
Eighth edition

Design, Implementation, and Management

Peter Rob • carlos coronel

Database
Systems

*
Includes access code
to Web site

Eighth edition

Database Systems

Database Systems: Design, Implementation, and

Management, Eighth Edition, a market-leader for database

texts, gives readers a solid foundation in practical

database design and implementation. The book provides

in-depth coverage of database design, demonstrating

that the key to successful database implementation is in

proper design of databases to fi t within a larger strategic

view of the data environment. Updates for the eighth

edition include additional Unifi ed Modeling Language

coverage, expanded coverage of SQL Server functions, all-

new business intelligence coverage, and added coverage

of data security. With a strong hands-on component that

includes real-world examples and exercises, this book will

help students develop database design skills that have

valuable and meaningful application in the real world.

Features
• Full-color, detailed illustrations, tables, and diagrams enhance com-

prehension and facilitate understanding of more complex concepts.

• Variety of databases in various formats are used to provide readers
with experience in implementation using Microsoft® Access™,
Microsoft® SQL Server™, and Oracle® databases.

• New and updated business vignettes offer insight on the most cur-
rent issues and challenges facing database implementation today.

• Clear, straightforward writing style provides an outstanding balance
of theory and practice.

• Instructor’s Manual includes solutions, suggested discussion mate-
rial, and other resources, giving instructors a complete teaching tool.

About the Authors

Peter Rob has 32 years experience teaching fi le
systems, database systems design, database design,
database applications development, and more.
Peter’s real-world experience includes two years as
a Director of Operations at an aviation charter
company, 20 years as a consultant for hands-on
operations systems analysis/development and
database systems design, and 25 years experience as
a statistical quality control systems analyst and
systems/applications developer.

Carlos Coronel is currently the Lab Director
for the College of Business Computer Labs at
Middle Tennessee State University. He has 26 years
of experience in various fi elds as a Database
Administrator, Network Administrator, Web
Manager, and Technology Specialist, and teaches
courses in Web development, database design and
development, and data communications at the
undergraduate and graduate levels.

Contact us at ct.mis@thomson.com

Visit Thomson Course Technology online at www.course.com

For your lifelong learning needs, www.thomsonlearning.com
Thomson Course Technology is part of the Thomson Learning family of companies—
dedicated to providing innovative approaches to lifelong learning. Thomson is learning.

Eighth
edition

Rob
 Coronel

B

B

D
e
sig

n
, Im

p
le

m
e
n

t
a
t

io
n

, a
n

d
 M

a
n

a
g

e
m

e
n

t

D
a
t
a

b
a

se
 Sy

st
e
m

s

Design, Implementation, and Management

1423902017_cvr_8th.indd 11423902017_cvr_8th.indd 1 11/2/07 9:24:25 AM11/2/07 9:24:25 AM

Part I Database Concepts

Chapter 1 Database Systems

Chapter 2 Data Models

Part II Design Concepts

Chapter 3 The Relational Database Model

Chapter 4 Entity Relationship (ER) Modeling

Chapter 5 Normalization of Database Tables

Chapter 6 Advanced Data Modeling

Part III Advanced Design and Implementation

Chapter 7 Introduction to Structured Query Language (SQL)

Chapter 8 Advanced SQL

Chapter 9 Database Design

Part IV Advanced Database Concepts

Chapter 10 Transaction Management and Concurrency Control

Chapter 11 Database Performance Tuning and Query Optimization

Chapter 12 Distributed Database Management Systems

Chapter 13 Business Intelligence and Data Warehouses

Part V Databases and the Internet

Chapter 14 Database Connectivity and Web Technologies

Part VI Database Administration

Chapter 15 Database Administration and Security

Take a quick look at what’s ahead

Appendix Title

A Designing Databases with Visio Professional: A Tutorial

B The University Lab: Conceptual Design

C The University Lab: Conceptual Design Verifi cation, Logical Design, and Implementation

D Converting the ER Model into a Database Structure

E Comparison of EF Model Notations

F Client/Server Systems

G Object-Oriented Databases

H Unifi ed Modeling Language

I Databases in Electronic Commerce

J Web Database Development with ColdFusion

K The Hierarchical Database Model

L The Network Database Model

Find These Useful

Appendices on the web site, located at

www.course.com/mis/dbs8

1423902017_FrontEnd.indd 11423902017_FrontEnd.indd 1 11/2/07 9:22:14 AM11/2/07 9:22:14 AM

mis titles
Look for these other popular
course technology

View our entire collection of products online at www.course.com/mis.

A Guide to MySQL

by Philip J. Pratt and Mary Z. Last

ISBN: 978-1-4188-3635-1

Oracle 10g: SQL

by Joan Casteel

ISBN: 978-1-4188-3629-0

A Guide to SQL, Seventh Edition

by Philip J. Pratt

ISBN: 978-0-619-21674-0

Oracle 10g Developer:
PL/SQL Programming

by Joan Casteel

ISBN: 978-1-4239-0136-5

Problem-Solving Cases in
Microsoft Access and Excel,
Sixth Annual Edition

by Joseph Brady and Ellen Monk

ISBN: 978-1-4239-0213-3

Guide to Oracle 10g

by Joline Morrison, Mike Morrison,
and Rocky Conrad

ISBN: 978-0-619-21629-0

1423902017_IFC.indd 11423902017_IFC.indd 1 11/2/07 9:15:21 AM11/2/07 9:15:21 AM

DATABASE S YSTEMS

PETER ROB • CARLOS CORONEL

DESIGN, IMPLEMENTATION, AND MANAGEMENT

Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States

C6545_FM_CTP.4c 11/14/07 11:40 AM Page i

Database Systems: Design, Implementation, and Management, Eighth Edition
by Peter Rob and Carlos Coronel

Product Manager:
Kate Hennessy

Developmental Editor:
Deb Kaufmann

Editorial Assistant:
Patrick Frank

Content Project Manager:
Jill Braiewa

Marketing Manager:
Bryant Chrzan

Marketing Specialist:
Vicki Ortiz

Compositor:
GEX Publishing Services

Print Buyer:
Justin Palmeiro

Copy Editor:
Mary Kemper

Proofreader:
Kathy Orrino

Indexer:
Michael Brackney

COPYRIGHT © 2009 Course
Technology

Printed in the United States

1 2 3 4 5 6 7 8 9 QWD 11 10 09 08

For more information, contact Course
Technology, 25 Thomson Place,
Boston, Massachusetts, 02210.

Or find us on the World Wide Web at:
www.course.com

ALL RIGHTS RESERVED. No part
of this work covered by the copyright
hereon may be reproduced or used in
any form or by any means—graphic,
electronic, or mechanical, including
photocopying, recording, taping, Web
distribution, or information storage
and retrieval systems—without the
written permission of the publisher.

For permission to use material from
this text or product, contact us by
Tel (800) 730-2214
Fax (800) 730-2215
www.thomsonrights.com

Disclaimer
Course Technology reserves the right
to revise this publication and make
changes from time to time in its
content without notice.

ISBN-13: 978-1-4239-0201-0
ISBN-10: 1-4239-0201-7

C6545_FM_CTP.4c 11/14/07 11:40 AM Page ii

Dedication
To Anne, who remains my best friend after 46 years of marriage.To our son, Peter William,

who turned out to be the man we hoped he would be and who proved his wisdom by mak-

ing Sheena our treasured daughter-in-law.To Sheena, who stole our hearts so many years

ago.To our grandsons,Adam Lee and Alan Henri, who are growing up to be the fine human

beings their parents are.To my mother-in-law,Nini Fontein, and to the memory of my father-

in-law, Henri Fontein—their life experiences in Europe and Southeast Asia would fill a his-

tory book and they enriched my life by entrusting me with their daughter’s future.To the

memory of my parents, Hendrik and Hermine Rob, who rebuilt their lives after World War

II’s horrors,who did it again after a failed insurgency in Indonesia, and who finally found their

promised land in these United States. And to the memory of Heinz, who taught me daily

lessons about loyalty, uncritical acceptance, and boundless understanding. I dedicate this

book to you, with love.

Peter Rob

To Victoria, my beautiful and wonderful wife of 18 years, who does the hard work of keep-

ing up with me and is a living example of beauty and sweetness.Thanks for being so caring.

To Carlos Anthony, my son, who is his father’s pride, always teaching me new things and

growing up to be an intelligent and talented gentleman.To Gabriela Victoria, my daughter

and the princess of the house,who is growing like a rose and becoming a gracious and beau-

tiful angel.To Christian Javier, our little bundle of joy, who is learning and growing, always

with so much energy and happiness and is like his father in more ways than one.To all my

children, thanks for your laughs, your sweet voices, beautiful smiles, and frequent hugs. I love

you; you are my Divine treasure.To my parents for their sacrifice and encouragement.And

to Smokey, the laziest one in the family, with no cares, no worries, and with all the time in

the world.To all, I dedicate the fruits of many long days and nights.Thanks for your support

and understanding.

Carlos Coronel

D
E

D
I

C
A

T
I

O
N

C6545_FM_CTP.4c 11/14/07 11:40 AM Page iii

BRIEF CONTENTS

IV

PART I: Database Concepts

Chapter 1: Database Systems

Chapter 2: Data Models

PART II: Design Concepts

Chapter 3: The Relational Database Model

Chapter 4: Entity Relationship (ER) Modeling

Chapter 5: Normalization of Database Tables

Chapter 6: Advanced Data Modeling

PART III: Advanced Design and Implementation

Chapter 7: Introduction to Structured Query Language (SQL)

Chapter 8: Advanced SQL

Chapter 9: Database Design

PART IV: Advanced Database Concepts

Chapter 10: Transaction Management and Concurrency Control

Chapter 11: Database Performance Tuning and Query Optimization

Chapter 12: Distributed Database Management Systems

Chapter 13: Business Intelligence and Data Warehouses

PART V: Databases and the Internet

Chapter 14: Database Connectivity and Web Technologies

PART vi: Database Administration

Chapter 15: Database Administration and Security

GLOSSARY

INDEX

C6545_FM_CTP.4c 11/14/07 11:40 AM Page iv

BRIEF CONTENTS

V

The following appendixes and answers to selected questions and problems are included in the Student Online
Companion for this text, found at oc.course.com/mis/dbs8. CoursePort registration and login are required, using
the keycode provided with this book.

Appendix A: Designing Databases with Visio Professional: A Tutorial

Appendix B: The University Lab: Conceptual Design

Appendix C: The University Lab: Conceptual Design Verification, Logical
Design, and Implementation

Appendix D: Converting an ER Model into a Database Structure

Appendix E: Comparison of ER Model Notations

Appendix F: Client/Server Systems

Appendix G: Object-Oriented Databases

Appendix H: Unified Modeling Language (UML)

Appendix I: Databases in Electronic Commerce

Appendix J: Web Database Development with ColdFusion

Appendix K: The Hierarchical Database Model

Appendix L: The Network Database Model

Answers to Selected Questions and Problems

C6545_FM_CTP.4c 11/14/07 11:40 AM Page v

TABLE OF CONTENTS

VI

PART I DATABASE CONCEPTS

Business Vignette: The Relational Revolution 3

Chapter 1 Database Systems 4

1.1 Data vs. Information 5
1.2 Introducing the Database and the DBMS 6

1.2.1 Role and Advantages of the DBMS 7
1.2.2 Types of Databases 8

1.3 Why Database Design Is Important 10
1.4 Historical Roots: Files and File Systems 10
1.5 Problems with File System Data Management 14

1.5.1 Structural and Data Dependence 15
1.5.2 Field Definitions and Naming Conventions 15
1.5.3 Data Redundancy 17

1.6 Database Systems 18
1.6.1 The Database System Environment 19
1.6.2 DBMS Functions 21
1.6.3 Managing the Database System:A Shift in Focus 25

Summary 26
Key Terms 26
Review Questions 27
Problems 27

Chapter 2 Data Models 30

2.1 Data Modeling and Data Models 31
2.2 The Importance of Data Models 31
2.3 Data Model Basic Building Blocks 32
2.4 Business Rules 33

2.4.1 Discovering Business Rules 34
2.4.2 Translating Business Rules into Data Model Components 34

2.5 The Evolution Of Data Models 35
2.5.1 The Hierarchical Model 36
2.5.2 The Network Model 37
2.5.3 The Relational Model 38
2.5.4 The Entity Relationship Model 40
2.5.5 The Object-Oriented (OO) Model 43
2.5.6 The Convergence of Data Models 44
2.5.7 Database Models and the Internet 45
2.5.8 Data Models:A Summary 45

2.6 Degrees of Data Abstraction 48
2.6.1 The External Model 48
2.6.2 The Conceptual Model 50
2.6.3 The Internal Model 51
2.6.4 The Physical Model 52

Summary 53
Key Terms 54
Review Questions 54
Problems 55

C6545_FM_CTP.4c 11/14/07 11:40 AM Page vi

TABLE OF CONTENTS

VII

PART I I DESIGN CONCEPTS

Business Vignette: Database Modeling Supporting Communities 61

Chapter 3 The Relational Database Model 62

3.1 A Logical View of Data 63
3.1.1 Tables and Their Characteristics 63

3.2 Keys 66
3.3 Integrity Rules 71
3.4 Relational Set Operators 72
3.5 The Data Dictionary and the System Catalog 78
3.6 Relationships within the Relational Database 80

3.6.1 The 1:M Relationship 80
3.6.2 The 1:1 Relationship 82
3.6.3 The M:N Relationship 84

3.7 Data Redundancy Revisited 88
3.8 Indexes 90
3.9 Codd’s Relational Database Rules 91
Summary 93
Key Terms 93
Review Questions 94
Problems 96

Chapter 4 Entity Relationship (ER) Modeling 104

4.1 The Entity Relationship Model (ERM) 105
4.1.1 Entities 105
4.1.2 Attributes 105
4.1.3 Relationships 111
4.1.4 Connectivity and Cardinality 111
4.1.5 Existence Dependence 113
4.1.6 Relationship Strength 113
4.1.7 Weak Entities 116
4.1.8 Relationship Participation 118
4.1.9 Relationship Degree 120
4.1.10 Recursive Relationships 122
4.1.11 Associative (Composite) Entities 125

4.2 Developing an ER Diagram 127
4.3 Database Design Challenges: Conflicting Goals 135
Summary 139
Key Terms 139
Review Questions 140
Problems 141

C6545_FM_CTP.4c 11/14/07 11:40 AM Page vii

TABLE OF CONTENTS

VIII

Chapter 5 Normalization of Database Tables 152

5.1 Database Tables and Normalization 153
5.2 The Need for Normalization 153
5.3 The Normalization Process 157

5.3.1 Conversion to First Normal Form 158
5.3.2 Conversion to Second Normal Form 161
5.3.3 Conversion to Third Normal Form 163

5.4 Improving the Design 164
5.5 Surrogate Key Considerations 168
5.6 Higher-Level Normal Forms 169

5.6.1 The Boyce-Codd Normal Form (BCNF) 170
5.6.2 Fourth Normal Form (4NF) 173

5.7 Normalization and Database Design 174
5.8 Denormalization 178
Summary 182
Key Terms 184
Review Questions 184
Problems 185

Chapter 6 ADVANCED DATA MODELING 193

6.1 The Extended Entity Relationship Model 194
6.1.1 Entity Supertypes and Subtypes 194
6.1.2 Specialization Hierarchy 195
6.1.3 Inheritance 196
6.1.4 Subtype Discriminator 197
6.1.5 Disjoint and Overlapping Constraints 197
6.1.6 Completeness Constraint 199
6.1.7 Specialization and Generalization 199

6.2 Entity Clustering 200
6.3 Entity Integrity: Selecting Primary Keys 201

6.3.1 Natural Keys and Primary Keys 202
6.3.2 Primary Key Guidelines 202
6.3.3 When to Use Composite Primary Keys 203
6.3.4 When to Use Surrogate Primary Keys 204

6.4 Design Cases: Learning Flexible Database Design 206
6.4.1 Design Case #1: Implementing 1:1 Relationships 206
6.4.2 Design Case #2: Maintaining History of Time-Variant Data 207
6.4.3 Design Case #3: Fan Traps 209
6.5.4 Design Case #4: Redundant Relationships 210

6.5 Data Modeling Checklist 211
Summary 213
Key Terms 213
Review Questions 214
Problems 214

C6545_FM_CTP.4c 11/14/07 11:40 AM Page viii

TABLE OF CONTENTS

IX

PART I I I ADVANCED DESIGN AND IMPLEMENTATION

Business Vignette: Using Queries to Score Runs 223

Chapter 7 Introduction to Structured Query Language (SQL) 224

7.1 Introduction to SQL 225
7.2 Data Definition Commands 226

7.2.1 The Database Model 227
7.2.2 Creating the Database 229
7.2.3 The Database Schema 229
7.2.4 Data Types 230
7.2.5 Creating Table Structures 232
7.2.6 SQL Constraints 235
7.2.7 SQL Indexes 239

7.3 Data Manipulation Commands 240
7.3.1 Adding Table Rows 240
7.3.2 Saving Table Changes 242
7.3.3 Listing Table Rows 242
7.3.4 Updating Table Rows 244
7.3.5 Restoring Table Contents 244
7.3.6 Deleting Table Rows 245
7.3.7 Inserting Table Rows with a Select Subquery 245

7.4 SELECT Queries 247
7.4.1 Selecting Rows with Conditional Restrictions 247
7.4.2 Arithmetic Operators: The Rule of Precedence 251
7.4.3 Logical Operators: AND, OR, and NOT 251
7.4.4 Special Operators 253

7.5 Advanced Data Definition Commands 257
7.5.1 Changing a Column’s Data Type 257
7.5.2 Changing a Column’s Data Characteristics 257
7.5.3 Adding a Column 258
7.5.4 Dropping a Column 258
7.5.5 Advanced Data Updates 259
7.5.6 Copying Parts of Tables 261
7.5.7 Adding Primary and Foreign Key Designations 262
7.5.8 Deleting a Table from the Database 263

7.6 Advanced SELECT Queries 263
7.6.1 Ordering a Listing 263
7.6.2 Listing Unique Values 265
7.6.3 Aggregate Functions 265
7.6.4 Grouping Data 270

7.7 Virtual Tables: Creating a View 273
7.8 Joining Database Tables 274

7.8.1 Joining Tables with an Alias 277
7.8.2 Recursive Joins 277
7.8.3 Outer Joins 278

Summary 280
Key Terms 281
Review Questions 281
Problems 285

C6545_FM_CTP.4c 11/14/07 11:40 AM Page ix

TABLE OF CONTENTS

X

Chapter 8 Advanced SQL 297

8.1 Relational Set Operators 298
8.1.1 UNION 299
8.1.2 UNION ALL 300
8.1.3 INTERSECT 301
8.1.4 MINUS 301
8.1.5 Syntax Alternatives 303

8.2 SQL Join Operators 304
8.2.1 Cross Join 306
8.2.2 Natural Join 307
8.2.3 Join USING Clause 308
8.2.4 JOIN ON Clause 309
8.2.5 Outer Joins 310

8.3 Subqueries and Correlated Queries 313
8.3.1 WHERE Subqueries 314
8.3.2 IN Subqueries 315
8.3.3 HAVING Subqueries 316
8.3.4 Multirow Subquery Operators: ANY and ALL 317
8.3.5 FROM Subqueries 318
8.3.6 Attribute List Subqueries 319
8.3.7 Correlated Subqueries 321

8.4 SQL Functions 324
8.4.1 Date and Time Functions 325
8.4.2 Numeric Functions 327
8.4.3 String Functions 328
8.4.4 Conversion Functions 330

8.5 Oracle Sequences 331
8.6 Updatable Views 335
8.7 Procedural SQL 338

8.7.1 Triggers 342
8.7.2 Stored Procedures 351
8.7.3 PL/SQL Processing with Cursors 357
8.7.4 PL/SQL Stored Functions 359

8.8 Embedded SQL 359
Summary 365
Key Terms 366
Review Questions 366
Problems 367

Chapter 9 Database Design 372

9.1 The Information System 373
9.2 The Systems Development Life Cycle (SDLC) 375

9.2.1 Planning 376
9.2.2 Analysis 376
9.2.3 Detailed Systems Design 377
9.2.4 Implementation 377
9.2.5 Maintenance 378

C6545_FM_CTP.4c 11/14/07 11:40 AM Page x

TABLE OF CONTENTS

XI

9.3 The Database Life Cycle (DBLC) 378
9.3.1 The Database Initial Study 379
9.3.2 Database Design 383
9.3.3 Implementation and Loading 397
9.3.4 Testing and Evaluation 401
9.3.5 Operation 401
9.3.6 Maintenance and Evolution 401

9.4 Database Design Strategies 402
9.5 Centralized vs. Decentralized Design 403
Summary 407
Key Terms 407
Review Questions 407
Problems 408

PART IV ADVANCED DATABASE CONCEPTS

Business Vignette: JetBlue’s Database Crisis 411

Chapter 10 Transaction Management and Concurrency Control 412

10.1 What Is a Transaction? 413
10.1.1 Evaluating Transaction Results 414
10.1.2 Transaction Properties 417
10.1.3 Transaction Management with SQL 418
10.1.4 The Transaction Log 418

10.2 Concurrency Control 420
10.2.1 Lost Updates 420
10.2.2 Uncommitted Data 421
10.2.3 Inconsistent Retrievals 422
10.2.4 The Scheduler 423

10.3 Concurrency Control with Locking Methods 424
10.3.1 Lock Granularity 425
10.3.2 Lock Types 428
10.3.3 Two-Phase Locking to Ensure Serializability 429
10.3.4 Deadlocks 430

10.4 Concurrency Control with Time Stamping Methods 431
10.4.1 Wait/Die and Wound/Wait Schemes 432

10.5 Concurrency Control with Optimistic Methods 433
10.6 Database Recovery Management 433

10.6.1 Transaction Recovery 434
Summary 438
Key Terms 439
Review Questions 439
Problems 440

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xi

TABLE OF CONTENTS

XII

chapter 11 DATABASE PERFORMANCE TUNING AND
QUERY OPTIMIZATION 442

11.1 Database Performance-Tuning Concepts 443
11.1.1 Performance Tuning: Client and Server 444
11.1.2 DBMS Architecture 444
11.1.3 Database Statistics 446

11.2 Query Processing 448
11.2.1 SQL Parsing Phase 449
11.2.2 SQL Execution Phase 450
11.2.3 SQL Fetching Phase 450
11.2.4 Query Processing Bottlenecks 450

11.3 Indexes and Query Optimization 451
11.4 Optimizer Choices 453

11.4.1 Using Hints to Affect Optimizer Choices 455
11.5 SQL Performance Tuning 456

11.5.1 Index Selectivity 456
11.5.2 Conditional Expressions 457

11.6 Query Formulation 459
11.7 DBMS Performance Tuning 460
11.8 Query Optimization Example 462
Summary 471
Key Terms 472
Review Questions 472
Problems 473

chapter 12 Distributed Database Management Systems 477

12.1 The Evolution of Distributed Database Management Systems 478
12.2 DDBMS Advantages and Disadvantages 480
12.3 Distributed Processing and Distributed Databases 481
12.4 Characteristics of Distributed Database Management Systems 483
12.5 DDBMS Components 484
12.6 Levels of Data and Process Distribution 485

12.6.1 Single-Site Processing, Single-Site Data (SPSD) 486
12.6.2 Multiple-Site Processing, Single-Site Data (MPSD) 487
12.6.3 Multiple-Site Processing, Multiple-Site Data (MPMD) 488

12.7 Distributed Database Transparency Features 489
12.8 Distribution Transparency 490
12.9 Transaction Transparency 492

12.9.1 Distributed Requests and Distributed Transactions 492
12.9.2 Distributed Concurrency Control 496
12.9.3 Two-Phase Commit Protocol 496

12.10 Performance Transparency and Query Optimization 497
12.11 Distributed Database Design 499

12.11.1 Data Fragmentation 499

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xii

TABLE OF CONTENTS

XIII

12.11.2 Data Replication 503
12.11.3 Data Allocation 505

12.12 Client/Server vs. DDBMS 505
12.13 C. J. Date’s Twelve Commandments for Distributed Databases 506
Summary 508
Key Terms 509
Review Questions 509
Problems 510

chapter 13 Business Intelligence and Data Warehouses 513

13.1 The Need for Data Analysis 514
13.2 Business Intelligence 514
13.3 Business Intelligence Architecture 516
13.4 Decision Support Data 520

13.4.1 Operational Data vs. Decision Support Data 520
13.4.2 Decision Support Database Requirements 523

13.5 The Data Warehouse 525
13.5.1 Decision Support Architectural Styles 528
13.5.2 Twelve Rules that Define a Data Warehouse 528

13.6 Online Analytical Processing 530
13.6.1 Multidimensional Data Analysis Techniques 530
13.6.2 Advanced Database Support 531
13.6.3 Easy-to-Use End-User Interface 532
13.6.4 Client/Server Architecture 532
13.6.5 OLAP Architecture 533
13.6.6 Relational OLAP 537
13.6.7 Multidimensional OLAP 539
13.6.8 Relational vs. Multidimensional OLAP 540

13.7 Star Schemas 541
13.7.1 Facts 541
13.7.2 Dimensions 542
13.7.3 Attributes 542
13.7.4 Attribute Hierarchies 544
13.7.5 Star Schema Representation 546
13.7.6 Performance-Improving Techniques for the Star Schema 548

13.8 Implementing a Data Warehouse 551
13.8.1 The Data Warehouse as an Active Decision Support Framework 551
13.8.2 A Company-Wide Effort That Requires User Involvement 552
13.8.3 Satisfy the Trilogy: Data, Analysis, and Users 552
13.8.4 Apply Database Design Procedures 552

13.9 Data Mining 553
13.10 SQL Extensions For OLAP 556

13.10.1 The ROLLUP Extension 557
13.10.2 The CUBE Extension 558
13.10.3 Materialized Views 559

Summary 564
Key Terms 565
Review Questions 565
Problems 566

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xiii

TABLE OF CONTENTS

XIV

PART V DATABASES AND THE INTERNET

Business Vignette: Casio Upgrades Customer Web Experience 571

Chapter 14 Database Connectivity and Web Technologies 572

14.1 Database Connectivity 573
14.1.1 Native SQL Connectivity 573
14.1.2 ODBC, DAO, and RDO 573
14.1.3 OLE-DB 577
14.1.4 ADO.NET 580
14.1.5 Java Database Connectivity (JDBC) 582

14.2 Internet Databases 583
14.2.1 Web-to-Database Middleware: Server-Side Extensions 584
14.2.2 Web Server Interfaces 586
14.2.3 The Web Browser 587
14.2.4 Client-Side Extensions 589
14.2.5 Web Application Servers 589

14.3 Extensible Markup Language (XML) 590
14.3.1 Document Type Definitions (DTD) and XML Schemas 592
14.3.2 XML Presentation 596
14.3.3 XML Applications 598

Summary 600
Key Terms 601
Review Questions 601
Problems 602

PART VI DATABASE ADMINISTRATION

Business Vignette: Oreck Revises Disaster Recovery Plan After Katrina 605

Chapter 15 Database Administration and Security 606

15.1 Data as a Corporate Asset 607
15.2 The Need for and Role of a Database in an Organization 608
15.3 Introduction of a Database: Special Considerations 609
15.4 The Evolution of the Database Administration Function 610
15.5 The Database Environment’s Human Component 613

15.5.1 The DBA’s Managerial Role 615
15.5.2 The DBA’s Technical Role 620

15.6 Security 626
15.6.1 Security Policies 627
15.6.2 Security Vulnerabilities 627
15.6.3 Database Security 628

15.7 Database Administration Tools 630
15.7.1 The Data Dictionary 630
15.7.2 CASE Tools 632

15.8 Developing a Data Administration Strategy 634

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xiv

TABLE OF CONTENTS

XV

15.9 The DBA at Work: Using Oracle for Database Administration 636
15.9.1 Oracle Database Administration Tools 636
15.9.2 The Default Login 637
15.9.3 Ensuring an Automatic RDBMS Start 638
15.9.4 Creating Tablespaces and Datafiles 639
15.9.5 Managing the Database Objects:Tables,Views,Triggers, and Procedures 641
15.9.6 Managing Users and Establishing Security 642
15.9.7 Customizing the Database Initialization Parameters 644
15.9.8 Creating a New Database 645

Summary 653
Key Terms 654
Review Questions 654
Glossary 657
Index 678

IN THE STUDENT ONLINE COMPANION

The Student Online Companion can be found at oc.course.com/mis/dbs8. CoursePort registration and login
are required, using the keycode provided with this book.

Appendix A Designing Databases with Visio Professional: A Tutorial

Appendix B The University Lab: Conceptual Design

Appendix C The University Lab: Conceptual Design Verification, Logical Design,
and Implementation

Appendix D Converting an ER Model into a Database Structure

Appendix E Comparison of ER Model Notations

Appendix F Client/Server Systems

Appendix G Object-Oriented Databases

Appendix H Unified Modeling Language (UML)

Appendix I Databases in Electronic Commerce

Appendix J Web Database Development with ColdFusion

Appendix K The Hierarchical Database Model

Appendix L The Network Database Model

Answers to Selected Questions and Problems

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xv

PREFACE

XVI

For many reasons, few books survive to reach their eighth edition. Authors and publishers who let the success of their

earlier work produce the comfort of complacency usually pay the price of watching the marketplace dismantle their cre-

ations.This database systems book has been successful through seven editions because we–the authors, editors, and the

publisher–paid attention to the impact of technology and to adopter questions and suggestions. We believe that this

eighth edition successfully reflects the same attention to such stimuli.

In many respects, rewriting a book is more difficult than writing it the first time. If the book is successful, as this one is, a

major concern is that the updates, inserts, and deletions will adversely affect writing style and continuity of coverage. (The

medical profession’s guiding principle comes to mind: First, do no harm.) Naturally, our own experience is a good starting

point, but we also know that authors can develop a proprietary attitude that prevents them from spotting weaknesses or

opportunities for improvement. Fortunately, the efforts of a combination of superb reviewers and editors, in addition to

a wealth of feedback from adopters and students of the previous editions, helped provide the proper guidance and eval-

uation for rewriting.We believe that we have incorporated new material while maintaining the flow, integrity, and writing

style that made the previous seven editions successful.

CHANGES TO THE EIGHTH EDITION

In this eighth edition, we have added some new features and we have reorganized some of the coverage to provide a
better flow of material. Aside from enhancing the already strong database design coverage, we have made other
improvements in the topical coverage. Here are a few of the highlights:

• New and updated Business Vignettes showing the impact of database technologies in the real world

• Additional UML (Unified Modeling Language) examples

• Expanded coverage of SQL Server functions

• Additional coverage on types of indexes used by DBMS

• New business intelligence coverage

• Added coverage on Java Database Connectivity (JDBC)

• Additional data security coverage including security vulnerabilities and measures

This eighth edition continues to provide a solid and practical foundation for the design, implementation, and manage-
ment of database systems. This foundation is built on the notion that, while databases are very practical things, their
successful creation depends on understanding the important concepts that define them. It’s not easy to come up with
the proper mix of theory and practice, but we are grateful that the previously mentioned feedback suggests that we
largely succeeded in our quest to maintain the proper balance.

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xvi

XVII

THE APPROACH: A CONTINUED EMPHASIS ON DESIGN

As the title suggests, Database Systems: Design, Implementation, and Management covers three broad aspects of
database systems. However, for several important reasons, special attention is given to database design.

• The availability of excellent database software enables even database-inexperienced people to create
databases and database applications. Unfortunately, the “create without design” approach usually
paves the road to any number of database disasters. In our experience, many, if not most, database sys-
tem failures are traceable to poor design and cannot be solved with the help of even the best program-
mers and managers. Nor is better DBMS software likely to overcome problems created or magnified by
poor design. Using an analogy, even the best bricklayers and carpenters can’t create a good building
from a bad blueprint.

• Most of the vexing database system management problems seem to be triggered by poorly designed
databases. It hardly seems worthwhile to use scarce resources to develop excellent and extensive data-
base system management skills in order to exercise them on crises induced by poorly designed data-
bases.

• Design provides an excellent means of communication. Clients are more likely to get what they need
when database system design is approached carefully and thoughtfully. In fact, clients may discover
how their organizations really function once a good database design is completed.

• Familiarity with database design techniques promotes one’s understanding of current database tech-
nologies. For example, because data warehouses derive much of their data from operational databases,
data warehouse concepts, structures, and procedures make more sense when the operational data-
base’s structure and implementation are understood.

Because the practical aspects of database design are stressed, we have covered design concepts and procedures in
detail, making sure that the numerous end-of-chapter problems are sufficiently challenging so students can develop real
and useful design skills. We also make sure that students understand the potential and actual conflicts between database
design elegance, information requirements, and transaction processing speed. For example, it makes little sense to
design databases that meet design elegance standards while they fail to meet end-user information requirements.
Therefore, we explore the use of carefully defined trade-offs to ensure that the databases are capable of meeting end-
user requirements while conforming to high design standards.

PREFACE

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xvii

XVIII

TOPICAL COVERAGE

The Systems View
The book’s title begins with Database Systems. Therefore, we examine
the database and design concepts covered in Chapters 1–6 as part of a
larger whole by placing them within the systems analysis framework of
Chapter 9. We believe that database designers who fail to understand
that the database is part of a larger system are likely to overlook impor-
tant database design requirements. In fact, Chapter 9, Database Design,
provides the map for the advanced database design developed in
Appendixes B and C. Within the larger systems framework, we can also
explore issues such as transaction management and concurrency control
(Chapter 10), distributed database management systems (Chapter 12),
business intelligence and data warehouses (Chapter 13), database con-
nectivity and Web technologies (Chapter 14), and database administra-
tion and security (Chapter 15).

Database Design
The first item in the book’s subtitle is Design, and our examination of
database design is comprehensive. For example, Chapters 1 and 2 exam-
ine the development of databases and data models and illustrate the need
for design. Chapter 3 examines the details of the relational database model; Chapter 4 provides extensive, in-depth, and
practical database design coverage; and Chapter 5 is devoted to critical normalization issues that affect database effi-
ciency and effectiveness. Chapter 6 explores advanced database design topics. Chapters 7 and 8 examine database
implementation issues and how the data are accessed through Structured Query Language (SQL). Chapter 9 examines
database design within the systems framework and maps the activities required to successfully design and implement the
complex real-world database developed in Appendixes B and C.

Because database design is affected by real-world transactions, the way
data are distributed, and ever-increasing information requirements, we
examine major database features that must be supported in current-gen-
eration databases and models. For example, Chapter 10, Transaction
Management and Concurrency Control, focuses on the characteristics of
database transactions and how they affect database integrity and consis-
tency. Chapter 11, Database Performance Tuning and Query
Optimization, illustrates the need for query efficiency in a real world that
routinely generates and uses terabyte-sized databases and tables with mil-
lions of records. Chapter 12, Distributed Database Management
Systems, focuses on data distribution, replication, and allocation. In
Chapter 13, Business Intelligence and Data Warehouses, we explore the
characteristics of the databases that are used in decision support and
online analytical processing. Chapter 14, Database Connectivity and
Web Technologies, covers the basic database connectivity issues encoun-
tered in a Web-based data world, and it shows the development of Web-
based database front ends.

PREFACE

PART

I
DATABASE CONCEPTS

1Database Systems

2Data Models

Preview

Database Design

In this chapter, you will learn:

That successful database design must reflect the information system of which the database is
a part

That successful information systems are developed within a framework known as the
Systems Development Life Cycle (SDLC)

That within the information system, the most successful databases are subject to frequent
evaluation and revision within a framework known as the Database Life Cycle (DBLC)

How to conduct evaluation and revision within the SDLC and DBLC frameworks

About database design strategies: top-down vs. bottom-up design and centralized vs.
decentralized design

Databases are a part of a larger picture called an information system. Database designs that

fail to recognize that the database is part of this larger whole are not likely to be successful.

That is, database designers must recognize that the database is a critical means to an end

rather than an end in itself. (Managers want the database to serve their management needs,

but too many databases seem to require that managers alter their routines to fit the

database requirements.)

Information systems don ít j ust happen; they are the product of a carefully staged

development process. Systems analysis is used to determine the need for an information

system and to establish its limits.Within systems analysis, the actual information system is

created through a process known as systems development.

The creation and evolution of information systems follows an iterative pattern called the

Systems Development Life Cycle, a continuous process of creation, maintenance, enhance-

ment, and replacement of the information system. A similar cycle applies to databases.The

database is created, maintained, and enhanced. When even enhancement can no longer

stretch the database’s usefulness and the database can no longer perform its functions

adequately, it might have to be replaced.The Database Life Cycle is carefully traced in this

chapter and is shown in the context of the larger Systems Development Life Cycle.

At the end of the chapter, you are introduced to some classical approaches to database

design: top-down vs. bottom-up and centralized vs. decentralized.

9

N
I

N
E

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xviii

XIX

Implementation
The second portion of the subtitle is Implementation. We use
Structured Query Language (SQL) in Chapters 7 and 8 to show how
databases are implemented and managed. Appendixes B and C demon-
strate the design of a database that was fully implemented and they illus-
trate a wide range of implementation issues. We had to deal with
conflicting design goals: design elegance, information requirements, and
operational speed. Therefore, we carefully audited the initial design
(Appendix B) to check its ability to meet end-user needs and to establish
appropriate implementation protocols. The result of this audit yielded
the final, implementable design developed in Appendix C. The special
issues encountered in an Internet database environment are addressed
in Chapter 14, Database Connectivity and Web Technologies, and in
Appendix J, Web Database Development with ColdFusion.

Management
The final portion of the

subtitle is Management. We deal with database management issues in
Chapter 10, Transaction Management and Concurrency Control;
Chapter 12, Distributed Database Management Systems; and Chapter
15, Database Administration and Security. Chapter 11, Database
Performance Tuning and Query Optimization, is a valuable resource that
illustrates how a DBMS manages the data retrieval operations.

PART

III
Advanced Design and

Implementation

7Introduction to Structured Query
Language (SQL)

8Advanced SQL

9Database Design

PART

VI
Database

Administration

15Database Administration and Security

TEACHING DATABASE: A MATTER OF FOCUS

Given the wealth of detailed coverage, instructors can “mix and match” chapters to produce the desired coverage.
Depending on where database courses fit into the curriculum, instructors may choose to emphasize database design or
database management. (See Figure 1.)

The hands-on nature of database design lends itself particularly well to class projects for which students use instructor-
selected software to prototype a student-designed system for the end user. Several of the end-of-chapter problems are
sufficiently complex to serve as projects, or an instructor may work with local businesses to give students hands-on
experience. Note that some elements of the database design track are also found in the database management track.
This is because it is difficult to manage database technologies that are not understood.

PREFACE

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xix

XX

The options shown in Figure 1 serve only as a starting point. Naturally, instructors will tailor their coverage based on
their specific course requirements. For example, an instructor may decide to make Appendix I an outside reading
assignment and Appendix A a self-taught tutorial, then use that time to cover client/server systems or object-oriented
databases. The latter choice would serve as a gateway to UML coverage.

FIGURE
1

 (1) Database Systems
 (2) Data Models
 (3) The Relational Database Model
 (4) Entity Relationship (ER) Modeling
 (5) Normalization of Database Tables
 (7) An Introduction to Structured Query Language (SQL)

(10) Transaction Management and Concurrency
(11) Database Performance Tuning and Query
(12) Distributed Database Management Systems
(13) Business Intelligence and Data Warehouses
(15) Database Administration and Security
 (F) Client Server Systems
 (G) Object Oriented Databases
 (I) Databases in Electronic Commerce

(9) Database Design
 (A) Designing Databases with Visio Professional
 (D) Converting an ER Model into a Database Structure
 (E) Comparison of ER Model Notations
 (K) The Hierarchical Database Model
 (L) The Network Database Model

(8) Advanced SQL
(9) Database Design
(6) Advanced Data Modeling
 (D) Converting an ER Model into a Database Structure
 (E) Comparison of ER Model Notations
 (H) Unified Modeling Language (UML)
(11) Database Performance Tuning and Query Optimization
(14) Database Connectivity and Web Technologies
 (J) Web Database Development with ColdFusion

 (A) Designing Databases with Visio Professional
 (B) The University Lab: Conceptual Design
 (C) The University Lab: Conceptual Design Verification,
 Logical Design, and Implementation
 (F) Client Server Systems
 (K) The Hierarchical Database Model
 (L) The Network Database Model

Core Coverage

Database Design and Implementation Focus Database Management Focus

Supplementary Reading Supplementary Reading

PREFACE

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xx

XXI

B
V

usiness
ignette

The Relational Revolution

Today, we take for granted the benefits brought to us by relational databases: the ability

to store, access, and change data quickly and easily on low-cost computers.Yet, until the

late 1970s, databases stored large amounts of data in a hierarchical structure that was

difficult to navigate and inflexible. Programmers needed to know what clients wanted to

do with the data before the database was designed.Adding or changing the way the data

was analyzed was a time-consuming and expensive process. As a result, you searched

through huge card catalogs to find a library book, you used road maps that didn’t show

changes made in the last year, and you had to buy a newspaper to find information on

stock prices.

In 1970, Edgar “Ted” Codd, a mathematician employed by IBM, wrote an article that

would change all that. At the time, nobody realized that Codd’s obscure theories would

O n l i n e C o n t e n t

Appendixes A through L are available in the Student Online Companion for this book.

FIGURE
1.9

Illustrating data storage management with Oracle

The ORALAB database is
actually stored in nine
datafiles located on the C:
drive of the database server
computer.

The Oracle DBA Studio
Management interface also
shows the amount of space
used by each of the datafiles
that comprise the single
logical database.

Database Name: ORALAB.MTSU.EDU

The Oracle DBA Studio Administrator GUI shows the data storage
management characteristics for the ORALAB database.

Online Content boxes
draw attention to material
in the Student Online
Companion for this text
and provide ideas for
incorporating this content
into the course.

Business Vignettes
highlight part topics in
a real-life setting.

Note

No naming convention can fit all requirements for all systems. Some words or phrases are reserved for the
DBMS’s internal use. For example, the name ORDER generates an error in some DBMSs. Similarly, your DBMS
might interpret a hyphen (-) as a command to subtract. Therefore, the field CUS-NAME would be interpreted
as a command to subtract the NAME field from the CUS field. Because neither field exists, you would get an
error message. On the other hand, CUS_NAME would work fine because it uses an underscore.

Notes highlight impor-
tant facts about the con-
cepts introduced in the
chapter.

A variety of four-color
figures, including ER
models and implementa-
tions, tables, and illustra-
tions, clearly illustrate
difficult concepts.

TEXT FEATURES

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xxi

TEXT FEATURES

XXII

K e y T e r m s

binary relationship, 120

cardinality, 111

composite attribute, 108

composite identifier, 107

connectivity, 111

derived attribute, 110

existence-dependent, 113

existence-independent, 113

identifiers, 106

identifying relationship, 115

iterative process, 127

mandatory participation, 118

multivalued attribute, 108

non-identifying relationship, 113

optional attribute, 106

optional participation, 118

participants, 111

recursive relationship, 120

relationship degree, 120

required attribute, 105

simple attribute, 108

single-valued attribute, 108

strong relationship, 115

ternary relationship, 120

unary relationship, 120

weak entity, 113

weak relationship, 113

S u m m a r y

The ERM uses ERDs to represent the conceptual database as viewed by the end user. The ERM’s main components
are entities, relationships, and attributes. The ERD also includes connectivity and cardinality notations. An ERD can
also show relationship strength, relationship participation (optional or mandatory), and degree of relationship
(unary, binary, ternary, etc.).

Connectivity describes the relationship classification (1:1, 1:M, or M:N). Cardinality expresses the specific number
of entity occurrences associated with an occurrence of a related entity. Connectivities and cardinalities are usually
based on business rules.

In the ERM, a M:N relationship is valid at the conceptual level. However, when implementing the ERM in a
relational database, the M:N relationship must be mapped to a set of 1:M relationships through a composite entity.

R e v i e w Q u e s t i o n s

1. What two conditions must be met before an entity can be classified as a weak entity? Give an example of a
weak entity.

2. What is a strong (or identifying) relationship, and how is it depicted in a Crow’s Foot ERD?

3. Given the business rule “an employee may have many degrees,” discuss its effect on attributes, entities, and
relationships. (Hint: Remember what a multivalued attribute is and how it might be implemented.)

4. What is a composite entity, and when is it used?

5. Suppose you are working within the framework of the conceptual model in Figure Q4.5.

P r o b l e m s

1. Given the following business rules, create the appropriate Crow’s Foot ERD.

a. A company operates many departments.

b. Each department employs one or more employees.

c. Each of the employees may or may not have one or more dependents.

d. Each employee may or may not have an employment history.

2. The Hudson Engineering Group (HEG) has contacted you to create a conceptual model whose application will
meet the expected database requirements for the company’s training program. The HEG administrator gives you

A robust Summary at
the end of each chap-
ter ties together the
major concepts and
serves as a quick
review for students.

Review Questions
challenge students to
apply the skills learned
in each chapter.

Problems become
progressively more
complex as students
draw on the lessons
learned from the com-
pletion of preceding
problems.

An alphabetic list of
Key Terms points to
the pages where terms
are first explained.

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xxii

STUDENT COMPANION WEB SITE

XXIII

CoursePort provides a central location from which you can access Course Technology’s online learning solutions with
convenience and flexibility. You can:

• Gain access to online resources including robust Student Online Companion Web sites.

• Simplify your coursework by reducing human error and the need to keep track of multiple passwords.

• Take advantage of CoursePort’s tailored services including personalized homepages.

See the insert card at the back of this book for instructions on how to access this text’s CoursePort site.

This Web resource, which you will find referenced throughout the book in the Online Content boxes, includes the fol-
lowing features:

Appendixes

Twelve appendixes provide additional material on a variety of important areas, such as using Microsoft® Visio®, ER
model notations, UML, object-oriented databases, databases and electronic commerce, and Adobe® ColdFusion®.

Answers to Selected Questions and Problems

The authors have provided answers to selected Review Questions and Problems from each chapter to help students
check their comprehension of chapter content and database skills.

Database, SQL Script, and ColdFusion Files

The Student Online Companion includes all of the database structures and table contents used in the text. For students
using Oracle® and Microsoft SQL ServerTM, the SQL scripts to create and load all tables used in the SQL chapters
(7 and 8) are included. In addition, all ColdFusion scripts used to develop the Web interfaces shown Appendix J are
included.

Video Tutorials

Custom-made video tutorials by Peter Rob and Carlos Coronel, exclusive to this textbook, provide clear explanations
of the essential concepts presented in the book. These unique tutorials will help the user gain a better understanding of
topics such as SQL, Oracle, ERDs, and ColdFusion.

Test Yourself on Database Systems

Brand new quizzes, created specifically for this site, allow users to test themselves on the content of each chapter and
immediately see what answers they answered right and wrong. For each question answered incorrectly, users are pro-
vided with the correct answer and the page in the text where that information is covered. Special testing software ran-
domly compiles a selection of questions from a large database, so students can take quizzes multiple times on a given
chapter, with some new questions each time.

Microsoft PowerPoint® Slides

Direct access is offered to the book’s PowerPoint presentations that cover the key points from each chapter. These
presentations are a useful study tool.

Useful Web Links

Students can access a chapter-by-chapter repository of helpful and relevant links for further research.

Glossary of Key Terms

Students can view a PDF file of the glossary from the book. They can also search for keywords and terms in this file;
it’s quick and easy to use!

Q & A

Helpful question-and-answer documents are available for download. Here you will find supporting material in areas
such as Data Dependency/Structural Dependency and Weak Entities/Strong Relationships.

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xxiii

INSTRUCTOR RESOURCES

XXIV

Database Systems: Design, Implementation, and Management, Eighth Edition, includes teaching tools to support
instructors in the classroom. The ancillaries that accompany the textbook are listed below. Most of the teaching tools
available with this book are provided to the instructor on a single CD-ROM; they are also available on the Web at
www.course.com.

Instructor’s Manual

The authors have created this manual to help instructors make their classes informative and interesting. Because the
authors tackle so many problems in depth, instructors will find the Instructor’s Manual especially useful. The details of
the design solution process are shown in detail in the Instructor’s Manual as well as notes about alternative
approaches that may be used to solve a particular problem. Finally, the book’s questions and problems together with
their answers and solutions are included.

SQL SCRIPT FILES FOR INSTRUCTORS

The authors have provided teacher’s SQL script files to create and delete users. They have also provided SQL scripts
to let instructors cut and paste the SQL code into the SQL windows. (Scripts are provided for Oracle as well as for MS
SQL Server.) The SQL scripts, which have all been tested by Course Technology, are a major convenience for instruc-
tors. You won’t have to type in the SQL commands and the use of the scripts eliminates errors due to “typos” that are
sometimes difficult to trace.

ColdFusion Files for Instructors

The ColdFusion Web development solutions are provided. Instructors have access to a menu-driven system that lets
teachers show the code as well as the execution of that code.

Databases

Microsoft AccessTM Instructor databases are available for many chapters that include features not found in the student
databases. For example, the databases that accompany Chapters 7 and 8 include many of the queries that produce the
problem solutions. Other Access databases, such as the ones accompanying Chapters 3, 4, and 5, include the imple-
mentation of the design problem solutions to let instructors illustrate the effect of design decisions. All the MS Access
files are in the original 2000 format so that students can use them regardless of what version they have installed on
their computers. In addition, instructors have access to all the script files for both Oracle and MS SQL Server so that
all the databases and their tables can be converted easily and precisely.

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xxiv

INSTRUCTOR RESOURCES

XXV

Solutions

Instructors are provided with solutions to all Review Questions and Problems. Intermediate solution steps for the more
complex problems are shown to make the instructor’s job easier. Solutions may also be found on the Course
Technology Web site at www.course.com. The solutions are password-protected.

ExamView®

This objective-based test generator lets the instructor create paper, LAN, or Web-based tests from test banks designed
specifically for this Course Technology text. Instructors can use the QuickTest Wizard to create tests in fewer than five
minutes by taking advantage of Course Technology’s question banks, or instructors can create customized exams.

PowerPoint Presentations

Microsoft PowerPoint slides are included for each chapter. Instructors can use the slides in a variety of ways; for exam-
ple, as teaching aids during classroom presentations or as printed handouts for classroom distribution. Instructors can
modify the slides provided or include slides of their own for additional topics introduced to the class.

Figure Files

Figure files for solutions presented in the Instructor’s Manual allow instructors to create their own presentations.
Instructors can also manipulate these files to meet their particular needs.

Distance Learning Content

Course Technology, the premier innovator in management information systems publishing, is proud to present online
courses in Blackboard and WebCT.

• Blackboard and WebCT Level 1 Online Content. If you use Blackboard or WebCT, the test bank for
this textbook is available at no cost in a simple, ready-to-use format. Go to www.course.com and
search for this textbook to download the test bank.

• Blackboard Level 2 and WebCT Level 2 Online Content. Blackboard Level 2 and WebCT Level 2
are also available for Database Systems: Design, Implementation, and Management. Level 2 offers
course management and access to a Web site that is fully populated with content for this book.

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xxv

ACKNOWLEDGMENTS

XXVI

Regardless of how many editions of this book are published, they will always rest on the solid foundation created by the
first edition. We remain convinced that our work has become successful because that first edition was guided by Frank
Ruggirello, a former Wadsworth senior editor and publisher. Aside from guiding the book’s development, Frank also
managed to solicit the great Peter Keen’s evaluation (thankfully favorable) and subsequently convinced PK to write the
foreword for the first edition. Although we sometimes found Frank to be an especially demanding taskmaster, we also
found him to be a superb professional and a fine friend. We suspect Frank will still see his fingerprints all over our cur-
rent work. Many thanks.

A difficult task in rewriting a book is deciding what new approaches, topical coverage, and depth of coverage changes
can or cannot fit into a book that has successfully weathered the test of the marketplace. The comments and sugges-
tions made by the book’s adopters, students, and reviewers play a major role in deciding what coverage is desirable and
how that coverage is to be treated.

Some adopters became extraordinary reviewers, providing incredibly detailed and well-reasoned critiques even as they
praised the book’s coverage and style. Dr. David Hatherly, a superb database professional who is a senior lecturer in
the School of Information Technology, Charles Sturt University–Mitchell, Bathhurst, Australia, made sure that we
knew precisely what issues led to his critiques. Even better for us, he provided the suggestions that made it much eas-
ier for us to improve the topical coverage in earlier editions. Dr. Hatherly’s recommendations continue to be reflected
in this eighth edition. All of his help was given freely and without prompting on our part. His efforts are much appre-
ciated, and our thanks are heartfelt.

We also owe a debt of gratitude to Professor Emil T. Cipolla, who teaches at St. Mary College. Professor Cipolla’s wealth
of IBM experience turned out to be a valuable resource when we tackled the embedded SQL coverage in Chapter 8.

Every technical book receives careful scrutiny by several groups of reviewers selected by the publisher. We were fortu-
nate to face the scrutiny of reviewers who were superbly qualified to offer their critiques, comments, and suggestions—
many of which were used to strengthen this edition. While holding them blameless for any remaining shortcomings, we
owe these reviewers many thanks for their contributions:

Amita G. Chin, Virginia Commonwealth University

Samuel Conn, Regis University

Bill Hochstettler, Franklin University

Larry Molloy, Oakland Community College

Kevin Scheibe, Iowa State University

G. Shankar, Boston University

Because this eighth edition is build solidly on the foundation of the previous editions, we would also like to thank the fol-
lowing reviewers for their efforts in helping to make the previous editions successful: Dr. Reza Barkhi, Pamplin College of
Business, Virginia Polytechnic Institute and State University; Dr. Vance Cooney, Xavier University; Harpal S. Dillion,
Southwestern Oklahoma State University; Janusz Szczypula, Carnegie Mellon University; Dr. Ahmad Abuhejleh,
University of Wisconsin, River Falls; Dr. Terence M. Baron, University of Toledo; Dr. Juan Estava, Eastern Michigan
University; Dr. Kevin Gorman, University of North Carolina, Charlotte; Dr. Jeff Hedrington, University of Wisconsin, Eau
Claire; Dr. Herman P. Hoplin, Syracuse University; Dr. Sophie Lee, University of Massachusetts, Boston; Dr. Michael
Mannino, University of Washington; Dr. Carol Chrisman, Illinois State University; Dr. Timothy Heintz, Marquette
University; Dr. Herman Hoplin, Syracuse University; Dr. Dean James, Embry-Riddle University; Dr. Constance Knapp,

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xxvi

XXVII

Pace University; Dr. Mary Ann Robbert, Bentley College; Dr. Francis J. Van Wetering, University of Nebraska; Dr. Joseph
Walls, University of Southern California; Dr. Stephen C. Solosky, Nassau Community College; Dr. Robert Chiang,
Syracuse University; Dr. Crist Costa, Rhode Island College; Dr. Sudesh M. Duggal, Northern Kentucky University;
Dr. Chang Koh, University of North Carolina, Greensboro; Paul A. Seibert, North Greenville College; Neil Dunlop, Vista
Community College; Ylber Ramadani, George Brown College; Samuel Sambasivam, Azusa Pacific University; Arjan
Sadhwani, San Jose State University; Genard Catalano, Columbia College; Craig Shaw, Central Community College;
Lei-da Chen, Creighton University; Linda K. Lau, Longwood University; Anita Lee-Post, University of Kentucky; Lenore
Horowitz, Schenectady County Community College; Dr. Scott L. Schneberger, Georgia State University; Tony Pollard,
University of Western Sydney; Lejla Vrazalic, University of Wollongong; and David Witzany, Parkland College.

In some respects, writing books resembles building construction: When 90 percent of the work seems done, 90 per-
cent of the work remains to be done. Fortunately for us, we had a great team on our side.

• How can we possibly pay sufficient homage to Deb Kaufmann’s many contributions? Even our best
superlatives don’t begin to paint a proper picture of our professional relationship with Deb Kaufmann,
our developmental editor since the fifth edition. Deb has that magic combination of good judgment,
intelligence, technical skill, and the rare ability to organize and sharpen an author’s writing without
affecting its intent or its flow. And she does it all with style, class, and humor. She is the best of the best.

• After writing so many books and eight editions of this book, we know just how difficult it can be to
transform the authors’ work into an attractive book. Jill Braiewa, the content project manager, made it
look easy. Jill is one of those wonderful can-do people who moves the proverbial publishing mountains.
The words unflappable and professional come to mind when we think about her.

• We also owe Kate Hennessy, our product manager, special thanks for her ability to guide this book to
a successful conclusion. Kate’s work touched all of the publication bases, and her managerial skills pro-
tected us from those publishing gremlins that might have become a major nuisance. Not to mention the
fact that her skills in dealing with occasionally cranky authors far exceed those of any diplomat we can
think of. And did we mention that Kate is, quite simply, a delightful person?

• Many thanks to Mary Kemper, our copyeditor. Given her ability to spot even the smallest discrepancies,
we suspect that her middle name is “Thorough.” We can only imagine the level of mental discipline
required to perform her job and we salute her.

We also thank our students for their comments and suggestions. They are the reason for writing this book in the first place.
One comment stands out in particular: “I majored in systems for four years, and I finally discovered why when I took your
course.” And one of our favorite comments by a former student was triggered by a question about the challenges created
by a real-world information systems job: “Doc, it’s just like class, only easier. You really prepared me well. Thanks!”

Last, and certainly not least, we thank our families for the solid home support. They graciously accepted the fact that
during more than a year’s worth of rewriting, there would be no free weekends, rare free nights, and even rarer free
days. We owe you much, and the dedication we wrote to you is but a small reflection of the important space you
occupy in our hearts.

Peter Rob

Carlos M. Coronel

ACKNOWLEDGMENTS

XXVII

C6545_FM_CTP.4c 11/14/07 11:40 AM Page xxvii

PART

I
DATABASE CONCEPTS

1Database Systems

2Data Models

C6545_01 5/23/2007 9:50:10 Page 2

B
V

usiness
ignette

The Relational Revolution

Today, we take for granted the benefits brought to us by relational databases: the ability

to store, access, and change data quickly and easily on low-cost computers.Yet, until the

late 1970s, databases stored large amounts of data in a hierarchical structure that was

difficult to navigate and inflexible. Programmers needed to know what clients wanted to

do with the data before the database was designed.Adding or changing the way the data

was analyzed was a time-consuming and expensive process. As a result, you searched

through huge card catalogs to find a library book, you used road maps that didn’t show

changes made in the last year, and you had to buy a newspaper to find information on

stock prices.

In 1970, Edgar “Ted” Codd, a mathematician employed by IBM, wrote an article that

would change all that. At the time, nobody realized that Codd’s obscure theories would

spark a technological revolution on par with the development of personal computers and

the Internet. Don Chamberlin, coinventor of SQL, the most popular computer language

used by database systems today, explains, “There was this guy Ted Codd who had some

kind of strange mathematical notation, but nobody took it very seriously.” Then Ted Codd

organized a symposium, and Chamberlin listened as Codd reduced complicated five-page

programs to one line. “And I said, ‘Wow,’” Chamberlin recalls.

The symposium convinced IBM to fund System R, a research project that built a

prototype of a relational database and that would eventually lead to the creation of SQL

and DB2. IBM, however, kept System R on the back burner for a number of crucial years.

The company had a vested interest in IMS, a reliable, high-end database system that had

come out in 1968. Unaware of the market potential of this research, IBM allowed its staff

to publish these papers publicly.

Among those reading these papers was Larry Ellison, who had just founded a small

company. Recruiting programmers from System R and the University of California, Ellison

was able to market the first SQL-based relational database in 1979, well before IBM. By

1983, the company had released a portable version of the database, grossed over

$5,000,000 annually and changed its name to Oracle. Spurred on by competition, IBM

finally released SQL/DS, its first relational database, in 1980.

By 2007, global sales of database management systems topped $15 billion with Oracle

capturing roughly half of the market share and IBM trailing at under a quarter. Microsoft’s

SQL Server market share grew faster than its competitors, climbing to 14%.

C6545_01 8/14/2007 17:23:51 Page 3

Preview

Database Systems

In this chapter, you will learn:

� The difference between data and information

� What a database is, what the various types of databases are, and why they are valuable assets
for decision making

� The importance of database design

� How modern databases evolved from file systems

� About flaws in file system data management

� What the database system’s main components are and how a database system differs from
a file system

� The main functions of a database management system (DBMS)

Good decisions require good information that is derived from raw facts.These raw facts are

known as data. Data are likely to be managed most efficiently when they are stored in a

database. In this chapter, you learn what a database is, what it does, and why it yields better

results than other data management methods. You also learn about various types of

databases and why database design is so important.

Databases evolved from computer file systems. Although file system data management is

now largely outmoded, understanding the characteristics of file systems is important

because file systems are the source of serious data management limitations. In this chapter,

you also learn how the database system approach helps eliminate most of the shortcomings

of file system data management.

1
O

N
E

C6545_01 5/23/2007 9:50:58 Page 4

1.1 DATA VS. INFORMATION

To understand what drives database design, you must understand the difference between data and information. Data
are raw facts. The word raw indicates that the facts have not yet been processed to reveal their meaning. For example,
suppose that you want to know what the users of a computer lab think of its services. Typically, you would begin by
surveying users to assess the computer lab’s performance. Figure 1.1, Panel A, shows the Web survey form that
enables users to respond to your questions. When the survey form has been completed, the form’s raw data are saved
to a data repository, such as the one shown in Figure 1.1, Panel B. Although you now have the facts in hand, they
are not particularly useful in this format—reading page after page of zeros and ones is not likely to provide much
insight. Therefore, you transform the raw data into a data summary like the one shown in Figure 1.1, Panel C. Now
it’s possible to get quick answers to questions such as “What is the composition of our lab’s customer base?” In this
case, you can quickly determine that most of your customers are juniors (24.59%) and seniors (53.01%). Because
graphics can enhance your ability to quickly extract meaning from data, you show the data summary bar graph in
Figure 1.1, Panel D.

a) Initial Survey Screen b) Raw Data

c) Information in Summary Format d) Information in Graphic Format

FIGURE
1.1

Transforming raw data into information

C6545_01 5/23/2007 11:32:19 Page 5

5D A T A B A S E S Y S T E M S

Information is the result of processing raw data to reveal its meaning. Data processing can be as simple as organizing
data to reveal patterns or as complex as making forecasts or drawing inferences using statistical modeling. To reveal
meaning, information requires context. For example, an average temperature reading of 105 degrees does not mean
much unless you also know its context: Is this in degrees Fahrenheit or Celsius? Is this a machine temperature, a body
temperature, or an outside air temperature? Information can be used as the foundation for decision making. For
example, the data summary for each question on the survey form can point out the lab’s strengths and weaknesses,
helping you to make informed decisions to better meet the needs of lab customers.

Keep in mind that raw data must be properly formatted for storage, processing, and presentation. For example, in
Panel C of Figure 1.1, the student classification is formatted to show the results based on the classifications Freshman,
Sophomore, Junior, Senior, and Graduate Student. The respondents’ yes/no responses might need to be converted
to a Y/N format for data storage. More complex formatting is required when working with complex data types, such
as sounds, videos, or images.

In this “information age,” production of accurate, relevant, and timely information is the key to good decision making.
In turn, good decision making is the key to business survival in a global market. We are now said to be entering the
“knowledge age.”1 Data are the foundation of information, which is the bedrock of knowledge—that is, the body of
information and facts about a specific subject. Knowledge implies familiarity, awareness, and understanding of
information as it applies to an environment. A key characteristic of knowledge is that “new” knowledge can be derived
from “old” knowledge.

Let’s summarize some key points:

� Data constitute the building blocks of information.

� Information is produced by processing data.

� Information is used to reveal the meaning of data.

� Accurate, relevant, and timely information is the key to good decision making.

� Good decision making is the key to organizational survival in a global environment.

Timely and useful information requires accurate data. Such data must be generated properly, and it must be stored in
a format that is easy to access and process. And, like any basic resource, the data environment must be managed
carefully. Data management is a discipline that focuses on the proper generation, storage, and retrieval of data.
Given the crucial role that data plays, it should not surprise you that data management is a core activity for any
business, government agency, service organization, or charity.

1.2 INTRODUCING THE DATABASE AND THE DBMS

Efficient data management typically requires the use of a computer database. A database is a shared, integrated
computer structure that stores a collection of:

� End-user data, that is, raw facts of interest to the end user.

� Metadata, or data about data, through which the end-user data are integrated and managed.

The metadata provide a description of the data characteristics and the set of relationships that link the data found
within the database. For example, the metadata component stores information such as the name of each data element,
the type of values (numeric, dates or text) stored on each data element, whether or not the data element can be left
empty, and so on. Therefore, the metadata provide information that complements and expands the value and use of
the data. In short, metadata present a more complete picture of the data in the database. Given the characteristics of
metadata, you might hear a database described as a “collection of self-describing data.”

1 Peter Drucker coined the phrase “knowledge worker” in 1959 in his book Landmarks of Tomorrow. In 1994, Ms. Esther Dyson, Mr. George Gilder,
Dr. George Keyworth, and Dr. Alvin Toffler introduced the concept of the “knowledge age.”

C6545_01 7/12/2007 11:36:30 Page 6

6 C H A P T E R 1

A database management system (DBMS) is a collection of programs that manages the database structure and
controls access to the data stored in the database. In a sense, a database resembles a very well-organized electronic
filing cabinet in which powerful software, known as a database management system, helps manage the cabinet’s
contents.

1.2.1 Role and Advantages of the DBMS

The DBMS serves as the intermediary between the user and the database. The database structure itself is stored as a
collection of files, and the only way to access the data in those files is through the DBMS. Figure 1.2 emphasizes the
point that the DBMS presents the end user (or application program) with a single, integrated view of the data in the
database. The DBMS receives all application requests and translates them into the complex operations required to fulfill
those requests. The DBMS hides much of the database’s internal complexity from the application programs and users.
The application program might be written by a programmer using a programming language such as Visual Basic.NET,
Java, or C++, or it might be created through a DBMS utility program.

Having a DBMS between the end user’s applications and the database offers some important advantages. First, the
DBMS enables the data in the database to be shared among multiple applications or users. Second, the DBMS
integrates the many different users’ views of the data into a single all-encompassing data repository.

Because data are the crucial raw material from which information is derived, you must have a good method to manage
such data. As you will discover in this book, the DBMS helps make data management more efficient and effective. In
particular, a DBMS provides advantages such as:

� Improved data sharing. The DBMS helps create an environment in which end users have better access to
more data and better-managed data. Such access makes it possible for end users to respond quickly to changes
in their environment.

� Improved data security. The more users access the data, the greater the risks of data security breaches.
Corporations invest considerable amounts of time, effort, and money to ensure that corporate data are used
properly. A DBMS provides a framework for better enforcement of data privacy and security policies.

End users

End users

Application
request

Data

Application
request Data

Database structure

DBMS
Database

Management System

Customers

Invoices

Products

Metadata

End-user
data

Single

Integrated

http://

FIGURE
1.2

The DBMS manages the interaction between the end user and the database

View of Data

C6545_01 5/23/2007 11:34:27 Page 7

7D A T A B A S E S Y S T E M S

� Better data integration. Wider access to well-managed data promotes an integrated view of the organization’s
operations and a clearer view of the big picture. It becomes much easier to see how actions in one segment
of the company affect other segments.

� Minimized data inconsistency. Data inconsistency exists when different versions of the same data appear
in different places. For example, data inconsistency exists when a company’s sales department stores a sales
representative’s name as “Bill Brown” and the company’s personnel department stores that same person’s
name as “William G. Brown” or when the company’s regional sales office shows the price of a product as
$45.95 and its national sales office shows the same product’s price as $43.95. The probability of data
inconsistency is greatly reduced in a properly designed database.

� Improved data access. The DBMS makes it possible to produce quick answers to ad hoc queries. From a
database perspective, a query is a specific request issued to the DBMS for data manipulation—for example,
to read or update the data. Simply put, a query is a question, and an ad hoc query is a spur-of-the-moment
question. The DBMS sends back an answer (called the query result set) to the application. For example, end
users, when dealing with large amounts of sales data, might want quick answers to questions (ad hoc queries)
such as:

- What was the dollar volume of sales by product during the past six months?

- What is the sales bonus figure for each of our salespeople during the past three months?

- How many of our customers have credit balances of $3,000 or more?

� Improved decision making. Better-managed data and improved data access make it possible to generate better
quality information, on which better decisions are based.

� Increased end-user productivity. The availability of data, combined with the tools that transform data into
usable information, empowers end users to make quick, informed decisions that can make the difference
between success and failure in the global economy.

The advantages of using a DBMS are not limited to the few just listed. In fact, you will discover many more advantages
as you learn more about the technical details of databases and their proper design.

1.2.2 Types of Databases

A DBMS can support many different types of databases. Databases can be classified according to the number of users,
the database location(s), and the expected type and extent of use.

The number of users determines whether the database is classified as single-user or multiuser. A single-user
database supports only one user at a time. In other words, if user A is using the database, users B and C must wait
until user A is done. A single-user database that runs on a personal computer is called a desktop database. In
contrast, a multiuser database supports multiple users at the same time. When the multiuser database supports a
relatively small number of users (usually fewer than 50) or a specific department within an organization, it is called a
workgroup database. When the database is used by the entire organization and supports many users (more than 50,
usually hundreds) across many departments, the database is known as an enterprise database.

Location might also be used to classify the database. For example, a database that supports data located at a single
site is called a centralized database. A database that supports data distributed across several different sites is called
a distributed database. The extent to which a database can be distributed and the way in which such distribution
is managed is addressed in detail in Chapter 12, Distributed Database Management Systems.

The most popular way of classifying databases today, however, is based on how they will be used and on the time
sensitivity of the information gathered from them. For example, transactions such as product or service sales,
payments, and supply purchases reflect critical day-to-day operations. Such transactions must be recorded accurately
and immediately. A database that is designed primarily to support a company’s day-to-day operations is classified as
an operational database (sometimes referred to as a transactional or production database). In contrast, a data
warehouse focuses primarily on storing data used to generate information required to make tactical or strategic

C6545_01 5/23/2007 11:43:27 Page 8

8 C H A P T E R 1

decisions. Such decisions typically require extensive “data massaging” (data manipulation) to extract information to
formulate pricing decisions, sales forecasts, market positioning, and so on. Most decision-support data are based on
historical data obtained from operational databases. Additionally, the data warehouse can store data derived from many
sources. To make it easier to retrieve such data, the data warehouse structure is quite different from that of an
operational or transactional database. The design, implementation, and use of data warehouses are covered in detail
in Chapter 13, Business Intelligence and Data Warehouses.

Databases can also be classified to reflect the degree to which the data are structured. Unstructured data are data that
exist in their original (raw) state, that is, in the format in which they were collected. Therefore, unstructured data exist
in a format that does not lend itself to the processing that yields information. Structured data are the result of taking
unstructured data and formatting (structuring) such data to facilitate storage, use, and the generation of information.
You apply structure (format) based on the type of processing that you intend to perform on the data. Some data might
be not ready (unstructured) for some types of processing, but they might be ready (structured) for other types of
processing. For example, the data value 37890 might refer to a zip code, a sales value, or a product code. If this value
represents a zip code or a product code and is stored as text, you cannot perform mathematical computations with
it. On the other hand, if this value represents a sales transaction, it is necessary to format it as numeric.

To further illustrate the structure concept, imagine a stack of printed paper invoices. If you want to merely store these
invoices as images for future retrieval and display, you can scan them and save them in a graphic format. On the other
hand, if you want to derive information such as monthly totals and average sales, such graphic storage would not be
useful. Instead, you could store the invoice data in a (structured) spreadsheet format so that you can perform the
requisite computations. Actually, most data you encounter is best classified as semistructured. Semistructured data
are data that have already been processed to some extent. For example, if you look at a typical Web page, the data
are presented to you in a prearranged format to convey some information.

The database types mentioned thus far focus on the storage and management of highly structured data. However,
corporations are not limited to the use of structured data. They also use semistructured and unstructured data. Just
think of the very valuable information that can be found on company e-mails, memos, documents such as procedures
and rules, Web page contents, and so on. Unstructured and semistructured data storage and management needs are
being addressed through a new generation of databases known as XML databases. Extensible Markup Language
(XML) is a special language used to represent and manipulate data elements in a textual format. An XML database
supports the storage and management of semistructured XML data.

Table 1.1 compares features of several well-known database management systems.

TABLE
1.1

Types of Databases

PRODUCT
NUMBER OF USERS DATA LOCATION DATA USAGE XML
SINGLE
USER

MULTIUSER
CENTRALIZED DISTRIBUTED OPERATIONAL

DATA
WAREHOUSEWORK-GROUP ENTER-PRISE

MS Access X X X X
MS SQL
Server

X2 X X X X X X X

IBM DB2 X2 X X X X X X X
MySQL X X X X X X X X*
Oracle
RDBMS

X2 X X X X X X X

* Supports XML functions only. XML data is stored in large text objects.

2 Vendor offers single-user/personal DBMS version.

C6545_01 5/23/2007 11:42:36 Page 9

9D A T A B A S E S Y S T E M S

1.3 WHY DATABASE DESIGN IS IMPORTANT

Database design refers to the activities that focus on the design of the database structure that will be used to store
and manage end-user data. A database that meets all user requirements does not just happen; its structure must be
designed carefully. In fact, database design is such a crucial aspect of working with databases that most of this book
is dedicated to the development of good database design techniques. Even a good DBMS will perform poorly with a
badly designed database.

Proper database design requires the designer to identify precisely the database’s expected use. Designing a
transactional database emphasizes accurate and consistent data and operational speed. The design of a data warehouse
database recognizes the use of historical and aggregated data. Designing a database to be used in a centralized,
single-user environment requires a different approach from that used in the design of a distributed, multiuser database.
This book emphasizes the design of transactional, centralized, single-user, and multiuser databases. Chapters 12 and
13 also examine critical issues confronting the designer of distributed and data warehouse databases.

A well-designed database facilitates data management and generates accurate and valuable information. A poorly
designed database is likely to become a breeding ground for difficult-to-trace errors that may lead to bad decision
making—and bad decision making can lead to the failure of an organization. Database design is simply too important
to be left to luck. That’s why college students study database design, why organizations of all types and sizes send
personnel to database design seminars, and why database design consultants often make an excellent living.

1.4 HISTORICAL ROOTS: FILES AND FILE SYSTEMS

Although managing data through the use of file systems is now largely obsolete, there are several good reasons for
studying them in some detail:

� An understanding of the relatively simple characteristics of file systems makes the complexity of database
design easier to understand.

� An awareness of the problems that plagued file systems can help you avoid those same pitfalls with DBMS
software.

� If you intend to convert an obsolete file system to a database system, knowledge of the file system’s basic
limitations will be useful.

In the recent past, a manager of almost any small organization was (and sometimes still is) able to keep track of
necessary data by using a manual file system. Such a file system was traditionally composed of a collection of file
folders, each properly tagged and kept in a filing cabinet. Organization of the data within the file folders was
determined by the data’s expected use. Ideally, the contents of each file folder were logically related. For example, a
file folder in a doctor’s office might contain patient data, one file folder for each patient. All of the data in that file folder
would describe only that particular patient’s medical history. Similarly, a personnel manager might organize personnel
data by category of employment (for example, clerical, technical, sales, and administrative). Therefore, a file folder

Note

Most of the database design, implementation, and management issues addressed in this book are based on
production (transaction) databases. The focus on production databases is based on two considerations. First,
production databases are the databases most frequently encountered in common activities such as enrolling in
a class, registering a car, buying a product, or making a bank deposit or withdrawal. Second, data warehouse
databases derive most of their data from production databases, and if production databases are poorly
designed, the data warehouse databases based on them will lose their reliability and value as well.

C6545_01 5/23/2007 11:34:40 Page 10

10 C H A P T E R 1

labeled “Technical” would contain data pertaining to only those people whose duties were properly classified as
technical.

As long as a data collection was relatively small and an organization’s managers had few reporting requirements, the
manual system served its role well as a data repository. However, as organizations grew and as reporting requirements
became more complex, keeping track of data in a manual file system became more difficult. In fact, finding and using
data in growing collections of file folders turned into such a time-consuming and cumbersome task that it became
unlikely that such data could generate useful information. Consider just these few questions to which a retail business
owner might want answers:

� What products sold well during the past week, month, quarter, or year?

� What is the current daily, weekly, monthly, quarterly, or yearly sales dollar volume?

� How do the current period’s sales compare to those of last week, last month, or last year?

� Did the various cost categories increase, decrease, or remain stable during the past week, month, quarter,
or year?

� Did sales show trends that could change the inventory requirements?

The list of questions such as these tends to be long and to increase in number as an organization grows.

Unfortunately, generating reports from a manual file system can be slow and cumbersome. In fact, some business
managers faced government-imposed reporting requirements that required weeks of intensive effort each quarter, even
when a well-designed manual system was used. Consequently, necessity called for the design of a computer-based
system that would track data and produce required reports.

The conversion from a manual file system to a matching computer file system could be technically complex. (Because
people are accustomed to today’s relatively user-friendly computer interfaces, they have forgotten how painfully hostile
computers used to be!) Consequently, a new kind of professional, known as a data processing (DP) specialist, had
to be hired or “grown” from the current staff. The DP specialist created the necessary computer file structures, often
wrote the software that managed the data within those structures, and designed the application programs that
produced reports based on the file data. Thus, numerous homegrown computerized file systems were born.

Initially, the computer files within the file system were similar to the manual files. A simple example of a customer
data file for a small insurance company is shown in Figure 1.3. (You will discover later that the file structure shown in
Figure 1.3, although typically found in early file systems, is unsatisfactory for a database.)

C_NAME = Customer name A_NAME = Agent name
C_PHONE = Customer phone A_PHONE = Agent phone
C_ADDRESS = Customer address TP = Insurance type
C_ZIP = Customer zip code AMT = Insurance policy amount, in thousands of $

REN = Insurance renewal date

FIGURE
1.3

Contents of the CUSTOMER file

C6545_01 5/25/2007 10:23:18 Page 11

11D A T A B A S E S Y S T E M S

The description of computer files requires a specialized vocabulary. Every discipline develops its own jargon to enable
its practitioners to communicate clearly. The basic file vocabulary shown in Table 1.2 will help you understand
subsequent discussions more easily.

TABLE
1.2

Basic File Terminology

TERM DEFINITION
Data “Raw” facts, such as a telephone number, a birth date, a customer name, and a year-to-date (YTD)

sales value. Data have little meaning unless they have been organized in some logical manner. The
smallest piece of data that can be “recognized” by the computer is a single character, such as the letter
A, the number 5, or a symbol such as /. A single character requires 1 byte of computer storage.

Field A character or group of characters (alphabetic or numeric) that has a specific meaning. A field is used to
define and store data.

Record A logically connected set of one or more fields that describes a person, place, or thing. For example,
the fields that constitute a record for a customer named J. D. Rudd might consist of J. D. Rudd's name,
address, phone number, date of birth, credit limit, and unpaid balance.

File A collection of related records. For example, a file might contain data about vendors of ROBCOR Com-
pany, or a file might contain the records for the students currently enrolled at Gigantic University.

Using the proper file terminology given in Table 1.2, you can identify the file components shown in Figure 1.3. The
CUSTOMER file shown in Figure 1.3 contains 10 records. Each record is composed of nine fields: C_NAME,
C_PHONE, C_ADDRESS, C_ZlP, A_NAME, A_PHONE, TP, AMT, and REN. The 10 records are stored in a named
file. Because the file in Figure 1.3 contains customer data for the insurance company, its filename is CUSTOMER.

Using the CUSTOMER file’s contents, the DP specialist wrote programs that produced very useful reports for the
insurance company’s sales department:

� Monthly summaries that showed the types and amounts of insurance sold by each agent. (Such reports might
be used to analyze each agent’s productivity.)

� Monthly checks to determine which customers must be contacted for renewal.

� Reports that analyzed the ratios of insurance types sold by each agent.

� Periodic customer contact letters designed to summarize coverage and to provide various customer relations
bonuses.

As time went on, the insurance company needed additional programs to produce new reports. Although it took some
time to specify the report contents and to write the programs that produced the reports, the sales department manager
did not miss the old manual system—using the computer saved much time and effort. The reports were impressive,
and the ability to perform complex data searches yielded the information needed to make sound decisions.

Then the sales department at the insurance company created a file named SALES, which helped track daily sales
efforts. Additional files were created as needed to produce even more useful reports. In fact, the sales department’s
success was so obvious that the personnel department manager demanded access to the DP specialist to automate
payroll processing and other personnel functions. Consequently, the DP specialist was asked to create the AGENT file
shown in Figure 1.4. The data in the AGENT file were used to write checks, keep track of taxes paid, and summarize
insurance coverage, among other tasks.

O n l i n e C o n t e n t

The databases used in each chapter are available in the Student Online Companion for this book. Throughout
the book, Online Content boxes highlight material related to chapter content located in the Student Online
Companion.

C6545_01 5/25/2007 10:23:54 Page 12

12 C H A P T E R 1

As the number of files increased, a small file system, like the one shown in Figure 1.5, evolved. Each file in the system
used its own application program to store, retrieve, and modify data. And each file was owned by the individual or the
department that commissioned its creation.

As the insurance company’s file system grew, the demand for the DP specialist’s programming skills grew even faster,
and the DP specialist was authorized to hire additional programmers. The size of the file system also required a larger,
more complex computer. The new computer and the additional programming staff caused the DP specialist to spend
less time programming and more time managing technical and human resources. Therefore, the DP specialist’s job
evolved into that of a data processing (DP) manager, who supervised a new DP department. In spite of these
organizational changes, however, the DP department’s primary activity remained programming, and the DP manager
inevitably spent much time as a supervising senior programmer and program troubleshooter.

A_NAME = Agent name YTD_PAY = Year-to-date pay
A_PHONE = Agent phone YTD_FIT = Year-to-date federal income tax paid
A_ADDRESS = Agent address YTD_FICA = Year-to-date Social Security taxes paid
ZIP = Agent zip code YTD_SLS = Year-to-date sales
HIRED = Agent date of hire DEP = Number of dependents

FIGURE
1.4

Contents of the AGENT file

Sales department Personnel department

File
Management

Programs

File
Management

Programs

File
Report

Programs

File
Report

Programs

AGENT
file

SALES
file

CUSTOMER
file

FIGURE
1.5

A simple file system

C6545_01 5/23/2007 11:34:48 Page 13

13D A T A B A S E S Y S T E M S

1.5 PROBLEMS WITH FILE SYSTEM DATA MANAGEMENT

The file system method of organizing and managing data was a definite improvement over a manual system, and the
file system served a useful purpose in data management for over two decades—a very long time in the computer era.
Nonetheless, many problems and limitations became evident in this approach. A critique of the file system method
serves two major purposes:

� Understanding the shortcomings of the file system enables you to understand the development of modern
databases.

� Many of the problems are not unique to file systems. Failure to understand such problems is likely to lead to
their duplication in a database environment, even though database technology makes it easy to avoid them.

The first and most glaring problem with the file system approach is that even the simplest data-retrieval task requires
extensive programming. With the older file systems, programmers had to specify what must be done and how it was
to be done. As you will learn in upcoming chapters, modern databases use a nonprocedural data manipulation
language that allows the user to specify what must be done without specifying how it must be done. Typically, this
nonprocedural language is used for data retrieval (such as query by example and report generator tools), is much faster,
and can work with different DBMSs.

The need to write programs to produce even the simplest reports makes ad hoc queries impossible. Harried DP
specialists and DP managers who work with mature file systems often receive numerous requests for new reports. They
are often forced to say that the report will be ready “next week” or even “next month.” If you need the information
now, getting it next week or next month will not serve your information needs.

Furthermore, making changes in an existing structure can be difficult in a file system environment. For example,
changing just one field in the original CUSTOMER file would require a program that:

1. Reads a record from the original file.

2. Transforms the original data to conform to the new structure’s storage requirements.

3. Writes the transformed data into the new file structure.

4. Repeats steps 2 to 4 for each record in the original file.

In fact, any change to a file structure, no matter how minor, forces modifications in all of the programs that use the
data in that file. Modifications are likely to produce errors (bugs), and additional time is spent using a debugging process
to find those errors.

Another problem related to the need for extensive programming is that as the number of files in the system expands,
system administration becomes more difficult. Even a simple file system with a few files requires the creation and
maintenance of several file management programs (each file must have its own file management programs that allow
the user to add, modify, and delete records, to list the file contents, and to generate reports). Because ad hoc queries
are not possible, the file reporting programs can multiply quickly. The problem is compounded by the fact that each
department in the organization “owns” its data by creating its own files.

Another fault of a file system database is that security features are difficult to program and are, therefore, often omitted
in a file system environment. Such features include effective password protection, the ability to lock out parts of files
or parts of the system itself, and other measures designed to safeguard data confidentiality. Even when an attempt is
made to improve system and data security, the security devices tend to be limited in scope and effectiveness.

To summarize the limitations of file system data management so far:

� It requires extensive programming.

� It can not perform ad hoc queries.

� System administration can be complex and difficult.

C6545_01 8/14/2007 17:24:30 Page 14

14 C H A P T E R 1

� It is difficult to make changes to existing structures.

� Security features are likely to be inadequate.

Those limitations, in turn, lead to problems of structural and data dependency.

1.5.1 Structural and Data Dependence

A file system exhibits structural dependence, which means that access to a file is dependent on its structure. For
example, adding a customer date-of-birth field to the CUSTOMER file shown in Figure 1.3 would require the four steps
described in the previous section. Given this change, none of the previous programs will work with the new
CUSTOMER file structure. Therefore, all of the file system programs must be modified to conform to the new file
structure. In short, because the file system application programs are affected by change in the file structure, they exhibit
structural dependence. Conversely, structural independence exists when it is possible to make changes in the file
structure without affecting the application program’s ability to access the data.

Even changes in the characteristics of data, such as changing a field from integer to decimal, require changes in all the
programs that access the file. Because all data access programs are subject to change when any of the file’s data
storage characteristics change (that is, changing the data type), the file system is said to exhibit data dependence.
Conversely, data independence exists when it is possible to make changes in the data storage characteristics without
affecting the application program’s ability to access the data.

The practical significance of data dependence is the difference between the logical data format (how the human
being views the data) and the physical data format (how the computer must work with the data). Any program that
accesses a file system’s file must tell the computer not only what to do, but also how to do it. Consequently, each
program must contain lines that specify the opening of a specific file type, its record specification, and its field
definitions. Data dependence makes the file system extremely cumbersome from the point of view of a programmer
and database manager.

