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Extended Families
of Functions

4.1 - Introduction to Polynomial Functions

Stock price

Samantha has been keeping track of the price of the stock of HyperTech Corpora-
tion since her grandmother gave her several shares as a gift. She has plotted the
stock values, as shown in Figure 4.1, and wants to construct a mathematical model
that represents the price of the stock. Clearly, a linear function, an exponential
function, a power function, or a logarithmic function is not a reasonable candidate
because none have this kind of behavior pattern. To better capture the trend in the
stock prices, Samantha needs a function that changes both its direction and its
concavity, as illustrated in Figure 4.2.

Note that the graph increases, then decreases, and finally increases again. Thus,
the graph has two turning points, one at the local maximum point and the other at
the local minimum point. Also, the curve initially is concave down and then is con-
cave up, so the graph has one point of inflection, where the concavity changes.

In this section, we introduce a new family of functions, the polynomial func-
tions, that possess this type of more complicated behavior. A polynomial function,
or polynomial, is any finite sum of power functions with nonnegative integer
powers. For instance,

y = 3x — 5; (1)

Stock price

FIGURE 4.1

Time Time

FIGURE 4.2
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y=6x"+x—7 2)
y =6+ 8x — 3x% 3)
y = 4x> 4+ 5x* — 7x + 125 4)
y=10x* — 7x°> + 3 (5)

are all polynomials.

The degree of a polynomial is the highest power of the variable present.
Hence, the degree of Polynomial (1) is 1, the degree of Polynomials (2) and (3) is 2,
the degree of Polynomial (4) is 3, and the degree of Polynomial (5) is 8.

The constant multiples in each term in any polynomial are called its coefficients.
In particular, the coefficient of the highest power term is the leading coefficient.
Thus, in Polynomial (1), the coefficients are 3 and —5 and the leading coefficient is 3;
in Polynomial (2), the coefficients are 6, 1, and —7 and the leading coefficient is 6.
Note that, in Polynomial (3), the leading coefficient is —3 (it is not necessarily the
first coefficient). As we show in Section 4.2, the sign of the leading coefficient
determines the overall behavior of the polynomial.

Another way to describe a polynomial is to say that it is a linear combination of
power functions because, as we noted, it is made up of a sum of power functions.
In this sense, power functions are the basic building blocks we use to construct any
polynomial.

If a polynomial has degree 1, it is a linear function of the form, y = ax + b,
where a and b are constants and a # 0. Its graph is a line with slope m = a and
vertical intercept b.

If a polynomial has degree 2, it is called a quadratic function and it has the
form

y = ax* + bx + ¢,

where a, b, and ¢ are constants and a # 0. With three coefficients in the equation,
the set of all quadratic functions is a three parameter family of functions. The
graph of any quadratic function is a curve called a parabola. Such curves abound
in the real world—in the path of a fly ball in baseball, in the shape of the main sup-
port cable in a suspension bridge such as the Golden Gate Bridge or the George
Washington Bridge, or in the cross sections of a TV satellite dish, as depicted in
Figure 4.3.

If a polynomial has degree 3, it is called a cubic function and its graph is called
a cubic. In general, a cubic function has the form

y=ax’ + bx* + cx + d,
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where a, b, ¢, and d are constants and a # 0. For example, the graph of the cubic
y = x’ 4+ 3x* — 8x — 4 is shown in Figure 4.4. This graph is typical of a cubic
function, having two turning points and one inflection point.

If a polynomial has degree 4, it is called a quartic function and its graph is
called a quartic. In general, a quartic polynomial has the form

y=ax* +bx’ + ox* +dx + e
where a, b, ¢, d, and e are constants and a # 0. The graph of the quartic

y = x* — 5%’ — 2x* + 6x — 4 is shown in Figure 4.5. This graph is typical of a
quartic polynomial. Notice that it has three turning points and two inflection points.

Think About This ~ How many parameters are there in the family of cubic polynomials? In the family
of quartic polynomials? In the family of polynomials of degree n, for any n? —

The Zeros of a Polynomial

A key piece of information about any polynomial function is the value or values
of the variable x that make the function zero. These values are known as the
zeros of the polynomial. For instance, the zeros of the quadratic polynomial
P(x) = x> — 6x + 8 arex = 2 and x = 4 because

P2)=2"—-6(2) +8=0 and P(4) =4°—6(4) +8=0.

From a different point of view, if we set the expression for the polynomial func-
tion equal to zero, we have an equation and the solutions to this equation are called
the roots. So, corresponding to the quadratic polynomial P(x) = x* — 6x + 8, we
have the quadratic equation

x> —6x+8=0.
Factoring this expression gives
(x —2)(x—4)=0.

The two solutions of this equation, x = 2 and x = 4, are the roots of the quadratic
function.

Note that a function has zeros, that an equation has roots, and that there is a di-
rect correspondence between them. The zeros of a function foccur at precisely the
same points as the roots of the equation f(x) = 0.

o
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EXAMPLE T coveeeeereeeees eSS0 §

Find the zeros of the quadratic function P(x) = x* — 5x + 6 and the roots of the corre-
sponding quadratic equation x*> — 5x + 6 = 0, both graphically and algebraically.

Solution The graph of the quadratic function y = x* — 5x + 6 is shown in Figure 4.6.
Note that the graph crosses the x-axis twice: once when x = 2 and again when x = 3. So,
graphically, we conclude that these are the zeros of the function. If we consider the asso-
ciated quadratic equation

x> —5x+ 6 =0,

its roots are x = 2 and x = 3.

FIGURE 4.6

Alternatively, we can solve this equation algebraically. We start with the associated
quadratic equation

x* = 5x + 6 = 0.
We can factor the quadratic expression on the left as
(x—=2)(x—3)=0.

Recall that, when the product of two factors is zero, one or the other or both must be zero,
so we have eitherx — 2 = 0 orx — 3 = 0, leading to the roots x = 2 and x = 3. Because
they are the roots of the quadratic equation, they are also the zeros of the quadratic polyno-
mial P(x) = x* — 5x + 6.
’ ................... H

If the coefficients in a quadratic are appropriately chosen, we may be able
to find the roots of a quadratic equation by algebraic factoring, as we did in
Example 1. If the coefficients are not just right—say, 4.35709x” + 15.46031x —
11.02013 = 0, or even 5x* + 3x — 17 = 0—the factoring approach won’t
work. The same principle applies to polynomials of higher degree, but the al-
gebra typically becomes much more complicated as the degree of the polyno-
mial increases. Consequently, factoring is far less likely to work when the
degree of a polynomial is 3 or higher.

The two roots for any quadratic equation

ax> +bx +c=0, a#0,

always can be found from the quadratic formula.

o
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The Quadratic Formula

—b = Vb — 4dac

2a

X =

This formula is derived in any algebra textbook.

E JAIMPLE D -++rvvvvvreeesesssessessssssssssssssessssssssssssssss e s8s 4888110888455 88 4458814588488 §
Find the zeros of the quadratic polynomial P(x) = x* — 3x — 5. :

Solution Witha = 1, b = —3, and ¢ = —5, the quadratic formula gives the roots of
the associated quadratic equation x*> — 3x — 5 = 0 as
_ —(=3) = V(=3)* — 4(1)(=5)
2(1)

3+ V9 - (—20)

2
3+ 129
—
The result is a pair of irrational numbers. Thus, the roots are

3+ V29 3 - V29
2

~ 4.19258 and x = Y ~ —1.19258.

X

]

The quadratic formula was essentially known to the ancient Babylonians, some
4000 years ago. However, not until about 1540 did Italian mathematicians Tartaglia
and Cardano discover a comparable, although considerably more complicated, for-
mula for the three roots of any cubic equation. Not long after that, another Italian
mathematician, Ferrari, discovered an even more complicated formula that gives
the four roots of any quartic equation. (These formulas are programmed into some
calculators and software packages.) Finally, in 1824, Danish mathematician Abel
proved that no general formula could exist that would give the roots of any polyno-
mial equation of fifth or higher degree. When we encounter polynomials of higher
degree, we usually have to resort to numerical methods to find the roots. We illus-
trate this approach in Example 3 for a polynomial of degree 3.

EXAMPLE B et §

Find, correct to four decimal places, all the zeros of the cubic polynomial y = Q(x) =
x4 3x* — 8x — 4.

Solution The graph of this polynomial is shown in Figure 4.7. Note that it crosses the
x-axis three times and that each of these points is a zero of the polynomial. By zooming
in on each point in turn, using a function grapher, we estimate that the zeros are located
at approximately x = —4.56155, x = —0.43845, and x = 2.00000. This last value for x
suggests that the third zero may be x = 2 precisely. To determine whether that is indeed
the case, we substitute x = 2 into the formula for the cubic and find that

Q2)=(2) +32)—-82)—4=8+12—-16—-4=0,

o
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y=x3+3x2-8x—4

so x = 2 is precisely the zero. Because we were asked to give the three zeros correct to

four decimal places, we conclude that x = —4.5616, x = —0.4385, and x = 2.

P

We found three zeros for the cubic polynomial in Example 3 based on its
graph in Figure 4.7. But, how do we really know that there are no additional zeros?
We could expand the viewing window and examine the graph from x = —100 to
x = 100, say, or perhaps from x = —1000 to x = 1000, and maybe other zeros will
come into view. Unfortunately, this kind of exploratory approach never completely
closes the door on the possibility that other zeros might exist if only we look further.
Instead, we need to know something about the behavior of polynomials in general,
which will give us information on how many zeros a particular polynomial has and
some indication of where to look for them. We discuss this in the next section.

Problems

. What is the degree of each polynomial?

a. P(x) = 6x> — 5x* + 8

b. P(x) = 5x* + 6x° + 7x — 11
c. P(x) = 6x — 5x*

d. P(x) = x* — x°

e. P(x) = —4x> — 9x* + 12

f. P(x) = 10 — 4x + 5x° + 3x°

. What is the leading coefficient of each polynomial

in Problem 17

. Which values of x are zeros of the polynomial

P(x) = x* + 2x* — 3x and which are not?

a. x =3 b.x=2 c.x=1
d.x=0 e. x = —1 f.x=-2
g x=—3

. Consider these polynomials.

a. P(x) = 6x> — 5x* + 8
b. P(x) = —6 — 5x* + 8x’
c. P(x) =8 —5x* — 6x’

AT TR e A

P(x) = —8x — 5x* + 6
P(x) = 6x° — 5x* + 8

P(x) = 3x* — 5x + 4

P(x) = —4x* — 5x — 8
P(x) = 4 — 3x?

P(x) = 8 — 5x + 4x

P(x) = 6x* —5x° + 8x — 3
P(x) = 3x* — 5x° + 8x — 6
P(x) = 3 — 6x*

For each polynomial in (a)—(1), indicate whether it is a

i
ii.

iii.
iv.

Vi.

quadratic polynomial,

cubic polynomial,

quartic polynomial,

quadratic polynomial whose leading coefficient
is 4,

cubic polynomial whose leading coefficient is
—6, or

quartic polynomial whose leading coefficient is
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5. The table gives some values for a polynomial P.
Identify possible roots of the corresponding poly-
nomial equation.

x -5  —4 -3 =2 -1
P(x) 227 21 0 -8 0

X 0 1 2 3 4 5
P(x) 16 23 0 —32 0 166

6. The figure to the right shows the graph of a polyno-
mial. How many zeros does it have?

7. Estimate, correct to three decimal places, all the zeros
of the polynomial P(x) = 2x* — 6x* 4+ 5x — 3.

8. Estimate, correct to three decimal places, all the zeros
of the polynomial P(x) = x* — 4x” + 5x — 1.

9. For the cubic polynomial in Problem 7, how many
turning points are there? how many inflection

Exercising Your Algebra Skills

Add or subtract each pair of polynomials by combining
like terms.

(6x* — 5x* + 8) + (6x — 5x%)

6x> — 5x* + 8) — (6x — 5x%)

5x' 4 6x7 + 7x — 11) + (—4x’ — 9x* + 12)
5x' 4 6x7 + 7x — 11) — (—4x’ — 9x* + 12)

10 — 4x + 5x° + 3x*) + (5x* + 6x° + 7x — 11)
. (10 — 4x + 5x° + 3x*) — (5x* + 6x° + 7x — 11)
Multiply each pair of polynomials.

7. x(3x — 5) 8. x(4x + 2)

[a—

- (
- (
- (
- (
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4.2 The Behavior of Polynomial Functions

points? Estimate, correct to two decimal places, all
the turning points.

10. For the quartic polynomial in Problem 8, how
many turning points are there? how many inflec-
tion points? Estimate, correct to two decimal

places, all the turning points.

y

/ U

9. x(7 + 3x) 10. x(6 — 5x)

1. (x — 1)(x — 3) 12. (x — 2)(x — 5)
13. (x — 2)(x + 3) 14. (x + 4)(x + 3)
15. (x + 5)(x — 5) 16. (x — 3)(x + 3)
17. (x + 2)(x — 2) 18. (x — 21)(x + 21)
Raise each polynomial to the indicated power.

19. (x — 1) 20. (x — 3)*

21. (x + 2)? 22. (2x + 5)?

23. (2x — 6)* 24. (x + 10)?

The Behavior of Polynomial Functions

The behavior of a polynomial depends on the ideas we introduced in Section 4.1:
the degree, the zeros, and the sign of the leading coefficient of the polynomial. Let’s

see how.

Quadratic Polynomials

We begin by analyzing the behavior of quadratic functions. The graph of any quad-
ratic function y = ax* + bx + cis a parabola that opens either upward or down-
ward. The sign of the leading coefficient a in

y=ax*+ bx + ¢

determines whether the parabola opens upward or downward and so determines
the overall behavior of the parabola. When the leading coefficient is positive, the

o
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parabola opens upward and is concave up. When the leading coefficient is negative,
the parabola opens downward and is concave down. To understand why, think
about what happens when x gets very large—say, x = 100 or x = 1000. Then x” is
much larger, on the order of 10,000 or 1,000,000. Therefore the term ax’ eventual-
ly overwhelms any contribution from the linear term bx or the constant term c.
Thus, when a is positive, the quadratic term is extremely positive and the parabola
opens upward. Similarly, when a is negative, the quadratic term is extremely nega-
tive and the parabola opens downward.

For instance, the parabola y = 5x* — 20x — 300 has a positive leading coeffi-
cient and so opens upward—when x becomes large, either positively or negatively,
the overall effect is positive. In contrast the parabola y = 20 — 4x” has a negative
leading coefficient and so opens downward—when x becomes large, either posi-
tively or negatively, the overall effect is negative. Check the graphs of both func-
tions on your function grapher to convince yourself of the behavior in each case.
Moreover, whichever way the parabola opens, as x increases indefinitely in either
direction, the parabola either increases toward infinity or decreases toward nega-
tive infinity, as illustrated in Figure 4.8.

y y

>

> X \‘)C

™ \

FIGURE 4.8 Leading coefficient > 0 Leading coefficient < 0

Every parabola has one turning point—also called its vertex. For instance, the
parabola y = x” has its vertex at the origin, because that is the location of the turn-
ing point. If a parabola opens upward, the turning point corresponds to the mini-
mum value of the function. If a parabola opens downward, the turning point
corresponds to the maximum value of the function. In addition, the parabola is al-
ways symmetric about the vertical line through its turning point, so the left and
right halves of the parabola are mirror images of one another. (See Appendix D for
a discussion of symmetry.)

Next, let’s examine the effects of the other two terms (the linear term and the
constant term) in the formula for a quadratic function. Figure 4.9 shows the graphs
associated with the quadratic functions y = x*, y = x* + 6,y = x* — 5x + 6,and
y = x* 4+ 5x + 6. The leading term determines the basic behavior of the quadrat-
ic function, so all four open upward. However, the other terms affect the location
of the graph. The constant term 6 in y = x> + 6 raises the parabola y = x* by
6 units (if the constant term is negative, the parabola would be lowered instead). Use
your function grapher to experiment with this effect on the graph of the parabola by
changing the constant term. For instance, how do the graphs of y = x* + 5x + 7
and y = x* + 5x — 2 compare to the graph of y = x* 4+ 5x + 6?2 Be sure to look at

o
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y=x>+5x+6

FIGURE 4.9 ) * 3 ">

enough graphs to convince yourself of the effect of the constant term. We investigate
this effect in detail in Section 4.7.

The effect of the linear term is more complicated because it involves both ver-
tical and horizontal shifting of the parabola. We don’t go into that here but do so in
Section 4.7.

Furthermore, as we showed in Section 4.1, the two roots of any quadratic
equation

ax> +bx+c¢c=0

can always be found from the quadratic formula

b= V' b* — 4ac

2a

X

These two roots could be real numbers (as in Examples 1 and 2 in Section 4.1) or
the roots could be a pair of complex numbers of the form x = « + Bi and
x = a — Biwherei = V—1 (aand B are the Greek letters alpha and beta, respec-
tively). A pair of complex numbers such as these is called a pair of complex conju-
gates. Complex numbers are discussed in Appendix E.

E A IMPLE T --ooveveseeessseressssesessssesssssissssssssssssesessss s sss s ass 4882148484884 8 48R
Find the roots of the quadratic equation x* — 2x + 2 = 0.

Solution Usinga = 1,b = —2,and ¢ = 2 in the quadratic formula, we get
L 2= V(=2) - 4(1)(2)
- 2(1)

X

o
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2+ V438
2

2= V-4 222
2 2

We now divide through by 2 and find that the two complex roots of the quadratic are
x=1+iandx =1 —1i.

-~

Because every quadratic equation has two roots, every quadratic function has ex-
actly two zeros. Let’s see what this means in terms of the graph of the quadratic func-
tion. Consider again the quadratic polynomial P(x) = x> — 5x + 6, whose graph is
shown in Figure 4.10. This polynomial has zeros at x = 2 and x = 3 because we can
factor the quadratic as

x> = 5x+ 6= (x — 2)(x — 3).

y=x2-5x+6

FIGURE 4.10

But the graph shows that the parabola crosses the x-axis at the points x = 2
and x = 3. Thus, just as the point at which a line crosses the x-axis gives the root of
a linear equation, the points at which a parabola crosses the x-axis give the real
roots of a quadratic equation, as illustrated in Figure 4.11 (a) and (b), respectively.

y y
A A

Root Root

X \ X
/ \/
FIGURE 4.11

......................... (@ (b)

If we know that a parabola crosses the x-axis at a point x = r, then x = risa
zero of the associated quadratic function and x — r is a factor of the quadratic ex-
pression. You can locate the real roots of any quadratic to any desired level of accu-

racy with your graphing calculator or with the quadratic formula, so you can
always find the linear factors.

o
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In general, for any quadratic function f(x) = ax” + bx + ¢,

¢ the real roots of the quadratic equation ax* + bx + ¢ = 0 corre-
spond graphically to the points where the associated parabola cross-
es the x-axis, and

¢ the real roots of the quadratic equation ax* + bx 4+ ¢ = 0 corre-
spond algebraically to the linear factors of the quadratic polynomial.

Depending on the orientation of the parabola (opening up or down) and the po-
sition of the turning point, a parabola may not touch the x-axis at all. This is the case
with the graph of y = x* + 6, as shown in Figure 4.12. For such a parabola, the cor-
responding quadratic equation still has two roots, but they are complex roots. If a
quadratic equation has complex roots, they must occur in conjugate pairs of the
form a = Bi. This property follows directly from the quadratic formula for the case
where the term inside the radical, b* — 4ac, is negative. The expression b* — 4ac is
called the discriminant of the quadratic. When the discriminant is positive, the two
roots are real numbers. When the discriminant is negative, the two roots are complex
numbers. Finally, when the discriminant is zero, there is a double real root.

A
20
15+
10+
5 -
FIGWREA12 3 5 0 | 1 2 3 4"

For instance, the discriminant for y = x* + 6is 0* — 4(1)(6) = —24 < 0, so
the two roots are complex and they occur in pairs. From the quadratic formula, the
roots are

-0 = V0> — 4(1)(6)
x =

2(1)
+\V-—-24
2

2V —6
i —
2

= *V6i.

We have already demonstrated that a parabola can cross the x-axis at two
points (corresponding to two real roots) or that it may not ever cross the x-axis
(corresponding to a pair of complex conjugate roots). A third possibility is that
the parabola could be tangent to the x-axis; that is, it can touch the axis and
bounce back without ever crossing the axis. For instance, consider the quadratic

o
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Think About This

FIGURE 4.13 1 1 2 3 4 5

function y = x* — 4x + 4. If you apply the quadratic formula, you will find that
the discriminant b* — 4ac = (—4)* — 4(1)(4) = 0 and the two roots are x = 2

and x = 2, as shown in Figure 4.13. Use your function grapher to zoom in on this
point and note how the parabola just touches the x-axis at x = 2. Thus, the quad-

ratic function has two roots, but because they are equal, x = 2 is a double root.

Try changing the value of the constant term in y = x* — 4x + 4 slightly from 4—

say, to 4.01 and then to 3.99. What happens to the graph in each case? What is the

value of the discriminant in each case? —

We summarize these ideas about quadratic polynomials as follows.

Characteristics of Quadratic Polynomials y = ax® + bx + ¢

L 4
4
L 4

A quadratic polynomial has degree 2 and has precisely 2 zeros.
A parabola has precisely one turning point, its vertex.

A parabola opens upward if the leading coefficient a is positive; it opens
downward if the leading coefficient a is negative, as shown in Figures 4.14
(a)—(f).

The corresponding quadratic equation of degree 2 has precisely
2 roots. They may be real or complex.

The complex roots occur in pairs of complex conjugates,x = a = fi,
where i = V—1, as illustrated in Figures 4.14 (a) and (d).

The real roots correspond to the points where the parabola crosses the
x-axis, as illustrated in Figures 4.14 (b) and (e), or where the parabola
touches the x-axis, as illustrated in Figures 4.14 (c) and (f).

You can always find the real roots graphically by using your function
grapher to zoom in on the points where the parabola crosses or
touches the x-axis.

The real roots correspond to the linear factors of the quadratic
expression.

You can always find the roots, real or complex, by using the quadratic
formula.
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y y y
a>0 a>0 a>0
X X X
(@) (b) (©)
y y y
X x x
a<0 a<0 a<0
(d) (© ()
FIGURE 4.14

Cubic Polynomials
Next, we consider the characteristics of cubic polynomials having the form
y=ax’ + bx* + cx + d,

where a, b, ¢, and d are constants and a # 0. The graph of the cubic polynomial
y = x> + 3x* — 8x — 4 is shown in Figure 4.15, which is typical of a cubic func-
tion. The cubic rises toward positive infinity in one direction and drops toward
negative infinity in the other. Also, this particular cubic has two turning points and
crosses the x-axis at three points, so it has three real zeros. Moreover, the curve has
one point of inflection, is concave down on one side of the point of inflection, and
is concave up on the other.

Turning point

Point of
inflection

/ Turning point

FIGURE 4.15

As with a quadratic function, the sign of the leading coefficient in a cubic al-
ways determines the overall behavior pattern of the function. If the leading coeffi-
cient is positive, the cubic increases as x increases (except possibly for a relatively
small dip between the two turning points), as shown on the left in Figure 4.16. If

o
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the leading coefficient is negative, the cubic decreases as x increases (except for a
possible rise between the two turning points), as shown on the right in Figure 4.16.

a>0 a<0

> X > X
FIGURE 4.16 / \

In general, a cubic function y = ax> + bx* + cx + d has three zeros, and the
corresponding cubic equation

ax> + x>+ ecx+d=0

has three roots. The roots can all be real numbers or can consist of a single real
number and a pair of complex conjugate numbers. Each of the real roots corre-
sponds to a linear factor of the corresponding cubic expression. Any complex con-
jugate roots must occur in pairs and correspond to a quadratic factor of the cubic
polynomial.

The real roots of a cubic equation correspond graphically to the points at
which the associated cubic curve crosses the x-axis.

The real roots of a cubic equation correspond algebraically to the linear
factors of the cubic polynomial.

If a cubic has three real roots, its curve crosses the x-axis at the correspon-
ding three points. If it has only one real root, the curve crosses the x-axis only
once, as shown in Figure 4.17.

>

X
FIGURE 4.17 /
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Analyze the behavior of the cubic function

f(x) = (x — 1)(x + 2)(x + 5) = x* + 6x* + 3x — 10.

Solution The cubic has the three linear factors—(x — 1), (x + 2), and (x + 5)—so it
has three real zeros: at x = 1, x = —2,and x = —5, corresponding to each of the three
factors. Consequently, its graph crosses the x-axis at x = 1, —2, and —5, as shown in
Figure 4.18. Further, the leading term x’ = 1 - x’, being the highest power present, even-
tually dominates the other terms as x increases. Because the leading coefficient 1 is posi-
tive, the cubic must increase toward +o as x — o and decrease toward —o° as
x — —oo, Verify this result graphically by using your function grapher and numerically
by substituting some large positive and negative values for x.

y
A

y=x3+6x>+3x-10

FIGURE 4.18

P

Although there is a formula for calculating the roots of a cubic equation, it is
considerably more complicated than the quadratic formula and is seldom used. If the
cubic polynomial happens to factor simply, you can find the zeros directly because
each factor corresponds to a zero. However, that is not likely to happen. Usually, the
simplest way to find the real roots of a cubic equation is to approximate them by
using your function grapher—just keep zooming in on the points where the curve
crosses the x-axis until you find the roots to whatever degree of accuracy you desire.

We summarize these ideas about cubic polynomials as follows.

Characteristics of Cubic Polynomials
y=ax’ + bx* + cx + d

A cubic polynomial of degree 3 has precisely 3 zeros.
A cubic has at most two turning points.
A cubic typically has one inflection point.

L K 2R R 2

A cubic increases (rises upward) to the right as x increases if the lead-
ing coefficient a is positive; it decreases (falls downward) to the right
as x increases if the leading coefficient a is negative.

¢ The corresponding cubic equation of degree 3 has precisely 3 roots.
The roots may all be real or one real and two complex.

o
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¢ The complex roots occur in pairs of complex conjugates, a = Si,

wherei = V—1.
¢ The real roots correspond to the points where the cubic crosses the
X-axis.

