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8

More About the
Trigonometric Functions

Relationships Among Trigonometric Functions

In many applications of trigonometry, particularly in calculus, it often is necessary
to transform one trigonometric function into another using an appropriate
trigonometric identity. Recall that an identity is a relationship that is true for all val-
ues of the variable. For instance, the Pythagorean identity

(1)

that we discussed in Section 6.4 holds for every value of x.
However, suppose that we ask whether equals 1. Figure 8.1 shows

a portion (one complete cycle) of the graph of Note that the
function is not identically equal to 1 because its graph is not a horizontal line of
height 1. Although there are several specific values of x for which 
equals 1 (such as and ), the relationship does not hold for
every value of x. So is not an identity, but simply an equation
that holds for some specific values of the variable.

sin x � cos x � 1
x � 2px � p>2x � 0,

sin x � cos x

y � sin x � cos x.
sin x � cos x

sin2x � cos2x � 1
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Identities Involving the Sine and Cosine

Consider again the Pythagorean identity (1). We can use it to transform sines to
cosines with

so that

Similarly, we can transform cosines to sines by using

so that

Each of these equations holds for all values of the variable x, so each is an identity.

The Reflection Identities

We explore several other useful relationships among the trigonometric functions
here. Two properties of the sine and cosine functions are

(2)

(3)

for any x. These two relationships, known as the reflection identities, are easy to
see graphically. The graph of the cosine function is symmetric about the vertical y-
axis, as illustrated in Figure 8.2. That is, for any positive value of x, the height of the
cosine function is the same to the left of the y-axis (at ) as it is at the same dis-
tance to the right of the y-axis (at x). Thus

for any value of x. We discussed this same type of behavior in Section 2.7 for power
functions with even powers such as and For this reason, the
cosine function is called an even function.

g1x 2 � x4.f 1x 2 � x2

cos1�x 2 � cos x

�x

 cos 1�x 2 � cos x,

 sin 1�x 2 � �sin x

sin x � �21 � cos2x .

sin2x � 1 � cos2x

cos x � �21 � sin2x .

cos2x � 1 � sin2x

However, the sine curve is not symmetric about the y-axis. Rather, if you move
a distance of x to the left of the y-axis and consider the height to the sine curve, it is
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equivalent, but opposite in sign, to the height you get if you move the same dis-
tance x to the right of the y-axis, as shown in Figure 8.3. Thus

for any value of x. We encountered this type of behavior with power functions such
as when the power is odd. As a result, the sine function is called an odd
function.

g1x 2 � x3

sin1�x 2 � �sin x,

We discuss even and odd functions again in Section 8.2 when we describe con-
nections between polynomial functions and trigonometric functions.

Write a reflection identity for the tangent function. ❐

The Double-Angle Identities

We next consider some additional relationships involving the sine and cosine.
The Pythagorean identity says that which is equivalent to

What happens if we take the difference instead of the sum? Fig-
ure 8.4 shows the graph of for x between 0 and It is a sinu-
soidal curve that oscillates between and 1 and completes two full cycles
between 0 and so it has a period of and a frequency of 2. But these features
exactly describe the function Therefore it seems that

or, equivalently,

(4)cos 2x � cos2x � sin2x.

cos2x � sin2x � cos 2x,

y � cos 2x.
p2p,

�1
2p.y � cos2x � sin2x,

cos2x � sin2x � 1.
sin2x � cos2x � 1,

Think About This
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542 CHAPTER 8 More About the Trigonometric Functions

You can verify this relationship numerically by substituting any value of x into
Equation (4). Alternatively, you can verify this relationship graphically by examin-
ing the graphs of the functions and 

We can rewrite Equation (4) in several alternative, but equivalent, forms by
making use of the Pythagorean identity (1). Thus

so that

(4a)

Similarly, we can rewrite Equation (4) as

so that

(4b)

Verify the identities in Equations (4a) and (4b) visually by using your function
grapher and numerically by substituting several different values for x into the
equations.

We next consider sin 2x. Suppose that we want to express sin 2x in an equiva-
lent form that does not show the frequency 2 explicitly. Is it possible that sin 2x and
2 sin x are equivalent? Graph the two functions and you’ll see that they cannot be
the same. The first, is a sinusoidal curve with an amplitude of 1 and a
frequency of 2, so its values oscillate between and 1 and it completes two full
cycles between and The second function, is a sinu-
soidal curve with an amplitude of 2 and a frequency of 1, so its values oscillate be-
tween and 2 and it completes one full cycle between 0 and 

The actual relationship for sin 2x is

(5)

You can verify Equation (5) graphically on your function grapher. When you graph
the two functions and simultaneously, you will see only
one graph—the second traces precisely over the first.You can also verify this result nu-
merically: Pick any value for x and evaluate sin 2x and The results will be
identical for every value of x, thus supporting the fact that Equation (5) is an identity.

The identities in Equations (4), (4a), (4b), and (5) are known as the double-
angle identities for the sine and cosine.

The Sum and Difference Identities

The double-angle identities in Equations (4) and (5) actually are special cases of
more general identities known as the sum and difference identities for sine and co-
sine that are formally derived in any trigonometry text. The sum identities are

(6)

(7)

To show how the double-angle identities are derived from these formulas, we set
in Equations (6) and (7). For instance, in Equation (6),

sin1x � x 2 � sin x cos x � cos x sin x � 2 sin x cos x,

y � x

 cos1x � y 2 � cos x cos y � sin x sin y.

 sin1x � y 2 � sin x cos y � cos x sin y

2 sin x cos x.

y � 2 sin x cos xy � sin 2x

sin 2x � 2 sin x cos x.

2p.�2

y � 2 sin x,x � 2p.x � 0
�1

y � sin 2x,

cos 2x � 2 cos2x � 1.

cos 2x � cos2x � sin2x � cos2x � 11 � cos2x 2

cos 2x � 1 � 2 sin2x.

cos 2x � cos2x � sin2x � 11 � sin2x 2 � sin2x

y � cos2x � sin2x.y � cos 2x
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8.1 Relationships Among Trigonometric Functions 543

giving

The same process in Equation (7) produces the double-angle formula for the cosine.
Similarly, we can replace y with in the two sum identities, Equations (6)

and (7), and then use the reflection identities to derive the difference identities for
the sine and cosine:

(8)

(9)

EXAMPLE 1
Show that for all x by using the difference identity for the cosine.

Solution Using the difference identity in Equation (9), we have

�

EXAMPLE 2
Reduce sin 3x to an equivalent expression involving only sines and not including any
multiple angles.

Solution We write

Sum identity

Double angle identity

Pythagorean identity

�

EXAMPLE 3
Reduce sin 4x to an equivalent expression involving sines and cosines that has no multi-
ple angles.

Solution Following the approach in Example 2, we write

Sum identity � sin 3x cos x � cos 3x sin x.

 sin 4x � sin13x � x 2

 � 3 sin x � 4 sin3x.

 � 2 sin x � 2 sin3x � sin x � 2 sin3x

 � 2 sin x # 11 � sin2x 2 � sin x � 2 sin3x

 � 2 sin x cos2x � sin x � 2 sin3x

 � 12 sin x cos x 2cos x � 11 � 2 sin2x 2sin x

 sin 3x � sin12x � x 2 � sin 2x cos x � cos 2x sin x

 � cos x # 10 2 � sin x # 11 2 � sin x.

 cos ax �
p

2
b � cos x cos 

p

2
� sin x sin 

p

2

cos1x � p>2 2 � sin x

 � cos x cos y � sin x sin y.

 cos1x � y 2 � cos x cos 1�y 2 � sin x sin 1�y 2

 � sin x cos y � cos x sin y

 sin1x � y 2 � sin x cos 1�y 2 � cos x sin 1�y 2

�y

sin12x 2 � 2 sin x cos x.
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544 CHAPTER 8 More About the Trigonometric Functions

But, this expression involves expanding cos 3x, and we haven’t worked that out yet.
(You are asked to do so in a problem at the end of this section.) Alternatively, we could
start with

Double angle identity

Double angle identities

�

The Half-Angle Identities

Occasionally we face the reverse problem of starting with powers of the sine or
cosine—say, or ––and having to eliminate all powers by rewriting the
expression in terms of sines and cosines with multiple angles. To eliminate the
powers, we make use of two additional identities. Starting with the double-angle
identity in Equation (4a),

we have

so that

(10)

Similarly, if we start with the double-angle identity in Equation (4b),

we get

or

(11)

The identities in Equations (10) and (11) are the half-angle identities. Verify them
graphically on your function grapher. We illustrate their use in Example 4.

EXAMPLE 4
Rewrite in terms of cosines of multiple angles by eliminating all exponents.

Solution Using Equation (11), we have

 cos4x � 1cos2x 2 2 � c
1

2
11 � cos 2x 2 d

2

cos4x

cos2x �
1

2
11 � cos 2x 2 .

2 cos2x � 1 � cos 2x

cos 2x � 2 cos2x � 1,

sin2x �
1

2
11 � cos 2x 2 .

2 sin2x � 1 � cos 2x

cos 2x � 1 � 2 sin2x,

cos4xsin3x

 � 4 sin x cos3x � 4 sin3 x cos x.

 � 212 sin x cos x 2 1cos2x � sin2x 2

 � 2 sin 2x cos 2x

 sin 4x � sin12x � 2x 2 � sin 3212x 2 4
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8.1 Relationships Among Trigonometric Functions 545

Trigonometric Identities

Pythagorean identity: (1)

Reflection identities: (2)

(3)

Double-angle identities: (4)

(4a,b)

(5)

Sum identities: (6)

(7)

Difference identities: (8)

(9)

Half-angle identities: (10)

(11)cos2x �
1

2
11 � cos 2x 2

sin2x �
1

2
11 � cos 2x 2

cos1x � y 2 � cos x cos y � sin x sin y

sin1x � y 2 � sin x cos y � cos x sin y

cos1x � y 2 � cos x cos y � sin x sin y

sin1x � y 2 � sin x cos y � cos x sin y

sin 2x � 2 sin x cos x

 � 1 � 2 sin2x � 2 cos2x � 1

cos 2x � cos2x � sin2x

cos1�x 2 � cos x

sin1�x 2 � �sin x

sin2x � cos2x � 1

This expression involves so we apply Equation (11) again to get

�

For easy reference, we list all the fundamental trigonometric identities involv-
ing the sine and cosine functions. These identities reappear both in this course and
in later mathematics and associated courses.

 �
3

8
�

1

2
 cos 2x �

1

8
 cos 4x.

 �
1

4
a

3

2
� 2 cos 2x �

1

2
 cos 4xb

 �
1

4
a1 � 2 cos 2x �

1

2
�

1

2
 cos 4xb

 cos4x �
1

4
e 1 � 2 cos 2x �

1

2
31 � cos 212x 2 4 f

cos212x 2 ,

 �
1

4
31 � 2 cos 2x � cos212x 2 4 .

