
4-1 Sum-of-Products Form

4-2 Simplifying Logic Circuits

4-3 Algebraic Simplification

4-4 Designing Combinational

Logic Circuits

4-5 Karnaugh Map Method

4-6 Exclusive-OR and

Exclusive-NOR Circuits

4-7 Parity Generator and

Checker

4-8 Enable/Disable Circuits

4-9 Basic Characteristics of

Digital ICs

■ OUTLINE

C O M B I N AT I O N A L

L O G I C C I R C U I T S

C H A P T E R 4

4-10 Troubleshooting Digital

Systems

4-11 Internal Digital IC Faults

4-12 External Faults

4-13 Troubleshooting Case Study

4-14 Programmable Logic

Devices

4-15 Representing Data in HDL

4-16 Truth Tables Using HDL

4-17 Decision Control Structures

in HDL

TOCCMC04_0131725793.QXD 12/03/2005 12:04 AM Page 118

119

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Convert a logic expression into a sum-of-products expression.

■ Perform the necessary steps to reduce a sum-of-products expression to

its simplest form.

■ Use Boolean algebra and the Karnaugh map as tools to simplify and

design logic circuits.

■ Explain the operation of both exclusive-OR and exclusive-NOR circuits.

■ Design simple logic circuits without the help of a truth table.

■ Implement enable circuits.

■ Cite the basic characteristics of TTL and CMOS digital ICs.

■ Use the basic troubleshooting rules of digital systems.

■ Deduce from observed results the faults of malfunctioning

combinational logic circuits.

■ Describe the fundamental idea of programmable logic devices (PLDs).

■ Outline the steps involved in programming a PLD to perform a simple

combinational logic function.

■ Go to the Altera user manuals to acquire the information needed to do

a simple programming experiment in the lab.

■ Describe hierarchical design methods.

■ Identify proper data types for single-bit, bit array, and numeric value

variables.

■ Describe logic circuits using HDL control structures IF/ELSE, IF/ELSIF,

and CASE.

■ Select the appropriate control structure for a given problem.

■ INTRODUCTION
In Chapter 3, we studied the operation of all the basic logic gates, and we

used Boolean algebra to describe and analyze circuits that were made up of

combinations of logic gates. These circuits can be classified as

combinational logic circuits because, at any time, the logic level at the out-

put depends on the combination of logic levels present at the inputs. A

combinational circuit has no memory characteristic, so its output depends

only on the current value of its inputs.

In this chapter, we will continue our study of combinational circuits. To

start, we will go further into the simplification of logic circuits. Two methods

will be used: one uses Boolean algebra theorems; the other uses a mapping
technique. In addition, we will study simple techniques for designing

TOCCMC04_0131725793.QXD 12/03/2005 12:04 AM Page 119

combinational logic circuits to satisfy a given set of requirements. A com-

plete study of logic-circuit design is not one of our objectives, but the meth-

ods we introduce will provide a good introduction to logic design.

A good portion of the chapter is devoted to the troubleshooting of com-

binational circuits. This first exposure to troubleshooting should begin to

develop the type of analytical skills needed for successful troubleshooting.

To make this material as practical as possible, we will first present some of

the basic characteristics of logic-gate ICs in the TTL and CMOS logic families

along with a description of the most common types of faults encountered in

digital IC circuits.

In the last sections of this chapter, we will extend our knowledge of pro-

grammable logic devices and hardware description languages. The concept

of programmable hardware connections will be reinforced, and we will pro-

vide more details regarding the role of the development system. You will

learn the steps followed in the design and development of digital systems

today. Enough information will be provided to allow you to choose the cor-

rect types of data objects for use in simple projects to be presented later in

this text. Finally, several control structures will be explained, along with

some instruction regarding their appropriate use.

4-1 SUM-OF-PRODUCTS FORM

The methods of logic-circuit simplification and design that we will study

require the logic expression to be in a sum-of-products (SOP) form. Some ex-

amples of this form are:

1.

2.

3.

Each of these sum-of-products expressions consists of two or more AND terms

(products) that are ORed together. Each AND term consists of one or more

variables individually appearing in either complemented or uncomple-

mented form. For example, in the sum-of-products expression

the first AND product contains the variables A, B, and C in their uncomple-

mented (not inverted) form. The second AND term contains A and C in their

complemented (inverted) form. Note that in a sum-of-products expression,

one inversion sign cannot cover more than one variable in a term (e.g., we

cannot have or).

Product-of-Sums
Another general form for logic expressions is sometimes used in logic-

circuit design. Called the product-of-sums (POS) form, it consists of two or

more OR terms (sums) that are ANDed together. Each OR term contains

one or more variables in complemented or uncomplemented form. Here

are some product-of-sum expressions:

1.

2.

3.

The methods of circuit simplification and design that we will be using

are based on the sum-of-products (SOP) form, so we will not be doing much

(A + C)(B + D)(B + C)(A + D + E)

(A + B)(C + D)F

(A + B + C)(A + C)

RSTABC

ABC + ABC,

AB + CD + EF + GK + HL

AB + ABC + C D + D

ABC + ABC

120 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

TOCCMC04_0131725793.QXD 12/03/2005 12:04 AM Page 120

4-2 SIMPLIFYING LOGIC CIRCUITS

Once the expression for a logic circuit has been obtained, we may be able to re-

duce it to a simpler form containing fewer terms or fewer variables in one or

more terms.The new expression can then be used to implement a circuit that is

equivalent to the original circuit but that contains fewer gates and connections.

To illustrate, the circuit of Figure 4-1(a) can be simplified to produce the

circuit of Figure 4-1(b). Both circuits perform the same logic, so it should be ob-

vious that the simpler circuit is more desirable because it contains fewer gates

and will therefore be smaller and cheaper than the original. Furthermore, the

circuit reliability will improve because there are fewer interconnections that

can be potential circuit faults.

SECTION 4-3/ALGEBRAIC SIMPLIFICATION 121

A
B BC

(a)

C
x = A B C

C

A
B

C
(b)

A + BC
x = A B(A + BC)

FIGURE 4-1 It is often

possible to simplify a logic

circuit such as that in part

(a) to produce a more

efficient implementation,

shown in (b).

In subsequent sections, we will study two methods for simplifying logic

circuits. One method will utilize the Boolean algebra theorems and, as we

shall see, is greatly dependent on inspiration and experience. The other

method (Karnaugh mapping) is a systematic, step-by-step approach. Some

instructors may wish to skip over this latter method because it is somewhat

mechanical and probably does not contribute to a better understanding of

Boolean algebra. This can be done without affecting the continuity or clarity

of the rest of the text.

4-3 ALGEBRAIC SIMPLIFICATION

We can use the Boolean algebra theorems that we studied in Chapter 3 to

help us simplify the expression for a logic circuit. Unfortunately, it is not al-

ways obvious which theorems should be applied to produce the simplest

REVIEW QUESTIONS 1. Which of the following expressions is in SOP form?

(a) AB � CD � E

(b) AB(C � D)

(c) (A � B)(C � D � F)

(d)

2. Repeat question 1 for the POS form.

MN + PQ

with the product-of-sums (POS) form. It will, however, occur from time to

time in some logic circuits that have a particular structure.

TOCCMC04_0131725793.QXD 12/17/05 2:39 AM Page 121

result. Furthermore, there is no easy way to tell whether the simplified

expression is in its simplest form or whether it could have been simplified

further. Thus, algebraic simplification often becomes a process of trial and

error. With experience, however, one can become adept at obtaining reason-

ably good results.

The examples that follow will illustrate many of the ways in which the

Boolean theorems can be applied in trying to simplify an expression. You

should notice that these examples contain two essential steps:

1. The original expression is put into SOP form by repeated application of

DeMorgan’s theorems and multiplication of terms.

2. Once the original expression is in SOP form, the product terms are

checked for common factors, and factoring is performed wherever possi-

ble. The factoring should result in the elimination of one or more terms.

122 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 4-1 Simplify the logic circuit shown in Figure 4-2(a).

z = ABC + AB(AC)

A

C

B

A

A C

A B C

B

(a)

A
A B(A C)

(b)

z = A(B + C)

B + C

A

B

C

FIGURE 4-2 Example 4-1.

Solution

The first step is to determine the expression for the output using the method

presented in Section 3-6. The result is

Once the expression is determined, it is usually a good idea to break down

all large inverter signs using DeMorgan’s theorems and then multiply out

all terms.

 = ABC + AB + ABC [A � A = A]

 = ABC + ABA + ABC [multiply out]

 = ABC + AB(A + C) [cancel double inversions]

 z = ABC + AB(A + C) [theorem (17)]

z = ABC + AB # (A C)

TOCCMC04_0131725793.QXD 12/03/2005 12:04 AM Page 122

With the expression now in SOP form, we should look for common variables

among the various terms with the intention of factoring. The first and third

terms above have AC in common, which can be factored out:

Since then

We can now factor out A, which results in

This result can be simplified no further. Its circuit implementation is shown

in Figure 4-2(b). It is obvious that the circuit in Figure 4-2(b) is a great deal

simpler than the original circuit in Figure 4-2(a).

z = A(C + B)

 = AC + AB
 z = AC(1) + AB

B + B = 1,

z = AC(B + B) + AB

SECTION 4-3/ALGEBRAIC SIMPLIFICATION 123

EXAMPLE 4-2
Simplify the expression

Solution

The expression is already in SOP form.

Method 1: The first two terms in the expression have the product in

common. Thus,

We can factor the variable A from both terms:

Invoking theorem (15b):

Method 2: The original expression is The first

two terms have in common. The last two terms have AC in common. How

do we know whether to factor from the first two terms or AC from the

last two terms? Actually, we can do both by using the term twice. In

other words, we can rewrite the expression as:

where we have added an extra term This is valid and will not change

the value of the expression because [theorem (7)]. Now

we can factor from the first two terms and AC from the last two terms:

 = AB + AC = A(B + C)
 = AB # 1 + AC # 1

 z = AB(C + C) + AC(B + B)

AB
ABC + ABC = ABC
ABC.

z = AB C + ABC + ABC + ABC

ABC
AB

AB
z = AB C + ABC + ABC.

z = A(B + C)

z = A(B + BC)

 = AB + ABC
 = AB(1) + ABC

 z = AB(C + C) + ABC

AB

z = AB C + ABC + ABC.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 123

Of course, this is the same result obtained with method 1. This trick of using

the same term twice can always be used. In fact, the same term can be used

more than twice if necessary.

124 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 4-3
Simplify

Solution

First, use DeMorgan’s theorem on the first term:

(step 1)

Multiplying out yields

(2)

Because the first term is eliminated:

(3)

This is the desired SOP form. Now we must look for common factors among

the various product terms.The idea is to check for the largest common factor

between any two or more product terms. For example, the first and last terms

have the common factor and the second and third terms share the com-

mon factor We can factor these out as follows:

(4)

Now, because and [theorem (15a)], we have

(5)

This same result could have been reached with other choices for the

factoring. For example, we could have factored C from the first, second, and

fourth product terms in step 3 to obtain

The expression inside the parentheses can be factored further:

Because this becomes

Multiplying out yields

z = BC + AC D + ABC D

z = C(B + A D) + ABC D

A + A = 1,

z = C(B[A + A] + A D) + ABC D

z = C(A B + A D + AB) + ABC D

z = BC + A D(B + C)

C + BC = C + BA + A = 1,

z = BC(A + A) + A D(C + BC)

A D.

BC,

z = A BC + ACD + ABC D + ABC

A # A = 0,

z = ACA + ACB + ACD + ABC D + ABC

z = AC(A + B + D) + ABC D + ABC

z = AC(ABD) + ABC D + ABC.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 124

Now we can factor from the second and third terms to get

If we use theorem (15a), the expression in parentheses becomes B � C.Thus,

we finally have

This is the same result that we obtained earlier, but it took us many more

steps. This illustrates why you should look for the largest common factors: it

will generally lead to the final expression in the fewest steps.

Example 4-3 illustrates the frustration often encountered in Boolean

simplification. Because we have arrived at the same equation (which ap-

pears irreducible) by two different methods, it might seem reasonable to

conclude that this final equation is the simplest form. In fact, the simplest

form of this equation is

But there is no apparent way to reduce step (5) to reach this simpler version.

In this case, we missed an operation earlier in the process that could have

led to the simpler form. The question is, “How could we have known that

we missed a step?” Later in this chapter, we will examine a mapping tech-

nique that will always lead to the simplest SOP form.

z = ABD + BC

z = BC + A D(B + C)

z = BC + A D(C + BC)

A D

SECTION 4-3/ALGEBRAIC SIMPLIFICATION 125

EXAMPLE 4-4
Simplify the expression

Solution

The expression can be put into sum-of-products form by multiplying out all

the terms. The result is

The first term can be eliminated because Likewise, the third and

sixth terms can be eliminated because The fifth term can be sim-

plified to because BB � B. This gives us

We can factor from each term to obtain

Clearly, the term inside the parentheses is always 1, so we finally have

x = BD

x = BD(A + A + 1)

BD

x = ABD + ABD + BD

BD
DD = 0.

AA = 0.

x = AAD + ABD + ADD + BAD + BBD + BDD

x = (A + B)(A + B + D)D.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 125

Solution

The expression for output z is

Multiplying out to get the sum-of-products form, we obtain

We can eliminate and to end up with

This expression is implemented in Figure 4-3(b), and if we compare it with

the original circuit, we see that both circuits contain the same number of

gates and connections. In this case, the simplification process produced an

equivalent, but not simpler, circuit.

z = A B + AB

BB = 0AA = 0

z = AA + A B + BA + BB

z = (A + B)(A + B)

126 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 4-5 Simplify the circuit of Figure 4-3(a).

FIGURE 4-3 Example 4-5.
A

B

(a)

z

(b)

A

B
z

EXAMPLE 4-6
Simplify

Solution

You can try, but you will not be able to simplify this expression any further.

x = ABC + ABD + C D.

REVIEW QUESTIONS 1. State which of the following expressions are not in the sum-of-products

form:

(a)

(b)

(c)

(d)

2. Simplify the circuit in Figure 4-1(a) to arrive at the circuit of Figure 4-1(b).

3. Change each AND gate in Figure 4-1(a) to a NAND gate. Determine the

new expression for x and simplify it.

AB + ABC + A B C D

MNP + (M + N)P

ADC + ADC

RST + RST + T

TOCCMC04_0131725793.QXD 12/19/05 3:37 PM Page 126

4-4 DESIGNING COMBINATIONAL LOGIC CIRCUITS

When the desired output level of a logic circuit is given for all possible input

conditions, the results can be conveniently displayed in a truth table. The

Boolean expression for the required circuit can then be derived from the

truth table. For example, consider Figure 4-4(a), where a truth table is shown

for a circuit that has two inputs, A and B, and output x. The table shows that

output x is to be at the 1 level only for the case where A � 0 and B � 1. It now

remains to determine what logic circuit will produce this desired operation.

It should be apparent that one possible solution is that shown in Figure

4-4(b). Here an AND gate is used with inputs and B, so that

Obviously x will be 1 only if both inputs to the AND gate are 1, namely,

(which means that A � 0) and B � 1. For all other values of A and B, the out-

put x will be 0.

A = 1

x = A # B.A

SECTION 4-4/DESIGNING COMBINATIONAL LOGIC CIRCUITS 127

A
0
0
1
1

B
0
1
0
1

x
0
1
0
0

(a) (b)

A
x = AB

B

A

FIGURE 4-4 Circuit that

produces a 1 output only for

the A � 0, B � 1 condition.

AB
A

B

AB
A

B

AB
A

B

AB
A

B
HIGH only when A = 0, B = 0

HIGH only when A = 0, B = 1

HIGH only when A = 1, B = 0

HIGH only when A = 1, B = 1

FIGURE 4-5 An AND gate

with appropriate inputs can

be used to produce a 1

output for a specific set of

input levels.

A similar approach can be used for the other input conditions. For in-

stance, if x were to be high only for the A � 1, B � 0 condition, the resulting

circuit would be an AND gate with inputs A and In other words, for any of

the four possible input conditions, we can generate a high x output by using

an AND gate with appropriate inputs to generate the required AND product.

The four different cases are shown in Figure 4-5. Each of the AND gates

shown generates an output that is 1 only for one given input condition and

the output is 0 for all other conditions. It should be noted that the AND in-

puts are inverted or not inverted depending on the values that the variables

have for the given condition. If the variable is 0 for the given condition, it is

inverted before entering the AND gate.

B.

Let us now consider the case shown in Figure 4-6(a), where we have a

truth table that indicates that the output x is to be 1 for two different cases:

A � 0, B � 1 and A � 1, B � 0. How can this be implemented? We know that

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 127

the AND term will generate a 1 only for the A � 0, B � 1 condition, and

the AND term will generate a 1 for the A � 1, B � 0 condition. Because

x must be HIGH for either condition, it should be clear that these terms

should be ORed together to produce the desired output, x. This implementa-

tion is shown in Figure 4-6(b), where the resulting expression for the output

is .x = AB + AB

A # B
A # B

128 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

A
0
0
1
1

B
0
1
0
1

x
0
1
1
0

x = AB + AB

AB

AB

(b)

A

B

A

B

(a)

FIGURE 4-6 Each set of

input conditions that is to

produce a HIGH output is

implemented by a separate

AND gate. The AND outputs

are ORed to produce the

final output.

In this example, an AND term is generated for each case in the table

where the output x is to be a 1.The AND gate outputs are then ORed together

to produce the total output x, which will be 1 when either AND term is 1.This

same procedure can be extended to examples with more than two inputs.

Consider the truth table for a three-input circuit (Table 4-1). Here there are

three cases where the output x is to be 1. The required AND term for each of

these cases is shown. Again, note that for each case where a variable is 0, it

appears inverted in the AND term. The sum-of-products expression for x is

obtained by ORing the three AND terms.

x = ABC + ABC + ABC

TABLE 4-1
A B C x

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1 : ABC

: ABC

: ABC

Complete Design Procedure
Any logic problem can be solved using the following step-by-step procedure.

1. Interpret the problem and set up a truth table to describe its operation.

2. Write the AND (product) term for each case where the output is 1.

3. Write the sum-of-products (SOP) expression for the output.

4. Simplify the output expression if possible.

5. Implement the circuit for the final, simplified expression.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 128

The following example illustrates the complete design procedure.

SECTION 4-4/DESIGNING COMBINATIONAL LOGIC CIRCUITS 129

EXAMPLE 4-7 Design a logic circuit that has three inputs, A, B, and C, and whose output

will be HIGH only when a majority of the inputs are HIGH.

Solution

Step 1. Set up the truth table.

On the basis of the problem statement, the output x should be 1 whenever two

or more inputs are 1; for all other cases, the output should be 0 (Table 4-2).

TABLE 4-2
A B C x

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1 : ABC

: ABC

: ABC

: ABC

Step 2. Write the AND term for each case where the output is a 1.

There are four such cases. The AND terms are shown next to the truth table

(Table 4-2). Again note that each AND term contains each input variable in

either inverted or noninverted form.

Step 3. Write the sum-of-products expression for the output.

Step 4. Simplify the output expression.

This expression can be simplified in several ways. Perhaps the quickest way

is to realize that the last term ABC has two variables in common with each of

the other terms. Thus, we can use the ABC term to factor with each of the

other terms. The expression is rewritten with the ABC term occurring three

times (recall from Example 4-2 that this is legal in Boolean algebra):

Factoring the appropriate pairs of terms, we have

Each term in parentheses is equal to 1, so we have

x = BC + AC + AB

x = BC(A + A) + AC(B + B) + AB(C + C)

x = ABC + ABC + ABC + ABC + ABC + ABC

x = ABC + ABC + ABC + ABC

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 129

Step 5. Implement the circuit for the final expression.

This expression is implemented in Figure 4-7. Since the expression is in SOP

form, the circuit consists of a group of AND gates working into a single OR gate.

130 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

A

B

C
BC

AB

AC

x = BC + AC + AB

FIGURE 4-7 Example 4-7.

EXAMPLE 4-8 Refer to Figure 4-8(a), where an analog-to-digital converter is monitoring the

dc voltage of a 12-V storage battery on an orbiting spaceship.The converter’s

output is a four-bit binary number, ABCD, corresponding to the battery volt-

age in steps of 1 V, with A as the MSB. The converter’s binary outputs are fed

to a logic circuit that is to produce a HIGH output as long as the binary value

is greater than 01102 � 610; that is, the battery voltage is greater than 6 V.

Design this logic circuit.

FIGURE 4-8 Example 4-8.

(b)

A
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

B
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

C
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)

A
B
C
D

MSB

LSB

Logic
circuit

(a)

z

z = A + BCD

(c)

A

B
C
D

Analog-
to-

digital
converterVB

A
B
C
D

z
0
0
0
0
0
0
0
1→ ABCD
1→ ABCD
1→ ABCD
1→ ABCD
1→ ABCD
1→ ABCD
1→ ABCD
1→ ABCD
1→ ABCD

Solution

The truth table is shown in Figure 4-8(b). For each case in the truth table, we

have indicated the decimal equivalent of the binary number represented by

the ABCD combination.

The output z is set equal to 1 for all those cases where the binary num-

ber is greater than 0110. For all other cases, z is set equal to 0. This truth

table gives us the following sum-of-products expression:

 + ABCD + ABCD + ABCD
 z = ABCD + AB C D + AB CD + ABCD + ABCD + ABC D

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 130

Simplification of this expression will be a formidable task, but with a little

care it can be accomplished. The step-by-step process involves factoring

and eliminating terms of the form

This can be reduced further by invoking theorem (15a), which says that

In this case x � A and y � BCD. Thus,

This final expression is implemented in Figure 4-8(c).

As this example demonstrates, the algebraic simplification method can

be quite lengthy when the original expression contains a large number of

terms. This is a limitation that is not shared by the Karnaugh mapping

method, as we will see later.

z = ABCD + A = BCD + A

x + xy = x + y.

