, will usually overshoot downward to produce a value below L.	Pn � 0

n � 9,
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Continue the preceding process repeatedly to verify that the successive values oscillate
above and below the limiting value 4000 and eventually converge to it as n increases. ❐

One problem with the logistic difference equation model is that no one has
ever been able to discover a closed form solution for However, the fact that no
explicit solution is known isn’t a major handicap. Other than the aesthetic pleas-
ure of having the solution expressed as a formula, a closed form solution would-
n’t likely contribute much to this model. The formula would be used primarily to
calculate the values for the population at each time. However, the logistic differ-
ence equation itself allows us to calculate the values for the solution recursively
by using the previous value at each time. There is a slightly different way to cre-
ate a continuous logistic model using calculus. That model can be solved to give
a closed form solution for a logistic curve of the form

where A, B, and C are positive constants and is the base of the nat-
ural logarithm system, as we discussed in Section 4.9.

Applications of the logistic growth model include the spread of technological
innovations—how fast a new product penetrates the marketplace. For example,
when vacuum cleaners were first introduced, they were purchased by relatively few
people. Based on word of mouth and advertising, more and more people bought
them and the number in use grew rapidly. Eventually, the market for vacuum
cleaners became saturated as virtually every household had one, so that the rate of
growth diminished, and new sales were basically for replacements. The same logis-
tic pattern applies to items such as televisions and stereos. Newer products such as
home computers, VCRs, CD players, DVD players, and cellular phones are now at
various stages of the logistic growth process.

Wal-Mart reportedly uses this application of logistic growth to maintain its
profit levels. It tracks the sales of lines of merchandise, say, a particular style of
jeans. Once sales of that item pass the point of inflection on the logistic curve, Wal-
Mart stops ordering that item and orders a different one instead. Thus the compa-
ny only stocks and sells an item while it is “hot.” Hence few, if any, items are sold at
clearance prices, which would substantially reduce Wal-Mart’s profits.

EXAMPLE 6
The first diesel locomotive was put into service in the United States in 1925. In the early
years, the use of diesels among the 25 major railroads then in existence grew at about 25%
per year. It took about 30 years for all the railroads to use diesel locomotives. Construct a
logistic model for the spread of their use.

Solution Because the early annual growth rate was 25%, we assume that so
that Further, because the limiting value must be railroads,

We find that

b �
a

L
�

0.25

25
� 0.01.

L � 25 �
a

b
 .

L � 251 � a � 1.25.
a � 0.25

e � 2.71828 . . . 

f 1t 2 �
C

1 � Ae�Bt   ,

Pn .

Think About This
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Thus our logistic model is the difference equation

We begin in 1925 when and for the one railroad using a diesel locomotive.
We then use the difference equation to obtain the values shown in the table and in Figure 5.28.

R 0 � 1n � 0

Rn�1 � 1.25Rn � 0.01Rn 

2
 .

Year Number of Diesels

1 1.24

2 1.53

3 1.89

4 2.33

5 2.86

10 7.31

15 14.62

20 21.03

25 23.88

30 24.72

oo

oo

oo

oo

�1.2511.53 2 � 0.0111.53 2 2
�1.2511.24 2 � 0.0111.24 2 2
�1.2511 2 � 0.0111 2 2

The model agrees with the historical fact that it took about 30 years after 1925 (or until
about 1955) for all 25 of the major railroads to introduce diesels. Incidentally, the other
values from the model match the actual spread in the use of diesels quite well. Incidentally,
we didn’t round the values calculated to the nearest integer because the numbers involved
were so small, even though obviously a fraction of a diesel locomotive makes no sense.

�

Estimating a and b

Suppose that a set of data points fall in a pattern such as the one shown in Figure
5.29 and that we want to fit a logistic curve to it. The hardest part of constructing a
logistic model is determining appropriate values for the growth rate a and the in-
hibiting constant b. To do so, we transform the data so that the resulting points are
in a linear pattern, analogous to what we did in Chapter 3.

Suppose that a set of data points appear to follow a
logistic pattern so that satisfies the difference equation

	Pn � aPn � bPn 

2 � 1a � bPn 2Pn .

Pn

12, P2 2 , . . . 11, P1 2 ,10, P0 2 ,
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FIGURE 5.30

Dividing both sides by we obtain

Therefore, if follows a logistic pattern, the quantity is actually a lin-
ear function of We plot against (not against n) and find that it falls
in a roughly linear pattern, as shown in Figure 5.30. Then we can find the best lin-
ear fit to the transformed data. Note that the pattern shown is decreasing, which is
the usual case, so the slope of the regression line will be negative. The correspon-
ding regression equation is which is equivalent to

When we multiply both sides by we get the logistic difference equation

Once we have this equation, we have our estimates for the logistic coefficients a
and b. We illustrate how to apply these ideas in Examples 7 and 8.

	Pn � aPn � bPn 

2
 .

Pn ,

	Pn

Pn

� a � bPn .

Y � a � bX,

Pn1	Pn 2 >PnPn .
1	Pn 2 >PnPn

	Pn

Pn

� a � bPn .

Pn ,

EXAMPLE 7
German biologist R. Carlson studied the growth of yeast under controlled conditions
and obtained the following set of measurements for the weight of yeast, in milligrams, as
a function of time, n.
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Solution By inspecting either the entries in the table or the corresponding scatterplot
of the points shown in Figure 5.31, we see that they appear to fall in a logistic pattern. To
linearize the data, we add two extra columns to the table, one for the differences of
the successive terms and the other for the ratio 

Figure 5.32 shows the plot of the values of versus (not n). They seem to
fall in a roughly linear pattern with negative slope. Using the linear regression routine on
a calculator, we find the corresponding regression equation:

	Pn

Pn

� 1.66 � 0.00271Pn .

Pn1	Pn 2 >Pn

1	Pn 2 >Pn .
	Pn

n

1 9.6

2 29.0

3 71.1

4 174.6

5 350.7

6 513.3

7 594.4

8 640.0

9 655.9

10 661.8

Pn
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n
1 9.6
2 29.0
3 71.1
4 174.6
5 350.7
6 513.3
7 594.4
8 640.0
9 655.9

10 661.8

Pn

19.4 —— 2.021
42.1 —— 1.452

103.5 —— 1.456
176.1 —— 1.009
162.6 —— 0.464

81.1 —— 0.158
45.6 —— 0.077
15.9 —— 0.025

5.9 —— 0.009

1�19.4>9.6 2
(�Pn)>Pn�Pn

The corresponding correlation coefficient is which suggests a very high degree
of negative correlation between and Multiplying both sides of the regression
equation by yields the logistic difference equation

giving and b � 0.00271.a � 1.66

	Pn � 1.66Pn � 0.00271Pn 

2
 ,

Pn

Pn .1	Pn 2 >Pn

r � �0.967,

Estimate the parameters a and b to create a logistic model to fit the growth of the yeast population.
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FIGURE 5.34

The sequence of points based on this difference equation superimposed over the orig-
inal data is shown in Figure 5.33. Note that the curve connecting the points from the logis-
tic model fits the points of the original data reasonably well, especially the first five points.
However, the values of the logistic model level out somewhat below the limiting value for
the actual yeast population data.

�
In Example 1 of Section 3.3, we found that the growth in the U.S. popula-

tion from 1780 to 1900 closely followed an exponential growth pattern with a
growth rate of 32.1% per decade. However, we pointed out that this exponential
pattern didn’t apply during the twentieth century and, in fact, the rate of
growth has slowed considerably since 1900, suggesting a logistic model. In Ex-
ample 8 we examine the growth in the U.S. population over the entire period
since 1780.

EXAMPLE 8
Find a logistic model that fits the data on the U.S. population since 1780 and find the
limiting value for the population using this logistic model.

Solution The data on the U.S. population are presented in the table on the next page
and in the scatterplot shown in Figure 5.34.

Both the table and the scatterplot show that the rate of population growth
slowed considerably during the twentieth century. Successive ratios also slowly de-
creased, indicating that the rate of population growth slowed from over 20% per
decade at the start of the century to slightly over 10% per decade by the end of the
century.
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5.3 The Logistic or Inhibited Growth Model 401

Year Population
1780 2.8
1790 3.9
1800 5.3
1810 7.2
1820 9.6
1830 12.9
1840 17.1
1850 23.2
1860 31.4
1870 39.8
1880 50.2
1890 62.9
1900 76.0
1910 92.0
1920 105.7
1930 122.8
1940 131.7
1950 150.7
1960 179.3
1970 203.3
1980 226.5
1990 248.7
2000 281.4

Ratio
1.39
1.36
1.36
1.33
1.34
1.33
1.36
1.35
1.27
1.26
1.25
1.21
1.21
1.15
1.16
1.07
1.14
1.19
1.13
1.11
1.10
1.13

To fit a logistic curve to this data, we must first calculate the differences 
and then the ratios

the results of which we show in the table on the next page.
When we plot these transformed values against as shown in Figure 5.35,

we see that they fall in a predominantly decreasing, roughly linear pattern. However, there
does seem to be a fair amount of variation about the regression line. Nevertheless, the
corresponding plot of the residuals, as shown in Figure 5.36, indicates that the fit is rea-
sonably accurate (the residuals are small and roughly half are below and roughly half are
above the baseline), though there does seem to be a pattern to the residuals. This pattern
suggests that the logistic model may not fully explain all the variation in the data. The
corresponding correlation coefficient, represents a high degree of negative
correlation for the 22 data pairs. Incidentally, we expect a negative correlation between
the transformed values and the actual population values because the slope of the regres-
sion line is negative. The equation of the regression line for the transformed data is equiv-
alent to

Multiplying both sides of this equation by gives us the logistic model

	Pn � 0.3314Pn � 0.0011Pn 

2
 ,

Pn

	Pn

Pn

� 0.3314 � 0.0011Pn .

r � �0.8803,

Pn ,1	Pn 2 >Pn

	Pn

Pn

�
Pn�1 � Pn

Pn

 ,

Pn�1 � Pn

	Pn �
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Year
1780 2.8
1790 3.9
1800 5.3
1810 7.2
1820 9.6
1830 12.9
1840 17.1
1850 23.2
1860 31.4
1870 39.8
1880 50.2
1890 62.9
1900 76.0
1910 92.0
1920 105.7
1930 122.8
1940 131.7
1950 150.7
1960 179.3
1970 203.3
1980 226.5
1990 248.7
2000 281.4 

Pn

1.1 0.393
1.4 0.359
1.9 0.358
2.4 0.333
3.3 0.344
4.2 0.326
6.1 0.357
8.2 0.353
8.4 0.268

10.4 0.261
12.7 0.253
13.1 0.208 
16.0 0.211
13.7 0.149
17.1 0.162

8.9 0.072
19.0 0.144
28.6 0.190
24.0 0.134
23.2 0.114
22.2 0.098
32.7 0.131

1�1.1>2.8 2
(�Pn 2 >Pn�Pn

where and Figure 5.37 shows the values predicted by this logis-
tic model, starting from they are the points connected by the smooth curve.
For comparison, the original data points for the U.S. population are also shown. The
model that we constructed seems to be an excellent fit until about 1930, but the accura-
cy then seems to break down.

Based on this logistic model, the limiting population for the United States is

 � 301.3 million.

 L �
a

b
�

0.3314

0.0011

P0 � 2.8;
b � 0.0011.a � 0.3314
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Problems

Calculate the first 10 values predicted for the logistic so-
lution subject to each set of values and plot the points.
What is the limiting value for the population? How close
do you come to it during the first five time periods?

1.

2.

3.

4.
5. A population grows according to the logistic

growth model Sketch
the behavior of the population if (a)
(b) and (c)

6. Consider again the rumor spreading through the
dorms in Example 2. Suppose that each person re-
peats it to three new people each hour instead of
two people. How long will it be until all 4000 stu-
dents have heard it?

7. Suppose that a certain population grows according
to the logistic model from an initial size of 100 to a
final size of 1000.

a. Sketch the graph of the population as a function
of time.

Use the concavity of your graph from part (a) to
answer the following questions.

b. Suppose that the population is 250 after 10 time
periods and 300 after 12 time periods. Use this in-

P0 � 3500.P0 � 1500,
P0 � 500,

	Pn � 0.05Pn � 0.00002Pn 

2
 .

P0 � 5b � 0.002,a � 0.02,

P0 � 5b � 0.0001,a � 0.02,

P0 � 3b � 0.0005,a � 0.02,

P0 � 10b � 0.0005,a � 0.02,

formation to estimate the size of the population
after 11 time periods. Is the actual value higher or
lower than your estimate? How do you know?

c. Suppose that the population is 900 after 30 time
periods and 910 after 31 time periods. Use this
information to estimate the population after 35
time periods. Is the actual value higher or lower
than your estimate? How do you know?

8. Suppose that the deer population in a wildlife
refuge follows a logistic growth pattern with an an-
nual growth rate of 40% and an inhibiting rate of
0.02%. Write difference equations to model each
situation.

a. The deer population grows according to the lo-
gistic model.

b. The population grows according to the logistic
model, but hunters are allowed to eliminate 120 deer
from the region each year.

c. The logistic model applies, and hunters elimi-
nate 30% of the deer in the region each year.

d. The logistic model applies, and the number of
deer that hunters eliminate in the region each year
is proportional to the square root of the number
of deer living there.

e. The logistic model applies, hunters eliminate
40% of the deer, and the state’s wildlife depart-
ment moves 75 new deer into the area each year.

�

This prediction is unrealistically low because the U.S. population was fairly
close to this level in 2000 and was growing at a rate of about 20 or 30 million peo-
ple per decade—it isn’t reasonable to expect that population growth will slow that
much over the next decade. However, recall that, based on the residual plot, we
pointed out that the logistic model doesn’t seem to account for all the variation in
the data. It provides a relatively good fit to the growth of the population, but it isn’t
an outstanding fit and perhaps a more sophisticated model is needed to give a bet-
ter match to the population data.
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Age 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Vocabulary 50 200 350 600 880 1200 1450 1800 2150 2425 2750

Source: B. A. Moskowitz, Acquisition of Language. Scientific American, 1978, vol 279, pp. 92–108.

9. The growth of a population follows a logistic
trend. The limiting value seems to be about 16,000
and the first few values are 100, 105, 110.2, 115.17,
and 121.5. Use this information to estimate both
coefficients in the logistic equation and determine
how closely the terms you calculate match these
observed values.

10. The values for a and b in a logistic model are typical-
ly estimated based on a set of observations. As such,
they are likely to be somewhat inaccurate. It is im-
portant to know how sensitive the results of the lo-
gistic model are to slight changes (or errors) in
either a or b. Suppose that you estimate 
and so that What
would be the effect on L if a were actually 10% larger
than 0.05 (0.055 instead of 0.05) while b remains
fixed? 20% larger? 30% larger? 10% smaller? 20%
smaller? How does the value of L depend on the esti-
mate for a if b remains fixed?

11. Repeat Problem 10 by considering the effect on L of
changes in b if a is fixed. In particular, what would
be the effect on L if b were actually 10% larger than
0.00002? 20% larger? 30% larger? 10% smaller?
20% smaller? How does the value of L depend on
the estimate for b if a is fixed?

12. Based on your results in Problems 10 and 11, does
the logistic model seem more sensitive to errors or
changes in the estimates for a or for b? In estimat-
ing values for these two parameters based on a set
of data, which do you expect to be more accurate?
Explain.

13. The population of a region can be modeled by the
logistic growth model with coefficients a and b. A
major drought hits the region.

a. Which coefficient, a or b, is more likely to change
because of the drought? Does it become larger or
smaller?

b. Depending on how close the population was to
the maximum sustainable population level be-
fore the drought, write a short paragraph to de-
scribe the effects of the drought on the long-term
behavior of the population.

L � a>b � 2500.b � 0.00002
a � 0.05

14. Consider the growth model based on the difference
equation

where b is smaller than a.

a. Sketch the graph of as a function of for

b. Determine the maximum sustainable popula-
tion L in terms of a and b for a species modeled
by this difference equation.

c. Use your graph from part (a) to determine the
sign of if is between 0 and L. What does it
tell you about the behavior of Explain.

d. Use your graph from part (a) to determine the
sign of if is greater than L. What does it
tell you about the behavior of Explain.

e. Use your graph from part (a) to show that the
solution to this difference equation must have a
point of inflection if is small enough.

f. The turning points of the general cubic curve
occur at

Use this fact to determine the location of the
point of inflection for the solution to this differ-
ence equation.

g. You know that the point of inflection for the lo-
gistic model occurs at half the height of the
limiting value. For the model in this problem,
does the point of inflection occur at a compara-
ble, a higher, or a lower level? What does that
tell you about the kind of behavior for a popu-
lation that can be well-modeled by this differ-
ence equation?

15. Repeat parts (a)–(e) of Problem 14 for the differ-
ence equation model

16. The table gives the average number of words (both
spoken and understood) in the vocabulary of the
typical child aged 1–6. Find the best fit to these data
from among each of the logistic, linear, exponen-
tial, and power functions. From among the best fit
in each family, which seems to be the overall best fit
to the pattern in the data?

	Pn � aPn � bPn 

4
 .

x �
�B � 2B2 � 3AC

3A
 .

y � Ax3 � Bx2 � Cx � D

P0

Pn ?
Pn	Pn

Pn ?
Pn	Pn

Pn � 0.
Pn ,	Pn

	Pn � aPn � bPn 

3
 ,
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Week t 1 2 3 4 5 6

Mean Height, H 17.9 36.4 67.8 98.1 131.0 169.5

Week t 7 8 9 10 11 12

Mean Height, H 205.5 228.3 247.1 250.5 253.8 254.5 

Source: H. S. Reed and R. H. Holland, The Growth Rate of an Annual Plant He-
lianthus, Proceedings of the National Academy of Sciences, vol 5, 1919.

5.3 The Logistic or Inhibited Growth Model 405

Age 2 4 6 8 10 12 14 16 18

Percentage of Bone Density 43 49 51 56 63 71 82 91 95

Source: Student project.

Year 1983 1984 1985 1986 1987 1988 1989 1990

Number of AIDS Cases 4589 10,750 22,399 41,256 69,592 104,644 146,574 ?

Year 1991 1992 1993 1994 1995 1996 1997 1998

Number of AIDS Cases 251,638 326,648 399,613 457,280 528,144 594,641 653,084 701,353

Source: U.S. Centers for Disease Control and Prevention.

17. The density of human bones increases through child-
hood and adolescence. By age 18, 95% of bone densi-
ty has been achieved. The table shows the percentage
of maximum bone density achieved at different ages.

Find the best fit among each of the logistic, linear, ex-
ponential, and power functions for this data. From
among the best fit in each family, which seems to be
the overall best fit to the pattern in the data?

18. The table shows the accumulated total number of re-
ported cases of AIDS in the United States since 1983.
a. Determine the logistic fit to this data.
b. Use the model to predict the number of AIDS

cases in 1990.

c. If the trend is indeed logistic, find the total num-
ber of deaths from AIDS that the model predicts
in the limit.

19. Biologists Reed and Holland studied the growth of sun-
flower plants. They measured the heights H of a num-
ber of sunflowers on the same day of successive
weeks t and averaged the readings, which are given
in centimeters in the table.

a. Estimate the maximum height to which these
sunflowers will grow and the point at which the

heights pass their point of inflection.
b. Estimate the parameters for a logistic difference

equation to fit these data.
c. Use the difference equation to calculate the pre-

dicted heights for these sunflowers. How close
do the predictions come to the actual values?

20. The table on the next page gives measurements on
the weight W in grams of a pumpkin on different
days t while it is growing.

a. Estimate the maximum weight that this pump-
kin will reach and the point at which the weight
passes its point of inflection.

b. Estimate the parameters for a logistic difference
equation to fit this data.

c. Use the difference equation to calculate the pre-
dicted weight for this pumpkin. How close do
the predictions come to the actual values?
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t Concentration

0 0.40

22 0.99

46 1.95

70 2.52

94 3.09

118 4.06

142 4.48

166 4.25

190 4.36

Age 0 1 2 3 4 5 6 7 8 9

Boys 50.5 76.1 87.6 96.5 102.9 109.9 116.1 125.0 127.0 132.2

Girls 49.9 74.3 86.5 95.6 101.6 108.4 114.6 120.6 126.4 132.2

Age 10 11 12 13 14 15 16 17 18

Boys 137.5 143.3 149.7 156.5 163.1 169.0 173.5 176.2 176.8

Girls 138.3 144.8 151.5 157.1 160.4 161.8 162.4 163.1 163.7

Source: NCHS Growth Curves for Children. Vital and Health Statistics, National Health Survey, U.S. Department of
Health, Education and Welfare.

t 5 6 7 8 9 10 11 12 13 14 15

W 267 443 658 961 1498 2200 2920 3366 3758 4092 4488

t 16 17 18 19 20 21 22 23 24 25

W 4720 4864 4980 5114 5176 5242 5298 5352 5360 5366

Source: Raymond Pearl, The Biology of Population Growth. New York: Alfred A. Knopf, 1925.

21. When Penicillium chrysogenum, a strain of penicillin
antibiotic, is grown in a batch fermentation process
under carefully controlled conditions, the concen-
tration of the cell as measured by its dry weight at
various time intervals is given in the table at the bot-
tom left of this page. Determine the coefficients for
the logistic fit to the data.

22. From the two tables on the U.S. population in Ex-
ample 8, compare the entries in the ratio column
and the entries in the logistic transformation col-
umn when rounded to two decimal
places. What interesting fact do you notice about
the two columns of values? Explain how you can ac-
count for it mathematically.

23. In Example 7 on the yeast experiment, we construct-
ed the best logistic model to fit the data based on
the difference equation 
or

The initial measurement on the yeast was
Use this value and the difference equation

to construct a table showing the amount of yeast
present over the first 10 time periods. Compare
these predictions to the actual values measured in
the experiment.

P1 � 9.6.

0.00271Pn 

2
 .2.66Pn �Pn�1 �

1.66Pn � 0.00271Pn 

2	Pn �

1	Pn 2 >Pn 

24. In Figure 5.32 on the yeast experiment data in Ex-
ample 7, the scatterplot of versus may
suggest a power function with a negative exponent
rather than a linear function.

a. Using the transformed data, find the power
function that best fits the data.

b. Detransform the results to obtain a first order,
nonlinear difference equation relating to 

c. Use the difference equation from part (b) togeth-
er with the starting value of of
yeast to calculate the amount of yeast present for

Extend the table you construct-
ed in Problem 23 to include these values. How
close do these values come to matching the exper-
imental data shown in Example 7.

25. The scatterplot shown in Figure 5.32 may also suggest
a decaying exponential function. Repeat Problem 24,
using the exponential function that best fits the trans-
formed data.

26. The growth pattern in human height or weight de-
velopment from birth through age 18, say, usually
follows a logistic growth pattern. The table below
gives the typical height, in centimeters, of a male
and a female in the 50th percentile for height at dif-
ferent ages, in years. Use the data to construct a pair
of logistic functions that model the heights of boys
and girls as a function of age t for people in this
50th percentile group.

n � 1, 2, . . . , 10.

P0 � 9.6 grams

Pn .	Pn

Pn1	Pn 2 >Pn
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5.4 Newton’s Laws of Cooling and Heating 407

Year 1960 1965 1970 1975 1980 1985 1990 1995 2000

Electric Capacity 1 5 16 71 135 250 328 340 347

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends That Are Shaping Our Future.

Year 1950 1955 1960 1965 1970 1975

Population 2.556 2.780 3.039 3.345 3.707 4.086

Year 1980 1985 1990 1995 1999

Population 4.454 4.851 5.277 5.682 6

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends That
Are Shaping Our Future.

27. The table below shows the worldwide electric gen-
erating capacity of nuclear power plants, measured
in gigawatts, over time.

a. Estimate the parameters for the logistic model
that fits these data.

b. What is the limiting value for the worldwide elec-
tric generating capacity of nuclear power plants?

c. From the table, estimate when the worldwide
electric generating capacity of nuclear power
plants was growing most rapidly.

d. From your model in part (a), when was the
worldwide electric generating capacity of nu-
clear power plants growing most rapidly?

28. The table shows the population of the world, in bil-
lions, over time. The population appears to be

a. Estimate the parameters for the logistic model
that fits these data.

b. What is the limiting value for the world’s popu-
lation, based on this model?

c. From the table, estimate when the world’s popu-
lation was growing most rapidly.

d. From your model in part (a), when was the
world’s population growing most rapidly?

e. Use the difference equation to predict the
world’s population in 2010.

f. Use the difference equation to predict when the
world’s population will reach 7 billion.

29. Recall that the inflection point for the logistic
model

occurs at a height of At this point, the function
is growing most rapidly. Show algebraically that the
maximum value of is 14 bL2.	Pn

1
2 L.

	Pn � aPn � bPn 

2

Newton’s Laws of Cooling and Heating

In a familiar scene in TV crime shows, the medical examiner studies the homicide
victim’s body and knowledgeably announces that “Mr. Jones died at approximately
1:30 in the morning.” We now develop the mathematics behind this type of con-
clusion. More generally, we investigate the rate at which any object cools or heats.

Newton’s Law of Cooling

Suppose that you heat a pizza in an oven set at and then remove it to cool
on a kitchen counter where the temperature is a constant How fast does the
temperature of the pizza drop until it reaches room temperature? Clearly, the

70°F.
450°F

5.4

growing more slowly than it was only a few years
ago, so it may have passed its point of inflection.
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FIGURE 5.38

temperature of the pizza drops most rapidly at first because of the large differ-
ence between the pizza temperature and the room temperature. As the pizza
cools, the rate at which the temperature decreases slows. That is, the hotter the
pizza, the faster the temperature drops; it drops most slowly when the pizza’s
temperature is close to room temperature. Geometrically, we expect the graph of
the temperature as a function of time to be decreasing and concave up, as shown
in Figure 5.38. According to a physical principle developed by Isaac Newton, the
change in temperature after n time periods is proportional to the difference
between the temperature of the pizza and the temperature of the surround-
ing air or ThusTn � 70.170°F 2 ,

1Tn 2
	Tn

where the constant of proportionality Because the temperature change
is negative and both and are positive, there must be a minus sign in

front of Equivalently, if we add to both sides of the equation, we have the dif-
ference equation model

More generally, if the room temperature is any constant R, the analogous difference
equation is

(1)

This equation and the principle behind it are both known as Newton’s law of
cooling.

To solve this difference equation, we use the results summarized at the end of
Section 5.1. Note that Difference Equation (1) has the same form as

(2)

with

and

The solution to Difference Equation (2) is

where is the limiting value.L � B> 11 � a 2

xn � L � 1x0 � L 2an,

B � aR.a � 1 � a

xn�1 � axn � B

Tn�1 � 11 � a 2Tn � aR.

 � 11 � a 2Tn � 70a.

 Tn�1 � Tn � a . 1Tn � 70 2

Tna.
aTn � 70	Tn

a � 0.

	Tn � �a . 1Tn � 70 2 ,

gord.3896.05.pgs  4/24/03  10:02 AM  Page 408



5.4 Newton’s Laws of Cooling and Heating 409

Newton’s Law of Cooling

Assumptions
� The temperature R of the medium remains constant.

� The change in temperature is proportional to the difference between
the temperature of the object and the temperature of the medium.

Mathematical Model
� Difference equation:

or

� Solution: Tn � R � 1T0 � R 2 11 � a 2n
Tn � aR11 � a 2Tn�1 �	Tn � �a . 1Tn � R 2

For Newton’s law of cooling, is a positive fraction, so is between
0 and 1. Also, we have

Therefore, if the initial temperature of the pizza (or any other cooling object) is 
the solution to Difference Equation (1) is

The constant usually is determined from an additional temperature measure-
ment, as we illustrate in Examples 1–3 below.

First, let’s examine the behavior of this solution function. The term
is an exponential decay function because lies between

0 and 1. This term is added to the constant R, so the solution function is decreasing
in a concave up manner as it decays to a level of R as n increases. This behavior pat-
tern is precisely what we predicted in Figure 5.38.

We can also see this behavior directly from the formula

As n increases, the exponential decay term approaches 0 because 
lies between 0 and 1. So again as 

In Example 1 of Section 4.8, we constructed a function to fit a set of data ob-
tained from an experiment on cooling. A temperature probe was warmed to

and plunged into cold water at about to cool. The shifted exponential
function that best fit the data was Note that this
function has the identical form as the solution sequence for the difference equation
model.

The mathematical model for Newton’s law of cooling may be summarized as follows.

T1t 2 � 8.6 � 35.439410.8480 2 t.
8.6°C42.3°C

n S �.Tn S R
1 � a11 � a 2n

Tn � R � 1T0 � R 2 11 � a 2n.

a � 1 � a1T0 � R 2 11 � a 2n

a

Tn � R � 1T0 � R 2 11 � a 2n.

T0 ,

L �
B

1 � a
�

aR

1 � 11 � a 2
�
aR
a

� R.

a � 1 � aa

EXAMPLE 1
Suppose that a cake is baking in an oven at It is removed when its temperature is 
and is left to cool in a kitchen at After 10 minutes, the temperature of the cake is 

a. Find the solution to the difference equation based on Newton’s law of cooling.

b. Find the temperature of the cake after 15 minutes.

c. How long does it take the cake to cool to 75°F?

125°F.70°F.
180°F350°F.
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410 CHAPTER 5 Modeling with Difference Equations

Solution

a. For and the difference equation for the temperature at any time n is

The corresponding solution is

Further, when the temperature so

Subtracting 70 from both sides gives

so that

Taking the tenth root of both sides of this equation yields

and so

which is between 0 and 1, as we expected. The solution to the difference equation is

b. After minutes, the temperature of the cake is

c. To find the time needed for the cake to cool to we need the value of n when
We begin with

and so

We divide both sides by 110 to get

We take logarithms of both sides of this equation to obtain

and then solve for n:

Thus it takes about three-quarters of an hour for the cake to cool to 

�
75°F.

n �
log10.045 2
log10.933 2

� 44.7 minutes.

n log10.933 2 � log10.045 2

10.933 2n �
5

110
� 0.045.

11010.933 2n � 5.Tn � 11010.933 2n � 70 � 75

Tn � 75.
75°F,

 � 70 � 38.87 � 108.9°.

 T15 � 70 � 11010.933 2 15

n � 15

 � 70 � 11010.933 2n.

 Tn � 11011 � a 2n � 70

a � 1 � 0.933 � 0.067,1 � a � 0.51>10 � 0.933,

11 � a 2 10 �
55

110
� 0.5.11011 � a 2 10 � 125 � 70 � 55,

T10 � 11011 � a 2 10 � 70 � 125.

T10 � 125,n � 10,

 � 11011 � a 2n � 70.

 Tn � 1180 � 70 2 11 � a 2n � 70

Tn�1 � 11 � a 2Tn � 70a.

R � 70,T0 � 180
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5.4 Newton’s Laws of Cooling and Heating 411

EXAMPLE 2
Mr. Jones’s body was found in his kitchen at 9 A.M. by the police who noted that the body
temperature was and that the room temperature was According to the med-
ical examiner, the body temperature an hour later was Assuming that Mr. Jones’s
body temperature was the normal at the time of death, at what time did he die?

Solution Using the solution to the difference equation for cooling, the body tempera-
ture after n hours is given by

where and Therefore

Because we don’t know the time of death (which corresponds to we don’t know
the value of n at 9 A.M. However, at 9 A.M., which is n hours after death, the body tem-
perature was so

or, after subtracting 70 from both sides,

(3)

An hour later at 10 A.M., which is hours after death, the body temperature was

or, again after subtracting 70 from both sides,

(4)

Dividing Equation (4) by Equation (3) yields

Substituting this value into Equation (3) gives

or, equivalently, when we divide both sides by 28.6,

To solve for n, we take logs of both sides of this equation and get

so that

The body was found at 9 A.M., which is hours after death. Thus the murder oc-
curred 7.6 hours (or 7 hours and 36 minutes) before 9 A.M., so we conclude that Mr. Jones
was murdered at approximately 1:24 A.M.

�

n � 7.6

n �
log10.2552 2
log10.8356 2

� 7.6.

n log10.8356 2 � log10.2552 2

10.8356 2n � 0.2552.

28.610.8356 2n � 7.3,

28.611 � a 2n�1

28.611 � a 2n
� 1 � a �

6.1

7.3
� 0.8356.

28.611 � a 2n�1 � 6.1.

Tn�1 � 70 � 28.611 � a 2n�1 � 76.1,

n � 1

28.611 � a 2n � 7.3.

Tn � 70 � 28.611 � a 2n � 77.3,

77.3°,

n � 0 2 ,

 � 70 � 28.611 � a 2n.

 Tn � 70 � 198.6 � 70 2 11 � a 2n

T0 � 98.6°.R � 70°

Tn � R � 1T0 � R 2 11 � a 2n,

98.6°F
76.1°F.

70°F.77.3°F
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FIGURE 5.39

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

116 112 108 105 101 98 95 92 89 86 83 82 78 75 73 71T � 70

EXAMPLE 3
A cup of hot coffee is left standing on a table in a room where the temperature is 
The temperature T, in of the coffee is measured every minute t, and the results are
shown in the following table. Find a model that best fits these temperature readings as a
function of time.

°F,
70°F.

Solution Based on our knowledge of cooling curves, we would expect the best fit to be
an exponential function that decays to We can’t use our data-fitting techniques
from Chapter 3 to fit an exponential curve to the data because the function would decay
to rather than As in Example 1 of Section 4.8, we must first subtract 70 from
each temperature reading, which is equivalent to introducing a vertical shift for the tem-
perature function, to get the following table.

70°F.0°F

70°F.

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 186 182 178 175 171 168 165 162 159 156 153 152 148 145 143 141

The exponential function that best fits the shifted data is

where T is the temperature. The corresponding correlation coefficient is 
it is negative because the temperature readings are decreasing. This value for r is ex-
tremely close to indicating an extremely good fit. Finally, we undo the vertical shift
by adding 70 to both sides of the preceding equation to obtain

as the best model for the temperature of the coffee, as illustrated in Figure 5.39. Note
that this function has the same form as the solution we obtained for the difference equa-
tion for Newton’s law of cooling.

T � 115.610.96783 2 t � 70

�1,

r � �0.99945;

T � 70 � 115.610.96783 2 t,

�
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5.4 Newton’s Laws of Cooling and Heating 413

Newton’s Law of Heating

Similar mathematical methods apply if an object is being warmed rather than
cooled. The corresponding principle is known as Newton’s law of heating, which
is based on the assumption that the change in temperature (now an increase)
is proportional to the difference between the temperature R of the medium (the
room, the freezer, the oven, etc.) and the temperature of the object This as-
sumption leads to the difference equation

which is identical to the difference equation for Newton’s law of cooling. Let’s see
why it is the same. Because the object is being heated, the change in temperature

of the object must be positive. Also, the temperature of the object is always
less than R, so is negative. Finally, because the constant of proportionality

is positive, the product of the terms on the right-hand side will be positive.
We solve this difference equation the same way we solved the one for cooling to get

EXAMPLE 4
A chicken is removed from the refrigerator at a temperature of and placed into an
oven kept at a constant temperature of After 10 minutes, the temperature of the
chicken is The chicken is considered cooked when its temperature reaches 
How long must it remain in the oven until it is cooked?

Solution The solution of the difference equation with 
and is

After 10 minutes,

Therefore

so that

Taking the tenth root of both sides, we obtain

Consequently, the solution to the difference equation for the temperature of the chicken
is

We must now find how long it takes the temperature to reach Doing so re-
quires finding the value of n for which

so that

Dividing by 310 gives

Taking logs of both sides of this equation yields

n log10.9898 2 � log10.5484 2 ,

10.9898 2n �
170

310
� 0.5484.

31010.9898 2n � 350 � 180 � 170.Tn � 350 � 31010.9898 2n � 180

180°F.

Tn � 350 � 31010.9898 2n.

1 � a � 0.9898.

11 � a 2 10 �
280

310
� 0.903.31011 � a 2 10 � 350 � 70 � 280

T10 � 350 � 31011 � a 2 10 � 70.

Tn � 350 � 140 � 350 2 11 � a 2n � 350 � 31011 � a 2n .

T0 � 40,
R � 350	Tn � �a . 1Tn � 350 2 ,

180°F.70°F.
350°F.

40°F

Tn � R � 1T0 � R 2 11 � a 2n.

a

Tn � R
Tn	Tn

	Tn � �a . 1Tn � R 2 ,

Tn .

	Tn
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414 CHAPTER 5 Modeling with Difference Equations

Temperature 32 40 45 50 60 70

Time (days) 24 11 5.5 2 1 0.5

(�F)

Determine the best exponential fit to these data and use
it to predict when the water temperature will be 

9. The following data are printed on a carton of milk
to indicate how many days the milk will last with-
out spoiling at different temperatures.

9°C.

a. Determine the linear, exponential, and power
functions that best fit these data.

b. Which of the three functions seems to be the best
fit to the data?

c. Using the model that you think is the best fit,
how long should milk last in a refrigerator kept
at 

10. A cool potato at temperature is placed in an
oven kept at a constant 

a. Sketch the graph of the temperature of the potato
as a function of time.

Use the concavity of your graph from part (a) to
answer the questions in parts (b)–(d).

b. Suppose that you measure the temperature of the
potato after 5 minutes and find that it is and
that, after 7 minutes, it is Use this informa-
tion to estimate the temperature after 10 minutes.

127°.
109°

350°.
60°F

35°F?

Problems

and so

Hence the chicken will be ready in just under an hour.

�

n �
log10.5484 2
log10.9898 2

� 58.6 minutes.

1. In Example 2 we assumed that the initial body tem-
perature was a normal Suppose that Mr.
Jones had a slight fever of when he was mur-
dered. How much difference does that make to the
estimated time of death?

2. In Example 2 we also assumed that the room temper-
ature was kept constant at Actually, the home
heating system probably cycled on and off, so the ac-
tual temperature might have oscillated between 
and say. How might you take this variation into
account in predicting the time of death? How much
of a difference would it make?

3. In Example 4 we presumed that the temperature of
the oven is for cooking a chicken. Suppose in-
stead that the temperature is set at How
much difference does that make in the time needed
to cook the chicken to 

4. A pot of bubbling pudding is removed
from the stove and put immediately into a refriger-
ator at After 10 minutes, the temperature of the
pudding is Find the temperature after 1 hour.
How long does it take for the temperature to drop
to 

5. Sam takes a can of soda at room temperature 
and puts it in a freezer to chill quickly. After 10
minutes, the temperature of the soda is How
long does it take the temperature to drop to 

6. A bowl of cold soup is taken out of the refrigerator
and placed in a heated oven to warm.

After 10 minutes, the temperature of the soup is 
How long does it take for the soup to reach 

7. Professor Smith’s body was found in a large walk-in
refrigerator in the laboratory at 9 A.M. by the police
who noted that the body temperature was 
and that the refrigerator temperature was An
hour later, with the body still in the refrigerator, the
medical examiner found the body temperature to be

Assuming that the body temperature at death
was at what time did Professor Smith die?98.6°,
63.1°.

40°.
67.3°F

200°?
120°.

1375°F 2136°F 2

40°?
60°.

10°F 2
170°F 2

75°?

160°.
40°.

1212°F 2

180°F?

325°F.
350°F

72°F,
67°F

70°F.

100°F
98.6°F.

8. A cup of boiling water was placed in a re-
frigerator kept at at 8 A.M., and the following
readings were obtained.

7°C
1100°C 2

Time (minutes) 1 7 21 45

Temperature 89 71 53 36

Time (minutes) 73 90 123 152

Temperature 25 20 14 11(�C)

(�C)
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5.4 Newton’s Laws of Cooling and Heating 415

Is the actual temperature higher or lower than your
estimate? How do you know?

c. Suppose that you are told that the temperature
of the potato after 12 minutes is Use this
information and the temperature after 5 minutes
to estimate the temperature after 10 minutes. Is
the actual temperature higher or lower than your
estimate? How do you know?

d. How might you use the results from parts
(b) and (c) to come up with a better estimate
of the temperature after 10 minutes?

11. Your Thanksgiving turkey is taken from a refrigera-
tor at and is cooked in an oven kept at a con-
stant temperature of The temperature T of the
bird is after 30 minutes and is after 60 min-
utes. From your knowledge of the pattern of temper-
ature rise, decide which of the following temperature
readings are possible and which are impossible.

a. b.
c. d. T175 2 � 115°T175 2 � 105°

T145 2 � 85°T145 2 � 80°

96°70°
350°.

40°F

150°.

12. A cup of hot chocolate (temperature ) is placed
on a table where the air temperature is Suppose
that it takes 12 minutes for the drink to cool to 
Let represent the average rate of decrease in temper-
ature per minute over the full 12-minute period, let 
be the average rate of decrease over the first 6 minutes,
and let be the average rate of decrease over the last
6 minutes. List these three rates in increasing order.

13. Suppose that it takes minutes for a raw potato, start-
ing at to reach in an oven. At that time, it is
removed from the oven and put on the table where it
cools. Suppose that the potato takes minutes to
reach Is or Explain.

14. A potato at room temperature is placed in an
oven at temperature R. Construct the actual solu-
tion to the corresponding difference equation for
heating in terms of the various parameters. What
is the formula for the temperature of the potato if

and 

15. In Section 4.8, we presented a set of data from a
cooling experiment. The temperature readings, in
degrees Celsius, were as follows.

R � 350°F?T � 70°F

1T0 2
t1 � t2 ?t1 � t2 ,t1 � t2 ,70°.

t2

200°70°F,
t1

r3

r2

r1

100°.
70°.

180°F

According to Newton’s law of cooling, the change in
temperature is proportional to the difference be-
tween the temperature of the object and the tempera-
ture of the medium (in this case the temperature of
the cool water is ).

a. Extend the table, with additional columns for
and also for the differences between

successive temperature readings.
	TT � 8.6

8.6°C

	T
b. Plot the points that you calculat-

ed. In what type of pattern do they fall?
c. Find the equation of the line that best fits these

points and write a difference equation for for
the temperature data.

d. Solve the difference equation for the tempera-
ture T as a function of time.

	T

1T � 8.6, 	T 2

Time Temp Time Temp Time Temp Time Temp

1 42.30 10 14.77 19 10.17 28 9.04

2 36.03 11 13.82 20 9.92 29 8.91

3 30.85 12 13.11 21 9.80 30 8.83

4 26.77 13 12.51 22 9.67 31 8.78

5 23.58 14 11.91 23 9.54 32 8.78

6 20.93 15 11.54 24 9.42 33 8.78

7 18.79 16 11.17 25 9.29 34 8.78

8 17.08 17 10.67 26 9.16 35 8.66

9 15.82 18 10.42 27 9.16 36 8.66
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Geometric Sequences and Their Sums

Consider the difference equation for exponential growth

whose solution is given by

where is any initial value. Using the notation for sequences, we can write this so-
lution as

Recall that such a sequence is called a geometric sequence or exponential sequence.
For simplicity, suppose that so that the sequence reduces to

For instance, if we have the geometric sequence

The difference equation reinforces the fact that each term in any
geometric sequence is a constant multiple of the preceding term, or, equivalent-
ly, there is a common ratio r between successive terms. Alternatively, is an ex-
ponential function of n, and we know that the ratio of successive values is a
constant—namely, the growth or decay factor r. In the preceding sequence, each
term is five times the preceding term, so the common ratio r of each pair of suc-
cessive terms is 5.

We can deduce a considerable amount of information about the behavior of
the terms in a geometric sequence from the value of the
common ratio r. We summarize this information as follows.

1. If the terms are successively larger and approach infinity. We say
that they increase monotonically.

2. If all the terms are equal to 1.

3. If the terms are successively smaller and approach zero. We say
that they decrease monotonically.

4. If all terms after the initial term, 1, are 0.

5. If the terms oscillate between positive and negative values,
each is numerically smaller than the preceding term, and they approach 0.

6. If the terms oscillate between 1 and 

7. If the terms oscillate between positive and negative values, and
each term is numerically larger than the preceding term.

If the terms of a sequence approach a single value as n approaches written
we say that the sequence converges to that value. Otherwise, we say that

the sequence diverges.
The following seven sequences illustrate these properties.

1. so this sequence diverges as
(Note that the terms in this sequence increase monotonically.)

2. so this sequence converges to 1 as n S �.r � 1:  51, 1, 1, 1, 1, . . . 6 S 1,

n S �.
r � 5:  51, 5, 52, 53, 54, . . . , 5n, . . . 6 S �,

xn S �,
�,

r � �1,

�1.r � �1,

�1 � r � 0,

r � 0,

0 � r � 1,

r � 1,

r � 1,

51, r, r2, r3, . . . , rn, . . . 6

xn

xn�1 � rxn

51, 5, 52, 53, 54, . . . , 5n, . . . 6 � 51, 5, 25, 125, 625, . . . , 5n,  . . . 6.

r � 5,

51, r, r2, r3, r4, . . . , rn, . . . 6.

x0 � 1,

5x0 ,  x0r,  x0r
2,  x0r

3,  x0r
4,  . . . ,  x0r

n,  . . . 6.

x0

xn � x0r
n,

xn�1 � rxn

5.5
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5.5 Geometric Sequences and Their Sums 417

3.
so this sequence converges to 0 as (Note that the terms

in this sequence decrease monotonically.)

4. so this sequence converges to 0 as 

5.
so this sequence converges to

0 as (Note that the terms in this sequence oscillate between posi-
tive and negative values, but that each term is numerically smaller than the
previous term; the terms are not monotonic.)

6.
so this sequence does not converge to a single value but di-

verges as 

7.
so this sequence diverges as 

The terms oscillate between positive and negative values, but each term is
numerically larger than the previous term; the terms are not monotonic.

The Sum of the Terms in a Geometric Sequence

Geometric sequences arise in a great variety of applications, and usually they are
accompanied by the related question: What is the sum of the terms? That is, for any
geometric sequence with constant ratio r, what is

for any given value of n?
For instance, there is a very old puzzle in which gold coins are placed on a

chessboard according to the pattern: one coin on the first square, two on the sec-
ond, four on the third, and so on to on the 64th square. The problem then is:
Find the total number of coins. That is, find the sum

Before attempting to solve this specific problem, let’s look at the more general
problem of finding a formula for the sum of the terms in any geometric sequence.
We introduce the following notation. Let

and, in general, for the sum of the n terms 1, r,

We want to find a formula for the sum for any n. We multiply the expression
for by the common ratio r to obtain

When we subtract the expression for from the expression for all the inter-
mediate terms r, cancel out and we are left with

We factor out the term on the left-hand side and get

11 � r 2Sn � 1 � rn�1.

Sn

Sn � rSn � 1 � rn�1.

r2, r3, . . . , rn
Sn ,rSn

rSn � r11 � r � r2 � . . . � rn 2 � r � r2 � r3 � . . . � rn � rn�1.

Sn

Sn

Sn � 1 � r � r2 � . . . � rn.

r2, r3, r4, . . . , rn,

S0 � 1,  S1 � 1 � r,  S2 � 1 � r � r2,

1 � 2 � 22 � 23 � 24 � . . . � 263.

263

1 � r � r2 � r3 � r4 � . . . � rn

n S �.S � �,. . . 6�128,64,�32,16,
�8,4,�2,� 51,. . . 61�2 2n,. . . , 1�2 2 4,1�2 2 3,1�2 2 2,�2,r � �2: 51,

n S �.
. . . 6,1, �1,

1, �1,�1,� 51,. . . 6. . . , 1�1 2n,1�1 2 4,1�1 2 3,1�1 2 2,�1,r � �1: 51,

n S �.
. . . 6 S 0,0.00390625, �0.015625,0.0625,

� 51, �0.25,. . . 61� 
1
4 2

n,. . . ,1� 
1
4 2

4,1� 
1
4 2

3,1� 
1
4 2

2,51, � 
1
4 ,r � � 

1
4 :

n S �r � 0: 51, 0, 0, 0, 0, . . . 6 S 0,

n S �.. . . 6 S 0,
0.0625, 0.125, 0.25,� 51, 0.5,112 2

n, . . . 6 . . . , 112 2
4,112 2

3,112 2
2,51, 12 ,r � 1

2 :
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418 CHAPTER 5 Modeling with Difference Equations

If we can divide both sides by to get

Sn �
1 � rn�1

1 � r
 .

1 � rr 
 1,

EXAMPLE 1
What is the total number of gold coins that would be needed on a chessboard according
to the pattern previously described?

Solution The number of coins is

The common ratio in this sum of terms of a geometric sequence is So, for 
we get

which is more than 18 quintillion.

�

In two of the seven possible cases for a geometric sequence—namely,
and —the terms of the sequence approach 0. Also, when

all terms after the initial term 1 are 0. In the other 4 cases listed, the terms do
not approach 0. Let’s see what this means for the sum of the terms of the entire geo-
metric sequence, not just the sum of the first n terms.

Using the formula for the sum of the terms from 1 to 

we see that, whenever the expression becomes ever smaller
and approaches 0 as n increases. As a result, even though we are adding more
and more terms, eventually the additional terms are all so small that together
they contribute virtually nothing to the sum. This fact enables us to give
meaning to the sum of all the terms of an infinite geometric sequence, provid-
ed that the terms decrease rapidly enough. In other words,

provided that or, equivalently, 0 r 0 � 1.�1 � r � 1,

1 � r � r2 � r3 � . . . � rn � . . . �
1 � 0

1 � r
�

1

1 � r
 ,

rn�1�1 � r � 1,

Sn �
1 � rn�1

1 � r
 ,

rn,

r � 0,
�1 � r � 00 � r � 1

 � 264 � 1 � 1.844674 � 1019,

 �
1 � 264

1 � 2

 S63 � 1 � 2 � 22 � . . . � 263

n � 63,r � 2.

1 � 2 � 22 � 23 � 24 � . . . � 263.

The sum of the terms 1, r, of a finite geometric sequence is

provided that r 
 1.

1 � r � r2 � r3 � . . . � rn �
1 � rn�1

1 � r
 ,

r2, . . . , rn

gord.3896.05.pgs  4/24/03  10:02 AM  Page 418



5.5 Geometric Sequences and Their Sums 419

The sum of the terms of an infinite geometric sequence is

provided that �1 � r � 1.

1 � r � r2 � r3 � . . . � rn � . . . �
1

1 � r
 ,

However, if or if the values do not approach 0 as n ap-
proaches so no finite value for the sum of the infinite sequence is possible. Thus
the sum of an infinite geometric sequence makes sense only when the common
ratio r is strictly between and 1.�1

�,
rn�1r  �1,r � 1

For instance, the sum of the terms in the infinite geometric sequence

Add enough of the terms from the preceding sequence to convince yourself that
this result is reasonable. ❐

The facts and results regarding geometric sequences just described occur fre-
quently in applications of mathematics. We encounter such sequences repeatedly
later in this book. For now, let’s consider several additional situations in which they
arise.

In our discussion of the elimination of a drug from the body in Section 5.1, we
saw that the kidneys remove about 25% of any Prozac in the bloodstream every
24 hours and that a person takes the same dose every day. We modeled
this situation with the difference equation

and created the formula

for the solution sequence. Let’s now find this formula by using our knowledge of
the sum of a geometric sequence.

EXAMPLE 2
a. Find a formula for the level of Prozac in the body after any number of days, using the

sum of a geometric sequence.

b. Use the result from part (a) to find the level of Prozac in the bloodstream after 5 days and
after 10 days.

c. What is the limiting value L for Prozac in the body?

Solution

a. From the difference equation and the initial value we have

D1 � 0.75D0 � 80 � 0.75180 2 � 80 � 11 � 0.75 2 180 2 .

D0 � 80,

Dn � 320 � 24010.75 2n

Dn�1 � 0.75Dn � 80

D0 � 80 mg

Think About This

1 �
1

2
� a

1

2
b

2

� a
1

2
b

3

� . . . �
1

1 � 11>2 2
�

1

11>2 2
� 2.
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420 CHAPTER 5 Modeling with Difference Equations

Similarly,

Furthermore,

In general, after n days,

The expression inside the parentheses is the sum of the terms from 1 to in a
geometric sequence with common ratio Therefore the sum of these terms
is given by

which is identical to the formula that we created in Section 5.1 using difference equa-
tions.

b. After days, we have

which agrees with the value we obtained in Section 5.1. Similarly,

c. Finally, because the limiting value for the sum of this geometric se-
quence is

which is the same value we found in Section 5.1 for the drug maintenance level.

�

When Will Our Oil Run Out?

An ongoing political debate having major economic and social implications has to
do with energy policy both at home and abroad. One aspect of this debate centers
on the use of petroleum, both as a source of energy in vehicles and power plants
and as a component of oil-based products such as plastics. Estimated worldwide
oil reserves in 2000 were about 2250 billion barrels, and worldwide oil consump-
tion in 2000 was about 26 billion barrels.* How long will the oil last?

 �
80

0.25
� 320 mg,

 � 80 a
1

1 � r
b �

80

1 � 0.75

 L � D0
. 11 � r � r2 � r3 � . . . 2

r � 0.75 � 1,

D10 � 320 � 24010.75 2 10 � 306.485 mg.

D5 � 320 � 24010.75 2 5 � 263.0469 mg,

n � 5

 � 320 � 24010.75 2n,

 � 320 31 � 10.75 2n�1 4 � 320 � 32010.75 2 10.75 2n

 Dn � 80 c
1 � 10.75 2n�1

1 � 0.75
d � 80 c

1 � 10.75 2n�1

0.25
d

r � 0.75.
0.75n

Dn � 8011 � 0.75 � 0.752 � 0.753 � . . . � 0.75n 2 .

 � 0.7511 � 0.75 � 0.752 280 � 80 � 11 � 0.75 � 0.752 � 0.753 280.

 D3 � 0.75D2 � 80

 � 0.7511 � 0.75 280 � 80 � 11 � 0.75 � 0.752 280.

 D2 � 0.75D1 � 80

*Source: Energy Information Administration, www.eia.doe.gov/ieu/.
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5.5 Geometric Sequences and Their Sums 421

If the current rate of consumption remains constant at 26 billion barrels per
year, known oil reserves will run out in

But oil consumption hasn’t been constant; in fact, some estimates indicate that
worldwide oil consumption has been growing at an annual rate of about 2%. How
do we then calculate how long the known oil reserves will last?

EXAMPLE 3
Calculate how long the estimated 2250 billion barrel oil reserves worldwide will last if oil
consumption was 26 billion barrels in 2000 and continues to grow at a 2% annual rate.

Solution Annual oil consumption C can be modeled by the exponential growth function

where t is the number of years since 2000. The total oil consumed from 2000 on is then
approximately

Let n be the first year when the total passes the 2250 billion barrel level. We need to solve
for the value of n that gives

This expression is equivalent to

or, when we factor out the common factor of 26,

The expression in the brackets is the sum of the first n terms of a geometric sequence
with common ratio so

We therefore need to solve the equation

for n. We divide through by 1300 to get

or, by adding 1 to both sides, we obtain

To extract from the exponent, we use logarithms to get

log 11.02n�1 2 � 1n � 1 2 log 1.02 � log 2.7308,

n � 1

1.02n�1 � 2.7308.

1.02n�1 � 1 � 1.7308

130011.02n�1 � 1 2 � 2250

 � 26 a
1.02n�1 � 1

0.02
b � 130011.02n�1 � 1 2 .

 26 a
1 � 1.02n�1

1 � 1.02
b � 26 a

1 � 1.02n�1

�0.02
b

r � 1.02,

26 31 � 11.02 2 1 � 11.02 2 2 � . . . � 11.02 2n 4 � 2250.

2611.02 2 0 � 2611.02 2 1 � 2611.02 2 2 � . . . � 2611.02 2n � 2250

C10 2 � C11 2 � C12 2 � . . . � C1n 2 � 2250.

C10 2 � C11 2 � C12 2 � C13 2 � . . . .

C1t 2 � 2611.02 2 t,

2250

26
� 86.5 years.
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422 CHAPTER 5 Modeling with Difference Equations

so that

and therefore We therefore conclude that all the world’s known oil reserves
will be depleted in just under 50 years from 2000 if consumption continues to grow at an
annual rate of 2%.

�

The results in Example 3 are startling because all the industrialized nations de-
pend so heavily on oil. Many people therefore advocate major efforts to discover
new oil supplies. Let’s see what doing so would gain.

EXAMPLE 4
Suppose that, as a result of major efforts to find new sources of oil, the worldwide oil re-
serves are doubled to 4500 billion barrels. How long will it take to use it all if oil con-
sumption continues to grow at the current 2% annual rate?

Solution We now have to find the value of n for which

which is equivalent to the sum of terms in the geometric sequence

Following the same algebraic development as in Example 3, we have to solve

for n. Dividing both sides of the equation by 1300, we get

Taking logarithms gives

so that

and hence Note that doubling the total oil reserve didn’t double the 50 years
we found in Example 3; it merely added less than 25 more years.

�

Other people advocate reducing the rate of oil consumption by using alternative
energy sources (especially renewable sources), by developing more energy efficient ve-
hicles, by encouraging conservation, and by taking other actions. Let’s see what such
measures can accomplish.

EXAMPLE 5
Suppose that, as a result of conservation efforts, the annual rate of growth of oil con-
sumption drops to 1.5% from 2%. How long will the current worldwide oil reserve last?

Solution Our new exponential model for oil consumption is

C1t 2 � 2611.015 2 t,

n � 74.52.

n � 1 �
log 4.4615

log 1.02
  � 75.52

1n � 1 2 log 1.02 � log 4.4615,

1.02n�1 � 1 � 3.4615 or 1.02n�1 � 4.4615.

130011.02n�1 � 1 2 � 4500

26 31 � 11.02 2 1 � 11.02 2 2 � . . . � 11.02 2n 4 � 4500.

C10 2 � C11 2 � C12 2 � . . . � C1n 2 � 212250 2 � 4500,

n � 49.73.

n � 1 �
log 2.7308

log 1.02
� 50.73
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FIGURE 5.40

where t is still the number of years since 2000. We now have to solve

for n. When we find the sum of the terms in this geometric sequence and simplify, as we
did before, we get

Dividing by 1733.33, we get

Taking logarithms yields

so that

and Hence decreasing the annual rate at which oil is consumed by one-
half percentage point gives the world an additional 5 years of oil reserves.

�

Is it more likely that the rate at which oil consumption is increasing can be reduced
through conservation measures or that an amount of undiscovered oil equal to the
total known oil reserves can be found? ❐

A Bouncing Ball

We now consider another application involving the sum of a geometric sequence.

EXAMPLE 6
Suppose that a properly inflated basketball is designed to bounce back to three-quarters
of the height from which it is dropped.

a. If such a ball is initially dropped from a height of 10 feet, find the total vertical dis-
tance it travels on the first 10 bounces; the first 20 bounces; the first 30 bounces.

b. What total vertical distance does the ball cover if, theoretically, it keeps bouncing in-
definitely?

Solution

a. Figure 5.40 shows that the vertical distance the ball travels is 10 feet until the first
bounce plus 2 times the distance (up and then down) between the first and second
bounces, or

Think About This

n � 54.9 years.

n � 1 �
log 2.2981

log 1.015
� 55.9,

1n � 1 2 log 1.015 � log 2.2981,

1.015n�1 � 1 � 1.2981 or 1.015n�1 � 2.2981.

1733.3311.015n�1 � 1 2 � 2250.

26 31 � 11.015 2 1 � 11.015 2 2 � . . . � 11.015 2n 4 � 2250
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424 CHAPTER 5 Modeling with Difference Equations

plus 2 times the distance between the second and third bounces, or

and so on.
The total vertical distance traveled on the first n bounces is therefore

Note that the expression in the brackets on the preceding line is the sum of a finite
number of terms of a geometric sequence with common ratio Therefore the
total vertical distance traveled by the ball during the first n bounces is

Consequently, the vertical distance traveled by the ball during the first 10 bounces is

or about 66.6 feet. During the first 20 bounces, the ball travels

or about 69.8 feet. And during the first 30 bounces, it travels

or about 69.99 feet.

b. Little extra distance is contributed by the 20th through the 30th bounce, and all sub-
sequent bounces will contribute even less. In fact, because the common ratio is
between and 1, we know that as n increases and so we can sum all of the
terms of the infinite geometric sequence to obtain

 � 10 � 15 3 1
1 � 13>4 2 4 � 10 � 151 1

1>4 2

 10 � 15 31 � 3
4 � 134 2

2 � 134 2
3 � . . . � 134 2

n � . . . 4

134 2
n S 0�1

r � 3
4

D30 � 10 � 60 c 1 � a
3

4
b

30

d � 69.989,

D20 � 10 � 60 c 1 � a
3

4
b

20

d � 69.810,

 � 10 � 56.621 � 66.621,

 D10 � 10 � 60 c 1 � a
3

4
b

10

d

 � 10 � 60 c 1 � a
3

4
b

n

d .

 Dn � 10 � 15 a 

1 � 13>4 2n

1 � 13>4 2
b � 10 � 15 a

1 � 13>4 2n

1>4
b

r � 3
4 .

 � 10 � 15 c 1 � a
3

4
b � a

3

4
b

2

 � . . . � a
3

4
b

n�1

d .

 � 10 � 20 a
3

4
b c 1 � a

3

4
b � a

3

4
b

2

� . . . � a
3

4
b

n�1

d

 � 10 � 20 c a
3

4
b � a

3

4
b

2

� a
3

4
b

3

� . . . � a
3

4
b

n

d

 � 10 � 20 a
3

4
b � 20 a

3

4
b

2

� 20 a
3

4
b

3

� . . . � 20 a
3

4
b

n

 Dn � 10 � 2 a
3

4
b . 10 � 2 a

3

4
b

2
. 10 � 2 a

3

4
b

3
. 10 � . . . � 2 a

3

4
b

n
. 10

2 c
3

4
 a

3

4
. 10b d � 2 a

3

4
b

2
. 10,

2 a
3

4
. 10b ,
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5.5 Geometric Sequences and Their Sums 425

feet.

That is, theoretically, if the ball were to continue bouncing forever, the total vertical
distance it would travel would be 70 feet.

�

� 10 � 1514 2 � 70

Problems

1. Find the sum with 
for and 

2. Repeat Problem 1 with 

3. Repeat Problem 1 with 

4. Repeat Problem 1 with 

5. Repeat Problem 1 with 

6. Repeat Problem 1 with 

7. Suppose that 6000 new cases of a certain disease oc-
curred in 1960. If the number of new cases dimin-
ished since then, what is the total
number of people who contracted this disease from
1960 through 2000? from 2000 through 2010?

8. Repeat Problem 7 if the number of new cases of the
disease increased since 1960.

9. In 1980, the United States used approximately 2.5 bil-
lion kilowatt-hours of electricity. If electric usage
grew by find the total amount of elec-
tricity used between 1980 and 2000.

10. The United States produced 195,000 metric tons of
wheat in 1984. If production increased by 
year find the total amount of wheat produced be-
tween 1984 and 2002.

11. The United States produced 70,600 metric tons of
rice in 1984. If rice production fell by 9% per year,
find the total amount of rice produced between
1984 and 2002.

12. At age 22, Ken gets his first job paying $35,000 per
year. If he stays with the same employer and gets an
average annual increase of 4% each year, what will
be his total earnings over his entire career by the
time he retires at age 65?

13. In 1986, a total of 70,000 pages of new mathemat-
ical research was published. If the amount of re-
search grew at the rate of 8% per year, find the
total amount of new mathematics research pub-
lished between 1986 and 2000.

14. Suppose that several immense new oil fields are
discovered that increase the worldwide oil re-
serves tenfold. If oil consumption continues to

10% per

2% per year,

20% per year

20% per year

r � �2.5.

r � 1.5.

r � �0.8.

r � 0.8.

r � 0.2.

n � 30.n � 20,n � 10,
r � 1

2,1 � r � r2 � . . . � rn, grow at an annual rate of 2% and 26 billion bar-
rels were consumed in 2000, determine how long
the oil reserves will last.

15. Suppose that, as undeveloped countries become
more industrialized, the annual growth rate in oil
consumption increases to 2.5%. Based on the cur-
rent 2250 billion barrel estimate for worldwide oil
reserves and the estimated worldwide oil consump-
tion of 26 billion barrels in 2000, how long will it be
until all the known oil is used?

16. Repeat Example 6 if the initial height of the ball is 6
feet.

17. Repeat Example 6 if the initial height of the ball is
12 feet.

18. Repeat Example 6 if the ball bounces back to 80%
of its height. By how much does the total distance
traveled by the ball change compared to a 75%
bounce?

19. Repeat Example 6 if the ball bounces back of its
height.

20. The repeating decimal 0.222222 . . . can be thought
of as

What is the sum of this geometric sequence?

21. The repeating decimal 0.252525 . . . can be thought
of as

What is the sum, as a simple fraction, of this geo-
metric sequence?

22. A geometric sequence is based on the fact that the ratio
of successive terms is constant: Suppose
instead that the ratio of successive terms in a sequence
is a linear function—say, for 

a. How does the growth rate of this sequence com-
pare to that for a geometric sequence?

b. What is the solution of for n � 1?xn�1>xn � n,

n � 1.xn�1>xn � rn,

xn�1>xn � r.

25

100
�

25

10,000
�

25

1,000,000
� . . ..

2

10
�

2

100
�

2

1000
� . . ..

2
3
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Chapter Summary

In this chapter we introduced difference equations and their solutions. We also dis-
cussed the use of difference equations as mathematical models of population
growth and other phenomena. More specifically we showed the following.

� How to present the solution sequence to a difference equation either as a
closed-form expression for the nth term or as a sequence of numbers gener-
ated term-by-term.

� The fact that the solution to a difference equation depends on the initial
condition with each different initial condition giving rise to a different solu-
tion sequence.

� How to model the level of a drug in the bloodstream with difference equa-
tions.

� How to find the maintenance level associated with a drug and what it
means.

� How to model exponential growth and decay processes with difference
equations.

� How to model population growth with the Fibonacci difference equation.

Weekend 1 2 3 4 5 6 7 8 9 10

Gross 101.4 48.7 41.2 31.1 23.6 21.5 12.0 8.0 9.6 5.8

Source: Internet Movie Database: http://us.imdb.com.

c. What is the solution of for 
d. What is the solution of for 

for any r?
e. What is the solution of for

23. How would the solution of compare
to the solution of for Con-
struct a formula for this solution.

24. Consider How does its solution be-
have? How does it compare to the solution of

for any Construct a formula
for this solution.

25. The table below shows the box-office gross, in mil-
lions of dollars, of the movie Star Wars: The Phan-
tom Menace during its first 10 weeks in the theaters.

a. Find the exponential function that models the
box office gross for the movie as a function of
the number of weeks in release.

b. Use the exponential function from (a) to esti-
mate the total box office gross for The Phantom
Menace during its first ten weekends in theaters.

r � 1?xn�1>xn � 1>r ,

xn�1>xn � 1
n .

n � 1?xn�1>xn � n,
xn�1>xn � n2

n � 1?
xn�1>xn � rn � b,

n � 1,xn�1>xn � rn
n � 1?xn�1>xn � 5n, c. How does the estimate in part (b) compare to the

actual total gross obtained by adding the entries in
the table?

26. The estimated worldwide reserve of natural gas at
the end of 1999 was 5200 billion cubic feet. The
worldwide consumption of natural gas in 1999 was
about 84 billion cubic feet and was growing at an
annual rate of about 2.9%. Source: Energy Information Ad-

ministration, www.eia.doe. gov/ieu/.

a. If this growth rate continues, how long will the
known reserves of natural gas last?

b. If new discoveries of natural gas triple the
known reserves, how long will it take to deplete
the natural gas reserves at the current growth
rate in consumption?

c. How long will the current 5200 billion cubic feet
of natural gas last if the annual growth rate of
consumption rises to 3.5%?

d. How long will the current 5200 billion cubic feet
of natural gas last if the annual growth rate of
consumption falls to 2%?

426 CHAPTER 5 Modeling with Difference Equations
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Review Problems 427

� How to model inhibited population growth with the logistic model, includ-
ing finding the maximum sustainable population.

� How to interpret the behavior of a logistic curve.

� How to estimate the logistic coefficients from a set of data.

� How to model temperature decrease with a difference equation based on
Newton’s law of cooling.

� How to model temperature increase with a difference equation based on
Newton’s law of heating.

� How to interpret the behavior of the solutions for the heating and cooling
models.

� How to sum the first n terms of a finite geometric sequence.

� How to sum all the terms of an infinite geometric sequence, provided that
the common ratio is between and 1.

� How to apply the formulas for the sum of the terms in a geometric se-
quence.

�1

Review Problems

1. Write the first five terms of each sequence.

a.

b.

c.

2. Determine the first five terms in the solution se-
quence of each difference equation.

a.
b.

c.

d.

3. Determine the first five values in each solution se-
quence.

a.
b.

4. A drug is administered every 6 hours. The kidneys
eliminate 60% of the drug over that period. If the
original dose is 100 mg, how much of the drug re-
mains in the body after 8 days?

5. A drug is administered every 4 hours. The kidneys
eliminate about 70% of the drug over the 4-hour
period. The initial dose of the medicine is 100 mg.
How much should the repeated dosage be to ensure
a maintenance level of 30 mg?

6. Chlorine is added to a town’s water supply reservoir at
the rate of An estimated 20% of this amount30 lb>day.

yn�2 � yn�1 � yn ,  y0 � 3,  y1 � 7
yn�2 � yn�1 � yn ,  y0 � 2,  y1 � 7

xn�1 � xn � 1�3 2n,  x0 � 10

xn�1 �
1

3
 xn ,  x0 � 5

xn�1 � xn � 8,  x0 � 12
xn�1 � xn � 8,  x0 � 2

rn � 1 � 10.3 2n
tn �

3n

n
 ,  n � 0

an � 6n � 1

is lost each day through evaporation or filters. What is
the maintenance level of chlorine in the reservoir?

7. The difference equation 
models the number of people in a town who have
VCRs as a function of the year n. Initially, 40 house-
holds had VCRs. Estimate how many people will
eventually have VCRs. Determine the year in which
half the population has VCRs.

8. A population grows according to the logistic model
from an initial size of 1000 to a final size of 12,000.
The annual growth rate is 20%. What is the inhibiting
constant? Write the difference equation that describes
this population for any year n.

9. The size of the fish population in a stream grows in
accordance with the logistic model at an annual
rate of 30% with an inhibiting constant of 0.04%.
Write the difference equation for each situation.

a. The fish population grows according to the
logistic model.

b. The fish population grows according to the
logistic model, but the state game warden allows
2000 fish to be caught and removed from the
stream each year.

c. The fish population grows according to the
logistic model, and the state game warden stocks
the stream with 400 new fish per year.

d. The fish population grows according to the logistic
model, but about 10% of the population is caught
every year.

vn�1 � 1.30vn � 0.00002vn 

2
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10. Write the difference equation for each scenario,
draw a graph of the behavior of the solution, and
answer the question.

a. Pancake syrup used to be 100% maple syrup, but
over the years the amount of maple syrup has
been reduced. Suppose that in 1970 a company
began reducing the amount of maple syrup in its
product by 15% per year. What percentage of
maple syrup is in its product in 2005?

b. John’s investment in the stock market has been
growing by 10% per year. He adds $2000 a year
to his investment. If he had $50,000 invested in
1995, how much does he have invested in 2005?

c. Advertising in the print media has been less im-
portant recently than it was in the past. In 1998,
a company decided to decrease its budget for ad-
vertising in the print media by $20,000 per year.
Also, the company increased its budget for tele-
vision by 10% per year. If the budgets were each
$2 million in 1998, how much is the company
budgeting for print and how much for television
at the end of 5 years? How is the total advertising
budget changing?

11. Chris’s old car has a major oil leak. He estimates that
it loses about 25% of the oil in the engine every week,

so he adds a quart of oil weekly. The capacity of the
engine is 6 quarts of oil.

a. Write a difference equation for the amount of
oil in the engine as a function of time, meas-
ured in weeks.

b. Find the solution to the difference equation.
c. Use the solution to predict when the level of oil

in the engine just after the weekly quart is added
will be down to 5 quarts.

For each difference equation in Problems 12–19, decide
whether the behavior of the solution is an increasing
concave up pattern, a decreasing concave up pattern, an
increasing concave down pattern, a decreasing concave
down pattern, or none of these patterns. In each case,

12.

13.

14.

15.

16.

17.

18.

19. 	xn � 12 � 310.90 2n
	xn � 25 � 2n 

	xn � 5n � 3

	xn � 12n�1.2

	xn � �4n0.3

	xn � 810.85 2n
	xn � 5n2.5

	xn � 511.04 2n
x0 � 50.
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6

Introduction to
Trigonometry

θ

φ

φ

a1

c1
b1

b2

a2

c2

FIGURE 6.2

a

b
c

FIGURE 6.1

The Tangent of an Angle

Historically, trigonometry was developed to solve problems involving right trian-
gles. Thus, for the right triangle shown in Figure 6.1, if we know any two of the three
sides a, b, and c, we can easily find the third side with the Pythagorean theorem

where c is the length of the hypotenuse. But, there is no simple way to find the two
unknown angles. To find them, we need to use trigonometry.

Similarly, if only one of the three sides and one angle are known, we can easily
find the other angle (the two nonright angles must sum to because they are
complementary angles). However, without trigonometry, there is no simple way to
find the lengths of the other two sides.

The basic idea behind trigonometry is a fundamental geometric fact about
right triangles. The two right triangles shown in Figure 6.2 share the angle (lower-
case Greek letter theta). Therefore the remaining angle in both triangles must be the
same. We denote it (the lowercase Greek letter phi). Because all three angles in
both triangles are the same, the triangles are similar (see Appendix A4). As a conse-
quence, once an angle (other than the right angle) has been specified in a right tri-
angle, that triangle is similar to every other right triangle having the same angle 

In the smaller triangle shown in Figure 6.2, from the point of view of the
angle there is an adjacent side, denoted by an opposite side, denoted by 
and the hypotenuse, denoted by In the larger triangle, also from the point of
view of the angle the adjacent side is the opposite side is and the hypotenuse
is The triangles are similar, so that their corresponding sides are proportional, and

Equivalently, once an angle has been specified, the ratio of corresponding sides of
these right triangles will be the same. In particular, among several other compara-
ble ratios,

and
b1

c1
�

b2

c2
 .

a1

c1
�

a2

c2
 ,

a1

b1

�
a2

b2

 ,

u

a1

a2
�

b1

b2

�
c1

c2
 .

c2 .
b2 ,a2 ,u,

c1 .
b1 ;a1 ;u,

u.
u

f

u

90°

c2 � a2 � b2,

6.1
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66
DA B

E

C

?

8
61–4

FIGURE 6.3

That is, each of these ratios depends solely on the angle not on the dimensions
of the triangle. It is these ratios, and their dependence on the angle that form
the basis of trigonometry. In this section, we begin by examining one of these
three ratios.

The Tangent of an Angle

Suppose that your math instructor has assigned you the task of calculating the
height of a tall flagpole in the middle of campus. The direct approach would be to
climb to the top, release a string until the bottom reaches the ground, and then
measure the length of string. Obviously, this method presents some practical diffi-
culties, and you would likely try to come up with some less physical approach.

Assume that, when you go out to the flagpole, you notice that the pole is cast-
ing a 66-foot-long shadow. How can you use this piece of extra information to de-
termine the height of the pole? Suppose that you enlist the aid of a friend Ron, who
is exactly six feet tall. Have him stand in the shadow cast by the pole so that the tip
of his shadow falls exactly on the same spot A as the tip of the shadow of the flag-
pole, as illustrated in Figure 6.3. Also, suppose that the length of his shadow is 
or feet. The two triangles ABC and ADE are similar because the angles are the
same, and so the corresponding sides are proportional. Therefore

 
6

8.25
�

height of pole

66
 .

 
Ron’s height

length of his shadow
�

height of pole

length of pole’s shadow

8.25,
81

4 ,

u,
u,

Multiplying both sides by 66 yields

Is this result correct? You can check it with the help of another friend, Sue, who
is five feet tall. Have her stand so that the tip of her shadow matches the end of the
pole’s shadow. Suppose that the length of her shadow is or feet, which
leads to right triangle AFG that is similar to the previous two, as illustrated in Fig-
ure 6.4. Because the corresponding sides are proportional, we get

6.875,6 
7
8 ,

Height of the pole �
6166 2
8.25

� 48 feet.

Gordon.3896.06.pgs  4/28/03  1:33 PM  Page 430



6.1 The Tangent of an Angle 431

66
DA B

E
G

F

C

?

6
5

6
7–8FIGURE 6.4

θ
A F D

G

E

B

C

FIGURE 6.5

Again, we find that

Let’s look at this situation from a slightly more sophisticated point of view. In
each of the three right triangles shown in Figure 6.5, the various lengths are differ-
ent but the angles in corresponding positions are all the same, so all three triangles
are similar. The angle (which is the same as angle CAB, angle EAD, and angle
GAF) is called the angle of inclination. Using a protractor, we measure this angle
and find that is about In fact, in any right triangle where the angle of incli-
nation is the ratio of the vertical height (the opposite side) to the horizontal
distance or width (the adjacent side) will always be the same; in this case,

Height

Width
�

6

8.25
�

5

6 
7
8

� 0.727.

36°,
36°.u

u

Height of the pole �
5166 2
6.875

� 48 feet.

 
5

6.875
�

height of pole

66
 .

 
Sue’s height

length of her shadow
�

height of pole

length of pole’s shadow

Of course, if the angle has a different value—say, —the configura-
tion of height and width is different and their ratio therefore is different. The ratio
of height to width, or opposite side to adjacent side, in a right triangle depends
only on the size of the angle so this ratio is a function of the angle. We call thisu,

u � 40°u

Gordon.3896.06.pgs  4/28/03  1:33 PM  Page 431



432 CHAPTER 6 Introduction to Trigonometry

θ

Adjacent

Opposite

Hypotenuse

FIGURE 6.6

tan u �
opposite

adjacent

a

a√2a

45°

45°

FIGURE 6.8Opposite

Adjacent
Hypotenuse

θ

φ

FIGURE 6.7

function the tangent of the angle, the tangent ratio, or the tangent function and
write it as

Use your calculator, in Degree mode, to verify that (Note that
the values of the tangent function, as well as the other trigonometric functions that
we discuss in Section 6.2, typically are irrational numbers, but we usually give the
values to three or four decimal places.)

Because we are concerned exclusively with right triangles here, the angle 
must be between and and so for now the domain of the tangent function
consists of all angles (Later we show how we can extend it to a larg-
er domain.) Also, we can have a right triangle in any possible orientation, as shown
in Figure 6.6, so the words height and width may not be appropriate. Instead, we
typically think of the tangent ratio for an angle as follows.u

0° � u � 90°.
90°,0°

u

tan 36° � 0.7265.

tan u �
opposite

adjacent
�

height

width
 .

From the point of view of the other angle in the triangle, the opposite and
adjacent sides are reversed, as depicted in Figure 6.7. Note also that the angles and

are complementary angles.

The Tangent of Some “Special” Angles

Recall from geometry that in any – – right triangle the two sides flanking
the hypotenuse are equal and, by the Pythagorean theorem,

so That is, the hypotenuse must be times the length of either side, as il-
lustrated in Figure 6.8. In this triangle with angle and sides a, a, and 12 a,u � 45°

12c � 12 a.

c2 � a2 � a2 � 2a2,

90°45°45°

f

u

f
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2a
a

b = √3a

30°

60°

FIGURE 6.9

You can easily verify that on your calculator. (Be sure that your calcu-
lator is set in Degree mode.)

Similarly, recall from geometry that in any – – right triangle, the side
opposite the angle is one-half the hypotenuse, or, equivalently, the hypotenuse
is twice the side opposite the angle. In such a triangle, suppose that the side op-
posite the angle has length a so that the hypotenuse has length as shown in
Figure 6.9. We find the length of the third side from the Pythagorean theorem. Be-
cause we have so

so that b � 23 a.b2 � 12a 2 2 � a2 � 4a2 � a2 � 3a2

b2 � c2 � a2,a2 � b2 � c2,

2a,30°
30°

30°
90°60°30°

tan 45° � 1

tan 45° �
opposite

adjacent
�

a
a

� 1.

Consequently, for an angle of the ratio of the opposite side to the adjacent side is

Alternatively, using a calculator, we find 
Similarly, to find the tangent of we see from Figure 6.9 that the side oppo-

site the angle is and the side adjacent to it is a, so that

which you can also check on your calculator.
For any angle between and you can use a calculator to obtain the cor-

responding value for For instance, to three decimal place accuracy,

Note that as increases toward the value of also increases; that is, the
tangent is an increasing function of at least between and Does that make
sense? Imagine walking toward the 556-foot-high Washington Monument while
keeping your eye fixed on the top of the monument, as illustrated in Figure 6.10.

90°.0°u,
tan u90°,u

 tan 80° � 5.671.

 tan 50° � 1.192,

 tan 20° � 0.364,

 tan 10° � 0.176,

tan u.
90°,0°u

tan 60° �
13 a

a
� 13 � 1.732,

13 a60°
60°,

tan 30° � 0.577.

tan 30° �
a13 a

�
113

� 0.577.

30°,
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θ1 θ2 θ3

FIGURE 6.10

h

θ1θ2 θ3

FIGURE 6.11

0 0.176 0.364 0.577 0.839 1.192 1.732 2.747 5.671 UNDEFtan U

90°80°70°60°50°40°30°20°10°0°U

The opposite side (the vertical height) remains the same, 556 feet, while the adja-
cent side (the horizontal distance) gets smaller and smaller. The closer you get to
the monument, the larger the angle of inclination and the larger the ratio of the
fixed vertical height to the diminishing horizontal distance. By the time your eye is
practically touching the side of the monument, and the angle is virtually the
value for the tangent function has gotten very large indeed. The tangent function is
not defined for because the length of the adjacent side would be zero.

What about the tangent of Suppose that you’re standing across the street
from a glass elevator that is descending along the outside of a tall building, as illus-
trated in Figure 6.11. Now the adjacent side (the horizontal distance) is fixed, the
opposite side (the vertical height) is decreasing, and the angle is decreasing to-
ward Therefore the value of the tangent function is likewise diminishing be-
cause it is the ratio of the decreasing vertical height and the fixed horizontal
distance. Clearly, is 0. We therefore conclude that the domain of the tangent
function can be extended at least to 0° � u � 90°.

tan 0°

0°.
u

0°?
u � 90°

90°,

Behavior of the Tangent Function

Let’s consider the values for the tangent function and investigate their growth pat-
tern. Using a calculator, we obtain the following values.

Note that, as the angle increases from to to and so on, the tangent
function is growing ever more quickly, so the function is concave up. The graph of
the tangent function for angles between and is shown in Figure
6.12. It passes through the origin and grows in a concave up pattern, approaching a
vertical asymptote as approaches 

How does the growth pattern compare to that of an exponential function? If
you examine the successive ratios of the values of you will find that they aretan u,

90°.u

90°0°y � tan u

20°,10°0°u
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10

20

0 15° 30° 45° 60° 75° 90°

y

θ

y = tan θ

FIGURE 6.12

66 feet

H = ?

= 36°θ

FIGURE 6.13

not constant, but rather are increasing considerably. In fact, the tangent function
grows extremely rapidly near because is a vertical asymptote for
the function. You might want to look at its graph on your function grapher for an-
gles between and somewhat less than We examine the properties of the tan-
gent function in considerably more detail in Section 7.4.

Construct a table of values for the tangent function for 
and plot the points. Repeat for ❐

Using the Tangent Ratio

Suppose that we have a right triangle in which we can measure one of the angles
other than the angle with a protractor. We can find the tangent of that angle
with a calculator. Then, if we know the length of either the adjacent side or the op-
posite side, we can easily find the length of the other side without involving Ron,
Sue, or anyone else to solve the type of problem we used to begin this discussion.

EXAMPLE 1
A flagpole casts a shadow of length 66 feet. If the angle of inclination from the tip of the
shadow to the top of the flagpole is find the height of the flagpole.

Solution Figure 6.13 shows that

tan 36° �
opposite

adjacent
�

H

66
 ,

36°,

90°

89.2°, . . . , 89.9°.89.1°,u � 89°,82°, . . . , 89°
81°,u � 80°,y � tan uThink About This

90°.0°

u � 90°u � 90°
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θ = 68°

φ = 22°

22°
15

D = ?

FIGURE 6.14

so

or about 48 feet high.

�

Note the approach used in Example 1. The first, and key, step was to draw a
sketch of the situation, in which we identified all known parts of the right triangle,
and marked the unknown parts. We then set up the tangent ratio and used it to
find the unknown quantity.

EXAMPLE 2
While hiking through the mountains, you come to the edge of a deep gorge and wonder
how far it is to the other side. A vertical tree is rooted on your side at the edge of the
gorge. From a point 15 feet up in the tree, you find that the angle of depression (meas-
ured down from the horizontal at eye level) to the opposite edge of the gorge is How
far is it across the gorge?

Solution The height (15 feet) to the point in the tree and the unknown distance D
across the gorge form two sides of a right triangle, as depicted in Figure 6.14. Note that
the angle of depression is not an angle of the triangle. However, it does determine the
measures of the triangle’s angles and based on some simple geometry. First, the
angle because it is the complement of Second, the angle because 
is the complement of We therefore have

tan u � tan 68° �  2.475.

u � 68°.
ff � 22°22°.u � 68°

f,u

22°

22°.

H � 66 tan 36° � 47.952,

From the triangle shown in Figure 6.14,

so that

Therefore the gorge is about 37 feet across.

�

D � 1512.475 2 � 37.125.

tan u �
D

15
� 2.475
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θ
a = 20

b = 13

FIGURE 6.15

Note that if we worked with the angle instead, we would obtain the same result:

so that

Finding an Angle in a Triangle

We often face the problem of determining an angle in a right triangle when we
know two of the sides. For example, let the two sides of the right triangle shown in
Figure 6.15 be and , so that

tan u �
b
a

�
13

20
� 0.65.

b � 13a � 20

u

D �
15

tan 22°
� 37.13.

tan f � tan 22° �
15

D

f

Suppose that we want to find We know from the table of values we constructed
previously for the tangent function that and Be-
cause the values for the tangent are strictly increasing, we expect to be between

and We can improve on these rough estimates by trial and error. For in-
stance, using a calculator, we might find that (too high),

(too low), (slightly too high), and so on.
A far more effective method is to use the inverse of the tangent function, which

gives the angle whose tangent has a particular value. (We discuss this inverse func-
tion in detail in Section 7.4.) For now, on your calculator simply press either 2nd
or INV followed by TAN and then the known tangent value. For this example, INV
TAN 0.65 returns 33.024. That is, is the angle whose tangent value is 0.65.
You can check on your calculator that 

The inverse tangent of a number x is usually written as either arctan x or
We will use the first notation, arctan x.

EXAMPLE 3
A ski slope drops 1500 feet vertically in the process of covering 4300 feet horizontally.

a. What is the angle of inclination of the ski slope?

b. What is the actual distance that a skier will ski down the slope?

Solution

a. We start with a sketch of the ski slope, as shown in Figure 6.16. From geometry, the
angle equals the angle inside the triangle at the end of the ski run (they are alternate
angles between parallel lines). Therefore

u

Tan�1x.

tan 33.024° � 0.65.
33.024°

tan 34° � 0.6745tan 32° � 0.625
tan 35° � 0.7002

40°.30°
u

tan 40° � 0.839.tan 30° � 0.577
u.
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θ

θ

4300 feet

1500 feet
D = ?

FIGURE 6.16

Given Objective Strategy

a and b Find c.

Find 

a and c Find b.

Find 

b and c Find a.

Find 

a and Find b.

Find c.

b and Find a.u

u

u.

u.

u.

so that

or about 

b. The actual distance skied D is simply the length of the hypotenuse. Therefore, from
the Pythagorean theorem,

so that

or about 4554 feet.

�

In general, problems in right angle trigonometry typically involve knowing a
small amount of information about a right triangle and using that information in-
telligently to determine values for the other parts (either the sides or the angles) of
the triangle. In fact, there are only a limited number of possibilities. We list these
cases (based on the right triangle shown in Figure 6.17) in the following table. We
leave the last column for you to complete. Decide on an appropriate strategy for
finding each of the missing pieces, based on the information given or previously
determined.

215002 � 43002 � 220,740,000 � 4554.12,

D2 � 15002 � 43002,

19.2°.

u � arctan10.3488 2 � 19.2288,

tan u �
opposite

adjacent
�

1500

4300
� 0.3488,

(continued )
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FIGURE 6.17

1. a. Use a ruler to measure, as accurately as possible,
the lengths AB, AC, AD, AE, AF, AG, BE, CF, and
DG.

b. Using your values from part (a), calculate the ra-
tios and 

c. Group the ratios that you calculated in part (b)
that appear to be equal. Identify any patterns
that help you explain why certain ratios have the
same values.

For Problems 2–6, refer to the accompanying figure.
Use the information given to find all other parts of the
triangle.

DG
AD.CF

AC ,DG
AG ,

CF
AF,BE

AE,BE
AB,AD

AG,AC
AF,AB

AE,

7. The shadow of a flagpole is 50 feet long. A line of
sight from the tip of the shadow to the tip of the
pole makes an angle of with the ground. How
high is the pole?

8. You want to find the distance across a straight, fast-
flowing river. You find two vertical trees that are di-
rectly across the river from one another at points A
and B so that the angle at B is a right angle, as
shown in the accompanying diagram. You then
measure a distance of 32 feet to another tree at
point C on the edge of the river on your side. From
the tree at C, you find that the angle ACB is 
Find the distance across the river.

56°.

28°

Problems

We examine the last case when c and are known—which cannot be solved by
using the tangent of an angle—in Section 6.2.

Whenever you face any problem involving a right triangle, your first step should
always be to draw a simple picture of the situation to identify the different parts of
the triangle and see how they are related. Your drawing will help you determine
which strategy, if any, to use to solve for the remaining parts of the triangle.

u

2. and 3. and 

4. and 5. and 

6. and b � 47a � 72

b � 18c � 30a � 6c � 15

a � 12u � 16°b � 12u � 52°

Given Objective Strategy

Find c.

c and Find a. Cannot be done simply by using 

Find b. Cannot be done simply by using tan u.

tan u.u
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20°
300 ft

RESCUE

0 0.5 1 1.5 2 2.5 3

U

tan U

A B

C

56°

32

5°

50 ft

9. The line of sight from the top of a lighthouse to a Jet-
Ski out on the water makes an angle of depression of

with the horizontal. The lighthouse is 50 feet high.5°

a. How far is the Jet-Ski from the base of the
lighthouse?

b. What is the straight-line distance from the top of
the lighthouse to the Jet-Ski?

10. A helicopter is hovering over a particular spot with
its searchlight trained on an injured hiker on the
ground. Because of tricky wind currents, the pilot
can’t get the copter any closer to the hiker. The
angle that the searchlight makes with the ground is

If the copter pilot estimates that she is at a
height of 300 feet above the ground, how far away,
horizontally, is the injured hiker?

20°.

11. A wheelchair ramp is to be built from ground level
to a platform 7 feet above the ground. The angle of
inclination with the ground is required to be no
greater than 15°.

b. Plot the points ( ) and connect them with
a smooth curve. (This is part of the graph of the
function )y � arctan u.

utan u,

The Sine and Cosine of an Angle

Suppose that you’re flying a kite at the end of 400 feet of string and are curious
about how high the kite is. How can you find its height? Figure 6.18 shows that the
length of string is simply the hypotenuse of the right triangle. You can measure the

6.2

a. What is the shortest length for a ramp that meets
this requirement?

b. How far is the start of the ramp from the base of
the platform?

12. Jill is standing at the top of a vertical cliff and Jack is
standing 25 feet away from the foot of the cliff and es-
timates that the angle of elevation from his position
to Jill’s is Approximately how high is the cliff?

13. Suppose that Jack’s measurement in Problem 12 of
the distance to the cliff is off by 1 foot. How much
difference does this error make in the calculated
height of the cliff? (Hint: Recalculate your answer to
Problem 12 two ways, once for a distance of 24 feet
and then for a distance of 26 feet.)

14. Suppose that Jack’s estimate of the angle of elevation
in Problem 12 is off by How much difference
does this error make in the calculated height of the
cliff?

15. Suppose that Jill, at the top of the cliff, wants to find
the horizontal distance from the foot of the cliff to
where Jack is standing without climbing down and
measuring it directly. She drops a rock at the end of
a long measuring tape down the cliff and finds that
the height of the cliff is about 75 feet. Next, she
measures the angle of depression from her position
to Jack’s to be approximately How far is Jack
from the foot of the cliff?

16. The installation instructions for a TV satellite re-
ceiver at a particular location call for it to be aimed
at an angle of from the horizontal. Unfortunate-
ly, your protractor is broken. Devise a strategy that
will help you aim the dish in the proper direction.

17. a. Find the missing entries in the table.

68°

70°.

1°.

40°.
u
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6.2 The Sine and Cosine of an Angle 441

angle of inclination that the kite string makes with the horizontal—say,
Recall that this case is the last one presented in the strategy table in Section 6.1,
where we pointed out that the tangent function is of no help. We must devise a dif-
ferent strategy to determine the height y of the kite.

u � 37°.u

Using a yardstick, you could measure 5 feet along the kite string and then
measure the height from the horizontal to that point on the string; say that you get
3 feet. As shown in Figure 6.19, you have a pair of similar right triangles ABC and
ADE, so you know that their corresponding sides are proportional. Consequently,

 
y

400
�

3

5
 .

 
height of kite

length of hypotenuse
�

height to point on string

length of string to that point

Therefore the height of the kite is

or 240 feet above the “horizontal.” (If, in fact, you hold the kite string chest-high,
say, 4 feet above the ground, the kite is 240 feet above your hand. Hence the kite is
actually 244 feet above the ground.)

The Sine of an Angle

The key to solving this problem is to construct the ratio of the height and the hy-
potenuse of the right triangle. In our discussion of the tangent of an angle, we in-
dicated that, for any angle we can construct infinitely many right triangles that
are all similar. Thus the ratio of the height and the hypotenuse will be the same for

u,

y � 400 a
3

5
b � 240,

400 y = ?

θ

FIGURE 6.18

A D

E

B

C

37°
3

5

400

y

FIGURE 6.19
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sin u �
opposite

hypotenuse

all these similar triangles, as illustrated in Figure 6.20. Because the ratio changes as
the angle changes, this ratio is a function of the angle We define this ratio to be
the sine of the angle, or the sine function, and write it as follows.

u.

As with the tangent function, opposite refers to the side opposite the angle re-
gardless of the orientation of the right triangle. You must think of the opposite side
in terms of the angle not as the side of a triangle that is in some particular loca-
tion, such as the vertical position.

The Behavior of the Sine Function

For now we’re concerned only with right triangles, so the domain of the sine
function consists of angles between and The following comments apply
only to this situation. In Section 6.3, we consider cases for which this restriction
is lifted, leading to more interesting and useful behavior patterns for the sine
function.

As with the tangent ratio, you can get the values for the sine of any angle in a
right triangle using your calculator in Degree mode. For instance,

Note that the values for the sine function are increasing as the angle in-
creases from to Further, the sine function grows more rapidly for small an-
gles and less rapidly as angles get closer to so that these values follow a concave
down pattern. Figure 6.21 shows a graph of the sine function for between and

(We discuss the sine’s behavior for angles outside this interval in Section 6.3.)90°.
0°u

90°,
90°.0°

uy � sin u

 sin 75° � 0.966.

 sin 40° � 0.643,

 sin 30° � 0.5,

 sin 20° � 0.342,

 sin 10° � 0.174,

90°.0°

u,

u

θ adjacent

Adjacent

opposite

Opposite
Hypoten

use

hypoten
use

FIGURE 6.20
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c

θ→90°

FIGURE 6.23

a

a√2a

45°

45°

FIGURE 6.24

0 90°

1

θ

y

y = sin θ

FIGURE 6.21

c

θ→0°

FIGURE 6.22

The Sine of Some “Special” Angles

As we did with the tangent function in Section 6.1, let’s consider some of the spe-
cial angles, notably and from the point of view of the sine
function. To begin, think about what happens in a right triangle as the angle
shrinks to for a fixed hypotenuse c. (Imagine the kite nosediving toward the
ground at the end of the taut string as shown in Figure 6.22.) The length of the op-
posite side also decreases to 0, so

What about Again, for a fixed hypotenuse c, think about what happens in a
right triangle as the angle increases to (Although improbable, imagine the kite
moving directly overhead so that the height of the kite becomes equal to the length
of the string, as illustrated in Figure 6.23.) The length of the opposite side in the
triangle grows until it approaches the length of the hypotenuse, so

Verify these two facts on your calculator.
Now let’s look at the other special angles. As shown in Figure 6.24, when

we have a right triangle with two angles of and the two corresponding
sides of equal length, say a. Recall that, by the Pythagorean theorem, the length of

45°u � 45°,

sin 90° �
c
c

� 1.

90°.
sin 90°?

sin 0° �
opposite

hypotenuse
�

0
c

� 0.

0°

90°,60°,45°,30°,u � 0°,
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0 0.5 1
13

2
� 0.866

112
� 0.707sin U

90°60°45°30°0°U

the hypotenuse is Hence

Similarly, as shown in Figure 6.25, when the remaining angle is 
Recall that, in any – – right triangle, the length of the side opposite the

angle is half the length of the hypotenuse. If the hypotenuse has length the
opposite side has length a. Consequently,

sin 30° �
opposite

hypotenuse
�

a

2a
� 0.5.

2a,30°
90°60°30°

60°.u � 30°,

sin 45° �
opposite

hypotenuse
�

a12 a
�

112
� 0.707.

12 a.

By the Pythagorean theorem, if the remaining side has length b, then

so We therefore have

as we found previously by using a calculator.
We summarize these findings as follows 

sin 60° �
13 a

2a
�
13

2
� 0.866,

b � 13 a.

b2 � 12a 2 2 � a2 � 4a2 � a2 � 3a2,

Note that the values for the sine of any angle in a right triangle must always lie be-
tween 0 and 1. The reason is that the sine is the ratio of the opposite side and the
hypotenuse, and in any right triangle the hypotenuse is always the longest side.

Applications of the Sine Function

We apply the sine function in Examples 1–3 to illustrate its use in solving different
types of everyday problems.

2a
a

b = √3a

30°

60°

FIGURE 6.25
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42

L = ?
φ

H = ?

= 35°θ

FIGURE 6.27

5°

12

 = 5°θ

y

FIGURE 6.26

EXAMPLE 1
A highway through the mountains has a stretch that drops at a grade of If you drive a
distance of 12 miles along this road, how far do you descend vertically?

Solution To help visualize the situation, we “straighten out” all curves in the road and
sketch the situation, as shown in Figure 6.26, which is not to scale. Note that a grade
also can be thought of as a angle of descent or a angle of declination. We know that
the length of the hypotenuse is 12 miles. We let y be the vertical drop, and get

so that y � 121sin 5° 2 � 1.05.sin 5° �
y

12

5°5°
5°

5°.

Consequently, along this stretch of highway, the road drops about 1.05 miles, or about
5544 feet.

�

EXAMPLE 2
A tall tree has been uprooted during a storm. It is tilted over and supported near its top
by a vertical wall, as shown in Figure 6.27. The actual horizontal distance from the tree’s
roots to the wall is 42 feet and the angle of elevation of the tree is estimated to be 35°.

a. Estimate the length of the tree.

b. Estimate how high on the wall the top of the tree is lodged.

Solution

a. Note that

sin u � sin 35° �
H

L
 ,
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which involves two unknowns; thus we cannot solve the equation. Instead, we must
work with the remaining angle in the triangle, which is 
Therefore we have

so that

(Note that we could also have used the tangent of to determine the height H of the
triangle and then used the Pythagorean theorem to find the length of the hypotenuse.)

b. We now use the Pythagorean theorem to find the height of the triangle:

so that

�

Suppose that the estimate of the angle in Example 2 is off by either high or
low. How much difference would this error make in the answers to parts (a) and
(b) of Example 2. ❐

Often, we face the problem of determining an angle when we know the
value of the sine of that angle. For instance, if the hypotenuse of a right triangle is
20 and the side opposite the angle is 15, as shown in Figure 6.28, then

What is the angle We could find it by trial and error (we know that
and so we might try and so on). A far more

effective approach is to use the inverse sine function, which gives the angle whose
sine has a particular value. We write this inverse function as arcsin x, for any given
value x (although is also used). We discuss the inverse sine function in detail
in Section 7.3. For now, with your calculator, simply press either 2nd or INV, fol-
lowed by SIN, and then the known value of the sine function—say, 0.75: the cal-
culator returns 48.590. To verify that it is the correct angle, we check that

sin 48.59 � 0.749996 � 0.75.

sin�1x

50°,sin 60° � 0.866,sin 45° � 0.707
u?sin u � 0.75.

u

5°,Think About This

H � 29.4 feet.

H2 � 51.272 � 422 � 864.613,

35°

L �
42

sin 55°
� 51.27 feet.

sin 55° �
42

L
 ,

f � 90° � 35° � 55°.f

θ

20 15

FIGURE 6.28
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4

12

= ?θ

φ

FIGURE 6.29

EXAMPLE 3
A 12-foot-long ladder is leaning against a wall. If the foot of the ladder is 4 feet from the
wall, what is the angle of inclination of the ladder?

Solution We start with a sketch of the situation, as shown in Figure 6.29. To use the
sine function, we have to consider the point of view of the angle so

and therefore

Hence the angle of inclination of the ladder is

�

In Section 6.1, we asked you to complete a table outlining strategies for solving
for all the parts of a right triangle given various combinations of sides and angles.
In all but one of those cases, you could determine all the other parts of the triangle
by using the tangent. Now we ask you to complete the table again by deciding on
appropriate strategies to determine the parts of a right triangle by using the sine
instead of the tangent. Refer to Figure 6.30.

u � 90° � 19.47° � 70.53°.

f � arcsin 
1

3
� 19.47°.

sin f �
4

12
�

1

3

f,

Given Objective Strategy

a and b Find c.