Using the Trigonometric Identities

Suppose that a projectile, such as a cannonball or a high-pressure stream of water, is
shot off with an initial velocity at an angle with the horizontal, as shown in Fig-
ure 8.5. The distance R that the cannonball or the water travels—its range—depends
on the angle For very small angles, the range is minimal because gravity pulls theu.

uv0
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546 CHAPTER 8 More About the Trigonometric Functions

object to the ground quickly. For very large angles (close to ), the object is shot
almost vertically upward and comes back to the ground fairly near the point at
which it was released. For moderately sized angles, the range is considerably larger.

90°

It is shown in physics that the range R is given by

where g is the acceleration due to gravity.

EXAMPLE 5
Use a trigonometric identity to simplify the formula for the range of a projectile and use
the result to determine the angle that leads to the maximum range for any initial velocity.

Solution The range is

Because this expression for the range reduces to

Because g and are fixed, the range is maximal when is maximal and the
largest value of the sine function is 1, which occurs when or There-
fore a projectile subject only to the force of gravity has a maximum range when the ini-
tial angle 

�

In most derivations in physics and engineering involving wave phenomena
such as electromagnetic waves (e.g., radio signals or electric currents in a circuit),
sound waves, or water waves, the height y of the wave as a function of time t is usu-
ally given in the form

where A and B are constants and k is the frequency. In Example 6, we show how this
type of expression can be simplified by using a trigonometric identity to give far more
insight into the behavior of the wave than this fairly complicated expression provides.

y � A sin kt � B cos kt,

u � 45°.

u � 45°.2u � 90°
sin 2uv0

R �
v0ˇ

2sin 2u
g

 .

sin 2u � 2 sin u cos u,

R �
2v0ˇ

2sin u cos u
g

 .

R �
2v0ˇ

2sin u cos u
g

 ,

x

y

α

FIGURE 8.5
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8.1 Relationships Among Trigonometric Functions 547

EXAMPLE 6
The equation of a wave is Use a trigonometric identity to explain
the behavior of this wave.

Solution The graph of this function between and is shown in Figure 8.6.
It looks like a sine wave shifted horizontally to the right by about or Also, the
amplitude of this wave seems to be about 5, compared to the amplitudes of 4 and 3 in
the two terms of the function. Finally, the period of this wave seems to be about As a
result, the equation of the wave appears to be equivalent to

where the amplitude and the phase shift D is about Let’s
see why.

p>6.C � 5y � C sin1t � D 2 ,
y � 4 sin t � 3 cos t

2p.

30°.p>6,
t � 2pt � 0

y � 4 sin t � 3 cos t.

The seemingly equivalent form for the wave suggests using the
difference formula for the sine, or

(12)

Also, the fact that the individual amplitudes in the original formula are 4 and 3 and the ap-
parent amplitude we observe for the wave is about suggests the Pythagorean theorem

Factoring 5 out of the original formula for the wave yields

Comparing this expression to Equation (12) suggests that we make the association

If

which is close to what we predicted for the phase shift, based on the graph shown in Fig-
ure 8.6. To be sure that this result is consistent with the third condition, we see that if

D � arcsin 
3

5
� 36.87°.

sin D � 3>5,

D � arccos 
4

5
� 36.87°,

cos D � 4>5,

C � 5,  cos D �
4

5
 , and sin D �

3

5
 .

y � 4 sin t � 3 cos t � 5 a
4

5
 sin t �

3

5
 cos tb .

242 � 32 � 5.

C � 5

C sin1t � D 2 � C # 1sin t cos D � cos t sin D 2 .

y � C sin1t � D 2

–5

0

5

t

y

π π2

y = 4 sin t − 3 cos t

2
3π

2
π

FIGURE 8.6
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548 CHAPTER 8 More About the Trigonometric Functions

Consequently, the wave formula

and the original wave is the same as a pure sinusoidal function centered about 
with amplitude 5, period and a phase shift of about or 0.6435 radian.

�

Identities Involving the Tangent

Just as there are trigonometric identities relating the sine and cosine, there are iden-
tities involving the tangent function. We encountered two of them in Section 6.4.
The first is the key identity relating the tangent function to the sine and the cosine:

We also derived an analog to the Pythagorean identity in Section 6.4:

provided that 
Likewise, there are double-angle, sum, and difference formulas, and so on, for

the tangent function. We investigate a double-angle identity and a sum identity in
the Problems. If you’re interested, you can find more details about them in any
trigonometry textbook.

cos x � 0.

tan2x � 1 �
1

cos2x
 ,

tan x �
sin x
cos x

 .

36.87°,2p � 360°,
y � 0

 � 5 sin1t � 36.87° 2
 y � 4 sin t � 3 cos t � 51cos D sin t � sin D cos t 2

Problems

1. Using ideas on amplitude and frequency, explain
why cos 3x cannot be identically equal to 3 cos x.

2. Using ideas on amplitude, explain why 
is reasonable. (Recognize that such an

argument is not a proof.)

Examine each equation in Problems 3–14 graphically to
see if the relationship may be an identity. If it is not an
identity, attempt to locate graphically or numerically at
least one point that lies on both curves. If it seems to be
an identity, prove it algebraically.

3.

4.

5.

6.

7.

8.

9.
1 � cos a

sin a
�

sin a

1 � cos a

cos2u

1 � sin u
� 1 � sin u

sin 3x � 3 sin x

11 � cos u 2 11 � cos u 2 � sin2u

sin 2x

sin x
� 2 cos x

cos 3x � cos3x � sin3x

sin3x � cos3x � 1

2 cos2x � 1
cos 2x �

10.

11.

12.

13.

14.

15. Express cos 3x in terms of powers of sin x and cos x,
but with no multiple angles.

16. Express cos 4x in terms of powers of sin x and cos x,
but with no multiple angles.

17. Express cos 5x in terms of powers of sin x and cos x,
but with no multiple angles.

18. Examine the results of Problems 15–17 and the for-
mula for cos 2x. Are there any patterns in the terms?
If so, what are they?

19. By setting in the sum identity in Equation
(7), show that you get the double-angle identity in
Equation (4).

20. Rewrite in terms of multiple angles by elimi-
nating all exponents.

sin4x

y � x

sin1cos x 2 � sin x cos x

sin1cos x 2 � cos1sin x 2
cos22x � 311 � sin 2x 2
sin23x � cos 6x � cos23x

cos 3b � 3 cos3b � 1
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8.1 Relationships Among Trigonometric Functions 549

21. Rewrite in terms of multiple angles by
eliminating all exponents.

22. a. Sketch the graph of What familiar
function do you get from this phase shift?

b. Use the sum identity for the sine function to show
that actually equals that function.

23. a. Repeat Problem 22 for 
b. Repeat Problem 22 for 

24. In the half-angle identities in Equations (10) and
(11), let so that Rewrite each iden-
tity in terms of y to see why they are called half-
angle identities.

25. William Tell is about to shoot the most important
arrow of his life. His son is standing 250 feet away.
Tell releases the arrow at a height of 5 feet above the
ground with an initial speed of 180 feet per second.
The height of the center of the apple on his son’s
head is also 5 feet above the ground. Find alge-
braically two different angles at which Tell should
release the arrow in order to have it pass through
the apple without hitting the boy.

a

x � 1
2 y.y � 2x,

cos1x � p>2 2 .
sin1x � p 2 .

sin1x � p>2 2

sin1x � p>2 2 .

sin2x cos2x

26. Suppose that William Tell’s son is actually a foot
shorter than in Problem 26 so that the center of the
apple is now 4 feet above the ground and that the
arrow comes off the bow string at a height of 5 feet.
Estimate, graphically, two different angles at
which Tell should release the arrow in order for it to
pass through the apple without hitting the boy.

27. In Example 6, we converted the wave 
to the equivalent pure sinusoidal expression

a. Convert this formula to a pure cosine curve by
an appropriate horizontal shift.

b. Repeat the derivation in Example 6 by using the
sum or difference identity for cosines to derive
the equivalent formula as a cosine wave.

c. How does the result in part (b) compare to the
result in part (a)?

28. A baseball player hits a ball with an initial velocity
of 120 feet per second at a height of 5 feet above the
ground. The ball is caught 320 feet from home plate
by an outfielder whose glove is also 5 feet above the

y � 5 sin1t � 36.87° 2 .
3 cos t

y � 4 sin t �

a

ground. Use the formula for the range of a projec-
tile to determine the angle of inclination of the ball
as it comes off the bat.

29. The accompanying figure shows the graph of the
function from to The
curve suggests that the function is equivalent to
some sinusoidal function.

2p.x � 0y � sin4x � cos4x

a. By examining the graph carefully on your func-
tion grapher, estimate values for each parameter
to find a sinusoidal function that seems to have
the matching behavior pattern. (Hint: The pa-
rameters should be simple fractions or whole
numbers.)

b. Superimpose the graph of your function over
the graph of to verify that
they do appear to be the same.

c. Use the half-angle identities for sine and cosine
repeatedly to prove that does
reduce to the expression you conjectured.

30. Repeat Problem 29 with the function 

31. Refer to the functions shown in Problem 1 of Sec-
tion 7.2 and decide which are odd, even, or neither.

32. a. Use some ideas from Section 5.5 on the sum of
the terms in an exponential sequence to explain
why you can calculate the value of

as  
1

1 � sin x
 .

1 � sin x � sin2x � sin3x � sin4x �  . . . 

sin6x � cos6x.
y �

y � sin4x � cos4x

y � sin4x � cos4x

5 ft

250 ft

5 ft

320 ft

0

0.5

1

x

y

π π2

y = sin4 x + cos4 x

2
3π

2
π
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550 CHAPTER 8 More About the Trigonometric Functions

Are there any values of x for which this approach
does not work?

b. What formula would you get for the sum of
the terms

for any given positive integer n?

33. Use the result of Problem 32(b) with different val-
ues of n to calculate the value of

for correct to three decimal places. Now
suppose that you want to do so for in-
stead. Will you need approximately the same num-
ber of terms, more terms, or fewer terms to get the
same three decimal place accuracy? Explain.

34. a. Verify graphically that

for all for which the denominators are nonzero.
b. Show algebraically that the expression in part (a)

is an identity. (Hint: Transform to equiva-
lent expressions in and )

35. Use appropriate trigonometric identities to show that

36. Use the identity in Problem 35 to derive a double-
angle formula for the tangent function.

37. a. Derive the double-angle identity

tan 2x �
2 tan x

1 � tan2x

1

tan x
� tan x �

2

tan 2x
 .

cos u.sin u
tan u

u

tan u �
1

tan u
�

1

sin u cos u
,

x � p>3
x � p>6
1 � sin x � sin2x � sin3x � sin4 x �  . . . ,

1 � sin x � sin2x �  . . . �sinnx

by using the double-angle identities for sine and
cosine. (Hint: Divide both the numerator and
the denominator by 

b. Derive the addition identity for the tangent,

by using the addition formulas for sine and co-
sine. (Hint: Divide both the numerator and the
denominator by cos x cos y.)