1.5.2 Field Definitions and Naming Conventions

At first glance, the CUSTOMER file shown in Figure 1.3 appears to have served its purpose well: requested reports
usually could be generated. But suppose you want to create a customer phone directory based on the data stored in
the CUSTOMER file. Storing the customer name as a single field turns out to be a liability because the directory must
break up the field contents to list the last names, first names, and initials in alphabetical order.

Similarly, producing a listing of customers by city is a more difficult task than is necessary. From the user’s point of
view, a much better (more flexible) record definition would be one that anticipates reporting requirements by breaking
up fields into their component parts. Thus, the revised customer file fields might be listed as shown in Table 1.3. (Note
that the revised file is named CUSTOMER_V2 to indicate that this is the second version of the CUSTOMER file.)

TABLE
1.3

Sample Fields in the CUSTOMER_V2 File

FIELD CONTENTS SAMPLE ENTRY
CUS_LNAME Customer last name Ramas
CUS_FNAME Customer first name Alfred
CUS_INITIAL Customer initial A
CUS_AREACODE Customer area code 615
CUS_PHONE Customer phone 234-5678
CUS_ADDRESS Customer street address or box number 123 Green Meadow Lane
CUS_CITY Customer city Murfreesboro
CUS_STATE Customer state TN
CUS_ZIP Customer zip code 37130
AGENT_CODE Agent code 502

C6545_01 7/12/2007 11:40:36 Page 15

15D A T A B A S E S Y S T E M S

Selecting proper field names is also important. For example, make sure that the field names are reasonably descriptive.
In examining the file structure shown in Figure 1.3, it is not obvious that the field name REN represents the customer’s
insurance renewal date. Using the field name CUS_RENEW_DATE would be better for two reasons. First, the prefix
CUS can be used as an indicator of the field’s origin, which is the CUSTOMER_V2 file. Therefore, you know that the
field in question yields a customer property. Second, the RENEW_DATE portion of the field name is more descriptive
of the field’s contents. With proper naming conventions, the file structure becomes self-documenting. That is, by
simply looking at a field name, you can determine which file the field belongs to and what information the field is likely
to contain.

Some software packages place restrictions on the length of field names, so it is wise to be as descriptive as possible
within those restrictions. In addition, very long field names make it difficult to fit more than a few fields on a page, thus
making output spacing a problem. For example, the field name CUSTOMER_INSURANCE_RENEWAL_DATE, while
being self-documenting, is less desirable than CUS_RENEW_DATE.

Another problem in Figure 1.3’s CUSTOMER file is the difficulty of finding desired data efficiently. The CUSTOMER
file currently does not have a unique record identifier. For example, it is possible to have several customers named John
B. Smith. Consequently, the addition of a CUS_ACCOUNT field that contains a unique customer account number
would be appropriate.

The criticisms of field definitions and naming conventions shown in the file structure of Figure 1.3 are not unique to
file systems. Because such conventions will prove to be important later, they are introduced early. You will revisit field
definitions and naming conventions when you learn about database design in Chapter 4, Entity Relationship (ER)
Modeling and in Chapter 6, Advanced Data Modeling; when you learn about database implementation issues in
Chapter 9, Database Design; and when you see an actual database design implemented in Appendixes B and C (The
University Lab design and implementation). Regardless of the data environment, the design—whether it involves a file
system or a database—must always reflect the designer’s documentation needs and the end user’s reporting and
processing requirements. Both types of needs are best served by adhering to proper field definitions and naming
conventions.

Note

You might have noticed the addition of the AGENT_CODE field in Table 1.3. Clearly, you must know what agent
represents each customer, so the customer file must include agent data. You will learn in Section 1.5.3 that
storing the agent name, as was done in the original CUSTOMER file shown in Figure 1.3, will yield some major
problems that are eliminated by using a unique code that is assigned to each agent. And you will learn in
Chapter 2, Data Models, what other benefits are obtained from storing such a code in the (revised) customer
table. In any case, because the agent code is an agent characteristic, its prefix is AGENT.

O n l i n e C o n t e n t

Appendixes A through L are available in the Student Online Companion for this book.

C6545_01 7/12/2007 11:41:13 Page 16

16 C H A P T E R 1

1.5.3 Data Redundancy

The file system’s structure makes it difficult to combine data from multiple sources and its lack of security renders the
file system vulnerable to security breaches. The organizational structure promotes the storage of the same basic data
in different locations. (Database professionals use the term islands of information for such scattered data locations.)
Because it is unlikely that data stored in different locations will always be updated consistently, the islands of
information often contain different versions of the same data. For example, in Figures 1.3 and 1.4, the agent names
and phone numbers occur in both the CUSTOMER and the AGENT files. You need only one correct copy of the agent
names and phone numbers. Having them occur in more than one place produces data redundancy. Data
redundancy exists when the same data are stored unnecessarily at different places.

Uncontrolled data redundancy sets the stage for:

� Data inconsistency. Data inconsistency exists when different and conflicting versions of the same data appear
in different places. For example, suppose you change an agent’s phone number or address in the AGENT file.
If you forget to make corresponding changes in the CUSTOMER file, the files contain different data for the
same agent. Reports will yield inconsistent results depending on which version of the data is used.

Data entry errors are more likely to occur when complex entries (such as 10-digit phone numbers) are made
in several different files and/or recur frequently in one or more files. In fact, the CUSTOMER file shown in
Figure 1.3 contains just such an entry error: the third record in the CUSTOMER file has a transposed digit in
the agent’s phone number (615-882-2144 rather than 615-882-1244).

It is possible to enter a nonexistent sales agent’s name and phone number into the CUSTOMER file, but
customers are not likely to be impressed if the insurance agency supplies the name and phone number of an
agent who does not exist. And should the personnel manager allow a nonexistent agent to accrue bonuses and
benefits? In fact, a data entry error such as an incorrectly spelled name or an incorrect phone number yields
the same kind of data integrity problems.

� Data anomalies. The dictionary defines anomaly as “an abnormality.” Ideally, a field value change should be
made in only a single place. Data redundancy, however, fosters an abnormal condition by forcing field value
changes in many different locations. Look at the CUSTOMER file in Figure 1.3. If agent Leah F. Hahn decides
to get married and move, the agent name, address, and phone are likely to change. Instead of making just a
single name and/or phone/address change in a single file (AGENT), you also must make the change each time
that agent’s name, phone number, and address occur in the CUSTOMER file. You could be faced with the
prospect of making hundreds of corrections, one for each of the customers served by that agent! The same
problem occurs when an agent decides to quit. Each customer served by that agent must be assigned a new

Note

No naming convention can fit all requirements for all systems. Some words or phrases are reserved for the
DBMSs internal use. For example, the name ORDER generates an error in some DBMSs. Similarly, your DBMS
might interpret a hyphen (-) as a command to subtract. Therefore, the field CUS-NAME would be interpreted
as a command to subtract the NAME field from the CUS field. Because neither field exists, you would get an
error message. On the other hand, CUS_NAME would work fine because it uses an underscore.

Note

Data that display data inconsistency are also referred to as data that lack data integrity. Data integrity is defined
as the condition in which all of the data in the database are consistent with the real-world events and conditions.
In other words, data integrity means that:

• Data are accurate—there are no data inconsistencies

• Data are verifiable—the data will always yield consistent results.

C6545_01 5/23/2007 11:39:28 Page 17

17D A T A B A S E S Y S T E M S

agent. Any change in any field value must be correctly made in many places to maintain data integrity. A data
anomaly develops when all of the required changes in the redundant data are not made successfully. The data
anomalies found in Figure 1.3 are commonly defined as follows:

- Update anomalies. If agent Leah F. Hahn has a new phone number, that number must be entered in each
of the CUSTOMER file records in which Ms. Hahn’s phone number is shown. In this case, only three
changes must be made. In a large file system, such changes might occur in hundreds or even thousands of
records. Clearly, the potential for data inconsistencies is great.

- Insertion anomalies. If only the CUSTOMER file existed, to add a new agent, you would also add a dummy
customer data entry to reflect the new agent’s addition. Again, the potential for creating data inconsistencies
would be great.

- Deletion anomalies. If you delete the customers Amy B. O’Brian, George Williams, and Olette K. Smith,
you will also delete John T. Okon’s agent data. Clearly, this is not desirable.

1.6 DATABASE SYSTEMS

The problems inherent in file systems make using a database system very desirable. Unlike the file system, with its
many separate and unrelated files, the database system consists of logically related data stored in a single logical data
repository. (The “logical” label reflects the fact that, although the data repository appears to be a single unit to the end
user, its contents may actually be physically distributed among multiple data storage facilities and/or locations.) Because
the database’s data repository is a single logical unit, the database represents a major change in the way end-user data
are stored, accessed, and managed. The database’s DBMS, shown in Figure 1.6, provides numerous advantages over
file system management, shown in Figure 1.5, by making it possible to eliminate most of the file system’s data
inconsistency, data anomaly, data dependency, and structural dependency problems. Better yet, the current generation
of DBMS software stores not only the data structures, but also the relationships between those structures and the
access paths to those structures—all in a central location. The current generation of DBMS software also takes care
of defining, storing, and managing all required access paths to those components.

C6545_01 5/23/2007 11:38:31 Page 18

18 C H A P T E R 1

Remember that the DBMS is just one of several crucial components of a database system. The DBMS may even be
referred to as the database system’s heart. However, just as it takes more than a heart to make a human being function,
it takes more than a DBMS to make a database system function. In the sections that follow, you’ll learn what a database
system is, what its components are, and how the DBMS fits into the database system picture.

1.6.1 The Database System Environment

The term database system refers to an organization of components that define and regulate the collection, storage,
management, and use of data within a database environment. From a general management point of view, the database
system is composed of the five major parts shown in Figure 1.7: hardware, software, people, procedures, and data.

A Database System

Personnel dept.

A File System

Sales dept. Accounting dept.

Database

Accounts
Inventory

Sales
Customers
Employees

AccountsEmployees Customers Sales Inventory

DBMS

Personnel dept.

Sales dept.

Accounting dept.

FIGURE
1.6

Contrasting database and file systems

C6545_01 5/23/2007 11:35:4 Page 19

19D A T A B A S E S Y S T E M S

Let’s take a closer look at the five components shown in Figure 1.7:

� Hardware. Hardware refers to all of the system’s physical devices; for example, computers (microcomputers,
workstations, servers, and supercomputers), storage devices, printers, network devices (hubs, switches, routers,
fiber optics), and other devices (automated teller machines, ID readers, and so on).

� Software. Although the most readily identified software is the DBMS itself, to make the database system
function fully, three types of software are needed: operating system software, DBMS software, and application
programs and utilities.

- Operating system software manages all hardware components and makes it possible for all other software
to run on the computers. Examples of operating system software include Microsoft Windows, Linux, Mac
OS, UNIX, and MVS.

- DBMS software manages the database within the database system. Some examples of DBMS software
include Microsoft SQL Server, Oracle Corporation’s Oracle, MySQL AB’s MySQL and IBM’s DB2.

- Application programs and utility software are used to access and manipulate data in the DBMS and to
manage the computer environment in which data access and manipulation take place. Application
programs are most commonly used to access data found within the database to generate reports,
tabulations, and other information to facilitate decision making. Utilities are the software tools used to help
manage the database system’s computer components. For example, all of the major DBMS vendors now
provide graphical user interfaces (GUIs) to help create database structures, control database access, and
monitor database operations.

� People. This component includes all users of the database system. On the basis of primary job functions, five
types of users can be identified in a database system: systems administrators, database administrators, database
designers, systems analysts and programmers, and end users. Each user type, described below, performs both
unique and complementary functions.

- System administrators oversee the database system’s general operations.

- Database administrators, also known as DBAs, manage the DBMS and ensure that the database is
functioning properly. The DBA’s role is sufficiently important to warrant a detailed exploration in Chapter
15, Database Administration and Security.

DBMS

DBMS utilities

Analysts

ProgrammersEnd users

use write

designs

Database
designer

Database
administrator

manages

access

Hardware

System
administrator

writes
and

enforces

Application
programs

Procedures
and standards

Data

supervises

FIGURE
1.7

The database system environment

C6545_01 5/23/2007 11:7:54 Page 20

20 C H A P T E R 1

- Database designers design the database structure. They are, in effect, the database architects. If the
database design is poor, even the best application programmers and the most dedicated DBAs cannot
produce a useful database environment. Because organizations strive to optimize their data resources, the
database designer’s job description has expanded to cover new dimensions and growing responsibilities.

- Systems analysts and programmers design and implement the application programs. They design and
create the data entry screens, reports, and procedures through which end users access and manipulate the
database’s data.

- End users are the people who use the application programs to run the organization’s daily operations. For
example, salesclerks, supervisors, managers, and directors are all classified as end users. High-level end
users employ the information obtained from the database to make tactical and strategic business decisions.

� Procedures. Procedures are the instructions and rules that govern the design and use of the database system.
Procedures are a critical, although occasionally forgotten, component of the system. Procedures play an
important role in a company because they enforce the standards by which business is conducted within
the organization and with customers. Procedures also are used to ensure that there is an organized way to
monitor and audit both the data that enter the database and the information that is generated through the use
of that data.

� Data. The word data covers the collection of facts stored in the database. Because data are the raw material
from which information is generated, the determination of what data are to be entered into the database and
how that data are to be organized is a vital part of the database designer’s job.

A database system adds a new dimension to an organization’s management structure. Just how complex this
managerial structure is depends on the organization’s size, its functions, and its corporate culture. Therefore, database
systems can be created and managed at different levels of complexity and with varying adherence to precise standards.
For example, compare a local movie rental system with a national insurance claims system. The movie rental system
may be managed by two people, the hardware used is probably a single microcomputer, the procedures are probably
simple, and the data volume tends to be low. The national insurance claims system is likely to have at least one systems
administrator, several full-time DBAs, and many designers and programmers; the hardware probably includes several
servers at multiple locations throughout the United States; the procedures are likely to be numerous, complex, and
rigorous; and the data volume tends to be high.

In addition to the different levels of database system complexity, managers must also take another important fact into
account: database solutions must be cost-effective as well as tactically and strategically effective. Producing a
million-dollar solution to a thousand-dollar problem is hardly an example of good database system selection or of good
database design and management. Finally, the database technology already in use is likely to affect the selection of a
database system.

1.6.2 DBMS Functions

A DBMS performs several important functions that guarantee the integrity and consistency of the data in the database.
Most of those functions are transparent to end users, and most can be achieved only through the use of a DBMS. They
include data dictionary management, data storage management, data transformation and presentation, security
management, multiuser access control, backup and recovery management, data integrity management, database
access languages and application programming interfaces, and database communication interfaces. Each of these
functions is explained below.

� Data dictionary management. The DBMS stores definitions of the data elements and their relationships
(metadata) in a data dictionary. In turn, all programs that access the data in the database work through the
DBMS. The DBMS uses the data dictionary to look up the required data component structures and
relationships, thus relieving you from having to code such complex relationships in each program. Additionally,
any changes made in a database structure are automatically recorded in the data dictionary, thereby freeing you
from having to modify all of the programs that access the changed structure. In other words, the DBMS

C6545_01 5/23/2007 11:35:10 Page 21

21D A T A B A S E S Y S T E M S

provides data abstraction, and it removes structural and data dependency from the system. For example, Figure
1.8 shows how Microsoft SQL Server Express presents the data definition for the CUSTOMER table.

� Data storage management. The DBMS creates and manages the complex structures required for data storage,
thus relieving you from the difficult task of defining and programming the physical data characteristics. A
modern DBMS provides storage not only for the data, but also for related data entry forms or screen
definitions, report definitions, data validation rules, procedural code, structures to handle video and picture
formats, and so on. Data storage management is also important for database performance tuning.
Performance tuning relates to the activities that make the database perform more efficiently in terms of
storage and access speed. Although the user sees the database as a single data storage unit, the DBMS actually
stores the database in multiple physical data files. (See Figure 1.9.) Such data files may even be stored on
different storage media. Therefore, the DBMS doesn’t have to wait for one disk request to finish before the
next one starts. In other words, the DBMS can fulfill database requests concurrently. Data storage management
and performance tuning issues are addressed in Chapter 11, Database Performance Tuning and Query
Optimization.

FIGURE
1.8

Illustrating metadata with Microsoft SQL Server Express

Metadata

C6545_01 5/23/2007 11:35:14 Page 22

22 C H A P T E R 1

� Data transformation and presentation. The DBMS transforms entered data to conform to required data
structures. The DBMS relieves you of the chore of making a distinction between the logical data format and
the physical data format. That is, the DBMS formats the physically retrieved data to make it conform to the
user’s logical expectations. For example, imagine an enterprise database used by a multinational company. An
end user in England would expect to enter data such as July 11, 2008 as “11/07/2008.” In contrast, the same
date would be entered in the United States as “07/11/2008.” Regardless of the data presentation format, the
DBMS must manage the date in the proper format for each country.

� Security management. The DBMS creates a security system that enforces user security and data privacy.
Security rules determine which users can access the database, which data items each user can access, and
which data operations (read, add, delete, or modify) the user can perform. This is especially important in
multiuser database systems. Chapter 15, Database Administration and Security, examines data security and
privacy issues in greater detail. All database users may be authenticated to the DBMS through a username and
password or through biometric authentication such as a fingerprint scan. The DBMS uses this information to
assign access privileges to various database components such as queries and reports.

� Multiuser access control. To provide data integrity and data consistency, the DBMS uses sophisticated
algorithms to ensure that multiple users can access the database concurrently without compromising the
integrity of the database. Chapter 10, Transaction Management and Concurrency Control, covers the details
of the multiuser access control.

� Backup and recovery management. The DBMS provides backup and data recovery to ensure data safety and
integrity. Current DBMS systems provide special utilities that allow the DBA to perform routine and special
backup and restore procedures. Recovery management deals with the recovery of the database after a failure,
such as a bad sector in the disk or a power failure. Such capability is critical to preserving the database’s
integrity. Chapter 15 covers backup and recovery issues.

FIGURE
1.9

Illustrating data storage management with Oracle

The ORALAB database is
actually stored in nine
datafiles located on the C:
drive of the database server
computer.

The Oracle DBA Studio
Management interface also
shows the amount of space
used by each of the datafiles
that comprise the single
logical database.

Database Name: ORALAB.MTSU.EDU

The Oracle DBA Studio Administrator GUI shows the data storage
management characteristics for the ORALAB database.

C6545_01 5/23/2007 11:11:19 Page 23

23D A T A B A S E S Y S T E M S

� Data integrity management. The DBMS promotes and enforces integrity rules, thus minimizing data
redundancy and maximizing data consistency. The data relationships stored in the data dictionary are used to
enforce data integrity. Ensuring data integrity is especially important in transaction-oriented database systems.
Data integrity and transaction management issues are addressed in Chapter 7, Introduction to Structured
Query Language (SQL), and Chapter 10, Transaction Management and Concurrency Control.

� Database access languages and application programming interfaces. The DBMS provides data access
through a query language. A query language is a nonprocedural language—one that lets the user specify
what must be done without having to specify how it is to be done. Structured Query Language (SQL) is
the de facto query language and data access standard supported by the majority of DBMS vendors. Chapter
7, Introduction to Structured Query Language (SQL), and Chapter 8, Advanced SQL, address the use of SQL.
The DBMS also provides application programming interfaces to procedural languages such as COBOL, C,
Java, Visual Basic.NET, and C++. In addition, the DBMS provides administrative utilities used by the DBA and
the database designer to create, implement, monitor, and maintain the database.

� Database communication interfaces. Current-generation DBMSs accept end-user requests via multiple,
different network environments. For example, the DBMS might provide access to the database via the Internet
through the use of Web browsers such as Mozilla Firefox or Microsoft Internet Explorer. In this environment,
communications can be accomplished in several ways:

- End users can generate answers to queries by filling in screen forms through their preferred Web browser.

- The DBMS can automatically publish predefined reports on a Web site.

- The DBMS can connect to third-party systems to distribute information via e-mail or other productivity
applications.

Database communication interfaces are examined in greater detail in Chapter 12, Distributed Database Management
Systems, in Chapter 14, Database Connectivity and Web Technologies, and in Appendix I, Databases in Electronic
Commerce. (Appendixes are found in the Student Online Companion.)

C6545_01 7/12/2007 11:44:45 Page 24

24 C H A P T E R 1

1.6.3 Managing the Database System: A Shift in Focus

The introduction of a database system over the file system provides a framework in which strict procedures and
standards can be enforced. Consequently, the role of the human component changes from an emphasis on
programming (in the file system) to a focus on the broader aspects of managing the organization’s data resources and
on the administration of the complex database software itself.

The database system makes it possible to tackle far more sophisticated uses of the data resources as long as the
database is designed to make use of that available power. The kinds of data structures created within the database and
the extent of the relationships among them play a powerful role in determining the effectiveness of the database
system.

Although the database system yields considerable advantages over previous data management approaches, database
systems do carry significant disadvantages. For example:

� Increased costs. Database systems require sophisticated hardware and software and highly skilled personnel.
The cost of maintaining the hardware, software, and personnel required to operate and manage a database
system can be substantial. Training, licensing, and regulation compliance costs are often overlooked when
database systems are implemented.

� Management complexity. Database systems interface with many different technologies and have a significant
impact on a company’s resources and culture. The changes introduced by the adoption of a database system
must be properly managed to ensure that they help advance the company’s objectives. Given the fact that
databases systems hold crucial company data that are accessed from multiple sources, security issues must be
assessed constantly.

� Maintaining currency. To maximize the efficiency of the database system, you must keep your system current.
Therefore, you must perform frequent updates and apply the latest patches and security measures to all
components. Because database technology advances rapidly, personnel training costs tend to be significant.

� Vendor dependence. Given the heavy investment in technology and personnel training, companies might be
reluctant to change database vendors. As a consequence, vendors are less likely to offer pricing point
advantages to existing customers, and those customers might be limited in their choice of database system
components.

� Frequent upgrade/replacement cycles. DBMS vendors frequently upgrade their products by adding new
functionality. Such new features often come bundled in new upgrade versions of the software. Some of these
versions require hardware upgrades. Not only do the upgrades themselves cost money, but it also costs money
to train database users and administrators to properly use and manage the new features.

C6545_01 7/12/2007 11:44:45 Page 25

25D A T A B A S E S Y S T E M S

S u m m a r y

◗ Data are raw facts. Information is the result of processing data to reveal its meaning. Accurate, relevant, and timely
information is the key to good decision making, and good decision making is the key to organizational survival in
a global environment.

◗ Data are usually stored in a database. To implement a database and to manage its contents, you need a database
management system (DBMS). The DBMS serves as the intermediary between the user and the database. The
database contains the data you have collected and “data about data,” known as metadata.

◗ Database design defines the database structure. A well-designed database facilitates data management and
generates accurate and valuable information. A poorly designed database can lead to bad decision making, and bad
decision making can lead to the failure of an organization.

◗ Databases evolved from manual and then computerized file systems. In a file system, data are stored in independent
files, each requiring its own data management programs. Although this method of data management is largely
outmoded, understanding its characteristics makes database design easier to understand. Awareness of the
problems of file systems can help you avoid similar problems with DBMSs.

◗ Some limitations of file system data management are that it requires extensive programming, system administration
can be complex and difficult, making changes to existing structures is difficult, and security features are likely to be
inadequate. Also, independent files tend to contain redundant data, leading to problems of structural and data
dependency.

◗ Database management systems were developed to address the file system’s inherent weaknesses. Rather than
depositing data in independent files, a DBMS presents the database to the end user as a single data repository. This
arrangement promotes data sharing, thus eliminating the potential problem of islands of information. In addition,
the DBMS enforces data integrity, eliminates redundancy, and promotes data security.

K e y T e r m s

ad hoc query, 8

centralized database, 8

data, 8

data anomaly, 18

data dependence, 15

data dictionary, 21

data inconsistency, 8

data independence, 15

data integrity, 17

data management, 6

data redundancy, 17

data warehouse, 9

database, 6

database design, 10

database management system
(DBMS), 7

database system, 19

desktop database, 8

distributed database, 8

enterprise database, 8

extensible markup language
(XML), 9

field, 12

file, 12

information, 6

islands of information, 17

knowledge, 17

logical data format, 15

metadata, 15

multiuser database, 8

operational database, 8

performance tuning, 22

physical data format, 15

production database, 8

query, 9

query language, 8

query result set, 8

record, 8

single-user database, 8

structural dependence, 15

structural independence, 15

structured data, 9

Structured Query Language
(SQL), 9

transactional database, 8

unstructured data, 9

workgroup database, 8

XML, 9

XML database, 9

C6545_01 5/23/2007 11:43:32 Page 26

26 C H A P T E R 1

R e v i e w Q u e s t i o n s

1. Discuss each of the following terms:

a. data

b. field

c. record

d. file

2. What is data redundancy, and which characteristics of the file system can lead to it?

3. What is data independence, and why is it lacking in file systems?

4. What is a DBMS, and what are its functions?

5. What is structural independence, and why is it important?

6. Explain the difference between data and information.

7. What is the role of a DBMS, and what are its advantages? What are its disadvantages?

8. List and describe the different types of databases.

9. What are the main components of a database system?

10. What is metadata?

11. Explain why database design is important.

12. What are the potential costs of implementing a database system?

13. Use examples to compare and contrast unstructured and structured data. Which type is more prevalent in a
typical business environment?

P r o b l e m s

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student OnlineCom-
panion for this book.

O n l i n e C o n t e n t

The file structures you see in this problem set are simulated in a Microsoft Access database named Ch01_
Problems, available in the Student Online Companion for this book.

C6545_01 5/23/2007 11:22:10 Page 27

27D A T A B A S E S Y S T E M S

Given the file structure shown in Figure P1.1, answer Problems 1−4.

1. How many records does the file contain? How many fields are there per record?

2. What problem would you encounter if you wanted to produce a listing by city? How would you solve this problem
by altering the file structure?

3. If you wanted to produce a listing of the file contents by last name, area code, city, state, or zip code, how would
you alter the file structure?

4. What data redundancies do you detect? How could those redundancies lead to anomalies?

5. Identify and discuss the serious data redundancy problems exhibited by the file structure shown in Figure P1.5.

6. Looking at the EMP_NAME and EMP_PHONE contents in Figure P1.5, what change(s) would you recommend?

7. Identify the various data sources in the file you examined in Problem 5.

8. Given your answer to Problem 7, what new files should you create to help eliminate the data redundancies found
in the file shown in Figure P1.5?

FIGURE
P1.1

The file structure for Problems 1–4

FIGURE
P1.5

The file structure for Problems 5–8

C6545_01 7/12/2007 11:45:53 Page 28

28 C H A P T E R 1

9. Identify and discuss the serious data redundancy problems exhibited by the file structure shown in Figure P1.9.
(The file is meant to be used as a teacher class assignment schedule. One of the many problems with data
redundancy is the likely occurrence of data inconsistencies—two different initials have been entered for the
teacher named Maria Cordoza.)

10. Given the file structure shown in Figure P1.9, what problem(s) might you encounter if building KOM were
deleted?

FIGURE
P1.9

The file structure for Problems 9–10

C6545_01 7/12/2007 11:46:9 Page 29

29D A T A B A S E S Y S T E M S

Preview

Data Models

In this chapter, you will learn:

� About data modeling and why data models are important

� About the basic data-modeling building blocks

� What business rules are and how they influence database design

� How the major data models evolved

� How data models can be classified by level of abstraction

This chapter examines data modeling. Data modeling is the first step in the database design

journey, serving as a bridge between real-world objects and the database that resides in the

computer.

One of the most vexing problems of database design is that designers, programmers, and

end users see data in different ways. Consequently, different views of the same data can lead

to database designs that do not reflect an organization’s actual operation, failing to meet

end-user needs and data efficiency requirements.To avoid such failures, database designers

must obtain a precise description of the nature of the data and of the many uses of that data

within the organization. Communication among database designers, programmers, and end

users should be frequent and clear. Data modeling clarifies such communication by reducing

the complexities of database design to more easily understood abstractions that define

entities and the relations among them.

First, you will learn what some of the basic data-modeling concepts are and how current

data models developed from earlier models. Tracing the development of those database

models will help you understand the database design and implementation issues that are

addressed in the rest of this book. Second, you will be introduced to the Entity Relationship

Diagram (ERD) as a data modeling tool. ER diagrams can be drawn using a variety of

notations.Within this chapter you will be introduced to the traditional Chen notation, the

more current Crows’ Foot notation, and the newer class diagram notation, which is part of

the Unified Modeling Language (UML). Finally, you will learn how various degrees of data

abstraction help reconcile varying views of the same data.

2
T

W
O

C6545_02 6/6/2007 9:18:3 Page 30

2.1 DATA MODELING AND DATA MODELS

Database design focuses on how the database structure will be used to store and manage end-user data. Data modeling,
the first step in designing a database, refers to the process of creating a specific data model for a determined problem
domain. (A problem domain is a clearly defined area within the real world environment, with well defined scope and
boundaries, that is to be systematically addressed.) A data model is a relatively simple representation, usually
graphical, of more complex real-world data structures. In general terms, a model is an abstraction of a more complex
real-world object or event. A model’s main function is to help you understand the complexities of the real-world
environment. Within the database environment, a data model represents data structures and their characteristics,
relations, constraints, transformations, and other constructs with the purpose of supporting a specific problem domain.

Data modeling is an iterative, progressive process. You start with a simple understanding of the problem domain, and
as your understanding of the problem domain increases, so does the level of detail of the data model. Done properly,
the final data model is in effect a “blueprint” containing all the instructions to build a database that will meet all end-user
requirements. This blueprint is narrative and graphical in nature, meaning that it contains both text descriptions in
plain, unambiguous language and clear, useful diagrams depicting the main data elements.

Traditionally, database designers relied on good judgment to help them develop a good data model. Unfortunately,
good judgment is often in the eye of the beholder, and it often develops after much trial and error. For example, if each
of the students in this class has to create a data model for a video store, it’s very likely that each of them will come
up with a different model. Which one would be the correct one? The simple answer is “the one that meets all the
end-user requirements,” and there may be more than one correct solution! Fortunately, database designers make use
of existing data modeling constructs and powerful database design tools that substantially diminish the potential for
errors in database modeling. In the following sections you will learn how existing data models are used to represent
real world data and how the different degrees of data abstraction facilitate data modeling. But first, you must
understand the importance of data models and their basic constructs.

2.2 THE IMPORTANCE OF DATA MODELS

Data models can facilitate interaction among the designer, the applications programmer, and the end user. A
well-developed data model can even foster improved understanding of the organization for which the database design
is developed. In short, data models are a communication tool. This important aspect of data modeling was summed
up neatly by a client whose reaction was as follows: “I created this business, I worked with this business for years, and
this is the first time I’ve really understood how all the pieces really fit together.”

Note

The terms data model and database model are often used interchangeably. In this book, the term database
model is used to refer to the implementation of a data model in a specific database system.

Note

An implementation-ready data model should contain at least the following components:

• A description of the data structure that will store the end-user data.

• A set of enforceable rules to guarantee the integrity of the data.

• A data manipulation methodology to support the real-world data transformations.

C6545_02 6/6/2007 8:54:29 Page 31

31D A T A M O D E L S

The importance of data modeling cannot be overstated. Data constitute the most basic information units employed by
a system. Applications are created to manage data and to help transform data into information. But data are viewed
in different ways by different people. For example, contrast the (data) view of a company manager with that of a
company clerk. Although the manager and the clerk both work for the same company, the manager is more likely to
have an enterprise-wide view of company data than the clerk.

Even different managers view data differently. For example, a company president is likely to take a universal view of
the data because he or she must be able to tie the company’s divisions to a common (database) vision. A purchasing
manager in the same company is likely to have a more restricted view of the data, as is the company’s inventory
manager. In effect, each department manager works with a subset of the company’s data. The inventory manager is
more concerned about inventory levels, while the purchasing manager is more concerned about the cost of items and
about personal/business relationships with the suppliers of those items.

Applications programmers have yet another view of data, being more concerned with data location, formatting, and
specific reporting requirements. Basically, applications programmers translate company policies and procedures from
a variety of sources into appropriate interfaces, reports, and query screens.

The different users and producers of data and information often reflect the “blind people and the elephant” analogy:
the blind person who felt the elephant’s trunk had quite a different view of the elephant from the one who felt the
elephant’s leg or tail. What is needed is a view of the whole elephant. Similarly, a house is not a random collection
of rooms; if someone is going to build a house, he or she should first have the overall view that is provided by
blueprints. Likewise, a sound data environment requires an overall database blueprint based on an appropriate
data model.

When a good database blueprint is available, it does not matter that an applications programmer’s view of the data is
different from that of the manager and/or the end user. Conversely, when a good database blueprint is not available,
problems are likely to ensue. For instance, an inventory management program or an order entry system may use
conflicting product numbering schemes, thereby costing the company thousands (or even millions) of dollars.

Keep in mind that a house blueprint is an abstraction; you cannot live in the blueprint. Similarly, the data model is an
abstraction; you cannot draw the required data out of the data model. Just as you are not likely to build a good house
without a blueprint, you are equally unlikely to create a good database without first creating an appropriate data model.

2.3 DATA MODEL BASIC BUILDING BLOCKS

The basic building blocks of all data models are entities, attributes, relationships, and constraints. An entity is anything
(a person, a place, a thing, or an event) about which data are to be collected and stored. An entity represents a
particular type of object in the real world. Because an entity represents a particular type of object, entities are
“distinguishable” that is, each entity occurrence is unique and distinct. For example, a CUSTOMER entity would have
many distinguishable customer occurrences, such as John Smith, Pedro Dinamita, Tom Strickland, etc. Entities may
be physical objects, such as customers or products, but entities may also be abstractions, such as flight routes or musical
concerts.

An attribute is a characteristic of an entity. For example, a CUSTOMER entity would be described by attributes such
as customer last name, customer first name, customer phone, customer address, and customer credit limit. Attributes
are the equivalent of fields in file systems.

A relationship describes an association among entities. For example, a relationship exists between customers and
agents that can be described as follows: an agent can serve many customers, and each customer may be served by one
agent. Data models use three types of relationships: one-to-many, many-to-many, and one-to-one. Database designers
usually use the shorthand notations 1:M or 1..*, M:N or *..*, and 1:1 or 1..1, respectively. (Although the M:N notation

C6545_02 6/6/2007 8:55:2 Page 32

32 C H A P T E R 2

is a standard label for the many-to-many relationship, the label M:M may also be used.) The following examples
illustrate the distinctions among the three.

� One-to-many (1:M or 1..*) relationship. A painter paints many different paintings, but each one of them
is painted by only one painter. Thus, the painter (the “one”) is related to the paintings (the “many”). Therefore,
database designers label the relationship “PAINTER paints PAINTING” as 1:M. (Note that entity names are
often capitalized as a convention so they are easily identified.) Similarly, a customer (the “one”) may generate
many invoices, but each invoice (the “many”) is generated by only a single customer. The “CUSTOMER
generates INVOICE” relationship would also be labeled 1:M.

� Many-to-many (M:N or *..*) relationship. An employee may learn many job skills, and each job skill may
be learned by many employees. Database designers label the relationship “EMPLOYEE learns SKILL” as M:N.
Similarly, a student can take many classes and each class can be taken by many students, thus yielding the M:N
relationship label for the relationship expressed by “STUDENT takes CLASS.”

� One-to-one (1:1 or 1..1) relationship. A retail company’s management structure may require that each of
its stores be managed by a single employee. In turn, each store manager, who is an employee, manages only
a single store. Therefore, the relationship “EMPLOYEE manages STORE” is labeled 1:1.

The preceding discussion identified each relationship in both directions; that is, relationships are bidirectional:

� One CUSTOMER can generate many INVOICEs.

� Each of the many INVOICEs is generated by only one CUSTOMER.

A constraint is a restriction placed on the data. Constraints are important because they help to ensure data integrity.
Constraints are normally expressed in the form of rules. For example:

� An employee’s salary must have values that are between 6,000 and 350,000.

� A student’s GPA must be between 0.00 and 4.00.

� Each class must have one and only one teacher.

How do you properly identify entities, attributes, relationships, and constraints? The first step is to clearly identify the
business rules for the problem domain you are modeling.

2.4 BUSINESS RULES

When database designers go about selecting or determining the entities, attributes, and relationships that will be used
to build a data model, they might start by gaining a thorough understanding of what types of data are in an
organization, how the data are used, and in what time frames they are used. But such data and information do not,
by themselves, yield the required understanding of the total business. From a database point of view, the collection of
data becomes meaningful only when it reflects properly defined business rules. A business rule is a brief, precise,
and unambiguous description of a policy, procedure, or principle within a specific organization. In a sense, business
rules are misnamed: they apply to any organization, large or small—a business, a government unit, a religious group,
or a research laboratory—that stores and uses data to generate information.

Business rules, derived from a detailed description of an organization’s operations, help to create and enforce actions
within that organization’s environment. Business rules must be rendered in writing and updated to reflect any change
in the organization’s operational environment.

Properly written business rules are used to define entities, attributes, relationships, and constraints. Any time you see
relationship statements such as “an agent can serve many customers, and each customer can be served by only one
agent,” you are seeing business rules at work. You will see the application of business rules throughout this book,
especially in the chapters devoted to data modeling and database design.

C6545_02 6/4/2007 15:32:25 Page 33

33D A T A M O D E L S

To be effective, business rules must be easy to understand and widely disseminated to ensure that every person in the
organization shares a common interpretation of the rules. Business rules describe, in simple language, the main and
distinguishing characteristics of the data as viewed by the company. Examples of business rules are as follows:

� A customer may generate many invoices.

� An invoice is generated by only one customer.

� A training session cannot be scheduled for fewer than 10 employees or for more than 30 employees.

Note that those business rules establish entities, relationships, and constraints. For example, the first two business rules
establish two entities (CUSTOMER and INVOICE) and a 1:M relationship between those two entities. The third
business rule establishes a constraint (no fewer than 10 people and no more than 30 people), two entities (EMPLOYEE
and TRAINING), and a relationship between EMPLOYEE and TRAINING.

2.4.1 Discovering Business Rules

The main sources of business rules are company managers, policy makers, department managers, and written
documentation such as a company’s procedures, standards, or operations manuals. A faster and more direct source
of business rules is direct interviews with end users. Unfortunately, because perceptions differ, end users sometimes are
a less reliable source when it comes to specifying business rules. For example, a maintenance department mechanic
might believe that any mechanic can initiate a maintenance procedure, when actually only mechanics with inspection
authorization can perform such a task. Such a distinction might seem trivial, but it can have major legal consequences.
Although end users are crucial contributors to the development of business rules, it pays to verify end-user
perceptions. Too often, interviews with several people who perform the same job yield very different perceptions of
what the job components are. While such a discovery may point to “management problems,” that general diagnosis
does not help the database designer. The database designer’s job is to reconcile such differences and verify the results
of the reconciliation to ensure that the business rules are appropriate and accurate.

The process of identifying and documenting business rules is essential to database design for several reasons:

� They help standardize the company’s view of data.

� They can be a communications tool between users and designers.

� They allow the designer to understand the nature, role, and scope of the data.

� They allow the designer to understand business processes.

� They allow the designer to develop appropriate relationship participation rules and constraints and to create
an accurate data model.

Of course, not all business rules can be modeled. For example, a business rule that specifies that “no pilot can fly more
than 10 hours within any 24-hour period” cannot be modeled. However, such a business rule can be enforced by
application software.

2.4.2 Translating Business Rules into Data Model Components

Business rules set the stage for the proper identification of entities, attributes, relationships, and constraints. In the real
world, names are used to identify objects. If the business environment wants to keep track of the objects, there will be
specific business rules for them. As a general rule, a noun in a business rule will translate into an entity in the model,
and a verb (active or passive) associating nouns will translate into a relationship among the entities. For example, the
business rule “a customer may generate many invoices” contains two nouns (customer and invoices) and a verb
(generate) that associates the nouns. From this business rule, you could deduct that:

� Customer and invoice are objects of interest for the environment and should be represented by their respective
entities.

� There is a “generate” relationship between customer and invoice.

C6545_02 6/4/2007 14:5:26 Page 34

34 C H A P T E R 2

To properly identify the type of relationship, you should consider that relationships are bidirectional; that is, they go
both ways. For example, the business rule “a customer may generate many invoices” is complemented by the business
rule “an invoice is generated by only one customer.” In that case, the relationship is one-to-many (1:M). Customer is
the “1” side, and invoice is the “many” side.

As a general rule, to properly identify the relationship type, you should ask two questions:

� How many instances of B are related to one instance of A?

� How many instances of A are related to one instance of B?

For example, you can assess the relationship between student and class by asking two questions:

� In how many classes can one student enroll? Answer: many classes.

� How many students can enroll in one class? Answer: many students.

Therefore, the relationship between student and class is many-to-many (M:N). You will have many opportunities to
determine the relationships between entities as you proceed through this book, and soon the process will become
second nature.

2.5 THE EVOLUTION OF DATA MODELS

The quest for better data management has led to several different models that attempt to resolve the file system’s
critical shortcomings. This section gives an overview of the major data models in roughly chronological order. You will
discover that many of the “new” database concepts and structures bear a remarkable resemblance to some of the “old”
data model concepts and structures. Table 2.1 traces the evolution of the major data models.

TABLE
2.1

Evolution of Major Data Models

GENERATION TIME MODEL EXAMPLES COMMENTS
First 1960s−1970s File System VMS/VSAM Used mainly on IBM mainframe

systems
Managed records, not relationships

Second 1970s Hierarchical
and Network
Data Model

IMS
ADABAS
IDS-II

Early database systems
Navigational access

Third Mid-1970s to
present

Relational
Data Model

DB2
Oracle
MS SQL-Server
MySQL

Conceptual simplicity
Entity Relationship (ER) modeling
and support for relational data
modeling

Fourth Mid-1980s to
present

Object-Oriented

Extended
Relational

Versant
FastObjects.Net
Objectivity/DB
DB/2 UDB
Oracle 10g

Support complex data
Extended relational products
support objects and data
warehousing

Web databases become common
Next
Generation

Present to
future

XML dbXML
Tamino
DB2 UDB
Oracle 10g
MS SQL Server

Organization and management of
unstructured data

Relational and object models add
support for XML documents

C6545_02 7/17/2007 10:51:17 Page 35

35D A T A M O D E L S

2.5.1 The Hierarchical Model

The hierarchical model was developed in the 1960s to manage large amounts of data for complex manufacturing
projects such as the Apollo rocket that landed on the moon in 1969. Its basic logical structure is represented by an
upside-down tree. The hierarchical structure contains levels, or segments. A segment is the equivalent of a file
system’s record type. Within the hierarchy, the top layer (the root) is perceived as the parent of the segment directly
beneath it. For example, in Figure 2.1, the root segment is the parent of the Level 1 segments, which, in turn, are
the parents of the Level 2 segments, etc. The segments below other segments are the children of the segment above.
In short, the hierarchical model depicts a set of one-to-many (1:M) relationships between a parent and its children
segments. (Each parent can have many children, but each child has only one parent.)

The hierarchical data model yielded many advantages over the file system model. In fact, many of the hierarchical data
model’s features formed the foundation for current data models. Many of its database application advantages are
replicated, albeit in a different form, in current database environments. The hierarchical database quickly became dominant
in the 1970s and generated a large installed base, which, in turn, created a pool of programmers who knew the systems
and who developed numerous tried-and-true business applications. However, the hierarchical model had limitations: it was
complex to implement, it was difficult to manage, and it lacked structural independence. Also, many common data
relationships do not conform to the 1:M form, and there were no standards for how to implement the model.

In the 1970s, database professionals convened a set of meetings that culminated in the publication of a set of database
standards that ultimately led to the development of alternative data models. The most prominent of those models is
the network model.

O n l i n e C o n t e n t

The hierarchical and network models are largely of historical interest, yet they do contain some elements and
features that interest current database professionals. The technical details of those two models are discussed in
detail in Appendixes K and L, respectively, in the Student Online Companion for this book. Appendix G is
devoted to the object-oriented (OO) model. However, given the dominant market presence of the relational
model, most of the book focuses on that model.

Root Segment Final Assembly

Component A Component CComponent B

Assembly A Assembly B Assembly C

Part A Part B Part C Part D Part E

Level 1 Segments
(Root Children)

Level 2 Segments
(Level 1 Children)

Level 3 Segments
(Level 2 Children)

FIGURE
2.1

A hierarchical structure

C6545_02 6/4/2007 15:32:44 Page 36

36 C H A P T E R 2

2.5.2 The Network Model

The network model was created to represent complex data relationships more effectively than the hierarchical
model, to improve database performance, and to impose a database standard. The lack of database standards was
troublesome to programmers and application designers because it made database designs and applications less
portable. Worse, the lack of even a standard set of database concepts impeded the search for better data models.
Disorganization seldom fosters progress.

To help establish database standards, the Conference on Data Systems Languages (CODASYL) created the
Database Task Group (DBTG) in the late 1960s. The DBTG was charged to define standard specifications for an
environment that would facilitate database creation and data manipulation. The final DBTG report contained
specifications for three crucial database components:

� The schema, which is the conceptual organization of the entire database as viewed by the database
administrator. The schema includes a definition of the database name, the record type for each record, and the
components that make up those records.

� The subschema, which defines the portion of the database “seen” by the application programs that actually
produce the desired information from the data contained within the database. The existence of subschema
definitions allows all application programs to simply invoke the subschema required to access the appropriate
database file(s).

� A data management language (DML) that defines the environment in which data can be managed. To
produce the desired standardization for each of the three components, the DBTG specified three distinct DML
components:

- A schema data definition language (DDL), which enables the database administrator to define the
schema components.

- A subschema DDL, which allows the application programs to define the database components that will be
used by the application.

- A data manipulation language to work with the data in the database.

In the network model, the user perceives the network database as a collection of records in 1:M relationships.
However, unlike the hierarchical model, the network model allows a record to have more than one parent. In network
database terminology, a relationship is called a set. Each set is composed of at least two record types: an owner record
and a member record. A set represents a 1:M relationship between the owner and the member. An example of such
a relationship is depicted in Figure 2.2.

FIGURE
2.2

A network data model

SALESREP

1:M

PAYMENT

CUSTOMER

PRODUCT INVOICE

INV_LINE

1:M1:M

1:M 1:M

Line setInventory set

Commission set Sales set Payment set

C6545_02 6/4/2007 15:57:17 Page 37

37D A T A M O D E L S

Figure 2.2 illustrates a network data model for a typical sales organization. In this model, CUSTOMER, SALESREP,
INVOICE, INV_LINE, PRODUCT, and PAYMENT represent record types. Note that INVOICE is “owned” by both
SALESREP and CUSTOMER. Similarly, INV_LINE has two owners, PRODUCT and INVOICE. Furthermore, the
network model can also include one-owner relationships, such as CUSTOMER makes PAYMENT.

As information needs grew and as more sophisticated databases and applications were required, the network model
became too cumbersome. The lack of ad hoc query capability put heavy pressure on programmers to generate the
code required to produce even the simplest reports. And although the existing databases provided limited data
independence, any structural change in the database still could produce havoc in all application programs that drew
data from the database. Because of the disadvantages of the hierarchical and network models, they were largely
replaced by the relational data model in the 1980s.

2.5.3 The Relational Model

The relational model was introduced in 1970 by E. F. Codd (of IBM) in his landmark paper “A Relational Model of
Data for Large Shared Databanks” (Communications of the ACM, June 1970, pp. 377−387). The relational model
represented a major breakthrough for both users and designers. To use an analogy, the relational model produced an
“automatic transmission” database to replace the “standard transmission” databases that preceded it. Its conceptual
simplicity set the stage for a genuine database revolution.

The relational model foundation is a mathematical concept known as a relation. To avoid the complexity of abstract
mathematical theory, you can think of a relation (sometimes called a table) as a matrix composed of intersecting rows
and columns. Each row in a relation is called a tuple. Each column represents an attribute. The relational model also
describes a precise set of data manipulation constructs based on advanced mathematical concepts.

In 1970, Codd’s work was considered ingenious but impractical. The relational model’s conceptual simplicity was
bought at the expense of computer overhead; computers at that time lacked the power to implement the relational
model. Fortunately, computer power grew exponentially, as did operating system efficiency. Better yet, the cost of
computers diminished rapidly as their power grew. Today even microcomputers, costing a fraction of what their
mainframe ancestors did, can run sophisticated relational database software such as Oracle, DB2, Microsoft SQL
Server, MySQL, and other mainframe relational software.

The relational data model is implemented through a very sophisticated relational database management system
(RDBMS). The RDBMS performs the same basic functions provided by the hierarchical and network DBMS systems,
in addition to a host of other functions that make the relational data model easier to understand and implement.

Arguably the most important advantage of the RDBMS is its ability to hide the complexities of the relational model from
the user. The RDBMS manages all of the physical details, while the user sees the relational database as a collection of tables
in which data are stored. The user can manipulate and query the data in a way that seems intuitive and logical.

Tables are related to each other through the sharing of a common attribute (value in a column). For example, the
CUSTOMER table in Figure 2.3 might contain a sales agent’s number that is also contained in the AGENT table.

The common link between the CUSTOMER and AGENT tables enables you to match the customer to his or her sales
agent even though the customer data are stored in one table and the sales representative data are stored in another table.
For example, you can easily determine that customer Dunne’s agent is Alex Alby because for customer Dunne, the
CUSTOMER table’s AGENT_CODE is 501, which matches the AGENT table’s AGENT_CODE for Alex Alby. Although

Note

The relational database model presented in this chapter is an introduction and an overview. A more detailed
discussion is in Chapter 3, The Relational Database Model. In fact, the relational model is so important that it
will serve as the basis for discussions in most of the remaining chapters.

C6545_02 7/17/2007 15:46:46 Page 38

38 C H A P T E R 2

the tables are independent of one another, you can easily associate the data between tables. The relational model provides
a minimum level of controlled redundancy to eliminate most of the redundancies commonly found in file systems.

The relationship type (1:1, 1:M, or M:N) is often shown in a relational schema, an example of which is shown in
Figure 2.4. A relational diagram is a representation of the relational database’s entities, the attributes within those
entities, and the relationships between those entities.

In Figure 2.4, the relational diagram shows the connect-
ing fields (in this case, AGENT_CODE) and the relation-
ship type, 1:M. Microsoft Access, the database software
application used to generate Figure 2.4, employs the �

(infinity) symbol to indicate the “many” side. In this
example, the CUSTOMER represents the “many” side
because an AGENT can have many CUSTOMERs. The
AGENT represents the “1” side because each CUS-
TOMER has only one AGENT.

A relational table stores a collection of related entities. In
this respect, the relational database table resembles a file.
But there is one crucial difference between a table and a
file: a table yields complete data and structural indepen-
dence because it is a purely logical structure. How the
data are physically stored in the database is of no concern
to the user or the designer; the perception is what counts.

Database name: Ch02_InsureCoTable name: AGENT (first six attributes)

Table name: CUSTOMER

Link through AGENT_CODE

FIGURE
2.3

Linking relational tables

O n l i n e C o n t e n t

This chapter’s databases can be found in the Student Online Companion. For example, the contents of the
AGENT and CUSTOMER tables shown in Figure 2.3 are found in the database named Ch02_InsureCo.

FIGURE
2.4

A relational diagram

C6545_02 6/4/2007 15:34:37 Page 39

39D A T A M O D E L S

And this property of the relational data model, explored in depth in the next chapter, became the source of a real
database revolution.

Another reason for the relational data model’s rise to dominance is its powerful and flexible query language. For most
relational database software, the query language is Structured Query Language (SQL), which allows the user to specify
what must be done without specifying how it must be done. The RDBMS uses SQL to translate user queries into
instructions for retrieving the requested data. SQL makes it possible to retrieve data with far less effort than any other
database or file environment.

From an end-user perspective, any SQL-based relational database application involves three parts: a user interface, a
set of tables stored in the database, and the SQL “engine.” Each of these parts is explained below.

� The end-user interface. Basically, the interface allows the end user to interact with the data (by auto-generating
SQL code). Each interface is a product of the software vendor’s idea of meaningful interaction with the data.
You can also design your own customized interface with the help of application generators that are now
standard fare in the database software arena.

� A collection of tables stored in the database. In a relational database, all data are perceived to be stored in
tables. The tables simply “present” the data to the end user in a way that is easy to understand. Each table is
independent from another. Rows in different tables are related based on common values in common attributes.

� SQL engine. Largely hidden from the end user, the SQL engine executes all queries, or data requests. Keep
in mind that the SQL engine is part of the DBMS software. The end user uses SQL to create table structures
and to perform data access and table maintenance. The SQL engine processes all user requests—largely
behind the scenes and without the end user’s knowledge. Hence, it’s said that SQL is a declarative language
that tells what must be done but not how it must be done. (You will learn more about the SQL engine in
Chapter 11, Database Performance Tuning and Query Optimization.)

Because the RDBMS performs the behind-the-scenes tasks, it is not necessary to focus on the physical aspects of the
database. Instead, the chapters that follow concentrate on the logical portion of the relational database and its design.
Furthermore, SQL is covered in detail in Chapter 7, Introduction to Structured Query Language (SQL), and in Chapter 8,
Advanced SQL.

2.5.4 The Entity Relationship Model

The conceptual simplicity of relational database technology triggered the demand for RDBMSs. In turn, the rapidly
increasing requirements for transaction and information created the need for more complex database implementation
structures, thus creating the need for more effective database design tools. (Building a skyscraper requires more detailed
design activities than building a doghouse, for example.)

Complex design activities require conceptual simplicity to yield successful results. Although the relational model was a
vast improvement over the hierarchical and network models, it still lacked the features that would make it an effective
database design tool. Because it is easier to examine structures graphically than to describe them in text, database
designers prefer to use a graphical tool in which entities and their relationships are pictured. Thus, the entity
relationship (ER) model, or ERM, has become a widely accepted standard for data modeling.

Peter Chen first introduced the ER data model in 1976; it was the graphical representation of entities and their
relationships in a database structure that quickly became popular because it complemented the relational data model
concepts. The relational data model and ERM combined to provide the foundation for tightly structured database
design. ER models are normally represented in an entity relationship diagram (ERD), which uses graphical
representations to model database components.

C6545_02 6/4/2007 15:35:1 Page 40

40 C H A P T E R 2

The ER model is based on the following components:

� Entity. Earlier in this chapter, an entity was defined as anything about which data are to be collected and
stored. An entity is represented in the ERD by a rectangle, also known as an entity box. The name of the entity,
a noun, is written in the center of the rectangle. The entity name is generally written in capital letters and is
written in the singular form: PAINTER rather than PAINTERS, and EMPLOYEE rather than EMPLOYEES.
Usually, when applying the ERD to the relational model, an entity is mapped to a relational table. Each row
in the relational table is known as an entity instance or entity occurrence in the ER model.

Each entity is described by a set of attributes that describes particular characteristics of the entity. For example,
the entity EMPLOYEE will have attributes such as a Social Security number, a last name, and a first name.
(Chapter 4 explains how attributes are included in the ERD.)

� Relationships. Relationships describe associations among data. Most relationships describe associations
between two entities. When the basic data model components were introduced, three types of relationships
among data were illustrated: one-to-many (1:M), many-to-many (M:N), and one-to-one (1:1). The ER model
uses the term connectivity to label the relationship types. The name of the relationship usually is an active
or passive verb. For example, a PAINTER paints many PAINTINGs; an EMPLOYEE learns many SKILLs; an
EMPLOYEE manages a STORE.

Figure 2.5 shows the different types of relationships using two ER notations: the original Chen notation and the more
current Crow’s Foot notation.

The left side of the ER diagram shows the Chen notation, based on Peter Chen’s landmark paper. In this notation, the
connectivities are written next to each entity box. Relationships are represented by a diamond connected to the related
entities through a relationship line. The relationship name is written inside the diamond.

The right side of Figure 2.5 illustrates the Crow’s Foot notation. The name “Crow’s Foot” is derived from the
three-pronged symbol used to represent the “many” side of the relationship. As you examine the basic Crow’s Foot
ERD in Figure 2.5, note that the connectivities are represented by symbols. For example, the “1” is represented by
a short line segment and the “M” is represented by the three-pronged “crow’s foot.” In this example the relationship
name is written above the relationship line.

In Figure 2.5, entities and relationships are shown in a horizontal format, but they also may be oriented vertically. The
entity location and the order in which the entities are presented are immaterial; just remember to read a 1:M
relationship from the “1” side to the “M” side.

Note

Because this chapter’s objective is to introduce data-modeling concepts, a simplified ERD is discussed in this
section. You will learn how to use ERDs to design databases in Chapter 4, Entity Relationship (ER) Modeling.

Note

A collection of like entities is known as an entity set. For example, you can think of the AGENT file in Figure 2.3
as a collection of three agents (entities) in the AGENT entity set. Technically speaking, the ERD depicts entity
sets. Unfortunately, ERD designers use the word entity as a substitute for entity set, and this book will conform
to that established practice when discussing any ERD and its components.

C6545_02 6/4/2007 15:57:40 Page 41

41D A T A M O D E L S

The Crow’s Foot notation is used as the design standard in this book. However, the Chen notation is used to illustrate
some of the ER modeling concepts whenever necessary. Most database modeling tools let you select the Crow’s Foot
notation. Microsoft Visio Professional software was used to generate the Crow’s Foot designs you will see in
subsequent chapters.

Its exceptional visual simplicity makes the ER model the dominant database modeling and design tool. Nevertheless,
the search for better data-modeling tools continues as the data environment continues to evolve.

FIGURE
2.5

The Chen and Crow’s Foot notations

Note

Many-to-many (M:N) relationships exist at a conceptual level, and you should know how to recognize them.
However, you will learn in Chapter 3 that M:N relationships are not appropriate in a relational model. For that
reason, Microsoft Visio does not support the M:N relationship. Therefore, to illustrate the existence of a M:N
relationship using Visio, two superimposed 1:M relationships have been used.

O n l i n e C o n t e n t

Aside from the Chen and Crow’s Foot notations, there are other ER model notations. For a summary of the
symbols used by several additional ER model notations, see Appendix D, Comparison of ER Model
Notations, in the Student Online Companion.

C6545_02 7/17/2007 10:52:35 Page 42

42 C H A P T E R 2

2.5.5 The Object-Oriented (OO) Model

Increasingly complex real-world problems demonstrated a need for a data model that more closely represented the real
world. In the object-oriented data model (OODM), both data and their relationships are contained in a single
structure known as an object. In turn, the OODM is the basis for the object-oriented database management
system (OODBMS).

An OODM reflects a very different way to define and use entities. Like the relational model’s entity, an object is
described by its factual content. But quite unlike an entity, an object includes information about relationships between
the facts within the object, as well as information about its relationships with other objects. Therefore, the facts within
the object are given greater meaning. The OODM is said to be a semantic data model because semantic indicates
meaning.

Subsequent OODM development has allowed an object also to contain all operations that can be performed on it, such
as changing its data values, finding a specific data value, and printing data values. Because objects include data, various
types of relationships, and operational procedures, the object becomes self-contained, thus making the object—at least
potentially—a basic building block for autonomous structures.

The OO data model is based on the following components:

� An object is an abstraction of a real-world entity. In general terms, an object may be considered equivalent to
an ER model’s entity. More precisely, an object represents only one occurrence of an entity. (The object’s
semantic content is defined through several of the items in this list.)

� Attributes describe the properties of an object. For example, a PERSON object includes the attributes Name,
Social Security Number, and Date of Birth.

� Objects that share similar characteristics are grouped in classes. A class is a collection of similar objects with
shared structure (attributes) and behavior (methods). In a general sense, a class resembles the ER model’s entity
set. However, a class is different from an entity set in that it contains a set of procedures known as methods.
A class’s method represents a real-world action such as finding a selected PERSON’s name, changing a
PERSON’s name, or printing a PERSON’s address. In other words, methods are the equivalent of procedures
in traditional programming languages. In OO terms, methods define an object’s behavior.

� Classes are organized in a class hierarchy. The class hierarchy resembles an upside-down tree in which each
class has only one parent. For example, the CUSTOMER class and the EMPLOYEE class share a parent
PERSON class. (Note the similarity to the hierarchical data model in this respect.)

� Inheritance is the ability of an object within the class hierarchy to inherit the attributes and methods of the
classes above it. For example, two classes, CUSTOMER and EMPLOYEE, can be created as subclasses from
the class PERSON. In this case, CUSTOMER and EMPLOYEE will inherit all attributes and methods from
PERSON.

Object-oriented data models are typically depicted using Unified Modeling Language (UML) class diagrams. Unified
Modeling Language (UML) is a language based on OO concepts that describes a set of diagrams and symbols that
can be used to graphically model a system. UML class diagrams are used to represent data and their relationships
within the larger UML object-oriented systems modeling language. For a more complete description of UML see
Appendix H, Unified Modeling Language (UML).

O n l i n e C o n t e n t

This chapter introduces only basic OO concepts. You’ll have a chance to examine object-orientation concepts
and principles in detail in Appendix G, Object-Oriented Databases, found in the Student Online
Companion for this book.

C6545_02 6/6/2007 9:19:4 Page 43

43D A T A M O D E L S

To illustrate the main concepts of the object-oriented data model, let’s use a simple invoicing problem. In this case,
invoices are generated by customers, each invoice references one or more lines, and each line represents an item
purchased by a customer. Figure 2.6 illustrates the object representation for this simple invoicing problem, as well as
the equivalent UML class diagram and ER model. The object representation is a simple way to visualize a single object
occurrence.

As you examine Figure 2.6, note that:

� The object representation of the INVOICE includes all related objects within the same object box. Note that
the connectivities (1 and M) indicate the relationship of the related objects to the INVOICE. For example, the
1 next to the CUSTOMER object indicates that each INVOICE is related to only one CUSTOMER. The M next
to the LINE object indicates that each INVOICE contains many LINEs.

� The UML class diagram uses three separate object classes (CUSTOMER, INVOICE, and LINE) and two
relationships to represent this simple invoicing problem. Note that the relationship connectivities are
represented by the 1..1, 0..* and 1..* symbols and that the relationships are named in both ends to represent
the different “roles” that the objects play in the relationship.

� The ER model also uses three separate entities and two relationships to represent this simple invoice problem.

2.5.6 The Convergence of Data Models

Another semantic data model was developed in response to the increasing complexity of applications—the extended
relational data model (ERDM). The ERDM, championed by many relational database researchers, constitutes the
relational model’s response to the OODM. This model includes many of the OO model’s best features within an
inherently simpler relational database structural environment. That’s why a DBMS based on the ERDM is often
described as an object/relational database management system (O/RDBMS).

With the huge installed base of the relational database and the emergence of the ERDM, the OODM faces an uphill
battle. Although the ERDM includes a strong semantic component, it is primarily based on the relational data model’s
concepts. In contrast, the OODM is wholly based on the OO and semantic data model concepts. The ERDM is
primarily geared to business applications, while the OODM tends to focus on very specialized engineering and scientific
applications. In the database arena, the most likely scenario appears to be an ever-increasing merging of OO and
relational data model concepts and procedures, with an increasing emphasis on data models that facilitate Internet-age
technologies.

FIGURE
2.6

A comparison of OO, UML, and ER models

INVOICE

INV_DATE
INV_NUMBER
INV_SHIP_DATE
INV_TOTAL

CUSTOMER

LINE

1

M

ER modelObject representation UML class diagram

CUSTOMER INVOICE

CUSTOMER

+INV_NUMBER : Integer
+INV_DATE : Date
+INV_SHIP_DATE : Date
+INV_TOTAL : Double

1..1 0..*

+generates +belongs to

1..1

1..* +belongs to

+generates

C6545_02 6/4/2007 15:47:2 Page 44

44 C H A P T E R 2

2.5.7 Database Models and the Internet

The use of the Internet as a prime business tool has drastically changed the role and scope of the database market.
In fact, the Internet’s impact on the database market has generated new database product strategies in which the
OODM and ERDM-O/RDM have taken a backseat to Internet-age database development. Therefore, instead of an
OODM vs. ERDM-O/RDM data-modeling duel occurring, vendors have been focusing their development efforts on
creating database products that interface efficiently and easily with the Internet. The focus on effective Internet
interfacing makes the underlying data model less important to the end user. If the database fits well into the Internet
picture, its precise modeling heritage is of relatively little consequence. That’s why the relational model has prospered
by incorporating components from other data models. For example, Oracle Corporation’s Oracle 10g database
contains OO components within a relational database structure, as does IBM’s current DB2 version. In any case, the
Internet trumps all other aspects of data storage and access. Therefore, the Internet environment forces a focus on
high levels of systems integration and development through new Internet-age technologies. Such technologies will be
examined in detail in Chapter 14, Database Connectivity and Web Technologies.

With the dominance of the World Wide Web, there is a growing need to manage unstructured data, such as the data found
in most of today’s documents and Web pages. In response to this need, current databases now support Internet-age
technologies such as Extensible Markup Language (XML). For example, extended relational databases such as Oracle 10g
and IBM’s DB2 support XML data types to store and manage unstructured data. Concurrently, native XML databases are
now on the market to address similar needs. The importance of XML support cannot be underestimated, as XML is also
the standard protocol for data exchange among different systems and Internet-based services (see Chapter 14).

2.5.8 Data Models: A Summary

The evolution of DBMSs has always been driven by the search for new ways of modeling increasingly complex
real-world data. A summary of the most commonly recognized data models is shown in Figure 2.7.

FIGURE
2.7

The development of data models

most

least

Semantics in
Data Model

Comments

Hierarchical

Network

Relational

Entity Relationship

Semantic

Object-Oriented Extended Relational
(Object/Relational)

• Difficult to represent M:N relationships
 (hierarchical only)
• Structural level dependency
• No ad hoc queries (record-at-a-time access)
• Access path predefined (navigational access)

• Conceptual simplicity (structual independence)
• Provides ad hoc queries (SQL)
• Set-oriented access

• Easy to understand (more semantics)
• Limited to conceptual modeling
 (no implementation component)

• More semantics in data model
• Support for complex objects
• Inheritance (class hierarchy)
• Behavior
• Unstructured data (XML)
• XML data exchanges

C6545_02 6/4/2007 14:34:22 Page 45

45D A T A M O D E L S

In the evolution of data models, there are some common characteristics that data models must have in order to be
widely accepted:

� A data model must show some degree of conceptual simplicity without compromising the semantic
completeness of the database. It does not make sense to have a data model that is more difficult to
conceptualize than the real world.

� A data model must represent the real world as closely as possible. This goal is more easily realized by adding
more semantics to the model’s data representation. (Semantics concern the dynamic data behavior, while data
representation constitutes the static aspect of the real-world scenario.)

� Representation of the real-world transformations (behavior) must be in compliance with the consistency and
integrity characteristics of any data model.

Each new data model capitalizes on the shortcomings of previous models. The network model replaced the hierarchical
model because the former made it much easier to represent complex (many-to-many) relationships. In turn, the
relational model offers several advantages over the hierarchical and network models through its simpler data
representation, superior data independence, and easy-to-use query language; the relational model also emerged as the
dominant data model for business applications. Although the OO and ERDM have gained a substantial foothold, their
attempts to dislodge the relational model have not been successful. And in the coming years, successful data models
will have to facilitate the development of database products that incorporate unstructured data as well as provide
support for easy data exchanges via XML.

It is important to note that not all data models are created equal; some data models are better suited than others for
some tasks. For example, conceptual models are better suited for high-level data modeling, while implementation
models are better for managing stored data for implementation purposes. The entity relationship model is an example
of a conceptual model, while the hierarchical and network models are examples of implementation models. At the
same time, some models, such as the relational model and the OODM, could be used as both conceptual and
implementation models. Table 2.2 summarizes the advantages and disadvantages of the various database models.

C6545_02 6/4/2007 14:56:12 Page 46

46 C H A P T E R 2

TA
BL

E
2.

2
Ad

va
nt

ag
es

an
d

D
is

ad
va

nt
ag

es
of

Va
ri

ou
s

D
at

ab
as

e
M

od
el

s

D
AT

A
M

O
D

EL
D

AT
A

IN
D

EP
EN

D
EN

C
E

ST
RU

C
TU

RA
L

IN
D

EP
EN

D
EN

C
E

AD
VA

N
TA

G
ES

D
IS

AD
VA

N
TA

G
ES

H
ie

ra
rc

hi
ca

l
Ye

s
N

o
1.

It
pr

om
ot

es
da

ta
sh

ar
in

g.
2.

Pa
re

nt
/C

hi
ld

re
la

tio
ns

hi
p

pr
om

ot
es

co
nc

ep
tu

al
sim

pl
ic

ity
.

3.
D

at
ab

as
e

se
cu

rit
y

is
pr

ov
id

ed
an

d
en

fo
rc

ed
by

D
BM

S.
4.

Pa
re

nt
/C

hi
ld

re
la

tio
ns

hi
p

pr
om

ot
es

da
ta

in
te

gr
ity

.
5.

It
is

ef
fic

ie
nt

w
ith

1:
M

re
la

tio
ns

hi
ps

.

1.
C

om
pl

ex
im

pl
em

en
ta

tio
n

re
qu

ire
s

kn
ow

le
dg

e
of

ph
ys

ic
al

da
ta

st
or

ag
e

ch
ar

ac
te

ris
tic

s.
2.

N
av

ig
at

io
na

ls
ys

te
m

yi
el

ds
co

m
pl

ex
ap

pl
ic

at
io

n
de

ve
lo

pm
en

t,
m

an
ag

em
en

t,
an

d
us

e;
re

qu
ire

s
kn

ow
le

dg
e

of
hi

er
ar

ch
ic

al
pa

th
.

3.
C

ha
ng

es
in

str
uc

tu
re

re
qu

ire
ch

an
ge

s
in

al
la

pp
lic

at
io

n
pr

og
ra

m
s.

4.
Th

er
e

ar
e

im
pl

em
en

ta
tio

n
lim

ita
tio

ns
(n

o
m

ul
tip

ar
en

to
rM

:N
re

la
tio

ns
hi

ps
).

5.
Th

er
e

is
no

da
ta

de
fin

iti
on

or
da

ta
m

an
ip

ul
at

io
n

la
ng

ua
ge

in
th

e
D

BM
S.

6.
Th

er
e

is
a

la
ck

of
sta

nd
ar

ds
.

N
et

w
or

k
Ye

s
N

o
1.

C
on

ce
pt

ua
ls

im
pl

ic
ity

is
at

le
as

te
qu

al
to

th
at

of
th

e
hi

er
ar

ch
ic

al
m

od
el

.
2.

It
ha

nd
le

s
m

or
e

re
la

tio
ns

hi
p

ty
pe

s,
su

ch
as

M
:N

an
d

m
ul

tip
ar

en
t.

3.
D

at
a

ac
ce

ss
is

m
or

e
fle

xi
bl

e
th

an
in

hi
er

ar
ch

ic
al

an
d

fil
e

sy
ste

m
m

od
el

s.
4.

D
at

a
O

w
ne

r/M
em

be
rr

el
at

io
ns

hi
p

pr
om

ot
es

da
ta

in
te

gr
ity

.
5.

Th
er

e
is

co
nf

or
m

an
ce

to
sta

nd
ar

ds
.

6.
It

in
cl

ud
es

da
ta

de
fin

iti
on

la
ng

ua
ge

(D
D

L)
an

d
da

ta
m

an
ip

ul
at

io
n

la
ng

ua
ge

(D
M

L)
in

D
BM

S.

1.
Sy

ste
m

co
m

pl
ex

ity
lim

its
ef

fic
ie

nc
y—

sti
ll

a
na

vi
ga

tio
na

ls
ys

te
m

.
2.

N
av

ig
at

io
na

ls
ys

te
m

yi
el

ds
co

m
pl

ex
im

pl
em

en
ta

tio
n,

ap
pl

ic
at

io
n

de
ve

lo
pm

en
t,

an
d

m
an

ag
em

en
t.

3.
St

ru
ct

ur
al

ch
an

ge
s

re
qu

ire
ch

an
ge

s
in

al
la

pp
lic

at
io

n
pr

og
ra

m
s.

Re
la

tio
na

l
Ye

s
Ye

s
1.

St
ru

ct
ur

al
in

de
pe

nd
en

ce
is

pr
om

ot
ed

by
th

e
us

e
of

in
de

pe
nd

en
t

ta
bl

es
.C

ha
ng

es
in

a
ta

bl
e’

s
str

uc
tu

re
do

no
ta

ffe
ct

da
ta

ac
ce

ss
or

ap
pl

ic
at

io
n

pr
og

ra
m

s.
2.

Ta
bu

la
rv

ie
w

su
bs

ta
nt

ia
lly

im
pr

ov
es

co
nc

ep
tu

al
sim

pl
ic

ity
,t

he
re

by
pr

om
ot

in
g

ea
sie

rd
at

ab
as

e
de

sig
n,

im
pl

em
en

ta
tio

n,
m

an
ag

em
en

t,
an

d
us

e.
3.

Ad
ho

c
qu

er
y

ca
pa

bi
lit

y
is

ba
se

d
on

SQ
L.

4.
Po

w
er

fu
lR

D
BM

S
iso

la
te

s
th

e
en

d
us

er
fro

m
ph

ys
ic

al
-le

ve
ld

et
ai

ls
an

d
im

pr
ov

es
im

pl
em

en
ta

tio
n

an
d

m
an

ag
em

en
ts

im
pl

ic
ity

.

1.
Th

e
RD

BM
S

re
qu

ire
s

su
bs

ta
nt

ia
lh

ar
dw

ar
e

an
d

sy
ste

m
so

ftw
ar

e
ov

er
he

ad
.

2.
C

on
ce

pt
ua

ls
im

pl
ic

ity
gi

ve
s

re
la

tiv
el

y
un

tra
in

ed
pe

op
le

th
e

to
ol

s
to

us
e

a
go

od
sy

ste
m

po
or

ly,
an

d
if

un
ch

ec
ke

d,
it

m
ay

pr
od

uc
e

th
e

sa
m

e
da

ta
an

om
al

ie
s

fo
un

d
in

fil
e

sy
ste

m
s.

3.
It

m
ay

pr
om

ot
e

“i
sla

nd
s

of
in

fo
rm

at
io

n”
pr

ob
le

m
s

as
in

di
vi

du
al

s
an

d
de

pa
rtm

en
ts

ca
n

ea
sil

y
de

ve
lo

p
th

ei
ro

w
n

ap
pl

ic
at

io
ns

.

En
tit

y
Re

la
tio

ns
hi

p
Ye

s
Ye

s
1.

Vi
su

al
m

od
el

in
g

yi
el

ds
ex

ce
pt

io
na

lc
on

ce
pt

ua
ls

im
pl

ic
ity

.
2.

Vi
su

al
re

pr
es

en
ta

tio
n

m
ak

es
it

an
ef

fe
ct

iv
e

co
m

m
un

ic
at

io
n

to
ol

.
3.

It
is

in
te

gr
at

ed
w

ith
do

m
in

an
tr

el
at

io
na

lm
od

el
.

1.
Th

er
e

is
lim

ite
d

co
ns

tra
in

tr
ep

re
se

nt
at

io
n.

2.
Th

er
e

is
lim

ite
d

re
la

tio
ns

hi
p

re
pr

es
en

ta
tio

n.
3.

Th
er

e
is

no
da

ta
m

an
ip

ul
at

io
n

la
ng

ua
ge

.
4.

Lo
ss

of
in

fo
rm

at
io

n
co

nt
en

to
cc

ur
s

w
he

n
at

tri
bu

te
s

ar
e

re
m

ov
ed

fro
m

en
tit

ie
s

to
av

oi
d

cr
ow

de
d

di
sp

la
ys

.(
Th

is
lim

ita
tio

n
ha

s
be

en
ad

dr
es

se
d

in
su

bs
eq

ue
nt

gr
ap

hi
ca

lv
er

sio
ns

.)

O
bj

ec
t-

O
rie

nt
ed

Ye
s

Ye
s

1.
Se

m
an

tic
co

nt
en

ti
s

ad
de

d.
2.

Vi
su

al
re

pr
es

en
ta

tio
n

in
cl

ud
es

se
m

an
tic

co
nt

en
t.

3.
In

he
rit

an
ce

pr
om

ot
es

da
ta

in
te

gr
ity

.

1.
Sl

ow
de

ve
lo

pm
en

to
fs

ta
nd

ar
ds

ca
us

ed
ve

nd
or

s
to

su
pp

ly
th

ei
r

ow
n

en
ha

nc
em

en
ts,

th
us

el
im

in
at

in
g

a
w

id
el

y
ac

ce
pt

ed
sta

nd
ar

d.
2.

It
is

a
co

m
pl

ex
na

vi
ga

tio
na

ls
ys

te
m

.
3.

Th
er

e
is

a
ste

ep
le

ar
ni

ng
cu

rv
e.

4.
H

ig
h

sy
ste

m
ov

er
he

ad
slo

w
s

tra
ns

ac
tio

ns
.

N
ot

e:
Al

ld
at

ab
as

es
as

su
m

e
th

e
us

e
of

a
co

m
m

on
da

ta
po

ol
w

ith
in

th
e

da
ta

ba
se

.T
he

re
fo

re
,

al
ld

at
ab

as
e

m
od

el
s

pr
om

ot
e

da
ta

sh
ar

in
g,

th
us

el
im

in
at

in
g

th
e

po
te

nt
ia

l
pr

ob
le

m
of

isl
an

ds
of

in
fo

rm
at

io
n.

C6545_02 7/17/2007 15:45:3 Page 47

47D A T A M O D E L S

Thus far, you have been introduced to the basic constructs of the more prominent data models. Each model uses such
constructs to capture the meaning of the real world data environment. Table 2.3 shows the basic terminology used by
the various data models.

TABLE
2.3

Data Model Basic Terminology Comparison

REAL
WORLD

EXAMPLE FILE
PROCESSING

HIERARCHICAL
MODEL

NETWORK
MODEL

RELATIONAL
MODEL

ER MODEL OO
MODEL

A group of
vendors

Vendor
file cabinet

File Segment type Record type Table Entity set Class

A single
vendor

Global
Supplies

Record Segment
occurrence

Current
record

Row (tuple) Entity
occurrence

Object
instance

The contact
name

Johnny
Ventura

Field Segment field Record field Table
attribute

Entity
attribute

Object
attribute

The vendor
identifier

G12987 Index Sequence field Record key Key Entity
identifier

Object
identifier

Note: For additional information about the terms used in this table please consult the corresponding chapters and online appendixes
accompanying this book. For example, if you want to know more about the OO model, refer to Appendix G, Object-Oriented
Databases.

2.6 DEGREES OF DATA ABSTRACTION

If you ask ten database designers what is a data model, you will end up with ten different answers—depending on the
degree of data abstraction. To illustrate the meaning of data abstraction, consider the example of automotive design.
A car designer begins by drawing the concept of the car that is to be produced. Next, engineers design the details that
help transfer the basic concept into a structure that can be produced. Finally, the engineering drawings are translated
into production specifications to be used on the factory floor. As you can see, the process of producing the car begins
at a high level of abstraction and proceeds to an ever-increasing level of detail. The factory floor process cannot
proceed unless the engineering details are properly specified, and the engineering details cannot exist without the basic
conceptual framework created by the designer. Designing a usable database follows the same basic process. That is,
a database designer starts with an abstract view of the overall data environment and adds details as the design comes
closer to implementation. Using levels of abstraction can also be very helpful in integrating multiple (and sometimes
conflicting) views of data as seen at different levels of an organization.

In the early 1970s, the American National Standards Institute (ANSI) Standards Planning and Requirements
Committee (SPARC) defined a framework for data modeling based on degrees of data abstraction. The ANSI/SPARC
architecture (as it is often referred to) defines three levels of data abstraction: external, conceptual, and internal. You
can use this framework to better understand database models, as shown in Figure 2.8. In the figure, the ANSI/SPARC
framework has been expanded with the addition of a physical model to explicitly address physical-level implementation
details of the internal model.

2.6.1 The External Model

The external model is the end users’ view of the data environment. The term end users refers to people who use
the application programs to manipulate the data and generate information. End users usually operate in an
environment in which an application has a specific business unit focus. Companies are generally divided into several
business units, such as sales, finance, and marketing. Each business unit is subject to specific constraints and
requirements, and each one uses a data subset of the overall data in the organization. Therefore, end users working
within those business units view their data subsets as separate from or external to other units within the organization.

C6545_02 7/17/2007 15:45:23 Page 48

48 C H A P T E R 2

Because data is being modeled, ER diagrams will be used to represent the external views. A specific representation of
an external view is known as an external schema. To illustrate the external model’s view, examine the data
environment of Tiny College. Figure 2.9 presents the external schemas for two Tiny College business units: student
registration and class scheduling. Each external schema includes the appropriate entities, relationships, processes, and
constraints imposed by the business unit. Also note that although the application views are isolated from each other,
each view shares a common entity with the other view. For example, the registration and scheduling external
schemas share the entities CLASS and COURSE.

Note the entity relationships represented in Figure 2.9. For example:

� A PROFESSOR may teach many CLASSes, and each CLASS is taught by only one PROFESSOR; that is,
there is a 1:M relationship between PROFESSOR and CLASS.

� A CLASS may ENROLL many students, and each student may ENROLL in many CLASSes, thus creating an
M:N relationship between STUDENT and CLASS. (You will learn about the precise nature of the ENROLL
entity in Chapter 4.)

� Each COURSE may generate many CLASSes, but each CLASS references a single COURSE. For example,
there may be several classes (sections) of a database course having a course code of CIS-420. One of those
classes might be offered on MWF from 8:00 a.m. to 8:50 a.m., another might be offered on MWF from 1:00
p.m. to 1:50 p.m., while a third might be offered on Thursdays from 6:00 p.m. to 8:40 p.m. Yet all three
classes have the course code CIS-420.

� Finally, a CLASS requires one ROOM, but a ROOM may be scheduled for many CLASSes. That is, each
classroom may be used for several classes: one at 9:00 a.m., one at 11:00 a.m., and one at 1 p.m., for
example. In other words, there is a 1:M relationship between ROOM and CLASS.

FIGURE
2.8

Data abstraction levels

End-User View End-User View

External
Model

External
Model

Conceptual
Model

Internal
Model

Physical
Model

Designer’s
View

DBMS
View

Physical independence

Logical independence

Degree of
Abstraction Characteristics

High ER

Relational

Network
HierarchicalLow

Medium

Hardware-independent
Software-independent

Hardware-independent
Software-dependent

Hardware-dependent
Software-dependent

Object-Oriented

C6545_02 6/4/2007 15:47:41 Page 49

49D A T A M O D E L S

The use of external views representing subsets of the database has some important advantages:

� It makes it easy to identify specific data required to support each business unit’s operations.

� It makes the designer’s job easy by providing feedback about the model’s adequacy. Specifically, the model can
be checked to ensure that it supports all processes as defined by their external models, as well as all operational
requirements and constraints.

� It helps to ensure security constraints in the database design. Damaging an entire database is more difficult
when each business unit works with only a subset of data.

� It makes application program development much simpler.

2.6.2 The Conceptual Model

Having identified the external views, a conceptual model is used, graphically represented by an ERD (as in Figure
2.10), to integrate all external views into a single view. The conceptual model represents a global view of the entire
database as viewed by the entire organization. That is, the conceptual model integrates all external views (entities,
relationships, constraints, and processes) into a single global view of the entire data in the enterprise. Also known as
a conceptual schema, it is the basis for the identification and high-level description of the main data objects (avoiding
any database model-specific details).

The most widely used conceptual model is the ER model. Remember that the ER model is illustrated with the help of
the ERD, which is, in effect, the basic database blueprint. The ERD is used to graphically represent the concep-
tual schema.

The conceptual model yields some very important advantages. First, it provides a relatively easily understood bird’s-eye
(macro level) view of the data environment. For example, you can get a summary of Tiny College’s data environment
by examining the conceptual model presented in Figure 2.10.

Second, the conceptual model is independent of both software and hardware. Software independence means that
the model does not depend on the DBMS software used to implement the model. Hardware independence means
that the model does not depend on the hardware used in the implementation of the model. Therefore, changes in

FIGURE
2.9

External models for Tiny College

C6545_02 6/4/2007 15:48:18 Page 50

50 C H A P T E R 2

either the hardware or the DBMS software will have no
effect on the database design at the conceptual level. Gen-
erally, the term logical design is used to refer to the task of
creating a conceptual data model that could be implemented
in any DBMS.

2.6.3 The Internal Model

Once a specific DBMS has been selected, the internal model
maps the conceptual model to the DBMS. The internal
model is the representation of the database as “seen” by the
DBMS. In other words, the internal model requires the
designer to match the conceptual model’s characteristics and
constraints to those of the selected implementation model.
An internal schema depicts a specific representation of an
internal model, using the database constructs supported by
the chosen database.

Because this book focuses on the relational model, a rela-
tional database was chosen to implement the internal model.

Therefore, the internal schema should map the conceptual model to the relational model constructs. In particular, the
entities in the conceptual model are mapped to tables in the relational model. Likewise, because a relational database
has been selected, the internal schema is expressed using SQL, the standard language for relational databases. In the
case of the conceptual model for Tiny College depicted in Figure 2.11, the internal model was implemented by
creating the tables PROFESSOR, COURSE, CLASS, STUDENT, ENROLL, and ROOM. A simplified version of the
internal model for Tiny College is shown in Figure 2.11.

FIGURE
2.10

Conceptual model for Tiny
College

FIGURE
2.11

An internal model for Tiny College

C6545_02 6/4/2007 15:48:49 Page 51

51D A T A M O D E L S

The development of a detailed internal model is especially important to database designers who work with hierarchical
or network models because those models require very precise specification of data storage location and data access
paths. In contrast, the relational model requires less detail in its internal model because most RDBMSs handle data
access path definition transparently; that is, the designer need not be aware of the data access path details.
Nevertheless, even relational database software usually requires data storage location specification, especially in a
mainframe environment. For example, DB2 requires that you specify the data storage group, the location of the
database within the storage group, and the location of the tables within the database.

Because the internal model depends on specific database software, it is said to be software-dependent. Therefore, a
change in the DBMS software requires that the internal model be changed to fit the characteristics and requirements
of the implementation database model. When you can change the internal model without affecting the conceptual
model, you have logical independence. However, the internal model is still hardware-independent because it is
unaffected by the choice of the computer on which the software is installed. Therefore, a change in storage devices
or even a change in operating systems will not affect the internal model.

2.6.4 The Physical Model

The physical model operates at the lowest level of abstraction, describing the way data are saved on storage media
such as disks or tapes. The physical model requires the definition of both the physical storage devices and the (physical)
access methods required to reach the data within those storage devices, making it both software- and hardware-
dependent. The storage structures used are dependent on the software (the DBMS and the operating system) and on
the type of storage devices that the computer can handle. The precision required in the physical model’s definition
demands that database designers who work at this level have a detailed knowledge of the hardware and software used
to implement the database design.