Find 

a and c Find b.

Find 

b and c Find a.

Find 

a and Find b.

Find c.

b and Find a.

Find c.

c and Find a.

Find b.

u

u

u

u.

u.

u.
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The Behavior of the Cosine Function

As with the sine and the tangent, you can get the values for the cosine of any angle
in a right triangle using your calculator. For instance,

These values are decreasing more slowly for small angles and more rapidly as an-
gles get closer to Therefore the values for the cosine function decrease in a con-
cave down pattern for angles between and Figure 6.31 shows a graph of the
cosine function for between and Note that it starts at a height of
1 and decreases toward 0 in a concave down pattern as approaches 90°.u

90°.0°uy � cos u
90°.0°

90°.

 cos 50° � 0.643.

 cos 40° � 0.766,

 cos 30° � 0.866,

 cos 20° � 0.940,

 cos 10° � 0.985,

cos u �
adjacent

hypotenuse

θ
a

b
c

FIGURE 6.30

In practice, which function you apply doesn’t matter so long as you use a cor-
rect strategy. Thus for most of the cases, a variety of different approaches will give
the correct answers. Incidentally, together the tangent function and the sine func-
tion allow you to solve for all the parts of any right triangle in all six cases.

The Cosine of an Angle

So far, we’ve considered two of the six possible ratios among the sides of a right
triangle:

and

One other ratio is very useful: the ratio of the adjacent side and the hy-
potenuse, which also depends only on the angle We now define a third trigono-
metric function, the cosine of an angle, or the cosine function, as follows.

u.

sin u �
opposite

hypotenuse
tan u �

opposite

adjacent
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400

θ→90°

FIGURE 6.33

0

1

θ
90°

y

y = cos θ

FIGURE 6.31

400

θ→0°

FIGURE 6.32

The Cosine of Some “Special” Angles

Again, let’s consider the special angles and To begin, what
is Think about a right triangle in which the hypotenuse remains constant
and the angle shrinks to (Imagine again the kite as it nosedives toward the
ground on a windy day so that the string remains taut, as shown in Figure 6.32.)
The hypotenuse gets closer and closer to the adjacent side, so

cos 0° �
adjacent

hypotenuse
� 1.

0°.u

cos 0°?
90°.60°,45°,30°,u � 0°,

Similarly, think about a right triangle in which the hypotenuse remains fixed and
the angle approaches (Imagine the kite moving directly overhead, as shown in
Figure 6.33.) The adjacent side gets closer to 0, so

cos 90° � 0.

90°.
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a

a√2a

45°

45°

FIGURE 6.34

2a
a

√3a

30°

60°

FIGURE 6.35

1 0.5 1
112

� 0.707
13

2
� 0.866cos U 

90°60°45°30°0°U

Next, let’s look at the other special angles. As shown in Figure 6.34, when 

This result is the same value we found for the sine of Explain why they are
the same. ❐

Also, when Figure 6.35 shows that

which is the same as Similarly,

which is the same as sin 30°.

cos 60° �
a

2a
�

1

2
 ,

sin 60°.

cos 30° �
13 a

2a
�
13

2
� 0.866,

u � 30°,

45°.Think About This

cos 45° �
adjacent

hypotenuse
�

a12 a
�

112
� 0.707.

u � 45°,

We summarize these key values for the cosine function as follows.

Explain why and ❐

Applications of the Cosine Function

We use the cosine function in Examples 4 and 5 to illustrate its value in solving a
couple of rather simple problems.

EXAMPLE 4
To get onto a straight water slide at an amusement park requires climbing a flight of
steps 60 feet high. The slide itself is inclined downward at a angle. How long is the ac-
tual slide?

Solution Figure 6.36 indicates that the angle in the right triangle is and that the ad-
jacent side is 60 feet long. Therefore, to find the length L of the slide, we use

48°

42°

cos 60° � sin 30°.cos 30° � sin 60°Think About This
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24

30 H = ?

= ?θ

FIGURE 6.37

 = 48°θ

42°

60 L

FIGURE 6.36

Thus

So the slide is almost 90 feet long.

�

Can you solve Example 4 by using the sine function instead? the tangent function? ❐

EXAMPLE 5
A 30 foot ramp extends 24 feet horizontally.

a. What is the angle of elevation of the ramp?

b. How high does the ramp extend?

Solution

a. We start with a sketch of the situation, as shown in Figure 6.37. The hypotenuse has
length 30 feet and the base (which is the adjacent side from the point of view of the
unknown angle ) is 24 feet. Therefore

cos u �
adjacent

hypotenuse
�

24

30
 .

u

Think About This

L �
60

cos 48°
� 89.67.

cos 48° �
adjacent

hypotenuse
�

60

L
 .
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To find the angle we undo the cosine using the inverse cosine (see Section 7.3), so that

or about 

b. We can solve for the height H in a variety of ways. Probably the simplest is to use the
Pythagorean theorem, which gives

so that

�

Applications from Physics

The trigonometric functions arise frequently in applications of the physical sci-
ences. Many physical quantities, such as force and velocity, involve both a direction
and a size. Such quantities are known as vectors, and we look at them more formally
in Section 10.1. For now, we consider some physical applications informally to illus-
trate the use of trigonometry.

Imagine pushing against a window that is stuck in order to open it. You exert a
certain force, but the effect of that force depends on the angle at which you exert
it. If the angle is primarily vertical, most of the effect of your effort is applied to
push the window upward, as shown in Figure 6.38(a). If the angle is more horizon-
tal, as shown in Figure 6.38(b), only a small portion of your effort is applied to
moving the window upward while most of your effort is wasted in the horizontal
direction, effectively pushing the window outward. The total force exerted can be
broken into two parts, one horizontal and the other vertical, based on the angle at
which the force is applied. We illustrate this principle in Examples 6–8.

u

H � 18 feet.

H2 � 302 � 242 � 324,

37°.

u � arccos a
24

30
b � 36.87°,

u,

EXAMPLE 6
A 30 pound force is exerted at an angle of with the vertical to push a stuck window up-
ward. Find the effective value of the force actually exerted to move the window vertically.

Solution We begin with a sketch of the situation, as shown in Figure 6.39, where the force
being exerted is represented by the hypotenuse of the right triangle. We let the lengths of
the sides equal the sizes of the forces. Thus the hypotenuse has length 30. The portion F
of the force effectively applied to move the window vertically upward is the vertical side

20°

θ

Force

(b)

θ

Fo
rc

e

(a)

Effective
force

Effective
force

FIGURE 6.38
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20°

30 F

FIGURE 6.39

16 mph
s = ?

w = ?

45°

45°

FIGURE 6.40

of this triangle. From the point of view of the angle, the effective force is exerted
along the adjacent side of the triangle, which suggests using the cosine function. In
particular,

so that

or slightly more than 28 pounds of the 30 pounds of the force is applied to moving
the window.

F � 30 cos 20° �  28.19,

cos 20° �
F

30
� 0.9397

20°

�

EXAMPLE 7
A sailboat is out on a still lake where the wind is blowing at a speed of 16 mph from the
northeast, as shown in Figure 6.40. How fast is the sailboat moving toward the west? to-
ward the south?

Solution Because the wind is blowing from the northeast, the angle it makes with the
horizontal is The wind is actually pushing the sailboat toward the southwest at
16 mph, as represented by the hypotenuse of the right triangle shown in Figure 6.40. We
want to find the speed w in the westward direction, as indicated by the horizontal side of
the triangle, and the speed s in the southward direction, as indicated by the vertical side
of the triangle.

45°.
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16 mph
s = ?

w = ?

32°

FIGURE 6.41

Let’s first determine the sailboat’s speed toward the west. Because the side opposite
that angle is the unknown and we have the hypotenuse, we use the sine function. Thus

so that

That is, the sailboat is moving at slightly more than 11 mph toward the west.
To find the speed toward the south, we simply observe that, because the angle in this

right triangle is the two sides are equal and so also. Thus the sailboat is
also moving at slightly more than 11 mph toward the south.

�

Suppose that the wind is not quite blowing from the northeast but from some
angle other than Example 8 demonstrates how the solution changes accordingly.

EXAMPLE 8
A sailboat is out on a still lake where the wind is blowing at a speed of 16 mph from the
northeasterly direction of east of north, as shown in Figure 6.41. How fast is the sail-
boat moving toward the west? toward the south?

32°

45°.

s � 11.31445°,

w � 16 sin 45° � 11.314.

sin 45° �
w

16

Solution As in Example 7, the wind is actually pushing the sailboat in a southwesterly
direction at 16 mph, as represented by the hypotenuse in the right triangle in Figure
6.41. But now the angle is instead of We again indicate the westward speed w
along the horizontal side of the triangle and the southward speed s along the vertical side
of the triangle.

We first determine the speed toward the west. Using the sine function, we have

so that

w � 16 sin 32° � 8.479.

sin 32° �
w

16

45°.32°
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θ
a

b
c

= ?θ

Problems

That is, the sailboat is moving at about mph toward the west.
To find the speed toward the south, we need to determine the remaining side of the

right triangle. We do so by using the Pythagorean theorem:

so that

Thus the sailboat is moving at about mph toward the south.

�
131

2

s � 13.569.

s2 � 162 � w2 � 162 � 8.4792 � 184.107

81
2

1. Use a ruler to measure the three sides of the triangle
shown. Based on the measurements, what are your
best estimates for and What is
your estimate for the angle u?

tan u?cos u,sin u,

the end of the pendulum reaches compared to its
lowest height when it passes the vertical?

11. From takeoff, an airplane reaches a height of 2 miles
(10,560 feet) in the process of covering 20 miles
horizontally.

a. Find the average angle of ascent of the airplane
as it climbs.

b. Is the actual path upward of the airplane a
straight line, or is the path curved in a concave up
pattern or in a concave down pattern? Explain
your reasoning.

c. If the airplane were to climb along a straight-line
path, find the distance it would travel as it goes
from the ground to the 2-mile height. Is the dis-
tance that the airplane actually travels greater than
or less than the distance you calculated? Why?

12. When the space shuttle comes in for a landing at
Cape Canaveral, its descent to the ground for the
final 10,000 feet of height is at an angle of with
the horizontal.

a. What actual distance does the shuttle traverse
along this final glide path?

b. How far from touchdown, horizontally, should the
shuttle be when it passes the 10,000-foot altitude?

13. Jack and Jill are about to climb a 400-foot-high hill.
If the angle of ascent is from the horizontal,
what is the actual distance they will cover to reach
the summit on a straight track?

52°

19°

Problems 2–7 refer to the accompanying figure. Use the
information given to find all other parts of the triangle.

2. and 3. and 

4. and 5. and 

6. and 7. and 

8. A road up a hill is inclined at to the horizontal.
A driver starts driving up this hill and, by checking
the odometer, discovers that the steep portion of
the road extends for three-quarters of a mile. How
much has the car gained in altitude?

9. With its radar, an aircraft spots another aircraft 10,000
feet away at an angle of depression of Find the
horizontal distance from one aircraft to the other.

10. As a pendulum of length 21 inches swings back
and forth, the maximum angle it makes from the
vertical is What is the greatest height thatu � 18°.

15°.

11°

u � 72°a � 42b � 9a � 12

b � 8c � 30a � 16c � 22

c � 12u � 16°b � 15u � 52°

52°

400 ft

x
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1 m
0.6 m

θ

2 in.
θ

3 in
.

The Sine, Cosine, and Tangent in General

So far, we’ve considered the trigonometric functions only for angles in a right tri-
angle—that is, angles between and However, we often encounter situations
in which we need to consider angles larger than A natural question is: How do
we adapt the ideas previously discussed to such cases? Before we address that ques-
tion, let’s choose such an angle—say, —and find out what happens when
we use a calculator. We get

and tan 125° � �1.428.cos 125° � �0.574sin 125° � 0.819,

u � 125°

90°.
90°.0°

6.3

14. When Jack and Jill came tumbling down from the
top of the hill in Problem 13, their angle of descent
was from the horizontal. What is the actual dis-
tance they covered while tumbling down?

15. A javelin is 1 meter long. When it lands after being
thrown, its base is 0.6 meters vertically
above the ground. What angle does the javelin make?

1 � 60 cm 2

61°

16. Problem 15 is unrealistic because the point of the
javelin is going to be embedded in the ground. Sup-
pose that 92 cm of the javelin is visible above the
ground, and that its base is still 60 cm vertically
above ground level. What angle does the javelin
make with the ground?

17. You must hammer a 3-inch-long nail into a piece
of wood 2 inches thick. Find the steepest angle at
which you can hammer the nail all the way into the
wood without it coming out the opposite side.

18. When an airplane takes off, it climbs at an angle of
at a speed of 180 feet per second. How high is

the plane after 1 second? after 2 seconds?

19. The cranberry sauce to go with your holiday turkey
comes out of a can and has a diameter of 3 inches.
When you slice the roll of cranberry sauce at an angle,

16°

most of the slices will be ellipses with a minor axis of 3
inches. Suppose that you slice the roll at an angle of

to the vertical. Find the length of the major axis of
each elliptical slice. (See Appendix A7; ellipses and
their properties are covered in detail in Section 9.3.)

20. An escalator rises at a angle with the horizontal.
If it rises 28 feet vertically, what is its length?

21. A safety regulation limits the maximum angle of in-
clination for the ladder on a fire truck to If a
hook-and-ladder fire truck has a ladder that can ex-
tend to a length of 90 feet, what is the maximum
height that it can reach?

22. A balloonist is trying to cross the Atlantic Ocean. If
the wind is blowing at 40 mph from the northwest,
what is the actual airspeed at which the balloon is
traveling eastward toward Europe?

23. The wind in Problem 22 now shifts slightly and in-
creases in speed so that it is now blowing at 50 mph
from north of west. What is the actual airspeed
at which the balloon is moving eastward?

24. a. Find the missing entries in the table.

40°

72°.

26°

27°

b. Plot the points ( ) and connect them with
a smooth curve.

c. This curve is part of the graph of what function?

cos u, u

1 0.8 0.6 0.4 0.2 0

U

cos U

0 0.2 0.4 0.6 0.8 1

U

sin U

b. Plot the points ( ) and connect them with
a smooth curve.

c. This curve is part of the graph of what function?

25. a. Find the missing entries in the table using only
your answers to Problem 24.

sin u, u
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If

 tan u � 0.

 cos u � 0,

 sin u � 0,

90° � u � 180°,

Let’s see how these values are defined and why they have the indicated signs.

Angles Between and 

Consider any angle between and imagine it with one side, its initial
side, along the positive x-axis and the other side, its terminal side, in the second
quadrant, as depicted in Figure 6.42. By convention, we measure such an angle
starting along the positive x-axis and rotating counterclockwise. The terminal
side forms the hypotenuse of a right triangle in the second quadrant when we
drop a vertical line from the terminal side to the x-axis. Suppose that the hy-
potenuse of this right triangle is h, the length of the vertical side is y, and the
length of the horizontal side is x. By convention, because y extends up from the
horizontal axis, we think of it as positive. Because x extends to the left of the ver-
tical axis, we think of it as negative. By convention, the hypotenuse is always con-
sidered positive. The angle in this right triangle is the supplement of the angle

because thus or The angle is
sometimes called the reference angle.

ff � 180° � u.u � 180° � f,u � f � 180°;u

f

180°;90°u

180°90°

x

y

y

x < 0

h

terminal
side

initial side

θ
φ

FIGURE 6.42

We define the trigonometric functions when the angle is between and
in terms of the comparable values for the angle Therefore

As previously mentioned, for any angle between and with its terminal
side in the second quadrant, x is negative and y and h are positive. Thus the cosine
and tangent of that angle are negative, whereas the sine is positive, as we saw with

and tan 125° � �1.428.cos 125° � �0.574,sin 125° � 0.819,

180°90°u

x � 0. tan u �
opposite

adjacent
�

y

x
 ,

x � 0 cos u �
adjacent

hypotenuse
�

x

h
 ,

 sin u �
opposite

hypotenuse
�

y

h
 ,

f.180°
90°u

Gordon.3896.06.pgs  4/28/03  1:33 PM  Page 457



458 CHAPTER 6 Introduction to Trigonometry

If

 tan u � 0.

 cos u � 0,

 sin u � 0,

180° � u � 270°,

x

y

y < 0

x < 0

h

θ

φ

FIGURE 6.43

Angles Between and 

What about an angle between and whose terminal side is in the third
quadrant, as depicted in Figure 6.43. We construct a right triangle in the third
quadrant by drawing a vertical line from the terminal side to the x-axis that deter-
mines a reference angle Now both the x- and y-values are negative, and

As before, we define the trigonometric functions for in terms of
this reference angle by using the appropriate lengths in the right triangle so that

and y � 0.x � 0 tan u �
opposite

adjacent
 �

y

x
 ,

x � 0 cos u �
adjacent

hypotenuse
 �

x

h
 ,

y � 0 sin u �
opposite

hypotenuse
 �

y

h
 ,

f

uu � 180° � f.
f.

270°180°u

270°180°

For any angle between and the values of x and y are negative, so the sine
and cosine are negative. However, for these angles, the tangent is positive because it
is the quotient of two negative quantities.

270°,180°

Suppose that so that Use your calculator to find the values for
and How do they compare with and

❐

Angles Between and 

Next, consider an angle between and whose terminal side is in the
fourth quadrant, as shown in Figure 6.44. Once more, we construct a right tri-
angle by drawing a vertical line from the terminal side to the x-axis. We define
each of the trigonometric functions in terms of the reference angle in that tri-f

360°270°u

360°270°

tan 31°?
cos 31°,sin 31°,tan 211°.cos 211°,sin 211°,

f � 31°.u � 211°Think About This
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x

y

y < 0

x

h

θ

φ

FIGURE 6.44

angle. Now the y-value is negative, the x-value is positive, and so
Also,

Therefore, because y is negative, for any angle between and the cosine is
positive and the sine and the tangent are both negative.

360°,270°

y � 0. tan u �
opposite

adjacent
 �

y

x
 ,

 cos u �
adjacent

hypotenuse
 �

x

h
 ,

y � 0 sin u �
opposite

hypotenuse
 �

y

h
 ,

u � 360° � f.
u � f � 360°,

If

 tan u � 0.

 cos u � 0,

 sin u � 0,

270° � u � 360°,

Angles Greater than 

What happens if is greater than —say, As shown in Figure 6.45, we can
construct such an angle by looping around a full and then an additional 
essentially, this angle is equivalent to an angle of in the first quadrant.
Using a calculator, we find that

f � 50°
50°;360°

410°?360°u

360°

x

y

y

x

h

θ  = 410° φ  = 50°

FIGURE 6.45
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 cos1u � 360° 2 � cos u

 sin1u � 360° 2 � sin u

tan1u � 180° 2 � tan u

x

y

y < 0

x

h

330°

θ  = −30°

FIGURE 6.46

Similarly, if we make two full rotations (accounting for 
), which leaves an angle and so

Note that the values for the three trigonometric functions repeat every 
Therefore they are periodic functions because their behavior repeats. The smallest
interval over which the pattern repeats is called the period. The periods of the sine
and cosine functions are both In general, for any angle we have the following.u,360°.

360°.

 tan 775° � 1.428 � tan 55°.

 cos 775° � 0.574 � cos 55°,

 sin 775° � 0.819 � sin 55°,

f � 55°,720°
2 � 360° �u � 775°,

 tan 410° � 1.192 � tan 50°.

 cos 410° � 0.643 � cos 50°,

 sin 410° � 0.766 � sin 50°,

However, the period of the tangent function is because its values repeat
every Thus, for any angle we have the following.u,180°.

180°

Check these identities on your calculator either numerically with a variety of dif-
ferent values for or graphically by comparing the graphs of and

Angles Less Than 

Finally consider a negative angle—say, —drawn clockwise, as shown
in Figure 6.46. This angle is equivalent to a positive angle of because both
angles have the same terminal side. Note that y is negative and that x is positive.
We therefore have

330°
u � �30°

0°

y � tan1x � 180 2 .
y � tan xu
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as we have already discussed for angles in the fourth quadrant.
Figure 6.47 summarizes the information about the signs of the three trigono-

metric functions, based on the quadrant containing the terminal side.

y � 0, tan u �
y

x
 ,

 cos u �
x

h
 ,

y � 0 sin u �
y

h
 ,

The Graph of the Sine Function

Let’s summarize what we already know about the sine function to determine its
overall behavior pattern. For between and increases from 0 to
1. For between and decreases from 1 to 0. For between 
and continues to decrease from 0 to For between and

increases from to 0. Thus the sine function has a maximum
value of 1 and a minimum value of This oscillatory pattern continues indefi-
nitely in both directions (for and for ). Use your function graph-
er with between and say, to observe this pattern.

Give a similar summary for the behavior of the cosine function. ❐

You can visualize the behavior of the trigonometric functions by looking at
their graphs. Figure 6.48(a) shows the graph of the function for be-
tween and and how the graph relates to the signs of in the four quad-
rants shown in Figure 6.47. In Figure 6.48(b) we expand the graph of to
show its behavior between and This portion of the curve consists of
three full cycles, or repetitions, of the basic sine curve that occurs between and

which is one full period of the function. Also, the curve oscillates between a
minimum height of and a maximum height of In particular, the
sine curve reaches its maximum when

450°, . . . , 90°, �270°,u �  . . . ,

y � 1.y � �1
360°,

0°
720°.�360°

y � sin u
sin u360°0°

uy � sin u

Think About This

500°,�500°u

u � 0°u � 360°
�1.

�1y � sin u360°,
270°u�1.y � sin u270°,

180°uy � sin u180°,90°u

y � sin u90°,0°u

x

y

II

III

I

IV

sine  +
sine  +

cosine  +
tangent  +

tangent  + cosine  +

FIGURE 6.47
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–1

1

θ

y

–360 –180 180 360 540 720

I II III IV

(b)

–1

1

0
θ

y

180 27090 360

I II III IV

(a)FIGURE 6.48

and it reaches its minimum when

In addition, the sine curve is concave down between and and is
concave up from to and again in every other cycle.

You should carefully distinguish between the information shown in Figure 6.47
regarding the signs of the sine function in different quadrants and what happens in the
graph of the sine function shown in Figure 6.48(a). The quadrants referred to in Fig-
ure 6.47 are based on a coordinate system with y versus x, and values for the angle 
are measured by rotating the terminal side of the angle. These are not the same quad-
rants shown in Figure 6.48(a) because that graph shows y as a function of with 
measured horizontally as it takes on values in the different quadrants. In particular,
angles in the first quadrant in Figure 6.47 correspond to the portion of the -axis in
Figure 6.48(a) between and the second quadrant in Figure 6.47 cor-
responds to the portion of the -axis between and in Figure
6.48(a); and so on. We have marked these differences in Figures 6.48(a) and (b) with
Roman numerals and corresponding shadings for the different quadrants to help
make the point. Be sure that you understand these subtle differences before going on.

The Graph of the Cosine Function

Figure 6.49 shows the graph of the cosine function from to
Use the graph to answer the following questions: Where is the cosine

function increasing? Where is it decreasing? What are its maximum and minimum
values? Where do they occur? Where is the cosine function concave up? Where is it
concave down? Also, be sure that you understand how the information shown in
Figure 6.47 on the sign of the cosine function in the different quadrants relates to
the behavior depicted in the graph of the cosine function.

u � 720°.
u � �360°y � cos u

u � 180°u � 90°u

u � 90°;u � 0°
u

uu,

u

u � 360°u � 180°
u � 180°u � 0°

630°, . . .  270°, �90°,u �  . . . ,

–1

1

θ

y

I II III IV

–360 –180 180 360 540 720

FIGURE 6.49
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6.4 Relationships among Trigonometric Functions 463

Problems

In Problems 1–12, find the value of each quantity by
using only the information in the table. Do not use the
trigonometric function keys on your calculator. (Hint:
Start by drawing a picture of each angle.)

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

Decide whether each quantity is positive, negative, or
zero without calculating its value. Give a reason for
your answer.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. cos 1�500° 2sin 1�480° 2
tan 1000°cos 1000°

sin 1000°tan 925°

sin 885°cos 520°

cos 320°sin 215°

sin 225°cos 270°

tan 450°tan 300°

sin 210°cos 240°

cos 450°sin 300°

tan 1�225° 2cos 1�240° 2
sin 1�450° 2cos 840°

tan 240°cos 315°

cos 390°sin 330°

sin 150°tan 135°

cos 210°sin 225°

31. 32.

33. Consider the function 

a. Determine the sign of for x between and
between and between and

b. For what values of x between and is

c. Use the results of part (a) to sketch a rough
graph of

d. Does the function appear to be periodic? If so,
what is its period?

34. a. Find the missing entries in the table below.
b. Plot the points and connect them with

a smooth curve.
c. This curve is the graph of what function?

1sin u, u 2

f 1x 2 .

f 1x 2 � 0?
540°0°

540°.
450°180°.90°90°.

0°f 1x 2
f 1x 2 � sin x cos x.

sin 1�1000° 2tan 1�500° 2

1 0.75 0.5 0.25 0

U

�1�0.75�0.5�0.25cos U

0 0.5 0.707 0.866

1 0.866 0.707 0.5

0 0.577 1 1.732tan U

cos U

sin U

60�45�30�0�U

0 0.25 0.5 0.75 1

U

�0.25�0.5�0.75�1sin U

35. a. Find the missing entries in the table below using
only your answers to Problem 34.

b. Plot the points and connect them with
a smooth curve.

c. This curve is the graph of what function?

1cos u, u 2

Relationships among Trigonometric Functions

Consider the following values for the sine and cosine of the special angles between
and 90°.0°

6.4

0 0.5 0

1 0.5 1
112

� 0.707
13

2
� 0.866cos U

13

2
� 0.866

112
� 0.707sin U

90�60�45�30�0�U
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if cos u 	 0tan u �
sin u

cos u
 ,

θ

a

b
c

θ90° −
FIGURE 6.50

One reason why the trigonometric functions are so useful is that there are
many interrelationships among them, as the two preceding formulas demon-
strate. They are called identities because they hold for every possible value of the
variable But other identities involving relationships between the trigonometric
functions are far more important. Let’s consider again the right triangle shown in
Figure 6.50 and the definitions of the sine and cosine:

and

If we multiply both sides of these equations by c, we obtain

and

We substitute these expressions into the formula for the tangent function to get

provided that Therefore, for any such angle we have the following
identity.

u,cos u 	 0.

tan u �
a

b
�

c sin u

c cos u
 ,

b � c cos u.a � c sin u

cos u �
b
c

 .sin u �
a
c

u.

For instance, if and

If we use more than four digits for and the result would be more
accurate.

Next let’s apply the Pythagorean theorem to the right triangle shown in Figure 6.50:

a2 � b2 � c2.

cos 74°,sin 74°

tan 74° � 3.4874 �
sin 74°

cos 74°
� 3.488.

cos 74° � 0.2756,sin 74° � 0.9613,u � 74°,

Comparing the values of the sine and cosine, you will notice that the values asso-
ciated with and are reversed, as are the values for and so that

and This is no coincidence. In general, for
any angle 

and

Why are these two relationships true? Consider the right triangle shown in Fig-
ure 6.50. Side a, opposite angle is the side adjacent to the angle Similar-
ly, side b, adjacent to angle is the side opposite angle That is, their roles
are reversed, depending on which angle, or you consider.90° � u,u

90° � u.u,
90° � u.u,

sin u � cos 190° � u 2 .cos u � sin 190° � u 2

u,
sin 60° � cos 30°.sin 30° � cos 60°

60°,30°90°0°
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The Pythagorean Identity

sin2u � cos2u � 1

1 � tan2u �
1

cos2u

When we substitute and we have

or

Dividing both sides by (which is not 0) gives

which holds for any angle For convenience, it is customary to write

and

and we have the following identity.

1cos u 2 2 � cos2u1sin u 2 2 � sin2u

u.

1sin u 2 2 � 1cos u 2 2 � 1,

c2

c21sin u 2 2 � c21cos u 2 2 � c2.

1c sin u 2 2 � 1c cos u 2 2 � c2

b � c cos u,a � c sin u

Check this result on your calculator by using different values for Be careful
to enter the expressions as (SIN X)^2 and (COS X)^2. For instance, if
again, we have

The discrepancy is due to rounding errors. If we use more digits in and
the result would be even closer to 1.

Let’s now start with the Pythagorean identity and divide both sides by 
We then get

or, equivalently, because 

This relationship is more commonly written in the following form.

tan2u � 1 �
1

cos2u
 .

sin u>cos u � tan u,

sin2u

cos2u
�

cos2u

cos2u
�

1

cos2u
 ,

cos2u.
cos 74°,

sin 74°

sin2174° 2 � cos2174° 2 � 10.9613 2 2 � 10.2756 2 2 � 1.000053.

u � 74°
u.

We summarize the definitions and special relationships among the three
trigonometric functions as follows.

 tan u �
opposite

adjacent

 cos u �
adjacent

hypotenuse

 sin u �
opposite

hypotenuse
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a

b
c

20°

70°

FIGURE 6.51

We investigate many other relationships between these three functions in Section 8.1.

EXAMPLE 1
Suppose that the SIN and TAN keys on your calculator are broken. You can use the COS
key to find that Determine the values for and 

Solution We illustrate three different approaches to solving this problem.
Method 1
Using the Pythagorean relationship,

we find that

for any angle Therefore, when 

We take the square root of both sides to find

Further, we have

Method 2
Figure 6.51 shows that However, also, and we can use the
“broken” calculator to find Therefore also. Knowing

and we now can find as we did in Method 1.tan 20° � 0.364,cos 20°,sin 20°
sin 20° � 0.342cos 70° � 0.342.

cos 70° � b>csin 20° � b>c.

tan 20° �
sin 20°

cos 20°
�

0.342

0.940
� 0.364.

sin 20° � 20.1170 � 0.342.

sin2120° 2 � 1 � cos2120° 2 � 1 � 10.940 2 2 � 0.1170.

u � 20°,u.

sin2u � 1 � cos2u

sin2u � cos2u � 1,

tan 20°.sin 20°cos 20° � 0.940.

 1 � tan2u �
1

cos2u

 sin2u � cos2u � 1

 tan u �
sin u

cos u

Method 3
We know that

so from the triangle shown in Figure 6.52, the ratio must be 0.940. Thus we can as-
sume, for instance, that and (There are infinitely many other possibilities;
another is and ) Consequently, using the Pythagorean theorem, we can
find the third side b:

c � 1.a � 0.940
c � 100.a � 94

a>c

cos 20° � 0.940 �
adjacent

hypotenuse
 ,
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2a
a

√3a

30°

60°

FIGURE 6.52

As a result, we have

Both of these values differ slightly from the results in Methods 1 and 2 because of rounding.

�

EXAMPLE 2
Suppose that the SIN and COS keys on your calculator are broken. Using the TAN key,
you find that Find the sine and cosine of this angle (a) by using
trigonometric identities and (b) by constructing an appropriate triangle.

Solution

a. We have the relationship

so that

Consequently,

Taking the positive square root, we have

Furthermore, because we use the Pythagorean identity to find that

sin2125° 2 � 1 � cos2125° 2 � 0.178.

cos2125° 2 � 0.8216,

cos 25° � 0.906.

cos2125° 2 �
1

1.2172
� 0.8216.

1 � 10.466 2 2 � 1.2172 �
1

cos2125° 2
 .

1 � tan2125° 2 �
1

cos2125° 2

tan 25° � 0.466.

 tan 20° �
b
a

�
34.117

94
� 0.363.

 sin 20° �
b
c

�
34.117

100
� 0.341;

 b � 21164 � 34.117.

 b2 � c2 � a2 � 1002 � 942 � 1164;
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 = 25°θ

1000

466
H = ?

FIGURE 6.53

Taking the positive square root, we have

b. Because

we can construct a right triangle in which the length of the side opposite the 
angle is 466, say, and the adjacent side is 1000, as shown in Figure 6.53. To find the
hypotenuse H of this triangle, we have

so that, when we take the positive square root,

H � 1103.25.

H2 � 4662 � 10002 � 1,217,156

25°

tan 25° �
opposite

adjacent
� 0.466

sin 25° � 0.422.

For this triangle, we now have the desired values

and

�

EXAMPLE 3
Simplify the expression by using one of the trigonometric identities.

Solution We first factor out the common factor of to get

Using the Pythagorean identity yields

�

Verify graphically that the given expression and the final expres-
sion in Example 3 are identically equal for all values of x by graphing both. ❐sin x

sin3x � sin x cos2xThink About This

sin3x � sin x cos2x � sin x # 11 2 � sin x.

sin3x � sin x cos2x � sin x 1sin2x � cos2x 2 .

sin x

sin3x � sin x cos2x

cos 25° �
adjacent

hypotenuse
�

1000

1103.25
� 0.906.

sin 25° �
opposite

hypotenuse
�

466

1103.25
� 0.422
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Problems

1. Suppose that the COS and TAN keys on your calcu-
lator are broken. You can use your SIN key to find
that, for some angle in the first quadrant,

Determine the values for and
What is the angle 

2. Suppose that the SIN and TAN keys on your cal-
culator are broken. You can use your COS key to
find that, for some angle in the first quadrant,

Determine the values for and 
algebraically. What is the angle 

3. Suppose that, for a certain angle in the first quad-
rant, Using paper and pencil only, find
the cosine and tangent of

4. Suppose that, for a certain angle in the first quad-
rant, Using paper and pencil only, find
the sine and tangent of

5. Suppose that, for a certain angle in the first quad-
rant, Using paper and pencil only, find
the sine and cosine of

6. Suppose that, for a certain angle in the first
quadrant, Find the cosine and sine
of algebraically.

7. Suppose that, for a certain angle in the second
quadrant, Find the cosine and tangent
of algebraically.u

sin u � 0.52.

u

tan u � 1.2.
u

u.
tan u � 3

4 .
u

u.
cos u � 0.6.

u

u.
sin u � 0.6.

u

u?
tan usin ucos u � 0.4.

u

u?tan u.
cos usin u � 0.3.

u

8. Suppose that, for a certain angle in the third quad-
rant, Find the cosine and sine of
algebraically.

9. Suppose that, for a certain angle in the fourth quad-
rant, Find the cosine and tangent of

algebraically.

10. Simplify the expression by using
one of the trigonometric identities.

11. Consider the two equations:

i.

ii.

a. Determine graphically which of these equations
represents an identity that is true for every
value of x, except for those points where the de-
nominator is 0, and which is not an identity.

b. Prove algebraically, using trigonometric identi-
ties, that the identity is indeed true.

c. For the equation that is not an identity, find two
different values of x that satisfy the equation.

sin x

tan x
� cos x

tan x
 cos x

� sin x

sin2x cos x � cos3x

u

sin u � �0.7.

utan u � 0.75.

Exercising Your Algebra Skills

Use appropriate trigonometric identities to simplify
each expression.

1.

2.

3.

4.

5. 1sin u � cos u 2 2
1sin u � cos u 2 2
11 � cos x 2 11 � cos x 2
11 � sin x 2 11 � sin x 2
cos x tan x

6.

7.

8.

9. a1 �
1

cos x
b a1 �

1
cos x

b

tan2u �
1

cos2u

cos x � tan2x cos x

cos3x � sin2x cos x

The Law of Sines and the Law of Cosines

When we first introduced trigonometry, our original development was present-
ed in terms of angles in right triangles. We subsequently extended the defini-
tions of the sine, cosine, and tangent to angles larger than We now consider
some additional properties of the sine and cosine in any triangle, not just in a
right triangle.

90°.

6.5
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A

yc

B CD

a

b

FIGURE 6.54

The Law of Sines

Consider the triangle ABC shown in Figure 6.54 where the sides opposite the angles
A, B, and C are denoted by a, b, and c, respectively. All three angles are acute; that is,
each is less than Later we consider the case where one angle is greater than 90°.90°.

Suppose that we drop a perpendicular from the vertex at angle A to point D on
base a. That perpendicular line AD, whose length we call y, produces two right tri-
angles. In triangle ABD we have

so that

Similarly, in triangle ACD we have

so that

These two expressions for y must be equal, so

and therefore

However, we could just as easily have drawn a perpendicular from the vertex at
angle B to the opposite side b. In that case, using the same reasoning, we get

Together, these results yield

for any triangle with three acute angles.
What about a triangle with an angle greater than Consider the one shown

in Figure 6.55. We can still drop a perpendicular of length y from the vertex at
angle A to point D on an extension of side a, as shown. This line forms two right
triangles. Clearly, in the large right triangle ACD,

90°?

sin A
a

�
sin B

b
�

sin C
c

sin A
a

�
sin C

c
 .

sin B

b
�

sin C
c

 .

y � c sin B � b sin C,

y � b sin C.sin C �
y

b

y � c sin B.sin B �
y

c
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A

y c

B CD

b

a

φ
FIGURE 6.55 

so that

To determine the sine of angle B, we use the angle in the smaller right triangle
ABD. We thus find that

so that

Consequently,

so that again we have

We can similarly drop a perpendicular either from the vertex at angle B onto side
b or from the vertex at angle C onto an extension of side c and obtain a similar
relationship involving

What we have just proved is called the law of sines.

sin A
a

 .

sin B

b
�

sin C
c

 .

y � c sin B � b sin C,

y � c sin B.sin B �
y

c

f

y � b sin C.sin C �
y

b

The Law of Sines

In any triangle,

sin A
a

�
sin B

b
�

sin C
c

 

The law of sines can be used to find all the remaining sides and angles in any trian-
gle if two sides and one angle are known or one side and two angles are known,
provided that the known combination of sides and angles includes one angle and
the side opposite it.

Draw a triangle in which two sides and one angle are known and the law of sines
will not apply. Then draw a triangle in which one side and two angles are known
and the law of sines will not apply. ❐

Think About This
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c = 30A B

C

b a

eastwest
56°42°

82°

FIGURE 6.56

We illustrate use of the law of sines in Example 1.

EXAMPLE 1
The Federal Communications Commission (FCC) is attempting to locate a pirate radio
station by a method called triangulation. The FCC set up two monitoring stations
30 miles apart on an east–west line and took simultaneous readings on the direction of
the radio signal. The westernmost monitor measured the signal as coming from a direc-
tion north of east; the other monitor measured the signal as coming from a point 
north of west. Where is the pirate station located?

Solution The information recorded determines the triangle shown in Figure 6.56. The
two monitoring stations are located 30 miles apart at the points A and B. The signal di-
rections determine the angles of and The pirate is located at point C. Hence the
angle at C must be 180° � 42° � 56° � 82°.

56°.42°

56°42°

We now apply the law of sines to find the lengths of sides a and b. Using angles
and we find

or

so that

Similarly, to find b we apply the law of sines, using the angles B and C, to get

or

so that

Therefore the pirate station is located 25.12 miles from station A in a direction of to-
ward the northeast and 20.27 miles from station B in a direction of toward the
northwest. The point C is determined precisely by these two facts.

�

In Example 1 we used the law of sines when two angles and one side of a trian-
gle are known. The law of sines can also be used when two sides (say, a and b) and

56°
42°

b �
30 sin 56°

sin 82°
� 25.12.

sin 56°

b
�

sin 82°

30

sin B

b
�

sin C
c

a �
30 sin 42°

sin 82°
� 20.27.

sin 42°
a

�
sin 82°

30

sin A
a

�
sin C

c

C � 82°,A � 42°
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the angle opposite one of these sides (either A or B) are known. However, depend-
ing on the sizes of the two known sides, it is possible to obtain either a unique an-
swer or two distinct configurations for the triangle. This ambiguous case occurs
when we try to find the angle from its sine. Recall that there will be two angles—
one less than and the other greater than —that both have the same sine
value. We ask you to explore possible ambiguous cases in the Problems at the end
of this section.

Another complication may arise when we’re using the law of sines if we know
two sides and the angle opposite one of them. If in the midst of such a set of calcu-
lations, we obtain a sine value greater than 1, it indicates that the values we’re
working with could not have come from a real triangle. Again, you will encounter
such a case in the Problems at the end of this section.

The Law of Cosines

There is one useful relationship involving the cosine function that relates the three
sides of any triangle and any one of its three angles. Consider the triangle shown in
Figure 6.57 with sides a, b, and c, where the angle opposite side c is C. The sides and
angle are related by the law of cosines.

90°90°

Law of Cosines

In any triangle,

c2 � a2 � b2 � 2ab cos C
C

a c

b

FIGURE 6.57

Note that the triangle need not be a right triangle; the law of cosines applies to any
triangle. The law of cosines allows us to determine (1) the length of the side oppo-
site a known angle if the other two sides are known, or (2) any angle if the three
sides of the triangle are known.

We prove this formula for the case where the triangle has three acute angles; a
similar argument applies if one of the angles is greater than Also, to make
things easier we assume that one of the vertices is at the origin and that one of the
sides of the triangle lies on the x-axis, as shown in Figure 6.58. Note that the coor-
dinates of the point P are and that the coordinates of the point Q are at

and As a result, the length of side c is just the distance
from P to Q and we can find it by using the usual formula for the distance between
two points (see Appendix A5):

y � b sin C.x � b cos C
1a, 0 2

90°.

cb

x = bcosC

y = b sinC

C B

A

Pa

Q (bcosC, b sinC)

(a, 0)

0FIGURE 6.58
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We square both sides to eliminate the square root and obtain

Pythagorean identity

If we have a right triangle in which angle then and the law of
cosines reduces to the Pythagorean theorem 

We use the law of cosines in Examples 2–4.

EXAMPLE 2
Let ABC be a triangle with sides and and let the angle C between the two
sides a and b be 

a. Find the third side c.

b. Find the other two angles A and B.

Solution

a. We begin with Figure 6.59. Using the law of cosines, we have

Thus the third side is 

b. To find the angle A, we use the law of sines:

or

Therefore

so that

Consequently,

�

EXAMPLE 3
In a standard baseball infield, the four bases are at the corners of a square whose sides are
90 feet in length. The pitcher’s mound is 60 feet, 6 inches, or 60.5 feet, from home plate
on a line through second base, as illustrated in Figure 6.60. The distance from the pitch-
er’s mound to second base is about 67 feet.

B � 180° � 60° � 43.9° � 76.1°

A � arcsin10.6934 2 � 43.9°.

sin A �
5 sin 60°

6.245
� 0.6934,

sin A

5
�

sin 60°

6.245
.

sin A
a

�
sin C

c

c � 139 � 6.245.

 � 25 � 49 � 701  12 
2 � 39.

 � 52 � 72 � 215 2 17 2  cos 60°

 c2 � a2 � b2 � 2ab cos C

60°.
b � 7,a � 5

c2 � a2 � b2.
cos C � 0C � 90°,

 � a2 � b2 � 2ab cos C

   � b2 � a2 � 2ab cos C

 � b21cos2 C � sin2 C 2 � a2 � 2ab cos C

 � 1b2cos2 C � b2sin2 C 2 � a2 � 2ab cos C

 � 1b2cos2 C � 2ab cos C � a2 2 � b2sin2 C

 c2 � 1b cos C � a 2 2 � 1b sin C 2 2

c � distance from P to Q � 21b cos C � a 2 2 � 1b sin C 2 2.

B C = 60°

A

a = 5

b = 7c = ?

FIGURE 6.59
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a. How far is the pitcher’s mound from first base?

b. What is the angle at the pitcher’s mound between home plate and first base?

Solution

a. Note that the angle at home plate between the mound and first base is so we know
the angle opposite the unknown length d. Therefore, using the law of cosines, we have

When we take the square root of both sides, we find that

b. Note that the angle at the pitcher’s mound between home plate and first base must
be more than We use the law of sines:

so that

Therefore, using the inverse sine function, we get Be-
cause this is less than it must be the angle at the pitcher’s mound between first base
and second base. The desired angle is the supplement,

�

In Section 6.2, we considered some physical examples in which a force or a ve-
locity could be broken into two parts, one horizontal and the other vertical. At the
time, we were limited to particularly simple examples where, for instance, a boat
was out on a still lake with the wind blowing, but there was no mention of a cur-
rent. We now look at a more complicated situation.

180° � 87.08° � 92. 92°.
90°,

u � arcsin10.9987 2 � 87.08°.

sin u �
90 sin 45°

63.72
� 0.9987.

sin u

90
�

sin 45°

d

90°.
u

d � 63.72 feet.

 � 3660.25 � 8100 � 2160.5 2 190 2cos 45° � 4059.86.

 d2 � 60.52 � 902 � 2160.5 2 190 2cos 45°

45°,

Home
plate

60.5 ft

45°

90 ft

90 ft 90
 ft

90
 ft

θ

d = ?

FIGURE 6.60
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Solution

a. We first consider the speeds. The plane itself contributes a horizontal airspeed of
The wind comes from the northwest at so the associat-

ed angle inside the triangle in Figure 6.62 is The actual airspeed
s of the plane is the length of the remaining side in the triangle, and we find it by
using the law of cosines:

Taking the positive square root yields

or about 230 mph.

b. To find the angle in the triangle, we use the law of sines:

so that

Therefore

or the plane is actually flying about south of east.

�
7°

u � arcsin10.1230 2 � 7.07°,

sin u �  

40 sin 135°

230
� 0.1230.

sin u

40
�

sin 135°

230
 ,

u

s � 230.026,

 � 2002 � 402 � 21200 2 140 2 1�0.707 2 � 52,912.

 s2 � P2 � W 2 � 2PW cos 135°

180° � 45° � 135°.
W � 40 mph,P � 200 mph.

Actual = ?

P = 200 mph

W = 40 mph

= ?θ

FIGURE 6.61

Actual = ?

P = 200 mph

W = 40 mph
= ?θ 45°

135°

FIGURE 6.62

Problems

For Problems 1–6, refer to the notation for the sides
and angles in the accompanying figure. Use the infor-
mation given to find all other parts of the triangle.

1.

2.

3. c � 24B � 65°,A � 35°,

c � 60C � 72°,A � 47°,

b � 12B � 63°,A � 26°,

EXAMPLE 4
The pilot of a small plane is flying due east at its top speed of 200 mph. The wind is blowing
out of the northwest at a speed of 40 mph. The wind pushes the plane in a direction south
of east and increases its airspeed to more than the 200 mph, as illustrated in Figure 6.61.

a. What is the actual airspeed of the plane due to its own engines and the wind?

b. What is the actual direction that the plane flies?
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aB C

A

c b

C

c = 5a = 7

b = 11

 11

8

6

New York
CityDenver

New Orleans

1282 miles

36°

10°
1851 miles

4. (Hint: Is it possible to have
two different values for B?)

5. (Hint: Is it possible to
have two different values for B?)

6.

7. Two ships at sea are 50 miles apart on a
north–south line when they both receive an SOS
signal from a third ship in trouble. One ship re-
ceives the SOS from a direction of north of
east. The other ship receives the signal from a di-
rection of south of east. Where is the third
ship?

8. You want to find the distance across a fast-flowing
river. You pick two large trees, at points A and B,
that are 35 feet apart along the edge of the river on
your side. You then spot another tree on the oppo-
site side of the river at point C. The angle CAB at
point A is the angle CBA at point B is Find
the distance across the river.

9. Problems 4–6 involved three cases in which the law
of sines works very differently because of the rela-
tive sizes of sides a and b. Based on those results, ex-
plain the following statements.

a. Given a value for angle A, there will always be
one triangle whenever 

b. There will be two different possible triangles
whenever b is somewhat larger than a.

c. There will be no triangle whenever b is much
larger than a.

10. Find the angle C if and as
shown in the accompanying figure.

c � 5,b � 11,a � 7,

b � a.

52°.43°;

54°

41°

b � 18a � 10,A � 40°,

b � 12a � 10,A � 40°,

b � 6a � 10,A � 40°,

11. Find the angle opposite the side of a triangle whose
length is 6 if the lengths of the other two sides are
11 and 8, as shown in the accompanying figure.

12. A TV camera is positioned 100 feet behind home
plate. The center fielder is standing 300 feet from
home plate and directly on the line from home
plate through second base. The batter hits a long fly
ball toward right-center field that the center fielder
catches against the wall, 380 feet from home plate.
If the TV camera had to pan through an angle of
in following the center fielder from the point where
he was standing to the point where he made the
spectacular catch, how far did he have to run?

13. Using a map of the United States (which ignores
the fact that the earth is round), New York City is
1851 miles from Denver and about north of
east from Denver. New Orleans is 1282 miles
from Denver and about south of east from
Denver. Estimate the distance from New York
City to New Orleans.

36°

10°

8°

14. Chicago is 695 miles from Atlanta, and Seattle is
2756 miles from Atlanta. The same map of the Unit-
ed States as in Problem 13 shows that Chicago lies at
an angle of about north of west from Atlanta
and that Seattle lies at an angle of about north of
west from Atlanta. Estimate the distance from
Chicago to Seattle.

29°
65°
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25 m25 m
10°

40 m

39°

520 ft 440 ft

400 m

27° 39°

15. A 40 meter vertical tower is to be built and supported
by several guy wires anchored to the ground 25 me-
ters from the base of the tower on flat land. Find the
length of the guy wires and the angle they make with
the ground.

16. The 40 meter tower in Problem 15 is to be built on
the side of a hill that slopes upward at an angle of

from the horizontal. One guy wire will be posi-
tioned directly uphill from the tower and another
will be positioned directly downhill from the tower.
Each guy wire will be anchored 25 meters from the
base of the tower. Find the lengths of the two guy
wires and the angles they make with the sloping
ground.

10°

17. A communications satellite passes directly over
Phoenix and Los Angeles, which are 340 miles
apart. At some point in its orbit when the satellite is
between Phoenix and Los Angeles, its angle of ele-
vation from Phoenix is and its angle of eleva-
tion from Los Angles is 

a. How far is the satellite from Phoenix at that moment?
b. How high is the satellite above the Earth?

18. Al and Bob are driving toward a moored hot air
balloon from opposite sides of the balloon and are
in contact via cell phones. When they are 4 miles
apart, they both take sightings on the balloon. (Of
course, everyone who is about to take a balloon ride

72°.
52°

carries a protractor.) From Al’s position, the angle
of elevation to the balloon is from Bob’s posi-
tion, the angle of elevation is 

a. How high is the balloon?
b. How far is each of them from where the balloon

is moored?

19. A straight tunnel passes through a mountain. An
observer has a clear view of the two ends of the tun-
nel. The distance from her position to the tunnel
entrance toward her left is 520 meters, and the dis-
tance to the entrance toward her right is 440 me-
ters. If the angle subtended by the two tunnel
entrances is how long is the tunnel?39°,

35°.
28°;

20. Meryl and Bernice are walking along a straight
beach when they observe a small island in the dis-
tance and wonder if they can swim out to it. To esti-
mate the distance, they separate and walk 400
meters apart. From Meryl’s perspective, the angle to
the island is and from Bernice’s perspective the
angle is How far is the island from the shore?39°.

27°

Problems 21 and 22 refer to Figure 6.57 in the text.

21. Find c if and 

22. Find c if and C � 25°.b � 4,a � 7,

C � 20°.b � 3,a � 5,

40 m

25 m

θ
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75 feet
dθ

12 ft
3 ft

25 ft

60 ft.

Chapter Summary

In this chapter we introduced some of the fundamental ideas and applications of
trigonometry as they apply to right triangles. In particular, we discussed:

� The definition of the tangent ratio in terms of the sides of a right triangle.

� How to use the tangent ratio to solve problems involving right triangles.

� The graph of the tangent function between and 

� The definition of the sine and cosine ratios in terms of the sides of a right
triangle.

� How to use the sine and cosine to solve problems involving right triangles.

� The graphs of the sine and cosine functions between and 

� How to extend the sine, cosine, and tangent functions to angles beyond to

� The fundamental identities that relate the sine, the cosine, and the tangent
functions.

� How to use the law of sines and the law of cosines to solve various types of
problems.

90°.
0°

90°.0°

90°.0°

Review Problems

1. A TV cameraman is standing on a platform 75 feet
from a straight portion of a race track and is focus-
ing on the runner in the lead as she runs from left
to right.

a. Write a formula for the distance d from the cam-
era to the runner as a function of the angle as
shown in the accompanying diagram.

b. Suppose that the maximum distance for which
the camera lens can get a good image is 240 feet.
Through what interval of angles can the camera-
man pan while focusing on the runner?

c. What might be appropriate values for the do-
main of this function?

2. The camera in Problem 1 is again focused on the
lead runner in the race.

a. Write a formula for the distance that the runner
covers from the instant that she passes closest to
the cameraman as a function of the angle u.

u,

b. If how far has the runner gone since
she passed the point closest to the cameraman?

c. When the runner has gone 150 feet past the point
closest to the cameraman, through what interval
of angles has the cameraman panned while fo-
cusing on her?

3. The next assignment for the TV cameraman in
Problems 1 and 2 is to videotape the liftoff of the
space shuttle. The cameraman is positioned at
ground level 500 meters from the launch pad.

a. Write a formula for the height y of the shuttle as
a function of the angle of inclination 

b. Find the height of the shuttle when 
c. Find the height of the shuttle when 
d. Find the angle of inclination when the shuttle is

at a height of 2000 meters.

4. A swimming pool is 60 feet long and 25 feet wide. It
is 3 feet deep at the shallow end and 12 feet deep at
the deep end.

a � 40°.
a � 20°.
a.

u � 25°,
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Sun Moon

Earth

θ
93,000,000 mi.

240,000 mi.

96 in.12 in.

12 in.

12 in.

a. Find the angle of depression of the bottom of
the pool.

b. Find the equation of the line along the bottom of
the pool extending from the shallow end to the
deep end along one of the long sides of the pool.

c. Find the equation of the line along the bottom of
the pool that extends from one corner to the op-
posite corner of the pool.

5. A salami is 4 inches in diameter. However, the man
in the deli department slices it at an angle of so
that each slice comes out oval for a fancier presen-
tation. What is the longest length of each slice of the
salami?

6. A piece of metal 96 inches long by 36 inches wide is
to be made into a watering trough by bending up
12 inches of the metal along each long side, as shown
in the accompanying figure.

28°

a. If the two metal sides are bent up at angles of
how deep is the trough?

b. If the two metal sides are bent up at angles of
how deep is the trough?

7. The shape of the trough in Problem 6 has a trape-
zoidal cross section because the top and bottom are
parallel. The volume of water that the trough can
hold is then its length, 96 inches, times its cross-
sectional area, where h is the height of
the trough and and are the horizontal lengths
of the top and bottom of each cross section.

a. What volume of water can the trough hold if the
two edges are bent up at angles of

b. What volume of water can the trough hold if the
two edges are bent up at angles of

c. Write a formula for the total volume of water
that the trough can hold as a function of the
angle at which the two sides are bent up.

d. Use your function grapher to estimate the angle
that produces a trough that will hold the maxi-
mum amount of water.

8. A tall building stands across the street from a
hotel—a distance of 220 feet. From one of the hotel
windows, a guest in the hotel observes that the
angle of inclination to the roof of the building is 
and that the angle of depression to the base of the
building is 23°.

36°

u

55°?

35°?

b2b1

1
2 1b1 � b2 2h,

55°,

35°,

a. How tall is the building?
b. How high is the window in the hotel?

9. The Earth is 93 million miles from the sun, and the
moon is 240,000 miles from Earth. When the moon
is exactly half full, the Earth, the moon, and the sun
form a right triangle with the right angle at the
moon. Calculate, correct to two decimal places, the
angle at the Earth in this triangle.

10. To calculate the height of a mountain above a level
plain, two measurements are necessary. Suppose
that, from a certain point on the plain, the angle of
elevation to the top of a mountain is The
observer then moves 1000 meters closer to the
mountain, takes a second reading, and gets an angle
of elevation of How tall is the mountain?

11. As you sit in class waiting for the end of the period,
you notice that the length of the minute hand on
the wall clock is 10 inches.

a. How far vertically does the point of the minute
hand rise from 45 minutes after the hour until
50 minutes after the hour?

b. Explain why the point of the minute hand can-
not rise by the same amount from 50 minutes
after the hour until 55 minutes after the hour.

c. During what other 5-minute time intervals over
the course of an hour does the minute hand ei-
ther rise or fall vertically by that same amount,
as in part (a)?

12. The tangent of some angle in the first quadrant is
1.20.

a. Find the sine and cosine of that angle, using only
appropriate trigonometric identities.

b. Find the sine and cosine of that angle by con-
structing an appropriate triangle.

13. Because of a storm, a tree is inclined at an angle of
from the vertical. From a point 70 feet from the

base of the tree, the angle of elevation to the top of
the tree is with the tree leaning toward the ob-
server, as shown in the figure on the next page.

26°,

10°

b � 37°.

a � 34°.
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26°
70 ft.

10°

5 yards

12 yards

30 yards

θ

 14

19

8

= ?θ

a. Find the height of the tree.
b. Find how high the top of the tree is above

ground level.
c. How do your answers to parts (a) and (b)

change if the tree is leaning away from instead of
toward the observer?

14. Two forest rangers are in observation towers
16 miles apart on an east–west line, and each spots a
fire. From the point of view of the ranger in tower
A, the direction of the fire is north of east. From
the point of view of the ranger in tower B, the fire is

north of west. Find the distance to the fire from
each tower.

15. In a football passing play, the wide receiver lines up
12 yards to the right of the quarterback on the line
of scrimmage. The quarterback drops straight back
5 yards before throwing the football. The wide re-
ceiver runs straight down the field 30 yards before
turning to catch the pass.

35°

41°

a. At the moment the quarterback throws the ball,
what is the distance from the quarterback to the
receiver’s original position on the line of scrim-
mage just before the play started?

b. At the moment the quarterback throws the ball,
what is the angle between the line of scrimmage
and the line from the quarterback to the receiv-
er’s original position on the line of scrimmage?

c. Find the distance that the ball travels from the
quarterback to the receiver.

d. To catch the ball straight on, the receiver has to
turn toward the quarterback. Through what
angle must the receiver turn in order to face di-
rectly toward the quarterback?

16. A motorboat leaves its dock and motors 6 miles due
north. It then changes course, heading northeaster-
ly at an angle of east of north for 14 miles. At
that point, the pilot decides to turn back and head
directly to the dock.

a. How far is it from the turnaround point back to
the dock?

b. Through what angle does the motorboat have
to turn in order to be pointed directly back to
the dock?

c. If the motorboat moves at a roughly constant
speed of 18 mph, how long will the return trip
take? How long does the entire outing take?

d. The motorboat gets 6 mpg. If the refueling station
at the dock charges per gallon, how much
did the entire outing cost?

17. A steep, snow-covered mountain rises 2700 feet above
the surrounding plain and rises at an angle of to
the horizontal. A ski lift is to be built from a point 750
feet from the base of the mountain to the summit.

a. What will be the angle of inclination of the cable
for the ski lift?

b. What will be the length of the cable?

18. The sides of a triangle have lengths 8 cm, 14 cm,
and 19 cm.

68°

$2.85

58°

u

a. What is the angle 
b. What is the height of the triangle?
c. What is the area of the triangle?
d. Write a formula for the area of any triangle given

the lengths a, b, and c of the three sides and one
of the angles u.

u?
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7

Modeling Periodic
Behavior

t

H

6 A.M. noon 6 P.M.

FIGURE 7.1

Introduction to the Sine and Cosine Functions

One of the most common behavior patterns in nature is a periodic oscillatory effect—a
pattern that repeats over and over. For instance, think about how the ocean level
varies at a beach between low tide and high tide approximately every 12 hours. If low
tide occurs at midnight, high tide will occur at about 6 A.M., low tide will occur again
at about noon, and so on indefinitely. This periodic oscillatory behavior is shown in
Figure 7.1. Recall that the word periodic refers to the fact that this phenomenon re-
peats indefinitely and that the period is the time needed to complete one full cycle. If
it takes 12 hours to complete a full cycle, the period is 12 hours.

Similarly, consider the number of hours of daylight each day in a particular lo-
cation. The minimum number of hours of daylight occurs on the winter solstice,
December 21, the “shortest” day of the year. The number of hours of daylight in-
creases slowly until the maximum daylight occurs on the summer solstice, June 21,
the “longest” day, and then decreases to the same minimum the following Decem-
ber 21. This oscillatory behavior repeats year after year. For instance, suppose that,
at some location, there are 10 hours of daylight on the shortest day of the year and
14 hours of daylight on the longest day. The number of hours of daylight over the
course of several years can be represented by the graph shown in Figure 7.2, which
has the same shape as that in Figure 7.1.
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In this chapter, we consider how to model such periodic phenomena by intro-
ducing some new functions that have this type of periodic, oscillatory behavior. We
can then use the ideas on stretching and shifting functions from Section 4.7 to create
two families of functions that are used to model any such periodic phenomenon.

To begin, imagine a clock on a wall that is running backward, so that the hands
move counterclockwise, as shown in Figure 7.3. (Unfortunately, the people who orig-
inally developed the mathematics relating to periodic, oscillatory behavior chose
counterclockwise as their convention and we’re stuck with it). In particular, picture
the motion of the arrowhead on the minute hand. Let the horizontal axis be the line
through the 3 and 9 positions on the clock. Suppose that the minute hand is 5 inches
long and that we start the process at the instant the minute hand is pointing straight
up. Every 60 minutes, the point of the minute hand moves from a maximum height of
5 inches above the center (when it is pointing straight up) to a minimum height of
5 inches below the center (when it is pointing straight down) and then back up to-
ward to a maximum height of 5 inches again—and it repeats this cycle indefinitely.
Thus the height of the arrowhead on the minute hand, as a function of time t, re-
peatedly traces a path that is periodic and oscillatory. The arrowhead traces the
path shown in Figure 7.4 over the first 3 hours, or 180 minutes—it oscillates be-
tween and every 60 minutes. This type of function is just what we need to
model periodic phenomena.

�5�5

To develop this process more formally, we use the unit circle—a circle with ra-
dius 1 centered at the origin—as shown on the left in Figure 7.5. A point P with co-
ordinates lies on this circle if

x2 � y2 � 1.

1x, y 2
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7.1 Introduction to the Sine and Cosine Functions 485

This point P corresponds to an angle measured counterclockwise from the posi-
tive x-axis. For instance, when P is on the positive x-axis; when P
is on the positive y-axis. We consider separately the horizontal distance x to the left
or right of the y-axis and the vertical height y above or below the x-axis. Each of
these quantities is actually a function of the angle at the center of the circle.

Let’s start with the height y. In the triangle at the left in Figure 7.5,

so the sine of any angle precisely equals the y-coordinate of the corresponding
point on the unit circle. For instance, consider the point A at at the extreme
right of the circle as the starting point; it has height and an angle of inclina-
tion so We set up a second coordinate system where y is a
function of as shown in the graph on the right in Figure 7.5. When we think of y
as a function of the pair corresponds to the point at the origin
in the graph on the right.

Be sure that you distinguish carefully between the coordinate systems in the
two diagrams—the circle on the left, where we think of the height y as a function of
the horizontal distance x, and the associated graph being created on the right
showing the height y as a function of the angle In the circle, x is measured hori-
zontally, whereas in the graph is measured horizontally. The position of any
point—say, B—on the circle can be specified either (1) in terms of its x- and 
y-coordinates or (2) in terms of its angle of inclination and its vertical distance y
above or below the horizontal axis of the circle. It is these pairs that are
graphed on the right.

The Sine Function

We know that there are in a circle, so we can trace the complete circle as 
runs from to Also, we can continue tracing the circle over and over as 
increases beyond in fact, every we complete another full revolution
around the circle.

Let’s consider all the points P on the circle. We labeled several specific points as
A, B, C, D, E, . . . , I in Figure 7.5. Each point corresponds to a particular angle 
and we plot the heights y corresponding to these angles in the graph at the right.
For instance, the angle corresponding to point B is and its height is or 0.5.
As point P traces the circle, starting at point A and passing through the points B, C,
D, E, . . . , I, . . . , the height y on the circle rises from 0 (at A) to a maximum of 1 (at
D when ), then decreases past 0 (at F when ) to a minimum
height of (at H when ), and then back up to 0 as P finally returns to
the starting point A, having gone through a full This motion of P continues
as P traces the circle again and again, and the identical pattern of heights recurs re-
peatedly, every The oscillatory pattern shown in the right-hand graph is peri-
odic; it repeats forever with a period of and is part of the graph of the sine
function, for any angle It is this periodic, oscillatory effect that we
need to model periodic phenomena.

You can observe the development of the sine function dynamically by using your
graphing calculator. Set the mode for radians (we discuss this topic shortly), for
parametric graphing (we discuss this topic in Chapter 9), and for simultaneous
plotting. The independent variable used is now typically t instead of x. See 

Think About This

u.f 1u 2 � sin u,
360°

360°.

360°.
u � 270°�1

u � 180°u � 90°

1
2 ,30°u

u

u,

360°360°;
u360°.0°
u360°

1u, y 2
u

u

u.

A�1u, y 2 � 10, 0 2u,
u,

y � sin 0 � 0.u � 0,
y � 0

11, 0 2
u

sin u �
opposite

hypotenuse
�

y

1
� y,

u,

u � 90°,u � 0°,
u
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486 CHAPTER 7 Modeling Periodic Behavior

The sine function

represents the height that a point
on the unit circle is above or below
the horizontal axis as a function of
the angle The graph of the sine
function is shown at the right.

u.

y � sin u

–1

1

θ

y

90° 180° 270° 360°

The graph of the sine function passes through the origin and oscillates be-
tween and 1 every 360°.�1

the instructions for your particular calculator if necessary. Go to the Y= menu
and enter

For the viewing window, set t between 0 and 7, set x between and 7,
and set y between and 2. When the graphs are drawn, the circle (somewhat flat-
tened because of the screen dimensions) and the sine curve are produced simulta-
neously. Watch how the heights of points on the circle precisely match the heights
on the sine curve for any angle t. You may also want to trace this behavior with
your fingers on the graphs in Figure 7.5. ❐

We summarize these ideas about the sine function as follows.

�2
�1.5�t � 0.1,

 Y2 � sin t
 X2 � t
 Y1 � sin t
 X1 � cos t

Again, note that the graph of the sine function oscillates between a maximum
height of 1 and a minimum height of Also, the basic shape repeats every 
so the behavior pattern you see from to occurs again from to

again from to and so on. Similarly, the same pattern occurs
between and between and and so on. Thus the
sine function is a periodic function and its period is as shown in Figure 7.6.360°,

�360°,u � �720°0°,u � �360°
1080°,720°u � 720°,

u � 360°360°0°
360°,�1.

In addition, the sine curve reaches its maximum height of 1 at and
again at as well as at

Similarly, the sine
curve reaches its minimum height of at and at 

Note also that the sine curve crosses the horizontal axis at the
origin where again at (corresponding to the extreme left-hand
point on the unit circle), yet again at and so on indefinitely. In fact, the
sine function has zeros at every integer multiple of 180°.

u � 360°,
u � 180°u � 0°,

�810°, . . . �450°,
u� �90°,630°, . . . ,u � 270°,�1

1� 90° � 2 � 360° 2 , . . . �630°1� 90° � 360° 2 ,u � �270°
1� 90° � 2 � 360° 2 , . . . ,810°1� 90° � 360° 2 ,u � 450°

u � 90°
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The initial point A at on the circle lies at a distance of to the right of
the vertical axis, so the corresponding point on the graph at the right has a
height of The succeeding points B and C are closer to the vertical axis of
the circle and so, because the x-values are smaller than 1, the corresponding
heights on the graph are smaller. The point D is on the vertical axis, so its distance
from the vertical axis is 0. The points E and F are to the left of the vertical axis of
the circle, so the corresponding heights on the graph are negative. In fact, F is lo-
cated where at the extreme left point of the circle at a distance of
from the vertical axis, so the corresponding point on the graph is a minimum.

As the angle continues to increase, the points on the circle approach the ver-
tical axis from the left, and the corresponding points on the graph now rise to-
ward 0. Eventually, the tracing point P on the circle passes the vertical axis at H
and approaches the initial point A where The horizontal distance that P
is from the axis changes from negative, to 0, to positive and approaches the dis-
tance 1 to the right of the vertical axis, which is where we started. Simultaneous-
ly, the graph on the right crosses the -axis and rises to its initial starting heightu

u � 360°.

u

F�
�1u � 180°

x � 1.
A�

�111, 0 2

The Cosine Function

The sine function reflects the vertical height y above or below the horizontal axis in the
unit circle. Next, we consider the horizontal distance x from the vertical axis of the unit
circle to points P at on the circle, as shown on the left in Figure 7.7. We now treat
x as a function of Thus, in the graph of on the right in Figure 7.7, the angle 
is measured along the horizontal axis and the distance x is measured vertically.

u1u, x 2u.
1x, y 2
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488 CHAPTER 7 Modeling Periodic Behavior

The cosine curves passes through the point and oscillates between 
and 1 every 360°.

�110, 1 2

The cosine function,

represents the horizontal distance
that a point on the unit circle is to
the right or left of the vertical axis
as a function of the angle The
graph of the cosine function is
shown at the right.

u.

y � cos u

90°0° 180° 270° 360°

–1

1

θ

y

y

A

x

y

A′

x

FIGURE 7.8

of 1. Allowing to continue beyond we see that the previous pattern re-
peats exactly and indefinitely.

The graph shown on the right in Figure 7.7 is also a periodic, oscillatory curve.
This curve, which corresponds to the horizontal distances from the vertical axis of
the unit circle to points on the circle is the graph of the cosine function,

The cosine function, like the sine function, is periodic and repeats
every so its period is also The maximum value of the cosine function is
1, which occurs at as well as at The
minimum value of the cosine function is which occurs at 

The cosine function has zeros when �450°, . . . �270°,u � �90°,�540°, . . . 
u � �180°,�1,

�720°, . . . u � �360°,720°, . . . ,360°,u � 0°,
360°.360°,

g1u 2 � cos u.

u � 360°u

We summarize these ideas about the cosine function as follows.

You may find the preceding construction of the cosine curve somewhat easier
to visualize by using the following trick. Rotate the circle shown in Figure 7.7
through an angle of counterclockwise, as shown in Figure 7.8. Each horizontal90°
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–1

1

y

90°0° 180° 270° 360° 450° 540°

y = sin θ

θ

y = cos θ

FIGURE 7.9

distance x is then transformed into an equivalent “height” above or below the new
horizontal axis. These “heights” produce the heights of the points on the cosine
curve shown in the graph on the right in Figure 7.7.

Because of the way that the sine and cosine functions can be defined in terms
of the unit circle, they are sometimes called circular functions.

Figure 7.9 shows both the sine and cosine graphs from to 
Clearly, these two functions are closely related. Both have the same shape and each
can be thought of as arising from the other by an appropriate horizontal shift. If we
shift the sine curve to the left by we get the cosine curve, so

Alternatively, if we shift the cosine curve to the right by we get the sine curve, so

sin u � cos1u � 90° 2 .

90°,

cos u � sin1u � 90° 2 .

90°,

u � 540°.u � 0°

Moreover, the unit-circle definition suggests what is perhaps the most impor-
tant relationship between the two functions. Figure 7.10 shows that the vertical
height y to a point on the unit circle equals Similarly, the horizontal
distance x from the vertical axis to the same point equals Because 
and must satisfy the equation of the unit circle,

it follows that

1cos u 2 2 � 1sin u 2 2 � 1.

x2 � y2 � 1,

y � sin u
x � cos ucos u.

sin u.1x, y 2

x

y

x = cos θ

y = sinθ
(x, y)

FIGURE 7.10
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490 CHAPTER 7 Modeling Periodic Behavior

The Pythagorean identity is

for any angle u.

sin2u � cos2 u � 1

Recall that we write

Note that this is another way to prove the Pythagorean identity that we presented in
Section 6.4.

1cos u 2 2 as cos2 u  and  1sin u 2 2 as sin2u.

Use your function grapher to graph the function for any in-
terval of x values. What does it look like? [You will likely have to enter the function
as (sin x)^2+(cos x)^2.] ❐

Radian Measure

Because we want to use the sine and cosine functions to model phenomena that are
periodic over time, such as the heights of tides or the number of hours of daylight,
we need a function of time t rather than a function of an angle Therefore we
need a way to avoid angles measured in degrees in our definitions of these func-
tions. To do so, we introduce an alternative unit, called the radian, for measuring
an angle. In the circle of radius 1 shown in Figure 7.11, we begin on the horizontal
axis at the point A at We move counterclockwise around this circle and
measure off a distance equal to the radius, or 1. This distance produces an angle 
whose size is defined as one radian. In degrees, this angle is approximately as
we show shortly.

57°,
a

11, 0 2 .

u.

f 1x 2 � sin2x � cos2xThink About This

A
x

y

 = 1 radα

1

1

1

(1, 0)

FIGURE 7.11

We next develop a way to convert between radians and degrees. The length of
the arc that defines one radian equals the radius of the unit circle. Because 
the total circumference of the circle is Moreover, the angle represents
a fraction of the full in the circle. As a result, we can set up the proportion

Fraction of the total angle

Total angle
�

Fraction of the total circumference

Total circumference

360°
a2pr � 2p.

r � 1,
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7.1 Introduction to the Sine and Cosine Functions 491

or

Cross-multiplying, we get

or

Alternatively, dividing both sides by gives

or about Furthermore, because we can divide both sides
by 180 to get

If we perform the same construction in any circle with radius r—that is, if we
measure an arc whose length equals the radius r—the corresponding angle would
be the same 1 radian, or about Thus an angle measured in radians is the
same no matter what the size of the circle. More important, radians are not tied di-
rectly to angles the way degrees are. Using radians, we can consider any variable
and apply the sine and cosine functions to it. Thus we can use a variable represent-
ing time, height, or any other desired quantity as the independent variable with ei-
ther the sine or the cosine function.

EXAMPLE 
Use the fact that to obtain the radian measure for the common angles

and 

Solution If we divide by 2, we get

Similarly,

�

To summarize, we have the following relationships.

 30° �
180°

6
�
p

6
 radians �

p

6
 .

 45° �
180°

4
�
p

4
 radians �

p

4
 ;

 60° �
180°

3
�
p

3
 radians �

p

3
 ;

90° �
180°

2
�
p

2
 radians �

p

2
 .

180°

30°.45°,60°,90°,
180° � p radians

57.3°.

1° �
p

180
 radians.

p radians � 180°,57.3°.

1 radian � a
180
p
b

°
� 57.29578°,

p

p radians � 180°

2p radians � 360°

1 radian

360°
�

1

2p
 .

In particular,

90° �
p

2
 .60° �

p

3
 , and45° �

p

4
 ,30° �

p

6
 ,

180° � p radians
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492 CHAPTER 7 Modeling Periodic Behavior

Be sure that you know how to use your calculator to obtain the value for the
sine or cosine of any argument, both in degrees and radians. We strongly recom-
mend that you permanently set your calculator mode to Radians; we work with
radians almost exclusively from this point on.

Note that radians are not always given in terms of For instance, we might
have radians or radians or radians.

The Behavior of the Sine and Cosine Functions

Finally, let’s consider the important aspects of the behavior of the sine and cosine
functions. In general, we want to answer several questions for any function.

1. Where is it increasing?

2. Where is it decreasing?

3. Where is it concave up?

4. Where is it concave down?

5. Where are its points of inflection?

6. Where are its zeros?

7. Where does it achieve its maximum value, and what is that maximum value?

8. Where does it achieve its minimum value, and what is that minimum value?

9. Is it periodic? If so, what is its period?

We can answer all these questions about the sine and cosine functions by examin-
ing their graphs and applying ideas developed earlier in this book. However, for
other functions that may not be as well known, answering some of these questions
requires the use of calculus.

Let’s consider the behavior of the sine function It is evident from its
graph that the sine curve increases for x between 0 and then decreases from

to and then increases from to —and repeats this cycle there-
after. This behavior is also clear from the unit circle definition of the sine.

2p3p>23p>2,p>2
p>2,

y � sin x.

x � �4.27x � 2x � 0.5
p.

These results occur often in applications of the trigonometric functions, and you
need to know them.

For these standard, or special, angles, we have the following values for the sine
and cosine functions (which we derived in Chapter 6).

 sin 90° � sin a
p

2
b � 1      cos 90° � cos a

p

2
b � 0

 sin 60° � sin a
p

3
b �

23

2
� 0.866          cos 60° � cos a

p

3
b �

1

2
� 0.5

 sin 45° � sin a
p

4
b �

22

2
� 0.707         cos 45° � cos a

p

4
b �

22

2
� 0.707

 sin 30° � sin a
p

6
b � 0.5 �

1

2
               cos 30° � cos a

p

6
b �

23

2
� 0.866
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7.1 Introduction to the Sine and Cosine Functions 493

Further, the sine curve is concave down for x between 0 and concave up for x
between and and then repeats this cycle thereafter. Consequently, the sine
curve has points of inflection at where its concavity changes.

In addition, the sine function has zeros when A special
characteristic of the function is that its zeros and its points of inflec-
tion are identical, which is not the case for most other common functions.

Finally, the sine function achieves its maximum value of 1 at at
at and at at The sine

function achieves its minimum value of at at at
and at at 

We ask you to describe the behavior of the cosine function in the Problems at
the end of this section.

In summary, the key points about the sine and cosine functions are:

The sine function passes through the origin and oscillates between and
every 

The cosine function passes through the point and oscillates between 
and every 2p.�1

�110, 1 2
2p.�1

�1

x � �5p>2, . . . x � �p>2,x � 11p>2, . . . 
x � 7p>2,x � 3p>2,�1

x � �7p>2, . . . x � �3p>2,x � 9p>2, . . . x � 5p>2,
x � p>2,

f 1x 2 � sin x
�2p, . . . �p,x � 0,

�2p, . . . ,�p,x � 0,
2p,p

p,

Problems

1. Janis trims her fingernails every Saturday morning.
Sketch the graph of the length of her nails as a func-
tion of time. Can this process be modeled by a peri-
odic function? If it is periodic, what is the period?

2. Harry gets a haircut on the first of every month.
Sketch the graph of the length of his hair as a func-
tion of time. Can this process be modeled by a peri-
odic function? If it is periodic, what is the period?

3. In the accompanying figure, the circle on the left
has been subdivided every from to

Use the heights from the horizontal axis
to the associated points on the circle to construct
the graph of the sine function for to

on the axes at the right.u � 360°
u � 0°

u � 360°.
u � 0°15°

4. Convert each angle from degrees to radians.

a. b. c.
d. e. f.
g. h. i.
j.

5. Convert each angle from radians to degrees.

a. b. c.

d. 1.5 e. 2.5 f. 3

g. h. i.

j.

6. For evaluate each function.

a. b. c. f 160° 2f 145° 2f 130° 2
f 1u 2 � 5 sin u,

�
5p

3

�
3p

2

5p

3

p

8

2p

3

4p

5

3p

4

�210°
�135°240°270°
315°225°150°
120°75°15°

60° 120° 180° 240° 300° 360°

–1

–0.8

–0.6

–0.4

–0.2

0.2

0

0.4

0.6

0.8

1

θ

y

x

y
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494 CHAPTER 7 Modeling Periodic Behavior

d. e. f.

g. h. i.

j. k. l.

7. For evaluate each function.

a. b. c.
d. e. f.
g. h.

8. At the end of this section we posed nine questions
about the behavior of any function. Answer these
questions for the cosine function.

9. With your calculator set in radians, graph the two
functions and What
do you observe? Explain what you observed.

10. Plot the functions and 
Explain why you see only one graph. (If you see two
graphs, check that your calculator MODE is set for
Radians.)

11. The population growth patterns of two species are
interrelated when one species preys on the other.
This situation occurs in northern Canada where

y � sin1x � p>2 2 .y � cos x

y � cos1x � p>2 2 .y � sin x

f 12p>7 2f 13p>8 2
f 1p>12 2f 1p>3 2f 1225° 2
f 1120° 2f 145° 2f 130° 2

f 1u 2 � sin 2u,

f 1�25.614 2f 15.27 2f a�
p

6
b

f a
p

12
bf a

p

3
bf a

p

4
b

f 1873° 2f 1�15° 2f 1120° 2 lynxes are the predators and hares are the prey. The
figure below is based on records kept by the Hud-
son’s Bay Trading Company on the number of each
species caught by fur trappers from 1845 through
1935. The graphs indicate that both populations
change in roughly periodic cycles.

a. Estimate the period of the cycle for the lynxes.
b. Estimate the period of the cycle for the hares.
c. Estimate the years in which the lynx population

reached its maximum and minimum values.
d. Estimate the years in which the hare population

reached its maximum and minimum values.
e. Can you find any relationship between the

lengths of the periods in parts (a) and (b) and
the times in parts (c) and (d)? If so, what is it?

f. Estimate the years when the hare population
passed its points of inflection. How do they
compare to any of the times you found in parts
(c) and (d)?

12. Consider the functions and 
What could #$%#$ represent so that

the two graphs are identical? Is there only one cor-
rect answer to this question? Explain.

sin1#$%#$ 2 .
y �y � cos x

1845 1855 1865 1875 1885 1895 1905 1915 1925 1935

20
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Modeling Periodic Behavior with the Sine and Cosine

Because of their behavior patterns, the sine and cosine functions are used as the
mathematical models to represent most periodic phenomena. For example, the
number of hours of daylight H any day of the year in San Diego can be modeled by
the function

H1t 2 � 12 � 2.4 sin c
2p

365
1t � 80 2 d ,

7.2
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7.2 Modeling Periodic Behavior with Sine and Cosine 495

where t is the number of days from the first of the year ( on January 1). We
begin by using the formula for some predictions and then see where the formula
comes from.

EXAMPLE 1
Based on the model, how many hours of daylight are there in San Diego on (a) February 15?
(b) March 21? (c) June 21?

Solution
a. February 15 is the 46th day of the year (31 days in January plus 15 more in February),

so Using a calculator set to radian mode, we find that

b. March 21 is the day of the year, so

Incidentally, March 21 is the spring equinox, which means that there are 12 hours of
daylight and 12 hours of darkness, so the model gives the right prediction.

c. June 21 is the day of the year, so the
number of hours of daylight on June 21(the first day of summer and so the “longest”
day of the year) is

�

Without using a calculator, find the number of hours of daylight in San Diego on
December 21, the 355th (and “shortest”) day. ❐

Later in this section we show how a similar formula can be developed for any
city. For now, let’s see what the different numbers 12, 2.4, 365, and 80 in the formula

for the number of hours of daylight in San Diego actually represent. Obviously,
365 represents the number of days in a year; it tells us how long it takes for a full
cycle to be completed. Over a full year, the average number of hours of daylight is
12 hours per day—the days when there are more than 12 hours of daylight exactly
counterbalance the days when there are fewer than 12 hours of daylight. Alterna-
tively, averaging the number of hours of daylight for all 365 days gives 12 hours. So
the 12 represents the average, or middle, value for the sine function.

Next, as we found in Example 1, the longest day in San Diego has 14.4 hours of
daylight and the shortest day has 9.6 hours of daylight. Note that 14.4 is 2.4 hours
more than the average level of 12 and that 9.6 is 2.4 hours less than 12. Of course,

H1t 2 � 12 � 2.4 sin c
2p

365
 1t � 80 2 d

Think About This

H1172 2 � 12 � 2.4 sin c
2p

365
 1172 � 80 2 d � 14.40 hours.

t � 31 � 28 � 31 � 30 � 31 � 21 � 172nd

H180 2 � 12 � 2.4 sin c
2p

365
 180 � 80 2 d � 12 hours.

t � 31 � 28 � 21 � 80th

 � 12 � 2.4 sin c
2p

365
 1�34 2 d � 10.67 hours.

 H146 2 � 12 � 2.4 sin c
2p

365
 146 � 80 2 d

t � 46.

t � 1
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365

9.6

12

14.4

t

H

FIGURE 7.12

the maximum and minimum number of hours of daylight at any particular loca-
tion, as well as the number on any specific date, depend on the location itself and
are therefore modeled by a function slightly different from H; think about how
long a “day” is during the winter or the summer in the far north, the so-called “land
of the midnight sun”.

The graph of H, the number of hours of daylight in San Diego over a 3-year in-
terval, is shown in Figure 7.12. It has the same shape as the graph of the basic sine or
cosine function. However, it does not oscillate about the horizontal axis; rather it os-
cillates about the horizontal line which represents the average number of
hours of daylight over a full year, so it is shifted up by 12 hours. Also, its maximum
and minimum “heights” above the horizontal line are no longer and

as with the basic sine and cosine functions. Instead, the graph varies from a
minimum of 9.6 hours to a maximum of 14.4 hours, which is 2.4 hours either side
of the average 12, so the sine function has been stretched by a factor of 2.4.

�1
�1H � 12

H � 12,

Note some additional differences: The graph is shifted to the right compared
to the sine curve (the curve does not “start” at the vertical axis where and

). Also, the period is 365 days, rather than the usual radians, or 
(Incidentally, the ancient Babylonians believed that the length of a year was 360 days.
That’s why we divide a circle into 360 degrees.)

This particular function differs from the standard, or base, function
that we discussed in Section 7.1 in four ways:

1. a vertical shift,

2. an oscillation other than from to (a stretch),

3. the length of a cycle, and

4. the “starting” point of the cycle (a horizontal shift).

Understanding how to incorporate these variations is crucial for applying the sine
and cosine functions to describe periodic phenomena. We therefore focus on each
in detail.

The equation for the number of hours of daylight in San Diego is

Consider the more general sinusoidal function

S1x 2 � D � A sin 3B1x � C 2 4 ,

H � 12 � 2.4 sin c
2p

365
 1t � 80 2 d .

�1�1

y � sin x
H1t 2

360°.2pH � 12
t � 0
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FIGURE 7.13

where A, B, C, and D are all constants and x is the independent variable. In the San
Diego situation, and Let’s investigate how
each of these four parameters affects the graph of the basic sine curve. To do so, we
consider each parameter separately.

The Vertical Shift or Midline

To show the significance of the D term, we consider the simpler function with
and 

We know that oscillates repeatedly between and What is the ef-
fect of adding a constant D? From our discussion in Sections 4.6 and 4.7, we know
that D raises or lowers the basic sine curve by the amount D. The graph of

has the same shape as the basic sine function but is shifted up 2
units; it oscillates about the horizontal line between 1 and 3 units above the
x-axis as shown in Figure 7.13. Similarly, the graph of oscillates
about the horizontal line between and �4.�6y � �5,

S1x 2 � �5 � sin x
y � 2,

S1x 2 � 2 � sin x

�1.�1y � sin x

S1x 2 � D � sin x.

C � 0:B � 1,A � 1,

C � 80.B � 2p>365,A � 2.4,D � 12,

Thus the effect of the constant D in

is to produce a sinusoidal curve that oscillates about the horizontal line be-
tween and If D is positive, the sine curve is shifted upward D units;
if D is negative, the curve is shifted downward D units. The number D is the
vertical shift or the midline. In the formula for the number of hours of daylight in
San Diego, the vertical shift, or midline, is 12.

The Amplitude

We next investigate the effect of the multiplicative constant A in the general equa-
tion of a sinusoidal function We set 
and to consider the simpler function

For example, if we get whose graph is shown in Figure 7.14,
where it is compared to the basic curve for the sine function, (for whichy � sin x

S1x 2 � 2 sin x,A � 2,

S1x 2 � A sin x.

C � 0
B � 1,D � 0,y � D � A sin 3B1x � C 2 4 .

D � 1.D � 1
y � D,

S1x 2 � D � sin x
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). For comparison, we also show the graph of Although the
basic sine function oscillates between and the transformed function

oscillates between and and the transformed function
oscillates between and In general, the effect of multiplying

the sine function by a constant A is to increase its vertical height above and below
the midline by the factor 0A 0.

� 
1
2 .� 

1
2T1x 2 � 1

2 sin x
�2�2S1x 2 � 2 sin x

�1,�1
T1x 2 � 1

2 sin x.A � 1

To show why the absolute value is necessary, we consider the graph of

which has the same shape as the basic sine curve, but oscillates between and
The main difference is that the graph of this function is flipped over the x-axis

compared to the graph of We naturally think of it as being four times as
high as the base curve, not times as high. (Draw simultaneously the graphs of

and using your function grapher.) This is the same effect
of the negative multiple that we encountered in Section 4.6. However, this curve
has the same period and the same zeros ( ) as
the basic sine curve.

The quantity is called the amplitude of the sine function. In the expres-
sion for modeling the number of hours of daylight in San Diego, the ampli-
tude is 2.4.

In Example 2 we show what happens when we combine the two transforma-
tions to construct a new function.

EXAMPLE 2
Analyze the graph of

Solution In this formula, 2 is the vertical shift, or midline, and 3 is the amplitude. The
effect of multiplying the sine function by 3 is to stretch it vertically by a factor of 3, so
that oscillates between and 3. Adding the constant 2 to the function 
simply raises the entire curve 2 units vertically. Consequently, the combined effect is to
produce a sinusoidal function that oscillates from 3 units below the horizontal line

to 3 units above the line; that is, from to as shown in Figure 7.15.�5,�1y � 2

3 sin x�33 sin x

S1x 2 � 2 � 3 sin x.

H1t 2
0A 0

�2p, . . . �p,x � 0,12p � 360° 2

y � �4 sin xy � sin x
�4

y � sin x.
�4.

�4

S1x 2 � �4 sin x,

–2

–1

0

1

2

x

y

π π2

A = 2

A = 1

A = 1
2

FIGURE 7.14
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FIGURE 7.15

�

Incidentally, the function is not the same as the
coefficients cannot be combined because 2 and are not like terms. Graph
both functions to see that they produce very different results. Also,
is not the same as —each parameter has its own role to play.

Use your function grapher to examine the graphs of several functions of the
form for different values of A and D. Predict and then observe how
the different constant values are reflected in the corresponding sinusoidal curve.

The Frequency and the Period

We next consider the effect of the parameter B, which multiplies the term in

To concentrate on B only, we take and We also assume that
Consider how the function

compares to the basic curve as shown in Figure 7.16. The resulting sinu-
soidal curve completes two full cycles between and 
compared to one full cycle for the basic sine curve.

x � 2p,x � 0y � sin12x 2
y � sin x,

S1x 2 � sin12x 2

B 	 0.
A � 1.D � 0,C � 0,

S1x 2 � D � A sin 3B1x � C 2 4 .

1x � C 2

y � D � A sin x

y � 3 � 2 sin x
y � 2 � 3 sin x

3 sin x
y � 5 sin x;y � 2 � 3 sin x

–1

0

1

x

y

π
π2

y = sin 2xy = sin x

FIGURE 7.16
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FIGURE 7.18

Similarly, the graph of

shown in Figure 7.17 completes three full cycles across the interval from 0 to 
Based on these two results, we expect that the graph of

for any positive integer n, will complete n full cycles between and 
Try this with your function grapher for values of n such as 5 or 8.

x � 2p.x � 0

S1x 2 � sin1nx 2 ,

2p.

S1x 2 � sin13x 2

What happens if the positive multiple B is not an integer? The graph of
is shown in Figure 7.18. The function completes half a

complete cycle between 0 and it actually requires an interval of values for x
from 0 to to complete a full cycle.

Similarly, Figure 7.19 shows that the function completes 2.5 full
cycles between 0 and (Trace the graph with your finger and count the cycles.)
It therefore completes one full cycle in of this interval.1>2.5 � 0.4 � 2>5

2p.
y � sin12.5x 2

4p
2p;

y � sin112 x 2y � sin112 x 2

Mathematicians call the parameter B in the frequency of the sinu-
soidal function. It tells us the number of complete cycles that occur between 
and For instance, the function completes six full cycles
across this interval, whereas the function completes of one cycle.3>8y � sin138x 2

y � sin16x 2x � 2p � 360°.
x � 0

y � sin1Bx 2

–1

0

1

x

y

π π2

y = sin (2.5x)
y = sin x

FIGURE 7.19
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y = sin 3xy = sin x

FIGURE 7.17
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7.2 Modeling Periodic Behavior with Sine and Cosine 501

Note that standard usage is to write or say, rather than
or even though it is less precise a notation. But parentheses

are essential on calculators and computers.
As with any periodic function, the period of a sinusoidal function is

the length of the interval needed to complete one full cycle. For a full
cycle is completed in any interval of x-values of length (see Figure 7.16), so the
period is For the period is

(see Figure 7.17). For the period is

or (see Figure 7.18).
In general, the period of is

Thus, for instance, for the period is

because it is the length of the interval needed for this sinusoidal function to complete
one full cycle (see Figure 7.19). This result agrees with our earlier statement that the
function completes one full cycle in of the interval from 0 to 

We have shown that the period of any periodic function is the length of the in-
terval needed to complete one full cycle. Alternatively, if we start with the period B,

In the formula for the number of hours of daylight in San Diego

the frequency of the sinusoidal curve is

The period of the sinusoidal curve is

Thus, as we would expect, the period is 1 year.
In summary we have the following.

Period �
2p

frequency
�

2p

12p>365 2
� 365 days.

Frequency �
2p

365
� 0.0172.

H � 12 � 2.4 sin c
2p

365
1t � 80 2 d ,

Frequency �
2p

period
 .

2p.2>5y � sin12.5x 2

Period �
2p

2.5
�

2p

5>2
�

2

5
12p 2 �

4

5
 p

y � sin12.5x 2 ,

Period �
2p

B
�

2p

frequency
 .

y � sin Bx
720°

1
1
2

12p 2 � 4p radians,

y � sin 112x 2 ,

a
1

3
b 2p �

2p

3
  or a

1

3
b 360° � 120°,

y � sin 3x,p radians � 180°.
p

y � sin 2x,
y � sin Bx

y � sin15x 2 ,y � sin12x 2
y � sin 5x,y � sin 2x

period �
2p

frequency
     frequency �

2p

period
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FIGURE 7.21

Note that in engineering, the frequency is defined somewhat differently. In-
stead of meaning the number of cycles in radians, engineers consider the num-
ber of cycles in a given length of time—say, cycles per second. They then write

and write the sinusoidal function in the form where B, not is
the frequency. Unfortunately, this slight difference in terminology is so deeply embed-
ded in the two fields that it is not possible for either field to change to match the other.

The Phase Shift

Finally, we consider the role of the parameter C in

We simplify the discussion by taking and so that we con-
sider only

From Section 4.7, we know that the term should have the effect of a
horizontal shift to the right when C is positive and to the left when C is negative.

Figure 7.20 compares the graph of to the basic curve
The two curves appear similar, but is shifted to the left (backward)

by or of (which is one-eighth of a full cycle). Similarly, Figure 7.21 shows
the graph of It has been shifted to the right (forward) by

or of (which is one-sixth of a full cycle).2p1
6p>3,

T1x 2 � sin1x � p>3 2 .
2p1

8p>4,
S1x 2y � sin x.

S1x 2 � sin1x � p>4 2

1x � C 2

S1x 2 � sin1x � C 2 .

D � 0B � 1,A � 1,

S1x 2 � D � A sin 3B1x � C 2 4 .

2pB,y � sin12pBt 2 ,

Frequency �
1

period

2p

In general, the parameter C shifts a sinusoidal curve to the left or the right by
the amount C. If C is positive in the term as in the
curve is shifted to the right by C; if C is negative in as in

the curve is shifted to the left by C. This parameter is called the
phase shift, instead of the horizontal shift, in the context of sinusoidal functions.
In the expression for the daylight function for San Diego

the phase shift is 80 days.

H � 12 � 2.4 sin c
2p

365
1t � 80 2 d ,

y � sin1x � p>4 2 ,
1x � C 2 ,

y � sin1x � p>3 2 ,1x � C 2 ,
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7.2 Modeling Periodic Behavior with Sine and Cosine 503

EXAMPLE 3
What is the significance of the phase shift in the formula for H?

Solution The phase shift shifts the curve to the right by 80 days. Recall that the 80th
day of the year is March 21, which is the spring equinox (the day when there are equal
numbers of hours of daylight and darkness). On this day, the graph for the sinusoidal
function crosses the midline, or average level, of hours.

�

In general, the phase shift for a sine function corresponds to the first point to
the right of the origin where the curve crosses the midline while increasing. Equiv-
alently, it occurs midway, horizontally, from a minimum point to a maximum.

We summarize all the results for the San Diego daylight function in Figure 7.22.

D � 12

365 = period80 = phase shift0

9.6

vertical shift = 12

14.4

t

H

2.4 = amplitude

FIGURE 7.22

EXAMPLE 4
The water at a boat dock is 7 feet deep at low tide and 11 feet deep at high tide. On a cer-
tain day, low tide occurs at 4 A.M. and high tide at 10 A.M. Find an equation for the height
of the tide y as a function of time t.

Solution We use the given information to sketch the graph of a sinusoidal curve in Fig-
ure 7.23.

40 10 16 22

7

9

11

t

Height of tide

FIGURE 7.23
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Because the tide ranges from a minimum height of 7 feet to a maximum height of
11 feet above sea bottom, the curve oscillates about the middle value of 9 feet, which is
the vertical shift, or midline. Also, the amplitude of this sinusoidal curve is 2. Further, the
time interval between the minimum and maximum heights of the water level is 6 hours;
consequently, a complete tide cycle takes 12 hours, so the period is 12 hours. As a result,

Finally, because the tide level increases from 4 A.M. to 10 A.M., the curve passes across the
middle height of 9 feet halfway between 4 A.M. and 10 A.M. (or at 7 A.M.), which gives the
phase shift. (The graph shows that, even though the tide function also crosses the 9-foot
level at 1 A.M., the function is decreasing there and so this does not give the phase shift.)
Therefore the height y of the water at any time t is modeled by

�

EXAMPLE 5
The air conditioning in a home is set to go on when the temperature reaches and to
go off when the temperature drops to This cycle repeats every 20 minutes. If the
temperature in the house at noon is and rising, write a sinusoidal function to model
the temperature as a function of the number of minutes t since noon.

Solution A sinusoidal function is of the form where A, B,
C, and D must be determined. We know that the temperature oscillates between 
and so it is centered about which is the vertical shift, or midline, D. Further,
because the size of the oscillation above and below this midline is 3, we know that the
amplitude We also know that the length of the cycle is 20 minutes, so the period
is 20 and therefore the frequency Finally, because the house tem-
perature reaches —the level of the vertical shift—at noon when the phase
shift is 0, so Therefore our model for the temperature of the house as a function
of time is

Figure 7.24 shows the graph of this sinusoidal function for the first 60 minutes.

T � 71 � 3 sin a
p

10
 tb .

C � 0.
t � 0,71°

B � 2p>20 � p>10.
A � 3.

71°,74°,
68°

T � D � A sin 3B1t � C 2 4 ,

71°
68°.

74°F

y � 9 � 2 sin c
p

6
1t � 7 2 d .

Frequency �
2p

period
�

2p

12
�
p

6
 .

�

Gord.3896.07.pgs  4/28/03  11:55 AM  Page 504



7.2 Modeling Periodic Behavior with Sine and Cosine 505

EXAMPLE 6
For part of the year, the temperature T in the Colorado Rockies can be modeled by the
function

where t is measured in hours and is at 9 A.M. In Example 5 of Section 2.2, we used
the linear function

to model the chirp rate C (in chirps per minute) of the snow tree cricket as a function of
the air temperature T (in ).

a. Express the chirp rate as a function of time.

b. How fast is the cricket chirping at 5 P.M.?

c. What are the domain and range of this function?

Solution
a. The chirp rate in is measured in chirps per minute and the time t in

the formula for the temperature as a function of time is measured in hours. To
make things consistent, we convert the chirp rate to chirps per hour by multiplying
by 60 (minutes per hour) to get

We now have C as a function of T, where T is a function of t, so C is a composite
function,

where t is measured in hours since 9 A.M. and C is chirps per hour, as illustrated in
Figure 7.25. (Note that we could have gone the other way and converted everything to
minutes, but then the numbers get quite large.)

b. At 5 P.M., when hours after 9 A.M., the chirp rate is

C � f 18 2 � 4800 � 2400 sin a
p

12
 # 8b � 6878 chirps per hour.

t � 8

 � 4800 � 2400 sin a
p

12
 tb ,

 � 14,400 � 2400 sin a
p

12
 tb � 9600

 � 240 c 60 � 10 sin a
p

12
 tb d � 9600

 C � f 1t 2 � 240T � 9600

C � 6014T � 160 2 � 240T � 9600.

C � 4T � 160

° F

C1T 2 � 4T � 160

t � 0

T1t 2 � 60 � 10 sin a
p

12
 tb ,

Time (minutes)

C
hi

rp
s 

pe
r 

ho
ur

C = 4800 + 2400 sin (  t)12
π

4 8 12 16 20 24
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t

FIGURE 7.25
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c. The independent variable is the time t in hours from 9 A.M. on a particular day. The
practical domain of the function f depends on how long the functions that are the
component models make sense. The model for the temperature is good for only
part of the year; let’s assume that it applies only for a 30-day period. If the initial
time is at the beginning of that time period, the domain would last for the follow-
ing 30 days; if the initial time is at the middle of that time period, the domain
would extend from 15 days before to 15 days after. As for the range, look at the
function f. It oscillates above and below 4800 chirps per hour, from a minimum of

to a maximum of chirps per hour. So
the range is 2400 to 7200.

�

Identical ideas about vertical shift, amplitude, period, frequency, and phase
shift apply to cosine functions of the form

whose behavior also is described as sinusoidal. The midline D serves to raise or
lower the “center” of the cosine curve; the amplitude A stretches or shrinks the co-
sine curve vertically about the midline; the frequency B represents the number of
cycles over an interval of and the parameter C is the phase shift, which shifts
the cosine curve to the left or the right, depending on the sign of C. The only dif-
ference between working with sines and cosines lies in finding the phase shift. For
a cosine function, the phase shift corresponds to the first point to the right of the
origin where the curve reaches its maximum.