Examine each equation in Problems 38–46 graphically
to see whether the relationship may be an identity. If it
is not an identity, attempt to locate graphically or nu-
merically at least one point that lies on both curves. If it
seems to be an identity, prove it algebraically.

38.

39.

40.

41.

42. (Hint: Let )

43.
44.
45.

46.

47. What is wrong with the following “proof”?

cos1tan x 2 � cos a
sin x
cos x

b � sin x.

cos1tan x 2 � tan1cos x 2

tan1sin x 2 � tan x sin x
1 � cos 2x � tan x sin 2x
tan2x � 1 � 2 tan x

a

2
� u.tan 

a

2
�

1 � cos a

sin a

1 � tan2x �
1

cos2x

tan2x � sin2x � 1tan x sin x 2 2
tan 2u � 2 tan u

1 �
1

tan2u
�

1

sin2u

tan1x � y 2 �
tan x � tan y

1 � tan x tan y

cos2x. 2

Approximating Sine and Cosine 
with Polynomials

Have you ever wondered what happens when you press either the SIN or COS key
on your calculator and the value for the function appears? How does the calculator
actually find the values of these functions?

Approximating the Sine Function

In this section, we consider one approach that has been used to compute function
values. We begin by examining the graph of the sine function, with x measured in
radians, as shown in Figure 8.7(a). We zoom in on the portion of the curve close to
the origin, as marked by the box; the corresponding curve is shown in Figure 8.7(b).
If we zoom in still further about the origin, as marked by the box in Figure 8.7(b),
we get the portion of the sine curve shown in Figure 8.7(c). This final graph looks

8.2
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8.2 Approximating Sine and Cosine with Polynomials 551

like a straight line rather than a portion of a curve. (In fact, if you zoom in suffi-
ciently on any smooth curve, it will eventually look like a straight line.)

Linear Approximation to the Sine When x is very close to the origin, the sine
curve looks like a line. Let’s find the equation of this “line.” Because it passes
through the origin, the vertical intercept must be 0. To find the slope, we need a
second point. If we trace along the sine curve very close to the origin, we find that

and is a point on the sine curve. The
slope of the line through this point and the origin is

Therefore the equation of a line that very closely hugs the sine curve near the origin
is We show the graph of this line, along with the sine curve, in Figure 8.8.y � x.

m �
0.0009999998 � 0

0.001 � 0
� 0.9999998 � 1.

y � sin 0.001 � 0.0009999998x � 0.001

Observe that, when x is very close to 0, the graphs of and
are very close to one another. In fact, when x is very close to 0, the two

graphs are virtually indistinguishable. That is,
g1x 2 � x

f 1x 2 � sin x

Of course, as the value of x gets farther from 0, the sine curve eventually bends
away from the line y � x.

x

y

ππ–

y = sin x

(a)

x

y
y = sin x

(b)

1–1
x

y
y = sin x

(c)

0.25–0.25

FIGURE 8.7

–3 –1 1 3

–1

1

x

y

f (x) = sin x

g(x) = x

FIGURE 8.8

sin x � x,  if x is very close to 0
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552 CHAPTER 8 More About the Trigonometric Functions

To show this result numerically, we look at some values of x to see how close
the values along the line match the values of the sine function.

From the table at the left, we see that, when x is extremely close to 0, the value
of sin x is almost identical to x itself, but the farther that x is from the origin, the
less accurate the approximation. Thus, whenever x is very close to 0, we can re-
place sin x with x for the purposes of approximating the value of sin x. For in-
stance, to approximate we could say that

Using a calculator gives so the approximation is ac-
curate to five decimal places.

We can approximate the sine function with a linear function in a different way
by using methods of linear regression. We use a set of points that lie on the sine
curve very close to the origin. They are shown rounded to 6 decimal
places in Table 8.1. The line that best fits these “data” is with a
correlation coefficient which tells us that a line with slope of
about 1 is virtually perfect. Thus we again see that when x is very close to 0,

However, if we move too far away from the accuracy of the ap-
proximation breaks down. For instance, we would not want to approximate

with the value because the value 
is too far from for the approximation to be good.x � 0

x � 0.75sin10.75 2 � 0.6816;x � 0.75sin10.75 2

x � 0,sin x � x.

r � 1.000000000,
y � 0.9999258x

y � sin x

sin10.00243 2 � 0.0024299976,

sin10.00243 2 � 0.00243.

sin10.00243 2 ,

This idea of approximating a function such as with a simpler func-
tion (often a linear function) is an essential principle in mathematics. We use this
principle to approximate the values of trigonometric functions because it is impos-
sible to calculate them directly with algebraic methods.

Improving on the Linear Approximation to the Sine

Unfortunately, as we have noted, the linear approximation to the sine curve is only
accurate if x is very close to the origin. As we take values of x farther and farther
from the origin, the sine curve bends ever more sharply and eventually bends away
from the line. Let’s see how we can improve on the linear approximation 
when x is somewhat farther from 0. To do so, we need a simple curve (at least one
that is simpler to work with than the sine function) that bends in a similar manner.
For computational purposes, the simplest curves are usually polynomials.

In Figure 8.7, we zoomed in on the sine curve very close to the origin so that
the curve looked like a line. Now we zoom out a bit to see what happens for values
of x from to 3, as previously shown in Figure 8.8. Although the line is indistin-
guishable from the sine curve near the origin (roughly from to ),
the sine curve bends away from the line as the first pair of turning points in the sine
curve come into view. In fact, the overall shape of this portion of the sine curve is
quite suggestive of a cubic polynomial with a negative leading coefficient. (Recog-
nize that, if you zoom out a bit farther, more turning points appear and the cubic-

x � 0.6x � �0.6
�3

sin x � x

y � sin x

x sin x x sin x

0 0

0.1 0.100 �0.1 �0.100

0.2 0.199 �0.2 �0.199

0.3 0.296 �0.3 �0.296

0.4 0.389 �0.4 �0.389

0.5 0.479 �0.5 �0.479

0.6 0.565 �0.6 �0.565

0.7 0.644 �0.7 �0.644 

TABLE 8.1

x 0 0.005 0.01 0.015 0.02 0.025

0 0.005 0.01 0.014999 0.019999 0.024997�0.005�0.01�0.014999�0.019999�0.024997y � sin x

�0.005�0.01�0.015�0.02�0.025
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8.2 Approximating Sine and Cosine with Polynomials 553

like appearance disappears.) This result suggests that we try to approximate this
portion of the sine curve with a cubic curve. We use the data in Table 8.1 that we
used for the linear fit, but now fit a cubic polynomial instead. We then get the cubic

Note that (1) the constant term is 0, which assures us that the cubic passes through
the origin; (2) the coefficient of the linear term is essentially 1; (3) the coefficient of
the quadratic term is 0; (4) the leading coefficient is negative, which is what we ex-
pected; and (5) the value of the leading coefficient, is quite close to

Thus a cubic polynomial that approximates the sine func-
tion is

or, equivalently,

when x is fairly close to 0.
Figure 8.9 shows both the sine curve and the cubic polynomial for x from 

to 3.5. The two curves are indistinguishable from about to 
which extends over a considerably larger interval than the linear approximation,
which is accurate only from about to x � 0.6.x � �0.6

x � 1.2,x � �1.2
�3.5

sin x � x �
x3

6

T31x 2 � � 

x3

6
� x,

�1>6 � �0.16666667.
�0.1666601,

y � �0.1666601x3 � 0x2 � 0.999999999x � 0.

To illustrate the accuracy of the approximation for sin x using the cubic poly-
nomial for values of x near 0, we try say, and find that

which agrees with the true value of to six decimal places.
If we move farther from 0 and try we find that

sin10.7 2 � 10.7 2 �
10.7 2 3

6
� 0.643,

x � 0.7,
sin10.125 2 � 0.1246747

sin10.125 2 � 10.125 2 �
10.125 2 3

6
� 0.1246744,

x � 0.125,

–3.5 –1.5 –0.5 0.5 1.5 3.5

–1

1

x

y

y = sin x

x – y = x3

6

FIGURE 8.9
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–6 6

–1

1

0
x

y

y = sin x

FIGURE 8.10

compared to the actual value of which is correct to the nearest
hundredth, so the approximation is still fairly accurate. However, the graphs in Fig-
ure 8.9 show that the two curves eventually diverge. Thus if we take x too far from
0, the accuracy of the approximation diminishes. Moreover, the farther from 
we go, the worse the approximation is. For instance, if

compared to the correct value of If radians,

compared to the correct value of If radians,

compared to the correct value of If radians,

compared to the correct value In fact, this last approximation is so bad
that it gives us a value, outside the range of the sine function.

What if we wanted to improve on the approximation still further so that we
could use it to estimate values for sin x when x is still farther from the origin? Con-
sider the graph of the sine curve from to shown in Figure 8.10. It
has four turning points and three inflection points, which suggests that the sine
curve looks like a polynomial of degree 5. Although graphing calculators don’t fit a
fifth degree polynomial to a set of data, that task can be accomplished by many
software packages. Using a spreadsheet, we find that the fifth degree polynomial
that fits the data in Table 8.1 is

or essentially

T51x 2 � 0.0083x5 �
x3

6
� x.

T51x 2 � 0.0083x5 � 0x4 � 0.1667x3 � 0x2 � 0.999999999x � 0,

x � 6x � �6

�2.02612,
sin p � 0.

sin p � p �
p3

6
� �2.02612,

x � psin 2 � 0.90930.

sin 2 � 2 �
23

6
� 0.66667,

x � 2sin11.5 2 � 0.99749.

sin11.5 2 � 11.5 2 �
11.5 2 3

6
� 0.93750,

x � 1.5sin 1 � 0.84147.

sin 1 � 1 �
13

6
� 0.83333,

x � 1 radian � 57°,
x � 0

sin10.7 2 � 0.644,
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–4 –2 –1 1 2 3 4

–1

1

x

y

y = sin x

y = T5(x)

FIGURE 8.11

Note that this polynomial has a positive leading coefficient, so it increases toward
the right, as we want. It also has a 0 constant coefficient, so it passes through the
origin. Note also that the only change from the cubic polynomial to this fifth de-
gree polynomial is the fifth degree term—all other terms remained the same.

Because we can write this polynomial as

A simple and interesting pattern is developing here with the coefficients:
and (See Appendix A2 for a

discussion of factorial notation.) So we can rewrite the approximation formula for
the sine function as

Figure 8.11 shows the graphs of the sine function and the fifth degree polynomial for
x between and 4. The two curves are indistinguishable for x between roughly 
and 2, so we have achieved a considerable improvement over the cubic approxima-
tion, which was a good match for x between roughly and 1.2.�1.2

�2�4

sin x � x �
x3

3!
�

x5

5!
 .

120 � 5 � 4 � 3 � 2 � 1 � 5!.3 � 2 � 1 � 3!
6 �

T51x 2 �
x5

120
�

x3

6
� x or T51x 2 � x �

x3

6
�

x5

120
 .