¢ You can always find the real roots graphically by using your function
grapher to zoom in on the points where the cubic crosses the x-axis.

¢ The real roots correspond to linear factors of the cubic expression.

Figure 4.19 illustrates most of the possible cases for a cubic polynomial. In Fig-
ures 4.19 (a) and (b) there are three distinct real roots when the leading coefficient
a is either positive or negative. In Figures 4.19 (c) and (d) there are three real roots,
but one of them is repeated, so the x-axis is tangent to the cubic at the correspon-
ding point. These two graphs correspond to when the leading coefficient a > 0;
similar graphs can be drawn when a < 0. Figure 4.19 (e) shows a cubic with a
triple real root and a > 0; note how the curve flattens as it crosses the x-axis. Think
about the graph of y = x’ as it passes through the origin. Finally, in Figures 4.19
(f)—(h) there is one real root and a pair of complex roots, again when a > 0. You
can draw similar graphs when a < 0.

y y

y y
a>0 a<0 a>0 a>0
X
X X x
(©) d)

(a) (b)

y y
a>0 a>0 a>0 a>0
X
X X
X
(®) (h)

FIGURE 4.19 © ®

Think About This

Moreover, it turns out that every cubic is symmetric about its inflection
point. Imagine a cubic with a hinge at its inflection point—if you take either half
of the curve and rotate it about that hinge, it will eventually be a perfect fit to the
other half of the curve.

Prove that any cubic polynomial of the form f(x) = ax’ is symmetric about its in-
flection point at the origin by showing that for any value of x—say,x = h > 0—

then f(—=h) = —f(h). =
Polynomials of Degree n

The ideas discussed for polynomials of degree 2 (quadratics) and degree 3 (cubics)
can be extended to polynomials of any degree n, where # is a positive integer. In
particular, they have the following characteristics.

o
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Characteristics of Polynomials of Degree n

¢ A polynomial of degree n has precisely n zeros.

¢ A polynomial of degree n has at most n — 1 turning points.

¢ A polynomial of degree n has at most n — 2 points of inflection.
*

If the leading coefficient is positive, the polynomial rises toward + oo
to the right as x — o, and if the leading coefficient is negative, the
polynomial falls toward —o° to the right as x — .

¢ The corresponding polynomial equation of degree n has precisely n
roots, which may be real or complex.

¢ The complex roots occur in pairs of complex conjugates, a * Si,

wherei = V—1.

¢ The real roots correspond to the points where the curve crosses or
touches the x-axis.

¢ You can always find the real roots graphically to any desired level of
accuracy by using your function grapher to zoom in on the points
where the curve crosses the x-axis.

¢ The real roots correspond to linear factors of the polynomial expression.

roots and a negative leading coefficient. —

Suppose that a polynomial has roots at x = —4, —1, 1, 3, and 6. Find a possible formula
for it and describe its behavior.

Solution The polynomial has five real roots, so its degree must be at least 5; it might be
higher if there are complex roots or repeated roots. The five corresponding linear factors
are (x — (—4)) = (x +4), (x + 1), (x = 1), (x — 3), and (x — 6). If these are the
only roots, one possible formula for this polynomial is

P(x) = (x +4)(x + 1)(x — 1)(x — 3)(x — 6),
although any constant multiple A of this expression would be an alternative formula.
We can determine the value of the multiple A if we know the vertical intercept of

the polynomial—or any other point on the curve. If the multiple A is positive, the graph
of the polynomial has the behavior shown in Figure 4.20. Note that P(x) rises toward %

y

Sketch the graph of a fifth degree polynomial with five real roots and a positive
leading coefficient. Sketch the graph of a fifth degree polynomial with three real



Gord.3896.04.pgs 4/24/03 9:57 AM Page 266 $

---------------------- 266 CHAPTER 4 Extended Families of Functions

as x — o and that P(x) falls toward — as x — — . Alternatively, if the constant mul-
tiple A is negative, this behavior is reversed; the graph drops toward —o as x — % and
rises toward +o0 as x — —o0. Can you explain why this is the case?

]

What if a polynomial has a double or repeated factor? For instance,
P(x) = (x + 1)(x—2)(x—4)* =0

has roots at x = —1, 2, and 4, but x = 4 is a double root because (x — 4)2 =
(x — 4)(x — 4) is a repeated factor. Note that its graph, as shown in Figure 4.21,
falls to touch the x-axis at x = 4 where it flattens and then rises again. Zooming in
on the curve about this point reveals that the x-axis is tangent to the graph at
x = 4, just as the x-axis is tangent to the parabola y = x* at the origin.

P(x) = (x + D(x = 2)(x — 4)

FIGURE 4.21

Think About This  The polynomial y = (x + 1)(x — 2)° has a triple factor. Examine its graph to see
what happens near that triple root. First, try to predict what will happen, based on
your knowledge of the behavior of y = x° near the origin. —

Use the fifth degree polynomial from Example 3 to demonstrate why it must have four
turning points and three inflection points.

Solution Let’s trace the polynomial’s curve in Figure 4.20 slowly from left to right. The
function starts rising as we move to the right and crosses the x-axis at the first root at

x = —4. It must cross the x-axis again at x = —1, so there must be a turning point be-
tween these two roots. Similarly, there must be a turning point between the roots at
x = —land x = 1, and in fact, there is a turning point between each successive pair of

roots. Because there are five real roots, there must be four turning points.

Now let’s consider inflection points. We begin with the first two turning points, one
near x = —3 where the curve is concave down and the next near x = —0.2 where the
curve is concave up. The change in concavity means that there must be an inflection
point between the successive turning points. In fact, between each successive pair of
turning points, there is a point of inflection. Because there are four turning points, there
must be three inflection points.

P

Things may not be quite so simple if there are complex roots or multiple roots.

o
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The End Behavior of a Polynomial

The end behavior of any polynomial depends on the sign of the leading term because,
as x approaches +o or —, the leading term eventually dominates all other terms.
For instance, consider the polynomial P(x) = 2x* — 6x’ 4+ 7x — 10. When x is very
large, the term 2x* will overwhelm all other terms. The graphs of the functions
P(x) = 2x* — 6x + 7x — 10 and Q(x) = 2x* for x between —3 and 4 and y be-
tween —25 and 100 are shown in Figure 4.22; the two curves look quite different.
Figure 4.23 presents a slightly larger view, where x is between —6 and 6 and y is be-
tween —50 and 950. Here the two curves look more similar than in the preceding
view. In the much larger view presented in Figure 4.24, where x is between —25
and 25 and y is between 0 and 500,000, there no longer is much difference be-
tween the two curves. The term 2x* dominates the behavior of the polynomial, and
the effect of the lower power terms is negligible.

P(x)

-2 \_//\/3

25+

FIGURE 4.22

950 -

750 -

550 -

350 -

150 -

Ox) = 2x4

y
A

500,000 -

400,000 |
300,000 |-
P(x) 200,000 |-

100,000 -

O(x) = 2x*

P(x)

1
-25 -15 -5

> X

FIGURE 4.24

In general, for any polynomial, when x is large enough, the curve is indistin-
guishable from the curve corresponding to just the leading term. In other words, in
the large, the behavior of any polynomial is virtually identical to that of the power
function consisting of the leading term. You can see the end behavior easily on your
function grapher if you use a reasonably large viewing window.

On the one hand, if the viewing window is too large, the location of the turn-
ing points and the zeros of a polynomial is a local aspect of the graph and can be
easily missed. On the other hand, if the viewing window is too small, the overall
growth pattern of the polynomial is lost. For instance, by focusing too closely on
one particular turning point or root, you may lose sight of all the others. Rarely
does a single view suffice to show all the important details of a function. There-
fore, as a matter of routine, you should use the information given in several dif-
ferent views on your calculator or computer to sketch a rough hand-drawn graph
of the function, called the complete graph, which highlights the key information,
even if you intentionally do not draw it to scale.

We expect you to use your function grapher to produce the graph of a poly-
nomial, but you should interpret with care what the calculator or computer
shows. Usually, the important characteristics of any function—and a polynomial
in particular—are

o
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¢ the end behavior (is it increasing or decreasing as x — % or x —> —®?),
¢ the intervals over which the function is increasing or decreasing,

¢ the locations of the turning points,

¢ the intervals over which the function is concave up or concave down,

¢ the locations of the points of inflection, and

¢ the locations of the real zeros.

E NAIMPLLE 5 -oveveeemeeeesesseseesssneesestsne it s e §
For the polynomial shown in Figure 4.25, answer the following questions. E
a. How many real roots are there?

b. How many turning points are there?
c. How many inflection points are there?
d. What is the minimum degree of the polynomial?
e. How many complex roots does it have?
f. What is the sign of the leading coefficient?
y
A
VRV,
FIGURE 4.25
Solution
a—c. The graph shown in Figure 4.25 reveals five real roots that correspond to the five
points where the curve crosses the x-axis. It also shows six turning points and five
inflection points.

d. Because the number of turning points is typically 1 less than the degree of the
polynomial and the number of inflection points is 2 less than the degree, we con-
clude that the polynomial shown is at least a seventh degree polynomial.

e. Because there are five real roots and the degree of the polynomial is at least seven,
there must be at least two complex roots.

f. The graph eventually falls toward —o° as x — %, so we conclude that the leading
coefficient must be negative.

@

EXAMPLE (B -+ §
Factor the polynomial P(x) = x* — 5x° — 7x* + 8x + 3. :

Solution This polynomial is a quartic, so it has precisely four roots. We know that the
linear factors of the polynomial correspond to its real roots, and the graph shown in Fig-

o



Gord.3896.04.pgs 4/24/03 9:57 AM Page 269 $

4.2 The Behavior of Polynomial Functions 269

ure 4.26 reveals that there are four real roots. As a result, there cannot be any complex
roots. We can locate each of these real roots to any desired level of accuracy, using either
numerical or graphical methods. Correct to four decimal places, the roots are
x = —1.6272, x = —0.3105, x = 1.0000, and x = 5.9377. The third of these results,
x = 1.0000, suggests that the root might be x = 1 precisely. To verify that this is true, we
substitute into the formula for the polynomial and find that

P(1) =(1)*=501)-71*+81)+3=1-5—-7+8+3=0.

.

| I I |
27 N2 3 4 5 7

—-100 +

—-150 -

FIGURE 4.26

(If you do the same with the other three values, which are just approximations to the
roots, the value of the polynomial will only be close to, but not quite equal to, zero.)

The corresponding linear factors are therefore roughly (x + 1.6272), (x + 0.3105),
(x — 1),and (x — 5.9377), so the polynomial can be factored, approximately, as

P(x) = x* — 5x> — 7x* + 8x + 3 = (x + 1.6272)(x + 0.3105)(x — 1)(x — 5.9377).
Y — :

Problems

1. The overall trend in the growth of the gross domes- Y Y
tic product (GDP) has been upward except for a
small dip. Sketch a graph representing the value of
the GDP as a function of time. What type of func- /\ /
tion might model it? What can you conclude about ~_~ \ D
any of the coefficients? /

2. The overall pattern in the growth of the Dow-Jones
Industrial Average over the past 10 years has been
one of increase except for three sharp, but relatively y y
short-term, drops. Sketch a graph representing the
value of the Dow as a function of time. What type of
function might model it? What can you conclude /\ /\

X X

about any of the coefficients? / \ A\ \

@) (i)

3. Each graph represents a polynomial. For each one:

a. What is the minimum possible degree of the
polynomial? Why?

b. Is the leading coefficient of the polynomial posi- 4. Each table gives some values for a polynomial. What
tive or negative? Why? is the minimum degree of each polynomial? Based

(iii) (iv)

o
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on the values given, what can you conclude about
the sign of the leading coefficient in each case?

a.
x -3 -2 -1 0 1 2 3 4 5
y 145 16 —5 —9 12 -3 21 2 —48
b.
x -3 -2 -1 0 1 2 3 4 5
y 145 16 27 —11 24 16 41 -9 78
5. Match each polynomial expression a—f with its
graph (i)—(vi). Use your knowledge about roots; do
not use your function grapher.
A
%\\\
@ (i)
y y
/ . / %
tangent

(iii)

N4 \ -
(v) (vi)
a. f(x) =(x— 1)(x—3)(x + 3)
b. f(x) = (x + 1)(x + 2)(2 — x)
c flx) = (x — 1)(x* + 4)
d f(x) =(x—1)(x+ 1)(x —3)(x+ 3)
e. f(x) =3x>—x*
£ flx) = (x = 2)(x — 4)(x + 3)*

—p—

Based on your knowledge about roots and factors,
sketch the graph of each polynomial function in Prob-
lems 6-9. Do not use your function grapher.

6.
7.
8.
9.
10.

11.

12.

flx) = (¢ + 2)(x = 1)(x — 3)

f(x) = 5(x* — 4)(x* — 25)

flx) = =5(x* — 4)(x* — 25)

f(x) = 5(x — 4)*(x* — 25)

The polynomial P(x) = 2x° + 5x° — 8x* —
21x° — 12x* + 22x + 12 canbe factored as P(x) =
(x = 2)(x — 1)(2x + 1)(x + 3)(x* + 2x + 2).

. What is the degree of the polynomial?

. What are the real roots? The complex roots?
What happens as x — ©? As x — —o0?

. What is the maximum number of turning points
you expect? Explain.

What is the maximum number of points of in-
flection? Explain.

oo o

Determine cubic polynomials that represent the ac-
companying graphs.

Each graph represents a function. For each one,
(i) read off approximate intervals over which the
function is increasing and over which it is de-
creasing; (ii) estimate intervals over which the
function is concave up and concave down; and
(iii) find a possible formula for the function.
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= 20x* + 3x> + x* + 1000.

For each polynomial, (a) determine the number of b. f(x) =
real roots and the number of complex roots; and c. f(x) = —3x* 4+ 206’ — 5x* + x — 20.
(b) find all real roots correct to three decimal places. d. f(x) = x* + x°.

i Plx)=x"—8x"—9
ii. P(x) =x>— 4x* — 6x’ + 6x> — 27x + 27
iii. P(x) = x® — 4x° + 6x* — 16x° +
11x* — 12x + 6
iv. P(x) = x® — 9x° + 26x* — 41x° + 71x* —
42x + 6
Determine which of the graphs suggest the end be-
havior for each polynomial.

[
-

(i)
(iii)

fJ

(iv)

17.

18.

19.

e. f(x) = 4x" + 5x° — 6x°.

Find the equation of a quadratic polynomial that
has a real root at x = 2 and a turning point at
(1,5).

A cubic polynomial P has turning points at (1, 4)
and (5, 12).

a. What is the behavior of P(x) as x —> o0?

b. Where is the point of inflection? (Hint: Recall that
a cubic is symmetric about its point of inflection.)

Suppose that a quadratic polynomial has roots at

x=6andx = —2.

a. Write a possible formula for the quadratic
function.

b. Use the fact that a quadratic is symmetric about
the vertical line through its turning point to de-
termine the x-coordinate of the turning point of
this quadratic function.

c. Suppose that the quadratic has a maximum
value of 20. What must be its equation?

d. Suppose that the quadratic has a minimum value
of —20 instead. What must be its equation?

a. y=05x"— 8"+ 2x* +3x — 4
b. y = —4x° + 3x* + 7x° — 8x% — 4x 20. An apple is tossed from ground level straight up at
. y=3x+4x>+6x° — 552+ 6 time t = 0 with velocity 64 ft/sec. Its height at time
dy=—x —4x°+3x* —6x>+ 7x — 9 tis f(t) = —16t* + 64t. Find the time when it hits
e. y= —4x° + 6x° — 5x° + 35 the ground and the instant when it reaches its high-
f. y =100 — x* g y=(9— 6x%)? est point. What is the maximum height?
h. y = (9 — 6x°)* iy=(9—-6x%’ 21. The height s (in cm) of an object above the ground
jo vy =(9 — 6x°)° at time ¢ (in seconds) is given by
15. a. The graph of the polynomial P(x) = 2x* — ]
6x> + 7x — 10 in Figure 4.22 suggests that there s = vt — —gt%,
are three turning points. Use your function gra- 2
pher to locate them to 3 decimal place accuracy where v, represents the initial velocity and g is a
by zooming in on the graph. constant, the acceleration due to gravity.
b. Estimate all in‘tervals over which P(x) is increas- a. At what height does the object start?
1ng or decreasmg.. ) ) ) b. How long is the object in the air before it hits the
c. Estimate the locations of all points of inflection. ground?
d. Estimate all intervals over which P(x) is concave c. When will the object reach its maximum height?
up or concave down. d. What is that maximum height?
e. Estimate all real roots. .
22. a. Sketch a smooth graph of today’s air tempera-
16. Describe the end behavior of each function. Specif- ture from midnight to midnight.

ically for the graph of each function £, (i) as x — o,
does f(x) — o or —o? why? and (ii) as x — — o,
does f(x) = % or —©? why?

a. f(x) = —3x> + 70x* — 20.

b. When is it a minimum? A maximum?

c. When does it have a point of inflection?

d. What type of polynomial might be a good match
to the curve you drew?
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e. What function would be a better choice if you Y
expand the domain to include the temperatures y =f(x)
for yesterday and tomorrow?

23. Factor the polynomial P(x) = x* — 5x* + 3x + 7,
using zeros that are correct to two decimal places.

f(b)

24. a. Prove that any cubic polynomial of the form Ay =/ =ft@

f(x) = ax® + cxis symmetric about its inflection f(a)
point at the origin by showing algebraically that, g Ax=b-a
if you take any value of x—say, x = h > 0— : :
then f(—h) = —f(h). : I; x
a
\ x -2 -1 0 1 2 3
y=f(x)=x>—4x 0 3 0 -3 0 15
between x = —2 and x = —1, between x = —1
d £ fhy—d and x = 0, and so on. What is the average value
d—f(-hy: of all these slopes?
c. Extend the table to include the point x = 4 and
. repeat parts (a) and (b). Does the same result
x=-h x=h hold?
d. Extend the table farther to include x = —3.

Show that the same result holds.

e. Does the same result hold for any function and
any set of points? State this result as a potential
theorem.

b. Prove that any cubic polynomial of the form
f(x) = ax® + cx + d is symmetric about its
inflection point at (0,d) by showing alge- _ _
braically that, if you take any value of x—say, 26 Prove the result you conjectured in part (e) of

x=h>0—then f(h) —d=d— f(—h), as Problem 25. Let f be defined on an interval from a
illustrated in the accompanying figure. (Note: to b. The average rate of change of fis
The same ideas apply to an arbitrary cubic f(b) = f(a)
polynomial when the bx* term is present, but T h_a
the proof is considerably more complicated.)
25. Recall that the average rate of change of a function f Let
over an interval x = a to x = b (see Section 2.8) is Xo = Gy X|5Xpy.v0sX, = b
defined as the slope of the line segment connecting be any set of uniformly spaced points so that
the endpoints of the curve on that interval, or b—a
Ax = .
Ay _ f(b) — fla) "
Ax b—a ° 27. Find all polynomials p of degree = 2 that satisfy
as illustrated in the accompanying figure. The table each set of conditions.
gives some values for the function f(x) = x* — 4x. a. p(0) =p(1) =p2) =1
a. Find the average rate of change of f from b. p(0) = p(1) = 1and p(2) = 2
x= —2tox = 3. c. p(0) =p(1) =1
b. Calculate the average rate of change of f between d. p(0) = p(1)
each successive pair of points in the table; that is, (Hint: Think about the graphs.)
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Exercising Your Algebra Skills

Factor each of the following polynomial expressions as 7.x* —6x+9 8. x* — 25

completely as possible. (Note that not all are factorable.) 9. x2 — 100 10. x2 + 36
Lox*+7x + 12 2. % —4x—5 11. x> + x* — 20x 12. x° — 4x* + 3x
3040 = 7x + 12 4.x —x— 12 13. 2% + 105 + 25x 14, x* — 36x
50x° +x— 12 6. x> — 4x + 4

4.3 - Modeling with Polynomial Functions

As we mentioned in Example 4 of Section 3.2, one of the most famous moments in
the history of science was Galileo’s reported experiment of dropping various ob-
jects from the top of the 180-foot high Leaning Tower of Pisa and discovering that
they fell at the same rate, regardless of their weight. Instead of looking at the speed
of a falling object, we now look at the height H, in feet, of an object falling from the
top of the tower at various times t, as given in the table.

Time 0 0.5 1.0 1.5 2.0 2.5 3.0

Height 180 176 164 144 116 80 36

Note how the object starts falling slowly and then accelerates. (Incidentally, these
values are considerably more accurate than anything Galileo could have measured
at the end of the fourteenth century.)

The ideas we introduced in Chapter 3 on fitting linear, exponential, power, and
logarithmic functions to a set of data can be extended to fitting polynomial func-
tions to data. All graphing calculators have the capability to fit quadratic, cubic,
and quartic polynomials to any set of data; spreadsheets such as Excel™ can fit
polynomials up to degree 6, and specialized software packages allow polynomials
of any finite degree. However, the approach used to determine a best-fit polynomi-
al is different from the types of transformations we used in Sections 3.4 and 3.5. In
fact, it is based on the idea of fitting a linear function of several variables to a set of
data, as we discussed in Section 3.7. As we also discussed there, the correlation co-
efficient does not apply directly. Instead, statisticians have developed a comparable
measure of the goodness of fit, known as the coefficient of determination, which is
denoted by R”. Its value is provided by most calculators and software. It always lies
between 0 and 1, and the closer R? is to 1, the better is the fit; a value of 1 indicates
a perfect fit.

EXAMPLE T correerseeeess ettt RS R AR SRR R R R R R §

(a) Find an equation for the height of an object falling from the top of the 180-foot high
Leaning Tower of Pisa as a function of time. (b) Then use the formula to calculate how
long it takes for the object to hit the ground.

Solution

a. We show the scatterplot of the data for height H as a function of time ¢ in Figure 4.27
and observe that the pattern in the data resembles the right half of a parabola with

o
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negative leading coefficient. Using the quadratic function regression routine on a cal-
culator, we obtain the equation

H = —16t> + 180.
The corresponding value for the coefficient of determination is R* = 1.00, suggest-
ing that the parabola apparently is a perfect fit to the data, as shown in Figure 4.28.

b. The object hits the ground when H = 0. To find how long it takes, we must find the
value of t for which

H = —16t> + 180 = 0.

We can solve this quadratic equation graphically, with the quadratic formula, or by
direct algebraic means. Algebraically, we add 16¢* to both sides of this equation to

obtain
16t = 180
so that
, 180
t-=——=11.25.
16

When we take the square root of both sides, we get t = *+3.35. Because t = —3.35 sec-
onds makes no real-world sense, we conclude that it takes about 3.35 seconds for the
object to hit the ground.

]

Let’s look at the equation H = —16t* + 180 for the height at any time when
the object is falling from the top of the 180-foot high tower. Note that the constant
term 180 equals the height of the tower. We rewrite the function as

H(t) = 180 — 16t%

which indicates that the height starts at 180 feet, when t = 0, and decreases there-
after. In general, if an object is dropped from any initial height H, and is affected
only by the force of gravity, its height at any time ¢ is given by

H(t) = H, — 16t%

Now suppose that an object is not simply dropped but instead is tossed up-
ward with some initial velocity—say, 40 ft/sec. What do we expect? Obviously, the
object starts off rising until it reaches a maximum height and then falls back until
it hits the ground. The larger the initial velocity, the higher the object goes. In Ex-
ample 2, we construct a function to model such a situation.

o
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EXAMPLE 2

When an object is thrown vertically upward with an initial velocity of 40 ft/sec from the
top of the 180-foot high Tower of Pisa, the following set of measurements of its height as
a function of time are obtained.

t 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

H 180 196 204 204 196 180 156 124 84 36

a. Find an equation of a function that can be used to model the height of the object as a
function of time.

b. Estimate how long it takes for the object to reach its maximum height and what that
maximum height is.

c. How long does it take for the object to fall back to the ground?
Solution

a. The scatterplot of the data shown in Figure 4.29 indicates that the pattern for the
height H as a function of time ¢ looks like a portion of a parabola with a negative
leading coefficient. Using a calculator to fit a quadratic function, we find that the
quadratic function that best fits the data is

H(t) = 180 + 40t — 16¢%

Note that the coefficients of the constant and linear terms are essentially the same as
the initial height 180 feet and the initial velocity 40 feet per second, respectively.
Moreover, the coefficient of the quadratic term is the same, —16, as in Example 1.
This function superimposed over the scatterplot shown in Figure 4.30 reveals that it
is an excellent fit to the data. The associated coefficient of determination is R> = 1.0,
providing additional evidence that the fit is virtually perfect.
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b. To estimate the time it takes for the object to reach its maximum height and the value
for that maximum height, we need merely trace along the curve to find the coordi-
nates of the turning point; or we can use the routine for locating the maximum for a
function that is on many calculators. Either way, the coordinates are t = 1.25 seconds
and H = 205 feet.

c. To find the time it takes for the object to return to the ground, we solve the equation

H(t) = 180 + 40t — 16t> = 0.

o
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We can do this either graphically or by the quadratic formula. Using the quadratic
formula witha = —16, b = 40, and ¢ = 180 gives

—40 = /407 — 4(—16)(180)
t:
2(—16)
~—40 + V1600 + 11520
~32
—40 + V13120

—32 ’

Consequently, we get two possible values for #: t = 4.83 seconds and t = —2.33 seconds.
The second value makes no sense physically, so the realistic solution is ¢ = 4.83 seconds.

o

In general, we can say the following.

The height of an object thrown vertically upward with initial velocity v, from
an initial height H, at any time t is

H(t) = —16£ + v,t + H,.

If there is no initial velocity, so that v, = 0, this formula reduces to the expression
we had previously for the height of any object falling under the influence of gravity.