EXAMPLE 7

Describe the graph of the sinusoidal function 

Solution The basic cosine curve is multiplied by 3, so its amplitude is 3. Because the
midline is 5, the function extends from a minimum of to a maximum of

Because the frequency is 2, there are two complete cycles between 0 and 
so the period is Finally, the phase shift is so the curve is shifted to the right by

The graph of this function from to shown in Figure 7.26, illustrates
all these effects.

x � 2p,x � 0p>4.
p>4,p.

2p,5 � 3 � 8.
5 � 3 � 2

y � 5 � 3 cos c 2 ax �
p

4
b d .

2p;

y � D � A cos 3B1x � C 2 4 ,

4800 � 2400 � 72004800 � 2400 � 2400

�

y = 5 + 3 cos [2(x −   )]4
π

x

y

3 o

2

4

6

8

FIGURE 7.26
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7.2 Modeling Periodic Behavior with Sine and Cosine 507

EXAMPLE 8
Figure 7.29 shows the results of recording the vertical oscillations of an object attached
to a particular spring as a function of time from to Construct a function
that models this behavior pattern.

t � 2p.t � 0

W

W
rest

t

y

FIGURE 7.27
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FIGURE 7.29

Combining Sinusoidal and Exponential Functions

Consider a spring hanging vertically from the ceiling with a weight attached at the
bottom, as shown in Figure 7.27. The weight is pulled down and then released, so
the weight bobs up and down with smaller and smaller oscillations until it settles
to a stop in the original rest position, called its equilibrium. Figure 7.28 displays a
graph of this vertical displacement y as a function of time t.

Solution What type of function could have this kind of behavior pattern? The oscilla-
tory effect certainly suggests a sinusoidal function, either a sine or a cosine, but the am-
plitude is not constant. In fact, the oscillations eventually die out. The overall effect of
the decreasing amplitude might suggest either a decaying power function or an expo-
nential decay function. Because there is a finite starting value, not a vertical asymptote,
at time a power function is not appropriate. An exponential decay term makes
more sense. Moreover, based on our discussion in Section 4.6, we might be tempted to
consider the product of such an exponential decay function and a sinusoidal function.
Two possible formulas for functions that combine these two behavior patterns are

with You can think of the decaying exponential function as a variable amplitude
that decays to 0 over time. In addition, there is a vertical shift, so the possible functions

b 
 1.

y � Abtsin ct or y � Abtcos ct,

t � 0,

FIGURE 7.28
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508 CHAPTER 7 Modeling Periodic Behavior

are or Our task is to determine values for the
four parameters A, b, c, and D.

First, we note that the initial height of the object is approximately Starting
from there, the object drops at first. Its height decreases from a maximum, which sug-
gests a cosine function rather than a sine function.

Second, we note that the final, or equilibrium, height for the object is about 4, so the
object seems to be oscillating about a height of The maximum height is 7, or 3 units
above this equilibrium level, so the form for the function seems to be

where 
Further, we estimate from the graph that, between and there

are about five complete diminishing cycles. Thus the frequency for the cosine function is
approximately 5, giving the equation

Finally, consider the exponential decay curve that is superimposed over
the successive peaks of the decaying sinusoidal function in Figure 7.30. It starts with an
initial height of 7 and decays to a final level of 4. Using a ruler, we can estimate that it has
dropped halfway (to a height of 5.5) at about Therefore we use as an ap-
proximation for the half-life of the pure exponential decay function Thus we
must solve the equation

which gives

b2 � 0.5 so that b � 20.5 � 0.707.

g12 2 � 3b2 � 1
2 13 2 ,

g1t 2 � 3bt.
t � 2t � 2,

g1t 2 � 3bt

y � f 1t 2 � 4 � 3btcos 5t.

t � 2p � 6.28,t � 0
f 10 2 � 4 � 3b0cos 0 � 4 � 311 2 11 2 � 7.

y � f 1t 2 � 4 � 3btcos ct,

y � 4.

y � 7.

y � D � Abtcos ct.y � D � Abtsin ct
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5
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π2t ≈ 2
Time
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 ≈ 6.28
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FIGURE 7.30

We can now estimate that the desired function is given by

Verify that this function matches the required pattern for the oscillation shown in
Figure 7.29 by using your function grapher to graph f between 0 and 

�

Incidentally, we have implicitly assumed throughout this section that all peri-
odic processes follow a sinusoidal pattern (either a sine or a cosine curve) precise-
ly. In practice, this assumption may be expecting a lot. Think about the length of

2p.

y � f 1t 2 � 4 � 310.707 2 tcos 5t.
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7.2 Modeling Periodic Behavior with Sine and Cosine 509

2. Find the number of hours of daylight in San Diego
on March 1, on May 12, on July 4.

Problems

1. Decide which of the following functions are peri-
odic. For those that are periodic, what is the period?
(Assume that each graph continues in the same pat-
tern indefinitely to the left and right.)

Janis’s fingernails in Problem 1 from Section 7.1. The nail length is a periodic func-
tion, but it is not sinusoidal. Even if you observe that the overall pattern for some
periodic process is smooth and appears to be that of a sine curve, you have no
guarantee that the behavior is exactly sinusoidal. Nevertheless, sinusoidal func-
tions are your best models for such types of periodic phenomena and consequent-
ly are the models that you should use when faced with such behavior.

Finally, just as you can construct linear, exponential, power, and other functions
to fit a set of data, you often will be faced with the problem of having a set of data
that exhibits a periodic pattern and wanting to find the periodic function that best
fits the data. We ask you to explore several such cases in the following Problems.

–3 –2 –1 1 2 3
x

y

–3 –1 1 3
x

y

–3 –2 –1 1 2 3
x

y

–3 –2 –1 10 2
x

y

–3 –2 –1 10 2
x

y

–3 –2 –1 10 2
x

y

0
x

y

–1 1 2

1

0
x

y

1 2 3
x

y

10 40
x

y

(a) (b) (c)

(d) (e) (f)

(g)

(j)

(h) (i)
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510 CHAPTER 7 Modeling Periodic Behavior

3. The number of hours of daylight in Montreal is
given by

where t is the number of days from the 1st of the year.

a. What is the amplitude of this function?
b. What is the period of this function?
c. What is the number of hours of daylight on the

shortest day of the year?
d. What is the number of hours of daylight on the

longest day of the year?

4. The shortest day of the year in Fairbanks, Alaska,
has 3.70 hours of daylight. Find a formula for the
number of hours of daylight there on any day of
the year.

5. Write a formula giving the number of hours of
darkness in San Diego as a function of the day of
the year.

6. Consider Example 1 regarding the height of the tide
at a dock. Suppose that low tide still occurs at 4 A.M.
but that high tide actually occurs at 10:30 A.M. Find
an equation for the height of the tide as a function
of time t.

7. The Bay of Fundy in eastern Canada is known for
the highest tides in the world. The tides there rise
and fall by as much as 50 feet. If the tidal cycle takes
11 hours, find a sinusoidal function that models the
tides in the bay. For convenience, assume that low
tide corresponds to a height of 0.

8. The thermostat in Sylvia’s home in Baltimore is set
at Whenever the temperature drops to 
(roughly every 30 minutes), the furnace comes on
and stays on until the temperature reaches 

a. Write a sinusoidal function that models this
situation.

b. Gary’s thermostat in upper New York State is set
the same way. How would the model you created
in part (a) change to reflect Gary’s climate?

c. Jodi, who lives in central Florida, likewise has
her thermostat set to come on at How
would you change the models you created for
parts (a) and (b) to reflect her climate?

d. Is a sinusoidal function necessarily a good
model? Explain. (Hint: Think about the rates at
which the temperature increases and decreases.)

9. Ocean waves move in a roughly sinusoidal pattern.
As a rule of thumb, the length of a wave (crest to

66°F.

70°.

66°66°F.

H1t 2 � 12 � 3.6 sin c
2p

365
1t � 80 2 d ,

crest, say) on the open seas is about 20 times the
height of the wave (trough to crest). (This rule
doesn’t apply near coastlines where waves are much
choppier and their intervals shorter.)

20y
y

a. Write a formula for ocean waves that are 4 feet
high in moderately calm seas.

b. Write a formula for ocean waves that are 15 feet
high in rough seas.

10. Meryl is a normal individual with a pulse rate of
72 beats per minute and a blood pressure of 120
over 80. Thus her heart is beating 72 times each
minute and her blood pressure is oscillating be-
tween a low (diastolic) reading of 80 and a high
(systolic) reading of 120. Assume that the oscilla-
tion in Meryl’s blood pressure can be modeled by a
sinusoidal function.

a. What is the period of this sinusoid?
b. What is the frequency of this sinusoid?
c. What is the equation of this sinusoid?

11. Your Thanksgiving turkey is taken from a refrigerator
at and placed in an oven set at Suppose
that the temperature of the bird is after 60 min-
utes.You know that an oven cycles on and off as some
of the heat escapes. Suppose that the cycle occurs
every 10 minutes and that the actual temperatures
inside the oven oscillate between and 

a. Use this information to construct a sinusoidal
function to model the temperature of the oven
as a function of time t.

b. Use Newton’s law of heating from Section 5.4
to estimate how large a variation is possible in
the temperature of the turkey after 60 minutes,
and after 100 minutes. (Hint: Solve the prob-
lem with the minimum and maximum oven
temperatures.)

12. A standard radio has two bands—the AM (amplitude
modulation band) and the FM (frequency modula-
tion band). In one case, the amplitude of a sinu-
soidal wave is modulated (varied) to produce the
desired output sounds; in the other, the frequency
of a sinusoidal wave is modulated. Which of the fol-
lowing represents an AM sound and which repre-
sents an FM sound?

360°.340°

130°
350°.40°F
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7.2 Modeling Periodic Behavior with Sine and Cosine 511

13. Two successive turning points of a sinusoidal func-
tion are at and 

a. Write a possible formula for this function, using
a sine function.

b. Write a possible formula for this function, using
a cosine function.

14. Two successive inflection points of a sinusoidal
function are at and the maximum
attained by the function is 43.

a. Write a possible formula for this function, using
a sine function.

b. Write a possible formula for this function, using
a cosine function.

15. Suppose that the historical average daytime high
temperature in Fairbanks ranges from a low of

to a high of and that the coldest day of
the year, historically, is the 40th day. Write a formu-

64°F�20°F

118, 20 2 ;16, 20 2

120, 30 2 .18, 72 2
la for a sinusoidal function that can be used to
model the average daytime high temperature in
Fairbanks as a function of the day of the year.

16. Sketch by hand the graph of each function. Draw
the basic curve or on the same
set of axes for comparison. (Do not use your func-
tion grapher.)

a. b.

c. d.
e. f.

g. h.

i.

17. Write a possible formula for each sinusoidal func-
tion from its graph.1a 2� 1l 2

y � 4 � 2 cos ax �
p

3
b

y � 3 sin a2x �
p

6
by � sin ax �

p

4
b

y � 4 � 2 sin xy � �3 cos 2x
y � 4 cos 2xy � 2 sin 3x

y � 3 sin a
1

2
xby � 3 sin 4x

y � cos xy � sin x

0 2 4 6 8 10 20 4 6 8 10

(a) (b)
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2
π

–6

–3

x

y

6

x

y

2
π

4

1

–1

x

y

2

4

–4
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y
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18. Identify a possible formula for each of the six sinu-
soidal functions whose values are
given in the table. Note that there are many possible
correct answers.

f 6f 2 , . . . ,f 1 ,

19. The table gives the outdoor temperatures in in
Chicago during one 24-hour period.

°F

x

0.279 2.279 0.559 0.537 0.721

0.959 2.959 1.918 0.544 0.041

0.757 2.757 1.514 0.243

1.859 0.279 1.141

1.091 0.757 1.909

1.159 1.841

0 0.000 2.000 0.000 0.000 0.000 1.000

1 0.841 2.841 1.683 0.909 0.479 0.159

2 0.909 2.909 1.819 0.841 0.091

3 0.141 2.141 0.282 0.997 0.859

4 1.243 0.989 0.909 1.757

5 1.041 0.598 1.959

6 1.721 0.141 1.279�0.537�0.559�0.279

�0.544�1.918�0.959

�1.514�0.757

�0.279

�0.757

�0.479�0.909�1.683�0.841�1

�0.841�1.819�0.909�2

�0.997�0.282�0.141�3

�0.909�0.989�4

�0.598�5

�0.141�6

f 6f 5f 4f 3f 2f 1

Midnight 2 A.M. 4 A.M. 6 A.M. 8 A.M. 10 A.M.

53 48 47 49 53 59

Noon 2 P.M. 4 P.M. 6 P.M. 8 P.M. 10 P.M. Midnight

66 71 68 65 58 54 53

If you were to fit a sinusoidal function to this set of
data, what is the vertical shift? the amplitude? the
period? the frequency? What is the equation of the
resulting sinusoidal function?
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Month Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Tornados 16 24 60 111 191 179 96 66 41 26 31 22

7.2 Modeling Periodic Behavior with Sine and Cosine 513

20. The table above shows the average daytime high
temperature each month in San Diego.

a. Construct a sinusoidal function that best fits
these data.

b. How does the phase shift for this function com-
pare to the phase shift used in the text for the
number of hours of daylight in San Diego? In
particular, explain in practical terms why the si-
nusoidal function for air temperature lags be-
hind the function for hours of daylight.

21. The table gives the average daytime high tempera-
ture in Dallas on different days of the year (roughly
every 2 weeks), based on historical weather records.

a. Assuming that the temperature behavior in Dallas
is periodic from year to year, determine a sinu-
soidal function that models the average daytime
high temperature in Dallas.

b. The values shown in the table are temperatures
roughly every 2 weeks, but two entries are miss-
ing. Use your model from part (a) to predict the
average daytime high temperature in Dallas on
the missing dates.

Month Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Avg. daily high temp. 65.2 64.4 65.9 67.8 68.6 71.3 75.6 77.6 76.8 74.6 69.9 66.1(�F)

Day 1 15 32 46 60 74 91 105 121 135 152

Avg. daily high temp. 55 53 56 59 63 67 72 77 81 84 89

Day 196 213 227 244 258 274 288 305 319 335 349

Avg. daily high temp. 98 99 98 94 90 85 80 72 66 61 58(�F)

(�F)

22. The table shows the average number of tornados re-
ported in the United States per month based on his-
torical records.

Determine a sinusoidal function that models the
monthly number of tornados as a function of time.

23. For a normal adult at rest, the rate R, in liters per sec-
ond, at which air flows in and out of the lungs can be
modeled by the function 
where t is measured in seconds. The person is inhal-
ing when and exhaling when How
many times does the person breathe per minute?

24. Astronomers recently reported the discovery of the
first known planets outside the solar system. They
found three worlds orbiting around a pulsar, a ro-
tating star that emits radiation with constant fre-
quency. For this pulsar, the astronomers detected
slight variations in the intensity of the radiation, as
shown in the accompanying figure. This variation

R 
 0.R 	 0

R1t 2 � 0.85 sin 3 12p>5 2 t 4 ,

would be the effect of a planet in orbit about the
pulsar.

a. From the figure, estimate the length of the year
for the planet.

b. Use Kepler’s law from Example 4 in Section 3.6
(assuming that the same coefficient applies) to
calculate the distance from this planet to its star.

c. Assuming that the orbit of this new planet is
circular, how fast is it moving in its orbit about
the pulsar?

d. For comparison, Earth takes 365 days to com-
plete one revolution about the sun at a distance
of about 93 million miles. How fast is Earth
moving in its orbit about the sun?
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25. You are taking a ride on a Ferris wheel that is 200
feet in diameter and has a bottom point 10 feet
above the ground. Suppose that the Ferris wheel ro-
tates twice every minute and, from your friend’s
viewpoint on the ground, is rotating clockwise.

26. A Ferris wheel is 12 meters in diameter and com-
pletes one full revolution every 20 seconds. If the
bottom of the Ferris wheel is 2 meters above the
ground, write a formula for the height above
ground of a person on the Ferris wheel as a func-
tion of time.

27. Certain stars are called variable stars because their
brightness increases and decreases in a periodic
manner. The brightest variable star that can be ob-
served from Earth is Delta Cephei, whose bright-
ness varies between a minimum brightness (or
magnitude) level of 3.65 and a maximum bright-
ness of 4.35, with a cycle of 5.4 days. Write an equa-
tion that represents the brightness of Delta Cephei
as a function of time t based on at an instant
when the star has minimal brightness.

28. Many people believe that a person’s life is deter-
mined by three independent cycles, called bio-
rhythms. One cycle, with a period of 23 days,
represents the physical or health dimension of a
person, where time t is meas-
ured in days starting at birth. A second cycle, with
a period of 28 days, represents the emotional or
sensitivity aspects of a person,
A third cycle, with a period of 33 days, represents
the mental or intellectual aspects of an individual,

a. Suppose that Tony was born on January 1.
Consider the 60-day period immediately fol-
lowing his 20th birthday. What set of values for
t are appropriate?

b. Which days would you recommend as being
suitable for Tony to compete in a track-and-
field meet?

c. Which days would you recommend as being
good days for Tony to ask his girlfriend to
marry him?

d. Which days could you suggest as days on which
Tony could hope to have a major exam at school?

e. Are there any days when you would recommend
that Tony simply not get out of bed?

f. Are there any days when all the signs are highly
positive?

29. As part of a study on the possibility of global
warming at a National Science Foundation math
modeling workshop at Pellissippi State College,
the accompanying scatterplot was produced. It
suggests that the average global temperature val-
ues appear to oscillate about the regression line,

M1t 2 � sin12pt>33 2 .

E1t 2 � sin12pt>28 2 .

H1t 2 � sin12pt>23 2 ,

t � 0

200 ft

10 ft

a. Sketch your height y above the ground as a func-
tion of time t.

b. Find a formula for your height y as a function
of t. Does it agree with your rough sketch in
part (a)?

c. Find a formula for the horizontal distance x
from the center of the wheel as a function of t.

d. Find all intervals of t values for which you are
moving forward. Indicate these intervals on the
graph of the function in part (c). What do you
observe?

e. Suppose that the Ferris wheel rotates in the op-
posite direction, so it is now moving counter-
clockwise. How do your answers to parts (c) and
(d) change?

f. Find a formula relating your height y above the
ground and the horizontal distance x from the
vertical axis through the center of the wheel.
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7.3 Solving Equations with Sine and Cosine: The Inverse Functions 515

Solving Equations with Sine and Cosine:
The Inverse Functions

We have shown that the number of hours H of daylight in San Diego as a function
of the day of the year t is given by

Suppose that we now ask: When will there be 13 hours of daylight? That is, on
which day t of the year will To find this date, as illustrated in Figure 7.31,
we must solve for the independent variable t in the equation

H1t 2 � 12 � 2.4 sin c
2p

365
1t � 80 2 d � 13.

H � 13?

H1t 2 � 12 � 2.4 sin c
2p

365
1t � 80 2 d .

7.3

where t represents years
since 1880.

a. Use the scatterplot to estimate the parameters
for a sinusoidal function that oscillates above
and below the indicated line. What is the equa-
tion of the resulting function?

b. Use your function grapher to draw the graph of
that function. Does it have the correct shape?

c. What is your prediction for the average global
temperature in 2005, based on the combination
of the given linear function and the sinusoidal
function you created?

T � 0.0042t � 14.67,
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FIGURE 7.31

We can solve such an equation in a variety of ways, as we illustrate in Examples
1 and 2.

EXAMPLE 1
Determine graphically all days on which there will be 13 hours of daylight in San Diego.

Solution The function oscillates between 9.6 and 14.4, so there are 13 hours of
daylight on two different days each year, as indicated in Figure 7.31. One of these days

H1t 2
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516 CHAPTER 7 Modeling Periodic Behavior

occurs in the spring when the days are lengthening; the other occurs during the fall when
the days are shortening. When we trace the graph of this function, we find that the two
solutions are and The 105th day of the year is April 15 (31 days in

in in in ). The 238th day of the
year is August 26. Moreover, these same values will occur every year because the function
is periodic. Check this result on your calculator by evaluating and 

�

EXAMPLE 2
Determine algebraically when there will be 13 hours of daylight in San Diego.

Solution We start with the equation

To solve algebraically for t, we first subtract 12 from both sides:

We next divide both sides by 2.4:

Our task now is to extract the variable t from the argument of the sine function.
Compare this problem to the situation we repeatedly faced of extracting the variable

from an exponential function, such as We solved that problem by using logarithms
to undo the exponential function. The reason that this method works is because the ex-
ponential and logarithmic functions are inverse functions of one another.

Similarly, we can undo the sine function by using the inverse sine function. You can
do so on your calculator by pressing either INV or 2nd followed by SIN to get the arcsine
function. When you do this in radian mode, you will find that

that is, the value whose sine is 0.417 is 0.430 radians. Therefore

To solve for t, we now multiply both sides by 365 and get

Dividing both sides by yields

Hence

That is, there will be 13 hours of daylight in San Diego on approximately the 105th day
of the year (April 15), which is the same answer we obtained graphically in Example 1.

�

t � 25 � 80 � 105.

t � 80 �
156.95

2p
� 24.98 � 25.

2p

2p1t � 80 2 � 10.430 2 1365 2 � 156.95.

2p

365
1t � 80 2 � arcsin 0.417 � 0.430.

arcsin 0.417 � 0.430;

10x.

sin c
2p

365
1t � 80 2 d �

1

2.4
� 0.417.

2.4 sin c
2p

365
1t � 80 2 d � 1.

H1t 2 � 12 � 2.4 sin c
2p

365
1t � 80 2 d � 13.

H1238 2 .H1105 2

April � 105March � 15February � 31January � 28
t � 238.t � 105
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7.3 Solving Equations with Sine and Cosine: The Inverse Functions 517

Actually, the result in Example 2 is not complete because it is only one of the
two possible days each year on which the sinusoidal function H passes across the
13-hour level. However, this is the only solution that you can get directly from a
calculator or computer when you use the inverse sine function. You can determine
the other day when 13 hours of daylight occurs by using the following line of rea-
soning, based on some key facts about the sine function. We found that the solu-
tion corresponds to April 15, which is 25 days after the spring equinox on
March 21. Using the symmetry of the sine curve, we should expect that there will
also be 13 hours of daylight 25 days before the fall equinox on September 21. But
25 days before September 21 is August 27, which is roughly the other solution we
found in Example 1. Finally, because of the periodicity of the sine function, there
will be 13 hours of daylight in San Diego on April 15 and August 27 every year.

The Inverse Sine Function

Let’s now examine more carefully what the inverse sine function is all about and
the reason for the limitation in Example 2. Recall that a continuous function f has
an inverse when it is either strictly increasing or strictly decreasing or, equiva-
lently, if it satisfies the horizontal line test. Obviously, the sine function does not
fulfill either of these conditions because of its shape. The only way to obtain an in-
verse for the sine function is to restrict its domain, as we did for the parabola in
Section 2.9 when we considered only the right side of the parabola We thus
use only a small portion of the sine curve —where the function is strictly
increasing. By convention, the restricted domain for the sine function is from

to as depicted in Figure 7.32.u � p>2,u � �p>2

y � sin u
y � x2.

f �1

t � 105

Let’s work temporarily in degrees. Suppose that

and is some unknown value. From the graph of the sine function, we expect that
will be closer to than to The inverse sine function, arcsin y or al-

lows us to solve for the correct value of That is, if

then

u � arcsin 10.825 2 � 55.59°.

sin u � 0.825,

u.
Sin�1

 y,0°.90°u

u

sin u � 0.825

–1

1

θ

y

2
π

2
π–

y = sin θ

FIGURE 7.32
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518 CHAPTER 7 Modeling Periodic Behavior

Equivalently, if we use radians instead of degrees, then

Thus the inverse sine function undoes the sine function to extract any value be-
tween and or, equivalently, between and radians. Check this
result by taking the sine of or 0.9702 radians. It may be helpful to think of
arcsin y as the angle whose sine is y.

In general, for any function f, if and are inverse
functions, we know that

In the case of the sine function and its inverse, we have

As we found previously, when we wanted to find the day on which there would
be 13 hours of daylight in San Diego, the inverse sine function returned only

This is the only answer we get because we must restrict the domain in
order to have an inverse function.

Let’s try a few values for y to see the effects of the inverse sine function.

What if you try to find Most calculators will return an error mes-
sage, usually indicating a problem with the domain. The reason is that you are try-
ing to find a number whose sine is 2.5. But the only permissible values for the sine
function are between and 1. Thus, if you try to use any value outside this inter-
val, the inverse sine function is not defined and you will get an error message on
most calculators. (Some models return a complex number instead of an error mes-
sage, but that is a topic for considerably more advanced mathematics courses.)

You have seen that when you use any value for y between and 1, the inverse
sine function returns an answer between and in degree mode or between

and in radian mode. These values are called the principal values of the
inverse sine. The inverse sine function does not give any values larger than (or

) or smaller than (or ). It is up to you to realize that, for any real
number k between and 1, there are infinitely many values for whose sine is k.
You can find these values by visualizing the graphs of the sine function and the
horizontal line and determining all points where they intersect, that is,
where You can also use what you know about the symmetry of each arch
of the sine curve. Finally, you can always estimate these values graphically, an ap-
proach that is usually straightforward. In Examples 3–5 we demonstrate the alge-
braic approach and the associated reasoning, because it is more difficult than the
graphical approach.

sin u � k.
y � k

u�1
�p>2�90°p>2

90°
p>2�p>2

90°�90°
�1

�1

arcsin12.5 2?

 If y � �0.88, arcsin1�0.88 2 � �61.6°.

 If y � �0.4, arcsin1�0.4 2 � �23.6°.

 If y � 0.95, arcsin 0.95 � 71.8°.

 If y � 0.6, arcsin 0.6 � 36.9°.

 If y � 0.2, arcsin 0.2 � 11.5°.

t � 105.

 sin1arcsin y 2 � y,  �1 � y � 1.

 arcsin1sin u 2 � u,  �
p

2
� u �

p

2
 ;

 f 1 f �11y 2 2 � y,   for all y in the domain of f �1.

 f �11 f 1x 2 2 � x,   for all x in the domain of f ;

x � g1y 2 � f �11y 2y � f 1x 2

55.59°
p>2�p>290°�90°

u

u � arcsin 10.825 2 � 0.9702 radians.
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7.3 Solving Equations with Sine and Cosine: The Inverse Functions 519

EXAMPLE 3
Find all values of in degrees, for which 

Solution If

which occurs while the sine curve is increasing. We have to find the second solution
which occurs while the sine curve is decreasing. We know that the sine curve reaches its
maximum height of 1 at and is symmetric about Therefore, because is 
before a second value at which the sine function reaches the same height of 0.6 oc-
curs after or at as shown in Figure 7.33. (Verify that 
with your calculator.)

sin 143° � 0.6 u � 143°,90°,53°
90°,

53°37°90°.90°

arcsin 0.6 � 36.9° � 37°,

y � sin u � 0.6,

sin u � 0.6.u,

Further, because of the periodicity of the sine curve, we know that the same be-
havior pattern will repeat every Therefore, other values of whose sine is 0.6 
are at at at at 

and so on. Verify some of these values with your calculator as well.

�

In Example 5 of Section 7.2, we created the sinusoidal function

to model the temperature in a house where the air conditioning control is set to
turn on the air conditioner when the temperature rises to and to turn it off
when the temperature drops to a cycle that repeats every 20 minutes. Also, we
were told that, at noon, the temperature was and rising. We now consider
some inverse predictions based on this model.

EXAMPLE 4
Use the sinusoidal model to determine all times between noon and 1 P.M. when the tem-
perature in the house is 

Solution We need to solve the equation

We show an algebraic solution. We first subtract 71 from both sides and get

3 sin a
p

10
 tb � �1 so that sin a

p

10
 tb � � 

1

3
 .

T � 71 � 3 sin a
p

10
 tb � 70.

70°F.

71°F
68°F,

74°F

T � 71 � 3 sin a
p

10
 tb

21360° 2 � 863°,
143° �37° � 21360° 2 � 757°,143° � 360° � 503°,37° � 360° � 397°,

u360°.

90° 143°37°0 180°

0.6

1

θ

y

y = sin θ

53° 53°
FIGURE 7.33
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T = 71 + 3 sin (  t )10
π

t

T

FIGURE 7.34

T

10 11 19 20

71°
70°

t

T = 71 + 3 sin (  t )10
π

1 1

FIGURE 7.35

Consequently, in radians

so that

or about 1 minute before noon. The air conditioning cycle takes 20 minutes, so we con-
clude that the temperature will be again about one minute before 12:20, or at about
12:19, again at about 12:39, and once more at about 12:59. All these values occur while
the sine curve is increasing, as shown in Figure 7.34.

To find the times that the temperature is while the sine curve is decreasing, we
reason as follows. A complete cycle takes 20 minutes, so a half cycle takes 10 minutes.
The first time the temperature reaches while the curve is increasing is at about

minutes, or 1 minute before the end of the cycle. Therefore, from the symmetry of
the sine curve over the first 20 minutes, as illustrated in Figure 7.35, the first time the
sine curve passes the level while the curve is decreasing must occur about 1 minute
after the middle ( minutes) of the cycle. That is, the other solution is at about

minutes, or at about 12:11. Because of the periodic nature of the sine function,
the temperature will also occur at about 12:31 and at about 12:51.70°
t � 11

t � 10
70°

t � 19
70°

70°

70°

t �
10
p
1�0.3398 2 � �1.08,

p

10
 t � arcsin a� 

1

3
b � �0.3398,

�

EXAMPLE 5
In Example 6 of Section 7.2, we created the sinusoidal function

to model a cricket’s chirp rate C in chirps per hour, where t is measured in hours since 9
A.M. At what times, if any, does the cricket chirp at a rate of 6000 times per hour?

Solution We first solve this problem graphically. The graph of C over a 24-hour period
starting at 9 A.M. (when ) is shown in Figure 7.36. Note the horizontal line at a
height of 6000. The times when the cricket chirps at a rate of 6000 times per hour are the
points at which the curve intersects the line. If we zoom in on the graph about these two
points, we find that t is approximately hours after 9 A.M. (or about 11 A.M.) and

hours after 9 A.M. (or about 7 P.M.).t � 10
t � 2

t � 0

C � 4800 � 2400 sin a
p

12
 tb
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Hours

C
hr

ip
s 

pe
r 

ho
ur

C = 4800 + 2400 sin (  t )12
π

40 8 12 16 20 24

2400

3600

4800

6000

7200

C

t

FIGURE 7.36

Alternatively, let’s solve for t algebraically from

We subtract 4800 from both sides to get

so that

Using the inverse sine function in radian mode, we get

so that

or 2 hours after 9 A.M., which is 11 A.M., as we found graphically.
To find the other time of day when the cricket is chirping 6000 times per hour, we

note that the period of the sinusoidal function is 24 hours, starting at 9 A.M., so a half
cycle takes 12 hours. The symmetry of the sinusoidal function, as depicted in Figure 7.37,
shows that the other time that the curve passes a height of 6000 must be 2 hours before
the 12-hour mark at 9 P.M. (or 10 hours after 9 A.M.), which is at 7 P.M.

t �
12
p
10.5236 2 � 2.0000,

p

12
 t � arcsin10.5 2 � 0.5236

sin a
p

12
 tb �

1200

2400
� 0.5.

2400 sin a
p

12
tb � 1200

C � 4800 � 2400 sin a
p

12
 tb � 6000.

�

2 2

Time 9 P.M.9 A.M.

4800

6000

C = 4800 + 2400 sin (  t )12
π

C

tFIGURE 7.37
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Properties of the Inverse Sine Function 

1. arcsin x is defined only for values of x (the domain) between and 1.

2. The principal values for y (the range) lie between and 
radians.

3.

4. sin 1arcsin x 2 � x,  for �1 � x � 1.

arcsin 1sin y 2 � y,   for � 

p

2
� y �

p

2
 .

p>2
�p>2

�1

y � arcsin x

We summarize the important properties of the inverse sine function as follows.

In general, suppose that is the inverse of a function f. If we write the two
functions in terms of the same independent variable x so that and

their graphs are mirror images of each other about the line as
we showed in Section 2.9. (Visualize the graphs of the exponential and logarith-
mic functions.) Using this fact, we can easily construct the graph of the inverse
sine function from our knowledge of the graph of the sine function. We begin
with the sine curve shown in Figure 7.38(a), in which the portion corresponding
to the domain from to is highlighted. When we reflect the highlighted
portion of the sine curve about the line we get the graph of the inverse sine
function; both graphs are shown in Figure 7.38(b). Finally, the graph of the in-
verse sine function alone is shown in Figure 7.38(c). Note that exists
only for values of x between and 1 and that the corresponding heights range
from to p>2.�p>2

�1
y � arcsin x

y � x,
p>2�p>2

y � x,y � f �11x 2 ,
y � f 1x 2

f �1

The Inverse Cosine Function

Suppose that

and we want to find a number whose cosine has this value. To solve this equation,
we introduce the inverse cosine function, y = arccos x, using ideas that are similar to
those that led to the inverse sine function. We use the inverse cosine (press 2nd
COS or INV COS on your calculator, in Degree mode) to get

Verify that cos 72.5° � 0.3.

u � arccos 0.3 � 72.5°.

u

cos u � 0.3

–1 1–1 1
x

y

(c)(a) (b)

–1

1

x

y y

2
π

2
π–

–1

1

x

2
π

2
π–

y = sin x y = sin x

y = arcsin x
y = arcsin x

2
π

2
π–

y = x

FIGURE 7.38
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–1

1

0
θ

y

π π2

y = cos x

FIGURE 7.39

We know that the only possible values for lie between and 
For the inverse cosine function we must restrict the domain to a suit-
able portion of the cosine curve where the cosine function is either strictly increas-
ing or strictly decreasing. By convention, we consider only values of between 
and (or equivalently between 0 and radians) where the cosine function is
strictly decreasing, as shown in Figure 7.39. These are the principal values for the
inverse cosine and they are the only values that your calculator will return when
you use the inverse cosine function. As with the inverse sine function, you will have
to use what you know about the behavior of the cosine graph, including the sym-
metry of the arches on the graph, if you want to determine all other numbers hav-
ing the specified cosine value.

p180°
0°u

u � arccos y,
�1.�1y � cos u

EXAMPLE 6
Find all values of in both degrees and radians for which 

Solution Although we can solve this problem graphically, we illustrate the details of
the algebraic solution. Because 

in degree mode. Because of the periodicity of the cosine function, we also know that the
value of 0.92 will repeat every so the solutions include

or, in general,

Moreover the graph of the cosine function shown in Figure 7.40 indicates that there
must be another value of just before whose cosine is also 0.92. In particular, be-
cause our first solution is the other value must be before or

Thus the solutions also include

or, in general,

u � 337° � n # 1360° 2 ,  for any integer n � 0.

u � 337°, 337° � 360°, 337° � 21360° 2 , 337° � 31360° 2 , . . . ,

360° � 23° � 337°.
360°,23°u � 23°,

360°u

u � 23° � n # 1360° 2 ,  for any integer n � 0.

u � 23°, 23° � 360°, 23° � 21360° 2 , 23° � 31360° 2 , . . . ,

360°,

u � arccos10.92 2 � 23°

cos u � 0.92,

cos u � 0.92.u
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0.92

0

y

360°23° 337°

y = cos 

23°

θ

θ

FIGURE 7.40

Using radian measure gives the equivalent solutions

Moreover, the cosine function is symmetric about the vertical axis (it is an
even function; see Appendix D). Therefore we know that the same patterns repeat with
negative values for so all the other solutions are

Equivalently, with radian measure, radians and 
for any integer 

�

EXAMPLE 7
A clock is mounted on the wall with its center 7 feet (or 84 inches) above the floor. Sup-
pose that the minute hand is 5 inches long.

a. Write a formula for the vertical height y of the arrowhead on the minute hand above or
below the horizontal line through the center of the clock as a function of the time t in
minutes from the instant that the minute hand is pointing vertically upward to the 12.

b. Determine all times during the first hour when the arrowhead on the minute hand is
2 inches above that horizontal line.

Solution
a. The midline, or vertical shift, is 84 inches above floor level. The minute hand is 5 inch-

es long, so the height of the arrowhead on the hand oscillates between 
and inches above the floor, giving an amplitude of 5. This cycle repeats
every 60 minutes, so the period is 60 and the frequency is Because

corresponds to the instant when the hand is pointing vertically upward, the ini-
tial height for the arrowhead is inches. This suggests that we use a
cosine function with a phase shift of 0 as our model. The resulting function is

b. To find all times when the arrowhead is 2 inches above the midline (equivalently,
when the arrowhead is inches above the floor), we need to solve the
equation

84 � 5 cos a
p

30
 tb � 86.

84 � 2 � 86

y � 84 � 5 cos a
p

30
 tb .

y � 84 � 5 � 89
t � 0

2p>60 � p>30.
84 � 5 � 89

84 � 5 � 79

n � 0.
u � �5.882 � 2np,u � �0.401 � 2np

u � �23° � n # 1360° 2 and u � �337° � n # 1360° 2 ,  for any integer n � 0.

u,

u � 0

for any integer n � 0.u � 0.401 � 2np radians and u � 5.882 � 2np radians,
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Proceeding algebraically, we have

Therefore, in radians,

so that

or about 11 minutes after the hour, as illustrated in Figure 7.41.

t �
30
p
11.1593 2 � 11.07,

p

30
 t � arccos 0.4 � 1.1593

5 cos a
p

30
 tb � 2 so that cos a

p

30
 tb �

2

5
� 0.4.

Because the first solution occurs at about 11 minutes after the hour, we know from
the symmetry of the cosine curve that the same height must occur at about 11 minutes
before the next hour, or at 

�
We summarize the important properties of the inverse cosine function as follows.

t � 49.

Finally, as with the graph of the inverse sine function, the graph of the inverse
cosine function is the mirror image of the cosine graph about the line

as shown in Figure 7.42. Note that the inverse cosine is defined only for x
between and 1 and that the inverse cosine values lie between 0 and 

As a final note, you may find the names arcsine and arccosine to be rather
strange. To see where they come from, think about how we defined radians. In a
unit circle, we measured a length of 1 and defined the corresponding angle to be
1 radian. The same is true for any angle—its measure in radians equals the length
of arc along the unit circle. So, to solve say, we find the angle that
equals the length of an arc on the circle corresponding to the value of a. Thus we
have arcsin a.

usin u � a,

p.�1
y � x,

y � arccos x

110 49 60

84

79

86

89

Time (minutes)

H
ei

gh
t (

in
ch

es
)

y = 84 + 5 cos (  t )30
π

t

y

FIGURE 7.41

Properties of the Inverse Cosine Function 

1. arccos x is defined only for values of x (the domain) between and 1.

2. The principal values for y (the range) lie between 0 and radians.

3.

4. cos 1arccos x 2 � x,  for �1 � x � 1.

arccos 1cos y 2 � y,  for 0 � y � p.

p

�1

y � arccos x
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1. On what days of the year will San Diego have
11 hours of daylight? 10 hours of daylight? 9 hours
of daylight?

2. The height of water at a dock is given by the formu-
la where t is measured in
hours since midnight.

a. When does high tide occur?
b. When does low tide occur?
c. When does the water level reach 8 feet? 10 feet?

11 feet? 12 feet?

3. An air conditioner is being used to cool a room.
The temperature T oscillates according to the for-
mula where t is meas-
ured in minutes after 9 A.M.

a. At about what temperature is the thermostat set?
(i.e., when does the air conditioner kick in?)

b. At about what temperature does the air condi-
tioner kick out?

c. When does the room temperature reach 

4. The thermostat in an apartment is set to turn the
heat on when the temperature falls to and to
turn it off when the temperature rises to This
cycle takes 15 minutes.

a. Write a formula for the temperature T as a func-
tion of time t, where t is the number of minutes
after noon. Assume that the temperature at
noon is 

b. Determine all times between noon and 1 P.M.
when the temperature is 

c. Suppose that the temperature at noon is Re-
peat parts (a) and (b).

67°.
66°.

70°.

70°F.
64°F

67°F?
70°F?

T1t 2 � 69 � 3 sin1pt>10 2 ,

h1t 2 � 10 � 4 sin1pt>6 2 ,

d. Suppose that the temperature at noon is Re-
peat parts (a) and (b).

5. One of the dangers at places that have very high
tides, such as Canada’s Bay of Fundy, is the rate at
which the tide can come in and potentially trap un-
wary visitors. Use the formula you devised for a si-
nusoidal function that models the heights of the
tides at the Bay of Fundy in Problem 7 of Section 7.2
to determine how long it takes for the water level to
rise 5 feet

a. from a point of low tide.
b. from a point at the average tide level.

6. A Ferris wheel is 12 meters in diameter and com-
pletes one full revolution every 20 seconds. The
bottom of the Ferris wheel is 2 meters above the
ground. In Problem 26 of Section 7.2, you were
asked to write a formula for the height above
ground of a person on the Ferris wheel as a func-
tion of time. Use that model to determine the times
at which a person is 10 meters above the ground.

7. The historical average daytime high temperature in
Fairbanks ranges from a low of to a high of

and the coldest day of the year, historically, is
the 40th day. In Problem 15 of Section 7.2, you were
asked to write a formula for a sinusoidal function
that can be used to model the average daytime high
temperature in Fairbanks as a function of the day of
the year. Use this model to determine the days on
which the high temperature in Fairbanks will be 

8. The table below gives the outdoor temperatures in
Chicago during one 24-hour period:

0°.

64°F,
�20°F

68°.

Problems

Time Midnight 2 A.M. 4 A.M. 6 A.M. 8 A.M. 10 A.M. Noon 2 P.M. 4 P.M. 6 P.M. 8 P.M. 10 P.M. Midnight

Temp. 53 48 47 49 53 59 66 71 68 65 58 54 53(�F)

–1 1

π

π

x

y

–

y = arccos x

y = cos x

y = x

FIGURE 7.42
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7.4 The Tangent Function 527

In Problem 19 of Section 7.2, you were asked to cre-
ate the equation of the sinusoidal function that fits
these data. Use that model to determine the times at
which the temperature in Chicago will be (a) 
and (b) 

9. The table below shows the average daytime high
temperature each month in San Diego. In Problem

60°.
50°

20 of Section 7.2, you were asked to construct a si-
nusoidal function that fits these data. Use that
model to determine the months on which the aver-
age daytime high temperature in San Diego will be
(a) (b) and (c) 80°.70°,65°,

10. A 25-foot ladder is leaning against the side of a
building and begins to slip. Write a formula for the
angle that the ladder makes with the ground as a
function of the distance x from the foot of the ladder

u

to the building. Use your function grapher to draw
the graph of this function. What are appropriate val-
ues for the domain of the function? Is the graph con-
cave up or concave down? When is it maximum?

Exercising Your Algebra Skills

Several of the following equations do not have solu-
tions. By inspection, decide which ones do not (give
reasons) and then find the solutions to the remaining
equations.

1. 2.

3. 4. 4 sin u � 33 sin u � 4

sin u � 0.4sin u � 4

5. 6.

7. 8.

9. 5 sin 2x � 3 cos x

3 cos x � 25 cos 2x � �3

5 sin 2x � 34 sin u � �3

The Tangent Function

We have considered many situations that can be modeled with either the sine or
cosine function. In this section we return to the third trigonometric function, the
tangent, and consider its properties and some applications. Recall from Section 6.1
that the tangent is defined by the ratio

of sides in a right triangle in terms of an angle as shown in Figure 7.43.

The Graph of 

As with any function, our first concern is to determine the graph of the tangent
function to help us understand its behavior. The graph of the tangent function is
shown in Figure 7.44, from which we observe the following characteristics.

1. The tangent function is periodic with period the tangent graph com-
pletes one full cycle between and another full cycle be-
tween and a third cycle between and and so on.
Each segment is called a branch of the graph.

2. The tangent function has zeros at �2p, . . . �p,x � 0,

3p>2,p>2p>2,�p>2
�p>2,x � �3p>2
p;

y � tan x

u,

tan u �
opposite 

adjacent 

7.4

Month Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Avg. daily high temp. 65.2 64.4 65.9 67.8 68.6 71.3 75.6 77.6 76.8 74.6 69.9 66.1(�F)
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528 CHAPTER 7 Modeling Periodic Behavior

tan x �
sin x
cos x

 ,  for any value of x for which cos x  0.

3. The tangent graph has vertical asymptotes at 
so the tangent function is not defined at these points (which

separate the branches).

4. The tangent is an increasing function for all intervals between successive
vertical asymptotes.

5. The tangent curve is first concave down and then concave up on each
branch. The point of inflection on each branch occurs at the point where
the tangent curve crosses the x-axis: at 

To understand the behavior of the tangent function, we consider the funda-
mental relationship.

�2p, . . . �p,x � 0,

�5p>2, . . . ,
�3p>2,x � �p>2,

Because the tangent is the quotient of two functions, we can analyze this rela-
tionship in the same way that we analyzed the behavior of rational functions in
Section 4.6. First, the tangent function must have a zero wherever the numerator,
sin x, is 0. This corresponds to which clearly agrees with
what the graph of the tangent function shows. Second, the tangent function is un-
defined and therefore has a vertical asymptote wherever the denominator, cos x, is
0. This occurs at which again agrees with what
the graph of the tangent function shows.

Now let’s see how these ideas help in understanding the graph of the tangent
function. Consider what happens between and The sine function
(the numerator for ) is positive and increasing toward 1, whereas the
cosine function (the denominator for ) is positive and decreasing to-
ward 0. Because both are positive, tan x must be positive between 0 and 
Also, the ratio involves a numerator that is getting larger and a denominator
that is getting smaller and approaching 0, so there is a vertical asymptote at

The tangent is a positive function that increases toward as x ap-
proaches from the left.

Similarly, between and the sine function is negative and in-
creasing toward 0, whereas the cosine function is positive and increasing toward 1.

x � 0,x � �p>2
p>2

�x � p>2.

p>2.
y � tan x

y � tan x
p>2.x � 0

�5p>2, . . . ,�3p>2,x � �p>2,

�2p, . . . ,�p,x � 0,

adjacent

opposite

tan     = θ

θ

opposite

adjacent

FIGURE 7.43

x

y

2
π

2
π–– π

2
3 π

2
3

y = tan x

FIGURE 7.44
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7.4 The Tangent Function 529

So, when we take the ratio for x between and the
numerator and the denominator have the same numerical values as the ratio of

for x between 0 and but the signs of both the numerator
and the denominator are reversed. In the quotient, these reversed signs cancel, so
that the values for tan x from to match the corresponding values for tan x
from 0 to But, if the same values are repeated, the function is periodic and there-
fore its period is 

Finally, because the tangent function is periodic with period it repeats
the behavior that we’ve outlined here, leading to the graph previously shown in
Figure 7.44. For reference purposes, you should know that

EXAMPLE 1
A video cameraman is taping a 100 meter dash down a straight track. He is positioned
halfway along the track 40 meters from the inside lane where the race’s favorite is run-
ning. He plans to focus his camera on the favorite throughout the race.

a. Write a formula for a function that models the distance d from the runner to the
point A on the track as a function of the angle as illustrated in Figure 7.47.

b. What is the runner’s distance from the line extending from the cameraman to the
middle of the track when the angle 

c. What is the runner’s distance from that line when radian?u � 0.6

u � 30°?

u,

tan 0 �
sin 0

cos 0
�

0

1
� 0 and tan 

p

4
� tan 45° � 1.

p,
p.

p.
2pp

1x  p>2 2 ,psin x>cos x

1x  3p>2 2 ,2ppsin x>cos x

–1

1

x

y

0 π π2

y = sin x y = −sin x 

FIGURE 7.45

–1

1

x

y

0 π π2

y = cos x y = −cos x 

FIGURE 7.46

Thus their ratio is negative and increases toward 0 as x increases toward 0. More-
over, as x approaches from the right, the tangent ratio becomes ever more
negative and eventually approaches 

Next, why is the period of the tangent function when the periods for the
sine and the cosine are both Visualize the sine curve from 0 to and then
from to as shown in Figure 7.45. If you flip the second half of the curve
over the x-axis, you get a curve identical to the first half. So the values for sin x
between and are the same as those between 0 and but with the signs re-
versed. The same is true for the cosine between and —its values repeat
those for the cosine between 0 and but with the signs reversed, as shown in
Figure 7.46.

p,
2pp

p,2pp

2p,p

p2p?
p

��.
�p>2
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Solution
a. From Figure 7.47,

b. When 

c. When radian,

�

We can write more general tangent functions of the form

where D is the vertical shift or midline, A is the amplitude, B is the frequency, and
C is the phase shift. These ideas are the same as those that we encountered with
general sinusoidal functions in Section 7.2. We explore some of these ideas for the
tangent function in the Problems at the end of this section.

The Inverse Tangent

Suppose that we have an equation such as To find a value of that sat-
isfies this equation, we use the inverse tangent function, arctan x, that gives the
number whose tangent value is x. Using a calculator, we find

As with the inverse sine and inverse cosine functions, we have to restrict the
domain of the tangent function in order to define the inverse tangent function.
By convention, the principal values for the tangent function are from to

where the tangent function is strictly increasing. Accordingly, a calculator
returns a value only between and (or between and ) for the
inverse tangent.

We summarize the important properties of the inverse tangent function as
follows.

90°�90°p>2�p>2
p>2

�p>2

u � arctan 1.5 � 0.9828 radian � 56.31°.

utan u � 1.5.

y � D � A tan 3B1x � C 2 4 ,

d � f 10.6 2 � 40 tan 0.6 � 27.37 meters.

u � 0.6

d � f 130° 2 � 40 tan 30° � 23.09 meters.

u � 30°,

tan u �
d

40
 so that d � 40 tan u � f 1u 2 .

40 feet

d

θ

A

FIGURE 7.47
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7.4 The Tangent Function 531

Properties of the Inverse Tangent Function 

1. arctan x is defined for values of x (the domain) between and 

2. The principal values for y (the range) lie between and 
radians.

3.

4. tan 1arctan x 2 � x,  for �� 
 x 
 �.

arctan 1tan y 2 � y,  for �p>2 
 y 
 p>2.

p>2�p>2
�.��

y � arctan x

−15 150

−2

2

x

y

2
π–

2
π

y = arctan x

FIGURE 7.48

Finally, as with the graphs of the other inverse functions, the graph of the in-
verse tangent function is the mirror image of the tangent graph about
the line as shown in Figure 7.48, where x goes from radians to 15 radi-
ans. Note how the curve levels off to the right at a height of and to the
left at a height of about These are a pair of horizontal asymptotes.�p>2 � �1.57.

p>2 � 1.57
�15y � x,

y � arctan x

d

θ
α

20

5
FIGURE 7.49

If you need other values of outside the interval from you will
have to determine them by using what you know about the symmetry of the graph
of the tangent function.

EXAMPLE 2
You enter a movie theater that has a screen 20 feet high positioned 5 feet above your eye
level. If you sit too far back in the theater, the screen appears too small because your
viewing angle is too small. If you sit too close to the screen, the picture will seem distort-
ed because your viewing angle is again too small.

a. Find a formula giving the viewing angle as a function of your distance d from the
screen, as illustrated in Figure 7.49.

b. What is your viewing angle if you sit 40 feet back from the screen?u

u

�p>2 to p>2,u
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532 CHAPTER 7 Modeling Periodic Behavior

c. Does the viewing angle increase or decrease if you move farther back? In particular, esti-
mate the distance you should sit from the screen to get the largest possible viewing angle.

Solution
a. Your viewing angle is the angle subtended by the screen. There is no direct way to

get an expression for because the associated triangle shown in Figure 7.49 is not a
right triangle. Thus you have to get an expression for in a somewhat indirect man-
ner. To do so, introduce the angle shown in Figure 7.49 representing the angle from
your eye level vertically upward to the bottom of the screen. This gives you two right
triangles. In the smaller triangle,

In the larger triangle,

Consequently, the desired expression for is

(Note that these two terms cannot be combined algebraically.)

b. For feet,

or about 

c. To determine what happens to this viewing angle as you move farther back, just re-
place the 40-foot distance with somewhat larger values—say, 41 or 45 feet. Alterna-
tively, graph the function f that gives the angle as a function of the distance d. If you
graph this function on the interval from 0 to 50, say, as shown in Figure 7.50, you can
determine the behavior of this function for more thoroughly. The function increas-
es rapidly, starting at and rises to a maximum viewing angle when d is ap-
proximately 11 feet. You can verify this result on your calculator. Then the function
slowly decreases as d increases thereafter. Therefore if you move farther back from the
screen, the viewing angle will decrease.

d � 0,
u

u

u

24.9°.

u � f 140 2 � arctan 
25

40
� arctan 

5

40
� 0.4342 radians,

d � 40

u � 1u � a 2 � a � arctan 
25

d
� arctan 

5

d
� f 1d 2 .

u

tan 1u � a 2 �
25

d
 so that u � a � arctan 

25

d
 .

tan a �
5

d
 so that a � arctan 

5

d
 .

a

u

u,
u

0 50
d

θ

FIGURE 7.50

�
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7.4 The Tangent Function 533

Finally, we note that it is possible to consider three other trigonometric
functions—the cotangent, the secant, and the cosecant—which are just reciprocals
of the tangent, the cosine, and the sine functions, respectively. These functions are
defined as

Be sure that you understand that these are reciprocals of the basic trigonometric
functions. They have nothing to do with the associated inverse functions.

The cosecant, secant, and cotangent functions have been useful in the past be-
cause they simplified the hand calculations required in working with certain
trigonometric problems. However, with technology, working with the actual recip-
rocals is just as easy as using and Consequently, the cotangent,
secant, and cosecant functions gradually are being laid to rest, and we don’t con-
sider them further.

cot u.sec u,csc u,

cot u �
1

tan u
 ,  sec u �

1

cos u
 , and csc u �

1

sin u
 .

Problems

1. Each of the figures (a)–(f) shows the graph of
where x is in degrees.

a. Write an equation for a tangent function with
frequency 2 and sketch its graph superimposed
over the graph of in Figure (a).

b. Write an equation for a tangent function with
frequency and sketch its graph superimposed
over the graph of in Figure (b).

c. Write an equation for a tangent function with
amplitude 3 and sketch its graph superimposed
over the graph of in Figure (c).

d. Write an equation for a tangent function with
amplitude and sketch its graph superim-
posed over the graph of in Figure (d).

e. Write an equation for a tangent function with
phase shift of and sketch its graph superim-
posed over the graph of in Figure (e).

f. Write an equation for a tangent function with ver-
tical shift of and sketch its graph superim-
posed over the graph of in Figure (f).y � tan x

�10

y � tan x
30°

y � tan x
�2

y � tan x

y � tan x

1
2

y � tan x

y � tan x,

2. Write a possible formula involving tangent func-
tions for each function (a)–(c) shown.

x

y

−40
−30
−20

10
20
30
40

906030−90 −30

(f)

x

y

−40
−30
−20

10
20
30
40

906030−90 −30

(e)

x

y

−40
−30
−20

10
20
30
40

906030−90 −30

(d)

x

y

−40
−30
−20

10
20
30
40

906030−90 −30

(c)

x

y

−40
−30
−20

10
20
30
40

906030−90 −30

(b)

x

y

−40
−30
−20

10
20
30
40

906030−90 −30

(a)

1
x

y

(a)
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46

46

x

θ

α

32°
54°

60 m

y

x

(b)

25

y

x

(c)

4
π

4
π−

2
π

3. Write a possible formula involving a tangent function
for the function whose values are given in the table.

6. The lines and all
pass through the origin. Find the angle each line
makes with the x-axis.

7. a. For the general equation of a line through the
origin interpret the meaning of the
slope m in terms of trig functions.

b. What is the significance of the slope m in
from this point of view?

8. Use the graph of to sketch the graph of its
reciprocal function (This is the cose-
cant function.)

9. Use the graph of to help you sketch the
graph of its reciprocal function (This
is the secant function.)

10. Use the graph of to sketch the graph of
(This is the cotangent function.)

11. A 5-foot high painting is hanging on the wall of an
art museum when a photographer takes a picture of
it. The lens of his camera is 1 foot below the bottom
of the painting when he snaps the picture.

y � 1>tan x.
y � tan x

y � 1>cos x.
y � cos x

y � 1>sin x.
y � sin x

y � mx � b

y � mx,

y � 4xy � 3x,y � 2x,y � x,

0

UNDEF 0 1 2.414 UNDEF�1�2.414f (U)

p>3p>4p>6�p>6�p>4�p>3U

4. The Statue of Liberty is 46 meters tall and stands on
a base that is also 46 meters tall. Find an expression
for the angle subtended by the statue from ground
level as a function of distance from the base of the
statue. Use this function to estimate graphically the
distance when the angle is maximum. Approxi-
mately what is this maximum angle?

5 ft

1 ft
β

x ft

5. A tall smokestack extends from the roof of a large
industrial plant. At a point 60 meters from the base
of the building, the angle of elevation to the roof
(the bottom of the smokestack) is and the
angle of elevation to the top of the smokestack is

Find both the height of the building and the
height of the smokestack.
54°.

32°,
a. Find a formula for the angle subtended by the

painting at the camera’s lens at a distance of x
feet from the wall.

b. Using your function grapher, estimate the dis-
tance x from the wall at which the photographer

b

Gord.3896.07.pgs  11/21/03  10:50 AM  Page 534



Chapter Summary 535

should position his camera to subtend the great-
est possible angle with the painting.

12. A TV cameraman is videotaping the liftoff of the
space shuttle. The cameraman is positioned at
ground level 500 meters from the launch pad and is
tracking the shuttle as it rises.

a. Write a formula for the angle of inclination to
the shuttle as a function of the height y of the
shuttle above the ground.

b. Find the angle of inclination when the shuttle
is 1000 meters high.

c. Find the angle of inclination when the shuttle
is 2000 meters high.

13. According to Einstein’s theory of relativity, the mass
M of an object increases as its speed v increases ac-
cording to the formula

M � f 1v 2 �
M0B1 �

v2

c2

� M0
# a1 �

v2

c2b
�1>2

,

a

a

a

where is the mass of the object at rest 
and c is the speed of light (about 186,282 miles
per second). Suppose that an object has a rest
mass of unit.

a. Construct a table of values for the mass of the
object for each of the following speeds expressed
as a fraction of the speed of light: 0.5c,
0.9c, 0.95c, 0.99c, and 0.999c.

b. Sketch a graph showing the behavior of the mass
M of an object as its speed approaches the speed
of light.

c. The speed of light is the physical equivalent of a
vertical asymptote. Write the formula for a func-
tion involving the tangent that can be used to
model the mass of an object as a function of its
speed expressed as a fraction of the speed of light.

v � 0,

M0 � 1

1v � 0 2M0

Exercising Your Algebra Skills

Solve each trigonometric equation.

1. 2.

3. 4. 2 cos u � sin ucos u � �sin u

5 tan u � 44 tan u � 5

5. 6.

7. 8. 4 sin u � 3 cos u � 0sin u � cos u � 0

4 sin u � 5 cos u5 sin u � 4 cos u

Chapter Summary

In this chapter, we introduced the use of the sine and cosine functions for model-
ing periodic phenomena and the tangent function. In particular, we discussed the
following:

� The behavior of the sine and cosine functions.

� How to convert between radian measure and degree measure.

� What the vertical shift or midline means for the sine and cosine functions.

� What amplitude means for the sine and cosine functions.

� What frequency means for the sine and cosine functions.

� What period means for the sine and cosine functions.

� What phase shift means for the sine and cosine functions.

� How to use the sine and cosine functions to model periodic behavior.

� How to fit sine and cosine functions to data.

� The behavior of the inverse sine and inverse cosine functions.
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536 CHAPTER 7 Modeling Periodic Behavior

3 seconds

60°

11 ft

8 ft

� How to solve trigonometric equations, using the inverse sine and inverse co-
sine functions.

� The behavior of the tangent function.

� The behavior of the inverse tangent function.

� How to solve trigonometric equations, using the inverse tangent function.

Review Problems

1. The student with whom you are working finishes a
problem and announces her answer is 
You get an answer in the form Under
what circumstances are these answers the same?

2. Suppose that is 

a. Find two positive angles and two negative angles
that have the same sine as 

b. Write the angles from part (a) in radian form.

3. Let 

a. Find two positive angles and two negative angles
with the same cosine as 

b. Write the radian form of the angles from part (a).

For each sinusoidal function in Problems 4–11, identify
the vertical shift, the amplitude, the frequency, the peri-
od, and the phase shift.

4.

5.

6.

7.

8.

9.

10.

11.

12–19. Each of the functions in Problems 4–11 can be a
model for a common periodic phenomenon.
For each function,

a. describe a phenomenon that each function could
model.

y � 145 � 40 sin a
2p

83
tb

y � 100 � 25 sin a
2p

97
tb

y � 100 � 25 sin a
2p

72
tb

y � 38 � 8 sin c
2p

24
1t � 5 2 d

y � 80 � 13 cos c
2p

24
1t � 15 2 d

y � 71 � 2 cos a
2p

15
tb

y � 63 � 3 sin a
2p

25
tb

y � 325 � 10 sin a
2p

9
tb

u.

u � 45°.

u.

60°.u

sin 17.2708 2 .
cos 15.70 2 .

b. What do the variables represent?
c. What are the units?
d. What are possible values for the domain and

range?

20. Bernice is swinging on a playground swing whose
supporting crossbar is 11 feet above the ground and
the length of the chain to her seat is 8 feet. At the
end of each swing, she makes an angle of with
the vertical and it takes her 3 seconds to complete
each full cycle.

60°

a. Write a sinusoidal function that can be used to
model the height of the seat above the ground as
a function of time t.

b. Write a sinusoidal function that can be used to
model the horizontal displacement from directly
under the crossbar as a function of time t.

21. A bungee jumper dives off a bridge that spans across
a deep gorge. The bungee cord initially stretches to a
maximum length of 200 feet before the jumper be-
gins her first rebound. Over the course of the next
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3 in. 3 in.

4 in.

14 in.

a. Write a sinusoidal function that models the
height of the piston as a function of time in min-
utes, based on the midline for the height.

b. Write a sinusoidal function that models the
height of the piston as a function of time in min-
utes, based on the lowest height of the piston.

23. A pogo stick consists of a spring in a vertical tube
with two fixed pedals on which a person stands and
jumps up and down. Suppose that a child on a pogo
stick hops up and down every 3 seconds and that
the height of the pedals varies from 4 inches above
the ground to 14 inches above the ground. Write a
sinusoidal function to model the height of the ped-
als above ground level as a function of time. (Hint:
Assume that the pedals are at the midline level at
the start.)

24. The child in Problem 23 is also moving forward
20 inches with each bounce of the pogo stick.

a. Write a sinusoidal function to model the path of
the child’s feet—that is, the height y above the
ground as a function of the horizontal distance x
covered.

b. By comparing the graph of the function you cre-
ated in part (a) to your image of what is actually
happening, explain why the sinusoidal model
may not make sense.

c. Look at the graph of the absolute value of the
function you created in part (a). Is it a better or
worse model for the behavior you envision?

To solve Problems 25–27, use the fact that, if an arc of
length s on a circle of radius r subtends an angle of ra-
dians, then 

25. The distance between two points P and Q on the
Earth is measured as the distance along the arc of
the circle through P and Q and centered at the cen-
ter of the Earth O. The radius of the Earth is about
4000 miles. Find the distance from P to Q if the
angle POQ has the following measurements.

a. b.

c. d.

26. A wheel of radius 2 feet rotates at a constant rate of
180 revolutions per minute.

a. How many radians per minute are swept by
the wheel?

b. How far does a point on the rim of the wheel
travel in 1 minute?

27. Find the diameter of the tires on your car. Assume
that the car is traveling at 60 mph and determine the
number of revolutions the tire makes every minute.

28. On the same set of axes, graph the functions

Clearly mark the zeros of each function.

29. For each function give the frequency, period, ampli-
tude, and phase shift.

a.

b. y � 5 � 2 cos a
3

4
 x � pb

y � 5 � 2 cos a
3

4
 xb

and T1x 2 � 2 sin 0.5x.

S1x 2 � 2 sin x,  R1x 2 � 2 sin 3x

15°
5p

6

p

3

p

4

s � r u.
u

60 seconds, she bounces up and down with ever-
diminishing oscillations, each lasting about 6 sec-
onds, until she comes to rest about 160 feet below
the bridge. Write the equation of a decaying oscilla-
tory function that models the height of the bungee
jumper as a function of time as measured from the
instant the cord is extended to its maximum stretch.

22. If a car’s engine is operating at 2000 rpm, its pistons
are moving up and down 2000 times per minute.
Thus, in a four-cylinder engine, each piston moves
up and down 500 times per minute. Suppose that the
total vertical distance that a piston moves is 3 inches.
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538 CHAPTER 7 Modeling Periodic Behavior

c.

d.

30. Determine the values of x for which each function
in Problem 29 equals 6.

31. a. Graph the function for x be-
tween and 10 radians. Explain why you get
the pattern you do.

�10
y � arcsin 3sin1x 2 4

y � 5 � 2 cos c
3

4
1px � 1 2 d

y � 5 � 2 cos apx �
3

4
b

b. Repeat part (a) with the function 
for x between and 1.

32. Solve for 

a.
b.
c.

33. Solve for x.

a.
b. arcsin x � 0.5

arctan x � 1.35

3 tan u � 21 � 0
2 cos u � sin u
�4 sin u � 6 cos u

u.

�1sin 3arcsin1x 2 4
y �
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8

More About the
Trigonometric Functions

Relationships Among Trigonometric Functions

In many applications of trigonometry, particularly in calculus, it often is necessary
to transform one trigonometric function into another using an appropriate
trigonometric identity. Recall that an identity is a relationship that is true for all val-
ues of the variable. For instance, the Pythagorean identity

(1)

that we discussed in Section 6.4 holds for every value of x.
However, suppose that we ask whether equals 1. Figure 8.1 shows

a portion (one complete cycle) of the graph of Note that the
function is not identically equal to 1 because its graph is not a horizontal line of
height 1. Although there are several specific values of x for which 
equals 1 (such as and ), the relationship does not hold for
every value of x. So is not an identity, but simply an equation
that holds for some specific values of the variable.

sin x � cos x � 1
x � 2px � p>2x � 0,

sin x � cos x

y � sin x � cos x.
sin x � cos x

sin2x � cos2x � 1

8.1

–2

–1.5

–1

–0.5

0.5

1

1.5

2

x

y

π π2

y = sin x + cos x

y = 1

2
3π

2
π

FIGURE 8.1
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x

y

y = cos x

2
π

2
π– –x x

yy

FIGURE 8.2

Identities Involving the Sine and Cosine

Consider again the Pythagorean identity (1). We can use it to transform sines to
cosines with

so that

Similarly, we can transform cosines to sines by using

so that

Each of these equations holds for all values of the variable x, so each is an identity.

The Reflection Identities

We explore several other useful relationships among the trigonometric functions
here. Two properties of the sine and cosine functions are

(2)

(3)

for any x. These two relationships, known as the reflection identities, are easy to
see graphically. The graph of the cosine function is symmetric about the vertical y-
axis, as illustrated in Figure 8.2. That is, for any positive value of x, the height of the
cosine function is the same to the left of the y-axis (at ) as it is at the same dis-
tance to the right of the y-axis (at x). Thus

for any value of x. We discussed this same type of behavior in Section 2.7 for power
functions with even powers such as and For this reason, the
cosine function is called an even function.

g1x 2 � x4.f 1x 2 � x2

cos1�x 2 � cos x

�x

 cos 1�x 2 � cos x,

 sin 1�x 2 � �sin x

sin x � �21 � cos2x .

sin2x � 1 � cos2x

cos x � �21 � sin2x .

cos2x � 1 � sin2x

However, the sine curve is not symmetric about the y-axis. Rather, if you move
a distance of x to the left of the y-axis and consider the height to the sine curve, it is
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x

y

ππ–

y = sin x

x

y–x

–y

FIGURE 8.3

–1

0

1

x

y

π π2

y = cos2 x − sin2 x

2
3π

2
π

FIGURE 8.4

equivalent, but opposite in sign, to the height you get if you move the same dis-
tance x to the right of the y-axis, as shown in Figure 8.3. Thus

for any value of x. We encountered this type of behavior with power functions such
as when the power is odd. As a result, the sine function is called an odd
function.

g1x 2 � x3

sin1�x 2 � �sin x,

We discuss even and odd functions again in Section 8.2 when we describe con-
nections between polynomial functions and trigonometric functions.

Write a reflection identity for the tangent function. ❐

The Double-Angle Identities

We next consider some additional relationships involving the sine and cosine.
The Pythagorean identity says that which is equivalent to

What happens if we take the difference instead of the sum? Fig-
ure 8.4 shows the graph of for x between 0 and It is a sinu-
soidal curve that oscillates between and 1 and completes two full cycles
between 0 and so it has a period of and a frequency of 2. But these features
exactly describe the function Therefore it seems that

or, equivalently,

(4)cos 2x � cos2x � sin2x.

cos2x � sin2x � cos 2x,

y � cos 2x.
p2p,

�1
2p.y � cos2x � sin2x,

cos2x � sin2x � 1.
sin2x � cos2x � 1,

Think About This
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542 CHAPTER 8 More About the Trigonometric Functions

You can verify this relationship numerically by substituting any value of x into
Equation (4). Alternatively, you can verify this relationship graphically by examin-
ing the graphs of the functions and 

We can rewrite Equation (4) in several alternative, but equivalent, forms by
making use of the Pythagorean identity (1). Thus

so that

(4a)

Similarly, we can rewrite Equation (4) as

so that

(4b)

Verify the identities in Equations (4a) and (4b) visually by using your function
grapher and numerically by substituting several different values for x into the
equations.

We next consider sin 2x. Suppose that we want to express sin 2x in an equiva-
lent form that does not show the frequency 2 explicitly. Is it possible that sin 2x and
2 sin x are equivalent? Graph the two functions and you’ll see that they cannot be
the same. The first, is a sinusoidal curve with an amplitude of 1 and a
frequency of 2, so its values oscillate between and 1 and it completes two full
cycles between and The second function, is a sinu-
soidal curve with an amplitude of 2 and a frequency of 1, so its values oscillate be-
tween and 2 and it completes one full cycle between 0 and 

The actual relationship for sin 2x is

(5)

You can verify Equation (5) graphically on your function grapher. When you graph
the two functions and simultaneously, you will see only
one graph—the second traces precisely over the first.You can also verify this result nu-
merically: Pick any value for x and evaluate sin 2x and The results will be
identical for every value of x, thus supporting the fact that Equation (5) is an identity.

The identities in Equations (4), (4a), (4b), and (5) are known as the double-
angle identities for the sine and cosine.

The Sum and Difference Identities

The double-angle identities in Equations (4) and (5) actually are special cases of
more general identities known as the sum and difference identities for sine and co-
sine that are formally derived in any trigonometry text. The sum identities are

(6)

(7)

To show how the double-angle identities are derived from these formulas, we set
in Equations (6) and (7). For instance, in Equation (6),

sin1x � x 2 � sin x cos x � cos x sin x � 2 sin x cos x,

y � x

 cos1x � y 2 � cos x cos y � sin x sin y.

 sin1x � y 2 � sin x cos y � cos x sin y

2 sin x cos x.

y � 2 sin x cos xy � sin 2x

sin 2x � 2 sin x cos x.

2p.�2

y � 2 sin x,x � 2p.x � 0
�1

y � sin 2x,

cos 2x � 2 cos2x � 1.

cos 2x � cos2x � sin2x � cos2x � 11 � cos2x 2

cos 2x � 1 � 2 sin2x.

cos 2x � cos2x � sin2x � 11 � sin2x 2 � sin2x

y � cos2x � sin2x.y � cos 2x
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giving

The same process in Equation (7) produces the double-angle formula for the cosine.
Similarly, we can replace y with in the two sum identities, Equations (6)

and (7), and then use the reflection identities to derive the difference identities for
the sine and cosine:

(8)

(9)

EXAMPLE 1
Show that for all x by using the difference identity for the cosine.

Solution Using the difference identity in Equation (9), we have

�

EXAMPLE 2
Reduce sin 3x to an equivalent expression involving only sines and not including any
multiple angles.

Solution We write

Sum identity

Double angle identity

Pythagorean identity

�

EXAMPLE 3
Reduce sin 4x to an equivalent expression involving sines and cosines that has no multi-
ple angles.

Solution Following the approach in Example 2, we write

Sum identity � sin 3x cos x � cos 3x sin x.

 sin 4x � sin13x � x 2

 � 3 sin x � 4 sin3x.

 � 2 sin x � 2 sin3x � sin x � 2 sin3x

 � 2 sin x # 11 � sin2x 2 � sin x � 2 sin3x

 � 2 sin x cos2x � sin x � 2 sin3x

 � 12 sin x cos x 2cos x � 11 � 2 sin2x 2sin x

 sin 3x � sin12x � x 2 � sin 2x cos x � cos 2x sin x

 � cos x # 10 2 � sin x # 11 2 � sin x.

 cos ax �
p

2
b � cos x cos 

p

2
� sin x sin 

p

2

cos1x � p>2 2 � sin x

 � cos x cos y � sin x sin y.

 cos1x � y 2 � cos x cos 1�y 2 � sin x sin 1�y 2

 � sin x cos y � cos x sin y

 sin1x � y 2 � sin x cos 1�y 2 � cos x sin 1�y 2

�y

sin12x 2 � 2 sin x cos x.
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544 CHAPTER 8 More About the Trigonometric Functions

But, this expression involves expanding cos 3x, and we haven’t worked that out yet.
(You are asked to do so in a problem at the end of this section.) Alternatively, we could
start with

Double angle identity

Double angle identities

�

The Half-Angle Identities

Occasionally we face the reverse problem of starting with powers of the sine or
cosine—say, or ––and having to eliminate all powers by rewriting the
expression in terms of sines and cosines with multiple angles. To eliminate the
powers, we make use of two additional identities. Starting with the double-angle
identity in Equation (4a),

we have

so that

(10)

Similarly, if we start with the double-angle identity in Equation (4b),

we get

or

(11)

The identities in Equations (10) and (11) are the half-angle identities. Verify them
graphically on your function grapher. We illustrate their use in Example 4.

EXAMPLE 4
Rewrite in terms of cosines of multiple angles by eliminating all exponents.

Solution Using Equation (11), we have

 cos4x � 1cos2x 2 2 � c
1

2
11 � cos 2x 2 d

2

cos4x

cos2x �
1

2
11 � cos 2x 2 .

2 cos2x � 1 � cos 2x

cos 2x � 2 cos2x � 1,

sin2x �
1

2
11 � cos 2x 2 .

2 sin2x � 1 � cos 2x

cos 2x � 1 � 2 sin2x,

cos4xsin3x

 � 4 sin x cos3x � 4 sin3 x cos x.

 � 212 sin x cos x 2 1cos2x � sin2x 2

 � 2 sin 2x cos 2x

 sin 4x � sin12x � 2x 2 � sin 3212x 2 4
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Trigonometric Identities

Pythagorean identity: (1)

Reflection identities: (2)

(3)

Double-angle identities: (4)

(4a,b)

(5)

Sum identities: (6)

(7)

Difference identities: (8)

(9)

Half-angle identities: (10)

(11)cos2x �
1

2
11 � cos 2x 2

sin2x �
1

2
11 � cos 2x 2

cos1x � y 2 � cos x cos y � sin x sin y

sin1x � y 2 � sin x cos y � cos x sin y

cos1x � y 2 � cos x cos y � sin x sin y

sin1x � y 2 � sin x cos y � cos x sin y

sin 2x � 2 sin x cos x

 � 1 � 2 sin2x � 2 cos2x � 1

cos 2x � cos2x � sin2x

cos1�x 2 � cos x

sin1�x 2 � �sin x

sin2x � cos2x � 1

This expression involves so we apply Equation (11) again to get

�

For easy reference, we list all the fundamental trigonometric identities involv-
ing the sine and cosine functions. These identities reappear both in this course and
in later mathematics and associated courses.

 �
3

8
�

1

2
 cos 2x �

1

8
 cos 4x.

 �
1

4
a

3

2
� 2 cos 2x �

1

2
 cos 4xb

 �
1

4
a1 � 2 cos 2x �

1

2
�

1

2
 cos 4xb

 cos4x �
1

4
e 1 � 2 cos 2x �

1

2
31 � cos 212x 2 4 f

cos212x 2 ,

 �
1

4
31 � 2 cos 2x � cos212x 2 4 .

Using the Trigonometric Identities

Suppose that a projectile, such as a cannonball or a high-pressure stream of water, is
shot off with an initial velocity at an angle with the horizontal, as shown in Fig-
ure 8.5. The distance R that the cannonball or the water travels—its range—depends
on the angle For very small angles, the range is minimal because gravity pulls theu.

uv0
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546 CHAPTER 8 More About the Trigonometric Functions

object to the ground quickly. For very large angles (close to ), the object is shot
almost vertically upward and comes back to the ground fairly near the point at
which it was released. For moderately sized angles, the range is considerably larger.

90°

It is shown in physics that the range R is given by

where g is the acceleration due to gravity.

EXAMPLE 5
Use a trigonometric identity to simplify the formula for the range of a projectile and use
the result to determine the angle that leads to the maximum range for any initial velocity.

Solution The range is

Because this expression for the range reduces to

Because g and are fixed, the range is maximal when is maximal and the
largest value of the sine function is 1, which occurs when or There-
fore a projectile subject only to the force of gravity has a maximum range when the ini-
tial angle 

�

In most derivations in physics and engineering involving wave phenomena
such as electromagnetic waves (e.g., radio signals or electric currents in a circuit),
sound waves, or water waves, the height y of the wave as a function of time t is usu-
ally given in the form

where A and B are constants and k is the frequency. In Example 6, we show how this
type of expression can be simplified by using a trigonometric identity to give far more
insight into the behavior of the wave than this fairly complicated expression provides.

y � A sin kt � B cos kt,

u � 45°.

u � 45°.2u � 90°
sin 2uv0

R �
v0ˇ

2sin 2u
g

 .

sin 2u � 2 sin u cos u,

R �
2v0ˇ

2sin u cos u
g

 .

R �
2v0ˇ

2sin u cos u
g

 ,

x

y

α

FIGURE 8.5
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EXAMPLE 6
The equation of a wave is Use a trigonometric identity to explain
the behavior of this wave.

Solution The graph of this function between and is shown in Figure 8.6.
It looks like a sine wave shifted horizontally to the right by about or Also, the
amplitude of this wave seems to be about 5, compared to the amplitudes of 4 and 3 in
the two terms of the function. Finally, the period of this wave seems to be about As a
result, the equation of the wave appears to be equivalent to

where the amplitude and the phase shift D is about Let’s
see why.

p>6.C � 5y � C sin1t � D 2 ,
y � 4 sin t � 3 cos t

2p.

30°.p>6,
t � 2pt � 0

y � 4 sin t � 3 cos t.

The seemingly equivalent form for the wave suggests using the
difference formula for the sine, or

(12)

Also, the fact that the individual amplitudes in the original formula are 4 and 3 and the ap-
parent amplitude we observe for the wave is about suggests the Pythagorean theorem

Factoring 5 out of the original formula for the wave yields

Comparing this expression to Equation (12) suggests that we make the association

If

which is close to what we predicted for the phase shift, based on the graph shown in Fig-
ure 8.6. To be sure that this result is consistent with the third condition, we see that if

D � arcsin 
3

5
� 36.87°.

sin D � 3>5,

D � arccos 
4

5
� 36.87°,

cos D � 4>5,

C � 5,  cos D �
4

5
 , and sin D �

3

5
 .

y � 4 sin t � 3 cos t � 5 a
4

5
 sin t �

3

5
 cos tb .

242 � 32 � 5.

C � 5

C sin1t � D 2 � C # 1sin t cos D � cos t sin D 2 .

y � C sin1t � D 2

–5

0

5

t

y

π π2

y = 4 sin t − 3 cos t

2
3π

2
π

FIGURE 8.6
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548 CHAPTER 8 More About the Trigonometric Functions

Consequently, the wave formula

and the original wave is the same as a pure sinusoidal function centered about 
with amplitude 5, period and a phase shift of about or 0.6435 radian.

�

Identities Involving the Tangent

Just as there are trigonometric identities relating the sine and cosine, there are iden-
tities involving the tangent function. We encountered two of them in Section 6.4.
The first is the key identity relating the tangent function to the sine and the cosine:

We also derived an analog to the Pythagorean identity in Section 6.4:

provided that 
Likewise, there are double-angle, sum, and difference formulas, and so on, for

the tangent function. We investigate a double-angle identity and a sum identity in
the Problems. If you’re interested, you can find more details about them in any
trigonometry textbook.

cos x � 0.

tan2x � 1 �
1

cos2x
 ,

tan x �
sin x
cos x

 .

36.87°,2p � 360°,
y � 0

 � 5 sin1t � 36.87° 2
 y � 4 sin t � 3 cos t � 51cos D sin t � sin D cos t 2

Problems

1. Using ideas on amplitude and frequency, explain
why cos 3x cannot be identically equal to 3 cos x.

2. Using ideas on amplitude, explain why 
is reasonable. (Recognize that such an

argument is not a proof.)

Examine each equation in Problems 3–14 graphically to
see if the relationship may be an identity. If it is not an
identity, attempt to locate graphically or numerically at
least one point that lies on both curves. If it seems to be
an identity, prove it algebraically.

3.

4.

5.

6.

7.

8.

9.
1 � cos a

sin a
�

sin a

1 � cos a

cos2u

1 � sin u
� 1 � sin u

sin 3x � 3 sin x

11 � cos u 2 11 � cos u 2 � sin2u

sin 2x

sin x
� 2 cos x

cos 3x � cos3x � sin3x

sin3x � cos3x � 1

2 cos2x � 1
cos 2x �

10.

11.

12.

13.

14.

15. Express cos 3x in terms of powers of sin x and cos x,
but with no multiple angles.

16. Express cos 4x in terms of powers of sin x and cos x,
but with no multiple angles.

17. Express cos 5x in terms of powers of sin x and cos x,
but with no multiple angles.

18. Examine the results of Problems 15–17 and the for-
mula for cos 2x. Are there any patterns in the terms?
If so, what are they?

19. By setting in the sum identity in Equation
(7), show that you get the double-angle identity in
Equation (4).

20. Rewrite in terms of multiple angles by elimi-
nating all exponents.

sin4x

y � x

sin1cos x 2 � sin x cos x

sin1cos x 2 � cos1sin x 2
cos22x � 311 � sin 2x 2
sin23x � cos 6x � cos23x

cos 3b � 3 cos3b � 1
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21. Rewrite in terms of multiple angles by
eliminating all exponents.

22. a. Sketch the graph of What familiar
function do you get from this phase shift?

b. Use the sum identity for the sine function to show
that actually equals that function.

23. a. Repeat Problem 22 for 
b. Repeat Problem 22 for 

24. In the half-angle identities in Equations (10) and
(11), let so that Rewrite each iden-
tity in terms of y to see why they are called half-
angle identities.

25. William Tell is about to shoot the most important
arrow of his life. His son is standing 250 feet away.
Tell releases the arrow at a height of 5 feet above the
ground with an initial speed of 180 feet per second.
The height of the center of the apple on his son’s
head is also 5 feet above the ground. Find alge-
braically two different angles at which Tell should
release the arrow in order to have it pass through
the apple without hitting the boy.

a

x � 1
2 y.y � 2x,

cos1x � p>2 2 .
sin1x � p 2 .

sin1x � p>2 2

sin1x � p>2 2 .

sin2x cos2x

26. Suppose that William Tell’s son is actually a foot
shorter than in Problem 26 so that the center of the
apple is now 4 feet above the ground and that the
arrow comes off the bow string at a height of 5 feet.
Estimate, graphically, two different angles at
which Tell should release the arrow in order for it to
pass through the apple without hitting the boy.

27. In Example 6, we converted the wave 
to the equivalent pure sinusoidal expression

a. Convert this formula to a pure cosine curve by
an appropriate horizontal shift.

b. Repeat the derivation in Example 6 by using the
sum or difference identity for cosines to derive
the equivalent formula as a cosine wave.

c. How does the result in part (b) compare to the
result in part (a)?

28. A baseball player hits a ball with an initial velocity
of 120 feet per second at a height of 5 feet above the
ground. The ball is caught 320 feet from home plate
by an outfielder whose glove is also 5 feet above the

y � 5 sin1t � 36.87° 2 .
3 cos t

y � 4 sin t �

a

ground. Use the formula for the range of a projec-
tile to determine the angle of inclination of the ball
as it comes off the bat.

29. The accompanying figure shows the graph of the
function from to The
curve suggests that the function is equivalent to
some sinusoidal function.

2p.x � 0y � sin4x � cos4x

a. By examining the graph carefully on your func-
tion grapher, estimate values for each parameter
to find a sinusoidal function that seems to have
the matching behavior pattern. (Hint: The pa-
rameters should be simple fractions or whole
numbers.)

b. Superimpose the graph of your function over
the graph of to verify that
they do appear to be the same.

c. Use the half-angle identities for sine and cosine
repeatedly to prove that does
reduce to the expression you conjectured.

30. Repeat Problem 29 with the function 

31. Refer to the functions shown in Problem 1 of Sec-
tion 7.2 and decide which are odd, even, or neither.

32. a. Use some ideas from Section 5.5 on the sum of
the terms in an exponential sequence to explain
why you can calculate the value of

as  
1

1 � sin x
 .

1 � sin x � sin2x � sin3x � sin4x �  . . . 

sin6x � cos6x.
y �

y � sin4x � cos4x

y � sin4x � cos4x

5 ft

250 ft

5 ft

320 ft

0

0.5

1

x

y

π π2

y = sin4 x + cos4 x

2
3π

2
π
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550 CHAPTER 8 More About the Trigonometric Functions

Are there any values of x for which this approach
does not work?

b. What formula would you get for the sum of
the terms

for any given positive integer n?

33. Use the result of Problem 32(b) with different val-
ues of n to calculate the value of

for correct to three decimal places. Now
suppose that you want to do so for in-
stead. Will you need approximately the same num-
ber of terms, more terms, or fewer terms to get the
same three decimal place accuracy? Explain.

34. a. Verify graphically that

for all for which the denominators are nonzero.
b. Show algebraically that the expression in part (a)

is an identity. (Hint: Transform to equiva-
lent expressions in and )

35. Use appropriate trigonometric identities to show that

36. Use the identity in Problem 35 to derive a double-
angle formula for the tangent function.

37. a. Derive the double-angle identity

tan 2x �
2 tan x

1 � tan2x

1

tan x
� tan x �

2

tan 2x
 .

cos u.sin u
tan u

u

tan u �
1

tan u
�

1

sin u cos u
,

x � p>3
x � p>6
1 � sin x � sin2x � sin3x � sin4 x �  . . . ,

1 � sin x � sin2x �  . . . �sinnx

by using the double-angle identities for sine and
cosine. (Hint: Divide both the numerator and
the denominator by 

b. Derive the addition identity for the tangent,

by using the addition formulas for sine and co-
sine. (Hint: Divide both the numerator and the
denominator by cos x cos y.)

Examine each equation in Problems 38–46 graphically
to see whether the relationship may be an identity. If it
is not an identity, attempt to locate graphically or nu-
merically at least one point that lies on both curves. If it
seems to be an identity, prove it algebraically.

38.

39.

40.

41.

42. (Hint: Let )

43.
44.
45.

46.

47. What is wrong with the following “proof”?

cos1tan x 2 � cos a
sin x
cos x

b � sin x.

cos1tan x 2 � tan1cos x 2

tan1sin x 2 � tan x sin x
1 � cos 2x � tan x sin 2x
tan2x � 1 � 2 tan x

a

2
� u.tan 

a

2
�

1 � cos a

sin a

1 � tan2x �
1

cos2x

tan2x � sin2x � 1tan x sin x 2 2
tan 2u � 2 tan u

1 �
1

tan2u
�

1

sin2u

tan1x � y 2 �
tan x � tan y

1 � tan x tan y

cos2x. 2

Approximating Sine and Cosine 
with Polynomials

Have you ever wondered what happens when you press either the SIN or COS key
on your calculator and the value for the function appears? How does the calculator
actually find the values of these functions?

Approximating the Sine Function

In this section, we consider one approach that has been used to compute function
values. We begin by examining the graph of the sine function, with x measured in
radians, as shown in Figure 8.7(a). We zoom in on the portion of the curve close to
the origin, as marked by the box; the corresponding curve is shown in Figure 8.7(b).
If we zoom in still further about the origin, as marked by the box in Figure 8.7(b),
we get the portion of the sine curve shown in Figure 8.7(c). This final graph looks

8.2
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8.2 Approximating Sine and Cosine with Polynomials 551

like a straight line rather than a portion of a curve. (In fact, if you zoom in suffi-
ciently on any smooth curve, it will eventually look like a straight line.)

Linear Approximation to the Sine When x is very close to the origin, the sine
curve looks like a line. Let’s find the equation of this “line.” Because it passes
through the origin, the vertical intercept must be 0. To find the slope, we need a
second point. If we trace along the sine curve very close to the origin, we find that

and is a point on the sine curve. The
slope of the line through this point and the origin is

Therefore the equation of a line that very closely hugs the sine curve near the origin
is We show the graph of this line, along with the sine curve, in Figure 8.8.y � x.

m �
0.0009999998 � 0

0.001 � 0
� 0.9999998 � 1.

y � sin 0.001 � 0.0009999998x � 0.001

Observe that, when x is very close to 0, the graphs of and
are very close to one another. In fact, when x is very close to 0, the two

graphs are virtually indistinguishable. That is,
g1x 2 � x

f 1x 2 � sin x

Of course, as the value of x gets farther from 0, the sine curve eventually bends
away from the line y � x.

x

y

ππ–

y = sin x

(a)

x

y
y = sin x

(b)

1–1
x

y
y = sin x

(c)

0.25–0.25

FIGURE 8.7

–3 –1 1 3

–1

1

x

y

f (x) = sin x

g(x) = x

FIGURE 8.8

sin x � x,  if x is very close to 0
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552 CHAPTER 8 More About the Trigonometric Functions

To show this result numerically, we look at some values of x to see how close
the values along the line match the values of the sine function.

From the table at the left, we see that, when x is extremely close to 0, the value
of sin x is almost identical to x itself, but the farther that x is from the origin, the
less accurate the approximation. Thus, whenever x is very close to 0, we can re-
place sin x with x for the purposes of approximating the value of sin x. For in-
stance, to approximate we could say that

Using a calculator gives so the approximation is ac-
curate to five decimal places.

We can approximate the sine function with a linear function in a different way
by using methods of linear regression. We use a set of points that lie on the sine
curve very close to the origin. They are shown rounded to 6 decimal
places in Table 8.1. The line that best fits these “data” is with a
correlation coefficient which tells us that a line with slope of
about 1 is virtually perfect. Thus we again see that when x is very close to 0,

However, if we move too far away from the accuracy of the ap-
proximation breaks down. For instance, we would not want to approximate

with the value because the value 
is too far from for the approximation to be good.x � 0

x � 0.75sin10.75 2 � 0.6816;x � 0.75sin10.75 2

x � 0,sin x � x.

r � 1.000000000,
y � 0.9999258x

y � sin x

sin10.00243 2 � 0.0024299976,

sin10.00243 2 � 0.00243.

sin10.00243 2 ,

This idea of approximating a function such as with a simpler func-
tion (often a linear function) is an essential principle in mathematics. We use this
principle to approximate the values of trigonometric functions because it is impos-
sible to calculate them directly with algebraic methods.

Improving on the Linear Approximation to the Sine

Unfortunately, as we have noted, the linear approximation to the sine curve is only
accurate if x is very close to the origin. As we take values of x farther and farther
from the origin, the sine curve bends ever more sharply and eventually bends away
from the line. Let’s see how we can improve on the linear approximation 
when x is somewhat farther from 0. To do so, we need a simple curve (at least one
that is simpler to work with than the sine function) that bends in a similar manner.
For computational purposes, the simplest curves are usually polynomials.

In Figure 8.7, we zoomed in on the sine curve very close to the origin so that
the curve looked like a line. Now we zoom out a bit to see what happens for values
of x from to 3, as previously shown in Figure 8.8. Although the line is indistin-
guishable from the sine curve near the origin (roughly from to ),
the sine curve bends away from the line as the first pair of turning points in the sine
curve come into view. In fact, the overall shape of this portion of the sine curve is
quite suggestive of a cubic polynomial with a negative leading coefficient. (Recog-
nize that, if you zoom out a bit farther, more turning points appear and the cubic-

x � 0.6x � �0.6
�3

sin x � x

y � sin x

x sin x x sin x

0 0

0.1 0.100 �0.1 �0.100

0.2 0.199 �0.2 �0.199

0.3 0.296 �0.3 �0.296

0.4 0.389 �0.4 �0.389

0.5 0.479 �0.5 �0.479

0.6 0.565 �0.6 �0.565

0.7 0.644 �0.7 �0.644 

TABLE 8.1

x 0 0.005 0.01 0.015 0.02 0.025

0 0.005 0.01 0.014999 0.019999 0.024997�0.005�0.01�0.014999�0.019999�0.024997y � sin x

�0.005�0.01�0.015�0.02�0.025
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like appearance disappears.) This result suggests that we try to approximate this
portion of the sine curve with a cubic curve. We use the data in Table 8.1 that we
used for the linear fit, but now fit a cubic polynomial instead. We then get the cubic

Note that (1) the constant term is 0, which assures us that the cubic passes through
the origin; (2) the coefficient of the linear term is essentially 1; (3) the coefficient of
the quadratic term is 0; (4) the leading coefficient is negative, which is what we ex-
pected; and (5) the value of the leading coefficient, is quite close to

Thus a cubic polynomial that approximates the sine func-
tion is

or, equivalently,

when x is fairly close to 0.
Figure 8.9 shows both the sine curve and the cubic polynomial for x from 

to 3.5. The two curves are indistinguishable from about to 
which extends over a considerably larger interval than the linear approximation,
which is accurate only from about to x � 0.6.x � �0.6

x � 1.2,x � �1.2
�3.5

sin x � x �
x3

6

T31x 2 � � 

x3

6
� x,

�1>6 � �0.16666667.
�0.1666601,

y � �0.1666601x3 � 0x2 � 0.999999999x � 0.

To illustrate the accuracy of the approximation for sin x using the cubic poly-
nomial for values of x near 0, we try say, and find that

which agrees with the true value of to six decimal places.
If we move farther from 0 and try we find that

sin10.7 2 � 10.7 2 �
10.7 2 3

6
� 0.643,

x � 0.7,
sin10.125 2 � 0.1246747

sin10.125 2 � 10.125 2 �
10.125 2 3

6
� 0.1246744,

x � 0.125,

–3.5 –1.5 –0.5 0.5 1.5 3.5

–1

1

x

y

y = sin x

x – y = x3

6

FIGURE 8.9
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x

y
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FIGURE 8.10

compared to the actual value of which is correct to the nearest
hundredth, so the approximation is still fairly accurate. However, the graphs in Fig-
ure 8.9 show that the two curves eventually diverge. Thus if we take x too far from
0, the accuracy of the approximation diminishes. Moreover, the farther from 
we go, the worse the approximation is. For instance, if

compared to the correct value of If radians,

compared to the correct value of If radians,

compared to the correct value of If radians,

compared to the correct value In fact, this last approximation is so bad
that it gives us a value, outside the range of the sine function.

What if we wanted to improve on the approximation still further so that we
could use it to estimate values for sin x when x is still farther from the origin? Con-
sider the graph of the sine curve from to shown in Figure 8.10. It
has four turning points and three inflection points, which suggests that the sine
curve looks like a polynomial of degree 5. Although graphing calculators don’t fit a
fifth degree polynomial to a set of data, that task can be accomplished by many
software packages. Using a spreadsheet, we find that the fifth degree polynomial
that fits the data in Table 8.1 is

or essentially

T51x 2 � 0.0083x5 �
x3

6
� x.

T51x 2 � 0.0083x5 � 0x4 � 0.1667x3 � 0x2 � 0.999999999x � 0,

x � 6x � �6

�2.02612,
sin p � 0.

sin p � p �
p3

6
� �2.02612,

x � psin 2 � 0.90930.

sin 2 � 2 �
23

6
� 0.66667,

x � 2sin11.5 2 � 0.99749.

sin11.5 2 � 11.5 2 �
11.5 2 3

6
� 0.93750,

x � 1.5sin 1 � 0.84147.

sin 1 � 1 �
13

6
� 0.83333,

x � 1 radian � 57°,
x � 0

sin10.7 2 � 0.644,
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FIGURE 8.11

Note that this polynomial has a positive leading coefficient, so it increases toward
the right, as we want. It also has a 0 constant coefficient, so it passes through the
origin. Note also that the only change from the cubic polynomial to this fifth de-
gree polynomial is the fifth degree term—all other terms remained the same.

Because we can write this polynomial as

A simple and interesting pattern is developing here with the coefficients:
and (See Appendix A2 for a

discussion of factorial notation.) So we can rewrite the approximation formula for
the sine function as

Figure 8.11 shows the graphs of the sine function and the fifth degree polynomial for
x between and 4. The two curves are indistinguishable for x between roughly 
and 2, so we have achieved a considerable improvement over the cubic approxima-
tion, which was a good match for x between roughly and 1.2.�1.2

�2�4

sin x � x �
x3

3!
�

x5

5!
 .

120 � 5 � 4 � 3 � 2 � 1 � 5!.3 � 2 � 1 � 3!
6 �

T51x 2 �
x5

120
�

x3

6
� x or T51x 2 � x �

x3

6
�

x5

120
 .

0.0083 � 1>120,

To verify the accuracy of this approximation, let’s see how much improvement
we get compared to the previous values. The results are shown in the following table.

x sin x

0.7 0.64422 0.643 0.64423

1 0.84147 0.83333 0.84167

1.5 0.99749 0.93750 1.00078

2 0.90930 0.66667 0.93333

0 0.52404�2.02612p

T51x 2T31x 2

gord.3896.08.pgs  4/24/03  10:11 AM  Page 555



556 CHAPTER 8 More About the Trigonometric Functions

x

y

2
πx0 x

y = sin x

sin x = sin x0FIGURE 8.12

The fifth degree approximation is better still because we get more accurate esti-
mates for the values of sin x over larger intervals of x-values centered at 0.

We can continue this process, using higher degree polynomials, and get even
better approximations. However, before doing so, let’s examine the sequence of
polynomial approximations we have so far. They are

First, each successive polynomial involves just one additional term, compared to
the preceding polynomial. Second, each polynomial involves only odd powers—
and we know that the sine function is an odd function. This means that both the
sine function and the approximating polynomials are symmetric about the origin.
Third, the signs of successive coefficients alternate. Fourth, there is a definite pat-
tern involving factorials in the coefficients. These polynomials are known as Taylor
polynomial approximations after English mathematician Brook Taylor, who in-
vestigated them in the early 1700s.

Predict the next higher degree polynomial approximation to sin x. How accurate
is this approximation for the values 1, 1.5, 2, and ❐

Improving the Approximation Using the Behavior of sin x We could continue
this process and construct Taylor polynomial approximations of higher and higher
degree. However, that isn’t necessary if we cleverly use some of the basic behavioral
properties of the sine function. First, recall the reflection identity

It allows us to approximate sin x when x is negative simply by using the correspon-
ding positive value for x and reversing the sign of the estimate.

Second, we know that the sine function is periodic with period Therefore, if
x is any number greater than the value of sin x is the same as the value
of where is the corresponding number between 0 and radians. Conse-
quently, we need only obtain an approximation that is accurate as far out as We
can handle anything beyond that by reducing the value of x to an appropriate value

between 0 and by “removing” all multiples of as illustrated in Figure 8.12.2p,2px0

2p.
2px0sin x0 ,

2p � 6.28,
2p.

sin1�x 2 � �sin x.

p?x � 0.7,
Think About This

 sin x � x �
x3

3!
�

x5

5!
 .

 sin x � x �
x3

3!
 ,

 sin x � x,
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xπx − 

FIGURE 8.13

Now visualize the portion of the sine curve between and as
shown in Figure 8.13. It has the same shape as the portion from to 
only “flipped” across the x-axis. Thus, if we have a value of x between and 
(where sin x is negative), there is a point between 0 and namely at where
the sine function has the same value, but with a positive sign. That is,

So, all we need is an approximation that is sufficiently accurate for x between 0 and p.

sin x � �sin1x � p 2 .

x � p,p,
2pp

x � p,x � 0
x � 2p,x � p

Use an appropriate trigonometric identity to show that ❐

Now visualize the sine curve from to The two halves are sym-
metric, as shown in Figure 8.14. Therefore, for any point x between and 
the value of sin x is the same as that at a corresponding point between 0 and 
So, all we need is an approximation to sin x that is sufficiently accurate for x be-
tween 0 and The previous fifth degree polynomial gives two-decimal
accuracy for any value of x in this interval. If we want more than two-decimal ac-
curacy, we have to use a higher degree polynomial—say, the seventh degree Tay-
lor polynomial that we asked you to produce in a previous Think About This
exercise.