 = ABCD + A
 = ABCD + A(B + B)

 = ABCD + AB + AB
 = ABCD + AB(C + C) + AB(C + C)

 = ABCD + AB C + ABC + ABC + ABC
 z = ABCD + AB C(D + D) + ABC(D + D) + ABC(D + D) + ABC(D + D)

A + A:

SECTION 4-4/DESIGNING COMBINATIONAL LOGIC CIRCUITS 131

EXAMPLE 4-9 Refer to Figure 4-9(a). In a simple copy machine, a stop signal, S, is to be

generated to stop the machine operation and energize an indicator light

whenever either of the following conditions exists: (1) there is no paper in

the paper feeder tray; or (2) the two microswitches in the paper path are

P

AND

OR

Q

R

S P

Q

R

S = P + QR

(d)(c)

S = P + QRP

Q

R

(b)

Feeder tray
sensor

1 k�

+5 V

P

Q

R

Paper-
sensing
switches

S

(a)

1 k�

Logic
circuit

FIGURE 4-9 Example 4-9.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 131

activated, indicating a jam in the paper path. The presence of paper in the

feeder tray is indicated by a HIGH at logic signal P. Each of the microswitches

produces a logic signal (Q and R) that goes HIGH whenever paper is passing

over the switch to activate it. Design the logic circuit to produce a HIGH at

output signal S for the stated conditions, and implement it using the 74HC00

CMOS quad two-input NAND chip.

Solution

We will use the five-step process used in Example 4-7. The truth table is

shown in Table 4-3. The S output will be a logic 1 whenever P � 0 because

this indicates no paper in the feeder tray. S will also be a 1 for the two cases

where Q and R are both 1, indicating a paper jam. As the table shows, there

are five different input conditions that produce a HIGH output. (Step 1)

132 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

TABLE 4-3
P Q R S

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1 PQR

PQR

PQR

P QR

P Q R

The AND terms for each of these cases are shown. (Step 2)
The sum-of-products expression becomes

(Step 3)

We can begin the simplification by factoring out from terms 1 and 2

and by factoring out from terms 3 and 4:

(Step 4)

Now we can eliminate the terms because they equal 1:

Factoring from terms 1 and 2 allows us to eliminate Q from these terms:

Here we can apply theorem (15b) to obtain

As a double check of this simplified Boolean equation, let’s see if it

matches the truth table that we started out with. This equation says that

the output S will be HIGH whenever P is LOW OR both Q AND R are HIGH.

Look at Table 4-3 and observe that the output is HIGH for all four cases

S = P + QR

(x + xy = x + y)

S = P + PQR

P

S = P Q + PQ + PQR

R + R

S = P Q(R + R) + PQ(R + R) + PQR

PQ
P Q

S = P Q R + P QR + PQR + PQR + PQR

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 132

when P is LOW. S is also HIGH when Q AND R are both HIGH, regardless of

the state of P. This agrees with the equation.

The AND/OR implementation for this circuit is shown in Figure 4-9(b).

(Step 5)
To implement this circuit using the 74HC00 quad two-input NAND

chip, we must convert each gate and the INVERTER by their NAND-gate

equivalents (per Section 3-12). This is shown in Figure 4-9(c). Clearly, we

can eliminate the double inverters to produce the NAND-gate implementa-

tion shown in Figure 4-9(d).

The final wired-up circuit is obtained by connecting two of the NAND

gates on the 74HC00 chip. This CMOS chip has the same gate configuration

and pin numbers as the TTL 74LS00 chip of Figure 3-31. Figure 4-10 shows

the wired-up circuit with pin numbers, including the �5 V and GROUND

pins. It also includes an output driver transistor and LED to indicate the

state of output S.

SECTION 4-5/KARNAUGH MAP METHOD 133

P

Q

R

(e)

1

2
3

4

5
6

7

14

S 33 k�

100 �

+5 V

The other two
gates on the chip
are not connected.

74HC00

74HC00
Note:

FIGURE 4-10 Circuit of

Figure 4-9(d) implemented

using 74HC00 NAND chip.

4-5 KARNAUGH MAP METHOD

The Karnaugh map (K map) is a graphical tool used to simplify a logic equa-

tion or to convert a truth table to its corresponding logic circuit in a simple,

orderly process. Although a K map can be used for problems involving any

number of input variables, its practical usefulness is limited to five or six

variables. The following discussion will be limited to problems with up to

four inputs because even five- and six-input problems are too involved and

are best done by a computer program.

REVIEW QUESTIONS 1. Write the sum-of-products expression for a circuit with four inputs and

an output that is to be HIGH only when input A is LOW at the same time

that exactly two other inputs are LOW.

2. Implement the expression of question 1 using all four-input NAND gates.

How many are required?

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 133

Karnaugh Map Format
The K map, like a truth table, is a means for showing the relationship be-

tween logic inputs and the desired output. Figure 4-11 shows three examples

of K maps for two, three, and four variables, together with the corresponding

truth tables. These examples illustrate the following important points:

1. The truth table gives the value of output X for each combination of input

values. The K map gives the same information in a different format. Each

case in the truth table corresponds to a square in the K map. For example,

in Figure 4-11(a), the A � 0, B � 0 condition in the truth table corresponds

to the square in the K map. Because the truth table shows X � 1
for this case, a 1 is placed in the square in the K map. Similarly, the

A � 1, B � 1 condition in the truth table corresponds to the AB square of

the K map. Because X � 1 for this case, a 1 is placed in the AB square. All

other squares are filled with 0s. This same idea is used in the three- and

four-variable maps shown in the figure.

2. The K-map squares are labeled so that horizontally adjacent squares dif-

fer only in one variable. For example, the upper left-hand square in the

four-variable map is while the square immediately to its right is

(only the D variable is different). Similarly, vertically adjacentA B CD
A B C D,

A B
A B

134 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

A
0
0
1
1

B
0
1
0
1

X
1 → AB
0
0
1 → AB

A
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

B
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

C
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

X
0
1 → ABCD
0
0
0
1 → ABCD
0
0
0
0
0
0
0
1 → ABCD
0
1 → ABCD

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

X
1 → ABC
1 → ABC
1 → ABC
0
0
0
1 → ABC
0

X = ABCD + ABCD
 + ABCD + ABCD

X = ABC + ABC
 + ABC + ABC

0 1 0 0

1 1

1 0

1 0

0 0

AB

AB

AB

AB

AB

AB

AB

AB

CD CD CD CD

C C

(c)

(b)

(a)

x = AB + AB
A

10

B

1 0

A

B

0 1 0 0

0 0 0 0

0 1 1 0

FIGURE 4-11 Karnaugh

maps and truth tables for

(a) two, (b) three, and

(c) four variables.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 134

squares differ only in one variable. For example, the upper left-hand

square is while the square directly below it is (only the B
variable is different).

Note that each square in the top row is considered to be adjacent to

a corresponding square in the bottom row. For example, the

square in the top row is adjacent to the square in the bottom row

because they differ only in the A variable.You can think of the top of the

map as being wrapped around to touch the bottom of the map. Similarly,

squares in the leftmost column are adjacent to corresponding squares in

the rightmost column.

3. In order for vertically and horizontally adjacent squares to differ in only

one variable, the top-to-bottom labeling must be done in the order

shown: The same is true of the left-to-right labeling:

4. Once a K map has been filled with 0s and 1s, the sum-of-products expression

for the output X can be obtained by ORing together those squares that con-

tain a 1. In the three-variable map of Figure 4-11(b), the

and squares contain a 1, so that .

Looping
The expression for output X can be simplified by properly combining those

squares in the K map that contain 1s. The process for combining these 1s is

called looping.

Looping Groups of Two (Pairs)
Figure 4-12(a) is the K map for a particular three-variable truth table. This

map contains a pair of 1s that are vertically adjacent to each other; the first

X = A B C + A BC + ABC + ABCABC
A B C, A BC, ABC,

C D, CD, CD, CD.

A B, AB, AB, AB.

ABCD
A BCD

ABC DA B C D,

SECTION 4-5/KARNAUGH MAP METHOD 135

0 0

1 0

1 0

0 0

AB

AB

AB

AB

C C

(a)

X = ABC + ABC
 = BC

1 0

0 0

0 0

1 0

AB

AB

AB

AB

C C

(c)

X = ABC + ABC = BC

0 0 1 1AB

AB

AB

AB

CD CD CD CD

(d)

ABC

ABD

X = ABCD + ABCD
 + ABCD + ABCD
 = ABC + ABD

0 0

1 1

0 0

0 0

AB

AB

AB

AB

C C

(b)

X = ABC + ABC
 = AB

0 0 0 0

1 0 0 1

0 0 0 0

FIGURE 4-12 Examples of

looping pairs of adjacent 1s.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 135

represents and the second represents Note that in these two

terms only the A variable appears in both normal and complemented (in-

verted) form, while B and remain unchanged. These two terms can be

looped (combined) to give a resultant that eliminates the A variable because

it appears in both uncomplemented and complemented forms. This is easily

proved as follows:

This same principle holds true for any pair of vertically or horizontally

adjacent 1s. Figure 4-12(b) shows an example of two horizontally adjacent

1s.These two can be looped and the C variable eliminated because it appears

in both its uncomplemented and complemented forms to give a resultant

of

Another example is shown in Figure 4-12(c). In a K map, the top row and

bottom row of squares are considered to be adjacent. Thus, the two 1s in this

map can be looped to provide a resultant of .

Figure 4-12(d) shows a K map that has two pairs of 1s that can be looped.

The two 1s in the top row are horizontally adjacent. The two 1s in the bot-

tom row are also adjacent because, in a K map, the leftmost column and the

rightmost column of squares are considered to be adjacent. When the top

pair of 1s is looped, the D variable is eliminated (because it appears as both

D and) to give the term Looping the bottom pair eliminates the C
variable to give the term These two terms are ORed to give the final

result for X.
To summarize:

Looping a pair of adjacent 1s in a K map eliminates the variable that
appears in complemented and uncomplemented form.

Looping Groups of Four (Quads)
A K map may contain a group of four 1s that are adjacent to each other. This

group is called a quad. Figure 4-13 shows several examples of quads. In

Figure 4-13(a), the four 1s are vertically adjacent, and in Figure 4-13(b), they

are horizontally adjacent. The K map in Figure 4-13(c) contains four 1s in a

square, and they are considered adjacent to each other.The four 1s in Figure

4-13(d) are also adjacent, as are those in Figure 4-13(e), because, as pointed

out earlier, the top and bottom rows are considered to be adjacent to each

other, as are the leftmost and rightmost columns.

When a quad is looped, the resultant term will contain only the variables

that do not change form for all the squares in the quad. For example, in

Figure 4-13(a), the four squares that contain a 1 are and

Examination of these terms reveals that only the variable C remains

unchanged (both A and B appear in complemented and uncomplemented

form). Thus, the resultant expression for X is simply X � C. This can be

proved as follows:

 = C(A + A) = C
 = AC + AC
 = AC(B + B) + AC(B + B)

 X = A BC + ABC + ABC + ABC

ABC.

A BC, ABC, ABC,

AB D.

A BC.D

A B C + AB C = B C

X = AB.

 = BC(1) = BC
 = BC(A + A)

 X = ABC + ABC

C

ABC.ABC,

136 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 136

As another example, consider Figure 4-13(d), where the four squares con-

taining 1s are and Examination of these terms

indicates that only the variables A and remain unchanged, so that the sim-

plified expression for X is

This can be proved in the same manner that was used above. The reader

should check each of the other cases in Figure 4-13 to verify the indicated ex-

pressions for X.
To summarize:

Looping a quad of adjacent 1s eliminates the two variables that ap-
pear in both complemented and uncomplemented form.

Looping Groups of Eight (Octets)
A group of eight 1s that are adjacent to one another is called an octet.
Several examples of octets are shown in Figure 4-14. When an octet is looped

in a four-variable map, three of the four variables are eliminated because

only one variable remains unchanged. For example, examination of the eight

looped squares in Figure 4-14(a) shows that only the variable B is in the same

form for all eight squares: the other variables appear in complemented and

uncomplemented form. Thus, for this map, X � B. The reader can verify the

results for the other examples in Figure 4-14.

To summarize:

Looping an octet of adjacent 1s eliminates the three variables that
appear in both complemented and uncomplemented form.

X = AD

D
ABCD.ABC D, A B CD, ABCD,

SECTION 4-5/KARNAUGH MAP METHOD 137

0 0 0 0AB

AB

AB

AB

CD CD CD CD

X = AB
(b)

0 1

0 1

0 1

0 1

AB

AB

AB

AB

C C

(a)
X = C

0 0 0 0AB

AB

AB

AB

CD CD CD CD

X = BD
(c)

0 0 0 0

0 0 0 0

1 0 0 1

AB

AB

AB

AB

CD CD CD CD

X = AD
(d)

1 0 0 1

0 0 0 0

AB

AB

AB

AB

CD CD CD CD

(e)

X = BD

1 0 0 1

1 1 1 1

0 1 1 00 0 0 0

0 0 0 0 0 0 0 0

0 1 1 0

0 0 0 0

1 0 0 1

FIGURE 4-13 Examples

of looping groups of four 1s

(quads).

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 137

Complete Simplification Process
We have seen how looping of pairs, quads, and octets on a K map can be used to

obtain a simplified expression.We can summarize the rule for loops of any size:

When a variable appears in both complemented and uncomple-
mented form within a loop, that variable is eliminated from the
expression. Variables that are the same for all squares of the loop
must appear in the final expression.

It should be clear that a larger loop of 1s eliminates more variables. To

be exact, a loop of two eliminates one variable, a loop of four eliminates two

variables, and a loop of eight eliminates three. This principle will now be

used to obtain a simplified logic expression from a K map that contains any

combination of 1s and 0s.

The procedure will first be outlined and then applied to several exam-

ples.The steps below are followed in using the K-map method for simplifying

a Boolean expression:

Step 1 Construct the K map and place 1s in those squares corresponding to

the 1s in the truth table. Place 0s in the other squares.

Step 2 Examine the map for adjacent 1s and loop those 1s that are not
adjacent to any other 1s. These are called isolated 1s.

Step 3 Next, look for those 1s that are adjacent to only one other 1. Loop any
pair containing such a 1.

Step 4 Loop any octet even if it contains some 1s that have already been

looped.

Step 5 Loop any quad that contains one or more 1s that have not already

been looped, making sure to use the minimum number of loops.

138 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

0 0 0 0

1 1 1 1

AB

AB

AB

AB

CD CD CD CD

1 1 0 0

AB

AB

AB

AB

CD CD CD CD

1 1 1 1

0 0 0 0

AB

AB

AB

AB

CD CD CD CD

1 0 0 1

AB

AB

AB

AB

CD CD CD CD

X = B
(a)

X = C
(b)

X = B
(c)

X = D
(d)

1 1 0 0

1 1 0 0

1 1 0 0

1 0 0 1

1 0 0 1

1 0 0 10 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

FIGURE 4-14 Examples of

looping groups of eight 1s

(octets).

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 138

Step 6 Loop any pairs necessary to include any 1s that have not yet been

looped, making sure to use the minimum number of loops.

Step 7 Form the OR sum of all the terms generated by each loop.

These steps will be followed exactly and referred to in the following ex-

amples. In each case, the resulting logic expression will be in its simplest

sum-of-products form.

SECTION 4-5/KARNAUGH MAP METHOD 139

0 0 0 1

0 1 1 0

0 1 1 0

0 0 1 0

AB

AB

AB

AB

CD CD CD CD

0 0 1 0

1 1 1 1

1 1 0 0

0 0 0 0

AB

AB

AB

AB

CD CD CD CD

0 1 0 0

0 1 1 1

1 1 1 0

0 0 1 0

AB

AB

AB

AB

CD CD CD CD

X = ABCD + ACD + BD

loop 4 loop
11, 15

loop 6,
7, 10, 11

X = AB + BC + ACD

loop 5,
6, 7, 8

loop 5,
6, 9, 10

loop
3,7

X = ABC + ACD + ABC + ACD

9, 10 2, 6 7, 8 11, 15

1 2 3 4

5 6 7 8

9 10 11

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11

13 14 15 16

(c)

(b)

(a)

12

12

FIGURE 4-15 Examples

4-10 to 4-12.

Step 2 Square 4 is the only square containing a 1 that is not adjacent to any

other 1. It is looped and is referred to as loop 4.

Step 3 Square 15 is adjacent only to square 11. This pair is looped and re-

ferred to as loop 11, 15.

Step 4 There are no octets.

Step 5 Squares 6, 7, 10, and 11 form a quad. This quad is looped (loop 6, 7,

10, 11). Note that square 11 is used again, even though it was part of

loop 11, 15.

EXAMPLE 4-10 Figure 4-15(a) shows the K map for a four-variable problem. We will assume

that the map was obtained from the problem truth table (step 1).The squares

are numbered for convenience in identifying each loop.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 139

Step 6 All 1s have already been looped.

Step 7 Each loop generates a term in the expression for X. Loop 4 is simply

Loop 11, 15 is ACD (the B variable is eliminated). Loop 6, 7,

10, 11 is BD (A and C are eliminated).

A BCD.

140 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 4-11 Consider the K map in Figure 4-15(b). Once again, we can assume that step 1

has already been performed.

Step 2 There are no isolated 1s.

Step 3 The 1 in square 3 is adjacent only to the 1 in square 7. Looping this

pair (loop 3, 7) produces the term

Step 4 There are no octets.

Step 5 There are two quads. Squares 5, 6, 7, and 8 form one quad. Looping this

quad produces the term The second quad is made up of squares 5,

6, 9, and 10. This quad is looped because it contains two squares that

have not been looped previously. Looping this quad produces

Step 6 All 1s have already been looped.

Step 7 The terms generated by the three loops are ORed together to obtain

the expression for X.

BC.

AB.

ACD.

EXAMPLE 4-12 Consider the K map in Figure 4-15(c).

Step 2 There are no isolated 1s.

Step 3 The 1 in square 2 is adjacent only to the 1 in square 6. This pair is

looped to produce Similarly, square 9 is adjacent only to

square 10. Looping this pair produces Likewise, loop 7, 8 and

loop 11, 15 produce the terms and ACD, respectively.

Step 4 There are no octets.

Step 5 There is one quad formed by squares 6, 7, 10, and 11. This quad, how-

ever, is not looped because all the 1s in the quad have been included

in other loops.

Step 6 All 1s have already been looped.

Step 7 The expression for X is shown in the figure.

ABC
ABC.

A CD.

EXAMPLE 4-13 Consider the K map in Figure 4-16(a).

0 1 0 0

0 1 1 1

0 0 0 1

1 1 0 1

AB

AB

AB

AB

CD CD CD CD

0 1 0 0

0 1 1 1

0 0 0 1

1 1 0 1

AB

AB

AB

AB

CD CD CD CD

X = ABD + BCD + BCD + ABD

(b)

X = ACD + ABC + ABC + ACD

(a)

FIGURE 4-16 The same K

map with two equally good

solutions.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 140

Step 2 There are no isolated 1s.

Step 3 There are no 1s that are adjacent to only one other 1.

Step 4 There are no octets.

Step 5 There are no quads.

Steps 6 and 7 There are many possible pairs. The looping must use the min-

imum number of loops to account for all the 1s. For this map, there are

two possible loopings, which require only four looped pairs. Figure 4-

16(a) shows one solution and its resultant expression. Figure 4-16(b)

shows the other. Note that both expressions are of the same com-

plexity, and so neither is better than the other.

Filling a K Map from an Output Expression
When the desired output is presented as a Boolean expression instead of a

truth table, the K map can be filled by using the following steps:

1. Get the expression into SOP form if it is not already in that form.

2. For each product term in the SOP expression, place a 1 in each K-map

square whose label contains the same combination of input variables.

Place a 0 in all other squares.

The following example illustrates this procedure.

SECTION 4-5/KARNAUGH MAP METHOD 141

Use a K map to simplify

Solution

1. Multiply out the first term to get which is

now in SOP form.

2. For the term, simply put a 1 in the square of the K map

(Figure 4-17). For the term, place a 1 in all squares with in their

labels, that is, For the term, place a 1

in all squares that have an in their labels, that is, For

the term, place a 1 in all squares that have a in their labels, that is,

all squares in the leftmost and rightmost columns.

DD
ABCD, ABCD.ABC

ABCA B CD, ABCD, ABCD, A B CD.

CDCD
A B C DA B C D

y = A B C D + CD + ABC + D,

y = C(A B D + D) + ABC + D.EXAMPLE 4-14

1 1 0 1

1 1 0 1

AB

AB

AB

AB

CD CD CD CD

y = AB + C + D

1 1 0 1

1 1 1 1

FIGURE 4-17 Example

4-14.

The K map is now filled and can be looped for simplification. Verify that

proper looping produces .y = AB + C + D

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 141

Don’t-Care Conditions
Some logic circuits can be designed so that there are certain input condi-

tions for which there are no specified output levels, usually because these

input conditions will never occur. In other words, there will be certain com-

binations of input levels where we “don’t care” whether the output is HIGH

or LOW. This is illustrated in the truth table of Figure 4-18(a).

142 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Let’s design a logic circuit that controls an elevator door in a three-story

building. The circuit in Figure 4-19(a) has four inputs. M is a logic signal that

indicates when the elevator is moving (M � 1) or stopped (M � 0). F1, F2, and

F3 are floor indicator signals that are normally LOW, and they go HIGH only

when the elevator is positioned at the level of that particular floor. For ex-

ample, when the elevator is lined up level with the second floor, F2 � 1 and

F1 � F3 � 0. The circuit output is the OPEN signal, which is normally LOW

and will go HIGH when the elevator door is to be opened.

We can fill in the truth table for the OPEN output [Figure 4-19(b)] as

follows:

1. Because the elevator cannot be lined up with more than one floor at a

time, only one of the floor inputs can be HIGH at any given time. This

means that all those cases in the truth table where more than one floor

EXAMPLE 4-15

0 0

0 x

1 1

x 1

AB

AB

AB

AB

C C

0 0

0 0

1 1

1 1

AB

AB

AB

AB

C C

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

z
0
0
0
x
x
1
1
1

''don't
care''

(a) (b) (c)

z = A

FIGURE 4-18 “Don’t-

care” conditions should be

changed to 0 or 1 to pro-

duce K-map looping that

yields the simplest

expression.