0.0083 � 1>120,

To verify the accuracy of this approximation, let’s see how much improvement
we get compared to the previous values. The results are shown in the following table.

x sin x

0.7 0.64422 0.643 0.64423

1 0.84147 0.83333 0.84167

1.5 0.99749 0.93750 1.00078

2 0.90930 0.66667 0.93333

0 0.52404�2.02612p

T51x 2T31x 2
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x

y

2
πx0 x

y = sin x

sin x = sin x0FIGURE 8.12

The fifth degree approximation is better still because we get more accurate esti-
mates for the values of sin x over larger intervals of x-values centered at 0.

We can continue this process, using higher degree polynomials, and get even
better approximations. However, before doing so, let’s examine the sequence of
polynomial approximations we have so far. They are

First, each successive polynomial involves just one additional term, compared to
the preceding polynomial. Second, each polynomial involves only odd powers—
and we know that the sine function is an odd function. This means that both the
sine function and the approximating polynomials are symmetric about the origin.
Third, the signs of successive coefficients alternate. Fourth, there is a definite pat-
tern involving factorials in the coefficients. These polynomials are known as Taylor
polynomial approximations after English mathematician Brook Taylor, who in-
vestigated them in the early 1700s.

Predict the next higher degree polynomial approximation to sin x. How accurate
is this approximation for the values 1, 1.5, 2, and ❐

Improving the Approximation Using the Behavior of sin x We could continue
this process and construct Taylor polynomial approximations of higher and higher
degree. However, that isn’t necessary if we cleverly use some of the basic behavioral
properties of the sine function. First, recall the reflection identity

It allows us to approximate sin x when x is negative simply by using the correspon-
ding positive value for x and reversing the sign of the estimate.

Second, we know that the sine function is periodic with period Therefore, if
x is any number greater than the value of sin x is the same as the value
of where is the corresponding number between 0 and radians. Conse-
quently, we need only obtain an approximation that is accurate as far out as We
can handle anything beyond that by reducing the value of x to an appropriate value

between 0 and by “removing” all multiples of as illustrated in Figure 8.12.2p,2px0

2p.
2px0sin x0 ,

2p � 6.28,
2p.

sin1�x 2 � �sin x.

p?x � 0.7,
Think About This

 sin x � x �
x3

3!
�

x5

5!
 .

 sin x � x �
x3

3!
 ,

 sin x � x,
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–1

0

1

x

y

π π2

y = sin x

y = –sin x

xπx − 

FIGURE 8.13

Now visualize the portion of the sine curve between and as
shown in Figure 8.13. It has the same shape as the portion from to 
only “flipped” across the x-axis. Thus, if we have a value of x between and 
(where sin x is negative), there is a point between 0 and namely at where
the sine function has the same value, but with a positive sign. That is,

So, all we need is an approximation that is sufficiently accurate for x between 0 and p.

sin x � �sin1x � p 2 .

x � p,p,
2pp

x � p,x � 0
x � 2p,x � p

Use an appropriate trigonometric identity to show that ❐

Now visualize the sine curve from to The two halves are sym-
metric, as shown in Figure 8.14. Therefore, for any point x between and 
the value of sin x is the same as that at a corresponding point between 0 and 
So, all we need is an approximation to sin x that is sufficiently accurate for x be-
tween 0 and The previous fifth degree polynomial gives two-decimal
accuracy for any value of x in this interval. If we want more than two-decimal ac-
curacy, we have to use a higher degree polynomial—say, the seventh degree Tay-
lor polynomial that we asked you to produce in a previous Think About This
exercise.

T51x 2p>2.

p>2.
p,p>2

x � p.x � 0

sin x � �sin 1x � p 2 .Think About This

0

1

x

y

xπ π − x
2
π

y = sin x

2
πx − 

2
πx − 

FIGURE 8.14
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0

–0.2

1

x

y

2
π

2
π−

y = cos x

FIGURE 8.15

TABLE 8.2

x 0 0.02 0.04 0.06 0.08
0.9968 0.9982 0.9992 0.9998 1 0.9998 0.9992 0.9982 0.9968y � cos x

�0.02�0.04�0.06�0.08

Try the seventh degree polynomial

for various values of x in the interval from 0 to Does it provide four-decimal
accuracy? Is that adequate? If not, what would you do? ❐

Approximating the Cosine Function

We now consider the comparable problem of approximating the cosine function by
using a polynomial. If you zoom in on the cosine curve very close to it ap-
pears indistinguishable from a horizontal line. In fact, because that line
must be So, for x very close to 0,

However, once you move away from the cosine curve bends away from the
line 

Let’s now look at the cosine curve in a somewhat wider interval about —
say, from to as shown in Figure 8.15. Its overall shape suggests a
parabola opening downward. Therefore we try to approximate the cosine function
with a quadratic function so long as x remains fairly close to 0.

x � 2,x � �2
x � 0

y � 1.
x � 0,

cos x � 1.

y � 1.
cos 0 � 1,

x � 0,

p>2.

sin x � x �
x3

3!
�

x5

5!
�

x7

7!

Think About This

Approximating Using Data Analysis There are several ways to find
an equation for such a quadratic. One way is to fit a quadratic function to some set
of values for cos x when x is relatively close to 0. Consider the values in Table 8.2.

y � cos x

Using a calculator, we find that the quadratic function that fits these data is

The constant term is essentially 1 and the leading coefficient is approximately
Hence we have the following approximation to the cosine function near

x � 0.
�0.5.

y � �0.49973x2 � 0x � 0.99999.
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cos x � 1 �
x2

2
 

0

–1

1

y

x

y = cos x

–2 2

y = 1 – 
2
x2

FIGURE 8.16

Figure 8.16 shows the graphs of the cosine function and this quadratic Taylor
approximating polynomial for x between and 2. The two are virtually indistin-
guishable for x between about and 0.8. For instance,
compared to the value of the approximating quadratic,

so we have two decimal place accuracy.

cos10.5 2 � 1 �
10.5 2 2

2
� 0.875,

cos10.5 2 � 0.87758�0.8
�2

0

–1

1

y

x

y = cos x

–5 5

FIGURE 8.17

If we zoom out somewhat farther on the graph of the cosine curve—say, for x
between and 5, as shown in Figure 8.17—the cosine function no longer sug-
gests a quadratic function. This portion of the cosine curve has four real roots,
three turning points, and two inflection points, which suggest a polynomial of de-
gree 4. Using a calculator, we find a quartic function that fits the data values in
Table 8.2 is

y � 0.041653x4 � 0x3 � 0.499999x2 � 0x � 0.999999.

�5
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0

–1

1

y

x

y = T4(x)

y = cos x

–5 5

FIGURE 8.18

Note that the coefficients of both odd-powered terms are 0, the constant coeffi-
cient is essentially 1, and the quadratic coefficient is essentially As for the lead-
ing coefficient, 0.041653,

so the leading coefficient is essentially Therefore we have the fourth
degree Taylor polynomial approximation

Figure 8.18 shows the graph of this polynomial and
the cosine function for x between and 5. Observe that tries hard to cap-
ture the pattern in the cosine curve. In fact, the polynomial is an excellent match
to the cosine for x between roughly and 1.5. For instance, if then

compared to similarly,
compared to If we choose a value of x too far from 0, the approx-
imation breaks down. Thus compared to cos11.5 2 � 0.07074.T411.5 2 � 0.08594,

cos11 2 � 0.54030.
T411 2 � 0.541666,cos10.5 2 � 0.87758;T410.5 2 � 0.87760,

x � 0.5,�1.5

T41x 2�5
T41x 2 � 1 � x2>2 � x4>4!

cos x � 1 �
x2

2
�

x4

4!
 .

1>24 � 1>4!.

1

0.041653
� 24.00787,

�1
2 .

If we zoom out still farther on the cosine curve—say, from to 
two more turning points come into view, which suggests that we could get a better
approximation to the cosine with a sixth degree polynomial. Using the values in
Table 8.2 and a spreadsheet, we find, after rounding the coefficients, that

Summarizing these results, the successive Taylor polynomial approximations
to the cosine function are:

 cos x � 1 �
x2

2
�

x4

4!
�

x6

6!
 .

 cos x � 1 �
x2

2
�

x4

4!

 cos x � 1 �
x2

2
,

cos x � T61x 2 � 1 �
x2

2
�

x4

4!
�

x6

6!
 .

x � 8—x � �8
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T4

y = T2
FIGURE 8.19

As with the sine approximations, (1) each successive polynomial involves just one
additional term; (2) each polynomial involves only even powers, and we know that
the cosine function is an even function; (3) the signs of successive coefficients al-
ternate; and (4) there is a clear pattern in the coefficients involving factorials.

The graphs of these polynomials, as well as that of the cosine curve, are shown
in Figure 8.19. Note that each successive polynomial fits the cosine curve more ac-
curately over a larger and larger interval centered at You should examine
these successive approximations using your function grapher.

x � 0.

How could you improve on the sixth degree polynomial approximation to the co-
sine? By eye, over what interval does it appear to be a good fit to the cosine curve? ❐

Devise a scheme to reduce any value of x to an equivalent value that allows you to
use the smallest possible interval of x-values. How accurate is the fourth degree
Taylor polynomial on this interval (i.e., what is the largest error between the cosine
and the polynomial)? How accurate is the sixth degree polynomial? ❐

Approximating sin x and cos x Using Trigonometric Identities

We now approach the problem of approximating the sine and cosine from a different
viewpoint using several trigonometric identities. Recall the double-angle identity

from Equation (4a) of Section 8.1. If we let so that the expression
for becomes

When is close to 0, we have so that

Consequently we can approximate cos x by

cos x � 1 � 2 a
x

2
b

2

� 1 �
x2

2

sin a
x

2
b �

x

2
 .

sin u � u,u

cos x � 1 � 2 sin2 a
x

2
b � 1 � 2 c sin a

x

2
b d

2

.

cos 2u � cos x
x>2 � u,x � 2u

cos 2u � 1 � 2 sin2u

Think About This

Think About This
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FIGURE 8.20

when x is close to 0. Note that this approximation is identical to the quadratic Tay-
lor polynomial that we obtained previously by using data analysis techniques.

We now use the double-angle formula for the sine,

with so that which gives

(13)

We use the linear approximation for and the quadratic approximation
to get

Substituting these expressions into Equation (13), we obtain an approximation for
sin x that improves on 

This is a cubic function that approximates the sine function near but it is
slightly different from the third degree Taylor approximation, We
compare these two cubic approximations in the Problems at the end of this section.

Figure 8.20 shows the graph of this cubic along with the sine function on the
interval from to 3. The two curves seem almost identical for x between and
1; they are reasonably close between and and again between 1 and 2.5; but
they apparently begin to diverge farther from 0. Note how much better this cubic
function seems to approximate sin x than our linear approximation sin x � x.