Early data models forced the database designer to take the details of the physical model’s data storage requirements
into account. However, the now-dominant relational model is aimed largely at the logical rather than the physical level;
therefore, it does not require the physical-level details common to its predecessors.

Although the relational model does not require the designer to be concerned about the data’s physical storage
characteristics, the implementation of a relational model may require physical-level fine-tuning for increased
performance. Fine-tuning is especially important when very large databases are installed in a mainframe environment.
Yet even such performance fine-tuning at the physical level does not require knowledge of physical data storage
characteristics.

As noted earlier, the physical model is dependent on the DBMS, methods of accessing files, and types of hardware
storage devices supported by the operating system. When you can change the physical model without affecting the
internal model, you have physical independence. Therefore, a change in storage devices or methods and even a
change in operating system will not affect the internal model.

A summary of the levels of data abstraction is given in Table 2.4.

TABLE
2.4

Levels of Data Abstraction

MODEL
DEGREE OF
ABSTRACTION FOCUS INDEPENDENT OF

External High End-user views Hardware and software
Conceptual Global view of data (database

model independent)
Hardware and software

Internal Specific database model Hardware

Physical Low Storage and access methods Neither hardware nor software

C6545_02 6/6/2007 9:8:43 Page 52

52 C H A P T E R 2

S u m m a r y

◗ A data model is an abstraction of a complex real-world data environment. Database designers use data models to
communicate with applications programmers and end users. The basic data-modeling components are entities,
attributes, relationships, and constraints. Business rules are used to identify and define the basic modeling
components within a specific real-world environment.

◗ The hierarchical and network data models were early data models that are no longer used, but some of the concepts
are found in current data models. The hierarchical model depicts a set of one-to-many (1:M) relationships between a
parent and its children segments. The network model uses sets to represent 1:M relationships between record types.

◗ The relational model is the current database implementation standard. In the relational model, the end user perceives
the data as being stored in tables. Tables are related to each other by means of common values in common attributes.
The entity relationship (ER) model is a popular graphical tool for data modeling that complements the relational model.
The ER model allows database designers to visually present different views of the data as seen by database designers,
programmers, and end users and to integrate the data into a common framework.

◗ The object-oriented data model (OODM) uses objects as the basic modeling structure. An object resembles an entity
in that it includes the facts that define it. But unlike an entity, the object also includes information about
relationships between the facts as well as relationships with other objects, thus giving its data more meaning.

◗ The relational model has adopted many object-oriented (OO) extensions to become the extended relational data model
(ERDM). At this point, the OODM is largely used in specialized engineering and scientific applications, while the ERDM
is primarily geared to business applications. Although the most likely future scenario is an increasing merger of OODM
and ERDM technologies, both are overshadowed by the need to develop Internet access strategies for databases.
Usually OO data models are depicted using Unified Modeling Language (UML) class diagrams.

◗ Data-modeling requirements are a function of different data views (global vs. local) and the level of data abstraction. The
American National Standards Institute Standards Planning and Requirements Committee (ANSI/SPARC) describes
three levels of data abstraction: external, conceptual, and internal. There is also a fourth level of data abstraction (the
physical level). This lowest level of data abstraction is concerned exclusively with physical storage methods.

C6545_02 7/17/2007 15:46:16 Page 53

53D A T A M O D E L S

K e y T e r m s

American National Standards
Institute (ANSI), 48

attribute, 32

business rule, 33

Chen notation, 41

class, 43

class diagram, 43

class hierarchy, 43

conceptual model, 50

conceptual schema, 50

Conference on Data Systems
Languages (CODASYL), 37

connectivity, 41

constraint, 33

Crow’s Foot notation, 41

data definition language (DDL), 37

data management language
(DML), 37

data model, 31

Database Task Group (DBTG), 37

entity, 32

entity instance, 41

entity occurrence, 41

entity relationship diagram
(ERD), 40

entity relationship (ER) model
(ERM), 40

entity set, 41

extended relational data model
(ERDM), 44

external model, 48

external schema, 49

hardware independence, 50

hierarchical model, 36

inheritance, 43

internal model, 51

internal schema, 51

logical design, 51

logical independence, 52

many-to-many (M:N or *..*)
relationship, 33

method, 43

network model, 37

object, 43

object-oriented data model
(OODM), 43

object-oriented database
management system
(OODBMS), 43

object/relational database
management system
(O/RDBMS), 38

one-to-many (1:M or 1..*)
relationship, 33

one-to-one (1:1 or 1..1)
relationship, 33

physical independence, 52

physical model, 52

relational database management
system (RDBMS), 38

relational model, 38

relational diagram, 39

relation, 38

relationship, 32

segment, 36

schema, 37

semantic data model, 43

software independence, 50

subschema, 37

table, 38

tuple, 38

Unified Modeling Language
(UML), 43

R e v i e w Q u e s t i o n s

1. Discuss the importance of data modeling.

2. What is a business rule, and what is its purpose in data modeling?

3. How do you translate business rules into data model components?

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_02 7/17/2007 15:47:11 Page 54

54 C H A P T E R 2

4. What does each of the following acronyms represent, and how is each one related to the birth of the network
data model?

a. CODASYL

b. SPARC

c. ANSI

d. DBTG

5. What three languages were adopted by the DBTG to standardize the basic network data model, and why was such
standardization important to users and designers?

6. Describe the basic features of the relational data model and discuss their importance to the end user and the
designer.

7. Explain how the entity relationship (ER) model helped produce a more structured relational database design
environment.

8. Use the scenario described by “A customer can make many payments, but each payment is made by only one
customer” as the basis for an entity relationship diagram (ERD) representation.

9. Why is an object said to have greater semantic content than an entity?

10. What is the difference between an object and a class in the object-oriented data model (OODM)?

11. How would you model Question 8 with an OODM? (Use Figure 2.7 as your guide.)

12. What is an ERDM, and what role does it play in the modern (production) database environment?

13. In terms of data and structural independence, compare file system data management with the five data models
discussed in this chapter.

14. What is a relationship, and what three types of relationships exist?

15. Give an example of each of the three types of relationships.

16. What is a table, and what role does it play in the relational model?

17. What is a relational diagram? Give an example.

18. What is logical independence?

19. What is physical independence?

20. What is connectivity? (Use a Crow’s Foot ERD to illustrate connectivity.)

P r o b l e m s

Use the contents of Figure 2.3 to work Problems 1−5.

1. Write the business rule(s) that govern the relationship between AGENT and CUSTOMER.

2. Given the business rule(s) you wrote in Problem 1, create the basic Crow’s Foot ERD.

3. If the relationship between AGENT and CUSTOMER were implemented in a hierarchical model, what would the
hierarchical structure look like? Label the structure fully, identifying the root segment and the Level 1 segment.

4. If the relationship between AGENT and CUSTOMER were implemented in a network model, what would the
network model look like? (Identify the record types and the set.)

5. Using the ERD you drew in Problem 2, create the equivalent Object representation and UML class diagram. (Use
Figure 2.7 as your guide.)

Using Figure P2.6 as your guide, work Problems 6–7. The DealCo relational diagram shows the initial entities and
attributes for the DealCo stores, located in two regions of the country.

C6545_02 7/17/2007 15:47:41 Page 55

55D A T A M O D E L S

6. Identify each relationship type and write all of the business rules.

7. Create the basic Crow’s Foot ERD for DealCo.

Using Figure P2.8 as your guide, work Problems 8−11. The Tiny College relational diagram shows the initial entities
and attributes for Tiny College.

8. Identify each relationship type and write all of the business rules.

9. Create the basic Crow’s Foot ERD for Tiny College.

10. Create the network model that reflects the entities and relationships you identified in the relational diagram.

11. Create the UML class diagram that reflects the entities and relationships you identified in the relational diagram.

12. Using the hierarchical representation shown in Figure P2.12, answer a, b, and c.

a. Identify the segment types.

b. Identify the components that are equivalent to the file system’s fields.

c. Describe the hierarchical path for the occurrence of the third PAINTING segment.

FIGURE
P2.6

The DealCo relational diagram

FIGURE
P2.8

The Tiny College relational diagram

C6545_02 7/17/2007 15:50:9 Page 56

56 C H A P T E R 2

FIGURE
P2.12

The hierarchical structure for the Artist database

25108

File Systems Folly

11987

Hierarchical Paths

PT_NUMBER
PT_NAME
PT_PHONE

10014

Josephine G. Artiste

615-999-8963

PTG_NUMBER
PTG_TITLE 21003

Database Sunshine

PAINTER

PAINTING

Attribute nameEntity name

FIGURE
P2.13

The hierarchical structure for the MedClinic database

3324538

23-Jan-2008

George G. Ochoba

1100234

Judy D. Johanssen

3241233

23-Jan-2008

Anne M. Moranski

122889

2 mg. each 8 hrs.

123214

1 tablet per meal

122531

10 ml. 3x per day

PATIENT
PAT_NUMBER
PAT_NAME

ORDER
ORD_NUMBER
ORD_DATE
ORD_DOCTOR

MEDICATION
MED_NUMBER
MED_DOSAGE

C6545_02 7/17/2007 15:50:32 Page 57

57D A T A M O D E L S

13. The hierarchical diagram shown in Figure P2.13 depicts a single record occurrence of a patient named Judy D.
Johanssen. Typically, a patient staying in a hospital receives medications that have been ordered by a particular
doctor. Because the patient often receives several medications per day, there is a 1:M relationship between
PATIENT and ORDER. Similarly, each order can include several medications, creating a 1:M relationship
between ORDER and MEDICATION.

Given the structure shown in Figure P2.13:

a. Identify the segment types.

b. Identify the business rules for PATIENT, ORDER, and MEDICATION.

14. Expand the model in Problem 13 to include a DOCTOR segment; then draw its hierarchical structure. (Identify
all segments.) (Hint: A patient can have several doctors assigned to his or her case, but the patient named Judy
D. Johanssen occurs only once in each of those doctors’ records.)

15. Suppose you want to write a report that shows:

a. All patients treated by each doctor.

b. All doctors who treated each patient.

Evaluate the hierarchical structure you drew in Problem 14 in terms of its search efficiency in producing the report.

16. The PYRAID company wants to track each PART used in each specific piece of EQUIPMENT; each PART is bought
from a specific SUPPLIER. Using that description, draw the network structure and identify the sets for the PYRAID
company database. (Hint: A piece of equipment is composed of many parts, but each part is used in only one
specific piece of equipment. A supplier can supply many parts, but each part is supplied by only one supplier.)

17. United Broke Artists (UBA) is a broker for not-so-famous painters. UBA maintains a small network database to track
painters, paintings, and galleries. Using PAINTER, PAINTING, and GALLERY, write the network structure and
identify appropriate sets within the UBA database. (Hint 1: A painting is painted by a particular artist, and that
painting is exhibited in a particular gallery. Hint 2: A gallery can exhibit many paintings, but each painting can
be exhibited in only one gallery. Similarly, a painting is painted by a single painter, but each painter can paint
many paintings.)

18. If you decide to convert the network database in Problem 17 to a relational database:

a. What tables would you create and what would the table components be?

b. How might the (independent) tables be related to one another?

19. Using a Crow’s Foot ERD, convert the network database model in Figure 2.2 into a design for a relational
database model. Show all entities and relationships.

20. Using the ERD from Problem 19, create the relational schema. (Create an appropriate collection of attributes for
each of the entities. Make sure you use the appropriate naming conventions to name the attributes.)

21. Convert the ERD from Problem 19 into the corresponding UML class diagram.

22. Describe the relationships (identify the business rules) depicted in the Crow’s Foot ERD shown in Figure P2.22.

FIGURE
P2.22

The Crow’s Foot
ERD for Problem 22

C6545_02 7/17/2007 15:51:37 Page 58

58 C H A P T E R 2

23. Create a Crow’s Foot ERD to include the following business rules for the ProdCo company:

a. Each sales representative writes many invoices.

b. Each invoice is written by one sales representative.

c. Each sales representative is assigned to one department.

d. Each department has many sales representatives.

e. Each customer can generate many invoices.

f. Each invoice is generated by one customer.

24. Write the business rules that are reflected in the ERD shown in Figure P2.24. (Note that the ERD reflects some
simplifying assumptions. For example, each book is written by only one author. Also, remember that the ERD
is always read from the “1” to the “M” side, regardless of the orientation of the ERD components.)

25. Create a Crow’s Foot ERD for each of the following descriptions.
(Note: The word many merely means “more than one” in the
database modeling environment.)

a. Each of the MegaCo Corporation’s divisions is composed of
many departments. Each department has many employees
assigned to it, but each employee works for only one department.
Each department is managed by one employee, and each of
those managers can manage only one department at a time.

b. During some period of time, a customer can rent many video-
tapes from the BigVid store. Each of the BigVid’s videotapes can
be rented to many customers during that period of time.

c. An airliner can be assigned to fly many flights, but each flight is
flown by only one airliner.

d. The KwikTite Corporation operates many factories. Each factory
is located in a region. Each region can be “home” to many of
KwikTite’s factories. Each factory employs many employees, but

each of those employees is employed by only one factory.

e. An employee may have earned many degrees, and each degree may have been earned by many employees.

FIGURE
P2.24

The Crow’s Foot
ERD for Problem 24

Note

Many-to-many (M:N) relationships exist at a conceptual level, and you should know how to recognize them.
However, you will learn in Chapter 3 that M:N relationships are not appropriate in a relational model. For that
reason, Microsoft Visio does not support the M:N relationship. Therefore, to illustrate the existence of a M:N
relationship using Visio, you must superimpose two 1:M relationships. (See Figure 2.5.)

C6545_02 7/17/2007 15:51:38 Page 59

59D A T A M O D E L S

PART

II
Design Concepts

3The Relational Database Model

4Entity Relationship (ER) Modeling

5Normalization of Database Tables

6Advanced Data Modeling

C6545_03 6/19/2007 16:26:24 Page 60

B
V

usiness
ignette

Database Modeling Supporting
Communities

Companies, governments, and organizations around the world turn to entity relationship

diagrams and database modeling tools to help develop their databases.The advantages of

using tools like Sybase PowerDesigner, Microsoft Visio Professional, ERwin Data Modeler,

or Embarcadero ER/Studio significantly outweigh their expense. They improve database

documentation. They facilitate staff communication, helping to ensure that the database

will meet the needs of its users. They reduce development time. All these advantages

translate into significant cost-savings.Yet sometimes this value goes well beyond anything

that can be expressed in a dollar amount.

Rebuilding Together is a national nonprofit organization dedicated to preserving and

revitalizing houses and communities for the elderly, disabled, and families with children.

The national headquarters currently works with 255 affiliates serving over 1,897

communities. Based on the “barn-raising” tradition, local volunteers assemble on Rebuild-

ing Day to help their neighbors. Over 267,000 volunteers have repaired or reconstructed

approximately 9,000 houses and nonprofit facilities.

As the local affiliate in Des Moines, Iowa, founded in 1994, has grown rapidly, the

organization has sought to document and improve their house selection and volunteer

coordination processes. Several sources, including past participants, make referrals for

potential housing projects. Each year, Rebuilding Together needs to evaluate the qualifi-

cations of each candidate, preview the site, select or reject the project, and finally

implement the selected projects. Using modeling software ER/Studio, the staff built a

database to keep track of these stages of the project and manage the volunteers that will

work on each project.

By using the logical view of the data modeling software, the staff was able to understand

the entities, their attributes, and the relationships that they were modeling prior to

building the physical model. They also generated a short report and model diagram to

educate all personnel involved in the project. The end result was that the company was

able to develop an application process that is both more complex and user-friendly. As

the organization continues to grow and the spirit of “barn-raising” spreads, the staff will

be able to modify the design to accommodate its growing needs.

C6545_03 8/16/2007 10:26:45 Page 61

Preview

The Relational Database Model

In this chapter, you will learn:

� That the relational database model offers a logical view of data

� About the relational model’s basic component: relations

� That relations are logical constructs composed of rows (tuples) and columns (attributes)

� That relations are implemented as tables in a relational DBMS

� About relational database operators, the data dictionary, and the system catalog

� How data redundancy is handled in the relational database model

� Why indexing is important

In Chapter 2, Data Models, you learned that the relational data model’s structural and data

independence allow you to examine the model’s logical structure without considering the

physical aspects of data storage and retrieval. You also learned that entity relationship

diagrams (ERDs) may be used to depict entities and their relationships graphically. In this

chapter, you learn some important details about the relational model’s logical structure and

more about how the ERD can be used to design a relational database.

You learn how the relational database’s basic data components fit into a logical construct

known as a table.You discover that one important reason for the relational database model’s

simplicity is that its tables can be treated as logical rather than physical units.You also learn

how the independent tables within the database can be related to one another.

After learning about tables, their components, and their relationships, you are introduced to

the basic concepts that shape the design of tables. Because the table is such an integral part

of relational database design, you also learn the characteristics of well-designed and poorly

designed tables.

Finally, you are introduced to some basic concepts that will become your gateway to the

next few chapters. For example, you examine different kinds of relationships and the way

those relationships might be handled in the relational database environment.

3
T

H
R

E
E

C6545_03 6/19/2007 16:26:26 Page 62

3.1 A LOGICAL VIEW OF DATA

In Chapter 1, Database Systems, you learned that a database stores and manages both data and metadata. You also
learned that the DBMS manages and controls access to the data and the database structure. Such an arrangement—
placing the DBMS between the application and the database—eliminates most of the file system’s inherent limitations.
The result of such flexibility, however, is a far more complex physical structure. In fact, the database structures required
by both the hierarchical and network database models often become complicated enough to diminish efficient database
design. The relational data model changed all of that by allowing the designer to focus on the logical representation
of the data and its relationships, rather than on the physical storage details. To use an automotive analogy, the
relational database uses an automatic transmission to relieve you of the need to manipulate clutch pedals and
gearshifts. In short, the relational model enables you to view data logically rather than physically.

The practical significance of taking the logical view is that it serves as a reminder of the simple file concept of data
storage. Although the use of a table, quite unlike that of a file, has the advantages of structural and data independence,
a table does resemble a file from a conceptual point of view. Because you can think of related records as being stored
in independent tables, the relational database model is much easier to understand than the hierarchical and network
models. Logical simplicity tends to yield simple and effective database design methodologies.

Because the table plays such a prominent role in the relational model, it deserves a closer look. Therefore, our
discussion begins with an exploration of the details of table structure and contents.

3.1.1 Tables and Their Characteristics

The logical view of the relational database is facilitated by the creation of data relationships based on a logical construct
known as a relation. Because a relation is a mathematical construct, end-users find it much easier to think of a relation
as a table. A table is perceived as a two-dimensional structure composed of rows and columns. A table is also called
a relation because the relational model’s creator, E. F. Codd, used the term relation as a synonym for table. You can
think of a table as a persistent representation of a logical relation, that is, a relation whose contents can be
permanently saved for future use. As far as the table’s user is concerned, a table contains a group of related entity
occurrences, that is, an entity set. For example, a STUDENT table contains a collection of entity occurrences, each
representing a student. For that reason, the terms entity set and table are often used interchangeably.

Note

The relational model, introduced by E. F. Codd in 1970, is based on predicate logic and set theory. Predicate
logic, used extensively in mathematics, provides a framework in which an assertion (statement of fact) can be
verified as either true or false. For example, suppose that a student with a student ID of 12345678 is named
Melissa Sanduski. This assertion can easily be demonstrated to be true or false. Set theory is a mathematical
science that deals with sets, or groups of things, and is used as the basis for data manipulation in the relational
model. For example, assume that set A contains three numbers: 16, 24, and 77. This set is represented as A(16,
24, 77). Furthermore, set B contains four numbers: 44, 77, 90, and 11, and so is represented as B(44, 77, 90,
11). Given this information, you can conclude that the intersection of A and B yields a result set with a single
number, 77. This result can be expressed as A � B = 77. In other words, A and B share a common value, 77.

Based on these concepts, the relational model has three well-defined components:

1. A logical data structure represented by relations (Sections 3.1, 3.2, and 3.5).

2. A set of integrity rules to enforce that the data are and remain consistent over time (Sections 3.3, 3.6, 3.7,
and 3.8).

3. A set of operations that define how data are manipulated (Section 3.4).

C6545_03 6/20/2007 15:29:9 Page 63

63T H E R E L A T I O N A L D A T A B A S E M O D E L

You will discover that the table view of data makes it easy to spot and define entity relationships, thereby greatly
simplifying the task of database design. The characteristics of a relational table are summarized in Table 3.1.

TABLE
3.1

Characteristics of a Relational Table

1 A table is perceived as a two-dimensional structure composed of rows and columns.
2 Each table row (tuple) represents a single entity occurrence within the entity set.
3 Each table column represents an attribute, and each column has a distinct name.
4 Each row/column intersection represents a single data value.
5 All values in a column must conform to the same data format.
6 Each column has a specific range of values known as the attribute domain.
7 The order of the rows and columns is immaterial to the DBMS.
8 Each table must have an attribute or a combination of attributes that uniquely identifies each row.

The tables shown in Figure 3.1 illustrate the characteristics listed in Table 3.1.

Using the STUDENT table shown in Figure 3.1, you can draw the following conclusions corresponding to the points
in Table 3.1:

1. The STUDENT table is perceived to be a two-dimensional structure composed of eight rows (tuples) and twelve
columns (attributes).

2. Each row in the STUDENT table describes a single entity occurrence within the entity set. (The entity set is
represented by the STUDENT table.) Note that the row (entity or record) defined by STU_NUM = 321452
defines the characteristics (attributes or fields) of a student named William C. Bowser. For example, row 4 in
Figure 3.1 describes a student named Walter H. Oblonski. Similarly, row 3 describes a student named Juliette
Brewer. Given the table contents, the STUDENT entity set includes eight distinct entities (rows), or students.

Note

The word relation, also known as a dataset in Microsoft Access, is based on the mathematical set theory from
which Codd derived his model. Because the relational model uses attribute values to establish relationships
among tables, many database users incorrectly assume that the term relation refers to such relationships. Many
then incorrectly conclude that only the relational model permits the use of relationships.

Note

Relational database terminology is very precise. Unfortunately, file system terminology sometimes creeps into
the database environment. Thus, rows are sometimes referred to as records and columns are sometimes labeled
as fields. Occasionally, tables are labeled files. Technically speaking, this substitution of terms is not always
appropriate; the database table is a logical rather than a physical concept, and the terms file, record, and field
describe physical concepts. Nevertheless, as long as you recognize that the table is actually a logical rather than
a physical construct, you may (at the conceptual level) think of table rows as records and of table columns as
fields. In fact, many database software vendors still use this familiar file system terminology.

O n l i n e C o n t e n t

All of the databases used to illustrate the material in this chapter are found in the Student Online Companion
for this book. The database names used in the folder match the database names used in the figures. For
example, the source of the tables shown in Figure 3.1 is the Ch03_TinyCollege database.

C6545_03 6/20/2007 10:46:52 Page 64

64 C H A P T E R 3

3. Each column represents an attribute, and each column has a distinct name.

4. All of the values in a column match the attribute’s characteristics. For example, the grade point average
(STU_GPA) column contains only STU_GPA entries for each of the table rows. Data must be classified
according to their format and function. Although various DBMSs can support different data types, most
support at least the following:

a. Numeric. Numeric data are data on which you can perform meaningful arithmetic procedures.
For example, STU_HRS and STU_GPA in Figure 3.1 are numeric attributes. On the other hand,
STU_PHONE is not a numeric attribute because adding or subtracting phone numbers does not yield an
arithmetically meaningful result.

b. Character. Character data, also known as text data or string data, can contain any character or symbol not
intended for mathematical manipulation. In Figure 3.1, for example, STU_LNAME, STU_FNAME,
STU_INIT, STU_CLASS, and STU_PHONE are character attributes.

c. Date. Date attributes contain calendar dates stored in a special format known as the Julian date format.
Although the physical storage of the Julian date is immaterial to the user and designer, the Julian date
format allows you to perform a special kind of arithmetic known as Julian date arithmetic. Using Julian
date arithmetic, you can determine the number of days that have elapsed between two dates, such as
12-May-1999 and 20-Mar-2008, by simply subtracting 12-May-1999 from 20-Mar-2008. In Figure 3.1,
STU_DOB can properly be classified as a date attribute. Most relational database software packages
support Julian date formats. While the database’s internal date format is likely to be Julian, many different
presentation formats are available. For example, in Figure 3.1, you could show Mr. Bowser’s date of birth
(STU_DOB) as 2/12/75. Most relational DBMSs allow you to define your own date presentation format.
For instance, Access and Oracle users might specify the “dd-mmm-yyyy” date format to show the first
STU_DOB value in Figure 3.1 as 12-Feb-1975. (As you can tell by examining the STU_DOB values in
Figure 3.1, the “dd-mmm-yyyy” format was selected to present the output.)

Database name: Ch03_TinyCollege

STU_HRS = Credit hours earned STU_GPA = Grade point average
STU_CLASS = Student classification STU_PHONE = 4-digit campus phone extension
STU_DOB = Student date of birth PROF_NUM = Number of the professor

 who is the student’s advisor

STUDENT table,
continued

Table name: STUDENT

FIGURE
3.1

STUDENT table attribute values

C6545_03 8/16/2007 10:27:16 Page 65

65T H E R E L A T I O N A L D A T A B A S E M O D E L

d. Logical. Logical data can have only a true or false (yes or no) condition. For example, is a student a junior
college transfer? In Figure 3.1, the STU_TRANSFER attribute uses a logical data format. Most, but not all,
relational database software packages support the logical data format. (Microsoft Access uses the label
“Yes/No data type” to indicate a logical data type.)

5. The column’s range of permissible values is known as its domain. Because the STU_GPA values are limited
to the range 0–4, inclusive, the domain is [0,4].

6. The order of rows and columns is immaterial to the user.

7. Each table must have a primary key. In general terms, the primary key (PK) is an attribute (or a combination
of attributes) that uniquely identifies any given row. In this case, STU_NUM (the student number) is the primary
key. Using the data presented in Figure 3.1, observe that a student’s last name (STU_LNAME) would not be
a good primary key because it is possible to find several students whose last name is Smith. Even the
combination of the last name and first name (STU_FNAME) would not be an appropriate primary key because,
as Figure 3.1 shows, it is quite possible to find more than one student named John Smith.

3.2 KEYS

In the relational model, keys are important because they are used to ensure that each row in a table is uniquely
identifiable. They are also used to establish relationships among tables and to ensure the integrity of the data.
Therefore, a proper understanding of the concept and use of keys in the relational model is very important. A key
consists of one or more attributes that determine other attributes. For example, an invoice number identifies all of the
invoice attributes, such as the invoice date and the customer name.

One type of key, the primary key, has already been introduced. Given the structure of the STUDENT table shown in
Figure 3.1, defining and describing the primary key seems simple enough. However, because the primary key plays
such an important role in the relational environment, you will examine the primary key’s properties more carefully. In
this section, you also will become acquainted with superkeys, candidate keys, and secondary keys.

The key’s role is based on a concept known as determination. In the context of a database table, the statement “A
determines B” indicates that if you know the value of attribute A, you can look up (determine) the value of attribute
B. For example, knowing the STU_NUM in the STUDENT table (see Figure 3.1) means that you are able to look up
(determine) that student’s last name, grade point average, phone number, and so on. The shorthand notation for “A
determines B” is A → B. If A determines B, C, and D, you write A → B, C, D. Therefore, using the attributes of the
STUDENT table in Figure 3.1, you can represent the statement “STU_NUM determines STU_LNAME” by writing:

STU_NUM → STU_LNAME

In fact, the STU_NUM value in the STUDENT table determines all of the student’s attribute values. For example, you
can write:

STU_NUM → STU_LNAME, STU_FNAME, STU_INIT

and

STU_NUM → STU_LNAME, STU_FNAME, STU_INIT, STU_DOB, STU_TRANSFER

In contrast, STU_NUM is not determined by STU_LNAME because it is quite possible for several students to have the
last name Smith.

C6545_03 8/8/2007 8:37:54 Page 66

66 C H A P T E R 3

The principle of determination is very important because it is used in the definition of a central relational database
concept known as functional dependence. The term functional dependence can be defined most easily this way: the
attribute B is functionally dependent on A if A determines B. More precisely:

The attribute B is functionally dependent on the attribute A
if each value in column A determines one and only one value in column B.

Using the contents of the STUDENT table in Figure 3.1, it is appropriate to say that STU_PHONE is functionally
dependent on STU_NUM. For example, the STU_NUM value 321452 determines the STU_PHONE value 2134. On
the other hand, STU_NUM is not functionally dependent on STU_PHONE because the STU_PHONE value 2267 is
associated with two STU_NUM values: 324274 and 324291. (This could happen in a dormitory situation, where
students share a phone.) Similarly, the STU_NUM value 324273 determines the STU_LNAME value Smith. But the
STU_NUM value is not functionally dependent on STU_LNAME because more than one student may have the last
name Smith.

The functional dependence definition can be generalized to cover the case in which the determining attribute values
occur more than once in a table. Functional dependence can then be defined this way:1

Attribute A determines attribute B (that is, B is functionally dependent on A) if all of the rows in
the table that agree in value for attribute A also agree in value for attribute B.

Be careful when defining the dependency’s direction. For example, Gigantic State University determines its student
classification based on hours completed; these are shown in Table 3.2.

Therefore, you can write:

STU_HRS → STU_CLASS

But the specific number of hours is not dependent on the
classification. It is quite possible to find a junior with 62
completed hours or one with 84 completed hours. In other
words, the classification (STU_CLASS) does not determine
one and only one value for completed hours (STU_HRS).

Keep in mind that it might take more than a single attribute
to define functional dependence; that is, a key may be composed of more than one attribute. Such a multi-attribute
key is known as a composite key.

Any attribute that is part of a key is known as a key attribute. For instance, in the STUDENT table, the student’s
last name would not be sufficient to serve as a key. On the other hand, the combination of last name, first name, initial,
and home phone is very likely to produce unique matches for the remaining attributes. For example, you can write:

STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE → STU_HRS, STU_CLASS

or

STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE → STU_HRS, STU_CLASS, STU_GPA

or

STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE → STU_HRS, STU_CLASS, STU_GPA, STU_DOB

1 SQL:2003 ANSI standard specification. ISO/IEC 9075-2:2003 - SQL/Foundation.

TABLE
3.2

Student Classification

HOURS COMPLETED CLASSIFICATION
Less than 30 Fr
30−59 So
60−89 Jr
90 or more Sr

C6545_03 8/16/2007 10:27:49 Page 67

67T H E R E L A T I O N A L D A T A B A S E M O D E L

Given the possible existence of a composite key, the notion of functional dependence can be further refined by
specifying full functional dependence:

If the attribute (B) is functionally dependent on a composite key (A) but not on any subset of that
composite key, the attribute (B) is fully functionally dependent on (A).

Within the broad key classification, several specialized keys can be defined. For example, a superkey is any key that
uniquely identifies each row. In short, the superkey functionally determines all of a row’s attributes. In the STUDENT
table, the superkey could be any of the following:

STU_NUM

STU_NUM, STU_LNAME

STU_NUM, STU_LNAME, STU_INIT

In fact, STU_NUM, with or without additional attributes, can be a superkey even when the additional attributes are
redundant.

A candidate key can be described as a superkey without unnecessary attributes, that is, a minimal superkey. Using
this distinction, note that the composite key

STU_NUM, STU_LNAME

is a superkey, but it is not a candidate key because STU_NUM by itself is a candidate key! The combination

STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE

might also be a candidate key, as long as you discount the possibility that two students share the same last name, first
name, initial, and phone number.

If the student’s Social Security number had been included as one of the attributes in the STUDENT table in Figure
3.1—perhaps named STU_SSN—both it and STU_NUM would have been candidate keys because either one would
uniquely identify each student. In that case, the selection of STU_NUM as the primary key would be driven by the
designer’s choice or by end-user requirements. In short, the primary key is the candidate key chosen to be the unique
row identifier. Note, incidentally, that a primary key is a superkey as well as a candidate key.

Within a table, each primary key value must be unique to ensure that each row is uniquely identified by the primary
key. In that case, the table is said to exhibit entity integrity. To maintain entity integrity,a null (that is, no data entry
at all) is not permitted in the primary key.

Nulls can never be part of a primary key, and they should be avoided—to the greatest extent possible—in other
attributes, too. There are rare cases in which nulls cannot be reasonably avoided when you are working with nonkey
attributes. For example, one of an EMPLOYEE table’s attributes is likely to be the EMP_INITIAL. However, some
employees do not have a middle initial. Therefore, some of the EMP_INITIAL values may be null. You will also discover
later in this section that there may be situations in which a null exists because of the nature of the relationship between
two entities. In any case, even if nulls cannot always be avoided, they must be used sparingly. In fact, the existence of
nulls in a table is often an indication of poor database design.

Note

A null is no value at all. It does not mean a zero or a space. A null is created when you press the Enter key or
the Tab key to move to the next entry without making a prior entry of any kind. Pressing the Spacebar creates
a blank (or a space).

C6545_03 6/20/2007 10:47:6 Page 68

68 C H A P T E R 3

Nulls, if used improperly, can create problems because they have many different meanings. For example, a null can
represent:

� An unknown attribute value.

� A known, but missing, attribute value.

� A “not applicable” condition.

Depending on the sophistication of the application development software, nulls can create problems when functions
such as COUNT, AVERAGE, and SUM are used. In addition, nulls can create logical problems when relational tables
are linked.

Controlled redundancy makes the relational database work. Tables within the database share common attributes that
enable the tables to be linked together. For example, note that the PRODUCT and VENDOR tables in Figure 3.2 share
a common attribute named VEND_CODE. And note that the PRODUCT table’s VEND_CODE value 232 occurs more
than once, as does the VEND_CODE value 235. Because the PRODUCT table is related to the VENDOR table
through these VEND_CODE values, the multiple occurrence of the values is required to make the 1:M relationship
between VENDOR and PRODUCT work. Each VEND_CODE value in the VENDOR table is unique—the VENDOR
is the “1” side in the VENDOR-PRODUCT relationship. But any given VEND_CODE value from the VENDOR table
may occur more than once in the PRODUCT table, thus providing evidence that PRODUCT is the “M” side of the
VENDOR-PRODUCT relationship. In database terms, the multiple occurrences of the VEND_CODE values in the
PRODUCT table are not redundant because they are required to make the relationship work. You should recall from
Chapter 2 that data redundancy exists only when there is unnecessary duplication of attribute values.

As you examine Figure 3.2, note that the VEND_CODE value in one table can be used to point to the corresponding
value in the other table. For example, the VEND_CODE value 235 in the PRODUCT table points to vendor Henry
Ortozo in the VENDOR table. Consequently, you discover that the product “Houselite chain saw, 16-in. bar” is
delivered by Henry Ortozo and that he can be contacted by calling 615-899-3425. The same connection can be made
for the product “Steel tape, 12-ft. length” in the PRODUCT table.

Remember the naming convention—the prefix PROD was used in Figure 3.2 to indicate that the attributes “belong”
to the PRODUCT table. Therefore, the prefix VEND in the PRODUCT table’s VEND_CODE indicates that

Database name: Ch03_SaleCo

Table name: VENDOR
Primary key: VEND_CODE
Foreign key: none

Table name: PRODUCT
Primary key: PROD_CODE
Foreign key: VEND_CODE

link

FIGURE
3.2

An example of a simple relational database

C6545_03 6/20/2007 8:37:59 Page 69

69T H E R E L A T I O N A L D A T A B A S E M O D E L

VEND_CODE points to some other table in the database. In this case, the VEND prefix is used to point to the
VENDOR table in the database.

A relational database can also be represented by a relational schema. A relational schema is a textual representation
of the database tables where each table is listed by its name followed by the list of its attributes in parentheses. The
primary key attribute(s) is (are) underlined. You will see such schemas in Chapter 5, Normalization of Database Tables.
For example, the relational schema for Figure 3.2 would be shown as:

VENDOR (VEND_CODE, VEND_CONTACT, VEND_AREACODE, VEND_PHONE)

PRODUCT (PROD_CODE, PROD_DESCRIPT, PROD_PRICE, PROD_ON_HAND, VEND_CODE)

The link between the PRODUCT and VENDOR tables in Figure 3.2 can also be represented by the relational diagram
shown in Figure 3.3. In this case, the link is indicated by the line that connects the VENDOR and PRODUCT tables.

Note that the link in Figure 3.3 is the equivalent of the relationship line in an ERD. This link is created when two tables
share an attribute with common values. More specifically,
the primary key of one table (VENDOR) appears as the
foreign key in a related table (PRODUCT). A foreign key
(FK) is an attribute whose values match the primary key
values in the related table. For example, in Figure 3.2, the
VEND_CODE is the primary key in the VENDOR table, and
it occurs as a foreign key in the PRODUCT table. Because
the VENDOR table is not linked to a third table, the
VENDOR table shown in Figure 3.2 does not contain a
foreign key.

If the foreign key contains either matching values or nulls,
the table that makes use of that foreign key is said to exhibit

referential integrity. In other words, referential integrity means that if the foreign key contains a value, that value
refers to an existing valid tuple (row) in another relation. Note that referential integrity is maintained between the
PRODUCT and VENDOR tables shown in Figure 3.2.

Finally, a secondary key is defined as a key that is used strictly for data retrieval purposes. Suppose customer data
are stored in a CUSTOMER table in which the customer number is the primary key. Do you suppose that most
customers will remember their numbers? Data retrieval for a customer can be facilitated when the customer’s last name
and phone number are used. In that case, the primary key is the customer number; the secondary key is the
combination of the customer’s last name and phone number. Keep in mind that a secondary key does not necessarily
yield a unique outcome. For example, a customer’s last name and home telephone number could easily yield several
matches where one family lives together and shares a phone line. A less efficient secondary key would be the
combination of the last name and zip code; this could yield dozens of matches, which could then be combed for a
specific match.

A secondary key’s effectiveness in narrowing down a search depends on how restrictive that secondary key is. For
instance, although the secondary key CUS_CITY is legitimate from a database point of view, the attribute values “New
York” or “Sydney” are not likely to produce a usable return unless you want to examine millions of possible matches.
(Of course, CUS_CITY is a better secondary key than CUS_COUNTRY.)

Table 3.3 summarizes the various relational database table keys.

FIGURE
3.3

The relational diagram for
the Ch03_SaleCo database

C6545_03 6/20/2007 10:47:12 Page 70

70 C H A P T E R 3

TABLE
3.3

Relational Database Keys

KEY TYPE DEFINITION
Superkey An attribute (or combination of attributes) that uniquely identifies each row in a table.
Candidate key A minimal (irreducible) superkey. A superkey that does not contain a subset of attributes

that is itself a superkey.
Primary key A candidate key selected to uniquely identify all other attribute values in any given row.

Cannot contain null entries.
Secondary key An attribute (or combination of attributes) used strictly for data retrieval purposes.
Foreign key An attribute (or combination of attributes) in one table whose values must either match the

primary key in another table or be null.

3.3 INTEGRITY RULES

Relational database integrity rules are very important to good database design. Many (but by no means all) RDBMSs
enforce integrity rules automatically. However, it is much safer to make sure that your application design conforms to
the entity and referential integrity rules mentioned in this chapter. Those rules are summarized in Table 3.4.

TABLE
3.4

Integrity Rules

ENTITY INTEGRITY DESCRIPTION
Requirement All primary key entries are unique, and no part of a primary key may be null.
Purpose Each row will have a unique identity, and foreign key values can properly reference

primary key values.
Example No invoice can have a duplicate number, nor can it be null. In short, all invoices are

uniquely identified by their invoice number.
REFERENTIAL INTEGRITY DESCRIPTION
Requirement A foreign key may have either a null entry, as long as it is not a part of its table’s pri-

mary key, or an entry that matches the primary key value in a table to which it is
related. (Every non-null foreign key value must reference an existing primary key value.)

Purpose It is possible for an attribute NOT to have a corresponding value, but it will be impos-
sible to have an invalid entry. The enforcement of the referential integrity rule makes it
impossible to delete a row in one table whose primary key has mandatory matching
foreign key values in another table.

Example A customer might not yet have an assigned sales representative (number), but it will be
impossible to have an invalid sales representative (number).

The integrity rules summarized in Table 3.4 are illustrated in Figure 3.4.

Note the following features of Figure 3.4.

1. Entity integrity. The CUSTOMER table’s primary key is CUS_CODE. The CUSTOMER primary key column
has no null entries, and all entries are unique. Similarly, the AGENT table’s primary key is AGENT_CODE, and
this primary key column also is free of null entries.

2. Referential integrity. The CUSTOMER table contains a foreign key, AGENT_CODE, which links entries in
the CUSTOMER table to the AGENT table. The CUS_CODE row that is identified by the (primary key) number
10013 contains a null entry in its AGENT_CODE foreign key because Mr. Paul F. Olowski does not yet have
a sales representative assigned to him. The remaining AGENT_CODE entries in the CUSTOMER table all
match the AGENT_CODE entries in the AGENT table.

C6545_03 6/20/2007 8:39:53 Page 71

71T H E R E L A T I O N A L D A T A B A S E M O D E L

To avoid nulls, some designers use special codes, known as flags, to indicate the absence of some value. Using Figure
3.4 as an example, the code -99 could be used as the AGENT_CODE entry of the fourth row of the CUSTOMER table
to indicate that customer Paul Olowski does not yet have an agent assigned to him. If such a flag is used, the AGENT
table must contain a dummy row with an AGENT_CODE value of -99. Thus, the AGENT table’s first record might
contain the values shown in Table 3.5.

TABLE
3.5

A Dummy Variable Value Used as a Flag

AGENT_CODE AGENT_AREACODE AGENT_PHONE AGENT_LNAME AGENT_YTD_SALES
-99 000 000-0000 None $0.00

Chapter 4, Entity Relationship (ER) Modeling, discusses several ways in which nulls may be handled.

Other integrity rules that can be enforced in the relational model are the NOT NULL and UNIQUE constraints. The
NOT NULL constraint can be placed on a column to ensure that every row in the table has a value for that column.
The UNIQUE constraint is a restriction placed on a column to ensure that no duplicate values exist for that column.

3.4 RELATIONAL SET OPERATORS

The data in relational tables are of limited value unless the data can be manipulated to generate useful information. This
section describes the basic data manipulation capabilities of the relational model. Relational algebra defines the
theoretical way of manipulating table contents using the eight relational operators: SELECT, PROJECT, JOIN,
INTERSECT, UNION, DIFFERENCE, PRODUCT, and DIVIDE. In Chapter 7, Introduction to Structured Query
Language (SQL), you will learn how SQL commands can be used to accomplish relational algebra operations.

Table name: CUSTOMER
Primary key: CUS_CODE
Foreign key: AGENT_CODE

Database name: Ch03_InsureCo

FIGURE
3.4

An illustration of integrity rules

Table name: AGENT
Primary key: AGENT_CODE
Foreign key: none

C6545_03 6/20/2007 10:47:17 Page 72

72 C H A P T E R 3

The relational operators have the property of closure; that is, the use of relational algebra operators on existing tables
(relations) produces new relations. There is no need to examine the mathematical definitions, properties, and
characteristics of those relational algebra operators. However, their use can easily be illustrated as follows:

1. UNION combines all rows from two tables, excluding duplicate rows. The tables must have the same attribute
characteristics (the columns and domains must be identical) to be used in the UNION. When two or more tables
share the same number of columns, when the columns have the same names, and when they share the same (or
compatible) domains, they are said to be union-compatible. The effect of a UNION is shown in Figure 3.5.

2. INTERSECT yields only the rows that appear in both tables. As was true in the case of UNION, the tables must
be union-compatible to yield valid results. For example, you cannot use INTERSECT if one of the attributes is
numeric and one is character-based. The effect of an INTERSECT is shown in Figure 3.6.

3. DIFFERENCE yields all rows in one table that are not found in the other table; that is, it subtracts one table
from the other. As was true in the case of UNION, the tables must be union-compatible to yield valid results.

Note

The degree of relational completeness can be defined by the extent to which relational algebra is supported. To
be considered minimally relational, the DBMS must support the key relational operators SELECT, PROJECT, and
JOIN. Very few DBMSs are capable of supporting all eight relational operators.

UNION

yields

FIGURE
3.5

UNION

INTERSECT
yields

FIGURE
3.6

INTERSECT

C6545_03 6/20/2007 10:47:21 Page 73

73T H E R E L A T I O N A L D A T A B A S E M O D E L

The effect of a DIFFERENCE is shown in Figure 3.7. However, note that subtracting the first table from the
second table is not the same as subtracting the second table from the first table.

4. PRODUCT yields all possible pairs of rows from two tables—also known as the Cartesian product. Therefore,
if one table has six rows and the other table has three rows, the PRODUCT yields a list composed of 6 × 3
= 18 rows. The effect of a PRODUCT is shown in Figure 3.8.

5. SELECT, also known as RESTRICT, yields values for all rows found in a table that satisfy a given condition.
SELECT can be used to list all of the row values, or it can yield only those row values that match a specified
criterion. In other words, SELECT yields a horizontal subset of a table. The effect of a SELECT is shown in
Figure 3.9.

DIFFERENCE
yields

FIGURE
3.7

DIFFERENCE

PRODUCT

yields

FIGURE
3.8

PRODUCT

C6545_03 6/20/2007 8:40:32 Page 74

74 C H A P T E R 3

6. PROJECT yields all values for selected attributes. In other words, PROJECT yields a vertical subset of a table.
The effect of a PROJECT is shown in Figure 3.10.

7. JOIN allows information to be combined from two or more tables. JOIN is the real power behind the relational
database, allowing the use of independent tables linked by common attributes. The CUSTOMER and AGENT
tables shown in Figure 3.11 will be used to illustrate several types of joins.

Original table New table or list

SELECT ALL yields

SELECT only PRICE less than $2.00 yields

SELECT only P_CODE = 311452 yields

FIGURE
3.9

SELECT

Original table New table or list

PROJECT PRICE yields

PROJECT P_DESCRIPT and PRICE yields

PROJECT P_CODE and PRICE yields

FIGURE
3.10

PROJECT

C6545_03 6/20/2007 8:40:49 Page 75

75T H E R E L A T I O N A L D A T A B A S E M O D E L

A natural join links tables by selecting only the rows with common values in their common attribute(s). A
natural join is the result of a three-stage process:

a. First, a PRODUCT of the tables is created, yielding the results shown in Figure 3.12.

b. Second, a SELECT is performed on the output of Step a to yield only the rows for which the
AGENT_CODE values are equal. The common columns are referred to as the join columns. Step b yields
the results shown in Figure 3.13.

Table name: CUSTOMER Table name: AGENT

FIGURE
3.11

Two tables that will be used in join illustrations

FIGURE
3.12

Natural join, Step 1: PRODUCT

C6545_03 6/20/2007 15:30:43 Page 76

76 C H A P T E R 3

c. A PROJECT is performed on the results of Step b to yield a single copy of each attribute, thereby
eliminating duplicate columns. Step c yields the output shown in Figure 3.14.

The final outcome of a natural join yields a table that does
not include unmatched pairs and provides only the copies of
the matches.

Note a few crucial features of the natural join operation:

� If no match is made between the table rows, the new
table does not include the unmatched row. In that
case, neither AGENT_CODE 421 nor the customer
whose last name is Smithson is included. Smithson’s
AGENT_CODE 421 does not match any entry in
the AGENT table.

� The column on which the join was made—that is, AGENT_CODE—occurs only once in the new table.

� If the same AGENT_CODE were to occur several times in the AGENT table, a customer would be listed for
each match. For example, if the AGENT_CODE 167 were to occur three times in the AGENT table, the
customer named Rakowski, who is associated with AGENT_CODE 167, would occur three times in the
resulting table. (A good AGENT table cannot, of course, yield such a result because it would contain unique
primary key values.)

Another form of join, known as equijoin, links tables on the basis of an equality condition that compares specified
columns of each table. The outcome of the equijoin does not eliminate duplicate columns, and the condition or
criterion used to join the tables must be explicitly defined. The equijoin takes its name from the equality comparison
operator (=) used in the condition. If any other comparison operator is used, the join is called a theta join.

In an outer join, the matched pairs would be retained and any unmatched values in the other table would be left null.
More specifically, if an outer join is produced for tables CUSTOMER and AGENT, two scenarios are possible:

A left outer join yields all of the rows in the CUSTOMER
table, including those that do not have a matching value in
the AGENT table. An example of such a join is shown in
Figure 3.15.

A right outer join yields all of the rows in the AGENT
table, including those that do not have matching values in
the CUSTOMER table. An example of such a join is shown
in Figure 3.16.

FIGURE
3.13

Natural join, Step 2: SELECT

FIGURE
3.14

Natural join, Step 3: PROJECT

FIGURE
3.15

Left outer join

C6545_03 6/20/2007 15:30:43 Page 77

77T H E R E L A T I O N A L D A T A B A S E M O D E L

Outer joins are especially useful when you are trying
to determine what value(s) in related tables cause(s)
referential integrity problems. Such problems are
created when foreign key values do not match the
primary key values in the related table(s). In fact, if
you are asked to convert large spreadsheets or other
nondatabase data into relational database tables, you
will discover that the outer joins save you vast
amounts of time and uncounted headaches when
you encounter referential integrity errors after the
conversions.

You may wonder why the outer joins are labeled left and right. The labels refer to the order in which the tables
are listed in the SQL command. Chapter 7 explores such joins.

8. The DIVIDE operation uses one single-column table (i.e. column “a”) as the divisor and one 2-column table (i.e.
columns “a” and “b”) as the dividend. The tables must have a common column (i.e. column “a”.) The output
of the DIVIDE operation is a single column with the values of column “a” from the dividend table rows where
the value of the common column (i.e. column “a”) in both tables match. Figure 3.17 shows a DIVIDE.

Using the example shown in Figure 3.17, note that:

a. Table 1 is “divided” by Table 2 to produce Table 3. Tables 1 and 2 both contain the column CODE but do
not share LOC.

b. To be included in the resulting Table 3, a value in the unshared column (LOC) must be associated (in the
dividing Table 2) with every value in Table 1.

c. The only value associated with both A and B is 5.

3.5 THE DATA DICTIONARY AND THE SYSTEM CATALOG

The data dictionary provides a detailed description of all tables found within the user/designer-created database.
Thus, the data dictionary contains at least all of the attribute names and characteristics for each table in the system.
In short, the data dictionary contains metadata—data about data. Using the small database presented in Figure 3.4,
you might picture its data dictionary as shown in Table 3.6.

FIGURE
3.16

Right outer join

DIVIDE
yields

FIGURE
3.17

DIVIDE

C6545_03 8/8/2007 8:39:54 Page 78

78 C H A P T E R 3

TA
BL

E
3.

6
A

Sa
m

pl
e

D
at

a
D

ic
tio

na
ry

TA
BL

E
N

AM
E

AT
TR

IB
U

TE
N

AM
E

C
O

N
TE

N
TS

TY
PE

FO
RM

AT
RA

N
G

E
RE

Q
U

IR
ED

PK O
R

FK

FK RE
FE

RE
N

C
ED

TA
BL

E
C

U
ST

O
M

ER
C

U
S_

C
O

D
E

C
U

S_
LN

A
M

E
C

U
S_

FN
AM

E
C

U
S_

IN
IT

IA
L

C
U

S_
RE

N
EW

_D
AT

E

AG
EN

T_
C

O
D

E

C
us

to
m

er
ac

co
un

tc
od

e
C

us
to

m
er

la
st

na
m

e
C

us
to

m
er

fir
st

na
m

e
C

us
to

m
er

in
iti

al
C

us
to

m
er

in
su

ra
nc

e
re

ne
w

al
da

te
Ag

en
tc

od
e

C
H

AR
(5

)
VA

RC
H

AR
(2

0)
VA

RC
H

AR
(2

0)
C

H
AR

(1
)

D
AT

E

C
H

AR
(3

)

99
99

9
Xx

xx
xx

xx
Xx

xx
xx

xx
X dd

-m
m

m
-y

yy
y

99
9

10
00

0−
99

99
9

Y Y Y

PK FK
AG

EN
T_

C
O

D
E

A
G

EN
T

A
G

EN
T_

C
O

D
E

AG
EN

T_
A

RE
A

C
O

D
E

AG
EN

T_
PH

O
N

E
AG

EN
T_

LN
AM

E
AG

EN
T_

YT
D

_S
LS

Ag
en

tc
od

e
Ag

en
ta

re
a

co
de

Ag
en

tt
el

ep
ho

ne
nu

m
be

r
Ag

en
tl

as
tn

am
e

Ag
en

ty
ea

r-
to

-d
at

e
sa

le
s

C
H

AR
(3

)
C

H
AR

(3
)

C
H

AR
(8

)
VA

RC
H

AR
(2

0)
N

U
M

BE
R(

9,
2)

99
9

99
9

99
9-

99
99

Xx
xx

xx
xx

9,
99

9,
99

9.
99

Y Y Y Y Y

PK

FK
=

Fo
re

ig
n

ke
y

PK
=

Pr
im

ar
y

ke
y

C
H

A
R

=
Fi

xe
d

ch
ar

ac
te

r
le

ng
th

da
ta

(1
−

25
5

ch
ar

ac
te

rs
)

VA
RC

H
AR

=
Va

ria
bl

e
ch

ar
ac

te
r

le
ng

th
da

ta
(1

−
2,

00
0

ch
ar

ac
te

rs
)

N
U

M
BE

R
=

N
um

er
ic

da
ta

(N
U

M
BE

R(
9,

2)
)i

s
us

ed
to

sp
ec

ify
nu

m
be

rs
w

ith
tw

o
de

ci
m

al
pl

ac
es

an
d

up
to

ni
ne

di
gi

ts
,i

nc
lu

di
ng

th
e

de
ci

m
al

pl
ac

es
.

So
m

e
RD

BM
Ss

pe
rm

it
th

e
us

e
of

a
M

O
N

EY
or

C
U

RR
EN

C
Y

da
ta

ty
pe

.

N
ot

e:
Te

le
ph

on
e

ar
ea

co
de

s
ar

e
al

w
ay

s
co

m
po

se
d

of
di

gi
ts

0−
9.

Be
ca

us
e

ar
ea

co
de

s
ar

e
no

tu
se

d
ar

ith
m

et
ic

al
ly,

th
ey

ar
e

m
os

te
ffi

ci
en

tly
st

or
ed

as
ch

ar
ac

te
rd

at
a.

Al
so

,
th

e
ar

ea
co

de
sa

re
al

w
ay

sc
om

po
se

d
of

th
re

e
di

gi
ts

.T
he

re
fo

re
,t

he
ar

ea
co

de
da

ta
ty

pe
is

de
fin

ed
as

C
H

AR
(3

).
O

n
th

e
ot

he
rh

an
d,

na
m

es
do

no
tc

on
fo

rm
to

so
m

e
st

an
da

rd
le

ng
th

.T
he

re
fo

re
,t

he
cu

st
om

er
fir

st
na

m
es

ar
e

de
fin

ed
as

VA
RC

H
AR

(2
0)

,t
hu

s
in

di
ca

tin
g

th
at

up
to

20
ch

ar
ac

te
rs

m
ay

be
us

ed
to

st
or

e
th

e
na

m
es

.C
ha

ra
ct

er
da

ta
ar

e
sh

ow
n

as
le

ft-
ju

st
ifi

ed
.

C6545_03 11/9/2007 14:4:51 Page 79

79T H E R E L A T I O N A L D A T A B A S E M O D E L

The data dictionary is sometimes described as “the database designer’s database” because it records the design
decisions about tables and their structures.

Like the data dictionary, the system catalog contains metadata. The system catalog can be described as a detailed
system data dictionary that describes all objects within the database, including data about table names, the table’s
creator and creation date, the number of columns in each table, the data type corresponding to each column, index
filenames, index creators, authorized users, and access privileges. Because the system catalog contains all required data
dictionary information, the terms system catalog and data dictionary are often used interchangeably. In fact, current
relational database software generally provides only a system catalog, from which the designer’s data dictionary
information may be derived. The system catalog is actually a system-created database whose tables store the
user/designer-created database characteristics and contents. Therefore, the system catalog tables can be queried just
like any user/designer-created table.

In effect, the system catalog automatically produces database documentation. As new tables are added to the database,
that documentation also allows the RDBMS to check for and eliminate homonyms and synonyms. In general terms,
homonyms are similar-sounding words with different meanings, such as boar and bore, or identically spelled words
with different meanings, such as fair (meaning “just”) and fair (meaning “festival”). In a database context, the word
homonym indicates the use of the same attribute name to label different attributes. For example, you might use
C_NAME to label a customer name attribute in a CUSTOMER table and also use C_NAME to label a consultant name
attribute in a CONSULTANT table. To lessen confusion, you should avoid database homonyms; the data dictionary is
very useful in this regard.

In a database context, a synonym is the opposite of a homonym and indicates the use of different names to describe
the same attribute. For example, car and auto refer to the same object. Synonyms must be avoided. You will discover
why using synonyms is a bad idea when you work through Problem 33 at the end of this chapter.

3.6 RELATIONSHIPS WITHIN THE RELATIONAL DATABASE

You already know that relationships are classified as one-to-one (1:1), one-to-many (1:M), and many-to-many (M:N or
M:M). This section explores those relationships further to help you apply them properly when you start developing
database designs, focusing on the following points:

� The 1:M relationship is the relational modeling ideal. Therefore, this relationship type should be the norm in
any relational database design.

� The 1:1 relationship should be rare in any relational database design.

� M:N relationships cannot be implemented as such in the relational model. Later in this section, you will see
how any M:N relationships can be changed into two 1:M relationships.

3.6.1 The 1:M Relationship

The 1:M relationship is the relational database norm. To see how such a relationship is modeled and implemented,
consider the PAINTER paints PAINTING example that was used in Chapter 2. Compare the data model in Figure 3.18
with its implementation in Figure 3.19.

Note

The data dictionary in Table 3.6 is an example of the human view of the entities, attributes, and relationships. The
purpose of this data dictionary is to ensure that all members of database design and implementation teams use the
same table and attribute names and characteristics. The DBMS’s internally stored data dictionary contains
additional information about relationship types, entity and referential integrity checks and enforcement, and index
types and components. This additional information is generated during the database implementation stage.

C6545_03 6/20/2007 10:47:48 Page 80

80 C H A P T E R 3

As you examine the PAINTER and PAINTING table contents
in Figure 3.19, note the following features:

� Each painting is painted by one and only one
painter, but each painter could have painted many
paintings. Note that painter 123 (Georgette P. Ross)
has three paintings stored in the PAINTING table.

� There is only one row in the PAINTER table for any
given row in the PAINTING table, but there may be
many rows in the PAINTING table for any given row
in the PAINTER table.

The 1:M relationship is found in any database environment. Students in a typical college or university will discover that
each COURSE can generate many CLASSes but that each CLASS refers to only one COURSE. For example, an
Accounting II course might yield two classes: one offered on Monday, Wednesday, and Friday (MWF) from 10:00 a.m.
to 10:50 a.m. and one offered on Thursday (Th) from 6:00 p.m. to 8:40 p.m. Therefore, the 1:M relationship
between COURSE and CLASS might be described this way:

� Each COURSE can have many CLASSes, but each
CLASS references only one COURSE.

� There will be only one row in the COURSE table for
any given row in the CLASS table, but there can be
many rows in the CLASS table for any given row in
the COURSE table.

Figure 3.20 maps the ERM for the 1:M relationship between
COURSE and CLASS.

Database name: Ch03_Museum

Table name: PAINTING
Primary key: PAINTING_NUM
Foreign key: PAINTER_NUM

Table name: PAINTER
Primary key: PAINTER_NUM
Foreign key: none

FIGURE
3.19

The implemented 1:M relationship between PAINTER and PAINTING

FIGURE
3.18

The 1:M relationship between
PAINTER and PAINTING

Note

The one-to-many (1:M) relationship is easily implemented in the relational model by putting the primary key of
the “1” side in the table of the “many” side as a foreign key.

FIGURE
3.20

The 1:M relationship between
COURSE and CLASS

C6545_03 6/20/2007 15:54:3 Page 81

81T H E R E L A T I O N A L D A T A B A S E M O D E L

The 1:M relationship between COURSE and CLASS is further illustrated in Figure 3.21.

Using Figure 3.21, take a minute to review some important terminology. Note that CLASS_CODE in the CLASS table
uniquely identifies each row. Therefore, CLASS_CODE has been chosen to be the primary key. However, the
combination CRS_CODE and CLASS_SECTION will also uniquely identify each row in the class table. In other words,
the composite key composed of CRS_CODE and CLASS_SECTION is a candidate key. Any candidate key must have
the not null and unique constraints enforced. (You will see how this is done when you learn SQL in Chapter 7.)

For example, note in Figure 3.19 that the PAINTER table’s primary key, PAINTER_NUM, is included in the PAINTING
table as a foreign key. Similarly, in Figure 3.21, the COURSE table’s primary key, CRS_CODE, is included in the
CLASS table as a foreign key.

3.6.2 The 1:1 Relationship

As the 1:1 label implies, in this relationship, one entity can be related to only one other entity, and vice versa. For
example, one department chair—a professor—can chair only one department and one department can have only one
department chair. The entities PROFESSOR and DEPARTMENT thus exhibit a 1:1 relationship. (You might argue that
not all professors chair a department and professors cannot be required to chair a department. That is, the relationship
between the two entities is optional. However, at this stage of the discussion, you should focus your attention on the
basic 1:1 relationship. Optional relationships will be addressed in Chapter 4.) The basic 1:1 relationship is modeled
in Figure 3.22, and its implementation is shown in Figure 3.23.

As you examine the tables in Figure 3.23, note that there are several important features:

� Each professor is a Tiny College employee. Therefore, the professor identification is through the EMP_NUM.
(However, note that not all employees are professors—there’s another optional relationship.)

Database name: Ch03_TinyCollege

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: CRS_CODE

Table name: COURSE
Primary key: CRS_CODE
Foreign key: none

FIGURE
3.21

The implemented 1:M relationship between COURSE and CLASS

C6545_03 6/20/2007 9:32:19 Page 82

82 C H A P T E R 3

� The 1:1 PROFESSOR chairs DEPARTMENT rela-
tionship is implemented by having the EMP_NUM
foreign key in the DEPARTMENT table. Note that the
1:1 relationship is treated as a special case of the 1:M
relationship in which the “many” side is restricted to a
single occurrence. In this case, DEPARTMENT con-
tains the EMP_NUM as a foreign key to indicate that
it is the department that has a chair.

FIGURE
3.22

The 1:1 relationship between
PROFESSOR and DEPARTMENT

Table name: DEPARTMENT
Primary key: DEPT_CODE
Foreign key: EMP_NUM

Table name: PROFESSOR
Primary key: EMP_NUM
Foreign key: DEPT_CODE

Database name: Ch03_TinyCollege

FIGURE
3.23

The implemented 1:1 relationship between PROFESSOR and DEPARTMENT

The 1:M DEPARTMENT employs PROFESSOR relationship is implemented through
the placement of the DEPT_CODE foreign key in the PROFESSOR table.

The 1:1 PROFESSOR chairs DEPARTMENT relationship
is implemented through the placement of the
EMP_NUM foreign key in the DEPARTMENT table.

C6545_03 6/20/2007 9:32:38 Page 83

83T H E R E L A T I O N A L D A T A B A S E M O D E L

� Also note that the PROFESSOR table contains the DEPT_CODE foreign key to implement the 1:M
DEPARTMENT employs PROFESSOR relationship. This is a good example of how two entities can participate
in two (or even more) relationships simultaneously.

The preceding “PROFESSOR chairs DEPARTMENT” example illustrates a proper 1:1 relationship. In fact, the use
of a 1:1 relationship ensures that two entity sets are not placed in the same table when they should not be.
However, the existence of a 1:1 relationship sometimes means that the entity components were not defined properly.
It could indicate that the two entities actually belong in the same table!

As rare as 1:1 relationships should be, certain conditions absolutely require their use. For example, suppose you
manage the database for a company that employs pilots, accountants, mechanics, clerks, salespeople, service
personnel, and more. Pilots have many attributes that the other employees don’t have, such as licenses, medical
certificates, flight experience records, dates of flight proficiency checks, and proof of required periodic medical checks.
If you put all of the pilot-specific attributes in the EMPLOYEE table, you will have several nulls in that table for all
employees who are not pilots. To avoid the proliferation of nulls, it is better to split the pilot attributes into a separate
table (PILOT) that is linked to the EMPLOYEE table in a 1:1 relationship. Because pilots have many attributes that are
shared by all employees—such as name, date of birth, and date of first employment—those attributes would be stored
in the EMPLOYEE table.

3.6.3 The M:N Relationship

A many-to-many (M:N) relationship is not supported directly in the relational environment. However, M:N relationships
can be implemented by creating a new entity in 1:M relationships with the original entities.

To explore the many-to-many (M:N) relationship, consider a
rather typical college environment in which each STUDENT
can take many CLASSes, and each CLASS can contain
many STUDENTs. The ER model in Figure 3.24 shows this
M:N relationship.

Note the features of the ERM in Figure 3.24.

O n l i n e C o n t e n t

If you open the Ch03_TinyCollege database in the Student Online Companion, you’ll see that the
STUDENT and CLASS entities still use PROF_NUM as their foreign key. PROF_NUM and EMP_NUM are labels
for the same attribute, which is an example of the use of synonyms—different names for the same attribute.
These synonyms will be eliminated in future chapters as the Tiny College database continues to be improved.

O n l i n e C o n t e n t

If you look at the Ch03_AviaCo database in the Student Online Companion, you will see the implementation
of the 1:1 PILOT to EMPLOYEE relationship. This type of relationship will be examined in detail in Chapter 6,
Advanced Data Modeling.

FIGURE
3.24

C6545_03 8/8/2007 8:40:18 Page 84

84 C H A P T E R 3

� Each CLASS can have many STUDENTs, and each STUDENT can take many CLASSes.

� There can be many rows in the CLASS table for any given row in the STUDENT table, and there can be many
rows in the STUDENT table for any given row in the CLASS table.

To examine the M:N relationship more closely, imagine a small college with two students, each of whom takes three
classes. Table 3.7 shows the enrollment data for the two students.

TABLE
3.7

Sample Student Enrollment Data

STUDENT’S LAST NAME SELECTED CLASSES
Bowser Accounting 1, ACCT-211, code 10014

Intro to Microcomputing, CIS-220, code 10018
Intro to Statistics, QM-261, code 10021

Smithson Accounting 1, ACCT-211, code 10014
Intro to Microcomputing, CIS-220, code 10018
Intro to Statistics, QM-261, code 10021

Although the M:N relationship is logically reflected in Figure 3.24, it should not be implemented as shown in Figure
3.25 for two good reasons:

� The tables create many redundancies. For example, note that the STU_NUM values occur many times in the
STUDENT table. In a real-world situation, additional student attributes such as address, classification, major,
and home phone would also be contained in the STUDENT table, and each of those attribute values would be
repeated in each of the records shown here. Similarly, the CLASS table contains many duplications: each
student taking the class generates a CLASS record. The problem would be even worse if the CLASS table
included such attributes as credit hours and course description. Those redundancies lead to the anomalies
discussed in Chapter 1.

� Given the structure and contents of the two tables, the relational operations become very complex and are
likely to lead to system efficiency errors and output errors.

Database name: Ch03_CollegeTry
Table name: STUDENT
Primary key: STU_NUM
Foreign key: none

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: STU_NUM

FIGURE
3.25

The M:N relationship between STUDENT and CLASS

C6545_03 6/20/2007 15:54:59 Page 85

85T H E R E L A T I O N A L D A T A B A S E M O D E L

Fortunately, the problems inherent in the many-to-many (M:N) relationship can easily be avoided by creating a
composite entity (also referred to as a bridge entity or an associative entity). Because such a table is used to link
the tables that originally were related in a M:N relationship, the composite entity structure includes—as foreign
keys—at least the primary keys of the tables that are to be linked. The database designer has two main options when
defining a composite table’s primary key: use the combination of those foreign keys or create a new primary key.

Remember that each entity in the ERM is represented by a table. Therefore, you can create the composite ENROLL
table shown in Figure 3.26 to link the tables CLASS and STUDENT. In this example, the ENROLL table’s primary key
is the combination of its foreign keys CLASS_CODE and STU_NUM. But the designer could have decided to create
a single-attribute new primary key such as ENROLL_LINE, using a different line value to identify each ENROLL table
row uniquely. (Microsoft Access users might use the Autonumber data type to generate such line values automatically.)

Because the ENROLL table in Figure 3.26 links two tables, STUDENT and CLASS, it is also called a linking table.
In other words, a linking table is the implementation of a composite entity.

The linking table (ENROLL) shown in Figure 3.26 yields the required M:N to 1:M conversion. Observe that the
composite entity represented by the ENROLL table must contain at least the primary keys of the CLASS and

Table name: ENROLL
Primary key: CLASS_CODE + STU_NUM
Foreign key: CLASS_CODE, STU_NUM

Table name: STUDENT
Primary key: STU_NUM
Foreign key: none

Database name: Ch03_CollegeTry2

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: CRS_CODE

FIGURE
3.26

Converting the M:N relationship into two 1:M relationships

Note

In addition to the linking attributes, the composite ENROLL table can also contain such relevant attributes as the
grade earned in the course. In fact, a composite table can contain any number of attributes that the designer
wants to track. Keep in mind that the composite entity, although it is implemented as an actual table, is
conceptually a logical entity that was created as a means to an end: to eliminate the potential for multiple
redundancies in the original M:N relationship.

C6545_03 8/8/2007 8:42:1 Page 86

86 C H A P T E R 3

STUDENT tables (CLASS_CODE and STU_NUM, respectively) for which it serves as a connector. Also note that the
STUDENT and CLASS tables now contain only one row per entity. The linking ENROLL table contains multiple
occurrences of the foreign key values, but those controlled redundancies are incapable of producing anomalies as long
as referential integrity is enforced. Additional attributes may be assigned as needed. In this case, ENROLL_GRADE is
selected to satisfy a reporting requirement. Also note that the ENROLL table’s primary key consists of the two
attributes CLASS_CODE and STU_NUM because both the class code and the student number are needed to define
a particular student’s grade. Naturally, the conversion is reflected in the ERM, too. The revised relationship is shown
in Figure 3.27.

As you examine Figure 3.27, note that the composite entity named ENROLL represents the linking table between
STUDENT and CLASS.

The 1:M relationship between COURSE and CLASS was first illustrated in Figure 3.20 and Figure 3.21. With the help
of this relationship, you can increase the amount of available information even as you control the database’s
redundancies. Thus, Figure 3.27 can be expanded to include the 1:M relationship between COURSE and CLASS
shown in Figure 3.28. Note that the model is able to handle multiple sections of a CLASS while controlling
redundancies by making sure that all of the COURSE data common to each CLASS are kept in the COURSE table.

The relational diagram that corresponds to the ERD in Figure 3.28 is shown in Figure 3.29.

FIGURE
3.27

Changing the M:N relationship
to two 1:M relationships

FIGURE
3.28

The expanded entity
relationship model

FIGURE
3.29

The relational diagram for the Ch03_TinyCollege database

C6545_03 6/20/2007 10:6:1 Page 87

87T H E R E L A T I O N A L D A T A B A S E M O D E L

The ERD will be examined in greater detail in Chapter 4 to show you how it is used to design more complex databases.
The ERD will also be used as the basis for the development and implementation of a realistic database design in
Appendixes B and C (see the Student Online Companion Web site) for a university computer lab.

3.7 DATA REDUNDANCY REVISITED

In Chapter 1 you learned that data redundancy leads to data anomalies. Those anomalies can destroy the effectiveness
of the database. You also learned that the relational database makes it possible to control data redundancies by using
common attributes that are shared by tables, called foreign keys.

The proper use of foreign keys is crucial to controlling data redundancy. Although the use of foreign keys does not
totally eliminate data redundancies because the foreign key values can be repeated many times, the proper use of
foreign keys minimizes data redundancies, thus minimizing the chance that destructive data anomalies will develop.

You will learn in Chapter 4 that database designers must reconcile three often contradictory requirements: design
elegance, processing speed, and information requirements. And you will learn in Chapter 13, Business Intelligence and
Data Warehouses, that proper data warehousing design requires carefully defined and controlled data redundancies to
function properly. Regardless of how you describe data redundancies, the potential for damage is limited by proper
implementation and careful control.

As important as data redundancy control is, there are times when the level of data redundancy must actually be
increased to make the database serve crucial information purposes. You will learn about such redundancies in Chapter
13. There are also times when data redundancies seem to exist to preserve the historical accuracy of the data. For
example, consider a small invoicing system. The system includes the CUSTOMER, who may buy one or more
PRODUCTs, thus generating an INVOICE. Because a customer may buy more than one product at a time, an invoice
may contain several invoice LINEs, each providing details about the purchased product. The PRODUCT table should
contain the product price to provide a consistent pricing input for each product that appears on the invoice. The tables
that are part of such a system are shown in Figure 3.30. The system’s relational diagram is shown in Figure 3.31.

As you examine the tables in the invoicing system in Figure 3.30 and the relationships depicted in Figure 3.31, note
that you can keep track of typical sales information. For example, by tracing the relationships among the four tables,
you discover that customer 10014 (Myron Orlando) bought two items on March 8, 2006 that were written to invoice
number 1001: one Houselite chain saw with a 16-inch bar and three rat-tail files. (Note: Trace the CUS_CODE
number 10014 in the CUSTOMER table to the matching CUS_CODE value in the INVOICE table. Next, take the
INV_NUMBER 1001 and trace it to the first two rows in the LINE table. Finally, match the two PROD_CODE values
in LINE with the PROD_CODE values in PRODUCT.) Application software will be used to write the correct bill by
multiplying each invoice line item’s LINE_UNITS by its LINE_PRICE, adding the results, applying appropriate taxes,
etc. Later, other application software might use the same technique to write sales reports that track and compare sales
by week, month, or year.

Note

The real test of redundancy is not how many copies of a given attribute are stored, but whether the elimination
of an attribute will eliminate information. Therefore, if you delete an attribute and the original information can
still be generated through relational algebra, the inclusion of that attribute would be redundant. Given that view
of redundancy, proper foreign keys are clearly not redundant in spite of their multiple occurrences in a table.
However, even when you use this less restrictive view of redundancy, keep in mind that controlled redundancies
are often designed as part of the system to ensure transaction speed and/or information requirements. Exclusive
reliance on relational algebra to produce required information may lead to elegant designs that fail the test of
practicality.

C6545_03 6/20/2007 10:6:30 Page 88

88 C H A P T E R 3

As you examine the sales transactions in Figure 3.30, you might reasonably suppose that the product price billed to
the customer is derived from the PRODUCT table because that’s where the product data are stored. But why does that
same product price occur again in the LINE table? Isn’t that a data redundancy? It certainly appears to be. But this
time, the apparent redundancy is crucial to the system’s success. Copying the product price from the PRODUCT table

Database name: Ch03_SaleCo
Table name: CUSTOMER
Primary key: CUS_CODE
Foreign key: none

Table name: LINE
Primary key: INV_NUMBER + LINE_NUMBER
Foreign keys: INV_NUMBER, PROD_CODE

Table name: INVOICE
Primary key: INV_NUMBER
Foreign key: CUS_CODE

Table name: PRODUCT
Primary key: PROD_CODE
Foreign key: none

FIGURE
3.30

A small invoicing system

FIGURE
3.31

The relational diagram for the invoicing system

C6545_03 6/20/2007 10:6:2 Page 89

89T H E R E L A T I O N A L D A T A B A S E M O D E L

to the LINE table maintains the historical accuracy of the transactions. Suppose, for instance, that you fail to write
the LINE_PRICE in the LINE table and that you use the PROD_PRICE from the PRODUCT table to calculate the sales
revenue. Now suppose that the PRODUCT table’s PROD_PRICE changes, as prices frequently do. This price change
will be properly reflected in all subsequent sales revenue calculations. However, the calculations of past sales revenues
will also reflect the new product price that was not in effect when the transaction took place! As a result, the revenue
calculations for all past transactions will be incorrect, thus eliminating the possibility of making proper sales
comparisons over time. On the other hand, if the price data are copied from the PRODUCT table and stored with the
transaction in the LINE table, that price will always accurately reflect the transaction that took place at that time. You
will discover that such planned “redundancies” are common in good database design.

Finally, you might wonder why the LINE_NUMBER attribute was used in the LINE table in Figure 3.30. Wouldn’t the
combination of INV_NUMBER and PROD_CODE be a sufficient composite primary key—and, therefore, isn’t the
LINE_NUMBER redundant? Yes, the LINE_NUMBER is redundant, but this redundancy is quite commonly created by
invoicing software that generates such line numbers automatically. In this case, the redundancy is not necessary. But
given its automatic generation, the redundancy is not a source of anomalies. The inclusion of LINE_NUMBER also
adds another benefit: the order of the retrieved invoicing data will always match the order in which the data were
entered. If product codes are used as part of the primary key, indexing will arrange those product codes as soon as
the invoice is completed and the data are stored. You can imagine the potential confusion when a customer calls and
says, “The second item on my invoice has an incorrect price” and you are looking at an invoice whose lines show a
different order from those on the customer’s copy!

3.8 INDEXES

Suppose you want to locate a particular book in a library. Does it make sense to look through every book in the library
until you find the one you want? Of course not; you use the library’s catalog, which is indexed by title, topic, and
author. The index (in either a manual or a computer system) points you to the book’s location, thereby making retrieval
of the book a quick and simple matter. An index is an orderly arrangement used to logically access rows in a table.

Or suppose you want to find a topic, such as “ER model,” in this book. Does it make sense to read through every page
until you stumble across the topic? Of course not; it is much simpler to go to the book’s index, look up the phrase ER
model, and read the page references that point you to the appropriate page(s). In each case, an index is used to locate
a needed item quickly.

Indexes in the relational database environment work like the indexes described in the preceding paragraphs. From a
conceptual point of view, an index is composed of an index key and a set of pointers. The index key is, in effect, the
index’s reference point. More formally, an index is an ordered arrangement of keys and pointers. Each key points to
the location of the data identified by the key.

For example, suppose you want to look up all of the paintings created by a given painter in the Ch03_Museum
database in Figure 3.19. Without an index, you must read each row in the PAINTING table and see if the
PAINTER_NUM matches the requested painter. However, if you index the PAINTER table and use the index key
PAINTER_NUM, you merely need to look up the appropriate PAINTER_NUM in the index and find the matching
pointers. Conceptually speaking, the index would resemble the presentation depicted in Figure 3.32.

As you examine Figure 3.32 and compare it to the Ch03_Museum database tables shown in Figure 3.19, note that
the first PAINTER_NUM index key value (123) is found in records 1, 2, and 4 of the PAINTING table in Figure 3.19.
The second PAINTER_NUM index key value (126) is found in records 3 and 5 of the PAINTING table in Figure 3.19.

DBMSs use indexes for many different purposes. You just learned that an index can be used to retrieve data more
efficiently. But indexes can also be used by a DBMS to retrieve data ordered by a specific attribute or attributes. For
example, creating an index on a customer’s last name will allow you to retrieve the customer data alphabetically by the

C6545_03 6/20/2007 10:48:12 Page 90

90 C H A P T E R 3

customer’s last name. Also, an index key can be composed of one or more attributes. For example, in Figure 3.30,
you can create an index on VEND_CODE and PROD_CODE to retrieve all rows in the PRODUCT table ordered by
vendor, and within vendor, ordered by product.

Indexes play an important role in DBMSs for the implementation of primary keys. When you define a table’s primary
key, the DBMS automatically creates a unique index on the primary key column(s) you declared. For example, in Figure
3.30, when you declare CUS_CODE to be the primary key of the CUSTOMER table, the DBMS automatically creates
a unique index on that attribute. A unique index, as its name implies, is an index in which the index key can have
only one pointer value (row) associated with it. (The index in Figure 3.32 is not a unique index because the
PAINTER_NUM has multiple pointer values associated with it. For example, painter number 123 points to three
rows—1, 2, and 4—in the PAINTING table.)

A table can have many indexes, but each index is associated with only one table. The index key can have multiple
attributes (composite index). Creating an index is easy. You learn in Chapter 7 that a simple SQL command produces
any required index.

3.9 CODD’S RELATIONAL DATABASE RULES

In 1985, Dr. E. F. Codd published a list of 12 rules to define a relational database system.2 The reason Dr. Codd
published the list was his concern that many vendors were marketing products as “relational” even though those
products did not meet minimum relational standards. Dr. Codd’s list, shown in Table 3.8, serves as a frame of reference
for what a truly relational database should be. Bear in mind that even the dominant database vendors do not fully
support all 12 rules.

2 Codd, E., “Is Your DBMS Really Relational?” and “Does Your DBMS Run by the Rules?” Computerworld, October 14 and October 21, 1985.

Components of an index

PAINTER_NUM
(index key)

126

Pointers to the
PAINTING
table rows

3, 5

FIGURE
3.32

Painting Table

123 1, 2, 4

Painting Table Index

C6545_03 8/8/2007 8:42:22 Page 91

91T H E R E L A T I O N A L D A T A B A S E M O D E L

TABLE
3.8

Dr. Codd’s 12 Relational Database Rules

RULE RULE NAME DESCRIPTION
1 Information All information in a relational database must be logically rep-

resented as column values in rows within tables.
2 Guaranteed Access Every value in a table is guaranteed to be accessible through a

combination of table name, primary key value, and column
name.

3 Systematic Treatment of Nulls Nulls must be represented and treated in a systematic way,
independent of data type.

4 Dynamic On-Line Catalog Based on
the Relational Model

The metadata must be stored and managed as ordinary data,
that is, in tables within the database. Such data must be avail-
able to authorized users using the standard database relational
language.

5 Comprehensive Data Sublanguage The relational database may support many languages. How-
ever, it must support one well defined, declarative language
with support for data definition, view definition, data manipu-
lation (interactive and by program), integrity constraints,
authorization, and transaction management (begin, commit,
and rollback).

6 View Updating Any view that is theoretically updatable must be updatable
through the system.

7 High-Level Insert, Update and Delete The database must support set-level inserts, updates, and
deletes.

8 Physical Data Independence Application programs and ad hoc facilities are logically unaf-
fected when physical access methods or storage structures are
changed.

9 Logical Data Independence Application programs and ad hoc facilities are logically unaf-
fected when changes are made to the table structures that
preserve the original table values (changing order of column or
inserting columns).

10 Integrity Independence All relational integrity constraints must be definable in the rela-
tional language and stored in the system catalog, not at the
application level.

11 Distribution Independence The end users and application programs are unaware and
unaffected by the data location (distributed vs. local
databases).

12 Nonsubversion If the system supports low-level access to the data, there must
not be a way to bypass the integrity rules of the database.

Rule Zero All preceding rules are based on the notion that in order for a
database to be considered relational, it must use its relational
facilities exclusively to manage the database.

C6545_03 6/20/2007 10:12:8 Page 92

92 C H A P T E R 3

S u m m a r y

◗ Tables are the basic building blocks of a relational database. A grouping of related entities, known as an entity set,
is stored in a table. Conceptually speaking, the relational table is composed of intersecting rows (tuples) and
columns. Each row represents a single entity, and each column represents the characteristics (attributes) of the
entities.

◗ Keys are central to the use of relational tables. Keys define functional dependencies; that is, other attributes are
dependent on the key and can, therefore, be found if the key value is known. A key can be classified as a superkey,
a candidate key, a primary key, a secondary key, or a foreign key.

◗ Each table row must have a primary key. The primary key is an attribute or a combination of attributes that uniquely
identifies all remaining attributes found in any given row. Because a primary key must be unique, no null values are
allowed if entity integrity is to be maintained.

◗ Although the tables are independent, they can be linked by common attributes. Thus, the primary key of one table
can appear as the foreign key in another table to which it is linked. Referential integrity dictates that the foreign
key must contain values that match the primary key in the related table or must contain nulls.

◗ The relational model supports relational algebra functions: SELECT, PROJECT, JOIN, INTERSECT, UNION,
DIFFERENCE, PRODUCT, and DIVIDE. A relational database performs much of the data manipulation work
behind the scenes. For example, when you create a database, the RDBMS automatically produces a structure to
house a data dictionary for your database. Each time you create a new table within the database, the RDBMS
updates the data dictionary, thereby providing the database documentation.

◗ Once you know the relational database basics, you can concentrate on design. Good design begins by identifying
appropriate entities and their attributes and then the relationships among the entities. Those relationships (1:1,
1:M, and M:N) can be represented using ERDs. The use of ERDs allows you to create and evaluate simple logical
design. The 1:M relationship is most easily incorporated in a good design; you just have to make sure that the
primary key of the “1” is included in the table of the “many.”

K e y T e r m s

associative entity, 86

attribute domain, 32

bridge entity, 86

candidate key, 68

closure, 73

composite entity, 86

composite key, 67

data dictionary, 78

determination, 66

domain, 66

entity integrity, 68

equijoin, 77

flags, 72

foreign key (FK), 70

full functional dependence, 68

functional dependence, 67

homonyms, 80

index, 90

index key, 90

join column(s), 76

key, 66

key attribute, 67

left outer join, 77

linking table, 86

natural join, 76

null, 68

outer join, 77

predicate logic, 63

primary key (PK), 66

referential integrity, 70

relational algebra, 72

relational schema, 70

right outer join, 77

secondary key, 70

set theory, 63

superkey, 68

synonym, 80

system catalog, 80

theta join, 77

tuple, 38

union-compatible, 73

unique index, 91

C6545_03 6/20/2007 10:51:4 Page 93

93T H E R E L A T I O N A L D A T A B A S E M O D E L

R e v i e w Q u e s t i o n s

1. What is the difference between a database and a table?

2. What does it mean to say that a database displays both entity integrity and referential integrity?

3. Why are entity integrity and referential integrity important in a database?

4. A database user manually notes that “The file contains two hundred records, each record containing nine fields.”
Use appropriate relational database terminology to “translate” that statement.

5. Use the small database shown in Figure Q3.5 to illustrate the difference between a natural join, an equijoin, and
an outer join.

6. Create the basic ERD for the database shown in Figure
Q3.5.

7. Create the relational diagram for the database shown
in Figure Q3.5.

8. Suppose you have the ERM shown in Figure Q3.8.
How would you convert this model into an ERM that
displays only 1:M relationships? (Make sure you create
the revised ERM.)

9. What are homonyms and synonyms, and why should
they be avoided in database design?

10. How would you implement a l:M relationship in a
database composed of two tables? Give an example.

11. Identify and describe the components of the table
shown in Figure Q3.11, using correct terminology.
Use your knowledge of naming conventions to identify
the table’s probable foreign key(s).