Here the output z is not specified as either 0 or 1 for the conditions A, B,

C � 1, 0, 0 and A, B, C � 0, 1, 1. Instead, an x is shown for these conditions.

The x represents the don’t-care condition. A don’t-care condition can come

about for several reasons, the most common being that in some situations

certain input combinations can never occur, and so there is no specified out-

put for these conditions.

A circuit designer is free to make the output for any don’t-care condi-

tion either a 0 or a 1 to produce the simplest output expression. For exam-

ple, the K map for this truth table is shown in Figure 4-18(b) with an x
placed in the and squares. The designer here would be wise to

change the x in the square to a 1 and the x in the square to a 0 be-

cause this would produce a quad that can be looped to produce z � A, as

shown in Figure 4-18(c).

Whenever don’t-care conditions occur, we must decide which x to change

to 0 and which to 1 to produce the best K-map looping (i.e., the simplest ex-

pression). This decision is not always an easy one. Several end-of-chapter

problems will provide practice in dealing with don’t-care cases. Here’s an-

other example.

ABCAB C
ABCAB C

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 142

input is a 1 are don’t-care conditions. We can place an x in the OPEN out-

put column for those eight cases where more than one F input is 1.

2. Looking at the other eight cases, when M � 1 the elevator is moving, so

OPEN must be a 0 because we do not want the elevator door to open.

When M � 0 (elevator stopped) we want OPEN � 1 provided that one of

the floor inputs is 1. When M � 0 and all floor inputs are 0, the elevator is

stopped but is not properly lined up with any floor, so we want OPEN � 0

to keep the door closed.

The truth table is now complete and we can transfer its information to

the K map in Figure 4-19(c).The map has only three 1s, but it has eight don’t-

cares. By changing four of these don’t-care squares to 1s, we can produce

quad loopings that contain the original 1s [Figure 4-19(d)]. This is the best

we can do as far as minimizing the output expression. Verify that the loop-

ings produce the OPEN output expression shown.

Summary
The K-map process has several advantages over the algebraic method. K

mapping is a more orderly process with well-defined steps compared with

the trial-and-error process sometimes used in algebraic simplification. K

mapping usually requires fewer steps, especially for expressions containing

many terms, and it always produces a minimum expression.

SECTION 4-5/KARNAUGH MAP METHOD 143

F2

0 0 X 0

0 X X X

1 X X X

0 1 X 1

F3 F2 F3 F2 F3 F2 F3

M F1

M F1

M F1

M F1

(c)

F2

0 0 0 0

0 0 0 0

0 1 1 1

F3 F2 F3 F2 F3 F2 F3

M F1

M F1

M F1

M F1

(d)

OPEN = M (F1 + F2 + F3)

(b)

M
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

F1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

F2
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

F3
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

OPEN
0
1
1
X
1
X
X
X
0
0
0
X
0
X
X
X

F3F2F1M

OPEN

(a)

1 1 1 1

Elevator
circuit

FIGURE 4-19 Example

4-15.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 143

Nevertheless, some instructors prefer the algebraic method because it

requires a thorough knowledge of Boolean algebra and is not simply a me-

chanical procedure. Each method has its advantages, and although most

logic designers are adept at both, being proficient in one method is all that

is necessary to produce acceptable results.

There are other, more complex techniques that designers use to minimize

logic circuits with more than four inputs. These techniques are especially

suited for circuits with large numbers of inputs where algebraic and K-mapping

methods are not feasible. Most of these techniques can be translated into a

computer program that will perform the minimization from input data that

supply the truth table or the unsimplified expression.

144 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

REVIEW QUESTIONS 1. Use K mapping to obtain the expression of Example 4-7.

2. Use K mapping to obtain the expression of Example 4-8. This should em-

phasize the advantage of K mapping for expressions containing many

terms.

3. Obtain the expression of Example 4-9 using a K map.

4. What is a don’t-care condition?

4-6 EXCLUSIVE-OR AND EXCLUSIVE-NOR CIRCUITS

Two special logic circuits that occur quite often in digital systems are the

exclusive-OR and exclusive-NOR circuits.

Exclusive-OR
Consider the logic circuit of Figure 4-20(a). The output expression of this cir-

cuit is

x = AB + AB

A
0
0
1
1

B
0
1
0
1

x
0
1
1
0

x = A ⊕ B
A

B
= 1

(c)
(b)

x = A ⊕ B
 = AB + ABA

B

A

B

A

B

A

B

AB
x = AB + AB

(a)

AB

XOR gate symbols

FIGURE 4-20
(a) Exclusive-OR circuit

and truth table; (b) tradi-

tional XOR gate symbol;

(c) IEEE/ANSI symbol for

XOR gate.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 144

SECTION 4-6/EXCLUSIVE-OR AND EXCLUSIVE-NOR CIRCUITS 145

The accompanying truth table shows that x � 1 for two cases: A � 0, B � 1

(the term) and A � 1, B � 0 (the term). In other words:

This circuit produces a HIGH output whenever the two inputs are
at opposite levels.

This is the exclusive-OR circuit, which will hereafter be abbreviated XOR.

This particular combination of logic gates occurs quite often and is very

useful in certain applications. In fact, the XOR circuit has been given a sym-

bol of its own, shown in Figure 4-20(b). This symbol is assumed to contain all

of the logic contained in the XOR circuit and therefore has the same logic ex-

pression and truth table. This XOR circuit is commonly referred to as an

XOR gate, and we consider it as another type of logic gate. The IEEE/ANSI

symbol for an XOR gate is shown in Figure 4-20(c).The dependency notation

(� 1) inside the block indicates that the output will be active-HIGH only
when a single input is HIGH.

An XOR gate has only two inputs; there are no three-input or four-input

XOR gates. The two inputs are combined so that A shorthand

way that is sometimes used to indicate the XOR output expression is

where the symbol represents the XOR gate operation.

The characteristics of an XOR gate are summarized as follows:

1. It has only two inputs and its output is

2. Its output is HIGH only when the two inputs are at different levels.

Several ICs are available that contain XOR gates. Those listed below are

quad XOR chips containing four XOR gates.

74LS86 Quad XOR (TTL family)

74C86 Quad XOR (CMOS family)

74HC86 Quad XOR (high-speed CMOS)

Exclusive-NOR
The exclusive-NOR circuit (abbreviated XNOR) operates completely oppo-

site to the XOR circuit. Figure 4-21(a) shows an XNOR circuit and its accom-

panying truth table. The output expression is

which indicates along with the truth table that x will be 1 for two cases: A �
B � 1 (the AB term) and A � B � 0 (the term). In other words:

The XNOR produces a HIGH output whenever the two inputs are at
the same level.

It should be apparent that the output of the XNOR circuit is the exact in-

verse of the output of the XOR circuit. The traditional symbol for an XNOR

A B

x = AB + A B

x = AB + AB = A { B

{

x = A { B

x = AB + AB.

ABAB

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 145

146 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

FIGURE 4-21
(a) Exclusive-NOR circuit;

(b) traditional symbol for

XNOR gate; (c) IEEE/ANSI

symbol.

XNOR gate symbols

A
0
0
1
1

B
0
1
0
1

x
1
0
0
1

x = AB +AB

A B

AB

A

B

B

A

A

B

A

B

(b)

x = A ⊕ B = AB + AB

(c)

x = A ⊕ BA

B
= 1

(a)

gate is obtained by simply adding a small circle at the output of the XOR

symbol [Figure 4-21(b)]. The IEEE/ANSI symbol adds the small triangle on

the output of the XOR symbol. Both symbols indicate an output that goes to

its active-LOW state when only one input is HIGH.

The XNOR gate also has only two inputs, and it combines them so that its

output is

A shorthand way to indicate the output expression of the XNOR is

which is simply the inverse of the XOR operation. The XNOR gate is sum-

marized as follows:

1. It has only two inputs and its output is

2. Its output is HIGH only when the two inputs are at the same level.

Several ICs are available that contain XNOR gates. Those listed below

are quad XNOR chips containing four XNOR gates.

74LS266 Quad XNOR (TTL family)

74C266 Quad XNOR (CMOS)

74HC266 Quad XNOR (high-speed CMOS)

x = AB + A B = A { B

x = A { B

x = AB + A B

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 146

SECTION 4-6/EXCLUSIVE-OR AND EXCLUSIVE-NOR CIRCUITS 147

Determine the output waveform for the input waveforms given in Figure 4-22.EXAMPLE 4-16

Solution

The output waveform is obtained using the fact that the XOR output will go

HIGH only when its inputs are at different levels.The resulting output wave-

form reveals several interesting points:

1. The x waveform matches the A input waveform during those time in-

tervals when B � 0. This occurs during the time intervals t0 to t1 and t2

to t3.

2. The x waveform is the inverse of the A input waveform during those time

intervals when B � 1. This occurs during the interval t1 to t2.

3. These observations show that an XOR gate can be used as a controlled IN-
VERTER; that is, one of its inputs can be used to control whether or not

the signal at the other input will be inverted. This property will be use-

ful in certain applications.

A

B

A

B

x

t0 t1 t2 t3

x

FIGURE 4-22
Example 4-16.

EXAMPLE 4-17 The notation x1x0 represents a two-bit binary number that can have any

value (00, 01, 10, or 11); for example, when x1 � 1 and x0 � 0, the binary num-

ber is 10, and so on. Similarly, y1y0 represents another two-bit binary num-

ber. Design a logic circuit, using x1, x0, y1, and y0 inputs, whose output will be

HIGH only when the two binary numbers x1x0 and y1y0 are equal.

Solution

The first step is to construct a truth table for the 16 input conditions (Table

4-4). The output z must be HIGH whenever the x1x0 values match the y1y0

values; that is, whenever x1 � y1 and x0 � y0. The table shows that there are

four such cases. We could now continue with the normal procedure, which

would be to obtain a sum-of-products expression for z, attempt to simplify it,

and then implement the result. However, the nature of this problem makes it

ideally suited for implementation using XNOR gates, and a little thought

Each of these XNOR chips, however, has special output circuitry that limits

its use to special types of applications. Very often, a logic designer will

obtain the XNOR function simply by connecting the output of an XOR to

an INVERTER.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 147

148 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

FIGURE 4-23 Circuit for

detecting equality of two

two-bit binary numbers.

x1

x0

y1

y0

Binary
number

Binary
number

z

TABLE 4-4
x1 x0 y1 y0 z (Output)

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

When simplifying the expression for the output of a combinational logic cir-

cuit, you may encounter the XOR or XNOR operations as you are factoring.

This will often lead to the use of XOR or XNOR gates in the implementation

of the final circuit. To illustrate, simplify the circuit of Figure 4-24(a).

Solution

The unsimplified expression for the circuit is obtained as

We can factor AD from the first two terms:

z = AD(BC + B C) + A D

z = ABCD + A B C D + A D

EXAMPLE 4-18

will produce a simple solution with minimum work. Refer to Figure 4-23; in

this logic diagram, x1 and y1 are fed to one XNOR gate, and x0 and y0 are fed

to another XNOR gate.The output of each XNOR will be HIGH only when its

inputs are equal. Thus, for x0 � y0 and x1 � y1, both XNOR outputs will be

HIGH. This is the condition we are looking for because it means that the two

two-bit numbers are equal. The AND gate output will be HIGH only for this

case, thereby producing the desired output.

TOCCMC04_0131725793.QXD 12/21/05 11:13 AM Page 148

SECTION 4-7/PARITY GENERATOR AND CHECKER 149

FIGURE 4-24 Example 4-18, showing how an XNOR gate may be used to simplify

circuit implementation.

A

B

C

D

ABCD

ABCD

AD

z = ABCD + ABCD +AD

(a)

B

C

A

D

(b)

A + D = AD

B ⊕ C
AD(B ⊕ C)

z = AD (B ⊕ C) + AD

At first glance, you might think that the expression in parentheses can be

replaced by 1. But that would be true only if it were You should

recognize the expression in parentheses as the XNOR combination of B
and C. This fact can be used to reimplement the circuit as shown in Figure

4-24(b). This circuit is much simpler than the original because it uses gates

with fewer inputs and two INVERTERs have been eliminated.

BC + BC.

REVIEW QUESTIONS 1. Use Boolean algebra to prove that the XNOR output expression is the ex-

act inverse of the XOR output expression.

2. What is the output of an XNOR gate when a logic signal and its exact in-

verse are connected to its inputs?

3. A logic designer needs an INVERTER, and all that is available is one

XOR gate from a 74HC86 chip. Does he need another chip?

4-7 PARITY GENERATOR AND CHECKER

In Chapter 2, we saw that a transmitter can attach a parity bit to a set of data

bits before transmitting the data bits to a receiver.We also saw how this allows

the receiver to detect any single-bit errors that may have occurred during the

TOCCMC04_0131725793.QXD 12/16/2005 3:50 PM Page 149

150 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

D3

D2

D1

D0

Original
 data

D3

D2

D1

D0

P

 From
transmitter

Even-parity checker

Even-parity generator

(a)

(b)

Parity (P)

Transmitted
data with
parity bit

Error (E)
{1 = error
0 = no error}

FIGURE 4-25 XOR gates used to implement (a) the parity generator and (b) the parity

checker for an even-parity system.

transmission. Figure 4-25 shows an example of one type of logic circuitry that

is used for parity generation and parity checking. This particular example

uses a group of four bits as the data to be transmitted, and it uses an even-

parity bit. It can be readily adapted to use odd parity and any number of bits.

In Figure 4-25(a), the set of data to be transmitted is applied to the

parity-generator circuit, which produces the even-parity bit, P, at its output.

This parity bit is transmitted to the receiver along with the original data bits,

making a total of five bits. In Figure 4-25(b), these five bits (data � parity)

enter the receiver’s parity-checker circuit, which produces an error output, E,

that indicates whether or not a single-bit error has occurred.

It should not be too surprising that both of these circuits employ XOR

gates when we consider that a single XOR gate operates so that it produces

a 1 output if an odd number of its inputs are 1, and a 0 output if an even

number of its inputs are 1.

EXAMPLE 4-19 Determine the parity generator’s output for each of the following sets of input

data, D3D2D1D0: (a) 0111; (b) 1001; (c) 0000; (d) 0100. Refer to Figure 4-25(a).

Solution

For each case, apply the data levels to the parity-generator inputs and trace

them through each gate to the P output. The results are: (a) 1; (b) 0; (c) 0; and

(d) 1. Note that P is a 1 only when the original data contain an odd number of

1s.Thus, the total number of 1s sent to the receiver (data � parity) will be even.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 150

SECTION 4-8/ENABLE/DISABLE CIRCUITS 151

Determine the parity checker’s output [see Figure 4-25(b)] for each of the

following sets of data from the transmitter:

P D3 D2 D1 D0

(a) 0 1 0 1 0

(b) 1 1 1 1 0

(c) 1 1 1 1 1

(d) 1 0 0 0 0

Solution

For each case, apply these levels to the parity-checker inputs and trace them

through to the E output. The results are: (a) 0; (b) 0; (c) 1; (d) 1. Note that a 1

is produced at E only when an odd number of 1s appears in the inputs to the

parity checker.This indicates that an error has occurred because even parity

is being used.

4-8 ENABLE/DISABLE CIRCUITS

Each of the basic logic gates can be used to control the passage of an input

logic signal through to the output. This is depicted in Figure 4-26, where a

logic signal, A, is applied to one input of each of the basic logic gates. The

EXAMPLE 4-20

B = 1

A x = A

ENABLE

B = 1

A x = A

B = 0

A x = A

B = 0

A x = A

B = 0

A x = 0

DISABLE

B = 0

A x = 1

B = 1

A x = 1

B = 1

A x = 0

FIGURE 4-26 Four basic gates can either enable or disable the passage of an input signal, A,

under control of the logic level at control input B.

TOCCMC04_0131725793.QXD 12/5/05 8:06 PM Page 151

other input of each gate is the control input, B. The logic level at this control

input will determine whether the input signal is enabled to reach the output

or disabled from reaching the output.This controlling action is why these cir-

cuits came to be called gates.
Examine Figure 4-26 and you should notice that when the noninverting

gates (AND, OR) are enabled, the output will follow the A signal exactly.

Conversely, when the inverting gates (NAND, NOR) are enabled, the output

will be the exact inverse of the A signal.

Also notice in the figure that AND and NOR gates produce a constant

LOW output when they are in the disabled condition. Conversely, the NAND

and OR gates produce a constant HIGH output in the disabled condition.

There will be many situations in digital-circuit design where the passage

of a logic signal is to be enabled or disabled, depending on conditions present

at one or more control inputs. Several are shown in the following examples.

152 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 4-21 Design a logic circuit that will allow a signal to pass to the output only when

control inputs B and C are both HIGH; otherwise, the output will stay LOW.

Solution

An AND gate should be used because the signal is to be passed without in-

version, and the disable output condition is a LOW. Because the enable con-

dition must occur only when B � C � 1, a three-input AND gate is used, as

shown in Figure 4-27(a).

B
C

(a)

A

(b)

x

xA

B

C

FIGURE 4-27 Examples

4-21 and 4-22.

EXAMPLE 4-22 Design a logic circuit that allows a signal to pass to the output only when

one, but not both, of the control inputs are HIGH; otherwise, the output will

stay HIGH.

Solution

The result is drawn in Figure 4-27(b). An OR gate is used because we want

the output disable condition to be a HIGH, and we do not want to invert the

signal. Control inputs B and C are combined in an XNOR gate. When B and C
are different, the XNOR sends a LOW to enable the OR gate. When B and C
are the same, the XNOR sends a HIGH to disable the OR gate.

EXAMPLE 4-23 Design a logic circuit with input signal A, control input B, and outputs X and

Y to operate as follows:

1. When B � 1, output X will follow input A, and output Y will be 0.

2. When B � 0, output X will be 0, and output Y will follow input A.

TOCCMC04_0131725793.QXD 12/21/05 11:13 AM Page 152

Solution

The two outputs will be 0 when they are disabled and will follow the input

signal when they are enabled. Thus, an AND gate should be used for each

output. Because X is to be enabled when B � 1, its AND gate must be con-

trolled by B, as shown in Figure 4-28. Because Y is to be enabled when B � 0,

its AND gate is controlled by . The circuit in Figure 4-28 is called a pulse-
steering circuit because it steers the input pulse to one output or the other,

depending on B.

B

SECTION 4-9/BASIC CHARACTERISTICS OF DIGITAL ICs 153

B

A

B

X

Y

0 IF B = 1

0

0

0

IF B = 0

IF B = 1

IF B = 0

FIGURE 4-28 Example

4-23.

REVIEW QUESTIONS 1. Design a logic circuit with three inputs A, B, C and an output that goes

LOW only when A is HIGH while B and C are different.

2. Which logic gates produce a 1 output in the disabled state?

3. Which logic gates pass the inverse of the input signal when they are

enabled?

4-9 BASIC CHARACTERISTICS OF DIGITAL ICs

Digital ICs are a collection of resistors, diodes, and transistors fabricated on

a single piece of semiconductor material (usually silicon) called a substrate,
which is commonly referred to as a chip. The chip is enclosed in a protective

plastic or ceramic package from which pins extend for connecting the IC to

other devices. One of the more common types of package is the dual-in-line
package (DIP), shown in Figure 4-29(a), so called because it contains two

parallel rows of pins. The pins are numbered counterclockwise when viewed

from the top of the package with respect to an identifying notch or dot at one

end of the package [see Figure 4-29(b)].The DIP shown here is a 14-pin pack-

age that measures 0.75 in. by 0.25 in.; 16-, 20-, 24-, 28-, 40-, and 64-pin pack-

ages are also used.

Figure 4-29(c) shows that the actual silicon chip is much smaller than the

DIP; typically, it might be a 0.05-in. square. The silicon chip is connected to

the pins of the DIP by very fine wires (1-mil diameter).

The DIP is probably the most common digital IC package found in older

digital equipment, but other types are becoming more and more popular.

The IC shown in Figure 4-29(d) is only one of the many packages common to

modern digital circuits.This particular package uses J-shaped leads that curl

under the IC. We will take a look at some of these other types of IC packages

in Chapter 8.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 153

Digital ICs are often categorized according to their circuit complexity as

measured by the number of equivalent logic gates on the substrate. There

are currently six levels of complexity that are commonly defined as shown in

Table 4-5.

154 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Notch

 Chip may have
small dot near pin 1

1 2 3 4 5 6 7

14 13 12 11 10 9 8

(a) (b)

Actual
silicon chip

Pin 1

Pin 8

Pin 14

(c)

1 2 3 4 5 6 7

14

FIGURE 4-29 (a) Dual-in-line package (DIP); (b) top view; (c) actual silicon chip is much smaller

than the protective package; (d) PLCC package.

Beveled corner

Pin 1

(d)

TABLE 4-5
Complexity Gates per Chip

Small-scale integration (SSI) Fewer than 12

Medium-scale integration (MSI) 12 to 99

Large-scale integration (LSI) 100 to 9999

Very large-scale integration (VLSI) 10,000 to 99,999

Ultra large-scale integration (ULSI) 100,000 to 999,999

Giga-scale integration (GSI) 1,000,000 or more

All of the specific ICs referred to in Chapter 3 and this chapter are SSI
chips having a small number of gates. In modern digital systems, medium-

scale integration (MSI) and large-scale integration devices (LSI, VLSI,
ULSI, GSI) perform most of the functions that once required several circuit

boards full of SSI devices. However, SSI chips are still used as the “inter-

face,” or “glue,” between these more complex chips. The small-scale ICs also

offer an excellent way to learn the basic building blocks of digital systems.

Consequently, many laboratory-based courses use these ICs to build and test

small projects.

The industrial world of digital electronics has now turned to program-

mable logic devices (PLDs) to implement a digital system of any significant

size. Some simple PLDs are available in DIP packages, but the more complex

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 154

programmable logic devices require many more pins than are available in

DIPs. Larger integrated circuits that may need to be removed from a circuit

and replaced are typically manufactured in a plastic leaded chip carrier

(PLCC) package. Figure 4-29(d) shows the Altera EPM 7128SLC84 in a PLCC

package, which is a very popular PLD used in many educational laboratories.