�1�2.5
�1�3

sin x � x � x3>6.
x � 0,

 � x �
x3

8
 .

 sin x � 2 a
x

2
b a1 �

x2

8
b � x a1 �

x2

8
b

sin x � x:

sin a
x

2
b �

x

2
 and cos a

x

2
b � 1 �

1x>2 2 2

2
� 1 �

x2

8
.

cos x � 1 � x2>2
sin x � x

sin x � 2 sin a
x

2
b  cos a

x

2
 b .

x>2 � u,x � 2u

sin 2u � 2 sin u cos u

Check numerically on your calculator how close the cubic is to the sine function at
at and at ❐

We can continue this process to produce still better approximations to both
the cosine and the sine functions by using the same trigonometric identities.

x � 1.5.x � 1,x � 0.5,
Think About This
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For instance, using the double-angle formula and our new
approximation

we get

After some algebraic simplification, we eventually get

The two graphs in Figure 8.21 illustrate that this sixth degree polynomial is
an almost perfect match to the cosine function from about to about

It is quite accurate from about to about and from
about to about thereafter its accuracy diminishes. For comparison,
Figure 8.22 shows three graphs: the basic cosine curve, the initial quadratic ap-
proximation and this sixth degree polynomial approximation

The higher degree polynomial is clearly a much better fit. It follows the
bends of the cosine curve and stays close to it over a wider interval of x-values.
P61x 2 .

P21x 2 � 1 � x2>2,

x � 2;x � 1.5
x � �1.5x � �2x � 1.5.
x � �1.5

P61x 2

cos x � 1 �
x2

2
�

x4

32
�

x6

2048
 .

 � 1 � 2 c 1x>2 2 �
1x>2 2 3

8
d

2

.

 cos x � 1 � 2 sin2 a
x

2
b � 1 � 2 c sin a

x

2
b d

2

sin x � x �
x3

8
 ,

cos 2u � 1 � 2 sin2u
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y = P6(x)FIGURE 8.21

–4 –3 –2 –1 1 2 3 4

–1

1

x

y

y = cos x

y = P6(x)
y = P2(x)

FIGURE 8.22

gord.3896.08.pgs  4/24/03  10:12 AM  Page 563



564 CHAPTER 8 More About the Trigonometric Functions

–3.5 –1.5 –0.5 0.5 1.5 3.5

–1

1

x

y

y = sin x

x – y = x3

6

FIGURE 8.23

Approximating sin x and cos x Using Taylor Polynomials

We could continue this process to get better polynomial approximations to both sin
x and cos x by using the trigonometric identities to construct polynomials of still
higher degree. Unfortunately, each successive improvement is based on a series of ap-
proximations—we used to generate the approximation

and so on. The approximation errors in this process mount up and give less than the
best possible approximation at each successive stage. For instance, we first found

and then used it to find

Actually, as you will learn in calculus, the best possible cubic curve to approxi-
mate the sine curve near is the Taylor polynomial of degree 3.

It is identical to the cubic polynomial we obtained earlier based on fitting a
cubic function to a set of values of the sine function near 0. Figure 8.23 shows
the graph of this cubic and the underlying sine curve. Figure 8.24 shows the sine
curve and the two different cubic approximations: the Taylor approximation of
degree three, and the polynomial of degree three based on
the trig identities, Note that remains closer to the sine
curve over a wider interval than does. Note also that bends in such a
way that it remains very close to the sine curve over a relatively large portion of
its first arch.

T31x 2Q31x 2
T31x 2Q31x 2 � x � x3>8.

T31x 2 � x � x3>6,

sin x � x �
x3

6
� T31x 2 .

x � 0

sin x � x �
x3

8
� Q31x 2 .

sin x � x � T11x 2

cos x � 1 �
x2

2
 ,

sin x � x
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–3.5 –1.5 –0.5 0.5 1.5 3.5

–1

1

x

y

y = sin x

x – y = x3

8

x – y = x3

6

FIGURE 8.24

Use your function grapher to view what happens in a more dynamic way. In
particular, examine the three curves near to see that actually is closer to
the sine curve than is.

As a final note, let’s look at the ideas we have developed in this section from a
somewhat different perspective. Until now, we have interpreted Taylor polynomials
as a means of approximating one function by a polynomial. An alternative inter-
pretation is that we have been constructing a function (or a portion of a function)
from simpler functions. That is, we have been constructing the trigonometric
functions by using polynomials as the fundamental building blocks. More specifi-
cally, we have used linear combinations of power terms (i.e., sums of constant mul-
tiples of power terms) as these fundamental building blocks. This idea of using
linear combinations of basic mathematical elements to construct more complicat-
ed mathematical structures is a continuing theme throughout mathematics.

Q3

T3x � 0

Problems

1. Use the Taylor polynomial approximation to
of degree 2 to estimate the value of the

cosine function for 0.1, 0.2, 0.3, 0.4, 0.5, and
0.6. Compare each estimate to the correct value.

2. Use the values you calculated in Problem 1 to con-
struct a table that has a column containing the error
in the approximation (the difference between the
estimate and the correct value). Analyze the column
of errors. Do they appear to grow approximately
linearly? exponentially? quadratically? cubically?

3. Use the Taylor polynomial approximation to
of degree 3 to construct a table of esti-

mates for the values of the sine function when 
0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Calculate the errors and
analyze them the same way you did in Problem 2.

4. a. Construct a table containing Taylor polynomial
approximations of degrees and to

for 
p>6, p>4, p>3.

�p>6, 0,�p>4,x � �p>3,f 1x 2 � sin x
n � 3n � 1

x � 0,
f 1x 2 � sin x

x � 0,
f 1x 2 � cos x

b. Add 2 columns to the table, one for 
and another for to compare
the linear and cubic approximations to the cor-
rect value for each x.

c. Use your function grapher to graph 
What type of function does it appear

to be?
d. Use polynomial regression to find an appropri-

ate polynomial to fit the data values of
versus x.

e. Repeat part (c) with 

5. Construct a table of values of sin x for 
Use your calculator

to find the cubic polynomial that fits this set of sine
values. How close does it come to the cubic Taylor
polynomial approximation 

6. Use the Taylor polynomial approximation of de-
gree to to find a polynomial
approximation of degree to 
Is the result surprising? Explain.

g1x 2 � sin1�x 2 .n � 5
f 1x 2 � sin xn � 5

sin x � x � x3>6?

4p>25.�2p>25, . . . ,�3p>25,
�4p>25,x �

y � sin x � 1x � x3>6 2 .

sin x � x

sin x � x.
y �

sin x � 1x � x3>6 2 ,
sin x � x
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7. Use the Taylor polynomial approximation of degree
to to find a polynomial approx-

imation of degree to Graph
both and your approximation to it on the in-
terval from to Based on this graph, over
what interval does your polynomial seem to be a
good approximation to 

8. a. Use the Taylor polynomial approximation of de-
gree to to find a polynomial
approximation of degree to 

b. What do you get if you multiply the polynomial
approximation of degree to 
by the polynomial approximation of degree

to 
c. Graph and twice the product of the two ap-

proximations found in part (b). What do you
observe? Explain why.

9. Write the Taylor polynomial approximation of degree
3 to and the approximation of degree 4
to Square each expression and add
them. What do you get? What do you think will hap-
pen if you use higher degree approximations? Explain.

10. In the text, we used the double-angle identity
with to construct

the approximation

Instead, use the alternative form of the identity
and any lower degree poly-

nomials to find a different approximation to cos x.

11. Repeat Problem 10 with the third form of the double-
angle identity to construct still
another approximation formula for cos x.

12. The function is not defined at

a. Use values of 0.01, 0.001, 0.0001,
to investigate the behavior of this0.00001, . . . 

x � 0.1,

x � 0.
f 1x 2 � 1sin x 2 >x

cos 2u � 2 cos2u � 1

cos 2u � cos2u � sin2u

cos x � 1 �
x2

2
�

x4

32
�

x6

2048
 .

u � x>2cos 2u � 1 � 2 sin2u

g1x 2 � cos x.
f 1x 2 � sin x

h1x 2
g1x 2 � cos x?n � 4

f 1x 2 � sin xn � 3

h1x 2 � sin 2x.n � 5
f 1x 2 � sin xn � 5

g1x 2?

p.�p
g1x 2

g1x 2 � sin1x2 2 .n � 10
f 1x 2 � sin xn � 5

function close to What limiting value
does this function appear to approach?

b. Use the linear Taylor polynomial approximation
to sin x to explain why the limiting value you
found in part (a) appears to make sense.

13. In calculus, you will have to determine the value of

where is a very small quantity.

a. Estimate the value of this quotient by using lin-
ear approximations to both sine expressions.

b. Estimate the value of this quotient by using a cubic
approximation to both sin x and 

c. With the cubic approximation, suppose that 
is actually 0. What does the resulting expression
suggest?

14. The exponential function with base
is used extensively in mathemat-

ics and the sciences. As with the trig functions, its
values are calculated using Taylor polynomial 
approximations:

and so on. Use these and any further approxima-
tions that you need to approximate the values of

a.
b.
c. Use the given polynomials and any additional ap-

proximations to that you need to estimate the
value of e reasonably accurately. What degree
polynomial will produce two-decimal accuracy?
three-decimal accuracy? four-decimal accuracy?

ex

e�0.1
e0.1

 ex � 1 � x �
x2

2!
�

x3

3!
 ,

 ex � 1 � x �
x2

2!
 ,

 ex � 1 � x,

e � 2.71828 . . . 
f 1x 2 � ex

�x
sin1x � �x 2 .

�x

sin1x � �x 2 � sin x

�x
 ,

x � 0.

Properties of Complex Numbers

One of the most amazing developments in the history of mathematics was the in-
troduction of complex numbers to solve quadratic equations. For example, if

then so that and the two roots are
and where Similarly, from the quadratic formula, the

roots of are

x �
�1�2 2 � 21�2 2 2 � 4110 2

2
�

2 � 2�36

2
�

2 � 16i 2
2

� 1 � 3i,

x2 � 2x � 10 � 0
i �  1�1.x � �2i,x � 2i

x � �1�4 � �2i,x2 � �4,x2 � 4 � 0,

8.3
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or and 
In our exploration of the nature of the roots of polynomials in Section 4.4, we

demonstrated that quadratic, cubic, and higher degree polynomials have a surpris-
ingly high proportion of complex zeros. We now develop a way to visualize com-
plex numbers that gives a deeper understanding of the processes that lead to such
polynomial equations.

Any complex number is composed of two parts, a real part, a, and
an imaginary part, b. For instance, in the real part is 4 and the imagi-
nary part is 7. We occasionally write and respectively. Note
that a and b are both real numbers; it is the combination that is a complex
number. In the special case when the complex number reduces
to a real number. In another special case where the complex number z reduces
to a pure imaginary number, bi.

The arithmetic of complex numbers, for the most part, is quite straightfor-
ward, and we review it briefly in Appendix E. Because it follows that

In fact, all higher powers of i simply cycle through the four “values” i, and 1.
That is, and so on.