T51x 2p>2.

p>2.
p,p>2

x � p.x � 0

sin x � �sin 1x � p 2 .Think About This

0

1

x

y

xπ π − x
2
π

y = sin x

2
πx − 

2
πx − 

FIGURE 8.14
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FIGURE 8.15

TABLE 8.2

x 0 0.02 0.04 0.06 0.08
0.9968 0.9982 0.9992 0.9998 1 0.9998 0.9992 0.9982 0.9968y � cos x

�0.02�0.04�0.06�0.08

Try the seventh degree polynomial

for various values of x in the interval from 0 to Does it provide four-decimal
accuracy? Is that adequate? If not, what would you do? ❐

Approximating the Cosine Function

We now consider the comparable problem of approximating the cosine function by
using a polynomial. If you zoom in on the cosine curve very close to it ap-
pears indistinguishable from a horizontal line. In fact, because that line
must be So, for x very close to 0,

However, once you move away from the cosine curve bends away from the
line 

Let’s now look at the cosine curve in a somewhat wider interval about —
say, from to as shown in Figure 8.15. Its overall shape suggests a
parabola opening downward. Therefore we try to approximate the cosine function
with a quadratic function so long as x remains fairly close to 0.

x � 2,x � �2
x � 0

y � 1.
x � 0,

cos x � 1.

y � 1.
cos 0 � 1,

x � 0,

p>2.

sin x � x �
x3

3!
�

x5

5!
�

x7

7!

Think About This

Approximating Using Data Analysis There are several ways to find
an equation for such a quadratic. One way is to fit a quadratic function to some set
of values for cos x when x is relatively close to 0. Consider the values in Table 8.2.

y � cos x

Using a calculator, we find that the quadratic function that fits these data is

The constant term is essentially 1 and the leading coefficient is approximately
Hence we have the following approximation to the cosine function near

x � 0.
�0.5.

y � �0.49973x2 � 0x � 0.99999.
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cos x � 1 �
x2

2
 

0

–1

1

y

x

y = cos x

–2 2

y = 1 – 
2
x2

FIGURE 8.16

Figure 8.16 shows the graphs of the cosine function and this quadratic Taylor
approximating polynomial for x between and 2. The two are virtually indistin-
guishable for x between about and 0.8. For instance,
compared to the value of the approximating quadratic,

so we have two decimal place accuracy.

cos10.5 2 � 1 �
10.5 2 2

2
� 0.875,

cos10.5 2 � 0.87758�0.8
�2

0

–1

1

y

x

y = cos x

–5 5

FIGURE 8.17

If we zoom out somewhat farther on the graph of the cosine curve—say, for x
between and 5, as shown in Figure 8.17—the cosine function no longer sug-
gests a quadratic function. This portion of the cosine curve has four real roots,
three turning points, and two inflection points, which suggest a polynomial of de-
gree 4. Using a calculator, we find a quartic function that fits the data values in
Table 8.2 is

y � 0.041653x4 � 0x3 � 0.499999x2 � 0x � 0.999999.

�5
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FIGURE 8.18

Note that the coefficients of both odd-powered terms are 0, the constant coeffi-
cient is essentially 1, and the quadratic coefficient is essentially As for the lead-
ing coefficient, 0.041653,

so the leading coefficient is essentially Therefore we have the fourth
degree Taylor polynomial approximation

Figure 8.18 shows the graph of this polynomial and
the cosine function for x between and 5. Observe that tries hard to cap-
ture the pattern in the cosine curve. In fact, the polynomial is an excellent match
to the cosine for x between roughly and 1.5. For instance, if then

compared to similarly,
compared to If we choose a value of x too far from 0, the approx-
imation breaks down. Thus compared to cos11.5 2 � 0.07074.T411.5 2 � 0.08594,

cos11 2 � 0.54030.
T411 2 � 0.541666,cos10.5 2 � 0.87758;T410.5 2 � 0.87760,

x � 0.5,�1.5

T41x 2�5
T41x 2 � 1 � x2>2 � x4>4!

cos x � 1 �
x2

2
�

x4

4!
 .

1>24 � 1>4!.

1

0.041653
� 24.00787,

�1
2 .

If we zoom out still farther on the cosine curve—say, from to 
two more turning points come into view, which suggests that we could get a better
approximation to the cosine with a sixth degree polynomial. Using the values in
Table 8.2 and a spreadsheet, we find, after rounding the coefficients, that

Summarizing these results, the successive Taylor polynomial approximations
to the cosine function are:

 cos x � 1 �
x2

2
�

x4

4!
�

x6

6!
 .

 cos x � 1 �
x2

2
�

x4

4!

 cos x � 1 �
x2

2
,

cos x � T61x 2 � 1 �
x2

2
�

x4

4!
�

x6

6!
 .

x � 8—x � �8
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FIGURE 8.19

As with the sine approximations, (1) each successive polynomial involves just one
additional term; (2) each polynomial involves only even powers, and we know that
the cosine function is an even function; (3) the signs of successive coefficients al-
ternate; and (4) there is a clear pattern in the coefficients involving factorials.

The graphs of these polynomials, as well as that of the cosine curve, are shown
in Figure 8.19. Note that each successive polynomial fits the cosine curve more ac-
curately over a larger and larger interval centered at You should examine
these successive approximations using your function grapher.

x � 0.

How could you improve on the sixth degree polynomial approximation to the co-
sine? By eye, over what interval does it appear to be a good fit to the cosine curve? ❐

Devise a scheme to reduce any value of x to an equivalent value that allows you to
use the smallest possible interval of x-values. How accurate is the fourth degree
Taylor polynomial on this interval (i.e., what is the largest error between the cosine
and the polynomial)? How accurate is the sixth degree polynomial? ❐

Approximating sin x and cos x Using Trigonometric Identities

We now approach the problem of approximating the sine and cosine from a different
viewpoint using several trigonometric identities. Recall the double-angle identity

from Equation (4a) of Section 8.1. If we let so that the expression
for becomes

When is close to 0, we have so that

Consequently we can approximate cos x by

cos x � 1 � 2 a
x

2
b

2

� 1 �
x2

2

sin a
x

2
b �

x

2
 .

sin u � u,u

cos x � 1 � 2 sin2 a
x

2
b � 1 � 2 c sin a

x

2
b d

2

.

cos 2u � cos x
x>2 � u,x � 2u

cos 2u � 1 � 2 sin2u

Think About This

Think About This
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FIGURE 8.20

when x is close to 0. Note that this approximation is identical to the quadratic Tay-
lor polynomial that we obtained previously by using data analysis techniques.

We now use the double-angle formula for the sine,

with so that which gives

(13)

We use the linear approximation for and the quadratic approximation
to get

Substituting these expressions into Equation (13), we obtain an approximation for
sin x that improves on 

This is a cubic function that approximates the sine function near but it is
slightly different from the third degree Taylor approximation, We
compare these two cubic approximations in the Problems at the end of this section.

Figure 8.20 shows the graph of this cubic along with the sine function on the
interval from to 3. The two curves seem almost identical for x between and
1; they are reasonably close between and and again between 1 and 2.5; but
they apparently begin to diverge farther from 0. Note how much better this cubic
function seems to approximate sin x than our linear approximation sin x � x.

�1�2.5
�1�3

sin x � x � x3>6.
x � 0,

 � x �
x3

8
 .

 sin x � 2 a
x

2
b a1 �

x2

8
b � x a1 �

x2

8
b

sin x � x:

sin a
x

2
b �

x

2
 and cos a

x

2
b � 1 �

1x>2 2 2

2
� 1 �

x2

8
.

cos x � 1 � x2>2
sin x � x

sin x � 2 sin a
x

2
b  cos a

x

2
 b .

x>2 � u,x � 2u

sin 2u � 2 sin u cos u

Check numerically on your calculator how close the cubic is to the sine function at
at and at ❐

We can continue this process to produce still better approximations to both
the cosine and the sine functions by using the same trigonometric identities.

x � 1.5.x � 1,x � 0.5,
Think About This
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For instance, using the double-angle formula and our new
approximation

we get

After some algebraic simplification, we eventually get

The two graphs in Figure 8.21 illustrate that this sixth degree polynomial is
an almost perfect match to the cosine function from about to about

It is quite accurate from about to about and from
about to about thereafter its accuracy diminishes. For comparison,
Figure 8.22 shows three graphs: the basic cosine curve, the initial quadratic ap-
proximation and this sixth degree polynomial approximation

The higher degree polynomial is clearly a much better fit. It follows the
bends of the cosine curve and stays close to it over a wider interval of x-values.
P61x 2 .

P21x 2 � 1 � x2>2,

x � 2;x � 1.5
x � �1.5x � �2x � 1.5.
x � �1.5

P61x 2

cos x � 1 �
x2

2
�

x4

32
�

x6

2048
 .

 � 1 � 2 c 1x>2 2 �
1x>2 2 3

8
d

2

.

 cos x � 1 � 2 sin2 a
x

2
b � 1 � 2 c sin a

x

2
b d

2

sin x � x �
x3

8
 ,

cos 2u � 1 � 2 sin2u
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y = P6(x)FIGURE 8.21
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FIGURE 8.22
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Approximating sin x and cos x Using Taylor Polynomials

We could continue this process to get better polynomial approximations to both sin
x and cos x by using the trigonometric identities to construct polynomials of still
higher degree. Unfortunately, each successive improvement is based on a series of ap-
proximations—we used to generate the approximation

and so on. The approximation errors in this process mount up and give less than the
best possible approximation at each successive stage. For instance, we first found

and then used it to find

Actually, as you will learn in calculus, the best possible cubic curve to approxi-
mate the sine curve near is the Taylor polynomial of degree 3.

It is identical to the cubic polynomial we obtained earlier based on fitting a
cubic function to a set of values of the sine function near 0. Figure 8.23 shows
the graph of this cubic and the underlying sine curve. Figure 8.24 shows the sine
curve and the two different cubic approximations: the Taylor approximation of
degree three, and the polynomial of degree three based on
the trig identities, Note that remains closer to the sine
curve over a wider interval than does. Note also that bends in such a
way that it remains very close to the sine curve over a relatively large portion of
its first arch.

T31x 2Q31x 2
T31x 2Q31x 2 � x � x3>8.

T31x 2 � x � x3>6,

sin x � x �
x3

6
� T31x 2 .

x � 0

sin x � x �
x3

8
� Q31x 2 .

sin x � x � T11x 2

cos x � 1 �
x2

2
 ,

sin x � x
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FIGURE 8.24

Use your function grapher to view what happens in a more dynamic way. In
particular, examine the three curves near to see that actually is closer to
the sine curve than is.

As a final note, let’s look at the ideas we have developed in this section from a
somewhat different perspective. Until now, we have interpreted Taylor polynomials
as a means of approximating one function by a polynomial. An alternative inter-
pretation is that we have been constructing a function (or a portion of a function)
from simpler functions. That is, we have been constructing the trigonometric
functions by using polynomials as the fundamental building blocks. More specifi-
cally, we have used linear combinations of power terms (i.e., sums of constant mul-
tiples of power terms) as these fundamental building blocks. This idea of using
linear combinations of basic mathematical elements to construct more complicat-
ed mathematical structures is a continuing theme throughout mathematics.

Q3

T3x � 0

Problems

1. Use the Taylor polynomial approximation to
of degree 2 to estimate the value of the

cosine function for 0.1, 0.2, 0.3, 0.4, 0.5, and
0.6. Compare each estimate to the correct value.

2. Use the values you calculated in Problem 1 to con-
struct a table that has a column containing the error
in the approximation (the difference between the
estimate and the correct value). Analyze the column
of errors. Do they appear to grow approximately
linearly? exponentially? quadratically? cubically?

3. Use the Taylor polynomial approximation to
of degree 3 to construct a table of esti-

mates for the values of the sine function when 
0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Calculate the errors and
analyze them the same way you did in Problem 2.

4. a. Construct a table containing Taylor polynomial
approximations of degrees and to

for 
p>6, p>4, p>3.

�p>6, 0,�p>4,x � �p>3,f 1x 2 � sin x
n � 3n � 1

x � 0,
f 1x 2 � sin x

x � 0,
f 1x 2 � cos x

b. Add 2 columns to the table, one for 
and another for to compare
the linear and cubic approximations to the cor-
rect value for each x.

c. Use your function grapher to graph 
What type of function does it appear

to be?
d. Use polynomial regression to find an appropri-

ate polynomial to fit the data values of
versus x.

e. Repeat part (c) with 

5. Construct a table of values of sin x for 
Use your calculator

to find the cubic polynomial that fits this set of sine
values. How close does it come to the cubic Taylor
polynomial approximation 

6. Use the Taylor polynomial approximation of de-
gree to to find a polynomial
approximation of degree to 
Is the result surprising? Explain.

g1x 2 � sin1�x 2 .n � 5
f 1x 2 � sin xn � 5

sin x � x � x3>6?

4p>25.�2p>25, . . . ,�3p>25,
�4p>25,x �

y � sin x � 1x � x3>6 2 .

sin x � x

sin x � x.
y �

sin x � 1x � x3>6 2 ,
sin x � x
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7. Use the Taylor polynomial approximation of degree
to to find a polynomial approx-

imation of degree to Graph
both and your approximation to it on the in-
terval from to Based on this graph, over
what interval does your polynomial seem to be a
good approximation to 

8. a. Use the Taylor polynomial approximation of de-
gree to to find a polynomial
approximation of degree to 

b. What do you get if you multiply the polynomial
approximation of degree to 
by the polynomial approximation of degree

to 
c. Graph and twice the product of the two ap-

proximations found in part (b). What do you
observe? Explain why.

9. Write the Taylor polynomial approximation of degree
3 to and the approximation of degree 4
to Square each expression and add
them. What do you get? What do you think will hap-
pen if you use higher degree approximations? Explain.

10. In the text, we used the double-angle identity
with to construct

the approximation

Instead, use the alternative form of the identity
and any lower degree poly-

nomials to find a different approximation to cos x.

11. Repeat Problem 10 with the third form of the double-
angle identity to construct still
another approximation formula for cos x.

12. The function is not defined at

a. Use values of 0.01, 0.001, 0.0001,
to investigate the behavior of this0.00001, . . . 

x � 0.1,

x � 0.
f 1x 2 � 1sin x 2 >x

cos 2u � 2 cos2u � 1

cos 2u � cos2u � sin2u

cos x � 1 �
x2

2
�

x4

32
�

x6

2048
 .

u � x>2cos 2u � 1 � 2 sin2u

g1x 2 � cos x.
f 1x 2 � sin x

h1x 2
g1x 2 � cos x?n � 4

f 1x 2 � sin xn � 3

h1x 2 � sin 2x.n � 5
f 1x 2 � sin xn � 5

g1x 2?

p.�p
g1x 2

g1x 2 � sin1x2 2 .n � 10
f 1x 2 � sin xn � 5

function close to What limiting value
does this function appear to approach?

b. Use the linear Taylor polynomial approximation
to sin x to explain why the limiting value you
found in part (a) appears to make sense.

13. In calculus, you will have to determine the value of

where is a very small quantity.

a. Estimate the value of this quotient by using lin-
ear approximations to both sine expressions.

b. Estimate the value of this quotient by using a cubic
approximation to both sin x and 

c. With the cubic approximation, suppose that 
is actually 0. What does the resulting expression
suggest?

14. The exponential function with base
is used extensively in mathemat-

ics and the sciences. As with the trig functions, its
values are calculated using Taylor polynomial 
approximations:

and so on. Use these and any further approxima-
tions that you need to approximate the values of

a.
b.
c. Use the given polynomials and any additional ap-

proximations to that you need to estimate the
value of e reasonably accurately. What degree
polynomial will produce two-decimal accuracy?
three-decimal accuracy? four-decimal accuracy?

ex

e�0.1
e0.1

 ex � 1 � x �
x2

2!
�

x3

3!
 ,

 ex � 1 � x �
x2

2!
 ,

 ex � 1 � x,

e � 2.71828 . . . 
f 1x 2 � ex

�x
sin1x � �x 2 .

�x

sin1x � �x 2 � sin x

�x
 ,

x � 0.

Properties of Complex Numbers

One of the most amazing developments in the history of mathematics was the in-
troduction of complex numbers to solve quadratic equations. For example, if

then so that and the two roots are
and where Similarly, from the quadratic formula, the

roots of are

x �
�1�2 2 � 21�2 2 2 � 4110 2

2
�

2 � 2�36

2
�

2 � 16i 2
2

� 1 � 3i,

x2 � 2x � 10 � 0
i �  1�1.x � �2i,x � 2i

x � �1�4 � �2i,x2 � �4,x2 � 4 � 0,

8.3
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or and 
In our exploration of the nature of the roots of polynomials in Section 4.4, we

demonstrated that quadratic, cubic, and higher degree polynomials have a surpris-
ingly high proportion of complex zeros. We now develop a way to visualize com-
plex numbers that gives a deeper understanding of the processes that lead to such
polynomial equations.

Any complex number is composed of two parts, a real part, a, and
an imaginary part, b. For instance, in the real part is 4 and the imagi-
nary part is 7. We occasionally write and respectively. Note
that a and b are both real numbers; it is the combination that is a complex
number. In the special case when the complex number reduces
to a real number. In another special case where the complex number z reduces
to a pure imaginary number, bi.

The arithmetic of complex numbers, for the most part, is quite straightfor-
ward, and we review it briefly in Appendix E. Because it follows that

In fact, all higher powers of i simply cycle through the four “values” i, and 1.
That is, and so on.

Visualizing complex numbers geometrically is extremely helpful. We do so by
using the complex plane, which is a two-dimensional coordinate system designed to
display a complex number We measure the real part a horizontally and
the imaginary part b vertically. In Figure 8.25 we plot the complex number 
Note that it lies 2 units to the right and 5 units up from the origin. Similarly, the com-
plex numbers and are also plotted in Figure 8.25. Any purely real
number, such as 4 (which is ) or (which is ), lies on the horizon-
tal axis. Any purely imaginary number, such as 4i (which is ) or (which is

) lies on the vertical axis.0 � 3i
�3i0 � 4i

�6 � 0i�64 � 0i
�2 � i1 � 3i,

z � 2 � 5i.
z � a � bi.

i 
9 � i 

5 � i,i 
8 � i 

4 � 1,i 
7 � i 

3 � �i,i 
6 � i 

2 � �1,
�i,�1,

 i 
5 � 1i 

4 2 1i 2 � 11i 2 � i.

 i 
4 � 1i 

2 2 1i 
2 2 � 1�1 2 1�1 2 � 1

 i 
3 � 1i 

2 2 1i 2 � 1�1 2 1i 2 � �i

 i 
2 � 12�1 2 2 � �1

i � 1�1 ,

a � 0,
z � a � bib � 0,

a � bi
b � Im1z 2 ,a � Re1z 2

z � 4 � 7i,
z � a � bi

x � 1 � 3i.x � 1 � 3i

–3

0

1

5

–2 1 2
Re

Im

–2 + i

2 + 5i

4i

1 – 3iFIGURE 8.25

Suppose that is an arbitrary complex number that we plot as a
point in the complex plane. We connect the point to the origin with a line segment,
which is the hypotenuse of a right triangle, as shown in Figure 8.26. The base of the

z � a � bi
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Re

Im

b = Im(z)

a = Re(z)

‖z‖ = √a2 + b2

z = a + bi

0

θ

FIGURE 8.26

triangle is a, the real part of z, and the height of the triangle is b, the size of the
imaginary part of z. The Pythagorean theorem gives the length of the hypotenuse as

which we interpret as the size of the complex number We
call it the modulus of the complex number and write it as

7 z 7 � 2a2 � b2
 .

z � a � bi.1a2 � b2,

For instance, if then its modulus is

The complex numbers and all have the same modulus
of 5. Sketch them to verify that this is indeed the case.

Are there any other points in the complex plane that also have a modulus of 5?
What can you say about all such complex numbers? ❐

We again consider the complex number and the associated right
triangle in the complex plane. We now focus on the angle shown in Figure 8.26.
By convention, is measured counterclockwise from the horizontal, or real, axis.
Thus

We also have the two further relations

which lead to

Consequently, we can write the original complex number z in the equivalent
trigonometric form

 � 7 z 7 1cos u � i sin u 2 .
 z � a � bi � 7 z 7 cos u � i 7 z 7 sin u

a � 7 z 7  cos u and  b � 7 z 7  sin u.

cos u �
a

7 z 7
 and sin u �

b

7 z 7
 ,

tan u �
b
a

 .

u

u

z � a � bi

Think About This

�4 � 3i�4 � 3i,4 � 3i,

7 z 7 � 242 � 32 � 225 � 5.

z � 4 � 3i,
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The trigonometric form for the complex number is

where

7 z 7 � 2a2 � b2 and tan u �
b
a

 , a � 0.

z � 7 z 7 1cos u � i sin u 2 ,

z � a � bi

EXAMPLE 1
Find the trigonometric form for the complex number 

Solution For we have so that

where so that radian or 

�

Use the value for the angle in Example 1 to show that the trigonometric form for
the complex number z is identical to the original expression ❐

Powers of Complex Numbers

The trigonometric form for a complex number allows us to interpret z
as being located at a certain distance, the modulus, from the origin and rotated
through an angle from the horizontal. This model gives us a way to gain some
special insights into powers of complex numbers.

EXAMPLE 2
For (a) find algebraically and (b) interpret geometrically in the com-
plex plane.

Solution

a. If

This algebraic result provides no special insight into how is related to z.

b. We look at the trigonometric form for The modulus is and the
associated angle is radians, or as in Example 1.
Now consider the trigonometric form for Its modulus is

which is the square of the modulus of the original complex number z. Next, the angle
associated with is defined by

tan f �
24

7
 so that f � arctan 

24

7
� 1.2870 radians or 73.74°,

z2f

7 z2 7 � 272 � 242 � 249 � 576 � 2625 � 25,

z2.
36.87°,u � arctan13>4 2 � 0.6435

7 z 7 � 5,z � 4 � 3i.

z2

 � 7 � 24i.

i2 � �1 � 16 � 24i � 9

 � 16 � 24i � 91i2 2
1u � v 2 2 � u2 � 2uv � v2 z2 � 14 � 3i 2 2 � 42 � 214 2 13i 2 � 13i 2 2

z � 4 � 3i,

z2z2z � 4 � 3i,

u

z � a � bi

4 � 3i.
uThink About This

36.87°.u � arctan 3>4 � 0.6435tan u � 3>4,

z � 4 � 3i � 51cos u � i sin u 2 ,

7 z 7 � 5,z � 4 � 3i,

z � 4 � 3i.
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Re

Im

z

z2

0 36.87°

73.74°

25

5

FIGURE 8.27

which is exactly twice the angle ( radians or ) associated with z, as il-
lustrated in Figure 8.27.

36.87°�0.6435u

�

For this particular complex number is related to z by the
process of squaring the modulus and doubling the angle. Does this rule hold in
general? Let’s look at two other simple cases.

EXAMPLE 3
Find the modulus and angle associated with and relate them to the modulus
and angle associated with 

Solution We know that is located at a distance of from the
origin with an associated angle of measured in the usual positive direction
from the horizontal axis. We now consider which is

This complex number has modulus 4 and associated angle because it is on the nega-
tive real axis. That is, the modulus of is the square of the modulus of
and the associated angle is twice the angle associated with 

�

EXAMPLE 4
Find the modulus and angle associated with where and relate
them to the corresponding modulus and angle for z.

Solution For the modulus is

and the associated angle is Further,

so the square of the modulus of z. The associated angle is or dou-
ble the angle associated with z. So, again, when we square a complex number, the modu-
lus is squared and the angle is doubled.

�

p>2,7 z2 7 � 24 � 2,

z2 � 11 � i 2 2 � 1 � 2i � i2 � 1 � 2i � 1 � 2i,

u � p>4.

7 z 7 � 212 � 12 � 22 ,

z � 1 � i,

z � 1 � i,z2 � 11 � i 2 2,

z � 2i.p>2p

z � 2i,z2 � 12i 2 2
p

z2 � 4i2 � �4 � �4 � 0i.

z2 � 12i 2 2,
u � p>2

7 z 7 � 2z � 2i � 0 � 2i

z � 2i.
z2 � 12i 2 2

z2z � 4 � 3i,

gord.3896.08.pgs  4/24/03  10:12 AM  Page 570



8.3 Properties of Complex Numbers 571

Let’s now consider any complex number in the equivalent trigono-
metric form

Squaring z gives

Using and collecting the real and imaginary terms yields

Now recall the double-angle identities:

Examining the real part of the previous expression for we see that it equals 
whereas the imaginary part equals Thus we have

Geometrically, squaring any complex number always produces a new complex num-
ber whose modulus is the square of the original modulus and whose angle is double
the original angle. If the modulus of the original number is greater than 1, is a
“larger” complex number, as shown in Figure 8.28(a). If is smaller than 1,
is a “smaller” complex number, as shown in Figure 8.28(b).

z27 z 7
z2

z2 � 7 z 7 2 1cos 2u � i sin 2u 2 .

sin 2u.
cos 2u,z2,

 sin 2u � 2 sin u cos u.

 cos 2u � cos2u � sin2u

z2 � 7 z 7 2 3 1cos2u � sin2u 2 � 2i cos u sin u 4 .

i2 � �1

 � 7 z 7 2 1cos2u � 2i cos u sin u � i 
2 sin2u 2 .

 z2 � 7 z 7 2 1cos u � i sin u 2 2

z � 7 z 7 1cos u � i sin u 2 .

z � a � bi

Re

Im

(a)

‖z‖2

‖z‖ > 1

z2

z = a + bi

0

θ

θ2

FIGURE 8.28

Re

Im

(b)

‖z‖2

‖z‖ < 1

z2
z = a + bi

0

θ

θ2

What about other powers of Is there any pattern for when 

EXAMPLE 5
Find the modulus and angle associated with when 

Solution The complex number is located at a distance of 2 from the origin and
at an angle of Now consider

It is located at a distance of 8 from the origin and is rotated through an angle of
which is triple Thus the modulus of is the cube of the modulus of 2i, and the
associated angle is three times the angle associated with 2i.

�
p>23p>2

12i 2 3p>2.
3p>2,

z 3 � 12i 2 3 � 8i 
3 � �8i � 0 � 8i.

p>2.
z � 2i

z � 2i.z3

n 	 2?znz � a � bi?
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Re

Im

(a)

‖z‖3

‖z‖ > 1
z3

z = a + bi

0
θ

θ3

FIGURE 8.29A

Let’s find out whether the same pattern holds when we cube any complex
number We do so by using the trigonometric form. Because

we have

Using and collecting the real and imaginary terms, we get

We now use the sum identities

with and to get

Thus cubing any complex number always results in cubing the modulus and
tripling the rotation of the original complex number. It either “lengthens” the com-
plex number if the original modulus is greater than 1, as illustrated in Figure 8.29(a),
or “contracts” it if the modulus is less than 1, as illustrated in Figure 8.29(b). If the
modulus equals 1 and all that happens is a rotation.u � 0,

 � 7 z 7 31cos 3u � i sin 3u 2 .
 z3 � 7 z 7 3 3cos 12u � u 2 � i sin12u � u 2 4

y � ux � 2u

 sin1x � y 2 � sin x cos y � cos x sin y

 cos1x � y 2 � cos x cos y � sin x sin y

z3 � 7 z 7 3 3 1cos 2u cos u � sin 2u sin u 2 � i1cos 2u sin u � sin 2u cos u 2 4 .

i2 � �1

 � 7 z 7 3 3cos 2u cos u � i cos 2u sin u � i sin 2u cos u � i 
2sin 2u sin u 4 .

 � 3 7 z 7 21cos 2u � i sin 2u 2 4  3 7 z 7 1cos u � i sin u 2 4
 z3 � z21z 2

z2 � 7 z 7 21cos 2u � i sin 2u 2 ,

z � a � bi.

Re

Im

(b)

‖z‖3

‖z‖ < 1

z3

z = a + bi

0
θ

θ3

FIGURE 8.29B

In the Problems at the end of this section, we ask you to show that

and that, in general for any positive integer power n,

 � 7 z 7 n 1cos nu � i sin nu 2 .
 � 7 z 7 n 1cos u � i sin u 2n

 zn � zn�11z 2

z4 � z31z 2 � 7 z 7 4 3cos 4u � i sin 4u 4
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This important and extremely useful result is known as DeMoivre’s theorem after
French mathematician Abraham DeMoivre who first discovered it.

DeMoivre’s Theorem
If

then

for any positive integer n.

zn � 7 z 7 n1cos nu � i sin nu 2

z � a � bi � 7 z 7 1cos u � i sin u 2

Complex Conjugates

We know that complex numbers occur in complex conjugate pairs, such as
when we use the quadratic formula. If is

any complex number, we write its conjugate as which is shown geo-
metrically in Figure 8.30. Clearly, z and have the same modulus, so

Also, if the angle associated with z is the angle associated with is �u.zu,7 z 7 � 7 z 7 .
1a2 � b2

 ,z
z � a � bi,

z � a � biz � 3 � 5i and z � 3 � 5i

Re

Im

‖z‖

‖z‖

θ

θ–

a

b

–b

θ θ
z = a + bi
   = ‖z‖(cos    + isin   )

θ θ
z = a − bi
   = ‖z‖(cos    − isin   )FIGURE 8.30

Using the reflection identities

we find that

Applying DeMoivre’s theorem to gives

A simple extension of these ideas provides a way of visualizing both the prod-
uct and the quotient of any two complex numbers. We explore this approach in the
Problems at the end of this section.

 � 7 z 7 n 1cos nu � i sin nu 2 .
 1  z 2n � 7 z 7 n 1cos u � i sin u 2n

z

z � a � bi � 7 z 7 3cos 1�u 2 � i sin 1�u 2 4 � 7 z 7 1cos u � i sin u 2 .

cos 1�u 2 � cos u and sin1�u 2 � �sin u,
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Problems

In Problems 1–9, find the modulus and the associated
angle for each complex number.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10–18. Find the trigonometric form for each complex
number in Problems 1–9.

19–22. For each complex number in Problems 1–4,
find algebraically.

23–31 For each complex number in Problems 1–9,
find by using DeMoivre’s theorem.

32–35. For each complex number in Problems 1–4,
find algebraically.

36–44. For each complex number in Problems 1–9,
find by using DeMoivre’s theorem.

45. For calculate and plot for 1,
2, 3, and 4.

46. Repeat Problem 45 for What differ-
ence do you observe about the behavior of the two
sets of points?

47. Show that for
any complex number z.

48. Prove DeMoivre’s theorem for any integer power n:

Hint: Write and assume that

49. Suppose that you have two complex numbers
and 

a. What is the product of z and w algebraically?
b. What is the product of z and w using the

trigonometric forms of z and w?

w � c � di.z � a � bi

zn�1 � 7 z 7 n�1 3cos1 1n � 1 2u 2 � i sin1 1n � 1 2u 2 4 .
zn � zn�1 . z

zn � 7 z 7 n 1cos nu � i sin nu 2 .

z4 � z3 . z � 7 z 7 41cos 4u � i sin 4u 2

z � 0.6 � 0.8i.

n � 0,zn,z � 1 � 2i,

z3

z3

z2

z2

z � �8 � 23 i

z � 3 � 28 i

z � �5 � 7i

z � 8 � 3i

z � 64 � 36i

z � �15 � 20i

z � 12 � 5i

z � 5 � 12i

z � 4 � 3i

c. Hypothesize and prove an extension of DeMoivre’s
theorem that will allow you to multiply any two
complex numbers in trigonometric form. (Hint:
Your extension should reduce to DeMoivre’s theo-
rem for when )

d. Apply the rule that you discovered in part (b) to
find the product of
i.

ii.

50. a. Hypothesize an extension of DeMoivre’s theo-
rem that will allow you to divide one complex
number by another in trigonometric form.

b. Apply the rule that you proposed in part (a) to
find the quotient of
i.

ii.

51. a. Hypothesize an extension of DeMoivre’s theo-
rem that will allow you to determine the square
root of a complex number z.

b. Apply the rule that you proposed in part (a) to
find the square root of

c. Algebraically square the complex number that
you obtained in part (b) to verify that it actually is
the square root of the original number in part (a).

d. Can you hypothesize a further extension of
DeMoivre’s theorem to extract any desired root
of a complex number? any desired rational
power of a complex number? Explain.

52. A negative real number can be thought of as being
produced by rotating the corresponding positive
real number (which is located on the horizontal
axis) through an angle in the complex plane. Use
this interpretation to explain why the product of
two negative numbers is positive.

53. Show that, for any pair of complex conjugates
and z # z � 7 z 7 2.z � a � bi,z � a � bi

p

z �
1

2
�
23

2
 i.

z �
1

2
�
23

2
 i and w �

23

2
�

1

2
 i.

z � 1 � 2i and w � 1 � 2i

z �
1

2
�
23

2
 i and w �

23

2
�

1

2
 i.

z � 1 � 2i and w � 1 � 2i

w � z.z2

The Road to Chaos

In this section we investigate some fascinating results that arise from iteration process-
es applied to complex numbers. Let’s begin with any complex number in trigonomet-
ric form—say, )—and square it to produce Usingz1 � z0ˇ

2
 .z0 � 7 z0 7 1cos u � i sin u

8.4
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8.4 The Road to Chaos 575

DeMoivre’s theorem, we know that the geometric result is a complex number whose
associated angle is and whose modulus is Recall that, if we get a ro-
tation and an expansion to a “larger” complex number; if we get a rotation
and a contraction to a “smaller” complex number; if we get only a rotation.

Suppose that we next square to produce If we get a
further rotation (to the angle ) and a further expansion. If
we get the same further rotation (to ) and a further contraction. If we
get only the rotation (to ).

What happens if we continue this process indefinitely to produce a sequence of
complex numbers The geometric behavior of
the terms of this sequence can be predicted easily by extending the reasoning we
just used. If the modulus of the initial value is greater than 1, each successive it-
erate is farther from the origin in the complex plane, at a larger angle, and the se-
quence clearly diverges in a counterclockwise spiral pattern for as shown in
Figure 8.31(a). If each successive term is closer to the origin; the succes-
sive iterates converge to 0 in a counterclockwise spiral pattern as each one is a fur-
ther rotation of the original angle as shown in Figure 8.31(b). Finally, if

all successive iterates fall on the boundary of the unit circle centered at
the origin in the complex plane.
7 z0 7 � 1,

u 	 0,

7 z0 7 
 1,
u 	 0,

z0

z3 � z2ˇ

2
 , . . . ?z2 � z1ˇ

2
 ,z1 � z0ˇ

2
 ,z0 ,

4u
7 z0 7 � 1,4u
7 z0 7 
 1,2 � 2u � 4u

7 z0 7 	 1,z2 � z1ˇ

2 � z0ˇ

4
 .z1

7 z0 7 � 1,
7 z0 7 
 1,

7 z0 7 	 1,7 z0 7
2.2u

Re

Im

z0

z1

z2
z3

‖z0‖ > 1

(a)

θ

θ

2

θ4

θ8

FIGURE 8.31A

Re

Im

z0

z1z2

z3

‖z0‖ < 1

(b)

FIGURE 8.31B

The Julia Set

Let’s focus on the possible initial values for Any initial point inside the unit cir-
cle starts a sequence that spirals in to the origin; any initial point on the circle itself
starts a sequence that remains on the unit circle; and any initial point outside the
unit circle starts a sequence that spirals away toward infinity.

We can display this graphically in the following way. Visualize the unit circle
centered at the origin in the complex plane, as shown in Figure 8.32. The circle is
drawn in heavy black, the interior is shaded, and the region outside the circle is un-
shaded. Think of the unshaded region as indicating any point that begins a se-
quence that diverges, the shaded region as indicating those initial points for which
the sequence converges to 0, and the black as indicating those initial points for
which the sequence remains on the circle forever. The set of initial points for which
the resulting sequences do not diverge to infinity is known as the Julia set associat-
ed with the function (It is named after French mathematician Gastonf 1z 2 � z2.

z0 .
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Re

Im

1

1

FIGURE 8.32

Julia, who discovered the properties of these sets in the 1920s.) The Julia set associ-
ated with consists of the unit circle and all points inside it.f 1z 2 � z2

A relatively small change in what we have just done puts us on the road to
chaos. Instead of using let’s see what happens if we use 
where C is any constant, either real or complex. (You may want to think of this as a
family of functions for different values of C.) We take so
that We now consider a variety
of cases with different values for C and with different starting values 

Let’s begin with If the initial value is 

and the sequence clearly diverges. Using the same with some other starting
values, we get

if

if

if

All three sequences seem to diverge to infinity. Of course, we can’t reach such a
conclusion based on just a few examples; they can, at best, suggest what may
happen.

Let’s use DeMoivre’s theorem to analyze the behavior of the successive iterates.
Suppose that is any initial value inside the unit circle, so its modulus is less than
1. When we square it, the modulus for is smaller still. However, when we add 2
to it, the point is shifted 2 units to the right, so that must be outside and to the
right of the unit circle.

Now suppose that (or some subsequent iterate) is outside the unit circle. Its
modulus is greater than 1, so the modulus for is larger still. When we add 2 to it,
the point is again shifted 2 units to the right. For almost all possible values of
the resulting will be outside the unit circle.

There are some exceptions—say, so that

z1 � 11.1i 2 2 � 2 � �1.21 � 2 � 0.79.

z0 � 1.1i
z1

z0 ,
z0ˇ

2
z0

z1

z0ˇ

2
z0

 z3 � 48.059 � 12.10i . . .  z2 � 6.844 � 0.884i, then z1 � 2.21 � 0.2i, z0 � 0.5 � 0.2i,

 z3 � �58 � 32i, . . . ; z2 � 2 � 8i, then z1 � 2 � 2i, z0 � 1 � i,

 z3 � 39.9653, . . . ; z2 � 6.1616, then z1 � 2.04, z0 � 0.2,

C � 2

 z3 � z2ˇ

2 � C � 1232 � 2 � 15,131, . . . ,

 z2 � z1ˇ

2 � C � 121 � 2 � 123,

 z1 � z0ˇ

2 � C � 9 � 2 � 11,

z0 � 3,C � 2.
z0 .

z3 � f 1z2 2 � z2ˇ

2 � C, . . . z2 � f 1z1 2 � z1ˇ

2 � C,
z1 � f 1z0 2 � z0ˇ

2 � C,

f 1z 2 � z2 � C,f 1z 2 � z2,
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8.4 The Road to Chaos 577

However, it can be shown that, eventually all subsequent iterates will land outside
the circle and ultimately diverge to infinity. (Because each iteration involves a rota-
tion, at some stage one of the successive iterates will eventually land near the hori-
zontal axis to the right and the following iterate will be outside and to the right of
the unit circle.) Thus it turns out that, with for every initial point
in the complex plane, the resulting sequence diverges. The Julia set associated with
the function when will be completely empty because all
initial points give rise to sequences that eventually diverge. Our diagram of this
Julia set will be entirely unshaded because there are no initial points that start con-
vergent sequences.

Similarly, if all sequences will diverge regardless of the initial value for
The additive constant 2i results in a shift upward of 2 units in the imaginary di-

rection. Pick several initial values for (real, imaginary, or complex) and see what
happens when you calculate the successive iterates.

However, if and we start with we obtain

The sequence apparently converges to some point in the complex plane.
Unfortunately, repeating this process for every possible starting value is not

practical. Instead, we use a computer to perform such calculations for a large num-
ber of points in a grid to give a representative picture of what happens. As with the
previous cases, we leave any initial point that starts a sequence that diverges to in-
finity unmarked to become part of the unshaded region. We put a small dot at any
initial point that starts a sequence that converges to some point in the complex
plane so that it will be part of the shaded Julia set.

The resulting picture of the Julia set for the function is
shown in Figure 8.33.

f 1z 2 � z2 � 0.2i

z0

 z5 � �0.0296 � 0.2006i;  z9 � �0.0341 � 0.1876i.

 z4 � 0.0017 � 0.1720i;   z8 � �0.0332 � 0.1875i.

 z3 � �0.1220 � 0.1147i;   z7 � �0.0338 � 0.1852i;

 z2 � �0.1159 � 0.368i;   z6 � �0.0394 � 0.1881i;

 z1 � 10.5 � 0.2i 2 2 � 0.2i � 0.21 � 0.4i; 

z0 � 0.5 � 0.2i,C � 0.2i

z0

z0 .
C � 2i,

C � 2,f 1z 2 � z2 � C,

f 1z 2 � z2 � 2,

FIGURE 8.33
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FIGURE 8.34

FIGURE 8.35

This picture does not indicate the limits of any of the sequences; it shows only
those points that start sequences that have limits. Typically, if you take points in the
interior of the shaded region, it turns out that nearby starting points tend to converge
to limits that are relatively close to one another. However, if you take points near the
boundary, very different results can occur. Initial points that are extremely close to-
gether can produce sequences that converge to radically different limits. The result is
an instance of mathematical chaos because the behavior has no predictable patterns.
Points that are very close together, provided that they are both near the boundary of
the Julia set, may well lead to sequences that behave very differently. If you were to
zoom in on the portion of the Julia set near these boundaries, you would see an ever
more intricate design illustrating how nearby points can start sequences that either
diverge or converge. They occur in a totally chaotic and unpredictable manner.

A striking illustration of this outcome is shown in Figure 8.34, which is the Julia
set corresponding to Note how intricate the boundary appears.
Figure 8.35 shows the result of zooming in on the upper left corner of the Julia set
shown in Figure 8.34. Observe how roughly similar patterns repeat; this kind of rep-
etition is typical of what happens when you zoom in repeatedly on Julia sets associ-
ated with most values for C. Also, note how much more jagged the boundary looks
as more details appear in the magnified image in Figure 8.35, which also is typical.

C � �0.2 � 0.7i.
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8.4 The Road to Chaos 579

The Julia set associated with a complex constant C can be far more intricate than
we have shown so far; it can, for instance, consist of a large variety of disconnected
pieces. It may even consist of nothing but a collection of isolated points like a set of dust
particles. You may want to experiment with some of these ideas yourself, using any of
the many computer programs available for displaying Julia sets for iterated functions.

The Mandelbrot Set

There is a completely different way of looking at these ideas. In the discussion of
Julia sets, we considered the function selected a particular value
for C, and then examined points in the complex plane as starting points for iter-
ated sequences. Now let’s reverse this.

Suppose instead that we select a particular starting point and examine the ef-
fects of using different values for the complex constant C in Thus
our view of the complex plane has shifted—it now represents all different constants
rather than all different starting points. In particular, suppose that we select as
the starting point for all sequences. Then, for any constant C,

and so on. Clearly, if C is large (far from the origin in the
complex plane), all successive iterates will be larger still and the successive points of
the sequence will diverge. However, if C is fairly small, the successive iterates may re-
main close to the origin and the sequence may converge to some finite complex value.

The Julia set associated with the function consists of all initial
points for which the sequences converge for a given constant C. Similarly, the
Mandelbrot set associated with the function (named after French
mathematician Benoit Mandelbrot) consists of all constants C for which the se-
quences starting from fail to diverge. For this initial point the Man-
delbrot set illustrated in Figure 8.36 shows those constants C for which the
corresponding sequences remain close to the origin. As with a Julia set, the bound-
ary of the Mandelbrot set is an incredibly intricate structure. If you zoom in on it,
as shown in Figure 8.37, you will see remarkable shapes with no predictable pat-
terns; however, the original overall shape shown in Figure 8.36 appears to repeat at
all levels of magnification. The main heart-shaped portion of the Mandelbrot set is
called a cardioid, which we discuss in Chapter 9; the portion to the left of the car-
dioid is actually a circle.

z0 � 0,z0 � 0

f 1z 2 � z2 � C
z0

f 1z 2 � z2 � C

z2 � z1ˇ

2 � C � C2 � C,
z1 � 02 � C � C,

z0 � 0

f 1z 2 � z2 � C.
z0

z0

f 1z 2 � z2 � C,

FIGURE 8.36
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FIGURE 8.37A

FIGURE 8.37B

FIGURE 8.37C
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8.4 The Road to Chaos 581

These displays show the Mandelbrot set with different shadings to indicate
how quickly different sequences diverge from the starting value When dif-
ferent colors are used, the results are even more dramatic. You may want to exam-
ine the Mandelbrot set, using one of the programs available for displaying it. All
such programs allow you to see the details at different levels of magnification as
you zoom in on the boundary. In theory, there is no limit to the degree of com-
plexity of the boundary. Such a shape is known as a fractal.

Many shareware programs are available (one of the most popular is called
FracInt) that will let you investigate both Julia and Mandelbrot sets. This subject is
one of the most exciting areas of current mathematical research, and many new
and important theorems have been proven in the last few years. These ideas have
also formed the basis for many of the computer graphics images that you have un-
doubtedly seen in today’s movies.

z0 � 0.

Problems

1. a. Use the quadratic formula to find a condition on
those values of C for which the sequence of iter-
ates has a real limiting value.

b. Verify your condition in part (a) by using
starting with and performing

enough iterations to see the eventual behavior.
c. Repeat part (b), using 

2. a. What is the limiting value you expect if
for the sequence of function iterations based on

b. Start the iteration process at 
and perform enough iterations to verify that the
process seems to be converging to your answer
for part (a).

c. Start the iteration process at and per-
form enough iterations to determine the eventu-
al behavior of the sequence of iterates. How
could you have anticipated the result without
performing the actual calculations?

3. You can think of the iteration scheme for
as the difference equation

What are the equilibrium
levels for the solutions to the difference equation?
Under what conditions on C will the equilibrium
values be real?

xn�1 � f 1xn 2 � xnˇ

2 � C.
x � f 1x 2 � x2 � C

x0 � 1 � i

x0 � 0.5 � 0.5i
x � f 1x 2 � x2 � C ?

C � 1>4
C � 0.4.

x0 � 0.5C � 0.1,

x � f 1x 2 � x2 � C

4. Explain graphically the significance of C in deter-
mining whether the iteration process based on

has a real limiting value by
looking at the graphs of and 

5. Explain graphically why the iteration process based
on the function must have at
least one real limiting value.

6. Consider iterations based on the function

a. Begin the iteration process at and per-
form enough iterations to allow you to recognize
the limit of the resulting sequence.

b. Repeat part (a), starting with 
c. Repeat part (a), starting with How does

the limiting value compare to 
d. Repeat part (c), starting with 
e. Based on the function f, explain why all limits

will be some multiple of

7. Consider iterations based on the function
Predict the possible values that

can arise for the limits based on the function f. Ver-
ify whether your predictions are correct if you start
with initial values 3, 7, and �12.x0 � 1,

f 1x 2 � x � cos x.
x � f 1x 2

p.

x0 � 15.
p?
x0 � 8.

x0 � 5.

x0 � 2

f 1x 2 � x � sin x.
x � f 1x 2

x � f 1x 2 � x3 � C

y � x.y � x2 � C
x � f 1x 2 � x2 � C

Chapter Summary

In this chapter, we continued our discussion of trigometric functions. In
particular, we discussed the following:

� The fundamental identities that relate the sine and cosine functions.

� Some identities involving the tangent function.

� How to approximate the sine and cosine functions with polynomial functions.
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582 CHAPTER 8 More About the Trigonometric Functions

� How the accuracy of a polynomial approximation depends on the degree of
the polynomial.

� How to convert a complex number to its equivalent trigonometric form.

� How to construct powers of complex numbers with DeMoivre’s theorem.

� The Julia set that is associated with a function and the idea of chaos.

� The Mandelbrot set that is associated with a function f 1z 2 .
f 1z 2

Review Problems

Determine graphically which of the relationships in
Problems 1–9 might be identities and which clearly are
not identities. For those that appear to be identities,
prove them algebraically.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. Prove each identity.

a.
b.

11. Use the Taylor polynomial approximation of degree
for the sine function to estimate the value of

the function at Sketch the
graph of the function and the approximating poly-
nomial on the same set of axes.

12. Repeat Problem 11 with degree Discuss any
differences you observe.

13. You know that and
when x is reasonably

close to 0, so should be fairly3T31x 2 4
2 � 3T21x 2 4

2
cos x � T21x 2 � 1 � x2>2

sin x � T31x 2 � x � x3>6

n � 5.

x � 0.2.f 1x 2 � sin 3x
n � 3

sin1x � y 2 � sin1x � y 2 � 2 sin x cos y
cos1x � y 2 � cos1x � y 2 � 2 cos x cos y

cos6u � sin6u � cos 2u

cos4u � sin4u � cos 2u

1

1 � cos t
�

1

1 � cos t
�

2

sin2t

sin u

1 � cos u
�

cos u

sin u
�

1

sin u

1sin x � cos x 2 2 � 1 � sin 2x

sin x cos2x � sin3x � sin2x

sin x cos2x � sin3x � cos2x

sin x cos2x � sin3x � sin x

sin x cos2x � sin3x � cos x

close to 1. Using your function grapher, estimate
how far the expression is from
1 for any value of x between and 1 radian.

14. a. Convert the complex numbers 
and to trigonometric form.

b. Use the results from part (a) to find 
and 

15. A complex number z has modulus 3 and an associ-
ated angle of

a. Write the complex number in trigonometric form.
b. Write the complex number in the usual form

c. Find the fifth power of this complex number z.
d. Find the square root of this complex number z.

Use your function grapher to estimate the period for
each function. Express your answers as multiples of

16.

17.

18.

19.

20.

21.

22. Based on your answers to Problems 16–21, conjec-
ture a general rule for the period of the function

for any m and n.f 1x 2 � sin mx � cos nx,

f 1x 2 � sin 3x � cos a
1

2
 xb

f 1x 2 � sin a
1

2
 xb � cos 2x

f 1x 2 � sin 2x � cos 4x

f 1x 2 � sin 4x � cos 2x

f 1x 2 � sin 3x � cos 4x

f 1x 2 � sin 3x � cos 2x

p.

z � a � bi.

52°.

w>z.
z>w,z . w,

w � 5 � 2i
z � �6 � 8i

�1
3T31x 2 4

2 � 3T21x 2 4
2
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9

Geometric Models

Introduction to Coordinate Systems

What is a coordinate system? In simple terms, a coordinate system provides a way
to locate and identify points in the plane. In the usual rectangular or Cartesian coor-
dinate system, every point can be pictured in either of two ways. First, a point P
with coordinates can be thought of as lying at the corner of a unique rec-
tangle whose opposite corner is at the origin and two of whose sides lie along the
two coordinate axes, as illustrated in Figure 9.1(a). The base of this rectangle is 
and its height is Second, the point P can be thought of as the intersection of two
perpendicular lines, one parallel to the y-axis at a distance of from it and the
other parallel to the x-axis at a height of from it, as illustrated in Figure 9.1(b).y0

x0

y0 .
x0 ,

1x0 , y0 2

9.1

x

y

P(x0, y0)

x0

y0

(a)

FIGURE 9.1

x

y

P(x0, y0)y = y0

x = x0

(b)

Mathematicians have found that, in many situations, rectangular coordinates
are not the most natural or the most effective way to locate points and have devel-
oped alternative coordinate systems. One such approach involves the use of two
axes that are not perpendicular, but rather meet at the origin at some angle other
than a right angle. Points in such a slanted coordinate system can be located at the
opposing vertex of a parallelogram, as illustrated in Figure 9.2.
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584 CHAPTER 9 Geometric Models

Another approach is to locate a point by using a circle centered at the origin O
instead of a rectangle. To do so requires specifying both the radius of the circle and
an angle to indicate where on the circle the point is located. This approach leads
to the polar coordinate system, which is illustrated in Figure 9.3. We investigate
this coordinate system in Sections 9.6 and 9.7.

u

u

v

P(u0, v0)

v0

u0

FIGURE 9.2

P(r,    )θ

r

θO

FIGURE 9.3

Other approaches are used for particular applications that involve locating
points lying on some ellipse centered at the origin (an elliptic coordinate system),
on some parabola (a parabolic coordinate system), or on a hyperbola (a hyperbolic
coordinate system), as illustrated in Figures 9.4(a–c), respectively. In fact, the long
range navigation (LORAN) system used by navigators in ships and planes to locate
their positions is based on the fact that every point in a plane can be interpreted as
lying at the intersection of two hyperbolas in a hyperbolic coordinate system.

x

y

x

y

x

y

FIGURE 9.4

In this chapter, we first develop several special characteristics of the rectangu-
lar coordinate system and then show how to represent some extremely important
curves. Later we explore other ways to represent functions.
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9.2 Analytic Geometry 585

Analytic Geometry

One of the most useful and far-reaching developments in mathematics is Rene
Descartes’s idea of representing algebraic concepts geometrically. This approach,
known as analytic geometry, lets you visualize the mathematics graphically to com-
plement the algebraic approach that is based on symbols. Everything we have done in-
volving graphs of functions is an outgrowth of Descartes’s ideas. In this section we
examine some additional ideas involving points, lines, and circles in the plane.

We begin by considering the two points A at and B at in the
plane. You already know how to find an equation of the line through them by using
either the point–slope form

or the slope–intercept form

where the slope of the line is

Alternatively, we have the implicit form for the equation of a line,

where and represent the x- and the y-intercepts of the line, respectively.

Distance Between Points

We now ask: What is the distance between the points A at and B at 
We write this distance as Figure 9.5 shows that the points A and B determine
a right triangle ABC; the coordinates of point C are because C is at the same
horizontal distance as B (measured from the y-axis) and at the same vertical height
as A (measured from the x-axis). Moreover, the horizontal distance from A to C is

it is the change, or difference, in the x-coordinates. Similarly, the vertical
distance from C to B is it is the change in the y-coordinates. Consequent-
ly, the distance from A to B is the length of the hypotenuse of this right triangle.
The Pythagorean theorem therefore gives us the distance formula.

y1 � y0 ;
x1 � x0;

1x1 , y0 2
0AB 0.

1x1 , y1 2?1x0 , y0 2

c>bc>a

ax � by � c,

m �
y1 � y0

x1 � x0
 .

y � mx � b,

y � y0 � m1x � x0 2

1x1 , y1 21x0 , y0 2

9.2

x

y

y1 – y0

x1 – x0

A(x0, y0) C(x1, y0)

B(x1, y1)

x1x0

y0

y1

|AB | = √(x1 – x0)2 + (y1 – y0)2

FIGURE 9.5
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586 CHAPTER 9 Geometric Models

EXAMPLE 1
Find the distance from the point A at to the point B at 

Solution Applying the distance formula gives

�

Consider again the two points A at and B at in the plane. Suppose
that we want to determine the midpoint M of the line segment connecting A to B.
Figure 9.6 shows that the points A and B determine a right triangle ABC and that the
points A and M determine a smaller right triangle AMD. These two right triangles

1x1 , y1 21x0 , y0 2

 � 216 � 19 � 225 � 5 units.

 0AB 0 � 216 � 2 2 2 � 18 � 5 2 2

16, 8 2 .12, 5 2

x

y

A(x0, y0) D(x0 +   (x1 – x0), y0)
C(x1, y0)

B(x1, y1)

1
2

1
2

M(x0 +    (x1 – x0), y0 +      (y1 – y0))1
2

1
2

CB

1
2 AC

1
2 AB

FIGURE 9.6

are similar, and hence their corresponding sides are proportional (see Appendix A4).
Because M is halfway from A to B, we see that D is halfway from A to C, and the
height DM is half the height CB. Thus the x-coordinate at D (and hence also at M) is

Similarly, because the height DM is half the height CB, the y-coordinate at M is

We can rewrite these expressions as

and

y0 �
1

2
 1y1 � y0 2 � y0 �

1

2
 y1 �

1

2
 y0 �

1

2
 1 y1 � y0 2 .

x0 �
1

2
 1x1 � x0 2 � x0 �

1

2
 x1 �

1

2
 x0 �

1

2
 1x1 � x0 2

y � y0 �
1

2
 1 y1 � y0 2 .

x � x0 �
1

2
 1x1 � x0 2 .

Distance Formula

The distance from point A at to point B at is

0AB 0 � 21x1 � x0 2
2 � 1y1 � y0 2

2
 .

1x1 , y1 21x0 , y0 2
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0 1 2 3 4

2

4

6

8

10

12

x

y

A(1, 11)

B(3, 7)

M(2, 9)

FIGURE 9.7

Midpoint Formula

The midpoint M of the line segment from A at to B at is at

or

x �
x1 � x0

2
 , y �

y1 � y0

2
 .

x � x0 �
1

2
 1x1 � x0 2 ,  y � y0 �

1

2
 1 y1 � y0 2

1x1 , y1 21x0 , y0 2

EXAMPLE 2
Find the midpoint of the line segment joining A at and B at 

Solution The coordinates of the midpoint are

and

Alternatively,

Figure 9.7 shows the solution.

x �
x1 � x2

2
�

3 � 1

2
� 2 and y �

y1 � y2

2
�

7 � 11

2
� 9.

 � 11 �
1

2
 17 � 11 2 � 11 �

1

2
 1�4 2 � 9.

 y � y0 �
1

2
 1 y1 � y0 2

 � 1 �
1

2
 13 � 1 2 � 1 � 1 � 2

 x � x0 �
1

2
 1x1 � x0 2

13, 7 2 .11, 11 2

�

We might also want to determine a point at some other fraction of the distance
from A to B. To do so, we simply extend the preceding argument to determine a

Thus the coordinates of the midpoint M of a line segment are simply the averages
of the x-coordinates and the y-coordinates of the endpoints, respectively.
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588 CHAPTER 9 Geometric Models

point P at any distance from A to B. Suppose that we want the point one-quarter of
the way from A to B. We then have

Verify that this quarter-distance formula is correct by using an argument compara-
ble to the one used for the midpoint formula. ❐

In general, if we want the point P at a fraction t of the distance from A to B, it
will be located at

as shown in Figure 9.8. Incidentally, if we get a point on the line beyond B,
and if we get a point on the line before A.t � 0,

t � 1,

 y � y0 � t . 1 y1 � y0 2 ,
 x � x0 � t . 1x1 � x0 2

Think About This

x � x0 �
1

4
 1x1 � x0 2 and y � y0 �

1

4
 1 y1 � y0 2 .

x

y

A(x0, y0)

B(x1, y1)

P

t

FIGURE 9.8

EXAMPLE 3

a. Find the point P located three-fifths of the way from A at to B at 

b. Find the point Q located seven-fifths of the way from A to B.

Solution

a. For P with 

Verify by plotting the points and that P is located three-fifths
the way from A to B.

b. Similarly, for Q with 

Plot Q at and note that this point lies on the line through A and B and is be-
yond B.

�

16, 17 2

 y � y0 � t . 1 y1 � y0 2 � 3 �
7

5
 113 � 3 2 � 17.

 x � x0 � t . 1x1 � x0 2 � �1 �
7

5
 34 � 1�1 2 4 � 6 and

t � 7>5,

12, 9 214, 13 2 ,1�1, 3 2 ,

 y � y0 � t . 1 y1 � y0 2 � 3 �
3

5
 113 � 3 2 � 9.

 x � x0 � t . 1x1 � x0 2 � �1 �
3

5
 34 � 1�1 2 4 � 2 and

t � 3>5,

14, 13 2 .1�1, 3 2
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9.2 Analytic Geometry 589

We could continue this example with different values of t to find other points
on the line. In fact, every value of t determines a unique point on the line joining A
at and B at Therefore the two equations for x and y give us a differ-
ent way of representing the line. They are known as a parametric representation or
parametric equations of the line, and the quantity t is called a parameter.

1x1 , y1 2 .1x0 , y0 2

Parametric equations of the line through and are

 y � y0 � 1 y1 � y0 2 t.
 x � x0 � 1x1 � x0 2 t and

1x1 , y1 21x0 , y0 2

P(x, y)
r

x

y

C(x0, y0)

FIGURE 9.9

The equation of the circle with radius r centered at is

1x � x0 2
2 � 1 y � y0 2

2 � r 2.

1x0 , y0 2

Note that this parametric form involves two interrelated equations for the line,
not a single equation as in the point–slope form. It is possible to eliminate the pa-
rameter t to produce a single equation for the line. We ask you to do so in the Prob-
lems at the end of this section. However, the parametric form can provide valuable
information.

The Equation of a Circle

We apply the concept of distance between two points in the plane to define a circle.
A circle is the set of all points in the plane at a fixed distance from a fixed point.
The fixed distance is called the radius, and the fixed point is called the center.

This definition allows us to find a general equation for any circle. Let r be the
radius and let point C with coordinates be the center of a circle. A point P
with coordinates lies on this circle provided that its distance from the center
C is r, as shown in Figure 9.9. The distance formula gives the equivalent expression

We can eliminate the square root in this equation by squaring both sides and thus
obtain the standard form for the equation of a circle.

0CP 0 � 21x � x0 2
2 � 1 y � y0 2

2 � r.

1x, y 2
1x0 , y0 2
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590 CHAPTER 9 Geometric Models

For instance, the circle of radius 8 centered at has the equation

whereas the equation of the circle of radius 3 centered at is

As a special case, the equation of a circle of radius r centered at the origin is

Note that the equation of a circle does not represent a function. Picture any
vertical line that passes through the circle but is not tangent to the circle—it inter-
sects the circle twice and so the circle fails the vertical line test. That is, each such
value of x has two corresponding values of y, which violates the definition of a
function, as shown in Figure 9.10.

x2 � y2 � r 2.

1x � 5 2 2 � y2 � 9.

1�5, 0 2

1x � 5 2 2 � 1 y � 2 2 2 � 82 � 64,

15, 2 2

r

x

y

x0 − r x0 + rx0

C(x0, y0)

FIGURE 9.10

We get a similar result algebraically. For example, the circle of radius 10 cen-
tered at the origin has the equation

If we select say, then

which has the solutions

Again, two values of y correspond to one value of x. Even though a circle does not
represent a function, it is nonetheless a very important curve. We discuss several
other curves that do not represent functions in Sections 9.3 and 9.4.

Let’s start with the equation of the circle of radius 8 centered at 

We expand the left-hand side and combine like terms to get

or

x 2 � y2 � 10x � 4y � 35 � 0,

x 2 � 10x � 25 � y2 � 4y � 4 � 64

1x � 5 2 2 � 1y � 2 2 2 � 82 � 64.

15, 2 2 :

y � 8 or y � �8.

36 � y2 � 100 so that y2 � 64,

x � 6,

x 2 � y2 � 100.
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9.2 Analytic Geometry 591

which is an equivalent, although different, representation for the same circle.
Clearly, we could do the same with the equation of any circle,

which is centered at with radius r. Expanding the left-hand side, we get

or, equivalently,

Because and r are constants, we can write this equation in the alternative
form

where we have introduced the new constants

Such an equation, known as the general equation of the circle, represents a cir-
cle for any choice of constants C, D, and E such that the radius of the circle is
positive.

Suppose that we start with an equation such as

which we know from the preceding derivation is the equation of a circle. Exam-
ples 4 and 5 demonstrate how to work backward from this equation to determine
the center and radius of the circle.

EXAMPLE 4
Show that

is the equation of a circle by finding its center and radius.

Solution To solve this problem, we use the technique of completing the square (see Ap-
pendix A8) in both the x- and y-terms on the left-hand side and obtain

Adding 64 to both sides, we get

This is the equation of the circle with radius 8 and center at 

�

EXAMPLE 5
Find the radius and the center of the circle whose equation is

x2 � y2 � 8x � 10y � 8 � 0.

15, 2 2 .

1x � 5 2 2 � 1 y � 2 2 2 � 64 � 82.

 � 1x � 5 2 2 � 1y � 2 2 2 � 64 � 0.

 � 3 1x � 5 2 2 � 25 4 � 3 1 y � 2 2 2 � 4 4 � 35

 � 3 1x 2 � 10x � 25 2 � 25 4 � 3 1y2 � 4y � 4 2 � 4 4 � 35

 x 2 � y2 � 10x � 4y � 35 � 1x 2 � 10x 2 � 1 y2 � 4y 2 � 35

x 2 � y2 � 10x � 4y � 35 � 0

x 2 � y2 � 10x � 4y � 35 � 0,

C � �2x0 ,  D � �2y0 , and E � x0ˇ

2 � y0ˇ

2 � r 2.

x 2 � y2 � Cx � Dy � E � 0,

y0 ,x0 ,

x 2 � y2 � 2x0 x � 2y0 y � x0ˇ

2 � y0ˇ

2 � r 2 � 0.

x 2 � 2x0 x � x0ˇ

2 � y2 � 2y0 y � y0ˇ

2 � r 2

1x0 , y0 2

1x � x0 2
2 � 1 y � y0 2

2 � r 2,
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592 CHAPTER 9 Geometric Models

Solution To solve this problem, we again complete the square in both the x- and
y-terms on the left-hand side and obtain

Therefore the original equation becomes

Adding 49 to both sides, we get

which is the equation of a circle with radius 7 and center at 

�

Note that not every equation of the form repre-
sents the equation of a circle. In Examples 4 and 5, the constant term we ended up
with on the right, either 64 or 49, was a positive number, so we could take the
square root to get a radius. However, the constant on the right can be a negative
number, in which case the equation does not represent a circle. In fact, even if the
constant on the right is 0, we would not have a circle because the radius would be
0. We ask you to investigate such cases in the Problems at the end of this section.

EXAMPLE 6
In Example 4 of Section 4.6, we found two points on the line through the Earth and the
moon at which the gravitational forces of the Earth and the moon on a spacecraft are ex-
actly equal in size numerically. One point is 216 thousand miles from the Earth toward
the moon and the other is 270 thousand miles from the Earth, which is 30 thousand
miles beyond the moon. Find all such points in the plane containing the Earth, the
moon, and the sun.

Solution We set up a coordinate system with the Earth at the origin and the moon on
the horizontal axis, 240 thousand miles to the right. Suppose that the two gravitational
forces are numerically equal at some other point P in the plane with coordinates 
as shown in Figure 9.11. (Technically, we should consider not only the size of the two
forces but also the directions in which they are exerted; that requires the notion of a vec-
tor quantity, which we discuss in Chapter 10.)

1x, y 2 ,

x 2 � y2 � Cx � Dy � E � 0

1�4, 5 2 .

1x � 4 2 2 � 1 y � 5 2 2 � 49 � 72,

1x � 4 2 2 � 1 y � 5 2 2 � 49 � 0.

 � 1x � 4 2 2 � 1 y � 5 2 2 � 49.

 � 3 1x � 4 2 2 � 16 4 � 3 1y � 5 2 2 � 25 4 � 8

 � 3 1x 2 � 8x � 16 2 � 16 4 � 3 1 y2 � 10y � 25 2 � 25 4 � 8

 x 2 � y2 � 8x � 10y � 8 � 1x 2 � 8x 2 � 1 y2 � 10y 2 � 8

240

re rm

(x, y)

Earth MoonFIGURE 9.11

The distance formula gives the distance from the Earth to the point P as

Similarly, the distance from the moon to the point P is

rm � 21x � 240 2 2 � y2 so that rmˇ

2 � 1x � 240 2 2 � y2.

rm

re � 2x 2 � y2 so that reˇ

2 � x 2 � y2.

re

gord.3896.09.pgs  4/24/03  10:15 AM  Page 592



Let be the mass of the spacecraft, be the mass of the Earth, and be the mass of
the moon. Because the Earth is 81 times as massive as the moon, Based on
the universal law of gravitation, the size of the gravitational force that the Earth exerts
on the spacecraft is

and the size of the gravitational force that the moon exerts on the spacecraft is

Equating these two expressions yields

Dividing both sides by the constant gives

or cross-multiplying,

We substitute the expressions for the two distances to get

or

Collecting like terms gives

Dividing through by the common factor 80 yields

which suggests the equation of a circle. We complete the square on the x terms on the
left-hand side and get

Therefore

or

That is, in the plane formed by the Earth, the moon, and the sun, the size of the gravitation-
al forces from the Earth and the moon are numerically equal at every point on a circle of ra-
dius thousand miles centered at a distance of 243 thousand miles from the
Earth on a line through the moon. In fact, the center of this circle is just beyond the moon.

�

Incidentally, even though a circle does not fulfill the requirements of a function,
if we restrict our attention to either its upper half or its lower half, the resulting

1729 � 27

1x � 243 2 2 � y2 � 1243 2 2 � 58,320 � 729.

1x � 243 2 2 � 1243 2 2 � 58,320 � y2 � 0,

x 2 � 486x � 58,320 � y2 � x 2 � 486x � a
486

2
b

2

� a
486

2
b

2

� 58,320 � y2 � 0.

x2 � 486x � 58,320 � y2 � 0,

80x 2 � 38,880x � 811240 2 2 � 80y2 � 0.

 81x 2 � 811480 2x � 811240 2 2 � 81y2 � x 2 � y2.

 81 3x 2 � 480x � 1240 2 2 � y2 4 � x 2 � y2

81 3 1x � 240 2 2 � y2 4 � x 2 � y2,

81rmˇ

2 � reˇ

2.

81

reˇ

2 �
1

rmˇ

2 ,

Gm0 m2

81Gm0 m2

reˇ

2 �
Gm0 m2

rmˇ

2  .

Fm �
Gm0 m2

rmˇ

2  .

Fm

Fe �
Gm0 m1

re 

2 �
Gm0 

.  181m2 2
re 

2 �
81Gm0 m2

re 

2

Fe

m1 � 81m2 .
m2m1m0

9.2 Analytic Geometry 593
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594 CHAPTER 9 Geometric Models

(x, y)

semicircle does represent a function. For the circle we obtain the
equations for the semicircles by solving for y:

Thus the upper semicircle is the graph of the function and

the lower semicircle is the graph of the function y � g1x 2 � � 2r 2 � x 2
 .

y � f 1x 2 � 2r 2 � x 2
 ,

y2 � r 2 � x 2 so that y � � 2r 2 � x 2
 .

x 2 � y2 � r 2,

Problems

In Problems 1–6, find the distance between each pair of
points.

1. and 

2. and 

3. and 

4. and 

5. and 

6. and 

7. Find the midpoint of the line segment joining the
points in Problem 1.

8. Find the midpoint of the line segment joining the
points in Problem 2.

9. Find the point one-third the way from the first
point to the second point in Problem 3.

10. Find the point three-fourths the way from the first
point to the second point in Problem 4.

11. Find the equation of the circle that has center
and passes through the point P at 

12. Find the equation of the circle that has center
and passes through the point P at 

13. Find the equation of the circle that has and
as the endpoints of a diameter.

14. Find the equation of the circle that has and
as the endpoints of a diameter.

15. Repeat Problems 13 and 14, using the facts that any
angle inscribed in a semicircle is a right angle and
that perpendicular lines have slopes that are nega-
tive reciprocals.

14, 11 2
1�2, 3 2

110, 4 2
12, 4 2
12, �5 2 .1�3, 7 2

18, �2 2 .15, 2 2

1�5, �4 213, 1 2
13, 7 21�1, 5 2
10, 4 212, �5 2
10,4 214, �1 2
17, 16 212, 4 2
15, 8 212, 4 2

form for the equation of a circle. Use it to determine the
radius and center of the circle. Then draw the graph of
the circle.

16.

17.

18.

19.

20.

21.

22. Determine which of the following equations repre-
sent a circle and which do not. Explain.

a.
b.
c.

23. The equations form a
parametric representation of a line.

a. Construct a table of values for x and y corre-
sponding to 0, 5.

b. Plot these points and verify that they do seem to
lie on a line.

c. What is the slope of this line?
d. What is a point–slope form for the equation of

this line using 
e. Use the midpoint formula to find the midpoint

of each of the consecutive line segments deter-
mined by the entries in your table from part (a).
Then use the parametric representation of the
line with 0.5, 1.5, 2.5, 3.5, and
4.5. How do the results compare? Explain.

24. Consider again the parametric representation of
the line in Problem 23.
Eliminate the parameter t from the two equations
by first solving the first equation for t in terms of x
and then substituting the result into the second
equation. How does this result compare to the re-
sult obtained in part (d) of Problem 23?

25. Start with the general parametric equations of a line

x � x0 � 1x1 � x0 2 t, y � y0 � 1 y1 � y0 2 t

y � 4 � 5tx � 3 � 2t,

�0.5,t � �1.5,

t � 1?

1, . . . ,�1,t � �2,

y � 4 � 5tx � 3 � 2t,

x 2 � y2 � 4x � 6y � 12 � 0
x 2 � y2 � 4x � 6y � 13 � 0
x 2 � y2 � 4x � 6y � 15 � 0

x 2 � y2 � 2x � 6y � 6 � 0

x 2 � y2 � 2x � 6y � �9

x 2 � y2 � 10x � 4y � 71

x 2 � y2 � 10x � 4y � 7

x 2 � y2 � 4x � 6y � 12

x 2 � y2 � 4x � 6y � 3

In Problems 16–21, complete the square in both the x-
and y-terms for each equation to obtain the standard
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9.3 Conic Sections: The Ellipse 595

and algebraically eliminate the parameter t. Identify
the equation you produce.

26. a. Find the slope of the line having the paramet-
ric representation

b. Sketch the graph of this line.

27. Find the points at which the line 
intersects the circle (Hint: Firstx 2 � y2 � 25.2 � t

y �x � 1 � 2t,

x � 1 � 2t, y � 2 � 3t.

find values of the parameter t that satisfy the equa-
tion of the circle.)

28. The three points P at Q at and R at
are noncollinear and as such determine a circle.

Find an equation of this circle. (Hint: Substitute the
coordinates of each point into the general equation of
the circle, and then
solve the resulting system of three equations in three
unknowns.)

x 2 � y2 � Cx � Dy � E � 0,

14, 0 2
12, 4 2 ,10, 2 2 ,

Exercising Your Algebra Skills

In Problems 1–8, complete the square for each expression.

1. 2.

3. 4. x 2 � 6x � 5x 2 � 6x � 5

x 2 � 8x � 25x 2 � 8x � 25

5. 6.

7. 8. y2 � 4y � 12y2 � 4y � 12

y2 � 10y � 26y2 � 10y � 26

Conic Sections: The Ellipse

When we introduced functions and their graphs in Chapter 1, we said that not
every graph represents a function. In Section 9.2 we pointed out that a circle is not
a function. Several other important curves that have useful and interesting proper-
ties similarly are not functions. We investigate some of these curves in this section
and Section 9.4.

Consider any equation of the form

where A, B, C, D, and E are constants, provided that at least one of A and B is not 0.
In particular, if we can divide through by this constant, so that the result is
the equation of a circle if the coefficients lead to a positive radius. Let’s see what
happens when 

The graph of any equation of the form is
known as a conic section. To see why, consider a slice through the double right cir-
cular cone shown in Figure 9.12. If the slicing plane is horizontal, each slice is a
circle. However, if the slicing plane is inclined slightly from the horizontal, the curve
produced is oval in shape, rather than circular, and is an ellipse. (Imagine a diagonal
slice through a round salami.) In fact, the sharper the angle of the slice, the more
elongated the ellipse will be, as shown in Figure 9.13. If the angle of slicing is in-
creased further so that it is parallel to the “edge” of the cone, the resulting curve is a
parabola, as shown in Figure 9.14. If the angle of the slice is increased still further,
the slicing plane intersects both the upper and lower parts of the cone and produces
a pair of separated curves, known as a hyperbola, as shown in Figure 9.15.

In summary, there are three types of conic sections: (1) the ellipse, (2) the
parabola, and (3) the hyperbola. The circle is a special case of the ellipse.

The conic sections occur often in various applications of mathematics and sci-
ence. For instance, the orbits of the planets about the sun are ellipses. The paths of
many comets and meteoroids are hyperbolic. A cross section of the metallic reflec-
tor inside a flashlight or an automobile headlight is a parabola. The path of a

Ax 2 � By2 � Cx � Dy � E � 0
A � B.

A � B,

Ax 2 � By2 � Cx � Dy � E � 0,

9.3
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x

y

F2(–c, 0)

F1(c, 0)

P(x, y)

Center

FIGURE 9.16

FIGURE 9.13
Slicing planes
are at slight
angles

FIGURE 9.12
Slicing planes
are horizontal

FIGURE 9.14
Slicing planes
parallel to the
side of the
cone

FIGURE 9.15
Slicing planes
at steeper 
angles

thrown object, such as a perfect “spiral” pass in football or a “line drive” in baseball,
is also a parabola.

Although we typically use formulas when working with the conic sections, we
define them formally from a purely geometric perspective. This approach is analo-
gous to the way we defined a circle in Section 9.2 as the set of all points at a fixed
distance from a single fixed point, its center. In this section, we study the ellipse and
consider the hyperbola and the parabola in Section 9.4.

The Ellipse

An ellipse is defined as the set of all points in the plane for which the sum of the
distances to two fixed points is a constant. The two fixed points are called the foci
(the plural of focus) of the ellipse. The midpoint of the line segment joining the
foci is the center of the ellipse.

When the two foci are far apart, the resulting ellipse is very elongated. When
the two foci are close together, the ellipse is close to circular and, in fact, when the
two foci merge into a single point, the ellipse is a circle.

For convenience, we assume that the center of an ellipse is at the origin and
that the two foci lie on the x-axis. Suppose that the foci are at with coordinates

and at with coordinates as illustrated in Figure 9.16. A point P1�c, 0 2 ,F21c, 0 2
F1
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9.3 Conic Sections: The Ellipse 597

with coordinates lies on the ellipse if the sum of the two distances and
is some constant k. To make things easier, we write That is,

or, equivalently,

or

When we simplify this equation by eliminating both square roots (we leave the ac-
tual simplification for you to do as a problem at the end of this section), we even-
tually obtain

as the equations of the ellipse, where is a new constant. The three
constants a, b, and c are related by the equation

We investigate the meaning of the constants a and b below.
To determine where the ellipse intersects the x-axis, we set The equa-

tion of the ellipse then reduces to

from which we find that either

This result indicates that a represents the distance from the center of the ellipse to
the two points where the ellipse crosses the x-axis, as illustrated in Figure 9.17.
Similarly, if the equation of the ellipse yields from which eithery2 � b2,x � 0,

x � a or x � �a.

x 2

a2 � 1 so that x 2 � a2

y � 0.

a2 � b2 � c2,  where a � b.

b2 � a2 � c2

x 2

a2 �
y2

b2 � 1

21x � c 2 2 � y2 � 21x � c 2 2 � y2 � 2a.

21x � c 2 2 � 1 y � 0 2 2 � 21x � c 2 2 � 1 y � 0 2 2 � 2a

0F1 P 0 � 0F2 P 0 � 2a,

k � 2a.0F2 P 0
0F1 P 01x, y 2

Thus b represents the distance from the center of the ellipse to the two points
where the ellipse crosses the y-axis. The four points, and

are the vertices of the ellipse; any one of them is a vertex. The lines con-
necting opposite vertices are called the axes of the ellipse. The longer axis, whether
horizontal or vertical, is called the major axis and always contains the two foci; the
shorter axis is called the minor axis.

10, �b 2 ,
10, b 2 ,1�a, 0 2 ,1a, 0 2 ,

y � b or y � �b.

x

y

F2(–c, 0) F1(c, 0)

Center

b

a–a

Major axis

Minor
axis

–b
FIGURE 9.17
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x

y

(−4, 0) (4, 0)

(0, –3)

(0, 3)

F2(−√7, 0)

F1(√7, 0)

a

b

c

a = 4
b = 3
c = √7

FIGURE 9.18

In summary, a represents the distance from the center to either of the two
more distant vertices along the major axis of the ellipse; b represents the distance
from the center to either of the two closer vertices along the minor axis; and c rep-
resents the distance from the center to either focus of the ellipse. Because a is half
the length of the major axis, we sometimes call a the length of a semi-major axis.
Similarly, b is sometimes called the length of a semi-minor axis.

EXAMPLE 1
Describe and sketch the graph of the ellipse

Solution This ellipse is centered at the origin. Its vertices occur when so 
or when so Therefore and so that the major axis extends
horizontally from to and the minor axis extends vertically from 
to See Figure 9.18. Because a, b, and c are related by we have

so that Therefore the foci are located at and giving the
graph shown in Figure 9.18.

1� 17 , 0 2 ,117 , 0 2c � � 17 .

c2 � a2 � b2 � 16 � 9 � 7,

a2 � b2 � c2y � 3.
y � �3x � 4,x � �4

b � 3,a � 4y � �3.x � 0,
x � �4,y � 0,

x 2

16
�

y2

9
� 1.

�

So far, we have considered an ellipse centered at the origin with foci along the
x-axis. If we consider the analogous situation where the foci lie along the y-axis, the
resulting equation for such an ellipse is

Note that the constant a is still measured along the major axis and b is measured along
the minor axis of the ellipse, so From the equation of an ellipse, we can identi-
fy its major axis immediately by observing which of the two denominators is larger.

We have only considered ellipses that are centered at the origin. In fact, an el-
lipse can be centered at any point In such a case, we get the following
standard forms for the equation of an ellipse.

1x0 , y0 2 .

a � b.

x 2

b2 �
y 2

a2 � 1,  a � b.
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The equation of an ellipse centered at with its major axis parallel to
the x-axis is

The equation of an ellipse centered at with its major axis parallel to
the y-axis is

In each case,

where c is the distance from the center to either focus.

a2 � b2 � c2,

1x � x0 2
2

b2 �
1y � y0 2

2

a2 � 1.

1x0 , y0 2

1x � x0 2
2

a2 �
1 y � y0 2

2

b2 � 1.

1x0 , y0 2

EXAMPLE 2
Describe and sketch the ellipse whose equation is

Solution The center of this ellipse is at the point Because the major axis is
parallel to the y-axis. In particular, the major axis is on the vertical line and the foci
also lie on this line. The minor axis is on the horizontal line Also, because 
and Thus the length of the major axis is and the length
of the minor axis is Consequently, the maximum horizontal distance from the
center is 2 on either side of and the maximum vertical distance from the center is 5
above and below The ellipse therefore extends horizontally from to 
and extends vertically from to Figure 9.19 shows the graph of the ellipse.

To locate the foci, we use

which gives Because the foci are on the major axis of the ellipse, they are on
the vertical line Thus the foci are at the points and 12, 7 � 121 2 .12, 7 � 121 2x � 2.

c � 121 .

c2 � a2 � b2 � 25 � 4 � 21,

y � 12.y � 2
x � 4x � 0y � 7.

x � 2,
2b � 4.

2a � 10,b2 � 4, a � 5 and b � 2.
a2 � 25y � 7.

x � 2,
25 � 4,12, 7 2 .

1x � 2 2 2

4
�
1y � 7 2 2

25
� 1.

0 4

2

12

x

y

(2, 7)

5

5

2 2

x = 2

y = 7

(x − 2)2

4
(y − 7)2

25
+ = 1

FIGURE 9.19

�
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600 CHAPTER 9 Geometric Models

Suppose that we again consider the ellipse in Example 2,

We now multiply both sides of the equation by 100 to eliminate the fractions, so that

Expanding the terms, we get

This last equation is an equivalent equation for the same ellipse. Often we start
with such an equation and have to rewrite it algebraically to uncover the key infor-
mation about the ellipse. We illustrate how to do so in Example 3.

EXAMPLE 3
Verify that the equation

represents an ellipse, and find its center, vertices, and foci. Use this information to sketch
the ellipse.

Solution We first collect the terms in x and y separately and then factor out the coeffi-
cients of and 

Finally, we complete the squares on both x and y to obtain

Therefore the original equation is equivalent to

Dividing both sides by 225 yields

which is the standard form for the equation of an ellipse. The center is at The
major axis is vertical because Moreover, because the major axis extends
from to The minor axis is horizontal with so it
extends from to To find the foci, we solve

c2 � a2 � b2 � 25 � 9 � 16,

x � 1 � 3 � 4.x � 1 � 3 � �2
b � 3,y � 2 � 5 � 7.y � 2 � 5 � �3

a � 5,25 � 9.
11, 2 2 .

1x � 1 2 2

9
�
1 y � 2 2 2

25
� 1,

251x � 1 2 2 � 91 y � 2 2 2 � 225 � 0 or 251x � 1 2 2 � 91 y � 2 2 2 � 225.

 � 251x � 1 2 2 � 91 y � 2 2 2 � 225.

 � 251x � 1 2 2 � 25 � 91 y � 2 2 2 � 36 � 164

 � 25 3 1x � 1 2 2 � 1 4 � 9 3 1 y � 2 2 2 � 4 4 � 164

 25 3 1x 2 � 2x � 1 2 � 1 4 � 9 3 1 y2 � 4y � 4 2 � 4 4 � 164

 � 3251x 2 � 2x 2 4 � 391 y2 � 4y 2 4 � 164.

 25x 2 � 9y2 � 50x � 36y � 164 � 25x 2 � 50x � 9y2 � 36y � 164 

y2:x 2

25x 2 � 9y2 � 50x � 36y � 164 � 0

 25x 2 � 4y2 � 100x � 56y � 196 � 0.

 25x 2 � 100x � 100 � 4y2 � 56y � 196 � 100,

 251x 2 � 4x � 4 2 � 41 y2 � 14y � 49 2 � 100,

251x � 2 2 2 � 41 y � 7 2 2 � 100.

1x � 2 2 2

4
�
1 y � 7 2 2

25
� 1.
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x

y

(1, 7)

(1, –3)

(–2, 2) (4, 2)(1, 2)

x = 1

F(1, –2)

F(1, 6)

(x − 1)2

9
(y − 2)2

25
+ = 1

FIGURE 9.20

�
At the beginning of the section, we pointed out that the orbits of the planets

about the sun are ellipses. More specifically, these elliptical orbits all have the sun as
one of their two foci. A natural question to ask is: What is the equation of the el-
lipse for the orbit of the Earth? To answer it, we need two pieces of data used by as-
tronomers to describe the orbits of the planets. The perihelion is the smallest
distance from a planet to the sun, and the aphelion is the greatest distance, as de-
picted in Figure 9.21. For the Earth, the perihelion is approximately 147.1 million
kilometers, or 91.38 million miles, and the aphelion is approximately 152.1 million
kilometers, or 94.54 million miles. These two distances help identify the location of
the sun on the major axis of Earth’s elliptical orbit.

EXAMPLE 4
Find an equation of the Earth’s orbit about the sun.

Solution We first set up a coordinate system with the sun, the other (phantom) focus,
and the major axis on the x-axis, as shown in Figure 9.22. Because the perihelion and
aphelion distances are almost the same, the two foci are quite close together and the
orbit of the Earth is nearly circular. From Figure 9.22, we see that the distance from one
vertex to the other, or 2a, is million miles, so

a � 185.92>2 � 92.96 million miles.

91.38 � 94.54 � 185.92

Aphelion Perihelion

FIGURE 9.21

which gives Therefore the foci are 4 units above and below the center so
they are at and The graph of this ellipse is shown in Figure 9.20.11, 6 2 .11, �2 2

11, 2 2 ,c � 4.
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94.54 91.38

1.58

FIGURE 9.22

To find b, we first have to determine c, using the following reasoning. At perihelion,
the Earth is 91.38 million miles from the sun, so the distance from the center of the el-
lipse to the sun (a focus) must be

From we have

so that

Consequently, the equation of the Earth’s orbit about the sun is

As we observed previously, the Earth’s orbit is very nearly circular.

�

The table of planetary data on the following page lists the perihelion and aphe-
lion distances, in millions of miles, for the planets in the solar system. You can use
it to compare the Earth’s orbit to that of the other planets. You will use some of
these entries for the Problems at the end of the section.

Reflection Property of the Ellipse

One of the most fascinating properties of an ellipse is known as the reflection
property. Consider any line segment emanating from one of the two foci—say,

—as shown in Figure 9.23. It eventually intersects the ellipse and then reflects.F1

x2

192.96 2 2
�

y2

192.95 2 2
� 1.

b � 28639.07 � 92.95 million miles.

 � 192.96 2 2 � 11.58 2 2 � 8639.07,
 b2 � a2 � c2

a2 � b2 � c2,

c � 92.96 � 91.38 � 1.58 million miles.
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9.3 Conic Sections: The Ellipse 603

Planet Perihelion Aphelion

Mercury 28.56 43.38

Venus 66.74 67.68

Earth 91.38 94.54

Mars 128.49 154.83

Jupiter 460.43 506.87

Saturn 837.05 936.37

Uranus 1700.07 1867.76

Neptune 2771.72 2816.42

Pluto 2749.57 4582.61

(According to physical principles, the angle of incidence with a tangent line
equals the angle of reflection.) Any such reflected line segment will pass through
the second focus

This property is significant because many physical phenomena, such as light
and sound, travel in straight lines and reflect off solid surfaces. Thus, if a light-
bulb is placed at one focus of a three-dimensional shell whose cross sections
containing the major axis are all ellipses, all its light rays will bounce off the in-
side surface of the shell and reflect back through the other focus. The effect is
similar with sound waves. Probably the best known example of this is the whis-
pering gallery effect in the U.S. Capitol in Washington, D.C. The dome of the
Capitol has the approximate shape of a three-dimensional ellipse, and there are
two foci near floor level. If you stand at one of the foci and whisper, your voice
is carried to the second focus across the hall and can be heard clearly by anyone
standing there.

EXAMPLE 5
The distance between the foci in the “whispering gallery” of the Capitol is 38.5 feet, and
the maximum height of the ceiling above ear level is 37 feet. Find the equation of an el-
liptical cross section of the gallery under the Capitol dome.

Solution We set up axes as shown in Figure 9.24. Because the distance between foci is
38.5 feet, Also, from the maximum height of the dome,

feet. For an ellipse, we know that

a2 � b2 � c2 � 137 2 2 � 119.25 2 2 � 1739.5625,

b � 37
c � 1

2 138.5 2 � 19.25 feet.

F2 .

x

y

F2 F1

FIGURE 9.23

F2 F1

38.5

37

x

y

FIGURE 9.24
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604 CHAPTER 9 Geometric Models

so feet. Therefore the equation of an elliptical cross section of the Capitol whis-
pering gallery is

�

The Average Distance from the Sun

We have stated that the orbit of each planet is an ellipse with one focus at the sun.
A natural question to ask is: What is the average distance of a planet from the sun
during a full orbit? The answer is particularly simple, yet surprising, as we demon-
strate in Example 6.

EXAMPLE 6
Show that the average distance from all points on any ellipse

is precisely equal to a, the length of the semi-major axis.

Solution We begin with the ellipse shown in Figure 9.25, with foci at and Let 
be any point on the right half of the ellipse. From the geometric definition of the ellipse,
we know that the sum of the two distances and must equal the constant 2a,
or

0F1 P1 0 � 0F2 P1 0 � 2a.

0F2 P1 00F1 P1 0

P1F2 .F1

x2

a2 �
y2

b2 � 1

x2

141.7 2 2
�

y2

137 2 2
� 1.

a � 41.7

Using the symmetry of the ellipse, there is a comparable point on the left half of
the ellipse so that

Therefore

0F1 P1 0 � 0F1 P2 0 � 0F1 P1 0 � 0F2 P1 0 � 2a.

0F2 P2 0 � 0F1 P1 0 and 0F2 P1 0 � 0F1 P2 0.

P2

x

y

F2 F1

P2

d d

P1

FIGURE 9.25
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9.3 Conic Sections: The Ellipse 605

Hence the average of these two distances from to and from to is simply a. This
argument can be applied to every possible pair of matching points on the ellipse, so the
average distance from to all points on the ellipse must be a.

�

Now let’s apply this result to the orbits of the planets. For instance, the aphe-
lion distance for the Earth is 94.54 million miles and the perihelion distance is
91.38 million miles. These distances can be expressed as

Their arithmetic average is

that is, the average distance of the Earth (or any other planet) from the sun is just
the average of its perihelion and aphelion distances.

1

2
 1perihelion � aphelion 2 �

1

2
 1a � c � a � c 2 � a;

Perihelion � a � c and Aphelion � a � c.

F1

P2F1P1F1

Problems

1. For the satellite whose elliptic orbit about the Earth
is shown in the accompanying diagram, indicate
the location of the following points and give rea-
sons for your answers.

3. Suppose that the satellite in Problem 1 is in a rela-
tively low orbit about the Earth so that it encoun-
ters the upper fringe of the Earth’s atmosphere.
What will be the atmosphere’s effect on the satel-
lite’s path? Sketch the graph of the resulting trajec-
tory. What will happen eventually?

4. Suppose that the satellite in Problem 1 fires its booster
rocket to speed up at the point in its orbit where it is
closest to the Earth. Compare the graph of the new
orbit to the graph of the old one in a sketch. What
happens to the orbit if the booster rockets are ex-
tremely strong or continue firing for a long time?

5. Which of the nine planets in the solar system has the
most circular orbit? the least circular orbit? Explain.

6. During the next few years, Pluto’s orbit takes it in-
side the orbit of Neptune. Use the values in the
table of planetary data in the text to explain why
this situation can occur.

7. Use the fact that the perihelion and aphelion dis-
tances for Mercury are 46.0 and 69.8 million kilo-
meters respectively to find the equation of the orbit
of Mercury about the sun.

8. A salami is 4 inches in diameter. When the deli clerk
slices it, however, the slices are at an angle of to
the main axis of the salami. Consequently, each slice
will be in the shape of an ellipse with a minor axis
of length 4 inches, as shown on the following page.
Find the length of the major axis of each slice.

65°

a. The point at which the gravitational force F ex-
erted by the Earth on the satellite is greatest;
where it is least. (Recall Newton’s law of univer-
sal gravitation: where r is
the distance between the two objects.)

b. The point at which the speed of the satellite is
greatest. (Hint: Think of the satellite as always
“falling” toward the Earth.)

c. The point at which the speed of the satellite is least.

2. Suppose that the satellite in Problem 1 fires its retro-
rockets to slow down somewhat at the point in its
orbit where it is closest to the Earth. Compare the
graph of the new orbit to the graph of the old one in
a sketch.

F � f 1r 2 � GmM>r 2,
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606 CHAPTER 9 Geometric Models

a. What is the equation of this ellipse?
b. How far apart are the foci?
c. How far apart are two adjacent vertices?

10. Write formulas expressing the perihelion and
aphelion of an elliptic orbit in terms of the
semimajor axis length a and the focal distance c in
an ellipse.

Conic Sections: The Hyperbola and the Parabola

We now turn our attention to the two remaining conic sections, the hyperbola and
the parabola. We begin this section by investigating the properties and some appli-
cations of the hyperbola.

The Hyperbola

We defined an ellipse geometrically as the set of all points for which the sum of the
distances to two fixed foci is constant. In an analogous way, we define a hyperbola
in terms of the difference of the distances to two fixed points being constant. A hyp-
erbola is the set of all points for which the difference between the distances to two
fixed points is a constant. The two points are the foci of the hyperbola. The mid-
point of the line segment joining the foci is the center.

EXAMPLE 1
During a severe thunderstorm, two lightning bolts appear to strike simultaneously.
You hear the thunderclap from one lightning bolt exactly 1 second after the light-
ning strikes at point P, and you hear the thunderclap from the second lightning bolt

9.4

In Problems 11 and 12, each equation represents an el-
lipse. In each case, identify the center, the vertices, and
the foci and use the pertinent information to draw its
graph.

11.

12.

In Problems 13–18, each equation represents an ellipse.
Complete the square for x and y in each case to obtain
the standard form for an ellipse. Then identify the cen-
ter, the vertices, and the foci of the ellipse and use the
pertinent information to draw its graph.

13.

14.

15.

16.

17.

18.

19. Complete the derivation of the equation of the el-
lipse by simplifying the equation in the text by
eliminating the two square roots. (Hint: First isolate
one of the radicals, then square both sides, and fi-
nally eliminate the remaining radical.)

x2 � 9y2 � 6x � 36y � �36

9x2 � y2 � 54x � 4y � �76

4x2 � y2 � 24x � 2y � 4 � 0

x2 � 4y2 � 20x � 40y � 100 � 0

x2 � 4y2 � 2x � 8y � 11

x2 � 4y2 � 2x � 8y � �1

25x2 � 4y2 � 100

4x2 � 9y2 � 1

F2 F1

V1

V2

513 ft

620 ft

4 in.
4 in.

65°

9. The Roman Coliseum is in the shape of an ellipse
whose major axis measures 620 feet and whose
minor axis measures 513 feet.
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9.4 Conic Sections: The Hyperbola and The Parabola 607

A

P Q

2 seconds or 
2200 feet

1 second or 
1100 feet

FIGURE 9.26

2 seconds after it hits at point Q, as depicted in Figure 9.26. Sound travels at a speed
of about 1100 feet per second.

a. Based on this information what can you conclude about the point A, where you are?

b. Two friends of yours also see the same two lightning strikes. From Becky’s location at
point B, the thunder from the lightning bolt at point P takes 2 seconds to reach her
and the thunder from the lightning bolt at point Q takes 3 seconds. From Carl’s loca-
tion at point C, the times are 4 and 5 seconds, respectively. What can you conclude
about the three points A, B, and C?

Solution

a. The lightning bolts hit at points P and Q, and you’re located at point A. Because it
takes 1 second for the sound of the lightning bolt at P to reach A and sound travels
at 1100 feet per second, the distance from P to A must be 1100 feet. Similarly, it
takes 2 seconds for the sound of the strike at Q to reach A so that distance must be

b. Figure 9.27 shows the points A, B, and C. Reasoning as in part (a), you can conclude
that Becky is from P and 3 seconds

from Q. Similarly, Carl is 4400 feet from P and
5500 feet from Q.
	 1100 feet>second � 3300 feet

2 seconds 	 1100 feet>second � 2200 feet

2 seconds 	 1100 feet>second � 2200 feet.

C

P Q

A

B

4400

5500

2200

1100 2200

3300

FIGURE 9.27

However, you can deduce one more piece of information: For all three, the difference
in time between the two thunderclaps is 1 second. That is, the difference in distance from
each of the three points A, B, and C to the points P and Q is a constant equal to 1100 feet.
But if the differences in the distances from these three points to the fixed points where
the lightning bolts hit are all equal, the three points A, B, and C must lie on a hyperbola
whose foci are at P and Q.

�
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x

y

F2(–c, 0) F1(c, 0)

P(x, y)

FIGURE 9.28

Explain why you cannot determine the distance from P to Q in Example 1 based on
the triangle APQ by using trigonometry. What additional information would you
need to be able to find that distance? ❐

The Equation of a Hyperbola We now determine the equation of a hyperbola
from the geometric definition. For convenience, we place the center of a hyperbola
at the origin and the foci on the x-axis at the point with coordinates and 
with coordinates as shown in Figure 9.28. A point P with coordinates

lies on the hyperbola if, for some constant k,

0F2 P 0 � 0F1 P 0 � k.

1x, y 2
1�c, 0 2 ,

F21c, 0 2F1

Think About This

As with the equation of an ellipse, we let the constant for convenience.
Thus

so that

We simplify this equation by eliminating both square roots, as was done for the
equation of an ellipse (see Problem 19, Section 9.3) and eventually obtain

where

The graph of this hyperbola is shown in Figure 9.29. Note that the hyperbola has
two distinct branches, which is what we should expect from the discussion in Sec-
tion 9.3 of slicing through a double right circular cone. The two points where
this hyperbola crosses the x-axis are called its vertices; they correspond to the
points where and thus represent the points where the two branches are
closest.

y � 0

c2 � a2 � b2.

x2

a2 �
y2

b2 � 1,

21x � c 2 2 � y2 � 21x � c 2 2 � y2 � 2a.

0F2 P 0 � 0F1 P 0 � 2a,

k � 2a
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x

y

F2(–c, 0) F1(c, 0)

a a

x2

a2

y2

b2
− = 1

FIGURE 9.29

At the vertices, we have so that

and therefore Thus a represents the distance from the center to a vertex,
whereas c represents the distance from the center to a focus. The line containing
the foci is the axis of the hyperbola.

Alternatively, we can place the foci for a hyperbola on the vertical axis, as
shown in Figure 9.30. The equation of such a hyperbola is

y2

a2 �
x2

b2 � 1.

x � �a.

x2

a2 � 1,

y � 0,

x

y

y2

a2

x2

b2
− = 1

F2(0,  –c)

F1(0, c)

a

a

FIGURE 9.30

EXAMPLE 3
Describe the hyperbola whose equation is

Solution The form of the equation indicates that the hyperbola is centered at the ori-
gin and that its axis is horizontal. Because and we have and

so that

c2 � a2 � b2 � 16 � 9 � 25,

b � 3,
a � 4b2 � 9,a2 � 16

x2

16
�

y2

9
� 1.
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The equation of a hyperbola centered at with its axis parallel to the
x-axis is

The equation of a hyperbola centered at with its axis parallel to the
y-axis is

In each case,

c2 � a2 � b2.

1 y � y0 2
2

a2 �
1x � x0 2

2

b2 � 1.

1x0 , y0 2

1x � x0 2
2

a2 �
1 y � y0 2

2

b2 � 1.

1x0 , y0 2

and so Thus the vertices are at and or the points and
The foci are the points and 

�

Use your function grapher to see what the graph of the hyperbola in Example 3
looks like. To do so, you have to rewrite the equation by solving for y as a function
of x. In particular,

The upper and lower halves of the hyperbola are therefore given separately by the
two functions

What are the domains of the two functions? ❐

More generally, we can consider a hyperbola as being shifted horizontally and/or
vertically so that its center is at the point P with coordinates rather than at the
origin. We then have the following standard forms for the equation of a hyperbola.

1x0 , y0 2

y � 3 B x2

16
� 1 and y � �3 B x2

16
� 1 .

y2

9
�

x2

16
� 1 so that y2 � 9 a

x2

16
� 1b .

Think About This

15, 0 2 .1�5, 0 214, 0 2 .
1�4, 0 2x � 4,x � �4c � 5.

Note that, in the equation of a hyperbola in standard form, the term with the
positive coefficient determines the orientation. If the -term is positive, the two
branches open about the x-axis; if the -term is positive, the two branches open
about the y-axis. Also, be sure to distinguish between the equation re-
lating the constants for a hyperbola and the equation relating the
constants for an ellipse.