The key features of this chip are more pins, closer spacing, and pins around

the entire periphery. Notice that pin 1 is not “on the corner” like the DIP but

rather at the middle of the top of the package.

Bipolar and Unipolar Digital ICs
Digital ICs can also be categorized according to the principal type of electronic

component used in their circuitry. Bipolar ICs are made using the bipolar junc-

tion transistor (NPN and PNP) as their main circuit element. Unipolar ICs use

the unipolar field-effect transistor (P-channel and N-channel MOSFETs) as

their main element.

The transistor-transistor logic (TTL) family has been the major family of

bipolar digital ICs for over 30 years. The standard 74 series was the first se-

ries of TTL ICs. It is no longer used in new designs, having been replaced by

several higher-performance TTL series, but its basic circuit arrangement

forms the foundation for all the TTL series ICs. This circuit arrangement is

shown in Figure 4-30(a) for the standard TTL INVERTER. Notice that the cir-

cuit contains several bipolar transistors as the main circuit element.

SECTION 4-9/BASIC CHARACTERISTICS OF DIGITAL ICs 155

+VCC
(14)

Input A
(1)

Pin
number

Q1

D1

D2

Q2

Q3

Q4

Q1

Q2

Output
 (2)

GND
 (7)

(b)

+VDD
(14)

Input A
 (1)

115 �
R 4

1.6 k�
R 2

3.6 k�
R 1

1 k�
R 3

Output
Y
(2)

GND(7)

(a)

FIGURE 4-30 (a) TTL INVERTER circuit; (b) CMOS INVERTER circuit. Pin numbers are given in

parentheses.

TTL had been the leading IC family in the SSI and MSI categories up un-

til the last 12 or so years. Since then, its leading position has been challenged

by the CMOS family, which has gradually displaced TTL from that position.

The complementary metal-oxide semiconductor (CMOS) family belongs to

the class of unipolar digital ICs because it uses P- and N-channel MOSFETs as

the main circuit elements. Figure 4-30(b) is a standard CMOS INVERTER cir-

cuit. If we compare the TTL and CMOS circuits in Figure 4-30, it is apparent

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 155

that the CMOS version uses fewer components. This is one of the main advan-

tages of CMOS over TTL.

Because of the simplicity and compactness as well as some other superior

attributes of CMOS, the modern large-scale ICs are manufactured primarily us-

ing CMOS technology. Teaching laboratories that use SSI and MSI devices of-

ten use TTL due to its durability, although some use CMOS as well. Chapter 8

will provide a comprehensive study of the circuitry and characteristics of TTL

and CMOS. For now, we need to look at only a few of their basic characteristics

so that we can talk about troubleshooting simple combinational circuits.

TTL Family
The TTL logic family actually consists of several subfamilies or series. Table

4-6 lists the name of each TTL series together with the prefix designation

used to identify different ICs as being part of that series. For example, ICs

that are part of the standard TTL series have an identification number that

starts with 74. The 7402, 7438, and 74123 are all ICs in this series. Likewise,

ICs that are part of the low-power Schottky TTL series have an identification

number that starts with 74LS. The 74LS02, 74LS38, and 74LS123 are exam-

ples of devices in the 74LS series.

156 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

TABLE 4-6 Various series

within the TTL logic family.
TTL Series Prefix Example IC

Standard TTL 74 7404 (hex INVERTER)

Schottky TTL 74S 74S04 (hex INVERTER)

Low-power Schottky TTL 74LS 74LS04 (hex INVERTER)

Advanced Schottky TTL 74AS 74AS04 (hex INVERTER)

Advanced low-power Schottky TTL 74ALS 74ALS04 (hex INVERTER)

The principal differences in the various TTL series have to do with their

electrical characteristics such as power dissipation and switching speed.They

do not differ in the pin layout or logic operations performed by the circuits on

the chip. For example, the 7404, 74S04, 74LS04, 74AS04, and 74ALS04 are all

hex-INVERTER ICs, each containing six INVERTERs on a single chip.

CMOS Family
Several CMOS series are available, and some of these are listed in Table 4-7.

The 4000 series is the oldest CMOS series. This series contains many of the

same logic functions as the TTL family but was not designed to be pin-
compatible with TTL devices. For example, the 4001 quad NOR chip contains

four two-input NOR gates, as does the TTL 7402 chip, but the gate inputs and

outputs on the CMOS chip will not have the same pin numbers as the corre-

sponding signals on the TTL chip.

The 74C, 74HC, 74HCT, 74AC, and 74ACT series are newer CMOS series.

The first three are pin-compatible with correspondingly numbered TTL

devices. For example, the 74C02, 74HC02, and 74HCT02 have the same pin

layout as the 7402, 74LS02, and so on. The 74HC and 74HCT series operate at

a higher speed than 74C devices.The 74HCT series is designed to be electrically
compatible with TTL devices; that is, a 74HCT integrated circuit can be con-

nected directly to TTL devices without any interfacing circuitry.The 74AC and

74ACT series are advanced-performance ICs. Neither is pin-compatible with

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 156

TTL. The 74ACT devices are electrically compatible with TTL. We explore the

various TTL and CMOS series in greater detail in Chapter 8.

Power and Ground
To use digital ICs, it is necessary to make the proper connections to the IC

pins. The most important connections are dc power and ground. These are re-

quired for the circuits on the chip to operate correctly. In Figure 4-30, you can

see that both the TTL and the CMOS circuits have a dc power supply voltage

connected to one of their pins, and ground to another. The power supply pin

is labeled VCC for the TTL circuit, and VDD for the CMOS circuit. Many of the

newer CMOS integrated circuits that are designed to be compatible with TTL

integrated circuits also use the VCC designation as their power pin.

If either the power or the ground connection is not made to the IC, the

logic gates on the chip will not respond properly to the logic inputs, and the

gates will not produce the expected output logic levels.

Logic-Level Voltage Ranges
For TTL devices, VCC is nominally �5 V. For CMOS integrated circuits, VDD
can range from �3 to �18 V, although �5 V is most often used when CMOS

integrated circuits are used in the same circuit with TTL integrated circuits.

For standard TTL devices, the acceptable input voltage ranges for the

logic 0 and logic 1 levels are defined as shown in Figure 4-31(a). A logic 0 is

any voltage in the range from 0 to 0.8 V; a logic 1 is any voltage from 2 to 5 V.

Voltages that are not in either of these ranges are said to be indeterminate
and should not be used as inputs to any TTL device. The IC manufacturers

cannot guarantee how a TTL circuit will respond to input levels that are in

the indeterminate range (between 0.8 and 2.0 V).

The logic input voltage ranges for CMOS integrated circuits operating

with VDD � �5 V are shown in Figure 4-31(b). Voltages between 0 and 1.5 V

are defined as a logic 0, and voltages from 3.5 to 5 V are defined as a logic 1.

The indeterminate range includes voltages between 1.5 and 3.5 V.

Unconnected (Floating) Inputs
What happens when the input to a digital IC is left unconnected? An uncon-

nected input is often called a floating input. The answer to this question will

be different for TTL and CMOS.

SECTION 4-9/BASIC CHARACTERISTICS OF DIGITAL ICs 157

TABLE 4-7 Various series

within the CMOS logic

family.

CMOS Series Prefix Example IC

Metal-gate CMOS 40 4001 (quad NOR gates)

Metal-gate, pin-compatible with TTL 74C 74C02 (quad NOR gates)

Silicon-gate, pin-compatible with TTL, 74HC 74HC02 (quad NOR gates)
high-speed

Silicon-gate, high-speed, pin-compatible 74HCT 74HCT02 (quad NOR gates)
and electrically compatible with TTL

Advanced-performance CMOS, not 74AC 74AC02 (quad NOR)
pin-compatible or electrically
compatible with TTL

Advanced-performance CMOS, not 74ACT 74ACT02 (quad NOR)
pin-compatible with TTL, but
electrically compatible with TTL

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 157

A floating TTL input acts just like a logic 1. In other words, the IC will re-

spond as if the input had a logic HIGH level applied to it.This characteristic is

often used when testing a TTL circuit.A lazy technician might leave certain in-

puts unconnected instead of connecting them to a logic HIGH. Although this

is logically correct, it is not a recommended practice, especially in final circuit

designs, because the floating TTL input is extremely susceptible to picking up

noise signals that will probably adversely affect the device’s operation.

A floating input on some TTL gates will measure a dc level of between

1.4 and 1.8 V when checked with a VOM or an oscilloscope. Even though this

is in the indeterminate range for TTL, it will produce the same response as a

logic 1. Being aware of this characteristic of a floating TTL input can be valu-

able when troubleshooting TTL circuits.

If a CMOS input is left floating, it may have disastrous results. The IC

may become overheated and eventually destroy itself. For this reason all in-

puts to a CMOS integrated circuit must be connected to a LOW or a HIGH

level or to the output of another IC. A floating CMOS input will not measure

as a specific dc voltage but will fluctuate randomly as it picks up noise.Thus,

it does not act as logic 1 or logic 0, and so its effect on the output is unpre-

dictable. Sometimes the output will oscillate as a result of the noise picked

up by the floating input.

Many of the more complex CMOS ICs have circuitry built into the inputs,

which reduces the likelihood of any destructive reaction to an open input.

With this circuitry, it is not necessary to ground each unused pin on these

large ICs when experimenting. It is still good practice, however, to tie unused

inputs to HIGH or LOW (whichever is appropriate) in the final circuit

implementation.

Logic-Circuit Connection Diagrams
A connection diagram shows all electrical connections, pin numbers, IC num-

bers, component values, signal names, and power supply voltages. Figure

4-32 shows a typical connection diagram for a simple logic circuit. Examine

it carefully and note the following important points:

1. The circuit uses logic gates from two different ICs. The two INVERTERs

are part of a 74HC04 chip that has been given the designation Z1. The

74HC04 contains six INVERTERs; two of them are used in this circuit,

and each is labeled as being part of chip Z1. Similarly, the two NAND

gates are part of a 74HC00 chip that contains four NAND gates. All of

158 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

LOGIC 1

LOGIC 0

Indeterminate

LOGIC 1

LOGIC 0

Indeterminate

TTL

(a)

1.5 V . . .

5.0 V . . .

2.0 V . . .

0.8 V . . .

3.5 V . . .

0 V . . .

5.0 V . . .

0 V . . .
*VDD = + 5 V

(b)

CMOS*FIGURE 4-31 Logic-level

input voltage ranges for

(a) TTL and (b) CMOS

digital ICs.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 158

the gates on this chip are designated with the label Z2. By numbering

each gate as Z1, Z2, Z3, and so on, we can keep track of which gate is part

of which chip. This is especially valuable in more complex circuits con-

taining many ICs with several gates per chip.

2. Each gate input and output pin number is indicated on the diagram. These

pin numbers and the IC labels are used to reference easily any point in the

circuit. For example, Z1 pin 2 refers to the output pin of the top INVERTER.

Similarly, we can say that Z1 pin 4 is connected to Z2 pin 9.

3. The power and ground connections to each IC (not each gate) are shown

on the diagram. For example, Z1 pin 14 is connected to �5 V, and Z1 pin

7 is connected to ground. These connections provide power to all of the

six INVERTERs that are part of Z1.

4. For the circuit contained in Figure 4-32, the signals that are inputs are on

the left. The signals that are outputs are on the right. The bar over the

signal name indicates that the signal is active when LOW. The bubbles

are positioned on the diagram symbols also to indicate the active-LOW

state. Each signal in this case is obviously a single bit.

5. Signals are defined graphically in Figure 4-32 as inputs and outputs, and

the relationship between them (the operation of the circuit) is described

graphically using interconnected logic symbols.

Manufacturers of electronic equipment generally supply detailed schemat-

ics that use a format similar to that in Figure 4-32. These connection diagrams

are a virtual necessity when troubleshooting a faulty circuit.We have chosen to

identify individual ICs as Z1, Z2, Z3, and so on. Other designations that are

commonly used are IC1, IC2, IC3, and so on, and U1, U2, U3, and so on.

Personal computers with schematic diagram software can be used to draw

logic circuits. Computer applications that can interpret these graphic sym-

bols and signal connections and can translate them into logical relationships

are often called schematic capture tools. The Altera MAX�PLUS develop-

ment system for programmable logic allows the user to enter graphic design

files (.gdf) using schematic capture techniques. Thus, designing the circuit is

as easy as drawing the schematic diagram on the computer screen. Notice

that in Figure 4-33 there are no pin numbers or chip designations on the logic

symbols. The circuits will not be implemented using actual SSI or MSI chips,

but rather the equivalent logic functionality will be “programmed” into a

PLD. We will explain this further at a later point in this chapter.

SECTION 4-9/BASIC CHARACTERISTICS OF DIGITAL ICs 159

+5 V

14
21

7

CLOCK

+5 V

14

2

1

7

3

CLKOUT

43

SHIFT

9

10

8

SHIFTOUT

Z1

Z1
Z2

Z2

LOAD

IC

Z1
Z2

Type

74HC04 hex inverter
74HC00 quad nand

FIGURE 4-32 Typical

logic-circuit connection

diagram.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 159

160 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

LOAD_BAR
INPUT
VCC7

CLOCK_BAR
INPUT

CLKOUT_BAR
OUTPUT

NAND2

9

3

VCC6

NOT

1

SHIFT
INPUT

SHIFTOUT_BAR
OUTPUT

NAND2

10

4

VCC8

NOT

5

FIGURE 4-33 Logic diagram using schematic capture.

REVIEW QUESTIONS 1. What is the most common type of digital IC package?

2. Name the six common categories of digital ICs according to complexity.

3. True or false: A 74S74 chip will contain the same logic and pin layout as

the 74LS74.

4. True or false: A 74HC74 chip will contain the same logic and pin layout as

the 74AS74.

5. Which CMOS series are not pin-compatible with TTL?

6. What is the acceptable input voltage range of a logic 0 for TTL? What is

it for a logic 1?

7. Repeat question 6 for CMOS operating at VDD � 5 V.

8. How does a TTL integrated circuit respond to a floating input?

9. How does a CMOS integrated circuit respond to a floating input?

10. Which CMOS series can be connected directly to TTL with no interfacing

circuitry?

11. What is the purpose of pin numbers on a logic circuit connection diagram?

12. What are the key similarities of graphic design files used for program-

mable logic and traditional logic circuit connection diagrams?

4-10 TROUBLESHOOTING DIGITAL SYSTEMS

There are three basic steps in fixing a digital circuit or system that has a

fault (failure):

1. Fault detection. Observe the circuit/system operation and compare it with

the expected correct operation.

2. Fault isolation. Perform tests and make measurements to isolate the fault.

3. Fault correction. Replace the faulty component, repair the faulty connec-

tion, remove the short, and so on.

Although these steps may seem relatively apparent and straightforward, the

actual troubleshooting procedure that is followed is highly dependent on the

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 160

type and complexity of the circuitry, and on the kinds of troubleshooting

tools and documentation that are available.

Good troubleshooting techniques can be learned only in a laboratory en-

vironment through experimentation and actual troubleshooting of faulty cir-

cuits and systems. There is absolutely no better way to become an effective

troubleshooter than to do as much troubleshooting as possible, and no amount

of textbook reading can provide that kind of experience. We can, however,

help you to develop the analytical skills that are the most essential part of ef-

fective troubleshooting. We will describe the types of faults that are common

to systems that are made primarily from digital ICs and we will tell you how to

recognize them. We will then present typical case studies to illustrate the ana-

lytical processes involved in troubleshooting. In addition, there will be end-of-

chapter problems to provide you with the opportunity to go through these an-

alytical processes to reach conclusions about faulty digital circuits.

For the troubleshooting discussions and exercises we will be doing in

this book, it will be assumed that the troubleshooting technician has the ba-

sic troubleshooting tools available: logic probe, oscilloscope, logic pulser. Of

course, the most important and effective troubleshooting tool is the techni-

cian’s brain, and that’s the tool we are hoping to develop by presenting trou-

bleshooting principles and techniques, examples and problems, here and in

the following chapters.

In the next three sections on troubleshooting, we will use only our brain

and a logic probe such as the one illustrated in Figure 4-34. The logic probe

has a pointy metal tip that is touched to the specific point you want to test.

Here, it is shown probing (touching) pin 3 of an IC. It can also be touched to

a printed circuit board trace, an uninsulated wire, a connector pin, a lead on

a discrete component such as a transistor, or any other conducting point in a

circuit.The logic level that is present at the probe tip will be indicated by the

status of the indicator LEDs in the probe. The four possibilities are given in

the table of Figure 4-34. Note that an indeterminate logic level produces no

indicator light. This includes the condition where the probe tip is touched to

a point in a circuit that is open or floating—that is, not connected to any

source of voltage. This type of probe also offers a yellow LED to indicate the

presence of a pulse train. Any transitions (LOW to HIGH or HIGH to LOW)

will cause the yellow LED to flash on for a fraction of a second and then turn

off. If the transitions are occurring frequently, the LED will continue to flash

SECTION 4-10/TROUBLESHOOTING DIGITAL SYSTEMS 161

+5 V

Logic
probe

IC

PC Board

GND

To VCC

To GND

Indicator
LEDs

OFF
ON
OFF

X

LOW
HIGH

INDETERMINATE*
PULSING

Red Logic Condition

* Includes open or floating condition

ON
OFF
OFF

X

Green

OFF
OFF
OFF

FLASHING

Yellow
LEDs

FIGURE 4-34 A logic probe is used to monitor the logic level activity at an IC pin or any

other accessible point in a logic circuit.

TOCCMC04_0131725793.QXD 1/17/06 3:44 AM Page 161

at around 3 Hz. By observing the green and red LEDs along with the flashing

yellow, you can tell whether the signal is mostly HIGH or mostly LOW.

4-11 INTERNAL DIGITAL IC FAULTS

The most common internal failures of digital ICs are:

1. Malfunction in the internal circuitry

2. Inputs or outputs shorted to ground or VCC

3. Inputs or outputs open-circuited

4. Short between two pins (other than ground or VCC)

We will now describe each of these types of failure.

Malfunction in Internal Circuitry
This is usually caused by one of the internal components failing com-

pletely or operating outside its specifications. When this happens, the IC

outputs do not respond properly to the IC inputs. There is no way to pre-

dict what the outputs will do because it depends on what internal compo-

nent has failed. Examples of this type of failure would be a base-emitter

short in transistor Q4 or an extremely large resistance value for R2 in the

TTL INVERTER of Figure 4-30(a). This type of internal IC failure is not as

common as the other three.

Input Internally Shorted to Ground or Supply
This type of internal failure will cause an IC input to be stuck in the LOW or

HIGH state. Figure 4-35(a) shows input pin 2 of a NAND gate shorted to

ground within the IC. This will cause pin 2 always to be in the LOW state. If

this input pin is being driven by a logic signal B, it will effectively short B to

ground. Thus, this type of fault will affect the output of the device that is

generating the B signal.

162 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

+5 V

7

14

X3
1

2

A

B

Internal
 short

+5 V

14

X31

2

A

B

Internal
 short

+5 V

7

14

X3
1

2

A

B

Internal
 short

(a) (b)

(c) (d)

+5 V

7

14

X3
1

2

A

B

Internal
 short

FIGURE 4-35 (a) IC input

internally shorted to

ground; (b) IC input inter-

nally shorted to supply volt-

age. These two types of fail-

ures force the input signal

at the shorted pin to stay in

the same state. (c) IC out-

put internally shorted to

ground; (d) output inter-

nally shorted to supply volt-

age. These two failures do

not affect signals at the IC

inputs.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 162

Similarly, an IC input pin could be internally shorted to �5 V, as in

Figure 4-35(b). This would keep that pin stuck in the HIGH state. If this in-

put pin is being driven by a logic signal A, it will effectively short A to �5 V.

Output Internally Shorted to Ground or Supply
This type of internal failure will cause the output pin to be stuck in the LOW

or HIGH state. Figure 4-35(c) shows pin 3 of the NAND gate shorted to ground

within the IC. This output is stuck LOW, and it will not respond to the condi-

tions applied to input pins 1 and 2; in other words, logic inputs A and B will

have no effect on output X.
An IC output pin can also be shorted to �5 V within the IC, as shown in

Figure 4-35(d). This forces the output pin 3 to be stuck HIGH regardless of

the state of the signals at the input pins. Note that this type of failure has no

effect on the logic signals at the IC inputs.

SECTION 4-11/INTERNAL DIGITAL IC FAULTS 163

EXAMPLE 4-24 Refer to the circuit of Figure 4-36. A technician uses a logic probe to deter-

mine the conditions at the various IC pins. The results are recorded in the

figure. Examine these results and determine if the circuit is working prop-

erly. If not, suggest some of the possible faults.

Z1-3
Z1-4
Z2-1
Z2-2
Z2-3

Pulsing
LOW
LOW
HIGH
HIGH

Pin Condition
+5 V

7

14

+5 V

14

Z1

7

X3
1

2

4

B

3
A

Z2

FIGURE 4-36
Example 4-24.

Solution

Output pin 4 of the INVERTER should be pulsing because its input is puls-

ing. The recorded results, however, show that pin 4 is stuck LOW. Because

this is connected to Z2 pin 1, this keeps the NAND output HIGH. From our

preceding discussion, we can list three possible faults that could produce

this operation.

First, there could be an internal component failure in the INVERTER

that prevents it from responding properly to its input. Second, pin 4 of the

INVERTER could be shorted to ground internal to Z1, thereby keeping it

stuck LOW. Third, pin 1 of Z2 could be shorted to ground internal to Z2.

This would prevent the INVERTER output pin from changing.

In addition to these possible faults, there can be external shorts to

ground anywhere in the conducting path between Z1 pin 4 and Z2 pin 1. We

will see how to go about isolating the actual fault in a subsequent example.

Open-Circuited Input or Output
Sometimes the very fine conducting wire that connects an IC pin to the IC’s in-

ternal circuitry will break, producing an open circuit. Figure 4-37 in Example

4-25 shows this for an input (pin 13) and an output (pin 6). If a signal is applied

to pin 13, it will not reach the NAND-1 gate input and so will not have an effect

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 163

on the NAND-1 output. The open gate input will be in the floating state. As

stated earlier,TTL devices will respond as if this floating input is a logic 1, and

CMOS devices will respond erratically and may even become damaged from

overheating.