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

Database name: Ch03_CollegeQue

Table name: PROFESSOR

Table name: STUDENT

FIGURE
Q3.5

The Ch03_CollegeQue
database tables

O n l i n e C o n t e n t

All of the databases used in the questions and problems are found in the Student Online Companion for this
book. The database names used in the folder match the database names used in the figures. For example, the
source of the tables shown in Figure Q3.5 is the Ch03_CollegeQue database.

C6545_03 6/20/2007 10:17:59 Page 94

94 C H A P T E R 3

Use the database composed of the two tables shown in Figure Q3.12 to answer Questions 12-17.

12. Identify the primary keys.

13. Identify the foreign keys.

14. Create the ERM.

15. Create the relational diagram to show the relationship
between DIRECTOR and PLAY.

16. Suppose you wanted quick lookup capability to get a
listing of all plays directed by a given director. Which
table would be the basis for the INDEX table, and what
would be the index key?

17. What would be the conceptual view of the INDEX table
that is described in Question 16? Depict the contents
of the conceptual INDEX table.

FIGURE
Q3.8

The Crow’s Foot ERM for Question 8

Table name: EMPLOYEE Database name: Ch03_NoComp

FIGURE
Q3.11

The Ch03_NoComp database EMPLOYEE table

Database name: Ch03_Theater

Table name: PLAY

Table name: DIRECTOR

FIGURE
Q3.12

The Ch03_Theater database
tables

C6545_03 6/20/2007 10:24:0 Page 95

95T H E R E L A T I O N A L D A T A B A S E M O D E L

P r o b l e m s

Use the database shown in Figure P3.1 to work Problems 1−7. Note that the database is composed of four tables that
reflect these relationships:

� An EMPLOYEE has only one JOB_CODE, but a JOB_CODE can be held by many EMPLOYEEs.

� An EMPLOYEE can participate in many PLANs, and any PLAN can be assigned to many EMPLOYEEs.

Note also that the M:N relationship has been broken down into two 1:M relationships for which the BENEFIT table
serves as the composite or bridge entity.

1. For each table in the database, identify the primary key and the foreign key(s). If a table does not have a foreign
key, write None in the space provided.

2. Create the ERD to show the relationship between EMPLOYEE and JOB.

3. Create the relational diagram to show the relationship between EMPLOYEE and JOB.

4. Do the tables exhibit entity integrity? Answer yes or no, and then explain your answer.

Database name: Ch03_BeneCo
Table name: EMPLOYEE

Table name: JOB

Table name: BENEFIT

Table name: PLAN

FIGURE
P3.1

The Ch03_BeneCo database tables

TABLE PRIMARY KEY FOREIGN KEY(S)
EMPLOYEE
BENEFIT
JOB
PLAN

TABLE ENTITY INTEGRITY EXPLANATION
EMPLOYEE
BENEFIT
JOB
PLAN

C6545_03 6/20/2007 10:24:0 Page 96

96 C H A P T E R 3

5. Do the tables exhibit referential integrity? Answer yes or no, and then explain your answer. Write NA (Not
Applicable) if the table does not have a foreign key.

6. Create the ERD to show the relationships among EMPLOYEE, BENEFIT, JOB, and PLAN.

7. Create the relational diagram to show the relationships among EMPLOYEE, BENEFIT, JOB, and PLAN.

Use the database shown in Figure P3.8 to answer Problems 8−16.

TABLE REFERENTIAL INTEGRITY EXPLANATION
EMPLOYEE
BENEFIT
JOB
PLAN

Table name: EMPLOYEE Database name: Ch03_StoreCo

Table name: STORE

Table name: REGION

FIGURE
P3.8

The Ch03_StoreCo database tables

C6545_03 6/20/2007 10:30:33 Page 97

97T H E R E L A T I O N A L D A T A B A S E M O D E L

8. For each table, identify the primary key and the foreign key(s). If a table does not have a foreign key, write None
in the space provided.

9. Do the tables exhibit entity integrity? Answer yes or no, and then explain your answer.

10. Do the tables exhibit referential integrity? Answer yes or no, and then explain your answer. Write NA (Not
Applicable) if the table does not have a foreign key.

11. Describe the type(s) of relationship(s) between STORE and REGION.

12. Create the ERD to show the relationship between STORE and REGION.

13. Create the relational diagram to show the relationship between STORE and REGION.

14. Describe the type(s) of relationship(s) between EMPLOYEE and STORE. (Hint: Each store employs many
employees, one of whom manages the store.)

15. Create the ERD to show the relationships among EMPLOYEE, STORE, and REGION.

16. Create the relational diagram to show the relationships among EMPLOYEE, STORE, and REGION.

TABLE PRIMARY KEY FOREIGN KEY(S)
EMPLOYEE
STORE
REGION

TABLE ENTITY INTEGRITY EXPLANATION
EMPLOYEE
STORE
REGION

TABLE REFERENTIAL INTEGRITY EXPLANATION
EMPLOYEE
STORE
REGION

C6545_03 6/20/2007 10:30:33 Page 98

98 C H A P T E R 3

Use the database shown in Figure P3.17 to answer Problems 17−22.

17. For each table, identify the primary key and the foreign key(s). If a table does not have a foreign key, write None
in the space provided.

18. Do the tables exhibit entity integrity? Answer yes or no, and then explain your answer.

19. Do the tables exhibit referential integrity? Answer yes or no, and then explain your answer. Write NA (Not
Applicable) if the table does not have a foreign key.

20. Create the ERD for this database.

Database name: Ch03_CheapCoTable name: PRODUCT
Primary key: PROD_CODE
Foreign key: VEND_CODE

Table name: VENDOR
Primary key: VEND_CODE
Foreign key: none

FIGURE
P3.17

The Ch03_CheapCo database tables

TABLE PRIMARY KEY FOREIGN KEY(S)
PRODUCT
VENDOR

TABLE ENTITY INTEGRITY EXPLANATION
PRODUCT
VENDOR

TABLE REFERENTIAL INTEGRITY EXPLANATION
PRODUCT
VENDOR

C6545_03 6/20/2007 10:32:41 Page 99

99T H E R E L A T I O N A L D A T A B A S E M O D E L

21. Create the relational diagram for this database.

22. Create the data dictionary for this database.

Use the database shown in Figure P3.23 to answer Problems 23−29.

23. For each table, identify the primary key and the foreign key(s). If a table does not have a foreign key, write None
in the space provided.

24. Do the tables exhibit entity integrity? Answer yes or no, and then explain your answer.

25. Do the tables exhibit referential integrity? Answer yes or no, and then explain your answer. Write NA (Not
Applicable) if the table does not have a foreign key.

Database name: Ch03_TransCoTable name: TRUCK
Primary key: TRUCK_NUM
Foreign key: BASE_CODE, TYPE_CODE

Table name: BASE
Primary key: BASE_CODE
Foreign key: none

Table name: TYPE
Primary key: TYPE_CODE
Foreign key: none

FIGURE
P3.23

The Ch03_TransCo database tables

TABLE PRIMARY KEY FOREIGN KEY(S)
TRUCK
BASE
TYPE

TABLE ENTITY INTEGRITY EXPLANATION
TRUCK
BASE
TYPE

C6545_03 6/20/2007 10:33:11 Page 100

100 C H A P T E R 3

26. Identify the TRUCK table’s candidate key(s).

27. For each table, identify a superkey and a secondary key.

28. Create the ERD for this database.

29. Create the relational diagram for this database.

Use the database shown in Figure P3.30 to answer Problems 30−34. ROBCOR is an aircraft charter company that
supplies on-demand charter flight services using a fleet of four aircraft. Aircrafts are identified by a unique registration
number. Therefore, the aircraft registration number is an appropriate primary key for the AIRCRAFT table.

TABLE REFERENTIAL INTEGRITY EXPLANATION
TRUCK
BASE
TYPE

TABLE SUPERKEY SECONDARY KEY
TRUCK
BASE
TYPE

Table name: CHARTER Database name: Ch03_AviaCo

FIGURE
P3.30

The Ch03_AviaCo database tables

The destinations are indicated by standard three-letter airport codes. For example,
STL = St. Louis, MO ATL = Atlanta, GA BNA = Nashville, TN

AC-TTAF = Aircraft total time, airframe (hours)
AC-TTEL = Total time, left engine (hours)
AC_TTER = Total time, right engine (hours)

In a fully developed system, such attribute values
would be updated by application software when the
CHARTER table entries are posted.

Table name: MODEL

Table name: AIRCRAFT

Customers are charged per round-trip mile, using the MOD_CHG_MILE rate. The MOD_SEAT gives the total number of
seats in the airplane, including the pilot and copilot seats. Therefore, a PA31-350 trip that is flown by a pilot and a copilot
has six passenger seats available.

C6545_03 6/20/2007 10:33:12 Page 101

101T H E R E L A T I O N A L D A T A B A S E M O D E L

The nulls in the CHARTER table’s CHAR_COPILOT column indicate that a copilot is not required for some charter
trips or for some aircraft. Federal Aviation Administration (FAA) rules require a copilot on jet aircraft and on aircraft
having a gross take-off weight over 12,500 pounds. None of the aircraft in the AIRCRAFT table are governed by this
requirement; however, some customers may require the presence of a copilot for insurance reasons. All charter trips
are recorded in the CHARTER table.

Table name: PILOT

Table name: EMPLOYEE

Table name: CUSTOMER

Database name: Ch03_AviaCo

FIGURE
P3.30

The Ch03_AviaCo database tables (continued)

The pilot licenses shown in the PILOT table include the ATP = Airline Transport Pilot and COM = Commercial Pilot.
Businesses that operate on-demand air services are governed by Part 135 of the Federal Air Regulations (FARs) that are
enforced by the Federal Aviation Administration (FAA). Such businesses are known as “Part 135 operators.” Part 125
operations require that pilots successfully complete flight proficiency checks every six months. The “Part 135” flight
proficiency check data is recorded in PIL_PT135_DATE. To fly commercially, pilots must have at least a commercial
license and a second-class medical certificate (PIL_MED_TYPE = 2).

The PIL_RATINGS include
SEL = Single Engine, Land MEL = Multiengine, Land
SES = Single Engine, Sea Instr. = Instrument
CFI = Certified Flight Instructor CFII = Certified Flight Instructor, Instrument

C6545_03 6/20/2007 10:33:13 Page 102

102 C H A P T E R 3

30. For each table, where possible, identify:

a. The primary key.

b. A superkey.

c. A candidate key.

d. The foreign key(s).

e. A secondary key.

31. Create the ERD. (Hint: Look at the table contents. You will discover that an AIRCRAFT can fly many CHARTER
trips but that each CHARTER trip is flown by one AIRCRAFT, that a MODEL references many AIRCRAFT but
that each AIRCRAFT references a single MODEL, etc.)

32. Create the relational diagram.

33. Modify the ERD you created in Problem 31 to eliminate the problems created by the use of synonyms. (Hint:
Modify the CHARTER table structure by eliminating the CHAR_PILOT and CHAR_COPILOT attributes; then
create a composite table named CREW to link the CHARTER and EMPLOYEE tables. Some crew members,
such as flight attendants, may not be pilots. That’s why the EMPLOYEE table enters into this relationship.)

34. Create the relational diagram for the design you revised in Problem 33. (After you have had a chance to revise
the design, your instructor will show you the results of the design change, using a copy of the revised database
named Ch03_AviaCo_2.)

Note

Earlier in the chapter, it was stated that it is best to avoid homonyms and synonyms. In this problem, both the
pilot and the copilot are pilots in the PILOT table, but EMP_NUM cannot be used for both in the CHARTER
table. Therefore, the synonyms CHAR_PILOT and CHAR_COPILOT were used in the CHARTER table.

Although the solution works in this case, it is very restrictive and it generates nulls when a copilot is not
required. Worse, such nulls proliferate as crew requirements change. For example, if the AviaCo charter
company grows and starts using larger aircraft, crew requirements may increase to include flight engineers and
load masters. The CHARTER table would then have to be modified to include the additional crew assignments;
such attributes as CHAR_FLT_ENGINEER and CHAR_LOADMASTER would have to be added to the CHARTER
table. Given this change, each time a smaller aircraft flew a charter trip without the number of crew members
required in larger aircraft, the missing crew members would yield additional nulls in the CHARTER table.

You will have a chance to correct those design shortcomings in Problem 33. The problem illustrates two
important points:

1. Don’t use synonyms. If your design requires the use of synonyms, revise the design!

2. To the greatest possible extent, design the database to accommodate growth without requiring structural
changes in the database tables. Plan ahead and try to anticipate the effects of change on the database.

C6545_03 6/20/2007 10:34:16 Page 103

103T H E R E L A T I O N A L D A T A B A S E M O D E L

Preview

Entity Relationship (ER) Modeling

In this chapter, you will learn:

� The main characteristics of entity relationship components

� How relationships between entities are defined, refined, and incorporated into the database
design process

� How ERD components affect database design and implementation

� That real-world database design often requires the reconciliation of conflicting goals

This chapter expands coverage of the data modeling aspect of database design. Data

modeling is the first step in the database design journey, serving as a bridge between

real-world objects and the database model that is implemented in the computer.Therefore,

the importance of data modeling details, expressed graphically through entity relationship

diagrams (ERDs), cannot be overstated.

Most of the basic concepts and definitions used in the entity relationship model (ERM) were

introduced in Chapter 2, Data Models. For example, the basic components of entities and

relationships and their representation should now be familiar to you. This chapter goes

much deeper and broader, analyzing the graphic depiction of relationships among the

entities and showing how those depictions help you summarize the wealth of data required

to implement a successful design.

Finally, the chapter illustrates how conflicting goals can be a challenge in database design,

possibly requiring you to make design compromises.

4
F

O
U

R

C6545_04 6/27/2007 15:43:43 Page 104

4.1 THE ENTITY RELATIONSHIP MODEL (ERM)

You should remember from Chapter 2 and Chapter 3, The Relational Database Model, that the ERM forms the basis
of an ERD. The ERD represents the conceptual database as viewed by the end user. ERDs depict the database’s main
components: entities, attributes, and relationships. Because an entity represents a real-world object, the words entity
and object are often used interchangeably. Thus, the entities (objects) of the Tiny College database design developed
in this chapter include students, classes, teachers, and classrooms. The order in which the ERD components are
covered in the chapter is dictated by the way the modeling tools are used to develop ERDs that can form the basis for
successful database design and implementation.

In Chapter 2, you also learned about the various notations used with ERDs—the original Chen notation and the newer
Crow’s Foot and UML notations. The first two notations are used at the beginning of this chapter to introduce some
basic ER modeling concepts. Some conceptual database modeling concepts can be expressed only using the Chen
notation. However, because the emphasis is on design and implementation of databases, the Crow’s Foot and UML
class diagram notations were used for the final Tiny College ER diagram example. Because of its implementation
emphasis, the Crow’s Foot notation can represent only what could be implemented. In other words:

� The Chen notation favors conceptual modeling.

� The Crow’s Foot notation favors a more implementation-oriented approach.

� The UML notation can be used for both conceptual and implementation modeling.

4.1.1 Entities

Recall that an entity is an object of interest to the end user. In Chapter 2, you learned that at the ER modeling level,
an entity actually refers to the entity set and not to a single entity occurrence. In other words, the word entity in the
ERM corresponds to a table—not to a row—in the relational environment. The ERM refers to a table row as an entity
instance or entity occurrence. In both the Chen and Crow’s Foot notations, an entity is represented by a rectangle
containing the entity’s name. The entity name, a noun, is usually written in all capital letters.

4.1.2 Attributes

Attributes are characteristics of entities. For example, the STUDENT entity includes, among many others, the
attributes STU_LNAME, STU_FNAME, and STU_INITIAL. In the original Chen notation, attributes are represented
by ovals and are connected to the entity rectangle with a line. Each oval contains the name of the attribute it represents.
In the Crow’s Foot notation, the attributes are written in the attribute box below the entity rectangle. See Figure 4.1.
Because the Chen representation is rather space-consuming, software vendors have adopted the Crow’s Foot style
attribute display.

Required and Optional Attributes
A required attribute is an attribute that must have a value; in other words, it cannot be left empty. As shown in
Figure 4.1, there are two boldfaced attributes in the Crow’s Foot notation. This indicates that a data entry will be

Note

Because this book generally focuses on the relational model, you might be tempted to conclude that the ERM
is exclusively a relational tool. Actually, conceptual models such as the ERM can be used to understand and
design the data requirements of an organization. Therefore, the ERM is independent of the database type.
Conceptual models are used in the conceptual design of databases, while relational models are used in the
logical design of databases. However, because you are now familiar with the relational model from the previous
chapter, the relational model is used extensively in this chapter to explain ER constructs and the way they are
used to develop database designs.

C6545_04 8/8/2007 8:57:54 Page 105

105E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

required. In this example, STU_LNAME and STU_FNAME require data entries because of the assumption that all
students have a last name and a first name. But students might not have a middle name, and perhaps they do not (yet)
have a phone number and an e-mail address. Therefore, those attributes are not presented in boldface in the entity
box. An optional attribute is an attribute that does not require a value; therefore, it can be left empty.

Domains
Attributes have a domain. As you learned in Chapter 3, a domain is the set of possible values for a given attribute.
For example, the domain for the grade point average (GPA) attribute is written (0,4) because the lowest possible GPA
value is 0 and the highest possible value is 4. The domain for the gender attribute consists of only two possibilities: M
or F (or some other equivalent code). The domain for a company’s date of hire attribute consists of all dates that fit
in a range (for example, company startup date to current date).

Attributes may share a domain. For instance, a student address and a professor address share the same domain of all
possible addresses. In fact, the data dictionary may let a newly declared attribute inherit the characteristics of an existing
attribute if the same attribute name is used. For example, the PROFESSOR and STUDENT entities may each have an
attribute named ADDRESS and could therefore share a domain.

Identifiers (Primary Keys)
The ERM uses identifiers, that is, one or more attributes that uniquely identify each entity instance. In the relational
model, such identifiers are mapped to primary keys (PKs) in tables. Identifiers are underlined in the ERD. Key attributes
are also underlined in a frequently used table structure shorthand notation using the format:

TABLE NAME (KEY_ATTRIBUTE 1, ATTRIBUTE 2, ATTRIBUTE 3, . . . ATTRIBUTE K)

FIGURE
4.1

The attributes of the STUDENT entity

Chen Model Crow’s Foot Model

STU_LNAME

STU_FNAME

STU_INITIAL

STU_EMAIL

STU_PHONESTUDENT

O n l i n e C o n t e n t

To learn how to create ER diagrams with the help of Microsoft Visio, see the Student Online Companion:

• Appendix A, Designing Database with Visio Professional: A Tutorial shows you how to
create Crow’s Foot ERDs.

• Appendix H, Unified Modeling Language (UML), shows you how to create UML class diagrams.

C6545_04 8/8/2007 8:58:34 Page 106

106 C H A P T E R 4

For example, a CAR entity may be represented by:

CAR (CAR_VIN, MOD_CODE, CAR_YEAR, CAR_COLOR)

(Each car is identified by a unique vehicle identification number, or CAR_VIN.)

Composite Identifiers
Ideally, an entity identifier is composed of only a single attribute. For example, the table in Figure 4.2 uses a
single-attribute primary key named CLASS_CODE. However, it is possible to use a composite identifier, that is, a
primary key composed of more than one attribute. For instance, the Tiny College database administrator may decide
to identify each CLASS entity instance (occurrence) by using a composite primary key composed of the combination
of CRS_CODE and CLASS_SECTION instead of using CLASS_CODE. Either approach uniquely identifies each entity
instance. Given the current structure of the CLASS table shown in Figure 4.2, CLASS_CODE is the primary key and
the combination of CRS_CODE and CLASS_SECTION is a proper candidate key. If the CLASS_CODE attribute is
deleted from the CLASS entity, the candidate key (CRS_CODE and CLASS_SECTION) becomes an acceptable
composite primary key.

If the CLASS_CODE in Figure 4.2 is used as the primary key, the CLASS entity may be represented in shorthand
form by:

CLASS (CLASS_CODE, CRS_CODE, CLASS_SECTION, CLASS_TIME, ROOM_CODE, PROF_NUM)

On the other hand, if CLASS_CODE is deleted, and the composite primary key is the combination of CRS_CODE and
CLASS_SECTION, the CLASS entity may be represented by:

CLASS (CRS_CODE, CLASS_SECTION, CLASS_TIME, ROOM_CODE, PROF_NUM)

FIGURE
4.2

The CLASS table (entity) components and contents

Note

Remember that Chapter 3 made a commonly accepted distinction between COURSE and CLASS. A CLASS
constitutes a specific time and place of a COURSE offering. A class is defined by the course description and its
time and place, or section. Consider a professor who teaches Database I, Section 2; Database I, Section 5;
Database I, Section 8; and Spreadsheet II, Section 6. That instructor teaches two courses (Database I and
Spreadsheet II), but four classes. Typically, the COURSE offerings are printed in a course catalog, while the
CLASS offerings are printed in a class schedule for each semester, trimester, or quarter.

C6545_04 8/8/2007 8:59:23 Page 107

107E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

Note that both key attributes are underlined in the entity notation.

Composite and Simple Attributes
Attributes are classified as simple or composite. A composite attribute, not to be confused with a composite key,
is an attribute that can be further subdivided to yield additional attributes. For example, the attribute ADDRESS can
be subdivided into street, city, state, and zip code. Similarly, the attribute PHONE_NUMBER can be subdivided into
area code and exchange number. A simple attribute is an attribute that cannot be subdivided. For example, age, sex,
and marital status would be classified as simple attributes. To facilitate detailed queries, it is wise to change composite
attributes into a series of simple attributes.

Single-Valued Attributes
A single-valued attribute is an attribute that can have only a single value. For example, a person can have only one
Social Security number, and a manufactured part can have only one serial number. Keep in mind that a single-valued
attribute is not necessarily a simple attribute. For instance, a part’s serial number, such as SE-08-02-189935, is
single-valued, but it is a composite attribute because it can be subdivided into the region in which the part was produced
(SE), the plant within that region (08), the shift within the plant (02), and the part number (189935).

Multivalued Attributes
Multivalued attributes are attributes that can have many values. For instance, a person may have several college
degrees, and a household may have several different phones, each with its own number. Similarly, a car’s color may
be subdivided into many colors (that is, colors for the roof, body, and trim). In the Chen ERM, the multivalued attributes
are shown by a double line connecting the attribute to the entity. The Crow’s Foot notation does not identify
multivalued attributes. The ERD in Figure 4.3 contains all of the components introduced thus far. In Figure 4.3, note
that CAR_VIN is the primary key, and CAR_COLOR is a multivalued attribute of the CAR entity.

FIGURE
4.3

A multivalued attribute in an entity

Chen Model Crow’s Foot Model

CARCAR_VIN

MOD_CODE CAR_YEAR

CAR_COLOR

Note

In the ERD models in Figure 4.3, the CAR entity’s foreign key (FK) has been typed as MOD_CODE. This
attribute was manually added to the entity. Actually, proper use of a database modeling software will
automatically produce the FK when the relationship is defined. In addition, the software will label the FK
appropriately and write the FKs implementation details in a data dictionary. Therefore, when you use database
modeling software like Visio Professional, never type the FK attribute yourself; let the software handle that task
when the relationship between the entities is defined. (You can see how that’s done in Appendix A, Designing
Databases with Visio Professional: A Tutorial, in the Student Online Companion).

C6545_04 6/28/2007 14:36:2 Page 108

108 C H A P T E R 4

Implementing Multivalued Attributes
Although the conceptual model can handle M:N relationships and multivalued attributes, you should not implement
them in the RDBMS. Remember from Chapter 3 that in the relational table, each column/row intersection represents
a single data value. So if multivalued attributes exist, the designer must decide on one of two possible courses of action:

1. Within the original entity, create several new attributes, one for each of the original multivalued attribute’s
components. For example, the CAR entity’s attribute CAR_COLOR can be split to create the new attributes
CAR_TOPCOLOR, CAR_BODYCOLOR, and CAR_TRIMCOLOR, which are then assigned to the CAR
entity. See Figure 4.4.

Although this solution seems to work, its adoption can lead to major structural problems in the table. For
example, if additional color components—such as a logo color—are added for some cars, the table structure
must be modified to accommodate the new color section. In that case, cars that do not have such color sections
generate nulls for the nonexisting components, or their color entries for those sections are entered as N/A to
indicate “not applicable.” (Imagine how the solution in Figure 4.4—splitting a multivalued attribute into new
attributes—would cause problems when it is applied to an employee entity containing employee degrees and
certifications. If some employees have 10 degrees and certifications while most have fewer or none, the
number of degree/certification attributes would number 10 and most of those attribute values would be null for
most of the employees.) In short, although you have seen solution 1 applied, it is not an acceptable solution.

2. Create a new entity composed of the original multivalued attribute’s components. (See Figure 4.5.) The new
(independent) CAR_COLOR entity is then related to the original CAR entity in a 1:M relationship. Note that
such a change allows the designer to define color for different sections of the car. (See Table 4.1.) Using the

approach illustrated in Table 4.1, you even get a
fringe benefit: you are now able to assign as many
colors as necessary without having to change the
table structure. Note that the ERM in Figure 4.5
reflects the components listed in Table 4.1. This is
the preferred way to deal with multivalued attributes.
Creating a new entity in a 1:M relationship with the
original entity yields several benefits: it’s a more
flexible, expandable solution, and it is compatible
with the relational model!

FIGURE
4.4

Splitting the multivalued attribute into new attributes

Chen Model Crow’s Foot Model

CARCAR_VIN

MOD_CODE

CAR_YEAR

CAR_TOPCOLOR

CAR_TRIMCOLOR

CAR_BODYCOLOR

TABLE
4.1

Components of the
Multivalued Attribute

SECTION COLOR
Top White
Body Blue
Trim Gold
Interior Blue

C6545_04 8/8/2007 8:59:55 Page 109

109E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

Derived Attributes
Finally, an attribute may be classified as a derived attribute. A derived attribute is an attribute whose value is
calculated (derived) from other attributes. The derived attribute need not be physically stored within the database;
instead, it can be derived by using an algorithm. For example, an employee’s age, EMP_AGE, may be found by
computing the integer value of the difference between the current date and the EMP_DOB. If you use Microsoft
Access, you would use the formula INT((DATE() – EMP_DOB)/365). In Microsoft SQL Server, you would use SELECT
DATEDIFF(“YEAR”, EMP_DOB, GETDATE()); where DATEDIFF is a function that computes the difference between
dates. The first parameter indicates the measurement, in this case, years.

If you use Oracle, you would use SYSDATE instead of DATE(). (You are assuming, of course, that the EMP_DOB
was stored in the Julian date format.) Similarly, the total cost of an order can be derived by multiplying the quantity
ordered by the unit price. Or the estimated average speed can be derived by dividing trip distance by the time spent
en route. A derived attribute is indicated in the Chen notation by a dashed line connecting the attribute and the entity.
See Figure 4.6. The Crow’s Foot notation does not have a method for distinguishing the derived attribute from other
attributes.

Derived attributes are sometimes referred to as computed attributes. A derived attribute computation can be as simple
as adding two attribute values located on the same row, or it can be the result of aggregating the sum of values located
on many table rows (from the same table or from a different table). The decision to store derived attributes in database
tables depends on the processing requirements and the constraints placed on a particular application. The designer
should be able to balance the design in accordance with such constraints. Table 4.2 shows the advantages and
disadvantages of storing (or not storing) derived attributes in the database.

FIGURE
4.5

A new entity set composed of a multivalued attribute’s components

FIGURE
4.6

Depiction of a derived attribute

EMPLOYEE

Crow’s Foot Model

EMP_NUM

EMP_LNAME

EMP_INITIAL

EMP_DOB

EMP_AGE

EMP_FNAME

Chen Model

C6545_04 6/28/2007 14:36:38 Page 110

110 C H A P T E R 4

4.1.3 Relationships

Recall from Chapter 2 that a relationship is an association between entities. The entities that participate in a
relationship are also known as participants, and each relationship is identified by a name that describes the
relationship. The relationship name is an active or passive verb; for example, a STUDENT takes a CLASS, a
PROFESSOR teaches a CLASS, a DEPARTMENT employs a PROFESSOR, a DIVISION is managed by an
EMPLOYEE, and an AIRCRAFT is flown by a CREW.

Relationships between entities always operate in both directions. That is, to define the relationship between the entities
named CUSTOMER and INVOICE, you would specify that:

� A CUSTOMER may generate many INVOICEs.

� Each INVOICE is generated by one CUSTOMER.

Because you know both directions of the relationship between CUSTOMER and INVOICE, it is easy to see that this
relationship can be classified as 1:M.

The relationship classification is difficult to establish if you know only one side of the relationship. For example, if you
specify that:

A DIVISION is managed by one EMPLOYEE.

you don’t know if the relationship is 1:1 or 1:M. Therefore, you should ask the question “Can an employee manage
more than one division?” If the answer is yes, the relationship is 1:M, and the second part of the relationship is then
written as:

An EMPLOYEE may manage many DIVISIONs.

If an employee cannot manage more than one division, the relationship is 1:1, and the second part of the relationship
is then written as:

An EMPLOYEE may manage only one DIVISION.

4.1.4 Connectivity and Cardinality

You learned in Chapter 2 that entity relationships may be classified as one-to-one, one-to-many, or many-to-many. You
also learned how such relationships were depicted in the Chen and Crow’s Foot notations. The term connectivity is
used to describe the relationship classification.

Cardinality expresses the minimum and maximum number of entity occurrences associated with one occurrence of
the related entity. In the ERD, cardinality is indicated by placing the appropriate numbers beside the entities, using the
format (x,y). The first value represents the minimum number of associated entities, while the second value represents

TABLE
4.2

Advantages and Disadvantages of Storing Derived Attributes

DERIVED ATTRIBUTE
STORED NOT STORED

Advantage Saves CPU processing cycles
Saves data access time
Data value is readily available
Can be used to keep track of historical data

Saves storage space
Computation always yields current value

Disadvantage Requires constant maintenance to ensure
derived value is current, especially if any values
used in the calculation change

Uses CPU processing cycles
Increases data access time
Adds coding complexity to queries

C6545_04 8/8/2007 9:0:56 Page 111

111E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

the maximum number of associated entities. Some Crow’s Foot ER modeling tools do not print the numeric cardinality
range in the diagram; instead, you could add it as text. In Crow’s Foot notation, cardinality is implied by the use of
symbols in Figure 4.7. The numeric cardinality range has been added using the Visio text drawing tool.

Knowing the minimum and maximum number of entity
occurrences is very useful at the application software level.
For example, Tiny College might want to ensure that a class
is not taught unless it has at least 10 students enrolled.
Similarly, if the classroom can hold only 30 students, the
application software should use that cardinality to limit
enrollment in the class. However, keep in mind that the
DBMS cannot handle the implementation of the cardinalities
at the table level—that capability is provided by the applica-
tion software or by triggers. You will learn how to create and
execute triggers in Chapter 8, Advanced SQL.

As you examine the Crow’s Foot diagram in Figure 4.7,
keep in mind that the cardinalities represent the number of
occurrences in the related entity. For example, the cardinal-

ity (1,4) written next to the CLASS entity in the “PROFESSOR teaches CLASS” relationship indicates that the
PROFESSOR table’s primary key value occurs at least once and no more than four times as foreign key values in the
CLASS table. If the cardinality had been written as (1,N), there would be no upper limit to the number of classes a
professor might teach. Similarly, the cardinality (1,1) written next to the PROFESSOR entity indicates that each class
is taught by one and only one professor. That is, each CLASS entity occurrence is associated with one and only one
entity occurrence in PROFESSOR.

Connectivities and cardinalities are established by very concise statements known as business rules, which were
introduced in Chapter 2. Such rules, derived from a precise and detailed description of an organization’s data
environment, also establish the ERM’s entities, attributes, relationships, connectivities, cardinalities, and constraints.
Because business rules define the ERM’s components, making sure that all appropriate business rules are identified is
a very important part of a database designer’s job.

FIGURE
4.7

Connectivity and cardinality in
an ERD

Note

The placement of the cardinalities in the ER diagram is a matter of convention. The Chen notation places the
cardinalities on the side of the related entity. The Crow’s Foot and UML diagrams place the cardinalities next to
the entity to which the cardinalities apply.

O n l i n e C o n t e n t

Because the careful definition of complete and accurate business rules is crucial to good database design, their
derivation is examined in detail in Appendix B, The University Lab: Conceptual Design. The
modeling skills you are learning in this chapter are applied in the development of a real database design in
Appendix B. The initial design shown in Appendix B is then modified in Appendix C, The University Lab:
Conceptual Design Verification, Logical Design, and Implementation. (Both appendixes are
found in the Student Online Companion.)

C6545_04 6/28/2007 14:37:24 Page 112

112 C H A P T E R 4

4.1.5 Existence Dependence

An entity is said to be existence-dependent if it can exist in the database only when it is associated with another
related entity occurrence. In implementation terms, an entity is existence-dependent if it has a mandatory foreign
key—that is, a foreign key attribute that cannot be null. For example, if an employee wants to claim one or more
dependents for tax-withholding purposes, the relationship “EMPLOYEE claims DEPENDENT” would be appropriate.
In that case, the DEPENDENT entity is clearly existence-dependent on the EMPLOYEE entity because it is impossible
for the dependent to exist apart from the EMPLOYEE in the database.

If an entity can exist apart from one or more related entities, it is said to be existence-independent. (Sometimes
designers refer to such an entity as a strong or regular entity.) For example, suppose that the XYZ Corporation uses
parts to produce its products. Further, suppose that some of those parts are produced in-house and other parts are
bought from vendors. In that scenario, it is quite possible for a PART to exist independently from a VENDOR in the
relationship “PART is supplied by VENDOR,” because at least some of the parts are not supplied by a vendor.
Therefore, PART is existence-independent from VENDOR.

4.1.6 Relationship Strength

The concept of relationship strength is based on how the primary key of a related entity is defined. To implement a
relationship, the primary key of one entity appears as a foreign key in the related entity. For example, the 1:M
relationship between VENDOR and PRODUCT in Chapter 3, Figure 3.3, is implemented by using the VEND_CODE
primary key in VENDOR as a foreign key in PRODUCT. There are times when the foreign key also is a primary key
component in the related entity. For example, in Figure 4.5, the CAR entity primary key (CAR_VIN) appears as both
a primary key component and a foreign key in the CAR_COLOR entity. In this section, you learn how various
relationship strength decisions affect primary key arrangement in database design.

Weak (Non-identifying) Relationships
A weak relationship, also known as a non-identifying relationship, exists if the PK of the related entity does not
contain a PK component of the parent entity. By default, relationships are established by having the PK of the parent
entity appear as an FK on the related entity. For example, suppose that the COURSE and CLASS entities are
defined as:

COURSE(CRS_CODE, DEPT_CODE, CRS_DESCRIPTION, CRS_CREDIT)

CLASS(CLASS_CODE, CRS_CODE, CLASS_SECTION, CLASS_TIME, ROOM_CODE, PROF_NUM)

In this case, a weak relationship exists between COURSE and CLASS because the CLASS_CODE is the CLASS
entity’s PK, while the CRS_CODE in CLASS is only an FK. In this example, the CLASS PK did not inherit the PK
component from the COURSE entity.

Figure 4.8 shows how the Crow’s Foot notation depicts a weak relationship by placing a dashed relationship line
between the entities. The tables shown below the ERD illustrate how such a relationship is implemented.

Note

The relationship strength concept is not part of the original ERM. Instead, this concept applies directly to Crow’s
Foot diagrams. Because Crow’s Foot diagrams are used extensively to design relational databases, it is important
to understand relationship strength as it affects database inplementation. The Chen ERD notation is oriented
towared conceptual modeling and therefore does not distinguish between weak and strong relationships.

C6545_04 8/8/2007 9:12:12 Page 113

113E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

Table name: COURSE

Table name: CLASS

Database name: Ch04_TinyCollege

FIGURE
4.8

A weak (non-identifying) relationship between COURSE and CLASS

O n l i n e C o n t e n t

All of the databases used to illustrate the material in this chapter are found in the Student Online Companion.

Note

If you are used to looking at relational diagrams such as the ones produced by Microsoft Access, you expect to
see the relationship line in the relational diagram drawn from the PK to the FK. However, the relational diagram
convention is not necessarily reflected in the ERD. In an ERD, the focus is on the entities and the relationships
between them, rather than on the way those relationships are anchored graphically. You will discover that the
placement of the relationship lines in a complex ERD that includes both horizontally and vertically placed
entities is largely dictated by the designer’s decision to improve the readability of the design. (Remember that
the ERD is used for communication between the designer(s) and end users.)

C6545_04 6/27/2007 16:5:4 Page 114

114 C H A P T E R 4

Strong (Identifying) Relationships
A strong relationship, also known as an identifying relationship, exists when the PK of the related entity contains
a PK component of the parent entity. For example, the definitions of the COURSE and CLASS entities

COURSE(CRS_CODE, DEPT_CODE, CRS_DESCRIPTION, CRS_CREDIT)

CLASS(CRS_CODE, CLASS_SECTION, CLASS_TIME, ROOM_CODE, PROF_NUM)

indicate that a strong relationship exists between COURSE and CLASS, because the CLASS entity’s composite PK
is composed of CRS_CODE + CLASS_SECTION. (Note that the CRS_CODE in CLASS is also the FK to the
COURSE entity.)

The Crow’s Foot notation depicts the strong (identifying) relationship with a solid line between the entities, shown in
Figure 4.9. Whether the relationship between COURSE and CLASS is strong or weak depends on how the CLASS
entity’s primary key is defined.

Keep in mind that the order in which the tables are created and loaded is very important. For example, in the
“COURSE generates CLASS” relationship, the COURSE table must be created before the CLASS table. After all, it
would not be acceptable to have the CLASS table’s foreign key reference a COURSE table that did not yet exist. In

Table name: COURSE

Table name: CLASS

Database name: Ch04_TinyCollege_Alt

FIGURE
4.9

A strong (identifying) relationship between COURSE and CLASS

C6545_04 6/27/2007 16:5:44 Page 115

115E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

fact, you must load the data of the “1” side first in a 1:M relationship to avoid the possibility of referential
integrity errors, regardless of whether the relationships are weak or strong.

As you examine Figure 4.9 you might wonder what the O symbol next to the CLASS entity signifies. You will discover
the meaning of this cardinality in Section 4.1.8, Relationship Participation.

Remember that the nature of the relationship is often determined by the database designer, who must use professional
judgment to determine which relationship type and strength best suits the database transaction, efficiency, and
information requirements. That point will often be emphasized in detail!

4.1.7 Weak Entities

A weak entity is one that meets two conditions:

1. The entity is existence-dependent; that is, it cannot exist without the entity with which it has a relationship.

2. The entity has a primary key that is partially or totally derived from the parent entity in the relationship.

For example, a company insurance policy insures an employee and his/her dependents. For the purpose of describing
an insurance policy, an EMPLOYEE might or might not have a DEPENDENT, but the DEPENDENT must be
associated with an EMPLOYEE. Moreover, the DEPENDENT cannot exist without the EMPLOYEE; that is, a person
cannot get insurance coverage as a dependent unless s(he) happens to be a dependent of an employee. DEPENDENT
is the weak entity in the relationship “EMPLOYEE has DEPENDENT.”

Note that the Chen notation in Figure 4.10 identifies the weak entity by using a double-walled entity rectangle. The Crow’s
Foot notation generated by Visio Professional uses the relationship line and the PK/FK designation to indicate whether the
related entity is weak. A strong (identifying) relationship indicates that the related entity is weak. Such a relationship means
that both conditions for the weak entity definition have been met—the related entity is existence-dependent, and the PK
of the related entity contains a PK component of the parent entity. (Some versions of the Crow’s Foot ERD depict the
weak entity by drawing a short line segment in each of the four corners of the weak entity box.)

Remember that the weak entity inherits part of its primary key from its strong counterpart. For example, at least part
of the DEPENDENT entity’s key shown in Figure 4.10 was inherited from the EMPLOYEE entity:

EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_DOB, EMP_HIREDATE)

DEPENDENT (EMP_NUM, DEP_NUM, DEP_FNAME, DEP_DOB)

Figure 4.11 illustrates the implementation of the relationship between the weak entity (DEPENDENT) and its parent
or strong counterpart (EMPLOYEE). Note that DEPENDENT’s primary key is composed of two attributes, EMP_NUM
and DEP_NUM, and that EMP_NUM was inherited from EMPLOYEE. Given this scenario, and with the help of this
relationship, you can determine:

Jeanine J. Callifante claims two dependents, Annelise and Jorge.

Keep in mind that the database designer usually determines whether an entity can be described as weak based on the
business rules. An examination of the relationship between COURSE and CLASS in Figure 4.8 might cause you to
conclude that CLASS is a weak entity to COURSE. After all, in Figure 4.8, it seems clear that a CLASS cannot exist
without a COURSE; so there is existence dependency. For example, a student cannot enroll in the Accounting I class
ACCT-211, Section 3 (CLASS_CODE 10014) unless there is an ACCT_211 course. However, note that the CLASS
table’s primary key is CLASS_CODE, which is not derived from the COURSE parent entity. That is, CLASS may be
represented by:

CLASS (CLASS_CODE, CRS_CODE, CLASS_SECTION, CLASS_TIME, ROOM_CODE, PROF_NUM)

C6545_04 6/28/2007 14:37:43 Page 116

116 C H A P T E R 4

EMPLOYEE DEPENDENThas
1 M

(0,N) (1,1)

Chen Model

EMP_NUM
DEP_NUM
DEP_FNAME
DEP_DOB

EMP_NUM
EMP_LNAME
EMP_FNAME
EMP_INITIAL
EMP_DOB
EMP_HIREDATE

Crow’s Foot Model

FIGURE
4.10

A weak entity in an ERD

Table name: EMPLOYEE

Table name: DEPENDENT

FIGURE
4.11

A weak entity in a strong relationship

Database name: Ch04_ShortCo

C6545_04 6/27/2007 16:9:9 Page 117

117E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

The second weak entity requirement has not been met; therefore, by definition, the CLASS entity in Figure 4.8 may
not be classified as weak. On the other hand, if the CLASS entity’s primary key had been defined as a composite key,
composed of the combination CRS_CODE and CLASS_SECTION, CLASS could be represented by:

CLASS (CRS_CODE, CLASS_SECTION, CLASS_TIME, ROOM_CODE, PROF_NUM)

In that case, illustrated in Figure 4.9, the CLASS primary key is partially derived from COURSE because CRS_CODE
is the COURSE table’s primary key. Given this decision, CLASS is a weak entity by definition. (In Visio Professional
Crow’s Foot terms, the relationship between COURSE and CLASS is classified as strong, or identifying.) In any case,
CLASS is always existence-dependent on COURSE, whether or not it is defined as weak.

4.1.8 Relationship Participation

Participation in an entity relationship is either optional or mandatory. Optional participation means that one entity
occurrence does not require a corresponding entity occurrence in a particular relationship. For example, in the
“COURSE generates CLASS” relationship, you noted that at least some courses do not generate a class. In other
words, an entity occurrence (row) in the COURSE table does not necessarily require the existence of a corresponding
entity occurrence in the CLASS table. (Remember that each entity is implemented as a table.) Therefore, the CLASS
entity is considered to be optional to the COURSE entity. In Crow’s Foot notation, an optional relationship between
entities is shown by drawing a small circle (O) on the side of the optional entity, as illustrated in Figure 4.9. The
existence of an optional entity indicates that the minimum cardinality is 0 for the optional entity. (The term
optionality is used to label any condition in which one or more optional relationships exist.)

Mandatory participation means that one entity occurrence requires a corresponding entity occurrence in a
particular relationship. If no optionality symbol is depicted with the entity, the entity exists in a mandatory relationship
with the related entity. The existence of a mandatory relationship indicates that the minimum cardinality is 1 for the
mandatory entity.

Because relationship participation turns out to be a very important component of the database design process, let’s
examine a few more scenarios. Suppose that Tiny College employs some professors who conduct research without
teaching classes. If you examine the “PROFESSOR teaches CLASS” relationship, it is quite possible for a
PROFESSOR not to teach a CLASS. Therefore, CLASS is optional to PROFESSOR. On the other hand, a CLASS

Note

Remember that the burden of establishing the relationship is always placed on the entity that contains the
foreign key. In most cases, that will be the entity on the many side of the relationship.

Note

You might be tempted to conclude that relationships are weak when they occur between entities in an optional
relationship and that relationships are strong when they occur between entities in a mandatory relationship.
However, this conclusion is not warranted. Keep in mind that relationship participation and relationship
strength do not describe the same thing. You are likely to encounter a strong relationship when one entity is
optional to another. For example, the relationship between EMPLOYEE and DEPENDENT is clearly a strong one,
but DEPENDENT is clearly optional to EMPLOYEE. After all, you cannot require employees to have dependents.
And it is just as possible for a weak relationship to be established when one entity is mandatory to another. The
relationship strength depends on how the PK of the related entity is formulated, while the relationship
participation depends on how the business rule is written. For example, the business rules “Each part must be
supplied by a vendor” and “A part may or may not be supplied by a vendor” create different optionalities for
the same entities! Failure to understand this distinction may lead to poor design decisions that cause major
problems when table rows are inserted or deleted.

C6545_04 6/28/2007 14:38:18 Page 118

118 C H A P T E R 4

must be taught by a PROFESSOR. Therefore, PROFESSOR is mandatory to CLASS. Note that the ERD model in
Figure 4.12 shows the cardinality next to CLASS to be (0,3), thus indicating that a professor may teach no classes at
all or as many as three classes. And each CLASS table row will reference one and only one PROFESSOR
row—assuming each class is taught by one and only one professor, represented by the (1,1) cardinality next to the
PROFESSOR table.

Failure to understand the distinction between mandatory and optional participation in relationships might yield
designs in which awkward (and unnecessary) temporary rows (entity instances) must be created just to accommodate
the creation of required entities. Therefore, it is important that you clearly understand the concepts of mandatory and
optional participation.

It is also important to understand that the semantics of a problem might determine the type of participation in a
relationship. For example, suppose that Tiny College offers several courses; each course has several classes. Note
again the distinction between class and course in this discussion: a CLASS constitutes a specific offering (or section)
of a COURSE. (Typically, courses are listed in the university’s course catalog, while classes are listed in the class
schedules that students use to register for their classes.)

Analyzing the CLASS entity’s contribution to the “COURSE generates CLASS” relationship, it is easy to see that a
CLASS cannot exist without a COURSE. Therefore, you can conclude that the COURSE entity is mandatory in the
relationship. But two scenarios for the CLASS entity may be written, shown in Figures 4.13 and 4.14. The different
scenarios are a function of the semantics of the problem; that is, they depend on how the relationship is defined.

FIGURE
4.12

An optional CLASS entity in the relationship “PROFESSOR teaches CLASS”

FIGURE
4.13

CLASS is optional to COURSE

FIGURE
4.14

COURSE and CLASS in a mandatory relationship

C6545_04 8/8/2007 9:12:54 Page 119

119E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

1. CLASS is optional. It is possible for the department to create the entity COURSE first and then create the
CLASS entity after making the teaching assignments. In the real world, such a scenario is very likely; there may
be courses for which sections (classes) have not yet been defined. In fact, some courses are taught only once
a year and do not generate classes each semester.

2. CLASS is mandatory. This condition is created by the constraint that is imposed by the semantics of the
statement “Each COURSE generates one or more CLASSes.” In ER terms, each COURSE in the “generates”
relationship must have at least one CLASS. Therefore, a CLASS must be created as the COURSE is created
in order to comply with the semantics of the problem.

Keep in mind the practical aspects of the scenario presented in Figure 4.14. Given the semantics of this relationship,
the system should not accept a course that is not associated with at least one class section. Is such a rigid environment
desirable from an operational point of view? For example, when a new COURSE is created, the database first updates
the COURSE table, thereby inserting a COURSE entity that does not yet have a CLASS associated with it. Naturally,
the apparent problem seems to be solved when CLASS entities are inserted into the corresponding CLASS table.
However, because of the mandatory relationship, the system will be in temporary violation of the business rule
constraint. For practical purposes, it would be desirable to classify the CLASS as optional in order to produce a more
flexible design.

Finally, as you examine the scenarios presented in Figures 4.13 and 4.14, keep in mind the role of the DBMS. To
maintain data integrity, the DBMS must ensure that the “many” side (CLASS) is associated with a COURSE through
the foreign key rules.

When you create a relationship in Visio, the default relationship will be mandatory on the “1” side and optional on the
“many” side. Table 4.3 shows the various cardinalities that are supported by the Crow’s Foot notation.

TABLE
4.3

Crow’s Foot Symbols

CROW’S FOOT SYMBOL CARDINALITY COMMENT
(0,N) Zero or many. Many side is optional.

(1,N) One or many. Many side is mandatory.

(1,1) One and only one. 1 side is mandatory.

(0,1) Zero or one. 1 side is optional.

4.1.9 Relationship Degree

A relationship degree indicates the number of entities or participants associated with a relationship. A unary
relationship exists when an association is maintained within a single entity. A binary relationship exists when two
entities are associated. A ternary relationship exists when three entities are associated. Although higher degrees
exist, they are rare and are not specifically named. (For example, an association of four entities is described simply as
a four-degree relationship.) Figure 4.15 shows these types of relationship degrees.

Unary Relationships
In the case of the unary relationship shown in Figure 4.15, an employee within the EMPLOYEE entity is the manager
for one or more employees within that entity. In this case, the existence of the “manages” relationship means that
EMPLOYEE requires another EMPLOYEE to be the manager—that is, EMPLOYEE has a relationship with itself. Such
a relationship is known as a recursive relationship. The various cases of recursive relationships will be explored in
Section 4.1.10.

C6545_04 8/8/2007 9:22:16 Page 120

120 C H A P T E R 4

Binary Relationships
A binary relationship exists when two entities are associated in a relationship. Binary relationships are most common.
In fact, to simplify the conceptual design, whenever possible, most higher-order (ternary and higher) relationships are
decomposed into appropriate equivalent binary relationships. In Figure 4.15, the relationship “a PROFESSOR teaches
one or more CLASSes” represents a binary relationship.

Ternary and Higher-Degree Relationships
Although most relationships are binary, the use of ternary and higher-order relationships does allow the designer some
latitude regarding the semantics of a problem. A ternary relationship implies an association among three different
entities. For example, note the relationships (and their consequences) in Figure 4.16, which are represented by the
following business rules:

� A DOCTOR writes one or more PRESCRIPTIONs.

� A PATIENT may receive one or more PRESCRIPTIONs.

� A DRUG may appear in one or more PRESCRIPTIONs. (To simplify this example, assume that the business
rule states that each prescription contains only one drug. In short, if a doctor prescribes more than one drug,
a separate prescription must be written for each drug.)

As you examine the table contents in Figure 4.16, note that it is possible to track all transactions. For instance, you
can tell that the first prescription was written by doctor 32445 for patient 102, using the drug DRZ.

FIGURE
4.15

Three types of relationship degree

C6545_04 6/27/2007 16:10:44 Page 121

121E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

4.1.10 Recursive Relationships

As was previously mentioned, a recursive relationship is one in which a relationship can exist between occurrences
of the same entity set. (Naturally, such a condition is found within a unary relationship.)

For example, a 1:M unary relationship can be expressed by “an EMPLOYEE may manage many EMPLOYEEs, and
each EMPLOYEE is managed by one EMPLOYEE.” And as long as polygamy is not legal, a 1:1 unary relationship
may be expressed by “an EMPLOYEE may be married to one and only one other EMPLOYEE.” Finally, the M:N unary
relationship may be expressed by “a COURSE may be a prerequisite to many other COURSEs, and each COURSE
may have many other COURSEs as prerequisites.” Those relationships are shown in Figure 4.17.

The 1:1 relationship shown in Figure 4.17 can be implemented in the single table shown in Figure 4.18. Note that
you can determine that James Ramirez is married to Louise Ramirez, who is married to James Ramirez. And Anne
Jones is married to Anton Shapiro, who is married to Anne Jones.

Unary relationships are common in manufacturing industries. For example, Figure 4.19 illustrates that a rotor assembly
(C-130) is composed of many parts, but each part is used to create only one rotor assembly. Figure 4.19 indicates that
a rotor assembly is composed of four 2.5-cm washers, two cotter pins, one 2.5-cm steel shank, four 10.25-cm rotor
blades, and two 2.5-cm hex nuts. The relationship implemented in Figure 4.19 thus enables you to track each part
within each rotor assembly.

Database name: Ch04_Clinic

Table name: DRUG Table name: PATIENT

Table name: DOCTOR Table name: PRESCRIPTION

FIGURE
4.16

The implementation of a ternary relationship

C6545_04 6/27/2007 16:13:10 Page 122

122 C H A P T E R 4

If a part can be used to assemble several different kinds of
other parts and is itself composed of many parts, two tables
are required to implement the “PART contains PART”
relationship. Figure 4.20 illustrates such an environment.
Parts tracking is increasingly important as managers become
more aware of the legal ramifications of producing more
complex output. In fact, in many industries, especially those
involving aviation, full parts tracking is required by law.

FIGURE
4.17

An ER representation of recursive relationships

Database name: CH04_PartCo
Table name: EMPLOYEE_V1

FIGURE
4.18

The 1:1 recursive relationship
“EMPLOYEE is married to
EMPLOYEE”

Database name; CH04_PartCoTable name: PART_V1

FIGURE
4.19

Another unary relationship: “PART contains PART”

C6545_04 6/28/2007 8:59:56 Page 123

123E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

The M:N recursive relationship might be more familiar in a
school environment. For instance, note how the M:N
“COURSE requires COURSE” relationship illustrated in
Figure 4.17 is implemented in Figure 4.21. In this example,
MATH-243 is a prerequisite to QM-261 and QM-362, while
both MATH-243 and QM-261 are prerequisites to QM-362.

Finally, the 1:M recursive relationship “EMPLOYEE man-
ages EMPLOYEE,” shown in Figure 4.17, is implemented
in Figure 4.22.

Database name: Ch04_PartCo

Table name: PART

Table name: COMPONENT

FIGURE
4.20

Implementation of the M:N recursive “PART contains PART” relationship

Database name: Ch04_TinyCollegeTable name: COURSE

Table name: PREREQ

FIGURE
4.21

Implementation of the M:N “COURSE requires COURSE” recursive relationship

Database name: Ch04_PartCo
Table name: EMPLOYEE_V2

FIGURE
4.22

Implementation of the 1:M
“EMPLOYEE manages EMPLOYEE”
recursive relationship

C6545_04 6/28/2007 8:59:57 Page 124

124 C H A P T E R 4

4.1.11 Associative (Composite) Entities

In the original ERM described by Chen, relationships do not contain attributes. You should recall from Chapter 3 that
the relational model generally requires the use of 1:M relationships. (Also, recall that the 1:1 relationship has its place,
but it should be used with caution and proper justification.) If M:N relationships are encountered, you must create a
bridge between the entities that display such relationships. The associative entity is used to implement a M:M
relationship between two or more entities. This associative entity (also known as a composite or bridge entity) is
composed of the primary keys of each of the entities to be connected. An example of such a bridge is shown in Figure
4.23. The Crow’s Foot notation does not identify the composite entity as such. Instead, the composite entity is
identified by the solid relationship line between the parent and child entities, thereby indicating the presence of a strong
(identifying) relationship.

Note that the composite ENROLL entity in Figure 4.23 is existence-dependent on the other two entities; the
composition of the ENROLL entity is based on the primary keys of the entities that are connected by the composite
entity. The composite entity may also contain additional attributes that play no role in the connective process. For
example, although the entity must be composed of at least the STUDENT and CLASS primary keys, it may also
include such additional attributes as grades, absences, and other data uniquely identified by the student’s performance
in a specific class.

Finally, keep in mind that the ENROLL table’s key (CLASS_CODE and STU_NUM) is composed entirely of the
primary keys of the CLASS and STUDENT tables. Therefore, no null entries are possible in the ENROLL table’s key
attributes.

Implementing the small database shown in Figure 4.23 requires that you define the relationships clearly. Specifically,
you must know the “1” and the “M” sides of each relationship, and you must know whether the relationships are
mandatory or optional. For example, note the following points:

� A class may exist (at least at the start of registration) even though it contains no students. Therefore, if you
examine Figure 4.24, an optional symbol should appear on the STUDENT side of the M:N relationship
between STUDENT and CLASS.

You might argue that to be classified as a STUDENT, a person must be enrolled in at least one CLASS.
Therefore, CLASS is mandatory to STUDENT from a purely conceptual point of view. However, when a

Database name: Ch04_CollegeTryTable name: STUDENT

Table name: ENROLL

Table name: CLASS

FIGURE
4.23

Converting the M:N relationship into two 1:M relationships

C6545_04 6/28/2007 8:59:57 Page 125

125E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

student is admitted to college, that student has not (yet) signed up for any classes. Therefore, at least initially,
CLASS is optional to STUDENT. Note that the practical considerations in the data environment help dictate
the use of optionalities. If CLASS is not optional to STUDENT—from a database point of view—a class
assignment must be made when the student is admitted. But that’s not how the process actually works, and
the database design must reflect this. In short, the optionality reflects practice.

Because the M:N relationship between STUDENT and CLASS is decomposed into two 1:M relationships
through ENROLL, the optionalities must be transferred to ENROLL. See Figure 4.25. In other words, it now
becomes possible for a class not to occur in ENROLL if no student has signed up for that class. Because a class
need not occur in ENROLL, the ENROLL entity becomes optional to CLASS. And because the ENROLL
entity is created before any students have signed up for a class, the ENROLL entity is also optional to
STUDENT, at least initially.

� As students begin to sign up for their classes, they will be entered into the ENROLL entity. Naturally, if a
student takes more than one class, that student will occur more than once in ENROLL. For example, note that
in the ENROLL table in Figure 4.23, STU_NUM = 321452 occurs three times . On the other hand, each
student occurs only once in the STUDENT entity. (Note that the STUDENT table in Figure 4.23 has only one
STU_NUM = 321452 entry.) Therefore, in Figure 4.25, the relationship between STUDENT and ENROLL
is shown to be 1:M, with the M on the ENROLL side.

� As you can see in Figure 4.23, a class can occur more than once in the ENROLL table. For example,
CLASS_CODE = 10014 occurs twice. However, CLASS_CODE = 10014 occurs only once in the CLASS
table to reflect that the relationship between CLASS and ENROLL is 1:M. Note that in Figure 4.25, the M is
located on the ENROLL side, while the 1 is located on the CLASS side.

Visio does not permit the definition of a M:N relationship. To make
this illustration, two 1:M relationships have been superimposed.

FIGURE
4.24

The M:N relationship between STUDENT and CLASS

FIGURE
4.25

A composite entity in an ERD

C6545_04 6/28/2007 9:0:20 Page 126

126 C H A P T E R 4

4.2 DEVELOPING AN ER DIAGRAM

The process of database design is an iterative rather than a linear or sequential process. The verb iterate means “to
do again or repeatedly.” An iterative process is, thus, one based on repetition of processes and procedures. Building
an ERD usually involves the following activities:

� Create a detailed narrative of the organization’s description of operations.

� Identify the business rules based on the description of operations.

� Identify the main entities and relationships from the business rules.

� Develop the initial ERD.

� Identify the attributes and primary keys that adequately describe the entities.

� Revise and review the ERD.

During the review process, it is likely that additional objects, attributes, and relationships will be uncovered. Therefore,
the basic ERM will be modified to incorporate the newly discovered ER components. Subsequently, another round of
reviews might yield additional components or clarification of the existing diagram. The process is repeated until the end
users and designers agree that the ERD is a fair representation of the organization’s activities and functions.

During the design process, the database designer does not depend simply on interviews to help define entities,
attributes, and relationships. A surprising amount of information can be gathered by examining the business forms and
reports that an organization uses in its daily operations.

To illustrate the use of the iterative process that ultimately yields a workable ERD, let’s start with an initial interview
with the Tiny College administrators. The interview process yields the following business rules:

1. Tiny College (TC) is divided into several schools: a school of business, a school of arts and sciences, a school
of education, and a school of applied sciences. Each school is administered by a dean who is a professor. Each
dean can administer only one school. Therefore, a 1:1 relationship exists between PROFESSOR and
SCHOOL. Note that the cardinality can be expressed by (1,1) for the entity PROFESSOR and by (1,1) for the
entity SCHOOL. (The smallest number of deans per school is one, as is the largest number, and each dean is
assigned to only one school.)

2. Each school is composed of several departments. For example, the school of business has an accounting
department, a management/marketing department, an economics/finance department, and a computer
information systems department. Note again the cardinality rules: the smallest number of departments
operated by a school is one, and the largest number of departments is indeterminate (N). On the other hand,
each department belongs to only a single school; thus, the cardinality is expressed by (1,1). That is, the
minimum number of schools that a department belongs to is one, as is the maximum number. Figure 4.26
illustrates these first two business rules.

3. Each department may offer courses. For example, the management/marketing department offers courses such
as Introduction to Management, Principles of Marketing, and Production Management. The ERD segment for
this condition is shown in Figure 4.27. Note that this relationship is based on the way Tiny College operates.
If, for example, Tiny College had some departments that were classified as “research only,” those departments
would not offer courses; therefore, the COURSE entity would be optional to the DEPARTMENT entity.

C6545_04 8/8/2007 9:22:54 Page 127

127E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

FIGURE
4.26

The first Tiny College ERD segment

Note

It is again appropriate to evaluate the reason for maintaining the 1:1 relationship between PROFESSOR and
SCHOOL in the “PROFESSOR is dean of SCHOOL” relationship. It is worth repeating that the existence of 1:1
relationships often indicates a misidentification of attributes as entities. In this case, the 1:1 relationship could
easily be eliminated by storing the deans attributes in the SCHOOL entity. This solution also would make it
easier to answer the queries, “Who is the school’s dean” and What are that dean’s credentials?” The downside
of this solution is that it requires the duplication of data that are already stored in the PROFESSOR table, thus
setting the stage for anomalies. However, because each school is run by a single dean, the problem of data
duplication is rather minor. The selection of one approach over another often depends on information
requirements, transaction speed, and the database designer’s professional judgment. In short, do not use 1:1
relationships lightly, and make sure that each 1:1 relationship within the database design is defensible.

FIGURE
4.27

The second Tiny College ERD segment

C6545_04 6/28/2007 14:40:17 Page 128

128 C H A P T E R 4

4. The relationship between COURSE and CLASS was illustrated in Figure 4.9. Nevertheless, it is worth
repeating that a CLASS is a section of a COURSE. That is, a department may offer several sections (classes)
of the same database course. Each of those classes is taught by a professor at a given time in a given place.
In short, a 1:M relationship exists between COURSE and CLASS. However, because a course may exist in
Tiny College’s course catalog even when it is not offered as a class in a current class schedule, CLASS is
optional to COURSE. Therefore, the relationship between COURSE and CLASS looks like Figure 4.28.

5. Each department may have many professors assigned to it. One and only one of those professors chairs the
department, and no professor is required to accept the chair position. Therefore, DEPARTMENT is optional
to PROFESSOR in the “chairs” relationship. Those relationships are summarized in the ER segment shown in
Figure 4.29.

6. Each professor may teach up to four classes; each class is a section of a course. A professor may also be on
a research contract and teach no classes at all. The ERD segment in Figure 4.30 depicts those conditions.

7. A student may enroll in several classes but takes each class only once during any given enrollment period. For
example, during the current enrollment period, a student may decide to take five classes—Statistics, Accounting,
English, Database, and History—but that student would not be enrolled in the same Statistics class five times during
the enrollment period! Each student may enroll in up to six classes, and each class may have up to 35 students,
thus creating an M:N relationship between STUDENT and CLASS. Because a CLASS can initially exist (at the start
of the enrollment period) even though no students have enrolled in it, STUDENT is optional to CLASS in the M:N
relationship. This M:N relationship must be divided into two 1:M relationships through the use of the ENROLL
entity, shown in the ERD segment in Figure 4.31. But note that the optional symbol is shown next to ENROLL.
If a class exists but has no students enrolled in it, that class doesn’t occur in the ENROLL table. Note also that the
ENROLL entity is weak: it is existence-dependent, and its (composite) PK is composed of the PKs of the

FIGURE
4.28

The third Tiny College ERD segment

FIGURE
4.29

The fourth Tiny College ERD segment

C6545_04 6/28/2007 9:2:36 Page 129

129E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

STUDENT and CLASS entities. You can add the cardinalities (0,6) and (0,35) next to the ENROLL entity to reflect
the business rule constraints as shown in Figure 4.31. (Visio Professional does not automatically generate such
cardinalities, but you can use a text box to accomplish that task.)

8. Each department has several (or many) students whose major is offered by that department. However, each
student has only a single major and is, therefore, associated with a single department. See Figure 4.32.
However, in the Tiny College environment, it is possible—at least for a while—for a student not to declare a
major field of study. Such a student would not be associated with a department; therefore, DEPARTMENT is
optional to STUDENT. It is worth repeating that the relationships between entities and the entities themselves
reflect the organization’s operating environment. That is, the business rules define the ERD components.

FIGURE
4.30

The fifth Tiny College ERD segment

FIGURE
4.31

The sixth Tiny College ERD segment

C6545_04 6/28/2007 9:9:55 Page 130

130 C H A P T E R 4

9. Each student has an advisor in his or her department; each advisor counsels several students. An advisor is also
a professor, but not all professors advise students. Therefore, STUDENT is optional to PROFESSOR in the
“PROFESSOR advises STUDENT” relationship. See Figure 4.33.

10. As you can see in Figure 4.34, the CLASS entity contains a ROOM_CODE attribute. Given the naming
conventions, it is clear that ROOM_CODE is an FK to another entity. Clearly, because a class is taught in a
room, it is reasonable to assume that the ROOM_CODE in CLASS is the FK to an entity named ROOM. In
turn, each room is located in a building. So the last Tiny College ERD is created by observing that a BUILDING
can contain many ROOMs, but each ROOM is found in a single BUILDING. In this ERD segment, it is clear
that some buildings do not contain (class) rooms. For example, a storage building might not contain any named
rooms at all.

FIGURE
4.32

The seventh Tiny College ERD segment

FIGURE
4.33

The eighth Tiny College ERD segment

C6545_04 8/8/2007 9:23:23 Page 131

131E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

Using the preceding summary, you can identify the following entities:

SCHOOL COURSE
DEPARTMENT CLASS
ENROLL (the bridge entity between STUDENT and CLASS)
PROFESSOR STUDENT
BUILDING ROOM

Once you have discovered the relevant entities, you can define the initial set of relationships among them. Next, you
describe the entity attributes. Identifying the attributes of the entities helps you better understand the relationships
among entities. Table 4.4 summarizes the ERM’s components and names the entities and their relations.

TABLE
4.4

Components of the ERM

ENTITY RELATIONSHIP CONNECTIVITY ENTITY
SCHOOL operates 1:M DEPARTMENT
DEPARTMENT has 1:M STUDENT
DEPARTMENT employs 1:M PROFESSOR
DEPARTMENT offers 1:M COURSE
COURSE generates 1:M CLASS
PROFESSOR is dean of 1:1 SCHOOL
PROFESSOR chairs 1:1 DEPARTMENT
PROFESSOR teaches 1:M CLASS
PROFESSOR advises 1:M STUDENT
STUDENT enrolls in M:N CLASS
BUILDING contains 1:M ROOM
ROOM is used for 1:M CLASS
Note: ENROLL is the composite entity that implements the M:N relationship “STUDENT enrolls in CLASS.”

You must also define the connectivity and cardinality for the just-discovered relations based on the business rules.
However, to avoid crowding the diagram, the cardinalities are not shown. Figure 4.35 shows the Crow’s Foot ERD for
Tiny College. Note that this is an implementation-ready model. Therefore it shows the ENROLL composite entity.

FIGURE
4.34

The ninth Tiny College ERD segment

C6545_04 6/28/2007 9:11:20 Page 132

132 C H A P T E R 4

FIGURE
4.35

The completed Tiny College ERD

C6545_04 6/28/2007 9:11:21 Page 133

133E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

Figure 4.36 shows the conceptual UML class diagram for Tiny College. Note that this class diagram depicts the M:N
relationship between STUDENT and CLASS. Figure 4.37 shows the implementation-ready UML class diagram for
Tiny College (note that the ENROLL composite entity is shown in this class diagram.)

FIGURE
4.36

The conceptual UML class diagram for Tiny College

C6545_04 6/28/2007 9:46:26 Page 134

134 C H A P T E R 4

4.3 DATABASE DESIGN CHALLENGES: CONFLICTING GOALS

Database designers often must make design compromises that are triggered by conflicting goals, such as adherence to
design standards (design elegance), processing speed, and information requirements.

� Design standards. The database design must conform to design standards. Such standards have guided you
in developing logical structures that minimize data redundancies, thereby minimizing the likelihood that
destructive data anomalies will occur. You have also learned how standards prescribed avoiding nulls to the
greatest extent possible. In fact, you have learned that design standards govern the presentation of all
components within the database design. In short, design standards allow you to work with well-defined
components and to evaluate the interaction of those components with some precision. Without design
standards, it is nearly impossible to formulate a proper design process, to evaluate an existing design, or to
trace the likely logical impact of changes in design.

FIGURE
4.37

The implementation-ready UML class diagram for Tiny College

C6545_04 6/28/2007 9:46:26 Page 135

135E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

� Processing speed. In many organizations, particularly those generating large numbers of transactions, high
processing speeds are often a top priority in database design. High processing speed means minimal access
time, which may be achieved by minimizing the number and complexity of logically desirable relationships. For
example, a “perfect” design might use a 1:1 relationship to avoid nulls, while a higher transaction-speed design
might combine the two tables to avoid the use of an additional relationship, using dummy entries to avoid the
nulls. If the focus is on data-retrieval speed, you might also be forced to include derived attributes in the design.

� Information requirements. The quest for timely information might be the focus of database design. Complex
information requirements may dictate data transformations, and they may expand the number of entities and
attributes within the design. Therefore, the database may have to sacrifice some of its “clean” design structures
and/or some of its high transaction speed to ensure maximum information generation. For example, suppose
that a detailed sales report must be generated periodically. The sales report includes all invoice subtotals, taxes,
and totals; even the invoice lines include subtotals. If the sales report includes hundreds of thousands (or even
millions) of invoices, computing the totals, taxes, and subtotals is likely to take some time. If those computations
had been made and the results had been stored as derived attributes in the INVOICE and LINE tables at the
time of the transaction, the real-time transaction speed might have declined. But that loss of speed would only
be noticeable if there were many simultaneous transactions. The cost of a slight loss of transaction speed at the
front end and the addition of multiple derived attributes is likely to pay off when the sales reports are generated
(not to mention the fact that it will be simpler to generate the queries).

A design that meets all logical requirements and design conventions is an important goal. However, if this perfect
design fails to meet the customer’s transaction speed and/or information requirements, the designer will not have done
a proper job from the end user’s point of view. Compromises are a fact of life in the real world of database design.

Even while focusing on the entities, attributes, relationships, and constraints, the designer should begin thinking about
end-user requirements such as performance, security, shared access, and data integrity. The designer must consider
processing requirements and verify that all update, retrieval, and deletion options are available. Finally, a design is of
little value unless the end product is capable of delivering all specified query and reporting requirements.

You are quite likely to discover that even the best design process produces an ERD that requires further changes
mandated by operational requirements. Such changes should not discourage you from using the process. ER modeling
is essential in the development of a sound design that is capable of meeting the demands of adjustment and growth.
Using ERDs yields perhaps the richest bonus of all: a thorough understanding of how an organization really functions.

There are occasional design and implementation problems that do not yield “clean” implementation solutions. To get
a sense of the design and implementation choices a database designer faces, let’s revisit the 1:1 recursive relationship
“EMPLOYEE is married to EMPLOYEE” first examined in Figure 4.18. Figure 4.38 shows three different ways of
implementing such a relationship.

C6545_04 6/28/2007 9:47:24 Page 136

136 C H A P T E R 4

Note that the EMPLOYEE_V1 table in Figure 4.38 is likely to yield data anomalies. For example, if Anne Jones
divorces Anton Shapiro, two records must be updated—by setting the respective EMP_SPOUSE values to null—to
properly reflect that change. If only one record is updated, inconsistent data occur. The problem becomes even worse
if several of the divorced employees then marry each other. In addition, that implementation also produces undesirable
nulls for employees who are not married to other employees in the company.

Another approach would be to create a new entity shown as MARRIED_V1 in a 1:M relationship with EMPLOYEE.
(See Figure 4.38.) This second implementation does eliminate the nulls for employees who are not married to
somebody working for the same company. (Such employees would not be entered in the MARRIED_V1 table.)
However, this approach still yields possible duplicate values. For example, the marriage between employees 345 and
347 may still appear twice, once as 345,347 and once as 347,345. (Since each of those permutations is unique the
first time it appears, the creation of a unique index will not solve the problem.)

FIGURE
4.38

Various implementations of the 1:1 recursive relationship

Table name: EMPLOYEE_V1 Database name: Ch04_PartCo

First implementation

Table name: EMPLOYEE Table name: MARRIED_V1

Second implementation

Table name: MARRIAGE Table name: MARPART Table name: EMPLOYEE

The relational diagram for the third implementation

Third implementation

C6545_04 6/28/2007 9:47:24 Page 137

137E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

As you can see, the first two implementations yield several problems:

� Both solutions use synonyms. The EMPLOYEE_V1 table uses EMP_NUM and EMP_SPOUSE to refer to an
employee. The MARRIED_V1 table uses the same synonyms.

� Both solutions are likely to produce inconsistent data. For example, it is possible to enter employee 345 as
married to employee 347 and to enter employee 348 as married to employee 345.

� Both solutions allow data entries to show one employee married to several other employees. For example, it
is possible to have data pairs such as 345,347 and 348,347 and 349,347, none of which will violate entity
integrity requirements, because they are all unique.

A third approach would be to have two new entities, MARRIAGE and MARPART, in a 1:M relationship. MARPART
contains the EMP_NUM foreign key to EMPLOYEE. (See the relational diagram in Figure 4.38.) This third approach
would be the preferred solution in a relational environment. But even this approach requires some fine-tuning. For
example, to ensure that an employee occurs only once in any given marriage, you would have to use a unique index
on the EMP_NUM attribute in the MARPART table.

As you can see, a recursive 1:1 relationship yields many different solutions with varying degrees of effectiveness and
adherence to basic design principles. Your job as a database designer is to use your professional judgment to yield a
solution that meets the requirements imposed by business rules, processing requirements, and basic design principles.

Finally, document, document, and document! Put all design activities in writing. Then review what you’ve written.
Documentation not only helps you stay on track during the design process, but also enables you (or those following
you) to pick up the design thread when the time comes to modify the design. Although the need for documentation
should be obvious, one of the most vexing problems in database and systems analysis work is that the “put it in writing”
rule often is not observed in all of the design and implementation stages. The development of organizational
documentation standards is a very important aspect of ensuring data compatibility and coherence.

C6545_04 6/28/2007 9:47:25 Page 138

138 C H A P T E R 4

S u m m a r y

◗ The ERM uses ERDs to represent the conceptual database as viewed by the end user. The ERM’s main components
are entities, relationships, and attributes. The ERD also includes connectivity and cardinality notations. An ERD can
also show relationship strength, relationship participation (optional or mandatory), and degree of relationship
(unary, binary, ternary, etc.).

◗ Connectivity describes the relationship classification (1:1, 1:M, or M:N). Cardinality expresses the specific number
of entity occurrences associated with an occurrence of a related entity. Connectivities and cardinalities are usually
based on business rules.

◗ In the ERM, an M:N relationship is valid at the conceptual level. However, when implementing the ERM in a
relational database, the M:N relationship must be mapped to a set of 1:M relationships through a composite entity.

◗ ERDs may be based on many different ERMs. However, regardless of which model is selected, the modeling logic
remains the same. Because no ERM can accurately portray all real-world data and action constraints, application
software must be used to augment the implementation of at least some of the business rules.

◗ Unified Modeling Language (UML) class diagrams are used to represent the static data structures in a data model.
The symbols used in the UML class and ER diagrams are very similar. The UML class diagrams can be used to
depict data models at the conceptual or implementation abstraction levels.

◗ Database designers, no matter how well they are able to produce designs that conform to all applicable modeling
conventions, often are forced to make design compromises. Those compromises are required when end users have
vital transaction speed and/or information requirements that prevent the use of “perfect” modeling logic and
adherence to all modeling conventions. Therefore, database designers must use their professional judgment to
determine how and to what extent the modeling conventions are subject to modification. To ensure that their
professional judgments are sound, database designers must have detailed and in-depth knowledge of data-modeling
conventions. It is also important to document the design process from beginning to end, which helps keep the
design process on track and allows for easy modifications down the road.

K e y T e r m s

binary relationship, 120

cardinality, 111

composite attribute, 108

composite identifier, 107

connectivity, 111

derived attribute, 110

existence-dependent, 113

existence-independent, 113

identifiers, 106

identifying relationship, 115

iterative process, 127

mandatory participation, 118

multivalued attribute, 108

non-identifying relationship, 113

optional attribute, 106

optional participation, 118

participants, 111

recursive relationship, 120

relationship degree, 120

required attribute, 105

simple attribute, 108

single-valued attribute, 108

strong relationship, 115

ternary relationship, 120

unary relationship, 120

weak entity, 113

weak relationship, 113

C6545_04 8/8/2007 9:24:3 Page 139

139E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

R e v i e w Q u e s t i o n s

1. What two conditions must be met before an entity can be classified as a weak entity? Give an example of a weak
entity.

2. What is a strong (or identifying) relationship, and how is it depicted in a Crow’s Foot ERD?

3. Given the business rule “an employee may have many degrees,” discuss its effect on attributes, entities, and
relationships. (Hint: Remember what a multivalued attribute is and how it might be implemented.)

4. What is a composite entity, and when is it used?

5. Suppose you are working within the framework of the conceptual model in Figure Q4.5.

Given the conceptual model in Figure Q4.5:

a. Write the business rules that are reflected in it.

b. Identify all of the cardinalities.

6. What is a recursive relationship? Give an example.

7. How would you (graphically) identify each of the following ERM components in a Crow’s Foot notation?

a. an entity

b. the cardinality (0,N)

c. a weak relationship

d. a strong relationship

8. Discuss the difference between a composite key and a composite attribute. How would each be indicated in an ERD?

9. What two courses of action are available to a designer encountering a multivalued attribute?

10. What is a derived attribute? Give an example.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

FIGURE
Q4.5

The conceptual model for Question 5

C6545_04 6/28/2007 14:40:58 Page 140

140 C H A P T E R 4

11. How is a relationship between entities indicated in an ERD? Give an example, using the Crow’s Foot notation.

12. Discuss two ways in which the 1:M relationship between COURSE and CLASS can be implemented. (Hint:
Think about relationship strength.)

13. How is a composite entity represented in an ERD, and what is its function? Illustrate the Crow’s Foot notation.

14. What three (often conflicting) database requirements must be addressed in database design?

15. Briefly, but precisely, explain the difference between single-valued attributes and simple attributes. Give an
example of each.

16. What are multivalued attributes, and how can they be handled within the database design?

The final four questions are based on the ERD in Figure Q4.17.

17. Write the ten cardinalities that are appropriate for this ERD.

18. Write the business rules reflected in this ERD.

19. What two attributes must be contained in the composite entity between STORE and PRODUCT? Use proper
terminology in your answer.

20. Describe precisely the composition of the DEPENDENT weak entity’s primary key. Use proper terminology in
your answer.

P r o b l e m s

1. Given the following business rules, create the appropriate Crow’s Foot ERD.

a. A company operates many departments.

b. Each department employs one or more employees.

c. Each of the employees might or might not have one or more dependents.

d. Each employee might or might not have an employment history.

FIGURE
Q4.17

The ERD for Questions 17–20

C6545_04 6/28/2007 9:48:1 Page 141

141E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

2. The Hudson Engineering Group (HEG) has contacted you to create a conceptual model whose application will
meet the expected database requirements for the company’s training program. The HEG administrator gives you
the description (see below) of the training group’s operating environment.

(Hint: Some of the following sentences identify the volume of data rather than cardinalities. Can you tell
which ones?)

The HEG has 12 instructors and can handle up to 30 trainees per class. HEG offers five Advanced Technology
courses, each of which may generate several classes. If a class has fewer than 10 trainees, it will be canceled.
Therefore, it is possible for a course not to generate any classes. Each class is taught by one instructor. Each
instructor may teach up to two classes or may be assigned to do research only. Each trainee may take up to
two classes per year.

Given that information, do the following:

a. Define all of the entities and relationships. (Use Table 4.4 as your guide.)

b. Describe the relationship between instructor and class in terms of connectivity, cardinality, and existence-
dependence.

3. Use the following business rules to create a Crow’s Foot ERD. Write all appropriate connectivities and
cardinalities in the ERD.

a. A department employs many employees, but each employee is employed by one department.

b. Some employees, known as “rovers,” are not assigned to any department.

c. A division operates many departments, but each department is operated by one division.

d. An employee may be assigned many projects, and a project may have many employees assigned to it.

e. A project must have at least one employee assigned to it.

f. One of the employees manages each department, and each department is managed by only one employee.

g. One of the employees runs each division, and each division is run by only one employee.

4. During peak periods, Temporary Employment Corporation (TEC) places temporary workers in companies.
TEC’s manager gives you the following description of the business:

� TEC has a file of candidates who are willing to work.

� If the candidate has worked before, that candidate has a specific job history. (Naturally, no job history exists
if the candidate has never worked.) Each time the candidate works, one additional job history record is
created.

� Each candidate has earned several qualifications. Each qualification may be earned by more than one
candidate. (For example, it is possible for more than one candidate to have earned a BBA degree or a
Microsoft Network Certification. And clearly, a candidate may have earned both a BBA and a Microsoft
Network Certification.)

� TEC also has a list of companies that request temporaries.

� Each time a company requests a temporary employee, TEC makes an entry in the Openings folder. That
folder contains an opening number, a company name, required qualifications, a starting date, an anticipated
ending date, and hourly pay.

� Each opening requires only one specific or main qualification.

� When a candidate matches the qualification, the job is assigned, and an entry is made in the Placement
Record folder. That folder contains an opening number, a candidate number, the total hours worked, etc. In
addition, an entry is made in the job history for the candidate.

� An opening can be filled by many candidates, and a candidate can fill many openings.

� TEC uses special codes to describe a candidate’s qualifications for an opening. The list of codes is shown in
table P4.4.

C6545_04 8/8/2007 9:25:5 Page 142

142 C H A P T E R 4

TABLE
P4.4

CODE DESCRIPTION
SEC-45 Secretarial work, at least 45 words per minute
SEC-60 Secretarial work, at least 60 words per minute
CLERK General clerking work
PRG-VB Programmer, Visual Basic
PRG-C++ Programmer, C++
DBA-ORA Database Administrator, Oracle
DBA-DB2 Database Administrator, IBM DB2
DBA-SQLSERV Database Administrator, MS SQL Server
SYS-1 Systems Analyst, level 1
SYS-2 Systems Analyst, level 2
NW-NOV Network Administrator, Novell experience
WD-CF Web Developer, ColdFusion

TEC’s management wants to keep track of the following entities:

� COMPANY

� OPENING

� QUALIFICATION

� CANDIDATE

� JOB_HISTORY

� PLACEMENT

Given that information, do the following:

a. Draw the Crow’s Foot ERDs for this enterprise.

b. Identify all possible relationships.

c. Identify the connectivity for each relationship.

d. Identify the mandatory/optional dependencies for the relationships.

e. Resolve all M:N relationships.

5. The Jonesburgh County Basketball Conference (JCBC) is an amateur basketball association. Each city in the
county has one team as its representative. Each team has a maximum of 12 players and a minimum of 9 players.
Each team also has up to three coaches (offensive, defensive, and physical training coaches). During the season,
each team plays two games (home and visitor) against each of the other teams. Given those conditions, do the
following:

a. Identify the connectivity of each relationship.

b. Identify the type of dependency that exists between CITY and TEAM.

c. Identify the cardinality between teams and players and between teams and city.

d. Identify the dependency between coach and team and between team and player.

e. Draw the Chen and Crow’s Foot ERDs to represent the JCBC database.

f. Draw the UML class diagram to depict the JCBC database.

6. Automata Inc. produces specialty vehicles by contract. The company operates several departments, each of
which builds a particular vehicle, such as a limousine, a truck, a van, or an RV.

Before a new vehicle is built, the department places an order with the purchasing department to request specific
components. Automata’s purchasing department is interested in creating a database to keep track of orders and
to accelerate the process of delivering materials.

The order received by the purchasing department may contain several different items. An inventory is maintained
so that the most frequently requested items are delivered almost immediately. When an order comes in, it is

C6545_04 8/20/2007 8:8:52 Page 143

143E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

checked to determine whether the requested item is in inventory. If an item is not in inventory, it must be ordered
from a supplier. Each item may have several suppliers.

Given that functional description of the processes encountered at Automata’s purchasing department, do the
following:

a. Identify all of the main entities.

b. Identify all of the relations and connectivities among entities.

c. Identify the type of existence dependency in all the relationships.

d. Give at least two examples of the types of reports that can be obtained from the database.

7. Create an ERD based on the Crow’s Foot notation, using the following requirements:

� An INVOICE is written by a SALESREP. Each sales representative can write many invoices, but each invoice
is written by a single sales representative.

� The INVOICE is written for a single CUSTOMER. However, each customer can have many invoices.

� An INVOICE can include many detail lines (LINE), each of which describes one product bought by the
customer.

� The product information is stored in a PRODUCT entity.

� The product’s vendor information is found in a VENDOR entity.

8. Given the following brief summary of business rules for the ROBCOR catering service and using the Crow’s Foot
ER notation, draw the fully labeled ERD. Make sure you include all appropriate entities, relationships,
connectivities, and cardinalities.

Each dinner is based on a single entree, but each entree can be served at many dinners. A guest can attend many
dinners, and each dinner can be attended by many guests. Each dinner invitation can be mailed to many guests,
and each guest can receive many invitations.