EXAMPLE 4
Verify that

is an equation of a hyperbola. Find the center, vertices, and foci of the hyperbola and
sketch its graph.

x2 � y2 � 8x � 6y � 2

a2 � b2 � c2
c2 � a2 � b2

y2
x2
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9.4 Conic Sections: The Hyperbola and The Parabola 611

Solution We complete the square on both x and y so that the left-hand side becomes

The original equation therefore becomes

Dividing by 9, we obtain

Consequently, the center of the hyperbola is and Furthermore,
since the -term is the positive one, the axis of the hyperbola is parallel to the x-axis.
That is, the vertices and the foci lie on the horizontal line through the center,
and the hyperbola opens to the left and the right. Because the vertices are 3 units
left and right of the center, or at and at Also,

so Thus the foci are located at at and at
as shown in Figure 9.31.1�4 � 3 12 , �3 2 ,

F21�4 � 3 12 , �3 2F1c � 118 � 3 12 .

c2 � a2 � b2 � 9 � 9 � 18,

1�1, �3 2 .1�7, �3 2
a � 3,

y � �3
x2

a � b � 3.1�4, �3 2

1x � 4 2 2

9
�
1y � 3 2 2

9
� 1.

1x � 4 2 2 � 1y � 3 2 2 � 7 � 2 or 1x � 4 2 2 � 1 y � 3 2 2 � 9.

� 1x � 4 2 2 � 1 y � 3 2 2 � 7.

� 1x � 4 2 2 � 16 � 1 y � 3 2 2 � 9

x 2 � y2 � 8x � 6y � 3 1x 2 � 8x � 16 2 � 16 4 � 3 1 y2 � 6y � 9 2 � 9 4

�

Based on their graphs and the vertical line test, hyperbolas (like ellipses) can-
not be functions because any x-value can lead to two distinct y-values. Of course, if
an x-value is beyond the limits of the ellipse, there is no corresponding y-value.
Similarly, if an x-value is between the two branches of a hyperbola whose axis is
horizontal, there is no corresponding y-value.

Applications of the Hyperbola Probably the most significant application of
the hyperbola has been the long range navigation (LORAN) system used around
the world by sailors to locate their positions before the advent of the global po-
sitioning system (GPS) that makes use of orbiting satellites. With LORAN, radio
transmitters along coastal waters emit simultaneous radio signals that are
picked up by electronic equipment on ships. As we demonstrated in Example 1
with sound waves, there will usually be a difference in the times at which a ship

x

y

(–4, –3)F2 F1 y = −3

FIGURE 9.31

FIGURE 9.32
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FIGURE 9.33

receives radio signals from different stations, and this difference is used to
“place” the vessel on a specific hyperbola. When the same procedure is used with
other radio transmitters in the LORAN network, the ship is simultaneously
“placed” on a second hyperbola. Finding a point of intersection of the two hy-
perbolas and locating the position of the vessel is then a relatively simple matter,
as illustrated in Figure 9.32.

In Example 5 we demonstrate the actual use of these ideas. To do so, we use the
fact that any radio wave travels at the speed of light, or about 186,300 miles per sec-
ond, or 300,000 kilometers per second.

EXAMPLE 5
A sailboat is out on Long Island Sound when a heavy fog moves in. To the south of the
sailboat, on Long Island’s shore, are two LORAN radio transmitters 60 km apart at
points P and Q. A third transmitter is to the north on Connecticut’s shore at point R,
which is 40 km directly north of P. Figure 9.33 depicts this situation.

a. The receiver on the boat receives signals from P and Q that arrive 0.00016 second apart.
Find an equation of the hyperbola having foci at P and Q on which the boat is located.

b. The receiver on the boat receives signals from P and R that arrive 0.0001067 second
apart. Find an equation of the hyperbola having foci at P and R on which the boat is
located, based on the same coordinate system used in part (a).

c. Estimate the location of the boat based on the results of parts (a) and (b).

Solution

a. Suppose that we set up a coordinate system with a horizontal axis through P and Q and
the origin midway between them, as shown in Figure 9.34. In this system, the coordi-
nates of P are and the coordinates of Q are One focus of the hyperbo-
la is at Q, so we have Suppose that the sailboat is at S with coordinates on
this hyperbola. The difference in times between receipt of the two signals is 0.00016 sec-
ond; using the speed of light as this difference in times is equiva-
lent to a difference in distance of
That is, so 

For a hyperbola so that

b2 � c2 � a2 � 130 2 2 � 124 2 2 � 324 or b � 18.

c2 � a2 � b2,
a � 24.2a � 48,

300,000 km>second 	 0.00016 seconds � 48 km.
300,000 km>second,

1x, y 2c � 30.
130, 0 2 .1�30, 0 2
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FIGURE 9.34

Consequently, the equation of this hyperbola, which opens to the left and the right, is

b. We now consider the hyperbola with foci at P and R and center at the point
as shown in Figure 9.35. We use and to represent the parameters

for this hyperbola. Because the hyperbola opens upward and downward, its equation
has the form

1y � 20 2 2

a1 

2 �
1x � 30 2 2

b1 

2 � 1.

c1b1 ,a1 ,1�30, 20 2 ,

x2

124 2 2
�

y2

118 2 2
� 1.

(−30, 20)

(−30, 36)

(−30, 4) S

x

y

R (−30, 40)

P (−30, 0)

FIGURE 9.35

The distance between the foci is 40 km, so we have 
The difference in time for receipt of the two signals is 0.0001067 second, which is

equivalent to a difference in distance of so 
and Therefore

and the equation of this hyperbola is

c. To locate the position of the sailboat, we have to find the point of intersection of the
two hyperbolas. (Note that there can be as many as four points of intersection, but in
practice we would know which branch of each hyperbola the boat is on, based on the
strength of the signal, so the problem reduces to finding a single point of intersec-
tion.) Although we can find the point of intersection algebraically, to do so is rather
complicated, so instead we estimate the point graphically. Using the equation of the
first hyperbola from part (a), we have

so that

y2 � 324 a
x2

576
� 1b .

y2

118 2 2
�

x2

124 2 2
� 1 or 

y2

324
�

x2

576
� 1

1y � 20 2 2

116 2 2
�
1x � 30 2 2

112 2 2
� 1.

b1ˇ

2 � c1ˇ

2 � a1ˇ

2 � 120 2 2 � 116 2 2 � 144 or b1 � 12,

a1 � 16.
2a1 � 32300,000 	 0.0001067 � 32 km,

c1 � 20.
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FIGURE 9.36

Figure 9.36 shows that the sailboat is above the line on which the center and the foci
lie, so y must be positive (otherwise the boat would be on land). We therefore take the
positive square root and get

y � 18 B x2

576
� 1 .

Similarly, starting with the equation of the second hyperbola, we have

so that

Because the sailboat, as shown in Figure 9.35, is closer to the transmitter at P than the one
at R, we need the lower branch of the hyperbola. Taking the negative square root gives

To locate the sailboat, we need to find the point where the curves corresponding
to these two equations intersect. From Figure 9.36 we estimate graphically that the
point of intersection occurs at about and That is, the sailboat
is located about 2.21 km off the north coast of Long Island at a position about

east of the transmitter at point P.

�

The Parabola

We have shown that the graph of any quadratic function is a
parabola opening upward or downward. However, the same parabolic shape can
open to the left or the right, as shown in Figure 9.37, although neither of these
graphs represents a function. To unify these ideas about parabolas, we consider the

y � ax2 � bx � c

30 � 24.18 � 5.82 km

y � 2.21.x � �24.18

y � 20 � �16 B 1x � 30 2 2

144
� 1 or y � 20 � 16 B 1x � 30 2 2

144
� 1 .

1y � 20 2 2 � 256 c
1x � 30 2 2

144
� 1 d .

1y � 20 2 2

116 2 2
�
1x � 30 2 2

112 2 2
� 1 or 

1y � 20 2 2

256
�
1x � 30 2 2

144
� 1
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9.4 Conic Sections: The Hyperbola and The Parabola 615

parabola from a somewhat different perspective in terms of its geometric defini-
tion as a conic section. We define a parabola as the set of all points in the plane for
which the distance to a single fixed point is equal to the distance to a fixed line, as
depicted in Figure 9.38. The fixed point is called the focus of the parabola. The
fixed line is the directrix of the parabola.

The Equation of a Parabola For convenience, we place the focus of the
parabola at the point F on the y-axis with coordinates and let the directrix
be the horizontal line as shown in Figure 9.38. The graph shown corre-
sponds to the case where The parabola consists of all points P having the
property that the distance from P to the focus F is equal to the vertical distance
from P to the directrix line L. Thus a point P with coordinates lies on the
parabola if the distance from P to F, equals the distance from
P to the line L, which is that is,

We square both sides of this equation and get

or, equivalently, when we expand the equation, we have

We subtract and from both sides of this equation and obtain

Finally, we add 2cy to both sides and solve for y;

This is the equation of a parabola with vertex (or turning point) at the origin. If
the parabola opens upward. If the parabola opens downward. The

vertical line through the vertex is called the axis of symmetry of the parabola.
c � 0,c � 0,

y �
x2

4c
 .

x2 � 2cy � 2cy.

c 2y 2

x2 � y2 � 2cy � c2 � y2 � 2cy � c2.

x2 � 1 y � c 2 2 � 1 y � c 2 2,

2x2 � 1y � c 2 2 � y � c.

y � c;
2x2 � 1 y � c 2 2 ,

1x, y 2

c � 0.
y � �c,

10, c 2

x

y

x

y

FIGURE 9.37

P

L y  =  −c

c

c

F(0, c)

x

y

FIGURE 9.38
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FIGURE 9.39

The equation of a parabola with its vertex at and opening vertically is

The equation of a parabola with its vertex at and opening horizontal-
ly is

x � x0 �
1y � y0 2

2

4c
.

1x0 , y0 2

y � y0 �
1x � x0 2

2

4c
.

1x0 , y0 2

Alternatively, had we positioned the focus on the x-axis at F with coordinates
with a vertical directrix at then we would have obtained

as the equation for the parabola. This parabola likewise has its vertex at the origin;
it opens to the right if and opens to the left if Finally, its axis of sym-
metry is now the horizontal line through the vertex, as depicted in Figure 9.39.

c � 0.c � 0

x �
y2

4c

x � �c,1c, 0 2

More generally, we can describe a parabola whose vertex is at with the
following standard forms of the equation of a parabola.

1x0 , y0 2

Reflection Property of the Parabola Just as the ellipse has a remarkable—and
useful—reflection property, the parabola has one that is even more commonly en-
countered. It can be shown that any ray coming into a parabola along a line paral-
lel to the axis of symmetry of the parabola will “reflect” off the curve and pass
through the focus, as shown in Figure 9.40. Alternatively, any ray emanating from
the focus will reflect off the parabola and continue on a path parallel to the axis of
symmetry. This reflection property is used, for example, in flashlights and in the
headlights of an automobile, where the light source is located at the focus and the
beams of light bounce off a parabolic reflector to concentrate more light in a par-
ticular direction. The reflection property is also used by satellite TV dishes, which
are constructed in such a way that every cross section containing the axis of sym-
metry of the dish is a parabola, as illustrated in Figure 9.41. The TV signals com-
ing from a satellite relay in orbit arrive at the dish along rays parallel to the axis of
the dish and its parabolic cross sections. They reflect off the dish and pass through
a receptor unit positioned at the focus. There the signal is collected and then
transmitted to the television set.
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9.4 Conic Sections: The Hyperbola and The Parabola 617

Conic Sections in General

The general equation of a conic section has the form

where A, B, C, D, and E are constants and at least one of A and B is nonzero. When
we divide both sides by A to get

which is the equation of a circle, provided that certain conditions are satisfied that
lead to a positive radius. When and the resulting equation is quad-
ratic in x but only linear in y and so gives the equation of a parabola opening either
upward or downward. Similarly, when and we get a parabola open-
ing either left or right. If A and B have the same sign—say, both are positive—the
resulting curve is an ellipse, provided that certain conditions are satisfied. If A and
B have opposite signs, the curve is a hyperbola. Thus, for instance,

represents an ellipse, whereas

both represent hyperbolas (one of which opens left and right and the other opens up
and down). You have to be able to identify the type of curve from the given equation.

Finally, our discussions of conic sections have been restricted to their being in
standard position—that is, their axes are parallel to the x- and y-axes. However, the
same shapes can be rotated through some angle about the x-axis. When that 
occurs, the equation for the conic section—whether an ellipse, hyperbola, or
parabola—includes a term of the form xy. For the most part, we aren’t concerned
with such situations here except for the case

where k is any constant. If we solve for y, this equation is equivalent to the power
function

y �
k
x

� kx�1.

xy � k,

u

4x2 � 9y2 � 8x � 36y � 5 � 0 and 25y2 � 16x2 � 10y � 8x � 3 � 0

4x2 � 9y2 � 8x � 36y � 5 � 0

B � 0,A � 0

A � 0,B � 0

x2 � y2 �
C

A
 x �

D

A
 y �

E

A
� 0,

B � A � 0,

Ax2 � By2 � Cx � Dy � E � 0,

x

y

F(0, c)

c

FIGURE 9.40 FIGURE 9.41
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This function is not defined at and has two branches, the more familiar
one in the first quadrant when and a symmetric one in the third quadrant
when Together, they form the graph of a hyperbola that has been rotated
from standard position through an angle of or (when ), as shown
in Figure 9.42.

k � 0p>445°
x � 0.

x � 0
x � 0

Problems

1. The small satellite TV dishes now on the market for
home use have parabolic cross sections containing
the axis of the dish. The focus is located at a point
about 6 inches from the vertex of the parabola.

a. Find an equation of a parabolic cross section.
Assume that the dish is aimed directly upward—
which makes sense only at the equator because
the communications satellites are in orbit over
the equator.

b. The rim of the dish is a circle with a diameter of
18 inches at a height of about 1.5 inches above
the vertex. If the dish were extended, the rim
would enlarge. Find the diameter of the rim if the
rim reached the height, 6 inches, of the focus.

2. Suppose that a satellite receiver is 36 inches across
and 16 inches deep (vertex to plane of the rim).
How far from the vertex must the receptor unit be
located to ensure that it is at the focus of the para-
bolic cross sections?

3. In this problem, we ask you to investigate the signif-
icance of the quantities a and b in the equation of a
hyperbola

Suppose that you zoom out far enough on the
graph of the hyperbola so that what you see appears
to be a pair of lines that intersect at the origin.

a. Explain why—when x and y both are very large,
either positive or negative—you can ignore the
number 1 in the equation.

b. Ignore the number 1 and solve for y in terms of x
to find the equations of the two lines described.

c. What are the slopes of the two lines that the
branches of the hyperbola approach?

In Problems 4–13 complete the square for x and y in
each equation to obtain the standard form for a conic

x 2

a2 �
y 2

b2 � 1.
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9.5 Parametric Curves 619

section. In each case, identify the conic section and use
the pertinent information to draw its graph.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14. Explain why is not the
equation of a conic section.

15. In this problem, we ask you to look at the mathe-
matics of string and wire art designs. Start with the
hyperbola or and construct a series
of lines tangent to the curve, as shown in the ac-
companying figure. For instance, the line tangent to
the curve when crosses the x-axis at 
and crosses the y-axis at The line tangent to
the hyperbola when has an x-intercept of 4x � 2

y � 2.
x � 2x � 1

y � 1>xxy � 1

x2 � y2 � 2x � 2y � �4

9x2 � 4y2 � 18x � 16y � 6

9x2 � 4y2 � 18x � 16y � 8

4x2 � 4y2 � 24x � 16y � 43 � 0

9x2 � 16y2 � 90x � 64y � �17

4x2 � 9y2 � 16x � 18y � 31

4x2 � y2 � 24x � 2y � 4 � 0

x2 � 4y2 � 2x � 8y � 19

x2 � 4y2 � 2x � 8y � 7

x2 � 4y2 � 2x � 8y � 11

x2 � 4y2 � 2x � 8y � �1

and a y-intercept of 1. If you were to erase the
curve, you would still see its outline from the tan-
gent lines. String and wire art designers use this
idea to suggest a variety of curves by using line seg-
ments made of the string or wire. The points on the
axes are selected so as to follow the outline of a de-
sired curve, such as the hyperbola.

10 2 3 4 5

1

2

3

4

5

x

y

1
xy = 

a. Find the slope m of each of the five tangent lines
shown in the figure.

b. Find a formula for the slope m as a function of
the point of tangency x.

Parametric Curves

Throughout our discussion of functions, we have almost always considered expres-
sions for which the dependent variable is given in terms of the independent vari-
able. In some cases, however, introducing an additional variable, a parameter, can
provide more insight into what is happening.

Parametric Representations of a Line

There are many ways to write an equation of a line, including the point–slope
form, the slope–intercept form, and the normal form. However, certain questions
about a line can’t be answered with any of these forms. For instance, as we demon-
strated in Section 9.2, if we want to locate the point that is a certain fraction of the
way from the point P at to the point Q at it is essential to use the
parametric form

for the line, where the parameter t takes on any value. With this form, each possible
value of t gives a corresponding point on the line through P and Q.

 y � y0 � 1y1 � y0 2 t
 x � x0 � 1x1 � x0 2 t

1x1 , y1 2 ,1x0 , y0 2

9.5
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t = 0

FIGURE 9.43

b. Note that each value of the parameter t gives rise to a pair of values x and y, which in turn
produces a point To show that these points lie on a line, we consider just the x and
y values in the table. Each successive x value increases by 4 units and, simultaneously,
each corresponding y value decreases by 3. Because there is a constant change in y when
the x’s are uniformly spaced, we conclude that these points lie on a line and so the para-
metric equations represent a line. In particular, the slope of this line is 

c. Figure 9.43 shows the plot of these points and the line through them.


y>
x � � 
3
4 .

1x, y 2 .

EXAMPLE 1
Consider the parametric equations and 

a. Construct a table of values for x and y corresponding to 0, 4.

b. Use the table to explain why the two equations give a linear function.

c. Plot the points and draw the line that passes through them.

Solution

a. When the parametric equations yield and 
Similarly, when the equations give and

We show the results for the given values of t in the following
table:

� 5.y � 5 � 310 2
x � 2 � 410 2 � 2t � 0,5 � 31�1 2 � 8.

y �x � 2 � 41�1 2 � �2t � �1,

1, . . . ,t � �1,

y � 5 � 3t.x � 2 � 4t

�

The pair of equations

giving x and y in terms of the parameter t is called a parametric representation or
the parametric equations of the line. More generally, if we have a curve instead of a
line, the pair of equations for x and y in terms of a parameter t is a parametric rep-
resentation of the curve.

EXAMPLE 2
Eliminate the parameter t from the pair of parametric equations and

and so find the slope–intercept form for the equation of this line.y � 5 � 3t
x � 2 � 4t

x � 2 � 4t and y � 5 � 3t

gord.3896.09.pgs  4/24/03  10:16 AM  Page 620



9.5 Parametric Curves 621

Solution We start with the parametric equation and solve for t:

When we substitute this expression into the parametric equation for y, we get

or

which is the point–slope form for the equation of a line with slope that passes
through the point This value for the slope is the same value we found in Exam-
ple 1. Figure 9.43 shows that the line clearly passes through the point which is
also a point in the table we created in Example 1.

�

The Path of a Projectile

Another case of a parametric representation of a function is the path of a thrown
object, such as a football. The path, or trajectory, is a parabola of the form

However, for most real-world applications, the equation of the parabola by itself
is of little value. Far more important is knowing when the ball, or other object,
will reach a particular point. Therefore introducing time as a variable is neces-
sary, and we do so by writing both x and y, the coordinates of each point along
the parabola, in terms of a parameter t that represents time. In particular, if the
object is released at time from an initial height with an initial velocity 
at an initial angle as shown in Figure 9.44, then at any time t thereafter, it
turns out that

x � 1v0 cos a 2 t and y � � 

1

2
 gt 2 � 1v0sin a 2 t � y0 .

a,
v0y0t � 0

y � ax2 � bx � c.

12, 5 2 ,
12, 5 2 .

� 
3
4

y � 5 � � 

3

4
 1x � 2 2 ,

y � 5 � 3t � 5 � 3 a
1

4
b 1x � 2 2 � 5 �

3

4
 1x � 2 2 ,

4t � x � 2 so that t �
1

4
 1x � 2 2 .

x � 2 � 4t

x

y

v0

y0

α

FIGURE 9.44

Each of these expressions can be thought of as a function of the parameter t, so we
rewrite them as

x1t 2 � 1v0cos a 2 t and y1t 2 � �  

1

2
 gt 2 � 1v0sin a 2 t � y0 .
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FIGURE 9.45

Each value of t determines a corresponding value for x (the horizontal distance)
and a value for y (the vertical height), which produces a point on the parabo-
la. Again, the pair of equations for x and y as a function of the parameter t is a para-
metric representation of the curve, and the two equations are the parametric
equations of the curve.

Parametric Representation of a Circle

The fact that the parametric representations of a line and of a parabola are so valu-
able suggests that parametric representations of other curves might also be useful.
There are two key steps: (1) to decide on an appropriate parameter t, and (2) to
find a way to express the usual variables x and y in terms of t.

We begin with a circle of radius r centered at the origin:

Recall that we can express both x and y in terms of an angle drawn from the cen-
ter of the circle, as shown in Figure 9.45. We write

x � r cos u and y � r sin u.

u

x2 � y2 � r 2.

1x, y 2

In retrospect, this equation is a parametric representation of the circle with the
angle as the parameter. For each value of we can calculate x and y and so get
the point on the circle. In fact, we can use any other letter, such as t, and
get

as a parametric representation of the circle.
If we start with a parametric representation of a curve, we can sometimes

eliminate the parameter to construct a single equation of the curve, as we did for
the line in Example 2. For the circle and we eliminate the
parameter t as follows:

Thus we are left with the usual equation for the circle.x2 � y2 � r 2,

x2 � y2 � 1r cos t 2 2 � 1r sin t 2 2 � r 21cos2t � sin2t 2 � r 2.

y � r sin t,x � r cos t

x � r cos t and y � r sin t

1x, y 2
u,u
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FIGURE 9.46

Parametric Representation of an Ellipse

Now let’s consider the ellipse centered at the origin with its major axis along the x-axis:

Its graph is shown in Figure 9.46. The question is: What might be an appropriate
parameter to introduce to help describe this ellipse?

x2

a2 �
y2

b2 � 1.

EXAMPLE 3
Find a parametric representation of the ellipse.

Solution Visualize a point moving around the ellipse shown in Figure 9.46. Although
we can locate each point P in terms of its x- and y-coordinates, we may also be able to lo-
cate it by using the angle determined by P and the positive x-axis. How do we express x
and y as functions of

At first thought, you might be tempted to create a right triangle by dropping a per-
pendicular from P to the x-axis, as we did for the circle. The problem with this approach
is that the length of the hypotenuse would change along with as the point P moves
around the ellipse, unlike a circle in which the lengths of the line segments from O to P
remain constant. Thus the angle is not a good choice for the parameter.

Nevertheless, our experience with the circle can provide some guidance. The para-
metric representation of a circle of radius r is

If we think of the ellipse as having a “radius” of a associated with x and a “radius” of b as-
sociated with y, we might write

Let’s see if doing so makes sense. Suppose that is any point on the ellipse so that x
and y must satisfy

If we substitute our conjectured expressions for x and y into this equation, we find that

 � cos2t � sin2t � 1.

 
1a cos t 2 2

a2 �
1b sin t 2 2

b2 �
a2cos2t

a2 �
b2sin2t

b2

x2

a2 �
y2

b2 � 1.

1x, y 2

x � a cos t and y � b sin t.

x � r cos t and y � r sin t.

u

u

u?
u
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1Note that in Parametric mode, different calculators use t or T as the “generic” variable just as
different models use x or X as the “generic” variable in the usual Function mode.

Because these expressions for x and y as functions of t satisfy the equation of the ellipse,
we conclude that and form a parametric representation of the el-
lipse with parameter t.

�

Using a Calculator

One of the options available on all graphing calculators is a Parametric mode.
To use it, you need to supply an expression for x in terms of the parameter t and an
expression for y in terms of t.1 You then have to define a window not only in terms
of x and y, but also in terms of an interval of values for the parameter t. Enter the
parametric representation

for the ellipse

with a range of values for the parameter from 0 to in radians. Verify that the
graph is indeed that of an ellipse.

To use this parametric representation, suppose that we want to know the point
on the ellipse

corresponding to a value of the parameter—say, We find that

Alternatively, suppose you are told that the point lies on the ellipse.
(Verify that it does.) To find the value of the parameter t for this point, we consider

The first of these equations gives

from which

Verify that this value of t also satisfies the second equation y � 3 sin t � 9>5.

t � arccos a
4

5
b � 0.6435 radian.

cos t �
4

5
 ,

 y � 3 sin t �
9

5
 .

 x � 5 cos t � 4

14, 9>5 2

 y � 3 sin a
p

6
b � 1.5.

 x � 5 cos a
p

6
b � 4.330

t � p>6.

x2

25
�

y2

9
� 1

2p

x2

25
�

y2

9
� 1

 y � 3 sin t

 x � 5 cos t

y � b sin tx � a cos t
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Parametric Representations of a Hyperbola

We now consider how to write a parametric representation of the hyperbola.

EXAMPLE 4
Show that the equations

are a parametric representation of the hyperbola

Solution If we substitute the expressions for x and y into the equation of the hyperbo-
la, we get

But, recalling the trigonometric identity

we see that the previous expression equals 1. Thus the two equations for x and y satisfy
the equation of the hyperbola and therefore represent a pair of parametric equations of
the hyperbola.

�

An alternative way to develop a parametric representation of the hyperbola re-
quires introducing two new functions known as the hyperbolic sine and the
hyperbolic cosine. We discuss them briefly in the Problems at the end of this section.

Parametric Representations of a Parabola

At the beginning of this section, we described how to find a parametric representa-
tion of the parabolic path of a projectile. We now consider the same situation geo-
metrically. Actually, we can introduce a parameter in an extremely simple way. If
the equation of the parabola is

we can let so that

This approach may strike you as somewhat unfair (too easy!), but it is effective. In
fact, it can be used with any function Let’s look at one of the advantages
of doing so.

If we restrict our attention to the right-hand side of the parabola, we know
that the curve is strictly increasing (if ) and so has an inverse We know
that the graph of the inverse function is the mirror image of the graph of f about

f �1.a � 0

y � f 1x 2 .

y � at2 � bt � c.

x � t,

y � ax2 � bx � c,

1 � tan2u �
1

cos2u
 or 

1

cos2u
� tan2u � 1,

 �
1

 cos2t
� tan2t.

 
1a>cos t 2 2

a2 �
1b tan t 2 2

b2 �
a2

a2 cos2t
�

b2 tan2t

b2

y2

a2 �
x2

b2 � 1.

x � b tan t and y �
a

cos t
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y
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2a

a

FIGURE 9.47

the diagonal line However, in all but the simplest cases, finding an explicit,
or closed form, expression for the inverse is not easy, or even possible. Without
such a formula for constructing the graph of the inverse function would nor-
mally be almost impossible.

With parametric functions, however, this becomes a simple chore. Recall the
definition of a function and its inverse function. If for each value of x,
the function determines a single corresponding value for y. The inverse function
undoes this process in the sense that, for each value of y, returns the value of x
that led to y. We can draw the graph of f in the parametric form

by using the Parametric mode of the graphing calculator. To produce the
graph of the inverse function, all we need do is reverse the roles of x and y. That
is, if we set

so that

the calculator will draw the graph of the inverse function! Try it with, say, the right
side of a parabola or with an exponential function, where you know what the func-
tion and its inverse should look like.

Other Parametric Curves

Many curves that cannot be represented simply, if at all, with y as a function of x
can be represented fairly readily with parametric equations. Suppose that your
friend has a reflector attached to the rim of her bicycle tire. As she rides past you at
a constant speed, you observe that the path of the reflector is a curve such as the
one shown in Figure 9.47. This curve, showing y as a function of x, is called a
cycloid. If the radius of the tire is a, the parametric representation of the cycloid is

x � at � a sin t and y � a � a cos t,

y � t � f �11x 2 ,

x � f 1t 2 and y � t,

x � t and y � f 1t 2

f �1

y � f 1x 2 ,

f �1,
f �1

y � x.

where the parameter t represents time. We simply cite these equations, which are
typically derived in calculus, and only discuss their reasonableness here. Since the
variable is time, be sure that you graph all such curves in radian mode.

Let’s begin with the expression for the height of the reflector
as a function of time t. The constant term a is the vertical shift, so y oscillates

y � a � a cos t
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9.5 Parametric Curves 627

above and below it as the midline. The amplitude also equals a, so the height y ac-
tually oscillates between 0 and 2a, which makes sense in terms of the physical
phenomenon.

What about the expression for the horizontal distance? Note
that this expression involves a sine term, which oscillates between and a. This
term is subtracted from at, which grows linearly, which again should make sense.
The bicycle wheel is rolling along, so the horizontal distance traveled by the center
of the wheel is simply at. Because the reflector is rotating about the rim of the tire,
there must be an oscillatory adjustment to the linear distance covered.

In Problem 26 of Section 2.5, we raised the question about the shape of a water
slide along which a person would slide most rapidly from one point to another; it
is called the brachistochrone problem. From physical principles, the curve should be
decreasing and concave up, so that the person gains the greatest speed at the begin-
ning of the slide. It turns out that the specific curve along which the time needed is
a minimum is an upside-down cycloid.

Let’s consider another application involving a parametric representation of a
curve. You have likely seen a spirograph, a toy with which you can draw intricate
shapes by tracing curves as one plastic wheel rotates about another plastic wheel.
Suppose that you have a large wheel of radius b and a smaller wheel of radius a that
is rolling on the outside of the larger wheel, as shown in Figure 9.48. A fixed point
on the outer (rolling) circle describes a curve that is known as an epicycloid. A
parametric representation of the epicycloid is

 y � 1a � b 2sin a
at

b
b � a sin c a

a � b

b
b t d .

 x � 1a � b 2cos a
at

b
b � a cos c a

a � b

b
b t d

�a
x � at � a sin t

Let’s see what the path of the fixed point on the rolling circle looks like. As the
outer circle rolls on the fixed inner circle, the point on it moves back and forth, get-
ting closer to and farther from the origin. It is closest to the origin—at a distance
b—at the points where the two circles touch. It is farthest from the origin when the
point is at the farthest possible position on the rolling circle, a distance of
At any other time, the point is at an intermediate distance between b and b � 2a.

b � 2a.

b a

FIGURE 9.48
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The actual shapes of epicycloids are often visually surprising and striking, as
shown in Figure 9.49 for and t between 0 and A much sim-
pler case is when the fixed inner circle has a radius of and the rolling circle
has a radius of which gives the epicycloid shown in Figure 9.50 for t be-
tween 0 and the same curve thereafter repeats with period because
the identical points are repeatedly traced out. We also superimpose the inner fixed
circle to indicate how the epicycloid is traced out by the fixed point as the outer
(unseen) circle rolls around on the inner circle.

8p8p � 25.13;
a � 1,

b � 4
421p.b � 28,a � 11,

In the Problems for this section we ask you to experiment with the epicycloid
and other curves by using parametric equations. You will see some surprising shapes
if you simply try interesting combinations of functions. A favorite parametric curve
that you can try is the “snowman” function whose parametric representation is

x � t �
1

2
 sin 10t and y � 5 sin t �

1

2
 cos 10t.

Problems

1. Consider the parametric representation of the line

a. Construct a table of points that lie on this line
and find the slope of the line from the table.

b. Use the slope and a point on the line to write an
equation of the line with y as a function of x.

y � 2 � 5t.x � 4 � 3t,
c. How does the slope of the line relate to the coef-

ficients in the parametric representation?
d. Eliminate the parameter t algebraically by solv-

ing for t from the first equation and substituting
the result into the second.
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7. Repeat Problem 5 with and 5, 7, and 9.

8. Figure 9.47 shows the graph of a cycloid, which is
the path of a reflector mounted on the rim of a tire
of radius a. Determine the coordinates of the points
where the curve touches the horizontal axis.

9. A hypocycloid is the curve generated by a fixed
point on a circle of radius a that rolls around the in-
side of a larger circle of radius b. The parametric
equations for a hypocycloid are

 y � 1b � a 2sin t � a sin c a
b � a

a
b t d .

 x � 1b � a 2cos t � a cos c a
b � a

a
b t d

b � 3,a � 2

b < a

e. Eliminate the parameter t algebraically by solv-
ing for t from the second equation and substitut-
ing the result into the first.

2. Consider the parametric representation of the line:

a. Based on the results of part (c) of Problem 1,
what do you expect the slope of this line to be?

b. Create a table of values for this line and use the
entries to sketch the graph of the line.

c. Find a point–slope form of the equation of the
line.

d. Find an equation of the line by eliminating the
parameter t algebraically.

3. Consider the curve given in parametric form

a. Create a table of values for this function by using
2 and plot the points to

construct a rough sketch of the graph.
b. Draw the curve using the Parametric mode on

your function grapher. How does the result
compare to that in part (a)?

c. Eliminate the parameter t algebraically by first
solving for t in terms of x.

d. Graph the function you obtained in part (c) by
using the Function mode on your function
grapher. How does it compare to your graph in
part (b)?

4. Consider the curve with the parametric representa-
tion 

a. Create a table of values for this function, using
0, and plot the points to con-

struct a rough sketch of the graph. What surpris-
ing result do you get?

b. Use your function grapher in Parametric
mode to verify that the result you obtained in
part (a) is correct.

c. In terms of x and y, what are the domain and
range for the curve you found in part (a)?

d. Eliminate the parameter t algebraically and ex-
plain why you got the shape you did.

5. Use the Parametric mode on your function graph-
er to draw the graph of the epicycloid with and

Repeat with and while
keeping Do you see any pattern in the periods
of these curves? Do you observe any pattern in the
number of loops that you get? Explain these patterns.

6. Repeat Problem 5 with and 8, 10, and
12. How do the curves you get compare to the ones
you obtained before?

b � 6,a � 1

a � 1.
b � 6b � 5,b � 4,b � 3.

a � 1

1, . . . ,t � �1,

y � t2 � 2.x � t2 � 1,

�1, . . . ,�1.5,t � �2,

y � t2 � 2.x � t3 � 1,

y � 4 � 5t.x � 7 � 3t,

b a

Use your function grapher to see the shapes that
result when (a) (b)
(c) and (d)

10. Suppose that a bicycle reflector is mounted partway
along one of the spokes in a wheel at a distance

from the center of the wheel. How should the
parametric equations for the cycloid be modified to
reflect this new position?

b � a

b � 3.a � 2,b � 4;a � 1,
b � 3;a � 1,b � 2;a � 1,

11. In the equations for the cycloid,
and use the second equation to
solve for t and then substitute the result into the
first equation to eliminate the parameter and ob-
tain x as a function of y. What does the resulting
equation tell you about the path of the reflector?

y � a � a cos t,
x � at � a sin t
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The Polar Coordinate System

As we discussed in Section 9.1, the polar coordinate system is based on the idea that
every point in the plane must lie on some circle centered at the origin. In this coor-
dinate system, the origin is known as the pole. To locate a point P in such a system,
we must indicate the radius r of the particular circle on which P lies, as shown in
Figure 9.51. That is, does P lie on a circle of radius or a circle of radius 
or a circle of radius Knowing that P lies on a specific circle still does
not locate the point exactly. We must also specify where the point lies on that circle.
Is it at an angle of or an angle of or an angle of measured counter-
clockwise from the horizontal?

263°45°30°

r � 4.2689?
r � 4r � 3

9.6

To formulate these ideas more precisely, let’s develop some appropriate termi-
nology. We first introduce a horizontal axis starting at the pole and pointing to the
right. It is called the polar axis and serves as a reference. The distance from the pole
to the point P, which is equivalent to the radius of a circle centered at the pole, is de-
noted by the coordinate r. To locate a specific point P on this circle of radius r, we
must indicate how far around the circle P lies, starting from the polar axis. We meas-
ure this distance around the circle in terms of an angle coordinate drawn counter-
clockwise, or in a positive direction, from the polar axis, as shown in Figure 9.52.
Thus we can locate any point in the plane if we know its distance r from the pole (to
determine a circle) and the angle around this circle. The polar coordinates of the
point P consist of r and so we write the point as 

For example, a point that lies 5 units from the pole at an angle of or 
radians, with the polar axis has polar coordinates or as shown in
Figure 9.53. Similarly, the point Q that lies 3 units from the pole at an angle of

or has coordinates or 
We can visualize the polar coordinates of a point P in the following alternative

way. Any point is located on a line passing through the pole, as measured by the
angle of inclination which is known as the polar angle. The particular location
of the point P along that line is determined by its distance r from the pole. Thus P
can be visualized as lying at the intersection of a line through the pole and a circle
centered at the pole.

This approach has an added geometric advantage. Recall from geometry that
the radius drawn to any point on a circle is perpendicular to the tangent line at that
point. Therefore the polar coordinates of a point are determined by the intersection

u,

13, 120° 2 .13, 2p>3 2120°,2p>3,

15, p>3 2 ,15, 60° 2
p>360°,

1r, u 2 .u,
u

u
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of two curves that we can think of as being “perpendicular” at the point. This prop-
erty is analogous to what we do in rectangular coordinates where the vertical and
horizontal lines that determine a point are perpendicular to each other.

Although there are many advantages to working with a polar coordinate system,
it does have one disadvantage. In rectangular coordinates, every point has a unique
pair of coordinates. However, every point in polar coordinates has more than one
address. Consider the point 1 unit to the right of the pole on the polar axis. Accord-
ing to our discussion so far, you might conclude that its polar coordinates are 
and However, with a little thought, it should be evident that the address for
this point could also be and or and and so on. Thus
there are infinitely many polar coordinate representations of the same point.

In fact, there are still other ways to give the polar address of this point. In gen-
eral, any angle measured counterclockwise from the polar axis is considered pos-
itive; any angle measured clockwise from the polar axis is considered negative, as
illustrated in Figure 9.54. Thus our point on the polar axis could also be written as

for instance.
Furthermore, we encounter some situations in Section 9.7 in which an angle 

gives rise to a negative value for r. Let’s see what this means because a negative
value of r cannot represent the radius of a circle. If and we simply
measure a distance of 3 units along the terminal side of the angle How-
ever, if and we can locate the corresponding point by extending
the terminal side of the angle backward through the pole and measuring 3 units
along this extension, as illustrated in Figure 9.55.

r � �3,u � p>4
u � p>4.

r � 3,u � p>4

u

11, �2p 2 ,

u

u

u � 4p,r � 1u � 2p,r � 1
u � 0.

r � 1

> 0θ
< 0θ

= θ π
4

π(−3,     )
4

3

3

Terminal side

FIGURE 9.54 FIGURE 9.55
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Let’s look at this issue a bit more formally. When we draw any angle it deter-
mines a terminal side OP from the pole through some point P, as illustrated in Fig-
ure 9.56. The obvious polar coordinate representation for this point is where
r is positive because the distance is measured along the terminal side. However, we
can also represent that point by considering the angle (corresponding to an
additional rotation of radians or ) and measuring a distance r from the pole
in the opposite direction. In such a case, we think of r as negative and the polar co-
ordinates of the point as Thus, if a point P is located at and

we can consider the associated angle and assign the coor-
dinates to the point P as well.

With these ideas in mind, we can find even more ways to write our earlier
point with coordinates and For instance, we can obtain this 
point when and or when and or when 
and as illustrated in Figure 9.57.u � �p,

r � �1u � �2pr � 1u � pr � �1
u � 0.r � 1

1�3, 5p>4 2
p>4 � p � 5p>4r � 3,

u � p>41�r, u � p 2 .

180°p

u � p

1r, u 2 ,

u,

Can you think of any other coordinates for this point when r is negative? when is
negative? ❐

Hence any point in the polar coordinate system has infinitely many pairs of
coordinates. Even the pole, where has infinitely many representations be-
cause it can be thought of as corresponding to any possible angle 

Transforming Between Polar and Rectangular Coordinates

Often, it is useful to think of the two coordinate systems, polar and rectangular,
as being superimposed. In such a case, the pole and the origin are the same
point; the polar axis and the positive x-axis coincide. The question then is: How
do the coordinates of a point P in one system relate to the coordinates of the
same point in the other system? That is, how do we transform the rectangular
coordinates of a point into the equivalent polar coordinates and vice
versa?

Suppose that we start with a point P having polar coordinates and we
want to determine the corresponding rectangular coordinates x and y. From the
right triangle shown in Figure 9.58, it is clear that

1r, u 2

1r, u 21x, y 2

u.
r � 0,

uThink About This
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x � r cos u and y � r sin u.

θ

r
y = r sinθ

x = r cosθ

 = P(x, y)P(r,    )θ

FIGURE 9.58

y

y

x

P(x, y)

x

r = √x2 + y2

θ
y
x = arctan

FIGURE 9.59

EXAMPLE 1
The point P has polar coordinates and Find the corresponding rectan-
gular coordinates x and y.

Solution Using the preceding two equations, we find that the rectangular coordinates are

and

�

For the reverse problem, suppose that we start with a point P whose rectangu-
lar coordinates are as shown in Figure 9.59. We now want to find the corre-
sponding polar coordinates r and First, we observe that r is the distance from the
pole (origin) to P. The Pythagorean theorem gives

r 2 � x 2 � y 2 so that r � � 2x 2 � y 2
 .

u.
1x, y 2 ,

y � r sin u � 5 sin 
p

3
� 5 a

23

2
b � 4.33.

x � r cos u � 5 cos 
p

3
� 5 a

1

2
b � 2.5

u � p>3.r � 5

Next, observe that

Thus, given the rectangular coordinates of a point, we can find the polar co-
ordinates by using1r, u 2

1x, y 2

tan u �
y

x
 so that u � arctan 

y

x
 .

r � � 2x 2 � y 2 and u � arctan 
y

x
 .
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However, these formulas have to be used with great care, as demonstrated in
Example 2.

EXAMPLE 2
If the rectangular coordinates of a point are and find one set of polar coor-
dinates for that point.

Solution We find one set of polar coordinates using

and

or about These values give rise to infinitely many possible pairs of coordi-
nates, but not all of them are appropriate for the point P. The point P lies in the first
quadrant, as shown in Figure 9.60, so one possible polar representation is

But the coordinates are not correct because they lie in
the third quadrant. However, which is in radians or

is another possible pair of coordinates for P. But the polar coordinates
in radians or is not correct because it also is a point in the

third quadrant. Be sure to plot the point in order to decide which value of r to match
with which value of u.

15, 233.13° 215, p � 0.927 2
1�5, 233.13° 2 ,

1�5, 4.069 21�5, p � 0.927 2 ,
1�5, 0.927 21r, u 2 � 15, 0.927 2 .

53.13°.

u � arctan 
4

3
� 0.927 radian,

r � � 2x2 � y2 � � 232 � 42 � � 225 � �5

y � 4,x � 3

�

Explain why only even multiples of are used for the of the different
representations for the point P in Example 2. ❐

Polar coordinates are particularly useful in representing situations in which
there is a single special point and all other ideas of interest are centered at that
point. For instance, in physics, the total mass of a body is often assumed to be at a
single point corresponding to the pole. Thus satellites can often be thought of as
moving in circular orbits about a planet located at the pole of a polar coordinate
system. Similarly, the magnetic field associated with a magnet can be thought of as
being centered at the pole of a polar coordinate system, and all related phenomena
are often best expressed in terms of polar coordinates.

u-coordinatepThink About This
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9.6 The Polar Coordinate System 635

Problems

1. For each of the points P, Q, R, and S shown, do the
following.

a. Write a polar coordinate representation with r
and both positive.

b. Write a polar coordinate representation with r
positive and negative.

c. Write a polar coordinate representation with r
negative and positive.

d. Write a polar coordinate representation with r
and both negative.

2. A merry-go-round at an amusement park has an
inner radius of 9 feet and an outer radius of 26 feet.
On the merry-go-round are five concentric circles
of horses, 3 feet apart, starting with the innermost
circle 10 feet from the center. Let the polar axis ex-
tend from the center of the merry-go-round to the
entrance gate of the ride.

a. What are the polar coordinates of the horse in
the outer, or fifth, circle that is one-third of the
way around the merry-go-round to the right
from the gate?

b. What are the polar coordinates of the horse in
the second circle that is one-fifth of the way
around to the left from the gate?

3. Transform the rectangular coordinates in
(a)–(h) to the equivalent polar coordinates. Sketch
the location of each point in the polar coordinate
plane.

a.
b.
c.
d.
e.
f.
g. 18, 3 2
1�3, 4 2
13, �4 2
14, �4 2
1�4, �4 2
1�4, 4 2
14, 4 2

1x, y 2

u

u

u

u

h.

4. Transform the polar coordinates in (a)–(i) to
equivalent rectangular coordinates. Indicate the lo-
cation of each point graphically in the polar plane.

a.
b.
c.
d.
e.
f.
g.
h.
i.

5. A satellite is in a circular orbit about the equator at
a height of 22,800 miles above the surface of the
Earth. The radius of the Earth is about 4000 miles.
The longitude line running north–south from the
north pole to the south pole through Greenwich,
England, serves as the reference. Because the cir-
cumference of the Earth is about 24,000 miles, each

of longitude corresponds to about 1000 miles
along the equator.
15°

0°

12, �5p>3 2
12, 5p>4 2
12, 3p>2 2
1�3, �p>3 2
13, p>3 2
1�5, 0 2
1�5, p>2 2
15, p>2 2
15, 0 2

1r, u 2
13, 8 2

a. What are the polar coordinates of the Ugandan
capital Kampala, which is 3000 miles east (posi-
tive direction) of the Greenwich baseline?

b. What are the polar coordinates of the capital of
Borneo, which is about 7500 miles east of the
Greenwich baseline?

c. What are the polar coordinates of the satellite
when it passes over Quito, Ecuador, which is
5200 miles west of the Greenwich baseline?

1 2 3 4 5 6

π
6

π
3

π
2

π

π
2
3

θ = 0

Q

R S

P

r

3000 mi

22,800 mi

0°

Kampala
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r

c
c

c

cc

FIGURE 9.61

α

FIGURE 9.62

Families of Curves in Polar Coordinates

In Section 9.6, we introduced the notion of polar coordinates and considered coor-
dinates for individual points in such a system. A far more interesting and use-
ful question is: How do we represent curves and families of curves in polar
coordinates?

Recall that, in rectangular coordinates, the curve associated with an equation
consists of all points whose coordinates satisfy the equation. We use

the comparable notion when working with polar coordinates but with the under-
standing that it is only necessary that one representation of a point in polar coor-
dinates satisfies the equation.

To begin, it is usually much simpler to think of the angle as the independ-
ent variable and the distance r from the pole as the dependent variable. Thus for
most functions in polar coordinates, we write for some set of values of
the angle Then for each allowable value of the function determines a corre-
sponding value for r and the pair represents the polar coordinates of a point
P in the plane. The totality of all such points determined by the equation consti-
tutes the graph of the function. Note that writing the polar coordinates of a point
as reverses our usual notation of writing the independent variable first and
the dependent variable second, as is done in rectangular coordinates with 

Let’s begin with some particularly simple cases. First, consider the equation

where c is a constant. Thus, no matter what the angle is, the distance r from the
pole is the constant c. The set of all points that satisfy this condition forms the cir-
cle of radius c centered at the pole, as shown in Figure 9.61.

Next, consider the equation where a is a constant; note that the dis-
tance r is not explicitly mentioned. No matter what distance we use, the correspon-
ding point is always located at the angle a as measured from the polar axis. The set
of all such points forms a line, inclined at the angle a which passes through the
pole, as depicted in Figure 9.62. For instance, represents the line through
the pole inclined at a angle.45°

u � p>4

u � a,

u

r � f 1u 2 � c,

1x, y 2 .
1r, u 2

1r, u 2
u,u.

r � f 1u 2

u

1x, y 2y � f 1x 2

1r, u 2

9.7

Shapes that are far more interesting and intricate than a circle and a line arise
from relatively simple polar equations. We investigate some types of shapes and
their underlying patterns for various families of polar coordinate curves. In the rest
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9.7 Families of Curves in Polar Coordinates 637

of this section, you should use your graphing calculator set in Polar mode or a
polar graphing program for a computer.

Working with polar coordinates often has a special advantage over working
with rectangular coordinates. Consider the simple curve shown in Figure 9.63,
which is known as an Archimedean spiral. Its equation in polar coordinates is

When we have so the curve starts at the pole. As increases,
the distance r from the pole likewise increases, and as loops repeatedly around
the pole, so does the curve to form the spiral shape shown.

u

ur � 0,u � 0,r � u.

Now, let’s find an equivalent equation in rectangular coordinates, using the
transforming equations we derived in Section 9.6:

and

Substituting the first pair of these expressions into the equation we get the
rectangular equation

which is not particularly attractive. We can simplify this expression slightly by tak-
ing the tangent of both sides to eliminate the arctangent function:

Or, if we multiply through by x,

Neither of these expressions is any more attractive. Moreover, we can’t simplify any
of these expressions to write y as a function of x or to write x as a function of y. (In
fact, recall that such a curve does not represent a function.) Furthermore, none of
these rectangular expressions gives any insight into the behavior of the curve,
whereas the polar representation was very helpful in understanding the
spinal curve shown in Figure 9.63.

What happens to the spiral if ❐u � 0?Think About This

r � u

x tan 12x 2 � y 2 2 � y.

tan 12x 2 � y 2 2 �
y

x
 .

2x 2 � y 2 � arctan 
y

x
 ,

r � u,

x � r cos u and y � r sin u.

r 2 � x 2 � y 2 and u � arctan 
y

x
 ,

–8 –6 –4 –2 2 4 8

–6

–2

4

6

x

y

FIGURE 9.63
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r = cos θ

FIGURE 9.64

EXAMPLE 1
Consider the polar function whose graph is shown in Figure 9.64. By
eye, the curve appears to be circular, appears to pass through the pole, and appears to be
symmetrical about the polar axis. Show that this curve is a circle.

r � f 1u 2 � cos u,

Solution To prove that the curve is a circle, we can try to express it in rectangular coor-
dinates where the equation of a circle would be recognizable. Although we could attempt
to substitute the transforming expressions for r and into the equation using
a little trick is much easier. We multiply both sides of the given equation by r
to get

which is equivalent to the rectangular equation

To determine whether this is the equation of a circle, we complete the square in the x-terms:

so that

This is the equation of a circle with radius centered at the (rectangular) point This
circle is indeed symmetrical about the horizontal axis and does pass through the pole.

�

1. Describe the graph of

2. Describe the graph of for any multiple 

3. Describe the graph of for any multiple ❐a � 0.r � a sin u,

a � 0.r � a cos u,

r � 5 cos u.Think About This

112 , 0 2 .1
2

ax �
1

2
b

2

� y2 �
1

4
 .

 � ax �
1

2
b

2

� y2 �
1

4
� 0,

 � ax2 � x �
1

4
b �

1

4
� y2

 1x2 � x 2 � y2 � c x2 � x � a� 

1

2
b

2

� a� 

1

2
b

2

d � y2

x2 � y2 � x or x2 � x � y2 � 0.

r2 � r cos u,

r � cos u
r � cos u,u
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9.7 Families of Curves in Polar Coordinates 639

The Family of Rose Curves

Let’s consider some related curves in polar coordinates. When we graph the equa-
tion we obtain the result shown in Figure 9.65. This graph corresponds
to angles ranging from 0 to If we extend the values beyond this interval, in ei-
ther direction, the same points repeat, so the result is a periodic function with pe-
riod If you experiment with your polar function grapher, you will notice that
the graph shown is traced repeatedly when you take a large range of values for the
angle 

Don’t just look at the completed shape, but rather consider this curve and other
polar coordinate curves we discuss in a dynamic manner. How are the curves pro-
duced or traced? Think of the cursor on the calculator or the computer screen as a
moving point that traces the curve and observe carefully how the curve is generated.

Note that the graph shown in Figure 9.65 for consists of four loops
of equal size. (Actually, depending on the calculator or computer graphics pack-
age you use, there may be some distortion and the loops may not appear to be pre-
cisely the same size even though they are.) To get a better feel for how the
particular shape evolves, watch carefully as the curve is traced in Figure 9.66. Note
that it starts at the far right (corresponding to where ) and then loops
around (portion �) until it passes through the pole (corresponding to 
where ). It then starts to form a second loop
(portion �) as r takes on negative values. Eventually, it completes the loop (por-
tion �) before it again passes through the pole, this time at an angle of
so that again It then begins to form the third loop (portion � ) and com-
pletes that loop (portion �) when it passes through the pole, where It
then forms a fourth loop (portions 	 and 
), for between and It fi-
nally completes the original loop (portion �) as progresses to This curve is
known as a four leaf rose.

2p.u

7p>4.5p>4u

u � 5p>4.
r � 0.

u � 3p>4

r � cos 21p>4 2 � cos1p>2 2 � 0
u � p>4,

r � 1u � 0

r � cos 2u

u.

2p.

2p.u

r � cos 2u,

1. What shape is produced if you graph for any multiple a?

2. Describe the graph corresponding to for any multiple a. How
does it compare to the graph of the cosine function in part (1)? ❐

r � a sin 2u

r � a cos 2uThink About This

–1 –0.5 0.5 1

–1

1
r = cos 2θ

FIGURE 9.65

to 2

θ = 0

1

6
7

4

5

2 3

8

π
4

π
4

π
4
7π

4
5

0 to

to

ππ
4
7

π
4
6π

4
3 to

π
4
3to

FIGURE 9.66

gord.3896.09.pgs  4/24/03  10:16 AM  Page 639



640 CHAPTER 9 Geometric Models

Let’s now make a relatively simple change and consider instead of
the four-leaf rose 

EXAMPLE 2
Describe the graph of

Solution The resulting graph is shown in Figure 9.67, but we need to observe carefully
how the curve is traced. First, we observe that the curve now consists of only three loops,
and they are traced for values of between 0 and For any angles outside the interval

the same points are produced, so the polar curve is periodic with period even
though the function is periodic with period Next, we observe that
the curve starts when and to produce the point at the far right. It then forms
a half loop and passes through the pole when The lower left full loop is traced
for values of between and The upper left full loop is traced as ranges from

to The bottom half of the right-hand loop is completed as ranges from
to This curve is known as a three-leaf rose.p.5p>6

u5p>6.p>2
up>2.p>6u

u � p>6.
r � 1u � 0

2p>3.f 1u 2 � cos 3u
p,30, p 4 ,

p.u

r � cos 3u.

r � cos 2u.
r � cos 3u

�

In general, the family of curves given by or for any posi-
tive integer n are called rose curves. Figures 9.68(a) and (b) show the graphs of

and note that they contain eight and five loops, or petals,
respectively.

r � cos 5u;r � cos 4u

r � sin nur � cos nu

–0.6 1

–1

1

r = cos 3θ

FIGURE 9.67

–1 1

–1

1 r = cos 4θ

(a)

FIGURE 9.68

–1 –0.5 1

–1

–0.5

0.5

1
r = cos 5θ

(b)
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9.7 Families of Curves in Polar Coordinates 641

1. Investigate some other cases using your polar function grapher until you
can devise a rule to predict the number of petals in the rose curve

for any positive integer n. Are there any numbers of petals that
cannot occur in this family of rose curves? If so, what are they?

2. What can you conclude about the number of petals in the related family of
rose curves given by ❐

The Family of Cardioids

Let’s consider another family of polar coordinate curves, those given in the form
Figure 9.69 shows the graph of with The

heart-shaped appearance of this curve suggested its name, a cardioid.
a � 1.r � 1 � cos u,r � a11 � cos u 2 .

r � sin nu?

r � cos nu

Think About This

EXAMPLE 3
Describe how the graph of the cardioid is traced.

Solution We start with so that The curve begins at the point at the far
right. As increases to the curve arches upward. For between and the curve
bends downward and eventually inward to the pole; the resulting point at is called
a cusp. As the angle increases from to the curve traces the mirror image of the
upper half of the cardioid; this cardioid is symmetric about the polar axis with period 

�

Those of you who have read Section 8.4 on chaos have seen that the primary
central portion of the Mandelbrot set is a cardioid.

a. What is the effect of a multiple a on the shape of the curve

b. Describe the graph of the related equation How does it
compare with the cardioid ❐

Sketch some graphs of the related equations Identify an
axis of symmetry for them. ❐

Suppose that you combine the ideas on the rose curves and the cardioids
to consider the class of polar equations of the form for dif-
ferent positive integers n. Determine a pattern regarding their shapes. ❐

r � 1 � cos nu
Think About This

r � 1 � sin u.Think About This

r � 1 � cos u?
r � 1 � cos u.

r � a11 � cos u 2?

Think About This

2p.
2p,pu

u � p
p,p>2up>2,u

r � 2.u � 0

r � 1 � cos u

–0.5 0.5 1 1.5 2

–1

–1.5

1

1.5
r = 1 + cos θ

FIGURE 9.69
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The Family of Limaçons

An extension of the cardioid known as the limaçon is defined by the equations
and In particular, we consider two cases:

and When both equations reduce to that of a cardioid. Figure 9.70
shows the graph of r � 3 � 4 cos u.

a � b,a � b.
a � br � a � b sin u.r � a � b cos u

The curve starts at the far right, where and The curve then traces
around the upper arch and eventually bends inward to pass through the pole. After
passing through the pole, the curve traces the small inner loop and then passes
through the pole again. It then traces the large outer loop below the polar axis,
which is a mirror image of the large loop above the polar axis. The resulting curve
is called a limaçon with a loop. (It comes from the Greek word limax, for snail, be-
cause the first half of the curve traced from to resembles a snail-like
shape.) For the curve precisely repeats this behavior.

EXAMPLE 4
At what angles does the limaçon curve pass through the pole?

Solution The graph of the limaçon in Figure 9.70 shows two such angles—one in the
“second quadrant” and the other in the “third quadrant”. To find these angles, we use the
fact that the pole corresponds to Therefore, if we set we get the equation

Thus one angle at which the limaçon passes through the pole must satisfy is

We use the symmetry of the cosine function to find the second solution at ra-
dians, or These values agree with the visual estimates that can be made by look-
ing at Figure 9.70.

�

Figure 9.71 shows the graph of the polar curve This curve is
known as a limaçon without a loop, or a dimpled limaçon. It is similar in appearance
to a cardioid, but it does not reach the pole.

r � 5 � 4 cos u.

221.41°.
u � 3.864

u � arccos a� 

3

4
b � 2.419 radians, or 138.59°.

3 � 4 cos u � 0 so that cos u � � 

3

4
 .

r � 0,r � 0.

r � 3 � 4 cos u

u � 2p,
u � pu � 0

r � 7.u � 0

–1 1 3 5 7

–5

–3

3

5 r = 3 + 4 cos θ

θ  ≈ 221.4°

θ  ≈ 138.6°

FIGURE 9.70
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–2 2 4 6 8 10

–6

–2

2

6
r = 5 + 4 cos θ

FIGURE 9.71

–2.5 –0.5 0.5 2.5

–1

–1.5

1.5

2 r = sin5     + 8sin   cos3   θ θ θ

FIGURE 9.72

Can you account for the fact that the curve never passes
through the pole (where ) and so never produces a loop? ❐

Devise criteria based on the values of a and b in so that
you can determine whether there is a loop. Be sure that you graph a variety
of limaçons using your polar function grapher to collect enough informa-
tion to know that you are correct. ❐

Describe the shape of limaçons given by ❐

What happens in the related family of limaçons given by ❐

We urge you to experiment with the curves generated by polar coordinate
equations. You can get some incredibly striking effects just by creating strange
combinations of different functions. For instance, the graph of the polar function

is the butterfly shape shown in Figure 9.72.

r � sin5u � 8 sin u cos3u

r � a � b sin u?Think About This

r � a � b cos u.Think About This

r � a � b cos uThink About This

r � 0
r � 5 � 4 cos uThink About This

Explore systematically some family of polar functions—say, for various
integers n. You may well discover some fascinating new patterns and add some new
items to the literature of mathematics. ❐

r � sinnuThink About This
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Problems

In Problems 1–11, graph each polar curve using your
polar function grapher. For each, use a variety of inter-
vals for the angle until you obtain a “good” picture of
the graph.

1. (Cissoid of Diocles)

2. (Conchoid of Nicomedes)

3. (Bifolium)

4. (Trisectrix)

5. (Cochleoid)

6. (Lituus)

7. (Cruciform)

8. (Ellipse)

9. (Lemniscate of Bernoulli)

(Caution: Be sure to restrict your attention to values of
that cause the right-hand side to be positive.)

10. (Generalized Lemniscate)

(Caution: Some programs and calculators are not able
to evaluate the cube root of a negative number.)

11.

12–22. Repeat Problems 1–11 by changing some of the
terms. What happens to the shape you produced if
you use different values for the coefficients? What
happens if you interchange sines and cosines? What
happens if you change the multiples of Keep a
record of what you do and of your findings.

23. Consider the family of “hybrid rose curves”1 given
by for any rational number a>b.r � cos1ab u 2

u?

r �
4

sin u

r 3 � 4 cos 3u

u

r 2 � 4 cos 2u

r �
10

3 � 2 cos u

r �
8

sin 2u

r �
42u

r �
3 sin u

u

r � 5 a4 cos u �
1

cos u
b

r � 4 sin u cos2u

r �
1

sin u
� 2

r �
4 sin2u

cos u

u

a. By experimenting with different combinations
of a and b, can you determine any rules for pre-
dicting the number of (overlapping) loops that
will result? If so, state them.

b. Can you determine any rules for predicting the
interval of angles needed to trace one complete
petal of this curve? If so, state them.

c. Can you determine any rules for predicting the
interval of angles needed to trace the entire
curve? If so, state them. (Hint : Consider different
cases, depending on whether a and b are odd or
even.)

24. Consider the family of polar curves given by

a. After graphing the curves corresponding to
and what shape do you expect for
for 

b. Account for the fact that the shapes are not what
you expected.

c. Determine a pattern for the number of loops
that will correspond to any value of n.

d. What interval of angles corresponds to a com-
plete curve? Do the same conclusions apply to

25. Consider the family of generalized lemniscates given
by Can you find any pattern for the
number and location of the loops that will result for
any n? (Caution: When you try to graph these
curves, you must take into account intervals of an-
gles for which the function is well defined.)

26. Consider the family of generalized lemniscates given
by Can you determine a pattern for the
number and location of the loops that will result for
any n? If so, what is it?

27. Consider the family of generalized limaçons given
by Can you find a pattern for the
number and location of the loops that will result
for any n? If so, what is it?

r � a � b cos nu.

r n � cos nu.

r 2 � cos nu.

r � cosnu?

n � 4?n � 3?
n � 2,n � 1

r � sinnu.

u

u

Chapter Summary

In this chapter we introduced and discussed a variety of topics related to coordinate
systems in general and several specific coordinate systems in particular. This includes:

1These curves were studied in detail by a student, Kenneth Gordon, in the article, Investigating the
petals of hybrid roses, Mathematics and Computer Education, 1992, 26, 66–73.
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Review Problems 645

1

1
x

y

a.

(√13, –1)(–√13, –1)

1

1

x

y

b.

1

1
x

y

a.

1
–1

x

y

b.

� What a coordinate system is.

� How to find the distance between points in the plane.

� How to find the midpoint of a line segment.

� How to find a point at any given distance along the line through two points.

� The parametric equations of a line.

� The equation of a circle.

� The equation of an ellipse, including finding its center, vertices, and foci.

� The reflection property of an ellipse and its applications.

� The equation of a hyperbola, including finding its center, vertices, and foci.

� Applications of the hyperbola.

� The equation of a parabola, including finding its vertex, focus, and directrix.

� The reflection property of a parabola and its applications.

� The parametric representation of curves in the plane.

� What the polar coordinate system is and how to transform between polar
and rectangular coordinates.

� The behavior of families of curves in polar coordinates.

Review Problems

1. Find an equation of each ellipse shown. 2. Find an equation of each hyperbola shown.
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1

1
x

ya.

2

2

x

yb.

40 ft

16 ft

))
))

))
))

))
))

))
))

))
))

))
))))))))))))))))))))))))))))))))))

4. Identify the conic whose equation is and
sketch the curve.

In Problems 5–9, determine the equation for the stan-
dard form of the conic section. Identify the conic and
sketch the curve. Wherever applicable, give the focus
(foci), vertex (vertices), and center for each conic.

5.

6.

7.

8.

9.

10. Find the equation of the ellipse with foci 
and and with vertices and 

11. Find the equation of the ellipse centered at 
with one focus at and the minor axis 4 units
long.

12. Find the equation of the hyperbola centered at
with one focus at and the correspon-

ding vertex at 12, 6 2 .
12, 7 212, 3 2

10, 3 2
1�6, 3 2
110, 0 2 .1�10, 0 218, 0 2
1�8, 0 2

3y2 � 2x2 � 12y � 12x � 24 � 0

3x2 � 4y2 � 6x � 24y � 45 � 0

2x2 � 3y2 � 20x � 12y � 28 � 0

x2 � y2 � 8x � 6y � 9 � 0

x2 � 6x � y � 34 � 0

xy � 5

13. Find the equation of the hyperbola that has vertices
and passes through the point 

14. Find the equation of the set of points P with coor-
dinates in the plane such that the sum of the
distance from to P and the distance from

to P is 30.

15. An ellipse passes through the point P at 
and has foci at and Use the geomet-
ric definition of an ellipse to find the equation of
this ellipse.

16. The ceiling of a whispering gallery is built so that
the highest point of the structure is 16 feet above
the floor. The floor has vertices 40 feet apart. Where
along the axes should each person stand to be able
to get the “whispering effect”? Ignore the height of
the two people.

13, 0 2 .1�3, 0 2
113>2, 2 2

1�12, 0 2
112, 0 2

1x, y 2

16, 180 2 .10, �4 2

17. A lithotripter is a medical device used by doctors to
break up kidney stones by bombarding them with
intense bursts of sound waves, using the reflection
property of an ellipse. The device is situated so that
the sound waves emanate from one focus, reflect off
an elliptic-shaped bowl, and come together to strike
the kidney stone at the other focus. The distance
between the two foci is 23 cm, and the distance
from the source focus to the vertex on the elliptic
reflector bowl is 3 cm. Find the equation of an ellip-
tic cross section of the lithotripter bowl.

18. Let and Graph the points
for 0, 1, and 2. Find the function

determined by the parametric equations.

19. Sketch the parametric curve given by

20. Let and 

a. Graph the curve for 
b. Eliminate t and write an expression for the curve

in x and y.
c. At what value of x is y � 0?

�4 � t � 4.

y � t 3 � 1.x � t 2 � 3

x � 3t and y � t 2 � 1,  for �2 � t � 2.

�1,t � �2,1x, y 2
y � 2 � 3t.x � 4 � t

3. Find an equation of each parabola shown.
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21. Sketch the curve

a. Eliminate the parameter to find the expression
for y as a function of x.

b. What is the largest possible domain for this
function?

22. Graph the equations

and

for

23. Compare the graph in Problem 22 to the graphs of

a.
b.
c.
d. Determine the period of each graph in parts 

(a)–(c).

24. Use appropriate trigonometric identities to elimi-
nate t and write the following expressions in terms
of x and y:

25. Transform each point from rectangular coordinates
to an equivalent point in polar coordinates.

a.
b.
c.
d.

26. Transform each point from polar coordinates 
to rectangular coordinates.

1r, u 2
10, 6 2 .
14, �1 2
1�1, 3 2
13, 3 2

1x, y 2

x � cos 2t and y � sin t.

y � cos t.x � sin 6t,
y � cos 2t;x � sin 6t,
y � cos 2t;x � sin 4t,

�2p � t � 2p.

y � cos 
1

2
 t,x � sin 2t

x � 1 � log t and y � log t,  for 1 � t � 10.

a.
b.
c.
d.
e.
f.

27. Using polar coordinates, sketch the curve

Convert the polar expression to rectangular coordi-
nates and find the equation of the conic.

28. The polar equation of a well-known family of
curves is

What are these curves?

In Problems 29–32, compare the graphs of each set of
equations.

29. and 

30. and 

31. and 

32. and r � sin 5u.r � sin 3u,r � sin u,

r � sin 4u.r � sin 2u,r � sin u,

r � cos 5u.r � cos 3u,r � cos u,

r � cos 4u.r � cos 2u,r � cos u,

r �
1B cos2u

a2 �
sin2u

b2

.

r �
1

1 � cos u
 .

15, 2 2
15, 5p>6 2
14, 5p>4 2
14, 3p>2 2
13, p>4 2
13, p>3 2
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10

Matrix Algebra and 
Its Applications

Geometric Vectors

In the early 1800s, physicists found that most physical quantities could be catego-
rized in one of two ways: those that have only size, such as length, time, or mass,
and those that have both size and direction, such as force, velocity, or acceleration.
Quantities that have only size, or magnitude, are called scalars; those that have
both magnitude and direction are called vectors. We use lightface, italic lowercase
letters, such as a, m, or x to denote scalars; we use boldface, roman lowercase letters
such as b, v, or x to denote vectors.

Although vectors may represent physical (as well as other) quantities, we will
think of them geometrically in this section. In two dimensions, we visualize a vec-
tor as an arrow connecting two points, as shown in Figure 10.1. The length of the
arrow represents the magnitude of the vector. The slope of the line through any
two points on the arrow, along with the arrowhead, gives the direction of the vec-
tor v. In three dimensions, we likewise visualize a vector as an arrow connecting
two points, as shown in Figure 10.2.

10.1

x

y

O

θ

M
ag

ni
tu

de

v

FIGURE 10.1

y

x

z

v

P

O

Q

FIGURE 10.2

Any vector starting at the origin is known as a position vector because it gives the
position of the arrowhead with respect to the origin. A vector connecting two points
P and Q, sometimes written is called a displacement vector; it indicates howv � PQ,
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to get from P to Q by moving a given distance from P in the desired direction. Ob-
viously, a position vector is also a displacement vector, indicating how to move from
the origin to point Q. But a displacement vector is not a position vector if it starts at
any point P other than the origin.

If we know the coordinates of the initial point and the final point of the arrow,
we can write the vector simply. First, we consider the position vector v from the
origin to the point shown in Figure 10.3. It involves moving 3 units to the
right and 4 units upward from the origin, and we write the vector v as either a

row vector or as a column vector The numerical entries 3 and 

4 in the vector are called its components. The decision to write the vector as a row vec-
tor or as a column vector is usually a matter of choice, so long as you are consistent.
We cover several specific cases later in this chapter in which the choice of column
vectors is essential; in this section we primarily use row vectors for convenience.

The magnitude of the vector is the length of the arrow, as shown in
Figure 10.3. It is the distance from the origin to the point and so is 5, using
the Pythagorean theorem.

Next, we consider the displacement vector w from the point to the
point as shown in Figure 10.4. It involves a move of to the
right and a move of vertically. We therefore write this vector 

either as the row vector or as the column vector Note 

that, in a displacement vector, the components are the differences in the coordinates
of the points defining the vector. The magnitude of the vector 
equals the distance from one point to the other, or

 � 225 � 144 � 2169 � 13.

 Magnitude � 2111 � 6 2 2 � 13 � 15 2 2 � 252 � 1�12 2 2

w � 35 �12 4

w � B 5

�12
R .w � 35 �12 4

�12 1�3 � 15 2
5 1�11 � 6 2111, 3 2 ,

16, 15 2

13, 4 2 ,
v � 33 4 4

v � B3
4
R .v � 33 4 4

13, 4 2

650 CHAPTER 10 Matrix Algebra and Its Applications

x

y

O 3

45

(3, 4)

v =  3  4

FIGURE 10.3 x

y

O

13
–12

5

w =  5  –12

(11, 3)

(6, 15)

FIGURE 10.4

If then

7 v 7 � 2a2 � b2
 .

v � 3a b 4 ,

We write the magnitude of a vector v as In general, in two dimensions, we
have the following.

7 v 7 .
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10.1 Geometric Vectors 651

If then

7 v 7 � 2a2 � b2 � c2
 .

v � 3a b c 4 ,

For example, if then 
Similarly, in three dimensions we can write a vector v in terms of three compo-

nents a, b, and c as The magnitude of such a vector is defined anal-
ogously with the Pythagorean theorem.

v � 3a b c 4 .

7 v 7 � 272 � 1�4 2 2 � 265 .v � 37 �4 4 ,

However, specifying the direction of a vector in space is considerably harder than
in the plane, and we don’t go into it here.

EXAMPLE 1
Find the magnitude of the vector from the point to the point 

Solution We first write this vector in terms of its components, which are the differences in
each of the three coordinates. Therefore 
and its magnitude is

�

We say that two vectors v and w are equal, written if all their corre-
sponding components are equal. For instance, but

Geometrically, two vectors are equal if they have the same magnitude and the same
direction. Figure 10.5 shows that (they have the same magnitude and the
same direction); but (they are parallel and have the same direction, but have
different magnitudes) and (they have the same magnitude, but do not have
the same direction because they are not parallel).

v � w
v � x

v � y

C1

8

2

S � C1

0

2

S
.

33 4 7 4 � 33 116 7 4 ,
v � w,

7 v 7 � 222 � 1�5 2 2 � 42 � 24 � 25 � 16 � 245 .

v � 33 � 1 �3 � 2 8 � 4 4 � 32 �5 4 4 ,

13, �3, 8 2 .11, 2, 4 2

x

y

O

y
w

v

x

FIGURE 10.5
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x

y

O

3

8

5 4

(x + 3, y + 4)

(x, y)

(x + 6, y + 8)

v =  3  4

w = 2v

10

6
FIGURE 10.6

Two vectors v and w are parallel if and only if one is a multiple of the other.

A Constant Multiple of a Vector

If the vector it seems reasonable to assume that two times v is just

Does this make sense geometrically? Figure 10.6 shows v as the displacement vec-
tor from an arbitrary point to the point Note that the mag-
nitude of v is 5. We also show the vector starting from the same point

it extends 6 units to the right and 8 units up, so it ends at the point
From the Pythagorean theorem, the magnitude of w is

7w 7 � 262 � 82 � 2100 � 10.

1x � 6, y � 8 2 .
1x, y 2 ;

w � 36 8 4
1x � 3, y � 4 2 .1x, y 2

2v � 2 . 33 4 4 � 36 8 4 .

v � 33 4 4 ,

Thus the magnitude of w is twice the magnitude of v. So multiplying v by 2 pro-
duces a vector that is twice the length of v, but in the same direction.

In general, for any vector and any scalar multiple m,

is a vector m times as long as v (shorter if ) that points in the same di-
rection if If the multiple the resulting vector is parallel to v, but it
points in the opposite direction.

Moreover, this definition of the multiple of a vector suggests the following im-
portant and useful fact.

m � 0,m � 0.
0 � m � 1

m 
.

 v � 3ma mb 4

v � 3a b 4
w � 2v

Unit Vectors
EXAMPLE 2

Find a vector u of length 1 that is in the same direction as the vector 

Solution Because the vector u we want to find is in the same direction as v, it will be
parallel to v and so must be some multiple of v, as shown in Figure 10.7. The
problem is to find the appropriate multiple m. The magnitude of v is

7 v 7 � 21�6 2 2 � 82 � 236 � 64 � 2100 � 10.

u � m . v,

v � 3�6 8 4 .
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x

y

O–6

8 10

v =  –6  8

u

FIGURE 10.7

The vector u we seek is to have length 1, so it must be one-tenth of v. That is,

�

Any vector whose length is 1 is called a unit vector. In general, if v is any
nonzero vector, a unit vector u in the same direction as v is

In two dimensions, the two most important unit vectors are the coordinate vec-
tors along the horizontal and vertical axes. The unit coordinate vector pointing to
the right is denoted by and the unit coordinate vector pointing up-
ward is denoted by 

The Sum of Two Vectors

We add vectors—whether they are two row vectors or two column vectors—by
adding the corresponding components. For instance, if and

are row vectors, their sum is the row vector

In general, if and are any two row vectors,

Geometrically, adding vectors involves “adding” the arrows, which can be
thought of in two ways. First, in Figure 10.8 vector w is “moved” so that it starts at
the end of vector v and still points in the same direction. (Equivalently, vector w is
replaced by an equal vector that starts at the end of vector v.) Then is the
vector from the start of v to the end of w. The sum of the two vectors is the third
side of the triangle formed by the vector v and the shifted vector w.

Alternatively, in Figure 10.9, v and w form adjacent sides of a parallelogram. The
upper side has the same length as v and is parallel to v; therefore it equals v. Similar-
ly, the right side of the parallelogram has the same magnitude as w and is parallel to
w, so it equals w. The sum then is the long diagonal in the parallelogram.v � w

v � w

v � w � 3v1 � w1 v2 � w2 4 .

w � 3w1 w2 4v � 3v1 v2 4

v � w � 34 �9 4 � 37 3 4 � 34 � 7 �9 � 3 4 � 311 �6 4 .

w � 37 3 4
v � 34 �9 4

j � 30 1 4 .
i � 31 0 4 ,

u �
v

7 v 7
 .

u � a
1

10
b v � c� 

6

10
 

8

10
d .
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x

y

O

w w

v

v + w

FIGURE 10.8

x

y

O

w w

v

v

v + w

FIGURE 10.9

x

y

O

v =  a  b
= ai + bj

ai

bj

FIGURE 10.10

The Coordinate Vectors i and j

One of the advantages of the coordinate vectors and is that
any vector in the plane can be written in terms of i and j. In particular,
as shown in Figure 10.10, the vector v can be thought of as the sum of a horizontal
vector with magnitude a and a vertical vector with magnitude b. We write the hor-
izontal vector with magnitude a as ai and the vertical vector with magnitude b as
bj. Consequently, v � 3a b 4 � ai � bj.

v � 3a b 4
j � 30 1 4i � 31 0 4

All operations with vectors, such as addition, can be done in terms of i and j.

EXAMPLE 3
Given the vectors and find (a) their sum and (b) 4 times the
first vector.

Solution
a. The sum of the two vectors is 

b.

�

Applications of Vectors

We next look at several examples involving physical situations that use vector
addition.

4v � 413i � 5j 2 � 12i � 20j.

v � w � 13i � 5j 2 � 17i � 4j 2 � 10i � j.

w � 7i � 4j,v � 3i � 5j
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F

Fy

Fx

70°

20°

30 pounds

FIGURE 10.11

EXAMPLE 4
Tom is trying to open a window that is stuck. He exerts a force of 30 lb at an angle of
with the wall. What is the effective vertical force that he exerts upward against the window?

Solution We start by drawing a sketch of the situation, as shown in Figure 10.11. The
force that Tom exerts is a vector F whose magnitude is 30 and whose direction is at a 
angle with the wall. The force actually consists of two components—one vertically up-
ward which represents the effective force that he exerts to raise the window, and the
other perpendicular to the window, which doesn’t have any effect on moving the
window vertically. Thus the total force F is just the sum of the two vectors and and
what we seek is the vertical vector Fy .

Fy ,Fx

1Fx 2
1Fy 2 ,

20°

20°

The angle at the upper vertex of the triangle is so the angle at the starting point
of vector F is The length of the hypotenuse of the triangle is just the magnitude of
the force vector, or Using trigonometry, we have

where the length of the hypotenuse is Therefore the length of the vertical side
of the triangle is and the corresponding vertical vector
is Consequently, the effective force that Tom exerts upward to move
the window actually is

�

EXAMPLE 5
A flock of Canadian geese is trying to fly due south for the winter with a constant veloc-
ity of 12 mph. A stiff wind is blowing at a constant rate of 20 mph from a direction 
west of north. Find the actual direction that the geese end up flying and their actual
speed with respect to the ground.

Solution We begin with a sketch of the situation, as shown in Figure 10.12. Each goose
is trying to fly due south, so there is one velocity vector, g, for the goose having magnitude
12 and pointing vertically downward. In addition, each goose is pushed by the wind,
which is coming from a northwesterly direction. The wind is represented by a second ve-
locity vector, w, having magnitude 20 and pointing from a direction west of north.35°

35°

7Fy 7 � 30 sin 70° � 28.19 pounds.
Fy � 30 28.19 4 .

7F 7 sin 70° � 30 sin 70° � 28.19,
7F 7 � 30.

sin 70° �
opposite

hypotenuse
 ,

7F 7 � 30.
70°.

20°,
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The actual velocity vector for the goose is the sum of these two vectors. To find the
direction that a goose actually flies—and then the speed at which it flies—we need to
find the components of Because the goose is trying to fly due south, g has only a
vertical component of so The velocity vector for the wind has both
a horizontal and a vertical component. Using trigonometry, we see that the horizontal
component of w is Similarly, the vertical component of w is

(it is negative because it is directed downward). Consequently,
the wind vector w is

Thus the sum of the two vectors is

The actual speed with which the goose flies is the magnitude of this vector which is

Next, to find the direction in which the goose flies, we need to find the angle that
the vector makes with the vertical. From the large right trangle in Figure 10.12,
we find

so that

Thus the geese actually end up flying in a direction east of south instead of due south.

�

The Difference of Two Vectors

We define the difference of two vectors and to be

that is, we simply take the difference of corresponding components.

v � w � 3v1 � w1 v2 � w2 4 ;

w � 3w1 w2 4v � 3v1 v2 4

22°

u � arctan 0.404 � 22°.

 �
11.47

28.38
� 0.404

 tan u �
20 sin 35°

20 cos 35° � 12

g � w
u

Speed � 2111.47 2 2 � 1�28.38 2 2 � 2131.56 � 805.42 � 2936.90 � 30.61.

g � w,

g � w � 30 �12 4 � 311.47 �16.38 4 � 311.47 �28.38 4 .

w � 311.47 �16.38 4 .

�20 cos 35° � �16.38
20 sin 35° � 11.47.

g � 30 �12 4 .�12,
g � w.

20 cos 35°

20 mph

12 mph

20 sin 35°

35°

θ

w

g
g + wFIGURE 10.12
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For instance, if and then Alter-
natively, in terms of the unit vectors i and j, and so that

Now let’s interpret the difference of two vectors geometrically. Consider the
vector x in Figure 10.13, which connects the end of v to the end of w. We know
from the sum of two vectors that

v � x � w so that x � w � v.

v � w � 114i � 3j 2 � 16i � 10j 2 � 8i � 7j.

w � 6i � 10j,v � 14i � 3j
v � w � 38 �7 4 .w � 36 10 4 ,v � 314 3 4

In general, the difference of two vectors always connects the end of the second vec-
tor to the end of the first. The only question is: Which way does the difference vec-
tor point? The easiest way to decide that is to draw a sketch such as Figure 10.13.

Another way of looking at the difference is to think of it as
where

a vector with the same length as w but pointing in the opposite direction.

� w � 1�1 2 3w1 w2 4 � 3�w1 �w2 4 ,

v � w � v � 1�w 2 ,
v � w

x

y

w

v

x

OFIGURE 10.13

1. Plot each position vector as an arrow in the xy-
plane from the origin to the point having the ap-
propriate coordinates.

a. b.

c. d.

e.

2. Using the vectors in Problem 1, plot the result of:

a. Adding vector u to vector r.
b. Adding vector r to u. Compare your answer to

the vector obtained in part (a).

v � B�1

�2
R

u � B 3

�4
Rt � B�2

4
R

s � B2
4
Rr � B4

0
R

c. Adding t to s.
d. Adding u to v.

3. Using the vectors in Problem 1, plot each vector in
a–c on the same graph.

a. The result of adding one-half of r to one-half
of s.

b. The result of adding one-quarter of r to three-
quarters of s.

c. The result of adding three-quarters of r to one-
quarter of s.

d. Plot r and s. Draw a straight line joining these
two vectors. Which of the vectors drawn in parts
(a), (b), and (c) lie on this line?

Problems
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13. a. If a jet plane is flying on a heading of due east at
600 mph and the wind is blowing due south at
100 mph, what are the actual direction and
speed of the plane?

b. Repeat part (a) if the plane is flying due east at
600 mph and the wind is blowing in a direction
that is south of east at 100 mph.

c. Repeat part (a) if the plane is flying southwest (
south of west) at 300 mph and the wind is blowing
in a direction south of west at 100 mph.50°

45°
40°

658 CHAPTER 10 Matrix Algebra and its Applications

4. Determine the magnitude of the position vectors
from the origin to the following points.

a. b.
c. d.
e. f.

5. Determine the magnitude of the displacement vec-
tor from point A to point B for each pair of points.

a.
b.
c.
d.
e.

6. Determine the vector that is the given multiple of
the vector 

a. 2 b. 7
c. d. 0

7. Determine the vector that is the given multiple of
the vector 

a. 3 b. 10
c. d.

8. Find the unit vector that points in the same direc-
tion as the given vector.

a. b.
c. d.
e. f.

9. Express each vector as a sum of multiples of the co-
ordinate vectors and 

a. b.
c. d.

10. Express each vector as a sum of multiples of the three
coordinate vectors 
and 

a. b.
c. d.

11. Refer to Example 4 in the text. What is the upward
force on the window if Tom exerts

a. a force of 30 lb at an angle of
b. a force of 20 lb at an angle of
c. a force of 40 lb at an angle of

12. a. A sliding door is difficult to open. If Claire exerts
a horizontal force of 30 lb at an angle of to
the sliding door, what is the effective force on the
door in the direction in which the door slides?

b. Repeat part (a) with a force of 25 lb at an angle
of 40°.

25°

15°?
30°?
25°?

30 1
2 0 43�1 �3 1 4

32 0 3 431 2 3 4
k � 30 0 1 4 .

j � 30 1 0 4 ,i � 31 0 0 4 ,

33 0 43 12 
1
2 4

3�1 3 432 1 4
j � 30 1 4 .i � 31 0 4

31 �1 1 431 2 2 4
31 �1 430 5 4
31 1 433 4 4

1
2�7

33 �1 2 4 .

�2

31 2 4 .

B � 13, �1, 2 2A � 1�1, 6, 3 2 ,
B � 14, 5, 3 2A � 11, 2, 3 2 ,
B � 1�3, �4 2A � 11, �3 2 ,

B � 14, 1 2A � 1�2, �1 2 ,
B � 15, 5 2A � 11, 2 2 ,

12, �3, 4 211, 2, 2 2
1�7, �3 213, �2 2
112, 5 213, 4 2

25°

30 pounds

20°

40°

N

EW

S

600 mph

100 mph
N

EW

S

14. Suppose that a boat is moving at 10 mph in the di-
rection of north of east across a bay and the tide
is moving the water in the bay at 4 mph in the di-
rection of west of south. What are the actual di-
rection and speed of the boat? (Hint: Express both
the boat’s vector and the tide’s vector in terms of
the two coordinate vectors i and j).

40°

20°

c. Repeat part (a) with a force of 40 lb at an angle
of 20°.
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Linear Models

The real-world problems to which people apply mathematical models often involve
large and very complex situations. For instance, one might want to analyze the effect
that imposing a per gallon tax on gasoline would have on the national economy
with its thousands of interdependent businesses and industries. An airline must have
a reservations system that takes into account all its aircraft, the cities it serves, flight
schedules, dates, and different fare structures in effect. A company may need a battery
of tests that can predict how well applicants will perform at a given job. The data in
such problems usually come in the form of a rectangular array of numbers, called a
matrix. For example, if four students, Ann, Bob, Carol, and Dan, take exams in
French, mathematics, and sociology, the set of exam results could be displayed in the
matrix

Ann Bob Carol Dan

Thus, for instance, Bob received an 81 in sociology and Carol a 94 in math.
Matrix algebra provides a systematic way of working with such arrays of num-

bers. In this chapter, we develop the basic language and methods of matrix algebra
that will allow you to use matrices to solve various problems involving systems of
linear equations.

We refer to a rectangular array of numbers as an matrix when it has m
rows horizontally and it has n columns vertically. A matrix thus has 3 hori-
zontal rows and 4 vertical columns, as in the preceding matrix of exam scores. We use
boldface capital letters, such as A, to denote matrices in print. (When writing matri-
ces by hand, you may find it convenient to use a wavy line under the letter, as in A.)

Two more examples of matrices are

Here A is a matrix and N is a matrix because it has two rows across
and three columns vertically.

We denote the entry in row i and column j of matrix A by Thus in matrix A,
because is the entry in the first row and the third column, whereas

because 6 is the entry in the third row and first column. Similarly, in ma-
trix N, because 4 is the entry in the second row and the third column.

When a matrix has only one row or only one column, we call it a row vector or
a column vector, respectively, or simply a vector. A vector having three numbers is
called a 3-vector, whereas a vector consisting of n numbers is called an n-vector. As
noted in Section 10.1, we use boldface lowercase letters, such as b or x, to denote
vectors. Note that any vector is also a matrix. Some examples of vectors are

b � 31 3 0 5 4 and x � C2

4

1

S  .

n23 � 4
a31 � 6

�1a13 � �1
aij .

2 � 33 � 3

A � C5 1 �1

1 7 2

6 5 0

S and N � B1 0 3

1 7 4
R .

3 � 4
m � n

French

Mathematics 

Sociology

C84 73 82 85

88 78 94 92

76 81 83 78

S

50¢

10.2
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660 CHAPTER 10 Matrix Algebra and Its Applications

Here b is a row 4-vector and x is a column 3-vector. We write for the first entry
in vector b, for the second entry in b, and for the ith entry in b. Thus for the
vectors b and x, we have and 

Recall from Section 10.1 that two vectors v and w are equal, written if
all their corresponding entries, or components, are equal. Similarly, two matrices
are equal if all their corresponding components are the same.

Any list of numbers can be thought of as a column vector or a row vector.
Whether we choose a column or row format if only vectors are involved usually
doesn’t matter, but when a vector and a matrix are multiplied, it is important to
distinguish clearly whether the vector is a row vector or a column vector. For rea-
sons that will be clear shortly, we usually treat most vectors as column vectors. Note
that a column n-vector is an matrix and a row n-vector is a matrix.

An matrix A can be thought of as a set of n column m-vectors or as a set
of m row n-vectors. In the case of students and their test results, each column vec-
tor of the matrix gives the scores for one student in all these courses, whereas each
row vector gives the scores in one course for all these students.

We use the following notation to refer to rows and columns in a matrix:

denotes the jth column vector in A; and

denotes the ith row vector in A.

For instance, in the matrix

A Geometric View of Vectors

In Section 10.1, we presented vectors geometrically as positions and displacements
in coordinate space. As we pointed out there, vectors can be used to represent
points in space. In two-dimensional space, we use a 2-vector; in three-dimensional
space, we use a 3-vector. The point in the plane can be thought of as the 

2-vector Similarly, the point in three-dimensional space with coordi-

nates or equivalently, can be written
as the 3-vector

Thus the coordinates of a point become the components of a position vector.
We next consider how matrices in general and vectors in particular occur in

applied problems from many different fields.

A Clothes Production Model

A textile company runs three clothing factories. Each factory produces three types
of women’s clothing: vests, pants, and coats. For simplicity, we assume that one size
fits all. Suppose that the first factory produces 20 vests, 10 pants, and 5 coats from

C3

2

7

S  .

x3 � 7,x2 � 2,x1 � 3,z � 7,y � 2,x � 3,

13, 2, 7 2B5
2
R .

15, 2 2

A � C5 1 �1

1 7 2

6 5 0

S  ,  a 2 � C1

7

5

S and a œ
1 � 35 1 �1 4 .

a œ
i

a j

m � n
1 � nn � 1

v � w,
x2 � 4.b2 � 3

bib2

b1
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10.2 Linear Models 661

each roll of cloth. The second and third factories produce different amounts of
these three products, as described in matrix A.

Factory 1 Factory 2 Factory 3

Each column of A is a vector of clothing produced by a factory from one roll of
cloth. For instance, Factory 3 has the output vector

which indicates that it makes 4 vests, 5 pants, and 12 coats from each roll. Each row
of A is a vector of factory production of one particular type of clothing from one
roll of cloth. The row vector for coats is which indicates that
Factory 1 produces 5 coats, Factory 2 produces 5 coats, and Factory 3 produces 12
coats from each roll.

Let denote the number of rolls of cloth used by the first factory; similarly,
and denote the numbers of rolls used by the second and third factories, respective-
ly. Suppose that the company gets an order for 500 vests, 850 pants, and 1000 coats.
This triple of numbers is called the demand, which we write as a column vector

Then and need to satisfy the system of linear equations

In words, the vests equation says: The number of vests produced by Factory 1,
(this expression is 20 vests per roll times the rolls used by Factory 1), plus the
number of vests produced by Factory 2, which is plus the number of vests pro-
duced by Factory 3, which is must equal the demand of 500 vests.

As we demonstrate in Section 10.3, we can write this system of linear equations
as the matrix–vector equation

We can also write this as a single vector equation in the column vectors of the ma-
trix as

x1C20

10

5

S � x2C 4

14

5

S � x3C 4

5

12

S � C 500

850

1000

S  .

C20 4 4

10 14 5

5 5 12

S  Cx1

x2

x3

S � C 500

850

1000

S  .

4x3 ,
4x2 ,

x1

20x1

 coats:  5x1  �  5x2  �  12x3  � 1000.

 pants:  10x1  �  14x2  �  5x3  � 850

 vests:  20x1   �  4x2   �  4x3    � 500

x3x2 ,x1 ,

C 500

850

1000

S  .

x3

x2x1

a œ
3 � 35 5 12 4 ,

a 3 � C 4

5

12

S  ,

Vests

Pants

Coats

 C20 4 4

10 14 5

5 5 12

S � A
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662 CHAPTER 10 Matrix Algebra and Its Applications

If b is the demand vector on the right side of the matrix–vector equation and x
is a (column) vector of the matrix algebra gives us a way to write the system of
linear equations concisely in terms of A, b, and x as We discuss how to do
this in Section 10.3. In Section 10.5, we extend these ideas to solve any system of
three equations in three variables by using matrix algebra techniques.

The expression is a linear expression in three variables; it in-
volves only the first power of the variables and Other cases are the expres-
sions on the left side of the preceding system of linear equations. More formally, a
linear expression is one that involves a sum of terms made up of constants multiply-
ing individual variables that are raised only to the first power. In contrast, a nonlinear
expression involves one or more variables that are raised to various powers (different
from 1), or exponential, logarithmic, trigonometric, or other more complex expres-
sions. (This terminology is similar to that used to describe linear difference equa-
tions.) The term linear is used to indicate that a “line-like” graph is associated with
each variable in the expression. For example, the vest expression is
a linear expression; if and are fixed—say, —with only remaining
as a free variable, the resulting expression or de-
fines a function whose graph is a line.

The clothing production equations form what is called a linear model because
the equations involve only linear expressions (linear equations). In the following
sections, we will return to this and other models introduced here as we develop the
mathematical methods needed to analyze linear models.

A Markov Chain Model for the Stock Market

We next develop a linear model for the behavior of the stock market. Here we show
how matrix methods can be used to represent a situation in which the values of a
number of variables at one stage of a process are related to their values at the pre-
ceding stage.

Each business day, the stock market goes up, goes down, or stays the same.
Suppose that historical studies show that if the market goes up one day—say
today—the probability is that it will go up tomorrow, the probability is that it
will go down tomorrow, and the probability is that it will stay the same tomor-
row. If the market goes down today, there are three other observed probabilities for
tomorrow’s market performance. Similarly, if the market stays the same today,
there is a third set of three probabilities for what will happen tomorrow. We can
conveniently display all nine of these probabilities in a matrix A:

Market Today

Up Down Same

The probabilities in this matrix are called transition probabilities because they give
us information about how to relate one stage of a process to the next. The matrix A
is called a transition matrix. Each column corresponds to a type of market move-
ment today, and each row corresponds to a type of market movement tomorrow.
The matrix entry which equals is in the “down tomorrow” row and in the1

2 ,a23 ,

Market

Tomorrow 
 

Up

Down

Same

C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S � A.

1
4

1
2

1
4

y � 20x1 � 24
20x1 � 24,20x1 � 413 2 � 413 2 ,

x1x2 � x3 � 3x3x2

20x1 � 4x2 � 4x3

x3 .x2 ,x1 ,
2x1 � 4x2 � 1

2 x3

Ax � b.
xi’s,
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10.2 Linear Models 663

“same today” column. The value represents the probability that the market will
go down tomorrow given that it stays the same today.

Note that the probabilities in each column of the transition matrix must add to
1 because they include all possible outcomes for tomorrow given a particular type
of market behavior today. A mathematical model such as this with given transition
probabilities is known as a Markov process, or Markov chain (named after Russ-
ian mathematician Andrei Markov, who first developed these ideas). A convenient
way to display the information in a Markov chain is with a transition diagram, such
as the one shown in Figure 10.14. In this diagram, there are three nodes, one for
each type of market movement: go up (U), go down (D), or stay the same (S).
These are the possible states for the system. Note also that we indicate each transi-
tion probability with an arrow.

1
2

EXAMPLE 1
Suppose that, before the stock market opens today, we believe that there is a 50–50
chance of the market going down or staying the same, but no chance of its going up. Use
the values in the preceding transition matrix A to compute the probabilities of the mar-
ket being in any of the three states tomorrow—up, down, or the same—based on the
probabilities of the market being up, down, or the same today.

Solution Let and denote today’s probabilities of the market being up, down,
and the same, respectively, and let and denote tomorrow’s probabilities of
being up, down, and the same, respectively. Let’s see how to compute First, to com-
pute the probability of two successive events—such as (i) being in State 1 today (probabil-
ity ) followed by (ii) switching from State 1 today to State 1 tomorrow (probability )—we
multiply the probabilities of the two events and get Similarly, the probability of
(i) being in State 2 today (probability ) followed by (ii) switching from State 2 to State 1
tomorrow (probability ) is the product Also, the probability of (i) being in State 31

2 p2 .1
2

p2

1
4 p1 .

1
4p1

p1 

�.
p3 

�p2 

�,p1 

�,
p3p2 ,p1 ,

U

1
4

1
4

1
4

1
2

1
2

1
2

1
4

S

1
4

D

1
4

FIGURE 10.14
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664 CHAPTER 10 Matrix Algebra and Its Applications

today (probability ) followed by (ii) switching from State 3 to State 1 tomorrow
(probability )is 

To get the total probability that the stock market will go up tomorrow, we add
these three values to get

In the same way, we calculate the probabilities and that the stock market goes
down or stays the same tomorrow and so obtain a set of three equations based on the
transition matrix A:

(1)

Note that the coefficients in this system of linear equations come directly from the en-
tries in the transition matrix A.

Believing that and are today’s probabilities of the market
being up, down, and the same, respectively, we calculate the probability that the mar-
ket goes up tomorrow, using the first of Equations (1), as follows:

In the same way, using Equations (1), we obtain the probabilities for the other two mar-
ket outcomes tomorrow. Thus tomorrow’s probabilities and are

�

EXAMPLE 2
Use the equations for and to predict the market probabilities and

two days ahead. Then predict the market probabilities farther into the future.

Solution We repeat the process in Example 1, using and to
obtain

 p3 

�� �
1

4
 p1 

� �
1

4
 p2 

� �
1

4
 p3 

� �
1

4
. 3

8
�

1

4
. 3

8
�

1

4
. 1

4
�

8

32
�

1

4
 .

 p2 

�� �
1

2
 p1 

� �
1

4
 p2 

� �
1

2
 p3 

� �
1

2
. 3

8
�

1

4
. 3

8
�

1

2
. 1

4
�

13

32
 ,

 p1 

�� �
1

4
 p1 

� �
1

2
 p2 
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1

4
 p3 

� �
1

4
. 3

8
�

1

2
. 3

8
�

1

4
. 1

4
�

11

32
 ,

p3 

� � 1
4p2 

� � 3
8 ,p1 

� � 3
8 ,

p3 

��
p2 

��
 ,p1 

��
 ,p3 

�p2 

�
 ,p1 

�
 ,

 p3 

� �
1

4
 p1 �

1

4
 p2 �

1

4
 p3 �

1

4
. 0 �

1

4
. 1

2
�

1

4
. 1

2
�

1

4
 .

 p2 

� �
1

2
 p1 �

1

4
 p2 �

1

2
 p3 �

1

4
. 0 �

1

4
. 1

2
�

1

2
. 1

2
�

3

8
 ,

 p1 

� �
1

4
 p1 �

1

2
 p2 �

1

4
 p3 �

1

4
. 0 �

1

2
. 1

2
�

1

4
. 1

2
�

3

8
 ,

p3 

�p2 

�
 ,p1 

�
 ,

p1 

� �
1

4
 p1 �

1

2
 p2 �

1

4
 p3 �

1

4
. 0 �

1

2
. 1

2
�

1

4
. 1

2
�

3

8
 .

p1 

�
p3 � 1

2p2 � 1
2 ,p1 � 0,

 p3 

� �
1

4
 p1 �

1

4
 p2 �

1

4
 p3 .

 p2 

� �
1

2
 p1 �

1

4
 p2 �

1

2
 p3 

 p1 

� �
1

4
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1
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1

4
 p3 

p3 

�p2 
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1
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10.2 Linear Models 665

From these probabilities for 2 days hence, we can predict the market 3 days ahead,
and so on indefinitely, so long as the probabilities of the market going up, going down,
or staying the same continue to hold. In Section 10.4, we introduce a far simpler way to
perform these calculations based on matrix algebra. For now, we simply indicate the re-
sults in the following table, assuming that today’s market probabilities are 0 for going up,

for going down, and for staying the same.1
2

1
2

�

Each triple of probabilities for any day—say for the first day— can be
thought of as the components of a 3-vector of probabilities for that day. Also, note
that on any given day, the sum of the probabilities is always 1 because one of the
possibilities (up, down, or the same) must occur.

The sequence of all the successive vectors p, associated with
any transition matrix A is called a Markov chain because the successive vectors are
linked by the matrix A. Eventually, the successive probabilities in this Markov chain
stabilize at 0.35 for the market going up, 0.40 for the market going down, and 0.25
for the market staying the same. That is, the probabilities converge over time to
these limiting values. This behavior occurs regardless of the initial values we used
for today’s probabilities. Later, we formulate a system of three linear equations in
three variables and solve it to determine these stable probabilities directly.