The open at the NAND-4 output prevents the signal from reaching IC

pin 6, so there will be no stable voltage present at that pin. If this pin is con-

nected to the input of another IC, it will produce a floating condition at that

input.

164 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

7654321

74LS00

14 13 12 11 10 9 8

GND

VCC

1 2

3 4

Open

Open

FIGURE 4-37 An IC with

an internally open input

will not respond to signals

applied to that input pin.

An internally open output

will produce an unpre-

dictable voltage at that

output pin.

EXAMPLE 4-25 What would a logic probe indicate at pin 13 and at pin 6 of Figure 4-37?

EXAMPLE 4-26 Refer to the circuit of Figure 4-38 and the recorded logic probe indications.

What are some of the possible faults that could produce the recorded re-

sults? Assume that the ICs are TTL.

Z1-3
Z1-4
Z2-1
Z2-2
Z2-3

HIGH
LOW
LOW
Pulsing
Pulsing

Pin Condition

Note: VCC and ground
 connections to each
 IC are not shown

X
Z1

Z2
A

B

1

2
3

43
FIGURE 4-38 Example

4-26.

Solution

Examination of the recorded results indicates that the INVERTER appears

to be working properly, but the NAND output is inconsistent with its inputs.

The NAND output should be HIGH because its input pin 1 is LOW.This LOW

should prevent the NAND gate from responding to the pulses at pin 2. It is

probable that this LOW is not reaching the internal NAND gate circuitry

Solution

At pin 13, the logic probe will indicate the logic level of the external signal

that is connected to pin 13 (which is not shown in the diagram). At pin 6, the

logic probe will show no LED lit for an indeterminate logic level because the

NAND output level never makes it to pin 6.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 164

because of an internal open. Because the IC is TTL, this open circuit would

produce the same effect as a logic HIGH at pin 1. If the IC had been CMOS,

the internal open circuit at pin 1 might have produced an indeterminate out-

put and possible overheating and destruction of the chip.

From our earlier statement regarding open TTL inputs, you might have

expected that the voltage of pin 1 of Z2 would be 1.4 to 1.8 V and should have

been registered as indeterminate by the logic probe. This would have been

true if the open circuit had been external to the NAND chip.There is no open

circuit between Z1 pin 4 and Z2 pin 1, and so the voltage at Z1 pin 4 is reach-

ing Z2 pin 1, but it becomes disconnected inside the NAND chip.

Short Between Two Pins
An internal short between two pins of an IC will force the logic signals at

those pins always to be identical. Whenever two signals that are supposed to

be different show the same logic-level variations, there is a good possibility

that the signals are shorted together.

Consider the circuit in Figure 4-39, where pins 5 and 6 of the NOR gate

are internally shorted together. The short causes the two INVERTER output

pins to be connected together so that the signals at Z1 pin 2 and Z1 pin 4

must be identical, even when the two INVERTER input signals are trying to

produce different outputs.To illustrate, consider the input waveforms shown

in the diagram. Even though these input waveforms are different, the wave-

forms at outputs Z1-2 and Z1-4 are the same.

SECTION 4-11/INTERNAL DIGITAL IC FAULTS 165

X
4

1 2

3

Internal
short

5

6

4

Z1A

B

4 V . . .

. . . 4 V

0 V . . .

4 V . . .

0 V . . .

0 V . . .

?

Z1-1

Z1-3

Z1-2
and
Z1-4

t1 t 2 t 3 t 4 t 5

Z1

Z2

FIGURE 4-39 When two input pins are internally shorted, the signals driving these pins

are forced to be identical, and usually a signal with three distinct levels results.

During the interval t1 to t2, both INVERTERs have a HIGH input and

both are trying to produce a LOW output, so that their being shorted to-

gether makes no difference. During the interval t4 to t5, both INVERTERs

have a LOW input and are trying to produce a HIGH output, so that again

their being shorted has no effect. However, during the intervals t2 to t3 and

t3 to t4, one INVERTER is trying to produce a HIGH output while the other

is trying to produce a LOW output. This is called signal contention because

the two signals are “fighting” each other. When this happens, the actual

voltage level that appears at the shorted outputs will depend on the inter-

nal IC circuitry. For TTL devices, it will usually be a voltage in the high end

of the logic 0 range (i.e., close to 0.8 V), although it may also be in the inde-

terminate range. For CMOS devices, it will often be a voltage in the inde-

terminate range.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 165

Whenever you see a waveform like the Z1-2, Z1-4 signal in Figure 4-39

with three different levels, you should suspect that two output signals may

be shorted together.

166 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

REVIEW QUESTIONS 1. List the different internal digital IC faults.

2. Which internal IC fault can produce signals that show three different

voltage levels?

3. What would a logic probe indicate at Z1-2 and Z1-4 of Figure 4-39 if

A � 0 and B � 1?

4. What is signal contention?

4-12 EXTERNAL FAULTS

We have seen how to recognize the effects of various faults internal to digi-

tal ICs. Many more things can go wrong external to the ICs; we will describe

the most common ones in this section.

Open Signal Lines
This category includes any fault that produces a break or discontinuity in

the conducting path such that a voltage level or signal is prevented from go-

ing from one point to another. Some of the causes of open signal lines are:

1. Broken wire

2. Poor solder connection; loose wire-wrap connection

3. Crack or cut trace on a printed circuit board (some of these are hairline

cracks that are difficult to see without a magnifying glass)

4. Bent or broken pin on an IC

5. Faulty IC socket such that the IC pin does not make good contact with

the socket

This type of circuit fault can often be detected by a careful visual inspection

and then verified by disconnecting power from the circuit and checking for

continuity (i.e., a low-resistance path) with an ohmmeter between the two

points in question.

EXAMPLE 4-27 Consider the CMOS circuit of Figure 4-40 and the accompanying logic probe

indications. What is the most probable circuit fault?

Solution

The indeterminate level at the NOR gate output is probably due to the inde-

terminate input at pin 2. Because there is a LOW at Z1-6, this LOW should

also be at Z2-2. Clearly, the LOW from Z1-6 is not reaching Z2-2, and there

must be an open circuit in the signal path between these two points. The lo-

cation of this open circuit can be determined by starting at Z1-6 with the

logic probe and tracing the LOW level along the signal path toward Z2-2 un-

til it changes into an indeterminate level.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 166

Shorted Signal Lines
This type of fault has the same effect as an internal short between IC pins. It

causes two signals to be exactly the same (signal contention). A signal line

may be shorted to ground or VCC rather than to another signal line. In those

cases, the signal will be forced to the LOW or the HIGH state. The main

causes for unexpected shorts between two points in a circuit are as follows:

1. Sloppy wiring. An example of this is stripping too much insulation from

ends of wires that are in close proximity.

2. Solder bridges. These are splashes of solder that short two or more points

together. They commonly occur between points that are very close to-

gether, such as adjacent pins on a chip.

3. Incomplete etching. The copper between adjacent conducting paths on a

printed circuit board is not completely etched away.

Again, a careful visual inspection can very often uncover this type of fault,

and an ohmmeter check can verify that the two points in the circuit are

shorted together.

Faulty Power Supply
All digital systems have one or more dc power supplies that supply the VCC
and VDD voltages required by the chips. A faulty power supply or one that is

overloaded (supplying more than its rated amount of current) will provide

poorly regulated supply voltages to the ICs, and the ICs either will not oper-

ate or will operate erratically.

A power supply may go out of regulation because of a fault in its internal

circuitry, or because the circuits that it is powering are drawing more current

than the supply is designed for.This can happen if a chip or a component has

a fault that causes it to draw much more current than normal.

It is good troubleshooting practice to check the voltage levels at each

power supply in the system to see that they are within their specified ranges.

It is also a good idea to check them on an oscilloscope to verify that there is

no significant amount of ac ripple on the dc levels and to verify that the volt-

age levels stay regulated during the system operation.

One of the most common signs of a faulty power supply is one or more

chips operating erratically or not at all. Some ICs are more tolerant of power

supply variations and may operate properly, while others do not. You should

always check the power and ground levels at each IC that appears to be op-

erating incorrectly.

SECTION 4-12/EXTERNAL FAULTS 167

Z1-1
Z1-2
Z1-3
Z1-4
Z1-5
Z1-6
Z2-3
Z2-2
Z2-1

Pulsing
HIGH
Pulsing
LOW
Pulsing
LOW
Pulsing
Indeterminate
Indeterminate

Pin Condition

X

 All ICs
 are CMOS
Z1: 74HC08
Z2: 74HC02

1
2

3

6

1

2

4

5

A

B

C

D
Z1

Z1
3

Z2

FIGURE 4-40 Example

4-27.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 167

Output Loading
When a digital IC has its output connected to too many IC inputs, its output

current rating will be exceeded, and the output voltage can fall into the in-

determinate range. This effect is called loading the output signal (actually

it’s overloading the output signal) and is usually the result of poor design or

an incorrect connection.

168 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

REVIEW QUESTIONS 1. What are the most common types of external faults?

2. List some of the causes of signal-path open circuits.

3. What symptoms are caused by a faulty power supply?

4. How might loading affect an IC output voltage level?

4-13 TROUBLESHOOTING CASE STUDY

The following example will illustrate the analytical processes involved in

troubleshooting digital circuits. Although the example is a fairly simple com-

binational logic circuit, the reasoning and the troubleshooting procedures

used can be applied to the more complex digital circuits that we encounter

in subsequent chapters.

EXAMPLE 4-28 Consider the circuit of Figure 4-41. Output Y is supposed to go HIGH for ei-

ther of the following conditions:

1. A � 1, B � 0 regardless of the level on C

2. A � 0, B � 1, C � 1

You may wish to verify these results for yourself.

Z1-1
Z1-2
Z1-3
Z2-4
Z2-5
Z2-6,10
Z2-13
Z2-12
Z2-9,11
Z2-8

LOW
LOW
HIGH
LOW
HIGH
HIGH
HIGH
HIGH
LOW
HIGH

Pin Condition

ICs are TTL
 Z1: 74LS86
 Z2: 74LS00

8
Y

6 10

9

11

Z2

Z2

+5 V

12

13
14

3

4

5

7

X

+5 V

14

7

1

2

A

B

C

Z2Z1

FIGURE 4-41 Example

4-28.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 168

When the circuit is tested, the technician observes that output Y goes

HIGH whenever A is HIGH or C is HIGH, regardless of the level at B. She

takes logic probe measurements for the condition where A � B � 0, C � 1 and

comes up with the indications recorded in Figure 4-41.

Examine the recorded levels and list the possible causes for the malfunc-

tion. Then develop a step-by-step procedure to determine the exact fault.

Solution

All of the NAND gate outputs are correct for the levels present at their in-

puts.The XOR gate, however, should be producing a LOW at output pin 3 be-

cause both of its inputs are at the same LOW level. It appears that Z1-3 is

stuck HIGH, even though its inputs should produce a LOW.There are several

possible causes for this:

1. An internal component failure in Z1 that prevents its output from going

LOW

2. An external short to VCC from any point along the conductors connected

to node X (shaded in the diagram of the figure)

3. Pin 3 of Z1 internally shorted to VCC

4. Pin 5 of Z2 internally shorted to VCC

5. Pin 13 of Z2 internally shorted to VCC

All of these possibilities except for the first one will short node X (and

every IC pin connected to it) directly to VCC.
The following procedure can be used to isolate the fault. This proce-

dure is not the only approach that can be used and, as we stated earlier, the

actual troubleshooting procedure that a technician uses is very dependent

on what test equipment is available.

1. Check the VCC and ground levels at the appropriate pins of Z1. Although

it is unlikely that the absence of either of these might cause Z1-3 to stay

HIGH, it is a good idea to make this check on any IC that is producing an

incorrect output.

2. Turn off power to the circuit and use an ohmmeter to check for a short

(resistance less than 1) between node X and any point connected to

VCC (such as Z1-14 or Z2-14). If no short is indicated, the last four possi-

bilities in our list can be eliminated.This means that it is very likely that

Z1 has an internal failure and should be replaced.

3. If step 2 shows that there is a short from node X to VCC, perform a thor-

ough visual examination of the circuit board and look for solder bridges,

unetched copper slivers, uninsulated wires touching each other, and any

other possible cause of an external short to VCC. A likely spot for a solder

bridge would be between adjacent pins 13 and 14 of Z2. Pin 14 is con-

nected to VCC, and pin 13 to node X. If an external short is found, remove

it and perform an ohmmeter check to verify that node X is no longer

shorted to VCC.

4. If step 3 does not reveal an external short, the three possibilities that re-

main are internal shorts to VCC at Z1-3, Z2-13, or Z2-5. One of these is

shorting node X to VCC.

To determine which of these IC pins is the culprit, we should discon-

nect each of them from node X one at a time and recheck for a short to VCC
after each disconnection. When the pin that is internally shorted to VCC is

disconnected, node X will no longer be shorted to VCC.

Æ

SECTION 4-13/TROUBLESHOOTING CASE STUDY 169

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 169

The process of disconnecting each suspected pin from node X can be

easy or difficult depending on how the circuit is constructed. If the ICs are

in sockets, all you need to do is to pull the IC from its socket, bend out the

suspected pin, and reinsert the IC into its socket. If the ICs are soldered into

a printed circuit board, you will have to cut the trace that is connected to the

pin and repair the cut trace when you are finished.

Example 4-28, although fairly simple, shows you the kinds of thinking that

a troubleshooter must employ to isolate a fault.You will have the opportunity

to begin developing your own troubleshooting skills by working on many end-

of-chapter problems that have been designated with a T for troubleshooting.

4-14 PROGRAMMABLE LOGIC DEVICES*
In the previous sections, we briefly considered the class of ICs known as pro-

grammable logic devices. In Chapter 3, we introduced the concept of de-

scribing a circuit’s operation using a hardware description language. In this

section, we will explore these topics further and become prepared to use the

tools of the trade to develop and implement digital systems using PLDs. Of

course, it is impossible to understand all the complex details of how a PLD

works before grasping the fundamentals of digital circuits. As we examine

new fundamental concepts, we will expand our knowledge of the PLDs and

the programming methods. The material is presented in such a way that any-

one who is not interested in PLDs can easily skip over these sections without

loss of continuity in the coverage of the basic principles.

Let’s review the process we covered earlier of designing combinational

digital circuits. The input devices are identified and assigned an algebraic

name like A, B, C, or LOAD, SHIFT, CLOCK. Likewise, output devices are given

names like X, Z, or CLOCK_OUT, SHIFT_OUT. Then a truth table is constructed

that lists all the possible input combinations and identifies the required state

of the outputs under each input condition. The truth table is one way of de-

scribing how the circuit is to operate. Another way to describe the circuit’s op-

eration is the Boolean expression. From this point the designer must find the

simplest algebraic relationship and select digital ICs that can be wired to-

gether to implement the circuit. You have probably experienced that these

last steps are the most tedious, time consuming, and prone to errors.

Programmable logic devices allow most of these tedious steps to be au-

tomated by a computer and PLD development software. Using programmable

logic improves the efficiency of the design and development process.

Consequently, most modern digital systems are implemented in this way.The

job of the circuit designer is to identify inputs and outputs, specify the logi-

cal relationship in the most convenient manner, and select a programmable

device that is capable of implementing the circuit at the lowest cost.The con-

cept behind programmable logic devices is simple: put lots of logic gates in

a single IC and control the interconnection of these gates electronically.

PLD Hardware
Recall from Chapter 3 that many digital circuits today are implemented us-

ing programmable logic devices (PLDs). These devices are configured elec-

tronically and their internal circuits are “wired” together electronically to

170 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

*All sections covering PLDs may be skipped without loss of continuity in the balance of Chapters 1–12.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 170

form a logic circuit. This programmable wiring can be thought of as thou-

sands of connections that are either connected (1) or not connected (0). It is

very tedious to try to configure these devices by manually placing 1s and 0s

in a grid, so the next logical question is, “How do we control the intercon-

nection of gates in a PLD electronically?”

A common method of connecting one of many signals entering a network

to one of many signal lines exiting the network is a switching matrix. Refer

back to Figure 3-44, where this concept was introduced. A matrix is simply a

grid of conductors (wires) arranged in rows and columns. Input signals are

connected to the columns of the matrix, and the outputs are connected to the

rows of the matrix. At each intersection of a row and a column is a switch

that can electrically connect that row to that column. The switches that con-

nect rows to columns can be mechanical switches, fusible links, electromag-

netic switches (relays), or transistors. This is the general structure used in

many applications and will be explored further when we study memory de-

vices in Chapter 12.

PLDs also use a switch matrix that is often referred to as a programma-

ble array. By deciding which intersections are connected and which ones are

not, we can “program” the way the inputs are connected to the outputs of the

array. In Figure 4-42, a programmable array is used to select the inputs for

each AND gate. Notice that in this simple matrix, we can produce any logical

product combination of variables A, B at any of the AND gate outputs. A ma-

trix or programmable array such as the one shown in the figure can also be

used to connect the AND outputs to OR gates. The details of various PLD ar-

chitectures will be covered thoroughly in Chapter 13.

SECTION 4-14/PROGRAMMABLE LOGIC DEVICES 171

A

Product 1

1

2

B

1 2 3 4

B B A A

Product 2

3

4

Product 3

5

6

Product 4

7

8

Column wires

Row wires

FIGURE 4-42 A programmable array for selecting inputs as product terms.

Programming a PLD
There are two ways to “program” a PLD IC. Programming means making the

actual connections in the array. In other words, it means determining which of

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 171

those connections are supposed to be open (0) and which are supposed to be

closed (1).The first method involves removing the PLD IC chip from its circuit

board.The chip is then placed in a special fixture called a programmer, shown

in Figure 4-43. Most modern programmers are connected to a personal com-

puter that is running software containing libraries of information about the

many types of programmable devices available.

172 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Serial
cable

Programming fixture
(programmer)

Development
software

ZIF
socket

Programming
software

FIGURE 4-43 A PLD

development system.

The programming software is invoked (called up and executed) on the PC

to establish communication with the programmer. This software allows the

user to set up the programmer for the type of device that is to be programmed,

check if the device is blank, read the state of any programmable connection in

the device, and provide instructions for the user to program a chip. Ultimately,

the part is placed into a special socket that allows you to drop the chip in and

then clamp the contacts onto the pins. This is called a zero insertion force
(ZIF) socket. Universal programmers that can program any type of program-

mable device are available from numerous manufacturers.

Fortunately, as programmable parts began to proliferate, manufacturers

saw the need to standardize pin assignments and programming methods. As a

result, the Joint Electronic Device Engineering Council (JEDEC) was formed.

One of the results was JEDEC standard 3, a format for transferring program-

ming data for PLDs, independent of the PLD manufacturer or programming

software. Pin assignments for various IC packages were also standardized,

making universal programmers less complicated. Consequently, program-

ming fixtures can program numerous types of PLDs. The software that allows

the designer to specify a configuration for a PLD simply needs to produce an

output file that conforms to the JEDEC standards. Then this JEDEC file can

be loaded into any JEDEC-compatible PLD programmer that is capable of

programming the desired type of PLD.

The second method is referred to as in system programming (ISP). As its

name implies, the chip does not need to be removed from its circuit for stor-

age of the programming information. A standard interface has been devel-

oped by the Joint Test Action Group (JTAG). The interface was developed to

allow ICs to be tested without actually connecting test equipment to every

pin of the IC. It also allows for internal programming. Four pins on the IC are

used as a portal to store data and retrieve information about the inner con-

dition of the IC. Many ICs, including PLDs and microcontrollers, are manu-

factured today to include the JTAG interface. An interface cable connects

the four JTAG pins on the IC to an output port (like the printer port) of a per-

sonal computer. Software running on the PC establishes contact with the IC

and loads the information in the proper format.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 172

Development Software
We have examined several methods of describing logic circuits now, including

schematic capture, logic equations, truth tables, and HDL. We also described

the fundamental methods of storing 1s and 0s into a PLD IC to connect the

logic circuits in the desired way. The biggest challenge in getting a PLD pro-

grammed is converting from any form of description into the array of 1s and

0s. Fortunately, this task is accomplished quite easily by a computer running

the development software. The development software that we will be refer-

ring to and using for examples is produced by Altera. This software allows

the designer to enter a circuit description in any one of the many ways we

have been discussing: graphic design files (schematics), AHDL, and VHDL. It

also allows the use of another HDL, called Verilog, and the option of de-

scribing the circuit with timing diagrams. Circuit blocks described by any of

these methods can also be “connected” together to implement a much larger

digital system, as shown in Figure 4-44. Any logic diagram found in this text

can be redrawn using the schematic entry tools in the Altera software to cre-

ate a graphic design file. We will not focus on graphic design entry in this

text because it is quite straightforward to pick up these skills in the labora-

tory. We will focus our examples on the methods that allow us to use HDL as

an alternate means of describing a circuit. For more information on the

Altera software, see the accompanying CD as well as user manuals from the

Altera web site (http://www.altera.com).

SECTION 4-14/PROGRAMMABLE LOGIC DEVICES 173

System
inputs

Schematic block

Timing block

VHDL block

ENTITY.........

ARCHITECTURE...

AHDL block

SUBDESIGN

BEGIN

END

Intermediate
signals

System
outputs

FIGURE 4-44 Combining

blocks developed using dif-

ferent description methods.

This concept of using building blocks of circuits is called hierarchical
design. Small, useful logic circuits can be defined in whatever manner is most

convenient (graphic, HDL, timing, etc.) and then combined with other cir-

cuits to form a large section of a project. Sections can be combined and con-

nected with other sections to form the whole system. Figure 4-45 shows the

hierarchical structure of a CD player using a block diagram.The outer box en-

closes the entire system.The dashed lines identify each major subsection, and

each subsection contains individual circuits. Although it is not shown in this

diagram, each circuit may be made up of smaller building blocks of common

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 173

digital circuits. The Altera development software makes this type of modular,

hierarchical design and development easy to accomplish.

Design and Development Process
Another way you might see the hierarchy of a system like the CD player just

described is shown in Figure 4-46.The top level represents the entire system.