The questions that we would want to answer about any object thrown upward
into the air are:

1. How high does it go?
2. How long does it take to reach its maximum height?

3. How long does it take to return to the ground?

The Path of a Projectile

Picture the path of along home run in baseball or the path of a perfect pass in foot-
ball or the arch of the high-pressure stream of water from a supershooter water
gun. In each case, the path looks something like the curve shown in Figure 4.31,
whose shape suggests a parabola or possibly some higher degree polynomial curve
with a negative leading coefficient. (If a strong wind is blowing, the path may not
be quite so symmetric and the analysis of the shape of the path is considerably
more complicated than that described here.)

y

FIGURE 4.31



Gord.3896.04.pgs 4/24/03 9:57 AM Page 277 $

4.3  Modeling with Polynomial Functions 277

Using various kinds of technology, such as time-lapse photography or a video
camera, we can capture a set of data on the path of such a projectile. For instance,
the following set of data consists of measurements for the path of a long fly ball in
baseball, where the height y of the ball depends on the distance x from home plate.
Both sets of measurements are in feet.

X 0 30 60 90 120 150 180 210 240 270 300 330 360 390
y 4 37 65 88 105 117 123 124 119 109 94 73 47 16
The ball rises to a maximum height of about 124 feet. More important, the ball
travels a horizontal distance of about 400 feet until it comes back down into the out-
fielder’s glove, hits the ground or fence, or lands in the stands. To determine what
happens, we need an equation for the path of the ball, which we find in Example 3.
E A IMPLE 3 --ovreeeeseeessseeessseeeessesessssesesss s ess s 8888888888828

(a) Determine the equation of a function that models the path of the baseball based on
the preceding data. (b) If the fence 400 feet from home plate is 8 feet high, will the ball
clear the fence to be a home run?

Solution

a. Because the shape of the data, as shown in the scatterplot in Figure 4.32, suggests a
parabola, we begin by fitting a quadratic function to the data. The result is the quad-
ratic function

y = —0.003x* + 1.202x + 3.936,

125
100

Height (feet)

1 1 1
0 100 200 300 400
Distance (feet)

which is shown superimposed over the scatterplot and is an outstanding fit to the
data. As expected, the leading coefficient is negative. Moreover, the corresponding
value for the coefficient of determination is R> = 0.9999, which provides additional
evidence that the quadratic function is an excellent model to use.

b. In order for the ball to be a home run, it must clear the 8-foot high fence when it is
400 feet from home plate. Therefore we substitute x = 400 into the equation of the
parabola and find that

y = —0.003(400)* + 1.202(400) + 3.936 = 4.736.

That is, when it reaches the fence, the ball’s height is somewhat less than 5 feet, so it
wouldn’t be a home run, as shown in the smaller view in Figure 4.33.

o
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FIGURE 4.33

Fitting Polynomials to Data

The concept of fitting a polynomial function to data is one that applies in all walks
of life, not just in the physical situations we encountered in Examples 1-3. We il-
lustrate two other cases in Examples 4 and 5.

E JAIMPLE 4 +++-vvvvveeeesesssreessssssessesssssessssssssesssssssss st 8884488114888 4848888858888
The table shows the accumulated total number of reported cases of AIDS in the United
States since 1983.

Year 1983 1984 1985 1986 1987 1988 1989 1990

Number of AIDS Cases 4589 10,750 22,399 41,256 69,592 104,644 146,574 193,878

Year 1991 1992 1993 1994 1995 1996 1997 1998

Number of AIDS Cases 251,638 326,648 399,613 457,280 528,144 594,641 = 653,084 701,353

Source: U.S. Centers for Disease Control and Prevention.

Determine a function that fits the data well and interpret the behavior of the function.

Solution In Example 4 of Section 3.3, we explored the possibility that the growth in the
total number of reported cases of AIDS in the United States follows an exponential pat-
tern. The resulting best-fit exponential function, found with a calculator, was

A = 5413.5(1.3626)’,

where t is measured in years since 1980. The corresponding correlation coefficient
r = 0.9483 is quite close to 1, suggesting that this function is a very good fit. But, when we
superimpose this exponential function over the data points, as shown in Figure 4.34, the
curve doesn’t fit the data well.

750 Exponential function °
600 -
5 450 -

300 -

150

Number of AIDS cases
(thousands)

>

o

L L L L
1983 1986 1989 1992 1995 1998
FIGURE 4.34 Vear
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Alternatively, suppose that we use the capability of the calculator to fit a polynomial
to this data. Most calculators allow us to fit polynomials of degree 2, 3, or 4 to a set of
data, and we can easily experiment with different degrees. When we do so, we find that a
cubic polynomial is an excellent fit to this set of data. The calculator gives the best cubic
function, rounded to one decimal place, as

A = —221.9¢ + 9261.8t> — 62275.9t + 122988.9,

where ¢ is again the number of years since 1980. When we superimpose this polynomial
over the AIDS data points shown in Figure 4.35, we get an exceptionally good fit, which
certainly is a far better fit than the exponential function shown in Figure 4.34.

A

A
750 |- Cubic polynomial
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450 -
300
150 -

Number of AIDS cases
(thousands)
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| | | |
1983 1986 1989 1992 1995 1998
Year

(=]

~FIGURE 4.35

This graph strongly suggests that the number of cases in the spread of AIDS fol-
lows a cubic pattern. (When scientists discovered this several years ago, they were ex-
cited because polynomial growth is much slower than exponential growth, which is
the trend that they too had expected.) The corresponding coefficient of determination,
R? = 0.99996, provides further evidence of how well the cubic function fits the data.

We know from the formula for the cubic that the leading coefficient is negative, so
the cubic will eventually approach —o. The larger view in Figure 4.36 suggests that the
cubic passed its inflection point in about 1995 or 1996 and that the growth in AIDS has
begun to slow somewhat since then. The graph also shows that the function will reach a
turning point in about 2003.
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However, recall that the data represent the total number of AIDS cases reported in
the United States, so the cubic can’t actually turn and begin to decline; it can only slow
and, at best, eventually level off. Thus we demonstrate again how dangerous extrapo-
lation with a mathematical model can be. The model only describes the situation
based on the data points; it is not a guarantee of the actual process, especially for ex-
trapolating into the future or the past.

o
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Let’s look at another example of fitting polynomials to data. Figure 4.37 shows
a picture of the famous Gateway Arch in St. Louis. Its shape suggests a portion of a
downward opening parabola. Let’s see if we can determine a specific function that
best models the arch.

EXAMPLE 5

Determine a polynomial function that fits the Gateway Arch well.

Solution To find an appropriate function, we need some measurements for the arch.
Opverall, the arch stands 630 feet tall, and the distance between its two legs also is 630 feet.
We superimpose a grid on the arch, as shown in Figure 4.38, and choose the coordinate
system so that the vertical axis passes through the center of the arch. We then construct
the following table of estimates of the height H corresponding to various horizontal dis-
tances x. We make our estimates from the middle of the arch; slightly different results
might occur if we use values from the inner edge or the outer edge. We ask you to inves-
tigate these possibilities in the problems at the end of this section.

H

Height (feet)

50

1 1 1 1 1 X

-300 -200 -100 0 50 100 200 300
Horizontal distance (feet)

FIGURE 4.38

X —325 —300  —250 —200  —150 —100 0 100 150 200 250 300 325

H 0 100 330 500 570 610 630 610 570 500 330 100 0

o
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The first thing we notice from both the figure and the table is that the measurements
are symmetric about the vertical axis x = 0. As a result, we would expect that the best-fit
parabola has no x term. When we enter the data into the quadratic regression routine of
a calculator, we find the quadratic function that best fits the data is

H = —0.0064x* + 0x + 699.01.

We plot this function over the data points, as illustrated in Figure 4.39, and conclude
that it is a reasonably good fit, though certainly not a great one. Among other things, the
curve rises much too high above the central data point and the pattern of data points
flattens out far more than the parabola does near the center.

Best quadratic
fit to the Arch

| r'S | | | | | | | | | | | | Py |
4 -350 -250 -150 -50 0 50 150 250 350
.E l GURE ..... 39 Horizontal distance (feet)

In our discussion of power functions with integer powers in Section 2.7, we pointed
out that the higher the power, the flatter the curve as it passes through the origin. This
result suggests that we should use a higher degree polynomial than a quadratic. From the
basic shape of the arch, we know that a cubic would not be appropriate—it doesn’t have
the correct behavior. How about a quartic polynomial? When we try it, the calculator re-
sponds with the equation

H = (—3.27 X 107%)x* 4+ 0x’ — 0.00282x* + Ox + 644.25.

When we superimpose this function over the data points, as shown in Figure 4.40, it ap-
pears visually to be an exceptionally good fit to the shape of the arch. The coefficient of
determination for this fit is R?> = 0.9953, which also indicates that it is a very good fit.
(Actually, the true shape of the arch is a curve known as a hyperbolic cosine, which you
may encounter in calculus.)

700 - Best quartic fit
to the Arch

L 4 > x
-350 -250 -150 -50 0 50 150 250 350
FIGURE 4.40

......................... Horizontal distance (feet)
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Problems

1. We showed in the text that the cubic function
y = —221.9¢° + 9261.8t> — 62275.9t + 122988.9

is an excellent fit to the total number of reported
cases of AIDS in the United States from 1983 to
1998, where t is the number of years since 1980.

a. Based on this model, what is the prediction for
the total number of cases through 2000?

b. Check a recent copy of the Statistical Abstract of
the United States or an almanac to see how accu-
rate the prediction in part (a) is.

c. If this cubic pattern continues, how many total
cases would you expect by 2004?

d. When would you expect a total of 850,000 cases
of AIDS, based on this model?

2. Find the equations of the best quadratic and quar-
tic functions to fit measurements taken at the outer
edge of the Gateway Arch instead of at the middle.

3. Repeat Problem 2 with measurements taken at the
inner edge of the arch instead of at the middle.

4. The table shows the percentage of the U.S. popula-
tion that is foreign born in various years.

a. What is the minimum degree polynomial that
you would use to model this data?

b. Find that polynomial and use it to estimate the
time when the percentage of foreign-born peo-
ple in the United States was a minimum. What
was that minimum percentage?

Year 1950 1960 1970 1980 1990 = 2000

Percentage 6.9 5.4 4.8 6.2 79 104

Source: 2000 Statistical Abstract of the United States.

5. The accompanying figure shows a grid superim-
posed on the image of the McDonald’s arches.

a. Decide on a scale that you can use to estimate
measurements on the arches. (Hint: Think about
where you want to set up your coordinate axes.)

b. Use your estimated measurements to determine
the equation of a polynomial that best fits one of
the arches. (Hint: Think again about where you
want to set up your coordinate axes.)

c. Can you use the formula you obtained for one
of the arches to construct a formula for the
other arch? Explain.

—p—

6. The table gives the horsepower generated on a
Chevy 383 car engine at different rpm.

Horsepower 138 172 203 216
Revolutions

per Minute 2000 ~ 2500 3000 ~ 3500
Horsepower 209 182 144 98 42
Revolutions

per Minute 4000 4500 5000 5500 6000

Source: Student project.

a. Which variable is the independent variable and
which is the dependent variable?

b. What is the equation of the quadratic function
that relates these two quantities?

c. What does your model predict for the horse-
power generated by this engine at 4800 rpm?

d. If the engine puts out 165 horsepower, what is
the possible value for the rpm according to this
model?

7. Car enthusiasts know that it’s not horsepower that
is significant, but rather the amount of torque that
an engine puts out that really matters in how quick-
ly a car moves forward. The table gives the torque,
in foot-pounds, generated at different rpm values
for a Chevy 383 engine. From among the usual
families of functions (linear, exponential, power,

o
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quadratic, and cubic), find the one that seems to be
the best fit to these data.

Torque 363 361 355 324
Revolutions

per Minute 2000 2500 = 3000 3500

Torque 275 213 151 93 36
Revolutions

per Minute 4000 = 4500 ~ 5000 = 5500 - 6000

Source: Student project.

8. a. Create a single table based on the information
given in Problems 6 and 7 relating the amount of
torque generated to the horsepower for the
Chevy 383 engine.

. From among the usual families of functions (lin-
ear, exponential, power, quadratic, and cubic), find
the one that seems to be the best fit to this data.

9. The table shows the number of 18- to 24-year-olds
in the United States in recent years. Find the quad-
ratic function that best fits this data set and use it to
predict the number of people in this age range in
(a) 2000 and (b) 2005. Which prediction would you
have more confidence in?

Year 1970 1975 1980

Population (millions) 24.71 28.76 30.35

Year 1985 1990 1995

Population (millions) 29.48 26.14 24.85

Source: 2000 Statistical Abstract of the United States.

10. According to the theory of relativity, the mass M of
an object increases as its velocity v increases so that
M = f(v). Suppose that the mass of an object is 1 unit
when it is at rest (v = 0). The table gives the mass
of the object at different speeds that are expressed
as fractions of ¢, the speed of light (about 186,280
miles per second). Find the best quadratic fit to this

set of data.
Velocity (fraction of c) 0 0.1 0.2
Mass 1 1.0050 1.0206
Velocity (fraction of c) 0.3 0.4 0.5
Mass 1.0483 1.0911 1.1547

o

4.3 Modeling with Polynomial Functions

11. While approaching the Verrazano Bridge in New
York City, Ken noticed that the main cable looks
like a parabola, as illustrated in the accompanying
figure. As his car crawled across the bridge in heavy
traffic, he estimated the following heights, in feet, of
the cable above the road and the distance, in feet,

starting from one of the vertical support columns.

Distance from

Support Column 0 1000 2150
Estimated Height 500 150 20
Distance from

Support Column 3000 4000 4300
Estimated Height 100 400 500

Find an equation of the parabola that best fits Ken’s
estimates. (Think how to set up the coordinate axes.)

12. The table shows the price of a barrel of oil, in dol-
lars, in different years.

Year 1960 1970 1975 1980
Price 11 9 37 64
Year 1985 1990 1995 2000
Price 40 28 20 32

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.

a. What type of function is reasonable to use as a

model for the price of oil as a function of time?

Find the equation of the polynomial function of

appropriate degree to fit the data.

What does your model predict for the price of a

barrel of oil in 20052

. Use the graph of your function to estimate the lo-
cation of the turning points for the function. Ac-
cording to this model, what was the maximum
price of a barrel of oil between 1960 and 2000
and when did it occur? What was the minimum
price and when did it occur?

b.
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13. The table shows the trend in worldwide grain pro-
duction (wheat, rice, and corn, primarily), in kilo-
grams per person. The pattern in the data suggests
that a quadratic function is an appropriate model for
grain production per person as a function of the year.

Year 1965 1970 1975 1980
Amount

per Person 270 291 303 321

Year 1985 1990 1995 1999
Amount

per Person 339 335 301 309

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends
That Are Shaping Our Future.

a. Find the equation of the quadratic that best fits

these data.

Based on the model, what was the maximum

level of grain production per person worldwide?

. What does the model predict for the amount of
grain produced per person in 2010?

. Write a paragraph describing the possible rea-
sons for this trend and the implications if the
trend continues.

b.

14. The table gives the total number, in thousands, of
high school graduates in the indicated years since
1900. In Problem 12 of Section 3.3, we asked you to
find the best linear, exponential, and power func-
tions to fit these data. If you examine the data care-
fully, you should expect that a polynomial function

would be a better fit.

Year 1900 1910 1920
High School Grads 95 156 311
Year 1930 1940 1950 1960
High School Grads 667 1221 1200 1858
Year 1970 1980 1990 2000
High School Grads ~ 2889 3043 2586 2839

Source: Digest of Education Statistics 2000, U.S. Department of Education.

a. What degree polynomial function is a good can-
didate to fit these values? Explain.

—p—

15.

16.

17.

18.

Let t be the number of years since 1890. Deter-
mine the best polynomial function of the degree
that you decided was appropriate in part (a) to
model the number of high school graduates as a
function of time ¢.

Use this function to predict the number of high
school graduates in 2010.

Use this function to predict the year in which
there will be 5 million high school graduates.

d.

The table, collected from a chemistry lab experi-
ment, gives the density D of water, in grams per
milliliter, at various temperatures T, in °C.

Temperature, T 0° 4° 10°
Density, D 0.99987 1.00000 0.99973
Temperature, T 20° 30° 40°
Density, D 0.99823  0.99567 0.99224
Temperature, T 60° 80° 100°
Density, D 0.98324  0.97183 0.95838

Source: John R. Holum, Elements of General and Biological Chemistry,
8th ed. New York: John Wiley & Sons, 1991.

Find a quadratic function that fits these data.
Use your function from part (a) to find the den-
sity of water at 70°C.

Find the temperature at which the density of
water is 0.99100 grams per milliliter.

ge

The height of an object falling from an initial height
of y, is given by the formula

y =y, — 16t7
with units of feet and seconds. What is the equivalent

formula based on the metric system of units with me-
ters and seconds? (Hint: 1 foot = 0.3048 meters.)

Galileo conducted his famous experiment in
which he dropped objects from the top of the
180-foot high Leaning Tower of Pisa in about
1590. His goal was to obtain experimental data to
show that all bodies fall with equal velocities.
How long did it take for the objects that he
dropped from the tower to hit the ground?

The Eiffel Tower is 300 meters tall. How long would

it take an object dropped from its top to hit the
ground?
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4.4 - The Roots of Polynomial Equations: Real or Complex?

The Roots of Quadratics

In Section 4.1, we stated that, for any quadratic equation,
ax’> + bx + ¢ =0, a#0,

we can always find its roots by using the quadratic formula

_ —b= \V b* — 4ac

2a

X

Further, the roots may be two distinct real numbers, a repeated real root, or a pair of
complex conjugate numbers of the form o = Bi, wherei = V —1, as illustrated in
Figure 4.41.

y y y
A

N \ x B

tangent

tangent

\

/N

FIGURE 4.41

Most students think that complex roots occur very rarely. In this section we in-
vestigate how frequently they do arise. To do so, we consider many different quad-
ratic equations and find the percentage of them that do have complex roots. A
quadratic equation ax”* + bx + ¢ = 0 has complex roots when its discriminant,
b* — 4ac, is negative. The quadratic formula then requires taking the square root of
that negative discriminant to produce two complex numbers. For instance, for the
quadratic equation x* — 2x + 2 = 0, the discriminant is (—2)* — 4(1)(2) = —4,
so the roots will be complex. The quadratic formula gives the roots as

—(-2)=V4-8_ 2+xV-4_ 2+

2 2 2

= =1+
orx =1+ iand x = 1 — i. Thus we can use the sign of the discriminant as the
criterion to decide whether any particular quadratic has complex roots.

To come to any meaningful conclusions about the percentage of quadratics that
have complex roots, we must examine a very large number of quadratics. Doing so
requires using a computer or calculator program rather than hand computation.

o
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Think About This

Even the simplest case—when the quadratic has integer coefficients—has infinitely
many possible quadratics, so the best we can do is examine a finite selection of
them. Let’s examine all possible quadratics y = ax” + bx + ¢ where the coeffi-
cients a, b, and c are integers from 0 to 5, say, but a # 0. We write this in interval no-
tation as [0, 5]. We then use a computer program that considers all possible integer
values for a, b, and c in this interval and keeps track of how many of the quadratics
have complex roots, using the discriminant criterion. Similarly, we can investigate
all possible integer coefficients in various other intervals, the results of which are
shown in Table 4.1.

TABLE 4.1

Interval for a, b, Percentage with
andc,a # 0 Complex Roots
Allin [0, 5] 70

Allin [0, 10] 73

All in [0, 20] 74

All in [0, 50] 74.5

Allin [-3,3] 37.4

Allin [—5,5] 37.5

Allin [—10, 10] 37.8

Allin [—20,20] 37.7

Allin [—50, 50] 37.5
[0,5],[0,5],[—5,0] 0
[0,5],[—5,0], [0, 5] 70

Therefore, rather than being a rarity, complex roots actually occur with sur-
prising frequency. In fact, almost three-fourths of quadratics whose coefficients are
all nonnegative integers have complex roots. Even allowing for negative values al-
most 40% have complex roots.

There is one exception in Table 4.1. If the constant coefficient c is negative while a
and b are both positive, the quadratic apparently always has two real roots. Can you
explain why? Can you give another example where the quadratic always has two
real roots? Look at the discriminant. (Note that we have checked only specific inte-
ger values for a and b between 0 and 5 and ¢ between —5 and 0, so we can’t gener-
alize to what may happen over all similar intervals of values.) —

We suggest that you conduct your own investigations of these ideas if an ap-
propriate program is available or if you want to write a fairly short program for
your calculator. Think about the following questions.

¢ With integer coefficients, what happens as the size of the interval increases?
Does the frequency of complex roots stay roughly the same or does it in-
crease or decrease significantly?

¢ What happens if you use different ranges of values for each coefficient?
Don’t be too generous in your choices when you begin; such systematic
processes tend to take a long time. For example, if you want to check all quadrat-

ics where a, b, and c are integers between 0 and 10, say, you are actually having the
computer or calculator investigate 1210 different equations. (There are 10 possible

o
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values for a since the equation would not be quadratic if a were zero. There are 11
possible values for b and 11 for ¢, which leads to 10 X 11 X 11 = 1210 different
cases.) If you ask for all integers from 0 to 100 on each of the coefficients, the com-
puter or calculator will investigate 100 X 101* different quadratics. It may take all
night to complete this study of more than one million cases.

We should also find out what happens when the quadratic has noninteger
coefficients, either rational numbers or irrational numbers. In such cases, we
can’t simply check all possible equations because there are infinitely many pos-
sibilities, even for any finite interval. Instead, we use a random selection process
to generate large numbers of quadratics with randomly selected (noninteger)
coefficients in desired intervals, test each for the nature of its roots, and keep
track of how many of the roots are complex. (We perform just such an analysis
in Supplementary Section 11.3 as part of our study of probability.)

The Roots of a Cubic Function

We next consider an arbitrary cubic equation
ax’> + bx* + cx + d = 0,

where a, b, ¢, and d are any four real numbers and a # 0. Recall that, just as a
quadratic equation has two roots, a cubic equation has three. They can be either
real or complex roots. Recall also that any complex roots must occur as a pair of
complex conjugates, & + (i and a — Bi. Thus, for any cubic equation, the three
roots may be either three real numbers, or a single real number and a pair of com-
plex conjugate numbers.

Moreover, we know that the real roots correspond geometrically to points
where the cubic crosses the x-axis. If there are three distinct real roots, the cubic
crosses the x-axis in three places, as illustrated in Figures 4.42(a) and 4.42(b). If
there is a double real root and a separate real root, the x-axis is tangent to the cubic
at the point corresponding to the double root and the curve crosses the x-axis at

"

(a) (b) (© (d)

>
> -
>

y y y y
A
/\ ’\
x X > X > X
FIGURE 4.42 (e) ® () ()
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the point corresponding to the other real root, as depicted in Figures 4.42(c) and
4.42(d). If there is a triple real root (as with y = x°), the cubic flattens as it crosses
the x-axis at the single point, as shown in Figures 4.42(e) and 4.42(f). Finally, if
there is a single real root and a pair of complex conjugate roots, the cubic crosses
the x-axis once, as illustrated in Figures 4.42(g) and 4.42(h). Thus a cubic can have
either three real roots or one real root.

We have demonstrated that quadratic equations are likely to have complex
roots. How likely is it for a cubic equation to have complex roots? To answer this
question, we again use a computer program to investigate many different cu-
bics. First, though, we must devise a test comparable to using the sign of the dis-
criminant in the quadratic formula to decide whether a particular cubic has
complex roots.

Suppose that a cubic has three real roots. In that case, the curve crosses the
x-axis at three points if the three roots are distinct, it crosses the axis at two
points if there is a double real root, and it crosses the axis at one point if there is
a triple real root. The cubics shown in Figure 4.43 all have the same shape; the
only difference is the height of the turning points. The cubic on the left has its
first turning point above the x-axis and its second below; therefore it has three
real roots. The second cubic has both turning points above the x-axis and so
must have one real root and a pair of complex roots. The third cubic has both
turning points below the x-axis, so it also must have one real root and a pair of
complex roots.

y y y

“\ : :

X
FIGURE 4.43 [

A further case occurs when the x-axis is tangent to the curve at one of the turn-
ing points; such a cubic has a double real root, so it cannot have a pair of complex
roots and its third root must be real. The final case is when the two turning points
coincide along the x-axis; this case corresponds to a triple real root. Therefore, in
order to have two complex roots, a cubic must have both turning points above the
x-axis or both below it.

When you study calculus, you will be able to determine that the two turning
points of the cubic y = ax’ + bx* + cx + d = 0 are located at

_ —b= \V b* — 3ac

X = >
3a

provided that b* — 3ac = 0. (This formula clearly resembles the quadratic formula.)

Think About This  Verify graphically that this formula gives the approximate location of the turning
points of the cubic y = x> — 4x*> + 4x + 5. —

o
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Call these two x-values x; and x,. Because we know the equation of the cubic
curve,

y = f(x) = ax’ + bx* + cx + d,
we can determine the heights of the two turning points:

n = flx)) and y, = f(x,).

Once we have calculated these values, we need only check whether both are posi-
tive or both are negative to conclude that the cubic has complex roots, as illustrat-
ed in Figure 4.44. If the two y-values have opposite signs or if either is zero, the
cubic has three real roots. We use this criterion in our investigation.

We apply this criterion to cubics with integer coefficients a, b, ¢, and d with-
in various intervals of values. In Supplementary Section 11.3 we investigate cases
with randomly generated noninteger values for a, b, ¢, and d within any desired
intervals of values, provided that a # 0.

In Table 4.2 we list the results of performing this investigation with all possible
integer coefficients in the indicated intervals of values. This table indicates that a
cubic with integer coefficients seems even more likely to have complex roots than a
quadratic does.