A Population Growth Model

The following model relates populations of hares and wolves from one week to the
next. To make the numbers work out conveniently, we measure the hare population
in groups of 10 hares and the wolf population in single wolves. Suppose that the
number of groups of hares H grows by 20% per week when no wolves are present,
so the population of hares next week would be 1.2H. But W wolves are present
and the wolves eat the hares at the rate of each wolf eating 3 hares each week, which
is of a group of 10 hares. Thus the hare population is reduced by 0.3W
per week, giving as next week’s hare population.

Next, without hares present, the wolf population decreases at a rate of 30%
per week, so the wolf population next week would be 0.7W. But the wolf
population grows each week when hares are present at the rate of one wolf for

W�

H� � 1.2H � 0.3W
30% � 0.3

H�

p���, . . . p��,p�,

p3p2 ,p1 ,

Up Down Same

Today 0

Tomorrow

2 days ahead

3 days ahead

5 days ahead 0.25

10 days ahead 0.25

100 days ahead 0.35 0.40 0.25

�0.40�0.35

�0.40�0.35

1

4

51

128

45

128

1

4

13

32

11

32

1

4

3

8

3

8

1

2

1

2
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every 50 hares or every 5 groups of 10 hares, which is wolf per group of 10
hares. Hence 

Together, these two equations are our model for the hare and wolf population
over time:

EXAMPLE 3
Suppose that we start with 1000 groups of hares and 800 wolves. Use the preceding ex-
pressions for and to calculate the populations of hares and wolves over time.

Solution If we start with and the hare–wolf model predicts that

as the populations after the first week. We now use these values to predict the two popu-
lations after the second week:

Extending these values from one week to the next, we obtain the following table for the
sizes of the hare and wolf populations over time.

 W 
�� � 0.2H� � 0.7W � � 0.21960 2 � 0.71760 2 � 724.

 H 
�� � 1.2H� � 0.3W 

� � 1.21960 2 � 0.31760 2 � 924

 W 
� � 0.211000 2 � 0.71800 2 � 760

 H 
� � 1.211000 2 � 0.31800 2 � 960

W � 800,H � 1000

W�H�

 W� � 0.2H � 0.7W.

 H� � 1.2H � 0.3W

W� � 0.2H � 0.7W.

1
5 � 0.2

Weeks Groups of hares Wolves

0 1000 800

1 960 760

2 924 724

3 892 692

10 739 539

20 649 449

50 602 402

100 600 400

Note that over time the populations converge to 600 groups of 10 hares and 400 wolves.
Figure 10.15 shows the graphs of both populations as functions of time.

�

We can visualize this situation another way: We can think one population de-
pends on the other. That is, the number of wolves W can be viewed as a function of
the number of hares H. If we plot the number of wolves versus groups of hares, we
find that they fall in a straight line. In particular, the linear function that fits the points
in the preceding table is The graph in Figure 10.16 shows several traj-
ectories for the populations (in hundreds) of groups of 10 hares and wolves. One tra-
jectory shown starts from the initial point and leads to the point 16, 4 2 .110, 8 2

W � H � 200.

200

400

600

800

1000

n

H, W

Hares

Wolves

Months

N
um
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r 
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 e

ac
h 
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FIGURE 10.15
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FIGURE 10.16

Suppose we start with a different set of initial values for the two populations—
say, and Then

and so on. The resulting points all lie on a line starting at the point and
converge to the point Similarly, if we start with and 
the resulting points all lie on a line and converge to as also shown in Fig-
ure 10.16. In each case, the limiting values for H and W satisfy That is, the
limiting points lie on the line as shown in Figure 10.17. In fact, for any ini-
tial pair of population values the points of successive pairs all lie
on some line, and in each case the successive points are converging (as indicated by the
arrows) toward a limiting point on the line as illustrated in Figure 10.18.
Thus under this model, all populations, regardless of the initial values, converge over
time to populations in which the number of wolves is two-thirds the number of
groups of 10 hares.

W � 2
3 H,

1Hn , Wn 21H0 , W0 2 ,
W � 2

3 H,
W � 2

3 H.
1300, 200 2 ,

W0 � 500,H0 � 6001900, 600 2 .
1700, 400 2

 W� � 0.21700 2 � 0.71400 2 � 420

 H� � 1.21700 2 � 0.31400 2 � 720

W0 � 400.H0 � 700
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Note that the pair of equations we used to define this model can be rewritten
as a pair of difference equations:

We present a more detailed analysis of population models based on systems of
difference equations, including a more sophisticated predator–prey model, in
supplementary Section 12.6.

 Wn�1 � 0.2Hn � 0.7Wn .

 Hn�1 � 1.2Hn � 0.3Wn

Problems

1. Ted, Carol, and Alice took tests in German, physics,
theater, and politics. Ted’s test scores in these sub-
jects were 64, 73, 86, 85; Carol’s scores were 82, 69,
77, 91; Alice’s were 82, 84, 81, 83. Construct a matrix
of these test results. Label the columns and rows.

2. For the matrix

write the following row and column vectors and
entries.

a.
b.
c.
d.
e.
f.

3. In the matrix of letters

spell the words represented by the following se-
quences of entries.

a.
b.
c.
d.

4. A clothing company’s three factories (1, 2, and 3)
produce the following numbers of vests, pants, and
coats from each roll of cloth.

a33a24 a43 a12 a31 a32 a22 a31 a33 

a33a34 a12 a24 a31 

a12a31 a11 a32 a23 a41 

a21a12 a23 a11 

A � DH R B I

N S O A

E T Y L

M G D I

T ,

a41

a23

a12

a 4

a 3

a 1 

œ

A � D1 5 3

6 1 7

6 9 5

0 2 8

T ,

Factory 1 Factory 2 Factory 3

Suppose that the company has a demand for 400
vests, 800 pants, and 500 coats. Write a system of
equations whose solution would determine pro-
duction levels to yield the desired numbers of
vests, pants, and coats. As in the clothes produc-
tion model, let be the number of rolls of cloth
processed by the ith factory.

5. Three oil refineries (1, 2, and 3) produce the follow-
ing amounts, in thousands of gallons, of heating oil,
diesel oil, and gasoline from each shipment of
crude petroleum.

Refinery 1 Refinery 2 Refinery 3

Suppose that demand is for 6200 thousand gallons
of heating oil, 4000 thousand gallons of diesel oil,
and 4700 thousand gallons of gasoline. Write a
system of equations whose solution would de-
termine production levels to yield the desired
amounts of heating oil, diesel oil, and gasoline. Let

be the number of shipments processed by the ith
refinery.

6. The staff dietitian at the California Institute of
Trigonometry has to make up a meal with 600 calo-
ries, 20 grams of protein, and 200 mg of vitamin C.
The three food types that the dietitian can choose
from are gelatin, fish sticks, and mystery meat. They
have the following nutritional content per unit.

xi

Heating Oil 

Diesel Oil

Gasoline

C8 5 3

2 5 5

3 7 6

S

xi

Vests

Pants

Coats 

C6 4 2

4 8 4

3 2 8

S
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Gelatin Fish Sticks Mystery Meat

Construct a mathematical model for this situation,
based on a system of three linear equations.

7. A company has a budget of $280, 000 for comput-
ing equipment. The types of equipment available
are microcomputers at $2000 each, terminals at
$500 each, and workstations at $5000 each. There
should be five times as many terminals as micro-
computers and twice as many microcomputers as
workstations. Write a system of three linear equa-
tions to describe this situation.

8. In the clothes production model in the text, suppose
that Factory 1 processes 15 rolls of cloth, Factory 2
processes 20 rolls, and Factory 3 processes 60 rolls.
For which product, vests, pants, or coats, does pro-
duction deviate the most from the demand for 600,
800, 1000?

9. Refer to the stock market Markov chain in Example 1.
Determine the set of probabilities for tomorrow’s
market for each set of probabilities that the market
will be up, down, or the same today.

a.
b.
c.
d.
e.

10. The copy machine at the student union breaks
down according to the following pattern. If it is
working today, it has a 70% chance of working to-
morrow (and a 30% chance of breaking down). If
the copy machine is broken today, it has a 50%
chance of working tomorrow (and a 50% chance of
being broken again).

a. Construct a Markov chain for this situation; give
the matrix of transition probabilities and draw
the transition diagram.

b. If there is a 50–50 chance of the copy machine’s
working today, what is the chance of its working
tomorrow?

c. Based on the situation in part (b), what is the
chance that the copy machine is working the day
after tomorrow?

d. If the copy machine is working today, what is the
chance that it is working the day after tomorrow?

p3 � 0.25p2 � 0.40,p1 � 0.35,
p3 � 1

4p2 � 1
2 ,p1 � 1

4 ,
p3 � 1

2p2 � 0,p1 � 1
2 ,

p3 � 1
2p2 � 1

2 ,p1 � 0,
p3 � 0p2 � 0,p1 � 1,

Calories

Protein

Vitamin C 

C10 50 200

1 3 0.2

30 10 0

S
11. The Pins, a bowling team, plays in a bowling league

each week. If they win this week’s game, they have a
chance of winning next week’s game. If they lose

this week’s game, they have a chance of winning
next week’s game.

a. Construct a Markov chain for this situation; give
the matrix of transition probabilities and draw
the transition diagram.

b. If there is a 50–50 chance of the Pins’ winning
this week’s game, what is their chance of win-
ning next week’s game?

c. If they won this week, what is their chance of win-
ning the game 2 weeks from now?

12. Consider a weather Markov chain having two states:
sunny and cloudy. If today is sunny, there is a prob-
ability that tomorrow will be sunny and a probabil-
ity that tomorrow will be cloudy. If today is cloudy,
there is a probability that tomorrow will be sunny
and a probability that tomorrow will be cloudy.

a. Write the transition matrix for this Markov
chain and draw its transition diagram.

b. In this weather Markov chain, starting with the

vector of probabilities (a sunny day), compute 

and plot the vectors of probabilities for four suc-
cessive days.

c. Repeat the process starting with the probability

vector (a cloudy day). Can you guess the val-

ues of the equilibrium state to which your prob-
ability vectors are converging?

13. The following model for learning a concept over a set
of lessons identifies four states of learning: igno-
rance, thinking,
understanding, and If you are now in
state I, after one lesson you have a probability of of
still being in I and a probability of of being in E. If
you are now in state E, after one lesson you have a
probability of of being in I, in E, and in S. If you
are now in state S, after one lesson you have a prob-
ability of of being in E, in S, and in M. If you are
in M, you always stay in M (with a probability of 1).

a. Construct a Markov chain for this learning model.
b. If you start in state I, what is your probability

vector after two lessons? After three lessons?

14. a. In Example 3, if initially there were 800 groups
of 10 hares and 300 wolves, how many hares and
wolves would there be after 1 month, 3 months,

1
4

1
2

1
4

1
4

1
2

1
4

1
2

1
2

M � mastery.
S � superficialE � exploratory

I �

B0
1
R

B1
0
R

3
4

1
4

1
4

3
4

1
2

2
3

Gord.3896.10.pgs  4/28/03  3:29 PM  Page 669



670 CHAPTER 10 Matrix Algebra and Its Applications

5 months, and 10 months? What do the limiting
values for the two populations appear to be?

b. Repeat part (a) with an initial population of 600
groups of 10 hares and 800 wolves.

c. Repeat part (a) with an initial population of 900
groups of 10 hares and 600 wolves.

15. Consider the following cattle–sheep models in
which the two species compete for common graz-
ing land. In each case, compute the populations
after 1 month, 2 months, and 3 months if the initial
populations are 50 cattle and 100 sheep.

a.

b.

16. Consider the rabbit–fox model

Plot the following on the same graph.

a. The trajectory of populations starting from

b. The trajectory of populations starting from

c. The trajectory of populations starting from

17. In Example 3 we found that the solution to the system

converged to a point on the line for any
starting values and W0 .H0

W � 2
3 H

 W� � 0.2H � 0.7W
 H� � 1.2H � 0.3W

120, 10 2 .

110, 30 2 .

110, 15 2 .

 F� � 0.2R � 0.6F.

 R� � 1.1R � 0.2F

 S� � 0.5C � 1.4S
 C� � 1.2C � 0.1S
 S� � �0.2C � 1.2S
 C� � 1.2C � 0.3S

a. To find the equation of this limiting line, assume
that and in the two equa-
tions defining the system and solve these two
equations in two unknowns.

b. For any given starting populations—say,
and —calculate the next

point on the trajectory. What is the
equation of the line through and

c. You now have the equation of the limiting line
and the equation of the trajectory. Describe how
you would use them to find the final population
values for H and W. What are the values for initial
population values of and 

18. a. The population models in Example 3 and
Problems 15–17 all involve linear expressions
in H and W. Suppose that the equations for 
and contained nonlinear expressions in H
and W. How might such expressions affect the
trajectory?

b. We develop a more sophisticated mathematical
model for two species, known as the predator–
prey model, in supplementary Section 12.6. It is
based on equations such as

If the initial population values are and
calculate and plot the population val-

ues over the first 3 months. What do you observe
about the trajectory?

W0 � 100,
H0 � 200

 W� � 0.2W � 0.005HW.
 H� � 1.2H � 0.003HW

W �
H�

W0 � 800?H0 � 1000

1H�, W� 2?
1H0 , W0 2

1H�, W� 2
W0 � 800H0 � 1000

W� � WH� � H

Scalar Products

In this section, we explain how to multiply two vectors in what is called a scalar
product. For instance, suppose that a family normally eats three vegetables—
asparagus, beans, and corn. Suppose that the costs per pound for these vegetables
are $0.80 for asparagus, $1.00 for beans, and $0.60 for corn. We can then form a vec-
tor for the prices of these three vegetables. Suppose further
that the family consumes 2 lb of asparagus, 5 lb of beans, and 3 lb of corn each week,
so we can also form a vector of the family’s weekly demand for these
vegetables. The total cost of the family’s weekly demand for the vegetables is

because the cost for asparagus is the cost for beans is and the
cost for corn is This result suggests a natural way to define the product3 � $0.60.

5 � $1.00,2 � $0.80,

2 � 0.80 � 5 � 1.00 � 3 � 0.60 � 1.60 � 5.00 � 1.80 � $8.40

d � 32 5 3 4

p � 30.80 1.00 0.60 4

10.3
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10.3 Scalar Products 671

of the two vectors d and p. We write this product as and call it the scalar prod-
uct of d and p. Here the scalar product is

or $8.40. Note that the scalar product involves multiplying the corresponding en-
tries in each position of the vectors and adding the results. Each vector in a scalar
product can be either a row or a column vector, but multiplication makes sense
only when the two vectors have the same size (that is, they have the same number
of entries). The scalar product of two vectors of different sizes can’t be formed be-
cause there would be terms that do not match. For instance, the scalar product of

and can’t be formed.
Recall that the word scalar means a single number, as opposed to a vector or

matrix. The scalar product of two vectors is so named because its result is a single
number—a scalar. The scalar product also is known as the dot product and the
inner product, but we will not use either of these terms.

The product of two vectors can also be defined in a different way, known as the
vector product, which produces a vector instead of a scalar, or number, as the result.
However, we don’t consider it here.

More formally we have the following definition of the scalar product.

320 40 60 431 2 3 4 5 4

 � 1.60 � 5.00 � 1.80 � 8.40,

 � 210.80 2 � 511.00 2 � 310.60 2
 d . p � 32 5 3 4 . 30.80 1.00 0.60 4

d . p
d . p

Figure 10.19 will help you visualize how to calculate the scalar product of two vec-
tors a and b.

For instance, the scalar product of the vectors and 
is

We now see how the scalar product arises in a variety of situations.

a . b � 316 2 � 21�3 2 � 1�5 2 12 2 � 410 2 � 18 � 6 � 10 � 0 � 2.

36 �3 2 0 4
b �a � 33 2 �5 4 4

Scalar Product

Let

be vectors of the same size n. Then the scalar product of a and b is the
single number (a scalar) equal to the sum of the products,

a . b � a1 b1 � a2 b2 � . . . � an bn .

a . b

a � 3a1 a2  . . .  an 4 and b � 3b1 b2  . . .  bn 4

b1
b2
...

bn

a1 a2  
... an

anbn

a2b2

a1b1

FIGURE 10.19
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672 CHAPTER 10 Matrix Algebra and Its Applications

EXAMPLE 1
Suppose that peaches cost each, pears cost each, apples cost each, and grape-
fruits cost each. Amy wants to get 5 peaches, 3 pears, 2 apples, and 2 grapefruits, and
Bill wants to get 3 peaches, 4 pears, 3 apples, and 3 grapefruits.

a. Write vectors to represent the prices of the fruits and the amount of each fruit that
Amy and Bill will purchase.

b. Write the total costs of their fruit purchases, using vector methods.

Solution
a. We form the price vector for the prices of the respec-

tive fruits and the two demand vectors, for Amy and 
for Bill.

b. The scalar products and give the total costs of Amy’s and Bill’s purchases:

Thus the cost of fruit was $3.80 for Amy and $4.25 for Bill.

�

A Geometric View of Scalar Products

An interesting special case of the scalar product involves the use of coordinate vectors,
which we introduced in Section 10.1. In two dimensions, they are the unit vectors

along the horizontal axis and along the vertical axis. See Figure 10.20.
In three dimensions, the coordinate vectors are and

They lie along three mutually perpendicular axes, as illustrated in Fig-
ure 10.21.
30 0 1 4 .

30 1 0 4 ,31 0 0 4 ,
30 1 431 0 4

 � 0.90 � 0.80 � 1.05 � 1.50 � 4.25.

 � 310.30 2 � 410.20 2 � 310.35 2 � 310.50 2
 b . p � 33 4 3 3 4 . 30.30 0.20 0.35 0.50 4

 � 1.50 � 0.60 � 0.70 � 1.00 � 3.80;

 � 510.30 2 � 310.20 2 � 210.35 2 � 210.50 2
 a . p � 35 3 2 2 4 . 30.30 0.20 0.35 0.50 4

b . pa . p

33 4 3 3 4
b �a � 35 3 2 2 4

p � 30.30 0.20 0.35 0.50 4

50¢
35¢20¢30¢

Any vector can be built from its components. For instance, for the 3-vector
we use the components 2, 5, and 3 and the coordinate vectors to write

32 5 3 4 � 2 31 0 0 4 � 5 30 1 0 4 � 3 30 0 1 4 .

32 5 3 4 ,

y

x

z

1

1

1

0
0
1

0
1
0

1
0
0

FIGURE 10.20

x

y

1

1

0
1

1
0

FIGURE 10.21
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10.3 Scalar Products 673

In general, for any 3-vector we can write

In many geometric uses of vectors, we need to know whether two vectors
“point” in the same general direction or in opposite directions. When two vectors
point in approximately the same general direction, as shown by the arrows in Fig-
ure 10.22, their scalar product will be positive. When two vectors point in approxi-
mately opposite directions, as shown in Figure 10.23, their scalar product will be
negative. Most interestingly, when two vectors form a right angle, as shown in Fig-
ure 10.24, their scalar product will be zero.

a � a1 31 0 0 4 � a2 30 1 0 4 � a3 30 0 1 4 .

a � 3a1 a2 a3 4 ,

These assertions follow from the fact that, if is the angle between the vectors a
and b, as shown in Figure 10.25, we have the following relationship.

u

x

y
2
4

a =

4
2

b =

–4 4

–4

4

FIGURE 10.22

x

y

–4 4

–4

4

2
4

a =

–3
–3

b =

FIGURE 10.23

–4 4

–4

4

x

y
2
4

a =

–4
  2

b =

FIGURE 10.24

cos u �
a . b2a . a 2b . b

x

y

b

aθ

FIGURE 10.25

(This formula is based on the Law of Cosines introduced in Section 6.5; we ask you
to derive this formula in a problem at the end of the section.) Note that, if

is a 2-vector, We interpret geometrically bya . aa . a � a1ˇ

2 � a2ˇ

2.a � 3a1 a2 4
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using the Pythagorean theorem to represent the square of the hypotenuse in a right
triangle with sides and as shown in Figure 10.26. Thus, in the formula for 

is the length of the vector a. Similarly, if a is a 3-vector, then

and so is the length of a. Similarly, is the length of b. Therefore we
can rewrite the formula for as

cos u �
a . b

1length of a 2 1length of b 2

cos u
1b . b1a . a

a . a � a1ˇ

2 � a2ˇ

2 � a3ˇ

2

a � 3a1 a2 a3 4 ,1a . a
cos u,a2 ,a1

y = 2xy = 3x

θ

1 2 3

1

0

2

3

4

x

y

1
2

a =

1
3

b =

FIGURE 10.27

a

a1

a2

x

y

FIGURE 10.26

Clearly the length of a and the length of b are both positive. Thus, when the
vectors point in roughly the same direction and the angle is between and 

is positive and so is When the vectors point in roughly opposite direc-
tions and is between and is negative and so is When is 
so that a and b are perpendicular, is zero and so 

EXAMPLE 2
Find the angle between the lines and 

Solution We know that both lines pass through the origin, as illustrated in Figure 10.27.
To find the angle between the lines at the origin, we need to find vectors along each line.
Suppose that we arbitrarily choose On the first line the corresponding
value of y is 2, so the point is on that line and the vector from the origin to that11, 2 2

y � 2x,x � 1.
u

y � 3x.y � 2x

a . b � 0.cos u
90°,ua . b.cos u180°,90°u

a . b.cos u
90°,0°u
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10.3 Scalar Products 675

point is Similarly, using we find the corresponding point on the
second line so the vector from the origin to that point is The angle 
between the lines is the same as the angle between the vectors, so

Consequently, the angle between the two lines is

�

The Clothes Production Model Using Scalar Products

In Section 10.2 we introduced a mathematical model for production in three
clothing factories to meet a demand for 500 vests, 850 pants, and 1000 coats. If
denotes the number of rolls of cloth used by the ith factory the 
must satisfy the system of linear equations

A key property of scalar products is that is a linear combination of the entries
in each vector. (Similarly, you can think of a polynomial as being a linear combina-
tion of power functions.) Conversely, any linear combination of variables or num-
bers always can be interpreted as a scalar product of two vectors.

EXAMPLE 3
Rewrite the three linear equations for the clothes production model using scalar prod-
ucts of vectors.

Solution Consider the first linear equation of the clothes production model

The left-hand side of this equation is a linear combination of the three variables. If

(we explain shortly the reason for writing a as a row vector and x as a column vector), we
can write the left-hand side of this equation as the scalar product

a . x � 320 4 4 4 . Cx1

x2

x3

S � 20x1 � 4x2 � 4x3 .

a � 320 4 4 4 and x � Cx1

x2

x3

S  ,

20x1 � 4x2 � 4x3 � 500.

a . b

 coats:  5x1     �  5x2    �  12x3  � 1000.

 pants:  10x1  �  14x2  �  5x3    � 850

 vests:  20x1   �  4x2    �  4x3    � 500

xi’s1i � 1, 2, 3 2 ,
xi

u � arccos10.98995 2 � 8.13° � 0.1419 radian.

 �
725 210

� 0.98995.

 cos u �
a . b2a . a 2b . b

�
11 2 11 2 � 12 2 13 2211 2 11 2 � 12 2 12 2  211 2 11 2 � 13 2 13 2

ub � 31 3 4 .y � 3x,
11, 3 2x � 1,a � 31 2 4 .
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676 CHAPTER 10 Matrix Algebra and Its Applications

The first equation is then Note that the vector a consists of the entries in the
first row of the matrix

that we used in the clothes production model of Section 10.2.
Using vectors b and c to represent the second and third rows of matrix A, we can

write the other two linear equations in the same way as and

�

Any system of linear equations can be written in terms of a system of scalar
products. For example, the left-hand sides of the equations for the clothes produc-
tion model are

vests:

pants:

coats:

where is the ith row of the clothes production coefficient matrix

Factory 1 Factory 2 Factory 3

The Matrix–Vector Product

Although we encounter many important uses of single scalar products in matrix
algebra, their most important use is as a building block for defining the product of
a matrix and a vector and, in Section 10.4, the product of two matrices. We define
the matrix–vector product as follows.

Shirts 

Pants

Coats

C20 4 4

10 14 5

5 5 12

S � A.

a œ
i

 5x1 � 5x2 � 12x3 � 35 5 12 4 . Cx1

x2

x3

S � a œ
3

. x,

 10x1 � 14x2 � 5x3 � 310 14 5 4 . £
x1

x2

x3

§ � a œ
2

. x,

 20x1 � 4x2 � 4x3 � 320 4 4 4 . Cx1

x2

x3

S � a œ
1

. x,

c . x � 1000.b . x � 850

A � C20 4 4

10 14 5

5 5 12

S
a . x � 500.

Matrix–Vector Product

The product of an matrix A and a column n-vector c is a column m-
vector of scalar products

(each row of A multiplies c).a œ
iAc � a œ

i
. c 

m � n
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b1
b2

...

bn

am1b1 + am2b2 + ... + amnbn

a11b1 + a12b2 + ... + a1nbn

...
...

...
...

a11 a12 a13
... a1n

a21 a22 a23
... a2n

am1 am2 am3
... amn

FIGURE 10.28

The diagram in Figure 10.28 will help you visualize this definition. Think of each
row in the first matrix A as a row vector (or think of A as consisting of a collection
of row vectors). The scalar product of each row vector in A and the column vector
c creates a new column vector. In order for this definition to make sense, the entries
in each row of the matrix A (equivalently, the number of columns in matrix A)
must equal the size of the vector c.

For instance, if A is a matrix and c is a column 3-vector,

then

As we said previously, each row of matrix A is treated as if it were a row vector, and
it is used to form a scalar product with the column vector c. However, we cannot
multiply

because the number of entries in each row of A does not match the number of en-
tries in C.

We can recast this illustration symbolically as follows. If

then

Ac � Ba œ
1

. c

a œ
2

. c
R � Ba11 c1 � a12 c2 � a13 c3

a21 c1 � a22 c2 � a23 c3

R .

A � Ba11 a12 a13

a21 a22 a23

R and c � Cc1

c2

c3

S  ,

A � B2 1 0

5 3 6
R and c � D34

2

5

T

Ac � B2 1 0

5 3 6
R C3

4

2

S � B213 2 � 114 2 � 012 2
513 2 � 314 2 � 612 2

R � B10

39
R .

A � B2 1 0

5 3 6
R and c � C3

4

2

S  ,

2 � 3
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The only other allowable way to multiply a vector and a matrix is to multiply a
row vector by a matrix. In that case, the matrix must have the same number of rows
as the row vector has entries. That is, we can multiply

because there are four entries in the row vector, which matches the number of rows
(vertical entries per column) in the matrix A.

EXAMPLE 4
Consider again the set of equations discussed in Example 3 for the clothes produc-
tion model:

Rewrite the system of equations as a matrix–vector equation.

Solution If we make vectors of the left-hand sides of the three equations, we have

If we let

represent the column vector of demands for the different products, the system of equa-
tions becomes

�

As Example 4 suggests, any system of linear equations can be written as a
matrix–vector equation. As we develop the tools for working with and solving such
equations, we demonstrate that having such a formulation has significant advan-
tages, especially for systems that are larger than three equations in three unknowns.

The Fruit Purchase Model Revisited In Example 1, we computed the scalar prod-
ucts for the costs of fruit purchased by Amy and Bill. Recall that Amy wanted 5
peaches, 3 pears, 2 apples, and 2 grapefruits, whereas Bill wanted 3 peaches, 4 pears,
3 apples, and 3 grapefruits. Also, we know that peaches cost each, pears 
each, apples each, and grapefruits each.50¢35¢

20¢30¢

Ax � b or C 20x1 � 4x2 � 4x3

10x1 � 14x2 � 5x3

5x1 � 5x2 � 12x3

S � C 500

850

1000

S  .

b � C 500

850

1000

S
C20x1 � 4x2 � 4x3

10x1 � 14x2 � 5x3

5x1 � 5x2 � 12x3

S � C 320 4 4 4 . x

310 14 5 4 . x

35 5 12 4 . x

S � Ca œ
1

. x

a œ
2

. x

a œ
3

. x

S � Ax.

coats:  5x1  �  5x2  �  12x3 � 1000.

pants:  10x1  �  14x2  �  5x3 � 850

vests:  20x1  �  4x2  �  4x3 � 500

c � 31 4 �2 3 4 and A � D 2 0

6 �2

�3 5

1 �5

T
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10.3 Scalar Products 679

EXAMPLE 5
Write a matrix–vector equation to represent the costs of the fruit purchases by Amy
and Bill.

Solution Let’s make a matrix A of fruit purchases. The columns represent the different
fruits, the first row gives Amy’s fruit shopping list, and the second row gives Bill’s list. We
also make a (column) vector p of the costs, in cents.

Peaches Pears Apples Grapefruits

We can now write the costs of Amy’s and Bill’s fruit purchases as the matrix–vector product

This result is the same as we obtained in Example 1.

�

Markov Chain for the Stock Market Revisited Recall the Markov chain intro-
duced in Example 1 of Section 10.2. The equations for determining the probabili-
ties and that the stock market goes up, goes down, or stays the same
tomorrow given the probabilities and of its going up, going down, or stay-
ing the same today were

EXAMPLE 6
Write the preceding Markov chain model for the stock market as a matrix–vector equation.

Solution Let

respectively, be the vectors of today’s and tomorrow’s probabilities and let the matrix of
transition probabilities be A:

p � Cp1

p2

p3

S and p� � Cp1ˇ

�

p2ˇ

�

p3ˇ

�

S  ,

 p3 

� �
1

4
 p1 �

1

4
 p2 �

1

4
 p3 .

 p2 

� �
1

2
 p1 �

1

4
 p2 �

1

2
 p3 

 p1 

� �
1

4
 p1 �

1

2
 p2 �

1

4
 p3 

p3p2 ,p1 ,
p3ˇ

�p2ˇ

�
 ,p1ˇ

�
 ,

 � B380

425
R � B$3.80

$4.25
R .

 Ap � B5 3 2 2

3 4 3 3
R D30

20

35

50

T � B5130 2 � 3120 2 � 2135 2 � 2150 2
3130 2 � 4120 2 � 3135 2 � 3150 2

R

A � B5 3 2 2

3 4 3 3
R Amy

Bill
  p � D30

20

35

50

T Peaches

Pears

Apples

Grapefruits
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Market Today

Up Down Same

Then the preceding set of probability equations can be written simply as because

�

Similarly, the probabilities for the day after tomorrow can be found from

and so on.
In Section 10.4 we present a concise way of writing these probability vectors.

A Geometric View of Matrix–Vector Products

In geometric terms, when we multiply a vector v by some matrix A, the vector v is
transformed by the multiplication into another vector Because of the di-
mensions of A and v, this product makes sense only in the order Av (rather than
vA); we thus call this operation pre-multiplication of v by A. We can view pre-
multiplication by A as defining a function: where This type
of transformation is used in computer graphics, for instance, to produce creative
lettering and moving images (animation) on the screen. It also provides a way to
visualize the effect on a vector of multiplying it by a matrix.

Rather than using arrows, here we simply represent 2-vectors as points in
the plane.

EXAMPLE 7
Consider the vectors

Here, and point to the corners of a square whose sides are of length 2 and 
and point to the midpoints of the sides of this square, as shown in Figure 10.29(a).

Describe the effects of pre-multiplying each of these eight vectors by the matrix

A � B 1 1

�1 1
R .

v8v7 ,
v6 ,v5 ,v4v3 ,v2 ,v1 ,

 v5 � B0
1
R   v6 � B1

2
R   v7 � B2

1
R   v8 � B1

0
R .

 v1 � B0
0
R   v2 � B0

2
R   v3 � B2

2
R   v4 � B2

0
R 

f 1v 2 � Av.w � f 1v 2 ,

w � Av.

p�� � Ap�

p��

Ap � C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S Cp1

p2

p3

S � C 1
4 p1 � 1

2 p2 � 1
4 p3

1
2 p1 � 1

4 p2 � 1
2 p3

1
4 p1 � 1

4 p2 � 1
4 p3

S  .

p� � Ap

Market

Tomorrow
 

Up

Down

Same

C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S � A.
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1 2 3 4

–2

–1

0

1

2

x

y

v1 v8 v4

v2 v6 v3

v5 v7

(a)FIGURE 10.29

w2

w4

w8 w7

w5

w1 w3

w6

1 2 3 4

–2

–1

0

1

2

x

y

(b)

Solution When we pre-multiply the v’s by the matrix A, we obtain the following eight
vectors 

When we examine these eight new vectors, shown in Figure 10.29(b), we observe that
they also form a square, but it has a different orientation and size. Each of the four ver-
tex vectors and of the original square was transformed into a vertex vector

and of the new square. Each of the midpoint vectors and in
the original square was transformed into a corresponding midpoint vector 
and in the new square. Also, in the original square, the sides were of length 2 and each
diagonal was from the Pythagorean theorem. In the transformed square, each di-
agonal has length 4, so that the sides have length Thus pre-multiplying the vectors

and forming the original square by A does three things to the square.

1. It rotates the square clockwise through or 

2. It increases the length of each side by a factor of

3. It moves the center of the square from to 

�

Example 7 demonstrates that one square can be transformed into another by
multiplying a set of vectors by an appropriate matrix. The same principle applies to
any shape whose corners are determined by a set of vectors.

If we pre-multiplied the vectors forming the original square by other (appro-
priately chosen) matrices, we could get rotations of the square through any desired
angle, increase or decrease the lengths of the sides by any desired multiple, and

B2
0
R .B1

1
R 12 .

p>4.45°

v4v3 ,v2 ,v1 ,
2 12 .

2 12,
w8

w7 ,w6 ,w5 ,
v8v7 ,v6 ,v5 ,w4w3 ,w2 ,w1 ,

v4v3 ,v2 ,v1 ,

 w7 � B 1 1

�1 1
R B2

1
R � B 3

�1
R   w8 � B 1 1

�1 1
R B1

0
R � B 1

�1
R .

 w5 � B 1 1

�1 1
R B0

1
R � B1

1
R  w6 � B 1 1

�1 1
R B1

2
R � B3

1
R

 w3 � B 1 1

�1 1
R B2

2
R � B4

0
R  w4 � B 1 1

�1 1
R B2

0
R � B 2

�2
R

 w1 � B 1 1

�1 1
R B0

0
R � B0

0
R  w2 � B 1 1

�1 1
R B0

2
R � B2

2
Rwi � Avi .
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x

y

w = Rv

v

O a

b
α

φ

FIGURE 10.30

place the center in any desired location. However, the origin will always be un-

affected because multiplied by any matrix yields 

For example, using rotates the square counterclockwise

through an angle of and transforms the center to We ask you to verify this
result in the Problems at the end of this section.

In general, pre-multiplying by the matrix

rotates the square counterclockwise through an angle of

EXAMPLE 8
Show that the effect of pre-multiplying any vector by the matrix R is to rotate v
through an angle 

Solution We start with an arbitrary vector v, as shown in Figure 10.30, that is inclined
at an angle from the horizontal, so that

tan a �
b
a

 .

a

u.
v � Ba

b
R

u.

R � Bcos u �sin u

sin u cos u
R
B�1

1
R .p>2

B � B0 �1

1 0
R

B0
0
R .B0

0
R

Also, we let the angle associated with the vector be We want to show that the
difference in the two angles must equal 

When we pre-multiply vector v by R to form vector w, we get

Consequently, the tangent of angle is

tan f �
a sin u � b cos u

a cos u � b sin u
 .

f

w � Rv � Bcos u �sin u

sin u cos u
R  Ba

b
R � Ba cos u � b sin u

a sin u � b cos u
R .

u.f � a
f.w � Rv
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We factor a out of both the numerator and denominator and divide both the nu-
merator and denominator by 

However, we know that tan so that this expression reduces to

When we compare this expression to the sum identity for the tangent from Problem 37
of Section 8.1, we see that

Therefore the effect of pre-multiplying any vector v by the matrix R is to rotate the re-
sulting vector through an angle of

�

What if we want to change the length of a vector by using matrix multiplica-
tion? We note that the lengths of the sides of the square in Example 8 are un-
changed when we use this rotation matrix R. If we want to enlarge or contract the
square, we must use an appropriate scalar multiple of the rotation matrix, so that
we multiply every entry in the matrix by a constant amount. Thus, if

In Example 7, to make each side of the square grow by a factor of 2 instead of a fac-
tor of we would multiply A by because Incidentally, not
every matrix can be a rotation matrix; a special form is necessary.

Any transformation that takes a 2-vector v into the 2-vector for any
matrix A, always transforms or maps lines into lines. Because of this linearity

property, a mapping of the form is called a linear transformation.
Suppose that we start with any figure comprising (very short) line segments.

Each segment can be interpreted as a vector, and appropriate matrices can be con-
structed to create any kind of transformation—a shift, a stretch, or a rotation—that
we desire. This method is the mathematical foundation of the computer graphics
animation that appears in movies, on television, and on computer screens.

v S w � Av
2 � 2

w � Av,

12 . 12 � 2.1212 ,

A � B 1 1

�1 1
R , then 2A � 2 B 1 1

�1 1
R � B 2 2

�2 2
R .

u.

tan f � tan 1u � a 2 so that  f � u � a.

tan f �
tan u � tan a

1 � tan a tan u
.

a � b>a,

tan f �

a . a
sin u

cos u
�

b
a
b

a . a1 �
b

a
 
sin u

cos u
b

�

tan u �
b
a

1 �
b
a

 tan u

.

cos u:

1. Let

 d � B�1

0
R , e � B4

5
R .

 a � B3
5
R ,  b � B0

2
R ,  c � B 5

�1
R ,

Compute the scalar products.

a. b. c.
d. e. f.
g. c . e

b . ec . da . d
b . db . ca . c

Problems
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2. Let

Plot the pairs of vectors and compute their scalar
products.

a. a, b b. a, c c. a, d
d. b, d e. c, d f. d, e

What geometric pattern do you find in pairs of vec-
tors whose scalar products are zero? What numeri-
cal pattern do you find in the ratios of components
in these pairs?

3. Let

Compute the scalar products.

a. b. c.
d. e. f.

4. Let

Compute the scalar products.

a. b. c.
d. e.
f.

5. Let a, b, c, and d be as in Problem 1 and let

Compute the matrix–vector products.

a. Ab b. Ac c. Ba
d. Bb e. Cc f. Ca

C � C2 1

4 �2

3 1

S  .B � B 5 2

�1 0
R ,A � B1 7

4 2
R ,

1b � a 2 . 1a � c 2
a . 1c � d 21a � c 2 . a

c . db . da . c

 c � C1

4

8

S  ,   d � C2

1

5

S  .

 a � C3

1

2

S  ,  b � C 0

2

�2

S  ,

c . da . aa . d
b . db . ca . c

 c � C 7

�2

�1

S  ,  d � C�2

3

1

S  .

 a � C2

5

1

S  ,  b � C0

1

0

S  ,  

 d � B 4

�2
R , and e � B2

4
R .

 a � B4
2
R ,  b � B�2

4
R ,  c � B�4

2
R ,  

6. Let a, b, c, and d be as in Problem 3 and let

Find the matrix–vector products.

a. Aa b. Ab c. Bc
d. Bd e. Cb f. Cc

7. Let a, b, c, and d be as in Problem 3 and let

Compute the matrix–vector products and describe
in words the effect of multiplying a vector by the
particular matrix.

a. Ac b. Ad c. Ba
d. Bd e. Cb f. Ca

8. Explain why it is not possible to multiply the matrices

9. Write each vector–matrix equation as a system of
equations. Here x denotes a column vector of vari-
ables where the number of variables
equals the number of columns in A.

a. where 

b. where

c. where

A � C5 2 1

4 1 6

3 1 0

S and b � C1

5

2

S
Ax � b,

A � B1 4

2 �3
R  and b � B4

9
RAx � b,

A � B5 1

4 3
R and b � B2

5
RAx � b,

x2 , . . . ,x1 ,

A � B1 2 3

4 5 6
R   and   b � B4

7
R.

C � C1 0 0

0 �1 0

0 0 2

S  .

B � C0 0 1

0 1 0

1 0 0

S  ,A � C1 0 0

0 1 0

0 0 1

S  ,

 C � D0 1 2

3 4 5

6 7 8

9 10 11

T .

 B � C 0 1 3

�1 5 1

4 �1 6

S  , A � C3 1 2

0 �1 5

0 4 3

S  ,

Gord.3896.10.pgs  4/28/03  3:29 PM  Page 684



10.3 Scalar Products 685

d. where 

10. Write each system of equations in matrix notation.
Define any matrix or vector that you use.

a.

b.

c.

11. Write in matrix notation the systems of linear equa-
tions obtained in the following Problems in Section
10.2. Define any matrix or vector that you use.

a. Problem 4 b. Problem 5
c. Problem 6 d. Problem 7

12. Write in matrix notation the systems of linear equa-
tions obtained in the hare–wolf population model
in Example 3 of Section 10.2. Define any matrix or
vector that you use.

13. Suppose that you will need 10 hero sandwiches, 6
quarts of fruit punch, 3 pounds of potato salad, and
2 plates of hors d’oeuvres for a party. The matrix
shows the cost per unit of these supplies from three
different caterers.

Caterer A Caterer B Caterer C

a. Express the cost of catering the party by each
caterer as a matrix–vector product.

b. Determine the cost of each caterer.

14. Plot a square with corners determined by the vectors
and in (a)and (b). Then, for the matrix

plot the transformed corners

and 
Confirm that the midpoints of the sides of the orig-
inal square are mapped to the midpoints of the
sides of the transformed square.

w4 � Av4 .w3 � Av3 ,w2 � Av2 ,w1 � Av1 ,

A � B 1 1

�1 1
R ,

v4 v3 ,v2 ,v1 ,

Hero sandwich

Fruit punch

Potato salad

Hors d’oeuvres

  D $4 $6 $5

$2 $1 $0.85

$1.50 $2 $2.50

$6 $5 $7

T

 x1 � x2 � 7x3 � 0
 3x1 � 8x2 � 4x3 � 0
 2x1 � 5x2 � 2x3 � 0

 2x1 � 5x2 � 5x3 � 5
 x1 � 3x2 � 2x3 � 2

 5x1 � 2x2 � 4x3 � 6

 2x1 � 6x2 � 4
 x1 � 2x2 � 6

A � C2 �1 5

3 1 2

5 1 �3

S and b � C0

0

0

S
Ax � b,

a.

b.

15. Repeat Problem 14 with the matrix 

In Example 8, we proved that the mapping of v to
acts to rotate a square counterclockwise

through an angle of Do your results confirm
this outcome?

16. Transform each square in Problem 14 by using the

matrix Does the mapping of v to

transform the square into a square?

17. Consider the rotation matrix 

Show that, for any vector the vector 

has the same length as v.

18. Use the matrix R from Problem 17 to determine the

effect that the matrix 2R has on the vector 

19. The rotation matrix R in Problem 17 acts to ro-
tate any nonzero vector counterclockwise through
an angle 

a. Modify matrix R to produce a matrix that rotates
any nonzero vector clockwise through an angle 

b. Write a matrix that will rotate any nonzero vec-
tor counterclockwise through an angle of

c. Plot the position vector pre-multiply it

by the matrix you created in part (b), and then
plot the resulting vector w on the same graph.

d. Pre-multiply the vector w by the matrix you cre-
ated in part (a) with What is the result
of this operation?

20. The five points A, B, C, D, and E at 
and determine a five sided figure16, 6 2110, 3 2 ,19, 1 2 ,

17, �1 2 ,13, 2 2 ,

u � 30°.

v � B5
2
R ,

30°.

u.

u.

v � Ba
b
R .

w � Rvv � Ba
b
R ,

R � Bcos u �sin u

sin u cos u
R .

w � Cv

C � B1 2

3 4
R .

p>2.
w � Bv

B � B0 �1

1 0
R .

v4 � B1
1
R

v3 � B0
2
R ,v2 � B�1

1
R ,v1 � B0

0
R ,

v4 � B3
1
R

v3 � B3
3
R ,v2 � B1

3
R ,v1 � B1

1
R ,

Gord.3896.10.pgs  4/28/03  3:29 PM  Page 685



686 CHAPTER 10 Matrix Algebra and Its Applications

having two right angles. Use vectors to determine
which of the five angles in the figure are the right
angles.

21. Find the acute angle between each pair of vectors.

a.
b.
c.
d.

22. Rewrite each polynomial as the scalar product of
a vector of numbers and a vector of power func-
tion terms of the form or

a.
b.
c.

23. When Susan was applying to college, she was
turned down by her top choice, Ivy Tech, but she
was accepted by State Tech and the Hawaii Institute
of Technology. To decide on which school to attend,
she rated each school (on a scale of 0 to 10) on five
important criteria and then selected the one that
was closer to Ivy Tech. She used her knowledge of
vectors to decide how to interpret closer—the two

4 � 2x � 6x2 � 5x3
8 � 7x � 3x2
5 � 3x � 2x2

x� � 31 x x2 x3 4 .
x � 31 x x2 4

36 4 �1 4 and 35 �3 2 4
31 4 5 4 and 32 3 �2 4
31 4 4 and 3�2 5 4
33 5 4 and 3�2 4 4

vectors with the smallest angle between them.
Which college did she choose?

24. (Continuation of Problem 23) Suggest some other
ways that Susan could have decided which school was
closer to Ivy Tech? Would you necessarily make the
same decision as to which school to choose? Explain.

25. (Derivation of the formula for ) In the triangle

shown, let and The

lengths of a and b can be written

and so that and

7b 7 2 � b . b.

7 a 7 2 � a . a7b 7 � 2b1 

2 � b2 

2
 ,

7 a 7 � 2a1 

2 � a2 

2

b � 3b1 b2 4 .a � 3a1 a2 4
cos u.

Matrix Multiplication

In Section 10.3, we introduced the concept of the scalar product of two vectors

a and b. For example, if and then 

We used this scalar product of vectors to define the matrix–vector product Ab of a
matrix A times a vector b. For instance, if

A � B2 1

0 3
R and again b � B4

6
R ,

a . b � 214 2 � 116 2 � 14.b � B4
6
R ,a � 32 1 4

a . b

10.4

Ivy State Hawaii

Location 7 6 10

Size 6 3 7

Campus 8 4 7

Faculty 9 6 4

Programs 5 7 6

x

y

b

a

c

θ

O

a. Write the vector c in terms of the vectors a and b.
b. Use the expression from part (a) to form the

scalar product 
c. Use the law of cosines to write an equation giv-

ing 
d. Compare the expressions from part (b) and

part (c) and use the facts that 
and to show that

cos u �
a . b

7 a 7 7b 7
 .

c . c � 7 c 7 2b . b � 7b 7 2,
a . a � 7 a 7 2,

7 c 7 2.

c . c.
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a11 a12
... a1n

a21 a22
... a2n

am1 am2
... amn

...
...

... ...
...

...

...

...

...

b11

b21

bn1

b12

b22

bn2

b1p

b2p

bnpFIGURE 10.31

then

Thus Ab is a column vector consisting of the scalar products of each row of A with b.
In this section, we extend this process to define the product of two matrices A

and B. In particular, in the product AB we think of the second matrix B as consist-
ing of a series of column vectors and pre-multiply each of them by the matrix A.
That is, we multiply the first column of B by A, then multiply the second column of
B by A, and so on, as illustrated in Figure 10.31. The result of each product is a col-
umn vector, so the product AB will be a matrix having the same number of
columns as there are in B. We can think of the product AB as a matrix whose
columns are a sequence of matrix–vector products 3Ab1 Ab2  . . .  Abn 4 .

Ab � B2 1

0 3
R B4

6
R � B214 2 � 116 2

014 2 � 316 2
R � B14

18
R .

In the matrix product AB, you can also think of the first matrix A as consisting of
a series of row vectors and the second matrix B as consisting of a series of col-
umn vectors and then take the scalar product of each of the row vectors making
up A with each of the column vectors making up B. Draw a sketch comparable to
Figure 10.31 to illustrate this interpretation. ❐

To demonstrate the product of two matrices, consider again the matrix

We think of each of the three columns of matrix B as a column vector. Note that

the first column of B is precisely the column vector we used

above. The corresponding first column in the product matrix AB is then 

which we computed above to be 

Similarly, we take the matrix–vector product of the matrix A with the second

column of B thinking of it as the vector to produce the second column

of the product AB. That gives

Ab2 � B2 1

0 3
R B7

5
R � B217 2 � 115 2

017 2 � 315 2
R � B19

15
R .

b2 � B7
5
R

B14

18
R .

Ab1 ,

b � B4
6
Rb1 � B4

6
R

A � B2 1

0 3
R and let B � B4 7 �1

6 5 9
R .

Think About This
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...
...

...

a11 a12
... a1n

a21 a22
... a2n

am1 am2
... amn

...
b11
b21

...

bn1

b12
b22

...

bn2

b1p
b2p

...

bnp

FIGURE 10.32

Matrix Multiplication

Let A be an matrix and B be an matrix. The number of columns
in A must equal the number of rows in B.
The matrix product AB is the matrix obtained by forming the scalar
product of each row in A with each column in B. That is, the (i, j)th
entry in AB is Thus

AB � Da œ
1  b1 a œ

1  b2
. . . a œ

1  bn

a œ
2  b1 a œ

2  b2
. . . a œ

2  bn

o o o o
a œ

m  b1 a œ
m  b2

. . . a œ
m  bn

T .

a œ
i  bj .

bja œ
i

m � n

r � nm � r

Finally, we take the matrix–vector product of A with the third column of B,

which is the vector to produce the third column of the product AB.

The complete product AB is therefore

In general, we have the following definition for the product of two matrices.

 � B14 19 7

18 15 27
R .

 AB � B2 1

0 3
R B4 7 �1

6 5 9
R � B214 2 � 116 2 217 2 � 115 2 21�1 2 � 119 2

014 2 � 316 2 017 2 � 315 2 01�1 2 � 319 2
R

b3 � B�1

9
R ,

In summary, there are three ways to interpret matrix multiplication.

1. We can think of AB as the scalar product of each row of A with each col-
umn of B. Figure 10.32 illustrates this interpretation. The product requires
that the number of entries in each row of A must equal the number of en-
tries in each column of B.

2. We can think of AB as a sequence of matrix–vector products—that is, the
product of A with each of the column vectors making up B, so that

AB � A 3b1 b2  . . .  bn 4 � 3Ab1 Ab2  . . .  Abn 4 .
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10.4 Matrix Multiplication 689

For example, for the matrices A and B above, we verify that the first col-
umn of AB is the matrix–vector product Then

3. We can view AB as a set of vector-matrix products (defined analo-
gously to matrix–vector products), where each row of A, considered as a
row vector, pre-multiplies the matrix B. Thus

For instance, for the matrices A and B, we verify that the first row of AB is
the vector–matrix product :

For the matrix product AB to make sense, the number of columns in A must
equal the number of rows in B. Thus, if A is (m rows and n columns) and B
is (n rows and k columns), the product AB is For instance, the prod-
uct of a matrix and a matrix will be a matrix. But, the product
of a matrix and a matrix is not defined—the numbers of columns and
rows do not match, so it is not possible to perform the multiplication.

Note that our definition of a matrix–vector product in Section 10.3 is a special
case of matrix multiplication because, in the matrix–vector product Ab, the col-
umn vector b can be interpreted as an matrix. Then Ab is the matrix prod-
uct of an matrix A and an matrix b. The result Ab is an 
matrix (a column m-vector).

In general, except in rather unusual circumstances, matrix multiplication is
not commutative; that is, In fact, unless A and B are both square matri-
ces with the same size, only one at most of AB and BA is defined. For instance, if A
is and B is we can form AB, but not BA.

EXAMPLE 1
Given

find AB and BA and decide whether matrix multiplication is commutative.

Solution Using the given matrices, we find that

AB � B2 1

0 3
R B3 �1

1 4
R � B213 2 � 111 2 21�1 2 � 114 2

013 2 � 311 2 01�1 2 � 314 2
R � B7 2

3 12
R ,

A � B2 1

0 3
R and B � B3 �1

1 4
R ,

5 � 2,3 � 5

AB � BA.

m � 1n � 1m � n
n � 1

3 � 55 � 8
3 � 85 � 83 � 5
m � k.n � k

m � n

 � 3214 2 � 116 2 217 2 � 115 2 21�1 2 � 119 2 4 � 314 19 7 4 .

 a œ
1 B � 32 1 4  B4 7 �1

6 5 9
Ra œ

1  B

AB � Da œ
1

a œ
2

o
a œ

m

T B � Da œ
1  B

a œ
2  B

o
a œ

m  B

T .

a œ
i  B

Ab1 � B2 1

0 3
R B4

6
R � B214 2 � 116 2

014 2 � 316 2
R � B14

18
R .

Ab1 .
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whereas

Thus, for these two matrices, so matrix multiplication is not, in general, a
commutative operation.

�

We also need a way to add two matrices. Recall how we added vectors in Exam-
ple 3 of Section 10.1: We simply added the entries in the corresponding positions.
For instance, the sum of the row vectors and is

We add matrices in the same way by simply adding all corresponding entries.
However, for addition to make sense, the two matrices or the two vectors must be
of the same size.

EXAMPLE 2
Find the sum of the two matrices

Solution Matrix addition involves adding the entries in the corresponding positions,
so we have

�

EXAMPLE 3
Find the sum of the matrices

Solution Again, by adding the entries in the corresponding positions, we find that

�

Subtraction of matrices is defined in the analogous way—we simply take the
difference of the corresponding entries in each position. However, the quotient of
two matrices can’t be defined.

We now summarize the laws of matrix algebra for matrix addition and multi-
plication. In each case we assume that the matrices have the appropriate sizes so
that the operations make sense.

E � F � C4 2 3

2 1 3

0 5 4

S � C2 6 �1

4 0 2

7 3 8

S � C4 � 2 2 � 6 3 � 1�1 2
2 � 4 1 � 0 3 � 2

0 � 7 5 � 3 4 � 8

S � C6 8 2

6 1 5

7 8 12

S  .

E � C4 2 3

2 1 3

0 5 4

S and F � C2 6 �1

4 0 2

7 3 8

S  .

3 � 3

A � B � B2 1

0 3
R � B3 �1

1 4
R � B2 � 3 1 � 1�1 2

0 � 1 3 � 4
R � B5 0

1 7
R .

A � B2 1

0 3
R and B � B3 �1

1 4
R .

c � d � 32 1 5 4 � 34 3 0 4 � 32 � 4 1 � 3 5 � 0 4 � 36 4 5 4 .

d � 34 3 0 4c � 32 1 5 4

AB � BA,

BA � B3 �1

1 4
R B2 1

0 3
R � B312 2 � 1�1 2 10 2 311 2 � 1�1 2 13 2

112 2 � 410 2 111 2 � 413 2
R � B6 0

2 13
R .
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Basic Laws of Matrix Algebra
Associative Law
Matrix addition and matrix multiplication are associative:

Commutative Law
Matrix addition is commutative:

Matrix multiplication is not commutative (except in special cases):

Distributive Law

Law of Scalar Factoring

where k is a scalar constant.

k(AB) � (kA)B � A(kB),

A(B � C) � AB � AC and (B � C)A � BA � CA

AB � BA.

A � B � B � A.

(A � B) � C � A � (B � C) and (AB)C � A(BC).

With the exception that matrix multiplication is not commutative, these laws
are basically the same as the laws used in algebra for working with real numbers.
However, because the objects now are arrays and the operation of matrix multipli-
cation is much more complicated than real-number multiplication, it is not at all
obvious that these matrix laws should be true. Some effort is required to verify
them (but this is beyond the scope of this chapter).

Because a vector is just a matrix or an matrix, these laws also
apply to vectors. However, scalar products of vectors are commutative.

Matrix calculations are standard features on most calculators and in many
software packages. Typically, you have to give a name for a matrix, such as A, then
specify the dimensions of the matrix (the number of rows by the number of
columns)—say, —and then enter the values in the appropriate positions.
Once you have entered the matrices, you can use the calculator to perform any of
the allowable operations such as sums, differences, and products. See your instruc-
tion manual for details.

The Fruit Purchase Model Revisited

In Example 1 of Section 10.3, we computed the scalar products of fruit costs and
quantities of fruit to be purchased by Amy and Bill. Recall that Amy wanted 5
peaches, 3 pears, 2 apples, and 2 grapefruits, whereas Bill wanted 3 peaches, 4 pears,
3 apples, and 3 grapefruits. Also, peaches cost each, pears each, apples 
each, and grapefruits each. In Example 6 of Section 10.2, we constructed a ma-
trix A of the fruit shopping lists of Amy and Bill and made a column vector p of the
fruit costs (in cents).

50¢
35¢20¢30¢

3 � 4

n � 11 � n
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The matrix-vector product gave the cost of the fruit pur-

chases of Amy and Bill.

EXAMPLE 4
Suppose now that there are two other stores at which Amy and Bill can shop for fruit. In-
stead of a vector of fruit prices, we now have a matrix P of fruit prices (whose first col-
umn is the original store’s set of prices).

Store 1 Store 2 Store 3

Construct a matrix giving the cost to Amy and Bill of their fruit purchases at each store.

Solution We need to compute the matrix product AP, which is well defined becasue A
is a matrix and P is a matrix:

Alternatively, had we entered the cost of fruit in the form $0.30 instead of 30¢, say, we
would get

�

Note that we would have gotten the same results using a calculator to multiply
the two matrices.

Powers of Markov Chain Transition Matrices

Next, we consider a more substantial use of matrix multiplication—one that great-
ly expands the power of the Markov chain model for the stock market introduced
in Section 10.2.

AP � B$3.80 $4.00 $3.75

$4.25 $4.75 $4.15
R .

 � B380 400 375

425 475 415
R.

5130 2 � 3125 2 � 2130 2 � 2145 2
3130 2 � 4125 2 � 3130 2 � 3145 2

R � B5130 2 � 3120 2 � 2135 2 � 2150 2 5125 2 � 3125 2 � 2140 2 � 2160 2
3130 2 � 4120 2 � 3135 2 � 3150 2 3125 2 � 4125 2 � 3140 2 � 3160 2

 AP � B5 3 2 2

3 4 3 3
R D30 25 30

20 25 25

35 40 30

50 60 45

T
4 � 32 � 4

P � D30 25 30

20 25 25

35 40 30

50 60 45

T  

Peaches

Pears

Apples

Grapefruits

 

Ap � B380

425
R � B$3.80

$4.25
R

p � D30

20

35

50

T  

Peaches

Pears

Apples

Grapefruits

A � BPeaches Pears Apples Grapefruits

5 3 2 2

3 4 3 3
R  

Amy

Bill
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In the Markov chain model, the equations for determining the probabilities
and of the market going up, going down, or staying the same tomor-

row given the probabilities and of the market going up, going down, or
staying the same today were

If

are the vector of today’s probabilities and the vector of tomorrow’s probabilities,
respectively, and the matrix A of transition probabilities is

Market Today

Up Down Same

then the given system of transition probabilities can be written simply as 
or, equivalently, as

EXAMPLE 4
Use matrices to find the probabilities of the stock market going up, going down, or stay-
ing the same tomorrow if

is the vector of probabilities of the market going up, going down, or staying the same
today, as in Example 1 of Section 10.2.

Solution The vector of probabilities for the stock market tomorrow is so we get

p� � Ap � C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S  C0
1
2
1
2

S � C 3
8
3
8
2
8

S  .

p� � Ap,

p � C0
1
2
1
2

S

Cp1 

�

p2 

�

p3 

�

S � C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S  Cp1

p2

p3

S � C 1
4 p1 � 1

2 p2 � 1
4 p3

1
2 p1 � 1

4 p2 � 1
2 p3

1
4 p1 � 1

4 p2 � 1
4 p3

S  .

p� � Ap,

Market

Tomorrow
 

Up

Down

Same

C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

 S ,

p � Cp1

p2

p3

S and p� � Cp1 

�

p2 

�

p3 

�

S
 p3 

� �
1

4
 p1 �

1

4
 p2 �

1

4
 p3 .

 p2 

� �
1

2
 p1 �

1

4
 p2 �

1

2
 p3 

 p1 

� �
1

4
 p1 �

1

2
 p2 �

1

4
 p3 

p3p2 ,p1 ,
p3 

�p2 

�
 ,p1 

�
 ,
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Alternatively, using a calculator where the entries in the matrix A and the vector p are
given as decimals instead of fractions, we get

�

Recall that a Markov chain can be extended farther into the future. Just as to-
morrow’s probability vector can be computed by the matrix expression

so too the probability vector for the day after tomorrow is given by

where we have written to represent AA, the square of the matrix A. Note that
is possible provided that A is a square matrix. (Don’t confuse “square of

a matrix” and “square matrix”, where the number of rows equals the number of
columns.) Similarly, the vector of probabilities three days hence is given by

In writing these two matrix equations for and we made use of the fact

that matrix algebra is an associative operation, so and

where can be thought of as AAA.

EXAMPLE 5
Compute and for the stock market Markov transition matrix A.

Solution We first do the calculations by hand:

Similarly, we compute as

 

1
4

. 3
8 � 1

2
. 3

8 � 1
4

. 1
4

1
2

. 3
8 � 1

4
. 3

8 � 1
2

. 1
4

1
4

. 3
8 � 1

4
. 3

8 � 1
4

. 1
4

S   

1
4

. 5
16 � 1

2
. 7

16 � 1
4

. 1
4

1
2

. 5
16 � 1

4
. 7

16 � 1
2

. 1
4

1
4

. 5
16 � 1

4
. 7

16 � 1
4

. 1
4

� C 1
4

. 3
8 � 1

2
. 3

8 � 1
4

. 1
4

1
2

. 3
8 � 1

4
. 3

8 � 1
2

. 1
4

1
4

. 3
8 � 1

4
. 3

8 � 1
4

. 1
4

 A3 � AA2 � C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S  C 3
8

5
16

3
8

3
8

7
16

3
8

1
4

1
4

1
4

S
A3

 � C 3
8

5
16

3
8

3
8

7
16

3
8

1
4

1
4

1
4

S  .

  

1
4

. 1
4 � 1

2
. 1

2 � 1
4

. 1
4

1
2

. 1
4 � 1

4
. 1

2 � 1
2

. 1
4

1
4

. 1
4 � 1

4
. 1

2 � 1
4

. 1
4

S  

1
4

. 1
2 � 1

2
. 1

4 � 1
4

. 1
4

1
2

. 1
2 � 1

4
. 1

4 � 1
2

. 1
4

1
4

. 1
2 � 1

4
. 1

4 � 1
4

. 1
4

 � C 1
4

. 1
4 � 1

2
. 1

2 � 1
4

. 1
4

1
2

. 1
4 � 1

4
. 1

2 � 1
2

. 1
4

1
4

. 1
4 � 1

4
. 1

2 � 1
4

. 1
4

 A2 � C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S  C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S
A3A2

A3A(A2p) � (AA2)p � A3p,

A(Ap) � (AA)p � A2 p,

p���,p��

p��� � Ap�� � A(A2p) � A3p.

p���

A2 � AA
A2

p�� � Ap� � A(Ap) � (AA)p � A2p,

p��p� � Ap,
p�

p� � Ap � C0.25 0.5 0.25

0.5 0.25 0.5

0.25 0.25 0.25

S  C 0

0.5

0.5

S � C0.375

0.375

0.25

S  .
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Alternatively, we can find these matrices by using the matrix capabilities of a calcu-
lator or computer package, though likely with the entries in decimal form. In that case,
we would define the matrix A and then refer to it by name to form

and

You can verify that these decimal entries are equivalent to the fractions we calculated by
hand initially.

�

The entries in are the transition probabilities for 2 days from now and the
entries in are the transition probabilities for 3 days from now. For instance, the
value in position of (the entry in the second row, first column)
means that, if we are now in State 1 (Up—first column), the chance is that in 2 days
we will be in State 2 (Down—second row). Similarly, the value of
in entry of indicates that, if the market is now up, the probability is 
that in 3 days it will go down.

The values we obtained in computing and look reasonable. In particular,
the numbers in each column of and sum to 1 (the sum of all probabilities for
the market on any given day must be 1). Note that all the entries in each of the
three rows of have roughly the same numerical value; the entries in the first row
are slightly larger than those in the second row are all about 0.40, and all the en-
tries in the last row are 0.25.

EXAMPLE 6
If the probabilities of the stock market going up, going down, or staying the same today
are given by the vector

use matrices to find the probabilities of the market going up, going down, or staying
the same the day after tomorrow and the probabilities for the day after that.

Solution We know that and Multiplying, we get

You can easily verify that these entries are the same values we obtained in Section 10.2.

�

p�� � A2p � C 0.34375

0.40625

0.25      

S and p��� � A3p � C 0.3515625

0.3984375

0.25           

S  .

p��� � A3p.p�� � A2p

p���
p��

p � C0
1
2
1
2

S  ,

1
3 ,

A3

A3A2
A3A2

13>32A312, 1 2
13>32 � 0.40625

3
8

A212, 1 23
8 � 0.375

A3
A2

A3 � A^3 � C0.34375 0.359375 0.34375

0.40625 0.390625 0.40625

0.25 0.25 0.25

S  .

A2 � A^2 � C0.375 0.3125 0.375

0.375 0.4375 0.375

0.25 0.25 0.25

S
3 � 3

� C 11
32

23
64

11
32

13
32

25
64

13
32

1
4

1
4

1
4

S .
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x

y

p0

p1

FIGURE 10.33

n 0 1 2 3 4 5 6 7

0.75 0.525 0.4575 0.43725 0.43118 0.42935 0.42881 0.42864 0.42857

0.25 0.475 0.5425 0.56275 0.56883 0.57065 0.57119 0.57136 0.57143 . . . p2

 . . . p1

 . . . 

x

y

p0

p1

p2

p3

FIGURE 10.34

If you refer back to the table that gave the market probabilities over many days
near the end of Example 2 in Section 10.2, you will observe that the probabilities
shown there are similar to the entries in the columns of That is, the probabilities
after 3 days are actually fairly close to the long-term probabilities, so this Markov
chain converges to a limiting state rather quickly.

Example 6 illustrates how, with concise notation, matrix algebra allows us to
express quite complex expressions.

We can visualize what happens in a Markov chain graphically in the case of a

two-by-two transition matrix—say, (Again, notice that the sum 

of the entries in each column is 1.) Let’s start with an initial vector of probabilities

Any vector, including this vector of probabilities, can be inter-

preted geometrically, as shown in Figure 10.33. When we pre-multiply the vector
by the transition matrix A, we obtain another vector of probabilities 

which we can interpret geometrically, as shown in Figure 10.33.

Note that the resulting vector points in a direction quite different from that of
the initial vector We can think of the matrix A as transforming the probability
vector into the vector 

When we multiply the vector by the matrix A to form the next probability

vector we get a vector that points in still another 

direction. What happens when we continue the Markov process to get 
(We have moved from using the notation and so on, to

use subscript notation because the use of multiple quickly becomes too un-
wieldy.) In the following table, we show the results of continuing this process nu-
merically for the two components and for each successive probability vector
p. As in Example 6, the probabilities seem to converge to a pair of limiting values—
approximately 0.42857, which is about and approximately 0.57143, or 4>7.3>7,

p2p1

�’s
p��,p�,p4 � A4p0 , . . . ?

p3 � A3p0 ,

p2 � A2p0p2 � Ap1 � B0.4575

0.5425
R ,

p1

p1 � Ap0 .p0

p0 .
p1

p� � p1 � B0.525

0.475
R ,

p0

p � p0 � B0.75

0.25
R .

A � B0.6 0.3

0.4 0.7
R .

A3.

Figure 10.34 shows the corresponding geometric behavior. Note how the se-
quence of vectors also converges, getting closer and closer to a single limiting vector.

Gord.3896.10.pgs  4/28/03  3:30 PM  Page 696



10.4 Matrix Multiplication 697

If we start with any other vector of probabilities, say, then the corre-

sponding sequence of vectors will also converge to this same limiting vector

This special limiting vector is called an eigenvector of the matrix A. A similar

type of convergence occurs with most other transition matrices, whether a two-by-
two matrix or larger.

A Geometric View of Powers of a Matrix

We have shown that any matrix of the form acts as a rotation

matrix to rotate a vector v through an angle We now examine the effect of apply-
ing to a vector.

EXAMPLE 7
Show that the matrix is a rotation matrix that will rotate any vector through an angle 

Solution We have

If we now apply the double angle identities for the sine and cosine from Chapter 8, we 

get so that indeed is a rotation matrix with an associated 

angle 

� 
2u.

R2R2 � Bcos 2u �sin 2u

sin 2u cos 2u
R ,

 � c
cos2u �  sin2u �2sin u cos u

2 sin u cos u cos2u � sin2u
R.

 � B cos2u �  sin2u �sin u cos u � sin u cos u

sin u cos u � sin u cos u �sin2
 u � cos2

 u
R

 R2 � Bcos u �sin u

sin u cos u
R Bcos u �sin u

sin u cos u
R

2u.R2

R2
u.

R � Bcos u �sin u

sin u cos u
R

B3
7
4
7

R .

p0 � B0.2

0.8
R,

Problems

1. Let

Compute the matrix products.

a. AB b. BA
c. CB d. BC
e. AC f.
g.

2. For the matrices in Problem 1, compute the sums
and linear combinations of matrices.

B2
A2

 C � B 3 1

�1 �3
R .

 B � B4 2

1 1
R , A � B0 2

1 4
R ,

a. b.
c. d.

3. Let

Compute the products, if possible.

a. AB b. CB c. BC
d. AD e. DA f. CD
g. DC h. C2

D � B1 5 �2

3 0 2
R .C � C1 2

3 4

5 6

S  ,

B � B5 �1

0 2
R ,A � B5 0

1 4
R ,

2A � 3CA � B � C
B � CA � B
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4. For A, B, and C in Problem 1,

a. compute AB and then compute 
b. compute BC and then compute Does

equal 

5. For B, C, and D in Problem 3,

a. compute CB and then compute 
b. compute BD and then compute Does

equal 

6. Let

Compute the products, if possible. If not possible,
explain why.

a. AB b. BA c. AC
d. CA e. BC f. CB
g.

7. Pre-multiply each matrix by the matrix A in Prob-
lem 6 and in each case describe how the columns of
the product matrix compare to the columns of A.

a. b.

c.

8. For A, B, and C in Problem 6, compute the entry in
the third row, third column in Explain why
you do not have to multiply BC fully to determine
this entry in 

9. Perform the matrix multiplication for Amy’s and
Bill’s fruit purchases at the three different stores if
the matrix of Amy’s and Bill’s needs are

Peaches Pears Apples Grapefruits

10. Suppose that you have four robots: Supremo, Ultra-
matic, Maximus, and Gandalf, and three types of
jobs: Job 1 (washing clothes), Job 2 (walking the dog),

Amy

Bill
 B7 2 4 5

2 5 1 8
R.

(BC)A.

(BC)A.

C1 0 0

0 3 0

0 0 2

S
C0 1 0

0 0 1

1 0 0

SC0 0 1

0 1 0

1 0 0

S

A2

C � C 4 1 0 3

�2 1 6 3

3 0 2 0

S  .

B � D0 1 0

1 0 1

0 1 0

1 0 1

T ,A � D�1 3 �2

3 4 �1

4 0 1

4 0 1

T ,

C(BD)?(CB)D
C(BD).

(CB)D.

A(BC)?(AB)C
A(BC).

(AB)C.

and Job 3 (doing a student’s homework assignment).
There are three families, the Joneses, the Smiths, and
the Madonnas. Matrix A gives the times in hours it
takes each robot to do each job. Matrix B tells how
many jobs of each type are required by each family.
Compute with A and B to find a matrix showing
how long it will take each robot to do each family’s
set of jobs.

Matrix of Times
Job 1 Job 2 Job 3

Matrix of Jobs
Jones Smith Madonna

11. Suppose that you are given the following matrices
involving the costs of fruit at different stores, the
amounts of fruit that professors and engineers typ-
ically want, and the number of each type of person
in two towns.

Store 1 Store 2

Bananas Peaches Pears

Professors Engineers

a. Compute a matrix product to find how much each
type of person’s fruit purchases cost at each store.

b. Compute a matrix product to find how many of
each fruit will be purchased in each town.

c. Compute a matrix product to find how much
was spent by each town at each store.

12. Consider the following population model for the
numbers of goats (G) and sheep (S) from year to year.

C �  B2000 800

1500 1200
RTown 1

Town 2

B �  B6 12 4

6 8 5
R Professors

Engineers

A �  C0.15 0.20

0.25 0.15

0.20 0.25

SBananas

Peaches

Pears

B � C 6 2 4

8 5 4

10 5 4

S Job 1

 Job 2

Job 3

A � D3 4 2

5 7 3

1 2 1

3 3 3

TSupremo

Ultramatic

Maxiumus

Gandalf
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Let be the initial vector and be

the vector of goats and sheep after n years. Let A be
the matrix of coefficients in this system. (a) Write
an expression for in terms of A and (b) Find

and and use them and your formula to de-
termine and if the starting population, in 

thousands, is (Check your answer by ap-

plying the model equations for 2 and 3 years.) 
(c) What does the model predict for the two popu-
lations in 10 years?

13. Consider the following population model for the
numbers of goats (G), sheep (S), and bears (B) from
year to year.

Let

be the initial vector and let denote the vector of
goats, sheep, and bears after n years. Let A be the ma-
trix of coefficients in this system. (a) Write an expres-
sion for in terms of A and (b) Find and 
(c) Determine and if the starting population,
in hundreds, is

(Check your answer by applying the model equa-
tions for 2 and 3 years.) (d) How long does it take
for one of the populations to die out?

14. The copy machine at the student union breaks
down as follows. If it is working today, it has a 70%
chance of working tomorrow (and a 30% chance of
breaking down). If the copy machine is broken
today, it has a 50% chance of working tomorrow
(and a 50% chance of being broken again). Write the
Markov chain transition matrix A for this scenario.

a. Compute What probability does the entry in
position in represent?A211, 2 2

A2.

x0 � C1

1

2

S  .

x3 ,x2

A3.A2x0 .xn

xn

x0 � CG0

S0

B0

S
 B� � 2G �  S � B

 S� � G � 2S � B

 G� � G � S � B

x0 � B2
5
R .

x3 ,x2

A3,A2
x0 .xn

xn � BGn

Sn

Rx0 � BG0

S0

R  S� � G � 3S
 G� � 2G � 2S b. Compute If the copy machine is working

today, what is the probability that it will be
working in 3 days?

c. If it is working today, what is the probability that
it will be working a week from today?

15. Consider a weather Markov chain with 2 states,
sunny and cloudy. If today is sunny, there is a 
probability that tomorrow will be sunny and a 
probability that tomorrow will be cloudy. If today is
cloudy, there is a probability that tomorrow will
be sunny and a probability that tomorrow will be
cloudy. Write the transition matrix A for this Markov
chain.

a. Compute What probability does the entry in
position in represent?

b. Compute If today is cloudy, what is the prob-
ability that it will be sunny in three days?

c. If today is cloudy, what is the probability that it
will be sunny a week from today?

16. Consider the transition matrix 

and an initial vector 

a. Calculate and by hand.
b. Use the matrix features of your calculator to cal-

culate the next four iterates and so
on, corresponding to and Create a
table listing the entries in the vectors that result.
Do they appear to be converging?

c. Plot the vectors you found in parts (a) and (b).
Do they appear to be converging?

d. Repeat parts (a)–(c) if the initial vector is

e. Repeat parts (a)–(c) if the initial vector is 

f. What do you observe about the three sequences
of vectors from parts (b), (d), and (e)?

17. In Problem 22 of Section 10.3, we described how
to write a polynomial as a scalar product of a
vector of coefficients and a vector of power func-
tions. Suppose that you now have two cubic poly-
nomials and 

a. Express the sum of the two polynomials in terms
of vectors.

4x3 � 5x2 � 8x � 17.
Q1x 2  �P1x 2 � x3 � 4x2 � 7x � 2

p � B0.25

0.75
R .

p � B0.5

0.5
R .

A6.A5,A4,A3,
p����,p���,

p��p�

p � B0.7

0.3
R .

A � B0.2 0.4

0.8 0.6
R

A3.
A211, 2 2

A2.

3
4

1
4

1
4

3
4

A3.
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700 CHAPTER 10 Matrix Algebra and Its Applications

b. Express the difference of the two polynomials in
terms of vectors.

18. Explain why you can’t have a power of a non-square
matrix A.

19. Prove that, if R is the rotation matrix associ-
ated with an angle then is a rotation matrix as-
sociated with an angle (Hint: Write 
and use appropriate trigonometric identities to
simplify the result of the multiplication.)

R3 � RR23u.
R3u,

2 � 2

20. The matrix is a rotation

matrix. What is the associated angle of rotation?

21. Consider the matrix 

Describe the effect of successively applying R,
to any nonzero vector v.R90R4, . . . ,R3,

R2,

R � Bcos 1° �sin 1°

sin 1° cos 1°
R .

R � B0.9272 �0.3746

0.3746 0.9272
R

Gaussian Elimination

In this section we develop a procedure known as Gaussian elimination for solving
any system of linear equations. The elimination method was devised by Carl Friedrich
Gauss in about 1820 to solve systems of linear equations in astronomical and land-
surveying computations. For our purposes here, when we speak of a system of linear
equations, we assume that the number of equations equals the number of variables.

Suppose that we start with the system of linear equations

Gaussian elimination involves two stages. The first stage transforms the given
system of equations, or equivalently the associated matrix of coefficients, into
upper triangular form, with only 0’s below the main diagonal of the matrix:

(We show how to do this shortly.) Once we have transformed the original system of
equations to upper triangular form, solving it is quite simple. The second stage of
the process uses “back substitution” to obtain values for the variables. That is, know-
ing from the third equation that we can solve for y in the second equation:

Now, knowing y and z, we can solve for x from the first equation:

We can simplify this procedure by using vectors and matrices. Instead of using
x, y, and z as the variables, we use and We then write the upper triangular
form for the preceding system of equations in matrix form as 

To apply Gaussian elimination to any system of linear equations, we transform
the original coefficient matrix into upper triangular form by applying the follow-
ing three elementary row operations repeatedly.

A � C3 �5 4

0 3 1

0 0 1

S  ,  x � Cx1

x2

x3

S  , and b � C10

1

1

S  .

Ax � b, where
x3 .x2 ,x1 ,

3x � 510 2 � 411 2 � 10 so that x � 2.

3y � 11 2 � 1 so that y � 0.

z � 1,

 z � 1.

 3y � z � 1

 3x � 5y � 4z � 10

 6x � 2y � 2z � 10.

 3x � 2y � 5z � 11

 3x � 5y � 4z � 10

10.5

Gord.3896.10.pgs  4/28/03  3:30 PM  Page 700



10.5 Gaussian Elimination 701

Elementary Row Operations

� Multiply or divide any row of a matrix (or an equation) by a nonzero
number.

� Add a multiple of one row (or equation) to another row (or equation).

� Interchange two rows (or two equations).

Realize that performing any of these operations on the rows of a matrix is
equivalent to performing the same operation on the original equations. Becasue the
operations do not materially change the equations, the equivalent operations do not
materially change the matrix, so we will get the same solution.

Because the numbers, not the variables, are what matter in the equations, we
work with the coefficient matrix A extended by a column for the right-hand side
vector b. This matrix of coefficients along with the right-hand side vector
is called the augmented coefficient matrix. For instance, if the system of equa-
tions is

so that

then the augmented matrix is

In Example 1 we show the steps involved in applying Gaussian elimination to
both the system of linear equations and the associated augmented matrix.

EXAMPLE 1
Use Gaussian elimination to solve the following system of two equations in two unknowns.

(1)

(2)

Solution This system is equivalent to the augmented matrix

To eliminate the x-term from Equation (2), we add times Equation (1) to Equation
(2) (the second elementary row operation). The result is a new second Equation ( ):

Equivalently, we perform the identical operation on the corresponding rows of the

   12 2     x � 2y � �4

� 
1
2 11 2     �x � 0.5y � �3.5

12	 2 � 12 2� 
1
2 11 2       0 � 2.5y � �7.5

2	
� 

1
2

B2 1

1 �2
2 7

�4
R .

 x � 2y � �4

 2x � y � 7

[A�b] � B2 3

4 �5
2 7

3
R .

A � B2 3

4 �5
R and b � B7

3
R ,

 4x � 5y � 3

 2x � 3y � 7

[A�b]
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augmented matrix: Add times the first row to the second row. Our new system of
equations and the new augmented matrix become

(1)

(2')

and

Note that any solution to Equations (1) and (2) is also a solution to Equations (1) and 
because we can reverse the step that created Equation That is, im-
plies that Thus Equation (2) is formed from Equation and a mul-
tiple of Equation (1), and so any solution to Equations (1) and is also a solution to
Equations (1) and (2). But Equation is trivial to solve, and gives Substituting

into Equation (1), we get

Verify that and satisfy the two original Equations (1) and (2).

�

When solving a system of linear equations, you should always check your re-
sult by substituting the values for the variables into the original equations, not the
transformed equations, in case you made a mathematical error along the way.

Note also that the work we did on the system of equations exactly parallels
what happens with the augmented matrix. Eventually, we will dispense with the
equations altogether and work exclusively with the augmented matrix because it
eliminates writing and keeping track of the variables at every step.

A Geometric Interpretation

If there are only two equations in two unknowns, you can also solve the system
graphically by plotting the two lines. The first equation represents all points on one
line and the second equation represents all points on the second line. Thus the so-
lution to the system of equations corresponds to the point of intersection and you
can approximate this point with your graphing calculator.

There is a comparable geometric interpretation for a system of three linear
equations in three unknowns. Just as an equation of the form repre-
sents a line in the two-dimensional coordinate plane, an equation of the form

represents a plane in three-dimensional space. When you have
three equations in three unknowns, you actually have three different planes in
space, as suggested in Figure 10.35. Visualize, for instance, the ceiling, the wall in
front of you, and the wall to your left. These three planes intersect at a single point
in the upper corner of the room to your left. This point of intersection also is the
solution of the system of three equations. Unfortunately, graphing calculators
cannot yet use this geometric interpretation to solve such a system of equations.

Also, there can be some complications: You know that two lines can be parallel, so
the resulting system of two equations in two unknowns will not have a solution. Sim-
ilarly, three planes don’t necessarily have a common point of intersection. Visualize

ax � by � cz � d

ax � by � d

y � 3x � 2

2x � 3 � 7, so x �
17 � 3 2

2
� 2.

y � 3
y � 3.12	 2

12	 2
12	 212 2 � 12	 2 � 1

2 11 2 .
12	 2 � 12 2 � 1

2 11 212	 2 .
12	 2

B2 1

0 �2.5
  2   

7

�7.5
R .

 �2.5y � �7.5,

 2x � y � 7

� 
1
2
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10.5 Gaussian Elimination 703

the ceiling, the floor, and the wall in front of you—they don’t meet at a single point.
Or, picture a long triangular prism made up of three flat sides that likewise have no
single point of intersection. Alternatively, three planes can all pass through a common
line of intersection, as with a revolving door. In that case the system of linear equa-
tions has infinitely many solutions. We consider such cases later in Example 3.

The Clothes Production Model and Gaussian Elimination

Recall the clothes production model introduced in Section 10.2 with three clothing
factories whose raw material production levels had to be chosen to meet the de-
mands for vests, pants, and coats.

(3)

(4)

(5)

EXAMPLE 2
Set up the corresponding augmented matrix and use Gaussian elimination to solve the
system of equations.

Solution The augmented matrix is

To solve this system, we first use multiples of Equation (3) to eliminate from Equa-
tions (4) and (5). Because is half of in Equation (3), we add times Equation
(3) to Equation (4) to cancel the terms and and so get a new second
Equation 

   14 2     10x1 � 14x2 � 5x3 �    850
� 

1
2 13 2                �10x1 �    2x2 � 2x3 � �250

14	 2 � 14 2 � 1� 
1
2 2 13 2       0    � 12x2 � 3x3 �  600

14	 2 .
10x1� 

1
2 120x1 2

� 
1
220x110x1

x1

C20 4 4

10 14 5

5 5 12

  3 500

850

  1000

S  .

Coats:  5x1 � 5x2 � 12x3 � 1000

Pants:  10x1 � 14x2 � 5x3 � 850

Vests:  20x1 � 4x2 � 4x3 � 500

FIGURE 10.35
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Similarly, we add times Equation (3) to Equation (5) to eliminate the -term from
Equation (5) and get a new Equation 

Our new system of equations is now

(3)

(4')

(5')

and the corresponding augmented matrix is

Next we use Equation to eliminate the -term from Equation by adding
times Equation to Equation We obtain a new Equation 

Our final system of equations in upper triangular form then is

(3)

(4')

(5")

with the associated augmented matrix

Any solution to the original system is also a solution to the new system. Further-
more, reversing the steps used in going from the original system to the final system (so
that the original system is formed from linear combinations of the equations in the final
system), we see that any solution to the new system is also a solution to the original sys-
tem. The final system is in upper triangular form, so we can solve it using back substitu-
tion. From Equation we have

Substituting this value into Equation yields

12x2 � 3167.5 2 � 600, so 12x2 � 600 � 202.5, or x2 � 33.125.

14	 2

x3 �
675

10
� 67.5.

15
 2 ,

C20 4 4

0 12 3

0 0 10

  3   
500

600

675

S  .

 10x3 � 675

 12x2 � 3x3 � 600

 20x1 � 4x2 � 4x3 � 500

 15	 2    4x2 � 11x3 �    875
� 

1
3 14	 2                 �4x2 �   1x3 � �200

15
 2 � 15	 2 � 1� 
1
3 2 14	 2         10x3 �    675

15
 2 .15	 2 .14	 2� 
1
3

15	 2x214	 2

C20 4 4

0 12 3

0 4 11

   3    

500

600

875

S  .

 4x2 � 11x3 � 875,

 12x2 � 3x3 � 600

 20x1 � 4x2 � 4x3 � 500

  15 2    5x1 � 5x2 � 12x3 �    1000
� 

1
4 13 2       �5x1 � 1x2 �   1x3 �    �125

15	 2 � 15 2 � 1� 
1
4 2 13 2         4x2 � 11x3 �     875

15	 2 .
x1� 

1
4
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10.5 Gaussian Elimination 705

Next substituting and into Equation (3) gives

so that

Therefore the vector of the number of rolls of cloth needed by each of the three clothing
factories is

�

Clearly in practice, cloths come in full rolls, so a more realistic solution would in-
volve rounding up to the next full roll of cloth.

Incidentally, you can apply the three elementary row operations in many differ-
ent ways to solve a particular system of equations. However, although the steps you
use might differ from those of others solving the same problem, you should all ob-
tain the same solution in the end, if none of you have made any mathematical errors.

Most graphing calculators have a built-in routine for applying Gaussian elimina-
tion to any set of linear equations. Typically, you would enter the coefficients, press
the SOLVE key, and the calculator will respond with the solution or will indicate that
either there is not a unique solution or no solution exists. (The specific key operations
differ from one machine to another, so check your manual for details.) From one
point of view, this approach is extremely simple because you get the answer instantly.
However, it does have the drawback of not letting you see how the method works or
understand what went wrong when the method fails, as we discuss below.

Systems of Linear Equations with Multiple Solutions

In our discussion regarding the geometric interpretation of systems of three equations
in three unknowns, we mentioned that it is possible that three planes can have many
points of intersection, as in a revolving door. We illustrate this type of situation in
Example 3 where we change the number on the right-hand side of the third equation
in Example 2 from 1000 to 325 and the coefficient of from 12 to 2.

EXAMPLE 3
Apply Gaussian elimination to the system of linear equations

(6)

(7)

(8)

Solution The corresponding augmented matrix is

C20 4 4

10 14 5

5 5 2

  3   
500

850

325

S  .

 5x1 � 5x2 � 2x3 � 325.

 10x1 � 14x2 � 5x3 � 850

 20x1 � 4x2 � 4x3 � 500

x3

Cx1

x2

x3

S �  C 4.875

3.125

67.5

S � C 4 
7
8

33 
1
8

67 
1
2

S .

x1 �
500 � 132.5 � 270

20
� 4.875.

20x1 � 4133.125 2 � 4167.5 2 � 500

x2 � 33.125x3 � 67.5
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After eliminating from Equations (7) and (8), we have

along with the associated augmented matrix

Next we add times Equation to Equation to eliminate the -term:

The corresponding augmented matrix is

But this process eliminates the term, and simultaneously the constant term on the
right becomes 0. Also, note that Equation is equivalent to times Equation As
a consequence, we actually have only two equations in three unknowns. This system has
infinitely many solutions because we can choose any value for and then use back sub-
stitution to determine and based on our choice for For instance, if we choose

Equation gives so and then Equation (6) gives
so Alternatively, if we choose eventually

Equation gives and so Equation (6) gives That is, we have obtained
two very different solutions to the same system of equations. In fact, had we selected any
other positive value for we would have obtained still another solution to the system
(but not necessarily to the original problem). Thus, geometrically, the corresponding
planes in three dimensions all pass through a common line of intersection, and every
point on this line is a solution to the system.

�

Incidentally, if you attempted to solve the system of equations in Example 3 on
a graphing calculator, say, you would get an error message of the form SINGULAR
MATRIX. We discuss what this message means later in this section.

Systems of Linear Equations with No Solutions

We pointed out in our discussion of the geometry of systems of equations that
three planes may have no common point of intersection, as with the floor, ceiling
and one wall in a room. We illustrate this situation in Example 4 by making anoth-
er minor change in the value on the right-hand side of the third equation in the
original system in Examples 2 and 3.

x3 ,

x1 � 9.x2 � 40,17	 2
x3 � 40,x1 � 15.20x1 � 4150 2 � 410 2 � 500,

x2 � 50,12x2 � 310 2 � 600,17	 2x3 � 0,
x3 .x1 ,x2

x3

17	 2 .1
318	 2

x3

C20 4 4

0 12 3

0 0 0

  3   
500

600

0

S  .

16 2 20x1 � 4x2 � 4x3 � 500

17	 2        12x2 � 3x3 � 600

18
 2 � 18	 2 � 1
3 17	 2               0x3 � 0

x218	 217	 2� 
1
3

C20 4 4

0 12 3

0 4 1

  3   
500

600

200

S  .

16 2 20x1 � 4x2 � 4x3 � 500

17	 2 � 17 2 � 1
2 16 2        12x2 � 3x3 � 600

18	 2 � 18 2 � 1
4 16 2         4x2 � 1x3 � 200,

x1
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10.5 Gaussian Elimination 707

EXAMPLE 4
Apply Gaussian elimination to the system of linear equations

(9)

(10)

(11)

Solution The corresponding augmented matrix is

Eliminating as before, we get

(9)

(10')

(11')

The associated augmented matrix is

We now use Equation to eliminate the -term in Equation to get

(9)

along with the augmented matrix

The two Equations and are called inconsistent equations because they lead to
the impossible Equation Hence the original system has no solution.
Geometrically, this outcome indicates that the corresponding planes in three dimen-
sions do not have a common point of intersection.

�

If you attempted to solve this system of equations on a graphing calculator, say,
you would again get an error message about a SINGULAR MATRIX.

In the real world, the inconsistency that occurred in Example 4 would be re-
solved by increasing one of the right-hand side demands (thus producing an excess
amount of one type of clothing).

We now summarize the steps of Gaussian elimination.

0 � 675.111
 2 :
111	 2110	 2

C20 4 4

0 12 3

0 0 0

  3   
500

600

675

S  .

0x3 � 675,111
 2 � 111	 2 � 1� 
1
3 2 110	 2

12x2 � 3x3 � 600110	 2
20x1 � 4x2 � 4x3 � 500

111	 2x2110	 2

C20 4 4

0 12 3

0 4 1

  3   
500

600

875

S  .

 4x2 � 1x3 � 875.

 12x2 � 3x3 � 600

 20x1 � 4x2 � 4x3 � 500

x1

C20 4 4

10 14 5

5 5 2

  3   
500

850

1000

S  .

 5x1 � 5x2 � 2x3 � 1000.

 10x1 � 14x2 � 5x3 � 850

 20x1 � 4x2 � 4x3 � 500
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AA�1 � I2 � A�1A.

If, in the process, the coefficient of in the ith equation is
zero and the coefficient of in one of the following equations is nonzero, simply
interchange the two equations.

Using the Inverse Matrix

We can use a related approach with matrices to solve systems of equations. Let’s
begin with the matrices

Their product is

The matrix is called the identity matrix and is denoted by 

For any matrix A,

so plays the same role for matricies as the number 1 plays in arithmetic:
Similarly, the identity matrix for matrices is

and so on. The preceding matrices A and B are said to be inverses of each other. We
write and the product of the matrix and its inverse is the identity matrixB � A�1,

I3 � C1 0 0

0 1 0

0 0 1

S  ,

3 � 3a . 1 � 1 . a � a.
2 � 2I2 

AI2 � I2A � A,

2 � 2

I2 .2 � 2B1 0

0 1
R

AB � B1 0

4 2
R   B 1 0

�2 1
2

R � B1 0

0 1
R .

A � B1 0

4 2
R and B � B 1 0

�2 1
2

R .

xi

n � 1 22, . . . ,1i � 1,xi

The inverse of a matrix can be extremely useful in solving systems of linear equations.
Not every matrix has an inverse. A matrix that does not have an inverse is called

a singular matrix. (Note that this is the same term that is used in the error message
on graphing calculators when a system of equations has no solution or multiple so-
lutions.) A square matrix A has an inverse if, when we use Gaussian elimination to
reduce it to upper triangular form, all the diagonal elements are nonzero. However, if
any of the diagonal elements are zero, no inverse exists and the matrix is singular.

Gaussian Elimination

1. Add multiples of the ith equation, for to the
remaining equations to eliminate the ith variable from the other
equations.

2. Solve the resulting upper triangular system of equations, using back
substitution.

n � 1,2, . . . ,i � 1,
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10.5 Gaussian Elimination 709

Suppose now that we have the matrix-vector equation and that the
matrix A is not singular, so its inverse exists. Matrix A can be any size, so

we denote the corresponding identity matrix by I without designating its size.
Then we can left-multiply the equation by this inverse matrix and obtain

which automatically gives the desired solution vector x.
Note that we haven’t discussed how to calculate the inverse of a matrix A. We

can do so by using an extension of the Gaussian elimination process, but that is
somewhat outside the scope of what we want to focus on here. Instead, note that
your calculator will do this for you. Enter a square matrix A, call it up and press the
x-1 key, and your calculator will give you the inverse matrix A-1 if it exists. If the in-
verse does not exist, you will get an error message. Multiply this inverse matrix and
the vector of constants b to get the desired solution vector 

Some of you may have seen a method called Cramer’s rule, which uses
determinants for solving a system of linear equations. Although fairly effective for
solving systems of two or three equations, Cramer’s rule is very inefficient for larg-
er systems. Suppose, for instance, that you use a relatively slow computer that can
perform only 1 million operations per second. To solve a system of 20 equations in
20 unknowns with Cramer’s rule would take it about 77,000 years! The same com-
puter could solve that system in about 0.003 second using Gaussian elimination or
matrix methods.

Applications of Gaussian Elimination

We now consider a series of further applications involving systems of equations.
We begin by using Gaussian elimination to investigate the long-term behavior of
Markov chains.

Steady State of the Markov Chain for the Stock Market Consider again the
stock market Markov chain introduced in Section 10.2 with the transition matrix

Market Today
Up Down Same

We noted that over many time periods, the successive probability vectors con-
verged to 0.35 for the market going up, 0.40 for the market going down, and 0.25
for the market staying the same. We confirm the fact that

is the steady state or the equilibrium state of the Markov chain by showing that if
the market ever reaches this state on one day, the vector for the following
day will be the same as p. That is, at the steady state, there is no subsequent change

p� � Ap

p � C0.35

0.40

0.25

S

Market

Tomorrow
 

Up

Down

Same

C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S � A.

x � A�1b.

 x � A�1b,

 Ix � A�1b

 A�1Ax � A�1b

A�1n � n
Ax � b
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in the values for the probabilities. Using a calculator to perform the matrix–vector
product gives

In Example 5, we show how to find the equilibrium state, denoted  by p*, for a
Markov chain exactly.

EXAMPLE 5
Find the equilibrium state p* for the preceding matrix A.

Solution We want a vector p* that satisfies the matrix-vector equation Let
the components of p* be denoted by and Note that 
because the sum of all the probabilities associated with an event must sum to 1.

Because we have

Collecting the variables on the left, we get the following system of three equations in the
three unknowns and 

Solving this system by Gaussian elimination applied to the augmented coefficient ma-
trix, we obtain

To eliminate the fractions, we multiply the first row by 4 and the second row by 12:

This augmented matrix is equivalent to the reduced system of equations

Because there are only two equations in the three unknowns, there is no unique solu-
tion. Instead, we can solve for any two of the variables in terms of the third—say,
The second equation then gives

p2ˇ* �
8

5
 p3ˇ*

p3ˇ* .

 5p2ˇ* � 8p3ˇ* � 0.

 3p1ˇ* � 2p2ˇ* � p3ˇ* � 0

C3 �2 �1 

0 5 �8 

0 0 0 

 3  0

0

 0

S  .

C 3
4 � 

1
2 � 

1
4 

� 
1
2

3
4 � 

1
2 

� 
1
4 � 

1
4

3
4 

 3  0

0

 0

S ⇒ C 3
4 � 

1
2 � 

1
4 

0 5
12 � 

2
3 

0 � 
5

12
2
3 

 3  0

0

 0

S ⇒   C 3
4 � 

1
2 � 

1
4 

0 5
12 � 

2
3 

0 0 0 

 3  0

0

 0

S  .

 � 
1
4 p1ˇ* � 1

4 p2ˇ* � 3
4 p3ˇ* � 0.

 � 
1
2 p1ˇ* � 3

4 p2ˇ* � 1
2 p3ˇ* � 0

 34 p1ˇ* � 1
2 p2ˇ* � 1

4 p3ˇ* � 0

p *3  :p *2  ,p1ˇ* ,

Cp1 *

p2 *

p3 *

 S� C 1
4 p1 * � 1

2 p2 * � 1
4 p3 *

1
2 p1 * � 1

4 p2 * � 1
2 p3 *

1
4 p1 * � 1

4 p2 * � 1
4 p3 *

S  .

p* � Ap*,

p1ˇ* � p2ˇ* � p3ˇ* � 1p3ˇ* .p2ˇ* ,p1ˇ* ,
p* � Ap*.

p� � Ap � C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S  C0.35

0.40

0.25

S � C0.35

0.40

0.25

S � p.
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10.5 Gaussian Elimination 711

and, when we substitute it into the first equation and solve for we have

Where is our unique vector of stable probabilities? In this solution we obtained infi-
nitely many solutions—one for each value of We now use the fact that the sum of
the three probabilities must equal 1, or We substitute the expres-
sions for and in terms of to obtain

so that Therefore

These probabilities are identical to those in the equilibrium state vector of the market
Markov chain given previously.

�

Systems of linear equations of the form with a zero vector, 0, on the
right-hand side, such as the one in Example 5, occur frequently in matrix alge-
bra. They are called homogeneous systems of linear equations. In comparison, sys-
tems of equations of the form where are called nonhomogeneous
systems.

When solving a homogeneous system, we usually are interested in a nonzero
solution, as was the case here. Note, however, that is always a solution to any
homogeneous system Thus, if we are to get a nonzero solution, we must
have a case of multiple solutions.

Applications to Analytic Geometry Next, we apply Gaussian elimination to
solve some systems of linear equations that arise in analytic geometry.

One of the most basic objects in geometry is a line, whose equation can be
written as Suppose that we have two points, P with coordinates 
and Q with coordinates and we want to find the equation of the line through
these points. We could solve this problem by finding the slope of the line segment
joining the two points and then using the point–slope formula. Here, however, we
solve this problem using systems of equations to illustrate some important mathe-
matical ideas that can be extended to answer considerably more complicated ques-
tions. The results either way are the same.

EXAMPLE 6
Use matrix methods to find the equation of the line through the points and 

Solution First, let’s be clear about what we need to find. The equation of the line
is determined by two constants—the slope a and the vertical intercept b. Al-

though a and b are constants for a particular line, we can think of them as parameters
that distinguish one line from another. We need to determine appropriate values for a
and b so that the line passes through the points and According-
ly, a and b must satisfy the following two equations.

16, 7 2 .13, 1 2y � ax � b

y � ax � b

16, 7 2 .13, 1 2

16, 7 2 ,
13, 1 2y � ax � b.

Ax � 0.
x � 0

b � 0,Ax � b,

Ax � 0

p2ˇ* �
8

5
 10.25 2 � 0.40 and p1ˇ* �

7

5
 10.25 2 � 0.35.

p3ˇ* � 0.25.

p1ˇ* � p2ˇ* � p3ˇ* �
7

5
 p3ˇ* �

8

5
 p3ˇ* � p3ˇ* �

20

5
 p3ˇ* � 4p3ˇ* � 1,

p3ˇ*p2ˇ*p1ˇ*

p1ˇ* � p2ˇ* � p3ˇ* � 1.
p3ˇ* .

p1ˇ* �
2p2ˇ* � p3ˇ*

3
�

218>5 2p3ˇ* � p3ˇ*

3
�

7

5
 p3ˇ* .

p1ˇ* ,
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712 CHAPTER 10 Matrix Algebra and Its Applications

We rewrite these two equations in standard form to get

Subtracting twice the first equation from the second equation yields

Substituting back into the second equation gives

Therefore the equation of the desired line is

�

We now extend the ideas in Example 6 to find the equation of a parabola
We need to determine the values of the parameters a, b, and c.