It is made up of three subsections, each of which in turn is made up of the

smaller circuits shown. Notice that this diagram does not show how the sig-

nals flow throughout the system but clearly identifies the various levels of

the hierarchical structure of the project.

This type of diagram has led to the name for one of the most common

methods of design: top-down. With this design approach, you start with the

overall description of the entire system, such as the top box in Figure 4-46.

Then you define several subsections that will make up the system. The sub-

sections are further refined into individual circuits connected together.

174 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

FIGURE 4-45 Block diagram of a CD player.

Position control
loop

System control
sectionUser controls

Track decoder

Disk speed
control loop

Motor drive Pulse train
decoding

Skip
detect

Display

Filter/amp

D/A

Digital filter

Skip memory

Parity error
correction

Spindle drive
section

Laser tracking section

Audio section

M

Motor

Laser
pickup

Spindle
drive
motor

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 174

Every one of these hierarchy levels has defined inputs, outputs, and behav-

ior. Each can be tested individually before it is connected to the others.

After defining the blocks from the top down, the system is built from the

bottom up. Each block in this system design has a design file that describes

it. The lowest level blocks must be designed by opening a design file and

writing a description of its operation. The designed block is then compiled

using the development tools. The compiling process determines if you have

made errors in your syntax. Until your syntax is correct, the computer can-

not possibly translate your description into its proper form. After it has been

compiled with no syntax errors, it should be tested to see if it operates cor-

rectly. Development systems offer simulator programs that run on the PC and

simulate the way your circuit responds to inputs. A simulator is a computer

program that calculates the correct output logic states based on a description

of the logic circuit and the current inputs. A set of hypothetical inputs and

their corresponding correct outputs are developed that will prove the block

works as expected. These hypothetical inputs are often called test vectors.

Thorough testing during simulation greatly increases the likelihood of the

final system working reliably. Figure 4-47 shows the simulation file for the

circuit described in Figure 3-13(a) of Chapter 3. Inputs a, b, and c were en-

tered as test vectors, and the simulation produced output y.

SECTION 4-14/PROGRAMMABLE LOGIC DEVICES 175

Disk speed
control
loop

Track
decoding

Spindle drive section

Position
control

Laser tracking section

Motor
drive

Skip
detect

Pulse
train

decoder

CD system

Audio section

Skip
memory

Filter
amp

Digital
filter

D/AParity error
correction

FIGURE 4-46 An organizational hierarchy chart.

Name: Value: 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10 ms

c 0

b 0

a 0

y 0

Ref: 0.0 ns

0.0 ns

Time: 0.0 ns Interval: 0.0 ns

FIGURE 4-47 A timing simulation of a circuit described in HDL.

When the designer is satisfied that the design works, the design can be

verified by actually programming a chip and testing. For a complex PLD, the

designer can either let the development system assign pins and then lay out

the final circuit board accordingly, or specify the pins for each signal using

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 175

the software features. If the compiler assigns the pins, the assignments can

be found in the report file or pin-out file, which provides many details about

the implementation of the design. If the designer specifies the pins, it is im-

portant to know the constraints and limitations of the chip’s architecture.

These details will be covered in Chapter 13. The flowchart of Figure 4-48

summarizes the design process for designing each block.

176 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Identify
design flaw

Y

Simulate

N

Create output file

N

Program PLD

In-circuit test

Y
DONEWorks?

Errors?

Problems?

Edit design file

Y

Troubleshoot

N

Create design file

Compile

Design

STARTFIGURE 4-48 PLD devel-

opment cycle flowchart.

After each circuit in a subsection has been tested, all can be combined and

the subsection can be tested following the same process that was used for the

small circuits. Then the subsections are combined and the system is tested.

This approach lends itself very well to a typical project environment, where a

team of people are working together, each responsible for his or her own cir-

cuits and sections that will ultimately come together to make up the system.

REVIEW QUESTIONS 1. What is actually being “programmed” in a PLD?

2. What bits (column, row) in Figure 4-42 must be connected to make

Product 1 � AB?

3. What bits (column, row) in Figure 4-42 must be connected to make

Product 3 = AB?

TOCCMC04_0131725793.QXD 12/5/05 8:06 PM Page 176

4-15 REPRESENTING DATA IN HDL

Numeric data can be represented in various ways. We have studied the use of

the hexadecimal number system as a convenient way to communicate bit

patterns. We naturally prefer to use the decimal number system for numeric

data, but computers and digital systems can operate only on binary informa-

tion, as we studied in previous chapters. When we write in HDL, we often

need to use these various number formats, and the computer must be able to

understand which number system we are using. So far in this text, we have

used a subscript to indicate the number system. For example, 1012 was bi-

nary, 10116 was hexadecimal, and 10110 was decimal. Every programming

language and HDL has its own unique way of identifying the various number

systems, generally done with a prefix to indicate the number system. In most

languages, a number with no prefix is assumed to be decimal. When we read

one of these number designations, we must think of it as a symbol that rep-

resents a binary bit pattern. These numeric values are referred to as scalars

or literals. Table 4-8 summarizes the methods of specifying values in binary,

hex, and decimal for AHDL and VHDL.

SECTION 4-15/REPRESENTING DATA IN HDL 177

EXAMPLE 4-29 Express the following bit pattern’s numeric value in binary, hex, and decimal

using AHDL and VHDL notation:

11001

Solution

Binary is designated the same in both AHDL and VHDL: B “11001”.

Converting the binary to hex, we have 1916.

In AHDL: H “19”
In VHDL: X “19”
Converting the binary to decimal, we have 2510.

Decimal is designated the same in both AHDL and VHDL: 25.

Bit Arrays/Bit Vectors
In Chapter 3, we declared names for inputs to and outputs of a very simple logic

circuit. These were defined as bits, or single binary digits. What if we want to

represent an input, output, or signal that is made up of several bits? In an HDL,

we must define the type of the signal and its range of acceptable values.

To understand the concepts used in HDLs, let’s first consider some con-

ventions for describing bits of binary words in common digital systems.

Suppose we have an eight-bit number representing the current temperature,

and the number is coming into our digital system through an input port that

we have named P1, as shown in Figure 4-49. We can refer to the individual

bits of this port as P1 bit 0 for the least significant bit, on up to P1 bit 7 for

the most significant bit.

TABLE 4-8 Designating

number systems in HDL.
Bit Decimal

Number System AHDL VHDL Pattern Equivalent

Binary B”101” B”101” 101 5

Hexadecimal H”101” X”101” 100000001 257

Decimal 101 101 1100101 101

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 177

We can also describe this port by saying that it is named P1, with bits

numbered 7 down to 0. The terms bit array and bit vector are often used to

describe this type of data structure. It simply means that the overall data

structure (eight-bit port) has a name (P1) and that each individual element

(bit) has a unique index number (0–7) to describe that bit’s position (and

possibly its numeric weight) in the overall structure. The HDLs and com-

puter programming languages take advantage of this notation. For example,

the third bit from the right is designated as P1[2], and it can be connected to

another signal bit by using an assignment operator.

178 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

A/D converter(MSB) (LSB)

P1[7] P1[6] P1[5] P1[4] P1[3] P1[2] P1[1] P1[0]Input port
P1

FIGURE 4-49 Bit array

notation.

EXAMPLE 4-30 Assume there is an eight-bit array named P1, as shown in Figure 4-49, and an-

other four-bit array is named P5.

(a) Write the bit designation for the most significant bit of P1.

(b) Write the bit designation for the least significant bit of P5.

(c) Write an expression that causes the least significant bit of P5 to drive

the most significant bit of P1.

Solution

(a) The name of the port is P1 and the most significant bit is bit 7. The

proper designation for P1 bit 7 is P1[7].

(b) The name of the port is P5 and the least significant bit is bit 0. The

proper designation for P5 bit 0 is P5[0].

(c) The driving signal is placed on the right side of the assignment operator,

and the driven signal is placed on the left: P1[7] � P5[0];.

A
H

D
L AHDL BIT ARRAY DECLARATIONS

In AHDL, port p1 of Figure 4-49 is defined as an eight-bit input port, and the

value on this port can be referred to using any number system, such as hex,

binary, decimal, etc. The syntax for AHDL uses a name for the bit vector fol-

lowed by the range of index designations, which are enclosed in square

brackets. This declaration is included in the SUBDESIGN section. For exam-

ple, to declare an eight-bit input port called p1, you would write

p1 [7..0] :INPUT; --define an 8-bit input port

EXAMPLE 4-31 Declare a four-bit input named keypad using AHDL.

Solution

keypad [3..0] :INPUT;

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 178

Intermediate variables can also be declared as an array of bits. As with

single bits, they are declared just after the I/O declarations in SUBDESIGN.

As an example, the eight-bit temperature port p1 can be assigned (con-

nected) to a node named temp, as follows:

VARIABLE temp [7..0] :NODE;

BEGIN

temp[] � p1[];

END;

Notice that the input port p1 has the data applied to it, and it is driving

the signal wires named temp. Think of the term on the right of the equals

sign as the source of the data and the term on the left as the destination.

The empty brackets [] mean that each of the correspanding bits in the two

arrays are being connected. Individual bits can also be “connected” by

specifying the bits inside the brackets. For example, to connect only the

least significant bit of p1 to the LSB of temp, the statement would be

temp[0] � p1[0];.

SECTION 4-15/REPRESENTING DATA IN HDL 179

V
H

D
LVHDL BIT VECTOR DECLARATIONS

In VHDL, port p1 of Figure 4-49 is defined as an eight-bit input port, and the

value on this port can be referred to using only binary literals.The syntax for

VHDL uses a name for the bit vector followed by the mode (:IN), the type

(BIT_VECTOR), and the range of index designations, which are enclosed in

parentheses. This declaration is included in the ENTITY section. For exam-

ple, to declare an eight-bit input port called p1, you would write

PORT (p1 :IN BIT_VECTOR (7 DOWNTO 0);

EXAMPLE 4-32 Declare a four-bit input named keypad using VHDL.

Solution

PORT(keypad :IN BIT_VECTOR (3 DOWNTO 0);

Intermediate signals can also be declared as an array of bits. As with sin-

gle bits, they are declared just inside the ARCHITECTURE definition. As an

example, the eight-bit temperature on port p1 can be assigned (connected)

to a signal named temp, as follows:

SIGNAL temp :BIT_VECTOR (7 DOWNTO 0);

BEGIN

temp <� p1;

END;

Notice that the input port p1 has the data applied to it, and it is driving the

signal wires named temp. No elements in the bit vector are specified, which

means that all the bits are being connected. Individual bits can also be “con-

nected” using signal assignments and by specifying the bit numbers inside

parentheses. For example, to connect only the least significant bit of p1 to

the LSB of temp, the statement would be temp(0) <� p1(0);.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 179

VHDL is very particular regarding the definitions of each type of the

data. The type “bit_vector” describes an array of individual bits. This is in-

terpreted differently than an eight-bit binary number (called a scaler quan-

tity), which has the type integer. Unfortunately, VHDL does not allow us to

assign an integer value to a BIT_VECTOR signal directly. Data can be repre-

sented by any of the types shown in Table 4-9, but data assignments and

other operations must be done between objects of the same type. For exam-

ple, the compiler will not allow you to take a number from a keypad declared

as an integer and connect it to four LEDs that are declared as BIT_VECTOR

outputs. Notice in Table 4-9, under Possible Values, that individual BIT and

STD_LOGIC data objects (e.g., signals, variables, inputs, and outputs) are

designated by single quotes, whereas values assigned to BIT_VECTOR and

STD_LOGIC_VECTOR types are strings of valid bit values enclosed in dou-

ble quotes.

180 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Data Type Sample Declaration Possible Values Use

BIT y :OUT BIT; ‘0’ ‘1’ y <� ‘0’;

STD_LOGIC driver :STD_LOGIC ‘0’ ‘1’ ‘z’ ‘x’ ‘-‘ driver <� ‘z’;

BIT_VECTOR bcd_data :BIT_VECTOR “0101” “1001” digit <� bcd_data;

(3 DOWNTO 0); “0000”

STD_LOGIC_VECTOR dbus :STD_LOGIC_VECTOR “0Z1X” IF rd � ‘0’ THEN
(3 DOWNTO 0); dbus <� “zzzz”;

INTEGER SIGNAL z:INTEGER RANGE IF z > 5 THEN . . .
TO 31;-32

-32..-2,-1,0,1,2 . . . 31

TABLE 4-9 Common VHDL data types.

VHDL also offers some standardized data types that are necessary when

using logic functions that are contained in the libraries. As you might have

guessed, libraries are simply collections of little pieces of VHDL code that

can be used in your hardware descriptions without reinventing the wheel.

These libraries offer convenient functions, called macrofunctions, like

many of the standard TTL devices that are described throughout this text.

Rather than writing a new description of a familiar TTL device, we can sim-

ply pull its macrofunction out of the library and use it in our system. Of

course, you need to get signals into and out of these macrofunctions, and the

types of the signals in your code must match the types in the functions

(which someone else wrote). This means that everyone must use the same

standard data types.

When VHDL was standardized through the IEEE, many data types were

created at the same time. The two that we will use in this text are

STD_LOGIC, which is equivalent to BIT type, and STD_LOGIC_VECTOR,

which is equivalent to BIT_VECTOR. As you recall, BIT type can have val-

ues of only ‘0’ and ‘1’. The standard logic types are defined in the IEEE li-

brary and have a broader range of possible values than their built-in coun-

terparts. The possible values for a STD_LOGIC type or for any element in a

STD_LOGIC_VECTOR are given in Table 4-10. The names of these cate-

gories will make much more sense after we study the characteristics of logic

circuits in Chapter 8. For now, we will show examples using values of only ‘1’

and ‘0’.

TOCCMC04_0131725793.QXD 12/5/05 8:06 PM Page 180

SECTION 4-16/TRUTH TABLES USING HDL 181

TABLE 4-10 STD_LOGIC

values.
‘1’ Logic 1 (just like BIT type)

‘0’ Logic 0 (just like BIT type)

‘z’ High impedance*

‘-’ don’t care (just like you used in your K maps)

‘U’ Uninitialized

‘X’ Unknown

‘W’ Weak unknown

‘L’ Weak ‘0’

‘H’ Weak ‘1’

*We will study tristate logic in Chapter 8.

REVIEW QUESTIONS 1. How would you declare a six-bit input array named push_buttons in (a)

AHDL or (b) VHDL?

2. What statement would you use to take the MSB from the array in ques-

tion 1 and put it on a single-bit output port named z? Use (a) AHDL or

(b) VHDL.

3. In VHDL, what is the IEEE standard type that is equivalent to the BIT

type?

4. In VHDL, what is the IEEE standard type that is equivalent to the

BIT_VECTOR type?

4-16 TRUTH TABLES USING HDL

We have learned that a truth table is another way of expressing the opera-

tion of a circuit block. It relates the output of the circuit to every possible

combination of its inputs. As we saw in Section 4-4, a truth table is the start-

ing point for a designer to define how the circuit should operate. Then a

Boolean expression is derived from the truth table and simplified using K

maps or Boolean algebra. Finally the circuit is implemented from the final

Boolean equation. Wouldn’t it be great if we could go from the truth table di-

rectly to the final circuit without all those steps? We can do exactly that by

entering the truth table using HDL.

A
H

D
LTRUTH TABLES USING AHDL

The code in Figure 4-50 uses AHDL to implement a circuit and uses a truth

table to describe its operation. The truth table for this design was presented

in Example 4-7. The key point of this example is the use of the TABLE key-

word in AHDL. It allows the designer to specify the operation of the circuit

just like you would fill out a truth table. On the first line after TABLE, the in-

put variables (a,b,c) are listed exactly like you would create a column head-

ing on a truth table. By including the three binary variables in parentheses,

we tell the compiler that we want to use these three bits as a group and to re-

fer to them as a three-bit binary number or bit pattern. The specific values

for this bit pattern are listed below the group and are referred to as binary

literals. The special operator (�>) is used in truth tables to separate the in-

puts from the output (y).

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 181

The TABLE in Figure 4-50 is intended to show the relationship between the

HDL code and a truth table.A more common way of representing the input data

heading is to use a variable bit array to represent the value on a, b, c. This

method involves a declaration of the bit array on the line before BEGIN, such as:

VARIABLE in_bits[2..0] :NODE;

Just before the TABLE keyword, the input bits can be assigned to the array,

inbits[]:

in_bits[] � (a,b,c);

Grouping three independent bits in order like this is referred to as concate-
nating, and it is often done to connect individual bits to a bit array. The table

heading on the input bit sets can be represented by in_bits[], in this case.

Note that as we list the possible combinations of the inputs, we have several

options. We can make up a group of 1s and 0s in parentheses, as shown in

Figure 4-50, or we can represent the same bit pattern using the equivalent bi-

nary, hex, or decimal number. It is up to the designer to decide which format

is most appropriate depending on what the input variables represent.

182 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

% Figure 4-7 in AHDL

Digital Systems 10th ed

Neal Widmer

MAY 23, 2005 %

SUBDESIGN FIG4_50

(

a,b,c :INPUT; --define inputs to block

y :OUTPUT; --define block output

)

BEGIN

TABLE

(a,b,c) => y; --column headings

(0,0,0) => 0;

(0,0,1) => 0;

(0,1,0) => 0;

(0,1,1) => 1;

(1,0,0) => 0;

(1,0,1) => 1;

(1,1,0) => 1;

(1,1,1) => 1;

END TABLE;

END;

FIGURE 4-50 AHDL

design file for Figure 4-7

V
H

D
L TRUTH TABLES USING VHDL: SELECTED SIGNAL ASSIGNMENT

The code in Figure 4-51 uses VHDL to implement a circuit using a selected
signal assignment to describe its operation. It allows the designer to specify

the operation of the circuit, just like you would fill out a truth table. The

truth table for this design was presented in Example 4-7. The primary point

of this example is the use of the WITH signal_name SELECT statement in

VHDL. A secondary point presented here shows how to put the data into a

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 182

format that can be used conveniently with the selected signal assignment.

Notice that the inputs are defined in the ENTITY declaration as three inde-

pendent bits a, b, and c. Nothing in this declaration makes one of these more

significant than another. The order in which they are listed does not matter.

We want to compare the current value of these bits with each of the possible

combinations that could be present. If we drew out a truth table, we would

decide which bit to place on the left (MSB) and which to place on the right

(LSB). This is accomplished in VHDL by concatenating (connecting in order)

the bit variables to form a bit vector. The concatenation operator is “&”. A

signal is declared as a BIT_VECTOR to receive the ordered set of input bits

and is used to compare the input’s value with the string literals contained in

quotes. The output (y) is assigned (<�) a bit value (‘0’ or ‘1’) WHEN in_bits
contains the value listed in double quotes.

VHDL is very strict in the way it allows us to assign and compare objects

such as signals, variables, constants, and literals.The output y is a BIT, and so

it must be assigned a value of ‘0’ or ‘1’. The SIGNAL in_bits is a three-bit

BIT_VECTOR, so it must be compared with a three-bit string literal value.

VHDL will not allow in_bits (a BIT_VECTOR) to be compared with a hex

number like X “5” or a decimal number like 3.These scalar quantities would

be valid for assignment or comparison with integers.

SECTION 4-16/TRUTH TABLES USING HDL 183

-- Figure 4-7 in VHDL

-- Digital Systems 10th ed

-- Neal Widmer

-- MAY 23, 2005

ENTITY fig4_51 IS

PORT(

a,b,c :IN BIT; --declare individual input bits

y :OUT BIT);

END fig4_51;

ARCHITECTURE truth OF fig4_51 IS

SIGNAL in_bits :BIT_VECTOR(2 DOWNTO 0);

BEGIN

in_bits <= a & b & c; --concatenate input bits into bit_vector

WITH in_bits SELECT

y <= '0' WHEN "000", --Truth Table

'0' WHEN "001",

'0' WHEN "010",

'1' WHEN "011",

'0' WHEN "100",

'1' WHEN "101",

'1' WHEN "110",

'1' WHEN "111";

END truth;

FIGURE 4-51 VHDL design file for Figure 4-7.

EXAMPLE 4-33 Declare three signals in VHDL that are single bits named too_hot, too_cold,
and just_right. Combine (concatenate) these three bits into a three-bit signal

called temp_status, with hot on the left and cold on the right.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 183

Solution

1. Declare signals first in Architecture.

SIGNAL too_hot, too_cold, just_right :BIT;

SIGNAL temp_status :BIT_VECTOR (2 DOWNTO 0);

2. Write concurrent assignment statements between BEGIN and END.

temp_status <� too_hot & just_right & too_cold;

184 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

REVIEW QUESTIONS 1. How would you concatenate three bits x, y, and z into a three-bit array

named omega? Use AHDL or VHDL.

2. How are truth tables implemented in AHDL?

3. How are truth tables implemented in VHDL?

4-17 DECISION CONTROL STRUCTURES IN HDL

In this section, we will examine methods that allow us to tell the digital sys-

tem how to make “logical” decisions in much the same way that we make de-

cisions every day. In Chapter 3, we learned that concurrent assignment

statements are evaluated such that the order in which they are written has

no effect on the circuit being described. When using decision control struc-
tures, the order in which we ask the questions does matter. To summarize

this concept in the terms used in HDL documentation, statements that can

be written in any sequence are called concurrent, and statements that are

evaluated in the sequence in which they are written are called sequential.
The sequence of sequential statements affects the circuit’s operation.

The examples we have considered so far involve several individual bits.

Many digital systems require inputs that represent a numeric value. Refer

again to Example 4-8, in which the purpose of the logic circuit is to monitor

the battery voltage measured by an A/D converter. The digital value is rep-

resented by a four-bit number coming from the A/D into the logic circuit.

These inputs are not independent binary variables but rather four binary

digits of a number representing battery voltage. We need to give the data the

correct type that will allow us to use it as a number.

IF/ELSE
Truth tables are great for listing all the possible combinations of independent

variables, but there are better ways to handle numeric data. As an example,

when a person leaves for school or work in the morning, she must make a log-

ical decision about wearing a coat. Let’s assume she decides this issue based

only on the current temperature. How many of us would reason as follows?

I will wear a coat if the temperature is 0.