Visualizing complex numbers geometrically is extremely helpful. We do so by
using the complex plane, which is a two-dimensional coordinate system designed to
display a complex number We measure the real part a horizontally and
the imaginary part b vertically. In Figure 8.25 we plot the complex number 
Note that it lies 2 units to the right and 5 units up from the origin. Similarly, the com-
plex numbers and are also plotted in Figure 8.25. Any purely real
number, such as 4 (which is ) or (which is ), lies on the horizon-
tal axis. Any purely imaginary number, such as 4i (which is ) or (which is

) lies on the vertical axis.0 � 3i
�3i0 � 4i

�6 � 0i�64 � 0i
�2 � i1 � 3i,

z � 2 � 5i.
z � a � bi.

i 
9 � i 

5 � i,i 
8 � i 

4 � 1,i 
7 � i 

3 � �i,i 
6 � i 

2 � �1,
�i,�1,

 i 
5 � 1i 

4 2 1i 2 � 11i 2 � i.

 i 
4 � 1i 

2 2 1i 
2 2 � 1�1 2 1�1 2 � 1

 i 
3 � 1i 

2 2 1i 2 � 1�1 2 1i 2 � �i

 i 
2 � 12�1 2 2 � �1

i � 1�1 ,

a � 0,
z � a � bib � 0,

a � bi
b � Im1z 2 ,a � Re1z 2

z � 4 � 7i,
z � a � bi

x � 1 � 3i.x � 1 � 3i

–3

0

1

5

–2 1 2
Re

Im

–2 + i

2 + 5i

4i

1 – 3iFIGURE 8.25

Suppose that is an arbitrary complex number that we plot as a
point in the complex plane. We connect the point to the origin with a line segment,
which is the hypotenuse of a right triangle, as shown in Figure 8.26. The base of the

z � a � bi
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Re

Im

b = Im(z)

a = Re(z)

‖z‖ = √a2 + b2

z = a + bi

0

θ

FIGURE 8.26

triangle is a, the real part of z, and the height of the triangle is b, the size of the
imaginary part of z. The Pythagorean theorem gives the length of the hypotenuse as

which we interpret as the size of the complex number We
call it the modulus of the complex number and write it as

7 z 7 � 2a2 � b2
 .

z � a � bi.1a2 � b2,

For instance, if then its modulus is

The complex numbers and all have the same modulus
of 5. Sketch them to verify that this is indeed the case.

Are there any other points in the complex plane that also have a modulus of 5?
What can you say about all such complex numbers? ❐

We again consider the complex number and the associated right
triangle in the complex plane. We now focus on the angle shown in Figure 8.26.
By convention, is measured counterclockwise from the horizontal, or real, axis.
Thus

We also have the two further relations

which lead to

Consequently, we can write the original complex number z in the equivalent
trigonometric form

 � 7 z 7 1cos u � i sin u 2 .
 z � a � bi � 7 z 7 cos u � i 7 z 7 sin u

a � 7 z 7  cos u and  b � 7 z 7  sin u.

cos u �
a

7 z 7
 and sin u �

b

7 z 7
 ,

tan u �
b
a

 .

u

u

z � a � bi

Think About This

�4 � 3i�4 � 3i,4 � 3i,

7 z 7 � 242 � 32 � 225 � 5.

z � 4 � 3i,
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The trigonometric form for the complex number is

where

7 z 7 � 2a2 � b2 and tan u �
b
a

 , a � 0.

z � 7 z 7 1cos u � i sin u 2 ,

z � a � bi

EXAMPLE 1
Find the trigonometric form for the complex number 

Solution For we have so that

where so that radian or 

�

Use the value for the angle in Example 1 to show that the trigonometric form for
the complex number z is identical to the original expression ❐

Powers of Complex Numbers

The trigonometric form for a complex number allows us to interpret z
as being located at a certain distance, the modulus, from the origin and rotated
through an angle from the horizontal. This model gives us a way to gain some
special insights into powers of complex numbers.

EXAMPLE 2
For (a) find algebraically and (b) interpret geometrically in the com-
plex plane.

Solution

a. If

This algebraic result provides no special insight into how is related to z.

b. We look at the trigonometric form for The modulus is and the
associated angle is radians, or as in Example 1.
Now consider the trigonometric form for Its modulus is

which is the square of the modulus of the original complex number z. Next, the angle
associated with is defined by

tan f �
24

7
 so that f � arctan 

24

7
� 1.2870 radians or 73.74°,

z2f

7 z2 7 � 272 � 242 � 249 � 576 � 2625 � 25,

z2.
36.87°,u � arctan13>4 2 � 0.6435

7 z 7 � 5,z � 4 � 3i.

z2

 � 7 � 24i.

i2 � �1 � 16 � 24i � 9

 � 16 � 24i � 91i2 2
1u � v 2 2 � u2 � 2uv � v2 z2 � 14 � 3i 2 2 � 42 � 214 2 13i 2 � 13i 2 2

z � 4 � 3i,

z2z2z � 4 � 3i,

u

z � a � bi

4 � 3i.
uThink About This

36.87°.u � arctan 3>4 � 0.6435tan u � 3>4,

z � 4 � 3i � 51cos u � i sin u 2 ,

7 z 7 � 5,z � 4 � 3i,

z � 4 � 3i.
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Re

Im

z

z2

0 36.87°

73.74°

25

5

FIGURE 8.27

which is exactly twice the angle ( radians or ) associated with z, as il-
lustrated in Figure 8.27.

36.87°�0.6435u

�

For this particular complex number is related to z by the
process of squaring the modulus and doubling the angle. Does this rule hold in
general? Let’s look at two other simple cases.

EXAMPLE 3
Find the modulus and angle associated with and relate them to the modulus
and angle associated with 

Solution We know that is located at a distance of from the
origin with an associated angle of measured in the usual positive direction
from the horizontal axis. We now consider which is

This complex number has modulus 4 and associated angle because it is on the nega-
tive real axis. That is, the modulus of is the square of the modulus of
and the associated angle is twice the angle associated with 

�

EXAMPLE 4
Find the modulus and angle associated with where and relate
them to the corresponding modulus and angle for z.

Solution For the modulus is

and the associated angle is Further,

so the square of the modulus of z. The associated angle is or dou-
ble the angle associated with z. So, again, when we square a complex number, the modu-
lus is squared and the angle is doubled.

�

p>2,7 z2 7 � 24 � 2,

z2 � 11 � i 2 2 � 1 � 2i � i2 � 1 � 2i � 1 � 2i,

u � p>4.

7 z 7 � 212 � 12 � 22 ,

z � 1 � i,

z � 1 � i,z2 � 11 � i 2 2,

z � 2i.p>2p

z � 2i,z2 � 12i 2 2
p

z2 � 4i2 � �4 � �4 � 0i.

z2 � 12i 2 2,
u � p>2

7 z 7 � 2z � 2i � 0 � 2i

z � 2i.
z2 � 12i 2 2

z2z � 4 � 3i,
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8.3 Properties of Complex Numbers 571

Let’s now consider any complex number in the equivalent trigono-
metric form

Squaring z gives

Using and collecting the real and imaginary terms yields

Now recall the double-angle identities:

Examining the real part of the previous expression for we see that it equals 
whereas the imaginary part equals Thus we have

Geometrically, squaring any complex number always produces a new complex num-
ber whose modulus is the square of the original modulus and whose angle is double
the original angle. If the modulus of the original number is greater than 1, is a
“larger” complex number, as shown in Figure 8.28(a). If is smaller than 1,
is a “smaller” complex number, as shown in Figure 8.28(b).

z27 z 7
z2

z2 � 7 z 7 2 1cos 2u � i sin 2u 2 .

sin 2u.
cos 2u,z2,

 sin 2u � 2 sin u cos u.

 cos 2u � cos2u � sin2u

z2 � 7 z 7 2 3 1cos2u � sin2u 2 � 2i cos u sin u 4 .

i2 � �1

 � 7 z 7 2 1cos2u � 2i cos u sin u � i 
2 sin2u 2 .

 z2 � 7 z 7 2 1cos u � i sin u 2 2

z � 7 z 7 1cos u � i sin u 2 .

z � a � bi

Re

Im

(a)

‖z‖2

‖z‖ > 1

z2

z = a + bi

0

θ

θ2

FIGURE 8.28

Re

Im

(b)

‖z‖2

‖z‖ < 1

z2
z = a + bi

0

θ

θ2

What about other powers of Is there any pattern for when 

EXAMPLE 5
Find the modulus and angle associated with when 

Solution The complex number is located at a distance of 2 from the origin and
at an angle of Now consider

It is located at a distance of 8 from the origin and is rotated through an angle of
which is triple Thus the modulus of is the cube of the modulus of 2i, and the
associated angle is three times the angle associated with 2i.

�
p>23p>2

12i 2 3p>2.
3p>2,

z 3 � 12i 2 3 � 8i 
3 � �8i � 0 � 8i.

p>2.
z � 2i

z � 2i.z3

n 	 2?znz � a � bi?
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Re

Im

(a)

‖z‖3

‖z‖ > 1
z3

z = a + bi

0
θ

θ3

FIGURE 8.29A

Let’s find out whether the same pattern holds when we cube any complex
number We do so by using the trigonometric form. Because

we have

Using and collecting the real and imaginary terms, we get

We now use the sum identities

with and to get

Thus cubing any complex number always results in cubing the modulus and
tripling the rotation of the original complex number. It either “lengthens” the com-
plex number if the original modulus is greater than 1, as illustrated in Figure 8.29(a),
or “contracts” it if the modulus is less than 1, as illustrated in Figure 8.29(b). If the
modulus equals 1 and all that happens is a rotation.u � 0,

 � 7 z 7 31cos 3u � i sin 3u 2 .
 z3 � 7 z 7 3 3cos 12u � u 2 � i sin12u � u 2 4

y � ux � 2u

 sin1x � y 2 � sin x cos y � cos x sin y

 cos1x � y 2 � cos x cos y � sin x sin y

z3 � 7 z 7 3 3 1cos 2u cos u � sin 2u sin u 2 � i1cos 2u sin u � sin 2u cos u 2 4 .

i2 � �1

 � 7 z 7 3 3cos 2u cos u � i cos 2u sin u � i sin 2u cos u � i 
2sin 2u sin u 4 .

 � 3 7 z 7 21cos 2u � i sin 2u 2 4  3 7 z 7 1cos u � i sin u 2 4
 z3 � z21z 2

z2 � 7 z 7 21cos 2u � i sin 2u 2 ,

z � a � bi.

Re

Im

(b)

‖z‖3

‖z‖ < 1

z3

z = a + bi

0
θ

θ3

FIGURE 8.29B

In the Problems at the end of this section, we ask you to show that

and that, in general for any positive integer power n,

 � 7 z 7 n 1cos nu � i sin nu 2 .
 � 7 z 7 n 1cos u � i sin u 2n

 zn � zn�11z 2

z4 � z31z 2 � 7 z 7 4 3cos 4u � i sin 4u 4
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This important and extremely useful result is known as DeMoivre’s theorem after
French mathematician Abraham DeMoivre who first discovered it.