9. Using the Crow’s Foot notation, create an ERD that can be implemented for a medical clinic, using at least the
following business rules:

a. A patient can make many appointments with one or more doctors in the clinic, and a doctor can accept
appointments with many patients. However, each appointment is made with only one doctor and one
patient.

b. Emergency cases do not require an appointment. However, for appointment management purposes, an
emergency is entered in the appointment book as “unscheduled.”

c. If kept, an appointment yields a visit with the doctor specified in the appointment. The visit yields a diagnosis
and, when appropriate, treatment.

d. With each visit, the patient’s records are updated to provide a medical history.

e. Each patient visit creates a bill. Each patient visit is billed by one doctor, and each doctor can bill many
patients.

f. Each bill must be paid. However, a bill may be paid in many installments, and a payment may cover more
than one bill.

g. A patient may pay the bill directly, or the bill may be the basis for a claim submitted to an insurance company.

h. If the bill is paid by an insurance company, the deductible is submitted to the patient for payment.

Note

Limit your ERD to entities and relationships based on the business rules shown here. In other words, do not add
realism to your design by expanding or refining the business rules. However, make sure you include the
attributes that would permit the model to be successfully implemented.

C6545_04 6/28/2007 9:48:15 Page 144

144 C H A P T E R 4

10. The administrators of Tiny College are so pleased with your design and implementation of their student
registration/tracking system that they want you to expand the design to include the database for their motor
vehicle pool. A brief description of operations follows:

� Faculty members may use the vehicles owned by Tiny College for officially sanctioned travel. For example,
the vehicles may be used by faculty members to travel to off-campus learning centers, to travel to locations
at which research papers are presented, to transport students to officially sanctioned locations, and to travel
for public service purposes. The vehicles used for such purposes are managed by Tiny College’s TFBS
(Travel Far But Slowly) Center.

� Using reservation forms, each department can reserve vehicles for its faculty, who are responsible for filling
out the appropriate trip completion form at the end of a trip. The reservation form includes the expected
departure date, vehicle type required, destination, and name of the authorized faculty member. The faculty
member arriving to pick up a vehicle must sign a checkout form to log out the vehicle and pick up a trip
completion form. (The TFBS employee who releases the vehicle for use also signs the checkout form.) The
faculty member’s trip completion form includes the faculty member’s identification code, the vehicle’s
identification, the odometer readings at the start and end of the trip, maintenance complaints (if any), gallons
of fuel purchased (if any), and the Tiny College credit card number used to pay for the fuel. If fuel is
purchased, the credit card receipt must be stapled to the trip completion form. Upon receipt of the faculty
trip completion form, the faculty member’s department is billed at a mileage rate based on the vehicle type
(sedan, station wagon, panel truck, minivan, or minibus) used. (Hint: Do not use more entities than are
necessary. Remember the difference between attributes and entities!)

� All vehicle maintenance is performed by TFBS. Each time a vehicle requires maintenance, a maintenance
log entry is completed on a prenumbered maintenance log form. The maintenance log form includes the
vehicle identification, a brief description of the type of maintenance required, the initial log entry date, the
date on which the maintenance was completed, and the identification of the mechanic who released the
vehicle back into service. (Only mechanics who have an inspection authorization may release the vehicle
back into service.)

� As soon as the log form has been initiated, the log form’s number is transferred to a maintenance detail
form; the log form’s number is also forwarded to the parts department manager, who fills out a parts usage
form on which the maintenance log number is recorded. The maintenance detail form contains separate
lines for each maintenance item performed, for the parts used, and for identification of the mechanic who
performed the maintenance item. When all maintenance items have been completed, the maintenance detail
form is stapled to the maintenance log form, the maintenance log form’s completion date is filled out, and
the mechanic who releases the vehicle back into service signs the form. The stapled forms are then filed, to
be used later as the source for various maintenance reports.

� TFBS maintains a parts inventory, including oil, oil filters, air filters, and belts of various types. The parts
inventory is checked daily to monitor parts usage and to reorder parts that reach the “minimum quantity on
hand” level. To track parts usage, the parts manager requires each mechanic to sign out the parts that are
used to perform each vehicle’s maintenance; the parts manager records the maintenance log number under
which the part is used.

� Each month TFBS issues a set of reports. The reports include the mileage driven by vehicle, by department,
and by faculty members within a department. In addition, various revenue reports are generated by vehicle
and department. A detailed parts usage report is also filed each month. Finally, a vehicle maintenance
summary is created each month.

Given that brief summary of operations, draw the appropriate (and fully labeled) ERD. Use the Chen
methodology to indicate entities, relationships, connectivities, and cardinalities.

11. Given the following information, produce an ERD—based on the Crow’s Foot notation—that can be
implemented. Make sure you include all appropriate entities, relationships, connectivities, and cardinalities.

� EverFail company is in the oil change and lube business. Although customers bring in their cars for what is
described as “quick oil changes,” EverFail also replaces windshield wipers, oil filters, and air filters, subject to

C6545_04 6/28/2007 9:49:3 Page 145

145E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

customer approval. The invoice contains the charges for the oil and all parts used and a standard labor charge.
When the invoice is presented to customers, they pay cash, use a credit card, or write a check. EverFail does
not extend credit. EverFail’s database is to be designed to keep track of all components in all transactions.

� Given the high parts usage of the business operations, EverFail must maintain careful control of its parts
inventory (oil, wipers, oil filters, and air filters). Therefore, if parts reach their minimum on-hand quantity, the
parts in low supply must be reordered from an appropriate vendor. EverFail maintains a vendor list, which
contains vendors actually used and potential vendors.

� Periodically, based on the date of the car’s service, EverFail mails updates to customers. EverFail also tracks
each customer’s car mileage.

12. Use the following descriptions of the operations of RC_Models Company to complete this exercise.

RC_Models Company sells its products—plastic models (aircraft, ships, and cars) and “add-on” decals for those
models—through its Internet Web site, www.rc_models.com. Models and decals are available in scales that vary
from 1/144 to 1/32.

Customers use the Web site to select the products and to pay by credit card. If a product is not currently available,
it is placed on back order at the customer’s discretion. (Back orders are not charged to a customer until the order
is shipped.) When a customer completes a transaction, the invoice is printed and the products listed on the
invoice are pulled from inventory for shipment. (The invoice includes a shipping charge.) The printed invoice is
enclosed in the shipping container. The customer credit card charges are transmitted to the CC Bank, at which
RC_Models Company maintains a commercial account. (Note: The CC Bank is not part of the RC_Models
database.)

RC_Models Company tracks customer purchases and periodically sends out promotional materials. Because the
management at RC_Models Company requires detailed information to conduct its operations, numerous reports
are available. Those reports include, but are not limited to, customer purchases by product category and amount,
product turnover, and revenues by product and customer. If a product has not recorded a sale within four weeks
of being stocked, it is removed from inventory and scrapped.

Many of the customers on the RC_Models customer list have bought RC_Models products. However, RC_Models
Company also has purchased a copy of the FineScale Modeler magazine subscription list to use in marketing its
products to customers who have not yet bought from RC_Models Company. In addition, customer data are
recorded when potential customers request product information.

RC_Models Company orders its products directly from the manufacturers. For example, the plastic models are
ordered from Tamiya, Academy, Revell/Monogram, and others. Decals are ordered from Aeromaster, Tauro,
WaterMark, and others. (Note: Not all manufacturers in the RC_Models Company database have received
orders.) All orders are placed via the manufacturers’ Web sites, and the order amounts are automatically handled

Note

Problems 12 and 13 may be used as the basis for class projects. These problems illustrate the challenge of
translating a description of operations to a set of business rules that will define the components for an ERD that
can be successfully implemented. These problems can also be used as the basis for discussions about the
components and contents of a proper description of operations. One of the things you must learn if you want
to create databases that can be successfully implemented is to separate the generic background material from
the details that directly affect database design. You must also keep in mind that many constraints cannot be
incorporated into the database design; instead, such constraints are handled by the applications software.
Although the description of operations in Problem 12 deals with a Web-based business, the focus should be on
the database aspects of the design, rather than on its interface and the transaction management details. In fact,
the argument can easily be made that the existence of Web-based businesses has made database design more
important than ever. (You might be able to get away with a bad database design if you sell only a few items per
day, but the problems of poorly designed databases are compounded as the number of transactions increases.)

C6545_04 6/28/2007 9:49:3 Page 146

146 C H A P T E R 4

through RC_Models’ commercial bank account with the CC Bank. Orders are automatically placed when product
inventory reaches the specified minimum quantity on hand. (The number of product units ordered depends on
the minimum order quantity specified for each product.)

a. Given that brief and incomplete description of operations for RC_Models Company, write all applicable
business rules to establish entities, relationships, optionalities, connectivities, and cardinalities. (Hint: Use the
following three business rules as examples, writing the remaining business rules in the same format.)

� A customer may generate many invoices.

� Each invoice is generated by only one customer.

� Some customers have not (yet) generated an invoice.

b. Draw the fully labeled and implementable Crow’s Foot ERD based on the business rules you wrote in Part (a)
of this problem. Include all entities, relationships, optionalities, connectivities, and cardinalities.

13. Use the following description of the operations of the RC_Charter2 Company to complete this exercise.

The RC_Charter2 Company operates a fleet of aircraft under the Federal Air Regulations (FAR) Part 135 (air taxi
or charter) certificate, enforced by the FAA. The aircraft are available for air taxi (charter) operations within the
United States and Canada.

Charter companies provide so-called “unscheduled” operations—that is, charter flights take place only after a
customer reserves the use of an aircraft to fly at a customer-designated date and time to one or more
customer-designated destinations, transporting passengers, cargo, or some combination of passengers and cargo.
A customer can, of course, reserve many different charter flights (trips) during any time frame. However, for
billing purposes, each charter trip is reserved by one and only one customer. Some of RC_Charter2’s customers
do not use the company’s charter operations; instead, they purchase fuel, use maintenance services, or use other
RC_Charter2 services. However, this database design will focus on the charter operations only.

Each charter trip yields revenue for the RC_Charter2 Company. This revenue is generated by the charges a
customer pays upon the completion of a flight. The charter flight charges are a function of aircraft model used,
distance flown, waiting time, special customer requirements, and crew expenses. The distance flown charges are
computed by multiplying the round-trip miles by the model’s charge per mile. Round-trip miles are based on the
actual navigational path flown. The sample route traced in Figure P4.13 illustrates the procedure. Note that the
number of round-trip miles is calculated to be 130 + 200 + 180 + 390 = 900.

Depending on whether a customer has RC_Charter2 credit authorization, the customer may:

� Pay the entire charter bill upon the completion of the charter flight.

� Pay a part of the charter bill and charge the remainder to the account. The charge amount may not exceed
the available credit.

� Charge the entire charter bill to the account. The charge amount may not exceed the available credit.

Customers may pay all or part of the existing balance for previous charter trips. Such payments may be made at any
time and are not necessarily tied to a specific charter trip. The charter mileage charge includes the expense of the
pilot(s) and other crew required by FAR 135. However, if customers request additional crew not required by FAR 135,
those customers are charged for the crew members on an hourly basis. The hourly crew-member charge is based on
each crew member’s qualifications.

The database must be able to handle crew assignments. Each charter trip requires the use of an aircraft, and a crew
flies each aircraft. The smaller piston engine-powered charter aircraft require a crew consisting of only a single pilot.
Larger aircraft (that is, aircraft having a gross takeoff weight of 12,500 pounds or more) and jet-powered aircraft
require a pilot and a copilot, while some of the larger aircraft used to transport passengers may require flight attendants
as part of the crew. Some of the older aircraft require the assignment of a flight engineer, and larger cargo-carrying
aircraft require the assignment of a loadmaster. In short, a crew can consist of more than one person, and not all crew
members are pilots.

C6545_04 8/8/2007 9:27:25 Page 147

147E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

The charter flight’s aircraft waiting charges are computed by multiplying the hours waited by the model’s hourly waiting
charge. Crew expenses are limited to meals, lodging, and ground transportation.

The RC_Charter2 database must be designed to generate a monthly summary of all charter trips, expenses, and revenues
derived from the charter records. Such records are based on the data that each pilot in command is required to record for
each charter trip: trip date(s) and time(s), destination(s), aircraft number, pilot (and other crew) data, distance flown, fuel
usage, and other data pertinent to the charter flight. Such charter data are then used to generate monthly reports that detail
revenue and operating cost information for customers, aircraft, and pilots. All pilots and other crew members are
RC_Charter2 Company employees; that is, the company does not use contract pilots and crew.

FAR Part 135 operations are conducted under a strict set of requirements that govern the licensing and training of
crew members. For example, pilots must have earned either a Commercial license or an Airline Transport Pilot (ATP)
license. Both licenses require appropriate ratings. Ratings are specific competency requirements. For example:

� To operate a multiengine aircraft designed for takeoffs and landings on land only, the appropriate rating is
MEL, or Multiengine Landplane. When a multiengine aircraft can take off and land on water, the appropriate
rating is MES, or Multiengine Seaplane.

� The instrument rating is based on a demonstrated ability to conduct all flight operations with sole reference to
cockpit instrumentation. The instrument rating is required to operate an aircraft under Instrument Meteoro-
logical Conditions (IMC), and all such operations are governed under FAR-specified Instrument Flight Rules
(IFR). In contrast, operations conducted under “good weather” or visual flight conditions are based on the FAR
Visual Flight Rules (VFR).

� The type rating is required for all aircraft with a takeoff weight of more than 12,500 pounds or for aircraft that
are purely jet-powered. If an aircraft uses jet engines to drive propellers, that aircraft is said to be
turboprop-powered. A turboprop—that is, a turbo propeller-powered aircraft—does not require a type rating
unless it meets the 12,500-pound weight limitation.

FIGURE
P4.13

Round-trip mile determination

Intermediate Stop

200 miles

Pax Pickup

130 miles

Home Base

390 miles

Destination180 miles

C6545_04 6/28/2007 9:49:29 Page 148

148 C H A P T E R 4

Although pilot licenses and ratings are not time-limited, exercising the privilege of the license and ratings under Part
135 requires both a current medical certificate and a current Part 135 checkride. The following distinctions are
important:

� The medical certificate may be Class I or Class II. The Class I medical is more stringent than the Class II, and
it must be renewed every six months. The Class II medical must be renewed yearly. If the Class I medical is
not renewed during the six-month period, it automatically reverts to a Class II certificate. If the Class II
medical is not renewed within the specified period, it automatically reverts to a Class III medical, which is not
valid for commercial flight operations.

� A Part 135 checkride is a practical flight examination that must be successfully completed every six months.
The checkride includes all flight maneuvers and procedures specified in Part 135.

Nonpilot crew members must also have the proper certificates in order to meet specific job requirements. For
example, loadmasters need an appropriate certificate, as do flight attendants. In addition, crew members such as
loadmasters and flight attendants, who may be required in operations that involve large aircraft (more than a
12,500-pound takeoff weight and passenger configurations over 19) are also required periodically to pass a
written and practical exam. The RC_Charter2 Company is required to keep a complete record of all test types,
dates, and results for each crew member, as well as pilot medical certificate examination dates.

In addition, all flight crew members are required to submit to periodic drug testing; the results must be tracked,
too. (Note that nonpilot crew members are not required to take pilot-specific tests such as Part 135 checkrides.
Nor are pilots required to take crew tests such as loadmaster and flight attendant practical exams.) However,
many crew members have licenses and/or certifications in several areas. For example, a pilot may have an ATP
and a loadmaster certificate. If that pilot is assigned to be a loadmaster on a given charter flight, the loadmaster
certificate is required. Similarly, a flight attendant may have earned a commercial pilot’s license. Sample data
formats are shown in Table P4.13.

TABLE
P4.13

PART A TESTS
TEST CODE TEST DESCRIPTION TEST FREQUENCY
1 Part 135 Flight Check 6 months
2 Medical, Class 1 6 months
3 Medical, Class 2 12 months
4 Loadmaster Practical 12 months
5 Flight Attendant Practical 12 months
6 Drug test Random
7 Operations, written exam 6 months

PART B RESULTS
EMPLOYEE TEST CODE TEST DATE TEST RESULT
101 1 12-Nov-07 Pass-1
103 6 23-Dec-07 Pass-1
112 4 23-Dec-07 Pass-2
103 7 11-Jan-08 Pass-1
112 7 16-Jan-08 Pass-1
101 7 16-Jan-08 Pass-1
101 6 11-Feb-08 Pass-2
125 2 15-Feb-08 Pass-1

C6545_04 8/20/2007 8:9:47 Page 149

149E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

PART C LICENSES AND CERTIFICATIONS
LICENSE OR CERTIFICATE LICENSE OR CERTIFICATE DESCRIPTION
ATP Airline Transport Pilot
Comm Commercial license
Med-1 Medical certificate, class 1
Med-2 Medical certificate, class 2
Instr Instrument rating
MEL Multiengine Land aircraft rating
LM Load Master
FA Flight Attendant

PART D LICENSES AND CERTIFICATES HELD BY EMPLOYEES
EMPLOYEE LICENSE OR CERTIFICATE DATE EARNED
101 Comm 12-Nov-93
101 Instr 28-Jun-94
101 MEL 9-Aug-94
103 Comm 21-Dec-95
112 FA 23-Jun-02
103 Instr 18-Jan-96
112 LM 27-Nov-05

Pilots and other crew members must receive recurrency training appropriate to their work assignments.
Recurrency training is based on an FAA-approved curriculum that is job-specific. For example, pilot recurrency
training includes a review of all applicable Part 135 flight rules and regulations, weather data interpretation,
company flight operations requirements, and specified flight procedures. The RC_Charter2 Company is
required to keep a complete record of all recurrency training for each crew member subject to the training.

The RC_Charter2 Company is required to maintain a detailed record of all crew credentials and all training
mandated by Part 135. The company must keep a complete record of each requirement and of all
compliance data.

To conduct a charter flight, the company must have a properly maintained aircraft available. A pilot who meets
all of the FAA’s licensing and currency requirements must fly the aircraft as Pilot in Command (PIC). For those
aircraft that are powered by piston engines or turboprops and have a gross takeoff weight under 12,500
pounds, single-pilot operations are permitted under Part 135 as long as a properly maintained autopilot is
available. However, even if FAR Part 135 permits single-pilot operations, many customers require the presence
of a copilot who is capable of conducting the flight operations under Part 135.

The RC_Charter2 operations manager anticipates the lease of turbojet-powered aircraft, and those aircraft are
required to have a crew consisting of a pilot and copilot. Both pilot and copilot must meet the same Part 135
licensing, ratings, and training requirements.

C6545_04 6/28/2007 14:41:57 Page 150

150 C H A P T E R 4

The company also leases larger aircraft that exceed the 12,500-pound gross takeoff weight. Those aircraft can
carry the number of passengers that requires the presence of one or more flight attendants. If those aircraft
carry cargo weighing over 12,500 pounds, a loadmaster must be assigned as a crew member to supervise the
loading and securing of the cargo. The database must be designed to meet the anticipated additional
charter crew assignment capability.

a. Given this incomplete description of operations, write all applicable business rules to establish entities,
relationships, optionalities, connectivities, and cardinalities. (Hint: Use the following five business rules as
examples, writing the remaining business rules in the same format.)

� A customer may request many charter trips.

� Each charter trip is requested by only one customer.

� Some customers have not (yet) requested a charter trip.

� An employee may be assigned to serve as a crew member on many charter trips.

� Each charter trip may have many employees assigned to it to serve as crew members.

b. Draw the fully labeled and implementable Crow’s Foot ERD based on the business rules you wrote in Part (a)
of this problem. Include all entities, relationships, optionalities, connectivities, and cardinalities.

C6545_04 6/28/2007 9:58:52 Page 151

151E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

Preview

Normalization of Database Tables

In this chapter, you will learn:

� What normalization is and what role it plays in the database design process

� About the normal forms 1NF, 2NF, 3NF, BCNF, and 4NF

� How normal forms can be transformed from lower normal forms to higher normal forms

� That normalization and ER modeling are used concurrently to produce a good
database design

� That some situations require denormalization to generate information efficiently

Good database design must be matched to good table structures. In this chapter, you learn

to evaluate and design good table structures to control data redundancies, thereby avoiding

data anomalies. The process that yields such desirable results is known as normalization.

In order to recognize and appreciate the characteristics of a good table structure, it is useful

to examine a poor one.Therefore, the chapter begins by examining the characteristics of a

poor table structure and the problems it creates. You then learn how to correct a poor

table structure. This methodology will yield important dividends: you will know how to

design a good table structure and how to repair an existing poor one.

You will discover not only that data anomalies can be eliminated through normalization, but

also that a properly normalized set of table structures is actually less complicated to use

than an unnormalized set. In addition, you will learn that the normalized set of table

structures more faithfully reflects an organization’s real operations.

5
F

I
V

E

C6545_05 7/1/2007 6:5:59 Page 152

5.1 DATABASE TABLES AND NORMALIZATION

Having good relational database software is not enough to avoid the data redundancy discussed in Chapter 1, Database
Systems. If the database tables are treated as though they are files in a file system, the RDBMS never has a chance
to demonstrate its superior data-handling capabilities.

The table is the basic building block in the database design process. Consequently, the table’s structure is of great
interest. Ideally, the database design process explored in Chapter 4, Entity Relationship (ER) Modeling, yields good
table structures. Yet it is possible to create poor table structures even in a good database design. So how do you
recognize a poor table structure, and how do you produce a good table? The answer to both questions involves
normalization. Normalization is a process for evaluating and correcting table structures to minimize data redundan-
cies, thereby reducing the likelihood of data anomalies. The normalization process involves assigning attributes to
tables based on the concept of determination you learned about in Chapter 3, The Relational Database Model.

Normalization works through a series of stages called normal forms. The first three stages are described as first normal
form (1NF), second normal form (2NF), and third normal form (3NF). From a structural point of view, 2NF is better
than 1NF, and 3NF is better than 2NF. For most purposes in business database design, 3NF is as high as you need
to go in the normalization process. However, you will discover in Section 5.3 that properly designed 3NF structures
also meet the requirements of fourth normal form (4NF).

Although normalization is a very important database design ingredient, you should not assume that the highest level
of normalization is always the most desirable. Generally, the higher the normal form, the more relational join
operations required to produce a specified output and the more resources required by the database system to respond
to end-user queries. A successful design must also consider end-user demand for fast performance. Therefore, you will
occasionally be expected to denormalize some portions of a database design in order to meet performance
requirements. Denormalization produces a lower normal form; that is, a 3NF will be converted to a 2NF through
denormalization. However, the price you pay for increased performance through denormalization is greater data
redundancy.

5.2 THE NEED FOR NORMALIZATION

To get a better idea of the normalization process, consider the simplified database activities of a construction company
that manages several building projects. Each project has its own project number, name, employees assigned to it, and
so on. Each employee has an employee number, name, and job classification, such as engineer or computer
technician.

The company charges its clients by billing the hours spent on each contract. The hourly billing rate is dependent on
the employee’s position. For example, one hour of computer technician time is billed at a different rate than one hour
of engineer time. Periodically, a report is generated that contains the information displayed in Table 5.1.

The total charge in Table 5.1 is a derived attribute and, at this point, is not stored in the table.

Note

Although the word table is used throughout this chapter, formally, normalization is concerned with relations. In
Chapter 3 you learned that the terms table and relation are frequently used interchangeably. In fact, you can say
that a table is the “implementation view” of a logical relation that meets some specific conditions (see Table 3.1).
However, being more rigorous, the mathematical relation does not allow duplicate tuples, whereas duplicate
tuples could exist in tables (see Section 5.5).

C6545_05 8/20/2007 9:11:52 Page 153

153N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

TA
BL

E
5.

1
A

Sa
m

pl
e

Re
po

rt
La

yo
ut

PR
O

JE
C

T
N

U
M

BE
R

PR
O

JE
C

T
N

AM
E

EM
PL

O
YE

E
N

U
M

BE
R

EM
PL

O
YE

E
N

AM
E

JO
B

C
LA

SS
C

H
AR

G
E/

H
O

U
R

H
O

U
RS

BI
LL

ED
TO

TA
L

C
H

AR
G

E
15

Ev
er

gr
ee

n
10

3
10

1
10

5
10

6
10

2

Ju
ne

E.
Ar

bo
ug

h
Jo

hn
G

.N
ew

s
Al

ic
e

K.
Jo

hn
so

n
*

W
ill

ia
m

Sm
ith

fie
ld

D
av

id
H

.S
en

io
r

El
ec

.E
ng

in
ee

r
D

at
ab

as
e

D
es

ig
ne

r
D

at
ab

as
e

D
es

ig
ne

r
Pr

og
ra

m
m

er
Sy

st
em

s
An

al
ys

t

$
85

.5
0

$1
05

.0
0

$1
05

.0
0

$
35

.7
5

$
96

.7
5

23
.8

19
.4

35
.7

12
.6

23
.8

$
2,

03
4.

90
$

2,
03

7.
00

$
3,

74
8.

50
$

45
0.

45
$

2,
30

2.
65

Su
bt

ot
al

$1
0,

57
3.

50
18

Am
be

r
W

av
e

11
4

11
8

10
4

11
2

An
ne

lis
e

Jo
ne

s
Ja

m
es

J.
Fr

om
m

er
An

ne
K.

Ra
m

or
as

*
D

ar
le

ne
M

.S
m

ith
so

n

Ap
pl

ic
at

io
ns

D
es

ig
ne

r
G

en
er

al
Su

pp
or

t
Sy

st
em

s
An

al
ys

t
D

SS
An

al
ys

t

$
48

.1
0

$
18

.3
6

$
96

.7
5

$
45

.9
5

25
.6

45
.3

32
.4

45
.0

$
1,

18
3.

26
$

83
1.

71
$

3,
13

4.
70

$
2,

06
7.

75
Su

bt
ot

al
$

7,
26

5.
52

22
Ro

lli
ng

Ti
de

10
5

10
4

11
3

11
1

10
6

Al
ic

e
K.

Jo
hn

so
n

An
ne

K.
Ra

m
or

as
D

el
be

rt
K.

Jo
en

br
oo

d
G

eo
ff

B.
W

ab
as

h
W

ill
ia

m
Sm

ith
fie

ld

D
at

ab
as

e
D

es
ig

ne
r

Sy
st

em
s

An
al

ys
t

Ap
pl

ic
at

io
ns

D
es

ig
ne

r
C

le
ric

al
Su

pp
or

t
Pr

og
ra

m
m

er

$1
05

.0
0

$
96

.7
5

$
48

.1
0

$
26

.8
7

$
35

.7
5

65
.7

48
.4

23
.6

22
.0

12
.8

$
6,

99
8.

50
$

4,
68

2.
70

$
1,

13
5.

16
$

59
1.

14
$

45
7.

60
Su

bt
ot

al
$1

3,
76

5.
10

25
St

ar
fli

gh
t

10
7

11
5

10
1

11
4

10
8

11
8

11
2

M
ar

ia
D

.A
lo

nz
o

Tr
av

is
B.

Ba
w

an
gi

Jo
hn

G
.N

ew
s

*
An

ne
lis

e
Jo

ne
s

Ra
lp

h
B.

W
as

hi
ng

to
n

Ja
m

es
J.

Fr
om

m
er

D
ar

le
ne

M
.S

m
ith

so
n

Pr
og

ra
m

m
er

Sy
st

em
s

An
al

ys
t

D
at

ab
as

e
D

es
ig

ne
r

Ap
pl

ic
at

io
ns

D
es

ig
ne

r
Sy

st
em

s
An

al
ys

t
G

en
er

al
Su

pp
or

t
D

SS
An

al
ys

t

$
35

.7
5

$
96

.7
5

$1
05

.0
0

$
48

.1
0

$
96

.7
5

$
18

.3
6

$
45

.9
5

25
.6

45
.8

56
.3

33
.1

23
.6

30
.5

41
.4

$
91

5.
20

$
4,

43
1.

15
$

5,
91

1.
50

$
1,

59
2.

11
$

2,
28

3.
30

$
55

9.
98

$
1,

90
2.

33
Su

bt
ot

al
$1

7,
59

5.
57

To
ta

l
$4

9,
19

9.
69

N
ot

e:
*

in
di

ca
te

s
pr

oj
ec

tl
ea

de
r

C6545_05 8/20/2007 8:25:5 Page 154

154 C H A P T E R 5

The easiest short-term way to generate the required report might seem to be a table whose contents correspond to
the reporting requirements. See Figure 5.1.

Note that the data in Figure 5.1 reflects the assignment of employees to projects. Apparently, an employee can be
assigned to more than one project. For example, Darlene Smithson (EMP_NUM = 112) has been assigned to two
projects: Amber Wave and Starflight. Given the structure of the data set, each project includes only a single occurrence
of any one employee. Therefore, knowing the PROJ_NUM and EMP_NUM value will let you find the job classification
and its hourly charge. In addition, you will know the total number of hours each employee worked on each project.
(The total charge—a derived attribute whose value can be computed by multiplying the hours billed and the charge per
hour—has not been included in Figure 5.1. No structural harm is done if this derived attribute is included.)

Unfortunately, the structure of the data set in Figure 5.1 does not conform to the requirements discussed in Chapter 3,
nor does it handle data very well. Consider the following deficiencies:

1. The project number (PROJ_NUM) is apparently intended to be a primary key or at least a part of a PK, but it
contains nulls. (Given the preceding discussion, you know that PROJ_NUM + EMP_NUM will define each row.)

2. The table entries invite data inconsistencies. For example, the JOB_CLASS value “Elect. Engineer” might be
entered as “Elect.Eng.” in some cases, “El. Eng.” in others, and “EE” in still others.

3. The table displays data redundancies. Those data redundancies yield the following anomalies:

a. Update anomalies. Modifying the JOB_CLASS for employee number 105 requires (potentially) many
alterations, one for each EMP_NUM = 105.

O n l i n e C o n t e n t

The databases used to illustrate the material in this chapter are found in the Student Online Companion.

FIGURE
5.1

Tabular representation of the report format

Table name: RPT_FORMAT Database name: Ch05_ConstructCo

C6545_05 7/1/2007 6:18:16 Page 155

155N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

b. Insertion anomalies. Just to complete a row definition, a new employee must be assigned to a project. If
the employee is not yet assigned, a phantom project must be created to complete the employee data entry.

c. Deletion anomalies. Suppose that only one employee is associated with a given project. If that employee
leaves the company and the employee data are deleted, the project information will also be deleted. To
prevent the loss of the project information, a fictitious employee must be created just to save the project
information.

In spite of those structural deficiencies, the table structure appears to work; the report is generated with ease.
Unfortunately, the report might yield varying results depending on what data anomaly has occurred. For example, if
you want to print a report to show the total “hours worked” value by the job classification “Database Designer,” that
report will not include data for “DB Design” and “Database Design” data entries. Such reporting anomalies cause a
multitude of problems for managers—and cannot be fixed through applications programming.

Even if very careful data entry auditing can eliminate most of the reporting problems (at a high cost), it is easy to
demonstrate that even a simple data entry becomes inefficient. Given the existence of update anomalies, suppose
Darlene M. Smithson is assigned to work on the Evergreen project. The data entry clerk must update the PROJECT
file with the entry:

15 Evergreen 112 Darlene M. Smithson DSS Analyst $45.95 0.0

to match the attributes PROJ_NUM, PROJ_NAME, EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR, and
HOURS. (When Ms. Smithson has just been assigned to the project, she has not yet worked, so the total number of
hours worked is 0.0.)

Each time another employee is assigned to a project, some data entries (such as PROJ_NAME, EMP_NAME, and
CHG_HOUR) are unnecessarily repeated. Imagine the data entry chore when 200 or 300 table entries must be made!
Note that the entry of the employee number should be sufficient to identify Darlene M. Smithson, her job description,
and her hourly charge. Because there is only one person identified by the number 112, that person’s characteristics
(name, job classification, and so on) should not have to be typed in each time the main file is updated. Unfortunately,
the structure displayed in Figure 5.1 does not make allowances for that possibility.

The data redundancy evident in Figure 5.1 leads to wasted disk space. What’s more, data redundancy produces data
anomalies. For example, suppose the data entry clerk had entered the data as:

15 Evergeen 112 Darla Smithson DCS Analyst $45.95 0.0

At first glance, the data entry appears to be correct. But is Evergeen the same project as Evergreen? And is DCS
Analyst supposed to be DSS Analyst? Is Darla Smithson the same person as Darlene M. Smithson? Such confusion
is a data integrity problem that was caused because the data entry failed to conform to the rule that all copies of
redundant data must be identical.

The possibility of introducing data integrity problems caused by data redundancy must be considered when a database
is designed. The relational database environment is especially well suited to help the designer overcome those
problems.

Note

Remember that the naming convention makes it easy to see what each attribute stands for and what its likely
origin is. For example, PROJ_NAME uses the prefix PROJ to indicate that the attribute is associated with the
PROJECT table, while the NAME component is self-documenting, too. However, keep in mind that name length
is also an issue, especially in the prefix designation. For that reason, the prefix CHG was used rather than
CHARGE. (Given the database’s context, it is not likely that that prefix will be misunderstood.)

C6545_05 8/20/2007 8:26:20 Page 156

156 C H A P T E R 5

5.3 THE NORMALIZATION PROCESS

In this section, you learn how to use normalization to produce a set of normalized tables to store the data that will be
used to generate the required information. The objective of normalization is to ensure that each table conforms to the
concept of well-formed relations, that is, tables that have the following characteristics:

� Each table represents a single subject. For example, a course table will contain only data that directly pertains
to courses. Similarly, a student table will contain only student data.

� No data item will be unnecessarily stored in more than one table (in short, tables have minimum controlled
redundancy). The reason for this requirement is to ensure that the data are updated in only one place.

� All nonprime attributes in a table are dependent on the primary key—the entire primary key and nothing but
the primary key. The reason for this requirement is to ensure that the data are uniquely identifiable by a primary
key value.

� Each table is void of insertion, update, or deletion anomalies. This is to ensure the integrity and consistency
of the data.

To accomplish the objective, the normalization process takes you through the steps that lead to successively higher
normal forms. The most common normal forms and their basic characteristic are listed in Table 5.2. You will learn the
details of these normal forms in the indicated sections.

TABLE
5.2

Normal Forms

NORMAL FORM CHARACTERISTIC SECTION
First normal form (1NF) Table format, no repeating groups, and PK identified 5.3.1
Second normal form (2NF) 1NF and no partial dependencies 5.3.2
Third normal form (3NF) 2NF and no transitive dependencies 5.3.3
Boyce-Codd normal form (BCNF) Every determinant is a candidate key (special case of 3NF) 5.6.1
Fourth normal form (4NF) 3NF and no independent multivalued dependencies 5.6.2

From the data modeler’s point of view, the objective of normalization is to ensure that all tables are at least in third
normal form (3NF). Even higher-level normal forms exist. However, normal forms such as the fifth normal form (5NF)
and domain-key normal form (DKNF) are not likely to be encountered in a business environment and are mainly of
theoretical interest. More often than not, such higher normal forms usually increase joins (slowing performance)
without adding any value in the elimination of data redundancy. Some very specialized applications, such as statistical
research, might require normalization beyond the 4NF, but those applications fall outside the scope of most business
operations. Because this book focuses on practical applications of database techniques, the higher-level normal forms
are not covered.

Functional Dependency
Before outlining the normalization process, it’s a good idea to review the concepts of determination and functional
dependency that were covered in detail in Chapter 3. Table 5.3 summarizes the main concepts.

C6545_05 8/20/2007 8:27:44 Page 157

157N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

TABLE
5.3

Functional Dependency Concepts

CONCEPT DEFINITION
Functional dependency The attribute B is fully functionally dependent on the attribute A if each value of A

determines one and only one value of B.
Example: PROJ_NUM → PROJ_NAME
(read as “PROJ_NUM functionally determines PROJ_NAME)
In this case, the attribute PROJ_NUM is known as the “determinant” attribute

and the attribute PROJ_NAME is known as the “dependent” attribute.
Functional dependency
(generalized definition)

Attribute A determines attribute B (that is, B is functionally dependent on A) if all
of the rows in the table that agree in value for attribute A also agree in value for
attribute B.

Fully functional dependency
(composite key)

If attribute B is functionally dependent on a composite key A but not on any sub-
set of that composite key, the attribute B is fully functionally dependent on A.

It is crucial to understand these concepts because they are used to derive the set of functional dependencies for a given
relation. The normalization process works one relation at a time, identifying the dependencies on that relation and
normalizing the relation. As you will see in the following sections, normalization starts by identifying the dependencies
of a given relation and progressively breaking up the relation (table) into a set of new relations (tables) based on the
identified dependencies.

5.3.1 Conversion to First Normal Form

Because the relational model views data as part of a table or a collection of tables in which all key values must be
identified, the data depicted in Figure 5.1 might not be stored as shown. Note that Figure 5.1 contains what is known
as repeating groups. A repeating group derives its name from the fact that a group of multiple entries of the same
type can exist for any single key attribute occurrence. In Figure 5.1, note that each single project number
(PROJ_NUM) occurrence can reference a group of related data entries. For example, the Evergreen project
(PROJ_NUM = 15) shows five entries at this point—and those entries are related because they each share the
PROJ_NUM = 15 characteristic. Each time a new record is entered for the Evergreen project, the number of entries
in the group grows by one.

A relational table must not contain repeating groups. The existence of repeating groups provides evidence that the
RPT_FORMAT table in Figure 5.1 fails to meet even the lowest normal form requirements, thus reflecting data
redundancies.

Normalizing the table structure will reduce the data redundancies. If repeating groups do exist, they must be eliminated
by making sure that each row defines a single entity. In addition, the dependencies must be identified to diagnose the
normal form. Identification of the normal form will let you know where you are in the normalization process. The
normalization process starts with a simple three-step procedure.

Step 1: Eliminate the Repeating Groups
Start by presenting the data in a tabular format, where each cell has a single value and there are no repeating groups.
To eliminate the repeating groups, eliminate the nulls by making sure that each repeating group attribute contains an
appropriate data value. That change converts the table in Figure 5.1 to 1NF in Figure 5.2.

C6545_05 7/1/2007 6:22:9 Page 158

158 C H A P T E R 5

Step 2: Identify the Primary Key
The layout in Figure 5.2 represents more than a mere cosmetic change. Even a casual observer will note that
PROJ_NUM is not an adequate primary key because the project number does not uniquely identify all of the remaining
entity (row) attributes. For example, the PROJ_NUM value 15 can identify any one of five employees. To maintain a
proper primary key that will uniquely identify any attribute value, the new key must be composed of a combination
of PROJ_NUM and EMP_NUM. For example, using the data shown in Figure 5.2, if you know that PROJ_NUM =
15 and EMP_NUM = 103, the entries for the attributes PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOUR, and
HOURS must be Evergreen, June E. Arbough, Elect. Engineer, $84.50, and 23.8, respectively.

Step 3: Identify All Dependencies
The identification of the PK in Step 2 means that you have already identified the following dependency:

PROJ_NUM, EMP_NUM → PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOUR, HOURS

That is, the PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOUR, and HOURS values are all dependent on—that
is, they are determined by—the combination of PROJ_NUM and EMP_NUM. There are additional dependencies. For
example, the project number identifies (determines) the project name. In other words, the project name is dependent
on the project number. You can write that dependency as:

PROJ_NUM → PROJ_NAME

Also, if you know an employee number, you also know that employee’s name, that employee’s job classification, and
that employee’s charge per hour. Therefore, you can identify the dependency shown next:

EMP_NUM → EMP_NAME, JOB_CLASS, CHG_HOUR

FIGURE
5.2

A table in first normal form

Table name: DATA_ORG_1NF Database name: Ch05_ConstructCo

C6545_05 7/1/2007 6:22:28 Page 159

159N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

However, given the previous dependency components, you can see that knowing the job classification means knowing
the charge per hour for that job classification. In other words, you can identify one last dependency:

JOB_CLASS → CHG_HOUR

The dependencies you have just examined can also be depicted with the help of the diagram shown in Figure 5.3.
Because such a diagram depicts all dependencies found within a given table structure, it is known as a dependency
diagram. Dependency diagrams are very helpful in getting a bird’s-eye view of all of the relationships among a table’s
attributes, and their use makes it less likely that you will overlook an important dependency.

As you examine Figure 5.3, note the following dependency diagram features:

1. The primary key attributes are bold, underlined, and shaded in a different color.

2. The arrows above the attributes indicate all desirable dependencies, that is, dependencies that are based on the
primary key. In this case, note that the entity’s attributes are dependent on the combination of PROJ_NUM
and EMP_NUM.

3. The arrows below the dependency diagram indicate less desirable dependencies. Two types of such
dependencies exist:

a. Partial dependencies. You need to know only the PROJ_NUM to determine the PROJ_NAME; that is, the
PROJ_NAME is dependent on only part of the primary key. And you need to know only the EMP_NUM
to find the EMP_NAME, the JOB_CLASS, and the CHG_HOUR. A dependency based on only a part of
a composite primary key is called a partial dependency.

b. Transitive dependencies. Note that CHG_HOUR is dependent on JOB_CLASS. Because neither
CHG_HOUR nor JOB_CLASS is a prime attribute—that is, neither attribute is at least part of a key—the
condition is known as a transitive dependency. In other words, a transitive dependency is a dependency
of one nonprime attribute on another nonprime attribute. The problem with transitive dependencies is that
they still yield data anomalies.

TRANSITIVE DEPENDENCY:
(JOB CLASS CHG_HOUR)

PARTIAL DEPENDENCIES:
(PROJ_NUM PROJ_NAME)
(EMP_NUM EMP_NAME, JOB_CLASS, CHG_HOUR)

EMP_NUM EMP_NAMEPROJ_NUM PROJ_NAME CHG_HOURJOB_CLASS HOURS

Transitive
dependency

Partial dependency

Partial dependencies

1NF (PROJ_NUM, EMP_NUM, PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOURS, HOURS)

FIGURE
5.3

First normal form (1NF) dependency diagram

C6545_05 7/1/2007 7:8:0 Page 160

160 C H A P T E R 5

Note that Figure 5.3 includes the relational schema for the table in 1NF and a textual notation for each identified
dependency.

All relational tables satisfy the 1NF requirements. The problem with the 1NF table structure shown in Figure 5.3 is that
it contains partial dependencies—that is, dependencies based on only a part of the primary key.

While partial dependencies are sometimes used for performance reasons, they should be used with caution. (If the
information requirements seem to dictate the use of partial dependencies, it is time to evaluate the need for a data
warehouse design, discussed in Chapter 13, Business Intelligence and Data Warehouses.) Such caution is warranted
because a table that contains partial dependencies is still subject to data redundancies, and therefore, to various
anomalies. The data redundancies occur because every row entry requires duplication of data. For example, if Alice
K. Johnson submits her work log, then the user would have to make multiple entries during the course of a day. For
each entry, the EMP_NAME, JOB_CLASS, and CHG_HOUR must be entered each time even though the attribute
values are identical for each row entered. Such duplication of effort is very inefficient. What’s more, the duplication
of effort helps create data anomalies; nothing prevents the user from typing slightly different versions of the employee
name, the position, or the hourly pay. For instance, the employee name for EMP_NUM = 102 might be entered as
Dave Senior or D. Senior. The project name also might be entered correctly as Evergreen or misspelled as Evergeen.
Such data anomalies violate the relational database’s integrity and consistency rules.

5.3.2 Conversion to Second Normal Form

Converting to 2NF is done only when the 1NF has a composite primary key. If the 1NF has a single attribute primary
key, then the table is automatically in 2NF. The 1NF-to-2NF conversion is simple. Starting with the 1NF format
displayed in Figure 5.3, you do the following:

Step 1: Write Each Key Component on a Separate Line
Write each key component on a separate line; then write the original (composite) key on the last line. For example:

PROJ_NUM

EMP_NUM

PROJ_NUM EMP_NUM

Each component will become the key in a new table. In other words, the original table is now divided into three tables
(PROJECT, EMPLOYEE, and ASSIGNMENT).

Step 2: Assign Corresponding Dependent Attributes
Use Figure 5.3 to determine those attributes that are dependent on other attributes. The dependencies for the original
key components are found by examining the arrows below the dependency diagram shown in Figure 5.3. In other
words, the three new tables (PROJECT, EMPLOYEE, and ASSIGNMENT) are described by the following relational
schemas:

PROJECT (PROJ_NUM, PROJ_NAME)

Note

The term first normal form (1NF) describes the tabular format in which:

• All of the key attributes are defined.

• There are no repeating groups in the table. In other words, each row/column intersection contains one and
only one value, not a set of values.

• All attributes are dependent on the primary key.

C6545_05 7/1/2007 7:8:12 Page 161

161N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR)

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Because the number of hours spent on each project by each employee is dependent on both PROJ_NUM and
EMP_NUM in the ASSIGNMENT table, you place those hours in the ASSIGNMENT table as ASSIGN_HOURS.

The results of Steps 1 and 2 are displayed in Figure 5.4. At this point, most of the anomalies discussed earlier have
been eliminated. For example, if you now want to add, change, or delete a PROJECT record, you need to go only to
the PROJECT table and make the change to only one row.

Because a partial dependency can exist only when a table’s primary key is composed of several attributes, a table
whose primary key consists of only a single attribute is automatically in 2NF once it is in 1NF.

Figure 5.4 still shows a transitive dependency, which can generate anomalies. For example, if the charge per hour
changes for a job classification held by many employees, that change must be made for each of those employees. If
you forget to update some of the employee records that are affected by the charge per hour change, different
employees with the same job description will generate different hourly charges.

Note

The ASSIGNMENT table contains a composite primary key composed of the attributes PROJ_NUM and
EMP_NUM. Any attribute that is at least part of a key is known as a prime attribute or a key attribute.
Therefore, both PROJ_NUM and EMP_NUM are prime (or key) attributes. Conversely, a nonprime attribute,
or a nonkey attribute, is not part of any key.

TRANSITIVE DEPENDENCY
(JOB_CLASS CHG_HOUR)

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR)

PROJECT (PROJ_NUM, PROJ_NAME)

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

FIGURE
5.4

Second normal form (2NF) conversion results

Table name: ASSIGNMENT

Table name: EMPLOYEE

PROJ_NUM PROJ_NAME

Table name: PROJECT

PROJ_NUM EMP_NUM ASSIGN_HOURS

EMP_NUM EMP_NAME CHG_HOURJOB_CLASS

Transitive
dependency

C6545_05 8/20/2007 8:56:49 Page 162

162 C H A P T E R 5

5.3.3 Conversion to Third Normal Form

The data anomalies created by the database organization shown in Figure 5.4 are easily eliminated by completing the
following three steps:

Step 1: Identify Each New Determinant
For every transitive dependency, write its determinant as a PK for a new table. A determinant is any attribute whose
value determines other values within a row. If you have three different transitive dependencies, you will have three
different determinants. Figure 5.4 shows only one table that contains a transitive dependency. Therefore, write the
determinant for this transitive dependency as:

JOB_CLASS

Step 2: Identify the Dependent Attributes
Identify the attributes that are dependent on each determinant identified in Step 1 and identify the dependency. In this
case, you write:

JOB_CLASS → CHG_HOUR

Name the table to reflect its contents and function. In this case, JOB seems appropriate.

Step 3: Remove the Dependent Attributes from Transitive Dependencies
Eliminate all dependent attributes in the transitive relationship(s) from each of the tables that have such a transitive
relationship. In this example, eliminate CHG_HOUR from the EMPLOYEE table shown in Figure 5.4 to leave the
EMPLOYEE table dependency definition as:

EMP_NUM → EMP_NAME, JOB_CLASS

Note that the JOB_CLASS remains in the EMPLOYEE table to serve as the FK.

Draw a new dependency diagram to show all of the tables you have defined in Steps 1−3. Check the new tables as
well as the tables you modified in Step 3 to make sure that each table has a determinant and that no table contains
inappropriate dependencies.

When you have completed Steps 1–3, you will see the results in Figure 5.5. (The usual procedure is to complete Steps 1–3
by simply drawing the revisions as you make them.)

Note

A table is in second normal form (2NF) when:

• It is in 1NF.
and

• It includes no partial dependencies; that is, no attribute is dependent on only a portion of the primary key.
Note that it is still possible for a table in 2NF to exhibit transitive dependency; that is, one or more attributes

may be functionally dependent on nonkey attributes.

C6545_05 7/1/2007 7:10:46 Page 163

163N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

In other words, after the 3NF conversion has been completed, your database contains four tables:

PROJECT (PROJ_NUM, PROJ_NAME)

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS)

JOB (JOB_CLASS, CHG_HOUR)

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Note that this conversion has eliminated the original EMPLOYEE table’s transitive dependency; the tables are now said
to be in third normal form (3NF).

5.4 IMPROVING THE DESIGN

The table structures are cleaned up to eliminate the troublesome partial and transitive dependencies. You can now
focus on improving the database’s ability to provide information and on enhancing its operational characteristics. In
the next few paragraphs, you will learn about the various types of issues you need to address to produce a good
normalized set of tables. Please note that for space issues, each section presents just one example—the designer must
apply the principle to all remaining tables in the design. Remember that normalization cannot, by itself, be relied on
to make good designs. Instead, normalization is valuable because its use helps eliminate data redundancies.

FIGURE
5.5

Third normal form (3NF) conversion results

Table name: JOB

JOB (JOB_CLASS, CHG_HOUR)

JOB_CLASS CHG_HOUR

Table name: PROJECT

PROJECT (PROJ_NUM, PROJ_NAME)

PROJ_NUM PROJ_NAME EMP_NUM EMP_NAME JOB_CLASS

Table name: EMPLOYEE

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS)

PROJ_NUM EMP_NUM ASSIGN_HOURS

Table name: ASSIGNMENT

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Note

A table is in third normal form (3NF) when:

• It is in 2NF.
and

• It contains no transitive dependencies.

C6545_05 7/1/2007 7:10:57 Page 164

164 C H A P T E R 5

Evaluate PK Assignments
Each time a new employee is entered into the EMPLOYEE table, a JOB_CLASS value must be entered. Unfortunately,
it is too easy to make data-entry errors that lead to referential integrity violations. For example, entering DB Designer
instead of Database Designer for the JOB_CLASS attribute in the EMPLOYEE table will trigger such a violation.
Therefore, it would be better to add a JOB_CODE attribute to create a unique identifier. The addition of a JOB_CODE
attribute produces the dependency:

JOB_CODE → JOB_CLASS, CHG_HOUR

If you assume that the JOB_CODE is a proper primary key, this new attribute does produce the transitive dependency:

JOB_CLASS → CHG_HOUR

A transitive dependency exists because a nonkey attribute—the JOB_CLASS—determines the value of another nonkey
attribute—the CHG_HOUR. However, that transitive dependency is an easy price to pay; the presence of JOB_CODE
greatly decreases the likelihood of referential integrity violations. Note that the new JOB table now has two candidate
keys—JOB_CODE and JOB_CLASS. In this case, JOB_CODE is the chosen primary key as well as a surrogate key.
A surrogate key is an artificial PK introduced by the designer with the purpose of simplifying the assignment of
primary keys to tables. Surrogate keys are usually numeric, they are often automatically generated by the DBMS, they
are free of semantic content (they have no special meaning), and they are usually hidden from the end users. You will
learn more about PK characteristics and assignment in Chapter 6, Advanced Data Modeling.

Evaluate Naming Conventions
It is best to adhere to the naming conventions outlined in Chapter 2, Data Models. Therefore, CHG_HOUR will be
changed to JOB_CHG_HOUR to indicate its association with the JOB table. In addition, the attribute name JOB_CLASS
does not quite describe entries such as Systems Analyst, Database Designer, and so on; the label JOB_DESCRIPTION fits
the entries better. Also, you might have noticed that HOURS was changed to ASSIGN_HOURS in the conversion from
1NF to 2NF. That change lets you associate the hours worked with the ASSIGNMENT table.

Refine Attribute Atomicity
It generally is good practice to pay attention to the atomicity requirement. An atomic attribute is one that cannot
be further subdivided. Such an attribute is said to display atomicity. Clearly, the use of the EMP_NAME in the
EMPLOYEE table is not atomic because EMP_NAME can be decomposed into a last name, a first name, and an initial.
By improving the degree of atomicity, you also gain querying flexibility. For example, if you use EMP_LNAME,
EMP_FNAME, and EMP_INITIAL, you can easily generate phone lists by sorting last names, first names, and initials.
Such a task would be very difficult if the name components were within a single attribute. In general, designers prefer
to use simple, single-valued attributes as indicated by the business rules and processing requirements.

Identify New Attributes
If the EMPLOYEE table were used in a real-world environment, several other attributes would have to be added. For
example, year-to-date gross salary payments, Social Security payments, and Medicare payments would be desirable.
Adding an employee hire date attribute (EMP_HIREDATE) could be used to track an employee’s job longevity and serve
as a basis for awarding bonuses to long-term employees and for other morale-enhancing measures. The same principle
must be applied to all other tables in your design.

Identify New Relationships
The system’s ability to supply detailed information about each project’s manager is ensured by using the EMP_NUM
as a foreign key in PROJECT. That action ensures that you can access the details of each PROJECT’s manager data
without producing unnecessary and undesirable data duplication. The designer must take care to place the right
attributes in the right tables by using normalization principles.

C6545_05 7/1/2007 6:26:53 Page 165

165N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Refine Primary Keys as Required for Data Granularity
Granularity refers to the level of detail represented by the values stored in a table’s row. Data stored at their lowest
level of granularity are said to be atomic data, as explained earlier. In Figure 5.5, the ASSIGNMENT table in 3NF
uses the ASSIGN_HOURS attribute to represent the hours worked by a given employee on a given project. However,
are those values recorded at their lowest level of granularity? In other words, do the ASSIGN_HOURS represent the
hourly total, daily total, weekly total, monthly total, or yearly total? Clearly, ASSIGN_HOURS requires more careful
definition. In this case, the relevant question would be as follows: For what time frame—hour, day, week, month, and
so on—do you want to record the ASSIGN_HOURS data?

For example, assume that the combination of EMP_NUM and PROJ_NUM is an acceptable (composite) primary key
in the ASSIGNMENT table. That primary key is useful in representing only the total number of hours an employee
worked on a project since its start. Using a surrogate primary key such as ASSIGN_NUM provides lower granularity
and yields greater flexibility. For example, assume that the EMP_NUM and PROJ_NUM combination is used as the
primary key, and then an employee makes two “hours worked” entries in the ASSIGNMENT table. That action violates
the entity integrity requirement. Even if you add the ASSIGN_DATE as part of a composite PK, an entity integrity
violation is still generated if any employee makes two or more entries for the same project on the same day. (The
employee might have worked on the project a few hours in the morning and then worked on it again later in the day.)
The same data entry yields no problems when ASSIGN_NUM is used as the primary key.

Maintain Historical Accuracy
Writing the job charge per hour into the ASSIGNMENT table is crucial to maintaining the historical accuracy of the
data in the ASSIGNMENT table. It would be appropriate to name this attribute ASSIGN_CHG_HOUR. Although this
attribute would appear to have the same value as JOB_CHG_HOUR, that is true only if the JOB_CHG_HOUR value
remains forever the same. However, it is reasonable to assume that the job charge per hour will change over time. But
suppose that the charges to each project were figured (and billed) by multiplying the hours worked on the project, found
in the ASSIGNMENT table, by the charge per hour, found in the JOB table. Those charges would always show the
current charge per hour stored in the JOB table, rather than the charge per hour that was in effect at the time of the
assignment.

Evaluate Using Derived Attributes
Finally, you can use a derived attribute in the ASSIGNMENT table to store the actual charge made to a project. That
derived attribute, to be named ASSIGN_CHARGE, is the result of multiplying the ASSIGN_HOURS by the
ASSIGN_CHG_HOUR. From a strictly database point of view, such derived attribute values can be calculated when
they are needed to write reports or invoices. However, storing the derived attribute in the table makes it easy to write
the application software to produce the desired results. Also, if many transactions must be reported and/or
summarized, the availability of the derived attribute will save reporting time. (If the calculation is done at the time of
data entry, it will be completed when the end user presses the Enter key, thus speeding up the process.)

The enhancements described in the preceding sections are illustrated in the tables and dependency diagrams shown
in Figure 5.6.

Note

In an ideal (database design) world, the level of desired granularity is determined at the conceptual design or at
the requirements gathering phase. However, as you have already seen in this chapter, many database designs
involve the refinement of existing data requirements, thus triggering design modifications. In a real-world
environment, changing granularity requirements might dictate changes in primary key selection, and those
changes might ultimately require the use of surrogate keys.

C6545_05 7/1/2007 7:10:13 Page 166

166 C H A P T E R 5

Table name: PROJECT Table name: JOB

Database name: Ch05_ConstructCo

Table name: JOB

Table name: ASSIGNMENT

ASSIGN_NUM ASSIGN_DATE PROJ_NUM EMP_NUM ASSIGN_HOURS ASSIGN_CHG_HOUR ASSIGN_CHARGE

Table name: ASSIGNMENT

FIGURE
5.6

The completed database

Table name: PROJECT

PROJ_NUM PROJ_NAME EMP_NUM JOB_CODE JOB_DESCRIPTION JOB_CHG_HOUR

C6545_05 7/1/2007 6:29:32 Page 167

167N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Figure 5.6 is a vast improvement over the original database design. If the application software is designed properly,
the most active table (ASSIGNMENT) requires the entry of only the PROJ_NUM, EMP_NUM, and ASSIGN_HOURS
values. The values for the attributes ASSIGN_NUM and ASSIGN_DATE can be generated by the application. For
example, the ASSIGN_NUM can be created by using a counter, and the ASSIGN_DATE can be the system date read
by the application and automatically entered into the ASSIGNMENT table. In addition, the application software can
automatically insert the correct ASSIGN_CHG_HOUR value by writing the appropriate JOB table’s JOB_CHG_
HOUR value into the ASSIGNMENT table. (The JOB and ASSIGNMENT tables are related through the JOB_CODE
attribute.) If the JOB table’s JOB_CHG_HOUR value changes, the next insertion of that value into the ASSIGNMENT
table will reflect the change automatically. The table structure thus minimizes the need for human intervention. In fact,
if the system requires the employees to enter their own work hours, they can scan their EMP_NUM into the
ASSIGNMENT table by using a magnetic card reader that enters their identity. Thus, the ASSIGNMENT table’s
structure can set the stage for maintaining some desired level of security.

5.5 SURROGATE KEY CONSIDERATIONS

Although this design meets the vital entity and referential integrity requirements, the designer still must address some
concerns. For example, a composite primary key might become too cumbersome to use as the number of attributes
grows. (It becomes difficult to create a suitable foreign key when the related table uses a composite primary key. In
addition, a composite primary key makes it more difficult to write search routines.) Or a primary key attribute might
simply have too much descriptive content to be usable—which is why the JOB_CODE attribute was added to the JOB

FIGURE
5.6

The completed database (continued)

Table name: EMPLOYEE

EMP_NUM EMP_LNAME EMP_FNAME EMP_INITIAL EMP_HIREDATE JOB_CODE

Table name: EMPLOYEE

C6545_05 8/20/2007 8:58:45 Page 168

168 C H A P T E R 5

table to serve as that table’s primary key. When, for whatever reason, the primary key is considered to be unsuitable,
designers use surrogate keys.

At the implementation level, a surrogate key is a system-defined attribute generally created and managed via the
DBMS. Usually, a system-defined surrogate key is numeric, and its value is automatically incremented for each new
row. For example, Microsoft Access uses an AutoNumber data type, Microsoft SQL Server uses an identity column,
and Oracle uses a sequence object.

Recall from Section 5.4 that the JOB_CODE attribute was designated to be the JOB table’s primary key. However,
remember that the JOB_CODE does not prevent duplicate entries from being made, as shown in the JOB table in
Table 5.4.

TABLE
5.4

Duplicate Entries in the Job Table

JOB_CODE JOB_DESCRIPTION JOB_CHG_HOUR
511 Programmer $35.75
512 Programmer $35.75

Clearly, the data entries in Table 5.4 are inappropriate because they duplicate existing records—yet there has been no
violation of either entity integrity or referential integrity. This “multiple duplicate records” problem was created when
the JOB_CODE attribute was added as the PK. (When the JOB_DESCRIPTION was initially designated to be the PK,
the DBMS would ensure unique values for all job description entries when it was asked to enforce entity integrity. But
that option created the problems that caused use of the JOB_CODE attribute in the first place!) In any case, if
JOB_CODE is to be the surrogate PK, you still must ensure the existence of unique values in the JOB_DESCRIPTION
through the use of a unique index.

Note that all of the remaining tables (PROJECT, ASSIGNMENT, and EMPLOYEE) are subject to the same limitations.
For example, if you use the EMP_NUM attribute in the EMPLOYEE table as the PK, you can make multiple entries
for the same employee. To avoid that problem, you might create a unique index for EMP_LNAME, EMP_FNAME, and
EMP_INITIAL. But how would you then deal with two employees named Joe B. Smith? In that case, you might use
another (preferably externally defined) attribute to serve as the basis for a unique index.

It is worth repeating that database design often involves trade-offs and the exercise of professional judgment. In a
real-world environment, you must strike a balance between design integrity and flexibility. For example, you might
design the ASSIGNMENT table to use a unique index on PROJ_NUM, EMP_NUM, and ASSIGN_DATE if you want
to limit an employee to only one ASSIGN_HOURS entry per date. That limitation would ensure that employees
couldn’t enter the same hours multiple times for any given date. Unfortunately, that limitation is likely to be undesirable
from a managerial point of view. After all, if an employee works several different times on a project during any given
day, it must be possible to make multiple entries for that same employee and the same project during that day. In that
case, the best solution might be to add a new externally defined attribute—such as a stub, voucher, or ticket
number—to ensure uniqueness. In any case, frequent data audits would be appropriate.

5.6 HIGHER-LEVEL NORMAL FORMS

Tables in 3NF will perform suitably in business transactional databases. However, there are occasions when higher
normal forms are useful. In this section, you learn about a special case of 3NF, known as Boyce-Codd normal form
(BCNF), and about fourth normal form (4NF).

C6545_05 7/1/2007 6:30:0 Page 169

169N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

5.6.1 The Boyce-Codd Normal Form (BCNF)

A table is in Boyce-Codd normal form (BCNF) when every determinant in the table is a candidate key. (Recall from
Chapter 3 that a candidate key has the same characteristics as a primary key, but for some reason, it was not chosen
to be the primary key.) Clearly, when a table contains only one candidate key, the 3NF and the BCNF are equivalent.
Putting that proposition another way, BCNF can be violated only when the table contains more than one
candidate key.

Most designers consider the BCNF to be a special case of the 3NF. In fact, if the techniques shown here are used, most
tables conform to the BCNF requirements once the 3NF is reached. So how can a table be in 3NF and not be in
BCNF? To answer that question, you must keep in mind that a transitive dependency exists when one nonprime
attribute is dependent on another nonprime attribute.

In other words, a table is in 3NF when it is in 2NF and there are no transitive dependencies. But what about a case
in which a nonkey attribute is the determinant of a key attribute? That condition does not violate 3NF, yet it fails to
meet the BCNF requirements because BCNF requires that every determinant in the table be a candidate key.

The situation just described (a 3NF table that fails to meet BCNF requirements) is shown in Figure 5.7.

Note these functional dependencies in Figure 5.7:

A + B → C, D

C → B

The table structure shown in Figure 5.7 has no partial
dependencies, nor does it contain transitive dependencies.
(The condition C → B indicates that a nonkey attribute
determines part of the primary key—and that dependency
is not transitive!) Thus, the table structure in Figure 5.7
meets the 3NF requirements. Yet the condition C → B
causes the table to fail to meet the BCNF requirements.

To convert the table structure in Figure 5.7 into table
structures that are in 3NF and in BCNF, first change the
primary key to A + C. That is an appropriate action because
the dependency C → B means that C is, in effect, a superset
of B. At this point, the table is in 1NF because it contains a
partial dependency C → B. Next, follow the standard decom-
position procedures to produce the results shown in
Figure 5.8.

Note

A table is in BCNF when every determinant in the table is a candidate key.

A B C D

FIGURE
5.7

A table that is in 3NF but not
in BCNF

C6545_05 7/1/2007 6:32:23 Page 170

170 C H A P T E R 5

To see how this procedure can be applied to an actual problem, examine the sample data in Table 5.5.

TABLE
5.5

Sample Data for a BCNF Conversion

STU_ID STAFF_ID CLASS_CODE ENROLL_GRADE
125 25 21334 A
125 20 32456 C
135 20 28458 B
144 25 27563 C
144 20 32456 B

Table 5.5 reflects the following conditions:

� Each CLASS_CODE identifies a class uniquely. This condition illustrates the case in which a course might
generate many classes. For example, a course labeled INFS 420 might be taught in two classes (sections), each
identified by a unique code to facilitate registration. Thus, the CLASS_CODE 32456 might identify INFS 420,
class section 1, while the CLASS_CODE 32457 might identify INFS 420, class section 2. Or the
CLASS_CODE 28458 might identify QM 362, class section 5.

A B C D

A C B D

A C D C B

3NF, but not BCNF

1NF

Partial dependency

3NF and BCNF 3NF and BCNF

FIGURE
5.8

Decomposition to BCNF

C6545_05 7/1/2007 6:32:55 Page 171

171N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

� A student can take many classes. Note, for example, that student 125 has taken both 21334 and 32456,
earning the grades A and C, respectively.

� A staff member can teach many classes, but each class is taught by only one staff member. Note that staff
member 20 teaches the classes identified as 32456 and 28458.

The structure shown in Table 5.5 is reflected in Panel A of Figure 5.9:

STU_ID + STAFF_ID → CLASS_CODE, ENROLL_GRADE

CLASS_CODE → STAFF_ID

Panel A of Figure 5.9 shows a structure that is clearly in 3NF, but the table represented by this structure has a major
problem, because it is trying to describe two things: staff assignments to classes and student enrollment information.
Such a dual-purpose table structure will cause anomalies. For example, if a different staff member is assigned to teach
class 32456, two rows will require updates, thus producing an update anomaly. And if student 135 drops class 28458,
information about who taught that class is lost, thus producing a deletion anomaly. The solution to the problem is to
decompose the table structure, following the procedure outlined earlier. Note that the decomposition of Panel B shown
in Figure 5.9 yields two table structures that conform to both 3NF and BCNF requirements.

Remember that a table is in BCNF when every determinant in that table is a candidate key. Therefore, when a table
contains only one candidate key, 3NF and BCNF are equivalent.

CLASS_CODE STAFF_IDSTU_ID CLASS_CODE ENROLL_GRADE

STU_ID STAFF_ID CLASS_CODE ENROLL_GRADE

Panel A: 3NF, but not BCNF

Panel B: 3NF and BCNF

FIGURE
5.9

Another BNCF decomposition

C6545_05 7/1/2007 6:33:14 Page 172

172 C H A P T E R 5

5.6.2 Fourth Normal Form (4NF)

You might encounter poorly designed databases, or you might be asked to convert spreadsheets into a database format
in which multiple multivalued attributes exist. For example, consider the possibility that an employee can have multiple
assignments and can also be involved in multiple service organizations. Suppose employee 10123 does volunteer work
for the Red Cross and United Way. In addition, the same employee might be assigned to work on three projects: 1,
3, and 4. Figure 5.10 illustrates how that set of facts can be recorded in very different ways.

There is a problem with the tables in Figure 5.10. The attributes ORG_CODE and ASSIGN_NUM each may have
many different values. That is, the tables contain two sets of independent multivalued dependencies. (One employee
can have many service entries and many assignment entries.) The presence of multiple sets of independent multivalued
dependencies means that if versions 1 and 2 are implemented, the tables are likely to contain quite a few null values;
in fact, the tables do not even have a viable candidate key. (The EMP_NUM values are not unique, so they cannot be
PKs. No combination of the attributes in table versions 1 and 2 can be used to create a PK because some of them
contain nulls.) Such a condition is not desirable, especially when there are thousands of employees, many of whom
may have multiple job assignments and many service activities. Version 3 at least has a PK, but it is composed of all
of the attributes in the table. In fact, version 3 meets 3NF requirements, yet it contains many redundancies that are
clearly undesirable.

The solution is to eliminate the problems caused by independent multivalued dependencies. You do this by creating the
ASSIGNMENT and SERVICE_V1 tables depicted in Figure 5.11. Note that in Figure 5.11, neither the ASSIGNMENT
nor the SERVICE_V1 table contains independent multivalued dependencies. Those tables are said to be in 4NF.

If you follow the proper design procedures illustrated in this book, you shouldn’t encounter the previously described
problem. Specifically, the discussion of 4NF is largely academic if you make sure that your tables conform to the
following two rules:

1. All attributes must be dependent on the primary key, but they must be independent of each other.

2. No row may contain two or more multivalued facts about an entity.

Table name: VOLUNTEER_V1

Database name: Ch05_Service

Table name: VOLUNTEER_V3

Table name: VOLUNTEER_V2

FIGURE
5.10

Tables with multivalued dependencies

C6545_05 7/1/2007 6:34:4 Page 173

173N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

5.7 NORMALIZATION AND DATABASE DESIGN

The tables shown in Figure 5.6 illustrate how normalization procedures can be used to produce good tables from poor
ones. You will likely have ample opportunity to put this skill into practice when you begin to work with real-world
databases. Normalization should be part of the design process. Therefore, make sure that proposed entities meet
the required normal form before the table structures are created. Keep in mind that if you follow the design procedures
discussed in Chapter 3 and Chapter 4 the likelihood of data anomalies will be small. But even the best database
designers are known to make occasional mistakes that come to light during normalization checks. However, many of
the real-world databases you encounter will have been improperly designed or burdened with anomalies if they were

The relational diagram

FIGURE
5.11

A set of tables in 4NF

Table name: EMPLOYEE Database name: Ch05_Service

Table name: PROJECT Table name: ORGANIZATION

Table name: ASSIGNMENT Table name: SERVICE_V1

Note

A table is in fourth normal form (4NF) when it is in 3NF and has no multiple sets of multivalued dependencies.

C6545_05 7/1/2007 7:9:27 Page 174

174 C H A P T E R 5

improperly modified during the course of time. And that means you might be asked to redesign and modify existing
databases that are, in effect, anomaly traps. Therefore, you should be aware of good design principles and procedures
as well as normalization procedures.

First, an ERD is created through an iterative process. You begin by identifying relevant entities, their attributes, and
their relationships. Then you use the results to identify additional entities and attributes. The ERD provides the big
picture, or macro view, of an organization’s data requirements and operations.

Second, normalization focuses on the characteristics of specific entities; that is, normalization represents a micro view
of the entities within the ERD. And as you learned in the previous sections of this chapter, the normalization process
might yield additional entities and attributes to be incorporated into the ERD. Therefore, it is difficult to separate the
normalization process from the ER modeling process; the two techniques are used in an iterative and incremental
process.

To illustrate the proper role of normalization in the design process, let’s reexamine the operations of the contracting
company whose tables were normalized in the preceding sections. Those operations can be summarized by using the
following business rules:

� The company manages many projects.

� Each project requires the services of many employees.

� An employee may be assigned to several different projects.

� Some employees are not assigned to a project and perform duties not specifically related to a project. Some
employees are part of a labor pool, to be shared by all project teams. For example, the company’s executive
secretary would not be assigned to any one particular project.

� Each employee has a single primary job classification. That job classification determines the hourly billing rate.

� Many employees can have the same job classification. For example, the company employs more than one
electrical engineer.

Given that simple description of the company’s operations, two entities and their attributes are initially defined:

� PROJECT (PROJ_NUM, PROJ_NAME)

� EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, JOB_DESCRIPTION,
JOB_CHG_HOUR)

Those two entities constitute the initial ERD shown in Figure 5.12.

After creating the initial ERD shown in Figure 5.12, the
normal forms are defined:

� PROJECT is in 3NF and needs no modification at
this point.

� EMPLOYEE requires additional scrutiny. The JOB_
DESCRIPTION attribute defines job classifications
such as Systems Analyst, Database Designer, and
Programmer. In turn, those classifications determine
the billing rate, JOB_CHG_HOUR. Therefore,
EMPLOYEE contains a transitive dependency.

The removal of EMPLOYEE’s transitive dependency yields three entities:

� PROJECT (PROJ_NUM, PROJ_NAME)

� EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, JOB_CODE)

� JOB (JOB_CODE, JOB_DESCRIPTION, JOB_CHG_HOUR)

FIGURE
5.12

Initial contracting company
ERD

C6545_05 7/1/2007 6:35:0 Page 175

175N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Because the normalization process yields an additional entity (JOB), the initial ERD is modified as shown in Figure 5.13.

To represent the M:N relationship between EMPLOYEE and PROJECT, you might think that two 1:M relationships
could be used—an employee can be assigned to many projects, and each project can have many employees assigned
to it. See Figure 5.14. Unfortunately, that representation yields a design that cannot be correctly implemented.

Because the M:N relationship between EMPLOYEE and PROJECT cannot be implemented, the ERD in Figure 5.14
must be modified to include the ASSIGNMENT entity to track the assignment of employees to projects, thus yielding
the ERD shown in Figure 5.15. The ASSIGNMENT entity in Figure 5.15 uses the primary keys from the entities
PROJECT and EMPLOYEE to serve as its foreign keys. However, note that in this implementation, the ASSIGNMENT
entity’s surrogate primary key is ASSIGN_NUM, to avoid the use of a composite primary key. Therefore, the “enters”

FIGURE
5.13

Modified contracting company ERD

FIGURE
5.14

Incorrect M:N relationship representation

C6545_05 7/1/2007 6:35:14 Page 176

176 C H A P T E R 5

relationship between EMPLOYEE and ASSIGNMENT and the “requires” relationship between PROJECT and
ASSIGNMENT are shown as weak or nonidentifying.

Note that in Figure 5.15, the ASSIGN_HOURS attribute is assigned to the composite entity named ASSIGNMENT.
Because you will likely need detailed information about each project’s manager, the creation of a “manages”
relationship is useful. The “manages” relationship is implemented through the foreign key in PROJECT. Finally, some
additional attributes may be created to improve the system’s ability to generate additional information. For example,
you may want to include the date on which the employee was hired (EMP_HIREDATE) to keep track of worker
longevity. Based on this last modification, the model should include four entities and their attributes:

PROJECT (PROJ_NUM, PROJ_NAME, EMP_NUM)

EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_HIREDATE, JOB_CODE)

JOB (JOB_CODE, JOB_DESCRIPTION, JOB_CHG_HOUR)

ASSIGNMENT (ASSIGN_NUM, ASSIGN_DATE, PROJ_NUM, EMP_NUM, ASSIGN_HOURS, ASSIGN_CHG_
HOUR, ASSIGN_CHARGE)

The design process is now on the right track. The ERD represents the operations accurately, and the entities now
reflect their conformance to 3NF. The combination of normalization and ER modeling yields a useful ERD, whose
entities may now be translated into appropriate table structures. In Figure 5.15, note that PROJECT is optional to
EMPLOYEE in the “manages” relationship. This optionality exists because not all employees manage projects. The
final database contents are shown in Figure 5.16.

FIGURE
5.15

Final contracting company ERD

C6545_05 7/1/2007 6:35:38 Page 177

177N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

5.8 DENORMALIZATION

It’s important to remember that the optimal relational database implementation requires that all tables be at least in
third normal form (3NF). A good relational DBMS excels at managing normalized relations; that is, relations void of
any unnecessary redundancies that might cause data anomalies. Although the creation of normalized relations is an
important database design goal, it is only one of many such goals. Good database design also considers processing (or
reporting) requirements and processing speed. The problem with normalization is that as tables are decomposed to
conform to normalization requirements, the number of database tables expands. Therefore, in order to generate
information, data must be put together from various tables. Joining a large number of tables takes additional

Table name: EMPLOYEE

Table name: JOB

Table name: ASSIGNMENT

Database name: Ch05_ConstructCo

Table name: PROJECT

FIGURE
5.16

The implemented database

C6545_05 8/20/2007 9:0:24 Page 178

178 C H A P T E R 5

input/output (I/O) operations and processing logic, thereby reducing system speed. Most relational database systems
are able to handle joins very efficiently. However, rare and occasional circumstances may allow some degree of
denormalization so processing speed can be increased.

Keep in mind that the advantage of higher processing speed must be carefully weighed against the disadvantage of data
anomalies. On the other hand, some anomalies are of only theoretical interest. For example, should people in a
real-world database environment worry that a ZIP_CODE determines CITY in a CUSTOMER table whose primary key
is the customer number? Is it really practical to produce a separate table for

ZIP (ZIP_CODE, CITY)

to eliminate a transitive dependency from the CUSTOMER table? (Perhaps your answer to that question changes if you
are in the business of producing mailing lists.) As explained earlier, the problem with denormalized relations and
redundant data is that the data integrity could be compromised due to the possibility of data anomalies (insert, update,
and deletion anomalies.) The advice is simple: use common sense during the normalization process.

Furthermore, the database design process could, in some cases, introduce some small degree of redundant data in the
model (as seen in the previous example). This, in effect, creates “denormalized” relations. Table 5.6 shows some
common examples of data redundancy that are generally found in database implementations.

TABLE
5.6

Common Denormalization Examples

CASE EXAMPLE RATIONALE AND CONTROLS
Redundant data Storing ZIP and CITY attributes in the CUS-

TOMER table when ZIP determines CITY. (See
Table 1.3.)

• Avoid extra join operations
• Program can validate city (drop-down

box) based on the zip code.
Derived data Storing STU_HRS and STU_CLASS (student

classification) when STU_HRS determines
STU_CLASS. (See Figure 3.29.)

• Avoid extra join operations
• Program can validate classification

(lookup) based on the student hours
Pre-aggregated
data (also
derived data)

Storing the student grade point average (STU_
GPA) aggregate value in the STUDENT table
when this can be calculated from the ENROLL
and COURSE tables. (See Figure 3.29.)

• Avoid extra join operations
• Program computes the GPA every time a

grade is entered or updated.
• STU_GPA can be updated only via

administrative routine.
Information
requirements

Using a temporary denormalized table to hold
report data. This is required when creating a
tabular report in which the columns represent
data that is stored in the table as rows. (See
Figure 5.17 and Figure 5.18.)

• Impossible to generate the data required
by the report using plain SQL.

• No need to maintain table. Temporary
table is deleted once report is done.

• Processing speed is not an issue.

A more comprehensive example of the need for denormalization due to reporting requirements is the case of a faculty
evaluation report in which each row list the scores obtained during the last four semesters taught. See Figure 5.17.

C6545_05 8/20/2007 9:1:17 Page 179

179N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Although this report seems simple enough, the problem arises from the fact that the data are stored in a normalized
table in which each row represents a different score for a given faculty in a given semester. See Figure 5.18.

The difficulty of transposing multirow data to multicolumnar data is compounded by the fact that the last four semesters
taught are not necessarily the same for all faculty members (some might have taken sabbaticals, some might have had
research appointments, some might be new faculty with only two semesters on the job, etc.) To generate this report,
the two tables you see in Figure 5.18 were used. The EVALDATA table is the master data table containing the
evaluation scores for each faculty member for each semester taught; this table is normalized. The FACHIST table
contains the last four data points—that is, evaluation score and semester—for each faculty member. The FACHIST
table is a temporary denormalized table created from the EVALDATA table via a series of queries. (The FACHIST table
is the basis for the report shown in Figure 5.17.)

FIGURE
5.17

The faculty evaluation report

FIGURE
5.18

The EVALDATA and FACHIST tables

Table name: FACHIST Database name: Ch05_EVALTable name: EVALDATA

Denormalized

Normalized

Repeating Group

C6545_05 7/1/2007 6:39:27 Page 180

180 C H A P T E R 5

As seen in the faculty evaluation report, the conflicts between design efficiency, information requirements, and
performance are often resolved through compromises that may include denormalization. In this case and assuming
there is enough storage space, the designer’s choices could be narrowed down to:

� Store the data in a permanent denormalized table. This is not the recommended solution, because the
denormalized table is subject to data anomalies (insert, update, and delete.) This solution is viable only if
performance is an issue.

� Create a temporary denormalized table from the permanent normalized table(s). Because the denormalized
table exists only as long as it takes to generate the report, it disappears after the report is produced. Therefore,
there are no data anomaly problems. This solution is practical only if performance is not an issue and there
are no other viable processing options.

As shown, normalization purity is often difficult to sustain in the modern database environment. You will learn
in Chapter 13, Business Intelligence and Data Warehouses, that lower normalization forms occur (and are even
required) in specialized databases known as data warehouses. Such specialized databases reflect the ever-growing
demand for greater scope and depth in the data on which decision support systems increasingly rely. You will discover
that the data warehouse routinely uses 2NF structures in its complex, multilevel, multisource data environment. In
short, although normalization is very important, especially in the so-called production database environment, 2NF is
no longer disregarded as it once was.

Although 2NF tables cannot always be avoided, the problem of working with tables that contain partial and/or
transitive dependencies in a production database environment should not be minimized. Aside from the possibility of
troublesome data anomalies being created, unnormalized tables in a production database tend to suffer from these
defects:

� Data updates are less efficient because programs that read and update tables must deal with larger tables.

� Indexing is more cumbersome. It simply is not practical to build all of the indexes required for the many
attributes that might be located in a single unnormalized table.

� Unnormalized tables yield no simple strategies for creating virtual tables known as views. You will learn how
to create and use views in Chapter 7, Introduction to Structured Query Language (SQL).

Remember that good design cannot be created in the application programs that use a database. Also keep in mind that
unnormalized database tables often lead to various data redundancy disasters in production databases such as the ones
examined thus far. In other words, use denormalization cautiously and make sure that you can explain why the
unnormalized tables are a better choice in certain situations than their normalized counterparts.

C6545_05 7/1/2007 6:39:27 Page 181

181N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

S u m m a r y

◗ Normalization is a technique used to design tables in which data redundancies are minimized. The first three normal
forms (1NF, 2NF, and 3NF) are most commonly encountered. From a structural point of view, higher normal forms
are better than lower normal forms because higher normal forms yield relatively fewer data redundancies in the
database. Almost all business designs use 3NF as the ideal normal form. A special, more restricted 3NF known as
Boyce-Codd normal form, or BCNF, is also used.

◗ A table is in 1NF when all key attributes are defined and when all remaining attributes are dependent on the primary
key. However, a table in 1NF can still contain both partial and transitive dependencies. (A partial dependency is one
in which an attribute is functionally dependent on only a part of a multiattribute primary key. A transitive
dependency is one in which one attribute is functionally dependent on another nonkey attribute.) A table with a
single-attribute primary key cannot exhibit partial dependencies.

◗ A table is in 2NF when it is in 1NF and contains no partial dependencies. Therefore, a 1NF table is automatically
in 2NF when its primary key is based on only a single attribute. A table in 2NF may still contain transitive
dependencies.

◗ A table is in 3NF when it is in 2NF and contains no transitive dependencies. Given that definition of 3NF, the
Boyce-Codd normal form (BCNF) is merely a special 3NF case in which all determinant keys are candidate keys.
When a table has only a single candidate key, a 3NF table is automatically in BCNF.

◗ A table that is not in 3NF may be split into new tables until all of the tables meet the 3NF requirements. The process
is illustrated in Figures 5.19 to 5.21.

FIGURE
5.19

The initial 1NF structure

A B C D E F

A

B

A B

Partial
dependency

Transitive dependency

Step 1: Write each PK component on a separate
line; then write the original (composite)
PK on the last line.

The Initial 1NF Structure

C6545_05 7/1/2007 6:41:6 Page 182

182 C H A P T E R 5

◗ Normalization is an important part—but only a part—of the design process. As entities and attributes are defined
during the ER modeling process, subject each entity (set) to normalization checks and form new entity (sets) as
required. Incorporate the normalized entities into the ERD and continue the iterative ER process until all entities
and their attributes are defined and all equivalent tables are in 3NF.

◗ A table in 3NF might contain multivalued dependencies that produce either numerous null values or redundant data.
Therefore, it might be necessary to convert a 3NF table to the fourth normal form (4NF) by splitting the table to

FIGURE
5.20

Identifying possible PK attributes

Step 2: Place all dependent attributes with the PK
attributes identified in Step 1.

No attributes are dependent on A. Therefore, A does not
become a PK for a new table structure.

This table is in 3NF because it is in 2NF
(no partial dependencies) and it contains
no transitive dependencies.

This table is in 2NF
because it contains a
transitive dependency.

A B D E F

Transitive dependency

B C

A

FIGURE
5.21

Table structures based on the selected PKs

B

Step 3: Remove all transitive dependencies identified in Step 2
and retain all 3NF structures.

A B D E
Attribute D is retained in this
table structure to serve as the
FK to the second table.

C

D F

All tables are in 3NF because they are in 2NF
(no partial dependencies) and they do not contain
transitive dependencies.

C6545_05 7/1/2007 6:41:6 Page 183

183N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

remove the multivalued dependencies. Thus, a table is in 4NF when it is in 3NF and contains no multivalued
dependencies.

◗ The larger the number of tables, the more additional I/O operations and processing logic required to join them.
Therefore, tables are sometimes denormalized to yield less I/O in order to increase processing speed. Unfortu-
nately, with larger tables, you pay for the increased processing speed by making the data updates less efficient, by
making indexing more cumbersome, and by introducing data redundancies that are likely to yield data anomalies.
In the design of production databases, use denormalization sparingly and cautiously.

K e y T e r m s

atomic attribute, 165

atomicity, 165

Boyce-Codd normal form
(BCNF), 170

denormalization, 153

dependency diagram, 160

determinant, 163

first normal form (1NF), 161

fourth normal form (4NF), 174

granularity, 166

key attribute, 162

nonkey attribute, 162

nonprime attribute, 162

normalization, 153

partial dependency, 160

prime attribute, 162

repeating group, 158

second normal form (2NF), 163

surrogate key, 165

third normal form (3NF), 164

transitive dependency, 160

R e v i e w Q u e s t i o n s

1. What is normalization?

2. When is a table in 1NF?

3. When is a table in 2NF?

4. When is a table in 3NF?

5. When is a table in BCNF?

6. Given the dependency diagram shown in Figure Q5.6, answer Items 6a−6c.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C1 C2 C3 C4 C5

FIGURE
Q5.6

Dependency diagram for Question 6

C6545_05 7/1/2007 7:11:4 Page 184

184 C H A P T E R 5

a. Identify and discuss each of the indicated dependencies.

b. Create a database whose tables are at least in 2NF, showing the dependency diagrams for each table.

c. Create a database whose tables are at least in 3NF, showing the dependency diagrams for each table.

7. What is a partial dependency? With what normal form is it associated?

8. What three data anomalies are likely to be the result of data redundancy? How can such anomalies be eliminated?

9. Define and discuss the concept of transitive dependency.

10. What is a surrogate key, and when should you use one?

11. Why is a table whose primary key consists of a single attribute automatically in 2NF when it is in 1NF?

12. How would you describe a condition in which one attribute is dependent on another attribute, when neither
attribute is part of the primary key?