To solve for these three unknowns, we need three linear equations. As with the
line, we get a linear equation associated with each point the parabola goes
through. For three equations, we need three points. Suppose that the three points
are and Note that the three points must be noncollinear
(i.e., they cannot lie on a common line). Each point determines an equation
when we substitute its coordinates, x and y, into the parabola’s formula

For point 

For point 

For point 

Hence we have the system of linear equations

In Problem 17 we ask you to solve these three equations to determine a, b, and c.
Next, we apply this curve-fitting method to a more complicated situation—

namely, finding the equation of a circle. The familiar form of the equation of a
circle is

where is the center of the circle and c is the radius. It turns out that, just as
three noncollinerar points determine a parabola, any three noncollinear points
also determine a circle. We now have three parameters a, b, and c to determine,
which should lead to three equations in the three unknowns. But the equations
arising from giving particular values to x and y in the above equation for the circle

1a, b 2

1x � a 2 2 � 1y � b 2 2 � c 
2,

 a � b � c � 8.

 16a � 4b � c � 3

 4a � 2b � c � �1

8 � a1�1 2 2 � b1�1 2 � c1�1, 8 2 :
3 � a14 2 2 � b14 2 � c14, 3 2 :

�1 � a12 2 2 � b12 2 � c12, �1 2 :

y � ax2 � bx � c.

1�1, 8 2 .14, 3 212, �1 2 ,

y � ax2 � bx � c.

y � 2x � 5.

6a � 1�5 2 � 7, so 6a � 12, and a � 2.

�b � 5, so that b � �5.

 6a � b � 7.

 3a � b � 1

For point 16, 7 2 : 7 � a16 2 � b

For point 13, 1 2 : 1 � a13 2 � b
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10.5 Gaussian Elimination 713

will not be linear (there will be and terms), so we cannot use Gaussian elimi-
nation to determine a, b, and c based on the equation 
However, if we expand this expression algebraically, we get

Therefore we can transform the equation of the circle to the form

where and are three other parameters.
Using this form, we can set up three linear equations in these three unknowns and
solve for them with Gaussian elimination. Once we have their values, we can
rewrite the equation of the circle in the more familiar form and read the coordi-
nates of the center and the radius. We illustrate these ideas in Example 7.

EXAMPLE 7
Find the equation of the circle passing through the points and 

Solution Using the equation

we create three linear equations that C, D, and E must satisfy.

For the point 

For the point 

For the point 

Moving the constant terms to the right-hand side in each equation, we have

(12)

(13)

(14)

We now apply Gaussian elimination to this (nonhomogeneous) system of three linear equa-
tions in three unknowns. First, to eliminate C from Equations (13) and (14), we subtract of
Equation (12) from Equation (13) and subtract of Equation (12) from Equation (14).

(12)

Next we eliminate D from the last equation by subtracting of Equation from
Equation 

(12)

1

2
 E � �10114
 2 � 114	 2 � 3

2 113	 2

5D �
1

2
 E � �10113	 2

4C � 2D � E � �20

114	 2 .
113	 23

2

15

2
 D �

1

4
 E � �25114	 2 � 114 2 � 5

4 112 2

5D �
1

2
 E � �10113	 2 � 113 2 � 3

2 112 2

4C � 2D � E � �20

5
4

3
2

5C � 5D � E � �50.

6C � 2D � E � �40

4C � 2D � E � �20

52 � 52 � C15 2 � D15 2 � E � 015, 5 2 :
62 � 22 � C16 2 � D12 2 � E � 016, 2 2 :
42 � 1�2 2 2 � C14 2 � D1�2 2 � E � 014, �2 2 :

x2 � y2 � Cx � Dy � E � 0,

15, 5 2 .16, 2 214, �2 2 ,

E � a2 � b2 � c2D � �2b,C � �2a,

x2 � y2 � Cx � Dy � E � 0,

 � x 
2 � y 

2 � 2ax � 2by � a2 � b2 � c 
2.

 1x � a 2 2 � 1y � b 2 2 � 1x2 � 2ax � a2 2 � 1  y 
2 � 2by � b2 2

1x � a 2 2 � 1y � b 2 2 � c 
2.

b2a2
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714 CHAPTER 10 Matrix Algebra and Its Applications

x

y

(4, –2)

(6, 2)

(5, 5)

(1, 2)

FIGURE 10.36

From Equation we have Substituting back into Equation yields

Then substituting back into Equation (12) yields

Therefore one form of an equation for our circle is

We rewrite this equation in the more familiar form by completing the square on both x
and y (see Appendix A8):

Thus our circle is centered at the point and has radius 5, as shown in Figure 10.36.11, 2 2

 1x � 1 2 2 � 1y � 2 2 2 � 1 � 4 � 20 � 25.

 3 1x � 1 2 2 � 1 4 � 3 1  y � 2 2 2 � 4 4 � 20 � 0

 3 1x2 � 2x � 1 2 � 1 4 � 3 1  y2 � 4y � 4 2 � 4 4 � 20 � 0

 3 1x2 � 2x 2 4 � 3 1  y2 � 4y 2 4 � 20 � 0

x2 � y2 � 2x � 4y � 20 � 0.

4C � 21�4 2 � 1�20 2 � �20, so 4C � �8 and C � �2.

5D �
1

2
 1�20 2 � �10, so 5D � �20 and D � �4.

113	 2E � �20.114
 2 ,

1. Solve each system of equations using Gaussian
elimination.

a. b.

c. d.

e.

2. Use Gaussian elimination to solve each variation on
the clothes production model in Example 2. Some

 �4x � 3y � �2
 3x � 2y � 3

 �2x � 5y � 2 �4x � y � 1
 3x � 2y � 3 2x � 3y � 4

 �x � 2y � 9 2x � 3y � 4
 x � 4y � 3 x � y � 8

variations may have no solution, some may have
multiple solutions (express such an infinite family
of solutions in terms of ), and some may have an
unrealistic solution involving negative values.

a.

b.

 2x1 � 12x3 � 1000
 10x1 � 10x2 � 850

 6x1 � 5x2 � 6x3 � 500

 4x1 � 5x2 � 11x3 � 2050
 8x1 � 3x2 � 5x3 � 850

 20x1 � 4x2 � 4x3 � 500

x3

Problems

�

Substitute the coordinates of the three points in Example 7 into the usual equation
for a circle, to see the types of equations involving the
three parameters a, b and c that would result. ❐

1x � a 2 2 � 1  y � b 2 2 � c2,
Think About This

Gord.3896.10.pgs  4/28/03  3:30 PM  Page 714



10.5 Gaussian Elimination 715

c.

d.

3. Solve each system of equations using Gaussian
elimination.

a.

b.

c.

d.

e.

f.

4. In each set of three equations, show that the third
equation equals some multiple r of the first equation
added to the second equation:

a.

b.

c.

5. Determine whether each system of equations has a
unique solution, multiple solutions, or is inconsis-
tent (has no solution).

a.

b.
 �3x � 6y � 4

 x � 2y � �3

 �3x � 6y � 9
 x � 2y � �3

13 2   6x � 0.5y � 2z � 0.5

12 2   3x � y � z � 8

11 2   2x � y � 2z � �5

 13 2  �2x � 4y � 4z � �3

12 2  x � y � z � 3

11 2  x � y � z � 2

 13 2  x � 3y � 1

 12 2  3x � y � 9

 11 2  x � 2y � 4

13 2 � r . 11 2 � 12 2 .

 3x1 � x2 � 2x3 � �3
 3x1 � 2x2 � 4x3 � 2

 x1 � x2 � 2x3 � 2

 2x1 � x2 � 2x3 � 5
 x1 � 2x2 � 3x3 � 11
 x1 � 2x2 � 2x3 � 3

 x1 � x2 � 2x3 � �1
 �2x1 � 2x2 � 3x3 � �4

 2x1 � 4x2 � 2x3 � 4

2x1 � x2 � 3x3 � 4
 5x1 � 4x2 � 6x3 � 12

 �x1 � 3x2 � 2x3 � �1

3x1 � 2x2 � x3 � 0
 �x1 � 2x2 � 2x3 � �3

 2x1 � x2 � x3 � 2

 2x1 � x2 � 2x3 � 2
 �x1 � 2x2 � 3x3 � 1

 x1 � 2x2 � x3 � 3

 12x2 � 6x3 � 500
 4x1 � 8x2 � 5x3 � 500
 8x1 � 4x2 � 3x3 � 500

 3x1 � 2x2 � 6x3 � 1000
 3x1 � 6x2 � 3x3 � 300
 6x1 � 2x2 � 2x3 � 500 c.

d.

e.

f.

6. For each augmented matrix, state whether the asso-
ciated system of equations has a unique solution,
multiple solutions, or no solution.

a. b.

c. d.

e.

7. (Continuation of Problem 4 of Section 10.2) Con-
sider the following clothes production model. There
are three clothing factories (1, 2, and 3) and from
each roll of cloth, the different factories produce the
following numbers of vests, pants, and coats.

Factory 1 Factory 2 Factory 3

Suppose that the demand is for 400 vests, 800 pants,
and 500 coats. Write a system of equations whose
solution would determine production levels (rolls
of cloth needed by each factory) to yield the desired
numbers of vests, pants, and coats. Find the solu-
tion using Gaussian elimination.

8. (Continuation of Problem 5 of Section 10.2) From
each shipment of crude petroleum, Refineries 1, 2,
and 3 produce the following amounts (in thousands
of gallons) of heating oil, diesel oil, and gasoline.

Vests

Pants

Coats

 C6 4 2

4 8 4

3 2 8

S

C2 1 3

0 1 0

0 0 1

  3  0

0

0

S
C4 2 3

0 4 2

0 2 1

  3  3

6

3

SC1 2 7

0 4 2

0 0 0

  3  5

1

0

S
C1 2 2

0 5 1

0 0 0

   3  3

6

2

SC3 3 1

0 1 5

0 0 1

   3  0

1

2

S

 x1 � x2 � 2x3 � 0
 2x1 � x2 � 3x3 � 0

 �x1 � 2x2 � x3 � 0

 x1 � x2 � x3 � 5
 x1 � 3x2 � 6x3 � 9
 x1 � 5x2 � 4x3 � 10

 5x2 � 2x3 � 0
 2x1 � x2 � 4x3 � 20
 x1 � 2x2 � 3x3 � 10

 6x � 15y � 9
 2x � 5y � 3
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716 CHAPTER 10 Matrix Algebra and Its Applications

Refinery 1 Refinery 2 Refinery 3

Suppose that the demand is for 6200 thousand gal-
lons of heating oil, 4000 thousand gallons of diesel
oil, and 4700 thousand gallons of gasoline. Write a
system of equations whose solution would deter-
mine production levels to yield the desired
amounts of heating oil, diesel oil, and gasoline. Find
the solution using Gaussian elimination.

9. (Continuation of Problem 6 of Section 10.2) The
staff dietitian at the California Institute of Trig-
onometry has to make up a meal with 600 calories,
20 grams of protein, and 200 mg of vitamin C. The
three food types that the dietitian can choose from
are gelatin, fish sticks, and mystery meat. They have
the following nutritional content per ounce.

Gelatin Fish Sticks Mystery Meat

Describe the dietitian’s problem and create a
mathematical model for it with a system of three
linear equations. Find the solution using Gaussian
elimination.

10. (Continuation of Problem 7 of Section 10.2) A
company has a budget of $280,000 for computing
equipment. The types of equipment available are
microcomputers at $2000 each, terminals at $500
each, and workstations at $5000 each. There should
be five times as many terminals as microcomputers
and twice as many microcomputers as worksta-
tions. Set up a system of three linear equations for
this situation. Find the solution using Gaussian
elimination.

11. Find the equilibrium state for the Markov chains
with the following transition matrices.

a. b. c.

12. The copy machine at the student union breaks
down with the following pattern. If it is working
today, there is a 70% chance that it works tomorrow
(and a 30% chance of breaking down). If it is bro-
ken today, there is a 50% chance that it works to-

B 

1 1
2

0 1 

2
 
RB  

3
4

1
4

1
4

3 

4

 RB 

2
3

1
3

1
 3

2
3

 
R

Calories

Protein

Vitamin C

 C10 50 200

1 3 0.2

30 10 0

S

Heating Oil

Diesel Oil

Gasoline

 C8 5 3

2 5 5

3 7 6

S
morrow. Construct a Markov chain for this problem
and find the equilibrium state.

13. From past experience, the Pins bowling team knows
that if they win this week’s game, they have a 
chance of winning next week’s game. If they lose
this week’s game, they have a chance of winning
next week’s game. Construct a Markov chain for
this problem and find the stable distribution.

14. Find the equilibrium state for the Markov chains
with the following transition matrices.

a. b.

c.

15. The following model for learning a concept over a set
of lessons identifies four states of learning: Igno-
rance, Exploratory thinking, superficial
understanding, and If you are now
in State I, after one lesson you have probability of
still being in I and probability of being in E. If you
are now in State E, you have probability of being
in I, in E, and in S. If you are now in State S, you
have probability of being in E, in S, and in M. If
you are in State M, you always stay in M (with prob-
ability 1). Construct a Markov chain for this prob-
lem and find the equilibrium state.

16. Find the equation of the line passing through each
pairs of points, using Gaussian elimination.

a. b.
c. d.
e. f.

17. Solve the three equations for determining the param-
eters of the parabola that passes
through the three points and 

18. A parabola passes through the points 
and Set up a system of linear equations in a,
b, and c and then solve it, using Gaussian elimina-
tion, to find the equation of the parabola.

19. Find an equation of the circle passing through each
triple of points, using Gaussian elimination.

a.
b.
c. 13, 1 2 , 12, 5 2 , 1�3, 6 2
12, 1 2 , 12, �3 2 , 10, 1 2
11, 0 2 , 10, 1 2 , 11, 1 2

14, 7 2 .
11, 2 21�1, 4 2 ,

1�1, 8 2 .14, 3 212, �1 2 ,
y � ax2 � bx � c

14, 1 2 , 1�1, �1 21�1, 1 2 , 12, �5 2
12, 1 2 , 13, 1 212, 3 2 , 1�1, 1 2
11, 0 2 , 10, 2 211, 1 2 , 12, 3 2

1
4

1
2

1
4

1
4

1
2

1
4

1
2

1
2

M � Mastery.
S �E �

I �

C0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

S
C 1

4
1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

SC 1
3

2
3

1
3

0 0 1
3

2
3

1
3

1
3

S

1
2

2
3
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Chapter Summary 717

d.
e.

20. Just as two distinct points determine a line unique-
ly, three noncollinear points determine a para-
bola. Moreover, four noncollinear points, all of
which do not lie on a parabola, determine a cubic
polynomial.

a. A parabola passes through
the points and Set up a
system of linear equations in a, b, and c and then
solve it, using Gaussian elimination, to find the
equation of the parabola.

b. A cubic polynomial 
passes through the four points 

and Set up a system of linear equa-
tions in a, b, c, and d that could be used to find
the equation of the cubic. Then solve the system
using Gaussian elimination.

c. How does your answer to part (b) compare to
the result you can obtain with your calculator
using the routine for fitting a cubic function to a
set of data?

21. Find the inverse of the matrix 

algebraically. (Hint: Write the inverse as

and use the fact that to

solve for a, b, c, and d.) How does your answer com-
pare with what your calculator shows using its ma-
trix features?

22. a. Consider the rotation matrix

Based on geometric principles, predict what the
inverse matrix has to be.

b. Prove algebraically that the matrix you construct-
ed in part (a) is indeed the inverse matrix for R.

23. The method of linear regression discussed in Chap-
ter 3, in which the best fit line is con-
structed for a set of data, is based on solving a
system of linear equations for the unknown param-
eters a and b. It can be shown that, if the set of n data
points is then
a and b must satisfy the system of linear equations

 aa
n

i�1

xib a � nb � aa
n

i�1

yib

1xn , yn 2 ,1x3 , y3 2 , . . . ,1x2 , y2 2 ,1x1 , y1 2 ,

1x, y 2
y � ax � b

R�1

R � Bcos u �sin u

sin u    cos u
R .

AA�1 � I2A�1 � Ba b

c d
R

A � B1 0

4 2
R

15, 2 2 .14, 7 2 ,
11, �2 2 ,1�1, 4 2 ,

y � ax3 � bx2 � cx � d

14, 6 2 .11, �2 2 ,1�1, 5 2 ,
y � ax2 � bx � c

10, 0 2 , 14, 1 2 , 1�4, 1 2
1�1, �1 2 , 11, 3 2 , 12, �1 2

Recall that the summations indicate adding up all
the x-values, adding up all the y-values, adding up
the squares of all the x-values, and adding up all the
products of the x and y-values. Note that all the
summation terms are known constants once the x’s
and y’s have been given.

a. For the set of data 
and find the equation of

the regression line using your graphing calcula-
tor or appropriate software package.

b. Calculate the sums needed in the two preceding
equations by completing the entries in the table.

16, 65 2 ,15, 57 2 ,14, 45 2 ,
13, 33 2 ,12, 25 2 ,11, 11 2 ,

 aa
n

i�1

xi 

2b a � aa
n

i�1

xib b � aa
n

i�1

xi yib .

x y xy

1 11

2 25

3 33

4 45

5 57

6 65

gxy �gx2 �gy �gx �

x2

c. Use the results of part (b) to write the system of
linear equations in a and b that you can use to
determine the values for the unknown coeffi-
cients a and b in the regression equation.

d. Solve the system of equations in part (c) using
Gaussian elimination. How do your results com-
pare to what you obtained directly in part (a)?

e. In Chapter 3 we suggested that you scale down
large numbers, such as the full years 2000, 2001,

in a set of data. Based on your calcula-
tions in part (b), explain why doing so is desir-
able. In particular, what might happen if there
were many data values, if the x’ s, say, consisted
of full years and the y’ s were also large numbers?

24. Repeat parts (a)–(d) of Problem 23 for 
and 125, 9 2 .120, 12 2 ,115, 14 2 ,110, 17 2 ,15, 21 2 ,

10, 24 2 ,

2002, . . . ,
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Chapter Summary

In this chapter we introduced vectors and matrices and some of their properties
and applications. In particular, we emphasized

� What a vector is geometrically, algebraically, and as an ordered pair or or-
dered triple of numbers.

� What a matrix is algebraically and as an array of numbers.

� How to use vectors and matrices to construct mathematical models, including
Markov chains and growth models, of a wide variety of real-world problems.

� How to use vectors and matrices to rotate geometric figures.

� How to add and subtract vectors and matrices.

� How to compute the scalar product of two vectors.

� How to multiply matrices and vectors, and matrices and other matrices.

� How to use matrix multiplication to solve applied problems, including
Markov chains and linear growth models.

� How to solve a system of n linear equations in n unknowns, using Gaussian
elimination.

� How to apply Gaussian elimination to solve various real-world problems
with a system of linear equations.

� How to find an equation of various types of curves, such as parabolas and
circles, that pass through a given set of points.

Chapter Review Problems

1. Determine the magnitude of the displacement vec-
tors from point A to point B for each pair of points.

a.
b.
c.

2. a. If a plane is flying due south at 200 mph and the
wind is blowing in a direction that is north
of west at 50 mph, what are the actual direction
and speed of the plane?

b. Suppose instead that the wind is blowing from a
direction that is north of west at 50 mph.
How do your answers to part (a) change?

3. A furniture manufacturer makes tables, chairs, and
sofas. In one month, the company has available
1500 units of wood, 2300 units of labor, and 1800
units of upholstery. The manufacturer wants a pro-
duction schedule for the month that uses all these
resources. The different products require the fol-
lowing amounts of the resources.

40°

40°

B � 13, 3, �5 2A � 11, 2, �3 2 ,
B � 14, �1 2A � 1�1, 1 2 ,

B � 12, 3 2A � 16, 6 2 ,

Table Chair Sofa

Write a system of equations whose solution would
determine production levels to yield the desired
numbers of tables, chairs, and sofas.

4. If the stock market goes up today, historical data show
that for tomorrow it has a 60% chance of going up, a
20% chance of staying the same, and a 20% chance of
going down. If the market is unchanged today, it has a
20% chance of being unchanged, a 40% chance of
going up, and a 40% chance of going down tomorrow.
If the market goes down today, it has a 20% chance of
going up, a 20% chance of being unchanged, and a
60% chance of going down tomorrow.

a. Construct a Markov chain for this problem. Give
A, the matrix of transition probabilities, and
draw the transition diagram.

Wood

Labor

Upholstery

C4 1 3

3 2 5

0 2 4

S
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b. If there is a 30% chance of the market going up
today, a 10% chance of being unchanged, and a
60% chance of going down, what is the probabil-
ity distribution for the market tomorrow?

5. Let 

Compute: (a) (b) (c)
(d)

6. Let a, b, and c be as in Problem 5. Let

Which of the following matrix calculations are well
defined (the sizes match)? If the computation
makes sense, perform it. If necessary, a, b, or c may
be changed to row vectors.

a. aA b. bB c. cC
d. Aa e. Bb f. Cc

7. Three different types of computers need varying
amounts of four different types of integrated cir-
cuits. Matrix A gives the number of each circuit
needed by each computer.

Circuit

1 2 3 4

Let be the computer demand
vector. Let

p � D 2

5

1

10

T
d � 310 20 30 4

Computers

 A

 B

 C

 C2 3 2 1

5 1 3 2

3 2 2 2

S � A

C � D5 4 1

1 0 2

3 2 1

0 1 3

T .

B � C1 0 �1

2 �2 0

0 1 1

S  ,

A � C1 2 3 4

2 4 6 8

3 5 7 9

S  ,

a . a
a . 1b � c 2b . ca . b

a � C1

2

3

S  ,  b � C�1

3

�1

S  , and c � C2

5

8

S  .

be the price vector for the circuits (the cost in dollars
of each type of circuit).

a. Write an expression in terms of A, d, and p for
the total cost of the circuits needed to produce
the set of computers demanded; indicate where
the matrix–vector product occurs and where the
scalar product occurs.

b. Compute the total cost.

8. Let

Compute each matrix product (if possible).

a. AB b. BA c. AC
d. CA e. CB

9. Suppose that you are given the following matrices
involving the costs of fruits at different stores, the
amounts of fruit different types of people want, and
the numbers of people of different types in differ-
ent towns

Store 1 Store 2

Apples Oranges Pears

Person 1 Person 2

a. Compute a matrix that represents the cost of
each person’s fruit purchases at each store.

b. Compute a matrix that represents the quantity
of each fruit to be purchased in each town.

Town 1

Town 2
 B1000 500

2000 1000
R

Person 1 

Person 2
B5 10 3

4 5 5
R

Apples

Oranges

Pears

C0.10 0.15

0.15 0.20

0.10 0.10

S

C � D5 4 1

1 0 2

3 2 1

0 1 3

T .

B � C1 0 �1

2 �2 0

0 1 1

S  ,

A � C1 2 3 4

2 4 6 8

3 5 7 9

S  ,
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10. a. For the Markov chain matrix A in Problem 4,
compute and 

b. What vectors do the columns of the powers of A
appear to be approaching?

11. Solve each system of equations, using Gaussian
elimination.

a.

 �x1 �  5x2 �  4x3 � 4
 x1 �  x2 �  x3 � 7

 2x1 �  3x2 �  2x3 � 0

A5.A3,A2,
b.

12. Solve the system of equations obained for the furni-
ture model in Problem 3.

13. Find the stable distribution for the Markov chain in
Problem 4.

14. Use matrix methods to find the equation of the
parabola that passes through the three points 

and 13, 5 2 .12, 2 2 ,
11, 1 2 ,

 x1 �  2x2 �  3x3 � 5
 2x1 �  2x2 �  4x3 � �4

 �x1 �  x2 �  x3 � 2
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Appendices

Some Mathematical Moments to Remember

A.1 Absolute Value

Absolute value is used to transform any number, positive or negative, to the corre-
sponding positive value. We write the absolute value of a number x as Thus

In general, for any number and for any number 
We can write this as

A.2 Factorial Notation 

Expressions of the form involving the product of consecutive
positive integers starting with 1 are written using factorial notation. We write
such products as (and read it as n factorial) for any positive integer n. For
instance,

and so on. In general, for any positive integer n,

Note that and, in general,

for any  n. For completeness, it is necessary to define 0! � 1.

n! � n . 1n � 1 2 !,

10! � 10 � 9 � 8 � . . . � 1 � 1019 . 8 . . . 1 2 � 1019! 2

n! � n1n � 1 2 1n � 2 2 . . . 13 2 12 2 11 2 .

 5! � 15 2 14 2 13 2 12 2 11 2 � 120,

 4! � 14 2 13 2 12 2 11 2 � 24,

 3! � 13 2 12 2 11 2 � 6,

n!

4 � 3 � 2 � 1

n!

0 x 0 � e
x if x � 0

�x if x � 0.

0 x 0 � �x.x � 0,0 x 0 � xx � 0,

0 5 0 � 5,  0�6 0 � 6, and  0�2.3 0 � 2.3.

0 x 0.

A
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A.3 Summation or Sigma Notation

Summation notation is used as a shorthand for writing expressions such as

and

The Greek letter sigma is used to denote summation and an index of summation—
say, k—is used to indicate which specific terms are included in the sum. Thus, to
add the squares of all the integers between and we write

because when we have when we have when we have 
and so on until when we have Therefore

To add all the integers between 25 and 60, we write

Similarly, we write the sum of the powers of 2 from to as

Also, to add the reciprocals of all the integers between and some unspecified
upper limit we write

The letter we use for the index of summation is immaterial; we could equiva-
lently write

The numerical result of these summations is the same regardless of the letter
used as the index.

 a
n

j�1

 

1

j
� 1 �

1

2
�

1

3
�

1

4
� . . . �

1
n

 .

 a
n

i�1

 

1

i
� 1 �

1

2
�

1

3
�

1

4
� . . . �

1
n
 or

a
n

k�1

 

1

k
� 1 �

1

2
�

1

3
�

1

4
� . . . �

1
n

 .

k � n,
k � 1

a
50

k�0

2k � 1 � 2 � 22 � 23 � . . . � 250.

25020

a
60

k�25

k � 25 � 26 � 27 � . . . � 60.

a
100

k�1

k 2 � 12 � 22 � 32 � . . . � 1002.

1002.k � 100
32,k � 322,k � 212,k � 1

a
100

k�1

k2

k � 100,k � 1

1� 2

1 �
1

2
�

1

3
� . . . �

1
n

 .

1 � 2 � 22 � 23 � . . . � 250,

1 � 2 � 3 � . . . � 100,
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A.4 Similar Triangles

Two triangles are similar if all three angles in one triangle are the same size as all
three angles in the other. Of course, the lengths of the sides of the two triangles
may be quite different. However, the key fact about similar triangles is:

Corresponding sides of similar triangles are proportional.

The right triangles ABC and ADE shown in Figure A.1 are similar because the
angle is common to both, the angle is the same in both, and both triangles have
a right angle. Therefore, we have a variety of ratios that are equal, including

AB

AD
�

BC

DE
�

AC

AE
 and 

AB

AC
�

AD

AE
 and 

BC

AC
�

DE

AE
 .

fu

A.5 Distance Between Points in the Plane

The distance from a point A with coordinates to a point B with coordinates
is given by the distance formula

It is based on the Pythagorean theorem, as illustrated in Figure A.2. The distance
is the hypotenuse of the right triangle formed by a base of (the hori-

zontal change) and a height of (the vertical change).y1 � y0

x1 � x00AB 0

0AB 0 � 21x1 � x0 2
2 � 1 y1 � y0 2

2
 .

1x1 , y1 2
1x0 , y0 2

x

y

y1 – y0

x1 – x0

(x0, y0) (x1, y0)

A
C

B
(x1, y1)

x1x0

y0

y1

|AB| = √(x1 – x0)2 + (y1 – y0)2

FIGURE A.2

θ

φ

φ

A B

C

D

E

FIGURE A.1
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–5 –4 –3 –2 –1 1 2 3 4 5 6 7 8 9

–5

–6

–7

–8

–9

–10

–11

–12

–4

–3

–2

–1

1

2

x

y

(2, –5)

r = 7

FIGURE A.3

For instance, the distance between the two points A at and B at is

A.6 The Equation of a Circle

The equation of the circle with radius r and center at is

For instance, the equation of the circle with radius 7 and center at is

as shown in Figure A.3. The equation of a circle is discussed in detail in Section 9.2.

1x � 2 2 2 � 1 y � 5 2 2 � 72 � 49,

12, �5 2

1x � x0 2
2 � 1 y � y0 2

2 � r 2.

1x0 , y0 2

0AB 0 � 216 � 2 2 2 � 18 � 5 2 2 � 216 � 9 � 225 � 5.

16, 8 212, 5 2

A.7 The Equation of an Ellipse

The equation of the ellipse with center at having its horizontal major (or
longer) axis of length 2a and its vertical minor (or shorter) axis of length 2b is

as shown in Figure A.4.
For instance, the equation of the ellipse with center at whose major

axis is horizontal and has length 12 and whose minor axis is vertical and has
length 8 is

as shown in Figure A.5. The ellipse is discussed in detail in Section 9.3.

 
1x � 2 2 2

36
�
1 y � 5 2 2

16
� 1,

 
1x � 2 2 2

62 �
1 y � 5 2 2

42 � 1 or

1�2b 2
1�2a 2

12, �5 2 ,

1x � x0 2
2

a2 �
1 y � y0 2

2

b2 � 1,

1x0 , y0 2
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x

y

b

b

aa

(x − x0)2

a2

(y − y0)2

b2
+ = 1

(x0, y0)

FIGURE A.4

–5 –4 –3 –2 –1 1 2 3 4 5 6 7 8 9

–5

–6

–7

–8

–9

–10

–11

–12

–4

–3

–2

–1

1

2

x

y

(2, –5)

b = 4

a = 6

FIGURE A.5

A.8 Completing the Square

The two quadratic functions and are alge-
braically equivalent because the second can be expanded to give

You can also check this result by graphing the two functions on your function
grapher. Because their graphs are the same parabola, they are indeed the same
function. Although the first representation is more common, the second gives
more information about the behavior of the corresponding parabola: It is shifted 3
units to the right and 4 units up compared to the basic parabola y � x 2.

y � 1x � 3 2 2 � 4 � 1x 2 � 6x � 9 2 � 4 � x 2 � 6x � 13.

y � 1x � 3 2 2 � 4y � x 2 � 6x � 13
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The process of transforming the first expression to the second is called
completing the square. We illustrate this procedure as follows.

� Start with 

� Take one-half of the coefficient of x:

� Square this number:

� Add and immediately subtract the resulting number 9 (we are actually
adding 0 and thus still have the equivalent of the original expression):

� Recognize that the first three terms, form a perfect square—
the square of Therefore we have

Note that the in this expression is the same as half of the original coefficient of x.

EXAMPLE 1

Complete the square on the quadratic and compare its graph to
that of the parabola 

Solution We have

Graphically, the corresponding parabola is obtained by shifting to the left by 5
and down by 36.

�

If the original quadratic expression has a leading coefficient other than 1, that
coefficient must first be factored out. We illustrate how to do so in Example 2.

EXAMPLE 2

Complete the square on the quadratic and compare its graph to
that of the parabola 

Solution We begin by factoring out the leading coefficient 2 so that

The corresponding parabola is obtained by doubling and then shifting it 4 units
to the right and 10 units up.

�

y � x 2

 � 2 3 1x � 4 2 2 � 5 4 � 21x � 4 2 2 � 10.

1

2
1�8 2 � �4 � 2 3 1x 2 � 8x � 1�4 2 2 2 � 1�4 2 2 � 21 4

 2x 2 � 16x � 42 � 2 3 1x2 � 8x 2 � 21 4

y � x 2.
y � 2x 2 � 16x � 42

y � x 2

 � 1x � 5 2 2 � 25 � 11 � 1x � 5 2 2 � 36.

1

2
110 2 � 5 � 3 1x 2 � 10x � 52 2 � 52 4 � 11

 y � 3x 2 � 10x 4 � 11

y � x 2.
y � x 2 � 10x � 11

�3

y � 1x � 3 2 2 � 4.

1x � 3 2 .
1x 2 � 6x � 9 2 ,

y � 1x 2 � 6x � 9 2 � 9 � 13 � 1x 2 � 6x � 9 2 � 4.

1�3 2 2 � 9.

1
2 1�6 2 � �3.

y � x 2 � 6x � 13.
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Problems

In Problems 1–5, evaluate each number.

1. 2.

3. 4.

5.

6. Calculate the value of for 
Plot the points and then connect

them. How would you describe the graph of

7. Repeat Problem 6, using for 
How does the graph 

compare to the graph of

In Problems 8 and 9, evaluate the expression.

8. 9.

10. Rewrite the expression 
in summation notation.

11. Rewrite the expression 
in summation notation.

12. Find the value of

13. Find the distance between the points and

14. Find the equation of the circle that has and
as endpoints on a diameter.15, 8 2

12, 4 2

15, 8 2 .
12, 4 2

g4
k�1

k 3.

1>40
1>5 � 1>6 � 1>7 � . . . �

100
1 � 4 � 9 � 16 � . . . �

20!

3!17!

5!

3!

y � 0 x 0?
y � 0 x � 3 0�6, �5, . . . , 1.

x � �7,y � 0 x � 3 0

y � 0 x 0?

�2, . . . , 4.
x � �4, �3,y � 0 x 0

0�5 0 � 0�4 0

0�5 0 � 0 4 00�7 � 3 0

0 6 � 10 00 9 � 12 0

15. In the accompanying figure, triangle ABC is similar
to triangle ADE.

a. Find DE.
b. Find AE.

In Problems 16 and 17, complete the square to identify
the center and radius of the circle.

16.

17.

18. Write an equation for the ellipse shown.

x 2 � y2 � 8x � 6y � 11 � 0

x 2 � y2 � 2x � 10y � 55

Solving Systems of Linear Equations Algebraically

A pair of linear equations such as

(1)

(2)

is a system of linear equations. Its solution is a pair of values, one for x and the other
for y, that satisfy both equations simultaneously. Geometrically, each of the two
equations represents a line and every pair (x, y) that satisfies each individual equa-
tion is a point on that line. A pair of values for x and y that simultaneously satisfy
both equations must be the point of intersection of the two lines, as shown in Fig-
ure A.6. The two lines seem to intersect at the point We verify that this12, �1 2 .

 4x � 3y � 11

 x � 5y � �3

B

A B

C

E

D
12 8

69

–1 3 5 7 91

–2

–1

1

2

3

4

5

6

x

y
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–3 –2 –1 1 2 3 4 5

–4

–3

–2

–1

1

2

3

4

x

y

x + 5y = −3

4x − 3y = 11

FIGURE A.6

point is indeed the solution by substituting and into the two origi-
nal equations. For the first, we have

and for the second,

We can always use this kind of geometric approach to solve systems of two
equations in two unknowns, but if the solutions are not simple numbers, the best
we can get is a reasonably accurate estimate. Alternatively, we can solve such a sys-
tem algebraically using either of two methods.

1. The method of substitution: (a) Solve for one variable in terms of the
other, using one of the two equations. (b) Next, substitute the expression
for that variable into the other equation to eliminate that variable. (This
step is usually straightforward if the coefficient of one of the variables is 1
or ) (c) Then solve for the remaining variable. (d) Finally, substitute its
value back into one of the equations to find the value of the other variable.

2. The method of elimination: Add or subtract an appropriate multiple of
one of the equations to the other equation to eliminate one of the vari-
ables. (This method is discussed in detail in Section 10.5).

EXAMPLE 1
Solve the system of Equations (1) and (2) by using the method of substitution.

Solution The coefficient of x in Equation (1) is 1, so we use Equation (1) to solve for x
in terms of y:

(3)

We substitute this expression into Equation (2) to get

Note that we eliminated the variable x and now have a single equation in y only. Next, we
collect like terms:

When we substitute back into Equation (3), we find that

This solution is the same, and that we obtained graphically in Figure A.6.

�
y � �1,x � 2

x � �51�1 2 � 3 � 5 � 3 � 2.

y � �1

�23y � 23 so that y �
23

�23
� �1.

41�5y � 3 2 � 3y � 11 so that �20y � 12 � 3y � 11.

x � �5y � 3.

�1.

412 2 � 31�1 2 � 11.

12 2 � 51�1 2 � �3

y � �1x � 2
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EXAMPLE 2
Solve the same system of linear equations

(1)

(2)

using the method of elimination.

Solution To eliminate the variable x from the two equations, we multiply Equation (1)
by 

(4)

while

(2)

Note that the coefficients of x are numerically equal but of opposite sign. If we add
Equations (2) and (4), the x terms cancel, leaving

If we now substitute this value of y into either Equation (1) or (2)—say, Equation (1)—
we get

which again is the same solution.
Alternatively, we could eliminate the variable y from Equations (1) and (2). To do so,

we multiply Equation (1) by 3 and Equation (2) by 5 to get:

We eliminate y by adding the two equations to get

which again leads to and hence 

�

If we have a system of three linear equations in three unknowns—say, x, y, and
z or and or a, b, and c—or an even larger system of linear equations, the
method of substitution quickly becomes unworkable. The method of elimination
is almost always preferable. However, in practice, for systems larger than two-by-
two, calculators and computers are typically the method of choice instead of at-
tempting to solve the systems by hand.

EXAMPLE 3
Find the solution to the system of linear equations

(5)

(6)

(7)

using the method of elimination.

 6x � 2y � 2z � 4,

 3x � y � 5z � 14

 2x � 5y � 4z � �7

x3x2 ,x1 ,

y � �1.x � 2

23x � 46,

 5 Eqn 12 2     20x � 15y � 55.

 3 Eqn 11 2  3x � 15y � �9

x � 51�1 2 � �3 or x � 5 � 3 � 2,

�23y � 23 so that y � �1.

 4x � 3y � 11

 �4x � 20y � 12

�4:

 4x � 3y � 11,

 x � 5y � �3
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Solution We use Equation (7) to eliminate the variable x from the remaining two equa-
tions. To eliminate x from Equation (5), we first add times Equation (5) to Equation (7):

(8)

Similarly, to eliminate the variable x from Equation (6), we add times Equation (6)
to Equation (7) to get

(9)

Equations (8) and (9) together are a system of two linear equations in the two unknowns
y and z:

(8)

(9)

We can solve this reduced system as before.
For instance, to eliminate the variable y, we multiply Equation (8) by 4 and multiply

Equation (9) by 13, so that

We add these two equations to get

Substituting into Equation (9), say, gives

so that

Substituting both of these values into Equation (5), say, gives

Thus, the solution to the original system of three equations in three unknowns is 
and Substitute these values into the three original equations to verify

that they satisfy all three equations.

�

Graphing calculators have the capability of solving systems of up to 99 equa-
tions in 99 unknowns at the push of a button. On some calculators, there is a
SIMULT key for simultaneous equations; enter the number of linear equations,
then enter the coefficients and the constant terms, and finally press Solve to get
the solutions. On other calculators, you can solve a system of linear equations

z � 1.y � �3,
x � 2,

 2x � 4 and so x � 2.

 2x � 15 � 4 � �7

 2x � 51�3 2 � 411 2 � �7

 4y � �24 � 12 � �12 and so y � �3.

 4y � 1211 2 � �24,

z � 1

 �212z � �212 so that z � 1.

 13 Eqn 19 2      52y � 156z � �312.

 4 Eqn 18 2      �52y � 56z � 100

 4y � 12z � �24

 �13y � 14z � 25

   4y � 12z � �24.

 �2 Eqn 16 2   �6x � 2y � 10z � �28

 Eqn 17 2      6x � 2y � 2z � 4

�2

    �  13y �  14z � 25.

 �3 Eqn 15 2  �6x �  15y �  12z � 21

 Eqn 17 2  6x �  2y �  2z �  4

�3
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with the Solve command; enter the list of equations and the list of variables and
then press enter. On still other calculators, you can solve systems of linear equa-
tions by using matrix methods, as discussed briefly in Appendix C and in detail
in Chapter 10. (Actually, all calculators use matrix methods for solving systems
of linear equations.)

Solving Systems of Linear Equations using Matrices

Briefly, a matrix is any rectangular array of numbers, such as

The size, or dimension, of a matrix is measured by the number of rows (horizontal-
ly across) and the number of columns (vertically down) in the array. The dimen-
sion of the preceding matrix is 3 by 4, which we write as 

Let’s look at the system of linear equations:

(We considered this system in Example 3 of Appendix B, where we found the so-
lution algebraically to be and ) We first construct the
coefficient matrix A, which consists of the coefficients from each of the equations:

This matrix has 3 rows and 3 columns, so its size is 3 by 3, or We also con-
struct the matrix B of constants, consisting of the constants on the right-hand side
of the equations:

This matrix (also known as a vector) has three rows and one column, so its size is
Finally, we construct a matrix X of variables:

these are the unknowns that we want to determine.
The system of three linear equations in three unknowns is then equivalent to

the simple matrix equation

AX � B.

X � £
x

y

z

§ ;

3 � 13 � 1.

B � £
�7

14

4

§ .

3 � 3.

A � £
2 5 4

3 �1 5

6 2 �2

§ .

z � 1.y � �3,x � 2,

 6x � 2y � 2z � 4.

 3x � y � 5z � 14

 2x � 5y � 4z � �7

3 � 4.

£
4 0 5 1

7 �2 8 6

�3 1 2 3

§ .

C
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The solution to this matrix equation is found in terms of the inverse matrix (if
it exists) of the matrix A:

To solve this system on the calculator, you must “name” each of the matrices in
turn by giving its size: for A and for B. Then enter the values for each
position. Finally, by selecting the appropriate names of the matrices, you have the
calculator find The calculator displays the entries in the column matrix X:

See the instruction manual for your calculator for details on how to use these ma-
trix features.

EXAMPLE
Use matrices to solve the system of linear equations

Solution The coefficient matrix and the matrix of constants are

After entering these matrices in the calculator and forming the expression we
find the corresponding matrix of variables is

That is, the solution to the system of equations is and 
The identical values are obtained on calculators having simultaneous equations
(SIMULT or SOLVE) capabilities.

�

Symmetry

The notion of symmetry arises throughout mathematics in a variety of ways. We use
symmetry to describe the behavior of functions and other geometric objects when
one portion is a mirror image of another portion. We may describe a curve (whether
or not it represents a function) as being symmetric about a line, or symmetric with re-
spect to an axis, or symmetric with respect to the origin, or symmetric about a point P.

The ellipse shown in Figure A.7(a) is symmetric with respect to the x-axis be-
cause the lower half is the mirror image of the upper half. Similarly, as shown in

D

z � 0.347.y � 2.049,x � 3.791,

x � £
x

y

z

§ � A�1B � £
3.791079812

2.049295775

0.347178404

§ .

A�1
* B,

A � £
5 �7 4

2 4 �8

3 �5 �9

§  and B � £
6

13

�2

§ .

 3x � 5y � 9z � �2.

 2x � 4y � 8z � 13

 5x � 7y � 4z � 6

£
2

�3

1

§ .

A�1
* B.

3 � 13 � 3

X � A�1B.

A�1

Gord.3896.APP.pgs  4/29/03  10:10 AM  Page 732



Appendix D Symmetry 733

x

y

(b)

x

y

(a)

x

y

P

d

d

P ′

(c)

x

y

(a, b)

(−a, −b)

P

P ′

FIGURE A.8

FIGURE A.7

Figure A.7(b), the ellipse is also symmetric with respect to the y-axis because the
left half is the mirror image of the right half. The ellipse is also symmetric with re-
spect to the origin because, for any point P on the ellipse, we can find the mirror
image through the origin on the ellipse, as shown in Figure A.7(c).

The parabola is symmetric about the y-axis because the left and right
sides are mirror images of one another. In fact, every parabola of the form

is symmetric about the vertical line through its turning point,
or vertex. However, the cubic shown in Figure A.8 is not symmetric about
the x-axis nor is it symmetric about the y-axis because the two portions of the
curve are not mirror images of each other about either axis. However, the curve is
symmetric with respect to the origin; if any point P with coordinates is on
the curve, so is the point with coordinates as shown in Figure A.8.
This condition is equivalent to one portion of the curve being rotated through an
angle of to produce the other portion.

We summarize the key information about symmetry as follows.

1. A curve is symmetric about the x-axis if, when a point P at lies on
the curve, the point at also lies on the curve, as shown in Fig-
ure A.9(a).

1a, �b 2P	
1a, b 2

180°

1�a, �b 2 ,P	
1a, b 2

y � x 3
y � ax 2 � bx � c

y � x 2
P	

x

y

(a, b)(−a, b)

(b)

x

y

(a, −b)

(a)

(a, b)

P ′

P
P ′ P

FIGURE A.9
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x

–9

–18

–27

9

18

27

y

FIGURE A.10

2. A curve is symmetric about the y-axis if, when a point P at lies on the
curve, the point at also lies on the curve, as shown in Figure A.9(b).

3. A curve is symmetric about the origin if, when a point P at lies on
the curve, the point at also lies on the curve, as previously
shown in Figure A.8.

EXAMPLE 
Show algebraically that the curve is (a) not symmetric about the x-axis, (b) not
symmetric about the y-axis, and (c) symmetric about the origin.

Solution
a. It is obvious from the graph of shown in Figure A.10 that the curve is not

symmetric about the x-axis; however, we illustrate how to prove this fact by applying
the principles of symmetry. Suppose that a point lies on the curve so that

We now consider the point When we substitute we again get
not so the point is not on the curve and therefore the curve is not

symmetric about the x-axis.
1a, �b 2�b,a3 � b,

x � a,1a, �b 2 .b � a3.
1a, b 2

y � x 3

y � x 3

1�a, �b 2P	
1a, b 2

1�a, b 2P	
1a, b 2

b. Again, suppose that a point lies on the curve so that and consider the
point When we substitute we get not b, so the
curve is not symmetric about the y-axis.

c. Again, suppose that lies on the curve, so that and consider the point
When we substitute we get so that 

also satisfies the equation of the curve and the curve is symmetric about the origin.

�

Arithmetic of Complex Numbers

Complex numbers were originally introduced to allow people to solve quadratic
equations such as which is equivalent to When we try to
solve this equation by taking square roots, we obtain

x � 
2�4 ,

x 2 � �4.x 2 � 4 � 0,

E

1�a, �b 21�a 2 3 � �a3 � �b,x � �a,1�a, �b 2 .
b � a3,1a, b 2

1�a 2 3 � �a3 � �b,x � �a,1�a, b 2 .
b � a3,1a, b 2
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which has no solution among the real numbers.
To work with numbers such as these that involve the square root of a negative

number, we introduce the imaginary number i:

Using i, we can take the square root of any negative number. For instance,

Similarly, the roots of the equation are therefore

which is equivalent to and 

EXAMPLE 
Find the roots of using the quadratic formula

Solution Substituting and into the quadratic formula yields

Therefore the roots are and 

�

Each of these roots is called a complex number. In general, we write a complex
number in the form where a and b are both real numbers. Thus z con-
sists of a real number a and an imaginary number bi. We call a the real part of z and
b the imaginary part of z. Note that an imaginary number is just a multiple of i,
such as 4i; a complex number is the sum of a real number and an imaginary num-
ber, such as 

In the equation the roots were and In the above
example, the roots were and As in both cases, complex
numbers typically arise in pairs of the form and called complex
conjugates.

Powers of i

Because we have

 � �1;

 i2 � 12�1 2 2
i � 2�1 ,

a � bi,a � bi
x � 1 � 3i.x � 1 � 3i

x � �2i.x � 2ix 2 � 4 � 0,
3 � 7i.

z � a � bi,

x � 1 � 3i.x � 1 � 3i

 �
2 
 6i

2
� 1 
 3i.

 �
2 
 24 � 40

2
�

2 
 2�36

2

 x �
�1�2 2 
 21�2 2 2 � 411 2 110 2

211 2

c � 10b � �2,a � 1,

x �
�b 
 2b2 � 4ac

2a
 .

x 2 � 2x � 10 � 0,

x � �2i.x � 2i

x � 
2�4 � 
24 2�1 � 
2i,

x 2 � 4 � 0

2�25 � 2251�1 2 � 225 2�1 � 5i.

i � 2�1 .
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that is,

i 2 � �1.

From this relation we can find other powers of i:

and so on. All higher powers simply cycle through these four values: i, and
1.

Complex Arithmetic

The arithmetic of complex numbers, for the most part, is straightforward. Consid-
er the two complex numbers and 

Addition To add complex numbers, we add the real parts and the imaginary
parts separately. For instance,

This is totally analogous to how we collect like terms in algebra. In general,

z � w � 15 � 4i 2 � 13 � 11i 2 � 8 � 7i.

w � 3 � 11i.z � 5 � 4i

�i,�1,

 i 5 � 1i 4 2 1i 2 � 11 2 1i 2 � i,

 i 4 � 1i 2 2 1i 2 2 � 1�1 2 1�1 2 � 1,

 i 3 � 1i 2 2 1i 2 � 1�1 2 1i 2 � �i,

Subtraction To subtract complex numbers, we subtract the real parts and the
imaginary parts separately. For our numbers and 

In general,

 � 15 � 3 2 � 14i � 1�11i 2 2 � 2 � 15i.

 z � w � 15 � 4i 2 � 13 � 11i 2

w � 3 � 11i,z � 5 � 4i

If and then

z � w � 1a � c 2 � 1b � d 2 i.

w � c � di,z � a � bi

Multiplication To multiply complex numbers, we multiply them algebraically,
use the fact that to simplify any power of i, and collect like terms consist-
ing of the real part and the imaginary part. For instance,

 � 59 � 43i.

i2 � �1 � 15 � 43i � 44

 � 15 � 55i � 12i � 44i2

 � 15 2 13 2 � 15 2 1�11i 2 � 14i 2 13 2 � 14i 2 1�11i 2
 z � w � 15 � 4i 2 13 � 11i 2

i 2 � �1

If and then

z � w � 1a � c 2 � 1b � d 2 i.

w � c � di,z � a � bi
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In general,

Problems

In Problems 1–4, simplify each expression.

1. 2.

3. 4.

In Problems 5–12, perform each operation. Write each
answer in the form where a and b are real
numbers.

5. 6.

7. 8. 14 � 5i 2�8i110 � i 2 � 1�1 � i 2
15 � 2i 2 � 17 � 6i 218 � i 2 � 1�6 � 3i 2

a � bi,

i 45i 58

i 72i 23

9. 10.

11. 12.

In Problems 13–18, find the roots of each equation.

13. 14.

15. 16.

17. 18. 5x 2 � 2x � 4 � 03x 2 � 4x � 8 � 0

x 2 � 4x � 7 � 05x 2 � 2x � 1 � 0

4x 2 � 9 � 0x 2 � 25 � 0

17 � 4i 2 17 � 4i 2115 � 2i 2 115 � 2i 2
15 � 6i 2 211 � 3i 2 12 � i 2

Introduction to Data Analysis

In all the cases presented in this book, we have used data relating two quantities and
sought to identify a relationship—linear or nonlinear—between them. Situations
also are common in which we have data only on a single quantity. For instance, your
professor may want to analyze the scores of all students in your class on an exam.
Alternatively, she may want to compare the set of scores that each student has on all
the exams in a course. In such cases, methods are needed to analyze the data to ex-
tract useful information.

F

If and then

z � w � 1ac � bd 2 � 1ad � bc 2 i.

w � c � di,z � a � bi

Note that, in the particular case where z and w are complex conjugates (say,
and ) we have

In general,

i2 � �1 � 36 � 641�1 2 � 100.

 � 36 � 48i � 48i � 64i2

 � 616 2 � 61�8i 2 � 18i 2 16 2 � 18i 2 18i 2
 z � w � 16 � 8i 2 16 � 8i 2

w � 6 � 8iz � 6 � 8i

If and are complex conjugates, then

z � w � a2 � b2.

w � a � biz � a � bi

Consequently, the product of complex conjugates is always a real number.
Division of complex numbers is somewhat more difficult, but the ideas we de-

veloped in Section 8.3 provide a simple way to do it.
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Measuring the Center of a Set of Data

Given a set of data on a single quantity, it is usually most important to find the center
of the data to give a single number that describes the entire set of values. Probably the
most common method is to use the mean, or arithmetic average, of the data. Sup-
pose that we have n data values, Their mean is given by

For instance, if Amy’s grades on her four math tests are 85, 91, 98, and 94, her mean
grade for the course is 

The mean also gives a simple way to compare one set of data to another. If Bret
had a mean of 87 on the same four tests, clearly he didn’t do quite as well as Amy
did. This type of comparison is usually applied by a professor in assigning final
grades in a course.

However, there are situations in which the mean gives misleading information
about a set of data, and other measures for the center for the data must be used.
The accompanying set of data shows the number of home runs for the 2001 season
for each of the starting players in the San Francisco Giants lineup. The mean num-
ber of home runs for the eight players was

However, this value is unrepresentative of the team as a whole because Bobby
Bonds hit so many home runs that season. His record-breaking 73 home runs has
a disproportionate effect on the mean because his contribution is so far away
from the values for the other players.

x �
37 � 22 � 6 � 73 � 15 � 5 � 6 � 8

8
� 21.5.

x � 185 � 91 � 98 � 94 2 >4 � 92.

x �
x1 � x2 � . . . � xn

n
�

a gn
k�1

xk b

n
 .

xn .x3 , . . . ,x2 ,x1 ,

Player Position Home runs

R. Aurillia SS 37

J. Kent 2B 22

B. Santiago C 6

B. Bonds OF 73

M. Benard OF 15

R. Martinez 3B 5

C. Murray OF 6

J. Snow 1B 8

Recalculuate the mean number of home runs of the Giants starting players when
you remove Bobby Bonds’s 73 home runs. ❐

For this set of data, the median is a far better measure of the center. To find the
median, you must list the data values in either increasing or decreasing order, as in
5, 6, 6, 8, 15, 22, 37, 73. If there are an odd number of entries, the median is defined
as the middle value when the data are in order. If there are an even number of en-

Think About This
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tries, the median is defined as the average of the middle two values. In this way, the
median is always located at the center of the ordered list of data—there are just as
many values below it as there are above it. For the number of home runs hit by the
Giants during 2001, there are 8 entries, so the median is the average of the middle
two, 8 and 15. Thus the median is home runs. This value is
more representative of all of the players; Bonds’s 73 home runs does not have the
disproportionate effect on the median that it has on the mean. In fact, if Bonds had
hit 103 home runs, instead of 73, the median would not change, but the mean cer-
tainly would change.

Recalculuate the median number of home runs of the Giants players when you re-
move Bobby Bonds’s 73 home runs. Did the value change as much as it did when
you recalculated the mean in the previous Think About This exercise? ❐

In general, the median is more representative of a set of data when there is
large variation among the data entries, especially if the data contain extreme val-
ues. In such a case, a handful of very large or very small values has a dispropor-
tionate effect on the mean, but not on the median.

Measuring the Spread in a Set of Data

Locating the center in a set of data often isn’t sufficient to give a full picture of the
data. For instance, consider two students, Carol and Doug, who had the following
scores on five tests in a course:

Both have means of 80, but there is a clear difference in the overall scores of the two
students. Carol’s results are consistent; they are all quite close to the mean of 80. But
Doug’s results are very scattered, ranging from a minimum of 63 to a maximum of 92.

We therefore need a way to measure the amount of scatter, or spread, in a set
of data. One way to do so is to use the mean as the center of the data and calculate
the amount of spread about the mean. The result is a quantity called the standard
deviation.

There are two ways to calculate this quantity, depending on whether the data
represents a population (all possible values associated with a quantity) or just a
sample drawn from a much larger population. For a population, the standard devi-
ation is denoted by (lowercase Greek letter sigma) and is found from

where n is the number of data points and is the mean of the population. (In sta-
tistics texts, it is standard to write the mean of a population as (the lowercase
Greek letter mu) instead of For a sample, the standard deviation is denoted by s
and is found from

where n is the number of data points and is the mean of the sample. (We won’t go
into the reason for the difference in the two formulas here; any introductory statis-
tics text gives a full discussion of the reason.)

x

s � B 1x � x 2 2

n � 1
 ,

x.
m

x

s � B 1x � x 2 2

n
 ,

s

 Doug: 92, 75, 88, 63, 82.

 Carol: 78, 80, 85, 75, 82

Think About This

18 � 15 2 >2 � 11.5
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All these quantities, as well as several others that we discuss shortly, are routinely
obtained by using the statistical features of all calculators under the one-variable
option in the Statisticsmenu, as well as many software packages. In particular, for
Carol’s test scores, the calculator gives the values

and for Doug’s scores

(We write as the calculator output; whether it represents a population mean or
a sample mean depends on the context.) Note that the value for the standard de-
viation for Doug is about three times as large as that for Carol, which indicates that
Doug’s test scores are much more widely spread about the mean than Carol’s are.

There is also a way to measure the spread in a set of data about the median as
the center of the data. We do so by partitioning the data values into four groups—
the top 25%, the next 25%, the 25% below the median, and the bottom 25%. These
are known as the quartiles. For instance, suppose that we have a set of data with 60
values that have been arranged in either increasing or decreasing order. Then the
number that separates the bottom 15 data values from the rest of the data values is
called the first quartile, The second quartile, separates the bottom 30 values
from the top 30 values and is the median. The number that separates the top 15
values from the rest is the third quartile, In addition, it is standard to report the
minimum and maximum values in the data.

As with the standard deviation, these values are also included in the output of
all calculators with statistical features and in many software packages. In particular,
the values corresponding to Carol’s test grades are

Those corresponding to Doug’s grades are

These values give a clear picture of the way that the different sets of data values are
spread about the respective medians.

2002 World Population DataG

 Q3 � 90, and maximum � 92.

 Minimum � 63,  Q1 � 69,  median � 82,

 Q3 � 83.5, and maximum � 85.

 Minimum � 75, Q1 � 76.5,  median � 80,

Q3 .

Q2 ,Q1 .

x
mX

X � 80,  s � 11.467, and 

X � 80,  s � 3.808, and s � 3.406;

Percent
Births Deaths Projected Life of pop.

Population per per Growth Population Expectancy 15–49
Mid-2002 1,000 1,000 Rate Doubling (millions) at Birth with
(millions) Pop. Pop. (%) Time 2025 2050 (years) HIV/AIDS

WORLD 6,215 21 9 1.3 53.7 7,859 9,104 67 1.2

NORTH AMERICA 319 14 9 0.6 115.9 382 450 77 0.6

Canada 31.3 11 7 0.3 231.4 36.0 36.6 79 0.3
United States 287.4 15 9 0.6 115.9 346.0 413.5 77 0.6
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LATIN AMERICA & 
THE CARIBBEAN 531 23 6 1.7 41.1 697 815 71 0.7

CENTRAL AMERICA 140 27 5 2.2 31.9 188 225 74 0.5

Costa Rica 3.9 21 4 1.7 41.1 5.2 5.9 77 0.6
El Salvador 6.6 30 7 2.3 30.5 9.3 12.4 70 0.6
Guatemala 12.1 36 7 2.9 24.2 19.8 27.2 66 1.0
Honduras 6.7 33 6 2.8 25.1 9.6 12.2 66 1.6
Mexico 101.7 26 5 2.1 33.4 131.7 150.7 75 0.3
Nicaragua 5.4 34 5 2.8 25.1 8.6 11.6 68 0.2
Panama 2.9 23 4 1.9 36.8 3.8 4.3 74 1.5

CARIBBEAN 37 21 8 1.3 53.7 45 50 69 2.4

Antigua and Barbuda 0.1 22 6 1.6 43.7 0.1 0.1 71 —
Bahamas 0.3 18 5 1.3 53.7 0.4 0.5 72 3.5
Barbados 0.3 15 8 0.6 115.9 0.3 0.3 73 1.3
Cuba 11.3 12 7 0.5 139.0 11.8 11.1 76 0.1
Dominican Republic 8.8 26 5 2.1 33.4 12.1 14.9 69 2.7
Grenada 0.1 19 7 1.2 58.1 0.1 0.1 71 —
Guadeloupe 0.5 17 6 1.2 58.1 0.5 0.6 77 —
Haiti 7.1 33 15 1.7 41.1 9.6 11.9 49 6.1
Jamaica 2.6 20 5 1.5 46.6 3.3 3.8 75 1.2
Martinique 0.4 14 6 0.8 87.0 0.4 0.4 79 —
Netherlands Antilles 0.2 14 6 0.7 99.4 0.2 0.3 76 —
Puerto Rico 3.9 15 7 0.8 87.0 4.1 4.1 76 —
St. Kitts-Nevis 0.04 19 9 1.0 69.7 0.05 0.1 71 —
Saint Lucia 0.2 18 6 1.2 58.1 0.2 0.2 71 —
Trinidad and Tobago 1.3 14 8 0.7 99.4 1.4 1.4 71 2.5

SOUTH AMERICA 354 22 6 1.5 46.6 463 540 70 0.6

Argentina 36.5 19 8 1.1 63.4 47.2 54.5 74 0.7
Bolivia 8.8 32 9 2.3 30.5 13.2 17.1 63 0.1
Brazil 173.8 20 7 1.3 53.7 219.0 247.2 69 0.7
Chile 15.6 18 6 1.2 58.1 19.5 22.2 77 0.3
Colombia 43.8 22 6 1.7 41.1 59.7 71.5 71 0.4
Ecuador 13.0 28 6 2.2 31.9 18.5 22.9 71 0.3
Guyana 0.8 24 8 1.5 46.6 0.7 0.5 63 2.7
Paraguay 6.0 31 5 2.7 26.0 10.1 15.0 71 0.1
Peru 26.7 26 7 2.0 35.0 35.7 42.8 69 0.4
Suriname 0.4 24 7 1.7 41.1 0.5 0.4 71 1.2
Uruguay 3.4 16 10 0.7 99.4 3.8 4.2 75 0.3
Venezuela 25.1 24 5 1.9 36.8 34.8 41.0 73 0.5

EUROPE 728 10 11 — 718 651 74 0.4

NORTHERN EUROPE

Denmark 5.4 12 11 0.1 693.5 5.9 6.4 77 0.2

�0.1

Percent
Births Deaths Projected Life of pop.

Population per per Growth Population Expectancy 15–49
Mid-2002 1,000 1,000 Rate Doubling (millions) at Birth with
(millions) Pop. Pop. (%) Time 2025 2050 (years) HIV/AIDS
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Estonia 1.4 9 14 — 1.2 0.9 71 1.0
Finland 5.2 11 10 0.2 346.9 5.3 4.8 78 0.1
Iceland 0.3 15 6 0.9 77.4 0.3 0.4 79 0.2
Ireland 3.8 14 8 0.6 115.9 4.5 4.5 77 0.1
Latvia 2.3 8 14 — 2.2 1.8 71 0.4
Lithuania 3.5 9 12 — 3.5 3.1 73 0.1
Norway 4.5 13 10 0.3 231.4 5.0 5.2 79 0.1
Sweden 8.9 10 11 0.0 — 9.5 9.8 80 0.1
United Kingdom 60.2 11 10 0.1 693.5 64.8 65.4 78 0.1

WESTERN EUROPE

Austria 8.1 9 9 0.0 — 8.4 8.2 78 0.2
Belgium 10.3 11 10 0.1 693.5 10.8 11.0 78 0.2
France 59.5 13 9 0.4 173.6 64.2 65.1 79 0.3
Germany 82.4 9 10 — 78.1 67.7 78 0.1
Liechtenstein 0.03 12 7 0.5 139.0 0.04 0.04 — —
Luxembourg 0.5 13 9 0.5 139.0 0.6 0.6 78 0.2
Monaco 0.03 23 16 0.6 115.9 0.04 0.04 — —
Netherlands 16.1 13 9 0.4 173.6 17.7 18.0 78 0.2
Switzerland 7.3 10 8 0.2 346.9 7.6 7.4 80 0.5

EASTERN EUROPE

Belarus 9.9 9 14 — 9.4 8.5 69 0.3
Bulgaria 7.8 9 14 — 6.6 5.3 72 z1

Czech Republic 10.3 9 11 — 10.3 9.4 75 z1

Hungary 10.1 10 13 — 9.2 8.1 72 0.1
Moldova 4.3 9 10 — 4.5 4.2 68 0.2
Poland 38.6 10 10 0.0 — 38.6 33.9 74 0.1
Romania 22.4 10 12 — 20.6 17.1 71 z
Russia 143.5 9 16 — 129.1 101.7 65 0.9
Slovakia 5.4 10 10 0.0 — 5.2 4.7 73 z
Ukraine 48.2 8 15 — 45.1 38.4 68 1.0

SOUTHERN EUROPE

Albania 3.1 17 5 1.2 58.1 4.1 4.7 74 z
Bosnia-Herzegovina 3.4 12 8 0.4 173.6 3.6 3.4 68 z
Croatia 4.3 10 12 — 4.1 3.6 74 z
Greece 11.0 10 10 0.0 — 10.4 9.7 78 0.2
Italy 58.1 9 9 0.0 — 57.5 52.2 80 0.4
Macedonia 2.0 15 9 0.6 115.9 2.2 2.1 73 z
Malta 0.4 11 8 0.3 231.4 0.4 0.4 77 0.1
Portugal 10.4 12 10 0.2 346.9 9.7 8.6 76 0.5
Slovenia 2.0 9 9 0.0 — 2.0 1.7 76 z
Spain 41.3 10 9 0.1 693.5 44.3 42.1 79 0.5
Yugoslavia 10.7 12 11 0.2 346.9 10.7 10.2 72 0.2

�0.2

�0.8

�0.7
�0.2

�0.1
�0.4
�0.2
�0.5
�0.5

�0.1

�0.3
�0.6

�0.4

Percent
Births Deaths Projected Life of pop.

Population per per Growth Population Expectancy 15–49
Mid-2002 1,000 1,000 Rate Doubling (millions) at Birth with
(millions) Pop. Pop. (%) Time 2025 2050 (years) HIV/AIDS

1z less than 12%�
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AFRICA 840 38 14 2.4 29.2 1,281 1,845 53 6.6

NORTHERN AFRICA

Algeria 31.4 23 5 1.8 38.9 43.0 51.3 70 0.1
Egypt 71.2 27 7 2.0 35.0 96.1 115.4 66 z
Libya 5.4 28 4 2.4 29.2 8.3 10.8 75 0.2
Morocco 29.7 25 6 1.9 36.8 40.5 48.4 69 0.1
Sudan 32.6 36 12 2.4 29.2 49.6 63.5 56 2.6
Tunisia 9.8 17 6 1.2 58.1 11.6 12.2 72 z

WESTERN AFRICA

Benin 6.6 41 12 2.9 24.2 12.0 18.1 54 3.6
Burkina Faso 12.6 47 17 3.0 23.4 21.6 34.3 47 6.5
Cote d’lvoire 16.8 36 16 2.0 35.0 25.6 35.7 45 9.7
Gambia 1.5 42 13 2.9 24.2 2.7 4.2 53 1.6
Ghana 20.2 32 10 2.2 31.9 26.5 32.0 58 3.0
Guinea 8.4 45 18 2.7 26.0 14.1 20.7 48 1.5
Guinea-Bissau 1.3 45 20 2.5 28.1 2.2 3.3 45 2.8
Liberia 3.3 49 17 3.1 22.7 6.0 10.0 50 2.8
Mali 11.3 49 19 3.0 23.4 21.6 36.4 47 1.7
Mauritania 2.6 34 14 2.0 35.0 5.1 7.2 53 0.5
Niger 11.6 55 20 3.5 20.1 25.7 51.9 45 1.4
Nigeria 129.9 41 14 2.7 26.0 204.5 303.6 52 5.8
Senegal 9.9 38 12 2.6 27.0 16.5 22.7 53 0.5
Sierra Leone 5.6 49 25 2.4 29.2 10.6 14.9 39 7.0
Togo 5.3 40 11 2.9 24.2 7.6 9.7 55 6.0

EASTERN AFRICA

Burundi 6.7 43 21 2.2 31.9 12.4 20.2 41 8.3
Eritrea 4.5 43 12 3.0 23.4 8.3 13.3 56 2.8
Ethiopia 67.7 40 15 2.5 28.1 117.6 172.7 52 6.4
Kenya 31.1 34 14 2.0 35.0 33.3 37.4 48 15.0
Madagascar 16.9 43 13 3.0 23.4 30.8 47.0 55 0.3
Malawi 10.9 46 22 2.4 29.2 12.8 15.0 38 15.0
Mauritius 1.2 16 7 1.0 69.7 1.4 1.5 72 0.1
Mozambique 19.6 43 23 2.0 35.0 20.6 22.9 38 13.0
Rwanda 7.4 42 21 2.2 31.9 8.0 8.9 39 8.9
Somalia 7.8 48 19 2.9 24.2 14.9 25.5 47 1.0
Tanzania 37.2 40 13 2.7 26.0 59.8 88.3 52 7.8
Uganda 24.7 48 18 3.0 23.4 48.0 84.1 43 5.0
Zambia 10.0 42 22 2.0 35.0 14.3 20.3 37 21.5
Zimbabwe 12.3 29 20 0.9 77.4 10.3 10.1 38 33.7

MIDDLE AFRICA

Angola 12.7 48 20 2.9 24.2 28.2 53.3 45 5.5

Percent
Births Deaths Projected Life of pop.

Population per per Growth Population Expectancy 15–49
Mid-2002 1,000 1,000 Rate Doubling (millions) at Birth with
(millions) Pop. Pop. (%) Time 2025 2050 (years) HIV/AIDS
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Cameroon 16.2 37 12 2.5 28.1 24.7 34.7 55 11.8
Central African 

Republic 3.6 38 18 2.0 35.0 4.9 6.4 44 12.9
Chad 9.0 49 16 3.3 21.3 18.2 33.3 51 3.6
Congo 3.2 44 14 3.0 23.0 6.3 10.7 51 7.2
Congo, Dem.

Rep. of 55.2 46 15 3.1 22.7 106.0 181.9 49 4.9
Gabon 1.2 32 16 1.6 43.7 1.4 1.8 50 4.2

SOUTHERN AFRICA

Botswana 1.6 31 22 0.8 87.0 1.2 1.2 39 38.8
Lesotho 2.2 33 15 1.8 38.9 2.4 2.8 51 31.0
Namibia 1.8 35 20 1.6 43.7 2.0 2.5 43 22.5
South Africa 43.6 25 15 1.1 63.4 35.1 32.5 51 20.1
Swaziland 1.1 41 20 2.0 35.0 1.4 2.0 40 33.4

ASIA 3,776 20 7 1.3 53.7 4,741 5,297 67 0.4

WESTERN ASIA

Armenia 3.8 8 6 0.2 346.9 3.7 3.2 72 0.2
Azerbaijan 8.2 14 6 0.8 87.0 10.2 13.0 72 z
Bahrain 0.7 22 3 1.9 36.8 1.7 2.9 74 0.3
Cyprus 0.9 12 7 0.6 115.9 1.0 1.0 77 0.3
Georgia 4.4 9 9 0.0 — 3.6 2.5 73 z
Iraq 23.6 35 10 2.5 28.1 41.2 60.1 58 z
Israel 6.6 21 6 1.5 46.6 9.3 11.0 78 0.1
Jordan 5.3 28 5 2.3 30.5 8.7 11.8 70 z
Kuwait 2.3 32 3 2.9 24.2 3.9 5.5 76 0.1
Lebanon 4.3 21 7 1.4 49.9 5.4 5.8 73 0.1
Oman 2.6 33 4 2.9 24.2 5.1 7.4 73 0.1
Palestinian Territory 3.5 40 4 3.5 20.1 7.4 11.2 72 —
Qatar 0.6 31 4 2.7 26.0 0.8 0.9 72 0.1
Saudi Arabia 24.0 35 6 2.9 24.2 40.9 60.3 72 z
Syria 17.2 31 6 2.6 27.0 26.5 34.4 70 z
Turkey 67.3 22 7 1.5 46.6 85.0 96.9 69 z
United Arab Emirates 3.5 17 2 1.5 46.6 4.5 5.1 74 0.2
Yemen 18.6 44 11 3.3 21.3 39.6 71.1 59 0.1

SOUTH CENTRAL ASIA

Afghanistan 27.8 43 19 2.4 29.2 45.9 67.2 45 z
Bangladesh 133.6 30 8 2.2 31.9 177.8 205.4 59 z
Bhutan 0.9 34 9 2.5 28.1 1.4 2.0 66 z
India 1049.5 26 9 1.7 41.1 1363.0 1628.0 63 0.8
Iran 65.6 18 6 1.2 58.1 84.7 96.5 69 0.1
Kazakhstan 14.8 15 10 0.5 139.0 14.7 14.0 66 0.1
Kyrgyzstan 5.0 20 7 1.3 53.7 6.5 7.5 69 z1

Percent
Births Deaths Projected Life of pop.

Population per per Growth Population Expectancy 15–49
Mid-2002 1,000 1,000 Rate Doubling (millions) at Birth with
(millions) Pop. Pop. (%) Time 2025 2050 (years) HIV/AIDS
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Nepal 23.9 31 11 2.1 33.4 36.1 43.4 58 0.5
Pakistan 143.5 30 9 2.1 33.4 242.1 332.0 63 0.1
Sri Lanka 18.9 18 6 1.2 58.1 22.1 22.7 72 z
Tajikistan 6.3 19 4 1.4 49.9 7.8 8.5 68 z
Turkmenistan 5.6 19 5 1.3 53.7 7.2 7.9 67 z
Uzbekistan 25.4 22 5 1.7 41.1 37.2 38.6 70 z

SOUTHEAST ASIA

Brunei 0.4 22 3 2.0 35.0 0.5 0.6 74 0.2
Cambodia 12.3 28 11 1.7 41.1 18.4 21.9 56 2.7
East Timor 0.8 29 15 1.5 46.6 1.2 1.4 48 —
Indonesia 217.0 22 6 1.6 43.7 281.9 315.8 68 0.1
Laos 5.5 36 13 2.3 30.5 8.6 11.3 54 0.1
Malaysia 24.4 23 4 1.9 36.8 35.6 46.4 73 0.4
Myanmar 49.0 25 12 1.3 53.7 60.2 68.5 56 2.0
Philippines 80.0 28 6 2.2 319 115.5 145.7 68 z
Singapore 4.2 12 4 0.8 87.0 8.0 10.4 78 0.2
Thailand 62.6 14 6 0.8 87.0 72.1 71.9 72 1.8
Vietnam 79.7 19 5 1.4 49.9 104.1 117.2 68 0.3

EAST ASIA

China 1,280.7 13 6 0.7 99.4 1,454.7 1,393.6 71 0.1
China, Hong Kong 6.8 7 5 0.2 346.9 8.4 7.5 79 0.1
China, Macao 0.4 7 3 0.4 173.6 0.6 0.8 77 —
Japan 127.4 9 8 0.2 346.9 121.1 100.6 81 z
Korea, North 23.2 18 10 0.7 99.4 25.7 26.4 64 z
Korea, South 48.4 13 5 0.8 87.0 50.5 50.0 76 z
Mongolia 2.4 23 8 1.5 46.6 3.3 3.9 63 z
Taiwan 22.5 11 6 0.6 115.9 25.3 25.2 75 —

OCEANIA 32 18 7 1.0 69.7 40 46 75 0.2

Australia 19.7 13 7 0.6 115.9 23.2 25.0 80 0.1
Fiji 0.9 25 6 1.9 36.8 1.0 0.9 67 0.1
French Polynesia 0.2 21 5 1.6 43.7 0.3 0.4 72 —
Guam 0.2 24 4 2.0 35.0 0.2 0.3 77 —
New Caledonia 0.2 21 6 1.6 43.7 0.3 0.4 73 —
New Zealand 3.9 14 7 0.7 99.4 4.6 5.0 78 0.1
Papua-New Guinea 5.0 34 11 2.3 30.5 8.0 10.9 57 0.7
Samoa 0.2 30 6 2.4 29.2 0.2 0.2 68 —
Solomon Islands 0.5 41 7 3.4 20.7 0.9 1.5 67 — 

Percent
Births Deaths Projected Life of pop.

Population per per Growth Population Expectancy 15–49
Mid-2002 1,000 1,000 Rate Doubling (millions) at Birth with
(millions) Pop. Pop. (%) Time 2025 2050 (years) HIV/AIDS
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17.

19. a. about years
b. 2000 and 2011

Section 1.3
3. a. A 10-year-old child is 50 inches tall.

b. Increasing
c. Generally concave down because growth starts quickly

but usually slows down

5. for some constant k

7. for some constant k

9. a. 156 b. 210; 243; 270; 330
c. 150

11. a. 348
b. 16 grams of peanut butter and 20 grams of jelly, or 

25 grams of peanut butter and no jelly
c. Peanut butter

13. b. 164 feet; 104 feet
c. is the height of the ball after 2 sec-

onds, and is the height of the ball after
3 seconds.

d. 1.875 seconds; 176.25 feet
e. 5.19 seconds
f. Domain: range:

15. would make the denominator

0; domain:

17. 6, 20, 30, 110; no; nonnegative; domain:

Section 1.4
1.(i) Function, with domain and range

decreasing from to and from
to 1.7; increasing elsewhere; concave down from

to 0 and concave up from to and
from 0 to 4

�1.8�3�1.8
�1

�2.5�3.50 � y � 2;
�3.5 � x � 4

s � 0

x � �2x � �2;

x � 2
1

21
;

1

12
 ;

1

5
 ;� 

1

3
 ;� 

1

4
 ;

0 � H � 176.250 � t � 5.19;

H 13 2 � 156 feet
H 12 2 � 176 feet

F1d 2 �
k

d 2

P1T 2 � kT

10 
1
2

80

90

100

110

120

0 4 8 12 16 202 6 10 14 18
x

BP

746

Selected Answers

Chapter 1

Section 1.1
1. a. Function, number of miles depends on number of gallons

b. Function, price depends on number of carats
e. Function, amount of rain depends on the day

c, d, and f are not functions.

3. a. (ii) c. (i) d. (iii)

Section 1.2
1. e is strictly increasing.

g and i are strictly decreasing
a, b, c, d, f, and h are neither

3.

5.

9.

15. a, b, c, d, e, h, i, and j are periodic. f and g are not 
periodic.

Inflection point

Turning point

Inflection point

Concave up Concave down Concave up

Inflection
point

Inflection
point

x

y
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(ii) Function, with domain and range 
increasing and concave down everywhere

(iii) Not a function
(iv) Not a function

(v)Function, with domain and range
decreasing and concave up everywhere

5.

�1 � y � 2;
�1 � x � 5

y � 2;
�1 �0 � x � 5 Section 1.5

5. a. 38 mph b. 49 mph c. 58 mph
d. 69 mph e. 150 ft

7. a.
b.

Review Problems
1. Independent variable: depth of tumor; dependent variable:

amount of radiation

3.

4.

5. a. Function b. Not a function

6. Overall, zoos with larger budgets have greater attendance.

7. b. 1990
c. Most rapid change is between 1994 and 1995; slowest

change is between 1993 and 1994.

8. 1, 2, 2.43, 2.0403, 34,

9. a. $18,896.50 b. $24,174.10 c. about 6.7 years

10. a. 5.6 years b. 3.9 to 24.8 years
c. Increasing and concave down
d. 232 days e. 16.2 years

11. a. b.

12. a. b. All real numbers

13. a. b. or 
c. d. All real numbers

14. a.

x � �3
x � 4x � �4x � �5

10, �9 2

y � �5.56251�0.375, �5.5625 2

f 1a 2 � 3a2 � 2a � 1

Time

Po
pu

la
tio

n

4 8 12 16 20 24

1

2

3

4

Time (hours)

D
os

ag
e

(4, 0.6)

(4, 1.6)
(8, 1.96)(12, 2.18) (16, 2.31) (20, 2.38) (24, 2.43)

(8, 0.96)
(12, 1.18) (16, 1.31) (20, 1.38) (24, 1.43)(0, 1)

y � f 1t 2 � v0 t � 16t 2
y � f 1t 2 � 80t � 16t 2

9. can be any number between 10 and 15.

11. a.
that is,

b. that is,
c.
d.
e.
f.
g.

that is,
h.

that is,
i. that is,
j. that is,
k.

13. a. g(x) b. f(x) c. h(x)

17. a. Increasing b. Concave up

19.

x2, x10, x12

1x9, x10 2x9 	 x 	 x10;
1x12, x14 2x12 	 x 	 x14;

1x3, x5 2 , 1x7, x9 2 , 1x13, x14 2 .
x3 	 x 	 x5, x7 	 x 	 x9, x13 	 x 	 x14;

1x1, x3 2 , 1x5, x7 2 , 1x9, x13 2 .
x1 	 x 	 x3, x5 	 x 	 x7, x9 	 x 	 x13;
x3, x5, x7, x9, x13

x6, x11

x4, x8

x4, x6, x8, x11

1x4, x6 2 , 1x8, x11 2x4 	 x 	 x6, x8 	 x 	 x11;
1x1, x3 2 , 1x6, x8 2 , 1x11, x14 2

x1 	 x 	 x3, x6 	 x 	 x8, x11 	 x 	 x14;

f 15 2

f a� 

5

2
b �

63

4
f a

3

2
b � � 

1

4
 ;f a

1

2
b �

3

4
 ;

x

0 0

1 1

2

3

4 2

5

6 26 � 2.449

25 � 2.236

23 � 1.732

22 � 1.414

f (x) � 2x

domain: x � 0f a
5

2
b � B5

2
� 1.581;

f a
3

2
b � B 3

2
� 1.225;f a

1

2
b � B1

2
� 0.707;

x

20
12
6

0 2
1 0
2 0
3 2
4 6
5 12 

�1
�2
�3

f (x) � x2 � 3x � 2

Weight W (oz) Cost ($)

0.37
0.60
0.83
1.06
1.294 	 W � 5

3 	 W � 4
2 	 W � 3
1 	 W � 2
0 	 W � 1
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Exercising Your Algebra Skills

1. 3. 5. 7.

9. 11.

13. 15.

17. a. b.

19. a. b.

Section 2.3
1. a. Yes, 47 b. No c. Yes, 137.1

3.

5. a. b. 41.02 billion
c. 41.02 billion

11. a.
c. Domain: range:
d. e.
f.

13. a. For the slope is and the vertical inter-
cept is at 4; for the slope is and the
vertical intercept is at 4.

c.

15. Possible: a, f, and i; Impossible: b, c, d, e, g and h

17. a. PQ, PR, QR b. QR, PR, PQ

Exercising Your Algebra Skills

1. 3. 5.

7. 9.

11. 13. � 

2

7
y � �  

2

7
 x �

9

7
 ;� 

6

5
y � �  

6

5
 x � 6;

v � B rF

m
l � g . a

T

2p
b

2

v � B2K

m
r � BA

p
h �

A

b

10, 4 2

� 
4
54x � 5y � 20,

2
33y � 2x � 12,

3N + 2G = 60 

3N + G = 30 

3N + 2G = 30 

6N + 2G = 30 

50 10 15 20 25

15

30

N

G

6N � 2G � 30
3N � G � 303N � 2G � 60

0 � G � 150 � N � 10;
3N � 2G � 30

W � 26.5 � 0.661t � 80 2 ,
W � 0.66t � 26.5

y � 0.057x � 1.329

�  

5

7
�  

5

4
 ,�  

4

7

4, �  

8

3

2

3

t � 2511.25x �
19

6

k � 3q �
194

47
� 4.1

x � 1y �
29

18
x � �  

1

2
x �

19

5

748 SELECTED ANSWERS

15. a. From A to B the track is increasing and concave up.
From B to C the track is increasing and concave down.
From C to D the track is decreasing and concave down.
From D to E the track is decreasing and concave up.
From E to F the track is increasing and concave up.

b. From A to B the car’s speed is decreasing at an 
increasing rate.
From B to C the car’s speed is decreasing at a 
decreasing rate.
From C to D the car’s speed is increasing at an 
increasing rate.
From D to E the car’s speed is increasing at a 
decreasing rate.
From E to F the car’s speed is decreasing at an 
increasing rate.

Chapter 2
Section 2.2

1. a. (iii) b. (i) c. (v) d. (vi)
e. (iv) f. (ii)

3. a. or 
b.
c.

5. a.
b. where in 1990
c. The sales of cassette tapes are falling by 

per year the sales of CDs are rising by per
year.

d. Late 1983
e.

7. a.
b. Each minute costs and it costs to place the call.
c. $8.20
d. each minute costs and it costs 

to place the call; $5.74

9. a. DJ1: DJ2:
c. DJ1 costs less than DJ2 if she is hired for longer than 

hours or 1 hour 20 minutes.

11. a. for 
with a range of

b. There is a 28% tax on income for single taxpayers with
taxable income between $21,450 and $51,900.

13. a. b. about 1880
c. no

15. b. 30,300 feet

17. a. b.

19. b. c.
d. e.

21. a. (i) and (iii) b. a2, �  

3

2
b

x � 39x � y � 25
7x � 2y � 1713, 2 2

y � �  

1

5
 x �

26

5
y � 5x � 26

d � 15x � 300

3217.50 � T � 11743.5051,900
21,450 � I �T � 3217.50 � 0.281I � 21,450 2

1 
1
3

C � 75t � 100C � 60t � 120;

28¢21¢,C � 0.21t � 0.28;

40¢30¢,
C � 0.30t � 0.40

B � �3.1375t � 1307.9

32.325 million
35.4625 million

t � 0CD � 32.325t � 865.7,
CT � �35.4625t � 442.2

y � �0.626x � 7.164
y � �2

y � 7x � 9y � 5 � 71x � 2 2 ,
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Section 2.4
1. a. A b. C c. B, C d. D

e. B, D

5. a. where in 1990
b. where in 1900
c. where in year 0
e. $1557.19 billion; $1558.02 billion; $1557.95 billion

7. a. where in 1980
b. $215.94 trillion c. $497.33 trillion d. During 2004

9. a. where in 1995
b. 28.2 million c. 27 years

11. a. where in 1990
b. 1.80 billion metric tons

13. a. 7.5 billion b. about 47 years

15. $106.14; $181.40

17. $ or $124 billion

19. a. 1.125 b. 12.5% c. 36.4
d.

21. where in 1981; 19,081

23. a possible; b and c impossible

25. In mid 1997

Exercising Your Algebra Skills
1. 3. 5. 7.

9. 11. 13. 15.

17. 19.

Section 2.5
1. a. Exponential: a, c, f; not exponential: b, d, e

3. a.

c.

x

y

A > 0, c > 1

x

y

A > 0, c < 1

a6 � 2a3b � b2a12b20

x15z�1x1>4w3

r12x�2a12x8

t � 0D � 96411.1386 2 t,

f 1x 2 � 11.211.125 2 x

1.24 
 1011,

t � 0C � 1.3611.0201 2 t,

t � 0P1t 2 � 21.811.026 2 t,

t � 0S � 11911.0614 2 t,

t � 0I � 14.59 
 10�64 2 11.0794 2 t,
t � 0I � 0.51111.0794 2 t,

t � 0I � 49511.0794 2 t,

d.

5. a. (vi) b. (v) c. (iv) d. (ii)

7. a. where in 1980
b. 17,352 cases c. 52.3 years

9. a. b. 10.2 hours

11. a. b. 0.68 mg c. 7.3 hours

13. About 96.3 years

15. a. where is the original level
b. or about 16.8%

19. a. 64% b. c. 15.4 years

21. a. b.
c. Sales of cassette tapes are falling by 12.04% a year; sales

of CDs are rising by 3.32% a year.
d. In late 1985

25.

Exercising Your Algebra Skills
1. 3. 5. 7.

9. 11. 13.

Section 2.6
3. a. b. 39.4 million c. 53.7 years

5. 6.6 weeks

7. a. 23.45 years, 17.67 years, 14.21 years, 11.9 years,
10.24 years

9. In mid 2051

11. 2137 B.C.

13. 780 years old

15. a. 78.5% b. 34 months, or 2 years 10 months
c. 114 months, or 9.5 years

17. 1000 times as strong

19. a. or 1,000,000 times as loud
b. times more intense c. times more intense
d. 60 decibels e. 110 decibels

21.

Exercising Your Algebra Skills
1. 3. log (xy) 5.

7. 9.

11. 13.

15. 100 17. 6 19. �4

log 15>4 2

log 11.05>1.04 2
� 23.32

log 0.25

log 0.86
� 9.19

log 0.6

log 0.4
� 0.56

log 11

log 7
� 1.23

x 2log x 6 � 6 log x

P1t 2 � 6e0.0149tP1t 2 � 61100.0065t 2 ;

10121015
106,

P � 34.611.013 2 t

101103x 2 � 1011000x 2913x 225x

10�5x35�2a53�x2m�n

c � 0.5B � �10,A � 10,

C � 865.711.0332 2 tT � 442.210.8796 2 t
S � 0.956t

0.16807I0 ,
I0I � I0

. 10.7 2n,

M � 310.69 2 t
N � 0.410.65 2 t

t � 0C � 27,70010.9807 2 t,

x

y

A < 0, c < 1

Gord.xxxx.ans.pgs  11/21/03  11:26 AM  Page 749



Section 2.7
1. a. Power function;

c. Power function;
d. Power function;
e. Power function;

b and f not power functions

3. Exponential functions: b, c, g, and n; power functions: a, d,
e, h, j, and k; neither: f, i, l, and m

5. a. b. exponential c.

9. 603.6 lb

11. a. b.
c. d.
e. f.

13. a. 15 watts b. 120 watts
c. 8 d. 1.875 watts; yes
e. 9,645 windmills f. about 19 mph

17. a. where in 1990
b. where in 1990
c. In early 1989

19. About 43 miles

21. The range is an additional 4 miles; the area increases by
1246 square miles.

23. About 7058 mph

25.

t � 1C � 865.7t 
0.119,

t � 1T � 442.2t �0.467,

f 1x 2 � 40x�1f 1x 2 � 10x�1>2
f 1x 2 � 0.55794x 2.2239f 1x 2 � 3x0.86848
f 1x 2 � 3x 

0.70752f 1x 2 � 3x1>2

y � bx 3y � ax 2

p 	 0k 	 0,
p � 1k � 0,
0 	 p 	 1k � 0,
p 	 0k � 0,

f. No inverse g. No inverse
h. No inverse

3. a. Domain: 0, 1, 2, 3, 4, 5; range: 1.12, 1.44, 1.84, 2.05, 2.48,
2.94
b.

750 SELECTED ANSWERS

27. Slope of PQ is 1, slope of QR is 3, and slope of PR is 2.

29. Slope of PQ is slope of QR is and slope of
PR is 

Exercising Your Algebra Skills
1. 3 3. 16 5. 7.

9. 11. 13.

Section 2.8
3.

5. a. 4 b. 4 c. d.

e.

7. a. 1 b. 2 c. 3

9. b. 1 c. About 0.414 d. About 0.707

Section 2.9
1. a. Inverse b. Inverse

c. No inverse, assuming that different students are the
same height

d. No inverse e. Inverse

4

3

�3�3

x � 1.098

a7>3x�1>2x 2

r4x7

2a � 2h.
2a � 3h,2a � h,

H

0.1 miles 28.14427 28.1427

1 mile 89 89

10 miles 281.44 281.60

100 miles 890 895.54

D(H) � 2H 2 � 7920HD � 89 2H

7.

17. a. Each letter of the alphabet is matched with only one let-
ter of the alphabet.

b. IS THIS MATH?

Exercising Your Algebra Skills

1. 3.

5. 7.

9. 11.

Review Problems
1. a. Exponential,

b. Power function,
c. Exponential,

2. a. Exponential b. Power c. Logarithmic
d. Power e. Power f. Exponential
g. Exponential h. Power i. Exponential
j. Power k. Power l. Linear
m. Linear n. Exponential

3. a. A b. D c. C d. B
e. E f. I g. H h. G
i. F j. J k. L l. K

4. a. (6) b. (5) c. (4) d. (3)
e. (1)

6. 1.1935

7. a. 1995

b. during 1997

c. During 2000

P1t 2 � 0.9511.10 2 t;

20 4 6 8 10

1

2

3

4

t

P

P = 1.5 + 0.1t

P = 0.95(1.1)t

P1t 2 � 1.5 � 0.1t ;

F1t 2 � 511.1935 2 t;

c � 1
0 	 p 	 1

c 	 1

a
Q

27
b

�4>3

�
81

Q4>3a
y

12
b

2>7

log 1.75

log 1.02
� 28.2597B8 32

17
� 1.0823

log 0.20

log 0.84
� 9.2309 

225 14 � 1.1113

p�11t 2 �
log t

log 1.04
� 58.7084 log t

x 1.12 1.44 1.84 2.05 2.48 2.94

5 4 3 2 1 0

Domain: 1.12, 1.44, 1.84, 2.05, 2.48, 2.94; range: 0, 1,
2, 3, 4, 5

f (x)
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8. a. About 8.1 years b. About 20,424 eagles
c. during 2004

9. About 

10. 191 million

11. deaths are increasing by 
per year; 10,834 deaths

12. a. b.
c.

13. a. b. $2401.8 billion
c. d. $2981.7 billion
e. Linear: $3127 billion; exponential: $5217 billion

14. a. b.

c.

I � 17.711.044 2 tI � 1.135t � 17.7

F1t 2 � 105511.0832 2 t
f 1t 2 � 103.6t � 1055

H1x 2 � 2.722211.60357 2 x
G 1x 2 � a�  

13

3
b x � 8F1x 2 � 810.7249 2 x

382 deathsD � 382t � 2048;

W � 2t � 141;

50.5°F

17. a. Domain:

b. Domain: all real numbers;

18. Exponential;

19. a. b. c.

20. a. (i) where in 1960 (ii) $2.37
b. Ice cream c. 2093
d. $291.04 e. No

21. 1166; 45 years

22. 5.6 hours; 8.4 hours

Chapter 3

Section 3.2
1. a. (iii) b. (i) c. (iv)

d. (ii) e. (v)

3. a. Correlation coefficient must be between and 1.
b. Slope and correlation coefficient must have the same

sign.
c. The smaller x is, the larger y will be.

5. 6.3 sec, 16.7 sec; the 45-
mph estimate

7. where in 1900

9. a.
b. same as (a)
c.

11. a. yes b.
c. 102.3

13.

15. a. Length depends on mass
b. yes
c.
d. cm/gram; length increases by 0.0404 cm for each addi-

tional gram of mass.
e.

17. a. where in 1965
b. 2,234.17 million tons
c. In late 2001

19. a.
b. Cost per minute is charge for service is $13.71
c. $57.71

21. a. 33
b. Increase slope and decrease vertical intercept

Section 3.3
1. i. Exponential ii. None iii. Power

iv. Exponential v. Power vi. None
vii. Logarithmic viii. Power

2.2¢;
C � 0.022t � 13.707

t � 0A � 28.23t � 963.82,

L � 0.0404m

L � 0.0404m � 0.1
r � 0.99998;

cm>sec>secv � �964.97t � 0.32;

S � 0.871T � 67.508r � 0.999;

H � 1.96S � 49.051

r � 0.95.H � 1.78S � 50.863;

t � 0P � 0.254t � 10.682,r � 0.992;

T � 0.231s � 4.06;r � 0.9897;

�1

t � 0f 1t 2 � 0.2011.0565 2 t,

f 1x 2h1x 2g 1x 2

F1x 2 � 411.5 2 x
g�11x 2 � 13 x � 6

f �11t 2 �
102t � 4

2
t � 2;

t Linear Model Exponential Model

0 17.7 17.7

5 23.375 21.952

10 29.05 27.226

15 34.725 33.766

17 37 37

25 46.075 51.938

30 51.75 64.415

d. Linear: $43,805; exponential: $47,652
e. Power function

15. a. Linear b. Linear

16. a.

b.

c. No inverse

x

y

y
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3. a. 9.3; 21.5 b. 0.3; 1.7 c. 151.2; 348.6
d. e. Slower

5. 881 square miles

7. a. nanograms per milliliter
b. 335.5 minutes

9. a. b. 1075.2 square kilometers

11. a. Linear: exponential:
power: in 1975

b. 87.50, 128.37, 84.90

13. a. Linear: exponential:

b. Linear: 848; exponential: 1,084
c. Linear: in early 2009; exponential: in early 1998
d. 16.5 years

15. a. Linear:
exponential:
power:
logarithmic:

b. Linear: 1213
exponential: 2498
power: 1211
logarithmic: 926

d. Linear: in late 2065
exponential: in mid 1999
power: in late 2043
logarithmic: in mid 2868

e. 17.5 years

17. b. Linear:
exponential:
power:
logarithmic:

c. College degrees increase by 335 for every 1000 addition-
al high school diplomas.

d. The number of college degrees is increasing with re-
spect to the number of high school diplomas.

19. a. where in 1979
b. 1.32996; growth rate is about 33% per year.
c. 509.6 million
d. Slower from 1984 to 1995 and then faster
e. where in 1979
f. 70.8 million
g. Matches very well from 1980 to 1995 and then is slower
h. Power

21. a. where in 1945
b. 53.5%
c. where in 1945
d. 56.8%
e. where in 1945
f. 46.9%

23. a. so it seems a
good fit

b. c. 371.8 kiloPascals40.1°C

r � 0.9950,T � 4.4258 � 19.528 ln P;

t � 0P � 20.5929 t 0.1907,

t � 0P � 29.031411.0090 2 t,

t � 0P � 0.3378t � 28.1705,

t � 0N � 0.0657t 2.1432,

t � 0N � 0.307211.32996 2 t,

C � �1402.8353 � 271.786 ln H
C � 0.2568H1.014

52.729511.0011 2HC �
C � �40.3864 � 0.335H

N � �1455.3584 � 501.7958 ln t
N � 0.3347 t1.7269

N � 26.017411.0405 2 t
N � 12.9203t � 272.9816

11.0428 2 t133.392
N �N � 16.619t � 16.726;

t � 0C � 6.76t 0.744,11.0735 2 t;15.29
C �C � 2.55t � 11;

N � 1.506A0.3293

345

�197.9�45.5;
Section 3.4

1. a. where in 1780
b. Yes, since whereas previously 

3. a. where in 1940
b. $4137.6 billion

5.

t � 0D � 216.9711.0464 2 t,

r � 0.9982r � 0.9989,
t � 0P � 3.000311.3303 2 t,

752 SELECTED ANSWERS

Year t Average Debt

1940 10 4.9431

1950 20 1.7054

1960 30 1.6230

1970 40 1.8741

1980 50 4.0132

1990 60 12.8951

2000 70 20.2061

where in 1930; $15.6 thousand

11. a. where in 1980
b. 2.2 years; amount of wind energy generating capacity

doubles every 2.2 years.
c. 708,357 megawatts

13. a. where in 1960
b. 178.1 years; it will take 178.1 years for the carbon diox-

ide concentration to double.
c. 381.8 parts per million
d. In late 2021

15. a. where in 1960
b. 11.9 years; the number of telephones will double in

11.9 years.
c. 3040 million
d. In late 2000
e. During 2040.

17. a. where in 1985
b. 0.98; the number of computers connected to the Inter-

net doubles in less than a year.
c. thousand, or 420,000,000,000,000
d. In late 1999

Exercising Your Algebra Skills
1. 3.

5. 7.

Section 3.5
1. a. 166.3 feet b. 234.8 feet

c. 569.4 thousand pounds

3. a.
b. 9.2 cm; 15.8 cm c. 661

5. b. c. 45.4 cm
d. or 245 ft>sec7470 cm>sec,

S � 18.4490L1.1526

D � 0.000385n1.4865

y � 7.120310.0533 2 xy � 2.2501112.1423 2 x
y � 11.827710.9499 2 xy � 6.000711.0517 2 x

4.2 
 1011

t � 0N � 7.119512.0315 2 t,

t � 0N � 91.109211.0602 2 t,

t � 0C � 314.254211.0039 2 t,

t � 0W � 52.497211.3730 2 t,

t � 0A � 0.2520t � 3.3284,
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7. a. b.
c. 205.0 cm

9. a. The number of species depends on area.
b.
c. 109 species
d. 25,751 square miles

11. a. Angle depends on radius.
b. to 
c.
d. 2.49 meters
e.

13. a.
b. 8.7 seconds
c. 2200 meters
d. 12.1 seconds

Exercising Your Algebra Skills
1. 3.

5. 7.

Section 3.6
1. a. (ii) b. (i)

c. (ii) d. (i)

3. a. Residuals are 0, 0, 1, 1, 1; sum of squares is 3.
b. Sum of squares is 1.5, which is one-half the sum of

squares for 
c. sum of squares is 0.3, or much less than

for the preceding two models.

5. a. each additional year of edu-
cation increases salary by $5,602.99.

c. 82,788,080.84

7. a.
b. 29,045,904.48

9. a.

S � 111.5539E 2.1533

S � 5602.99E � 43477.62;

y � 2.3x � 1;
y � 2x � 1.

y � 7.1203x�1.2733y � 2.2501x1.0843

y � 12.0005x�1.5y � 8.0002x1.5

T � 0.0836R0.6216

22.6°

A � 31.4584R�0.8102
90°0°

N � 5.5982A0.35209

297 cm>secS � 10.2782L0.8600

Average speed 

Planet Period t Distance D

Mercury 88 36.0 2.5704

Venus 225 67.2 1.8766

Earth 365 92.9 1.5992

Mars 687 141.5 1.2941

Jupiter 4,329 483.3 0.7015

Saturn 10,753 886.2 0.5178

Uranus 30,660 1782.3 0.3653

Neptune 60,150 2792.6 0.2917

Pluto 90,670 3668.2 0.2542

S � 2PD>t

Section 3.7
1. a. 0.9961; 0.9980; 99.61% of the variation

b.
c. 173.1 cm; within 1.1 cm

3. a. 0.9157; 0.9569; 91.57% of the variation
b.
c. 1.9 liters per second
d. Vital lung capacity has a greater effect because its coeffi-

cient is larger than that of total lung capacity.

5. a. 0.3877; 0.6226; 38.77% of the variation
b.
c. 78.2, or close to 78.
d. 0.7386; 0.8594; 73.86% of the variation;

86.266
e. 0.8518; 0.9229; 85.18% of the variation;

72.8187

Review Problems
1.