TABLE 4.2
vy =flxy)
: Intervals for a, b,c,and d,a # 0 Percentage of Complex Roots
|
| Allin [0, 5] 94.54
| Allin [—3, 3] 78.43
| ‘ Allin [—4, 4] 78.74
| | 2 =702) Allin [-5, 5] 78.93
} } [0)4]) [0)4]) [ )4])[_4) O] 88.4
X 5 [0, 4], [0, 4],[—4, 0], [0, 4] 74.8
[0,4],[—4,0], [0, 4], [0, 4] 88.4
FIGURE 4.44 [0,4],[0,4],[—4,0],[—4,0], 44
"""""""""""""" [0,4],[—4,0],[—4,0], [0,4] 44
[0,4],[—4,0],[—4,0],[—4,0] 74.8

Think About This

Think About This

In intervals of the form [ —k, k] for all four coefficients, the proportion of complex
roots seems to be essentially the same regardless of the value of k. Does that make
sense? Imagine what would happen if you have a particular cubic and multiply each
coefficient by 10, say. Wouldn’t you expect the same type of roots? In fact, wouldn’t
you expect the identical roots? —

When we studied the nature of the roots of quadratics, we saw that the two roots are
always real whenever ¢ < 0 and a > 0. Are there any simple combinations of values
for the coefficients a, b, ¢, and d in a cubic that likewise guarantee real roots? (What
aboutd = 0,c < 0,anda > 0?) —

It turns out that for polynomials of higher degree, the likelihood of complex
roots is even greater than for quadratics or cubics, but we won’t investigate these
cases.
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Using Information on the Nature of the Roots

We next turn to an application for which knowing the nature of the roots of a poly-
nomial is crucial. Home thermostats and automobile cruise controls are examples
of control systems that engineers use to control a process. In such devices, when the
system deviates slightly from the specified level, it should return to that level auto-
matically—the temperature shuts off or the car stops accelerating. Such a system is
called stable. Often, control systems are described mathematically by a polynomial.

A control system is stable if
1. all the real roots are negative, and
2. all the complex roots have negative real parts.

A control system having any positive real roots or having complex roots whose real
parts are positive is unstable. That is, the system does not return to the specified
level when small changes are introduced.

A control system is described by the cubic polynomial P(s) = s* + 3s*> + 4s + 2. Deter-
mine whether the system is stable or unstable.

Solution The graph of this cubic polynomial is shown in Figure 4.45. Its associated
cubic equation s> + 3s*> + 4s + 2 = 0 has only one real root, so it must therefore have a
pair of complex conjugate roots. Moreover, it is evident that the real root is negative. If
we zoom in on the point where the curve crosses the s-axis, we find that the root appears
to be located near s = —1. We can determine whether the root is s = —1 exactly by
evaluating

P(—1) = (=1 +3(=1)* + 4(—1) + 2
=—-1+3—-4+2=0,

which shows that the root is precisely s = —1.
The problem we now face is to determine the complex roots. We know the real root
s = —1, so the corresponding linear factor is (s + 1). We can therefore factor the poly-

nomial by dividing it by (s + 1), using the technique of long division for polynomials
from algebra:
s+ 2s +2
(s+ 1))s* + 352+ 45 + 2
s+ s
287 + 4s
25> + 2s
2s + 2
2s +2
0

Thus, (s* + 2s + 2) is the quadratic factor, so that the original cubic polynomial is
Ps) =+ 3"+ 4s+2=(s+ 1)(s* + 25 + 2).
We now apply the quadratic formula to find the complex roots of the quadratic factor:
2= 22— 4-1-2
2-1

o
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2 V—4 -2
2 2
The two complex roots are therefores = —1 + iands = —1 — i. Because the real parts

of both complex roots are negative, and the real root is negative also, the control system

is stable.

P(s)

Problems

. Consider all quadratics with a = 1 and the coeffi-
cient of the linear term b = 0 so that they take the
form y = x* + c. What percentage of these quad-
ratics should have two real roots?

. Consider all quadratics of the form y = ax* + bx
with ¢ = 0. What percentage of them should have
real roots?

. Show that, if each coefficient in the quadratic
y = ax* + bx + cis multiplied by 10, the resulting
discriminant is multiplied by 100. What would you
expect to happen to the discriminant if each coeffi-
cient were multiplied by the same number k? How
do the roots of the two quadratics compare?

. Consider all fourth degree polynomials of the form
y=ax"+ bx’ + ox* + dx + e,
where, for simplicity, you may consider a > 0.

a. Based on the general graph shown without axes,
how likely do you think it is (roughly 10%, 25%,
50%, 75%, or 90%) for such a polynomial to

oo g

R

have four real roots? four complex roots? Ex-
plain your answers.
b. How would your answers change if e = 0?

. For each of the following cubic equations, use your

function grapher to produce the graph and zoom in
to estimate where the two turning points are locat-
ed. Then apply the formula

—b = Vb* — 3ac
x =
3a

from the text (based on y = ax’ + bx* + cx + d)
to verify that the values given by the formula match
the points you found graphically.
y=x"+4x* —8x + 3
Ly=x —7x"—2x+6
y =5x" — 3x* — 6x + 8
Ly = —4x> + 3x* + 5x — 4
y=—4x> + 3x* — 5x — 4
Determine the location of the turning points for
the cubic y = x’ — 3x* + 2x + 10. What are
the maximum and minimum values for this
function?
b. Use the fact that a cubic is symmetric about its

point of inflection to determine the location of

the point of inflection of the cubic in part (a).

. If a different control system is described mathemati-

cally by each polynomial, determine whether it is sta-
ble or unstable.
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a. P(s) =s*+6s+8 d. P(s) = s> — 4s> — 12s
b. P(s) = s* + 55 — 12 e. P(s) =+ 3>+ 7s + 5
c. Ps)=s*+55+3

4.5 - Finding Polynomial Patterns

In Section 2.2, we developed a criterion for determining whether a set of m points
(x5, 71)> (X0, 9)5 « -+ » (X> ) follows a linear pattern when the x-values are uni-
formly spaced.

A set of points lies on a line if the differences between successive y-values are

all equal when the x-values are uniformly spaced. The slope of that line
_ Yy
 Ax

m

is the constant difference between successive y-values divided by the uniform
spacing between successive x-values.

We now consider the related problem of determining whether a set of points

XV A fllowsa quadratic, a cubic, or a higher degree polynomial pattern. Suppose that

0 1 we have the points (0, 1), (1, 2), (2, 5), (3, 10), (4, 17), and (5, 26), which actually

7> : lie on the parabola y = x> + 1. We construct the table at the left of differences of

1 2 > 3 the y-values. Obviously, the Ay values are not constant. In fact, they clearly follow a

2 5 linear pattern because the differences between successive Ay values (the differences

- > of the differences) are all constant. The differences of the differences, A(Ay), are

3 &> 7 called the second differences and are written A%y. If we extend the previous table to

4 17 include the second differences of the y-values, as shown in the table below, we get a
- > 9 constant value for all the second differences.

5 26 In general, we have the following criterion based on uniformly spaced x-values.

A set of points (x;, 1), (X35 %5)» - « - » (X, V) lies on a quadratic y = ax* +
bx + cif the second differences of the y-values are all constant when the x-values
are uniformly spaced.

0 1
1 — 2 —
E 2§3>2%1
2 5>5>2
3 10 >2
. >
9
5 26>
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In the problems at the end of this section we ask you to explore the significance of

this constant second difference.

Show that the points (0, 2), (1, 0), (2, 4), (3, 14), (4, 30), and (5, 52) lie on a parabola.
Then find the equation of the parabola by using regressions methods.

Solution We construct a table of second differences.

x y Ay A’y

0 2 —2=0-2

1 0 ; , > 6=4-(72)
i> 0 P

3 14 > 6
7> 16

4 30 S 2 > 6

5 52

Because the differences of the differences are constant, the points follow a quadratic pat-
tern of the form
y=ax’ + bx + ¢

where the coefficients a, b, and ¢ must be determined.
Thinking of the points as data values and using the curve fitting routines of a calcu-
lator, we find that the quadratic function that best fits the data is

y =3x* — 5x + 2.

The corresponding coefficient of determination is R* = 1, which suggests a perfect fit to
the data. Figure 4.46 shows that the graph of this parabola apparently passes through all
six points. Test this result by substituting each value in the formula that we created.

y
60 -
50 -
40 -
30+
20 -

10
[ S | | | |

FIGURE 4.46 0 1 2 3 4 5

Alternatively, we could find the equation of the quadratic function that fits

these points by using algebraic methods, as we demonstrate in Example 2.

Find the equation of the parabola that passes through the points (0, 2), (1, 0), (2, 4),
(3,14), (4, 30), and (5, 52), using algebraic methods.

o

R



Gord.3896.04.pgs 4/24/03 9:57 AM Page 294 $

294

CHAPTER 4 Extended Families of Functions

Solution Asin Example 1, we have to find the three coefficients a, b, and c in the equa-
tion of the quadratic function y = ax* + bx + c. Substituting the coordinates from the
first point x = 0 and y = 2 gives

2=a-(0)+b-(0) + ¢
so ¢ = 2 and therefore the equation of the parabola becomes y = ax* + bx + 2. Using
the second point (1, 0), we get

0=a-(1*) +b-(1)+2=a+b+2,
and so
a+b=—2 (1)

Using the third point (2, 4), we get

4=a-2) +b-(2) +2
4a + 2b + 2,

or
4a + 2b = 2.
Dividing both sides of this equation by 2 yields
2a +b=1. (2)
Equations (1) and (2) are a system of two linear equations in two unknowns.
We can solve for a and b by using the usual algebraic methods. We subtract Equa-
tion (1) from Equation (2) to get
a=3.
Substituting this value into Equation (1) gives
3+b=-2 or b= -5
So, as before, the desired quadratic is
y = 3x* — 5x + 2.

You can easily verify that the last three points satisfy this function.

Alternatively, we can solve this system of two equations in two unknowns by using
the matrix methods described briefly in Appendix C and also find that a = 3 and
b = —5. Thus the equation of the parabola again is y = 3x* — 5x + 2.

P

We can extend these ideas to develop similar criteria for deciding when a set of
m points (x1, 1), (X2, ¥2) « - - » (X,> ¥,n) follow a polynomial pattern of degree n for
any n. For instance, we have the following criterion for n = 3.

A set of m points (x;,11), (x3,95),---> (X V) lies on a cubic y =
ax® + bx* + cx + d if the third differences (differences of the differences of
the differences) of the y-values are all constant when the x-values are uni-
formly spaced.

Think About This  Show that the points (—3, —17),(—2,0),(—1,5),(0,4), (1, 3), (2, 8), and (3, 25)

lie on a cubic polynomial by creating a difference table that extends to the third dif-
ferences. —

o
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Sums of Integers

We use the preceding ideas on differences and polynomial patterns to develop a
number of formulas involving sums of numbers that arise frequently in mathe-
matics. Among them are the sum of the first n integers

1+2+3+ -+n
and the sum of the squares of the first n integers
P+22 43+ 4

Let’s begin with the expression for the sum of the integers. We let S, denote the
sum of the first n integers:

S,=1+2+3+-+n

For instance,S, = 1 + 2 + 3 + 4 = 10. We want a formula for S, for any value of
n. We derive it in two ways.
The first is a particularly simple way that involves a nice trick. If

S, =1+2+3+---+mn—-2)+(n~—-1)+mn
we can also write this sum in the reverse order as
S,=n+m—1)+m—-2)+---+3+2+1
We now add these two equations together term by term in the following way:
S, tS,=[1+n]+2+m—-1]+B3+m—2)]+---+[(n—1)+2]+[n+1]
=n+1)+(n+1) +n+1)+--- +(n+1)+(n+1).

n times
Because there are # of these terms on the right side, we have
28, = n(n + 1).
Dividing both sides by 2, we obtain

n(n+ 1)
2

5

which gives the following general result.
The sum of the first n integers is

1+2+3+ - -+n=—"7—" (3)

Find the sum of the first 100 integers: 1 + 2 + 3 + --- + 100.

Solution Using Formula (3) with n = 100, we get

100(101)
L+ 243+ 4100 = ——— = 5050.
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We can also write Formula (3) in summation notation (see Appendix A3):

“ n(n+ 1)
Mk=1+2+3+-+n=—"+"
=1 2
Alternatively, we can derive this result by using either the ideas on fitting func-
tions to data or algebraic methods, as shown in Example 4. The advantage of deriv-
ing this formula in other ways is that it demonstrates techniques that can be applied
to more complicated cases for which the trick we used previously doesn’t work.

Derive the formula for the sum of the first # integers by using (a) curve fitting methods
and (b) algebraic methods.

Solution We again write the sum of the first n integersas S, =1+ 2 + 3 + --- + n.
Thus the sum of the first integer is S, = 1; the sum of the first two integers is
S, = 1 + 2 = 3; the sum of the first three integers is S; = 1 + 2 + 3 = 6, and when
we continue S, = 10, S; = 15, S¢ = 21, and so on. If we form a table of second differ-
ences with these entries, we get the following.

n S, AS, A%S,

1 1
2

5 3§3>13—2

3 6>4>1

4 w>5>1

5 15 >1
>6

6 21

The second differences A%S, are all constant, so the desired pattern is a quadratic func-
tion of n. Thus S, = an® + bn + c, where a, b, and c are constants that we must now
determine.

a. Using the regression features of a calculator, we find that the quadratic function that
best fits these points is

S =051+ 051+ 0

1, 1
=—n + —-n
2 2

1
—n(n + 1),
S+ 1)

as before. All the points lie on this curve, as we can verify by substituting the coordi-
nates of the points into the equation.

b. Using the pointn = 1, S, = 1 in the quadratic function S, = an* + bn + ¢, we get
Ss=1=a-(1*) +b-(1) +¢
and so

a+b+c=1.

o
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When n = 2, we have S, = 3 so that
S,=3=a-(2%) +b-(2) +¢
and hence
4a + 2b + ¢ = 3.
Similarly, when n = 3 and S; = 6, we have
Ss=6=a-(3*)+b-(3) +¢
so that
9a +3b + c=6.
We therefore have a system of three linear equations in three unknowns:
atb+c=1
4a + 2b + ¢ = 3
9a + 3b + ¢ = 6.

Using the matrix techniques from Appendix C, we find that

1 1
a=—, b=—, and ¢ =0,
2 2

which is the same set of coefficients we found in part (a).

]

There is one difficulty with both derivations in Example 3. We used both meth-
ods to derive a formula for the sum of the first # integers, which is supposed to be true
for any n. But, in fact, we based both derivations on just the first six values that we cal-
culated for §;, S, . . ., S, which we showed followed a quadratic pattern by looking
at a table of second differences. The catch is that we can’t know for sure, just by look-
ing at examples, that all subsequent values for S, continue to follow a quadratic pat-
tern. So the “proof” really isn’t legitimate unless we can demonstrate that it applies to
every value of 7, not just the first six. We do so in Example 5.

Show that all the values for S, =1 + 2 + 3 + --- + n, for all values of , fall in a
quadratic pattern.

Solution To show that all values of S, fall in a quadratic pattern, we must demonstrate
that the second differences are always constant for any value of n. Let’s consider any
value of n, so that the sum of the first n integers is

S,=1+2+--+n
If we take the next integer, n + 1, and form the sum of the first n + 1 integers, we get
Spii=0+24+--+n)+(n+1).
The difference between S, and S, ., is
AS, =S, —S,=n+1,

because all other terms cancel.
Similarly, the sum of the first n + 2 integers is

Spo=Q+2+---+n)+mn+1)+ (n+2).

o
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The difference between this total and S, is
Sutz2 = Sut1 = ASy = n+ 2

because, again, all other terms cancel. As a result, the second difference, or difference of
the differences, is just

AS,., —AS,=(n+2)—(n+1)=1,

for any value of n. Therefore all values of S, have a constant second difference and con-
sequently, no matter what value of n we select, the sum of all the differences must follow
a quadratic pattern.

.

Sums of Squares of Integers
We now find a formula for the sum of the first # squares,
S, =1"+22+3+ 4+ -+ n
We have
=1, S =1"4+22=5 S, =1"+2"+3"= 14,
S, = 30, S; =55 and S4 =91,

and so on. For simplicity, we also use the sum of the squares of the first zero terms,
Sy = 0> = 0. Arranging these values in a table, we obtain the following.

n S, AS, A%S, A’S,

The third differences A’S, are all constant, so these data values follow a cubic
pattern; that is, the formula for the sum of the squares of the first n integers is a
cubic function

S,=an’ + bn* + cn + d.

Using polynomial regression, we find the cubic polynomial that fits the points
(0,0), (1,1), (2,5), (3,14), (4,30), (5,55), and (6,91) has coefficients a =
0.33333333 (or3), b = 0.5 = 3, ¢ = 0.16666667 (or ) and d = —3.5E (—12) =
—3.5 X 1072 = —0.0000000000035, which essentially is 0. Therefore the cubic
function that fits the data is

(o (e (oo

o
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We factor out the common factors # and ¢ and then factor the resulting quad-
ratic to get
G+ ) ()]
ni{-n+ |- |n+|—
3 2 6
1 2
= s n[2n® + 3n + 1]
1
= <6)n(2n + 1)(n + 1),

Sn

which is more commonly written as
n(n+ 1)2n + 1)
n 6 .

Alternatively, we could solve for the coefficients of the cubic polynomial
S, = an’ + bn* + cn + d algebraically.

Usingn = 0and S, = 0, we get 0 = d.

Therefore we have

S, =an’ + bn* + cn.

Further
whenn = 1land §; = 1: a+ b+ c=1
whenn = 2and S, = 5: 8a+4b + 2c =5

whenn = 3and S; = 14: 27a + 9b + 3¢ = 14

These results give a system of three equations in the three unknowns 4, b, and ¢; we
have already determined that d = 0. Using matrix methods to solve this system of
equations, we again geta = 3, b = 3,and ¢ = ¢.

In general, we have the following formula.

The sum of the squares of the first n integers is

; +1)2n + 1
Ek2=12+22+32+---+n2=n(n J(@n )- )

=1 6

EXAMPLE () eSS §
Find the sum of the squares of the first 100 integers: 1> + 2% + --- + 100% :

Solution Using Formula (4) with n = 100, we get

100(101)(201
2+ 224+ .-+ 100% = (6)() = 338,350.

P

Note that, although Formula (4) is true for all values of n, we have only estab-
lished it forn = 0, 1, . .., 6 by using both of these approaches. As with the sum of
the first n integers, we must prove that the sum of the squares of the first # integers
follows a cubic pattern for every possible value of n. We do so in Example 7.

o
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EXAMPLE 7 eSS §
Prove that the sum of the squares of the first n integers, for any #, follows a cubic pattern. 5
Solution To do so, we have to show that the third differences of S, are all constant, for
any value of n. We write

S, =1 +2"+ .-+
so that
Spi =1 +22+ - +nt+ (n+ 1)
Spir =1 +22+ -+ 2+ (n+ 1)+ (n+2)3
Sz =1 +22+ - +n”+(n+1)+(n+2)>+(n+3)>~
We begin by forming the first differences of each successive pair. In each case, all terms
but one cancel, leaving us with
Spi1 — S, =AS,=(n+ 1)y =n"+2n+1
Spiz = Spi1 = AS,, = (n+2)=n"+4n + 4
Sn+3 - Sﬂ+2 = Asn+2 = (n + 3)2 = le + 6” + 9.
Each of these first differences is a quadratic function of n. We now form the second dif-
ferences by taking the difference of each successive pair of first differences:
AS, .. —AS, =AS,=(n*+4n+4) — (n* +2n+ 1) =2n+ 3;

AS, .y —AS, . = AS,,, = (P +on+9)—(n*+4n+4) =2n + 5.
Finally, we find the third differences by forming the difference between these last two ex-
pressions and get

A%S,,, — A®S, = A’S, = (2n+5) —(2n + 3) =2,
which is constant for all values of n. That is, the sum of the squares of the first n integers
follows a cubic pattern for every value of .
‘ ...................

T T = T — :

When cannonballs are stacked in a pyramidal pile, as shown in the accompanying figure,
they are organized from the top layer down as follows: A single ball is at the top of the
pile; four balls are in the second layer, arranged in a square to support the single ball on
top; nine balls are in the third layer, arranged in a square of size 3 by 3 that supports the
second layer; and so on. How many cannonballs are in a pile that is 10 layers high?

Solution The number of cannonballs is
12+ 22+ 3%+ ...+ 10%

We can evaluate this total using Formula (4) for the sum of the squares of the first n in-
tegers with n = 10. Thus

10(10 + 1)[2(10) + 1]
6
10(11)(21)
6
385 cannonballs.

P+22+3 4+ 100 =
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Example 9 illustrates some additional applications of these ideas to find the
total for a quantity when the individual amounts are known. In it we use the fol-
lowing basic properties of sums of numbers:

2(ak+bk)=2ak+zbk (5)
k=1 k=1

k=1

and
> (m-ay) =m-> a, foranyconstantm. (6)
k=1 =1

We ask you to prove these two results in the problems at the end of this section.

A study of the financial records of a company finds that its monthly revenues, in thou-
sands of dollars, are modeled by the function R(x) = 0.001x* + 0.02x + 32, where x is
the number of months since the start of the study and x = 1. Find the total revenue for
this company over its first 10 years of operation.

Solution The 10-year period is equivalent to 120 months. We need to add the rev-
enues R(1) in month 1, R(2) in month 2, R(3) in month 3, . . ., R(120) in month 120.
Doing so, we get

120

R=R(1) + R(2) + --+ + R(120) = > (0.001k* + 0.02k + 32),

k=1
where the variable k takes on all values between 1 and 120. Using Property (5) of sums,
we simplify the preceding equation and get

120 120 120

R= D 0001k* + > 0.02k + > 32,
k=1 k=1 k=1

Using Property (6), we get
120 120 120

R =0.001 > k*+0.02> k+32> 1.
k=1 k=1 k=1

The first term involves the sum of the squares of the first 120 integers, so

20 120)(120 + 1)(2-120 + 1
> k= (120X 6)( ) _ 583,220.
k=1

The second term involves the sum of the first 120 integers, so
120 (120)(121)

Ek=f=7260.

k=1
The third term involves the sum of 120 ones, so

120
> 1=120-(1) = 120.
k=1

Therefore the total revenue for this company over the 10-year period is
R = 0.001(583,220) + 0.02(7260) + 32(120) = 4568.42
thousand dollars, or about $4.568 million.
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Problems

. In Examples 1 and 2, we found the parabola that
passes through the points (0,2), (1,0), (2,4),
(3,14), (4,30), and (5, 52). Suppose now that the
points are (0, 2), (1, 0), (2,4), (3, 15), (4, 30), and
(5, 52) instead.

The rows are numbered n = 1, 2, ... The second di-
agonal consists of the entries 1,2, 3,4, 5,and 6, . . .

Find a formula for the terms in the third diago-
nal: 1, 3,6, 10, 15, . . .
ber n.

Find a formula for the terms in the fourth diago-
nal 1,4, 10, 20, . ..

,in terms of the row num-

b.

,in terms of the row number n.

a. Show that these points do not lie on a parabola. 5. Construct the quadratic polynomial that passes
b. Attempt to repeat the procedure used in Exam- through the points (0, 1), (1,4), and (2, 9). Use it
ple 2 to see what goes wrong. to estimate the value of the underlying function
. Determine which sets of values come from a quad- when x = 0.5 and when x = 3.
ratic function and which come from a cubic func- 6. The main support cable of a suspension bridge is a
tion. For those that come from a quadratic function, parabola. For the Golden Gate bridge, suppose that
determine the equation of the quadratic. the cable’s lowest point is 15 feet above the roadway.
Use the dimensions shown in the accompanying
figure to find an equation of the cable for the Gold-
f(x) 8(x) h(x) k(x) en Gate bridge.
0 1 1 3
—2 6 0 1
2 13 5 3
12 22 22 9
28 33 57 19
50 46 116 33
. The following measurements were taken on a quan- 7. Find (a) the sum of the first 25 integers, (b) the sum
. . of the first 100 integers, and (c) the sum of the first
tity that follows a cubic pattern. However, one of 1000 int
the values was recorded in error. Find the incorrect _ InEegers. _
entry and correct it. (Hint: It isn’t necessary to actu- 8. Find (a) the sum of the squares of the first 25 integers
ally determine the formula for the cubic.) and (b) the sum of the squares of the first 50 integers.
9. Suppose that the produce manager in a supermar-
ket receives a delivery of 1000 large grapefruit,
0 1 2 3 4 5 6 7 . : . . .
which he wants to display in a pyramid with a
40 34 24 22 40 90 184 344 square base. How many layers are needed?
. . 10. a. Find th f the int from 83 through
. Consider the array of numbers known as Pascal’s tri- a. mind Hie suin of the integels from roug
. . . . 225, inclusive.
angle in which each row begins and ends with 1 and . :

. . LS b. Find the sum of the squares of these integers.
each intermediate entry is simply the sum of the two ) o ) ] )
numbers diagonally above it in the previous row. 11. The annual rainfall R, in inches, in a particular region

in year ¢ since the start of the last century can be mod-
L1 eled by the formula R(t) = —0.02¢%> + 1.8¢ + 42.
12 1 Find the total rainfall from 1900 (when t = 0)
3 3 1 through 2000 in that region.
L4 6 4 1 12. Cannonballs are sometimes stacked in rectangular
s 10105 1 iles. The accompanying figure shows the fourth
1 6 15 20 15 6 1 pries. patlylis g

layer of a stack of n rectangular layers.

a. Suppose that such a stack ends with a single row
of two balls at the top. Devise a formula in sum-

o
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13.

14.

15.

16.

32201

CeCCC

Fourth layer
mation notation for the number of balls in a stack
n layers high.

b. Use the properties of summations to expand the
formula you found in part (a).

c. Suppose that a stack of cannonballs ends with a
single row of three balls as the top layer. Devise a
formula for the number of balls in a stack # lay-
ers high.

d. Use the summation formulas from parts (a) and
(¢) to predict the result if the top layer consists of
a single row of four balls.

a. Consider the function y = ax’. Construct a
table of values for the functionifx = —2, —1, 0,
1, 2, 3 and extend it to a table of differences until
you can construct a formula for A%y for this
function.

b. Repeat part (a) for the function y = ax’ to de-
vise a formula for A’y.

c. Repeat part (a) for the function y = ax* to de-
vise a formula for A'y.

d. Based on your results in parts (a)—(c), predict a
formula for A’y when y = ax’.