13. Suppose that someone tells you that an attribute that is part of a composite primary key is also a candidate key.
How would you respond to that statement?

14. A table is in ___________ normal form when it is in __________ and there are no transitive dependencies.

P r o b l e m s

1. Using the INVOICE table structure shown below, write the relational schema, draw its dependency diagram, and
identify all dependencies, including all partial and transitive dependencies. You can assume that the table does not
contain repeating groups and that an invoice number references more than one product. (Hint: This table uses
a composite primary key.)

2. Using the answer to Problem 1, remove all partial dependencies, write the relational schema, and draw the new
dependency diagrams. Identify the normal forms for each table structure you created.

3. Using the answer to Problem 2, remove all transitive dependencies, write the relational schema, and draw the
new dependency diagrams. Also identify the normal forms for each table structure you created.

4. Using the results of Problem 3, draw the Crow’s Foot ERD.

TABLE
P5.1

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
INV_NUM 211347 211347 211347 211348 211349
PROD_NUM AA-E3422QW QD-300932X RU-995748G AA-E3422QW GH-778345P
SALE_DATE 15-Jan-2008 15-Jan-2008 15-Jan-2008 15-Jan-2008 16-Jan-2008
PROD_LABEL Rotary sander 0.25-in. drill bit Band saw Rotary sander Power drill
VEND_CODE 211 211 309 211 157
VEND_NAME NeverFail, Inc. NeverFail, Inc. BeGood, Inc. NeverFail, Inc. ToughGo, Inc.
QUANT_SOLD 1 8 1 2 1
PROD_PRICE $49.95 $3.45 $39.99 $49.95 $87.75

Note

You can assume that any given product is supplied by a single vendor, but a vendor can supply many products.
Therefore, it is proper to conclude that the following dependency exists:

PROD_NUM → PROD_DESCRIPTION, PROD_PRICE, VEND_CODE, VEND_NAME

(Hint: Your actions should produce three dependency diagrams.)

C6545_05 8/20/2007 9:2:37 Page 185

185N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

5. Using the STUDENT table structure shown in Table P5.5, write the relational schema and draw its dependency
diagram. Identify all dependencies, including all transitive dependencies.

6. Using the answer to Problem 5, write the relational schema and draw the dependency diagram to meet the 3NF
requirements to the greatest practical extent possible. If you believe that practical considerations dictate using a
2NF structure, explain why your decision to retain 2NF is appropriate. If necessary, add or modify attributes to
create appropriate determinants and to adhere to the naming conventions.

7. Using the results of Problem 6, draw the Crow’s Foot ERD.

8. To keep track of office furniture, computers, printers, and so on, the FOUNDIT company uses the table structure
shown in Table P5.8.

TABLE
P5.5

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
STU_NUM 211343 200128 199876 199876 223456
STU_LNAME Stephanos Smith Jones Ortiz McKulski
STU_MAJOR Accounting Accounting Marketing Marketing Statistics
DEPT_CODE ACCT ACCT MKTG MKTG MATH
DEPT_NAME Accounting Accounting Marketing Marketing Mathematics
DEPT_PHONE 4356 4356 4378 4378 3420
COLLEGE_NAME Business Admin Business Admin Business Admin Business Admin Arts & Sciences
ADVISOR_LNAME Grastrand Grastrand Gentry Tillery Chen
ADVISOR_OFFICE T201 T201 T228 T356 J331
ADVISOR_BLDG Torre Building Torre Building Torre Building Torre Building Jones Building
ADVISOR_PHONE 2115 2115 2123 2159 3209
STU_GPA 3.87 2.78 2.31 3.45 3.58
STU_HOURS 75 45 117 113 87
STU_CLASS Junior Sophomore Senior Senior Junior

Note

Although the completed student hours (STU_HOURS) do determine the student classification (STU_CLASS),
this dependency is not as obvious as you might initially assume it to be. For example, a student is considered a
junior if that student has completed between 61 and 90 credit hours. Therefore, a student who is classified as
a junior may have completed 66, 72, or 87 hours or any other number of hours within the specified range of
61−90 hours. In short, any hour value within a specified range will define the classification.

Note

This ERD constitutes a small segment of a university’s full-blown design. For example, this segment might be
combined with the Tiny College presentation in Chapter 4.

C6545_05 8/20/2007 9:3:0 Page 186

186 C H A P T E R 5

Given that information, write the relational schema and draw the dependency diagram. Make sure that you label
the transitive and/or partial dependencies.

9. Using the answer to Problem 8, write the relational schema and create a set of dependency diagrams that meet
3NF requirements. Rename attributes to meet the naming conventions and create new entities and attributes as
necessary.

10. Using the results of Problem 9, draw the Crow’s Foot ERD.

11. The table structure shown in Table P5.11 contains many unsatisfactory components and characteristics. For
example, there are several multivalued attributes, naming conventions are violated, and some attributes are not
atomic.

Given the structure shown in Table P5.11, write the relational schema and draw its dependency diagram. Label
all transitive and/or partial dependencies.

12. Using the answer to Problem 11, draw the dependency diagrams that are in 3NF. (Hint: You might have to create
a few new attributes. Also make sure that the new dependency diagrams contain attributes that meet proper

TABLE
P5.8

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
ITEM_ID 231134-678 342245-225 254668-449
ITEM_LABEL HP DeskJet 895Cse HP Toner DT Scanner
ROOM_NUMBER 325 325 123
BLDG_CODE NTC NTC CSF
BLDG_NAME Nottooclear Nottoclear Canseefar
BLDG_MANAGER I. B. Rightonit I. B. Rightonit May B. Next

Note

Problems 11−14 may be combined to serve as a case or a miniproject.

TABLE
P5.11

EMP_NUM 1003 1018 1019 1023
EMP_LNAME Willaker Smith McGuire McGuire
EMP_EDUCATION BBA, MBA BBA BS, MS, Ph.D.
JOB_CLASS SLS SLS JNT DBA
EMP_DEPENDENTS Gerald (spouse),

Mary (daughter),
John (son)

JoAnne (spouse) George (spouse)
Jill (daughter)

DEPT_CODE MKTG MKTG SVC INFS
DEPT_NAME Marketing Marketing General Service Info. Systems
DEPT_MANAGER Jill H. Martin Jill H. Martin Hank B. Jones Carlos G. Ortez
EMP_TITLE Sales Agent Sales Agent Janitor DB Admin
EMP_DOB 23-Dec-1968 28-Mar-1979 18-May-1982 20-Jul-1959
EMP_HIRE_DATE 14-Oct-1997 15-Jan-2006 21-Apr-2003 15-Jul-1999
EMP_TRAINING L1, L2 L1 L1 L1, L3, L8, L15
EMP_BASE_SALARY $38,255.00 $30,500.00 $19,750.00 $127,900.00
EMP_COMMISSION_RATE 0.015 0.010

C6545_05 8/20/2007 9:3:33 Page 187

187N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

design criteria; that is, make sure that there are no multivalued attributes, that the naming conventions are met,
and so on.)

13. Using the results of Problem 12, draw the relational diagram.

14. Using the results of Problem 13, draw the Crow’s Foot ERD.

15. Suppose you are given the following business rules to form the basis for a database design. The database must
enable the manager of a company dinner club to mail invitations to the club’s members, to plan the meals, to
keep track of who attends the dinners, and so on.

� Each dinner serves many members, and each member may attend many dinners.

� A member receives many invitations, and each invitation is mailed to many members.

� A dinner is based on a single entree, but an entree may be used as the basis for many dinners. For example,
a dinner may be composed of a fish entree, rice, and corn. Or the dinner may be composed of a fish entree,
a baked potato, and string beans.

� A member may attend many dinners, and each dinner may be attended by many members.

Because the manager is not a database expert, the first attempt at creating the database uses the structure shown
in Table P5.15.

Given the table structure illustrated in Table P5.15, write the relational schema and draw its dependency diagram.
Label all transitive and/or partial dependencies. (Hint: This structure uses a composite primary key.)

16. Break up the dependency diagram you drew in Problem 15 to produce dependency diagrams that are in 3NF and
write the relational schema. (Hint: You might have to create a few new attributes. Also make sure that the new
dependency diagrams contain attributes that meet proper design criteria; that is, make sure that there are no
multivalued attributes, that the naming conventions are met, and so on.)

Note

Problems 15-17 may be combined to serve as a case or a miniproject.

TABLE
P5.15

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
MEMBER_NUM 214 235 214
MEMBER_NAME Alice B. VanderVoort Gerald M. Gallega Alice B. VanderVoort
MEMBER_ADDRESS 325 Meadow Park 123 Rose Court 325 Meadow Park
MEMBER_CITY Murkywater Highlight Murkywater
MEMBER_ZIPCODE 12345 12349 12345
INVITE_NUM 8 9 10
INVITE_DATE 23-Feb-2008 12-Mar-2008 23-Feb-2008
ACCEPT_DATE 27-Feb-2008 15-Mar-2008 27-Feb-2008
DINNER_DATE 15-Mar-2008 17-Mar-2008 15-Mar-2008
DINNER_ATTENDED Yes Yes No
DINNER_CODE DI5 DI5 DI2
DINNER_DESCRIPTION Glowing Sea Delight Glowing Sea Delight Ranch Superb
ENTREE_CODE EN3 EN3 EN5
ENTREE_DESCRIPTION Stuffed crab Stuffed crab Marinated steak
DESSERT_CODE DE8 DE5 DE2
DESSERT_DESCRIPTION Chocolate mousse

with raspberry sauce
Cherries jubilee Apple pie with

honey crust

C6545_05 8/20/2007 9:5:23 Page 188

188 C H A P T E R 5

17. Using the results of Problem 16, draw the Crow’s Foot ERD.

18. The manager of a consulting firm has asked you to evaluate a database that contains the table structure shown
in Table P5.18.

Table P5.18 was created to enable the manager to match clients with consultants. The objective is to match
a client within a given region with a consultant in that region and to make sure that the client’s need for specific
consulting services is properly matched to the consultant’s expertise. For example, if the client needs help with
database design and is located in the Southeast, the objective is to make a match with a consultant who is
located in the Southeast and whose expertise is in database design. (Although the consulting company manager
tries to match consultant and client locations to minimize travel expense, it is not always possible to do so.) The
following basic business rules are maintained:

� Each client is located in one region.

� A region can contain many clients.

� Each consultant can work on many contracts.

� Each contract might require the services of many consultants.

� A client can sign more than one contract, but each contract is signed by only one client.

� Each contract might cover multiple consulting classifications. (For example, a contract may list
consulting services in database design and networking.)

� Each consultant is located in one region.

Note

Problems 18−20 may be combined to serve as a case or a miniproject.

TABLE
P5.18

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
CLIENT_NUM 298 289 289
CLIENT_NAME Marianne R. Brown James D. Smith James D. Smith
CLIENT_REGION Midwest Southeast Southeast
CONTRACT_DATE 10-Feb-2008 15-Feb-2008 12-Mar-2008
CONTRACT_NUMBER 5841 5842 5843
CONTRACT_AMOUNT $2,985,000.00 $670,300.00 $1,250,000.00
CONSULT_CLASS_1 Database Administration Internet Services Database Design
CONSULT_CLASS_2 Web Applications Database Administration
CONSULT_CLASS_3 Network Installation
CONSULT_CLASS_4
CONSULTANT_NUM_1 29 34 25
CONSULTANT_NAME_1 Rachel G. Carson Gerald K. Ricardo Angela M. Jamison
CONSULTANT_REGION_1 Midwest Southeast Southeast
CONSULTANT_NUM_2 56 38 34
CONSULTANT_NAME_2 Karl M. Spenser Anne T. Dimarco Gerald K. Ricardo
CONSULTANT_REGION_2 Midwest Southeast Southeast
CONSULTANT_NUM_3 22 45
CONSULTANT_NAME_3 Julian H. Donatello Geraldo J. Rivera
CONSULTANT_REGION_3 Midwest Southeast
CONSULTANT_NUM_4 18
CONSULTANT_NAME_4 Donald Chen
CONSULTANT_REGION_4 West

C6545_05 8/20/2007 9:4:5 Page 189

189N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

� A region can contain many consultants.

� Each consultant has one or more areas of expertise (class). For example, a consultant might be classified
as an expert in both database design and networking.

� Each area of expertise (class) can have many consultants in it. For example, the consulting company
might employ many consultants who are networking experts.

Given that brief description of the requirements and the business rules, write the relational schema and draw the
dependency diagram for the preceding (and very poor) table structure. Label all transitive and/or partial
dependencies.

19. Break up the dependency diagram you drew in Problem 18 to produce dependency diagrams that are in 3NF and
write the relational schema. (Hint: You might have to create a few new attributes. Also make sure that the new
dependency diagrams contain attributes that meet proper design criteria; that is, make sure that there are no
multivalued attributes, that the naming conventions are met, and so on.)

20. Using the results of Problem 19, draw the Crow’s Foot ERD.

21. Given the sample records in the CHARTER table shown in Table P5.21, write the relational schema and draw
the dependency diagram for the table structure. Make sure that you label all dependencies. CHAR_PAX indicates
the number of passengers carried. The CHAR_MILES entry is based on round-trip miles, including pickup points.
(Hint: Look at the data values to determine the nature of the relationships. For example, note that employee
Melton has flown two charter trips as pilot and one trip as copilot.)

22. Decompose the dependency diagram you drew to solve Problem 21 to create table structures that are in 3NF and
write the relational schema. Make sure that you label all dependencies.

23. Draw the Crow’s Foot ERD to reflect the properly decomposed dependency diagrams you created in Problem 22.
Make sure that the ERD yields a database that can track all of the data shown in Problem 21. Show all entities,
relationships, connectivities, optionalities, and cardinalities.

TABLE
P5.21

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
CHAR_TRIP 10232 10233 10234 10235
CHAR_DATE 15-Jan-2008 15-Jan-2008 16-Jan-2008 17-Jan-2008
CHAR_CITY STL MIA TYS ATL
CHAR_MILES 580 1,290 524 768
CUST_NUM 784 231 544 784
CUST_LNAME Brown Hanson Bryana Brown
CHAR_PAX 5 12 2 5
CHAR_CARGO 235 lbs. 18,940 lbs. 348 lbs. 155 lbs.
PILOT Melton Chen Henderson Melton
COPILOT Henderson Melton
FLT_ENGINEER O’Shaski
LOAD_MASTER Benkasi
AC_NUMBER 1234Q 3456Y 1234Q 2256W
MODEL_CODE PA31-350 CV-580 PA31-350 PA31-350
MODEL_SEATS 10 38 10 10
MODEL_CHG_MILE $2.79 $23.36 $2.79 $2.79

Note

Use the dependency diagram shown in Figure P5.24 to work Problems 24−26.

C6545_05 8/20/2007 9:4:19 Page 190

190 C H A P T E R 5

24. Break up the dependency diagram shown in Figure P5.24 to create two new dependency diagrams, one in 3NF
and one in 2NF.

25. Modify the dependency diagrams you created in Problem 24 to produce a set of dependency diagrams that are
in 3NF. To keep the entire collection of attributes together, copy the 3NF dependency diagram from Problem 24;
then show the new dependency diagrams that are also in 3NF. (Hint: One of your dependency diagrams will be
in 3NF but not in BCNF.)

26. Modify the dependency diagrams you created in Problem 25 to produce a collection of dependency diagrams that
are in 3NF and BCNF. To ensure that all attributes are accounted for, copy the 3NF dependency diagrams from
Problem 25; then show the new 3NF and BCNF dependency diagrams.

A B C D E F G

FIGURE
P5.24

C6545_05 7/1/2007 7:4:39 Page 191

191N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

27. Suppose you have been given the table structure and data shown in Table P5.27, which was imported from an
Excel spreadsheet. The data reflect that a professor can have multiple advisees, can serve on multiple committees,
and can edit more than one journal.

Given the information in Table P5.27:

a. Draw the dependency diagram.

b. Identify the multivalued dependencies.

c. Create the dependency diagrams to yield a set of table structures in 3NF.

d. Eliminate the multivalued dependencies by converting the affected table structures to 4NF.

e. Draw the Crow’s Foot ERD to reflect the dependency diagrams you drew in Part c. (Note: You might have
to create additional attributes to define the proper PKs and FKs. Make sure that all of your attributes conform
to the naming conventions.)

TABLE
P5.27

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
EMP_NUM 123 104 118
PROF_RANK Professor Asst. Professor Assoc. Professor Assoc. Professor
EMP_NAME Ghee Rankin Ortega Smith
DEPT_CODE CIS CHEM CIS ENG
DEPT_NAME Computer Info.

Systems
Chemistry Computer Info.

Systems
English

PROF_OFFICE KDD-567 BLF-119 KDD-562 PRT-345
ADVISEE 1215, 2312, 3233,

2218, 2098
3102, 2782, 3311,
2008, 2876, 2222,
3745, 1783, 2378

2134, 2789, 3456,
2002, 2046, 2018,
2764

2873, 2765, 2238,
2901, 2308

COMMITTEE_CODE PROMO, TRAF,
APPL, DEV

DEV SPR, TRAF PROMO, SPR,
DEV

JOURNAL_CODE JMIS, QED,
JMGT

JCIS, JMGT

C6545_05 8/20/2007 9:4:39 Page 192

192 C H A P T E R 5

Preview

Advanced Data Modeling

In this chapter, you will learn:

� About the extended entity relationship (EER) model

� How entity clusters are used to represent multiple entities and relationships

� The characteristics of good primary keys and how to select them

� How to use flexible solutions for special data modeling cases

� What issues to check for when developing data models based on EER diagrams

In the previous three chapters, you learned how to use entity relationship diagrams (ERDs)

and normalization techniques to properly create a data model. In this chapter, you learn

about the extended entity relationship (EER) model.The EER model builds on ER concepts

and adds support for entity supertypes, subtypes, and entity clustering.

Most current database implementations are based on relational databases. Because the

relational model uses keys to create associations among tables, it is essential to learn the

characteristics of good primary keys and how to select them. Selecting a good primary key

is too important to be left to chance, so in this chapter we cover the critical aspects of

primary key identification and placement.

Focusing on practical database design, this chapter also illustrates some special design cases

that highlight the importance of flexible designs, which can be adapted to meet the demands

of changing data and information requirements. Data modeling is a vital step in the

development of databases that in turn provide a good foundation for successful application

development. Remember that good database applications cannot be based on bad database

designs, and no amount of outstanding coding can overcome the limitations of poor

database design.

To help you carry out data modeling tasks, the chapter concludes with a checklist that

outlines basic database modeling principles.

6

S
I

X

C6545_06 7/12/2007 13:11:48 Page 193

6.1 THE EXTENDED ENTITY RELATIONSHIP MODEL

As the complexity of the data structures being modeled has increased and as application software requirements have
become more stringent, there has been an increasing need to capture more information in the data model. The extended
entity relationship model (EERM), sometimes referred to as the enhanced entity relationship model, is the result of
adding more semantic constructs to the original entity relationship (ER) model. As you might expect, a diagram using
this model is called an EER diagram (EERD). In the following sections, you will learn about the main EER model
constructs—entity supertypes, entity subtypes, and entity clustering—and see how they are represented in ERDs.

6.1.1 Entity Supertypes and Subtypes

Because most employees possess a wide range of skills and special qualifications, data modelers must find a variety of
ways to group employees based on employee characteristics. For instance, a retail company could group employees
as salaried and hourly employees, while a university could group employees as faculty, staff, and administrators.

The grouping of employees to create various types of employees provides two important benefits:

� It avoids unnecessary nulls in the employee attributes when some employees have characteristics that are not
shared by other employees.

� It enables a particular employee type to participate in relationships that are unique to that employee type.

To illustrate those benefits, let’s explore the case of an aviation business. The aviation business employs pilots,
mechanics, secretaries, accountants, database managers, and many other types of employees. Figure 6.1 illustrates
how pilots share certain characteristics with other employees, such as a last name (EMP_LNAME) and hire date
(EMP_HIRE_DATE). On the other hand, many pilot characteristics are not shared by other employees. For example,
unlike other employees, pilots must meet special requirements such as flight hour restrictions, flight checks, and
periodic training. Therefore, if all employee characteristics and special qualifications were stored in a single
EMPLOYEE entity, you would have a lot of nulls or you would have to make a lot of needless dummy entries. In this
case, special pilot characteristics such as EMP_LICENSE, EMP_RATINGS, and EMP_MED_TYPE will generate nulls
for employees who are not pilots. In addition, pilots participate in some relationships that are unique to their
qualifications. For example, not all employees can fly airplanes; only employees who are pilots can participate in the
“employee flies airplane” relationship.

Based on the preceding discussion, you would correctly deduce that the PILOT entity stores only those attributes that
are unique to pilots, and that the EMPLOYEE entity stores attributes that are common to all employees. Based on that
hierarchy, you can conclude that PILOT is a subtype of EMPLOYEE, and that EMPLOYEE is the supertype of PILOT.
In modeling terms, an entity supertype is a generic entity type that is related to one or more entity subtypes, where

FIGURE
6.1

Nulls created by unique attributes

C6545_06 7/13/2007 16:58:17 Page 194

194 C H A P T E R 6

the entity supertype contains the common characteristics, and the entity subtypes contain the unique characteristics of
each entity subtype. In the next section, you will learn how the entity supertypes and subtypes are related in a
specialization hierarchy.

6.1.2 Specialization Hierarchy

Entity supertypes and subtypes are organized in a specialization hierarchy, which depicts the arrangement of
higher-level entity supertypes (parent entities) and lower-level entity subtypes (child entities). Figure 6.2 shows the
specialization hierarchy formed by an EMPLOYEE supertype and three entity subtypes—PILOT, MECHANIC, and
ACCOUNTANT. The specialization hierarchy reflects the 1:1 relationship between EMPLOYEE and its subtypes. For
example, a PILOT subtype occurrence is related to one instance of the EMPLOYEE supertype, and a MECHANIC
subtype occurrence is related to one instance of the EMPLOYEE supertype. The terminology and symbols in
Figure 6.2 are explained throughout this chapter.

The relationships depicted within the specialization hierarchy are sometimes described in terms of “is-a” relationships.
For example, a pilot is an employee, a mechanic is an employee, and an accountant is an employee. It is important
to understand that within a specialization hierarchy, a subtype can exist only within the context of a supertype, and
every subtype can have only one supertype to which it is directly related. However, a specialization hierarchy can have
many levels of supertype/subtype relationships—that is, you can have a specialization hierarchy in which a supertype
has many subtypes; in turn, one of the subtypes is the supertype to other lower-level subtypes.

FIGURE
6.2

A specialization hierarchy

C6545_06 7/13/2007 16:35:0 Page 195

195A D V A N C E D D A T A M O D E L I N G

As you can see in Figure 6.2, the arrangement of entity supertypes and subtypes in a specialization hierarchy is more
than a cosmetic convenience. Specialization hierarchies enable the data model to capture additional semantic content
(meaning) into the ERD. A specialization hierarchy provides the means to:

� Support attribute inheritance.

� Define a special supertype attribute known as the subtype discriminator.

� Define disjoint/overlapping constraints and complete/partial constraints.

The following sections cover such characteristics and constraints in more detail.

6.1.3 Inheritance

The property of inheritance enables an entity subtype to inherit the attributes and relationships of the supertype. As
discussed earlier, a supertype contains those attributes that are common to all of its subtypes. In contrast, subtypes
contain only the attributes that are unique to the subtype. For example, Figure 6.2 illustrates that pilots, mechanics,
and accountants all inherit the employee number, last name, first name, middle initial, hire date, and so on from the
EMPLOYEE entity. However, Figure 6.2 also illustrates that pilots have attributes that are unique; the same is true for
mechanics and accountants. One important inheritance characteristic is that all entity subtypes inherit their
primary key attribute from their supertype. Note in Figure 6.2 that the EMP_NUM attribute is the primary key for
each of the subtypes.

At the implementation level, the supertype and its subtype(s) depicted in the specialization hierarchy maintain a 1:1
relationship. For example, the specialization hierarchy lets you replace the undesirable EMPLOYEE table structure in
Figure 6.1 with two tables—one representing the supertype EMPLOYEE and the other representing the subtype
PILOT. (See Figure 6.3.)

Entity subtypes inherit all relationships in which the supertype entity participates. For example, Figure 6.2 shows the
EMPLOYEE entity supertype participating in a 1:M relationship with a DEPENDENT entity. Through inheritance, all
subtypes also participate in that relationship. In specialization hierarchies with multiple levels of supertype/subtypes,
a lower-level subtype inherits all of the attributes and relationships from all of its upper-level supertypes.

O n l i n e C o n t e n t

This chapter covers only specialization hierarchies. The EER model also supports specialization lattices, where
a subtype can have multiple parents (supertypes). However, those concepts are better covered under the
object-oriented model in Appendix G, Object-Oriented Databases. The appendix is available in the
Student Online Companion for this book.

FIGURE
6.3

The EMPLOYEE-PILOT supertype-subtype relationship

Table Name: EMPLOYEE Table Name: PILOT

C6545_06 7/12/2007 13:13:38 Page 196

196 C H A P T E R 6

6.1.4 Subtype Discriminator

A subtype discriminator is the attribute in the supertype entity that determines to which subtype the supertype
occurrence is related. As seen in Figure 6.2, the subtype discriminator is the employee type (EMP_TYPE).

It is common practice to show the subtype discriminator and its value for each subtype in the ER diagram, as seen in
Figure 6.2. However, not all ER modeling tools follow that practice. For example, MS Visio shows the subtype
discriminator, but not its value. In Figure 6.2, the Visio text tool was used to manually add the discriminator value above
the entity subtype, close to the connector line. Using Figure 6.2 as your guide, note that the supertype is related to
a PILOT subtype if the EMP_TYPE has a value of “P.” If the EMP_TYPE value is “M,” the supertype is related to a
MECHANIC subtype. And if the EMP_TYPE value is “A,” the supertype is related to the ACCOUNTANT subtype.

It’s important to note that the default comparison condition for the subtype discriminator attribute is the equality
comparison. However, there may be situations in which the subtype discriminator is not necessarily based on an
equality comparison. For example, based on business requirements, you might create two new pilot subtypes, PIC
(pilot-in-command)-qualified and copilot-qualified only. A PIC-qualified pilot will be anyone with more than 1,500 PIC
flight hours. In this case, the subtype discriminator would be “Flight_Hours,” and the criteria would be > 1,500 or <=
1,500, respectively.

6.1.5 Disjoint and Overlapping Constraints

An entity supertype can have disjoint or overlapping entity subtypes. For example, in the aviation example, an
employee can be a pilot or a mechanic or an accountant. Assume that one of the business rules dictates that an
employee cannot belong to more than one subtype at a time; that is, an employee cannot be a pilot and a mechanic
at the same time. Disjoint subtypes, also known as non-overlapping subtypes, are subtypes that contain a
unique subset of the supertype entity set; in other words, each entity instance of the supertype can appear in only one
of the subtypes. For example, in Figure 6.2, an employee (supertype) who is a pilot (subtype) can appear only in the
PILOT subtype, not in any of the other subtypes. In Visio, such disjoint subtypes are indicated by the letter d inside
the category shape.

On the other hand, if the business rule specifies that employees can have multiple classifications, the EMPLOYEE
supertype may contain overlapping job classification subtypes. Overlapping subtypes are subtypes that contain
nonunique subsets of the supertype entity set; that is, each entity instance of the supertype may appear in more than
one subtype. For example, in a university environment, a person may be an employee or a student or both. In turn,
an employee may be a professor as well as an administrator. Because an employee also may be a student, STUDENT
and EMPLOYEE are overlapping subtypes of the supertype PERSON, just as PROFESSOR and ADMINISTRATOR
are overlapping subtypes of the supertype EMPLOYEE. Figure 6.4 illustrates overlapping subtypes with the use of the
letter o inside the category shape.

Note

In Visio, you select the subtype discriminator when creating a category using the Category shape from the
available shapes. The Category shape is a small circle with a horizontal line under it that connects the supertype
to its subtypes.

O n l i n e C o n t e n t

For a tutorial on using MS Visio to create a specialization hierarchy, see Appendix A, Designing
Databases with Visio Professional: A Tutorial, in the Student Online Companion for this book.

C6545_06 7/13/2007 16:35:58 Page 197

197A D V A N C E D D A T A M O D E L I N G

It is common practice to show the disjoint/overlapping symbols in the ERD. (See Figure 6.2 and Figure 6.4.) However,
not all ER modeling tools follow that practice. For example, by default, Visio shows only the subtype discriminator
(using the Category shape) but not the disjoint/overlapping symbol. Therefore, the Visio text tool was used to manually
add the d and o symbols in Figures 6.2 and 6.4.

As you learned earlier in this section, the implementation of disjoint subtypes is based on the value of the subtype
discriminator attribute in the supertype. However, implementing overlapping subtypes requires the use of one
discriminator attribute for each subtype. For example, in the case of the Tiny College database design you saw in
Chapter 4, Entity Relationship (ER) Modeling, a professor can also be an administrator. Therefore, the EMPLOYEE
supertype would have the subtype discriminator attributes and values shown in Table 6.1.

TABLE
6.1

Discriminator Attributes with Overlapping Subtypes

DISCRIMINATOR ATTRIBUTES
COMMENT

PROFESSOR ADMINISTRATOR
“Y” “N” The Employee is a member of the Professor subtype.
“N” “Y” The Employee is a member of the Administrator subtype.
“Y” “Y” The Employee is both a Professor and an Administrator.

FIGURE
6.4

Specialization hierarchy with overlapping subtypes

Note

Alternative notations exist for representing disjoint/overlapping subtypes. For example, Toby J. Teorey popular-
ized the use of G and Gs to indicate disjoint and overlapping subtypes.

C6545_06 7/12/2007 13:18:10 Page 198

198 C H A P T E R 6

6.1.6 Completeness Constraint

The completeness constraint specifies whether each entity supertype occurrence must also be a member of at least
one subtype. The completeness constraint can be partial or total. Partial completeness (symbolized by a circle over
a single line) means that not every supertype occurrence is a member of a subtype; that is, there may be some
supertype occurrences that are not members of any subtype. Total completeness (symbolized by a circle over a
double line) means that every supertype occurrence must be a member of at least one subtype.

The ERDs in Figures 6.2 and 6.4 represent the completeness constraint based on the Visio Category shape. A single
horizontal line under the circle represents a partial completeness constraint; a double horizontal line under the circle
represents a total completeness constraint.

Given the disjoint/overlapping subtypes and completeness constraints, it’s possible to have the specialization hierarchy
constraint scenarios shown in Table 6.2.

TABLE
6.2

Specialization Hierarchy Constraint Scenarios

TYPE DISJOINT CONSTRAINT OVERLAPPING CONSTRAINT
Partial Supertype has optional subtypes.

Subtype discriminator can be null.
Subtype sets are unique.

Supertype has optional subtypes.
Subtype discriminators can be null.
Subtype sets are not unique.

Total Every supertype occurrence is a member of a
(at least one) subtype.
Subtype discriminator cannot be null.
Subtype sets are unique.

Every supertype occurrence is a member of a
(at least one) subtype.
Subtype discriminators cannot be null.
Subtype sets are not unique.

6.1.7 Specialization and Generalization

You can use various approaches to develop entity supertypes and subtypes. For example, you can first identify a regular
entity, and then identify all entity subtypes based on their distinguishing characteristics. You also can start by identifying
multiple entity types and then later extract the common characteristics of those entities to create a higher-level
supertype entity.

Specialization is the top-down process of identifying lower-level, more specific entity subtypes from a higher-level
entity supertype. Specialization is based on grouping unique characteristics and relationships of the subtypes. In the
aviation example, you used specialization to identify multiple entity subtypes from the original employee supertype.
Generalization is the bottom-up process of identifying a higher-level, more generic entity supertype from lower-level
entity subtypes. Generalization is based on grouping common characteristics and relationships of the subtypes. For
example, you might identify multiple types of musical instruments: piano, violin, and guitar. Using the generalization
approach, you could identify a “string instrument” entity supertype to hold the common characteristics of the multiple
subtypes.

Note

Alternative notations exist to represent the completeness constraint. For example, some notations use a single
line (partial) or double line (total) to connect the supertype to the Category shape.

C6545_06 8/20/2007 10:49:18 Page 199

199A D V A N C E D D A T A M O D E L I N G

6.2 ENTITY CLUSTERING

Developing an ER diagram entails the discovery of possibly hundreds of entity types and their respective relationships.
Generally, the data modeler will develop an initial ERD containing a few entities. As the design approaches completion,
the ERD will contain hundreds of entities and relationships that crowd the diagram to the point of making it unreadable
and inefficient as a communication tool. In those cases, you can use entity clusters to minimize the number of entities
shown in the ERD.

An entity cluster is a “virtual” entity type used to represent multiple entities and relationships in the ERD. An entity
cluster is formed by combining multiple interrelated entities into a single abstract entity object. An entity cluster is
considered “virtual” or “abstract” in the sense that it is not actually an entity in the final ERD. Instead, it is a temporary
entity used to represent multiple entities and relationships, with the purpose of simplifying the ERD and thus enhancing
its readability.

Figure 6.5 illustrates the use of entity clusters based on the Tiny College example in Chapter 4. Note that the ERD
contains two entity clusters:

� OFFERING, which groups the COURSE and CLASS entities and relationships.

� LOCATION, which groups the ROOM and BUILDING entities and relationships.

Note also that the ERD in Figure 6.5 does not show attributes for the entities. When using entity clusters, the key attributes
of the combined entities are no longer available. Without the key attributes, primary key inheritance rules change. In turn,
the change in the inheritance rules can have undesirable consequences, such as changes in relationships—from identifying
to nonidentifying or vice versa—and the loss of foreign key attributes from some entities. To eliminate those problems, the
general rule is to avoid the display of attributes when entity clusters are used.

C6545_06 7/13/2007 16:59:37 Page 200

200 C H A P T E R 6

6.3 ENTITY INTEGRITY: SELECTING PRIMARY KEYS

Arguably, the most important characteristic of an entity is its primary key (a single attribute or some combination of
attributes), which uniquely identifies each entity instance. The primary key’s function is to guarantee entity integrity.
Furthermore, primary keys and foreign keys work together to implement relationships in the relational model.
Therefore, the importance of properly selecting the primary key has a direct bearing on the efficiency and effectiveness
of database implementation.

FIGURE
6.5

Tiny College ERD using entity clusters

C6545_06 7/12/2007 13:20:3 Page 201

201A D V A N C E D D A T A M O D E L I N G

6.3.1 Natural Keys and Primary Keys

The concept of a unique identifier is commonly encountered in the real world. For example, you use class (or section)
numbers to register for classes, invoice numbers to identify specific invoices, account numbers to identify credit cards,
and so on. Those examples illustrate natural identifiers or keys. A natural key or natural identifier is a real-world,
generally accepted identifier used to distinguish—that is, uniquely identify—real-world objects. As its name implies, a
natural key is familiar to end users and forms part of their day-to-day business vocabulary.

Usually, if an entity has a natural identifier, a data modeler uses that as the primary key of the entity being modeled.
Generally, most natural keys make acceptable primary key identifiers. However, there are occasions when the entity
being modeled does not have a natural primary key, or the natural key is not a good primary key. For example, assume
an ASSIGNMENT entity composed of the following attributes:

ASSIGNMENT (ASSIGN_DATE, PROJ_NUM, EMP_NUM, ASSIGN_HOURS, ASSIGN_CHG_HOUR, ASSIGN_
CHARGE)

What attribute (or combination of attributes) would make a good primary key? You learned in Chapter 5, Normalization
of Database Tables, that tradeoffs were associated with the selection of various combinations of attributes to serve as
the primary key for the ASSIGNMENT table. You also learned about the use of surrogate keys. Given that knowledge,
is the composite primary key (ASSIGN_DATE, PROJ_NUM, EMP_NUM) a good primary key? Or would a surrogate
key be a better choice? Why? The next section presents some basic guidelines for selecting primary keys.

6.3.2 Primary Key Guidelines

A primary key is the attribute or combination of attributes that uniquely identifies entity instances in an entity set.
However, can the primary key be based on, say, 12 attributes? And just how long can a primary key be? In previous
examples, why was EMP_NUM selected as a primary key of EMPLOYEE and not a combination of EMP_LNAME,
EMP_FNAME, EMP_INITIAL, and EMP_DOB? Can a single 256-byte text attribute be a good primary key? There is
no single answer to those questions, but there is a body of practice that database experts have built over the years. This
section examines that body of documented practices.

First, you should understand the function of a primary key. The primary key’s main function is to uniquely identify an
entity instance or row within a table. In particular, given a primary key value—that is, the determinant—the relational
model can determine the value of all dependent attributes that “describe” the entity. Note that “identification” and
“description” are separate semantic constructs in the model. The function of the primary key is to guarantee entity
integrity, not to “describe” the entity.

Second, primary keys and foreign keys are used to implement relationships among entities. However, the implemen-
tation of such relationships is done mostly behind the scenes, hidden from end users. In the real world, end users
identify objects based on the characteristics they know about the objects. For example, when shopping at a grocery
store, you select products by taking them from a store display shelf and reading the labels, not by looking at the stock
number. It’s wise for database applications to mimic the human selection process as much as possible. Therefore,
database applications should let the end user choose among multiple descriptive narratives of different objects while
using primary key values behind the scenes. Keeping those concepts in mind, look at Table 6.3, which summarizes
desirable primary key characteristics.

C6545_06 7/12/2007 13:22:5 Page 202

202 C H A P T E R 6

TABLE
6.3

Desirable Primary Key Characteristics

PK CHARACTERISTIC RATIONALE
Unique values The PK must uniquely identify each entity instance. A primary key must be able

to guarantee unique values. It cannot contain nulls.
Nonintelligent The PK should not have embedded semantic meaning (factless). An attribute

with embedded semantic meaning is probably better used as a descriptive char-
acteristic of the entity rather than as an identifier. In other words, a student ID of
650973 would be preferred over Smith, Martha L. as a primary key identifier. In
short, the PK should be factless.

No change over time If an attribute has semantic meaning, it might be subject to updates. This is why
names do not make good primary keys. If you have Vickie Smith as the primary
key, what happens when she gets married? If a primary key is subject to change,
the foreign key values must be updated, thus adding to the database work load.
Furthermore, changing a primary key value means that you are basically chang-
ing the identity of an entity. In short, the PK should be permanent and
unchangeable.

Preferably single-attribute A primary key should have the minimum number of attributes possible
(irreducible). Single-attribute primary keys are desirable but not required. Single-
attribute primary keys simplify the implementation of foreign keys. Having
multiple-attribute primary keys can cause primary keys of related entities to
grow through the possible addition of many attributes, thus adding to the data-
base work load and making (application) coding more cumbersome.

Preferably numeric Unique values can be better managed when they are numeric, because the
database can use internal routines to implement a counter-style attribute that
automatically increments values with the addition of each new row. In fact, most
database systems include the ability to use special constructs, such as Autonum-
ber in Microsoft Access, to support self-incrementing primary key attributes.

Security compliant The selected primary key must not be composed of any attribute(s) that might
be considered a security risk or violation. For example, using a Social Security
number as a PK in an EMPLOYEE table is not a good idea.

6.3.3 When to Use Composite Primary Keys

In the previous section, you learned about the desirable characteristics of primary keys. For example, you learned that
the primary key should use the minimum number of attributes possible. However, that does not mean that composite
primary keys are not permitted in a model. In fact, composite primary keys are particularly useful in two cases:

� As identifiers of composite entities, where each primary key combination is allowed only once in the M:N
relationship.

� As identifiers of weak entities, where the weak entity has a strong identifying relationship with the parent entity.

To illustrate the first case, assume that you have a STUDENT entity set and a CLASS entity set. In addition, assume
that those two sets are related in an M:N relationship via an ENROLL entity set in which each student/class
combination may appear only once in the composite entity. Figure 6.6 shows the ERD to represent such a
relationship.

As shown in Figure 6.6, the composite primary key automatically provides the benefit of ensuring that there cannot
be duplicate values—that is, it ensures that the same student cannot enroll more than once in the same class.

C6545_06 8/20/2007 10:49:45 Page 203

203A D V A N C E D D A T A M O D E L I N G

In the second case, a weak entity in a strong identifying relationship with a parent entity is normally used to represent
one of two situations:

1. A real-world object that is existent-dependent on another real-world object. Those types of objects are
distinguishable in the real world. A dependent and an employee are two separate people who exist
independent of each other. However, such objects can exist in the model only when they relate to each other
in a strong identifying relationship. For example, the relationship between EMPLOYEE and DEPENDENT is
one of existence dependency in which the primary key of the dependent entity is a composite key that contains
the key of the parent entity.

2. A real-world object that is represented in the data model as two separate entities in a strong identifying
relationship. For example, the real-world invoice object is represented by two entities in a data model:
INVOICE and LINE. Clearly, the LINE entity does not exist in the real world as an independent object, but
rather as part of an INVOICE.

In both situations, having a strong identifying relationship ensures that the dependent entity can exist only when it is
related to the parent entity. In summary, the selection of a composite primary key for composite and weak entity types
provides benefits that enhance the integrity and consistency of the model.

6.3.4 When to Use Surrogate Primary Keys

There are some instances when a primary key doesn’t exist in the real world or when the existing natural key might
not be a suitable primary key. For example, consider the case of a park recreation facility that rents rooms for small
parties. The manager of the facility keeps track of all events, using a folder with the format shown in Table 6.4.

FIGURE
6.6

The M:N relationship between STUDENT and CLASS

C6545_06 7/12/2007 13:22:59 Page 204

204 C H A P T E R 6

TABLE
6.4

Data Used to Keep Track of Events

DATE TIME_START TIME_END ROOM EVENT_NAME PARTY_OF
6/17/08 11:00AM 2:00PM Allure Burton Wedding 60
6/17/08 11:00AM 2:00PM Bonanza Adams Office 12
6/17/08 3:00PM 5:30PM Allure Smith Family 15
6/17/08 3:30PM 5:30PM Bonanza Adams Office 12
6/18/08 1:00PM 3:00PM Bonanza Boy Scouts 33
6/18/08 11:00AM 2:00PM Allure March of Dimes 25
6/18/08 11:00AM 12:30PM Bonanza Smith Family 12

Given the data shown in Table 6.4, you would model the EVENT entity as:

EVENT (DATE, TIME_START, TIME_END, ROOM, EVENT_NAME, PARTY_OF)

What primary key would you suggest? In this case, there is no simple natural key that could be used as a primary key
in the model. Based on the primary key concepts you learned about in previous chapters, you might suggest one of
these options:

(DATE, TIME_START, ROOM) or (DATE, TIME_END, ROOM)

Assume you select the composite primary key (DATE, TIME_START, ROOM) for the EVENT entity. Next, you
determine that one EVENT may use many RESOURCEs (such as tables, projectors, PCs, and stands), and that the
same RESOURCE may be used for many EVENTs. The RESOURCE entity would be represented by the following
attributes:

RESOURCE (RSC_ID, RSC_DESCRIPTION, RSC_TYPE, RSC_QTY, RSC_PRICE)

Given the business rules, the M:N relationship between RESOURCE and EVENT would be represented via the
EVNTRSC composite entity with a composite primary key as follows:

EVNTRSC (DATE, TIME_START, ROOM, RSC_ID, QTY_USED)

You now have a lengthy four-attribute composite primary key. What would happen if the EVNTRSC entity’s primary
key were inherited by another existence-dependent entity? At this point, you can see that the composite primary key
could make the implementation of the database and program coding unnecessarily complex.

As a data modeler, you probably noticed that the EVENT entity’s selected primary key might not fare well, given the
primary key guidelines in Table 6.3. In this case, the EVENT entity’s selected primary key contains embedded semantic
information and is formed by a combination of date, time, and text data columns. In addition, the selected primary key
would cause lengthy primary keys for existence-dependent entities. The solution to the problem is to use a numeric
single-attribute surrogate primary key.

Surrogate primary keys are accepted practice in today’s complex data environments. They are especially helpful when
there is no natural key, when the selected candidate key has embedded semantic contents, or when the selected
candidate key is too long or cumbersome. However, there is a tradeoff: if you use a surrogate key, you must ensure
that the candidate key of the entity in question performs properly through the use of “unique index” and “not null”
constraints.

C6545_06 7/12/2007 13:23:17 Page 205

205A D V A N C E D D A T A M O D E L I N G

6.4 DESIGN CASES: LEARNING FLEXIBLE DATABASE DESIGN

Data modeling and design require skills that are acquired through experience. In turn, experience is acquired through
practice—regular and frequent repetition, applying the concepts learned to specific and different design problems. This
section presents four special design cases that highlight the importance of flexible designs, proper identification of
primary keys, and placement of foreign keys.

6.4.1 Design Case #1: Implementing 1:1 Relationships

Foreign keys work with primary keys to properly implement relationships in the relational model. The basic rule is very
simple: put the primary key of the “one” side (the parent entity) on the “many” side (the dependent entity) as a foreign
key. However, where do you place the foreign key when you are working with a 1:1 relationship? For example, take
the case of a 1:1 relationship between EMPLOYEE and DEPARTMENT based on the business rule “one EMPLOYEE
is the manager of one DEPARTMENT, and one DEPARTMENT is managed by one EMPLOYEE.” In that case, there
are two options for selecting and placing the foreign key:

1. Place a foreign key in both entities. This option is derived from the basic rule you learned in Chapter 4. Place
EMP_NUM as a foreign key in DEPARTMENT, and place DEPT_ID as a foreign key in EMPLOYEE. However,
that solution is not recommended, as it would create duplicated work, and it could conflict with other existing
relationships. (Remember that DEPARTMENT and EMPLOYEE also participate in a 1:M relationship—one
department employs many employees.)

2. Place a foreign key in one of the entities. In that case, the primary key of one of the two entities appears
as a foreign key in the other entity. That is the preferred solution, but there is a remaining question: which
primary key should be used as a foreign key? The answer to that question is found in Table 6.5. Table 6.5
shows the rationale for selecting the foreign key in a 1:1 relationship based on the relationship properties in
the ERD.

TABLE
6.5

Selection of Foreign Key in a 1:1 Relationship

CASE ER RELATIONSHIP CONSTRAINTS ACTION
I One side is mandatory and the other

side is optional.
Place the PK of the entity on the mandatory side in the entity
on the optional side as an FK, and make the FK mandatory.

II Both sides are optional. Select the FK that causes the fewest number of nulls, or place
the FK in the entity in which the (relationship) role is played.

III Both sides are mandatory. See Case II, or consider revising your model to ensure that
the two entities do not belong together in a single entity.

Note

In describing the various modeling concepts throughout this book, the focus is on relational models. Also, given
the focus on the practical nature of database design, all design issues are addressed with the implementation
goal in mind. Therefore, there is no sharp line of demarcation between design and implementation.

At the pure conceptual stage of the design, foreign keys are not part of an ER diagram. The ERD displays only
entities and relationships. Entities are identified by identifiers that may become primary keys. During design, the
modeler attempts to understand and define the entities and relationships. Foreign keys are the mechanism
through which the relationship designed in an ERD is implemented in a relational model. If you use Visio
Professional as your modeling tool, you will discover that this book’s methodology is reflected in the Visio
modeling practice.

C6545_06 8/20/2007 10:49:59 Page 206

206 C H A P T E R 6

Figure 6.7 illustrates the “EMPLOYEE manages DEPARTMENT” relationship. Note that in this case, EMPLOYEE is
mandatory to DEPARTMENT. Therefore, EMP_NUM is placed as the foreign key in DEPARTMENT. Alternatively, you
might also argue that the “manager” role is played by the EMPLOYEE in the DEPARTMENT.

As a designer, you must recognize that 1:1 relationships exist in the real world, and therefore, they should be supported
in the data model. In fact, a 1:1 relationship is used to ensure that two entity sets are not placed in the same table.
In other words, EMPLOYEE and DEPARTMENT are clearly separate and unique entity types that do not belong
together in a single entity. If you group them together in one entity, what would be the name of that entity?

6.4.2 Design Case #2: Maintaining History of Time-Variant Data

Company managers generally realize that good decision making is based on the information that is generated through
the data stored in databases. Such data reflect current as well as past events. In fact, company managers use the data
stored in databases to answer questions such as, “How do the current company profits compare to those of previous
years?” and, “What are XYZ product’s sales trends?” In other words, the data stored on databases reflect not only
current data, but also historic data.

Normally, data changes are managed by replacing the existing attribute value with the new value, without regard to the
previous value. However, there are situations when the history of values for a given attribute must be preserved. From
a data modeling point of view, time-variant data refer to data whose values change over time and for which you
must keep a history of the data changes. You could argue that all data in a database are subject to change over time
and are, therefore, time variant. However, some attribute values, such as your date of birth or your Social Security
number, are not time variant. On the other hand, attributes such as your student GPA or your bank account balance
are subject to change over time. Sometimes the data changes are externally originated and event driven, such as a
product price change. On other occasions, changes are based on well-defined schedules, such as the daily stock quote
“open” and “close” values.

In any case, keeping the history of time-variant data is equivalent to having a multivalued attribute in your entity. To
model time-variant data, you must create a new entity in a 1:M relationship with the original entity. This new entity
will contain the new value, the date of the change, and whatever other attribute is pertinent to the event being
modeled. For example, if you want to keep track of the current manager as well as the history of all department
managers over time, you could create the model shown in Figure 6.8.

Note that in Figure 6.8, the MGR_HIST entity has a 1:M relationship with EMPLOYEE and a 1:M relationship with
DEPARTMENT to reflect the fact that, over time, an employee could be the manager of many different departments,
and a department could have many different employee managers. Because you are recording time-variant data, you
must store the DATE_ASSIGN attribute in the MGR_HIST entity to provide the date on which the employee
(EMP_NUM) became the manager of the department. The primary key of MGR_HIST permits the same employee to

FIGURE
6.7

A 1:1 relationship between DEPARTMENT and EMPLOYEE

C6545_06 8/20/2007 10:50:10 Page 207

207A D V A N C E D D A T A M O D E L I N G

be the manager of the same department, but on different dates. If that scenario is not the case in your environment—if,
for example, an employee is the manager of a department only once—you could make DATE_ASSIGN a nonprime
attribute in the MGR_HIST entity.

Note in Figure 6.8 that the “manages” relationship is optional in theory and redundant in practice. At any time, you
could find out who the manager of a department is by retrieving the most recent DATE_ASSIGN date from MGR_HIST
for a given department. On the other hand, the ERD in Figure 6.8 differentiates between current data and historic data.
The current manager relationship is implemented by the “manages” relationship between EMPLOYEE and
DEPARTMENT. Additionally, the historic data are managed through EMP_MGR_HIST and DEPT_MGR_HIST. The
trade-off with that model is that each time a new manager is assigned to a department, there will be two data
modifications: one update in the DEPARTMENT entity and one insert in the MGR_HIST entity.

The flexibility of the model proposed in Figure 6.8 becomes more apparent when you add the 1:M “one department
employs many employees” relationship. In that case, the PK of the “1” side (DEPT_ID) appears in the “many” side
(EMPLOYEE) as a foreign key. Now suppose you would like to keep track of the job history for each of the company’s
employees—you’d probably want to store the department, the job code, the date assigned, and the salary. To
accomplish that task, you would modify the model in Figure 6.8 by adding a JOB_HIST entity. Figure 6.9 shows the
use of the new JOB_HIST entity to maintain the employee’s history.

Again, it’s worth emphasizing that the “manages” and “employs” relationships are theoretically optional and redundant
in practice. You can always find out where each employee works by looking at the job history and selecting only the
most current data row for each employee. However, as you will discover in Chapter 7, An Introduction to Structured
Query Language (SQL), and in Chapter 8, Advanced SQL, finding where each employee works is not a trivial task.
Therefore, the model represented in Figure 6.9 includes the admittedly redundant but unquestionably useful “manages”
and “employs” relationships to separate current data from historic data.

FIGURE
6.8

Maintaining manager history

C6545_06 7/12/2007 13:24:43 Page 208

208 C H A P T E R 6

6.4.3 Design Case #3: Fan Traps

Creating a data model requires proper identification of the data relationships among entities. However, due to
miscommunication or incomplete understanding of the business rules or processes, it is not uncommon to misidentify
relationships among entities. Under those circumstances, the ERD may contain a design trap. A design trap occurs
when a relationship is improperly or incompletely identified and is therefore represented in a way that is not consistent
with the real world. The most common design trap is known as a fan trap.

A fan trap occurs when you have one entity in two 1:M relationships to other entities, thus producing an association
among the other entities that is not expressed in the model. For example, assume the JCB basketball league has many
divisions. Each division has many players, and each division has many teams. Given those “incomplete” business rules,
you might create an ERD that looks like the one in Figure 6.10.

As you can see in Figure 6.10, DIVISION is in a 1:M relationship with TEAM and in a 1:M relationship with PLAYER.
Although that representation is semantically correct, the relationships are not properly identified. For example, there
is no way to identify what players belong to what team. Figure 6.10 also shows a sample instance relationship
representation for the ERD. Note that the relationship lines for the DIVISION instances fan out to the TEAM and
PLAYER entity instances—thus the “fan trap” label.

Figure 6.11 shows the correct ERD after the fan trap has been eliminated. Note that, in this case, DIVISION is in a
1:M relationship with TEAM. In turn, TEAM is in a 1:M relationship with PLAYER. Figure 6.11 also shows the
instance relationship representation after eliminating the fan trap.

Given the design in Figure 6.11, note how easy it is to see which players play for which team. However, to find out
which players play in which division, you first need to see what teams belong to each division; then you need to find
out what players play on each team. In other words, there is a transitive relationship between DIVISION and PLAYER
via the TEAM entity.

FIGURE
6.9

Maintaining job history

C6545_06 7/12/2007 13:24:43 Page 209

209A D V A N C E D D A T A M O D E L I N G

6.5.4 Design Case #4: Redundant Relationships

Although redundancy is often a good thing to have in computer environments (multiple backups in multiple places, for
example), redundancy is seldom a good thing in the database environment. (As you learned in Chapter 3, The
Relational Database Model, redundancies can cause data anomalies in a database.) Redundant relationships occur
when there are multiple relationship paths between related entities. The main concern with redundant relationships is

FIGURE
6.10

Incorrect ERD with fan trap problem

FIGURE
6.11

Corrected ERD after removal of the fan trap

C6545_06 7/13/2007 17:1:11 Page 210

210 C H A P T E R 6

that they remain consistent across the model. However, it’s important to note that some designs use redundant
relationships as a way to simplify the design.

An example of redundant relationships was first introduced in Figure 6.8 during the discussion on maintaining a history
of time-variant data. However, the use of the redundant “manages” and “employs” relationships was justified by the
fact that such relationships were dealing with current data rather than historic data. Another more specific example of
a redundant relationship is represented in Figure 6.12.

In Figure 6.12, note the transitive 1:M relationship between DIVISION and PLAYER through the TEAM entity set.
Therefore, the relationship that connects DIVISION and PLAYER is, for all practical purposes, redundant. In that case,
the relationship could be safely deleted without losing any information-generation capabilities in the model.

6.5 DATA MODELING CHECKLIST

Data modeling translates a specific real-world environment into a data model that represents the real-world data, users,
processes, and interactions. You learned in this chapter how the EERM enables the designer to add more semantic
content to the model. You also learned about the trade-offs and intricacies in the selection of primary keys, and you
studied the modeling of time-variant data. The modeling techniques you have learned thus far give you the tools needed
to produce successful database designs. However, just as any good pilot uses a checklist to ensure that all is in order
for a successful flight, the data modeling checklist shown in Table 6.6 will help ensure that you perform data modeling
tasks successfully. (The data modeling checklist in Table 6.6 is based on the concepts and tools you learned beginning
in Chapter 3—the relational model, the entity relationship model, normalization, and the extended entity relationship
model.) Therefore, it is assumed that you are familiar with the terms and labels used in the checklist, such as synonyms,
aliases, and 3NF.

FIGURE
6.12

A redundant relationship

C6545_06 7/12/2007 13:25:46 Page 211

211A D V A N C E D D A T A M O D E L I N G

TABLE
6.6

Data Modeling Checklist

BUSINESS RULES
• Properly document and verify all business rules with the end users.
• Ensure that all business rules are written precisely, clearly, and simply. The business rules must help identify

entities, attributes, relationships, and constraints.
• Identify the source of all business rules, and ensure that each business rule is accompanied by the reason for

its existence and by the date and person(s) responsible for verifying and approving the business rule.
DATA MODELING
Naming Conventions: All names should be limited in length (database-dependent size).

• Entity Names:
- Should be nouns that are familiar to business and should be short and meaningful
- Should include abbreviations, synonyms, and aliases for each entity
- Should be unique within the model
- For composite entities, may include a combination of abbreviated names of the entities linked through the

composite entity
• Attribute Names:

- Should be unique within the entity
- Should use the entity abbreviation or prefix
- Should be descriptive of the characteristic
- Should use suffixes such as _ID, _NUM, or _CODE for the PK attribute
- Should not be a reserved word
- Should not contain spaces or special characters such as @, !, or &

• Relationship Names:
- Should be active or passive verbs that clearly indicate the nature of the relationship

Entities:
• Each entity should represent a single subject.
• Each entity should represent a set of distinguishable entity instances.
• All entities should be in 3NF or higher.
• The granularity of the entity instance is clearly defined.
• The PK is clearly defined and supports the selected data granularity.

Attributes:
• Should be simple and single-valued (atomic data)
• Should include default values, constraints, synonyms, and aliases
• Derived attributes should be clearly identified and include source(s)
• Should not be redundant unless they are required for transaction accuracy or for maintaining a history or are

used as a foreign key
• Non-key attributes must be fully dependent on the PK attribute

Relationships:
• Should clearly identify relationship participants
• Should clearly define participation and cardinality rules

ER Model:
• Should be validated against expected processes: inserts, updates, and deletes
• Should evaluate where, when, and how to maintain a history
• Should not contain redundant relationships except as required (see attributes)
• Should minimize data redundancy to ensure single-place updates
• Should conform to the minimal data rule: “All that is needed is there and all that is there is needed.”

C6545_06 8/20/2007 10:50:43 Page 212

212 C H A P T E R 6

S u m m a r y

◗ The extended entity relationship (EER) model adds semantics to the ER model via entity supertypes, subtypes, and
clusters. An entity supertype is a generic entity type that is related to one or more entity subtypes.

◗ A specialization hierarchy depicts the arrangement and relationships between entity supertypes and entity subtypes.
Inheritance means that an entity subtype inherits the attributes and relationships of the supertype. Subtypes can be
disjoint or overlapping. A subtype discriminator is used to determine to which entity subtype the supertype
occurrence is related. The subtypes can exhibit partial or total completeness. There are basically two approaches
to developing a specialization hierarchy of entity supertypes and subtypes: specialization and generalization.

◗ An entity cluster is a “virtual” entity type used to represent multiple entities and relationships in the ERD. An entity
cluster is formed by combining multiple interrelated entities and relationships into a single, abstract entity object.

◗ Natural keys are identifiers that exist in the real world. Natural keys sometimes make good primary keys, but this
is not necessarily true. Primary keys should have these characteristics: They must have unique values, they should
be nonintelligent, they must not change over time, and they are preferably numeric and composed of a single
attribute.

◗ Composite keys are useful to represent M:N relationships and weak (strong-identifying) entities.

◗ Surrogate primary keys are useful when there is no natural key that makes a suitable primary key, when the primary
key is a composite primary key with multiple different data types, or when the primary key is too long to be usable.

◗ In a 1:1 relationship, place the PK of the mandatory entity as a foreign key in the optional entity, as an FK in the
entity that causes the least number of nulls, or as an FK where the role is played.

◗ Time-variant data refers to data whose values change over time and whose requirements mandate that you keep
a history of data changes. To maintain the history of time-variant data, you must create an entity containing the
new value, the date of change, and any other time-relevant data. This entity maintains a 1:M relationship with the
entity for which the history is to be maintained.

◗ A fan trap occurs when you have one entity in two 1:M relationships to other entities and there is an association
among the other entities that is not expressed in the model. Redundant relationships occur when there are multiple
relationship paths between related entities. The main concern with redundant relationships is that they remain
consistent across the model.

◗ The data modeling checklist provides a way for the designer to check that the ERD meets a set of minimum
requirements.

K e y T e r m s

completeness constraint, 199

design trap, 209

disjoint subtype (non-overlapping
subtype), 197

EER diagram (EERD), 194

entity cluster, 200

entity subtype, 194

entity supertype, 194

extended entity relationship model
(EERM), 194

fan trap, 209

inheritance, 196

natural key (natural identifier), 202

overlapping subtype, 197

partial completeness, 160

specialization hierarchy, 195

subtype discriminator, 197

time-variant data, 207

total completeness, 199

C6545_06 7/13/2007 17:0:10 Page 213

213A D V A N C E D D A T A M O D E L I N G

R e v i e w Q u e s t i o n s

1. What is an entity supertype, and why is it used?

2. What kinds of data would you store in an entity subtype?

3. What is a specialization hierarchy?

4. What is a subtype discriminator? Give an example of its use.

5. What is an overlapping subtype? Give an example.

6. What is the difference between partial completeness and total completeness?

7. What is an entity cluster, and what advantages are derived from its use?

8. What primary key characteristics are considered desirable? Explain why each characteristic is considered
desirable.

9. Under what circumstances are composite primary keys appropriate?

10. What is a surrogate primary key, and when would you use one?

11. When implementing a 1:1 relationship, where should you place the foreign key if one side is mandatory and one
side is optional? Should the foreign key be mandatory or optional?

12. What are time-variant data, and how would you deal with such data from a database design point of view?

13. What is the most common design trap, and how does it occur?

14. Using the design checklist shown in this chapter, what naming conventions should you use?

15. Using the design checklist shown in this chapter, what characteristics should entities have?

P r o b l e m s

1. AVANTIVE Corporation is a company specializing in the commercialization of automotive parts. AVANTIVE has
two types of customers: retail and wholesale. All customers have a customer ID, a name, an address, a phone
number, a default shipping address, a date of last purchase, and a date of last payment. Retail customers have
the customer attributes, plus the credit card type, credit card number, expiration date, and e-mail address.
Wholesale customers have the customer attributes, plus a contact name, contact phone number, contact e-mail
address, purchase order number and date, discount percentage, billing address, tax status (if exempt), and tax
identification number. A retail customer cannot be a wholesale customer and vice versa. Given that information,
create the ERD containing all primary keys, foreign keys, and main attributes.

2. AVANTIVE Corporation has five departments: administration, marketing, sales, shipping, and purchasing. Each
department employs many employees. Each employee has an ID, a name, a home address, a home phone
number, and a salary and tax ID (Social Security number). Some employees are classified as sales representatives,
some as technical support, and some as administrators. Sales representatives receive a commission based on
sales. Technical support employees are required to be certified in their areas of expertise. For example, some are
certified as drivetrain specialists; others, as electrical systems specialists. All administrators have a title and a
bonus. Given that information, create the ERD containing all primary keys, foreign keys, and main attributes.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_06 8/20/2007 10:51:2 Page 214

214 C H A P T E R 6

3. AVANTIVE Corporation operates under the following business rules:

� AVANTIVE keeps a list of car models with information about the manufacturer, model, and year. AVANTIVE
keeps several parts in stock. A part has a part ID, description, unit price, and quantity on hand. A part can
be used for many car models, and a car model has many parts.

� A retail customer normally pays by credit card and is charged the list price for each purchased item. A
wholesale customer normally pays via purchase order with terms of net 30 days and is charged a discounted
price for each item purchased. (The discount varies from customer to customer.)

� A customer (retail or wholesale) can place many orders. Each order has an order number; a date; a shipping
address; a billing address; and a list of part codes, quantities, unit prices, and extended line totals. Each order
also has a sales representative ID (an employee) to identify the person who made the sale, an order subtotal,
an order tax total, a shipping cost, a shipping date, an order total cost, an order total paid, and an order
status (open, closed, or cancel).

Given that information, create the complete ERD containing all primary keys, foreign keys, and main attributes.

4. In Chapter 4, you saw the creation of the Tiny College database design. That design reflected such business rules
as “a professor may advise many students” and “a professor may chair one department.” Modify the design
shown in Figure 4.36 to include these business rules:

� An employee could be staff or a professor or an administrator.

� A professor may also be an administrator.

� Staff employees have a work level classification, such a Level I and Level II.

� Only professors can chair a department. A department is chaired by only one professor.

� Only professors can serve as the dean of a college. Each of the university’s colleges is served by one dean.

� A professor can teach many classes.

� Administrators have a position title.

Given that information, create the complete ERD containing all primary keys, foreign keys, and main attributes.

5. Tiny College wants to keep track of the history of all administrative appointments (date of appointment and date
of termination). (Hint: Time variant data are at work.) The Tiny College chancellor may want to know how many
deans worked in the College of Business between January 1, 1960 and January 1, 2008 or who the dean of the
College of Education was in 1990. Given that information, create the complete ERD containing all primary keys,
foreign keys, and main attributes.

6. Some Tiny College staff employees are information technology (IT) personnel. Some IT personnel provide
technology support for academic programs. Some IT personnel provide technology infrastructure support. Some
IT personnel provide technology support for academic programs and technology infrastructure support. IT
personnel are not professors. IT personnel are required to take periodic training to retain their technical
expertise. Tiny College tracks all IT personnel training by date, type, and results (completed vs. not completed).
Given that information, create the complete ERD containing all primary keys, foreign keys, and main attributes.

7. The FlyRight Aircraft Maintenance (FRAM) division of the FlyRight Company (FRC) performs all maintenance for
FRC’s aircraft. Produce a data model segment that reflects the following business rules:

� All mechanics are FRC employees. Not all employees are mechanics.

� Some mechanics are specialized in engine (EN) maintenance. Some mechanics are specialized in airframe
(AF) maintenance. Some mechanics are specialized in avionics (AV) maintenance. (Avionics are the
electronic components of an aircraft that are used in communication and navigation.) All mechanics take
periodic refresher courses to stay current in their areas of expertise. FRC tracks all courses taken by each
mechanic—date, course type, certification (Y/N), and performance.

� FRC keeps a history of the employment of all mechanics. The history includes the date hired, date promoted,
date terminated, and so on. (Note: The “and so on” component is, of course, not a real-world requirement.
Instead, it has been used here to limit the number of attributes you will show in your design.)

Given those requirements, create the Crow’s Foot ERD segment.

C6545_06 8/20/2007 10:51:24 Page 215

215A D V A N C E D D A T A M O D E L I N G

8. You have been asked to create a database design for the BoingX Aircraft Company (BAC), which has two HUD
(heads-up display) products: TRX-5A and TRX-5B. The database must enable managers to track blueprints, parts,
and software for each HUD, using the following business rules:

� For simplicity’s sake, you may assume that the TRX-5A unit is based on two engineering blueprints and that
the TRX-5B unit is based on three engineering blueprints. You are free to make up your own blueprint
names.

� All parts used in the TRX-5A and TRX-5B are classified as hardware. For simplicity’s sake, you may assume
that the TRX-5A unit uses three parts and that the TRX-5B unit uses four parts. You are free to make up
your own part names.

� BAC wants to keep track of all part price changes and the dates of those changes.

� BAC wants to keep track of all TRX-5A and TRX-5B software. For simplicity’s sake, you may assume that
the TRX-5A unit uses two named software components and that the TRX-5B unit also uses two named
software components. You are free to make up your own software names.

� BAC wants to keep track of all changes made in blueprints and software. Those changes must reflect the
date and time of the change, the description of the change, the person who authorized the change, the
person who actually made the change, and the reason for the change.

� BAC wants to keep track of all HUD test data by test type, test date, and test outcome.

Given those requirements, create the Crow’s Foot ERD.

9. Global Computer Solutions (GCS) is an information technology consulting company with many offices located
throughout the United States. The company’s success is based on its ability to maximize its resources—that is,
its ability to match highly skilled employees with projects according to region. To better manage its projects, GCS
has contacted you to design a database so that GCS managers can keep track of their customers, employees,
projects, project schedules, assignments, and invoices.

The GCS database must support all of GCS’s operations and information requirements. A basic description of
the main entities follows:

� The employees working for GCS have an employee ID, an employee last name, a middle initial, a first
name, a region, and a date of hire.

� Valid regions are as follows: Northwest (NW), Southwest (SW), Midwest North (MN), Midwest South (MS),
Northeast (NE), and Southeast (SE).

� Each employee has many skills, and many employees have the same skill.

� Each skill has a skill ID, description, and rate of pay. Valid skills are as follows: data entry I, data entry II,
systems analyst I, systems analyst II, database designer I, database designer II, Cobol I, Cobol II, C++ I, C++
II, VB I, VB II, ColdFusion I, ColdFusion II, ASP I, ASP II, Oracle DBA, MS SQL Server DBA, network
engineer I, network engineer II, web administrator, technical writer, and project manager. Table P6.9a shows
an example of the Skills Inventory.

Note

Some parts are supplied by vendors, while others are supplied by the BoingX Aircraft Company. Parts suppliers
must be able to meet the technical specification requirements (TCRs) set by the BoingX Aircraft Company. Any
parts supplier that meets the BoingX Aircraft Company’s TCRs may be contracted to supply parts. Therefore, any
part may be supplied by multiple suppliers and a supplier can supply many different parts.

Note

Problem 9 is sufficiently complex to serve as a class project.

C6545_06 7/12/2007 13:33:26 Page 216

216 C H A P T E R 6

� GCS has many customers. Each customer has a customer ID, customer name, phone number, and region.

� GCS works by projects. A project is based on a contract between the customer and GCS to design, develop,
and implement a computerized solution. Each project has specific characteristics such as the project ID, the
customer to which the project belongs, a brief description, a project date (that is, the date on which the
project’s contract was signed), a project start date (an estimate), a project end date (also an estimate), a
project budget (total estimated cost of project), an actual start date, an actual end date, an actual cost, and
one employee assigned as manager of the project.

� The actual cost of the project is updated each Friday by adding that week’s cost (computed by multiplying
the hours each employee worked by the rate of pay for that skill) to the actual cost.

� The employee who is the manager of the project must complete a project schedule, which is, in effect, a
design and development plan. In the project schedule (or plan), the manager must determine the tasks that
will be performed to take the project from beginning to end. Each task has a task ID, a brief task description,
the task’s starting and ending date, the type of skill needed, and the number of employees (with the required
skills) required to complete the task. General tasks are initial interview, database and system design,
implementation, coding, testing, and final evaluation and sign-off. For example, GCS might have the project
schedule shown in Table P6.9b.

TABLE
P6.9a

SKILL EMPLOYEE
Data Entry I Seaton Amy; Williams Josh; Underwood Trish
Data Entry II Williams Josh; Seaton Amy
Systems Analyst I Craig Brett; Sewell Beth; Robbins Erin; Bush Emily; Zebras Steve
Systems Analyst II Chandler Joseph; Burklow Shane; Robbins Erin
DB Designer I Yarbrough Peter; Smith Mary
DB Designer II Yarbrough Peter; Pascoe Jonathan
Cobol I Kattan Chris; Ephanor Victor; Summers Anna; Ellis Maria
Cobol II Kattan Chris; Ephanor Victor, Batts Melissa
C++ I Smith Jose; Rogers Adam; Cope Leslie
C++ II Rogers Adam; Bible Hanah
VB I Zebras Steve; Ellis Maria
VB II Zebras Steve; Newton Christopher
ColdFusion I Duarte Miriam; Bush Emily
ColdFusion II Bush Emily; Newton Christopher
ASP I Duarte Miriam; Bush Emily
ASP II Duarte Miriam; Newton Christopher
Oracle DBA Smith Jose; Pascoe Jonathan
SQL Server DBA Yarbrough Peter; Smith Jose
Network Engineer I Bush Emily; Smith Mary
Network Engineer II Bush Emily; Smith Mary
Web Administrator Bush Emily; Smith Mary; Newton Christopher
Technical Writer Kilby Surgena; Bender Larry
Project Manager Paine Brad; Mudd Roger; Kenyon Tiffany; Connor Sean

C6545_06 8/20/2007 10:55:1 Page 217

217A D V A N C E D D A T A M O D E L I N G

� Assignments: GCS pools all of its employees by region, and from this pool, employees are assigned to a
specific task scheduled by the project manager. For example, for the first project’s schedule, you know that
for the period 3/1/08 to 3/6/08, a Systems Analyst II, a Database Designer I, and a Project Manager are
needed. (The project manager is assigned when the project is created and remains for the duration of the
project). Using that information, GCS searches the employees who are located in the same region as the
customer, matching the skills required and assigning them to the project task.

� Each project schedule task can have many employees assigned to it, and a given employee can work on
multiple project tasks. However, an employee can work on only one project task at a time. For example, if
an employee is already assigned to work on a project task from 2/20/08 to 3/3/08, (s)he cannot work on
another task until the current assignment is closed (ends). The date on which an assignment is closed does
not necessarily match the ending date of the project schedule task, because a task can be completed ahead
of or behind schedule.

� Given all of the preceding information, you can see that the assignment associates an employee with a
project task, using the project schedule. Therefore, to keep track of the assignment, you require at least the
following information: assignment ID, employee, project schedule task, date assignment starts, and date
assignment ends (which could be any date, as some projects run ahead of or behind schedule). Table P6.9c
shows a sample assignment form.

TABLE
P6.9b

PROJECT ID: 1 DESCRIPTION: SALES MANAGEMENT SYSTEM
COMPANY : SEE ROCKS CONTRACT DATE: 2/12/2008 REGION: NW
START DATE: 3/1/2008 END DATE: 7/1/2008 BUDGET: $15,500
START
DATE

END DATE TASK DESCRIPTION SKILL(S) REQUIRED QUANTITY
REQUIRED

3/1/08 3/6/08 Initial Interview Project Manager
Systems Analyst II
DB Designer I

1
1
1

3/11/08 3/15/08 Database Design DB Designer I 1
3/11/08 4/12/08 System Design Systems Analyst II

Systems Analyst I
1
2

3/18/08 3/22/08 Database Implementation Oracle DBA 1
3/25/08 5/20/08 System Coding & Testing Cobol I

Cobol II
Oracle DBA

2
1
1

3/25/08 6/7/08 System Documentation Technical Writer 1
6/10/08 6/14/08 Final Evaluation Project Manager

Systems Analyst II
DB Designer I
Cobol II

1
1
1
1

6/17/08 6/21/08 On-Site System Online and
Data Loading

Project Manager
Systems Analyst II
DB Designer I
Cobol II

1
1
1
1

7/1/08 7/1/08 Sign-Off Project Manager 1

C6545_06 8/20/2007 10:55:34 Page 218

218 C H A P T E R 6

(Note: The assignment number is shown as a prefix of the employee name; for example, 101, 102.) Assume that
the assignments shown previously are the only ones existing as of the date of this design. The assignment number
can be whatever number matches your database design.

� The hours an employee works are kept in a work log containing a record of the actual hours worked by an
employee on a given assignment. The work log is a weekly form that the employee fills out at the end of
each week (Friday) or at the end of each month. The form contains the date (of each Friday of the month
or the last work day of the month if it doesn’t fall on a Friday), the assignment ID, the total hours worked
that week (or up to the end of the month), and the number of the bill to which the work log entry is charged.
Obviously, each work log entry can be related to only one bill. A sample list of the current work log entries
for the first sample project is shown in Table P6.9d.

TABLE
P6.9c

PROJECT ID: 1 DESCRIPTION: SALES MANAGEMENT SYSTEM
COMPANY: SEEROCKS CONTRACT DATE: 2/12/2008 AS OF: 03/29/08
SCHEDULED ACTUAL ASSIGNMENTS
PROJECT TASK START

DATE
END
DATE

SKILL EMPLOYEE START
DATE

END
DATE

Initial Interview 3/1/08 3/6/08 Project Mgr.
Sys. Analyst II
DB Designer I

101—Connor S.
102—Burklow S.
103—Smith M.

3/1/08
3/1/08
3/1/08

3/6/08
3/6/08
3/6/08

Database Design 3/11/08 3/15/08 DB Designer I 104—Smith M. 3/11/08 3/14/08
System Design 3/11/08 4/12/08 Sys. Analyst II

Sys. Analyst I
Sys. Analyst I

105—Burklow S.
106—Bush E.
107—Zebras S.

3/11/08
3/11/08
3/11/08

Database
Implementation

3/18/08 3/22/08 Oracle DBA 108—Smith J. 3/15/08 3/19/08

System Coding &
Testing

3/25/08 5/20/08 Cobol I
Cobol I
Cobol II
Oracle DBA

109—Summers A.
110—Ellis M.
111—Ephanor V.
112—Smith J.

3/21/08
3/21/08
3/21/08
3/21/08

System
Documentation

3/25/08 6/7/08 Tech. Writer 113—Kilby S. 3/25/08

Final Evaluation 6/10/08 6/14/08 Project Mgr.
Sys. Analyst II
DB Designer I
Cobol II

On-Site System
Online and Data
Loading

6/17/08 6/21/08 Project Mgr.
Sys. Analyst II
DB Designer I
Cobol II

Sign-Off 7/1/08 7/1/08 Project Mgr.

C6545_06 8/20/2007 10:56:42 Page 219

219A D V A N C E D D A T A M O D E L I N G

� Finally, every 15 days, a bill is written and sent to the customer, totaling the hours worked on the project
that period. When GCS generates a bill, it uses the bill number to update the work-log entries that are part
of that bill. In summary, a bill can refer to many work log entries, and each work log entry can be related
to only one bill. GCS sent one bill on 3/15/08 for the first project (Xerox), totaling the hours worked
between 3/1/08 and 3/15/08. Therefore, you can safely assume that there is only one bill in this table and
that that bill covers the work-log entries shown in the above form.

TABLE
P6.9d

EMPLOYEE NAME WEEK ENDING ASSIGNMENT NUMBER HOURS WORKED BILL NUMBER
Burklow S. 3/1/08 1-102 4 xxx
Connor S. 3/1/08 1-101 4 xxx
Smith M. 3/1/08 1-103 4 xxx
Burklow S. 3/8/08 1-102 24 xxx
Connor S. 3/8/08 1-101 24 xxx
Smith M. 3/8/08 1-103 24 xxx
Burklow S. 3/15/08 1-105 40 xxx
Bush E. 3/15/08 1-106 40 xxx
Smith J. 3/15/08 1-108 6 xxx
Smith M. 3/15/08 1-104 32 xxx
Zebras S. 3/15/08 1-107 35 xxx
Burklow S. 3/22/08 1-105 40
Bush E. 3/22/08 1-106 40
Ellis M. 3/22/08 1-110 12
Ephanor V. 3/22/08 1-111 12
Smith J. 3/22/08 1-108 12
Smith J. 3/22/08 1-112 12
Summers A. 3/22/08 1-109 12
Zebras S. 3/22/08 1-107 35
Burklow S. 3/29/08 1-105 40
Bush E. 3/29/08 1-106 40
Ellis M. 3/29/08 1-110 35
Ephanor V. 3/29/08 1-111 35
Kilby S. 3/29/08 1-113 40
Smith J. 3/29/08 1-112 35
Summers A. 3/29/08 1-109 35
Zebras S. 3/29/08 1-107 35
Note: xxx represents the bill ID. Use the one that matches the bill number in your database.

C6545_06 8/20/2007 10:57:9 Page 220

220 C H A P T E R 6

Your assignment is to create a database that will fulfill the operations described in this problem. The minimum required
entities are employee, skill, customer, region, project, project schedule, assignment, work log, and bill. (There are
additional required entities that are not listed.)

� Create all of the required tables and all of the required relationships.

� Create the required indexes to maintain entity integrity when using surrogate primary keys.

� Populate the tables as needed (as indicated in the sample data and forms).

C6545_06 8/20/2007 10:57:9 Page 221

221A D V A N C E D D A T A M O D E L I N G

PART

III
Advanced Design and

Implementation

7Introduction to Structured Query
Language (SQL)

8Advanced SQL

9Database Design

C6545_07 7/23/2007 14:27:23 Page 222

B
V

usiness
ignette

Using Queries to Score Runs

Today, we take for granted the ability to comb through vast amounts of data to find one

item that meets a slew of requirements or to find several items that share common

features. When we go to the library, retrieve bank account records, call Information to

get a phone number, or search for a movie review or restaurant online, we are interacting

with databases that did not exist 40 years ago. The impact of the information revolution

is very apparent in our daily lives. What is less apparent is how this revolution is slowly

changing society by determining who wins and who loses in school, in business, and even

in sports.

In the old days, money was the major factor in establishing which teams went to the World

Series. The rich teams could hunt for and buy the best players. As a result, theYankees have

dominated the event, playing in and winning many more championships than any other team

in the Major League. Today, databases are being used to even the playing field.

In the late 1990s, the Yankees hired E Solutions, a Tampa-based IT company, to complete

a customized software project to analyze scouting reports. E Solutions saw the potential

and developed ScoutAdvisor, a program that runs queries on data on baseball players

collected from many sources. Such sources include the Major League Baseball Scouting

Bureau, which provides psychological profile data on players, while SportsTicker supplies

game reports, and STATS provides game statistics such as where balls land in the field

after being hit or types of pitches.

The ScoutAdvisor database stores information on prospective and current players, such

as running speed, fielding ability, hitting ability, and plate discipline. Team managers can run

queries to find a pitcher with high arm strength, arm accuracy, and pitch speed. They can

check for injuries or discipline problems. They can run queries to determine if a player’s

performance justifies his cost. The database also stores automatic daily player updates.

Managers can run queries to determine whether a pitcher’s fastball speed is increasing or

whether a hitter’s tendency to swing at the first pitch is declining. ScoutAdvisor is

customizable, so managers can also design their own queries.

The result is that more and more baseball teams are signing contracts with E Solutions

as it becomes increasingly apparent that managing information is becoming as important

to team success as managing money or players.

C6545_07 9/6/2007 16:23:31 Page 223

Preview

Introduction to Structured Query Language (SQL)

In this chapter, you will learn:

� The basic commands and functions of SQL

� How to use SQL for data administration (to create tables, indexes, and views)

� How to use SQL for data manipulation (to add, modify, delete, and retrieve data)

� How to use SQL to query a database for useful information

In this chapter, you learn the basics of Structured Query Language (SQL). SQL, pronounced

S-Q-L by some and “sequel” by others, is composed of commands that enable users to

create database and table structures, perform various types of data manipulation and data

administration, and query the database to extract useful information. All relational DBMS

software supports SQL, and many software vendors have developed extensions to the basic

SQL command set.

Because SQL’s vocabulary is simple, the language is relatively easy to learn. Its simplicity is

enhanced by the fact that much of its work takes place behind the scenes. For example, a

single command creates the complex table structures required to store and manipulate data

successfully. Furthermore, SQL is a nonprocedural language; that is, the user specifies what

must be done, but not how it is to be done. To issue SQL commands, end users and

programmers do not need to know the physical data storage format or the complex

activities that take place when a SQL command is executed.

Although quite useful and powerful, SQL is not meant to stand alone in the applications

arena. Data entry with SQL is possible but awkward, as are data corrections and additions.

SQL itself does not create menus, special report forms, overlays, pop-ups, or any of the

other utilities and screen devices that end users usually expect. Instead, those features are

available as vendor-supplied enhancements. SQL focuses on data definition (creating tables,

indexes, and views) and data manipulation (adding, modifying, deleting, and retrieving data);

we cover these basic functions in this chapter. In spite of its limitations, SQL is a powerful

tool for extracting information and managing data.

7
S

E
V

E
N

C6545_07 7/23/2007 14:25:6 Page 224

7.1 INTRODUCTION TO SQL

Ideally, a database language allows you to create database and table structures, to perform basic data management
chores (add, delete, and modify), and to perform complex queries designed to transform the raw data into useful
information. Moreover, a database language must perform such basic functions with minimal user effort, and its
command structure and syntax must be easy to learn. Finally, it must be portable; that is, it must conform to some basic
standard so that an individual does not have to relearn the basics when moving from one RDBMS to another. SQL
meets those ideal database language requirements well.

SQL functions fit into two broad categories:

� It is a data definition language (DDL): SQL includes commands to create database objects such as tables,
indexes, and views, as well as commands to define access rights to those database objects. The data definition
commands you learn in this chapter are listed in Table 7.1.

� It is a data manipulation language (DML): SQL includes commands to insert, update, delete, and retrieve data
within the database tables. The data manipulation commands you learn in this chapter are listed in Table 7.2.

TABLE
7.1

SQL Data Definition Commands

COMMAND OR OPTION DESCRIPTION
CREATE SCHEMA AUTHORIZATION Creates a database schema
CREATE TABLE Creates a new table in the user’s database schema

NOT NULL Ensures that a column will not have null values
UNIQUE Ensures that a column will not have duplicate values
PRIMARY KEY Defines a primary key for a table
FOREIGN KEY Defines a foreign key for a table
DEFAULT Defines a default value for a column (when no value is given)
CHECK Validates data in an attribute

CREATE INDEX Creates an index for a table
CREATE VIEW Creates a dynamic subset of rows/columns from one or more tables
ALTER TABLE Modifies a tables definition (adds, modifies, or deletes attributes or con-

straints)
CREATE TABLE AS Creates a new table based on a query in the user’s database schema
DROP TABLE Permanently deletes a table (and its data)
DROP INDEX Permanently deletes an index
DROP VIEW Permanently deletes a view

TABLE
7.2

SQL Data Manipulation Commands

COMMAND OR OPTION DESCRIPTION
INSERT Inserts row(s) into a table
SELECT Selects attributes from rows in one or more tables or views
WHERE Restricts the selection of rows based on a conditional expression
GROUP BY Groups the selected rows based on one or more attributes
HAVING Restricts the selection of grouped rows based on a condition
ORDER BY Orders the selected rows based on one or more attributes
UPDATE Modifies an attribute’s values in one or more table’s rows
DELETE Deletes one or more rows from a table
COMMIT Permanently saves data changes
ROLLBACK Restores data to their original values

C6545_07 9/4/2007 13:39:48 Page 225

225I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

TABLE
7.2

SQL Data Manipulation Commands (continued)

COMMAND OR OPTION DESCRIPTION
COMPARISON OPERATORS
=, <, >, <=, >=, <> Used in conditional expressions
LOGICAL OPERATORS
AND/OR/NOT Used in conditional expressions
SPECIAL OPERATORS Used in conditional expressions
BETWEEN Checks whether an attribute value is within a range
IS NULL Checks whether an attribute value is null
LIKE Checks whether an attribute value matches a given string pattern
IN Checks whether an attribute value matches any value within a value list
EXISTS Checks whether a subquery returns any rows
DISTINCT Limits values to unique values
AGGREGATE FUNCTIONS Used with SELECT to return mathematical summaries on columns
COUNT Returns the number of rows with non-null values for a given column
MIN Returns the minimum attribute value found in a given column
MAX Returns the maximum attribute value found in a given column
SUM Returns the sum of all values for a given column
AVG Returns the average of all values for a given column

You will be happy to know that SQL is relatively easy to learn. Its basic command set has a vocabulary of fewer than
100 words. Better yet, SQL is a nonprocedural language: you merely command what is to be done; you don’t have
to worry about how it is to be done. The American National Standards Institute (ANSI) prescribes a standard SQL—the
current version is known as SQL-99 or SQL3. The ANSI SQL standards are also accepted by the International
Organization for Standardization (ISO), a consortium composed of national standards bodies of more than 150
countries. Although adherence to the ANSI/ISO SQL standard is usually required in commercial and government
contract database specifications, many RDBMS vendors add their own special enhancements. Consequently, it is
seldom possible to move a SQL-based application from one RDBMS to another without making some changes.