I will wear a coat if the temperature is 1.

I will wear a coat if the temperature is 2. . . .

I will wear a coat if the temperature is 55.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 184

I will not wear a coat if the temperature is 56.

I will not wear a coat if the temperature is 57.

I will not wear a coat if the temperature is 58. . . .

I will not wear a coat if the temperature is 99.

This method is similar to the truth table approach of describing the decision.

For every possible input, she decides what the output should be. Of course,

what she would really do is decide as follows:

I will wear a coat if the temperature is less than 56 degrees.

Otherwise, I will not wear a coat.

An HDL gives us the power to describe logic circuits using this type of

reasoning. First, we must describe the inputs as a number within a given
range, and then we can write statements that decide what to do to the out-

puts based on the value of the incoming number. In most computer program-

ming languages, as well as HDLs, these types of decisions are made using an

IF/THEN/ELSE control structure. Whenever the decision is between doing

something and doing nothing, an IF/THEN construct is used. The keyword

IF is followed by a statement that is true or false. IF it is true, THEN do

whatever is specified. In the event that the statement is false, no action is

taken. Figure 4-52(a) shows graphically how this decision works. The dia-

mond shape represents the decision being made by evaluating the statement

contained within the diamond. Every decision has two possible outcomes:

true or false. In this example, if the statement is false, no action is taken.

SECTION 4-17/DECISION CONTROL STRUCTURES IN HDL 185

THEN
put on a
coat!

It is too
cold

outside

(a)

FALSE

TRUE

THEN
put on a
coat!

It is too
cold

outside

(b)

TRUEFALSE

ELSE
take off your
coat

FIGURE 4-52 Logical flow

of (a) IF/THEN and (b)

IF/THEN/ELSE constructs.

In some cases it is not enough only to decide to act or not to act, but

rather we must choose between two different actions. For example, in our

analogy about the decision to wear a coat, if the person already has her coat

on when making this decision, she will not be taking it off. The use of

IF/THEN logic assumes that she is not wearing her coat initially.

When decisions demand two possible actions, the IF/THEN/ELSE con-

trol structure is used, as shown in Figure 4-52(b). Here again, the statement

is evaluated as true or false. The difference is that, when the statement is

false, a different action is performed. One of the two actions must occur with

this construct. We can state it verbally as, “IF the statement is true,THEN do

this. ELSE do that.” In our coat analogy, this control structure would work,

regardless of whether the person’s coat was on or off initially.

Example 4-8 gave a simple example of a logic circuit that has as its input

a numeric value representing battery voltage from an A/D converter. The in-

puts A, B, C, D are actually binary digits in a four-bit number, with A being

the MSB and D being the LSB. Figure 4-53 shows the same circuit with the

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 185

inputs labeled as a four-bit number called digital_value. The relationship be-

tween bits is as follows:

A digital_value[3] digital value bit 3 (MSB)

B digital_value[2] digital value bit 2

C digital_value[1] digital value bit 1

D digital_value[0] digital value bit 0 (LSB)

The input can be treated as a decimal number between 0 and 15 if we

specify the correct type of the input variable.

186 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Digital_value3

Logic circuit

z

A/D converter
A
B
C
D

(MSB)

(LSB)

Digital_value2
Digital_value1
Digital_value0

FIGURE 4-53 Logic

circuit similar to

Example 4-8.

A
H

D
L IF/THEN/ELSE USING AHDL

In AHDL, the inputs can be specified as a binary number made up of multi-

ple bits by assigning a variable name followed by a list of the bit positions,

as shown in Figure 4-54. The name is digital_value, and the bit positions

range from 3 down to 0. Notice how simple the code becomes using this

method along with an IF/ELSE construct. The IF is followed by a statement

that refers to the value of the entire four-bit input variable and compares it

with the number 6. Of course, 6 is a decimal form of a scalar quantity and

digital_value[] actually represents a binary number. The compiler can inter-

pret numbers in any system, so it creates a logic circuit that compares the bi-

nary value of digital_value with the binary number for 6 and decides if this

statement is true or false. If it is true, THEN the next statement (z � VCC) is

used to assign z a value. Notice that in AHDL, we must use VCC for a logic 1

and GND for a logic 0 when assigning a logic level to a single bit. When

digital_value is 6 or less, it follows the statement after ELSE (z � GND). The

END IF; terminates the control structure.

FIGURE 4-54 AHDL

version. SUBDESIGN FIG4_54

(

digital_value[3..0] :INPUT; -- define inputs to block

z :OUTPUT; -- define block output

)

BEGIN

IF digital_value[] > 6 THEN

z = VCC; -- output a 1

ELSE z = GND; -- output a 0

END IF;

END;

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 186

IF/THEN/ELSE USING VHDL
In VHDL, the critical issue is the declaration of the type of inputs. Refer to

Figure 4-55. The input is treated as a single variable called digital_value.

Because its type is declared as INTEGER, the compiler knows to treat it as a

number. By specifying a range of 0 to 15, the compiler knows it is a four-bit

number. Notice that RANGE does not specify the index number of a bit vec-

tor but rather the limits of the numeric value of the integer. Integers are

treated differently than bit arrays (BIT_VECTOR) in VHDL. An integer can

be compared with other numbers using inequality operators. A BIT_VECTOR

cannot be used with inequality operators.

SECTION 4-17/DECISION CONTROL STRUCTURES IN HDL 187

V
H

D
L

ENTITY fig4_55 IS

PORT(digital_value :IN INTEGER RANGE 0 TO 15; -- 4-bit input

z :OUT BIT);

END fig4_55;

ARCHITECTURE decision OF fig4_55 IS

BEGIN

PROCESS (digital_value)

BEGIN

IF (digital_value > 6) THEN

z <= '1';

ELSE

z <= '0';

END IF;

END PROCESS ;

END decision;

FIGURE 4-55 VHDL

version.

To use the IF/THEN/ELSE control structure, VHDL requires that the

code be put inside a “PROCESS.”The statements that occur within a process

are sequential, meaning that the order in which they are written affects the

operation of the circuit. The keyword PROCESS is followed by a list of vari-

ables called a sensitivity list, which is a list of variables to which

the process code must respond. Whenever digital_value changes, it causes

the process code to be reevaluated. Even though we know digital_value is

really a four-bit binary number, the compiler will evaluate it as a number

between the equivalent decimal values of 0 and 15. IF the statement in

parentheses is true, THEN the next statement is applied (z is assigned a

value of logic 1). If this statement is not true, the logic follows the ELSE

clause and assigns a value of 0 to z. The END IF; terminates the control

structure, and the END PROCESS; terminates the evaluation of the se-

quential statements.

ELSIF
We often need to choose among many possible actions, depending on the sit-

uation. The IF construct chooses whether to perform a set of actions or not.

The IF/ELSE construct selects one out of two possible actions. By combining

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 187

Notice that as each condition is evaluated, it either performs an action if

true or goes on to evaluate the next condition. Each action is associated with

one condition, and there is no chance to select more than one action. Note

also that the conditions used to decide the appropriate action can be any

expression that evaluates as true or false. This fact allows the designer to

use the inequality operators to choose an action based on a range of input

values. As an example of this application, let’s consider the temperature-

measuring system that uses an A/D converter, as described in Figure 4-57.

Suppose that we want to indicate when the temperature is in a certain range,

which we will refer to as Too Cold, Just Right, and Too Hot.

188 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Action 1

IF
TF

Action 4

ELSIF
TF

Action 5

Action 2

ELSIF
TF

Action 3

ELSIF
TF

FIGURE 4-56 Flowchart

for multiple decisions using

IF/ELSIF.

Logic circuitA/D converter Too Cold

Just Right

Too Hot

Four-bit
digital
value

Temp

FIGURE 4-57
Temperature range

indicator circuit.

The relationship between the digital values for temperature and the cat-

egories is

Digital Values Category

0000–1000 Too Cold

1001–1010 Just Right

1011–1111 Too Hot

IF and ELSE decisions, we can create a control structure referred to as

ELSIF, which chooses one of many possible outcomes.The decision structure

is shown graphically in Figure 4-56.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 188

We can express the decision-making process for this logic circuit as follows:

IF the digital value is less than or equal to 8, THEN light only the Too

Cold indicator.

ELSE IF the digital value is greater than 8 AND less than 11,THEN light

only the Just Right indicator.

ELSE light only the Too Hot indicator.

ELSIF USING AHDL
The AHDL code in Figure 4-58 defines the inputs as a four-bit binary num-

ber. The outputs are three individual bits that drive the three range indica-

tors.This example uses an intermediate variable (status) that allows us to as-

sign a bit pattern representing the three conditions of too_cold, just_right,
and too_hot. The sequential section of the code uses the IF, ELSIF, ELSE to

identify the range in which the temperature lies and assigns the correct bit

pattern to status. In the last statement, the bits of status are connected to the

actual output port bits. These bits have been ordered in a group that relates

to the bit patterns assigned to status[]. This could also have been written as

three concurrent statements: too_cold � status[2]; just_right � status[1];

too_hot � status[0];.

SECTION 4-17/DECISION CONTROL STRUCTURES IN HDL 189

FIGURE 4-58 Temperature range example in AHDL using ELSIF.

SUBDESIGN fig4_58

(

digital_value[3..0] :INPUT; --define inputs to block

too_cold, just_right, too_hot :OUTPUT;--define outputs

)

VARIABLE

status[2..0] :NODE;--holds state of too_cold, just_right, too_hot

BEGIN

IF digital_value[] <= 8 THEN status[] = b"100";

ELSIF digital_value[] > 8 AND digital_value[] < 11 THEN

status[] = b"010";

ELSE status[] = b"001";

END IF;

(too_cold, just_right, too_hot) = status[]; -- update output bits

END;

ELSIF USING VHDL
The VHDL code in Figure 4-59 defines the inputs as a four-bit integer. The

outputs are three individual bits that drive the three range indicators. This

example uses an intermediate signal (status) that allows us to assign a bit

pattern representing all three conditions of too_cold, just_right, and too_hot.
The process section of the code uses the IF, ELSIF, and ELSE to identify the

range in which the temperature lies and assigns the correct bit pattern to

status. In the last three statements, each bit of status is connected to the cor-

rect output port bit.

V
H

D
L

A
H

D
L

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 189

CASE
One more important control structure is useful for choosing actions based on

current conditions. It is called by various names, depending on the program-

ming language, but it nearly always involves the word CASE. This construct

determines the value of an expression or object and then goes through a list

of possible values (cases) for the expression or object being evaluated. Each

case has a list of actions that should take place. A CASE construct is differ-

ent from an IF/ELSIF because a case correlates one unique value of an ob-

ject with a set of actions. Recall that an IF/ELSIF correlates a set of actions

with a true statement. There can be only one match for a CASE statement.

An IF/ELSIF can have more than one statement that is true, but will THEN

perform the action associated with the first true statement it evaluates.

Another important point in the examples that follow is the need to com-

bine several independent variables into a set of bits, called a bit vector.

Recall that this action of linking several bits in a particular order is called

concatenation. It allows us to consider the bit pattern as an ordered group.

190 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

ENTITY fig4_59 IS

PORT(digital_value:IN INTEGER RANGE 0 TO 15; -- declare 4-bit input

too_cold, just_right, too_hot :OUT BIT);

END fig4_59 ;

ARCHITECTURE howhot OF fig4_59 IS

SIGNAL status :BIT_VECTOR (2 downto 0);

BEGIN

PROCESS (digital_value)

BEGIN

IF (digital_value <= 8) THEN status <= "100";

ELSIF (digital_value > 8 AND digital_value < 11) THEN

status <= "010";

ELSE status <= "001";

END IF;

END PROCESS ;

too_cold <= status(2); -- assign status bits to output

just_right <= status(1);

too_hot <= status(0);

END howhot;

FIGURE 4-59 Temperature range example in VHDL using ELSIF.

CASE USING AHDL
The AHDL example in Figure 4-60 demonstrates a case construct imple-

menting the circuit of Figure 4-9 (see also Table 4-3). It uses individual bits

as its inputs. In the first statement after BEGIN, these bits are concatenated

and assigned to the intermediate variable called status. The CASE state-

ment evaluates the variable status and finds the bit pattern (following the

keyword WHEN) that matches the value of status. It then performs the ac-

tion described following �>. In this example, it simply assigns logic 0 to the

output for each of the three specified cases. All other cases result in a logic

1 on the output.

A
H

D
L

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 190

CASE USING VHDL
The VHDL example in Figure 4-61 demonstrates the case construct imple-

menting the circuit of Figure 4-9 (see also Table 4-3). It uses individual bits

as its inputs. In the first statement after BEGIN, these bits are concatenated

and assigned to the intermediate variable called status using the & operator.

The CASE statement evaluates the variable status and finds the bit pattern

(following the keyword WHEN) that matches the value of status. It then per-

forms the action described following �>. In this simple example, it merely

assigns logic 0 to the output for each of the three specified cases. All other
cases result in a logic 1 on the output.

SECTION 4-17/DECISION CONTROL STRUCTURES IN HDL 191

SUBDESIGN fig4_60

(

p, q, r :INPUT; -- define inputs to block

s :OUTPUT; -- define outputs

)

VARIABLE

status[2..0] :NODE;

BEGIN

status[]= (p, q, r); -- link input bits in order

CASE status[] IS

WHEN b"100" => s = GND;

WHEN b"101" => s = GND;

WHEN b"110" => s = GND;

WHEN OTHERS => s = VCC;

END CASE;

END;

FIGURE 4-60 Figure 4-9

represented in AHDL.

V
H

D
L

FIGURE 4-61 Figure 4-9

represented in VHDL. ENTITY fig4_61 IS

PORT(p, q, r :IN bit; --declare 3 bits input

s :OUT BIT);

END fig4_61;

ARCHITECTURE copy OF fig4_61 IS

SIGNAL status :BIT_VECTOR (2 downto 0);

BEGIN

status <= p & q & r; --link bits in order.

PROCESS (status)

BEGIN

CASE status IS

WHEN "100" => s <= '0';

WHEN "101" => s <= '0';

WHEN "110" => s <= '0';

WHEN OTHERS => s <= '1';

END CASE;

END PROCESS;

END copy;

TOCCMC04_0131725793.QXD 12/5/05 8:06 PM Page 191

192 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

Insert Coin
Logic Circuit

Q

cents[4..0]

Five-bit array
representing coin
valueD

NNickel

Dime

Quarter

FIGURE 4-62 A coin

detector circuit for a

vending machine.

EXAMPLE 4-34 A coin detector in a vending machine accepts quarters, dimes, and nickels

and activates the corresponding digital signal (Q, D, N) only when the correct

coin is present. It is physically impossible for multiple coins to be present at

the same time. A digital circuit must use the Q, D, and N signals as inputs and

produce a binary number representing the value of the coin as shown in

Figure 4-62. Write the AHDL and VHDL code.

Solution

This is an ideal application of the CASE construct to describe the correct op-

eration. The outputs must be declared as five-bit numbers in order to repre-

sent up to 25 cents. Figure 4-63 shows the AHDL solution and Figure 4-64

shows the VHDL solution.

SUBDESIGN fig4_63
(

q, d, n :INPUT; -- define quarter, dime, nickel
cents[4..0] :OUTPUT; -- define binary value of coins

)
BEGIN

CASE (q, d, n) IS -- group coins in an ordered set
WHEN b"001" => cents[] = 5;
WHEN b"010" => cents[] = 10;
WHEN b"100" => cents[] = 25;
WHEN others => cents[] = 0;

END CASE;
END;

ENTITY fig4_64 IS
PORT(q, d, n:IN BIT; -- quarter, dime, nickel

cents :OUT INTEGER RANGE 0 TO 25); -- binary value of coins
END fig4_64;
ARCHITECTURE detector of fig4_64 IS

SIGNAL coins :BIT_VECTOR(2 DOWNTO 0);-- group the coin sensors
BEGIN

coins <= (q & d & n); -- assign sensors to group
PROCESS (coins)

BEGIN
CASE (coins) IS

WHEN "001" => cents <= 5;
WHEN "010" => cents <= 10;
WHEN "100" => cents <= 25;
WHEN others => cents <= 0;

END CASE;
END PROCESS;

END detector;

FIGURE 4-64 A VHDL coin detector.

FIGURE 4-63 An AHDL coin detector.

A
H

D
L

V
H

D
L

TOCCMC04_0131725793.QXD 12/16/2005 3:50 PM Page 192

SUMMARY
1. The two general forms for logic expressions are the sum-of-products form

and the product-of-sums form.

2. One approach to the design of a combinatorial logic circuit is to (1) con-

struct its truth table, (2) convert the truth table to a sum-of-products

expression, (3) simplify the expression using Boolean algebra or K map-

ping, (4) implement the final expression.

3. The K map is a graphical method for representing a circuit’s truth table

and generating a simplified expression for the circuit output.

4. An exclusive-OR circuit has the expression Its output x
will be HIGH only when inputs A and B are at opposite logic levels.

5. An exclusive-NOR circuit has the expression Its output x
will be HIGH only when inputs A and B are at the same logic level.

6. Each of the basic gates (AND, OR, NAND, NOR) can be used to enable or

disable the passage of an input signal to its output.

7. The main digital IC families are the TTL and CMOS families. Digital ICs

are available in a wide range of complexities (gates per chip), from the

basic to the high-complexity logic functions.

8. To perform basic troubleshooting requires—at a minimum—an under-

standing of circuit operation, a knowledge of the types of possible faults,

a complete logic-circuit connection diagram, and a logic probe.

9. A programmable logic device (PLD) is an IC that contains a large num-

ber of logic gates whose interconnections can be programmed by the

user to generate the desired logic relationship between inputs and

outputs.

10. To program a PLD, you need a development system that consists of a

computer, PLD development software, and a programmer fixture that

does the actual programming of the PLD chip.

11. The Altera system allows convenient hierarchical design techniques us-

ing any form of hardware description.

12. The type of data objects must be specified so that the HDL compiler

knows the range of numbers to be represented.

13. Truth tables can be entered directly into the source file using the fea-

tures of HDL.

14. Logical control structures such as IF, ELSE, and CASE can be used to de-

scribe the operation of a logic circuit, making the code and the problem’s

solution much more straightforward.

x = A B + AB.

x = AB + AB.

SUMMARY 193

REVIEW QUESTIONS 1. Which control structure decides to do or not to do?

2. Which control structure decides to do this or to do that?

3. Which control structure(s) decides which one of several different actions

to take?

4. Declare an input named count that can represent a numeric quantity as

big as 205. Use AHDL or VHDL.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 193

IMPORTANT TERMS

194 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

sum-of-products

(SOP)

product-of-sums

(POS)

Karnaugh map

(K map)

looping

don’t-care condition

exclusive-OR (XOR)

exclusive-NOR

(XNOR)

parity generator

parity checker

enable/disable

dual-in-line package

(DIP)

SSI, MSI, LSI,VLSI,

ULSI, GSI

transistor-transistor

logic (TTL)

complementary

metal-oxide-

semiconductor

(CMOS)

indeterminate

floating

logic probe

contention

programmer

ZIF socket

JEDEC

JTAG

hierarchical design

top-down

test vectors

literals

bit array

bit vector

BIT_VECTOR

index

integer

objects

libraries

macrofunction

STD_LOGIC

STD_LOGIC_

VECTOR

concatenate

selected signal

assignment

decision control

structure

concurrent

sequential

IF/THEN

ELSE

PROCESS

sensitivity list

ELSIF

CASE

PROBLEMS
SECTIONS 4-2 AND 4-3

4-1.*Simplify the following expressions using Boolean algebra.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

4-2. Simplify the circuit of Figure 4-65 using Boolean algebra.

x = AB(CD) + ABD + B C D

y = (C + D) + ACD + AB C + A BCD + ACD

z = (B + C)(B + C) + A + B + C

x = A B C + ABC + ABC + A B C + ABC

q = RST(R + S + T)

w = ABC + ABC + A

y = (Q + R)(Q + R)

x = ABC + AC

B

B

*Answers to problems marked with an asterisk can be found in the back of the text.

M

x

N
Q

FIGURE 4-65 Problems

4-2 and 4-3.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 194

4-3.*Change each gate in Problem 4-2 to a NOR gate, and simplify the cir-

cuit using Boolean algebra.

SECTION 4-4

4-4.*Design the logic circuit corresponding to the truth table shown in

Table 4-11.

PROBLEMS 195

B

B, D

B, D

D

D

D

TABLE 4-11
A B C x

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

4-5. Design a logic circuit whose output is HIGH only when a majority of

inputs A, B, and C are LOW.

4-6. A manufacturing plant needs to have a horn sound to signal quitting

time. The horn should be activated when either of the following con-

ditions is met:

1. It’s after 5 o’clock and all machines are shut down.

2. It’s Friday, the production run for the day is complete, and all ma-

chines are shut down.

Design a logic circuit that will control the horn. (Hint: Use four logic

input variables to represent the various conditions; for example, in-

put A will be HIGH only when the time of day is 5 o’clock or later.)

4-7.*A four-bit binary number is represented as A3A2A1A0, where A3, A2,

A1, and A0 represent the individual bits and A0 is equal to the LSB.

Design a logic circuit that will produce a HIGH output whenever the

binary number is greater than 0010 and less than 1000.

4-8. Figure 4-66 shows a diagram for an automobile alarm circuit used to

detect certain undesirable conditions. The three switches are used to

+5 V

+5 V

Door

Ignition

+5 V

LED

Open

Closed

ON

OFF

+5 V

LightsON

OFF

Logic
circuit

Alarm

FIGURE 4-66 Problem

4-8.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 195

indicate the status of the door by the driver’s seat, the ignition, and

the headlights, respectively. Design the logic circuit with these three

switches as inputs so that the alarm will be activated whenever either

of the following conditions exists:

■ The headlights are on while the ignition is off.

■ The door is open while the ignition is on.

4-9.*Implement the circuit of Problem 4-4 using all NAND gates.

4-10. Implement the circuit of Problem 4-5 using all NAND gates.

SECTION 4-5

4-11. Determine the minimum expression for each K map in Figure 4-67.

Pay particular attention to step 5 for the map in (a).