For the sequence of numbers {yy, ¥, ¥, - - .
Vus1> Vusas - - - 1> show that

a. Azyo - yz - 2y1 + )/0.
b. Azyn = Vor2 = 21 T Vo for any n.

b yn)

Suppose that a set of data values (x,, y,), (x1, 1),
(x5, 75); - - . has uniformly spaced x-values (Ax) and
constant second differences A’y = k so that the
points follow a quadratic pattern y = ax* + bx + c.
Use the result of Problem 14 to show that the
leading coefficient is

1 Ay

2 (Ax)*
(Hint: Write x, = x, + Axand x, = x, + 2Ax and
use the first three points to construct a system of
linear equations in a, b, and c.)

a

Because the sum of the first n integers follows a
quadratic pattern and the sum of the squares of the
first n integers follows a cubic pattern, you might

o

—p—

17.
18.

19.
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conjecture that the sum of the cubes of the first n
integers

S,= 2K =1V+2+3+-+
k=1
follows a quartic polynomial pattern.

a. Calculate values for S, forn = 0,1,2,...,7.

b. Use a table of differences to show that these val-
ues follow a quartic pattern.

c. Find a formula for the sum of the cubes of the
first n integers.

Find the sum of the cubes of the first 25 integers.

By writing out

n
Eak=a1+a2+---+an,
k=1

Ehk:b1+b2+"'+bn, al’ld E(m'ak),
k=1 k=1

show that

n

E(ak-l—bk): kEﬂk+ kEbk
=1 =1

=1
and
n n
> (m-a) =m a for any constant m.
k=1 k=1

A Pythagorean triple is a set of three integers a, b, and
c that satisfy the Pythagorean theorem a* + b* = ¢*
and hence represent the sides of a right triangle.
The following is a list of the first five Pythagorean
triples (a,, b,, ¢,).

n a, b, c,
1 3 4 5
2 5 12 13
3 7 24 25
4 9 40 41
5 11 60 61

(There are infinitely many Pythagorean triples.) No-
tice that, for any n,a, = 2n + landc¢, = b, + 1.

a. Construct a table of differences to determine the
pattern in the b, terms.

b. Find a formula for b, for each value of n, based
on the pattern from part (a).

c. Show that the resulting triple (a,, b,, ¢, ), forms a
Pythagorean triple for any integer #.

d. What is the next Pythagorean triple following
the ones shown in the table?
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4.6

Building New Functions from Old:
Operations on Functions

The functions that we’ve considered so far, such as ¥ = Vx, y =x,y = 10% and
y = log x, can be thought of as building blocks from which we can construct other,
more complicated functions. In a simple case, we can take the power functions
y = x and y = x* and the constants 3, 4, and —5 to create the quadratic function
f(x) = 3x* + 4x — 5 as a linear combination of power functions. In fact, we can
think of any polynomial as a linear combination of power functions. In this sec-
tion, we investigate how to generate larger classes of functions by applying simple
operations (e.g., addition, subtraction, multiplication, and division) to the basic
families of functions that we already have discussed.

Sums and Differences

Let’s begin with the sum of two functions. The function
flx) =x*+27¢

is the sum of the two functions y = x*and y = 27* = 1/2* = (3)*. Their individual
graphs are shown in Figure 4.47. If we “pile” one set of y-values on top of the other
and add, we get the graph of the sum as shown in Figure 4.48. You can verify that
this result is indeed the case by plotting the sum function on your function grapher.

>

FIGURE 4.47 FIGURE 4.48

Note the behavior of the sum y = x* + 2% Because y = 2™* = (3)* decays rap-
idly as x increases, its contribution becomes less and less significant, and the quadrat-
ic term eventually dominates in the sum when x is large. As a result, toward the right,
the graph quickly becomes indistinguishable from a parabola. For negative values of
x, both functions become large, but 2™ grows much faster than x* does and so the ex-
ponential term dominates on the left.

In general, we write

S(x) = flx) + g(x)
for the sum of two functions f(x) and g(x). That is, for each value of x, we add the

values of f(x) and g(x) to produce the value of S(x). For instance, if f(3) = 15
and g(3) = 4,then S(3) = f(3) + g(3) = 15+ 4 = 19.

o
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Similarly, we construct the difference of two functions by taking the difference
between their values for each possible value of x. In general, we write

D(x) = f(x) — g(x)
for the difference of two functions. Thus, if f(3) = 15 and g(3) = 4, then
D(3) = f(3) — g(3) = 15 — 4 = 11. Graphically, if we subtract g(x) from f(x)
and f(x) > g(x), the difference D(x) is just the difference in height between the
two curves for each value of x.

Products of Functions

For the product of the two functions f(x) = x*and g(x) = 27% we use the same
interpretation as with sums and differences of functions. Thus the product of the
two functions

Px) = f(x) - g(x)

means that, for each permissible value of x, we multiply the corresponding func-
tion values. So, if f(3) = 15and g(3) = 4,then P(3) = f(3)-g(3) = 15-4 = 60.

What does the graph of the product function look like? Unlike the sum and
difference of two functions, there is rarely a direct graphical interpretation of the
product of two functions. However, you can produce the graph of the product of
two functions on your function grapher and then analyze the behavior of that
graph. For instance, consider

P(x) = f(x)-g(x) = x*-27%

We know that, for large positive x, y = x* grows ever larger and y = 2™ approach-
es zero. We also know that an exponential function with a positive exponent grows
much faster than a power function does. Similarly, an exponential function with a
negative exponent decays much faster than a power function with a negative
power. Together, these facts indicate that, in the product x*- 2% the exponential
term drives the product toward zero as x increases. For values of x < 0, both func-
tions grow without bound, so their product becomes infinitely large. By using your
function grapher, you can obtain the result shown in Figure 4.49.

Let’s look at a real-life example of a product of two functions. Lyme disease is
caused by a bacterial infection transmitted by blood-sucking ticks. When a person is
infected, the body produces antibodies to fight the bacteria. Figure 4.50 shows the
level of concentration of the antibody in the bloodstream as a function of the num-
ber of weeks since the first infection. Note that the pattern is remarkably similar to

>

Antibody level

L L L L L L > X

FIGURE 4.49 FIGURE 4.50 Weeks since infection
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the behavior of the function f(x) = x*-27* for x > 0. This pattern suggests that
such functions, known as surge functions, might be appropriate as mathematical
models to describe the antibody level, both for Lyme disease and possibly other in-
fections. We explore some applications of surge functions in Section 4.9.

Quotient of Functions

When we consider the quotient of two functions

g(x)
there is a complication that we must take into account. The quotient is undefined
at any point where the denominator g(x) is zero, and typically a vertical asymptote
occurs there. We illustrate this behavior in Example 1.

EXAMPLE T ceovreereeess et aR AR AR AR AR R AR §

Solution We begin analyzing the behavior of this function by looking at what happens
when the denominator x> — 1 = (x — 1)(x + 1) is zero. That occurs when x = 1 and
x = —1, so the quotient Q(x) is not defined there. When you take values of x very close to
either of these two points, the corresponding values for the quotient Q(x) become ex-
tremely large, positively or negatively. To see this result, first consider points near x = 1.
Suppose that x is slightly larger than 1. So

if x = 1.001, then y = Q(1.001) =~ 1000.5;
if x = 1.0001, then y = Q(1.0001) =~ 10000.5;
if x = 1.000001, then y = Q(1.000001) = 1,000,000.5.

Hence, as x approaches 1 from the right (or from above) through values of x that are
slightly larger than 1, y becomes ever larger and approaches .
Now suppose that x is slightly smaller than 1. So

if x = 0.999, then y = Q(0.999) =~ —999.5;
if x = 0.9999, then y = Q(0.9999) ~ —9999.5;
if x = 0.999999, then y = Q(0.999999) =~ —999,999.5.

Hence, as x approaches 1 from the left (or from below) through values of x that are
slightly smaller than 1, y approaches — .

By a similar analysis around the point x = —1, you can verify that, as x approaches
—1 from the right, the function approaches —, whereas, if x approaches —1 from the
left, the function approaches + . Therefore it is not surprising that this quotient func-
tion has vertical asymptotesatx = l and x = —1.

We next analyze the end behavior—what happens to this function as x becomes large,
both positively and negatively. Suppose, for instance, that x = 1000. The value of the
function then is

1,000,001

1000) = ————— = 1.000002,
& ) 999,999

o
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which is extremely close to 1. Actually, adding 1 to x* in the numerator and subtracting
1 from x” in the denominator really has little effect on the value of the function when x
is 1000. If x were even larger—say, 1,000,000—adding or subtracting 1 from x* would
have a negligible effect. Thus for large values of x, the numerator is dominated by the x*
term and the denominator is dominated by the x* term, so the quotient behaves like

when x is large. As a result, this quotient function gets closer and closer to a height of 1,
so that it has a horizontal asymptote of y = 1 as x approaches .

What happens as x approaches —«? Again, for large negative values of x, the 1 in the
numerator and the —1 in the denominator are negligible and x* again dominates both
the numerator and the denominator. Thus there is also a horizontal asymptote of y = 1
as x approaches — .

We next look for the points where the curve crosses the two axes. It crosses the y-axis
when x = 0,50 Q(0) = 1/(—1) = — 1. Where does the curve cross the x-axis? For that
to happen, y must equal 0, so the numerator has to be 0. Because the numerator for Q(x),
x> + 1, is never O for real values of x, the quotient cannot be 0 anywhere. Hence the curve
never crosses the x-axis. The complete graph of this function is shown in Figure 4.51.

y

-1

FIGURE 4.51

Rational Functions

Example 1 illustrates most of the ideas involving the behavior of quotients of func-
tions in general and quotients of polynomials in particular. The quotient (or ratio)
of two polynomials is called a rational function. We assume that any common fac-
tors in the numerator and the denominator have been canceled and therefore that
the rational function is expressed in simplest form.

The following are some of the important facts about rational functions.

Behavior of Rational Functions R(x) = P(x)/Q(x)

¢ The zeros of the numerator P(x)correspond to zeros of the rational
function R(x); its graph crosses the x-axis at these points.

o



Gord.3896.04.pgs 4/24/03 9:57 AM Page 308 $

---------------------- 308 CHAPTER 4 Extended Families of Functions

¢ The zeros of the denominator Q(x)correspond to the points where
the rational function R(x) is not defined; its graph usually has a verti-
cal asymptote at these points.

¢ The highest power term in the numerator P(x)dominates the numer-
ator for large values of x, either positive or negative.

¢ The highest power term in the denominator Q(x) dominates the de-
nominator for large values of x, either positive or negative.

¢ For large values of x, either positive or negative, the rational function
R(x) behaves like the highest power term of the numerator divided by
the highest power term of the denominator. The result may be a hori-
zontal asymptote or the values may approach « or —o as x increases ei-
ther positively or negatively.

We illustrate these ideas in Examples 2 and 3.

E JAIMPLE D -++r-vvvvvreeesssssessessssssssssssssessssssssesssssss st 5881188845888 48 1448845888488 §
Analyze the behavior of the rational function :
X =1
R(x) = .
x—2

Solution Here, R(x) has zeros when its numerator x> — 1 = 0, so thatx = * 1, and
the graph crosses the x-axis at these two points. Also, the denominator is zero when
x = 2, which creates a vertical asymptote there. Suppose that x approaches 2 from the
right (with values slightly larger than 2); for instance,

if x = 2.01, then y = R(2.01) = 304.01;
if x = 2.001, then y = R(2.001) = 3004.001;
if x = 2.00001, then y = R(2.00001) = 300004.00001.

Thus, when x approaches 2 from the right, R(x) approaches + . Similarly, when x app-
roaches 2 from the left, R(x) approaches —oo (try some values of x slightly less than 2—
say, x = 1.99 or x = 1.9999).

You can locate the vertical asymptotes of a rational function by finding the roots of the
denominator, but you must check what happens on either side (in this case at x = 2.001
and x = 1.999, for example) to determine the sign of the function on each side of the verti-
cal asymptote. Doing so lets you decide whether the curve rises toward + % or drops toward
—oo on each side of the vertical asymptote.

Next, consider the end behavior of R(x). For large values of x, the numerator is domi-
nated by the leading x* term and the denominator is dominated by the leading x term. As a
result, for large values of x, the quotient behaves like y = R(x) = x*/x = x. For instance,

if x = 10, then R(10) = 12.375;

if x = 100, then R(100) = 102.0306;

if x = 1000, then R(1000) = 1002.003006.
The larger x is, the closer R(x) is to x and, for large positive values of x, the graph in-
creases toward +°.

Similarly, for large negative values, the quotient R(x) behaves like y = x*/x = x and
the graph tends toward —o°.

o
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Figure 4.52 displays all this behavior in the complete graph of R.

0
FIGURE 4.52 \
Y S— :

Think About This  Graph both the original quotient function R(x) = (x* — 1)/(x — 2) and the
limiting function y = x in the same fairly large viewing window—say, from —1000
to 1000 for both x and y—on your function grapher. What do you observe? —

Getting all the important details on the behavior of a rational function from a
single view in your function grapher is often almost impossible. Try it for the func-
tion R(x) in Example 2 and see what types of information may be lost because of
the scale you use for the domain and range.

E JAIMPLE 3 -++rvvvvvereeesesssereesssssessssssssessssssss s sssss 8805881144885 48 2488458880884 ?
Analyze the behavior of the rational function :
x—2
S(x) = .
™) =73

Solution Here, S(x) was formed by interchanging the numerator and denominator of
the rational function R(x) in Example 2, but the behavior of the two functions is quite
different.

Note that S(x) has only one zero at x = 2 when the numerator is zero. It has two ver-
tical asymptotes, one at x = 1 and the other at x = —1 when the denominator is zero.
Let’s see what happens on either side of the asymptotes. When x = 1.001, say, we have
S(1.001) = —499.25, so we conclude that the curve drops toward — o as x approaches 1
from the right. Similarly, when x = 0.999, we have $(0.999) = 500.75 and the curve
rises toward + o as x approaches 1 from the left. Similarly, when x = —1.001, we have
S(—1.001) = —1499.75 and the curve drops toward — as x approaches —1 from the
left. Also, when x = —0.999, S(—0.999) = 1500.25, and the curve rises toward + as x
approaches —1 from the right. Use your calculator to check these conclusions numeri-
cally with other values of x on either side of x = 1 and on either side of x = —1.

Further, the numerator is dominated by x and the denominator is dominated by x%, 0
for large values of x, the rational function behaves like y = x/x* = 1/x. Therefore, for
large positive values of x, the function is positive and decays toward the x-axis as a hori-
zontal asymptote. Similarly, for large negative values of x, the function is negative and rises
toward the x-axis as a horizontal asymptote.

o
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The complete graph of S(x) is displayed in Figure 4.53.

y
A

FIGURE 4.53

P

As before, though, we urge you to examine the behavior carefully with your
function grapher to see how viewing the overall characteristics depends on the
window you use.

Think About This ~ Examine the graphs of the quotient function S(x) and the limiting function

y = 1/x in the same large viewing window. What do you observe? —

We next consider a real-world application that involves rational functions.

According to the law of universal gravitation, the gravitational force between any two
objects of mass m, and m, is

_ Gmym,

- >
1,2

where r is the distance between the objects and G is the gravitational constant. Envision
a spacecraft traveling from the Earth to the moon, a distance of about 240,000 miles. Be-
cause the mass of the Earth is roughly 81 times that of the moon, the Earth’s gravita-
tional effect on the spacecraft will be greater than that of the moon’s until the spacecraft
is quite close to the moon, when it’s gravity becomes dominant. Determine the distance
from the Earth when the two gravitational forces exactly balance each other.

Solution We begin with a sketch of the situation, as shown in Figure 4.54, where r rep-
resents the distance, in thousands of miles, from the Earth to the spacecraft. Hence
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240 — ris the distance from the moon to the spacecraft. Let m1, be the mass of the space-
craft, m, be the mass of the Earth, and m, be the mass of the moon. The Earth’s gravita-
tional force on the spacecraft F, is
Gmym
r = 0y

e 2 >
r

and the moon’s gravitational force on the spacecraft F,, is
Gmgm,
F,=— "
(240 — 1)
Both F, and F,, are rational functions of . Because the Earth is 81 times as massive as the
moon, m; = 81m,. We rewrite F, as
_ Gm,(81m,)

e r2

The two gravitational forces are equal when

81Gmym,  Gmgym,
2 (240 — 1)
Dividing both sides of this equation by Gmm, (because none of these quantities are zero)
gives
81 1
7 (240 — 1)

Cross-multiplying yields
r* = 81(240 — r)*.
We expand the expression on the right by squaring the binomial term and obtain
r* = 81(240% — 480r + r?) = 81(240)*> — 81(480)r + 81r%.
Collecting like terms and simplifying, we have the quadratic equation
80r* — 38,880r + 4,665,600 = 0.
Dividing through by the common factor 80, we get
r? — 486r + 58,320 = 0.

Using the quadratic formula, we find that the roots of this quadratic equation are
r = 216 and r = 270. These answers are distances in thousands of miles from the Earth.
Because the moon is about 240 thousand miles from the Earth, the only reasonable an-
swer is the first. Therefore the two forces balance at a point about 216 thousand miles
from the Farth and about 24,000 miles this side of the moon. The second solution,
270,000 miles from the Earth, corresponds to a point beyond the moon where the effects
of the moon’s gravity and the Earth’s gravity are numerically the same, though both
forces are in the same direction.

]

A Function of a Function

There is yet another way in which we can construct new functions from simpler
functions. In Example 5 of Section 2.2, we showed that the rate R at which a snow
tree cricket chirps is a function of the temperature T, and we found a mathematical

o
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model for this relationship as the function R = f(T) = 4T — 160. However, the air
temperature doesn’t remain constant, but actually varies with the time of the day, so
the temperature T is really a function of time . T = g(t). As a result, the chirp rate,
though a function of the temperature T, is actually a function of time t. That is, we
have two functions:

R=f(T) =4T — 160 and T = g(1).
If we substitute T = g(¢) into the expression R = f(T), we get

R = f(T) = f(g(1)).

We call this type of situation a function of a function or a composite function.
Let’s look at this notion from a different perspective. Consider the function

f(x) = Vx* + 1. To see what it means, suppose that x = 1. Then
f1)=Vr+1=Va.
For x = 2,

f2) =V +1=Vo=3

To evaluate this function in each case, we actually performed two successive steps:
(1) for each value of x, we evaluated the expression x*> + 1; and (2), we took the
square root of the result. The reason is that we are really working with two func-
tions successively: first the “inner” function x* + 1 and then the “outer” function
Vu, where u = x*> + 1. The final function fis therefore a function of a function.

Let’s set up the mathematical framework for this concept. Suppose
that we let y = F(u), where u = G(x). Here, y = F(u) = Vu, where in turn
u = G(x) = x’ + 1. Consequently,

y = Fu) = F(G(x)) = F(x* + 1) = Vx + 1.

Our original function f is the result of applying the functions G and F
successively. This composite function y = F(G(x)) is sometimes written as F o G
and read “F of G”.

In general, for two functions F and G, the composite function F(G(x)) is the
result of evaluating the two functions successively, as depicted in Figure 4.55. We
start with a value of x, which is carried into a value u by the first, or inner, function
G, which in turn is carried to a value y by the second, or outer, function F. For this
method to make sense mathematically, the domain of the outer function F must
include the range of the inner function G.

G F

SNl .

_ y=FG)
§ "= oW = F(G)

FIGURE 4.55

Using composite functions, we can construct many other types of functions by
using the basic functions as building blocks.

o
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E JOAIMPLE 5 -reeeeeesessssseeeeeeeessssss s eess s 8114811 §
Find two functions fand g so that y = f(g(x)) = 10> 5
Solution Think about how you would evaluate this function for any value of x—first,
triple the x value because of the 3x term and then take that power of 10. That is, the lin-
ear function 3x is used as the exponent for the exponential function with base 10. So the
first, or inner, function is g(x) = 3x followed by the second, or outer, function
y = f(x) = 10" The result gives f(g(x)) = f(3x) = 10, as required.
‘ ...................
E JAIMPLE © -+ rereeeeeessssseeeeeessessss e se s8R AR §
Find two functions fand g so that y = f(g(x)) = log(x* — 5x + 2). :
Solution Here, the quadratic function x> — 5x + 2 is used as the argument of the log
function. So the first, or inner, function is the quadratic g(x) = x* — 5x + 2 and the sec-
ond, or outer, function is the log function y = f(x) = log x. Using the same approach as
in Example 5, we get f(g(x)) = f(x* — 5x + 2) = log (x* — 5x + 2), as required.
@
Are F o G and G ° F the same?
Is the order important in forming the composition of two functions? That is, is
F o G the same as G © F? Again consider
f(x) = VX' + 1 = FKG(x)) = Fo G(x),
where
u=Gx)=x+1 and y=Fu) = Vu.
If we interchange the order to form G(F(x)), we get
G(F(x)) = G(Vx) = (Vx)* + 1 =22+ 1,
which clearly is not the same as F(G(x)) = Vx’ + 1. By substituting a couple of
values for x—say, x = 1 or x = 2, you can see that the results are numerically dif-
ferent. In general, except in rare cases,
G(F(x)) # F(G(x))-
However, if F and G are inverse functions, the equality does hold.
E JAIMPLE 7 -++vvvvvvveeeesesssessessssssssssssssessssssssssssssssssssssssssssesssssssss 444488144445 888 4404458811458 1485888088818 ?

In Example 6 we chose f(x) = logx and g(x) = x> — 5x + 2. Find f(g(x)) and
g(f(x)).

Solution We have
f(g(x) = fo — 5x + 2) = log (x* — 5x + 2),
whereas

g(f(x)) = g(logx) = (logx)* — 5logx + 2.
Clearly, they are very different functions.

o
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Applications of Composite Functions

We next consider a real-world application of composite functions in Example 8.

EXAMPLE e §

When a kicker punts a football, it’s path can be modeled by the quadratic function
y = f(x) = —x?/27 + 1.92x + 1, where the height y and the horizontal distance
downfield x from the point where the ball is kicked are measured in yards. Furthermore,
the horizontal distance x from the kicker is given by x = g(#) = 12t, where ¢ is measured
in seconds.

a. Find an equation giving the height of the football as a composite function of time t.

b. Determine the hang-time for the football—how long it remains in the air after being
punted.

Solution

a. The path of the ball is the parabola shown in Figure 4.56, where y = f(x) = —x*/27 +
1.92x + 1. The graph shows that the ball carries somewhat more than 50 yards from
the point where it is kicked, which is usually about 10 yards behind the line of scrim-
mage. Using the formula x = g(¢t) = 12¢ for x as a function of t, we can form the
composite function giving the height y as a function of #:

(12t)?
y = flx) = f(g(t)) = — > + 1.92(12¢) + 1

—144¢2
~ + 23t + 1
27

~ —533¢> + 23t + 1.

Note that this is also a quadratic function of ¢ with a negative leading coefficient.

y
A

30 -

20 -

Height (yards)

0 10 20 30 40 50
Horizontal distance (yards)

> X

FIGURE 4.56

b. The hang-time for the football is the value of t when the ball comes back to the ground.
It is the zero of the composite function, so we must solve the quadratic equation

—533t> + 23t + 1 = 0.
Equivalently, if we multiply both sides by —1, we get
5.33t> = 23t — 1 = 0.

Using either graphical methods or the quadratic formula, we find that ¢ =
4.36 seconds.(A second solution to the quadratic equation gives a negative value for
t, which makes no sense in this context.)

P
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EXAMPLE 9

Two functions fand g are defined in the following table. Use the values given in the table
to complete it. (If any operations are not defined, write “UNDEF.”)

®

f(x)

8(x) f(x) = g(x) f(x)-8(x) f(x)/8(x) flg(x)  &(f(x)

Solution The values of the functions for four specific values of x—namely, x = 0, 1, 2,
and 3—are defined in the table. The first open column asks for the difference between
the two functions for each value of x. For instance, when x = 0, the first entry for this
columnis f(0) — ¢g(0) =1 — 3 = —2, and so on down that column. The second open
column asks for the product of the two functions for each value of x. When x = 0, we
get f(0)-g(0) = 1-3 = 3, and so on down the column.

The third open column asks for the quotient of the two functions. When x = 0, we
have f(0)/¢(0) = 1/3, and so on. However, because g(2) = 0, the quotient is not de-
fined when x = 2, so we enter UNDEF in the corresponding position in the table.

The fourth and fifth open columns ask for values for the composite functions
f(g(x)) and g(f(x)). In the fourth column, the function g is applied first and then the
function f is applied. When x = 0, we need to form f(g(0)). To do so we evaluate
g(0) = 3 first and then take f(g(0)) = f(3) = 2, so the first entry in the fourth column
is 2. For the next entry, we start with x = 1 and form f(g(1)). Because g(1) = 1, we get
f(g(1)) = f(1) = 0. Similarly, we get the remaining two entries in this column.

To fill in the entries in the last column, we reverse the order of operations of the two
functions and apply first f, followed by g. Starting with x = 0, we now need g(f (0)). Be-
cause f(0) = 1, we have g(f (0)) = g(1) = 1. Similarly, when x = 1, we need g(f (1)).
Because f(1) = 0, wehave g(f (1)) = ¢(0) = 3. Incidentally, for each of the four values
of 5, f(3(x)) # (2(/(x)).

We now have the completed table.

®

f(x)

8(x) f(x) = g(x) f(x)-8x)  f(x)/e(x)  f(g(x)) 8(f(x))

1

3

-2 3 3 2 1

0

1

—1 0 0 0 3

3

0

3 0 UNDEF 1 2
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Problems
1. For f(x) = 3x — 4and g(x) = , find
a. f(5) +g(5) b. ]}(é)) — 8(5).
c f(5)-8(5) <(5)"
e. f(g(5)). f. g(f(5)).
g f(f(5)). h. g(g(5)).
i f(x) + g(x) j- J}((x)) - g(x).
k. f(x) - g(x). L=
gx)
m. f(g(x)). n. g(f(x)).
o. f(f(x)). p- 8(g(x)).
2. Repeat Problem 1 for f(x)=x*+ 4andg(x) = Vx.