However, even though there are several different SQL “dialects,” the differences among them are minor. Whether you
use Oracle, Microsoft SQL Server, MySQL, IBM’s DB2, Microsoft Access, or any other well-established RDBMS, a
software manual should be sufficient to get you up to speed if you know the material presented in this chapter.

At the heart of SQL is the query. In Chapter 1, Database Systems, you learned that a query is a spur-of-the-moment
question. Actually, in the SQL environment, the word query covers both questions and actions. Most SQL queries are
used to answer questions such as these: “What products currently held in inventory are priced over $100, and what
is the quantity on hand for each of those products?” “How many employees have been hired since January 1, 2006
by each of the company’s departments?” However, many SQL queries are used to perform actions such as adding or
deleting table rows or changing attribute values within tables. Still other SQL queries create new tables or indexes. In
short, for a DBMS, a query is simply a SQL statement that must be executed. But before you can use SQL to query
a database, you must define the database environment for SQL with its data definition commands.

7.2 DATA DEFINITION COMMANDS

Before examining the SQL syntax for creating and defining tables and other elements, let’s first examine the simple
database model and the database tables that will form the basis for the many SQL examples you’ll explore in this
chapter.

C6545_07 7/23/2007 14:33:45 Page 226

226 C H A P T E R 7

7.2.1 The Database Model

A simple database composed of the following tables is used to illustrate the SQL commands in this chapter:
CUSTOMER, INVOICE, LINE, PRODUCT, and VENDOR. This database model is shown in Figure 7.1.

The database model in Figure 7.1 reflects the following business rules:

� A customer may generate many invoices. Each invoice is generated by one customer.

� An invoice contains one or more invoice lines. Each invoice line is associated with one invoice.

� Each invoice line references one product. A product may be found in many invoice lines. (You can sell more
than one hammer to more than one customer.)

� A vendor may supply many products. Some vendors do not (yet?) supply products. (For example, a vendor list
may include potential vendors.)

� If a product is vendor-supplied, that product is supplied by only a single vendor.

� Some products are not supplied by a vendor. (For example, some products may be produced in-house or
bought on the open market.)

As you can see in Figure 7.1, the database model contains many tables. However, to illustrate the initial set of data
definition commands, the focus of attention will be the PRODUCT and VENDOR tables. You will have the opportunity
to use the remaining tables later in this chapter and in the problem section.

So that you have a point of reference for understanding the effect of the SQL queries, the contents of the PRODUCT
and VENDOR tables are listed in Figure 7.2.

FIGURE
7.1

The database model

C6545_07 7/23/2007 14:35:10 Page 227

227I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Note the following about these tables. (The features correspond to the business rules reflected in the ERD shown in
Figure 7.1.)

� The VENDOR table contains vendors who are not referenced in the PRODUCT table. Database designers note
that possibility by saying that PRODUCT is optional to VENDOR; a vendor may exist without a reference to
a product. You examined such optional relationships in detail in Chapter 4, Entity Relationship (ER) Modeling.

O n l i n e C o n t e n t

The database model in Figure 7.1 is implemented in the Microsoft Access Ch07_SaleCo database located in
the Student Online Companion. (This database contains a few additional tables that are not reflected in Figure
7.1. These tables are used for discussion purposes only.) If you use MS Access, you can use the database
supplied online. However, it is strongly suggested that you create your own database structures so you can
practice the SQL commands illustrated in this chapter.

SQL script files for creating the tables and loading the data in Oracle and MS SQL Server are also located in the
Student Online Companion. How you connect to your database depends on how the software was installed on
your computer. Follow the instructions provided by your instructor or school.

FIGURE
7.2

The VENDOR and PRODUCT tables

Table name: VENDOR

Table name: PRODUCT

Database name: Ch07_SaleCo

C6545_07 7/23/2007 14:35:37 Page 228

228 C H A P T E R 7

� Existing V_CODE values in the PRODUCT table must (and do) have a match in the VENDOR table to ensure
referential integrity.

� A few products are supplied factory-direct, a few are made in-house, and a few may have been bought in a
warehouse sale. In other words, a product is not necessarily supplied by a vendor. Therefore, VENDOR is
optional to PRODUCT.

A few of the conditions just described were made for the sake of illustrating specific SQL features. For example, null
V_CODE values were used in the PRODUCT table to illustrate (later) how you can track such nulls using SQL.

7.2.2 Creating the Database

Before you can use a new RDBMS, you must complete two tasks: first, create the database structure, and second,
create the tables that will hold the end-user data. To complete the first task, the RDBMS creates the physical files that
will hold the database. When you create a new database, the RDBMS automatically creates the data dictionary tables
to store the metadata and creates a default database administrator. Creating the physical files that will hold the database
means interacting with the operating system and the file systems supported by the operating system. Therefore,
creating the database structure is the one feature that tends to differ substantially from one RDBMS to another. The
good news is that it is relatively easy to create a database structure, regardless of which RDBMS you use.

If you use Microsoft Access, creating the database is simple: start Access, select File/New/Blank Database, specify
the folder in which you want to store the database, and then name the database. However, if you work in a database
environment typically used by larger organizations, you will probably use an enterprise RDBMS such as Oracle, SQL
Server, MySQL or DB2. Given their security requirements and greater complexity, those database products require a
more elaborate database creation process. (You will learn how to create and manage an Oracle database structure in
Chapter 15, Database Administration and Security.)

You will be relieved to discover that, with the exception of the database creation process, most RDBMS vendors use
SQL that deviates little from the ANSI standard SQL. For example, most RDBMSs require that each SQL command
ends with a semicolon. However, some SQL implementations do not use a semicolon. Important syntax differences
among implementations will be highlighted in Note boxes.

If you are using an enterprise RDBMS, before you can start creating tables you must be authenticated by the RDBMS.
Authentication is the process through which the DBMS verifies that only registered users may access the database.
To be authenticated, you must log on to the RDBMS using a user ID and a password created by the database
administrator. In an enterprise RDBMS, every user ID is associated with a database schema.

7.2.3 The Database Schema

In the SQL environment, a schema is a group of database objects—such as tables and indexes—that are related to
each other. Usually, the schema belongs to a single user or application. A single database can hold multiple schemas
belonging to different users or applications. Think of a schema as a logical grouping of database objects, such as tables,
indexes, and views. Schemas are useful in that they group tables by owner (or function) and enforce a first level of
security by allowing each user to see only the tables that belong to that user.

ANSI SQL standards define a command to create a database schema:

CREATE SCHEMA AUTHORIZATION {creator};

Therefore, if the creator is JONES, use the command:

CREATE SCHEMA AUTHORIZATION JONES;

C6545_07 7/23/2007 14:39:10 Page 229

229I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Most enterprise RDBMSs support that command. However, the command is seldom used directly—that is, from the
command line. (When a user is created, the DBMS automatically assigns a schema to that user.) When the DBMS is
used, the CREATE SCHEMA AUTHORIZATION command must be issued by the user who owns the schema. That
is, if you log on as JONES, you can use only CREATE SCHEMA AUTHORIZATION JONES.

For most RDBMSs, the CREATE SCHEMA AUTHORIZATION is optional. That is why this chapter focuses on the
ANSI SQL commands required to create and manipulate tables.

7.2.4 Data Types

After the database schema has been created, you are ready to define the PRODUCT and VENDOR table structures
within the database. The table-creating SQL commands used in the example are based on the data dictionary shown
in Table 7.3.

In the data dictionary in Table 7.3, note particularly the data types selected. Keep in mind that data type selection is
usually dictated by the nature of the data and by the intended use. For example:

� P_PRICE clearly requires some kind of numeric data type; defining it as a character field is not acceptable.

� Just as clearly, a vendor name is an obvious candidate for a character data type. For example, VARCHAR2(35)
fits well because vendor names are “variable-length” character strings, and in this case, such strings may be up
to 35 characters long.

� U.S. state abbreviations are always two characters, so CHAR(2) is a logical choice.

� Selecting P_INDATE to be a (Julian) DATE field rather than a character field is desirable because the Julian
dates allow you to make simple date comparisons and to perform date arithmetic. For instance, if you have
used DATE fields, you can determine how many days are between them.

If you use DATE fields, you can also determine what the date will be in say, 60 days from a given P_INDATE by using
P_INDATE + 60. Or you can use the RDBMS’s system date—SYSDATE in Oracle, GETDATE() in MS SQL Server,
and Date() in Access—to determine the answer to questions such as, “What will be the date 60 days from today?” For
example, you might use SYSDATE + 60 (in Oracle); GETDATE() + 60 (in MS SQL Server) or Date() + 60 (in Access).

Date arithmetic capability is particularly useful in billing. Perhaps you want your system to start charging interest on
a customer balance 60 days after the invoice is generated. Such simple date arithmetic would be impossible if you used
a character data type.

Data type selection sometimes requires professional judgment. For example, you must make a decision about the
V_CODE’s data type as follows:

� If you want the computer to generate new vendor codes by adding 1 to the largest recorded vendor code, you
must classify V_CODE as a numeric attribute. (You cannot perform mathematical procedures on character
data.) The designation INTEGER will ensure that only the counting numbers (integers) can be used. Most SQL
implementations also permit the use of SMALLINT for integer values up to six digits.

� If you do not want to perform mathematical procedures based on V_CODE, you should classify it as a character
attribute, even though it is composed entirely of numbers. Character data are “quicker” to process in queries.
Therefore, when there is no need to perform mathematical procedures on the attribute, store it as a character
attribute.

The first option is used to demonstrate the SQL procedures in this chapter.

C6545_07 7/26/2007 14:1:36 Page 230

230 C H A P T E R 7

TA
BL

E
7.

3
D

at
a

D
ic

tio
na

ry
fo

r
th

e
C

H
07

_S
AL

EC
O

D
at

ab
as

e

TA
BL

E
N

AM
E

AT
TR

IB
U

TE
N

AM
E

C
O

N
TE

N
TS

TY
PE

FO
RM

AT
RA

N
G

E*
RE

Q
U

IR
ED

PK O
R

FK

FK RE
FE

RE
N

C
ED

TA
BL

E
PR

O
D

U
C

T
P_

C
O

D
E

Pr
od

uc
tc

od
e

C
H

AR
(1

0)
XX

XX
XX

XX
XX

N
A

Y
PK

P_
D

ES
C

RI
PT

Pr
od

uc
td

es
cr

ip
tio

n
VA

RC
H

AR
(3

5)
Xx

xx
xx

xx
xx

xx
N

A
Y

P_
IN

D
AT

E
St

oc
ki

ng
da

te
D

AT
E

D
D

-M
O

N
-Y

YY
Y

N
A

Y
P_

Q
O

H
U

ni
ts

av
ai

la
bl

e
SM

AL
LI

N
T

#
#

#
#

0-
99

99
Y

P_
M

IN
M

in
im

um
un

its
SM

AL
LI

N
T

#
#

#
#

0-
99

99
Y

P_
PR

IC
E

Pr
od

uc
tp

ric
e

N
U

M
BE

R(
8,

2)
#

#
#

#
.#

#
0.

00
-9

99
9.

00
Y

P_
D

IS
C

O
U

N
T

D
isc

ou
nt

ra
te

N
U

M
BE

R(
5,

2)
0.

#
#

0.
00

-0
.2

0
Y

V_
C

O
D

E
Ve

nd
or

co
de

IN
TE

G
ER

#
#

#
10

0-
99

9
FK

VE
N

D
O

R

V
EN

D
O

R
V

_C
O

D
E

Ve
nd

or
co

de
IN

TE
G

ER
#

#
#

#
#

10
00

-9
99

9
Y

PK
V_

N
AM

E
Ve

nd
or

na
m

e
C

H
AR

(3
5)

Xx
xx

xx
xx

xx
xx

xx
N

A
Y

V_
C

O
N

TA
C

T
C

on
ta

ct
pe

rs
on

C
H

AR
(2

5)
Xx

xx
xx

xx
xx

xx
xx

N
A

Y
V

_A
RE

AC
O

D
E

A
re

a
co

de
C

H
AR

(3
)

99
9

N
A

Y
V_

PH
O

N
E

Ph
on

e
nu

m
be

r
C

H
AR

(8
)

99
9-

99
99

N
A

Y
V_

ST
AT

E
St

at
e

C
H

AR
(2

)
XX

N
A

Y
V

_O
RD

ER
Pr

ev
io

us
or

de
r

C
H

AR
(1

)
X

Y
or

N
Y

FK
=

Fo
re

ig
n

ke
y

PK
=

Pr
im

ar
y

ke
y

C
H

A
R

=
Fi

xe
d

ch
ar

ac
te

r
le

ng
th

da
ta

,1
to

25
5

ch
ar

ac
te

rs
VA

RC
H

AR
=

Va
ria

bl
e

ch
ar

ac
te

r
le

ng
th

da
ta

,1
to

2,
00

0
ch

ar
ac

te
rs

.V
AR

C
H

AR
is

au
to

m
at

ic
al

ly
co

nv
er

te
d

to
VA

RC
H

AR
2

in
O

ra
cl

e
N

U
M

BE
R

=
N

um
er

ic
da

ta
.N

U
M

BE
R(

9,
2)

is
us

ed
to

sp
ec

ify
nu

m
be

rs
w

ith
tw

o
de

ci
m

al
pl

ac
es

an
d

up
to

ni
ne

di
gi

ts
lo

ng
,i

nc
lu

di
ng

th
e

de
ci

m
al

pl
ac

es
.S

om
e

RD
BM

Ss
pe

rm
it

th
e

us
e

of
a

M
O

N
EY

or
a

C
U

RR
EN

C
Y

da
ta

ty
pe

.
IN

T
=

In
te

ge
r

va
lu

es
on

ly
SM

A
LL

IN
T

=
Sm

al
li

nt
eg

er
va

lu
es

on
ly

D
AT

E
fo

rm
at

s
va

ry
.C

om
m

on
ly

ac
ce

pt
ed

fo
rm

at
s

ar
e:

‘D
D

-M
O

N
-Y

YY
Y’

,‘
D

D
-M

O
N

-Y
Y’

,‘
M

M
/D

D
/Y

YY
Y’

or
‘M

M
/D

D
/Y

Y’
*

N
ot

al
lt

he
ra

ng
es

sh
ow

n
he

re
w

ill
be

ill
us

tra
te

d
in

th
is

ch
ap

te
r.

H
ow

ev
er

,y
ou

ca
n

us
e

th
es

e
co

ns
tra

in
ts

to
pr

ac
tic

e
w

rit
in

g
yo

ur
ow

n
co

ns
tra

in
ts

.

C6545_07 7/23/2007 14:45:10 Page 231

231I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

When you define the attribute’s data type, you must pay close attention to the expected use of the attributes for sorting
and data retrieval purposes. For example, in a real estate application, an attribute that represents the numbers of
bathrooms in a home (H_BATH_NUM) could be assigned the CHAR(3) data type because it is highly unlikely the
application will do any addition, multiplication, or division with the number of bathrooms. Based on the CHAR(3) data
type definition, valid H_BATH_NUM values would be '2','1','2.5','10'. However, this data type decision creates potential
problems. For example, if an application sorts the homes by number of bathrooms, a query would “see” the value '10'
as less than '2', which is clearly incorrect. So you must give some thought to the expected use of the data in order to
properly define the attribute data type.

The data dictionary in Table 7.3 contains only a few of the data types supported by SQL. For teaching purposes, the
selection of data types is limited to ensure that almost any RDBMS can be used to implement the examples. If your
RDBMS is fully compliant with ANSI SQL, it will support many more data types than the ones shown in Table 7.4.
And many RDBMSs support data types beyond the ones specified in ANSI SQL.

TABLE
7.4

Some Common SQL Data Types

DATA TYPE FORMAT COMMENTS
Numeric NUMBER(L,D)

INTEGER

SMALLINT

DECIMAL(L,D)

The declaration NUMBER(7,2) indicates numbers that will be stored with
two decimal places and may be up to seven digits long, including the sign
and the decimal place. Examples: 12.32, −134.99.

May be abbreviated as INT. Integers are (whole) counting numbers, so they
cannot be used if you want to store numbers that require decimal places.

Like INTEGER, but limited to integer values up to six digits. If your integer
values are relatively small, use SMALLINT instead of INT.

Like the NUMBER specification, but the storage length is a minimum
specification. That is, greater lengths are acceptable, but smaller ones are
not. DECIMAL(9,2), DECIMAL(9), and DECIMAL are all acceptable.

Character CHAR(L)

VARCHAR(L) or
VARCHAR2(L)

Fixed-length character data for up to 255 characters. If you store strings that
are not as long as the CHAR parameter value, the remaining spaces are left
unused. Therefore, if you specify CHAR(25), strings such as Smith and
Katzenjammer are each stored as 25 characters. However, a U.S. area code
is always three digits long, so CHAR(3) would be appropriate if you wanted
to store such codes.

Variable-length character data. The designation VARCHAR2(25) will let you
store characters up to 25 characters long. However, VARCHAR will not leave
unused spaces. Oracle automatically converts VARCHAR to VARCHAR2.

Date DATE Stores dates in the Julian date format.

In addition to the data types shown in Table 7.4, SQL supports several other data types, including TIME, TIMESTAMP,
REAL, DOUBLE, FLOAT, and intervals such as INTERVAL DAY TO HOUR. Many RDBMSs also have expanded the
list to include other types of data, such as LOGICAL, CURRENCY, AutoNumber (Access), and sequence (Oracle).
However, because this chapter is designed to introduce the SQL basics, the discussion is limited to the data types
summarized in Table 7.4.

7.2.5 Creating Table Structures

Now you are ready to implement the PRODUCT and VENDOR table structures with the help of SQL, using the
CREATE TABLE syntax shown next.

C6545_07 9/4/2007 13:40:49 Page 232

232 C H A P T E R 7

CREATE TABLE tablename (
column1 data type [constraint] [,
column2 data type [constraint]] [,
PRIMARY KEY (column1 [, column2])] [,
FOREIGN KEY (column1 [, column2]) REFERENCES tablename] [,
CONSTRAINT constraint]);

To make the SQL code more readable, most SQL programmers use one line per column (attribute) definition. In
addition, spaces are used to line up the attribute characteristics and constraints. Finally, both table and attribute names
are fully capitalized. Those conventions are used in the following examples that create VENDOR and PRODUCT tables
and throughout the book.

CREATE TABLE VENDOR (
V_CODE INTEGER NOT NULL UNIQUE,
V_NAME VARCHAR(35) NOT NULL,
V_CONTACT VARCHAR(15) NOT NULL,
V_AREACODE CHAR(3) NOT NULL,
V_PHONE CHAR(8) NOT NULL,
V_STATE CHAR(2) NOT NULL,
V_ORDER CHAR(1) NOT NULL,
PRIMARY KEY (V_CODE));

O n l i n e C o n t e n t

All the SQL commands you will see in this chapter are located in script files in the Student Online Companion
for this book. You can copy and paste the SQL commands into your SQL program. Script files are provided for
Oracle and SQL Server users.

Note

SQL SYNTAX
Syntax notation for SQL commands used in this book:

CAPITALS Required SQL command keywords

italics An end-user-provided parameter (generally required)

{a | b | ..} A mandatory parameter; use one option from the list separated by |

[��] An optional parameter—anything inside square brackets is optional

Tablename The name of a table

Column The name of an attribute in a table

data type A valid data type definition

constraint A valid constraint definition

condition A valid conditional expression (evaluates to true or false)

columnlist One or more column names or expressions separated by commas

tablelist One or more table names separated by commas

conditionlist One or more conditional expressions separated by logical operators

expression A simple value (such as 76 or Married) or a formula (such as P_PRICE − 10)

C6545_07 9/4/2007 13:41:6 Page 233

233I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

CREATE TABLE PRODUCT (
P_CODE VARCHAR(10) NOT NULL UNIQUE,
P_DESCRIPT VARCHAR(35) NOT NULL,
P_INDATE DATE NOT NULL,
P_QOH SMALLINT NOT NULL,
P_MIN SMALLINT NOT NULL,
P_PRICE NUMBER(8,2) NOT NULL,
P_DISCOUNT NUMBER(5,2) NOT NULL,
V_CODE INTEGER,
PRIMARY KEY (P_CODE),
FOREIGN KEY (V_CODE) REFERENCES VENDOR ON UPDATE CASCADE);

As you examine the preceding SQL table-creating command sequences, note the following features:

� The NOT NULL specifications for the attributes ensure that a data entry will be made. When it is crucial to have
the data available, the NOT NULL specification will not allow the end user to leave the attribute empty (with
no data entry at all). Because this specification is made at the table level and stored in the data dictionary,
application programs can use this information to create the data dictionary validation automatically.

� The UNIQUE specification creates a unique index in the respective attribute. Use it to avoid duplicated values
in a column.

� The primary key attributes contain both a NOT NULL and a UNIQUE specification. Those specifications
enforce the entity integrity requirements. If the NOT NULL and UNIQUE specifications are not supported, use
PRIMARY KEY without the specifications. (For example, if you designate the PK in MS Access, the NOT
NULL and UNIQUE specifications are automatically assumed and are not spelled out.)

� The entire table definition is enclosed in parentheses. A comma is used to separate each table element
(attributes, primary key, and foreign key) definition.

Note

• Because the PRODUCT table contains a foreign key that references the VENDOR table, create the
VENDOR table first. (In fact, the M side of a relationship always references the 1 side. Therefore, in a 1:M
relationship, you must always create the table for the 1 side first.)

• If your RDBMS does not support the VARCHAR2 and FCHAR format, use CHAR.

• Oracle accepts the VARCHAR data type and automatically converts it to VARCHAR2.

• If your RDBMS does not support SINT or SMALLINT, use INTEGER or INT. If INTEGER is not supported,
use NUMBER.

• If you use Access, you can use the NUMBER data type, but you cannot use the number delimiters at the
SQL level. For example, using NUMBER(8,2) to indicate numbers with up to eight characters and two
decimal places is fine in Oracle, but you cannot use it in Access—you must use NUMBER without the
delimiters.

• If your RDBMS does not support primary and foreign key designations or the UNIQUE specification,
delete them from the SQL code shown here.

• If you use the PRIMARY KEY designation in Oracle, you do not need the NOT NULL and UNIQUE
specifications.

• The ON UPDATE CASCADE clause is part of the ANSI standard, but it may not be supported by your
RDBMS. In that case, delete the ON UPDATE CASCADE clause.

C6545_07 9/4/2007 13:41:20 Page 234

234 C H A P T E R 7

� The ON UPDATE CASCADE specification ensures that if you make a change in any VENDOR’s V_CODE,
that change is automatically applied to all foreign key references throughout the system (cascade) to ensure that
referential integrity is maintained. (Although the ON UPDATE CASCADE clause is part of the ANSI standard,
some RDBMSs such as Oracle do not support ON UPDATE CASCADE. If your RDBMS does not support the
clause, delete it from the code shown here.)

� An RDBMS will automatically enforce referential integrity for foreign keys. That is, you cannot have an invalid
entry in the foreign key column; at the same time, you cannot delete a vendor row as long as a product row
references that vendor.

� The command sequence ends with a semicolon. (Remember, your RDBMS may require that you omit the
semicolon.)

7.2.6 SQL Constraints

In Chapter 3, The Relational Model, you learned that adherence to rules on entity integrity and referential integrity is
crucial in a relational database environment. Fortunately, most SQL implementations support both integrity rules.
Entity integrity is enforced automatically when the primary key is specified in the CREATE TABLE command sequence.
For example, you can create the VENDOR table structure and set the stage for the enforcement of entity integrity rules
by using:

PRIMARY KEY (V_CODE)

In the PRODUCT table’s CREATE TABLE sequence, note that referential integrity has been enforced by specifying in
the PRODUCT table:

FOREIGN KEY (V_CODE) REFERENCES VENDOR ON UPDATE CASCADE

Note

If you are working with a composite primary key, all of the primary keys attributes are contained within the
parentheses and are separated with commas. For example, the LINE table in Figure 7.1 has a primary key that
consists of the two attributes INV_NUMBER and LINE_NUMBER. Therefore, you would define the primary key
by typing:

PRIMARY KEY (INV_NUMBER, LINE_NUMBER),

The order of the primary key components is important because the indexing starts with the first-mentioned
attribute, then proceeds with the next attribute, and so on. In this example, the line numbers would be ordered
within each of the invoice numbers:

INV_NUMBER LINE_NUMBER

1001 1
1001 2
1002 1
1003 1
1003 2

Note

NOTE ABOUT COLUMN NAMES
Do not use mathematical symbols such as +, −, and / in your column names; instead, use an underscore to
separate words, if necessary. For example, PER-NUM might generate an error message, but PER_NUM is
acceptable. Also, do not use reserved words. Reserved words are words used by SQL to perform specific functions.
For example, in some RDBMSs, the column name INITIAL will generate the message invalid column name.

C6545_07 7/26/2007 14:2:30 Page 235

235I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

That foreign key constraint definition ensures that:

� You cannot delete a vendor from the VENDOR table if at least one product row references that vendor. This
is the default behavior for the treatment of foreign keys.

� On the other hand, if a change is made in an existing VENDOR table’s V_CODE, that change must be reflected
automatically in any PRODUCT table V_CODE reference (ON UPDATE CASCADE). That restriction makes
it impossible for a V_CODE value to exist in the PRODUCT table pointing to a nonexistent VENDOR table
V_CODE value. In other words, the ON UPDATE CASCADE specification ensures the preservation of
referential integrity. (Oracle does not support ON UPDATE CASCADE.)

In general, ANSI SQL permits the use of ON DELETE and ON UPDATE clauses to cover CASCADE, SET NULL, or
SET DEFAULT.

Note

NOTE TO ORACLE USERS
When you press the Enter key after typing each line, a line number is automatically generated as long as you do
not type a semicolon before pressing the Enter key. For example, Oracles execution of the CREATE TABLE
command will look like this:

CREATE TABLE PRODUCT (

2 P_CODE VARCHAR2(10)
3 CONSTRAINT PRODUCT_P_CODE_PK PRIMARY KEY,
4 P_DESCRIPT VARCHAR2(35) NOT NULL,
5 P_INDATE DATE NOT NULL,
6 P_QOH NUMBER NOT NULL,
7 P_MIN NUMBER NOT NULL,
8 P_PRICE NUMBER(8,2) NOT NULL,
9 P_DISCOUNT NUMBER(5,2) NOT NULL,

10 V_CODE NUMBER,
11 CONSTRAINT PRODUCT_V_CODE_FK
12 FOREIGN KEYV_CODE REFERENCES VENDOR
13

In the preceding SQL command sequence, note the following:

• The attribute definition for P_CODE starts in line 2 and ends with a comma at the end of line 3.

• The CONSTRAINT clause (line 3) allows you to define and name a constraint in Oracle. You can name the
constraint to meet your own naming conventions. In this case, the constraint was named PRODUCT_P_
CODE_PK.

• Examples of constraints are NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, and CHECK. For
additional details about constraints, see below.

• To define a PRIMARY KEY constraint, you could also use the following syntax: P_CODE VARCHAR2(10)
PRIMARY KEY,.

• In this case, Oracle would automatically name the constraint.

• Lines 11 and 12 define a FOREIGN KEY constraint name PRODUCT_V_CODE_FK for the attribute
V_CODE. The CONSTRAINT clause is generally used at the end of the CREATE TABLE command
sequence.

• If you do not name the constraints yourself, Oracle will automatically assign a name. Unfortunately, the
Oracle-assigned name makes sense only to Oracle, so you will have a difficult time deciphering it later. You
should assign a name that makes sense to human beings!

C6545_07 9/6/2007 16:23:52 Page 236

236 C H A P T E R 7

Besides the PRIMARY KEY and FOREIGN KEY constraints, the ANSI SQL standard also defines the following
constraints:

� The NOT NULL constraint ensures that a column does not accept nulls.

� The UNIQUE constraint ensures that all values in a column are unique.

� The DEFAULT constraint assigns a value to an attribute when a new row is added to a table. The end user may,
of course, enter a value other than the default value.

� The CHECK constraint is used to validate data when an attribute value is entered. The CHECK constraint does
precisely what its name suggests: it checks to see that a specified condition exists. Examples of such constraints
include the following:

- The minimum order value must be at least 10.

- The date must be after April 15, 2008.

If the CHECK constraint is met for the specified attribute (that is, the condition is true), the data are accepted for that
attribute. If the condition is found to be false, an error message is generated and the data are not accepted.

Note that the CREATE TABLE command lets you define constraints in two different places:

� When you create the column definition (known as a column constraint)

� When you use the CONSTRAINT keyword (known as a table constraint)

A column constraint applies to just one column; a table constraint may apply to many columns. Those constraints are
supported at varying levels of compliance by enterprise RDBMSs.

In this chapter, Oracle is used to illustrate SQL constraints. For example, note that the following SQL command
sequence uses the DEFAULT and CHECK constraints to define the table named CUSTOMER.

O n l i n e C o n t e n t

For a more detailed discussion of the options for the ON DELETE and ON UPDATE clauses, see Appendix D,
Converting an ER Model into a Database Structure, Section D.2, General Rules Governing
Relationships Among Tables. Appendix D is in the Student Online Companion.

Note

NOTE ABOUT REFERENTIAL CONSTRAINT ACTIONS
The support for the referential constraints actions varies from product to product. For example:

• MS Access, SQL Server, and Oracle support ON DELETE CASCADE.

• MS Access and SQL Server support ON UPDATE CASCADE.

• Oracle does not support ON UPDATE CASCADE.

• Oracle supports SET NULL.

• MS Access and SQL Server do not support SET NULL.
Refer to your product manuals for additional information on referential constraints.

While MS Access does not support ON DELETE CASCADE or ON UPDATE CASCADE at the SQL
command-line level, it does support them through the relationship window interface. In fact, whenever you try
to establish a relationship between two tables in Access, the relationship window interface will automatically
pop up.

C6545_07 9/4/2007 13:44:55 Page 237

237I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

CREATE TABLE CUSTOMER (
CUS_CODE NUMBER PRIMARY KEY,
CUS_LNAME VARCHAR(15) NOT NULL,
CUS_FNAME VARCHAR(15) NOT NULL,
CUS_INITIAL CHAR(1),
CUS_AREACODE CHAR(3) DEFAULT '615' NOT NULL

CHECK(CUS_AREACODE IN ('615','713','931')),
CUS_PHONE CHAR(8) NOT NULL,
CUS_BALANCE NUMBER(9,2) DEFAULT 0.00,
CONSTRAINT CUS_UI1 UNIQUE (CUS_LNAME, CUS_FNAME));

In this case, the CUS_AREACODE attribute is assigned a default value of '615'. Therefore, if a new CUSTOMER table
row is added and the end user makes no entry for the area code, the '615' value will be recorded. Also note that the
CHECK condition restricts the values for the customer’s area code to 615, 713, and 931; any other values will be
rejected.

It is important to note that the DEFAULT value applies only when new rows are added to a table and then only when
no value is entered for the customer’s area code. (The default value is not used when the table is modified.) In contrast,
the CHECK condition is validated whether a customer row is added or modified. However, while the CHECK
condition may include any valid expression, it applies only to the attributes in the table being checked. If you want to
check for conditions that include attributes in other tables, you must use triggers. (See Chapter 8, Advanced SQL.)
Finally, the last line of the CREATE TABLE command sequence creates a unique index constraint (named CUS_UI1)
on the customer’s last name and first name. The index will prevent the entry of two customers with the same last name
and first name. (This index merely illustrates the process. Clearly, it should be possible to have more than one person
named John Smith in the CUSTOMER table.)

In the following SQL command to create the INVOICE table, the DEFAULT constraint assigns a default date to a new
invoice, and the CHECK constraint validates that the invoice date is greater than January 1, 2008.

CREATE TABLE INVOICE (
INV_NUMBER NUMBER PRIMARY KEY,
CUS_CODE NUMBER NOT NULL REFERENCES CUSTOMER(CUS_CODE),
INV_DATE DATE DEFAULT SYSDATE NOT NULL,
CONSTRAINT INV_CK1 CHECK (INV_DATE > TO_DATE('01-JAN-2008','DD-MON-YYYY')));

In this case, notice the following:

� The CUS_CODE attribute definition contains REFERENCES CUSTOMER (CUS_CODE) to indicate that the
CUS_CODE is a foreign key. This is another way to define a foreign key.

� The DEFAULT constraint uses the SYSDATE special function. This function always returns today’s date.

� The invoice date (INV_DATE) attribute is automatically given today’s date (returned by SYSDATE) when a new
row is added and no value is given for the attribute.

� A CHECK constraint is used to validate that the invoice date is greater than 'January 1, 2008'. When
comparing a date to a manually entered date in a CHECK clause, Oracle requires the use of the TO_DATE
function. The TO_DATE function takes two parameters, the literal date and the date format used.

Note

NOTE TO MS ACCESS USERS
MS Access does not accept the DEFAULT or CHECK constraints. However, MS Access will accept the
CONSTRAINT CUS_UI1 UNIQUE (CUS_LNAME, CUS_FNAME) line and create the unique index.

C6545_07 9/4/2007 13:45:17 Page 238

238 C H A P T E R 7

The final SQL command sequence creates the LINE table. The LINE table has a composite primary key (INV_
NUMBER, LINE_NUMBER) and uses a UNIQUE constraint in INV_NUMBER and P_CODE to ensure that the same
product is not ordered twice in the same invoice.

CREATE TABLE LINE (
INV_NUMBER NUMBER NOT NULL,
LINE_NUMBER NUMBER(2,0) NOT NULL,
P_CODE VARCHAR(10) NOT NULL,
LINE_UNITS NUMBER(9,2) DEFAULT 0.00 NOT NULL,
LINE_PRICE NUMBER(9,2) DEFAULT 0.00 NOT NULL,
PRIMARY KEY (INV_NUMBER, LINE_NUMBER),
FOREIGN KEY (INV_NUMBER) REFERENCES INVOICE ON DELETE CASCADE,
FOREIGN KEY (P_CODE) REFERENCES PRODUCT(P_CODE),
CONSTRAINT LINE_UI1 UNIQUE(INV_NUMBER, P_CODE));

In the creation of the LINE table, note that a UNIQUE constraint is added to prevent the duplication of an invoice line.
A UNIQUE constraint is enforced through the creation of a unique index. Also note that the ON DELETE CASCADE
foreign key action enforces referential integrity. The use of ON DELETE CASCADE is recommended for weak entities
to ensure that the deletion of a row in the strong entity automatically triggers the deletion of the corresponding rows
in the dependent weak entity. In that case, the deletion of an INVOICE row will automatically delete all of the LINE
rows related to the invoice. In the following section, you will learn more about indexes and how to use SQL commands
to create them.

7.2.7 SQL Indexes

You learned in Chapter 3 that indexes can be used to improve the efficiency of searches and to avoid duplicate column
values. In the previous section, you saw how to declare unique indexes on selected attributes when the table is created.
In fact, when you declare a primary key, the DBMS automatically creates a unique index. Even with this feature, you
often need additional indexes. The ability to create indexes quickly and efficiently is important. Using the CREATE
INDEX command, SQL indexes can be created on the basis of any selected attribute. The syntax is:

CREATE [UNIQUE] INDEX indexname ON tablename(column1 [, column2])

For example, based on the attribute P_INDATE stored in the PRODUCT table, the following command creates an
index named P_INDATEX:

CREATE INDEX P_INDATEX ON PRODUCT(P_INDATE);

SQL does not let you write over an existing index without warning you first, thus preserving the index structure within
the data dictionary. Using the UNIQUE index qualifier, you can even create an index that prevents you from using a
value that has been used before. Such a feature is especially useful when the index attribute is a candidate key whose
values must not be duplicated:

CREATE UNIQUE INDEX P_CODEX ON PRODUCT(P_CODE);

If you now try to enter a duplicate P_CODE value, SQL produces the error message “duplicate value in index.” Many
RDBMSs, including Access, automatically create a unique index on the PK attribute(s) when you declare the PK.

A common practice is to create an index on any field that is used as a search key, in comparison operations in a
conditional expression, or when you want to list rows in a specific order. For example, if you want to create a report
of all products by vendor, it would be useful to create an index on the V_CODE attribute in the PRODUCT table.
Remember that a vendor can supply many products. Therefore, you should not create a UNIQUE index in this case.
Better yet, to make the search as efficient as possible, a composite index is recommended.

C6545_07 7/24/2007 9:45:55 Page 239

239I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Unique composite indexes are often used to prevent data duplication. For example, consider the case illustrated in
Table 7.5, in which required employee test scores are stored. (An employee can take a test only once on a given date.)
Given the structure of Table 7.5, the PK is EMP_NUM + TEST_NUM. The third test entry for employee 111 meets
entity integrity requirements—the combination 111,3 is unique—yet the WEA test entry is clearly duplicated.

TABLE
7.5

A Duplicated Test Record

EMP_NUM TEST_NUM TEST_CODE TEST_DATE TEST_SCORE
110 1 WEA 15-Jan-2008 93
110 2 WEA 12-Jan-2008 87
111 1 HAZ 14-Dec-2007 91
111 2 WEA 18-Feb-2008 95
111 3 WEA 18-Feb-2008 95
112 1 CHEM 17-Aug-2007 91

Such duplication could have been avoided through the use of a unique composite index, using the attributes
EMP_NUM, TEST_CODE, and TEST_DATE:

CREATE UNIQUE INDEX EMP_TESTDEX ON TEST(EMP_NUM, TEST_CODE, TEST_DATE);

By default, all indexes produce results that are listed in ascending order, but you can create an index that yields output
in descending order. For example, if you routinely print a report that lists all products ordered by price from highest
to lowest, you could create an index named PROD_PRICEX by typing:

CREATE INDEX PROD_PRICEX ON PRODUCT(P_PRICE DESC);

To delete an index, use the DROP INDEX command:

DROP INDEX indexname

For example, if you want to eliminate the PROD_PRICEX index, type:

DROP INDEX PROD_PRICEX;

After creating the tables and some indexes, you are ready to start entering data. The following sections use two tables
(VENDOR and PRODUCT) to demonstrate most of the data manipulation commands.

7.3 DATA MANIPULATION COMMANDS

In this section, you will learn how to use the basic SQL data manipulation commands INSERT, SELECT, COMMIT,
UPDATE, ROLLBACK, and DELETE.

7.3.1 Adding Table Rows

SQL requires the use of the INSERT command to enter data into a table. The INSERT command’s basic syntax looks
like this:

INSERT INTO tablename VALUES (value1, value2, ... , valuen)

Because the PRODUCT table uses its V_CODE to reference the VENDOR table’s V_CODE, an integrity violation will
occur if those VENDOR table V_CODE values don’t yet exist. Therefore, you need to enter the VENDOR rows before

C6545_07 7/24/2007 9:46:6 Page 240

240 C H A P T E R 7

the PRODUCT rows. Given the VENDOR table structure defined earlier and the sample VENDOR data shown in
Figure 7.2, you would enter the first two data rows as follows:

INSERT INTO VENDOR
VALUES (21225,'Bryson, Inc.','Smithson','615','223-3234','TN','Y');

INSERT INTO VENDOR
VALUES (21226,'Superloo, Inc.','Flushing','904','215-8995','FL','N');

and so on, until all of the VENDOR table records have been entered.

(To see the contents of the VENDOR table, use the SELECT * FROM VENDOR; command.)

The PRODUCT table rows would be entered in the same fashion, using the PRODUCT data shown in Figure 7.2. For
example, the first two data rows would be entered as follows, pressing the Enter key at the end of each line:

INSERT INTO PRODUCT
VALUES ('11QER/31','Power painter, 15 psi., 3-nozzle','03-Nov-07',8,5,109.99,0.00,25595);

INSERT INTO PRODUCT
VALUES ('13-Q2/P2','7.25-in. pwr. saw blade','13-Dec-07',32,15,14.99, 0.05, 21344);

(To see the contents of the PRODUCT table, use the SELECT * FROM PRODUCT; command.)

In the preceding data entry lines, observe that:

� The row contents are entered between parentheses. Note that the first character after VALUES is a parenthesis
and that the last character in the command sequence is also a parenthesis.

� Character (string) and date values must be entered between apostrophes (').

� Numerical entries are not enclosed in apostrophes.

� Attribute entries are separated by commas.

� A value is required for each column in the table.

This version of the INSERT commands adds one table row at a time.

Inserting Rows with Null Attributes
Thus far, you have entered rows in which all of the attribute values are specified. But what do you do if a product does
not have a vendor or if you don’t yet know the vendor code? In those cases, you would want to leave the vendor code
null. To enter a null, use the following syntax:

INSERT INTO PRODUCT
VALUES ('BRT-345','Titanium drill bit','18-Oct-07', 75, 10, 4.50, 0.06, NULL);

Incidentally, note that the NULL entry is accepted only because the V_CODE attribute is optional—the NOT NULL
declaration was not used in the CREATE TABLE statement for this attribute.

Note

Date entry is a function of the date format expected by the DBMS. For example, March 25, 2008 might be
shown as 25-Mar-2008 in Access and Oracle, or it might be displayed in other presentation formats in another
RDBMS. MS Access requires the use of # delimiters when performing any computations or comparisons based
on date attributes, as in P_INDATE >= #25-Mar-08#.

C6545_07 9/4/2007 13:45:35 Page 241

241I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Inserting Rows with Optional Attributes
There might be occasions when more than one attribute is optional. Rather than declaring each attribute as NULL in
the INSERT command, you can indicate just the attributes that have required values. You do that by listing the attribute
names inside parentheses after the table name. For the purpose of this example, assume that the only required
attributes for the PRODUCT table are P_CODE and P_DESCRIPT:

INSERT INTO PRODUCT(P_CODE, P_DESCRIPT) VALUES ('BRT-345','Titanium drill bit');

7.3.2 Saving Table Changes

Any changes made to the table contents are not saved on disk until you close the database, close the program you are
using, or use the COMMIT command. If the database is open and a power outage or some other interruption occurs
before you issue the COMMIT command, your changes will be lost and only the original table contents will be retained.
The syntax for the COMMIT command is:

COMMIT [WORK]

The COMMIT command permanently saves all changes—such as rows added, attributes modified, and rows
deleted—made to any table in the database. Therefore, if you intend to make your changes to the PRODUCT table
permanent, it is a good idea to save those changes by using:

COMMIT;

However, the COMMIT command’s purpose is not just to save changes. In fact, the ultimate purpose of the COMMIT
and ROLLBACK commands (see Section 7.3.5) is to ensure database update integrity in transaction management.
(You will see how such issues are addressed in Chapter 10, Transaction Management and Concurrency Control.)

7.3.3 Listing Table Rows

The SELECT command is used to list the contents of a table. The syntax of the SELECT command is as follows:

SELECT columnlist FROM tablename

The columnlist represents one or more attributes, separated by commas. You could use the * (asterisk) as a wildcard
character to list all attributes. A wildcard character is a symbol that can be used as a general substitute for other
characters or commands. For example, to list all attributes and all rows of the PRODUCT table, use:

SELECT * FROM PRODUCT;

Figure 7.3 shows the output generated by that command. (Figure 7.3 shows all of the rows in the PRODUCT table
that serve as the basis for subsequent discussions. If you entered only the PRODUCT table’s first two records, as shown
in the preceding section, the output of the preceding SELECT command would show only the rows you entered. Don’t
worry about the difference between your SELECT output and the output shown in Figure 7.3. When you complete the
work in this section, you will have created and populated your VENDOR and PRODUCT tables with the correct rows
for use in future sections.)

Note

NOTE TO MS ACCESS USERS
MS Access doesn’t support the COMMIT command because it automatically saves changes after the execution
of each SQL command.

C6545_07 7/23/2007 16:38:31 Page 242

242 C H A P T E R 7

Although SQL commands can be grouped together on a single line, complex command sequences are best shown on
separate lines, with space between the SQL command and the command’s components. Using that formatting
convention makes it much easier to see the components of the SQL statements, making it easy to trace the SQL logic,
and if necessary, to make corrections. The number of spaces used in the indention is up to you. For example, note
the following format for a more complex statement:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_QOH, P_MIN, P_PRICE, P_DISCOUNT, V_CODE
FROM PRODUCT;

When you run a SELECT command on a table, the RDBMS returns a set of one or more rows that have the same
characteristics as a relational table. In addition, the SELECT command lists all rows from the table you specified in the
FROM clause. This is a very important characteristic of SQL commands. By default, most SQL data manipulation
commands operate over an entire table (or relation). That is why SQL commands are said to be set-oriented

FIGURE
7.3

The contents of the PRODUCT table

Note

Your listing may not be in the order shown in Figure 7.3. The listings shown in the figure are the result of
system-controlled primary-key-based index operations. You will learn later how to control the output so that it
conforms to the order you have specified.

Note

NOTE TO ORACLE USERS
Some SQL implementations (such as Oracle’s) cut the attribute labels to fit the width of the column. However,
Oracle lets you set the width of the display column to show the complete attribute name. You can also change
the display format, regardless of how the data are stored in the table. For example, if you want to display dollar
symbols and commas in the P_PRICE output, you can declare:

COLUMN P_PRICE FORMAT $99,999.99

to change the output 12347.67 to $12,347.67.

In the same manner, to display only the first 12 characters of the P_DESCRIPT attribute, use:

COLUMN P_DESCRIPT FORMAT A12 TRUNCATE

C6545_07 9/4/2007 13:46:4 Page 243

243I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

commands. A SQL set-oriented command works over a set of rows. The set may include one or more columns and
zero or more rows from one or more tables.

7.3.4 Updating Table Rows

Use the UPDATE command to modify data in a table. The syntax for this command is:

UPDATE tablename
SET columnname = expression [, columnname = expression]
[WHERE conditionlist];

For example, if you want to change P_INDATE from December 13, 2007, to January 18, 2008, in the second row
of the PRODUCT table (see Figure 7.3), use the primary key (13-Q2/P2) to locate the correct (second) row. Therefore,
type:

UPDATE PRODUCT
SET P_INDATE = '18-JAN-2008'
WHERE P_CODE = '13-Q2/P2';

If more than one attribute is to be updated in the row, separate the corrections with commas:

UPDATE PRODUCT
SET P_INDATE = '18-JAN-2008', P_PRICE = 17.99, P_MIN = 10
WHERE P_CODE = '13-Q2/P2';

What would have happened if the previous UPDATE command had not included the WHERE condition? The
P_INDATE, P_PRICE, and P_MIN values would have been changed in all rows of the PRODUCT table. Remember,
the UPDATE command is a set-oriented operator. Therefore, if you don’t specify a WHERE condition, the UPDATE
command will apply the changes to all rows in the specified table.

Confirm the correction(s) by using this SELECT command to check the PRODUCT table’s listing:

SELECT * FROM PRODUCT;

7.3.5 Restoring Table Contents

If you have not yet used the COMMIT command to store the changes permanently in the database, you can restore
the database to its previous condition with the ROLLBACK command. ROLLBACK undoes any changes since the
last COMMIT command and brings the data back to the values that existed before the changes were made. To restore
the data to their “pre-change” condition, type

ROLLBACK;

and then press the Enter key. Use the SELECT statement again to see that the ROLLBACK did, in fact, restore the
data to their original values.

COMMIT and ROLLBACK work only with data manipulation commands that are used to add, modify, or delete table
rows. For example, assume that you perform these actions:

1. CREATE a table called SALES.

2. INSERT 10 rows in the SALES table.

3. UPDATE two rows in the SALES table.

4. Execute the ROLLBACK command.

C6545_07 9/4/2007 13:46:16 Page 244

244 C H A P T E R 7

Will the SALES table be removed by the ROLLBACK command? No, the ROLLBACK command will undo only the
results of the INSERT and UPDATE commands. All data definition commands (CREATE TABLE) are automatically
committed to the data dictionary and cannot be rolled back. The COMMIT and ROLLBACK commands are examined
in greater detail in Chapter 10.

Some RDBMSs, such as Oracle, automatically COMMIT data changes when issuing data definition commands. For
example, if you had used the CREATE INDEX command after updating the two rows in the previous example, all
previous changes would have been committed automatically; doing a ROLLBACK afterward wouldn’t have undone
anything. Check your RDBMS manual to understand these subtle differences.

7.3.6 Deleting Table Rows

It is easy to delete a table row using the DELETE statement; the syntax is:

DELETE FROM tablename
[WHERE conditionlist];

For example, if you want to delete from the PRODUCT table the product that you added earlier whose code (P_CODE)
is 'BRT-345', use:

DELETE FROM PRODUCT
WHERE P_CODE = 'BRT-345';

In that example, the primary key value lets SQL find the exact record to be deleted. However, deletions are not limited
to a primary key match; any attribute may be used. For example, in your PRODUCT table, you will see that there are
several products for which the P_MIN attribute is equal to 5. Use the following command to delete all rows from the
PRODUCT table for which the P_MIN is equal to 5:

DELETE FROM PRODUCT
WHERE P_MIN = 5;

Check the PRODUCT table’s contents again to verify that all products with P_MIN equal to 5 have been deleted.

Finally, remember that DELETE is a set-oriented command. And keep in mind that the WHERE condition is optional.
Therefore, if you do not specify a WHERE condition, all rows from the specified table will be deleted!

7.3.7 Inserting Table Rows with a Select Subquery

You learned in Section 7.3.1 how to use the INSERT statement to add rows to a table. In that section, you added rows
one at a time. In this section, you learn how to add multiple rows to a table, using another table as the source of the
data. The syntax for the INSERT statement is:

INSERT INTO tablename SELECT columnlist FROM tablename;

In that case, the INSERT statement uses a SELECT subquery. A subquery, also known as a nested query or an
inner query, is a query that is embedded (or nested) inside another query. The inner query is always executed first by
the RDBMS. Given the previous SQL statement, the INSERT portion represents the outer query, and the SELECT
portion represents the subquery. You can nest queries (place queries inside queries) many levels deep; in every case,

Note

NOTE TO MS ACCESS USERS
MS Access doesn’t support the ROLLBACK command.

C6545_07 7/26/2007 14:3:28 Page 245

245I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

the output of the inner query is used as the input for the outer (higher-level) query. In Chapter 8 you will learn more
about the various types of subqueries.

The values returned by the SELECT subquery should match the attributes and data types of the table in the INSERT
statement. If the table into which you are inserting rows has one date attribute, one number attribute, and one
character attribute, the SELECT subquery should return one or more rows in which the first column has date values,
the second column has number values, and the third column has character values.

Populating the VENDOR and PRODUCT Tables
The following steps guide you through the process of populating the VENDOR and PRODUCT tables with the data
to be used in the rest of the chapter. To accomplish that task, two tables named V and P are used as the data source.
V and P have the same table structure (attributes) as the VENDOR and PRODUCT tables.

Use the following steps to populate your VENDOR and PRODUCT tables. (If you haven’t already created the
PRODUCT and VENDOR tables to practice the SQL commands in the previous sections, do so before completing
these steps.)

1. Delete all rows from the PRODUCT and VENDOR tables.

- DELETE FROM PRODUCT;

- DELETE FROM VENDOR;

2. Add the rows to VENDOR by copying all rows from V.

- If you are using MS Access, type:

INSERT INTO VENDOR SELECT * FROM V;

- If you are using Oracle, type:

INSERT INTO VENDOR SELECT * FROM TEACHER.V;

3. Add the rows to PRODUCT by copying all rows from P.

- If you are using MS Access, type:

INSERT INTO PRODUCT SELECT * FROM P;

- If you are using Oracle, type:

INSERT INTO PRODUCT SELECT * FROM TEACHER.P;

- Oracle users must permanently save the changes by issuing the COMMIT; command.

If you followed those steps correctly, you now have the VENDOR and PRODUCT tables populated with the data that
will be used in the remaining sections of the chapter.

O n l i n e C o n t e n t

Before you execute the following commands, you MUST do the following:

• If you are using Oracle, run the create_P_V.sql script file in the Online Student Companion to create
the V and P tables used in the example below. To connect to the database, follow the instructions specific
to your school’s setup provided by your instructor.

• If you are using Access, copy the original Ch07_SaleCo.mbd file from the Online Student Companion.

C6545_07 9/6/2007 16:24:52 Page 246

246 C H A P T E R 7

7.4 SELECT QUERIES

In this section, you will learn how to fine-tune the SELECT command by adding restrictions to the search criteria. SELECT,
coupled with appropriate search conditions, is an incredibly powerful tool that enables you to transform data into
information. For example, in the following sections, you will learn how to create queries that can be used to answer
questions such as these: “What products were supplied by a particular vendor?” “Which products are priced below $10?”
“How many products supplied by a given vendor were sold between January 5, 2008 and March 20, 2008?”

7.4.1 Selecting Rows with Conditional Restrictions

You can select partial table contents by placing restrictions on the rows to be included in the output. This is done by
using the WHERE clause to add conditional restrictions to the SELECT statement. The following syntax enables you
to specify which rows to select:

SELECT columnlist
FROM tablelist
[WHERE conditionlist];

The SELECT statement retrieves all rows that match the specified condition(s)—also known as the conditional
criteria—you specified in the WHERE clause. The conditionlist in the WHERE clause of the SELECT statement is
represented by one or more conditional expressions, separated by logical operators. The WHERE clause is optional.
If no rows match the specified criteria in the WHERE clause, you see a blank screen or a message that tells you that
no rows were retrieved. For example, the query:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE = 21344;

returns the description, date, and price of products with a vendor code of 21344, as shown in Figure 7.4.

MS Access users can use the Access QBE (query by example)
query generator. Although the Access QBE generates its
own “native” version of SQL, you can also elect to type
standard SQL in the Access SQL window, as shown at the
bottom of Figure 7.5. Figure 7.5 shows the Access QBE
screen, the SQL window’s QBE-generated SQL, and the
listing of the modified SQL.

Numerous conditional restrictions can be placed on the
selected table contents. For example, the comparison opera-
tors shown in Table 7.6 can be used to restrict output.

O n l i n e C o n t e n t

Before you execute the commands in the following sections, you MUST do the following:

• If you are using Oracle, run the sqlintrodbinit.sql script file in the Online Student Companion to
create all tables and load the data in the database. To connect to the database, follow the instructions
specific to your school’s setup provided by your instructor.

• If you are using Access, copy the original Ch07_SaleCo.mbd file from the Online Student Companion.

FIGURE
7.4

Selected PRODUCT table
attributes for vendor
code 21344

C6545_07 9/14/2007 9:21:25 Page 247

247I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The following example uses the “not equal to” operator:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE <> 21344;

The output, shown in Figure 7.6, lists all of the rows for
which the vendor code is not 21344.

Note that in Figure 7.6, rows with nulls in the V_CODE
column (see Figure 7.3) are not included in the SELECT
command’s output.

FIGURE
7.5

The Microsoft Access QBE and its SQL

Microsoft Access-generated SQL User-entered SQL

Query options

Note

NOTE TO MS ACCESS USERS
The MS Access QBE interface automatically designates the data source by using the table name as a prefix. You
will discover later that the table name prefix is used to avoid ambiguity when the same column name appears
in multiple tables. For example, both the VENDOR and the PRODUCT tables contain the V_CODE attribute.
Therefore, if both tables are used—as they would be in a join—the source of the V_CODE attribute must be
specified.

TABLE
7.6

Comparison Operators

SYMBOL MEANING
= Equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
<> or != Not equal to

C6545_07 7/23/2007 16:59:25 Page 248

248 C H A P T E R 7

The command sequence:

SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE
FROM PRODUCT
WHERE P_PRICE <= 10;

yields the output shown in Figure 7.7.

Using Comparison Operators on Character
Attributes
Because computers identify all characters by their (numeric)
American Standard Code for Information Interchange
(ASCII) codes, comparison operators may even be used to
place restrictions on character-based attributes. Therefore,
the command:

SELECT P_CODE, P_DESCRIPT, P_QOH, P_MIN,
P_PRICE

FROM PRODUCT
WHERE P_CODE < '1558-QW1';

would be correct and would yield a list of all rows in which the
P_CODE is alphabetically less than 1558-QW1. (Because the
ASCII code value for the letter B is greater than the value of
the letter A, it follows that A is less than B.) Therefore, the
output will be generated as shown in Figure 7.8.

String (character) comparisons are made from left to right.
This left-to-right comparison is especially useful when
attributes such as names are to be compared. For example,
the string “Ardmore” would be judged greater than the
string “Aarenson” but less than the string “Brown”; such
results may be used to generate alphabetical listings like
those found in a phone directory. If the characters 0−9 are

stored as strings, the same left-to-right string comparisons can lead to apparent anomalies. For example, the ASCII
code for the character “5” is, as expected, greater than the ASCII code for the character “4.” Yet the same “5” will
also be judged greater than the string “44” because the first character in the string “44” is less than the string “5.”
For that reason, you may get some unexpected results from comparisons when dates or other numbers are stored in
character format. This also applies to date comparisons. For example, the left-to-right ASCII character comparison
would force the conclusion that the date “01/01/2008” occurred before “12/31/2007.” Because the leftmost
character “0” in “01/01/2008” is less than the leftmost character “1” in “12/31/2007,” “01/01/2008” is less than
“12/31/2007.” Naturally, if date strings are stored in a yyyy/mm/dd format, the comparisons will yield appropriate
results, but this is a nonstandard date presentation. That’s why all current RDBMSs support “date” data types; you
should use them. In addition, using “date” data types gives you the benefit of date arithmetic.

Using Comparison Operators on Dates
Date procedures are often more software-specific than other SQL procedures. For example, the query to list all of the
rows in which the inventory stock dates occur on or after January 20, 2008 will look like this:

SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE, P_INDATE
FROM PRODUCT
WHERE P_INDATE >= '20-Jan-2008';

FIGURE
7.6

Selected PRODUCT table
attributes for vendor codes
other than 21344

FIGURE
7.7

Selected PRODUCT table
attributes with a P_PRICE
restriction

FIGURE
7.8

Selected PRODUCT table
attributes: the ASCII code
effect

C6545_07 7/23/2007 16:59:26 Page 249

249I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

(Remember that MS Access users must use the # delimiters for dates. For example, you would use #20-Jan-08# in the
above WHERE clause.) The date-restricted output is shown in Figure 7.9.

Using Computed Columns and Column
Aliases
Suppose you want to determine the total value of each of the
products currently held in inventory. Logically, that determi-
nation requires the multiplication of each product’s quantity
on hand by its current price. You can accomplish this task
with the following command:

SELECT P_DESCRIPT, P_QOH, P_PRICE, P_QOH *
P_PRICE

FROM PRODUCT;

Entering that SQL command in Access generates the output
shown in Figure 7.10.

SQL accepts any valid expressions (or formulas) in the
computed columns. Such formulas can contain any valid
mathematical operators and functions that are applied to
attributes in any of the tables specified in the FROM clause
of the SELECT statement. Note also that Access automati-
cally adds an Expr label to all computed columns. (The first
computed column would be labeled Expr1; the second,
Expr2; and so on.) Oracle uses the actual formula text as the
label for the computed column.

To make the output more readable, the SQL standard
permits the use of aliases for any column in a SELECT
statement. An alias is an alternative name given to a
column or table in any SQL statement.

For example, you can rewrite the previous SQL state-
ment as:

SELECT P_DESCRIPT, P_QOH, P_PRICE, P_QOH *
P_PRICE AS TOTVALUE

FROM PRODUCT;

The output of that command is shown in Figure 7.11.

You could also use a computed column, an alias, and date
arithmetic in a single query. For example, assume that you
want to get a list of out-of-warranty products that have been
stored more than 90 days. In that case, the P_INDATE is at
least 90 days less than the current (system) date. The MS
Access version of this query is shown as:

SELECT P_CODE, P_INDATE, DATE() - 90 AS CUTDATE
FROM PRODUCT
WHERE P_INDATE <= DATE() - 90;

FIGURE
7.9

Selected PRODUCT table
attributes: date restriction

FIGURE
7.10

SELECT statement with a
computed column

FIGURE
7.11

SELECT statement with a
computed column and an alias

C6545_07 9/14/2007 9:22:2 Page 250

250 C H A P T E R 7

The Oracle version of the same query is shown below:

SELECT P_CODE, P_INDATE, SYSDATE - 90 AS CUTDATE
FROM PRODUCT
WHERE P_INDATE <= SYSDATE - 90;

Note that DATE() and SYSDATE are special functions that return today’s date in MS Access and Oracle, respectively.
You could use the DATE() and SYSDATE functions anywhere a date literal is expected, such as in the value list of an
INSERT statement, in an UPDATE statement when changing the value of a date attribute, or in a SELECT statement
as shown here. Of course, the previous query output would change based on today’s date.

Suppose a manager wants a list of all products, the dates they were received, and the warranty expiration date (90 days
from when the product was received). To generate that list, type:

SELECT P_CODE, P_INDATE, P_INDATE + 90 AS EXPDATE
FROM PRODUCT;

Note that you can use all arithmetic operators with date attributes as well as with numeric attributes.

7.4.2 Arithmetic Operators: The Rule of Precedence

As you saw in the previous example, you can use arithmetic operators with table attributes in a column list or in a
conditional expression. In fact, SQL commands are often used in conjunction with the arithmetic operators shown in
Table 7.7.

Do not confuse the multiplication symbol (*) with the wildcard
symbol used by some SQL implementations such as MS
Access; the latter is used only in string comparisons, while
the former is used in conjunction with mathematical
procedures.

As you perform mathematical operations on attributes,
remember the rules of precedence. As the name suggests,
the rules of precedence are the rules that establish the
order in which computations are completed. For example,
note the order of the following computational sequence:

1. Perform operations within parentheses.

2. Perform power operations.

3. Perform multiplications and divisions.

4. Perform additions and subtractions.

The application of the rules of precedence will tell you that 8 + 2 * 5 = 8 + 10 = 18, but (8 + 2) * 5 = 10 * 5 = 50.
Similarly, 4 + 5^2 * 3 = 4 + 25 * 3 = 79, but (4 + 5)^2 * 3 = 81 * 3 = 243, while the operation expressed by
(4 + 5^2) * 3 yields the answer (4 + 25) * 3 = 29 * 3 = 87.

7.4.3 Logical Operators: AND, OR, and NOT

In the real world, a search of data normally involves multiple conditions. For example, when you are buying a new
house, you look for a certain area, a certain number of bedrooms, bathrooms, stories, and so on. In the same way,
SQL allows you to have multiple conditions in a query through the use of logical operators. The logical operators are

TABLE
7.7

The Arithmetic Operators

ARITHMETIC
OPERATOR

DESCRIPTION

+ Add
- Subtract
* Multiply
/ Divide
^ Raise to the power of (some

applications use ** instead
of ^)

C6545_07 7/27/2007 11:51:57 Page 251

251I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

AND, OR, and NOT. For example, if you want a list of the table contents for either the V_CODE = 21344 or the
V_CODE = 24288, you can use the OR operator, as in the following command sequence:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE = 21344 OR V_CODE = 24288;

That command generates the six rows shown in Figure 7.12 that match the logical restriction.

The logical AND has the same SQL syntax requirement.
The following command generates a list of all rows for which
P_PRICE is less than $50 and for which P_INDATE is a date
occurring after January 15, 2008:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE P_PRICE < 50
AND P_INDATE > '15-Jan-2008';

This command will produce the output shown in Figure 7.13.

You can combine the logical OR with the logical AND to
place further restrictions on the output. For example, sup-
pose you want a table listing for the following conditions:

� The P_INDATE is after January 15, 2008, and the
P_PRICE is less than $50.

� Or the V_CODE is 24288.

The required listing can be produced by using:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE (P_PRICE < 50 AND

P_INDATE > '15-Jan-2008')
OR V_CODE = 24288;

Note the use of parentheses to combine logical restrictions.
Where you place the parentheses depends on how you want
the logical restrictions to be executed. Conditions listed
within parentheses are always executed first. The preceding
query yields the output shown in Figure 7.14.

Note that the three rows with the V_CODE = 24288 are
included regardless of the P_INDATE and P_PRICE entries
for those rows.

The use of the logical operators OR and AND can become quite complex when numerous restrictions are placed on
the query. In fact, a specialty field in mathematics known as Boolean algebra is dedicated to the use of logical
operators.

The logical operator NOT is used to negate the result of a conditional expression. That is, in SQL, all conditional
expressions evaluate to true or false. If an expression is true, the row is selected; if an expression is false, the row is

FIGURE
7.12

Selected PRODUCT table
attributes: the logical OR

FIGURE
7.13

Selected PRODUCT table
attributes: the logical AND

FIGURE
7.14

Selected PRODUCT table
attributes: the logical AND
and OR

C6545_07 9/14/2007 9:22:35 Page 252

252 C H A P T E R 7

not selected. The NOT logical operator is typically used to find the rows that do not match a certain condition. For
example, if you want to see a listing of all rows for which the vendor code is not 21344, use the command sequence:

SELECT *
FROM PRODUCT
WHERE NOT (V_CODE = 21344);

Note that the condition is enclosed in parentheses; that practice is optional, but it is highly recommended for clarity.
The logical NOT can be combined with AND and OR.

7.4.4 Special Operators

ANSI-standard SQL allows the use of special operators in conjunction with the WHERE clause. These special operators
include:

BETWEEN—Used to check whether an attribute value is within a range.

IS NULL—Used to check whether an attribute value is null.

LIKE—Used to check whether an attribute value matches a given string pattern.

IN—Used to check whether an attribute value matches any value within a value list.

EXISTS—Used to check whether a subquery returns any rows.

The BETWEEN Special Operator
If you use software that implements a standard SQL, the operator BETWEEN may be used to check whether an
attribute value is within a range of values. For example, if you want to see a listing for all products whose prices are
between $50 and $100, use the following command sequence:

SELECT *
FROM PRODUCT
WHERE P_PRICE BETWEEN 50.00 AND 100.00;

If your DBMS does not support BETWEEN, you can use:

SELECT *
FROM PRODUCT
WHERE P_PRICE > 50.00 AND P_PRICE < 100.00;

Note

If your SQL version does not support the logical NOT, you can generate the required output by using the
condition:

WHERE V_CODE <> 21344

If your version of SQL does not support <>, use:

WHERE V_CODE != 21344

Note

NOTE TO ORACLE USERS
When using the BETWEEN special operator, always specify the lower range value first. If you list the higher range
value first, Oracle will return an empty result set.

C6545_07 9/14/2007 9:22:59 Page 253

253I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The IS NULL Special Operator
Standard SQL allows the use of IS NULL to check for a null attribute value. For example, suppose you want to list all
products that do not have a vendor assigned (V_CODE is null). Such a null entry could be found by using the command
sequence:

SELECT P_CODE, P_DESCRIPT, V_CODE
FROM PRODUCT
WHERE V_CODE IS NULL;

Similarly, if you want to check a null date entry, the command sequence is:

SELECT P_CODE, P_DESCRIPT, P_INDATE
FROM PRODUCT
WHERE P_INDATE IS NULL;

Note that SQL uses a special operator to test for nulls. Why? Couldn’t you just enter a condition such as "V_CODE
= NULL"? No. Technically, NULL is not a “value” the way the number 0 (zero) or the blank space is, but instead a
NULL is a special property of an attribute that represents precisely the absence of any value.

The LIKE Special Operator
The LIKE special operator is used in conjunction with wildcards to find patterns within string attributes. Standard SQL
allows you to use the percent sign (%) and underscore (_) wildcard characters to make matches when the entire string
is not known:

� % means any and all following or preceding characters are eligible. For example,

'J%' includes Johnson, Jones, Jernigan, July, and J-231Q.

'Jo%' includes Johnson and Jones.

'%n' includes Johnson and Jernigan.

� _ means any one character may be substituted for the underscore. For example,

'_23-456-6789' includes 123-456-6789, 223-456-6789, and 323-456-6789.

'_23-_56-678_' includes 123-156-6781, 123-256-6782, and 823-956-6788.

'_o_es' includes Jones, Cones, Cokes, totes, and roles.

For example, the following query would find all VENDOR rows for contacts whose last names begin with Smith.

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE V_CONTACT LIKE 'Smith%';

If you check the original VENDOR data in Figure 7.2 again, you’ll see that this SQL query yields three records: two
Smiths and one Smithson.

Keep in mind that most SQL implementations yield case-sensitive searches. For example, Oracle will not yield a return
that includes Jones if you use the wildcard search delimiter 'jo%' in a search for last names. The reason is because
Jones begins with a capital J and your wildcard search starts with a lowercase j. On the other hand, MS Access
searches are not case sensitive.

Note

Some RDBMSs, such as Microsoft Access, use the wildcard characters * and ? instead of % and _.

C6545_07 9/4/2007 13:58:9 Page 254

254 C H A P T E R 7

For example, suppose you typed the following query in Oracle:

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE V_CONTACT LIKE 'SMITH%';

No rows will be returned because character-based queries may be case sensitive. That is, an uppercase character has
a different ASCII code than a lowercase character, thus causing SMITH, Smith, and smith to be evaluated as different
(unequal) entries. Because the table contains no vendor whose last name begins with (uppercase) SMITH, the
(uppercase) 'SMITH%' used in the query cannot make a match. Matches can be made only when the query entry is
written exactly like the table entry.

Some RDBMSs, such as Microsoft Access, automatically make the necessary conversions to eliminate case sensitivity.
Others, such as Oracle, provide a special UPPER function to convert both table and query character entries to
uppercase. (The conversion is done in the computer’s memory only; the conversion has no effect on how the value
is actually stored in the table.) So if you want to avoid a no-match result based on case sensitivity, and if your RDBMS
allows the use of the UPPER function, you can generate the same results by using the query:

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE UPPER(V_CONTACT) LIKE 'SMITH%';

The preceding query produces a list including all rows that contain a last name that begins with Smith, regardless of
uppercase or lowercase letter combinations such as Smith, smith, and SMITH.

The logical operators may be used in conjunction with the special operators. For instance, the query:

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE V_CONTACT NOT LIKE 'Smith%';

will yield an output of all vendors whose names do not start with Smith.

Suppose you do not know whether a person’s name is spelled Johnson or Johnsen. The wildcard character _ lets you
find a match for either spelling. The proper search would be instituted by the query:

SELECT *
FROM VENDOR
WHERE V_CONTACT LIKE 'Johns_n';

Thus, the wildcards allow you to make matches when only approximate spellings are known. Wildcard characters may
be used in combinations. For example, the wildcard search based on the string '_l%' can yield the strings Al, Alton,
Elgin, Blakeston, blank, bloated, and eligible.

The IN Special Operator
Many queries that would require the use of the logical OR can be more easily handled with the help of the special
operator IN. For example, the query:

SELECT *
FROM PRODUCT
WHERE V_CODE = 21344
OR V_CODE = 24288;

C6545_07 9/4/2007 13:58:31 Page 255

255I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

can be handled more efficiently with:

SELECT *
FROM PRODUCT
WHERE V_CODE IN (21344, 24288);

Note that the IN operator uses a value list. All of the values in the list must be of the same data type. Each of the values
in the value list is compared to the attribute—in this case, V_CODE. If the V_CODE value matches any of the values
in the list, the row is selected. In this example, the rows selected will be only those in which the V_CODE is either
21344 or 24288.

If the attribute used is of a character data type, the list values must be enclosed in single quotation marks. For instance,
if the V_CODE had been defined as CHAR(5) when the table was created, the preceding query would have read:

SELECT *
FROM PRODUCT
WHERE V_CODE IN ('21344', '24288');

The IN operator is especially valuable when it is used in conjunction with subqueries. For example, suppose you want
to list the V_CODE and V_NAME of only those vendors who provide products. In that case, you could use a subquery
within the IN operator to automatically generate the value list. The query would be:

SELECT V_CODE, V_NAME
FROM VENDOR
WHERE V_CODE IN (SELECT V_CODE FROM PRODUCT);

The preceding query will be executed in two steps:

1. The inner query or subquery will generate a list of V_CODE values from the PRODUCT tables. Those
V_CODE values represent the vendors who supply products.

2. The IN operator will compare the values generated by the subquery to the V_CODE values in the VENDOR
table and will select only the rows with matching values—that is, the vendors who provide products.

The IN special operator will receive additional attention in Chapter 8, where you will learn more about subqueries.

The EXISTS Special Operator
The EXISTS special operator can be used whenever there is a requirement to execute a command based on the result
of another query. That is, if a subquery returns any rows, run the main query; otherwise, don’t. For example, the
following query will list all vendors, but only if there are products to order:

SELECT *
FROM VENDOR
WHERE EXISTS (SELECT * FROM PRODUCT WHERE P_QOH <= P_MIN);

The EXISTS special operator is used in the following example to list all vendors, but only if there are products with
the quantity on hand, less than double the minimum quantity:

SELECT *
FROM VENDOR
WHERE EXISTS (SELECT * FROM PRODUCT WHERE P_QOH < P_MIN * 2);

The EXISTS special operator will receive additional attention in Chapter 8, where you will learn more about
subqueries.

C6545_07 9/4/2007 13:58:45 Page 256

256 C H A P T E R 7

7.5 ADVANCED DATA DEFINITION COMMANDS

In this section, you learn how to change (alter) table structures by changing attribute characteristics and by adding
columns. Then you will learn how to do advanced data updates to the new columns. Finally, you will learn how to copy
tables or parts of tables and how to delete tables.

All changes in the table structure are made by using the ALTER TABLE command, followed by a keyword that
produces the specific change you want to make. Three options are available: ADD, MODIFY, and DROP. You use
ADD to add a column, MODIFY to change column characteristics, and DROP to delete a column from a table. Most
RDBMSs do not allow you to delete a column (unless the column does not contain any values) because such an action
might delete crucial data that are used by other tables. The basic syntax to add or modify columns is:

ALTER TABLE tablename
{ADD | MODIFY} (columnname datatype [{ADD | MODIFY} columnname datatype]) ;

The ALTER TABLE command can also be used to add table constraints. In those cases, the syntax would be:

ALTER TABLE tablename
ADD constraint [ADD constraint] ;

where constraint refers to a constraint definition similar to those you learned in Section 7.2.6.

You could also use the ALTER TABLE command to remove a column or table constraint. The syntax would be as follows:

ALTER TABLE tablename
DROP{PRIMARY KEY | COLUMN columnname | CONSTRAINT constraintname };

Notice that when removing a constraint, you need to specify the name given to the constraint. That is one reason why
you should always name your constraints in your CREATE TABLE or ALTER TABLE statement.

7.5.1 Changing a Column’s Data Type

Using the ALTER syntax, the (integer) V_CODE in the PRODUCT table can be changed to a character V_CODE
by using:

ALTER TABLE PRODUCT
MODIFY (V_CODE CHAR(5));

Some RDBMSs, such as Oracle, do not let you change data types unless the column to be changed is empty. For
example, if you want to change the V_CODE field from the current number definition to a character definition, the
above command will yield an error message, because the V_CODE column already contains data. The error message
is easily explained. Remember that the V_CODE in PRODUCT references the V_CODE in VENDOR. If you change
the V_CODE data type, the data types don’t match, and there is a referential integrity violation, thus triggering the
error message. If the V_CODE column does not contain data, the preceding command sequence will produce
the expected table structure alteration (if the foreign key reference was not specified during the creation of the
PRODUCT table).

7.5.2 Changing a Column’s Data Characteristics

If the column to be changed already contains data, you can make changes in the column’s characteristics if those
changes do not alter the data type. For example, if you want to increase the width of the P_PRICE column to nine
digits, use the command:

ALTER TABLE PRODUCT
MODIFY (P_PRICE DECIMAL(9,2));

C6545_07 7/26/2007 14:7:0 Page 257

257I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

If you now list the table contents, you see that the column width of P_PRICE has increased by one digit.

7.5.3 Adding a Column

You can alter an existing table by adding one or more columns. In the following example, you add the column named
P_SALECODE to the PRODUCT table. (This column will be used later to determine whether goods that have been
in inventory for a certain length of time should be placed on special sale.)

Suppose you expect the P_SALECODE entries to be 1, 2, or 3. Because there will be no arithmetic performed with
the P_SALECODE, the P_SALECODE will be classified as a single-character attribute. Note the inclusion of all
required information in the following ALTER command:

ALTER TABLE PRODUCT
ADD (P_SALECODE CHAR(1));

When adding a column, be careful not to include the NOT NULL clause for the new column. Doing so will cause an
error message; if you add a new column to a table that already has rows, the existing rows will default to a value of
null for the new column. Therefore, it is not possible to add the NOT NULL clause for this new column. (You can, of
course, add the NOT NULL clause to the table structure after all of the data for the new column have been entered
and the column no longer contains nulls.)

7.5.4 Dropping a Column

Occasionally, you might want to modify a table by deleting a column. Suppose you want to delete the V_ORDER
attribute from the VENDOR table. To accomplish that, you would use the following command:

ALTER TABLE VENDOR
DROP COLUMN V_ORDER;

Again, some RDBMSs impose restrictions on attribute deletion. For example, you may not drop attributes that are
involved in foreign key relationships, nor may you delete an attribute of a table that contains only that one attribute.

Note

Some DBMSs impose limitations on when it’s possible to change attribute characteristics. For example, Oracle
lets you increase (but not decrease) the size of a column. The reason for this restriction is that an attribute
modification will affect the integrity of the data in the database. In fact, some attribute changes can be done only
when there are no data in any rows for the affected attribute.

O n l i n e C o n t e n t

If you are using the MS Access databases provided in the Student Online Companion, you can track each of the
updates in the following sections. For example, look at the copies of the PRODUCT table in the Ch07_
SaleCo database, one named Product_2 and one named PRODUCT_3. Each of the two copies includes the
new P_SALECODE column. If you want to see the cumulative effect of all UPDATE commands, you can
continue using the PRODUCT table with the P_SALECODE modification and all of the changes you will make
in the following sections. (You might even want to use both options, first to examine the individual effects of the
update queries and then to examine the cumulative effects.)

C6545_07 7/23/2007 17:23:41 Page 258

258 C H A P T E R 7

7.5.5 Advanced Data Updates

To make data entries in an existing row’s columns, SQL allows the UPDATE command. The UPDATE command
updates only data in existing rows. For example, to enter the P_SALECODE value '2' in the fourth row, use the
UPDATE command together with the primary key P_CODE '1546-QQ2'. Enter the value by using the command
sequence:

UPDATE PRODUCT
SET P_SALECODE = '2'
WHERE P_CODE = '1546-QQ2';

Subsequent data can be entered the same way, defining each entry location by its primary key (P_CODE) and its
column location (P_SALECODE). For example, if you want to enter the P_SALECODE value '1' for the P_CODE
values '2232/QWE' and '2232/QTY', you use:

UPDATE PRODUCT
SET P_SALECODE = '1'
WHERE P_CODE IN ('2232/QWE', '2232/QTY');

If your RDBMS does not support IN, use the following command:

UPDATE PRODUCT
SET P_SALECODE = '1'
WHERE P_CODE = '2232/QWE' OR P_CODE = '2232/QTY';

The results of your efforts can be checked by using:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE, P_SALECODE
FROM PRODUCT;

Although the UPDATE sequences just shown allow you to enter values into specified table cells, the process is very
cumbersome. Fortunately, if a relationship can be established between the entries and the existing columns, the
relationship can be used to assign values to their appropriate slots. For example, suppose you want to place sales codes
based on the P_INDATE into the table, using the following schedule:

P_INDATE P_SALECODE

before December 25, 2007 2

between January 16, 2008, and February 10, 2008 1

Using the PRODUCT table, the following two command sequences make the appropriate assignments:

UPDATE PRODUCT
SET P_SALECODE = '2'
WHERE P_INDATE < '25-Dec-2007';

UPDATE PRODUCT
SET P_SALECODE = '1'
WHERE P_INDATE >= '16-Jan-2008'

AND P_INDATE <='10-Feb-2008';

To check the results of those two command sequences, use:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE, P_SALECODE
FROM PRODUCT;

C6545_07 9/4/2007 13:59:52 Page 259

259I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

If you have made all of the updates shown in this section using Oracle, your PRODUCT table should look like
Figure 7.15. Make sure that you issue a COMMIT statement to save these changes.

The arithmetic operators are particularly useful in data updates. For example, if the quantity on hand in your
PRODUCT table has dropped below the minimum desirable value, you’ll order more of the product. Suppose, for
example, you have ordered 20 units of product 2232/QWE. When the 20 units arrive, you’ll want to add them to
inventory, using:

UPDATE PRODUCT
SET P_QOH = P_QOH + 20
WHERE P_CODE = '2232/QWE';

If you want to add 10 percent to the price for all products that have current prices below $50, you can use:

UPDATE PRODUCT
SET P_PRICE = P_PRICE * 1.10
WHERE P_PRICE < 50.00;

If you are using Oracle, issue a ROLLBACK command to undo the changes made by the last two UPDATE statements.

FIGURE
7.15

The cumulative effect of the multiple updates in the PRODUCT table (Oracle)

Note

If you fail to roll back the changes of the preceding UPDATE queries, the output of the subsequent queries will
not match the results shown in the figures. Therefore:

• If you are using Oracle, use the ROLLBACK command to restore the database to its previous state.

• If you are using Access, copy the original Ch07_SaleCo.mdb file from the Student Online Companion.

C6545_07 7/26/2007 14:7:36 Page 260

260 C H A P T E R 7

7.5.6 Copying Parts of Tables

As you will discover in later chapters on database design, sometimes it is necessary to break up a table structure into
several component parts (or smaller tables). Fortunately, SQL allows you to copy the contents of selected table columns
so that the data need not be reentered manually into the newly created table(s). For example, if you want to copy
P_CODE, P_DESCRIPT, P_PRICE, and V_CODE from the PRODUCT table to a new table named PART, you create
the PART table structure first, as follows:

CREATE TABLE PART(
PART_CODE CHAR(8) NOT NULL UNIQUE,
PART_DESCRIPT CHAR(35),
PART_PRICE DECIMAL(8,2),
V_CODE INTEGER,
PRIMARY KEY (PART_CODE));

Note that the PART column names need not be identical to those of the original table and that the new table need not
have the same number of columns as the original table. In this case, the first column in the PART table is PART_CODE,
rather than the original P_CODE found in the PRODUCT table. And the PART table contains only four columns rather
than the seven columns found in the PRODUCT table. However, column characteristics must match; you cannot copy
a character-based attribute into a numeric structure and vice versa.

Next, you need to add the rows to the new PART table, using the PRODUCT table rows. To do that, you use the
INSERT command you learned in Section 7.3.7. The syntax is:

INSERT INTO target_tablename[(target_columnlist)]
SELECT source_columnlist
FROM source_tablename;

Note that the target column list is required if the source column list doesn’t match all of the attribute names and
characteristics of the target table (including the order of the columns). Otherwise, you do not need to specify the target
column list. In this example, you must specify the target column list in the INSERT command below because the
column names of the target table are different:

INSERT INTO PART (PART_CODE, PART_DESCRIPT, PART_PRICE, V_CODE)
SELECT P_CODE, P_DESCRIPT, P_PRICE, V_CODE FROM PRODUCT;

The contents of the PART table can now be examined by using the query:

SELECT * FROM PART;

to generate the new PART table’s contents, shown in Figure 7.16.

SQL also provides another way to rapidly create a new table based on selected columns and rows of an existing table.
In this case, the new table will copy the attribute names, data characteristics, and rows of the original table. The Oracle
version of the command is:

CREATE TABLE PART AS
SELECT P_CODE AS PART_CODE, P_DESCRIPT AS PART_DESCRIPT,

P_PRICE AS PART_PRICE, V_CODE
FROM PRODUCT;

If the PART table already exists, Oracle will not let you overwrite the existing table. To run this command, you must
first delete the existing PART table. (See Section 7.5.8.)

C6545_07 9/4/2007 14:1:39 Page 261

261I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The MS Access version of this command is:

SELECT P_CODE AS PART_CODE, P_DESCRIPT AS
PART_DESCRIPT,
P_PRICE AS PART_PRICE,
V_CODE INTO PART

FROM PRODUCT;

If the PART table already exists, MS Access will ask if you
want to delete the existing table and continue with the
creation of the new PART table.

The SQL command just shown creates a new PART table
with PART_CODE, PART_DESCRIPT, PART_PRICE, and
V_CODE columns. In addition, all of the data rows (for the
selected columns) will be copied automatically. But note that
no entity integrity (primary key) or referential integrity
(foreign key) rules are automatically applied to the new

table. In the next section, you will learn how to define the PK to enforce entity integrity and the FK to enforce
referential integrity.

7.5.7 Adding Primary and Foreign Key Designations

When you create a new table based on another table, the new table does not include integrity rules from the old table.
In particular, there is no primary key. To define the primary key for the new PART table, use the following command:

ALTER TABLE PART
ADD PRIMARY KEY (PART_CODE);

Aside from the fact that the integrity rules are not automatically transferred to a new table that derives its data from
one or more other tables, several other scenarios could leave you without entity and referential integrity. For example,
you might have forgotten to define the primary and foreign keys when you created the original tables. Or if you
imported tables from a different database, you might have discovered that the importing procedure did not transfer the
integrity rules. In any case, you can reestablish the integrity rules by using the ALTER command. For example, if the
PART table’s foreign key has not yet been designated, it can be designated by:

ALTER TABLE PART
ADD FOREIGN KEY (V_CODE) REFERENCES VENDOR;

Alternatively, if neither the PART table’s primary key nor its foreign key has been designated, you can incorporate both
changes at once, using:

ALTER TABLE PART
ADD PRIMARY KEY (PART_CODE)
ADD FOREIGN KEY (V_CODE) REFERENCES VENDOR;

Even composite primary keys and multiple foreign keys can be designated in a single SQL command. For example,
if you want to enforce the integrity rules for the LINE table shown in Figure 7.1, you can use:

ALTER TABLE LINE
ADD PRIMARY KEY (INV_NUMBER, LINE_NUMBER)
ADD FOREIGN KEY (INV_NUMBER) REFERENCES INVOICE
ADD FOREIGN KEY (PROD_CODE) REFERENCES PRODUCT;

FIGURE
7.16

PART table attributes copied
from the PRODUCT table

C6545_07 9/4/2007 14:2:18 Page 262

262 C H A P T E R 7

7.5.8 Deleting a Table from the Database

A table can be deleted from the database using the DROP TABLE command. For example, you can delete the PART
table you just created with:

DROP TABLE PART;

You can drop a table only if that table is not the “one” side of any relationship. If you try to drop a table otherwise,
the RDBMS will generate an error message indicating that a foreign key integrity violation has occurred.