196 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

B

AB

AB

AB

AB

CD CD CD CD

(a)*

AB

AB

AB

AB

CD CD CD CD

(b)

1 1

0 0

1 0

1 X

AB

AB

AB

AB

C C

(c)

1 1 1 1

1 1 0 0

0 0 0 1

0 0 1 1

1 0 1 1

1 0 0 1

0 0 0 0

1 0 1 1

FIGURE 4-67 Problem

4-11.

4-12. For the truth table below, create a K map, group terms, and sim-

plify.Then look at the truth table again to see if the expression is true

for every entry in the table.

A B y

0 0 1

0 1 1

1 0 0

1 1 0

4-13. Starting with the truth table in Table 4-11, use a K map to find the

simplest SOP equation.

4-14. Simplify the expression in (a)* Problem 4-1(e) using a K map.

(b) Problem 4-1(g) using a K map. (c)* Problem 4-1(h) using a K map.

4-15.*Obtain the output expression for Problem 4-7 using a K map.

4-16. Figure 4-68 shows a BCD counter that produces a four-bit output rep-

resenting the BCD code for the number of pulses that have been ap-

plied to the counter input. For example, after four pulses have

occurred, the counter outputs are DCBA � 01002 � 410. The counter

resets to 0000 on the tenth pulse and starts counting over again. In

other words, the DCBA outputs will never represent a number greater

than 10012 � 910.

(a)*Design the logic circuit that produces a HIGH output whenever

the count is 2, 3, or 9. Use K mapping and take advantage of the

don’t-care conditions.

(b) Repeat for x � 1 when DCBA � 3, 4, 5, 8.

2 * 2B

B

B

C, D

B

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 196

4-17.*Figure 4-69 shows four switches that are part of the control circuitry

in a copy machine. The switches are at various points along the path

of the copy paper as the paper passes through the machine. Each

switch is normally open, and as the paper passes over a switch, the

switch closes. It is impossible for switches SW1 and SW4 to be closed

at the same time. Design the logic circuit to produce a HIGH output

whenever two or more switches are closed at the same time. Use K

mapping and take advantage of the don’t-care conditions.

PROBLEMS 197

D (MSB)

C

B

A

X HIGH only when
DCBA = 210 , 310, or 910

BCD
counter

Logic
circuit

FIGURE 4-68 Problem

4-16.

+5 V

SW4

+5 V

SW3

+5 V

SW2

+5 V

SW1

Logic
circuit

x HIGH whenever
two or more switches

are closed*

*SW1 and SW4 will never
be closed at the same time

FIGURE 4-69 Problem

4-17.

B

A

X

1

0

1

0

Time

FIGURE 4-70 Problem

4-20.

D

B

B

C

4-18. Example 4-3 demonstrated algebraic simplification. Step 3 resulted in

the SOP equation Use a K map to

prove that this equation can be simplified further than the answer

shown in the example.

4-19. Use Boolean algebra to arrive at the same result obtained by the K

map method of Problem 4-18.

SECTION 4-6

4-20. (a) Determine the output waveform for the circuit of Figure 4-70.

(b) Repeat with the B input held LOW.

(c) Repeat with B held HIGH.

z = A BC + ACD + ABC D + ABC.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 197

4-21.*Determine the input conditions needed to produce x � 1 in Figure

4-71.

198 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

B

B

B

B

B

C

B

A

X

FIGURE 4-71 Problem

4-21.

y0

LSB
Relative

magnitude
detectorBinary

number
y

Binary
number

x

M { x = y }

N { x > y }

P { x < y }
LSB

y1

y2

x0

x1

x2

FIGURE 4-72 Problem

4-25.

4-22. Design a circuit that produces a HIGH out only when all three inputs

are the same level.

(a) Use a truth table and K map to produce the SOP solution.

(b) Use two-input XOR and other gates to find a solution. (Hint:
Recall the transitive property from algebra. . . if a � b and b � c
then a � c.)

4-23.*A 7486 chip contains four XOR gates. Show how to make an XNOR

gate using only a 7486 chip. Hint: See Example 4-16.

4-24.*Modify the circuit of Figure 4-23 to compare two four-bit numbers and

produce a HIGH output when the two numbers match exactly.

4-25. Figure 4-72 represents a relative-magnitude detector that takes two

three-bit binary numbers, x2x1x0 and y2y1y0, and determines whether

they are equal and, if not, which one is larger.There are three outputs,

defined as follows:

1. M � 1 only if the two input numbers are equal.

2. N � 1 only if x2x1x0 is greater than y2y1y0.

3. P � 1 only if y2y1y0 is greater than x2x1x0.

Design the logic circuitry for this detector. The circuit has six inputs

and three outputs and is therefore much too complex to handle using

the truth-table approach. Refer to Example 4-17 as a hint about how

you might start to solve this problem.

MORE DESIGN PROBLEMS

4-26.*Figure 4-73 represents a multiplier circuit that takes two-bit binary

numbers, x1x0 and y1y0, and produces an output binary number

z3z2z1z0 that is equal to the arithmetic product of the two input num-

bers. Design the logic circuit for the multiplier. (Hint: The logic circuit

will have four inputs and four outputs.)

C, D

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 198

4-27. A BCD code is being transmitted to a remote receiver. The bits are A3,

A2, A1, and A0, with A3 as the MSB. The receiver circuitry includes a

BCD error detector circuit that examines the received code to see if it

is a legal BCD code (i.e., ≤1001). Design this circuit to produce a HIGH

for any error condition.

4-28.*Design a logic circuit whose output is HIGH whenever A and B are

both HIGH as long as C and D are either both LOW or both HIGH. Try

to do this without using a truth table. Then check your result by con-

structing a truth table from your circuit to see if it agrees with the

problem statement.

4-29. Four large tanks at a chemical plant contain different liquids being

heated. Liquid-level sensors are being used to detect whenever the level

in tank A or tank B rises above a predetermined level. Temperature

sensors in tanks C and D detect when the temperature in either of these

tanks drops below a prescribed temperature limit. Assume that the

liquid-level sensor outputs A and B are LOW when the level is satisfac-

tory and HIGH when the level is too high. Also, the temperature-sensor

outputs C and D are LOW when the temperature is satisfactory and

HIGH when the temperature is too low. Design a logic circuit that will

detect whenever the level in tank A or tank B is too high at the same

time that the temperature in either tank C or tank D is too low.

4-30.*Figure 4-74 shows the intersection of a main highway with a second-

ary access road. Vehicle-detection sensors are placed along lanes C
and D (main road) and lanes A and B (access road). These sensor

PROBLEMS 199

D

D

D

C, D

x1

x0

y1

y0 z0

z1

z2

z3

MSB

LSBLSB

LSB Multiplier
 circuit

FIGURE 4-73 Problem

4-26.

D

B

A

C

S

N

W E

FIGURE 4-74 Problem

4-30.

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 199

outputs are LOW (0) when no vehicle is present and HIGH (1) when a

vehicle is present. The intersection traffic light is to be controlled ac-

cording to the following logic:

1. The east-west (E-W) traffic light will be green whenever both
lanes C and D are occupied.

2. The E-W light will be green whenever either C or D is occupied

but lanes A and B are not both occupied.

3. The north-south (N-S) light will be green whenever both lanes A
and B are occupied but C and D are not both occupied.

4. The N-S light will also be green when either A or B is occupied

while C and D are both vacant.

5. The E-W light will be green when no vehicles are present.

Using the sensor outputs A, B, C, and D as inputs, design a logic circuit

to control the traffic light. There should be two outputs, N-S and E-W,

that go HIGH when the corresponding light is to be green. Simplify

the circuit as much as possible and show all steps.

SECTION 4-7

4-31. Redesign the parity generator and checker of Figure 4-25 to (a) oper-

ate using odd parity. (Hint: What is the relationship between an odd-

parity bit and an even-parity bit for the same set of data bits?) (b)

Operate on eight data bits.

SECTION 4-8

4-32. (a) Under what conditions will an OR gate allow a logic signal to pass

through to its output unchanged?

(b) Repeat (a) for an AND gate.

(c) Repeat for a NAND gate.

(d) Repeat for a NOR gate.

4-33.*(a) Can an INVERTER be used as an enable/disable circuit?

Explain.

(b) Can an XOR gate be used as an enable/disable circuit? Explain.

4-34. Design a logic circuit that will allow input signal A to pass through to

the output only when control input B is LOW while control input C is

HIGH; otherwise, the output is LOW.

4-35.*Design a circuit that will disable the passage of an input signal only

when control inputs B, C, and D are all HIGH; the output is to be

HIGH in the disabled condition.

4-36. Design a logic circuit that controls the passage of a signal A according

to the following requirements:

1. Output X will equal A when control inputs B and C are the same.

2. X will remain HIGH when B and C are different.

4-37. Design a logic circuit that has two signal inputs, A1 and A0, and a con-

trol input S so that it functions according to the requirements given in

Figure 4-75. (This type of circuit is called a multiplexer and will be cov-

ered in Chapter 9.)

200 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

D

D

D

D

D

B

B

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 200

4-38.*Use K mapping to design a circuit to meet the requirements of

Example 4-17. Compare this circuit with the solution in Figure 4-23.

This points out that the K-map method cannot take advantage of the

XOR and XNOR gate logic. The designer must be able to determine

when these gates are applicable.

SECTIONS 4-9 TO 4-13

4-39. (a) A technician testing a logic circuit sees that the output of a par-

ticular INVERTER is stuck LOW while its input is pulsing. List as

many possible reasons as you can for this faulty operation.

(b) Repeat part (a) for the case where the INVERTER output is stuck

at an indeterminate logic level.

4-40.*The signals shown in Figure 4-76 are applied to the inputs of the circuit

of Figure 4-32. Suppose that there is an internal open circuit at Z1-4.

(a) What will a logic probe indicate at Z1-4?

(b) What dc voltage reading would you expect at Z1-4? (Remember

that the ICs are TTL.)

(c) Sketch what you think the and signals will

look like.

(d) Instead of the open at Z1-4, suppose that pins 9 and 10 of Z2

are internally shorted. Sketch the probable signals at Z2-10,

and SHIFTOUT.CLOCKOUT,

SHIFTOUTCLKOUT

PROBLEMS 201

T*

T

T

T

T

S
0
1

z
= A0
= A1

S

z

A0

Multiplexer

A1

FIGURE 4-75 Problem

4-37.

CLOCK

LOAD

SHIFT

FIGURE 4-76 Problem

4-40.

4-41. Assume that the ICs in Figure 4-32 are CMOS. Describe how the cir-

cuit operation would be affected by an open circuit in the conductor

connecting Z2-2 and Z2-10.

4-42. In Example 4-24, we listed three possible faults for the situation of

Figure 4-36. What procedure would you follow to determine which of

the faults is the actual one?

4-43.*Refer to the circuit of Figure 4-38. Assume that the devices are CMOS.

Also assume that the logic probe indication at Z2-3 is “indeterminate”

*Recall that T indicates a troubleshooting exercise.

D

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 201

rather than “pulsing.” List the possible faults, and write a procedure to

follow to determine the actual fault.

4-44.*Refer to the logic circuit of Figure 4-41. Recall that output Y is sup-

posed to be HIGH for either of the following conditions:

1. A � 1, B � 0, regardless of C

2. A � 0, B � 1, C � 1

When testing the circuit, the technician observes that Y goes HIGH

only for the first condition but stays LOW for all other input condi-

tions. Consider the following list of possible faults. For each one, write

yes or no to indicate whether or not it could be the actual fault.

Explain your reasoning for each no response.

(a) An internal short to ground at Z2-13

(b) An open circuit in the connection to Z2-13

(c) An internal short to VCC at Z2-11

(d) An open circuit in the VCC connection to Z2

(e) An internal open circuit at Z2-9

(f) An open in the connection from Z2-11 to Z2-9

(g) A solder bridge between pins 6 and 7 of Z2

4-45. Develop a procedure for isolating the fault that is causing the mal-

function described in Problem 4-44.

4-46.*Assume that the gates in Figure 4-41 are all CMOS. When the techni-

cian tests the circuit, he finds that it operates correctly except for the

following conditions:

1. A � 1, B � 0, C � 0

2. A � 0, B � 1, C � 1

For these conditions, the logic probe indicates indeterminate levels at

Z2-6, Z2-11, and Z2-8. What do you think is the probable fault in the

circuit? Explain your reasoning.

4-47. Figure 4-77 is a combinational logic circuit that operates an alarm in a

car whenever the driver and/or passenger seats are occupied and the

seatbelts are not fastened when the car is started.The active-HIGH sig-

nals DRIV and PASS indicate the presence of the driver and passenger,

respectively, and are taken from pressure-actuated switches in the

seats.The signal IGN is active-HIGH when the ignition switch is on.The

signal is active-LOW and indicates that the driver’s seatbelt isBELTD

202 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

11
12

13

6
4

521

7

14

+5 V
PASS

BELTP

6
1

243

DRIV

BELTD

IGN

7

14

+5 V

ALARM

9

10
8

Z1: 74LS04
Z2: 74LS00

Z2

Z2

Z2

Z2

FIGURE 4-77 Problems 4-47, 4-48, and 4-49.

T

T

T

T

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 202

unfastened; is the corresponding signal for the passenger seat-

belt.The alarm will be activated (LOW) whenever the car is started and

either of the front seats is occupied and its seatbelt is not fastened.

(a) Verify that the circuit will function as described.

(b) Describe how this alarm system would operate if Z1-2 were inter-

nally shorted to ground.

(c) Describe how it would operate if there were an open connection

from Z2-6 to Z2-10.

4-48.*Suppose that the system of Figure 4-77 is functioning so that the alarm

is activated as soon as the driver and/or passenger are seated and the

car is started, regardless of the status of the seatbelts.What are the pos-

sible faults? What procedure would you follow to find the actual fault?

4-49.*Suppose that the alarm system of Figure 4-77 is operating so that the

alarm goes on continuously as soon as the car is started, regardless of

the state of the other inputs. List the possible faults and write a pro-

cedure to isolate the fault.

DRILL QUESTIONS ON PLDs (50 THROUGH 55)

4-50.*True or false:

(a) Top-down design begins with an overall description of the entire

system and it specifications.

(b) A JEDEC file can be used as the input file for a programmer.

(c) If an input file compiles with no errors, it means the PLD circuit

will work correctly.

(d) A compiler can interpret code in spite of syntax errors.

(e) Test vectors are used to simulate and test a device.

4-51. What are the % characters used for in the AHDL design file?

4-52. How are comments indicated in a VHDL design file?

4-53. What is a ZIF socket?

4-54.*Name three entry modes used to input a circuit description into PLD

development software.

4-55. What do JEDEC and HDL stand for?

SECTION 4-15

4-56. Declare the following data objects in AHDL or VHDL.

(a)*An array of eight output bits named gadgets.

(b) A single-output bit named buzzer.

(c) A 16-bit numeric input port named altitude.

(d) A single, intermediate bit within a hardware description file named

wire2.

4-57. Express the following literal numbers in hex, binary, and decimal us-

ing the syntax of AHDL or VHDL.

(a)*15210

(b) 10010101002

(c) 3C416

4-58.*The following similar I/O definition is given for AHDL and VHDL.

Write four concurrent assignment statements that will connect the in-

puts to the outputs as shown in Figure 4-78.

BELTP

PROBLEMS 203

T

T

B

B

B

H, B

H, B

H, B

H, B

H, B

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 203

SECTION 4-16

4-59. Modify the AHDL truth table of Figure 4-50 to implement

4-60.*Modify the AHDL design in Figure 4-54 so that z � 1 only when the

digital value is less than 10102.

4-61. Modify the VHDL truth table of Figure 4-51 to implement

4-62.*Modify the VHDL design in Figure 4-55 so that z � 1 only when the

digital value is less than 10102.

4-63. Modify the code of (a) Figure 4-54 or (b) Figure 4-55 such that the out-

put z is LOW only when digital_value is between 6 and 11 (inclusive).

4-64. Modify (a) the AHDL design in Figure 4-60 to implement Table 4-1.

(b) the VHDL design in Figure 4-61 to implement Table 4-1.

4-65.*Write the hardware description design file Boolean equation to im-

plement Example 4-9.

4-66. Write the hardware description design file Boolean equation to im-

plement a four-bit parity generator as shown in Figure 4-25(a).

DRILL QUESTION

4-67. Define each of the following terms.

(a) Karnaugh map

(b) Sum-of-products form

(c) Parity generator

(d) Octet

AB + AC + AB.

AB + AC + AB.

204 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

EMPTY_LIMIT

FULL_LIMIT

PWR_ON

MOTOR_ON

1

0

3

2

Inbits

1

0

3

2

Outbits

FULL_LED

MOTOR

EMPTY_LED

POWER_LED

FIGURE 4-78 Problem

4-58.

H, D

H, D

H, D

H, D

H, D

H, D

B

H, B

SUBDESIGN hw
(

inbits[3..0] :INPUT;

outbits[3..0] :OUTPUT;

)

ENTITY hw IS
PORT (

inbits :IN BIT_VECTOR (3 downto 0);
outbits :OUT BIT_VECTOR (3 downto 0)
);

END hw;

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 204

(e) Enable circuit

(f) Don’t-care condition

(g) Floating input

(h) Indeterminate voltage level

(i) Contention

(j) PLD

(k) TTL

(l) CMOS

MICROCOMPUTER APPLICATIONS

4-68. In a microcomputer, the microprocessor unit (MPU) is always commu-

nicating with one of the following: (1) random-access memory (RAM),

which stores programs and data that can be readily changed; (2) read-

only memory (ROM), which stores programs and data that never

change; and (3) external input/output (I/O) devices such as keyboards,

video displays, printers, and disk drives. As it is executing a program,

the MPU will generate an address code that selects which type of de-

vice (RAM, ROM, or I/O) it wants to communicate with. Figure 4-79

shows a typical arrangement where the MPU outputs an eight-bit ad-

dress code A15 through A8. Actually, the MPU outputs a 16-bit address

code, but the low-order bits A7 through A0 are not used in the device

selection process. The address code is applied to a logic circuit that

uses it to generate the device select signals: and I/O.ROM,RAM,

PROBLEMS 205

C

C, D

RAM

I/O

ROM

MPU

A15
A14
A13
A12

A11

A10

A9

A8

FIGURE 4-79 Problem

4-68.

Analyze this circuit and determine the following.

(a)*The range of addresses A15 through A8 that will activate

(b) The range of addresses that activate

(c) The range of addresses that activate

Express the addresses in binary and hexadecimal. For example, the

answer to (a) is A15 to A8 � 000000002 to 111011112 � 0016 to EF16.

4-69. In some microcomputers, the MPU can be disabled for short periods of

time while another device controls the RAM, ROM, and I/O. During

these intervals, a special control signal is activated by the

MPU and is used to disable (deactivate) the device select logic so that

the and are all in their inactive state. Modify the cir-

cuit of Figure 4-79 so that and will be deactivated

whenever the signal is active, regardless of the state of the ad-

dress code.

DMA
I�OROM,RAM,

I�OROM,RAM,

(DMA)

ROM

I/O

RAM

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 205

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 4-1
1. Only (a) 2. Only (c)

SECTION 4-3
1. Expression (b) is not in sum-of-products form because of the inversion sign over

both the C and D variables (i.e., the term). Expression (c) is not in sum-of-

products form because of the term. 3.

SECTION 4-4
1. 2. Eight

SECTION 4-5
1. x � AB � AC � BC 2. x � A � BCD 3. 4. An input condition

for which there is no specific required output condition; i.e., we are free to make it

0 or 1.

SECTION 4-6
2. A constant LOW 3. No; the available XOR gate can be used as an INVERTER

by connecting one of its inputs to a constant HIGH (see Example 4-16).

SECTION 4-8
1. 2. OR, NAND 3. NAND, NOR

SECTION 4-9
1. DIP 2. SSI, MSI, LSI,VLSI, ULSI, GSI 3. True 4. True 5. 40, 74AC,

74ACT series 6. 0 to 0.8 V; 2.0 to 5.0 V 7. 0 to 1.5 V; 3.5 to 5.0 V 8. As if the

input were HIGH 9. Unpredictably; it may overheat and be destroyed.

10. 74HCT and 74ACT 11. They describe exactly how to interconnect the chips

for laying out the circuit and troubleshooting. 12. Inputs and outputs are

defined, and logical relationships are described.

SECTION 4-11
1. Open inputs or outputs; inputs or outputs shorted to VCC; inputs or outputs

shorted to ground; pins shorted together; internal circuit failures 2. Pins shorted

together 3. For TTL, a LOW; for CMOS, indeterminate 4. Two or more outputs

connected together

SECTION 4-12
1. Open signal lines; shorted signal lines; faulty power supply; output loading

2. Broken wires; poor solder connections; cracks or cuts in PC board; bent or broken

IC pins; faulty IC sockets 3. ICs operating erratically or not at all 4. Logic

level indeterminate

SECTION 4-14
1. Electrically controlled connections are being programmed as open or closed.

2. (4, 1) (2, 2) or (2, 1) (4, 2) 3. (4, 5) (1, 6) or (4, 6) (1, 5)

SECTION 4-15
1. (a) push_buttons[5..0] :INPUT; (b) push_buttons :IN BIT_VECTOR (5 DOWNTO 0),

2. (a) z � push_buttons[5]; (b) z <� push_buttons(5); 3. STD_LOGIC

4. STD_LOGIC_VECTOR

x = A(B { C)

S = P + QR

x = A B CD + A BCD + ABC D

x = A + B + C(M + N)P
ACD

206 CHAPTER 4/COMBINATIONAL LOGIC CIRCUITS

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 206

SECTION 4-16
1. (AHDL) omega[] � (x, y, z); (VHDL) omega <� x & y & z; 2. Using the keyword

TABLE 3. Using selected signal assignments

SECTION 4-17
1. IF/THEN 2. IF/THEN/ELSE 3. CASE or IF/ELSIF

4. (AHDL) count[7..0] :INPUT; (VHDL) count :IN INTEGER RANGE 0 TO 205

ANSWERS TO SECTION REVIEW QUESTIONS 207

TOCCMC04_0131725793.QXD 12/03/2005 12:05 AM Page 207