DeMoivre’s Theorem
If

then

for any positive integer n.

zn � 7 z 7 n1cos nu � i sin nu 2

z � a � bi � 7 z 7 1cos u � i sin u 2

Complex Conjugates

We know that complex numbers occur in complex conjugate pairs, such as
when we use the quadratic formula. If is

any complex number, we write its conjugate as which is shown geo-
metrically in Figure 8.30. Clearly, z and have the same modulus, so

Also, if the angle associated with z is the angle associated with is �u.zu,7 z 7 � 7 z 7 .
1a2 � b2

 ,z
z � a � bi,

z � a � biz � 3 � 5i and z � 3 � 5i

Re

Im

‖z‖

‖z‖

θ

θ–

a

b

–b

θ θ
z = a + bi
   = ‖z‖(cos    + isin   )

θ θ
z = a − bi
   = ‖z‖(cos    − isin   )FIGURE 8.30

Using the reflection identities

we find that

Applying DeMoivre’s theorem to gives

A simple extension of these ideas provides a way of visualizing both the prod-
uct and the quotient of any two complex numbers. We explore this approach in the
Problems at the end of this section.

 � 7 z 7 n 1cos nu � i sin nu 2 .
 1  z 2n � 7 z 7 n 1cos u � i sin u 2n

z

z � a � bi � 7 z 7 3cos 1�u 2 � i sin 1�u 2 4 � 7 z 7 1cos u � i sin u 2 .

cos 1�u 2 � cos u and sin1�u 2 � �sin u,
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Problems

In Problems 1–9, find the modulus and the associated
angle for each complex number.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10–18. Find the trigonometric form for each complex
number in Problems 1–9.

19–22. For each complex number in Problems 1–4,
find algebraically.

23–31 For each complex number in Problems 1–9,
find by using DeMoivre’s theorem.

32–35. For each complex number in Problems 1–4,
find algebraically.

36–44. For each complex number in Problems 1–9,
find by using DeMoivre’s theorem.

45. For calculate and plot for 1,
2, 3, and 4.

46. Repeat Problem 45 for What differ-
ence do you observe about the behavior of the two
sets of points?

47. Show that for
any complex number z.

48. Prove DeMoivre’s theorem for any integer power n:

Hint: Write and assume that

49. Suppose that you have two complex numbers
and 

a. What is the product of z and w algebraically?
b. What is the product of z and w using the

trigonometric forms of z and w?

w � c � di.z � a � bi

zn�1 � 7 z 7 n�1 3cos1 1n � 1 2u 2 � i sin1 1n � 1 2u 2 4 .
zn � zn�1 . z

zn � 7 z 7 n 1cos nu � i sin nu 2 .

z4 � z3 . z � 7 z 7 41cos 4u � i sin 4u 2

z � 0.6 � 0.8i.

n � 0,zn,z � 1 � 2i,

z3

z3

z2

z2

z � �8 � 23 i

z � 3 � 28 i

z � �5 � 7i

z � 8 � 3i

z � 64 � 36i

z � �15 � 20i

z � 12 � 5i

z � 5 � 12i

z � 4 � 3i

c. Hypothesize and prove an extension of DeMoivre’s
theorem that will allow you to multiply any two
complex numbers in trigonometric form. (Hint:
Your extension should reduce to DeMoivre’s theo-
rem for when )

d. Apply the rule that you discovered in part (b) to
find the product of
i.

ii.

50. a. Hypothesize an extension of DeMoivre’s theo-
rem that will allow you to divide one complex
number by another in trigonometric form.

b. Apply the rule that you proposed in part (a) to
find the quotient of
i.

ii.

51. a. Hypothesize an extension of DeMoivre’s theo-
rem that will allow you to determine the square
root of a complex number z.

b. Apply the rule that you proposed in part (a) to
find the square root of

c. Algebraically square the complex number that
you obtained in part (b) to verify that it actually is
the square root of the original number in part (a).

d. Can you hypothesize a further extension of
DeMoivre’s theorem to extract any desired root
of a complex number? any desired rational
power of a complex number? Explain.

52. A negative real number can be thought of as being
produced by rotating the corresponding positive
real number (which is located on the horizontal
axis) through an angle in the complex plane. Use
this interpretation to explain why the product of
two negative numbers is positive.

53. Show that, for any pair of complex conjugates
and z # z � 7 z 7 2.z � a � bi,z � a � bi

p

z �
1

2
�
23

2
 i.

z �
1

2
�
23

2
 i and w �

23

2
�

1

2
 i.

z � 1 � 2i and w � 1 � 2i

z �
1

2
�
23

2
 i and w �

23

2
�

1

2
 i.

z � 1 � 2i and w � 1 � 2i

w � z.z2

The Road to Chaos

In this section we investigate some fascinating results that arise from iteration process-
es applied to complex numbers. Let’s begin with any complex number in trigonomet-
ric form—say, )—and square it to produce Usingz1 � z0ˇ

2
 .z0 � 7 z0 7 1cos u � i sin u

8.4
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8.4 The Road to Chaos 575

DeMoivre’s theorem, we know that the geometric result is a complex number whose
associated angle is and whose modulus is Recall that, if we get a ro-
tation and an expansion to a “larger” complex number; if we get a rotation
and a contraction to a “smaller” complex number; if we get only a rotation.

Suppose that we next square to produce If we get a
further rotation (to the angle ) and a further expansion. If
we get the same further rotation (to ) and a further contraction. If we
get only the rotation (to ).

What happens if we continue this process indefinitely to produce a sequence of
complex numbers The geometric behavior of
the terms of this sequence can be predicted easily by extending the reasoning we
just used. If the modulus of the initial value is greater than 1, each successive it-
erate is farther from the origin in the complex plane, at a larger angle, and the se-
quence clearly diverges in a counterclockwise spiral pattern for as shown in
Figure 8.31(a). If each successive term is closer to the origin; the succes-
sive iterates converge to 0 in a counterclockwise spiral pattern as each one is a fur-
ther rotation of the original angle as shown in Figure 8.31(b). Finally, if

all successive iterates fall on the boundary of the unit circle centered at
the origin in the complex plane.
7 z0 7 � 1,

u 	 0,

7 z0 7 
 1,
u 	 0,

z0

z3 � z2ˇ

2
 , . . . ?z2 � z1ˇ

2
 ,z1 � z0ˇ

2
 ,z0 ,

4u
7 z0 7 � 1,4u
7 z0 7 
 1,2 � 2u � 4u

7 z0 7 	 1,z2 � z1ˇ

2 � z0ˇ

4
 .z1

7 z0 7 � 1,
7 z0 7 
 1,

7 z0 7 	 1,7 z0 7
2.2u

Re

Im

z0

z1

z2
z3

‖z0‖ > 1

(a)

θ

θ

2

θ4

θ8

FIGURE 8.31A

Re

Im

z0

z1z2

z3

‖z0‖ < 1

(b)

FIGURE 8.31B

The Julia Set

Let’s focus on the possible initial values for Any initial point inside the unit cir-
cle starts a sequence that spirals in to the origin; any initial point on the circle itself
starts a sequence that remains on the unit circle; and any initial point outside the
unit circle starts a sequence that spirals away toward infinity.

We can display this graphically in the following way. Visualize the unit circle
centered at the origin in the complex plane, as shown in Figure 8.32. The circle is
drawn in heavy black, the interior is shaded, and the region outside the circle is un-
shaded. Think of the unshaded region as indicating any point that begins a se-
quence that diverges, the shaded region as indicating those initial points for which
the sequence converges to 0, and the black as indicating those initial points for
which the sequence remains on the circle forever. The set of initial points for which
the resulting sequences do not diverge to infinity is known as the Julia set associat-
ed with the function (It is named after French mathematician Gastonf 1z 2 � z2.

z0 .
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Re

Im

1

1

FIGURE 8.32

Julia, who discovered the properties of these sets in the 1920s.) The Julia set associ-
ated with consists of the unit circle and all points inside it.f 1z 2 � z2

A relatively small change in what we have just done puts us on the road to
chaos. Instead of using let’s see what happens if we use 
where C is any constant, either real or complex. (You may want to think of this as a
family of functions for different values of C.) We take so
that We now consider a variety
of cases with different values for C and with different starting values 

Let’s begin with If the initial value is 

and the sequence clearly diverges. Using the same with some other starting
values, we get

if

if

if

All three sequences seem to diverge to infinity. Of course, we can’t reach such a
conclusion based on just a few examples; they can, at best, suggest what may
happen.

Let’s use DeMoivre’s theorem to analyze the behavior of the successive iterates.
Suppose that is any initial value inside the unit circle, so its modulus is less than
1. When we square it, the modulus for is smaller still. However, when we add 2
to it, the point is shifted 2 units to the right, so that must be outside and to the
right of the unit circle.

Now suppose that (or some subsequent iterate) is outside the unit circle. Its
modulus is greater than 1, so the modulus for is larger still. When we add 2 to it,
the point is again shifted 2 units to the right. For almost all possible values of
the resulting will be outside the unit circle.

There are some exceptions—say, so that

z1 � 11.1i 2 2 � 2 � �1.21 � 2 � 0.79.

z0 � 1.1i
z1

z0 ,
z0ˇ

2
z0

z1

z0ˇ

2
z0

 z3 � 48.059 � 12.10i . . .  z2 � 6.844 � 0.884i, then z1 � 2.21 � 0.2i, z0 � 0.5 � 0.2i,

 z3 � �58 � 32i, . . . ; z2 � 2 � 8i, then z1 � 2 � 2i, z0 � 1 � i,

 z3 � 39.9653, . . . ; z2 � 6.1616, then z1 � 2.04, z0 � 0.2,

C � 2

 z3 � z2ˇ

2 � C � 1232 � 2 � 15,131, . . . ,

 z2 � z1ˇ

2 � C � 121 � 2 � 123,

 z1 � z0ˇ

2 � C � 9 � 2 � 11,

z0 � 3,C � 2.
z0 .

z3 � f 1z2 2 � z2ˇ

2 � C, . . . z2 � f 1z1 2 � z1ˇ

2 � C,
z1 � f 1z0 2 � z0ˇ

2 � C,

f 1z 2 � z2 � C,f 1z 2 � z2,

gord.3896.08.pgs  4/24/03  10:12 AM  Page 576



8.4 The Road to Chaos 577

However, it can be shown that, eventually all subsequent iterates will land outside
the circle and ultimately diverge to infinity. (Because each iteration involves a rota-
tion, at some stage one of the successive iterates will eventually land near the hori-
zontal axis to the right and the following iterate will be outside and to the right of
the unit circle.) Thus it turns out that, with for every initial point
in the complex plane, the resulting sequence diverges. The Julia set associated with
the function when will be completely empty because all
initial points give rise to sequences that eventually diverge. Our diagram of this
Julia set will be entirely unshaded because there are no initial points that start con-
vergent sequences.

Similarly, if all sequences will diverge regardless of the initial value for
The additive constant 2i results in a shift upward of 2 units in the imaginary di-

rection. Pick several initial values for (real, imaginary, or complex) and see what
happens when you calculate the successive iterates.