2. For all models, let in 1979; linear:
exponential: power:

logarithmic:
$1454.7 billion; $2123.0 billion; $1210.2 billion;
$1093.4 billion

3. For all models, let in 1979; linear:
exponential: power:

logarithmic:
$668.0 billion; $714.2 billion; $579.3 billion; $571.1 billion

4. a. Health expenditures are increasing by 
per year whereas public education expenditures are 
increasing by per year.

b. During 1983

5. a. Health expenditures are increasing by 8.9% a year,
whereas public education expenditures are increasing by
3.11% a year.

b. In early 1984

6. Health expenditures increase by
$3.68 billion for every $1 billion increase in education
expenditures.

7. a.

8. an 8.5-oz letter would cost $2.10 by the
model, but in reality it would cost $2.21.

9. a. where in 1970
b. $890.6 billion
c. In late 2007

10. a. where in 1983
c. In mid 2003

11. a.
b. Height of the building increases by 12.5877 feet for each

story.
c. About feet12 

1
2

H � 12.5877n � 20.8676

t � 0N � 5.49111.0298 2 t,

t � 0C � 38.3991t � 45.8474,

P � 0.23w � 0.14;

L � 0.5432G0.6471

H � 3.68E � 1012.33;

$13.9 billion

$51.8 billion

H � 310.59 � 80.945 ln t;322.05t 0.1824;
H �H � 332.1111.0311 2 t;320.47;

H � 13.90t �t � 0

H � 124.91 � 300.89 ln t;218.35t 0.532;
H �H � 251.9211.089 2 t;159.97;

H � 51.79t �t � 0

r � 0.7793A � 0.1678B0.8757;

1.2035x2 � 1.4929x3 � 1.8644x4 � 195.431;
y � 0.1702x1 �

2.9607x2 � 1.9798x3 � 141.501;
y � 0.1882x1 �

y � 0.1620x1 � 0.7117x2 � 5.891

y � 0.7301x1 � 0.0547x2 � 0.1624

y � 6.284x1 � 0.435x2 � 34.561

b. S � 11.4233t�0.3333
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12. f is linear, g is exponential, and h is logarithmic.

13. a. each bounce will take about
1.03 seconds to return to the floor.

b.
c. the height of each bounce is

decreasing by 20%.
d.
e. The next bounce will reach a maximum height of 1.89 feet

at 7.79 seconds and hit the floor at 8.26 seconds.

14. Yes.

15. If If

Chapter 4
Section 4.1

1. a. 3 b. 4 c. 2
d. 8 e. 3 f. 6

3. 1, 0,

5. 2, 4

7. 2.165

9. and are the two turning points;
one inflection point

Exercising Your Algebra Skills
1.

3. 5x4 � 2x 3 � 9x 2 � 7x � 1

6x 3 � 10x 2 � 6x � 8

11.41, �2.27 210.59, �1.73 2

�1,�3,

�3

W � 57.4 lbsS � f 1W 2 ,W � 45.8 lbs;W � f 1S 2 ,

H � �1.007t � 8.695

H � 9.000210.80007 2n;
H � �1.0889n � 8.3482

t � 1.03n � 0.0186;

0 31

1

3

x

y

h

10 3

1

3

5

x

y

g

10 3

1

3

5

x

y

f

5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

Section 4.2
3. a. (i) 3 (ii) 4 (iii) 4 (iv) 5

b. (i) Positive (ii) Positive (iii) Negative (iv) Negative

5. a. (iv) b. (vi) c. (v)
d. (i) e. (ii) f. (iii)

7.

9.

11. a.

b.

13. a. (i) 2 real, 2 complex (ii) 3 real, 2 complex
(iii) 2 real, 4 complex (iv) 4 real, 2 complex

b. (i) 3 (ii) 0.929, 5.108 (iii) 0.586, 3.414
(iv) 0.209, 0.586, 3.414, 4.791

15. a. 0.769, and 2.040
b. Increasing on and 

decreasing on and 
c. 0 and 1.5
d. concave up on and concave

down on 
e. and 2.780

17.

19. a. b.

c. d. f 1x 2 �
5

4
 x 2 � 5x � 15f 1x 2 � � 

5

4
 x 2 � 5x � 15

x � 2f 1x 2 � x 2 � 4x � 12

P1x 2 � �5x 2 � 10x

�1.305
0 
 x 
 1.5

1.5 
 x 
 	;�	 
 x 
 0

0.769 
 x 
 2.040�	 
 x 
 �0.558
2.040 
 x 
 	;�0.558 
 x 
 0.769

�0.558,

�2.386,�3,

f 1x 2 � �  

1

3
 1x � 1 2 21x � 3 2

f 1x 2 �
2

9
 1x � 1 2 1x � 3 2 1x � 3 2

—7 —3 —1 1 3 5 7

—4000

—3000

—2000

—1000

1000

x

y

–7 –3 –1 1 3 4 6 7

–600

–300

500
600

x

y

4x 2 � 24x � 36x 2 � 4x � 4

x 2 � 2x � 1x 2 � 4

x 2 � 25x 2 � x � 6

x 2 � 4x � 37x � 3x 2

3x 2 � 5x8x4 � 11x 3 � 3x � 1
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21. a. 0 b.

c. seconds d.

23.

25. a. 3 b.
c. d.

27. a. b.

c. a any real number
d. a and c any real numbers

Exercising Your Algebra Skills
1. 3.

5. 7.

9. 11.

13.

Section 4.3
1. a. 806,991 cases.

c. 895,619 cases d. In early 2001

3. Answer depends on estimates.

7.

9. in 1970;
18.84 million, 11.98 million

11.

13. a. in 1965
b. 328.6 kg c. 244.9 kg

15. a.
b. 0.97835 c.

17. 3.4 seconds

Section 4.4
1. 50%

3. The discriminant becomes gives the
same roots.

5. a. 0.77 and b. and 4.81
c. and 0.86 d. and 0.94
e. None

7. a. Stable b. Unstable c. Stable
d. Unstable e. Stable

Section 4.5
3. The 344 should be 334.

5.

7. a. 325 b. 5050 c. 500,500

P13 2 � 16P 10.5 2 �
9

4
� 2.25;P1x 2 � x2 � 2x � 1;

�0.44�0.46
�0.14�3.44

k � 0k 21b 2 � 4ac 2 ;

43.2°C
D � �0.000003644T 2 � 0.00005986T � 1.0004

t � 0A � �0.1437t 2 � 5.9982t � 266.0148,

h � 0.0001047d 2 � 0.4466d � 496.9888

t � 0P � �0.03316t2 � 0.7830t � 25.1921,

T � �0.00001873R2 � 0.0622R � 323.5359

x 1x � 5 2 2
x 1x � 5 2 1x � 4 21x � 10 2 1x � 10 2

1x � 3 2 21x � 4 2 1x � 3 2

1x � 4 2 1x � 3 21x � 4 2 1x � 3 2

p1x 2 � ax 2 � ax � c,
p1x 2 � ax 2 � ax � 1,

p1x 2 �
1

2
 x 2 �

1

2
 x � 1p1x 2 � 1

Average value � 9Average value � 8
Average value � 3.

P1x 2 � 1x � 0.87 2 1x � 2.21 2 1x � 3.66 2

v0 

2

2g
 cm

v0

g

2v0

g
 seconds

9. 13 complete layers use only 819 grapefruit; 14 complete
layers use 1015 grapefruit.

11. 6565 inches

13. a. b.
c. d.

17. 105,625

Section 4.6
1. a. b. c. d. 55

e. f. g. 29 h. 5
i. j. k.
l. m. n.
o. p. x

3. a. b. c.
d. e. f.
g. h. i.
j. k. l.
m. x n. x o.
p.

5. c, d, and g are correct; while a, b, e, and f are incorrect.

13. a. 2 b. 0
c. d. 0

15.

17.

19. a. b.
c. Domain: between 15 mph and 55 mph, which is between

and range:
d. decrease the 20 and/or increase the 70

e.

25. a. 2 b. c.
e. Yes, 1.618034

27. a. b.

29. a. G b. L c. Q
d. X e. L

Section 4.7
1.

S � 6 2>3p1>3V 2>3V �
1

6 2p  S3>2

5

3

3

2

t �
s 2 � 20s � 1400

20s

0 
 t 
 7 seconds81 ft>sec;22 ft>sec

t � 5.6 secondst � 4.8 seconds

G1x 2 � x � 3F1x 2 � log x,

G1x 2 � x 4F1x 2 � x � 5,

�2

log1log x 2
1010x
10x>log x10x log x10x � log x
10x � log xlog1log 5 210105

� 10100,000
log1105 2 � 510log 5 � 5105>log 5
105log 5105 � log 5105 � log 5

9x � 16
1> 13x � 4 23>x � 43x2 � 4x
3 � 4>x3x � 4 � 1>x3x � 4 � 1>x

1>11�17>5
11>554>556>5

5y � 120a4y � 24a
3y � 6a2y � 2a

x

3 5 25 8 UNDEF 25

4 2 10 5 5 4

5 2 2 1

6 3 15 6 9

7 8 40 11 3 64

�1

�5�1

[f (x)]2f (x � 1)f (x) � 35f (x)f (x)

5. a.
b. the point–slope form of a liney � y0 � m . 1x � x0 2 ,

y � 12 � m . 1x � 5 2
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7. a.

b.

c.

d.

e.

f.

9.

2 41 3

1

2

x

y

–1 1 32 4

–1

1

x

y

2 541 3

–1

1

x

y

2 41 3

–2

–1

1

x

y

2 41 3

–2

–1

1

2

x

y

2 41 3

–1

1

x

y 15.

756 SELECTED ANSWERS

n 1 2 3 4 5

Turning point 

for 
1.4427 2.8854 4.3281 5.7708 7.2135

x � 0

x 3 4 5 6 7 8 9 10 11

y 31 23 18 15 16 22 34 46 42

11. a.
b.
c. d.
e. 7.1; 7.01; 7.0001

13. where t is in secondsT � 350 � 31010.9947 2 t,

2x � h � 32xh � h2 � 3h
x 2 � 2xh � h2 � 3x � 3h � 4
x 2 � 3x � 4 � h

Regression equation: the linear fit is appro-
priate; 2.1641

Exercising Your Algebra Skills
1.

3.

5.

7.

Section 4.8
1. worse

3.

5. a.
b. c. 129.77 kiloPascals

Section 4.9
1. a. Males: 176.8 cm; Females: 163.7 cm

b. Males:

Females:

c. Males: 192.91 cm; Females: 171.52 cm.

3. a. Turning point is farther to the right and higher; func-
tion eventually decays at the same rate.

b. Turning point is farther to the left and lower; function
eventually decays at the same rate.

c. Turning point is farther to the left and lower; function
eventually decays at a faster rate.

d. Turning point is farther to the right and higher; func-
tion eventually decays at a slower rate.

Review Problems
1.

2.

x

y

–4 –1 1 3 4 5

g(x) = (2 – x)(x + 3)(x + 1)

–4 –2 –1 1 2 4
x

y

f (x) = (x + 3)(x – 2)(x – 4)

H �
171.52

1 � 1.73e�0.211t

H �
192.91

1 � 1.876e�0.166t  ,

31.87°C
T � 110 � 89.6910.978 2P

T � 70 � 128.106810.9395 2 t
T � 8.65 � 45.201510.8292 2 t;

f 12x � 1 2 � 4x 2 � 14x � 9

f 1x � 1 2 � x 2 � 3x � 1

f 14x 2 � 16x 2 � 20x � 3

f 12x 2 � 4x 2 � 10x � 3

y � 1.4427n;
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3.

4.

5. the roots are and .

6. the roots are and 

7. the roots are 1, and 2

9. 4 10.

11. 0 and 

12. a.

b.

13. a. Zeros at turning point at no ver-
tical asymptotes; end behavior as x approaches is 1
and end behavior as x approaches is 1.

b. Zeros at turning point at vertical
asymptotes at end behavior as x ap-
proaches is 1 and end behavior as x approaches is 1.�		

x � 3;x � �3,
x � 0;x � 2;x � �2,

�	
	

x � 0;x � 2;x � �2,

–3 –2 1 2 3

–2

2

6

x

y

2x3 + 4

x2

2x3 + x2 + 4

–6 –4 4

–6

–2

2

4

6

8

10

x

y

x2 + 3x – 3

x2 – 5

3x + 2

�2.667

�20

x � 0,R1x 2 � x1x � 2 2 1x � 1 2 ;

x � 1
2 .x � �5Q1x 2 � 1x � 5 2 12x � 1 2 ;

�3x � 2P1x 2 � 1x � 2 2 1x � 3 2 ;

–4 –2 1 2 3 4 5 x

y

G(x) = (x + 3)(x – 2)(x – 4)2

–3 –1 1 2 3 4 5
x

y

F(x) = (x + 2)(x – 3)(x – 4)(x – 1)

c. No zeros; turning point at no vertical asymp-
totes; end behavior as x approaches is 1 and end be-
havior as x approaches is 1.

d. No zeros; turning point at vertical asymptotes at
end behavior as x approaches is 1

and end behavior as x approaches is 1.

14. a.

b.

x

f

f (x)

– f (x)

(i)

x

f

f (x)

– f (x)

x

f

3f (x) f (x)

x

f

f (x)

f (x) − 4

x

f

f (x)

f (x − 3)

(i) (ii)

(iii) (iv)

x

f

f (x)

f (x + 3)

(v)

x

f

f (x)

– f (x − 4)

(vi)

�	
	x � 3;x � �3,

x � 0;
�	

	
x � 0;
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c.

x

f

f (x)

f (x) − 4

x

f

f (x)

f (x − 3)

(iii)

(iv)

x

f

f (x)

3f (x)

(ii)

x

f

f (x)

– f (x)

(i)

15. a. 19.4 b. 723 c.

d. e. 7.6 f. 47.5

g. h. i.

j. k.

l.

16. a.
b.
c.

d. is not defined,

17. a.
b.
c.

d.

18.

19. 15150

20. a. 3 b. 5 c. 1 d. 5
e. Yes, 3

21.

22. a.

b.

23. a. (i) and (iv) are exponential; (ii), (v), and (vi) are power;
(iii) is logarithmic.

b. There are many possible answers.
(i) (ii) f 1x 2 � 1x � 5f 1x 2 � 2x � 11

R1x 2 �
1x � 3 2 1x � 1 2 1x � 1 2 1x � 3 2 1x � 6 2

1x � 2 2 1x � 2 2 1x � 5 2

–5 –3 –1 1 5 7

–10

–5

5

10

15

20

25

x

y

y � �x4 � 6x 2 � x � 4

0.106262 
 t 
 3.29374

f 14 2

g 14 2
� 1

f 13 2

g 13 2
� 3,

f 12 2

g 12 2
�

3

2
 ,

f 11 2

g 11 2
�

1

3
 ,

f 14 2 � g 14 2 � 2
f 13 2 � g 13 2 � 4,f 12 2 � g 12 2 � 5,f 11 2 � g 11 2 � 4,

g 1 f 14 2 2 � 3g 1 f 13 2 2 � 1,g 1 f 12 2 2 � 1,g 1 f 11 2 2 � 3,
f 1g 14 2 2 � 1f 1g 13 2 2 � 1,f 1g 12 2 2 � 3,f 1g 11 2 2 � 3,

f 13 2

g 13 2
� 0

f 12 2

g 12 2
�

3

2
 ,

f 11 2

g 11 2

f 10 2

g 10 2
� 2,

f 13 2 � g 13 2 � 3
f 12 2 � g 12 2 � 5,f 11 2 � g 11 2 � 2,f 10 2 � g 10 2 � 3,

g 1  f 13 2 2 � 1g 1  f 12 2 2 � 3,g 1  f 11 2 2 � 2,g 1  f 10 2 2 � 2,
f 1g 13 2 2 � 0f 1g 12 2 2 � 3,f 1g 11 2 2 � 2,f 1g 10 2 2 � 2,

2x 
3 � 4x 

2 � x � 2

x � 1

2x 
3 � 2x 

2 � x � 1

x � 2

�1

x � 1

2x 
2

2x 
2 � 3

8x4 � 8x 
2 � 3

31x 
2 � 2 2

1x � 2 2 2

� 

1

4

6

7

x

f

f (x)

f (x + 3)

x

f

f (x)

– f (x − 4)

(v) (vi)

758 SELECTED ANSWERS

x

f

f (x)

3f (x)

x

f
f (x)

f (x) − 4

x

f

f (x) f (x − 3)

x

f

f (x)f (x + 3)

x

f

f (x)

– f (x − 4)

(ii)

(iv)

(iii)

(v)

(vi)
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(iii) (iv)

(v)
(vi)

24. a. where in 1990
b. where in 1990
c. where in 1990
d. where in 1990; almost

identical

Chapter 5

Section 5.1
1. 5.5 mL; 1.9 mL; about 31.1 hours; about 82.7 hours

3. a. 320, 320, 320, 320, 320, 320; same

7. 16.67 mg 9. No

11. 325 mg; virtually all washed out in 24 hours

13.

15. {0, 4, 8, 12, 20, …} 17. {0, 0.5, 1, 1.5, 2, 2.5, …}

19.

21.

23.

25.

27. Diverges 29. Diverges 31. Diverges

33. Converges to 0 35. Converges to 0

37. Converges to 1 39. Strictly increasing, no concavity

41. Strictly increasing, no concavity

43. Strictly increasing, concave up

45. Strictly decreasing, concave up

47. Strictly decreasing, concave up

49. Strictly increasing, concave down

51. a. 2, 2.25, 2.3704, 2.4414, 2.4883, 2.5216, 2.5465, 2.5658,
2.5812, 2.5937; yes

b.

53. 55. 1

Section 5.2
1. a. $383,519 b. $506,055

3. About 7.6 months

5. a.
b.
c.
d. b0 � 2000bn�1 � 11.06 2bn � 200011.1 2n�1,

b0 � 2000bn�1 � 11.06 2bn � 2000 � 10001n � 1 2 ,
b0 � 2000bn�1 � 11.06 2bn � 1000,

b0 � 2000bn�1 � 11.06 2bn ,

1

e

e � 2.7182818282.718280;
e1,000,000 �e100,000 � 2.718268,e10,000 � 2.718146,

e1000 � 2.716923,e500 � 2.715569,e100 � 2.704814,

50, 0.8, 0.96, 0.992, 0.9984, 0.99968, . . .6

1, 
1

2
 , 

1

3
 , 

1

4
 , 

1

5
 , 

1

6
 , . . .

e 1, 
2

3
 , 

4

9
 , 

8

27
 , 

16

81
 , 

32

243
 , . . . f

5�9, �2, 17, 54, 115, 206, . . .6

r3 
 r1 
 r2

t � 0R � 398.890111.2691 2 t,
t � 0R � 398.894211.2691 2 t,

t � 0B � 82.765010.9170 2 t,
t � 0N � 4.819611.3840 2 t,

x � 5f 1x 2 � 1x � 5 2�3,
x � 0f 1x 2 � x�1 � 9,

f 1x 2 � a
1

3
b

x

� 7f 1x 2 � log1x � 4 2
7. a. , in 1992

b.

c. 240

9. a. where r is the propor-
tion learned

b.

11. 41 rabbits

Section 5.3
1. 10.15, 10.30, 10.45, 10.61, 10.76, 10.92, 11.08, 11.24, 11.40,

11.57; 40; about one-quarter of the way

3. 5.10, 5.20, 5.30, 5.40, 5.51, 5.61, 5.72, 5.83, 5.95, 6.06; 200;
not close at all yet

7. b. 275, over estimate c. 950, over estimate

9. 100, 104.97, 110.18, 115.65,
121.39

13. a. b will increase.

15. a.

b.

c. The population is increasing because for

d. The population is decreasing because for

17. Logistic:
linear: exponential:

power:
the exponential model seems to be the best fit.

19. a. 255 cm, about 5 weeks b.
c.

b � 0.0037a � 0.8772,

r � 0.9391;
P � 29.2962a0.3724,r � 0.9945;38.373311.0532 2 a,

P �r � 0.9864;P � 3.425a � 32.5278,
r � �0.2138;Pn � 0.1387Pn � 0.00053456Pn 

2,

Pn � L.
Pn 
 0

0 
 Pn 
 L.
Pn � 0

L � B3 a

b

Pn

∆Pn

a, b > 0

b � 0.000003125;a � 0.05,

0 
 r 
 1

Wn�1 � Wn � r 
. 1400 � Wn 2 ,

W13 � 10,967W12 � 10,696,
W11 � 10,433,W10 � 10,178,W9 � 9930,W8 � 9690,

W7 � 9456,W6 � 9229,W5 � 9009,W4 � 8795,
W3 � 8587,W2 � 8386,W1 � 8190,W0 � 8000,

n � 0W0 � 8000Wn�1 � 1.03Wn � 50,

t 1 2 3 4 5 6

Actual H 17.9 36.4 67.8 98.1 131.0 169.5

Predicted H 17.9 32.4 57.0 94.9 144.9 194.3

t 7 8 9 10 11 12

Actual H 205.5 228.3 247.1 250.5 253.8 254.5

Predicted H 225.0 235.1 236.8 237.0 237.077 237.080
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21. If etc.,
with 

23.

r � �0.9107.0.3149Pn 

2,
�Pn � 1.2751Pn �t2 � 46,t1 � 22,t0 � 0, 23. The solution to is so the solution

to ,which is , grows much faster.

Review Problems
1. a.

b.

c.

2. a.
b.

c.

d.

3. a. b.

4. 167 mg 5. 21 mg 6. 150 pounds

7. 15,000; at year 

8.

9. a.
b.
c.
d.

10. a. there will be 0.34% maple
syrup content.

b. John will have
$161,561.97.

c.
in-

creasing roughly exponentially

11. a.
b.
c. 2.4 weeks

12. Increasing concave up 13. Increasing concave up

14. Increasing concave down

15. Decreasing concave down

16. Increasing concave down

17. Increasing concave up

18. None of the above 19. Increasing concave up

Chapter 6

Section 6.1
3.

5.

7. The pole is 26.6 feet high.

9. a. 571.5 feet b. 573.7 feet

11. a. 27 feet b. 26.1 feet

13. 20.14 to 21.82 feet.

u � 36.87°a � 24,

c � 12.4836b � 3.4409,

Qn � 210.75 2n � 4
Q0 � 6Qn�1 � 0.75Qn � 1,

T5 � $3,221,020;P5 � $1,900,000,T0 � 2,000,000;
Tn�1 � 1.10Tn ,P0 � 2,000,000;Pn�1 � Pn � 20,000,

P0 � 50,000;Pn�1 � 1.1Pn � 2000,

M0 � 100%;Mn�1 � 0.85Mn ,

Pn�1 � 1.3Pn � 0.0004Pn 

2 � 0.10Pn

Pn�1 � 1.3Pn � 0.0004Pn 

2 � 400
Pn�1 � 1.3Pn � 0.0004Pn 

2 � 2000
Pn�1 � 1.3Pn � 0.0004Pn 

2

u0 � 1000un�1 � 1.2un � 0.000017un 

2,b � 0.000017;

n � 22.

53, 7, 10, 17, 27, . . . 652, 7, 9, 16, 25, . . . 6

510, 11, 8, 17, �10, . . .6

e 5, 
5

3
 , 

5

9
 , 

5

27
 , 

5

81
 , . . . f

512, 4, �4, �12, �20, . . . 6
52, 10, 18, 26, 34, . . . 6

50, 0.7, 0.91, 0.973, 0.9919, . . . 6

e 3, 
9

2
 , 9, 

81

4
 , 

243

5
 , . . . f

5�1, 5, 11, 17, 23, . . . 6

xn � 3 1n � 1 2 ! 4 2x1

xn�1

xn
� n2

xn � 1n � 1 2 !x1 ,
xn�1

xn
� n

760 SELECTED ANSWERS

n 1 2 3 4 5

Actual 9.6 29.0 71.1 174.6 350.7

Predicted 9.6 25.3 65.5 162.7 361.0

n 6 7 8 9 10

Actual 513.3 594.4 640.0 655.9 661.8

Predicted 607.1 616.1 610.2 614.1 611.5Pn

Pn

Pn

Pn

25. or 

with 

27. a.
b. 303.5 gigawatts c. between 1980 and 1985
d. Soon after 1980

Section 5.4
1. so time of death 1:06 A.M.; about 18 min-

utes difference

3. about 2 minutes longer

5. 36.3 minutes

7. 4.57 hours before 9 A.M. or about 4:26 A.M.

9. a. Linear:
exponential:
power:

b. Power function c. 17 days

11. b and c are possible; a and d are impossible

13.

Section 5.5
1. 1.999023438, 1.999999046, 1.999999999; the partial sums

are approaching 2.

3. 4.57050327, 4.95388314, 4.99504824; the partial sums are
approaching 5.

5. 170.9951, 9973.7702, 575,251.1777; the partial sums do not
converge.

7. A total of 29,997 cases from 1960 through 2000; no more
than 3 new cases between 2000 and 2010

9. 64.5 billion kilowatt-hours

11. 653,722.5 metric tons

13. 1,900,648 pages

15. About 45.6 years

17. 79.95 feet, 83.77 feet, 83.99 feet; 84 feet

19. 49.31 feet, 49.99 feet, 49.9998 feet; 50 feet

21.
25

100
 a

1

1 � 1>100
b �

25

99

t1 	 t2

r � �0.99071,814,899,980T �5.1962,d �
r � �0.9841;d � 622.709710.8999 2T,

r � �0.8465;d � �0.5567T � 34.8914,

n � 60.7 minutes;

�n � 7.9 hours,

b � 0.0092a � 2.792,

r � �0.9506

�Pn � 2.6480Pn
. 10.9931 2Pn,

�Pn

Pn

� 2.648010.9931 2Pn,
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b.

c. Inverse cosine function

Section 6.4
1. 0.954, 0.314; 3.

5.

7. 9.

11. a. (ii) Is an identity c. and by the graphs

Exercising Your Algebra Skills
1. sin x 3.

5.

7. 9.

Section 6.5
1. and 

3. and 

5. and or 
and 

7. There are various ways to describe the location of the third
ship. The ship is 37.9 miles in the direction of south of
east from the northernmost ship and 29.5 miles in the di-
rection of north of east from the southernmost ship.

11. 13. About 1332 miles

15. About 47.2 meters,

17. a. about 390 miles b. About 307 miles

19. About 329 meters 21. 2.4

Review Problems

1. a. b.

c.

2. a. b. About 35 feet c.

3. a. b. 182 meters c. 420 meters
d.

4. a. b. c. y � �
5

12
 xy �

3

20
 x8.5°

76°
y � 500 tan a

0° � u � 63°x � 75 tan u

�72° � u � 72°

0° � u � 72°d �
75

cos u

58°.

32.2°

41°

54°

c � 2.83C � 10.47°,
B � 129.53°,c � 15.56;C � 89.53°,B � 50.47°,

b � 22.09a � 13.98,C � 80°,

c � 13.47a � 5.90,C � 91°,

�tan2x
1

cos x

1 � 2 sin u cos u � 1 � sin 2u

sin2x

180°0°

�0.9800.714,�0.609�0.854,

cos u �
4

5
� 0.8sin u �

3

5
� 0.6,

tan u � 0.75cos u � 0.8,u � 17.5°

–1 –0.75 –0.5 –0.25 0.25 0.5 0.75 1

30°

60°

90°

120°

150°

180°

cos θ

θ
0 0.5 1 1.5 2 2.5 3

71.6°68.2°63.4°56.3°45°26.6°0°U

tan U

Section 6.2
3. 5.

7.

9. 9659 feet

11. a. c. 20.0998 miles

13. 507.6 feet 15. About 

17.

19. 21. 85.6 feet

23. 38.3 mph

25. a.

3

cos 27°
� 3.37 inches

41.81°

36.9°

5.71°

b � 129.263c � 135.915,

a � 28.9u � 15.47°,b � 3.3a � 11.5,

1 0.8 0.6 0.4 0.2 0

90°78.5°66.4°53.1°36.9°0°U

cos U

c. Inverse cosine function

Section 6.3
1. 3. 5. 7. 0.707

9. 11.

13. Negative; Quadrant IV 15. Negative; Quadrant III

17. Negative; Quadrant IV 19. 0

21. Negative; Quadrant III 23. Negative; Quadrant II

25. Positive; Quadrant III 27. Positive; Quadrant IV

29. Negative; Quadrant III 31. Positive; Quadrant III

33. a. Positive; negative; negative;
b.
c.

d. Yes;

35. a.

180°

x

y

0
90°0° 270° 450° 540°

–0.5

0.5

540°450°;360°;270°;180°;90°;0°;

�0.5�0.5

�0.5�1�0.707

1 0.75 0.5 0.25 0

180°138.6°120°104.4°90°75.5°60°41.4°0°U

�1�0.75�0.5�0.25cos U

15. Jack is 27.3 feet from the base of the cliff.

17. a.
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5. 4.5 inches

6. a. 6.88 inches b. 9.83 inches

7. a. 14,424.3 cubic inches b. 17,819.1 cubic inches
c.
d. About 

8. a. 253.2 feet b. 93.4 feet

9. 10. About 6430 meters

11. a. About 5 inches
c. From 10 to 15 minutes after, from 15 to 20 minutes

after, and from 40 to 45 minutes after

12. a.

b.

13. a. About 38 feet b. 37.4 feet
c. The tree is 31.9 feet tall, and the top of the tree is 31.5 feet

above the ground.

14. The fire is 9.5 miles from tower A, and 10.8 miles from
tower B.

15. a. 13 yards b. c. 37 yards d.

16. a. 17.9 miles b.
c. About 1 hour; about 2.1 hours d. $18.00

17. a. b. 3268 feet

18. a. b. 5.2 centimeters c.
d. If the angle is opposite side c, the area is 

Chapter 7

Section 7.1
1. The length of her fingernails is a periodic function with pe-

riod of 1 week.

5. a. b. c. d.
e. f. g. h.
i. j.

7. a. b. 1 c. d. 1

e. f. g. h. 0.9749

9. Same graph

11. a. Roughly 10 years b. Roughly 10 years
c. Maxima: 1847, 1857, 1867, 1877, 1886, 1895, 1906,

1915, 1927, 1936; minima: 1852, 1862, 1872, 1881, 1891,
1901, 1908, 1920, 1930

d. Maxima: 1853, 1857, 1861, 1864, 1873, 1876, 1886,
1896, 1904, 1913, 1923, 1933; minima: 1847, 1855, 1859,
1862, 1868, 1882, 1890, 1899, 1908, 1918, 1928

e. The years in which a maximum (minimum) occur are
roughly 10 years apart.

f. Clear points of inflection near: 1850, 1858, 1863, 1866,
1872, 1875, etc.; roughly halfway between a maximum
and a minimum

22

2

1

2

23

2

� 

23

2

23

2

�300°�270°
300°22.5°171.9°143.2°
85.9°120°144°135°

1
2 ab sin u.u

49.4 cm222°

55.7°

163.5°

161.1°22.6°

cos u �
5261

� 0.64018sin u �
6261

� 0.76822,

cos u � 0.64018sin u � 0.76822,

89.85°

60°
13,82411 � cos u 2sin u

Section 7.2
1. a. Periodic; b. Periodic;

c. Periodic; d. Periodic;
e. Periodic; f. Not periodic;
g. Not periodic
h. A constant function can be considered periodic, but a

definite period cannot be determined.
i. Periodic; j. Periodic;

3. a. 3.6 b. 365 c. 8.4 hours d. 15.6 hours

5.

7.

9. a. b.

11. a.

13. a.

b.

15.

17. Because the sine function is periodic there are infinitely
many correct formulas for each graph.

a. b. c.

d. e. f.

g. h.
i. j.

k. l.

19. Vertical shift is 59; amplitude is 12; period is 24 hours;
frequency is 

23. About 12 times

25. a. For t in seconds,

b. y � 110 � 100 sin c
p

15
 1t � 7.5 2 d

25 50 75 100 125 150

50

100

150

200

250

t

y

T1t 2 � 59 � 12 sin 3 p12 1t � 9 2 4p
12 ;

y � 4 cos pxy � sin a
p

2
 xb

y � 3 � 3 cos 4xy � �3 � 3 sin 4x
y � 10 � 6 sin 8xy � �5 cos 2x

y � 2 � cos 2xy � 1.5 cos a
x

4
by � �3 sin a

x

5
b

y � 4 cos 4xy � 5 sin 2xy � 2 sin a
x

3
b

H1t 2 � 22 � 42 sin c
2p

365
 1t � 131 2 d

f 1x 2 � 51 � 21 cos c
p

12
 1x � 8 2 d

f 1x 2 � 51 � 21 sin c
p

12
 1x � 2 2 d

T1t 2 � 350 � 10 sin a
p

5
 tb

7.5 sin a
p

150
 tb2 sin a

p

40
 tb

W1t 2 � 25 � 25 sin a
2p

11
 tb

H1t 2 � 12 � 2.4 sin c
2p

365
 1t � 80 2 d

period � 20period � 2

period � 2
period � 1period � 2
period � 2period � 2

762 SELECTED ANSWERS
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c.

d. etc.

e.

etc.
f.

27.

29. a. One such model might be 

b. Yes c.

Section 7.3
1. Eleven hours of daylight on day 55 (February 24) and again

on day 287 (October 14); ten hours of daylight on January 23
and November 16; San Diego always has more than 9 hours
of daylight.

3. a. b.
c. Reaches at 1.1 minutes after 9 A.M. and every 20 min-

utes thereafter and also 8.9 minutes after 9 A.M. and every
20 minutes thereafter; reaches at 12.3 minutes after
9 A.M. and every 20 minutes thereafter, and also 17.7 min-
utes after 9 A.M. and every 20 minutes thereafter.

5. a. 1.13 hours, or 1 hour 8 minutes 
b. 0.35 hour, or 21 minutes

7. 99th day (April 9) and 346th day (December 12)

9. a. 1.2 and 2.8 months b. 4.7 and 11.3 months
c. The average daytime high temperature never reaches F.

Exercising Your Algebra Skills
1. No solution 3. No solution

5. and 

7. and 

9. and 

Section 7.4

1. a. b. c.

d. e.
f.

3.

5. The building is 37.5 meters tall; the smokestack is 45.1 me-
ters tall.

7. a. where is the angle measured from the pos-
itive x-axis to the line
b. where is the angle measured from the line

to the line

11. a. b. About 2.4 feetb � arctan a
6

x
b � arctan a

1

x
b

y � b
am � tan a,

am � tan a,

y � tan a
3

2
 xb

y � �10 � tan x
y � tan1x � 30 2y � �2 tan x

y � 3 tan xy � tan a
1

2
 xby � tan 2x

2.84 � 2np0.30 � 2np,
p

2
� np,

2.03 � np1.11 � np

3.99 � 2np�0.85 � 2np

80°

67°

70°
66°72°

15.2°C

0.08 sin a
p

25
 tb .T � 0.0042t � 14.67 �

B1t 2 � 4.00 � 0.35 sin c
2p

5.4
 1t � 1.35 2 d

x2 � 1y � 110 2 2 � 1002

37.5 	 t 	 52.5,7.5 	 t 	 22.5,x � �100 sin a
p

15
 tb ;

52.5 	 t 	 67.5,22.5 	 t 	 37.5,0 	 t 	 7.5,

x � 100 sin a
p

15
 tb

Exercising Your Algebra Skills

1. 3.

5. 7.

Review Problems

1. and 

2. a.

3. a.

b.

�15p

4
 . . . 

�9p

4
 ,

�7p

4
 ,u �

�p

4
 ,

15p

4
 . . . ;

9p

4
 ,u �

7p

4
 ,

�675° . . . 
�405°,�315°,u � �45°,675° . . . ;405°,u � 315°,

�660°, . . . 
�600°,�300°,u � �240°,480°, . . . ;420°,u � 120°,

5.70 �
p

2
� 7.2708.cos x � sin ax �

p

2
b

u �
3p

4
� npu � 0.67 � np

u �
3p

4
� npu � 0.90 � np

Vertical Phase
shift Amplitude Frequency Period shift

4. 325 10 9 0

5. 63 3 25 0

6. 71 2 15 0

7. 80 13 24 15

8. 38 8 24 5

9. 100 25 72 0

10. 100 25 97 0

11. 145 40 83 02p
83

2p
97

p
36

p
12

p
12

2p
15

2p
25

2p
9

20. a. (where t is in radians), which starts
at a maximum height and maximum displacement for-
ward of the crossbar.

b.

21.

22. a.

b.

23.

24. a.

25. a. or 3142 miles b. or 4189 miles
4000p

3
 ,1000p,

y � 9 � 5 sin a
p

10
 xb

H � 9 � 5 sin a
2p

3
 tb

H � 1.5 � 1.5 sin c 1000 p at �
1

2000
b d

H � 1.5 � 1.5 sin11000pt 2

D � 160 � 4010.92957 2 t cos a
p

3
 tb

x � 6.93 sin a
2p

6
 tb

y � 5 � 2 cos 12p3 t 2
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b. c.

33. a.
b.

Chapter 8

Section 8.1
3. Not an identity; 5. Identity

7. Not an identity; 9. Identity

11. Identity

13. Not an identity; no points of intersection

15.

17. There are many
equivalent forms.

21.

23. a. Looks like 
b. Looks like 

25. or 

27. a.

31. a. Even b. Odd c. Even
d. Neither e. Neither f. Even
g. Neither h. Even i. Neither
j. Neither

33. For If the sum is about 1.969. If the
sum is about 1.999. Values approach 2. For more
terms are needed.

39. Not an identity;

41. Not an identity,

43. Not an identity;

45. Not an identity;

Section 8.2
1.

3.

T2 10.5 2 � 0.875, T2 10.6 2 � 0.82
T2 10.2 2 � 0.98, T2 10.3 2 � 0.955, T2 10.4 2 � 0.92,
T210 2 � 1, T210.1 2 � 0.995,

10, 0 2

1�0.393, 0.172 2

10, 1 2 , 1p, 1 2

10, 0 2

x � p
3  ,

n � 10,n � 5,x � p
6  :

y � 5 cos1t � 126.87° 2

82.85°7.15°

y � �sin x
y � �sin x

1 � cos 4x

8

cos 5x � 16 cos5 x � 20 cos3 x � 5 cos x.

cos 3x � 4 cos3 x � 3 cos x

10, 0 2

10, 1 2

x � sin 0.5 � 0.48
x � tan 1.35 � 4.46

u � 1.43 � npu � 1.11 � np

764 SELECTED ANSWERS

Phase
Frequency Period Amplitude Shift

a. 2 0

b. 2

c. 2 2

d. 2 1
p

8
3

3
4 p

�3
4p

p

�4p
3

8p
3

3
4

8p
3

3
4

30. a. and

b. and

c. and

d. and

31. a.

b.

32. a. u � �0.98 � np

–1.5

–1

–0.5

0.5

1

1.5

1–1
x

y

–3π –2π –1π 1π 2π 3π

–1.5

–1

–0.5

0.5

1

1.5

y

x

16

9
�

1

p
�

8

3
 n

8

9
�

1

p
�

8

3
 n

4

3
�

3

4p
� 2n

2

3
�

3

4p
� 2n

� 

4p

9
�

8np

3

4p

9
�

8np

3

20p

9
�

8np

3

4p

9
�

8np

3

c. or 10,472 miles

d. or 1047 miles

26. a. radians b. feet

28.

29.

–2

–1

1

0

2

x

y

3
π

3
π2

π

2π 4π3π

T S R

720p � 2262360p � 1131

1000p

3
 ,

10,000p

3
 ,

x sin x

0 0 0 0

0.1 0.09983 0.09983

0.2 0.19867 0.19867

0.3 0.29550 0.29552

0.4 0.38933 0.38942

0.5 0.47917 0.47943

0.6 0.56400 0.56464 �6 
 10�4

�3 
 10�4

�9 
 10�5

�2 
 10�5

�3 
 10�6

�8 
 10�8

T3 (x) � sin xT3 (x)
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25.

27.

29.

31.

33. 35.

37.

39.

41.

43.

45. and

49. a.
b.

where and 
c.

d. (i) 

(ii) 

51. a.

and 

b.

and 

d.

Section 8.4

1. a. The limiting value will be real whenever 

b. 0.35, 0.2225, 0.14950625, 0.12235212, 0.11497004,
0.11321811, 0.11281834, 0.11272798, 0.1127076,
0.112703, 0.112702,

c. Diverges to infinity
0.112702, . . . 6

50.5,

C �
1

4
 .

z1>n � 7 z 7 1>n c cos a
u � 4p

n
b � i sin a

u � 4p

n
b d , . . . 

z1>n � 7 z 7 1>n c cos a
u � 2p

n
b � i sin a

u � 2p

n
b d ,

z1>n � 7 z 7 1>n c cos a
u

n
b � i sin a

u

n
b d ,

21 acos 
7p

6
� i sin 

7p

6
b � � 

23

2
�

1

2
 i

B1

2
�
13

2
 i � 11 acos 

p

6
� i sin 

p

6
b �

13

2
�

1

2
 i,

2z � 2 7 z 7   c cos a
u

2
� pb � i sin a

u

2
� pb d

2z � 2 7 z 7   c cos a
u

2
b � i sin a

u

2
b d

1 . acos 
p

6
� i sin 

p

6
b �

23

2
�

1

2
 i

51cos 0 � i sin 0 2 � 5

zw � 7 z 7   7w 7  3cos1u1 � u2 2 � i sin1u1 � u2 2 4
tan u2 � d>ctan u1 � b>a
3cos 1u1 � u2 2 � i sin 1u1 � u2 2 4 ,2a2 � b2 2c2 � d2

 

zw �  

zw � 1ac � bd 2 � 1ad � bc 2 i

z4 � �7 � 24i
z3 � �11 � 2i,z2 � �3 � 4i,z1 � 1 � 2i,z0 � 1,

z3 � 70.09280 3cos 12.26791 2 � i sin 12.26791 2 4

z3 � 623.71227 3cos 1�1.07631 2 � i sin 1�1.07631 2 4

z3 � 15,625 3cos 16.64290 2 � i sin 16.64290 2 4

z3 � 2197 c cos a3 arctan 
12

5
b � i sin a3 arctan 

12

5
b d

z3 � 14,625 � 5500iz3 � �2035 � 828i

z2 � 67 3cos 16.70962 2 � i sin 16.70962 2 4

z2 � 74 3cos 14.38210 2 � i sin 14.38210 2 4

z2 � 5392 3cos 1�1.02478 2 � i sin 1�1.02478 2 4

z2 � 169 c cos a�2 arctan 
5

12
b � i sin a�2 arctan 

5

12
b d

x 0

sin x 0 0.1253 0.2487 0.3681 0.4818 �0.1253�0.2487�0.3681�0.4818

4p
25

3p
25

2p
25

p
25� 

p
25� 

2p
25� 

3p
25� 

4p
25

very close

7.

Good match for x between and 

9.

when x is close to 0

11.

13. a. 1

b.

c. the quadratic approximation for cos x

Section 8.3

1.

3.

5.

7.

9.

11.

13.

15.

17.

19. 21.

23. z 
2 � 25 c cos a�2 arctan 

3

4
b � i sin a�2 arctan 

3

4
b d

z 
2 � 119 � 120iz 

2 � 7 � 24i

217 3cos 10.75597 2 � i sin 10.75597 2 4

273 3cos 1�0.35877 2 � i sin 1�0.35877 2 4

25 3cos 12.21430 2 � i sin 12.21430 2 4

13 c cos aarctan 
12

5
b � i sin aarctan 

12

5
b d

u� p� arctan a
23

8
b � 3.354817 z 7 � 267 � 8.18535;

u � p � arctan a
7

5
b � 2.191057 z 7 � 274 � 8.60233;

u� �arctan a
9

16
b � �0.512397 z 7 � 25392 � 73.43024;

u � �arctan a
5

12
b � �0.394797 z 7 � 13;

u � �arctan a
3

4
b � �0.643507 z 7 � 5;

1 �
x 

2

2
 ,

1 �
x 

2

2
�

x �x

2
�
1�x 2 2

6

cos x � 1 �
x 

2

2
�

x 
4

32

ax �
x 

3

6
b

2

� a1 �
x 

2

2
�

x 
4

24
b

2

� 1 �
x 

6

72
�

x 
8

576
� 1,

0.5p�0.5p

0.25π–0.25π–0.5π–π 0.5π π

–2

2

x

y

y = sin(x2)

6
1

120
1y = x2 −     x6 +       x10

sin1x 
2 2 � x 

2 �
1

6
 x 

6 �
1

120
 x10

 � 0.9998x � 12.886 
 10�15 2 ;
 sin x � �0.1640x 

3 � 12.851 
 10�14 2x 
2

5.
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3. The equilibrium levels, will be real when

5. Every graph of the form intersects the line

7. The limiting values are for any integer n.

Review Problems
1. Not an identity 2. Identity

3. Not an identity 4. Not an identity

5. Identity 6. Identity 7. Identity

8. Identity 9. Not an identity

11. With we have 

12. With we have 

13. Within 0.055556

14. a.

b.

15. a.
b.
c.

d.

and 1.732051cos 206° � i sin 206° 2
2z � 1.732051cos 26° � i sin 26° 2
z5 � 2431cos 260° � i sin 260° 2
z � 1.84698 � 2.36403i
z � 31cos 52° � i sin 52° 2

w

z
� 0.53852 3cos 1�2.59481 2 � i sin 1�2.59481 2 4

z

w
� 1.85695 3cos 12.59481 2 � i sin 12.59481 2 4

z . w � 53.85165 3cos 11.83379 2 � i sin 11.83379 2 4
w � 229 3cos 1�0.38051 2 � i sin 1�0.38051 2 4
z � 10 3cos 12.21430 2 � i sin 12.21430 2 4

–1

1

x

y

3
π

6
π

3
π–

6
π–

–1.0 –0.6–0.8 –0.2–0.4 0.2 0.4 0.6 0.8
y = sin 3x

2
9

40
81T5(x) = 3x −     x3 +       x5

0.564648.

T5 10.2 2  �T5 1x 2 � 3x �
9

2
 x 

3 �
81

40
 x 

5,

–2

–1

1

2

x

y

3
π

6
π

3
π–

6
π–

–1.0 –0.6 –0.2–0.4 0.2 0.4 0.6
1.0

y = sin 3x

2
9T3(x) = 3x −     x3

T3 10.2 2 � 0.564.T3 1x 2 � 3x �
9

2
 x3,

p

2
� np

y � x.
y � x3 � C

C �
1

4
 .

1 � 11 � 4C

2
 ,

16. 17. 18. 19.

20. 21.

Chapter 9
Section 9.2

1. 5 3. 5.

7. 9.

11.

13.

17. center 

19. center 

21. center 

23. a.

radius � 211, �3 2 ,1x � 1 2 2 � 1y � 3 2 2 � 4;

radius � 101�5, 2 2 ,1x � 5 2 2 � 1y � 2 2 2 � 100;

radius � 51�2, �3 2 ,1x � 2 2 2 � 1y � 3 2 2 � 25;

1x � 6 2 2 � 1y � 4 2 2 � 16

1x � 5 2 2 � 1y � 2 2 2 � 25

a
8

3
 , 

2

3
b13.5, 6 2

220 � 4.47241

4p4p

pp2p2p

766 SELECTED ANSWERS

t 0 1 2 3 4 5

1 3 5 7 9 11 13

14 9 4 �21�16�11�6�1y � 4 � 5t

�1x � 3 � 2t

�1�2

b.

c. d.

e.

a12, � 

37

2
ba10, � 

27

2
b ,

a8, � 

17

2
b ,a6, � 

7

2
b ,a4, 

3

2
b ,a2, 

13

2
b ,a0, 

23

2
b ,

y � 1 � � 

5

2
 1x � 5 2� 

5

2

–1 1 3 5 7 9 11 13

–20

–16

–12

–8

4

8

12

x

y

t 0.5 1.5 2.5 3.5 4.5

0 2 4 6 8 10 12

11.5 6.5 1.5 �18.5�13.5�8.5�3.5y � 4 � 5t

x � 3 � 2t

�0.5�1.5

25. the two-point form of a line

27.

Exercising Your Algebra Skills
1.

3.

5. 7. 1  y � 2 2 2 � 161  y � 5 2 2 � 1

1x � 3 2 2 � 4

1x � 4 2 2 � 9

15, 0 21�3, 4 2 ,

y � y0 �
y1 � y0

x1 � x0
 1x � x0 2 ;
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Section 9.3
1. a. rightmost point; leftmost point 

b. point on the right c. point on the left

3. The orbit will decay and the satellite spiral in.

5. Venus’ orbit is the most circular and Pluto’s the least circular.

7.

9. a.

b. 348.182 feet c. 402.358 feet

11. center vertices and 

foci and 

13. center vertices

and 

foci and 

15. center vertices

and 

foci and 

–20 –16 –12 –8 –4

2

4

6

8

10

12

x

y

1�10 � 5 13 , 5 21�10 � 5 13 , 5 2
1�10, 10 2 ;1�10, 0 2 ,10, 5 2 ,1�20, 5 2 ,

1�10, 5 2 ;
1x � 10 2 2

100
�
1y � 5 2 2

25
� 1;

–3 –2 –1 1

–3

–2

–1

1

x

y

1�1 � 13, �1 21�1 � 13 , �1 2
1�1, 0 2 ;1�1, �2 2 ,11, �1 2 ,1�3, �1 2 ,

1�1, �1 2 ;
1x � 1 2 2

4
�
1y � 1 2 2

1
� 1;

0.3–0.3–0.6 0.6
x

y

0.3

–0.3

–0.6

0.6

115
6  , 0 21� 

15
6  , 0 210, 13 2 ;

10, � 
1
3 2 ,112 , 0 2 ,1� 

1
2 , 0 2 ,10, 0 2 ;

x 
2

96,100
�

y 
2

65,792.25
� 1

x 
2

3352.41
�

y 
2

3210.8
� 1

17. center vertices 

foci 

Section 9.4

1. a. b. 24 inches

3. b. c.

5. ellipse with center at 

major axis parallel to x-axis, and so 

7. hyperbola with center at

axis parallel to the x-axis and 

9. hyperbola with center at

axis parallel to the x-axis, and 

so 

11. circle with center at 
and 

13. hyperbola with center at

axis parallel to the y-axis, and 

15. a. b.

Section 9.5
1. a.

m � � 

1

x2� 

1

4
� 

4

9
 ,�1,� 

9

4
 ,�4,

b �
1

3
 .a �

1

2
 ,1�1, �2 2 ,

1y � 2 2 2

112 2
2

�
1x � 1 2 2

113 2
2

� 1;

radius � 3
2 .

13, �2 21x � 3 2 2 � 1y � 2 2 2 � 9
4 ;

c �
1494

6
 .b �

138

3
 ,

a �
138

2
 ,12, �1 2 ,

1x � 2 2 2

138
4 2

�
1y � 1 2 2

138
9 2

� 1;

so c � 120 .
b � 2,a � 4,1�1, �1 2 ,

1x � 1 2 2

16
�
1y � 1 2 2

4
� 1;

c � 112 .b � 2,a � 4,

1�1, �1 2 ,
1x � 1 2 2

16
�
1y � 1 2 2

4
� 1;

� 

b

a
y � � 

b

a
 x

y �
x2

24

13, �2 � 2 12 2
13, �2 � 2 12 2 ,14, �2 2 ;12, �2 2 ,13, �5 2 ,

13, 1 2 ,13, �2 2 ;
1x � 3 2 2

1
�
1y � 2 2 2

9
� 1;

b.

c. The ratio of the coefficients of t in y and x.

d.

e. so that 

3. a.

y �
5

3
 x �

14

3
x �

3

5
 y �

14

5
 ,

y �
5

3
 x �

14

3

y �
5

3
 x �

14

3

m �
5

3

t 0 1 2

10 7 4 1

12 7 2 �3 �8y � 2 � 5t

�2x � 4 � 3t

�1�2

t 0 0.5 1 1.5 2

x 0 0.875 1 1.125 2 4.375 9

y 2 0.25 0.25 2�1�1.75�2�1.75�1

�2.375�7

�0.5�1�1.5�2
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(b), (d)

c.

5. For 

For 

For 

For 

The number of loops appears to be b.

7. For 

–5 5

–5

5

x

y

period � 6pb � 3;a � 2,

–5 5

–5

5

x

y

period � 12pb � 6;a � 1,

–5 5

–5

5

x

y

period � 10pb � 5;a � 1,

–6 –2 2 4 6

–4

–2

2

4

x

y

period � 8pb � 4;a � 1,

–6 –3 1 3 5

–5

–1

1

3

5

x

y

period � 6pb � 3;a � 1,

y � 1x � 1 2 2>3 � 2

–6 –4 –2 4 6 8
–2

1

3

x

y

For period

For period

For period

The period seems to be and the number of loops is b.

9. a.

b.

–3 –2 –1 1 2 3

–3

–2

–1

1

2

3

x

y

y � 2 sin t � sin 2tx � 2 cos t � cos 2t,

–2 2

–2

2

x

y

y � 0x � 2 cos t,

2bp

–12 –8 –4 4 8 12

–10
–8
–6
–4
–2

2
4
6
8

10

x

y

� 18pb � 9:a � 2,

–9–11 –7 –5 –3 –1 1 3 5 7 9 11

–11
–9
–7
–5
–3

3
5
7
9

11

x

y

� 14pb � 7:a � 2,

–9 –7 –5 –3 –1 1 3 5 7 9

–9

–7

–5

–3

3

5

7

9

x

y

� 10pb � 5:a � 2,
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c.

d.

11.

Section 9.6

1. a.

b.

c.

d.

3. a. and 

b. and 

c. and 

d. and u �
�p

4
r � 132

u �
5p

4
r � 132

u �
3p

4
r � 132

u �
p

4
r � 132

R � a�6, � 

11p

6
b   S � a�2, � 

4 p

3
b

P � a�5, � 

5 p

6
b Q � a�3, � 

p

3
b

R � a�6, 
p

6
b S � a�2, 

2p

3
b

P � a�5, 
7p

6
b Q � a�3, 

5p

3
b

R � a6, � 

5p

6
b   S � a2, � 

p

3
b

P � a5, � 

11p

6
b Q � a3, � 

4p

3
b

R � a6, 
7p

6
b   S � a2, 

5p

3
b

P � a5, 
p

6
b   Q � a3, 

2p

3
b

x � a arccos a
a � y

a
b � a sin aarccos a

a � y

a
b b

–3 –2 –1 1 2 3

–3

–2

–1

1

2

3

x

y

y � sin t � 2 sin 
1

2
 tx � cos t � 2 cos 

1

2
 t,

–4 –2 –1 2 4

–4

–2

2

4

x

y

y � 3 sin t � sin 3tx � 3 cos t � cos 3t,
e. and 

f. and 

g. and 

h. and 

5. a.

b.

c.

Section 9.7
1. 3.

5. 7.

9. 11.

Review Problems

1. a.

b.

2. a. b.
x2

4
�
1y � 1 2 2

9
� 1

y2

9
�
1x � 2 2 2

16
� 1

1x � 1 2 2

25
�
1y � 2 2 2

9
� 1

1x � 1 2 2

9
�
1y � 2 2 2

25
� 1

–10 –5 5 10–2

4

8 r = 4
sin θ

–2 –1 1 2

–2

–1

1

2
Lemniscate of
Bernoulli

–20 –10 10 20

–20

10

20 Cruciform

–1 1 2 3

–1

1

2

3
Cochleoid

–2 –1 1 2

–2

–1

2

1
Bifolium

2 4

–10

–5

5

10 Cissoid of
Diocles

a26800, � 

13p

30
b

a4000, 
5p

8
b

a4000, 
p

4
b

u � arctan a
8

3
br � 173

u � arctan a
3

8
br � 173

u � arctan a� 

4

3
b � pr � 5

u � arctan a�
4

3
br � 5
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3. a. b.

4. is a hyperbola with axis on the line 

5. is a vertical parabola, with vertex at
focus at opening downward.

6. is a circle of radius 4 and center
at 

7. is an ellipse with center at

major axis parallel to the x-axis and 

8. is a hyperbola with center

whose axis is parallel to the x-axis.

9. is a hyperbola with center 

whose axis is parallel to the y-axis.

10.

11.

12.

13. 14.

15.

16. 12 ft from the point below the highest point, along the axis of
the vertices.

17.

18. The points are the
function is 

19. Same as parabola between and x � 6.x � �6y �
x2

9
� 1,

y � �3x � 14.
12, 8 2 ;13, 5 2 ,14, 2 2 ,15, �1 2 ,16, �4 2 ,

x2

A841
4 B

�
y2

78
� 1

2a � 7.277, 
x2

13.24
�

y2

4.24
� 1

x2

225
�

y2

81
� 1

y2

16
�

x2

9
� 1

1y � 3 2 2

9
�
1x � 2 2 2

7
� 1

1x � 6 2 2

40
�
1y � 3 2 2

4
� 1

x2

100
�

y2

36
� 1

13, 2 2
1y � 2 2 2

6
�
1x � 3 2 2

9
� 1

11, �3 2

1x � 1 2 2

4
�
1y � 3 2 2

3
� 1

b � 234
3 .

a � 117 ,1�5, 2 2 ,

1x � 5 2 2

17
�
1  y � 2 2 2

134
3 2

� 1

14, �3 2 .
1x � 4 2 2 � 1  y � 3 2 2 � 16

13, 42.75 2 ,13, 43 2 ,
y � 43 � �1x � 3 2 2

–10 –6 –2 2 4 6 8 10

–10
–8
–6
–4

4
2

6
8

10

x

y

y � x.xy � 5

x �
1y � 3 2 2

8
� 1y �

1x � 4 2 2

4
� 3

20. a.

b. c.

21. a. Same as the graph of for 

22. The graph has 4 “loops” and has period 

23. a. The graph has 2 “loops” and has period 

b. The graph has 3 “loops” and has period 

c. The graph has 6 “loops” and has period 

–1 1

–1

1

x

y

2p.

–1 1

–1

1

x

y

p.

–1 1

–1

1

x

y

p.

–1.2 –0.8 –0.4 0.4 0.8 1.2

–1.2

–0.8

–0.4

0.4

0.8

1.2

x

y

4p.

0 � x � 1.y � 1 � x,

x � 4x � 1y � 1 2 2>3 � 3

–2 2 4 6

–4
–3
–2
–1

1
2
3
4

x

y
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24.

25. a.

b.

c.

d.

26. a.

b.

c.

d.

e.

f.

27. Parabola 

28. ellipses

29. a circle along the polar axis; a 4-petaled rose along the axes;
an 8-petaled rose along the axes

30. a circle along the polar axis; a 3-petaled rose with one petal
along the polar axis; a 5-petaled rose with one petal along
the polar axis

31. a circle along the vertical axis; a 4-petaled rose between the
axes; an 8-petaled rose between the axes

32. a circle along the positive vertical axis; a 3-petaled rose with
one petal along the negative vertical axis; a 5-petaled rose
with one petal along the positive vertical axis.

Chapter 10

Section 10.1
3. d. all lie on the line.

5. a. 5 b. c. d.

e.

7. a. b.
c. d.

9. a. b. c.
d. 3i

1
2 i � 1

2 j�i � 3j2i � j

33>2 �1>2 1 43�21 7 �14 4
330 �10 20 439 �3 6 4

266

218 217 240 

x

y

–3 –2 –1 1 2 3

–3

–2

–1

1

2

3

x �
1

2
� � 

1

2
 y2

1�2.08073, 4.54649 2
1�2.5 23 , 2.5 2
1�2 22 , �2 22 2
10, �4 2

a
3 22

2
 , 

3 22

2
b

11.5, 1.5 23 2

a6, 
p

2
b

1217 , �0.244979 2
1210 , 1.89255 2

a218 , 
p

4
b

x � 1 � �2y2 11. a. 27.2 pounds b. 17.3 pounds c. 38.6 pounds

13. a. south of east at 608.3 mph
b. south of east at 679.6 mph
c. 46.3° south of west at 399.7 mph

Section 10.2

1. rows for people, columns for subjects

3. a. HORN b. MOTHER c. EARLY
d. YESTERDAY

5.

7.

9. a.
b.
c.
d.
e.

11. a. b. c.

13. a.

b.

15. a.

b.

Section 10.3
1. a. 10 b. c. 0 d.

e. f. 10 g. 15

3. a. 3 b. c. 3 d. 12
e. 30 f.

5. a. b. c. d.

e. f. C11

2

14

SC 9

22

14

S
B4

0
RB 25

�3
RB�2

18
RB14

4
R �21

�2

�5
�3�2

B 26.6

380.15
R B43.5

256
R ,B 50

165
R ,

B�34.2

150.6
R B 3

126
R ,B 30

110
R ,

D 5>16

15>32

3>16

1>32

TD3>81>2
1>8
0

T ,

D1>2 1>4 0 0

1>2 1>2 1>4 0

0 1>4 1>2 0

0 0 1>4 1

T 

11>18.7>12B2>3 1>2
1>3 1>2

R 

p3 � 0.25p2 � 0.40,p1 � 0.35,
p3 � 1>4p2 � 3>8,p1 � 3>8,
p3 � 1>4p2 � 1>2,p1 � 1>4,
p3 � 1>4p2 � 3>8,p1 � 3>8,
p3 � 1>4p2 � 1>2,p1 � 1>4,

 �x1        � 2x3 �  0
 5x1    � x2      �  0

 2000x1 �  500x2 �  5000x3 �  280,000

3x1 � 7x2 � 6x3 � 4700
2x1 � 5x2 � 5x3 � 4000
8x1 � 5x2 � 3x3 � 6200

C64 73 86 85

82 69 77 91

82 84 81 83

S ,

5.4°
9.5°
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7. a. c b. d c. d.

e. f.

9. a.

b.

c.

d.

11. Each has the form 

a.

b.

c.

d.

13.

b. $68.50, $82, $76.60

21. a. b. c. d.

23. State Tech because the angle is smaller.

Section 10.4

1. a. b. c.

d. e. f.

g.

3. a. b. c. not possibleC 5 3

15 5

25 7

SB25 �5

5 7
R

B18 10

5 3
R

B2 8

4 18
RB�2 �6

�1 �11
RB10 �2

2 �2
R

B 13 7

�7 �5
RB2 16

1 6
RB2 2

8 6
R

69.11°81.39°35.84°57.53°

≥

10

6

3

2

¥D4 2 1.5 6

6 1 2 5

5 0.85 2.5 7

T 

b � C280,000

0

0

SA � C2000 500 5000

5 �1 0

�1 0 2

S ,

b � C600

20

200

SA � C10 50 200

1 3 0.2

30 10 0

S ,

b � C6200

4000

4700

SA � C8 5 3

2 5 5

3 7 6

S ,

b � C400

800

500

SA � C6 4 2

4 8 4

3 2 8

S ,

Ax � b

 5x1 �  x2 �  3x3 �  0
 3x1 �  x2 �  2x3 �  0
 2x1 �  x2 �  5x3 �  0
3x1 �  x2        � 2
 4x1 �  x2 �  6x3 �  5
 5x1 �  2x2 �  x3 � 1
 2x1 �  3x2 �  9

 x1 �  4x2 �  4
 4x1 �  3x2 �  5
 5x1 �  x2 �  2

C 2

�5

2

SC 0

�1

0

S
C 1

3

�2

SC1

5

2

S d. e. not possible

f. g.

h. not possible

5. a.

b.

9.

11. a.

b.

c.

13. a.

b.

c. d. between 4 and 5 years

15.

a. b.

c. 0.496.

17. Let 

so and 

a.
b.

21. The repeated application of R to any vector successively ro-
tates the vector at a time in the counterclockwise direc-
tion around the origin.

Section 10.5
1. a. b.

c. y � �1.8x � �0.7,
y � �6x � �21,y � 12>5x � 28>5,

1°

1p � q 2 # x
1p � q 2 # x

Q1x 2 � q . xP1x 2 � p . xq � 34 �5 8 17 4 :

p � 31 4 �7 2 4 ,x � ≥

x3

x2

x

1

¥ ,

7>16B9>16 7>16

7>16 9>16
R ,B5>8 3>8

3>8 5>8
R

B3>4 1>4
1>4 3>4

R
C21

4

23

SC 8

3

10

S ,

A3 � C 8 7 3

3 15 �7

10 �3 8

SA2 � C4 2 1

1 6 �2

3 �1 4

S ,

xn � Anx0

CBA � B12520 10920

11730 10380
R

CB � B16800 30400 12000

16200 27600 12000
R

BA � B4.70 4.00

3.90 3.65
R

B6.40 6.85 6.05

5.95 6.95 5.75
R
C14 25 �4

30 75 �20

46 125 �36

SB2 25 �12

6 0 4
R ,

C14 25 �4

30 75 �20

46 125 �36

SC 5 3

15 5

25 7

S ,

B 6 10

13 18
RC 7 5 2

15 15 2

23 25 2

S
B 5 25 �10

13 5 6
R
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d.
e.

3. a.
b.
c.
d.
e.
f.

5. a. multiple solutions b. inconsistent
c. multiple solutions d. multiple solutions
e. unique solution f. unique solution

7. Factory 1: 0; Factory 2: 78.57; Factory 3: 42.86

9. Gelatin 5.04; fish sticks 4.89; mystery meat 1.53.

11. a. b. c.

13.

15.

17.

19. a.
b.

c.

d.
e.

21.

Review Problems
1. a. 5 b. c. 3

2. south of west at 172.2 mph

3.

4. a. b.

5. a. 2 b. 5 c. 38 d. 14

6. a. not defined b. not defined
c. not defined d. not defined

e. f. D38

18

24

29

TC 0

�8

2

S

C0.34

0.2

0.46

S£
0.6 0.4 0.2

0.2 0.2 0.2

0.2 0.4 0.6

§

 2y � 4z � 1800
 3x � 2y � 5z � 2300

 4x � y � 3z � 1500

77.1°

229

A�1 � B 1 0

�2 0.5
Rx2 � y2 � 17y � 0

x2 � y2 � x � 13>2 2y � 9>2 � 0

x 
2 � y 

2 �
45

19
  x �

79

19
  y �

246

19
� 0

x2 � y2 � 2x � 2y � 3 � 0
x2 � y2 � x � y � 0

y � x 
2 � 4x � 3

D00
0

1

TD1>2 1>4 0 0

1>2 1>2 1>4 0

0 1>4 1>2 0

0 0 1>4 1

T ,

B3>5
2>5
RB2>3 1>2

1>3 1>2
R ,

B1
0
RB1>2

1>2
RB1>2

1>2
R

x3 � 29>20x2 � �37>10,x1 � 12>10,
x3 � 8x2 � �5,x1 � �3,

x3 � 6>7x2 � 5>7,x1 � 10>7,
x3 � 13>3x2 � 17>3,x1 � �22>3,

x3 � �29>5x2 � �5,x1 � 7>5,
x3 � 1>5x2 � 4>5,x1 � 6>5,

y � 6x � 5,
y � 12>11x � 19>11, 7. a. dAp b. $2210

8. a. not defined

b.

c. d.

e.

9. a.

b.

10. a.

b. columns approaching 

11. a.
b.

12. 100 tables, 500 chairs, 200 sofas

13.

14.

Appendix A
1. 21 3. 10 5. 1

7. The graph of shifted left 3 spaces.

9. 1140 11. 13. 5

15. a. 10 b. 15

17. center radius 6

Appendix E
1. 3. 5.

7. 9. 11. 229

13. 15. 17. � 

2

3
�

2 25

3
 i� 

1

5
�

2

5
 i�5i

5 � 5i11 � 2i

2 � 4i�1�i

1�4, 3 2 ,1x � 4 2 2 � 1 y � 3 2 2 � 36;

a
40

k�5

 
1

k

y � 0 x 0

y � x2 � 2x � 2

£
0.4

0.2

0.4

§

x3 � 0x2 � �7>3,x1 � 1>3,
x3 � �9x2 � 14,x1 � 30,

C0.4

0.2

0.4

S
A5 � £

0.405 0.4 0.395

0.2 0.2 0.2

0.395 0.4 0.405

§

A2 � £
0.48 0.4 0.32

0.2 0.2 0.2

0.32 0.4 0.48

§ A3 � £
0.43 0.4 0.37

0.2 0.2 0.2

0.37 0.4 0.43

§

CB � B 7000 12500 5500

14000 25000 11000
R

BA � B$2.30 $3.05

$1.65 $2.10
R

D13 �7 �4

1 2 1

7 �3 �2

2 1     3

T
D16 31 46 61

7 12 17 22

10 19 28 37

11 19 27 35

TC16 14 20

32 28 40

41 35 47

S
C�2 �3 �4 �5

�2 �4 �6 �8

   5    9   13  17

S
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Index

Absolute value, 722
Acceleration due to gravity, 190
Addition

of complex numbers, 736
of matrices, 691

AIDS, 187–188, 195, 278–279
Airplanes, wingspan vs. weight, 211–213
Amplitude, of sine function, 498
Analytic geometry. See also Geometry

conic sections and, 595–618
distance between points and,

585–589
ellipse and, 595–605
equation of circle and, 589–594, 724
explanation of, 585
Gaussian elimination and, 711–714
hyperbola and, 606–614
parabola and, 614–616

Angles
complementary, 429
of inclination, 431
reference, 457

Aphelion, 601, 605
Arccos functions, 522–527
Arcsin function, 517–522
Arctan function, 530–533
Arithmetic of complex numbers, 567,

734–737
Associative law of matrices, 691
Asymptote, vertical, 105
Asymptote, horizontal, 80
Augmented coefficient matrix,

701–702
Average rate of change, 136–139
Axis

of ellipse, 597, 598
explanation of, 25
of hyperbola, 609
polar, 630
of symmetry, 615

Backward difference equations, 369
Base 10, 99–100
Base e, 109
Bases, changing, 109–111
Best fit

curve, 181–191
line, 166–168

Biological half-life, 363

775

Birds, wingspan vs. weight, 115, 120, 144
Black thread method, 65–66, 162
Bouncing ball, 423–425
Brachistochrone problem, 627

Calculators
equation of line and, 165
exponential functions and, 200
graphs of polynomials on, 267–268
linear regression, 164–166
logarithms and, 202
nonlinear regression, 181–191
parametric representations on, 624
sequences on, 360–361
solving systems of equations on,

730–731
trigonometric functions on,

456–457, 485–486, 516
Carbon dating, 120–121
Cardioid, 579, 641
Cartesian coordinate system

explanation of, 25–26
transforming between polar and,

632–634
Cell phone, 341–343
Challenger disaster, 161–163, 334–336
Chaos, 574–581

complex numbers and Julia set,
576–579
Mandelbrot set, 579–581

Circle
equation of, 589–594, 724
parametric representations of, 622
polar coordinates, 589
unit, 484–485, 489

Circular function. See Trigonometric
function

Clothes production model, 660–662,
675–676, 703–705

Coefficient
correlation, 169–170
leading, 250
matrix, 701, 731
of determination, 240, 273, 274
of polynomial, 250

Column vectors, 650, 659–660
Commutative law of matrices, 691
Comparing rates of growth, 131–136
Complementary angles, 429

Complete solution of difference
equation, 368

Completing the square, 725–727
Complex conjugates, 573, 735
Complex numbers

arithmetic of, 567, 734–737
chaos and, 574–575
complex conjugates and, 573
iteration processes applied to,

573–575
modulus of, 568
powers of, 569–573
properties of, 566–569
trigonometric form of, 568–569

Complex plane, 567
Complex root, 573
Composite functions

applications of, 314–315
explanation of, 312–313

Concave down, 11
Concave down growth functions, 136
Concave up, 10–11
Concave up growth functions, 136
Concavity, 10–12
Conic sections

ellipse, 596–605
explanation of, 595–596, 617–618
hyperbola, 606–614
parabola, 614–616

Conjugate pair, 573
Constant of proportionality, 44
Contaminant model. See Pollutant

model
Control systems, 290–291
Convergence, 360
Cooling model, 322–334, 408–412
Coordinate systems

Cartesian, 25–26, 583
coding model, 332–334, 408–412
explanation of, 583–584
polar, 584, 630–634
rectangular, 25–26
types of, 584

Coordinates, 25
Correlation coefficient

critical values for, 171, 721
determining significant coefficient

and, 170–176
explanation of, 169–170
fit and, 222

775
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method for finding, 170
multiple, 240–241

Cosecant function, 533
Cosine function

applications of, 450–452
approximating, 558–561
behavior of, 448, 492–493
explanation of, 448, 487–490
graph of, 462
inverse, 522–527
law of cosines, 473–474, 673
modeling periodic behavior with,

494–509
period of, 460
radian measure and, 490–492
“special” angles and, 449–450

Cotangent function, 533
Cramer’s rule, 709
Cricket chirping, 27–28, 51–53, 64–65,

505–506, 521–522
Critical values for correlation

coefficient, 171, 721
Cubic functions

behavior of, 263–264
characteristics of, 261–264
difference patterns, 292–294
explanation of, 250
fitting to data, 287–289
roots of, 287–289

Curve fitting procedures, 213. See also
Fitting to data

Cycloid, 626

Data
application of fitting functions to,

228–234
capturing linear pattern in, 64–66
determining if set of data is linear,

59–68
determining if set data is exponen-

tial, 82–83
difference patterns in, 292–294
explanation of, 1–2
fitting exponential and logarithmic

functions to, 196–204
fitting nonlinear functions to,

181–191
fitting polynomial functions to,

278–281
fitting power functions to, 208–218
interpreting correlation coefficient

and, 222
interpreting residuals and, 222–224
interpreting scatterplot and,

225–227

776 INDEX 

interpreting sum of squares and,
227–228

linear models with several variables
and, 236–243

linear regression analysis and,
164–176

linearizing, 196
measuring the center of set of,

738–739
measuring the spread in set of,

739–740
using shifting and stretching to ana-

lyze, 331–345
world population, 740–744

Data analysis
introduction to, 161–163, 737

Daylight model, 184–185, 200–202,
339–340, 349–352

Dead body model, 411
Decay factor, 88–89
Decay rate, 88
Decreasing function, 9–10
Degree of polynomial, 250, 264–266
Delta 46
DeMoivre, Abraham, 573
DeMoivre’s theorem

explanation of, 573
use of, 575, 576

Dependent variable, 19, 25
Determinant, 709
Descartes, Rene, 585
Difference, of two functions, 305
Difference, of vectors, 656–657
Difference equations. See also Sequences

backward, 369
behavior of logistic function and,

392–394
closed form solution and, 367
complete solution, 368
drug model and, 359–367
equilibrium, 393
explanation of, 359–360, 367–369
exponential growth and decay mod-

els and, 371–383, 416
Fibonacci model and, 382–383
first order, 383
forward, 369
geometric sequences and their sums

and, 416–425
inhibited growth model. See logistic

model
limit to growth, 388
logistic growth model and,

386–403
maximum sustainable population

and, 389

1� 2 ,

Newton’s laws of cooling and,
407–412

Newton’s laws of heating and,
413–414

point of inflection and, 390–392
second order, 383
solution sequence to, 360–369, 374,

391
Difference identities of sine and cosine,

543–545
Dimension of a matrix, 691, 731
Directrix, of parabola, 615, 616
Discriminant, of quadratic equations,

259–260
Displacement vector, 650
Distance formula

explanation of, 585–586, 724
use of, 586, 589

Distributive law of matrices, 690
Domain, of function, 20–23, 27
Dot products. See Scalar products
Double-angle identities, 541–542, 545,

561
Doubling time, 76–77
Dow Jones model. See Stock market

model
Drug doses, 357–363
Drug model

eliminating medication and, 87–88,
102, 357–358

exponential decay and, 87–88
half life, 90–93
maintenance level and, 258, 361,

363–365
repeated dosage and, 358–361

e base, 109
Earthquakes, 107–108
Earth’s orbit, 601–602
Elementary row operations, 700–701
Elimination method, 728–730
Ellipse

description and graph of, 599–601
equation of, 598–599, 724–725
explanation of, 595, 596–598
foci, 596
graph of, 598–599
major and minor axes, 597
parametric representation of,

623–624
planetary orbit and, 601–605
reflection property of, 602–604
symmetry of, 604
vertex of, 597

Epicycloid, 627–628
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Equation of
circle, 589–594, 724
ellipse, 598–599
hyperbola, 608–611
line, 49–51
parabola, 615–617
parametric, 622–628
quadrtic, 253
roots of, 251
systems of linear equations, 727–731

Equilibrium, 393
state, 709–710

Even function
power, 126
trigonometric, 524, 561

Even positive integer powers, 126
Excel, multivariate regression in, 241–243
Explanatory variables. See Independent

variables
Exponential decay

determining if set of data is expo-
nential growth or, 94–95

half-life for, 90–91
models of, 371–372, 377–380

Exponential decay functions
decay factor, 88–89
decay rate, 88
example of, 87–88
explanation of, 88–90, 136
formula for, 89
graphs of, 88
half-life and, 90–93
radioactive decay and, 91–93

Exponential functions
behavior of, 116, 122, 131
combining sinusoidal and, 507–509
determining if a set of data is expo-

nential, 82–83, 94–95
explanation of, 72
fit to data, 183–185, 187, 196–202
identities, 83–84, 100
logarithmic functions vs., 105–106
passing through two points, 80–82
rate of change of, 138–139

Exponential growth
applications of, 75–76
difference equation for, 372, 373
doubling time, 76–77
linear vs., 74
models of, 371–377, 382–383
population growth, 182–183

Exponential growth functions
domain of, 79
doubling time of, 76–77
explanation of, 72–73, 132
formula for, 73–74

overview of, 70–72
passing through two points, 80–82
power functions vs., 132–134, 136
prediction with, 77–80
rules for exponents and, 83–84

Exponents, rules for, 83–84
Extrapolating, 168
Extrapolation, 36

Factoral notation n!, 722
Factors and roots, 252, 258, 259, 260,

262, 264, 265
Falling body, 19–20, 29, 145–146,

174–175, 189–191, 273–276
Fiber optic model, 93–94
Fibonacci, 380
Fibonacci difference equation, 382
Fibonacci model

explanation of, 382, 383
for population growth, 380–383

Fibonacci sequence, 382
First order difference equations, 383
Fitting to data

correlation coefficient and, 222
examples of, 228–234
exponential functions, 196–202
interpreting scatterplot and, 225–227
interpreting sum of squares and,

227–228
linear models with several variables,

236–243
linear regression analysis, 164–176
logarithmic functions, 196, 202–204
logistic functions, 397–403
nonlinear functions, 181–191
polynomials, 278–281
power functions, 208–218
residuals and, 222–225

Florida population model, 28–29,
70–72, 76, 77–79, 101, 104, 110,
143–144

Focus
parabola, 615
ellipse, 596
hyperbola, 606

Forward difference equations, 369
Fractal, 581
Frequency, of sinusoidal function,

500–502
Fruit purchase model, 672, 678–679,

691–692
Functions. See also specific types of

functions
composite, 311–313
concavity of, 10–12

connecting geometric and symbolic
representations of, 25–31

cosine, 448, 462, 487–490
cubic, 250, 253, 261–266, 287–289
decreasing, 9–10
difference of, 305
domain and range of, 20–23, 27
even/odd, 126–127, 524, 556, 561
explanation of, 3, 22
exponential, 183–185, 187, 196–202
exponential decay, 87–95, 131–134
exponential growth, 70–87,

131–134, 136–137
families of, 43–44
formulas and equations of, 3
function of, 311–313
graphs of, 3–4, 26
implicit, 66–68
increasing, 9–10
inflection, point of, 11–12
inverse, 140–152
inverse cosine, 522–527
inverse sine, 517–522
inverse tangent, 530–533
linear, 44–56, 59–68, 131
logarithmic, 99–111, 132, 135–136,

189, 196, 202–204
logistic, 346–349, 392–394
mathematical models and, 34–38
monotonic, 148
multiple of, 323–328
nonlinear, 181–191
periodic, 14–15, 460
point of inflection, 11–12
polynomial, 249–269, 273–281,

285–291
power, 113–127, 131–136, 185–186,

188, 190, 208–218
products of, 305–306
quadratic, 250, 251, 255–260,

285–287
quartic, 251
quotient of, 306–307
range of, 20–23
rational, 307–310
represented symbolically, 18–23
shifting, 320–322
sine, 441–442, 485–486
sinusoidal, 496–497, 500, 501
stretching and shrinking, 323–328,

331–345
sum of, 304
surge, 349–352
tables of, 4–5
tangent, 432, 434, 527
turning point of, 9–10
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Fundamental logarithmic-exponential
identities, 100

Galileo, 3, 174, 273
Gateway Arch, 280–281
Gauss, Carl Friedrich, 700
Gaussian elimination

applications of, 709–714
clothes production model and,

703–705
explanation of, 700–702
geometric interpretation and, 702–703
inverse matrix and, 708–709
systems of linear equations with

multiple solutions and, 705–706
systems of linear equations with no

solutions and, 706–708
General equation of circle, 591
Geometric sequences, 372, 417–420,

423–425
Geometry

analytic, 585–594
conic sections and, 595–618
ellipse and, 595–605
families of curves in polar coordi-

nates and, 636–643
hyperbola and, 606–614
parabola and, 614–616
parametric representations and,

619–628
polar coordinate system and, 630–634

Golden ratio, 175, 176
Graphing calculators. See Calculators
Graphs

of cosine function, 462
of cubic, 263–264
of ellipse, 598–599
of exponential decay functions,

88–92, 131
of exponential growth functions,

72–74, 77–79, 131
of function, 3–4, 26
of hyperbola, 608–611
of inverse functions, 149–150
of linear functions, 45–46, 131
of logarithmic functions, 106, 132
of logistic function, 392–394
of polynomials, 256, 261, 262, 264, 265
of power functions, 115–119, 131–132
of quadratic functions, 255–257, 614
of sine function, 461–462, 486, 487
of tangent function, 527–530
symmetry and, 732–734

Growth factor, 72–74
Growth rate, 72–74

778 INDEX 

Half-angle identities, 544–545
Half-life

explanation of, 363
for exponential decay process, 90–93

Heating model, 324–325, 413–414
Homogeneous systems, 711
Horizontal asymptote, 80
Horizontal axis, 25
Horizontal line test, 149
Horizontal shifts, 322, 340–344
Horizontal shrinking, 323
Horizontal stretching, 323, 327
Hours of daylight model. See Daylight

model
Hyperbola

applications of, 611–612, 614
equation of, 608–611
explanation of, 606–608
foci of, 606
graph of, 608–611
parametric representations of, 625

Hyperbolic coordinate system, 584
Hyperbolic cosine, 625
Hyperbolic sine, 625

Identities. See also Trigonometric
identities
difference, 543–545
double-angle, 541–542, 545, 561
explanation of, 100, 464, 539, 545
fundamental logarithmic-

exponential, 100, 103
half-angle, 544–545
involving tangent, 548
Pythagorean, 465, 540, 545
reflection, 540–541, 545
sum, 542–543, 545

Imaginary numbers, 735
Implicit functions, 66–68
Inconsistent equations, 707
Increasing functions, 9–10
Independent variables

constant multiple of, 326
explanation of, 19, 25, 237
horizontal stretching and shrinking

and, 323
Index of summation, 722, 723
Inflection point. See Point of inflection
Inhibiting constant, 386, 387
Inhibiting growth model. See Logistic

growth model
Initial side, of angle, 457
Initial condition of difference equation,

393
Inner products. See Scalar products

Interpolation, 36, 168
Interval notation, 20
Inverse cosine function, 522–527
Inverse functions

behavior of, 149–150
cosine, 522–527
determining existence of, 147–149
examples of, 141–147
explanation of, 140–141
exponential, 143–145, 149
logarithmic, 145, 149
method for finding, 150–152
power, 144–145, 149
resticted domain, 518, 523
sine, 517–522
solving equations with, 515–517

Inverse matrix, 708–709, 732
Inverse sine function, 517–522
Inverse tangent function, 530–533
IRA account model, 374–375
Iteration, 575

Julia, Gaston, 575–576
Julia set, 576–579

Kepler, Johannes, 228
Kepler’s third law of planetary motion,

228–234

Law of cosines, 473–474, 673
Law of sines, 470–473
Law of Universal Gravitation, 141–142,

310–311, 502–503
Leading coefficient, 250
Least squares line, 165
Life expectancy, 3–4, 189, 203–204
Limaçons, 642–643
Limit to growth. See Maximum sustain-

able population
Linear approximation, 551–558
Linear correlation coefficient. See Cor-

relation coefficient
Linear equations, system of

algebraic solutions to systems of,
727–731

calculators to solve, 730–731
matrices to solve systems of, 731–732
with multiple solutions, 705–706
with no solutions, 706–708

Linear functions
behavior of, 131
data and, 59–68
domain of, 79
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explanation of, 44
facts about lines and, 56
graphs of, 45–46
growth and, 74, 132, 136
implicit, 66–68
rate of change of, 137–138
slope and, 46–47

Linear growth, 74
Linear models

clothes production model, 660–662
explanation of, 659–660, 662
geometric view of vectors and, 660
Markov chain model for stock

market, 662– 665
population growth model,

665–668
with several variables, 236–242

Linear regression analysis
correlation coefficient and, 168–176
examples of, 166–168
multiple, 238–240
overview of, 164–166

Linearizing data
explanation of, 196, 199
exponential functions and, 200
power functions and, 208–209

Lines
least squares, 165
normal form of, 67
of best fit, 165
parallel, 56
parametric representations of,

619–621
perpendicular, 56
point-slope form for equation of,

50–51
slope intercept form, 49–50
slope of, 46–49
that don’t pass through origin, 47–56
that pass through origin, 44–46
vertical intercept of, 47

Logarithmic functions
applications of, 106–109
behavior of, 104–105, 132
changing bases and, 109–111
explanation of, 99–100
exponential vs., 105–106
fit to data, 189, 196, 202–204
growth and, 135–136
indentities, 103
inverse of, 145–149
rate of change of, 139

Logarithms
to base 10, 99–100
to base e, 109
changing bases of, 109–111

natural, 109
nonlinear regression and, 204
properties of, 103–104
use of, 100–102

Logistic curve
explanation of, 346, 387
limitating value of, 388–389
point of inflection of, 388, 390–391

Logistic function
behavior of, 392–394
explanation of, 346–349

Logistic growth model
applications of, 394–397
difference equation for, 386–403
estimating logistic parameters,

397–403
explanation of, 386–387, 391
fitting to data, 397–403
inhibiting constant and, 386, 387
maximum sustainable population

and, 388–389
point of inflection and, 390–392, 394
rabbit population and, 380–383
U.S. Population and, 400–403

LORAN system, 584, 611–612

Maintenance level of drug. See drug
model

Mandelbrot, Benoit, 579
Mandelbrot set, 579–581
Markov chain model

explanation of, 663
matrix multiplication and, 692–697
steady state of, 709–711
for stock market, 662–665, 679–680,

709–711
Mathematical models

accuracy of, 37–38
with difference equations, 371–383
explanation of, 35, 371
expressed as functions, 35–37
linear, 659–668
for Newton’s law of cooling, 409
parameters and, 37
periodic behavior with sine and co-

sine functions as, 494–509
Matrix

applied problems using, 660–668
augmented coefficient, 701–702
coefficent, 701, 731
dimension of, 691, 731
explanation of, 659
inverse, 708–709, 732
nonsingular powers of, 694–695
product of matrices, 686–697

product of vector and, 676–680
singular, 708–709
solving systems of linear equations

with, 731–732
subtraction of, 690
transition, 662–663

Matrix algebra, 659, 691
Matrix multiplication

explanation of, 686–688
fruit purchase model and, 691–692
geometric view of powers of matrix

and, 697
Markov chain transition matrices

and, 692–697
methods to interpret, 686–691
population growth models and,

698–699
Matrix-vector equation, 661, 679
Matrix-vector product

explanation of, 676–680
geometric view of, 680–683
scalar product of vectors and,

686–687
Maximum of a function, 9–10
Maximum sustainable population, 388,

389
McAuliffe, Christa, 161
Mean, 738
Median, 738–739
Midline, 497
Midpoint formula, 587–588
Mile run model, 166–168, 170–172
Minimum of a function, 9–10
Models, 34. See also Mathematical

models
Modulus, of complex number, 568,

570–572
Monotonic functions, 148
Movie industry receipts, 164, 166,

223–225
Multiple

of a function, 323–328
of a vector, 652

Multiple correlation coefficient, 240–241
Multiple regression. See Multivariate

regression
Multiplication

of complex numbers, 736–737
matrix, 686–697
matrix and vector, 676–680

Multivariate regression
in Excel, 241–243
explanation of, 238–240

n-factorial, 722
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n-vector, 659
Natural logarithm, 109
Newton, Isaac, 3, 408
Newton’s law of cooling, 332–334,

408–412
Newton’s law of heating, 324–325,

413–414
Nonhomogeneous system, 711
Nonlinear function, 181–191
Nonlinear regression

correlation coefficient, 222
exponential function and, 196–202
logarithmic function and, 196,

202–204
logistic function and, 397–403
power function and, 208–218

Normal form, of line, 67

Odd function, 126–127, 556
Odd positive integer powers, 126–127
Oil reserves, 420–423
Origin

explanation of, 25
Oscillation, periodic, 483
Outliers, 227

Parabola
axis of symmetry of, 615
directrix of, 615, 616
equation of, 615–617
explanation of, 250, 614–615
focus of, 615
parametric representations of,

625–626
quadratic functions and, 255–257
reflection property of, 616
vertex of, 256

Parallel lines, 56
Parallel vectors, 652
Parameters, 37, 589, 619
Parametric equations of line, 589
Parametric representations

on calculators, 624
of circle, 622
of ellipse, 623–624
of hyperbola, 625
of line, 619–621
miscellaneous, 626–628
of parabola, 625–626
path of projectile and, 276–277,

621–622
Path of projectile, 276–277, 621–622
Perihelion, 601, 605
Period, 460, 483

780 INDEX 

Periodic behavior
of functions, 14–15
sine and cosine functions as models

for, 494–509
Periodic functions, 460. See also

trigonometric functions
Periodic oscillatory effect, 483, 484
Perpendicular lines, 56
pH value, 106–107
Phase shift, 502–503
Planetary motion, 141–142, 228–234
Plate tectonics, 107
Point of inflection

examples of finding, 391–392
explanation of, 11–12, 391
of logistic curve, 388, 390–391
polynomials and, 263, 265
turning point and, 263, 265

Point-slope form, 50–51, 53
Polar coordinate system

explanation of, 630–632
families of curves and, 636–643
rectangular coordinates and, 632–634

Pole, 630
Pollutant model, 377–380
Polynomial functions

approximating sine and cosine with,
550–565

coefficients of, 250
cubic, 250, 253, 261–266, 287–289
degree of, 250, 264–266
difference patterns and, 292–294
end behavior of, 267–269
explanation of, 249–251
fit to data, 278–281
inflection points and, 263, 265
leading coefficient of, 250
modeling with, 273–281
path of projectile and, 276–277
quadratic, 250, 251, 255–260,

285–287
quartic, 251
roots of, 285–291, 567
zeros of, 251–254

Polynomial patterns
finding, 292–294
sums of integers and, 295–298
sums of squares of integers and,

298–301
Population growth, 182–183, 375–377,

380–383, 665–668
Population models

Florida, 28–29, 70–72, 76, 77–79,
101, 104, 110, 143–144

U.S. Population, 182–183, 197–198,
344–345, 348–349, 400–402

with harvesting, 375–377
World, 371

Position vector, 650
Power functions

applications of, 120–122
behavior of, 116–119, 131–132
even positive integer, 126
explanation of, 113–116
fit to data, 185–186, 188, 190,

208–218
fractional powers, 114–115
graph of, 115
growth and, 132–136
inverse of, 145
with integer powers, 126, 281
negative powers, 114
odd positive integer, 126–127
passing through two points, 122–125
polynomials and, 249, 250

Powers of i, 735–736
Principal values, 518, 522, 525
Probabilities, transition, 662–663
Product, of two functions, 305–306

of two matrices, 686–688
Projectile motion, 314, 545–546,

621–622
Proportionality, constant of, 44
Prozac model. See drug model
Pythagorean identity

explanation of, 465, 490, 540, 545
Pythagorean theorem

distance formula and, 585–586, 724
explanation of, 429, 432–433, 444,

568
use of, 464–465
vectors and, 651, 674

Quadrants, 25
Quadratic equation, 251–252
Quadratic formula, 252–253, 256, 267,

285, 566
Quadratic functions

behavior of, 255–260
characteristics of, 260
explanation of, 250, 251
fitting to data, 273–281
formula for, 252–253, 256, 267, 285
graphs of, 255–257, 614
linear factors of, 251–259
turning point and, 260
roots of, 257–260, 285–287

Quartic equations, 253
Quartic functions, 251
Quartiles, 740
Quotient, of functions, 306–307
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INDEX 781

Rabbit population, 380–383, 387
Radian measure, 490–492
Radioactive decay, 91–93, 112, 120–124
Radius, 589
Range, of function, 20–23, 27
Rate of change

average, 136–139
explanation of, 47
of exponential functions, 138–139
of linear functions, 137–138
of logarithmic functions, 139

Rational functions
application of, 310–311
behavior of, 307–310
explanation of, 307
graph of, 300–310
vertical asymptotes and, 308

Rectangular coordinate system, 25–26
polar coordinates and, 632–634

Reference angles, 457
Reflection identities, 540–541, 545
Reflection property

of ellipse, 602–604
of parabola, 616

Regression. See fitting to data
Regression, multivariate, 238–243
Regression line

equation of, 166–168, 401
explanation of, 165

Regression plane, 238
Residual plots, 222–223, 225–227
Residuals

explanation of, 165
fit and, 222–225

Richter, Charles, 107
Richter scale, 107, 108
Root-mean-square (RMS), 228
Roots

complex, 573
of cubic equations, 262, 263
double, 259–260
explanation of, 251
and factors, 252, 258, 259, 260, 262,

264, 265
of polynomial functions, 285–291,

567
of quadratic equations, 257–259,

285–287
real vs. complex, 259–260, 262–264,

265
using information on nature of,

290–291
Rose curve, 639–641
Rotation Matrix, 681–683
Row vectors, 650, 659–660
Rumor model, 394–395

Scalar product
clothes production model using,

675–676
explanation of, 649, 670–672
geometric view of, 672–675,

680–683
matrix-vector product and,

676–683, 686–687
Scatterplot

examples of, 169
explanation of, 162
interpreting, 225–227

Secant function, 533
Second differences, 292
Second order difference equation, 383
Semi-log plot, 204
Sequence. See also Difference equations

convergent, 416
divergent, 416
explanation of, 358
exponential, 372
Fibonacci, 382, 383
geometric, 372, 417–420, 423–425
limit of, 416
notation for, 358
solution, 360–369, 374, 391

Shifting functions
analyzing data using, 331–344
explanation of, 320–322

Shrinking functions, 323–328
Sigma notation, 722–723
Similar triangles, 723
Sine function. See also sinusoidal function

amplitude of, 498
applications of, 444–448
approximating, 550–558
behavior of, 442, 492–493
explanation of, 441–442, 485–486
graph of, 461–462, 486, 487
inverse, 446, 517–522
law of sines, 470–473
modeling periodic behavior with,

494–509
period of, 460, 501
radian measure and, 490–492
“special” angles and, 443–444

Singular matrix, 708–709
Sinusoidal function

amplitute of, 498
combining exponential and, 507–509
explanation of, 496–497
frequency of, 500–502
graph of, 504
midline of, 497
period of, 501
phase shift of, 502

vertical shift of, 497
Skydiving model, 336–338
Slope, 46–49, 53

parallel lines, 56
perpendicular lines, 56

Slope-intercept form, 49–50, 53
Solution sequence, 360–369
Space shuttle. See Challenger
Species, number of, vs. area of habitat,

124–125, 185–186, 192, 210–211
Square, completing the, 725–727
St. Louis Arch, 280–281
Standard deviation, 739
Standard error of the estimate, 228
Steady plate. See equilibrium state
Stock market model, 662–665,

679–680, 709–711
Stretching functions

analyzing data using, 344–345
explanation of, 323–328

Substitution method, 728
Subtraction

of complex numbers, 736
matrix, 690

Sum identities, 542–543, 545
Sum of integers, 295–298
Sum of squares

of integers, 298–301
interpreting, 227–228
use of, 165

Sum of two functions, 304
Sum of vectors, 653–654
Summation notation, 722–723
Surge function, 349–352
Symmetry

axis of, 615
explanation of, 732–734
parabolas and, 256

Systems of linear equations
algebraic solutions to, 727–731
Cramer’s rule and, 709
Gaussian elimination and, 700–702
matrices to solve, 731–732
with multiple solutions, 705–706
with no solutions, 706–708

3–vector, 659
Tables, representing functions with,

4–5, 26
Tangent, of an angle, 430–439
Tangent function

applications of, 448
behavior of, 434–435
explanation of, 432, 434, 527
graph of, 527–530
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identities involving, 548
inverse, 530–533
period of, 460

Tangent ratio
explanation of, 432, 527
use of, 435–437

Taylor, Brook, 556
Taylor polynomial approximations

explanation of, 556
sin x and cos x using, 564–565

Temperature oscillation model, 504,
519–520

Terminal side, of angle, 457
Terminal velocity, 336–339
Tide model, 503–504
Transformation approach

application of, 198–200
example of, 200–202

Transition matrix, 662–663
Triangle

finding angle in, 437–439
right, 429
similar, 723

Triangulation, 472
Tribbles, 385
Trigonometric functions. See also Co-

sine function; Sine function; Sinu-
soidal function; Tangent function.
applications from physics for,

452–455
approximating, 550–565
complex numbers and, 566–575
inverse functions, 517–522, 522–527,

530–533
Julia set and, 576–579
Mandelbrot set and, 579–581
properties of complex numbers and,

566–575
radian measure and, 490–492
reciprocals of, 533
relationships among, 463–468

Trigonometric identities
approximating sin x and cos x using,

561–563
difference, 543–545

782 INDEX 

double-angle, 541–542, 545, 561
explanation of, 539, 545
half-angle, 544–545
involving sine and cosine, 540
law of cosines, 473–474
law of sines, 470–473
Pythagorean, 465, 540, 545
reflection, 540–541, 545
sum, 542–543, 545
use of, 545–548

Trigonometry
cosine function and, 448–452
cosine of an angle, 448
finding angle in triangle and, 437–439
graph of cosine function and, 462
graph of sine function and, 461–462
law of cosines and, 473–476
law of sines and, 470–473
overview of, 429–430
sine of an angle, 441–442
sine function and, 441–448
“special” angles and, 432–434
tangent function and, 434–435
tangent of angle and, 430–432
tangent ratio and, 435–437

Turning point of function, 9–10
inflection point and, 263, 265

Unit circle, 484–485, 489
Unit vectors, 652–653
U.S. Population, 197–198, 344–345,

348–349
exponential growth model, 182–183
logistic growth model, 400–403

Variable
dependent, 19, 25
independent, 19, 25, 237, 323, 326
linear models with several, 236–243

Vector product, 671
Vectors

applications of, 654–656

angle between, 674
applied problems using, 660–668
column, 650, 659–660
constant multiple of, 652
coordinate, 654, 672
difference of two, 656–657
displacement, 649–650
explanation of, 452, 649–650
geometric view of, 660
magnitude of, 650–651
multiple of, 652
parallel, 652
position, 649
rotation of, 682–683
row, 650, 659
sum of two, 653–654
unit, 652–653

Vertex
of ellipse, 597
of hyperbola, 608–609
of parabola, 256

Vertical asymptote, 105
Vertical axis, 25
Vertical intercept

examples of, 47–50, 52
explanation of, 47, 53

Vertical line test, 30
Vertical shift, 321, 497
Vertical shrinking, 323, 324
Vertical stretching, 323, 324

Wave phenomena, 546–548
Whispering gallery, 603–604
World population, 371
Words, representing functions with,

5–6, 23

y-intercept, 47
Yeast growth model, 398–400

Zero of a function, 251–254
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x

y

D − A

D

D + A

period

x

y

2
π

2
π–– π

2
3 π

2
3

y = tan x

–1

1

θ

y

2
π π

2
3π π2

–1

1

θ

y

2
π π

2
3π π2

Sine Passes through the origin
Periodic with period 

Oscillates between and 

Cosine Passes through (0, 1) 
Periodic with period 

Oscillates between and 

Sinusoidal Centered vertically about the
midline 

oscillation above and below 
the midline, so oscillates 
between and 

of cycles between 0 and 

Tangent Passes through the origin
Periodic with period 

Vertical asymptotes at 
x � �90° � �p>2 radians

180° � p radians

y � tan x

Phase shift � horizontal shift � C
Period � 2p>frequency

2p radians

Frequency � B � number
D � AD � A

Amplitude � A � size of
1vertical shift 2 � Dy � D � A cos 1B 1x � C 2 2

y � D � A sin 1B 1x � C 2 2

�1�1
360° � 2p radians

y � cos x

�1�1
360° � 2p radians

y � sin x

Function Equation Behavior Graph
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Critical Values for the Correlation Coefficient

n n n

3 0.997 21 0.433 39 0.316

4 0.950 22 0.423 40 0.312

5 0.878 23 0.413 42 0.304

6 0.811 24 0.404 44 0.297

7 0.754 25 0.396 46 0.291

8 0.707 26 0.388 48 0.284

9 0.666 27 0.381 50 0.279

10 0.632 28 0.374 55 0.267

11 0.602 29 0.367 60 0.254

12 0.576 30 0.361 65 0.245

13 0.553 31 0.355 70 0.236

14 0.532 32 0.349 75 0.227

15 0.514 33 0.344 80 0.220

16 0.497 34 0.339 85 0.213

17 0.482 35 0.334 90 0.207

18 0.468 36 0.329 95 0.202

19 0.456 37 0.325 100 0.195

20 0.444 38 0.320

rnrnrn
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