3. Repeat Problem 1 for f(x) = 10" and g(x)

= log x.

4. Two functions f and g are defined in the table at the

bottom. Use the values given to complete the table.
If any of the entries are not defined, write “UNDEF.”

. The functions f and g have the values f(2) = 10,

f(4) =20, f(6) =35, g(2) =8, g(4) =4, and
¢(6) = 2. Which expressions, (a)—(g), are correct,
which are incorrect, and which, if any, are not
defined?

a. f(6) — f(4) =2 b. f(g(6)) = 35
c. g(g(6)) =8 d. f(2) —g(6) =8
e. f(4) —g(4)=0 £ f(4)-g(4) =16
g f(4)/g(4) =5
. Two functions f and g are given in the accompany-

ing figure. The six graphs (a)—(f) represent f + g,

>

1.5+

0.5+ /
| | | | > X

> <

\
oo

—p—

f—99—f fg f/g and g/f. Decide which is
which and give reasons for your answers.

7. For the pairs of functions fand g shown, sketch the

graph of the function y = f(x) + g(x).

y
A

(a) (b)

70—.? - f@) 8. For the pairs of functions fand g shown, sketch the
-15+ graph of the function y = f(x) — g(x).
x flx) gl fx)—gx) fx)/gx)  gx)/f(x)  f(x)-gkx) flgkx) &(f(x) fT(x)
0 1 0
1 2 3
2 3 1
3 0 2
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y y y y

f —

> X > X > X
g
(a) (b) (c)
> X
y
(a)

y
A

(d)

11. Often in technical books and articles, graphs are

> shown for log y as a function of x, as in the follow-
ing graphs. In each case, given the graph of log y as
(b) a function of x, sketch the graph of y as a function
of x.
9. The graphs of three functions, (a)—(c), are shown in
the accompanying figure. ; ,
y ! \
> X ‘ > X
> X ‘ \ > X y (a) (b)

(a) (b)
y J
X ©

(©
12. Match each function with its graph.

2 __ 2
Sketch a rough graph of (i) 2/, (ii) log f; and (iii) /. ay=—2 1 py=-rrL
If any portion of a graph is not defined, mark it on x = ’; —6 xz —x—6
the x-axis. cy=9_x dy=x_x_6
10. For each function (a)—(d), sketch the graph of log f. xz — 4 =1
If any portion of a graph is not defined, mark it XX (x = 1)(x—4)

e. y= f.y=

along the x-axis. x* — 4

o
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=1 1 -2 3
:ﬁ:iglrgéx
| |
| |
| |
| |
(iii) (iv)
y y
| | \ | |
| | | |
| | | |
| | | |
| | | |
j' | J 12|
| | — =
| | | |
| [\ E | [\:
| | | |
| | | |

13. For the two functions fand g that are defined by the
graphs shown, find (a) f(g(1)); (b) g(f(1));
(c) f(g(=1));and (d) g(f(—1)).

y y
3 3
2

g(x)
1 1
X

-3 -1 1 \2 3 3 -2 -1 N\ 2

-1 X -1
0

ofife B
-3 . -3

14. For the functions f and g that are defined by the
graphs in Problem 13, sketch the graph of

(a) f(g(x)) and (b) g(f(x))-

—p—

For Problems 15-18, determine functions F and G such that

h(x) = F(G(x)). There are different correct answers to this

question; however, do not use F(x) = x or G(x) = x.

15. h(x) = x* + 5 16. h(x) = (x + 5)*

17. h(x) = log(x + 3)  18. h(x) = 3 + logx

19. The time ¢ that a traffic light should remain yellow
depends on the speed limit s on the road. The func-
tion t = 1 + s/20 + 70/s, where t is measured in
seconds and s is the speed in feet per second, is used
to determine the length of the yellow cycle. Note that
30 mph = 44 ft/sec.

a. How long is the yellow cycle if the posted speed
limit is 30 mph?

b. How long is the yellow cycle if the posted speed
limit is 50 mph?

c. What are reasonable values for the domain and
range of this function?

d. Suppose that the traffic department using this
formula wants to increase the length of the yel-
low cycle somewhat. Should it increase or de-
crease the values of each of the two parameters
20 and 70 to do so?

e. Rewrite the formula for ¢ as a rational function
by combining all the terms over a common de-
nominator.

20. According to Einstein’s theory of relativity, the

mass M of an object increases as its speed increases
according to the formula
2\ 12
- MO 1 - 7 5
c

M = f(V) — #

V1 — (/)
where M, is the mass of the object when it is at
rest (v=0) and c is the speed of light (about
186,282 miles per second). Suppose that an object has
arest mass of M, = 1 unit.

a. Construct a table of values for the mass of the
object for each of the following speeds expressed
as a fraction of the speed of light: v = 0, 0.5¢,
0.9¢, 0.95¢, 0.99¢, and 0.999c¢.

b. Sketch a graph showing the behavior of the mass
of an object as its speed approaches the speed of
light.

c. What is the mathematical significance of the
speed of light? What is the physical significance
of the speed of light in the context of the speeds
of moving objects?

21. Some physicists hypothesize the existence of parti-

cles called tachyons that exist only at speeds greater

o
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22.

than that of light. The slower that a tachyon moves,
the greater is its mass; the speed of light is a lower
limit on the possible speed of a tachyon. Sketch a
graph of the mass as a function of speed for all pos-
sible values of v = 0. Indicate which region corre-
sponds to normal particles and which to tachyons.

According to Newton’s laws of motion, the speed of

an object can be changed only by applying a force.

Also, the greater the mass of an object, the more

force is needed to accelerate it to a given velocity in

a fixed amount of time. Suppose that an object is to

be accelerated from speed 0 to almost the speed of

light.

a. Sketch the graph of the force needed to acceler-
ate it as a function of the velocity v. Pay careful
attention to concavity.

b. Sketch the graph of the velocity as a function of
the force needed, paying careful attention to

27.

28.

29.

The volume of a sphere is given by V = $77> and its
surface area is given by S = 4772,

a. Find a formula for the volume as a function of
the surface area. Interpret the result in terms of a
composite function.

b. Find a formula for the inverse function of the
function you found in part (a). What does it tell
you?

The degree of polynomial P is m and the degree of

polynomial Q is n, where m < n.

a. What is the degree of P + Q?

b. What is the degree of P — Q?

c. What is the degree of P+ (Q?

d. What is the end behavior of P/Q?
e. What is the end behavior of Q/P?

In Problem 20 of Section 1.3, we introduced a func-
tion f that represents a simple replacement code in
which each letter of the alphabet is replaced by a

concavity. different letter according to f(A) M, f(B) = D,
23. a. Graph the two functions y = Vx* + 25 and f(C) =K, f(D)=V, f(E)= f(F) =
x + 5. Are they the same? f(G)y=P, f(H) =T, f(I) = ], ) = 5,
b. Repeat part (a) with y=Vx*+4 and f(K)y=2, f(L)=Q, f(M)=H, f(N)=0,
y = x + 2. Are they the same? f(O)=A, f(P)=1, f(Q) =W, f(R)=0C,
c. Can you find any value for a for which f8)=F f(T)=Y, f(U)=R, f(V)=G,
Vol f @ —x + a? fW) =1, f(X)=U, f(Y)=N,and f(Z) = E.

Suppose that we now have a second such code de-

24. a. Graph the two functions y = j_ . and fined by the function g
_! + ! Are they the sameﬁ gd) =P g(B) =K g(0) =T, g(D) =E
YTy 4 ' g(E) =L g(F)=U, g(G)=H, g(H) =N,
] 11 g) =Y, g(J)=¢C gK)=R, g(L)=W,
b. Repeat part (a) with y = — s and y = PRl gM) =G, ¢g(N)=2 ¢g(O)=B, gP) =],
Are they the same? * 2Q) =4, ¢R)=X, g8 =0Q, ¢(T) =D,
=5, gV)=M, gW) =V, gX) =1,
c. Can you find a{lyvalui forilso that ig%) _ g gd(g()Z _r (W) g%
a4 x +t a. Find g(f(A)). b. Find f(g(A))
c. Find f(f(P)). d. Find g(g(K))

25.

26.

For the function f(x) = *%, (a) what is f(1)?
(b) f(f(1))? () f(f(f(1)))? (d) Continue to apply
the function f repeatedly to the previous result, ex-
pressing all your answers as fractions. Do you ob-
serve any pattern in the values for the numerators
and denominators of the fractions that youre gen-
erating? (e) Now look at the decimal representa-
tions of the fractions that you generated in parts
(a)—(d). Do they appear to be approaching a fixed
value?

For any two linear functions f(x) = ax + b and
g(x) = cx + d,is f o g the same as g © f?

o

30.

e. Find f '(g7'(A)).

The algebraic method of elimination for solving a
system of linear equations involves adding a multi-
ple of one equation to another equation to eliminate
one of the variables. Consider the system of two
equations in two unknowns:

(1)
(2)

a. Plot the two lines carefully on a sheet of graph
paper and determine the point of intersection.
b. Solve the two equations algebraically.
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c. Add two times Equation (2) to Equation (1) to e. Add four times Equation (2) to Equation (1) and
get a new linear function. Plot its graph on the plot that function on the same graph. What can
same graph you created in part (a). What do you you conclude from this result?
observe about the three lines? f. Find an appropriate multiple of Equation (2)

d. Add three times Equation (2) to Equation (1) that, when added to Equation (1), will eliminate
and plot that function on the same graph. What the x term. What will the graph of the resulting
do you observe about the four lines? line look like when x is eliminated?

EXAMPLE 1

FIGURE 4.57

Building New Functions from Old: Shifting,
Stretching, and Shrinking

In Section 4.6, we created new functions from known functions by extending the
standard arithmetic operations of addition, subtraction, multiplication, and division
to functions. We also created new functions by using composition of functions. In
this section we introduce several other ways in which we can build new functions
from a single function. Suppose that we have the function y = f(x). We can form a
related function by changing either the independent variable x or the dependent vari-
able y by multiplying it by a constant or by adding or subtracting a constant from it.

Shifting Functions

We can shift functions up and down or left and right. The former involves trans-
forming the y-variable, and the latter involves transforming the x-variable.

Shifting Up and Down  We first investigate the effect on any function y = f(x)
of adding a constant to y or subtracting a constant from y.

Consider y = f(x) = x*and the related functions y = x> + 1,y = x> + 3,y = x* — 2,
and y = x> — 5. What is the effect of the constant in each case?

Solution All these functions are shown in Figure 4.57. Clearly, each constant shifts the
basic parabola y = x* up or down by the corresponding amount that is added or sub-
tracted. For instance, the curve y = x*> + 1 lies 1 unit above y = x? for each value of x,
whereas y = x* — 2 lies 2 units below it.
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In general, the following principle holds for any function of x, assuming b > 0.

Vertical Shift

Replacing f(x) with f(x) + b shifts the graph of f(x) up by the amount b.
Replacing f(x) with f(x) — b shifts the graph of f(x) down by the
amount b.

We can get a different feel for what is happening if we rewrite each of these ex-
pressions by moving the constant term to the left side. For instance, y = x* + 1 is
equivalent to y — 1 = x*, which emphasizes the fact that it is the variable y, or the
height, which is being affected by the constant.

We can therefore rephrase the vertical shift principle for any function of x,
assuming b > 0, as follows.

Vertical Shift

Replacing y with y — b shifts the graph of f(x) up by the amount b.
Replacing y with y + b shifts the graph of f(x) down by the amount b.

Shifting Left and Right Next we investigate the effect on y = f(x) of adding a
constant to x or subtracting a constant from x.

Consider y = f(x) = x* and the related functions y = (x — 1)?, y = (x — 3)% and
y = (x + 2)% where we replace x by (x — 1), (x — 3), or (x + 2), respectively. What is
the effect of the constant in each case?

Solution The resulting graphs are shown in Figure 4.58. Each of these changes causes a
horizontal shift. For instance, y = (x — 1) has a double zero at x = 1, so the graph of
y = x* is shifted to the right by 1 unit. Similarly, y = (x + 2)* has a double zero at
x = —2,so0 the graph of y = x is shifted to the left by 2 units.

FIGURE 4.58
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In general, the following principle holds for any function of x.

Horizontal Shift

Replacing x with x — a shifts the graph of f(x) to the right by the amounta > 0.
Replacing x with x + a shifts the graph of f(x) to the left by the amounta > 0.

Thus, for instance, the graph of y = 10*72 has the identical shape as the graph
of y = 10% but is shifted to the right by 2 units. Similarly, the graph of
y = Vx + 3 has the same shape as the graph of y = Vx, but is shifted to the left
by 3 units. Check these and other graphs on your function grapher.

In summary, when we replace x by x — a or x + a, we are changing x and so
produce a horizontal effect. When we replace y with y — bor y + b, we produce a
vertical effect.

When we combine a horizontal shift (replace x by x — a) and a vertical shift
(replace y by y — b), we effectively have a diagonal shift. For example, consider the
graph of y = (x — 4)> 4+ 7, or equivalently y — 7 = (x — 4)%. It involves a
change in x (x is replaced by x — 4) and a change in y (y is replaced by y — 7). So,
y = (x — 4)* 4+ 7 corresponds to shifting the parabola y = x* four units to the
right and seven units up. This produces a parabola whose vertex is at (4,7), as
shown in Figure 4.59.

Similarly,

X2+ )/2 = ;2
is the equation of a circle with radius r centered at the origin (see Appendix A6).
We should then expect that

(=54 (-3 =r

is the graph of a circle with radius r that has been shifted 5 units to the right and 3
units up. It is therefore the equation of a circle with radius r centered at the point
(5,3). The new circle is produced from the original circle by a combination of a
horizontal shift (5 units to the right) and a vertical shift (3 units up), as shown in
Figure 4.60.

y
y=@x-4*+7

y

(x-572%+ - 3)2 =2
JFan
/
/
, 2ayt=r2
7 ~
/ -
y =2 /) 0, 0) 5 -
/
©,0) 4 *
FIGURE 4.59 FIGURE 4.60
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Stretching and Shrinking Functions

We can stretch and shrink functions vertically and horizontally. Vertical stretching
and shrinking involves multiplying a function by a constant, whereas horizontal
stretching and shrinking involves multiplying the independent variable by a constant.

A Constant Multiple of a Function ~ We can also create a new function from a
given function by multiplying the function, or equivalently the y-value, by a con-
stant. For example, consider the two functions y = 2"* and y = 5-27". Both are
exponential decay functions, as shown in Figure 4.61. The function y = 27" passes
through the point (0, 1), whereas the transformed function y = 5-27* passes
through the point (0, 5), so you might be tempted to think of the second function
as resulting from a vertical shift of the first. However, think about what each looks
like for large values of x; both curves have the x-axis as a horizontal asymptote.
Therefore the relationship between them cannot be a vertical shift. In particular, the
height for every point on the curve y = 5- 27" is five times the height of the corre-
sponding point (with the same value for x) on the curve y = 27*. The effect of the
constant multiple 5 is to increase the height all along the curve by a factor of 5. If we
multiply the original function by 20, the curve will be stretched to a new curve that
is everywhere 20 times as tall.

y=5-27"

I~

FIGURE 4.61

If instead we multiply the original function by j, the curve will shrink to a new
curve that is one fourth the original height for each value of x. Finally, if we multi-
ply the function by a negative constant, such as —3, the curve is stretched by a fac-
tor of 3, but it is also flipped upside down across the horizontal axis. Figure 4.62
shows the graphs of y = Vxand y = —3 V/x. Not only is the graph of the second
function flipped upside down across the x-axis, but it also moves downward much
faster (three times as fast) than the first function rises. Verify this result on your
function grapher with some other functions.

y

A y=\x

1 .

L L L L > X
1 1 2 3 4
2+
3t
4 y=-3"x
5t
FIGURE 4.62 -6+
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In general, we have the following principle.

Vertical Stretching and Shrinking

Multiplying a function by a constant changes the height of its graph by that
multiple, but it does not change the general shape.

If the multiple is greater than 1, the height is increased.
If the multiple is a number between 0 and 1, the height is decreased.

If the multiple is negative, the curve is flipped over across the horizontal
axis.

We illustrate an application of some of these ideas in Example 3.

EXAMPLE B et ?

Suppose that a chicken is taken from the freezer at 0°F and put directly into an oven kept
at a constant temperature of 350°F. After 30 minutes, the temperature of the chicken is
110°F. Construct a function to model the temperature of the chicken as it cooks in the
oven.

Solution The temperature of the chicken rises rapidly at first and then increases ever
more slowly the closer the chicken’s temperature comes to the oven temperature of 350°.
Eventually, the temperature of the chicken levels off at the temperature setting for the
oven. The temperature T, in °F, plotted against time ¢, in hours, looks like the graph
shown in Figure 4.63. (This description is actually an oversimplification because the
temperature rise will temporarily stop at the freezing point of 32° while the ice melts.
Also, the chicken should be removed from the oven when its temperature reaches about
180°, or it will begin to burn.)

T
350° - —————————————
&
s
E
<
5
(=%
5
E
1 1 1 >
0 1 2 3

FIGURE 4.63

......................... Time (hours)

The horizontal line representing the temperature of 350° is a horizontal asymptote
because the curve gets ever closer to this line as time goes by, but never quite reaches it.
The rate at which the temperature of the chicken increases slows as it approaches 350° (if
we left the chicken in the oven that long), so the curve is concave down.

We want to model this process by creating a formula giving the temperature T as a
function of the time t. Simplistically we will find a mathematical model by inspecting

o
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the graph of the process and deciding which type of function has the right shape. In Sec-
tion 5.4 we demonstrate how to construct such a function directly.

The graph in Figure 4.63 appears to be an exponential decay function turned upside
down so that it rises toward the oven temperature 350° instead of dropping asymptoti-
cally toward the horizontal axis. We can form such a function from a pure exponential
function y = Ac* by using a negative coefficient (to turn the curve upside down) and a
vertical shift so that the curve approaches 350 instead of 0. Thus a formula for T' might
look like

T = 350 — Ac',

where ¢ is in hours and 0 < ¢ < 1. As t increases, the term ¢’ approaches 0, and the en-
tire expression 350 — Ac" approaches 350.

What might be possible values for A and ¢? We know that at time t = 0, the chicken’s
temperature is T = 0 when it comes out of the freezer, so

T(0) = 350 — Ac® = 350 — A = 0.
Thus A = 350 and the formula becomes
T = 350 — 350(c').

Furthermore, the temperature of the chicken after half an hour is T(3) = 110°. This
value yields

T() = 350 — 350(c/?) = 110.
So we have

350(c?) = 350 — 110 = 240;

c'? = 240/350 = 0.686.
Squaring both sides of this equation gives
c=047.
Consequently, our formula for the temperature becomes
T = 350 — 350(0.47)" = 350[1 — (0.47)],

where t is measured in hours.

This function is an upside down exponential: As t increases, (0.47)" gets ever small-
er,so 1 — (0.47)" increases and gets ever closer to 1. That is, 1 — (0.47)" — 1 as t —> o°.
Consequently,

T =350[1 — (0.47)"] — 350, ast—> oo,
confirming that the graph has a horizontal asymptote at T = 350.

P

Think About This  Verify the behavior of the preceding function on your function grapher. Look at

""""""""""""""""""""" the overall shape and then zoom in to verify the height of the asymptote. Estimate
by eye from the graph when T reaches 180°, when it reaches 250° and when it
reaches 300°, 340°, and 349°. —

In general, consider the function y = f(¢) = L + Ac', where 0 < ¢ < 1. We
know that as t increases, ¢' decays toward zero so that the function approaches a
limiting value of L. The question is: How does it approach L—from above or from

o
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EXAMPLE 4

below? First, whenever A < 0, the values of the function are less than L. As the
term Ac’ decreases, the amount subtracted from L decreases, and the values of the
function increase toward L in a concave down manner, as illustrated by the upper
curve in Figure 4.64. This was the case with the temperature of the chicken in the
oven. Second, whenever A > 0, the values of the function are greater than L and
so decrease toward it in a concave up manner, as illustrated by the lower curve in

Figure 4.64.

> <

FIGURE 4.64 !

This type of function is used as the mathematical model for many different
real-world processes.

A Constant Multiple of the Independent Variable - Finally, we investigtate the ef-
fects of multiplying the independent variable x by a constant.

Consider the cubic function y = f(x) = x* — 12x and the related functions y = f(2x),
y = f(4x), and y = f(3x). What is the effect of the constant multiple in each case?

Solution Figure 4.65 shows the graphs of y = f(x) = x> — 12x and y = f(2x) =
(2x)> — 12(2x). The cubic y = f(x) = x’ — 12x passes through the origin and has
two turning points. If you trace along the curve, you will find that one turning point
is at x = 2 and the other at x = —2. (We could also locate the turning points by using
the formula presented in Section 4.4.) The corresponding local maximum (at
x = —2) is at a height of y = 16 and the local minimum (at x = 2) is at a height of
y = —16.

The cubic y = f(2x) = (2x)’ — 12(2x) = 8x’ — 24x also passes through the ori-
gin and has two turning points, one at x = 1 and the other at x = —1. The correspon-
ding local maximum is at y = 16, and the local minimum is at y = —16. Hence the
heights are the same; they just occur sooner. In fact, the curve for y = f(2x) traces out
the identical vertical values as f(x), but does so twice as fast.

Figure 4.66 shows the graphs of y = f(x) = x> — 12x and y = f(4x) = (4x)’ —
12(4x) = 64x® — 48x. The local maximum for y = f(4x) now occursat x = —3 and the
local minimum occurs at x = 3. Again, the same heights are achieved, but the curve
y = f(4x) is traced out four times as fast as y = f(x).

Figure 4.67, shows the graphs of y = f(x) = x*> — 12x and y = f(3x) = (3x)° —
12(5x) =3x* — 6x, but we had to extend the window to show the details. The function
y = f(3x) achieves its local maximum at x = —4 and its local minimum at x = 4. The
curve y = f(3x) traces out the identical heights, but does so half as fast as y = f(x).

o
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follows.

Horizontal Stretching

50 -
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(-2, 16)
4.16) \ 20

y

-8/-6 -4 2
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-20
=30
—-40
-50

FIGURE 4.67

We summarize the ideas on stretching and shifting functions horizontally as

more slowly than y = f(x).

the y-axis.

Multiplying the independent variable x by a constant k changes the speed at
which the graph is traced out, but it does not change the general shape.

If the multiple k is greater than 1, the graph of y = f(kx) is traced out k
times faster than y = f(x).

If the multiple k is between 0 and 1, the graph of y = f(kx) is traced out

If the multiple k is negative, then the curve y = f(kx) is reflected across

For the function f(x) = x’ — 12x, draw the graph of f(—3x) and locate its turning

points.

Solution  Figure 4.68 shows the graphs of the two functions. The graph of y = f(—3x)
has the same basic shape as the graph of y = f(x), but is flipped upside down across the

Sf(=3x)

S(x)
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x-axis and is traced out 3 times as fast. As before, the turning points for y = f(x) are at
(=2, 16) and (2, —16). The turning points for y = f(—3x) are at (—3, —16), a local
minimum, and at (3, 16), a local maximum.

EXAMPLE (B -+ f

A function fis defined in the following table. Use the values given in the table to com-
plete it. If any entries are not defined, mark them “UNDEE.”

x f  f@®-1  fx-1) f(2x) 3 (x)
0 1
1 0
2 3
3 2

Solution The values of the function for x = 0, 1, 2, and 3 are defined in the table. The first
open column asks for a vertical shift when the function’s values are reduced by 1 for each
value of x. For instance, when x = 0, the first entry is asking for f(0) —1=1—1=0,
and so on down that column.

The second open column asks for a horizontal shift of 1 unit to the right, because x
is replaced by x — 1. Thus, when x = 0, we want f(0 — 1) = f(—1), but there is no
way to determine this value from the information given in the table; that is, the function
is not defined for x = —1, so we record it in the table as “UNDEF.” However, when x = 1,
we want f(1 — 1) =f(0) = 1, and so on down the column.

The third open column asks for values when the independent variable is doubled. So,
when x =0, we need f(2:0) = f(0) =1; similarly, when x =1, we need
f(2-1) = f(2) = 3. However, when x = 2, f(2-2) = f(4), which is not defined. When
x =3, f(2-3) = f(6) is also not defined.

Finally, the last open column asks for 3 times the value of the function. When x = 0,
weneed 3+ f(0) = 3-1 = 3, and so on down the column. The completed table follows.

x f(x) fx) =1 fx=1) f(2x) 3f(x)
0 1 0 UNDEF 1 3
1 0 -1 1 3 0
2 3 2 0 UNDEF 9
3 2 1 3 UNDEF 6
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Problems
x f(x) 5f(x) f(x) +3 f(x—-1) [f(x)]?
3 5
4 2
5 ~1
6 3
7 8

1. A function f is defined in the table above. Use the
values given to complete the table. If any of the en-
tries are not defined, write “UNDEE.”

2. A function y = f(x) is defined by the accompany-
ing graph. Match each transformation of f with one
of the graphs (i)—(vi).

(vi)

a y = f(2x) b y = 2f(x) |
¢ y=flx)+2 d. y = f(x +2) 3. For the functions f and g that are defined by the
e. y=f(x) — 2 f.y=f(x—2) graphs shown, sketch the graph of
y a. 2g(x). b. g(2x).
y c flx+1). d. f(x —1).
L 1
’ e. flx)+1. f. g<2x>.

/ LW

-3
y
3
2
g(x)
1
X

y y -3 -2 -1 N 2
-1
ViV, T K
L | -3

i . 4. Consider the function y = f(x) = x>

a. Write an equation for the function that you get
(iii) @iv) when you stretch the graph of f by a factor of 2
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6. a.

b.
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and then shift it up 3 units. Call this new func-
tion F and sketch its graph.

. What is the equation you get if you reverse the

order of the two operations in part (a)? Call this
new function G and sketch it.

. Whatis F — G?

. Translate the line y = mx to a line with slope m

that passes through the point (5, 12).

. Repeat part (a) if the new line passes through the

point (x, ¥, ). What do you call this new equation?