However, if and we start with we obtain

The sequence apparently converges to some point in the complex plane.
Unfortunately, repeating this process for every possible starting value is not

practical. Instead, we use a computer to perform such calculations for a large num-
ber of points in a grid to give a representative picture of what happens. As with the
previous cases, we leave any initial point that starts a sequence that diverges to in-
finity unmarked to become part of the unshaded region. We put a small dot at any
initial point that starts a sequence that converges to some point in the complex
plane so that it will be part of the shaded Julia set.

The resulting picture of the Julia set for the function is
shown in Figure 8.33.

f 1z 2 � z2 � 0.2i

z0

 z5 � �0.0296 � 0.2006i;  z9 � �0.0341 � 0.1876i.

 z4 � 0.0017 � 0.1720i;   z8 � �0.0332 � 0.1875i.

 z3 � �0.1220 � 0.1147i;   z7 � �0.0338 � 0.1852i;

 z2 � �0.1159 � 0.368i;   z6 � �0.0394 � 0.1881i;

 z1 � 10.5 � 0.2i 2 2 � 0.2i � 0.21 � 0.4i; 

z0 � 0.5 � 0.2i,C � 0.2i

z0

z0 .
C � 2i,

C � 2,f 1z 2 � z2 � C,

f 1z 2 � z2 � 2,

FIGURE 8.33
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FIGURE 8.34

FIGURE 8.35

This picture does not indicate the limits of any of the sequences; it shows only
those points that start sequences that have limits. Typically, if you take points in the
interior of the shaded region, it turns out that nearby starting points tend to converge
to limits that are relatively close to one another. However, if you take points near the
boundary, very different results can occur. Initial points that are extremely close to-
gether can produce sequences that converge to radically different limits. The result is
an instance of mathematical chaos because the behavior has no predictable patterns.
Points that are very close together, provided that they are both near the boundary of
the Julia set, may well lead to sequences that behave very differently. If you were to
zoom in on the portion of the Julia set near these boundaries, you would see an ever
more intricate design illustrating how nearby points can start sequences that either
diverge or converge. They occur in a totally chaotic and unpredictable manner.

A striking illustration of this outcome is shown in Figure 8.34, which is the Julia
set corresponding to Note how intricate the boundary appears.
Figure 8.35 shows the result of zooming in on the upper left corner of the Julia set
shown in Figure 8.34. Observe how roughly similar patterns repeat; this kind of rep-
etition is typical of what happens when you zoom in repeatedly on Julia sets associ-
ated with most values for C. Also, note how much more jagged the boundary looks
as more details appear in the magnified image in Figure 8.35, which also is typical.

C � �0.2 � 0.7i.

gord.3896.08.pgs  4/24/03  10:12 AM  Page 578



8.4 The Road to Chaos 579

The Julia set associated with a complex constant C can be far more intricate than
we have shown so far; it can, for instance, consist of a large variety of disconnected
pieces. It may even consist of nothing but a collection of isolated points like a set of dust
particles. You may want to experiment with some of these ideas yourself, using any of
the many computer programs available for displaying Julia sets for iterated functions.

The Mandelbrot Set

There is a completely different way of looking at these ideas. In the discussion of
Julia sets, we considered the function selected a particular value
for C, and then examined points in the complex plane as starting points for iter-
ated sequences. Now let’s reverse this.

Suppose instead that we select a particular starting point and examine the ef-
fects of using different values for the complex constant C in Thus
our view of the complex plane has shifted—it now represents all different constants
rather than all different starting points. In particular, suppose that we select as
the starting point for all sequences. Then, for any constant C,

and so on. Clearly, if C is large (far from the origin in the
complex plane), all successive iterates will be larger still and the successive points of
the sequence will diverge. However, if C is fairly small, the successive iterates may re-
main close to the origin and the sequence may converge to some finite complex value.

The Julia set associated with the function consists of all initial
points for which the sequences converge for a given constant C. Similarly, the
Mandelbrot set associated with the function (named after French
mathematician Benoit Mandelbrot) consists of all constants C for which the se-
quences starting from fail to diverge. For this initial point the Man-
delbrot set illustrated in Figure 8.36 shows those constants C for which the
corresponding sequences remain close to the origin. As with a Julia set, the bound-
ary of the Mandelbrot set is an incredibly intricate structure. If you zoom in on it,
as shown in Figure 8.37, you will see remarkable shapes with no predictable pat-
terns; however, the original overall shape shown in Figure 8.36 appears to repeat at
all levels of magnification. The main heart-shaped portion of the Mandelbrot set is
called a cardioid, which we discuss in Chapter 9; the portion to the left of the car-
dioid is actually a circle.

z0 � 0,z0 � 0

f 1z 2 � z2 � C
z0

f 1z 2 � z2 � C

z2 � z1ˇ

2 � C � C2 � C,
z1 � 02 � C � C,

z0 � 0

f 1z 2 � z2 � C.
z0

z0

f 1z 2 � z2 � C,

FIGURE 8.36
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FIGURE 8.37A

FIGURE 8.37B

FIGURE 8.37C
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8.4 The Road to Chaos 581

These displays show the Mandelbrot set with different shadings to indicate
how quickly different sequences diverge from the starting value When dif-
ferent colors are used, the results are even more dramatic. You may want to exam-
ine the Mandelbrot set, using one of the programs available for displaying it. All
such programs allow you to see the details at different levels of magnification as
you zoom in on the boundary. In theory, there is no limit to the degree of com-
plexity of the boundary. Such a shape is known as a fractal.

Many shareware programs are available (one of the most popular is called
FracInt) that will let you investigate both Julia and Mandelbrot sets. This subject is
one of the most exciting areas of current mathematical research, and many new
and important theorems have been proven in the last few years. These ideas have
also formed the basis for many of the computer graphics images that you have un-
doubtedly seen in today’s movies.

z0 � 0.

Problems

1. a. Use the quadratic formula to find a condition on
those values of C for which the sequence of iter-
ates has a real limiting value.

b. Verify your condition in part (a) by using
starting with and performing

enough iterations to see the eventual behavior.
c. Repeat part (b), using 

2. a. What is the limiting value you expect if
for the sequence of function iterations based on

b. Start the iteration process at 
and perform enough iterations to verify that the
process seems to be converging to your answer
for part (a).

c. Start the iteration process at and per-
form enough iterations to determine the eventu-
al behavior of the sequence of iterates. How
could you have anticipated the result without
performing the actual calculations?

3. You can think of the iteration scheme for
as the difference equation

What are the equilibrium
levels for the solutions to the difference equation?
Under what conditions on C will the equilibrium
values be real?

xn�1 � f 1xn 2 � xnˇ

2 � C.
x � f 1x 2 � x2 � C

x0 � 1 � i

x0 � 0.5 � 0.5i
x � f 1x 2 � x2 � C ?

C � 1>4
C � 0.4.

x0 � 0.5C � 0.1,

x � f 1x 2 � x2 � C

4. Explain graphically the significance of C in deter-
mining whether the iteration process based on

has a real limiting value by
looking at the graphs of and 

5. Explain graphically why the iteration process based
on the function must have at
least one real limiting value.

6. Consider iterations based on the function

a. Begin the iteration process at and per-
form enough iterations to allow you to recognize
the limit of the resulting sequence.

b. Repeat part (a), starting with 
c. Repeat part (a), starting with How does

the limiting value compare to 
d. Repeat part (c), starting with 
e. Based on the function f, explain why all limits

will be some multiple of

7. Consider iterations based on the function
Predict the possible values that

can arise for the limits based on the function f. Ver-
ify whether your predictions are correct if you start
with initial values 3, 7, and �12.x0 � 1,

f 1x 2 � x � cos x.
x � f 1x 2

p.

x0 � 15.
p?
x0 � 8.

x0 � 5.

x0 � 2

f 1x 2 � x � sin x.
x � f 1x 2

x � f 1x 2 � x3 � C

y � x.y � x2 � C
x � f 1x 2 � x2 � C

Chapter Summary

In this chapter, we continued our discussion of trigometric functions. In
particular, we discussed the following:

� The fundamental identities that relate the sine and cosine functions.

� Some identities involving the tangent function.

� How to approximate the sine and cosine functions with polynomial functions.
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582 CHAPTER 8 More About the Trigonometric Functions

� How the accuracy of a polynomial approximation depends on the degree of
the polynomial.

� How to convert a complex number to its equivalent trigonometric form.

� How to construct powers of complex numbers with DeMoivre’s theorem.

� The Julia set that is associated with a function and the idea of chaos.

� The Mandelbrot set that is associated with a function f 1z 2 .
f 1z 2

Review Problems

Determine graphically which of the relationships in
Problems 1–9 might be identities and which clearly are
not identities. For those that appear to be identities,
prove them algebraically.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. Prove each identity.

a.
b.

11. Use the Taylor polynomial approximation of degree
for the sine function to estimate the value of

the function at Sketch the
graph of the function and the approximating poly-
nomial on the same set of axes.

12. Repeat Problem 11 with degree Discuss any
differences you observe.

13. You know that and
when x is reasonably

close to 0, so should be fairly3T31x 2 4
2 � 3T21x 2 4

2
cos x � T21x 2 � 1 � x2>2

sin x � T31x 2 � x � x3>6

n � 5.

x � 0.2.f 1x 2 � sin 3x
n � 3

sin1x � y 2 � sin1x � y 2 � 2 sin x cos y
cos1x � y 2 � cos1x � y 2 � 2 cos x cos y

cos6u � sin6u � cos 2u

cos4u � sin4u � cos 2u

1

1 � cos t
�

1

1 � cos t
�

2

sin2t

sin u

1 � cos u
�

cos u

sin u
�

1

sin u

1sin x � cos x 2 2 � 1 � sin 2x

sin x cos2x � sin3x � sin2x

sin x cos2x � sin3x � cos2x

sin x cos2x � sin3x � sin x

sin x cos2x � sin3x � cos x

close to 1. Using your function grapher, estimate
how far the expression is from
1 for any value of x between and 1 radian.

14. a. Convert the complex numbers 
and to trigonometric form.

b. Use the results from part (a) to find 
and 

15. A complex number z has modulus 3 and an associ-
ated angle of

a. Write the complex number in trigonometric form.
b. Write the complex number in the usual form

c. Find the fifth power of this complex number z.
d. Find the square root of this complex number z.

Use your function grapher to estimate the period for
each function. Express your answers as multiples of

16.

17.

18.

19.

20.

21.

22. Based on your answers to Problems 16–21, conjec-
ture a general rule for the period of the function

for any m and n.f 1x 2 � sin mx � cos nx,

f 1x 2 � sin 3x � cos a
1

2
 xb

f 1x 2 � sin a
1

2
 xb � cos 2x

f 1x 2 � sin 2x � cos 4x

f 1x 2 � sin 4x � cos 2x

f 1x 2 � sin 3x � cos 4x

f 1x 2 � sin 3x � cos 2x

p.

z � a � bi.

52°.

w>z.
z>w,z . w,

w � 5 � 2i
z � �6 � 8i

�1
3T31x 2 4

2 � 3T21x 2 4
2
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