Translate the parabola y = x? to a parabola with
vertex at (5, 12).

Repeat part (a) if the new parabola has its vertex
at the point (x, ¥,)-

7. For the function fshown, sketch the graph of

a. y = —flx) b. y = 2f(x)
Cy=fX) -1  dy=flr-1)
e.y=flx+1) f.y=f(x)+1
y

Wk

y=f(x)
of 1 N 3 A7
1k

8. The graphs of three functions (a)—(c) are shown in
the accompanying figures. Sketch the graph of

(iii) y = —2f(x)

i) y= —fx) (i) y = 2f(x)
(iv) y=flx+2)

V) y=fx)+2 (i) y=f(x)—2

(vii) y = f(x — 2)

y=fx)

@,

X

9. Consider the function fin the table. If this function
is shifted 4 units to the right and 7 units upward,
construct the corresponding table for the trans-
formed function.

x -1 0 1 2 3
24 16 11 8 9

4 5 6 7

15 27 39 35

10. a.

11.

C.

€.

12. a.

Use the graphs of f(x) = xand g(x) = logx to
sketch a rough graph of the product P(x) = x log x.

. Estimate the values of x for which log x < x and

the values for which log x > x.

Because log x grows exceedingly slowly, the prod-
uct x log x grows only slightly faster than x does.
Use your function grapher to decide whether
x log x ever grows faster than x', than x"", than
x"%. What does this investigation suggest to you
about the rate of growth of x log x compared to
power functions x?

If f(x) = x* — 3x + 4 and h is a constant, find

a.

f(x) +h b. f(x + h)
x+h)— flx
flx + h) — f(x) d. fle t 21 fx)

What is the value of the expression in part (d)
if x=5 and if h=0.1? if h=0.01? if
h = 0.0001?

An unbaked apple pie is taken from the counter
in a kitchen where the temperature is 70°F and
placed in an oven. Suppose that, after 60 min-
utes, the temperature of the pie is 180°F. Sketch
a graph of the temperature of the pie as a func-
tion of time.

. The pie is removed from the oven and placed

back on the counter. Suppose that it takes anoth-
er 60 minutes for its temperature to come back

o
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down to 70°F. Sketch a graph of the temperature
of the pie as a function of time.

c. When the first pie is removed from the oven, a
second, unbaked pie is put in the oven to bake.
Sketch a graph of the sum of the temperatures
of the two pies as a function of time over the
60-minute period.

d. Find a formula that models the temperature of
the pie, while it cools, as a function of time.

A Thanksgiving turkey is taken from the refrigera-
tor at a temperature of 40°F and placed in a hot
oven at 350°F to cook. After 1 hour, the internal
temperature of the bird is 124°F. Write a possible
formula for the temperature of the turkey as a func-
tion of time, in minutes.

In an attempt to claim responsibility for winning
the war against the growing national balance of
trade deficit, the president presented a graph simi-
lar to the one shown to illustrate the trend in the
annual deficit.

Deficit

15.

16.

17.

18.

a. Based on this graph, sketch the graph of the rotal
national debt as a function of time.

b. Does your graph have any points of inflection? If
so, what do they represent?

c. Do you agree or disagree with the president’s as-
sertion that the war has been won? Explain.

Use your function grapher to graph the functions
f(x) = x"(0.5)% for n = 1, 2, 3, 4, 5, and estimate
the location of the turning point for each curve for
x > 0. Then perform a linear regression analysis on
the x-values of these turning points, as functions of
n. Is the linear fit appropriate? What does it predict
for n = 1.5? Is it accurate compared to the actual
graph?

Use your function grapher to graph the functions
f(x) = x%a*, fora = 0.3,0.4,0.5, 0.6, and 0.7. Esti-
mate the location of the turning point for each
curve by zooming in on it. Then determine the func-
tion from among the usual families of functions—
linear, exponential, and power—that best fits these
data as a function of the base a.

Describe how you might use the results of Problems
15 and 16 to find a function of the form
f(x) = xPa”* that matches the function for the level
of Lyme disease antibody in the bloodstream dis-
cussed in Section 4.6 (see Figure 4.50).

Find conditions on the coefficients a, b, and ¢ in
P(x) = ax* + bx + cif Pis to satisfy each equation
for all values of x.

a. P(x) = P(—x) b. P(x) = —P(x)
| | | | | c. P(2x) = 2P(x)
1990 1991 1992 1993 1994
Year
Exercising Your Algebra Skills
For the function f(x) = x* — 5x + 3, find a simplified 3. f(4x) 4 f(l )
expression for ) ’ )
1. f(2x). 2. f(3x). 5. flx+1). 6. flx = 2).
7. f(2x —1). 8. f(x?).

4.8

Using Shifting and Stretching to Analyze Data

The ideas on shifting and stretching functions in Section 4.7 can be applied to cre-
ate functions that fit sets of data that do not quite fall into the standard behavior
patterns, such as exponential growth or decay, that we have discussed.

o
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Analyzing a Cooling Experiment

Suppose that an experiment is conducted to study the rate at which temperature
changes. A temperature probe (a thermometer connected to a calculator) is first
heated in a cup of hot water and then removed and placed in a cup of cold water, as
illustrated in Figure 4.69. The temperature of the probe, in °C, is measured every
second for 36 seconds and recorded in Table 4.3; the data are also displayed in the
scatterplot in Figure 4.70.

TABLE 4.3 Experimental Data: Temperature (°C) versus Time

Time Temperature Time Temperature Time Temperature
1 42.3 13 12.51 25 9.29
2 36.03 14 11.91 26 9.16
3 30.85 15 11.54 27 9.16
4 26.77 16 11.17 28 9.04
5 23.58 17 10.67 29 8.91
6 20.93 18 10.42 30 8.83
7 18.79 19 10.17 31 8.78
8 17.08 20 9.92 32 8.78
9 15.82 21 9.8 33 8.78
10 14.77 22 9.67 34 8.78
11 13.82 23 9.54 35 8.66
12 13.11 24 9.42 36 8.66
y
A
45
_40F
O 351
g 30r e,
2 25¢-
E o0 e
g 15¢ LTI
ﬁ 10 - ..’0000000000000.000000
5 -
HHHH\HH\\HHHHH\HHHHH\[
0| 4 8 12 16 20 24 28 32 36
Time (seconds)
FIGURE 4.70
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Find a function that fits the data from the temperature cooling experiment.

Solution The pattern depicted in Figure 4.70 is that of a decreasing, concave up func-
tion, so we might consider either a decaying exponential function or a power function
with p < 0. However, a power function is not a good model for the process because it has
a vertical asymptote at time t = 0, whereas the function we want must have a finite value
when t = 0. So the more appropriate model would be an exponential decay function.
But there is a catch. Any exponential decay function decreases to zero, but the tem-
perature readings decay to the temperature of the cold water (which cannot be 0°C, for
then the water would be frozen). From the experimental data, the temperature of the

o
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cold water is about 8.6°C. How do we construct a function that decays to about 8.6
rather than to 0? Probably the most reasonable approach is to subtract 8.6 from each of
the temperature readings to obtain a new set of data that decays to zero. This approach is
equivalent to performing a vertical shift downward of 8.6 (i.e., replacing the temperature
Twith T — 8.6) to produce the transformed data shown in Table 4.4.

TABLE 4.4 Transformed Data: (T — 8.6) versus Time

Time T — 8.6 Time T — 8.6 Time T — 8.6
1 33.7 13 3.91 25 0.69
2 27.43 14 3.31 26 0.56
3 22.25 15 2.94 27 0.56
4 18.17 16 2.57 28 0.44
5 14.98 17 2.07 29 0.31
6 12.33 18 1.82 30 0.23
7 10.19 19 1.57 31 0.18
8 8.48 20 1.32 32 0.18
9 7.22 21 1.20 33 0.18
10 6.17 22 1.07 34 0.18
11 5.22 23 0.94 35 0.06
12 4.51 24 0.82 36 0.06

The scatterplot of the transformed data, shown in Figure 4.71, looks like an expo-
nential decay pattern that tends toward 0. Using a calculator, we find that the exponen-
tial function that best fits the transformed data is

y =T — 8.6 = 35.4394(0.848)’.

T-8.6°C

Ll il | rreeeeeeeeeesed 6666

0] 4 8 12 16 20 24 28 32 36
Time (seconds)

FIGURE 4.71

The graph of this function is shown superimposed over the transformed data in Figure 4.71,
and there appears to be extremely close agreement. The corresponding correlation coeffi-
cientis r = —0.9948, which is very close to —1.

Having found the exponential function that best fits the transformed data, we now
have to undo the transformation. We simply add the same amount, 8.6, to the function
y = T — 8.6 to create the final expression

T(t) = 8.6 + 35.4394(0.848)".

This function is shown superimposed over the original temperature data in Figure 4.72,
and it is an exceptionally good fit to the temperature readings. In particular, note how
this function approaches the limiting value of about 8.6 for the temperature readings as
t increases.
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Temperature (°C)
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Analyzing the Challenger Data

At the beginning of Chapter 3, we considered data relating the number of incidents
involving O-ring problems on space shuttle launches to the air temperature at
launch. These data eventually were used to identify the O-rings as the likely cause
of the Challenger disaster. We now use this set of data as a case study to illustrate
the process of data analysis when it is necessary to shift the data values.

Recall that the dependent variable was the number N of O-ring problems or
“incidents” as a function of launch temperature T. The data are shown in the fol-
lowing table.

53 57 58 63 66 67 67 67 68 69 70 70

70 70 72 73 75 75 76 76 78 79 80 81

z N8|z N
W
—
_
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—
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Figure 4.73 shows the scatterplot for this data along with a curve superimposed
over the data points to indicate the nature of the relationship, which appears to be
a decaying exponential. However, this curve is only an artist’s rendering of the ap-
parent relationship. We want to obtain a formula for such a function.

Number of O-rings affected

FIGURE 4.73

Temperature (°F)

o
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EXAMPLE 2

Find a function that can model the data on the number of O-ring incidents as a function
of the air temperature.

Solution The decreasing, concave up pattern in the scatterplot in Figure 4.73 suggests
either a decaying exponential function or a power function with p < 0. The power func-
tion does not make sense, however, because there is no vertical asymptote at T = 0. Fit-
ting an exponential function to the set of data by using the transformation approach
used by calculators and spreadsheets involves plotting the logarithm of the number of
incidents log N versus the temperature T. But because the values for N include N = 0,
we cannot take the logarithm of 0—it is not defined!

One way to circumvent this problem is to shift the data values up to avoid the zeros.
The simplest approach is to increase each value of N by 1, replacing N by N + 1 and
then comparing N + 1 to T. We first construct the exponential function that best fits the
resulting set of data to obtain the exponential regression equation relating N + 1 to T.
We then shift back down to obtain an expression for N in terms of T. The data values
that we work with are given in the following table, and the associated scatterplot of
N + 1 versus T is shown in Figure 4.74.

T N N+1 T N N+1
53 3 4 70 0 1
57 1 2 70 0 1
58 1 2 72 0 1
63 1 2 73 0 1
66 0 1 75 2 3
67 0 1 75 0 1
67 0 1 76 0 1
67 0 1 76 0 1
68 0 1 78 0 1
69 0 1 79 0 1
70 1 2 80 0 1
70 1 2 81 0 1

The resulting exponential regression equation giving N + 1 as a function of T'is
N + 1 = 13.41(0.967)7,

which is shown superimposed on the scatterplot, in Figure 4.74. Finally, we solve for N by
subtracting 1 from both sides to get the exponential function that can be used to model N
as a function of T:

N = 13.41(0.967)" — 1,

which is shown superimposed over the original scatterplot in Figure 4.75. It appears to
capture the trend in the data reasonably well.

o
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Number of O-rings affected

0 50 55 60 65 70 75 80 85
Temperature (°F)

FIGURE 4.74 FIGURE 4.75

The graph certainly suggests that the likelihood of trouble with the O-rings will
increase dramatically with falling temperature. However, we know that there is a dan-
ger in extrapolating far beyond the range of data values. But the overall trend is so dra-
matic and the potential loss in terms of both human life and hardware is so extreme
that there shouldn’t have been a launch if the data had been analyzed in this way.

Terminal Velocity in Skydiving

Matthew is a skydiving enthusiast. He knows, from his reading and from first-hand
experience, that the faster he is falling, especially in a spread-eagled position, the
greater the air resistance, so that eventually his speed reaches a maximum, known
as the terminal velocity. He also found the following set of data on the downward
velocity v, in feet per second, of a skydiver at different times t, in seconds, after
jumping out of a plane.

v 0 16 46 76 104 124 138 148 156 163 167 171 174

Source: Student project.

EXAMPLE B et

(a) Find a function that fits these data on velocity as a function of time from among the
usual candidates. (b) Improve on the fit by using an appropriate shift.

Solution

a. The data falls in an increasing, concave down pattern, as shown in Figure 4.76. The
potential candidates for a function having such a pattern are either a power function
with 0 < p < 1 or a logarithmic function. However, a log function is not defined at
t = 0. Also, both functions grow indefinitely, while the values for the skydiver’s ve-
locity approach terminal velocity, which is a horizontal asymptote. What’s worse, we
don’t know what this limiting value for the terminal velocity is. Thus neither function
can be a good fit.



Gord.3896.04.pgs 4/24/03 9:58 AM Page 337 $

4.8  Using Shifting and Stretching to Analyze Data 337 e

180
150 - °
120 - °

90 -
60 -
30

Velocity (feet per second)

1 1 1 1 1 1 t

2 4 6 8 10 12
FIGURE 4.76

......................... Time (seconds)

Moreover, we cannot use a calculator or spreadsheet program to fit a power func-
tion to the data because of the first point (0, 0)—their regression routines all use the
transformation approach, which involves having to take the log of 0. However, if we
delete the point (0, 0), we can fit a power function to the remaining data. Figure 4.76
shows the graph of the best-fit power function v = 23.2t**% (obtained using a cal-
culator) superimposed over the scatterplot of the data. The corresponding correla-
tion coefficient is r = 0.962, which is fairly close to 1. The power function is a
reasonable fit, but it clearly becomes less good when extended to the right.

b. The pattern in the data suggests an upside down exponential decay function that
rises toward a horizontal asymptote. Suppose that we conjecture a value for the ter-
minal velocity by mentally extending the preceding table. We might extrapolate that
the limiting value is about 180 ft/sec. We then subtract each velocity value from this
supposed limit (replacing v with 180 — v) to obtain the transformed data shown in
the following table. Effectively, this transformation is equivalent to a vertical shift
with a flip across the horizontal axis due to the multiple of —1.

t 0 1 2 3 4 5 6 7 8 9 10 11 12

180 —v 180 164 134 104 76 56 42 32 24 17 13 9 6

180 —v

180 ¢
150 -
120 -
90 -
60 - .

30 - .

.
| | | | ? e

2 4 6 8 10 12
FIGURE 4.77

......................... Time (seconds)

180 — v (feet per second)
L]

>

The scatterplot of these transformed data is shown in Figure 4.77. The decreas-
ing, concave up pattern in this transformed data suggests either a decaying exponen-
tial function or a power function with p < 0; however, the latter has a vertical
asymptote at zero, so it is not an appropriate candidate. A calculator gives the expo-
nential function that best fits this transformed data as

y =180 — v = 226.25(0.7492)'

with a correlation coefficient of r = —0.9963. Figure 4.78 shows this function super-
imposed over the transformed data, and it is a very good fit.

o
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FIGURE 4.78

180 — v (feet per second)

We undo the transformation algebraically by solving for the velocity v to get
v = 180 — 226.25(0.7492)".

The graph of this function is shown superimposed over the original data in Figure 4.79,
demonstrating a much better fit than the power function in Figure 4.76. This conclu-
sion is further borne out by the correlation coefficient r = —0.9963, which is consid-
erably closer to —1 than the correlation coefficient r = 0.962 for the power function
was to 1.

180 —v v
A —~

180¢ 2 180

150 |- 2 150

120 - 8 120}

90 |- g oof y

60 - = 60F

30 § 30 -

| | L | ’t g L L L L L | t
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FIGURE 4.79
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P

The value of 180 ft/sec that we chose for the terminal velocity was reasonable,
but it was just an intelligent guess. Had we chosen a somewhat different value, we
would have obtained a somewhat different function. With a little experimentation,
you should be able to get a still better fit.

In Example 3, an exponential function was a very good fit to the transformed
data, although the values for 180 — v did not fall precisely in an exponential decay
pattern. Sometimes, a set of values fall precisely in an exponential pattern as they
grow or decay toward a horizontal asymptote. The problem we face in such cases is
not knowing exactly what that horizontal asymptote is, as was the case in Example 3.
If the transformed data do fall in an exponential pattern, we can determine the
limiting value precisely.

Suppose that a set of values x, x;, X,, X3, Xy, . . . is such that the values either
fall toward an unknown limiting value L or rise toward L in a purely exponential
manner, as shown in Figure 4.80. In particular, suppose that each of the values is
below the unknown horizontal asymptote L, so that the set of transformed values

L — x,, L —x, L — x,, L — xs, L —xy...

FIGURE 4.80

decays toward zero in an exponential decay pattern. As a result, we know that the
successive ratios should be a constant, say k. That is,

o
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L_xl_L_xz_L_.x3

:...:k,

L — x, L—xl_L—x2
where k is the constant, although unknown, ratio. Consider the first of these
equalities:

L—x L—x
L — x, = X

We can solve this equation algebraically for the unknown limiting value L by
first cross-multiplying to get

(L —x)* = (L — x)(L — x).

Expanding these terms gives
L* — 2x,L + x} = L* — x,L — x,L + x, x,.

Subtracting L* from both sides of this equation and then collecting like terms yields

(xg — 2x; + %)L = x0x, — x,%,
so that

. ki (M)
Xo — 2%, t X,

provided that the denominator x, — 2x; + x, # 0. In fact, if the numbers x,, x;,
Xy, X3, X4, . . . approach L in an exponentially decaying manner precisely, the com-
parable expression—using any three successive values of the x’s, not just the first
three—gives the same value for L. If the values are not exact, however—even if the
discrepancies are due to rounding—quite different values could arise with every

group of three successive values for the x’s.

Prozac is prescribed for individuals suffering from depression. Typically, a patient takes
a dose of Prozac once a day and, for extreme depression, the dosage is 80 mg. The levels
of Prozac in the blood on successive days following the start of treatment are given in the
following table. (Note that the last two values are rounded to four decimal places.) It
turns out (we investigate this result in detail in Section 5.1) that the level of Prozac P
rises toward a horizontal asymptote in a precisely upside down exponential decay man-
ner as a function of the number of days . Find the value of this horizontal asymptote,
assuming that the course of treatment continues.

n 0 1 2 3 4 5 6

P 80 140 185 218.75 244.0625 263.0469 277.2852

Solution We start with a scatterplot of the data, as shown in Figure 4.81, where the
points appear to be approaching a horizontal asymptote at a level somewhat above
300 mg. We call this level L.
These values fall in an upside down decaying exponential pattern as they rise toward
the horizontal asymptote, so we can use Equation (1) with the first three values x, = 80,
x, = 140, and x, = 185 to find that
XXy = Xi 80(185) — 140’

L= = = 320.
Xo— 2x, + x, 80 — 2(140) + 185

o
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If instead we use the second, third, and fourth values, so that x, = 140, x, = 185, and
x, = 218.75, we obtain

xoX, — x; _ 140(218.75) — 185°
xp — 2x, + x, 140 — 2(185) + 218.75
If we use the last three values shown, so that x, = 244.0625, x, = 263.0469, and
x, = 277.2852, we obtain, in the same way, L = 320.0001. As you will see in Section 5.1
when we develop a complete mathematical model for the level of Prozac in the blood,
the limiting value is 320 mg.

L= 320.

P

Horizontal Shifts

We next consider some applications involving horizontal shifts. As Example 5
demonstrates, that’s just what we’ve been doing when we changed the scale in the
independent variable.

E JAIMPLE 5 -+rvvvevveeeressseeeermesseseesiise s esissse st e R ;
The following data fall in a linear pattern. Determine the line that passes through the
points (a) when t represents the number of years since 1980; (b) when ¢ represents the
number of years since 1900; (c) when ¢ represents the number of years since year 0.
(d) Explain how the three expressions compare by using ideas on shifting functions.

t 1980 1985 1990 1995 2000

y 30 40 50 60 70

Solution

a. We rescale the values of the independent variable so that ¢ represents the number of
years since 1980.

t 0 5 10 15 20

y 30 40 50 60 70

Note that each 5 years, the value of y increases by 10, so we have a line with slope
Ay _ 10 _
At 5

o
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The equation of the line then is

y — 30 = 2(t — 0), t = number of years since 1980.

b. We now rescale the values in the table so that  represents the number of years since

1900.
t 80 85 90 95 100
y 30 40 50 60 70

These data values also lie on a line whose slope is m = 2, so the equation of the line is

y — 30 = 2(t — 80), t = number of years since 1900.

c. Finally, we use the original values given in the table where ¢ represents the number of
years since the year 0. The slope is still m = 2, so the corresponding equation of the
line is

y — 30 = 2(t — 1980),  t = number of years since year 0.

d. We now compare the three equations. In each case, the slope is m = 2 because all three
lines increase at the same rate. If we expand all the equations to put them in slope—
intercept form, we get

y = 2t + 30, y =2t — 130, and y = 2t — 3930,

respectively. Note the great differences in the vertical intercepts for the three lines.

Let’s focus on the equation in part (a), y — 30 = 2¢, as a baseline, where t rep-
resents the number of years since 1980. We first compare it to the equation in part (b),
y — 30 = 2(t — 80). The second equation is the result of a horizontal shift to the
right of 80 years—moving from a “starting point” of + = 0 in 1980 to a “starting
point” of t = 0 in 1900. Similarly, compare the first equation to the third equation in
part (c), y — 30 = 2(t — 1980), which involves a horizontal shift of 1980 years to
the right. So scaling the values of the independent variable is equivalent to a horizon-
tal shift by the amount of the scaling.

R

Let’s look at a more realistic example to see how these ideas on horizontal
shifts apply when we fit an exponential function to data.

The following table shows the growth, in millions, of cellular phone users since 1985.
Find the exponential function that best fits these values (a) when t represents the
number of years since 1985; (b) when t represents the number of years since 1900;
(c) when ¢ represents the number of years since year 0. (d) Explain how the three ex-
pressions compare, using ideas on shifting functions.

t 1985 1988 1990 1991 1992 1993 1994 1995 1996 1997 1998

C 1 4 11 16 23 34 55 91 142 215 319

Source: Lester R. Brown et al., Vital Signs 2000: The Environmental Trends That Are Shaping Our Future.

o



Gord.3896.04.pgs 4/24/03 9:58 AM Page 342 $

342

CHAPTER 4 Extended Families of Functions

Solution

a. We first scale the years so that 7 represents the number of years since 1985, giving the

transformed set of data.

t 0 3 5 6 7 8 9 10 11 12 13

C 1 4 11 16 23 34 55 91 142 215 319

A calculator gives the exponential function that best fits the data as
C = 1.063(1.555218)’, t = number of years since 1985.

The corresponding correlation coefficient is r = 0.99925.

. We next scale the years in the original data so that ¢ represents the number of years

since 1900.

t 85 88 90 91 92 93 94 95 96 97 98

C 1 4 11 16 23 34 55 91 142 215 319

Again, a calculator gives the exponential function that best fits the modified data as
C = 5.2999 X 107"(1.555218)’, t = number of years since 1900.

The corresponding correlation coefficient again is r = 0.99925.

. Finally, the exponential function that best fits the original data where ¢ represents the

number of years since the year 0 is
C = 2.092 X 107%*'(1.555218),  t = number of years since year 0.

The corresponding correlation coefficient once more is r = 0.99925.

. The growth factor, 1.555218, is the same in all three expressions. It indicates that

the use of cellular phones is growing, on average, by 55.5% per year, whichever
model we construct. The correlation coefficient r = 0.99925 is also the same in all
three models. It indicates that the fit in all three cases is equally excellent. Only the
constant coefficient changes from one expression to the next, and it reflects the
vertical intercept of each curve.

We now look at the equation for the exponential function C = 1.063(1.555218)" in
part (a), where ¢ represents the number of years since 1985. If we perform a horizontal
shift of 85 years to the right so that  represents the number of years since 1900, the for-
mula for the function becomes

C = 1.063(1.555218)" "%

1.063(1.555218)"+ (1.555218) "% b""" = b"p"
[1.063 X (1.555218) %](1.555218)"
5.299988 X 107'7(1.555218)",

which is virtually identical to the expression in part (b).

Similarly, if we perform a horizontal shift of 1985 to the right in the equation in
part (a), so that ¢ represents the number of years since the year 0, the formula for the
exponential function becomes

C = 1.063(1.555218)" "% = 1.063(1.555218)"+ (1.555218) "% p*"" = p"p"

= [1.063 X (1.555218) **](1.555218)"
= 2.0934 X 1077*'(1.555218)’,

o
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which again is virtually identical to the expression C = 2.092 X 107**(1.555218)"in
part (c). (The differences are due to rounding.)

P

This principle—scaling the values of the independent variable is equivalent to
a horizontal shift in the function—applies to the linear, exponential, and polyno-
mial families of functions, but it does not apply to power functions. Let’s see why.

Recall that an increasing power function always passes through the origin, and
that a decreasing power function always has a vertical asymptote at 0. When we fit
a power function to a set of increasing data, the origin is automatically added as an
extra point. Suppose that we now scale the values of the independent variable x to
form a new independent variable X. When we then attempt to fit a power function
to the transformed values, a different “origin” is added automatically. This new
“origin” for X is much closer to the shifted data set than the origin for the original
data was, as illustrated in Figure 4.82.

y y
4
> X > X
HGURE 482 (a) Original x's (b) Shifted x's

Consider, for instance, the following data.

X 1 2 3 4

y 1 4 9 16

Clearly, these are points on the curve y = x* and, if we applied a power function
regression routine, that is precisely the equation we would get. This curve certainly
passes through the origin (0, 0) for the original variable x. It also passes through
each of the data points, as shown in Figure 4.83.

Let’s now shift the data horizontally to the right by 10 units to get the corre-
sponding table of values for the new variable X = x + 10.

o
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X 11 12 13 14

y 1 4 9 16

If we apply a power function regression routine, we get the function y =
1.496 X 107 '2X"*, This function passes through the new origin for X, as shown
in Figure 4.84. But it misses all the data points. The resulting curve has been flat-
tened enormously to force the new origin to become a point on the graph. As a re-
sult, the power for this transformed function is 11.43 rather than 2 for the original
function y = x” Recall that, for power functions y = x7, the higher the power p,
the flatter the curve as it passes through the origin. Thus the resulting new power
function is distorted compared to the original power function, reflecting the differ-
ent origin.

20 -
15+

10 -

FIGURE 4.84 0 3 6 9 12 15

As we mentioned in Chapter 3, if we use different scales for the independent vari-
able with a power function, not only does the appearance of the function change, but
also, and far more important, the predictions based on using the different forms differ.
Let’s look at what happens when we use the two preceding functions to predict the next
value in each table. In the first case, y = x*. When x = 5, we get y = 25. In the second
case, y = 1.496 X 10~"2X ', The corresponding value of X is X = x + 10 = 15,
and we get y = 41.462, a dramatically different prediction. If we shifted x by other
amounts, we would get still different predictions each time. The farther we shift from
the original data, the worse this difference gets.

Thus, although power functions are useful, you must use them with extreme
caution and careful thought.

Using Stretches

The ideas on stretching functions from Section 4.7 also have direct application
when we fit functions to data. In Example 1 in Section 3.3, we created the function

P(t) = 3.069(1.321)'

to model the growth of the U.S. population from 1780 to 1900, where P is meas-
ured in millions and ¢ is measured in decades since 1780. Actually, we measured P
in millions for convenience. If we count the number of people, the corresponding
function would then be

P(t) = 3,069,000(1.321)".

Clearly, these two expressions differ by a factor of 1,000,000, and one function is
therefore stretched into the other by this constant multiple of the function.

o
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Moreover, when we created the function for the U.S. population, it was con-
venient to use t to represent the number of decades since 1780. However, it might
be more meaningful to have a function in which the independent variable repre-
sents the number of years since 1780 instead. If we use the data values for P from
Section 3.3 but count the years = 0, 10, 20, . .. rather than decades, we get the
function

P(t) = 3.069(1.02823), t = number of years since 1780,

compared to

Py(t) = 3.069(1.321)", t = number of decades since 1780.

How do these two expressions compare? We know that each decade consists of
10 years, which suggests a constant multiple of 10 for the number of years. So, if we
start with the first expression Pi(t) for the population where t is measured in years
and multiply the independent variable ¢ by 10, we get

P (10t) = 3.069(1.02823)'"
= 3.069[(1.02823)"]
= 3.069(1.321)",

ab" = (ap)u

which is the same expression as P,(t) = 3.069(1.321)". Whenever we convert the
units for the independent variable, from years to centuries, from hours to days,
from inches to centimeters, and so on, we actually are stretching or shrinking the
function horizontally.

Problems

345 .

1. In the analysis of the data on the cooling experi-
ment, we assumed that the water temperature was
8.6°C and so subtracted 8.6 from each of the data
values. Assume that the water temperature is 8.65°C
instead. Find the corresponding function to fit the
original data. Does it appear to be a better or worse
fit to the data?

2. Instead of adding 1 to each value of N, as we did
with the Challenger data in this section, suppose
that you add some other quantity (say, 2) to each
value. How do the results compare to those ob-
tained earlier?

3. A cup of hot coffee at 200°F is left on the table in a
70°F room to cool. The temperature readings on
the coffee at different times as it cools to 70°F are as

follows.
Time, t 0 5 10 15 20
Temperature, T ~ 200 163 139 118 108

Find the exponential function that best fits the data.

o

4. While watching his VCR, Ken noticed that the
counter seems to move much faster near the begin-
ning of the tape than toward the end of the tape, so
he knows that the readings are not linear. To find
the actual pattern, he records the counter reading
every 15 minutes and obtains the following set of
data relating the counter reading to the elapsed
time, in hours.

Time 0 025 050 075 1.0
Reading 0 445 817 1162 1448

Time 125 1.5 175 2.0 225 2.5
Reading 1732 2005 2260 2503 2721 2942

a. From among exponential, power, and logarith-
mic functions, find the function that best fits the
data giving the VCR counter reading in terms of
the elapsed time.

b. Using the function from part (a), what would
you predict the reading to be after 3 hours?
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c. Suppose that the label on a VCR tape indicates
that a certain program Ken recorded runs from
1600 through 3400 on the counter. How long
will that program run?

d. Suppose that the VCR tape is a 6-hour tape. Pro-
grams already recorded end at a counter reading
of 4200. How much time is left on the tape for
the next recording?

5. In Problem 23 of Section 3.3 we looked at how the
boiling point (the temperature T) of water in a con-
fined space (say, in a pressure cooker) depends on
the pressure of the vapor water. The table gives the
boiling point of water, in degrees Celsius, at various

—p—

. From a scatterplot of the data of T versus P, it ap-

pears that the boiling point of water approaches a
horizontal asymptote as the pressure P increases.
This behavior might suggest an upside down ex-
ponential function of the form y = A + B¢/,
with ¢ < 1. Assume that the horizontal asymp-
tote is at T = 110°. Use this value to transform
the data and find the corresponding exponential
function.

. Use your function from part (a) to find the boil-

ing point of water when the vapor pressure is
6.2 kilo-pascals.

. What vapor pressure is needed if the boiling

vapor pressures, in kilo-pascals. point of the water is 105°C?

Pressure, P 0.61 1.22 2.34 4.25 7.38 12.34 19.93 31.18 47.37 70.12 101.32

Temperature, T 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100°

Source: CRC Handbook of Chemistry and Physics, 1996.

4.9 - The Logistic and Surge Functions

In this section, we consider two other families of functions—the logistic and the
surge functions—that frequently arise as mathematical models in a wide variety of
applications.

The Logistic Function

A great many processes start out growing exponentially, but eventually other factors
come into play to slow the rate of growth, causing a leveling off, as shown in Fig-
ure 4.85. Most populations grow in this manner, and many diseases spread in a
comparable pattern. The use of new technological innovations, be they new elec-
tronic devices such as microwave ovens, cellular phones, or DVD players and new
medical products, also spread this way. Such a pattern is called a logistic curve, and
the associated function is called a logistic function.

Logistic growth model

Leveling off

Slowing down

Exponential growth

FIGURE 4.85 -

......................... Time
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Logistic processes can be modeled mathematically in several different ways,
and we look at one in considerable detail in Section 5.3. For now, we consider the
family of functions of the form

C
f(t) - 1 +Ae—Bt’

where A, B, and C are positive constants and e = 2.71828 . . . is the base of the natu-
ral logarithm system that we introduced in Section 2.6. In most practical situations,
the constant A typically is very large, the constant C is fairly large, and the constant B
is usually between 0 and 1. Let’s first analyze the behavior of this family of functions.

This function actually is the quotient of two functions, so we have to reason in
the same way that we analyzed the behavior of rational functions in Section 4.6. In
particular, because the numerator is a positive constant, the function has no real
roots and thus never crosses the t-axis. Also, in the denominator, both the constant
A and the exponential decay function e * are positive, so the denominator is never
zero and the function has no vertical asymptotes. Furthermore, when ¢ is negative
or when t is positive and relatively small, the term Ae™ is extremely large com-
pared to 1. Thus the denominator behaves like 1 + Ae™® =~ Ae™?, and therefore
the function f() behaves like

t) = =~ =—,
) 1+ Ae B Ae™P A

At first (when ¢ is small) this function grows like an exponential function: To
the left, it approaches 0 as t — —oc, and to the right, as ¢ increases, it is increasing
and concave up. As t gets larger, however, the term e B decays toward 0, so that the
function behaves as if

C . C

t) = = =
T = a1+ a0

which is a constant. That is, the function eventually (when ¢ is larger) grows more
slowly, so there is an inflection point. Beyond that point, the curve levels off and
approaches a limiting value at the height of C. Thus this type of function has the
shape shown in Figure 4.85 and so is called a logistic function. In Figure 4.86 we
show the graph of the function

C C Ce™

b

500
f (t) = —0.5¢°
1 + 200e
y
A
600 -
400
200 +
FIGURE486 o] s 10 15 20 25 "

It has the shape of a logistic curve, eventually leveling off at a height of about 500.
In Example 1 of Section 3.3, we found that the growth in the U.S. population
from 1780 to 1900 closely followed an exponential growth pattern with a growth

o
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EXAMPLE 1

rate of 32.1% per decade. Corresponding to the best fit exponential curve, we had
a correlation coefficient of r = 0.998. However, we pointed out that this exponen-
tial pattern doesn’t apply during the twentieth century because the growth rate has
slowed dramatically for various reasons. This behavior suggests that a logistic func-
tion may be a better choice than an exponential function for modeling the U.S.
population over the entire time period since 1780.

(a) Find a logistic function to fit the following data on the growth of the U.S. population,
in millions, since 1780. Let ¢ represent the number of decades since 1780. (b) What does
the function predict about the eventual maximum population of the United States?
(c) Use the function to predict the U.S. population in 2020.

Year Population Year Population
1780 2.8 1900 76.0
1790 3.9 1910 92.0
1800 5.3 1920 105.7
1810 7.2 1930 122.8
1820 9.6 1940 131.7
1830 12.9 1950 150.7
1840 17.1 1960 179.3
1850 23.2 1970 203.3
1860 31.4 1980 226.5
1870 39.8 1990 248.7
1880 50.2 2000 281.4
1890 62.9
P
A
3501
£ 300 .
% 250 - .
Z 200p .’
§ 150 - ..0
2 100+ .
£ 50k oe®
I ceecee®? I I I
0/ 1750 1800 1850 1900 1950 2000
IGURE 4,87 Year
Solution

a. We begin with the scatterplot of the data shown in Figure 4.87, which indicates that
population growth appeared to slow during the latter part of the twentieth century.
The successive ratios of the population values also indicate that the rate of population

o
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growth slowed from over 20% per decade at the beginning of the twentieth century to
about 10% per decade at the end.

We now want to fit a logistic curve to these data. Some calculators have the capa-
bility of fitting the best logistic function of the form discussed here to a set of data in
the least squares sense. When we use this routine on the U.S. population values, we
get the function

B 659.45
1 + 92.05¢ 198"

y = P(t)

This function, superimposed over the population data in Figure 4.88, appears to be
an excellent fit to the data.

P
A
350 -

300 -
250 -
200 -
150 -
100

50 -

Population (millions)

1 1 1 1 1 >
0 1750 1800 1850 1900 1950 2000
FIGURE 4.88 Year

b. To find the limiting population predicted by this logistic function, we have to deter-
mine what happens as t — . As t increases, the term e~ *'** approaches 0, so that
the quotient approaches 659.45 million people.

c. Based on this model, the population in 2020, when t = 24 decades, will be

- 659.45
24 = T 50050 0

~ 367.42 million people.

The Surge Function

Picture what happens when a medication is first administered to a patient. The ef-
fective level of the drug in the bloodstream initially is zero. The drug level then
rises rapidly toward a maximum as it is absorbed into the blood. Finally, the drug
level decays slowly as it is washed out of the body by the kidneys that filter impu-
rities from the blood. The overall pattern has the shape shown in Figure 4.89.
Similarly, a new advertising campaign produces an immediate jump in sales, but

FIGURE 4.89 -
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EXAMPLE 2

then the effects of the ad campaign tend to die out slowly over time. The resulting
pattern can also be represented by a curve like that shown in Figure 4.89.

Both of these processes are examples of a surge function, which can be writ-
ten as

S(t) = AtPb',

where A, p, and b < 1 are three parameters. For realistic situations, we consider
only ¢ = 0. This formula for a surge function actually is the product of a power
function ¥ and an exponential decay function b’ because b < 1. For instance, Fig-
ure 4.90 shows the graph of the surge function S(t) = 100¢*°(0.75)".

N
A

2000

1600 - S(1) = 10025(0.75)"

1200

800 -
400 -

L L L L L >

FIGURE 4.90 0 5 10 15 20 25 30

The coefficient A determines the maximum height of the curve. For the surge
function shown in Figure 4.90, this maximum is slightly more than 1800. The
power function term #” reflects the initial impetus and, in fact, the power p deter-
mines the location of the maximum value of the function. For this surge function,
the maximum occurs at about t = 8.5. The decaying exponential term b’ is re-
sponsible for the eventual slow decay. Also, remember that an exponential function
dominates any power function for large ¢ so that, in the product of the two func-
tions, the exponential decay eventually overwhelms the growth in the power func-
tion term.

The drug L-dopa is administered to people suffering from Parkinson’s disease to relieve
symptoms such as extreme tremors and rigidity. To be effective, fairly high doses are re-
quired because only a small portion of a dose actually lasts in the body long enough to
be effective. The side effects of the large doses can be reduced by administering another
drug in conjunction with L-dopa. The following table shows the level of L.-dopa L in the
blood, in nanograms per milliliter, as a function of time #, in minutes.

t 0 20

40

60 80 100 120 140 160 180 200 220 240 300 360

L 0 300

2700

2950 2600 1550 1100 900 725 600 510 440 300 250 225

A plot of these points is shown in Figure 4.91, which suggests the pattern for a surge
function. Find the equation of a surge function that models the data.

Solution The plot of the data indicates that the surge function reaches its maximum at
about t = 60, where the maximum value is approximately 3000. The function also has
two points of inflection, one on either side of the peak. From the table of data, the great-
est increase in L occurs between ¢ = 20 and ¢t = 40, so we estimate that one inflection

o
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3000F
2500 - °
2000 -
1500 - .
1000 - ® .

500 |- Ce,

Level of L-Dopa

| | |
0 60 120 180 240 300 36
Time (minutes)

FIGURE 4.91

point occurs at ¢ = 30, say. The greatest decrease in L occurs between t = 80 and
t = 100, so we estimate that the other inflection point occurs at about t = 90.

We write L(t) = At’b' as the general equation of a surge function, where A, p,and b
are the three parameters whose values we have to determine. Unfortunately, routines to
find these parameters are not built into any calculators or directly into any software
packages, so we have to find an indirect way of estimating their values. To do so we
apply a transformation approach similar to that used in Sections 3.4 and 3.5. Thus, if
L(t) = At’b', when we take logs of both sides, we get

log L = log(At*b") = log A + log t* + logb' log(u-v-w) = logu + logv + logw
=logA + plogt + tlogb. log(u?) = plogu

Therefore, if L is a surge function of ¢, 1og L is a linear function of t and of log t. Thus, we
extend the preceding table to include values for log t and log L.

t 0 20 40 60 80 100 120 140 160 = 180 200 220 240 300 360
L 0 300 2700 - 2950 = 2600 < 1550 - 1100 = 900 725 600 510 440 300 250 225
logt unper 1.3 160 1.78 1.90  2.00 2.08 2.1 2.2 2.2 23 23 2.3 24 2.56
logL unper 24 343 347 341 319 304 29 28 2.7 2.7 26 24 24 235

Note that the first entries for log f and log L are marked UNDEF because the logarithmic
function is not defined.

Because log L is a linear function of both ¢ and log t, we can use the values from this
table in a program that performs multivariate linear regression, as discussed in Sec-
tion 3.6. The linear function that best fits these data is

Y=1.5004—0.00667X;, +1.1591X,,
where X; = tand X, = log . The regression equation is equivalent to
log L = 1.5004 — 0.00667t + 1.1591 log .

We undo the transformation, as we did in Sections 3.4 and 3.5, by taking powers of 10 on
both sides of this equation:

1008L = [ = 1(-5004—0.006671+1.1591 log ¢ 10l084 = 4
— (101.5004)(10*0.0066%)(101.1591logt) 10“7" = 10%- 10"
= (31.65)(10 00067yt (1loe ") log ¥ = plogu
= 31.65(0.9848)'t"1*1, 108" =

o
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Therefore our model for the surge function is

—p—

L(t) = 31.65t"1%°1(0.9848)".

The graph of this function superimposed over the original data set for the level of L-dopa
in the blood is shown in Figure 4.92. It is not a particularly good fit to the data, especial-
ly for t between 0 and about 100 minutes. It reflects the overall pattern in the data but
not very accurately. Moreover, the corresponding coefficient of multiple determination
is R* = 0.6876,s0 R = 0.8292, which is reasonably close to 1. It is close enough for there
to be a significant level of correlation.

L

3000 e
2500 - °
2000 -
1500
1000 -
500 |

Level of L-Dopa

FIGURE 4.92

Problems

1. The growth pattern in human height or weight devel-
opment from birth through age 18, say, usually follows
a logistic growth pattern. The table gives the typical
height, in centimeters, of a male and a female in the
50th percentile for height at different ages, in years.

a. From the table, estimate the typical height of full
grown males and females in the 50th percentile
(assuming full growth occurs by age 18).

b. If you have access to a calculator or software
package that fits a logistic function to a set of
data, find a pair of logistic functions that can be
used to model the heights of both males and fe-
males as a function of age t for those in this 50th
percentile group.

c. What do the formulas from part (b) predict
about the typical heights of full grown males and
females in the 50th percentile?

Age Males Females
0 50.5 49.9
1 76.1 74.3
2 87.6 86.5
3 96.5 95.6

1 1 1 1
0 60 120 180 240 300 360

Time (minutes)

@
4 102.9 101.6
5 109.9 108.4
6 116.1 114.6
7 125.0 120.6
8 127.0 126.4
9 132.2 132.2
10 137.5 138.3
11 143.3 144.8
12 149.7 151.5
13 156.5 157.1
14 163.1 160.4
15 169.0 161.8
16 173.5 162.4
17 176.2 163.1
18 176.8 163.7

Source: U.S. Department of Health, Education, and Welfare, NCHS
Growth Curves for Children, Vital and Health Statistics, National
Health Survey. Washington, D.C.: U.S. Government Printing Office.
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2. Sweden has one of the longest collections of census
records of any country. The table to the right shows
the Swedish population, in millions, starting in
1750 when t = 0 through 1920 when t = 170.

a. From the table, estimate the population of Swe-
den at the point of inflection when t = 110.

b. If you have access to a calculator or software
package that fits a logistic function to a set of
data, find a logistic function that can be used to
model the population of Sweden as a function of
time t.

c. What does the formula from part (b) predict
about the maximum possible population of
Sweden?

d. Consult the population table in Appendix G to
see how well the logistic function you found in
part (b) predicts the actual population in 2002.

3. Consider the surge function S(t) = 100£*°(0.75)"

(see Figure 4.90). Without using your function gra-

pher, predict how the graph of each surge function

(a)—(d) compares to this function in terms of the

location of the turning point and the rate at which

the function decays to 0.

a. f(t) = 100£°(0.75)"
b. f(t) = 100¢*(0.75)"
c. f(t) = 100£>°(0.70)"
d. f(r) = 100t*>>(0.80)"

Chapter Summary

4.9 The Logistic and Surge Functions 353

t Population
0 1.763
10 1.893
20 2.030
30 2.118
40 2.158
50 2.347
60 2.378
70 2.585
80 2.888
90 3.139
100 3.483
110 3.800
120 4.168
130 4.566
140 4.785
150 5.136
160 5.522
170 5.9004

Source: Raymond Pearl, The Biology of
Population Growth. New York: Knopf,

1925.

In this chapter, we introduced several additional families of functions and ways to
build new functions out of old functions. More specifically, we described:

¢ How quadratic, cubic, quartic, and higher degree polynomials behave.

¢ How the real roots of a polynomial equation relate to the linear factors.

¢ How the real roots of a polynomial equation relate to the graph.

¢ How the number of turning points and the number of inflection points re-
late to the degree of a polynomial.

¢ How the end behavior of a polynomial depends on the sign of the leading

coefficient.

¢ How to find the real roots of a polynomial graphically, numerically, and—in
the case of quadratic functions—algebraically.

o
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Review Problems

How polynomial functions arise as models in the real world.
How to fit polynomial functions to sets of data.
The relative frequency with which complex roots occur.

How to interpret the higher order differences of a set of numbers to deter-
mine polynomial patterns in sets of data.

How to find the sum of the first # integers and the sum of the squares of
the first n integers.

What it means to add, subtract, or multiply functions to form new func-
tions.

The behavior of rational functions.
What it means to have a function of a function.
The effects of shifting, stretching, and shrinking on a function.

How to interpret shifting and stretching of functions in terms of fitting
functions to data.

How logistic and surge functions behave.

How to use logistic and surge functions as models.

Sketch the graph of each function without using your and end behavior as x approaches © and —o. Esti-

function grapher.

mate all turning points graphically.

. = — —_ 2 - 4 X2 - 4
L fx) = (x + 3)(x — 2)(x — 4) o Ry = e
2. g(x) = (2 — %) + 3)(x + 1) <49 <=9
x*+ 4 x*+ 4
3. Fx) = (x + 2)(x — 3)(x — 4)(x — 1) . S(x) = P d T(x) = 55— ;
4. Glx) = (x + 3)(x — 2)(x — 4)? t *
. L. 14. For each function shown, sketch the graph of
Factor each polynomial to determine its roots alge- . .
braically. L —flx) ii. 3f(x)
—4 iv. f(x — 3)
Px)=x*+tx—06 Qx) =2x"+9x — 5 v flx+3) Vi, — f(x — 4)
7. R(x) = x> — 3x* + 2x
. b.
8. Use the quadratic formula to verify your answers to : ,y y\ f
Problems 5-7. /
9. A quadratic function f has its vertex at the point f
(5,19),and f(8) = 4. Whatis f(2)?
10. A cubic function f has its inflection point at (6, —4),
and f(2) = 12. What is f(10)? > x x
11. Estimate the location of the turning points of the
graph of the function y = x* + 4x* — 5. c. y
)
12. Determine the graphs of each pair of functions f
and g and use them to draw the graph of f + g. ¥
a. f(x) =x*—5g(x) =3x+2
b. f(x) = 2x° + 4, g(x) = x* o
13. Analyze the behavior of each rational function in-
cluding identifying all zeros, vertical asymptotes,
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15.

16.

17.

Suppose that f(x) = 2x* + 1and g(x) =
(x — 1)/(x + 2). Find the following.

a. f(3) +g(3) b. f(f(3))

c. g(f(3)) d. g(¢(3))
16)

e $3)f03) L)

g f(g(x)) h. f(f(x))

iLog(f(x)) j- &(g(x))

k. g(x)f(x) L &)

g(x)
Suppose that f(0) =2, f(1)=2, f(2) =23,
f(3) = 0 and that g(0) = 1, g(1) =0, g(2) = 2,
¢(3) = 3. Find the following quantities for x = 0,

1, 2, and 3.
a. f(g(x)) b. g(f(x))
f(x)

c f(x) + g(x) d —=

8(x)
Repeat Problem 16(a)—(d) for the functions fand g
shown in the graphs below for x = 1, 2, 3, and 4.

f(x)

g(x)

—p—

18.

19.

20.

21.

22.

4.9 The Logistic and Surge Functions

The return in dollars on an investment seems to
be well approximated by the function F(¢) =
2t* + t + 4.2, whereas the return on another in-
vestment is modeled by G(¢t) = 7.8t + 3.5. Deter-
mine for which values of >0 the second
investment is better than the first.

Evaluate the sum
3+6+9+ 12+ 15+ ---+ 300.
A polynomial has four turning points.

a. How many inflection points must it have?
Explain.

b. What is the minimum degree of the polynomial?

c. What is the minimum number of real roots that
the polynomial can have? Explain your answer
with a sketch of a polynomial to illustrate what
can happen.

d. What is the maximum number of real roots that
the polynomial can have? Explain your answer
with a sketch of a polynomial to illustrate what
can happen.

e. Are there any other values for the number of real
roots between the minimum number in part (c)
and the maximum number in part (d) that the
polynomial can have? Explain your answer with
a sketch of a polynomial to illustrate what can
happen.

The accompanying figure shows the graph of a

fourth degree polynomial. Use regression methods
to find a possible formula for this polynomial.

/ .
SIEE A

|

|

The table that follows gives some values, rounded

to the nearest integer, for a rational function.

a. Sketch a possible graph of this rational function
R(x).

b. Find a possible formula for this rational function.
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24. The table gives the total number of cell phone sub-
X —4 -3 —2 —1 0 1 scribers, in millions, in the United States since 1990
R(x) 10 0 | UNDEE 0 -3 0 and the average local monthly bill, in dollars, for
cell phone service.
X 2 > 4 > 6 7 a. Find the exponential growth function that best
R(x)  uNDEF 0 18 UNDEF 0 21 fits the data on the number of subscribers as a
function of time since 1990.
. . ) b. Find the exponential decay function that best fits
23. Each fl,.lnCtIOI‘l shown in .the accompanying figure the data on the average monthly bill as a func-
can be interpreted as a'shlft.apphed' to an exponen- tion of time since 1990.
tial, a power, or a logarithmic function. c. The total industry revenue each year is the pro-
a. Identify which is which. duct of the number of subscribers and the aver-
b. Write a possible formula for each function. age monthly bill for service. Use the results of
parts (a) and (b) to write a function that models
y y y the total cell phone revenue as a function of time
since 1990. What is the growth or decay factor
for this revenue function?
d. Extend the table to include a row that gives the
) total annual revenue in the cell phone industry.
* . B Then find the exponential function that best
-10 -4 fits the data on the annual revenue as a func-

(ii) (iif)

tion of the number of years since 1990. How
does this result compare to the one you found

y y .
in part (c)?

L :

|

|

|

94 — = |

> X ‘ > X ‘ é > X
(V) (vi)

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
Subscribers 4.37 6.38 8.89 13.07 19.28 28.15 38.20 48.71 60.83 76.28
Average bill 83.94 74.56 68.51 67.31 58.65 52.45 48.84 43.86 39.88 40.24

Source: 2000 Statistical Abstract of the United States.