7.6 ADVANCED SELECT QUERIES

One of the most important advantages of SQL is its ability to produce complex free-form queries. The logical operators
that were introduced earlier to update table contents work just as well in the query environment. In addition, SQL
provides useful functions that count, find minimum and maximum values, calculate averages, and so on. Better yet,
SQL allows the user to limit queries to only those entries that have no duplicates or entries whose duplicates can be
grouped.

7.6.1 Ordering a Listing

The ORDER BY clause is especially useful when the listing order is important to you. The syntax is:

SELECT columnlist
FROM tablelist
[WHERE conditionlist]
[ORDER BY columnlist [ASC | DESC]] ;

Although you have the option of declaring the order type—ascending or descending—the default order is ascending.
For example, if you want the contents of the PRODUCT table listed by P_PRICE in ascending order, use:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE
FROM PRODUCT
ORDER BY P_PRICE;

The output is shown in Figure 7.17. Note that ORDER BY yields an ascending price listing.

Comparing the listing in Figure 7.17 to the actual table
contents shown earlier in Figure 7.2, you will see that in
Figure 7.17, the lowest-priced product is listed first, followed
by the next lowest-priced product, and so on. However,
although ORDER BY produces a sorted output, the actual
table contents are unaffected by the ORDER command.

To produce the list in descending order, you would enter:

SELECT P_CODE, P_DESCRIPT, P_INDATE,
P_PRICE

FROM PRODUCT
ORDER BY P_PRICE DESC;

FIGURE
7.17

Selected PRODUCT table
attributes: ordered by
(ascending) P_PRICE

C6545_07 7/24/2007 9:47:59 Page 263

263I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Ordered listings are used frequently. For example, suppose you want to create a phone directory. It would be helpful
if you could produce an ordered sequence (last name, first name, initial) in three stages:

1. ORDER BY last name.

2. Within the last names, ORDER BY first name.

3. Within the first and last names, ORDER BY middle initial.

Such a multilevel ordered sequence is known as a cascading order sequence, and it can be created easily by listing
several attributes, separated by commas, after the ORDER BY clause.

The cascading order sequence is the basis for any telephone directory. To illustrate a cascading order sequence, use
the following SQL command on the EMPLOYEE table:

SELECT EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_AREACODE, EMP_PHONE
FROM EMPLOYEE
ORDER BY EMP_LNAME, EMP_FNAME, EMP_INITIAL;

That command yields the results shown in Figure 7.18.

The ORDER BY clause is useful in many applications, especially because the DESC qualifier can be invoked. For
example, listing the most recent items first is a standard procedure. Typically, invoice due dates are listed in descending
order. Or if you want to examine budgets, it’s probably useful to list the largest budget line items first.

You can use the ORDER BY clause in conjunction with other SQL commands, too. For example, note the use of
restrictions on date and price in the following command sequence:

SELECT P_DESCRIPT, V_CODE, P_INDATE, P_PRICE
FROM PRODUCT
WHERE P_INDATE < '21-Jan-2008' AND

P_PRICE <= 50.00
ORDER BY V_CODE, P_PRICE DESC;

The output is shown in Figure 7.19. Note that within each V_CODE, the P_PRICE values are in descending order.

FIGURE
7.18

Telephone list query results

C6545_07 9/4/2007 14:3:4 Page 264

264 C H A P T E R 7

7.6.2 Listing Unique Values

How many different vendors are currently represented in
the PRODUCT table? A simple listing (SELECT) is not very
useful if the table contains several thousand rows and you
have to sift through the vendor codes manually. Fortunately,
SQL’s DISTINCT clause produces a list of only those values
that are different from one another. For example, the
command:

SELECT DISTINCT V_CODE
FROM PRODUCT;

yields only the different (distinct) vendor codes (V_CODE)
that are encountered in the PRODUCT table, as shown in
Figure 7.20. Note that the first output row shows the null.

(By default, Access places the null V_CODE at the top of the list, while Oracle places it at the bottom. The placement
of nulls does not affect the list contents. In Oracle, you could use ORDER BY V_CODE NULLS FIRST to place nulls
at the top of the list.)

7.6.3 Aggregate Functions

SQL can perform various mathematical summaries for
you, such as counting the number of rows that contain a
specified condition, finding the minimum or maximum
values for some specified attribute, summing the values in
a specified column, and averaging the values in a speci-
fied column. Those aggregate functions are shown in
Table 7.8.

To illustrate another standard SQL command format,
most of the remaining input and output sequences are
presented using the Oracle RDBMS.

FIGURE
7.19

A query based on multiple
restrictions

Note

If the ordering column has nulls, they are listed either first or last, depending on the RDBMS.

The ORDER BY clause must always be listed last in the SELECT command sequence.

FIGURE
7.20

A listing of distinct (different)
V_CODE values in the
PRODUCT table

TABLE
7.8

Some Basic SQL Aggregate
Functions

FUNCTION OUTPUT
COUNT The number of rows containing

non-null values
MIN The minimum attribute value

encountered in a given column
MAX The maximum attribute value

encountered in a given column
SUM The sum of all values for a given

column
AVG The arithmetic mean (average) for

a specified column

C6545_07 9/4/2007 14:4:5 Page 265

265I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

COUNT
The COUNT function is used to tally the number of non-null values of an attribute. COUNT can be used in conjunction
with the DISTINCT clause. For example, suppose you want to find out how many different vendors are in the
PRODUCT table. The answer, generated by the first SQL code set shown in Figure 7.21, is 6. The answer indicates
that six different VENDOR codes are found in the PRODUCT table. (Note that the nulls are not counted as V_CODE
values.)

The aggregate functions can be combined with the SQL commands explored earlier. For example, the second SQL
command set in Figure 7.21 supplies the answer to the question, “How many vendors referenced in the PRODUCT
table have supplied products with prices that are less than or equal to $10?” The answer is three, indicating that three
vendors referenced in the PRODUCT table have supplied products that meet the price specification.

The COUNT aggregate function uses one parameter within parentheses, generally a column name such as
COUNT(V_CODE) or COUNT(P_CODE). The parameter may also be an expression such as COUNT(DISTINCT
V_CODE) or COUNT(P_PRICE+10). Using that syntax, COUNT always returns the number of non-null values in the
given column. (Whether the column values are computed or show stored table row values is immaterial). In contrast,
the syntax COUNT(*) returns the number of total rows returned by the query, including the rows that contain nulls. In
the example in Figure 7.21, SELECT COUNT(P_CODE) FROM PRODUCT and SELECT COUNT(*) FROM
PRODUCT will yield the same answer because there are no null values in the P_CODE primary key column.

Note that the third SQL command set in Figure 7.21 uses the COUNT(*) command to answer the question, “How
many rows in the PRODUCT table have a P_PRICE value less than or equal to $10?” The answer, five, indicates that
five products have a listed price that meets the price specification. The COUNT(*) aggregate function is used to count
rows in a query result set. In contrast, the COUNT(column) aggregate function counts the number of non-null values
in a given column. For example, in Figure 7.20, the COUNT(*) function would return a value of 7 to indicate seven
rows returned by the query. The COUNT(V_CODE) function would return a value of 6 to indicate the six non-null
vendor code values.

FIGURE
7.21

COUNT function output examples

C6545_07 7/24/2007 8:47:3 Page 266

266 C H A P T E R 7

MAX and MIN
The MAX and MIN functions help you find answers to problems such as the:

� Highest (maximum) price in the PRODUCT table.

� Lowest (minimum) price in the PRODUCT table.

The highest price, $256.99, is supplied by the first SQL command set in Figure 7.22. The second SQL command set
shown in Figure 7.22 yields the minimum price of $4.99.

The third SQL command set in Figure 7.22 demonstrates that the numeric functions can be used in conjunction with
more complex queries. However, you must remember that the numeric functions yield only one value based on all
of the values found in the table: a single maximum value, a single minimum value, a single count, or a single average
value. It is easy to overlook this warning. For example, examine the question, “Which product has the highest price?”

Although that query seems simple enough, the SQL command sequence:

SELECT P_CODE, P_DESCRIPT, P_PRICE
FROM PRODUCT
WHERE P_PRICE = MAX(P_PRICE);

does not yield the expected results. This is because the use of MAX(P_PRICE) to the right side of a comparison
operator is incorrect, thus producing an error message. The aggregate function MAX(columnname) can be used only
in the column list of a SELECT statement. Also, in a comparison that uses an equality symbol, you can use only a single
value to the right of the equals sign.

To answer the question, therefore, you must compute the maximum price first, then compare it to each price returned
by the query. To do that, you need a nested query. In this case, the nested query is composed of two parts:

� The inner query, which is executed first.

� The outer query, which is executed last. (Remember that the outer query is always the first SQL command you
encounter—in this case, SELECT.)

Note

NOTE TO MS ACCESS USERS
MS Access does not support the use of COUNT with the DISTINCT clause. If you want to use such queries in
MS Access, you must create subqueries with DISTINCT and NOT NULL clauses. For example, the equivalent
MS Access queries for the first two queries shown in Figure 7.21 are:

SELECT COUNT(*)
FROM (SELECT DISTINCT V_CODE FROM PRODUCT WHERE V_CODE IS NOT NULL)

and

SELECT COUNT(*)
FROM (SELECT DISTINCT(V_CODE)

FROM
(SELECT V_CODE, P_PRICE FROM PRODUCT
WHERE V_CODE IS NOT NULL AND P_PRICE < 10))

Those two queries can be found in the Student Online Companion in the Ch07_SaleCo (Access) database. MS
Access does add a trailer at the end of the query after you have executed it, but you can delete that trailer the
next time you use the query.

C6545_07 9/14/2007 9:23:18 Page 267

267I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Using the following command sequence as an example, note that the inner query first finds the maximum price value,
which is stored in memory. Because the outer query now has a value to which to compare each P_PRICE value, the
query executes properly.

SELECT P_CODE, P_DESCRIPT, P_PRICE
FROM PRODUCT
WHERE P_PRICE = (SELECT MAX(P_PRICE) FROM PRODUCT);

The execution of that nested query yields the correct answer shown below the third (nested) SQL command set in
Figure 7.22.

The MAX and MIN aggregate functions can also be used with date columns. For example, to find out the product that
has the oldest date, you would use MIN(P_INDATE). In the same manner, to find out the most recent product, you
would use MAX(P_INDATE).

FIGURE
7.22

MAX and MIN function output examples

Note

You can use expressions anywhere a column name is expected. Suppose you want to know what product has
the highest inventory value. To find the answer, you can write the following query:

SELECT *
FROM PRODUCT
WHERE P_QOH * P_PRICE = (SELECT MAX(P_QOH * P_PRICE) FROM PRODUCT);

C6545_07 9/14/2007 9:23:33 Page 268

268 C H A P T E R 7

SUM
The SUM function computes the total sum for any specified attribute, using whatever condition(s) you have imposed.
For example, if you want to compute the total amount owed by your customers, you could use the following command:

SELECT SUM(CUS_BALANCE) AS TOTBALANCE
FROM CUSTOMER;
You could also compute the sum total of an expression. For example, if you want to find the total value of all items
carried in inventory, you could use:

SELECT SUM(P_QOH * P_PRICE) AS TOTVALUE
FROM PRODUCT;
because the total value is the sum of the product of the quantity on hand and the price for all items. See Figure 7.23.

AVG
The AVG function format is similar to that of MIN and MAX and is subject to the same operating restrictions. The first
SQL command set shown in Figure 7.24 shows how a simple average P_PRICE value can be generated to yield the
computed average price of 56.42125. The second SQL command set in Figure 7.24 produces five output lines that
describe products whose prices exceed the average product price. Note that the second query uses nested SQL
commands and the ORDER BY clause examined earlier.

FIGURE
7.23

The total value of all items in the PRODUCT table

C6545_07 7/24/2007 8:51:17 Page 269

269I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

7.6.4 Grouping Data

Frequency distributions can be created quickly and easily using the GROUP BY clause within the SELECT statement.
The syntax is:

SELECT columnlist
FROM tablelist
[WHERE conditionlist]
[GROUP BY columnlist]
[HAVING conditionlist]
[ORDER BY columnlist [ASC | DESC]] ;

The GROUP BY clause is generally used when you have attribute columns combined with aggregate functions in the
SELECT statement. For example, to determine the minimum price for each sales code, use the first SQL command
set shown in Figure 7.25.

The second SQL command set in Figure 7.25 generates the average price within each sales code. Note that the
P_SALECODE nulls are included within the grouping.

The GROUP BY clause is valid only when used in conjunction with one of the SQL aggregate functions, such as
COUNT, MIN, MAX, AVG, and SUM. For example, as shown in the first command set in Figure 7.26, if you try to
group the output by using:

SELECT V_CODE, P_CODE, P_DESCRIPT, P_PRICE
FROM PRODUCT
GROUP BY V_CODE;

you generate a “not a GROUP BY expression” error. However, if you write the preceding SQL command sequence
in conjunction with some aggregate function, the GROUP BY clause works properly. The second SQL command
sequence in Figure 7.26 properly answers the question, “How many products are supplied by each vendor?,” because
it uses a COUNT aggregate function.

FIGURE
7.24

AVG function output examples

C6545_07 7/24/2007 8:52:11 Page 270

270 C H A P T E R 7

Note that the last output line in Figure 7.26 shows a null for the V_CODE, indicating that two products were not
supplied by a vendor. Perhaps those products were produced in-house, or they might have been bought via a
nonvendor channel, or the person making the data entry might have merely forgotten to enter a vendor code.
(Remember that nulls can be the result of many things.)

FIGURE
7.25

GROUP BY clause output examples

FIGURE
7.26

Incorrect and correct use of the GROUP BY clause

C6545_07 7/24/2007 8:52:11 Page 271

271I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The GROUP BY Feature's HAVING Clause
A particularly useful extension of the GROUP BY feature is the HAVING clause. The HAVING operates very much
like the WHERE clause in the SELECT statement. However, the WHERE clause applies to columns and expressions
for individual rows, while the HAVING clause is applied to the output of a GROUP BY operation. For example,
suppose you want to generate a listing of the number of products in the inventory supplied by each vendor. But this
time you want to limit the listing to products whose prices average below $10. The first part of that requirement is
satisfied with the help of the GROUP BY clause, as illustrated in the first SQL command set in Figure 7.27. Note that
the HAVING clause is used in conjunction with the GROUP BY clause in the second SQL command set in Figure 7.27
to generate the desired result.

Using the WHERE clause instead of the HAVING clause— the second SQL command set in Figure 7.27 will produce
an error message.

Note

When using the GROUP BY clause with a SELECT statement:

• The SELECT’s columnlist must include a combination of column names and aggregate functions.

• The GROUP BY clauses columnlist must include all nonaggregate function columns specified in the
SELECTs columnlist. If required, you could also group by any aggregate function columns that appear in the
SELECT’s columnlist.

• The GROUP BY clause columnlist can include any columns from the tables in the FROM clause of the
SELECT statement, even if they do not appear in the SELECT’s columnlist.

FIGURE
7.27

An application of the HAVING clause

C6545_07 9/4/2007 14:7:21 Page 272

272 C H A P T E R 7

You can also combine multiple clauses and aggregate functions. For example, consider the following SQL statement:

SELECT V_CODE, SUM(P_QOH * P_PRICE) AS TOTCOST
FROM PRODUCT
GROUP BY V_CODE
HAVING (SUM(P_QOH * P_PRICE) > 500)
ORDER BY SUM(P_QOH * P_PRICE) DESC;

This statement will do the following:

� Aggregate the total cost of products grouped by V_CODE.

� Select only the rows having totals that exceed $500.

� List the results in descending order by the total cost.

Note the syntax used in the HAVING and ORDER BY clauses; in both cases, you must specify the column expression
(formula) used in the SELECT statement’s column list, rather than the column alias (TOTCOST). Some RDBMSs allow
you to substitute the column expression with the column alias, while others do not.

7.7 VIRTUAL TABLES: CREATING A VIEW

As you learned earlier, the output of a relational operator such as SELECT is another relation (or table). Suppose that
at the end of every day, you would like to get a list of all products to reorder, that is, products with a quantity on hand
that is less than or equal to the minimum quantity. Instead of typing the same query at the end of every day, wouldn’t
it be better to permanently save that query in the database? That’s the function of a relational view. A view is a virtual
table based on a SELECT query. The query can contain columns, computed columns, aliases, and aggregate functions
from one or more tables. The tables on which the view is based are called base tables.

You can create a view by using the CREATE VIEW command:

CREATE VIEW viewname AS SELECT query

The CREATE VIEW statement is a data definition command that stores the subquery specification—the SELECT
statement used to generate the virtual table—in the data dictionary.

The first SQL command set in Figure 7.28 shows the syntax used to create a view named PRICEGT50. This view
contains only the designated three attributes (P_DESCRIPT, P_QOH, and P_PRICE) and only rows in which the price
is over $50. The second SQL command sequence in Figure 7.28 shows the rows that make up the view.

Note

NOTE TO MS ACCESS USERS
The CREATE VIEW command is not directly supported in MS Access. To create a view in MS Access, you just
need to create a SQL query and then save it.

C6545_07 7/26/2007 14:11:7 Page 273

273I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

A relational view has several special characteristics:

� You can use the name of a view anywhere a table name is expected in a SQL statement.

� Views are dynamically updated. That is, the view is re-created on demand each time it is invoked. Therefore,
if new products are added (or deleted) to meet the criterion P_PRICE > 50.00, those new products will
automatically appear (or disappear) in the PRICEGT50 view the next time the view is invoked.

� Views provide a level of security in the database because the view can restrict users to only specified columns
and specified rows in a table. For example, if you have a company with hundreds of employees in several
departments, you could give the secretary of each department a view of only certain attributes and for the
employees that belong only to that secretary’s department.

� Views may also be used as the basis for reports. For example, if you need a report that shows a summary
of total product cost and quantity-on-hand statistics grouped by vendor, you could create a PROD_STATS
view as:

CREATE VIEW PROD_STATS AS
SELECT V_CODE, SUM(P_QOH*P_PRICE) AS TOTCOST,

MAX(P_QOH) AS MAXQTY, MIN(P_QOH) AS MINQTY,
AVG(P_QOH) AS AVGQTY

FROM PRODUCT
GROUP BY V_CODE;

In Chapter 8, you will learn more about views and, in particular, about updating data in base tables through views.

7.8 JOINING DATABASE TABLES

The ability to combine (join) tables on common attributes is perhaps the most important distinction between a relational
database and other databases. A join is performed when data are retrieved from more than one table at a time. (If
necessary, review the join definitions and examples in Chapter 3, The Relational Database Model.)

To join tables, you simply list the tables in the FROM clause of the SELECT statement. The DBMS will create the
Cartesian product of every table in the FROM clause. (Review Chapter 3 to revisit these terms, if necessary.) However,

FIGURE
7.28

Creating a virtual table with the CREATE VIEW command

C6545_07 9/4/2007 14:8:39 Page 274

274 C H A P T E R 7

to get the correct result—that is, a natural join—you must select only the rows in which the common attribute values
match. To do this, use the WHERE clause to indicate the common attributes used to link the tables (this WHERE clause
is sometimes referred to as the join condition).

The join condition is generally composed of an equality comparison between the foreign key and the primary key of
related tables. For example, suppose you want to join the two tables VENDOR and PRODUCT. Because V_CODE is
the foreign key in the PRODUCT table and the primary key in the VENDOR table, the link is established on V_CODE.
(See Table 7.9.)

TABLE
7.9

Creating Links Through Foreign Keys

TABLE ATTRIBUTES TO BE SHOWN LINKING ATTRIBUTE
PRODUCT P_DESCRIPT, P_PRICE V_CODE
VENDOR V_COMPANY, V_PHONE V_CODE

When the same attribute name appears in more than one of the joined tables, the source table of the attributes listed
in the SELECT command sequence must be defined. To join the PRODUCT and VENDOR tables, you would use the
following, which produces the output shown in Figure 7.29:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

Your output might be presented in a different order because the SQL command produces a listing in which the order
of the columns is not relevant. In fact, you are likely to get a different order of the same listing the next time you
execute the command. However, you can generate a more predictable list by using an ORDER BY clause:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE
ORDER BY P_PRICE;

In that case, your listing will always be arranged from the lowest price to the highest price.

FIGURE
7.29

The results of a join

C6545_07 7/24/2007 8:58:19 Page 275

275I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The preceding SQL command sequence joins a row in the PRODUCT table with a row in the VENDOR table in which
the V_CODE values of these rows are the same, as indicated in the WHERE clause’s condition. Because any vendor
can deliver any number of ordered products, the PRODUCT table might contain multiple V_CODE entries for each
V_CODE entry in the VENDOR table. In other words, each V_CODE in VENDOR can be matched with many
V_CODE rows in PRODUCT.

If you do not specify the WHERE clause, the result will be the Cartesian product of PRODUCT and VENDOR. Because
the PRODUCT table contains 16 rows and the VENDOR table contains 11 rows, the Cartesian product would produce
a listing of (16 × 11) = 176 rows. (Each row in PRODUCT would be joined to each row in the VENDOR table.)

All of the SQL commands can be used on the joined tables. For example, the following command sequence is quite
acceptable in SQL and produces the output shown in Figure 7.30:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE
AND P_INDATE > '15-Jan-2008';

When joining three or more tables, you need to specify a join condition for each pair of tables. The number of join
conditions will always be N-1, where N represents the number of tables listed in the FROM clause. For example, if you have
three tables, you must have two join conditions; if you have five tables, you must have four join conditions; and so on.

Note

Table names were used as prefixes in the preceding SQL command sequence. For example, PRODUCT.P_
PRICE was used rather than P_PRICE. Most current-generation RDBMSs do not require table names to be used
as prefixes unless the same attribute name occurs in several of the tables being joined. In that case, V_CODE is
used as a foreign key in PRODUCT and as a primary key in VENDOR; therefore, you must use the table names
as prefixes in the WHERE clause. In other words, you can write the previous query as:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

Naturally, if an attribute name occurs in several places, its origin (table) must be specified. If you fail to
provide such a specification, SQL will generate an error message to indicate that you have been ambiguous
about the attributes origin.

FIGURE
7.30

An ordered and limited listing after a join

C6545_07 9/4/2007 14:9:3 Page 276

276 C H A P T E R 7

Remember, the join condition will match the foreign key of a table to the primary key of the related table. For example,
using Figure 7.1, if you want to list the customer last name, invoice number, invoice date, and product descriptions for
all invoices for customer 10014, you must type the following:

SELECT CUS_LNAME, INV_NUMBER, INV_DATE, P_DESCRIPT
FROM CUSTOMER, INVOICE, LINE, PRODUCT
WHERE CUSTOMER.CUS_CODE = INVOICE.CUS_CODE
AND INVOICE.INV_NUMBER = LINE.INV_NUMBER
AND LINE.P_CODE = PRODUCT.P_CODE
AND CUSTOMER.CUS_CODE = 10014
ORDER BY INV_NUMBER;

Finally, be careful not to create circular join conditions. For example, if Table A is related to Table B, Table B is related
to Table C, and Table C is also related to Table A, create only two join conditions: join A with B and B with C. Do
not join C with A!

7.8.1 Joining Tables with an Alias

An alias may be used to identify the source table from which the data are taken. The aliases P and V are used to label
the PRODUCT and VENDOR tables in the next command sequence. Any legal table name may be used as an alias.
(Also notice that there are no table name prefixes because the attribute listing contains no duplicate names in the
SELECT statement.)

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT P, VENDOR V
WHERE P.V_CODE = V.V_CODE
ORDER BY P_PRICE;

7.8.2 Recursive Joins

An alias is especially useful when a table must be joined to itself in a recursive query. For example, suppose you are
working with the EMP table shown in Figure 7.31.

FIGURE
7.31

The contents of the EMP table

C6545_07 7/24/2007 9:1:21 Page 277

277I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Using the data in the EMP table, you can generate a list of all employees with their managers’ names by joining the
EMP table to itself. In that case, you would also use aliases to differentiate the table from itself. The SQL command
sequence would look like this:

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME
FROM EMP E, EMP M
WHERE E.EMP_MGR=M.EMP_NUM
ORDER BY E.EMP_MGR;

The output of the above command sequence is shown in Figure 7.32.

7.8.3 Outer Joins

Figure 7.29 showed the results of joining the PRODUCT
and VENDOR tables. If you examine the output, note that
14 product rows are listed. Compare the output to the
PRODUCT table in Figure 7.2, and note that two products
are missing. Why? The reason is that there are two products
with nulls in the V_CODE attribute. Because there is no
matching null “value” in the VENDOR table’s V_CODE
attribute, the products do not show up in the final output
based on the join. Also, note that in the VENDOR table in
Figure 7.2, several vendors have no matching V_CODE in
the PRODUCT table. To include those rows in the final join
output, you must use an outer join.

FIGURE
7.32

Using an alias to join a table
to itself

Note

In MS Access, add AS to the previous SQL command sequence, making it read:

SELECT E.EMP_MGR,M.EMP_LNAME,E.EMP_NUM,E.EMP_LNAME
FROM EMP AS E, EMP AS M
WHERE E.EMP_MGR = M.EMP_NUM
ORDER BY E.EMP_MGR;

C6545_07 7/24/2007 9:5:9 Page 278

278 C H A P T E R 7

There are two types of outer joins: left and right. (See Chapter 3.) Given the contents of the PRODUCT and VENDOR
tables, the following left outer join will show all VENDOR rows and all matching PRODUCT rows:

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR LEFT JOIN PRODUCT

ON VENDOR.V_CODE = PRODUCT.V_CODE;

Figure 7.33 shows the output generated by the left outer join command in MS Access. Oracle yields the same result,
but shows the output in a different order.

The right outer join will join both tables and show all product rows with all matching vendor rows. The SQL command
for the right outer join is:

SELECT PRODUCT.P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR RIGHT JOIN PRODUCT

ON VENDOR.V_CODE = PRODUCT.V_CODE;

Figure 7.34 shows the output generated by the right outer join command sequence in MS Access. Again, Oracle yields
the same result, but shows the output in a different order.

In Chapter 8, you will learn more about joins and how to use the latest ANSI SQL standard syntax.

FIGURE
7.33

The left outer
join results

FIGURE
7.34

The right outer
join results

O n l i n e C o n t e n t

For a complete walk-through example of converting an ER model into a database structure and using SQL
commands to create tables, see Appendix D, Converting an ER Model into a Database
Structure, in the Student Online Companion.

C6545_07 9/4/2007 14:11:25 Page 279

279I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

S u m m a r y

◗ The SQL commands can be divided into two overall categories: data definition language (DDL) commands and data
manipulation language (DML) commands.

◗ The ANSI standard data types are supported by all RDBMS vendors in different ways. The basic data types are
NUMBER, INTEGER, CHAR, VARCHAR, and DATE.

◗ The basic data definition commands allow you to create tables, indexes, and views. Many SQL constraints can be
used with columns. The commands are CREATE TABLE, CREATE INDEX, CREATE VIEW, ALTER TABLE,
DROP TABLE, DROP VIEW, and DROP INDEX.

◗ DML commands allow you to add, modify, and delete rows from tables. The basic DML commands are SELECT,
INSERT, UPDATE, DELETE, COMMIT, and ROLLBACK.

◗ The INSERT command is used to add new rows to tables. The UPDATE command is used to modify data values
in existing rows of a table. The DELETE command is used to delete rows from tables. The COMMIT and
ROLLBACK commands are used to permanently save or roll back changes made to the rows. Once you COMMIT
the changes, you cannot undo them with a ROLLBACK command.

◗ The SELECT statement is the main data retrieval command in SQL. A SELECT statement has the following syntax:

SELECT columnlist
FROM tablelist
[WHERE conditionlist]
[GROUP BY columnlist]
[HAVING conditionlist]
[ORDER BY columnlist [ASC | DESC]] ;

◗ The column list represents one or more column names separated by commas. The column list may also include
computed columns, aliases, and aggregate functions. A computed column is represented by an expression or
formula (for example, P_PRICE * P_QOH). The FROM clause contains a list of table names or view names.

◗ The WHERE clause can be used with the SELECT, UPDATE, and DELETE statements to restrict the rows affected
by the DDL command. The condition list represents one or more conditional expressions separated by logical
operators (AND, OR, and NOT). The conditional expression can contain any comparison operators (=, >, <, >=,
<=, and <>) as well as special operators (BETWEEN, IS NULL, LIKE, IN, and EXISTS).

◗ Aggregate functions (COUNT, MIN, MAX, and AVG) are special functions that perform arithmetic computations
over a set of rows. The aggregate functions are usually used in conjunction with the GROUP BY clause to group
the output of aggregate computations by one or more attributes. The HAVING clause is used to restrict the output
of the GROUP BY clause by selecting only the aggregate rows that match a given condition.

◗ The ORDER BY clause is used to sort the output of a SELECT statement. The ORDER BY clause can sort by one
or more columns and can use either ascending or descending order.

◗ You can join the output of multiple tables with the SELECT statement. The join operation is performed every time
you specify two or more tables in the FROM clause and use a join condition in the WHERE clause to match the
foreign key of one table to the primary key of the related table. If you do not specify a join condition, the DBMS
will automatically perform a Cartesian product of the tables you specify in the FROM clause.

◗ The natural join uses the join condition to match only rows with equal values in the specified columns. You could
also do a right outer join and left outer join to select the rows that have no matching values in the other
related table.

C6545_07 9/4/2007 14:12:45 Page 280

280 C H A P T E R 7

K e y T e r m s

alias, 250

ALTER TABLE, 257

AND, 252

authentication, 229

AVG, 269

base tables, 273

BETWEEN, 253

Boolean algebra, 252

cascading order sequence, 264

COMMIT, 242

COUNT, 266

CREATE INDEX, 239

CREATE TABLE, 232

CREATE VIEW, 273

DELETE, 245

DISTINCT, 265

DROP INDEX, 240

DROP TABLE, 263

EXISTS, 253

GROUP BY, 270

HAVING, 272

IN, 253

inner query, 245

INSERT, 240

IS NULL, 253

LIKE, 253

MAX, 267

MIN, 267

nested query, 245

NOT, 252

OR, 252

ORDER BY, 263

recursive query, 277

reserved words, 235

ROLLBACK, 244

rules of precedence, 251

schema, 229

SELECT, 242

subquery, 245

SUM, 269

UPDATE, 244

view, 273

wildcard character, 242

R e v i e w Q u e s t i o n s

The Ch07_Review database stores data for a consulting company that tracks all charges to projects. The charges are
based on the hours each employee works on each project. The structure and contents of the Ch07_Review database
are shown in Figure Q7.1.

Note that the ASSIGNMENT table in Figure Q7.1 stores the JOB_CHG_HOUR values as an attribute (ASSIGN_
CHG_HR) to maintain historical accuracy of the data. The JOB_CHG_HOUR values are likely to change over time.
In fact, a JOB_CHG_HOUR change will be reflected in the ASSIGNMENT table. And, naturally, the employee primary
job assignment might change, so the ASSIGN_JOB is also stored. Because those attributes are required to maintain
the historical accuracy of the data, they are not redundant.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

O n l i n e C o n t e n t

The Review Questions in this chapter are based on the Ch07_Review database located in the Student Online
Companion. This database is stored in Microsoft Access format. If you use another DBMS such as Oracle, SQL
Server, MySQL, or DB2, use its import utilities to move the Access database contents. The Student Online
Companion provides Oracle and SQL script files.

C6545_07 9/4/2007 14:13:4 Page 281

281I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Given the structure and contents of the Ch07_Review database shown in Figure Q7.1, use SQL commands to answer
Questions 1–25.

1. Write the SQL code that will create the table structure for a table named EMP_1. This table is a subset of the
EMPLOYEE table. The basic EMP_1 table structure is summarized in the table below. (Note that the JOB_CODE
is the FK to JOB.)

2. Having created the table structure in Question 1, write
the SQL code to enter the first two rows for the table
shown in Figure Q7.2.

3. Assuming the data shown in the EMP_1 table have
been entered, write the SQL code that will list all
attributes for a job code of 502.

4. Write the SQL code that will save the changes made to
the EMP_1 table.

5. Write the SQL code to change the job code to 501 for
the person whose employee number (EMP_NUM) is
107. After you have completed the task, examine the
results, and then reset the job code to its original value.

FIGURE
Q7.1

Structure and contents of the Ch07_Review database

Relational diagram Table name: EMPLOYEE

Table name: JOB

Table name: PROJECT

Table name: ASSIGNMENT

 Database name: Ch07_Review

ATTRIBUTE
(FIELD) NAME

DATA
DECLARATION

EMP_NUM CHAR(3)
EMP_LNAME VARCHAR(15)
EMP_FNAME VARCHAR(15)
EMP_INITIAL CHAR(1)
EMP_HIREDATE DATE
JOB_CODE CHAR(3)

C6545_07 7/24/2007 9:13:58 Page 282

282 C H A P T E R 7

6. Write the SQL code to delete the row for the person named William Smithfield, who was hired on June 22,
2004, and whose job code classification is 500. (Hint: Use logical operators to include all of the information
given in this problem.)

7. Write the SQL code that will restore the data to its original status; that is, the table should contain the data that
existed before you made the changes in Questions 5 and 6.

8. Write the SQL code to create a copy of EMP_1, naming the copy EMP_2. Then write the SQL code that will
add the attributes EMP_PCT and PROJ_NUM to its structure. The EMP_PCT is the bonus percentage to be paid
to each employee. The new attribute characteristics are:

EMP_PCTNUMBER(4,2)

PROJ_NUMCHAR(3)

(Note: If your SQL implementation allows it, you may use DECIMAL(4,2) rather than NUMBER(4,2).)

9. Write the SQL code to change the EMP_PCT value to 3.85 for the person whose employee number (EMP_NUM)
is 103. Next, write the SQL command sequences to change the EMP_PCT values as shown in Figure Q7.9.

10. Using a single command sequence, write the SQL code that will change the project number (PROJ_NUM) to 18
for all employees whose job classification (JOB_CODE) is 500.

11. Using a single command sequence, write the SQL code that will change the project number (PROJ_NUM) to 25
for all employees whose job classification (JOB_CODE) is 502 or higher. When you finish Questions 10 and 11,
the EMP_2 table will contain the data shown in Figure Q7.11.

(You may assume that the table has been saved again at this point.)

FIGURE
Q7.2

The contents of the EMP_1 table

FIGURE
Q7.9

The contents of the EMP_2 table

C6545_07 9/14/2007 9:23:52 Page 283

283I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

12. Write the SQL code that will change the PROJ_NUM to 14 for those employees who were hired before
January 1, 1994 and whose job code is at least 501. (You may assume that the table will be restored to its
condition preceding this question.)

13. Write the two SQL command sequences required to:

a. Create a temporary table named TEMP_1 whose structure is composed of the EMP_2 attributes EMP_NUM
and EMP_PCT.

b. Copy the matching EMP_2 values into the TEMP_1 table.

14. Write the SQL command that will delete the newly created TEMP_1 table from the database.

15. Write the SQL code required to list all employees whose last names start with Smith. In other words, the rows
for both Smith and Smithfield should be included in the listing. Assume case sensitivity.

16. Using the EMPLOYEE, JOB, and PROJECT tables in the Ch07_Review database (see Figure Q7.1), write the
SQL code that will produce the results shown in Figure Q7.16.

17. Write the SQL code that will produce a virtual table named REP_1. The virtual table should contain the same
information that was shown in Question 16.

18. Write the SQL code to find the average bonus percentage in the EMP_2 table you created in Question 8.

19. Write the SQL code that will produce a listing for the data in the EMP_2 table in ascending order by the bonus
percentage.

20. Write the SQL code that will list only the distinct project numbers found in the EMP_2 table.

21. Write the SQL code to calculate the ASSIGN_CHARGE values in the ASSIGNMENT table in the Ch07_Review
database. (See Figure Q7.1.) Note that ASSIGN_CHARGE is a derived attribute that is calculated by multiplying
ASSIGN_CHG_HR by ASSIGN_HOURS.

22. Using the data in the ASSIGNMENT table, write the SQL code that will yield the total number of hours worked
for each employee and the total charges stemming from those hours worked. The results of running that query
are shown in Figure Q7.22.

FIGURE
Q7.11

The EMP_2 table contents after the modifications

FIGURE
Q7.16

The query results for Question 16

C6545_07 7/26/2007 14:13:29 Page 284

284 C H A P T E R 7

23. Write a query to produce the total number of hours and charges for each of the projects represented in the
ASSIGNMENT table. The output is shown in Figure Q7.23.

24. Write the SQL code to generate the total hours worked
and the total charges made by all employees. The
results are shown in Figure Q7.24. (Hint: This is a
nested query. If you use Microsoft Access, you can
generate the result by using the query output shown in
Figure Q7.22 as the basis for the query that will
produce the output shown in Figure Q7.24.)

25. Write the SQL code to generate the total hours worked
and the total charges made to all projects. The results
should be the same as those shown in Figure Q7.24.
(Hint: This is a nested query. If you use Microsoft
Access, you can generate the result by using the query
output shown in Figure Q7.23 as the basis for
this query.)

P r o b l e m s

Before you attempt to write any SQL queries, familiarize yourself with the Ch07_AviaCo database structure and
contents shown in Figure P7.1. Although the relational schema does not show optionalities, keep in mind that all pilots
are employees, but not all employees are flight crew members. (Although in this database, the crew member
assignments all involve pilots and copilots, the design is sufficiently flexible to accommodate crew member

FIGURE
Q7.22

Total hours and charges by employee

FIGURE
Q7.23

Total hour and charges by
project

FIGURE
Q7.24

Total hours and charges, all
employees

O n l i n e C o n t e n t

Problems 1-15 are based on the Ch07_AviaCo database located in the Student Online Companion. This
database is stored in Microsoft Access format. If you use another DBMS such as Oracle, SQL Server, MySQL, or
DB2, use its import utilities to move the Access database contents. The Student Online Companion provides
Oracle and SQL script files.

C6545_07 7/24/2007 9:18:9 Page 285

285I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

assignments—such as loadmasters and flight attendants—of people who are not pilots. That’s why the relationship
between CHARTER and EMPLOYEE is implemented through CREW.) Note also that this design implementation does
not include multivalued attributes. For example, multiple ratings such as Instrument and Certified Flight Instructor
ratings are stored in the (composite) EARNEDRATINGS table. Nor does the CHARTER table include multiple crew
assignments, which are properly stored in the CREW table.

1. Write the SQL code that will list the values for the first four attributes in the CHARTER table.

2. Using the contents of the CHARTER table, write the SQL query that will produce the output shown in
Figure P7.2. Note that the output is limited to selected attributes for aircraft number 2778V.

FIGURE
P7.1

The Ch07_AviaCo database

Relational diagram

Table name: CUSTOMER

Table name: RATING
Table name: CREW

Table name: EMPLOYEE

Table name: PILOT

Table name: CHARTER

Table name: AIRCRAFT Table name: MODEL

Table name: EARNEDRATING

Database name: Ch7_AviaCo

C6545_07 9/14/2007 9:24:22 Page 286

286 C H A P T E R 7

3. Create a virtual table (named AC2778V) containing the output presented in Problem 2.

4. Produce the output shown in Figure P7.4 for aircraft 2778V. Note that this output includes data from the
CHARTER and CUSTOMER tables. (Hint: Use a JOIN in this query.)

5. Produce the output shown in Figure P7.5. The output, derived from the CHARTER and MODEL tables, is limited
to February 6, 2008. (Hint: The join passes through another table. Note that the “connection” between
CHARTER and MODEL requires the existence of AIRCRAFT because the CHARTER table does not contain a
foreign key to MODEL. However, CHARTER does contain AC_NUMBER, a foreign key to AIRCRAFT, which
contains a foreign key to MODEL.)

6. Modify the query in Problem 5 to include data from the CUSTOMER table. This time the output is limited to
charter records generated since February 9, 2008. (The query results are shown in Figure P7.6.)

FIGURE
P7.2

Problem 2 query results

FIGURE
P7.4

Problem 4 query results

FIGURE
P7.5

Problem 5 query results

C6545_07 7/24/2007 9:18:48 Page 287

287I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

7. Modify the query in Problem 6 to produce the output shown in Figure P7.7. The date limitation in Problem 6
applies to this problem, too. Note that this query includes data from the CREW and EMPLOYEE tables. (Note:
You might wonder why the date restriction seems to generate more records than it did in Problem 6. Actually,
the number of (CHARTER) records is the same, but several records are listed twice to reflect a crew of two: a pilot
and a copilot. For example, the record for the 09-Feb-2008 flight to GNV, using aircraft 2289L, required a crew
consisting of a pilot (Lange) and a copilot (Lewis).)

8. Modify the query in Problem 5 to include the computed (derived) attribute “fuel per hour.” (Hint: It is possible to
use SQL to produce computed “attributes” that are not stored in any table. For example, the SQL query:

SELECT CHAR_DISTANCE, CHAR_FUEL_GALLONS/CHAR_DISTANCE
FROM CHARTER;

is perfectly acceptable. The above query produces the “gallons per mile flown” value.) Use a similar technique on
joined tables to produce the “gallons per hour” output shown in Figure P7.8. (Note that 67.2 gallons/1.5 hours
produces 44.8 gallons per hour.)

FIGURE
P7.6

Problem 6 query results

FIGURE
P7.7

Problem 7 query results

FIGURE
P7.8

Problem 8 query results

C6545_07 9/14/2007 9:24:42 Page 288

288 C H A P T E R 7

Query output such as the “gallons per hour” result shown in Figure P7.8 provide managers with very important
information. In this case, why is the fuel burn for the Navajo Chieftain 4278Y flown on 9-Feb-08 so much higher
than the fuel burn for that aircraft on 10-Feb-08? Such a query result might lead to additional queries to find out
who flew the aircraft or what special circumstances might have existed. Is the fuel burn difference due to poor
fuel management by the pilot, does it reflect an engine fuel metering problem, or was there an error in the fuel
recording? The ability to generate useful query output is an important management asset.

9. Create a query to produce the output shown in Figure P7.9. Note that, in this case, the computed attribute
requires data found in two different tables. (Hint: The MODEL table contains the charge per mile, and the
CHARTER table contains the total miles flown.) Note also that the output is limited to charter records generated
since February 9, 2008. In addition, the output is ordered by date and, within the date, by the customer’s
last name.

10. Use the techniques that produced the output in Problem 9 to produce the charges shown in Figure P7.10. The
total charge to the customer is computed by:

� Miles flown * charge per mile.

� Hours waited * $50 per hour.

The miles flown (CHAR_DISTANCE) value is found in the CHARTER table, the charge per mile (MOD_CHG_
MILE) value is found in the MODEL table, and the hours waited (CHAR_HOURS_WAIT) value is found in the
CHARTER table.

Note

The output format is determined by the RDBMS you use. In this example, the Access software defaulted to an
output heading labeled Expr1 to indicate the expression resulting from the division:

[CHARTER]![CHAR_FUEL_GALLONS]/[CHARTER]![CHAR_HOURS]

created by its expression builder. Oracle defaults to the full division label. You should learn to control the output
format with the help of your RDBMSs utility software.

FIGURE
P7.9

Problem 9 query results

FIGURE
P7.10

Problem 10 query results

C6545_07 7/26/2007 14:14:15 Page 289

289I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

11. Create the SQL query that will produce a list of customers who have an unpaid balance. The required output is
shown in Figure P7.11. Note that the balances are listed in descending order.

12. Find the average customer balance, the minimum bal-
ance, the maximum balance, and the total of the
unpaid balances. The resulting values are shown in
Figure P7.12.

13. Using the CHARTER table as the source, group the
aircraft data. Then use the SQL functions to produce
the output shown in Figure P7.13. (Utility software was
used to modify the headers, so your headers might look
different.)

14. Write the SQL code to generate the output shown in Figure P7.14. Note that the listing includes all CHARTER
flights that did not include a copilot crew assignment. (Hint: The crew assignments are listed in the CREW table.
Also note that the pilot’s last name requires access to the EMPLOYEE table, while the MOD_CODE requires
access to the MODEL table.)

FIGURE
P7.11

A list of customers with
unpaid balances

FIGURE
P7.12

Customer balance summary

FIGURE
P7.13

The AIRCRAFT data summary statement

FIGURE
P7.14

Charter flights that did not use a copilot

C6545_07 7/24/2007 9:24:29 Page 290

290 C H A P T E R 7

15. Write a query that will list the ages of the employees and the date the query was run. The required output is shown
in Figure P7.15. (As you can tell, the query was run on May 16, 2007, so the ages of the employees are current
as of that date.)

The structure and contents of the Ch07_SaleCo database are shown in Figure P7.16. Use this database to
answer the following problems. Save each query as QXX, where XX is the problem number.

FIGURE
P7.15

Employee ages and date of query

O n l i n e C o n t e n t

Problems 16−33 are based on the Ch07_SaleCo database located in the Student Online Companion. This
database is stored in Microsoft Access format. If you use another DBMS such as Oracle, SQL Server, MySQL, or
DB2, use its import utilities to move the Access database contents. The Student Online Companion provides
Oracle and SQL script files.

C6545_07 7/24/2007 9:25:46 Page 291

291I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

16. Write a query to count the number of invoices.

17. Write a query to count the number of customers with a customer balance over $500.

18. Generate a listing of all purchases made by the customers, using the output shown in Figure P7.18 as your guide.
(Hint: Use the ORDER BY clause to order the resulting rows shown in Figure P7.18.)

FIGURE
P7.16

The Ch07_SaleCo database

Relational diagram

Table name: VENDOR
Table name: CUSTOMER

Table name: PRODUCTTable name: INVOICE Table name: LINE

C6545_07 7/24/2007 9:26:6 Page 292

292 C H A P T E R 7

19. Using the output shown in Figure P7.19 as your guide, generate a list of customer purchases, including the
subtotals for each of the invoice line numbers. (Hint: Modify the query format used to produce the list of customer
purchases in Problem 18, delete the INV_DATE column, and add the derived (computed) attribute LINE_UNITS
* LINE_PRICE to calculate the subtotals.)

20. Modify the query used in Problem 19 to produce the summary shown in Figure P7.20.

FIGURE
P7.18

List of customer purchases

FIGURE
P7.19

Summary of customer purchases with subtotals

C6545_07 7/24/2007 9:26:38 Page 293

293I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

21. Modify the query in Problem 20 to include the number of individual
product purchases made by each customer. (In other words, if the
customer’s invoice is based on three products, one per LINE_
NUMBER, you would count three product purchases. Note that in
the original invoice data, customer 10011 generated three invoices,
which contained a total of six lines, each representing a product
purchase.) Your output values must match those shown in
Figure P7.21.

22. Use a query to compute the average purchase amount per product
made by each customer. (Hint: Use the results of Problem 21 as the

basis for this query.) Your output values must match
those shown in Figure P7.22. Note that the average
purchase amount is equal to the total purchases divided
by the number of purchases.

23. Create a query to produce the total purchase per
invoice, generating the results shown in Figure P7.23.
The invoice total is the sum of the product purchases in
the LINE that corresponds to the INVOICE.

24. Use a query to show the
invoices and invoice
totals as shown in Figure
P7.24. (Hint: Group by
the CUS_CODE.)

25. Write a query to produce
the number of invoices
and the total purchase
amounts by customer,
using the output shown
in Figure P7.25 as your
guide. (Compare this
summary to the results
shown in Problem 24.)

26. Using the query results in Problem 25 as your basis, write a query to generate the total number of invoices, the
invoice total for all of the invoices, the smallest invoice amount, the largest invoice amount, and the average of
all of the invoices. (Hint: Check the figure output in Problem 25.) Your output must match Figure P7.26.

FIGURE
P7.20

Customer purchase
summary

FIGURE
P7.21

Customer total purchase
amounts and number of
purchases

FIGURE
P7.22

Average purchase amount by customer

FIGURE
P7.23

Invoice totals FIGURE
P7.24

Invoice totals by
customer

C6545_07 7/26/2007 14:14:39 Page 294

294 C H A P T E R 7

27. List the balance characteristics of the customers who have made purchases during the current invoice cycle—that
is, for the customers who appear in the INVOICE table. The results of this query are shown in Figure P7.27.

28. Using the results of the query created in Problem 27, provide a summary of the customer balance characteristics
as shown in Figure P7.28.

29. Create a query to find the customer balance characteristics for all customers, including the total of the outstanding
balances. The results of this query are shown in Figure P7.29.

30. Find the listing of customers who did not make purchases during the invoicing period. Your output must match
the output shown in Figure P7.30.

FIGURE
P7.25

Number of invoices and total
purchase amounts by customer

FIGURE
P7.26

Number of invoices; invoice
totals; minimum, maximum,
and average sales

FIGURE
P7.27

Balances of
customers who
made purchases

FIGURE
P7.28

Balance summary for customers
who made purchases

FIGURE
P7.29

Balance summary for all
customers

FIGURE
P7.30

Balances of
customers who did
not make purchases

C6545_07 7/24/2007 9:42:22 Page 295

295I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

31. Find the customer balance summary for all customers who have not made purchases during the current invoicing
period. The results are shown in Figure P7.31.

32. Create a query to produce the summary of the value of products currently in inventory. Note that the value of
each product is produced by the multiplication of the units currently in inventory and the unit price. Use the
ORDER BY clause to match the order shown in Figure P7.32.

33. Using the results of the query created in Problem 32, find the total value of the product inventory. The results
are shown in Figure P7.33.

FIGURE
P7.31

Balance summary for customers who did not make purchases

FIGURE
P7.32

Value of products currently in inventory

FIGURE
P7.33

Total value of all
products in
inventory

C6545_07 7/26/2007 14:15:13 Page 296

296 C H A P T E R 7

Preview

Advanced SQL

In this chapter, you will learn:

� About the relational set operators UNION, UNION ALL, INTERSECT, and MINUS

� How to use the advanced SQL JOIN operator syntax

� About the different types of subqueries and correlated queries

� How to use SQL functions to manipulate dates, strings, and other data

� How to create and use updatable views

� How to create and use triggers and stored procedures

� How to create embedded SQL

In Chapter 7, Introduction to Structured Query Language (SQL), you learned the basic SQL

data definition and data manipulation commands used to create and manipulate relational

data. In this chapter, you build on what you learned in Chapter 7 and learn how to use more

advanced SQL features.

In this chapter, you learn about the SQL relational set operators (UNION, INTERSECT, and

MINUS) and how those operators are used to merge the results of multiple queries. Joins

are at the heart of SQL, so you must learn how to use the SQL JOIN statement to extract

information from multiple tables. In the previous chapter, you learned how cascading queries

inside other queries can be useful in certain circumstances. In this chapter, you also learn

about the different styles of subqueries that can be implemented in a SELECT statement.

Finally, you learn more of SQL’s many functions to extract information from data, including

manipulation of dates and strings and computations based on stored or even derived data.

In the real world, business procedures require the execution of clearly defined actions when

a specific event occurs, such as the addition of a new invoice or a student’s enrollment in

a class. Such procedures can be applied within the DBMS through the use of triggers and

stored procedures. In addition, SQL facilitates the application of business procedures when

it is embedded in a programming language such as Visual Basic .Net, C#, or COBOL.

8

E
I

G
H

T

C6545_08 8/15/2007 16:13:3 Page 297

8.1 RELATIONAL SET OPERATORS

In Chapter 3, The Relational Database Model, you learned about the eight general relational operators. In this section,
you will learn how to use three SQL commands (UNION, INTERSECT, and MINUS) to implement the union,
intersection, and difference relational operators.

In previous chapters, you learned that SQL data manipulation commands are set-oriented; that is, they operate over
entire sets of rows and columns (tables) at once. Using sets, you can combine two or more sets to create new sets (or
relations). That’s precisely what the UNION, INTERSECT, and MINUS statements do. In relational database terms, you
can use the words “sets,” “relations,” and “tables” interchangeably because they all provide a conceptual view of the
data set as it is presented to the relational database user.

UNION, INTERSECT, and MINUS work properly only if relations are union-compatible, which means that the
names of the relation attributes must be the same and their data types must be alike. In practice, some RDBMS vendors
require the data types to be “compatible” but not necessarily “exactly the same.” For example, compatible data types
are VARCHAR (35) and CHAR (15). In that case, both attributes store character (string) values; the only difference is
the string size. Another example of compatible data types is NUMBER and SMALLINT. Both data types are used to
store numeric values.

O n l i n e C o n t e n t

Although most of the examples used in this chapter are shown in Oracle, you could also use MS SQL Server. The
Student Online companion provides you with the ADVSQLDBINIT.SQL script file (Oracle and MS SQL
versions) to create the tables and load the data used in this chapter. There you will also find additional SQL script
files to demonstrate each of the commands shown in this chapter.

Note

The SQL standard defines the operations that all DBMSs must perform on data, but it leaves the implementation
details to the DBMS vendors. Therefore, some advanced SQL features might not work on all DBMS
implementations. Also, some DBMS vendors might implement additional features not found in the SQL
standard.

UNION, INTERSECT, and MINUS are the names of the SQL statements implemented in Oracle. The SQL
standard uses the keyword EXCEPT to refer to the difference (MINUS) relational operator. Other RDBMS
vendors might use a different command name or might not implement a given command at all.

To learn more about the ANSI/ISO SQL standards, check the ANSI Web site (www.ansi.org) to find out how
to obtain the latest standard documents in electronic form. As of this writing, the most recent published
standard is SQL-2003. The SQL-2003 standard makes revisions and additions to the previous standard; most
notable is support for XML data.

Note

Some DBMS products might require union-compatible tables to have identical data types.

C6545_08 9/7/2007 8:45:26 Page 298

298 C H A P T E R 8

8.1.1 UNION

Suppose SaleCo has bought another company. SaleCo’s management wants to make sure that the acquired
company’s customer list is properly merged with SaleCo’s customer list. Because it is quite possible that some
customers have purchased goods from both companies, the two lists might contain common customers. SaleCo’s
management wants to make sure that customer records are not duplicated when the two customer lists are merged.
The UNION query is a perfect tool for generating a combined listing of customers—one that excludes duplicate
records.

The UNION statement combines rows from two or more queries without including duplicate rows. The syntax of the
UNION statement is:

query UNION query

In other words, the UNION statement combines the output of two SELECT queries. (Remember that the SELECT
statements must be union-compatible. That is, they must return the same attribute names and similar data types.)

To demonstrate the use of the UNION statement in SQL, let’s use the CUSTOMER and CUSTOMER_2 tables in the
Ch08_SaleCo database. To show the combined CUSTOMER and CUSTOMER_2 records without the duplicates, the
UNION query is written as follows:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER
UNION
SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2;

Figure 8.1 shows the contents of the CUSTOMER and CUSTOMER_2 tables and the result of the UNION query.
Although MS Access is used to show the results here, similar results can be obtained with Oracle.

Note the following in Figure 8.1:

� The CUSTOMER table contains 10 rows, while the CUSTOMER_2 table contains 7 rows.

� Customers Dunne and Olowski are included in the CUSTOMER table as well as in the CUSTOMER_2 table.

� The UNION query yields 15 records because the duplicate records of customers Dunne and Olowski are not
included. In short, the UNION query yields a unique set of records.

O n l i n e C o n t e n t

The Student Online Companion provides you with SQL script files (Oracle and MS SQL Server) to demonstrate
the UNION, INTERSECT, and MINUS commands. It also provides the Ch08_SaleCo MS Access database
containing supported set operator alternative queries.

Note

The SQL standard calls for the elimination of duplicate rows when the UNION SQL statement is used. However,
some DBMS vendors might not adhere to that standard. Check your DBMS manual to see if the UNION
statement is supported and if so, how it is supported.

C6545_08 9/7/2007 8:48:8 Page 299

299A D V A N C E D S Q L

The UNION statement can be used to unite more than just two queries. For example, assume that you have four
union-compatible queries named T1, T2, T3, and T4. With the UNION statement, you can combine the output of all
four queries into a single result set. The SQL statement will be similar to this:

SELECT column-list FROM T1
UNION
SELECT column-list FROM T2
UNION
SELECT column-list FROM T3
UNION
SELECT column-list FROM T4;

8.1.2 UNION ALL

If SaleCo’s management wants to know how many customers are on both the CUSTOMER and CUSTOMER_2 lists,
a UNION ALL query can be used to produce a relation that retains the duplicate rows. Therefore, the following query
will keep all rows from both queries (including the duplicate rows) and return 17 rows.

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER
UNION ALL
SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2;

Running the preceding UNION ALL query produces the result shown in Figure 8.2.

Like the UNION statement, the UNION ALL statement can be used to unite more than just two queries.

Table name: CUSTOMER

Table name: CUSTOMER_2

Database name: CH08_SaleCo

Query name: qryUNION-of-CUSTOMER-and-CUSTOMER_2

FIGURE
8.1

UNION query results

C6545_08 8/15/2007 16:14:31 Page 300

300 C H A P T E R 8

8.1.3 INTERSECT

If SaleCo’s management wants to know which customer records are duplicated in the CUSTOMER and
CUSTOMER_2 tables, the INTERSECT statement can be used to combine rows from two queries, returning only the
rows that appear in both sets. The syntax for the INTERSECT statement is:

query INTERSECT query

To generate the list of duplicate customer records, you can use:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER
INTERSECT
SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2;

The INTERSECT statement can be used to generate additional useful customer information. For example, the
following query returns the customer codes for all customers who are located in area code 615 and who have made
purchases. (If a customer has made a purchase, there must be an invoice record for that customer.)

SELECT CUS_CODE FROM CUSTOMER WHERE CUS_AREACODE = '615'
INTERSECT
SELECT DISTINCT CUS_CODE FROM INVOICE;

Figure 8.3 shows both sets of SQL statements and their output.

8.1.4 MINUS

The MINUS statement in SQL combines rows from two queries and returns only the rows that appear in the first set
but not in the second. The syntax for the MINUS statement is:

query MINUS query

Table name: CUSTOMER

Database name: CH08_SaleCo

Query name: qryUNION-ALL-of-CUSTOMER-and-CUSTOMER_2

Table name: CUSTOMER_2

FIGURE
8.2

UNION ALL query results

C6545_08 9/13/2007 15:26:38 Page 301

301A D V A N C E D S Q L

For example, if the SaleCo managers want to know what customers in the CUSTOMER table are not found in the
CUSTOMER_2 table, they can use:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER
MINUS
SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2;

If the managers want to know what customers in the CUSTOMER_2 table are not found in the CUSTOMER table,
they merely switch the table designations:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2
MINUS
SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER;

You can extract much useful information by combining MINUS with various clauses such as WHERE. For example, the
following query returns the customer codes for all customers located in area code 615 minus the ones who have made
purchases, leaving the customers in area code 615 who have not made purchases.

SELECT CUS_CODE FROM CUSTOMER WHERE CUS_AREACODE = '615'
MINUS
SELECT DISTINCT CUS_CODE FROM INVOICE;

FIGURE
8.3

INTERSECT query results

Note

MS Access does not support the INTERSECT query, nor does it support other complex queries you will explore
in this chapter. At least in some cases, Access might be able to give you the desired results if you use an
alternative query format or procedure. For example, although Access does not support SQL triggers and stored
procedures, you can use Visual Basic code to perform similar actions. However, the objective here is to show
you how some important standard SQL features may be used.

C6545_08 8/15/2007 16:14:48 Page 302

302 C H A P T E R 8

Figure 8.4 shows the preceding three SQL statements and their output.

8.1.5 Syntax Alternatives

If your DBMS doesn’t support the INTERSECT or MINUS statements, you can use the IN and NOT IN subqueries to
obtain similar results. For example, the following query will produce the same results as the INTERSECT query shown
in Section 8.1.3.

SELECT CUS_CODE FROM CUSTOMER
WHERE CUS_AREACODE = '615' AND

CUS_CODE IN (SELECT DISTINCT CUS_CODE FROM INVOICE);

Figure 8.5 shows the use of the INTERSECT alternative.

FIGURE
8.4

MINUS query results

Note

Some DBMS products do not support the INTERSECT or MINUS statements, while others might implement the
difference relational operator in SQL as EXCEPT. Consult your DBMS manual to see if the statements illustrated
here are supported by your DBMS.

C6545_08 8/15/2007 16:14:48 Page 303

303A D V A N C E D S Q L

Using the same alternative to the MINUS statement, you can generate the output for the third MINUS query shown
in Section 8.1.4 by using:

SELECT CUS_CODE FROM CUSTOMER
WHERE CUS_AREACODE = '615' AND

CUS_CODE NOT IN (SELECT DISTINCT CUS_CODE FROM INVOICE);

The results of that query are shown in Figure 8.6. Note that the query output includes only the customers in area code
615 who have not made any purchases and, therefore, have not generated invoices.

8.2 SQL JOIN OPERATORS

The relational join operation merges rows from two tables and returns the rows with one of the following conditions:

� Have common values in common columns (natural join).

� Meet a given join condition (equality or inequality).

� Have common values in common columns or have no matching values (outer join).

In Chapter 7, you learned how to use the SELECT statement in conjunction with the WHERE clause to join two or more
tables. For example, you can join the PRODUCT and VENDOR tables through their common V_CODE by writing:

SELECT P_CODE, P_DESCRIPT, P_PRICE, V_NAME
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

Table name: CUSTOMER

Database name: CH08_SaleCo

Table name: INVOICE

Query name: qry-INTERSECT-Alternative

FIGURE
8.5

INTERSECT alternative

Note

MS Access will generate an input request for the CUS_AREACODE if you use apostrophes around the area code.
(If you supply the 615 area code, the query will execute properly.) You can eliminate that problem by using standard
double quotation marks, writing the WHERE clause in the second line of the preceding SQL statement as:

WHERE CUS_AREACODE = “615” AND

MS Access will also accept single quotation marks.

C6545_08 9/7/2007 8:48:44 Page 304

304 C H A P T E R 8

The preceding SQL join syntax is sometimes referred to as an “old-style” join. Note that the FROM clause contains
the tables being joined and that the WHERE clause contains the condition(s) used to join the tables.

Note the following points about the preceding query:

� The FROM clause indicates which tables are to be joined. If three or more tables are included, the join
operation takes place two tables at a time, starting from left to right. For example, if you are joining tables T1,
T2, and T3, the first join is table T1 with T2; the results of that join are then joined to table T3.

� The join condition in the WHERE clause tells the SELECT statement which rows will be returned. In this case,
the SELECT statement returns all rows for which the V_CODE values in the PRODUCT and VENDOR tables
are equal.

� The number of join conditions is always equal to the number of tables being joined minus one. For example,
if you join three tables (T1, T2, and T3), you will have two join conditions (j1 and j2). All join conditions are
connected through an AND logical operator. The first join condition (j1) defines the join criteria for T1 and T2.
The second join condition (j2) defines the join criteria for the output of the first join and T3.

� Generally, the join condition will be an equality comparison of the primary key in one table and the related
foreign key in the second table.

Join operations can be classified as inner joins and outer joins. The inner join is the traditional join in which only rows
that meet a given criteria are selected. The join criteria can be an equality condition (also called a natural join or an
equijoin) or an inequality condition (also called a theta join). An outer join returns not only the matching rows, but
also the rows with unmatched attribute values for one table or both tables to be joined. The SQL standard also
introduces a special type of join that returns the same result as the Cartesian product of two sets or tables.

In this section, you will learn various ways to express join operations that meet the ANSI SQL standard. These are
outlined in Table 8.1. It is useful to remember that not all DBMS vendors provide the same level of SQL support and
that some do not support the join styles shown in this section. Oracle 10g is used to demonstrate the use of the
following queries. Refer to your DBMS manual if you are using a different DBMS.

Table name: CUSTOMER

Database name: CH08_SaleCo

Table name: INVOICE

Query name: qry-MINUS-Alternative

FIGURE
8.6

MINUS alternative

C6545_08 9/13/2007 15:27:36 Page 305

305A D V A N C E D S Q L

TABLE
8.1

SQL Join Expression Styles

JOIN
CLASSIFICATION

JOIN
TYPE

SQL
SYNTAX EXAMPLE DESCRIPTION

CROSS CROSS
JOIN

SELECT *
FROM T1, T2

Returns the Cartesian product of T1 and
T2 (old style).

SELECT *
FROM T1 CROSS JOIN T2

Returns the Cartesian product of T1
and T2.

INNER Old-Style
JOIN

SELECT *
FROM T1, T2
WHERE T1.C1=T2.C1

Returns only the rows that meet the join
condition in the WHERE clause (old
style). Only rows with matching values
are selected.

NATURAL
JOIN

SELECT *
FROM T1 NATURAL JOIN T2

Returns only the rows with matching
values in the matching columns. The
matching columns must have the same
names and similar data types.

JOIN
USING

SELECT *
FROM T1 JOIN T2 USING (C1)

Returns only the rows with matching
values in the columns indicated in the
USING clause.

JOIN
ON

SELECT *
FROM T1 JOIN T2

ON T1.C1=T2.C1

Returns only the rows that meet the join
condition indicated in the ON clause.

OUTER LEFT
JOIN

SELECT *
FROM T1 LEFT OUTER JOIN T2

ON T1.C1=T2.C1

Returns rows with matching values and
includes all rows from the left table (T1)
with unmatched values.

RIGHT
JOIN

SELECT *
FROM T1 RIGHT OUTER JOIN T2

ON T1.C1=T2.C1

Returns rows with matching values and
includes all rows from the right table
(T2) with unmatched values.

FULL
JOIN

SELECT *
FROM T1 FULL OUTER JOIN T2

ON T1.C1=T2.C1

Returns rows with matching values and
includes all rows from both tables (T1
and T2) with unmatched values.

8.2.1 Cross Join

A cross join performs a relational product (also known as the Cartesian product) of two tables. The cross join
syntax is:

SELECT column-list FROM table1 CROSS JOIN table2

For example,

SELECT * FROM INVOICE CROSS JOIN LINE;

performs a cross join of the INVOICE and LINE tables. That CROSS JOIN query generates 144 rows. (There were
8 invoice rows and 18 line rows, thus yielding 8 × 18 = 144 rows.)

You can also perform a cross join that yields only specified attributes. For example, you can specify:

SELECT INVOICE.INV_NUMBER, CUS_CODE, INV_DATE, P_CODE
FROM INVOICE CROSS JOIN LINE;

The results generated through that SQL statement can also be generated by using the following syntax:

SELECT INVOICE.INV_NUMBER, CUS_CODE, INV_DATE, P_CODE
FROM INVOICE, LINE;

C6545_08 9/13/2007 15:27:52 Page 306

306 C H A P T E R 8

8.2.2 Natural Join

Recall from Chapter 3 that a natural join returns all rows with matching values in the matching columns and eliminates
duplicate columns. That style of query is used when the tables share one or more common attributes with common
names. The natural join syntax is:

SELECT column-list FROM table1 NATURAL JOIN table2

The natural join will perform the following tasks:

� Determine the common attribute(s) by looking for attributes with identical names and compatible data types.

� Select only the rows with common values in the common attribute(s).

� If there are no common attributes, return the relational product of the two tables.

The following example performs a natural join of the CUSTOMER and INVOICE tables and returns only selected
attributes:

SELECT CUS_CODE, CUS_LNAME, INV_NUMBER, INV_DATE
FROM CUSTOMER NATURAL JOIN INVOICE;

The SQL code and its results are shown at the top of Figure 8.7.

FIGURE
8.7

NATURAL JOIN results

C6545_08 8/15/2007 16:14:49 Page 307

307A D V A N C E D S Q L

You are not limited to two tables when performing a natural join. For example, you can perform a natural join of the
INVOICE, LINE, and PRODUCT tables and project only selected attributes by writing:

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
FROM INVOICE NATURAL JOIN LINE NATURAL JOIN PRODUCT;

The SQL code and its results are shown at the bottom of Figure 8.7.

One important difference between the natural join and the “old-style” join syntax is that the natural join does not
require the use of a table qualifier for the common attributes. In the first natural join example, you projected
CUS_CODE. However, the projection did not require any table qualifier, even though the CUS_CODE attribute
appeared in both CUSTOMER and INVOICE tables. The same can be said of the INV_NUMBER attribute in the
second natural join example.

8.2.3 Join USING Clause

A second way to express a join is through the USING keyword. That query returns only the rows with matching values
in the column indicated in the USING clause—and that column must exist in both tables. The syntax is:

SELECT column-list FROM table1 JOIN table2 USING (common-column)

To see the JOIN USING query in action, let’s perform a join of the INVOICE and LINE tables by writing:

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
FROM INVOICE JOIN LINE USING (INV_NUMBER) JOIN PRODUCT USING (P_CODE);

The SQL statement produces the results shown in Figure 8.8.

FIGURE
8.8

JOIN USING results

C6545_08 8/15/2007 16:14:50 Page 308

308 C H A P T E R 8

As was the case with the NATURAL JOIN command, the JOIN USING operand does not require table qualifiers. As
a matter of fact, Oracle will return an error if you specify the table name in the USING clause.

8.2.4 JOIN ON Clause

The previous two join styles used common attribute names in the joining tables. Another way to express a join when
the tables have no common attribute names is to use the JOIN ON operand. That query will return only the rows that
meet the indicated join condition. The join condition will typically include an equality comparison expression of two
columns. (The columns may or may not share the same name but, obviously, must have comparable data types.) The
syntax is:

SELECT column-list FROM table1 JOIN table2 ON join-condition

The following example performs a join of the INVOICE and LINE tables, using the ON clause. The result is shown in
Figure 8.9.

SELECT INVOICE.INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
FROM INVOICE JOIN LINE ON INVOICE.INV_NUMBER = LINE.INV_NUMBER

JOIN PRODUCT ON LINE.P_CODE = PRODUCT.P_CODE;

Note that unlike the NATURAL JOIN and the JOIN USING operands, the JOIN ON clause requires a table qualifier
for the common attributes. If you do not specify the table qualifier, you will get a “column ambiguously defined” error
message.

FIGURE
8.9

JOIN ON results

C6545_08 8/15/2007 16:14:50 Page 309

309A D V A N C E D S Q L

Keep in mind that the JOIN ON syntax lets you perform a join even when the tables do not share a common
attribute name. For example, to generate a list of all employees with the managers’ names, you can use the following
(recursive) query:

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME
FROM EMP E JOIN EMP M ON E.EMP_MGR = M.EMP_NUM
ORDER BY E.EMP_MGR;

8.2.5 Outer Joins

An outer join returns not only the rows matching the join condition (that is, rows with matching values in the common
columns), but also the rows with unmatched values. The ANSI standard defines three types of outer joins: left, right,
and full. The left and right designations reflect the order in which the tables are processed by the DBMS. Remember
that join operations take place two tables at a time. The first table named in the FROM clause will be the left side, and
the second table named will be the right side. If three or more tables are being joined, the result of joining the first two
tables becomes the left side, and the third table becomes the right side.

The left outer join returns not only the rows matching the join condition (that is, rows with matching values in the
common column), but also the rows in the left side table with unmatched values in the right side table. The syntax is:

SELECT column-list
FROM table1 LEFT [OUTER] JOIN table2 ON join-condition

For example, the following query lists the product code, vendor code, and vendor name for all products and includes
those vendors with no matching products:

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR LEFT JOIN PRODUCT ON VENDOR.V_CODE = PRODUCT.V_CODE;

The preceding SQL code and its results are shown in Figure 8.10.

The right outer join returns not only the rows matching the join condition (that is, rows with matching values in the
common column), but also the rows in the right side table with unmatched values in the left side table. The syntax is:

SELECT column-list
FROM table1 RIGHT [OUTER] JOIN table2 ON join-condition

For example, the following query lists the product code, vendor code, and vendor name for all products and also
includes those products that do not have a matching vendor code:

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR RIGHT JOIN PRODUCT ON VENDOR.V_CODE = PRODUCT.V_CODE;

C6545_08 8/15/2007 16:14:50 Page 310

310 C H A P T E R 8

The SQL code and its output are shown in Figure 8.11.

The full outer join returns not only the rows matching the join condition (that is, rows with matching values in the
common column), but also all of the rows with unmatched values in either side table. The syntax is:

SELECT column-list
FROM table1 FULL [OUTER] JOIN table2 ON join-condition

For example, the following query lists the product code, vendor code, and vendor name for all products and includes
all product rows (products without matching vendors) as well as all vendor rows (vendors without matching products).

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR FULL JOIN PRODUCT ON VENDOR.V_CODE = PRODUCT.V_CODE;

The SQL code and its results are shown in Figure 8.12.

FIGURE
8.10

LEFT JOIN results

C6545_08 8/15/2007 16:14:51 Page 311

311A D V A N C E D S Q L

FIGURE
8.11

RIGHT JOIN results

FIGURE
8.12

FULL JOIN results

C6545_08 8/15/2007 16:14:51 Page 312

312 C H A P T E R 8

8.3 SUBQUERIES AND CORRELATED QUERIES

The use of joins in a relational database allows you to get information from two or more tables. For example, the
following query allows you to get the customers’ data with their respective invoices by joining the CUSTOMER and
INVOICE tables.

SELECT INV_NUMBER, INVOICE.CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER, INVOICE
WHERE CUSTOMER.CUS_CODE = INVOICE.CUS_CODE;

In the previous query, the data from both tables (CUSTOMER and INVOICE) are processed at once, matching rows
with shared CUS_CODE values.

However, it is often necessary to process data based on other processed data. Suppose, for example, you want to
generate a list of vendors who provide products. (Recall that not all vendors in the VENDOR table have provided
products—some of them are only potential vendors.) In Chapter 7, you learned that you could generate such a list by
writing the following query:

SELECT V_CODE, V_NAME FROM VENDOR
WHERE V_CODE NOT IN (SELECT V_CODE FROM PRODUCT);

Similarly, to generate a list of all products with a price greater than or equal to the average product price, you can write
the following query:

SELECT P_CODE, P_PRICE FROM PRODUCT
WHERE P_PRICE >= (SELECT AVG(P_PRICE) FROM PRODUCT);

In both of those cases, you needed to get information that was not previously known:

� What vendors provide products?

� What is the average price of all products?

In both cases, you used a subquery to generate the required information that could then be used as input for the
originating query.

You learned how to use subqueries in Chapter 7; let’s review their basic characteristics:

� A subquery is a query (SELECT statement) inside a query.

� A subquery is normally expressed inside parentheses.

� The first query in the SQL statement is known as the outer query.

� The query inside the SQL statement is known as the inner query.

� The inner query is executed first.

� The output of an inner query is used as the input for the outer query.

� The entire SQL statement is sometimes referred to as a nested query.

In this section, you learn more about the practical use of subqueries. You already know that a subquery is based on the
use of the SELECT statement to return one or more values to another query. But subqueries have a wide range of uses.
For example, you can use a subquery within an SQL data manipulation language (DML) statement (such as INSERT,
UPDATE, or DELETE) where a value or a list of values (such as multiple vendor codes or a table) is expected. Table 8.2
uses simple examples to summarize the use of SELECT subqueries in DML statements.

C6545_08 9/7/2007 9:2:57 Page 313

313A D V A N C E D S Q L

TABLE
8.2

SELECT Subquery Examples

SELECT SUBQUERY EXAMPLES EXPLANATION
INSERT INTO PRODUCT

SELECT * FROM P;
Inserts all rows from Table P into the PRODUCT table.
Both tables must have the same attributes. The sub-
query returns all rows from Table P.

UPDATE PRODUCT
SET P_PRICE = (SELECT AVG(P_PRICE)

FROM PRODUCT)
WHERE V_CODE IN (SELECT V_CODE

FROM VENDOR
WHERE V_AREACODE = '615')

Updates the product price to the average product price,
but only for the products that are provided by vendors
who have an area code equal to 615. The first subquery
returns the average price; the second subquery returns
the list of vendors with an area code equal to 615.

DELETE FROM PRODUCT
WHERE V_CODE IN (SELECT V_CODE

FROM VENDOR
WHERE V_AREACODE = '615')

Deletes the PRODUCT table rows that are provided by
vendors with area code equal to 615. The subquery
returns the list of vendors codes with an area code
equal to 615.

Using the examples shown in Table 8.2, note that the subquery is always at the right side of a comparison or assigning
expression. Also, a subquery can return one value or multiple values. To be precise, the subquery can return:

� One single value (one column and one row). This subquery is used anywhere a single value is expected, as
in the right side of a comparison expression (such as in the preceding UPDATE example when you assign the
average price to the product’s price). Obviously, when you assign a value to an attribute, that value is a single
value, not a list of values. Therefore, the subquery must return only one value (one column, one row). If the
query returns multiple values, the DBMS will generate an error.

� A list of values (one column and multiple rows). This type of subquery is used anywhere a list of values is
expected, such as when using the IN clause (that is, when comparing the vendor code to a list of vendors).
Again, in this case, there is only one column of data with multiple value instances. This type of subquery is used
frequently in combination with the IN operator in a WHERE conditional expression.

� A virtual table (multicolumn, multirow set of values). This type of subquery can be used anywhere a table
is expected, such as when using the FROM clause. You will see this type of query later in this chapter.

It’s important to note that a subquery can return no values at all; it is a NULL. In such cases, the output of the outer
query might result in an error or a null empty set, depending where the subquery is used (in a comparison, an
expression, or a table set).

In the following sections, you will learn how to write subqueries within the SELECT statement to retrieve data from
the database.

8.3.1 WHERE Subqueries

The most common type of subquery uses an inner SELECT subquery on the right side of a WHERE comparison
expression. For example, to find all products with a price greater than or equal to the average product price, you write
the following query:

SELECT P_CODE, P_PRICE FROM PRODUCT
WHERE P_PRICE >= (SELECT AVG(P_PRICE) FROM PRODUCT);

The output of the preceding query is shown in Figure 8.13. Note that this type of query, when used in a >, <, =, >=,
or <= conditional expression, requires a subquery that returns only one single value (one column, one row). The value
generated by the subquery must be of a “comparable” data type; if the attribute to the left of the comparison symbol
is a character type, the subquery must return a character string. Also, if the query returns more than a single value,
the DBMS will generate an error.

C6545_08 9/13/2007 15:28:9 Page 314

314 C H A P T E R 8

Subqueries can also be used in combination with joins. For example, the following query lists all of the customers who
ordered the product “Claw hammer”:

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)

WHERE P_CODE = (SELECT P_CODE FROM PRODUCT WHERE P_DESCRIPT = ‘Claw hammer’);

The result of that query is also shown in Figure 8.13.

In the preceding example, the inner query finds the P_CODE for the product “Claw hammer.” The P_CODE is then
used to restrict the selected rows to only those where the P_CODE in the LINE table matches the P_CODE for “Claw
hammer.” Note that the previous query could have been written this way:

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)

WHERE P_DESCRIPT = ‘Claw hammer’;

But what happens if the original query encounters the “Claw hammer” string in more than one product description?
You get an error message. To compare one value to a list of values, you must use an IN operand, as shown in the next
section.

8.3.2 IN Subqueries

What would you do if you wanted to find all customers who purchased a “hammer” or any kind of saw or saw blade?
Note that the product table has two different types of hammers: “Claw hammer” and “Sledge hammer.” Also note that
there are multiple occurrences of products that contain “saw” in their product descriptions. There are saw blades,
jigsaws, and so on. In such cases, you need to compare the P_CODE not to one product code (single value), but to

FIGURE
8.13

WHERE subquery example

C6545_08 8/15/2007 16:14:52 Page 315

315A D V A N C E D S Q L

a list of product code values. When you want to compare a single attribute to a list of values, you use the IN operator.
When the P_CODE values are not known beforehand but they can be derived using a query, you must use an IN
subquery. The following example lists all customers who have purchased hammers, saws, or saw blades.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)

WHERE P_CODE IN (SELECT P_CODE FROM PRODUCT
WHERE P_DESCRIPT LIKE '%hammer%'
OR P_DESCRIPT LIKE '%saw%');

The result of that query is shown in Figure 8.14.

8.3.3 HAVING Subqueries

Just as you can use subqueries with the WHERE clause, you can use a subquery with a HAVING clause. Remember
that the HAVING clause is used to restrict the output of a GROUP BY query by applying a conditional criteria to the
grouped rows. For example, to list all products with the total quantity sold greater than the average quantity sold, you
would write the following query:

SELECT P_CODE, SUM(LINE_UNITS)
FROM LINE
GROUP BY P_CODE
HAVING SUM(LINE_UNITS) > (SELECT AVG(LINE_UNITS) FROM LINE);

The result of that query is shown in Figure 8.15.

FIGURE
8.14

IN subquery example

C6545_08 8/15/2007 16:14:53 Page 316

316 C H A P T E R 8

8.3.4 Multirow Subquery Operators: ANY and ALL

So far, you have learned that you must use an IN subquery when you need to compare a value to a list of values. But
the IN subquery uses an equality operator; that is, it selects only those rows that match (are equal to) at least one of
the values in the list. What happens if you need to do an inequality comparison (> or <) of one value to a list of values?

For example, suppose you want to know what products have a product cost that is greater than all individual product
costs for products provided by vendors from Florida.

SELECT P_CODE, P_QOH * P_PRICE
FROM PRODUCT
WHERE P_QOH * P_PRICE > ALL (SELECT P_QOH * P_PRICE

FROM PRODUCT
WHERE V_CODE IN (SELECT V_CODE

FROM VENDOR
WHERE V_STATE = ‘FL’));

The result of that query is shown in Figure 8.16.

FIGURE
8.15

HAVING subquery example

FIGURE
8.16

Multirow subquery operator example

C6545_08 8/15/2007 16:14:53 Page 317

317A D V A N C E D S Q L

It’s important to note the following points about the query and its output in Figure 8.16:

� The query is a typical example of a nested query.

� The query has one outer SELECT statement with a SELECT subquery (call it sqA) containing a second SELECT
subquery (call it sqB).

� The last SELECT subquery (sqB) is executed first and returns a list of all vendors from Florida.

� The first SELECT subquery (sqA) uses the output of the SELECT subquery (sqB). The sqA subquery returns the
list of product costs for all products provided by vendors from Florida.

� The use of the ALL operator allows you to compare a single value (P_QOH * P_PRICE) with a list of values
returned by the first subquery (sqA) using a comparison operator other than equals.

� For a row to appear in the result set, it has to meet the criterion P_QOH * P_PRICE > ALL, of the individual
values returned by the subquery sqA. The values returned by sqA are a list of product costs. In fact, “greater
than ALL” is equivalent to “greater than the highest product cost of the list.” In the same way, a condition of
“less than ALL” is equivalent to “less than the lowest product cost of the list.”

Another powerful operator is the ANY multirow operator (near cousin of the ALL multirow operator). The ANY
operator allows you to compare a single value to a list of values, selecting only the rows for which the inventory cost
is greater than any value of the list or less than any value of the list. You could use the equal to ANY operator, which
would be the equivalent of the IN operator.

8.3.5 FROM Subqueries

So far you have seen how the SELECT statement uses subqueries within WHERE, HAVING, and IN statements and
how the ANY and ALL operators are used for multirow subqueries. In all of those cases, the subquery was part of a
conditional expression and it always appeared at the right side of the expression. In this section, you will learn how
to use subqueries in the FROM clause.

As you already know, the FROM clause specifies the table(s) from which the data will be drawn. Because the output
of a SELECT statement is another table (or more precisely a “virtual” table), you could use a SELECT subquery in the
FROM clause. For example, assume that you want to know all customers who have purchased products 13-Q2/P2
and 23109-HB. All product purchases are stored in the LINE table. It is easy to find out who purchased any given
product by searching the P_CODE attribute in the LINE table. But in this case, you want to know all customers who
purchased both products, not just one. You could write the following query:

SELECT DISTINCT CUSTOMER.CUS_CODE, CUSTOMER.CUS_LNAME
FROM CUSTOMER,

(SELECT INVOICE.CUS_CODE FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = '13-Q2/P2') CP1,
(SELECT INVOICE.CUS_CODE FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = '23109-HB') CP2

WHERE CUSTOMER.CUS_CODE = CP1.CUS_CODE AND CP1.CUS_CODE = CP2.CUS_CODE;

The result of that query is shown in Figure 8.17.

Note in Figure 8.17 that the first subquery returns all customers who purchased product 13-Q2/P2, while the second
subquery returns all customers who purchased product 23109-HB. So in this FROM subquery, you are joining the
CUSTOMER table with two virtual tables. The join condition selects only the rows with matching CUS_CODE values
in each table (base or virtual).

C6545_08 9/7/2007 9:12:12 Page 318

318 C H A P T E R 8

In the previous chapter, you learned that a view is also a virtual table; therefore, you can use a view name anywhere
a table is expected. So in this example, you could create two views: one listing all customers who purchased
product 13-Q2/P2 and another listing all customers who purchased product 23109-HB. Doing so, you would write
the query as:

CREATE VIEW CP1 AS
SELECT INVOICE.CUS_CODE FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = '13-Q2/P2';

CREATE VIEW CP2 AS
SELECT INVOICE.CUS_CODE FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = '23109-HB';

SELECT DISTINCT CUS_CODE, CUS_LNAME
FROM CUSTOMER NATURAL JOIN CP1 NATURAL JOIN CP2;

You might speculate that the above query could also be written using the following syntax:

SELECT CUS_CODE, CUS_LNAME
FROM CUSTOMER NATURAL JOIN INVOICE NATURAL JOIN LINE
WHERE P_CODE = '13-Q2/P2' AND P_CODE = '23109-HB';

But if you examine that query carefully, you will note that a P_CODE cannot be equal to two different values at the
same time. Therefore, the query will not return any rows.

8.3.6 Attribute List Subqueries

The SELECT statement uses the attribute list to indicate what columns to project in the resulting set. Those columns
can be attributes of base tables or computed attributes or the result of an aggregate function. The attribute list can also
include a subquery expression, also known as an inline subquery. A subquery in the attribute list must return one single
value; otherwise, an error code is raised. For example, a simple inline query can be used to list the difference between
each product’s price and the average product price:

SELECT P_CODE, P_PRICE, (SELECT AVG(P_PRICE) FROM PRODUCT) AS AVGPRICE,
P_PRICE – (SELECT AVG(P_PRICE) FROM PRODUCT) AS DIFF

FROM PRODUCT;

FIGURE
8.17

FROM subquery example

C6545_08 9/7/2007 9:13:24 Page 319

319A D V A N C E D S Q L

Figure 8.18 shows the result of that query.

In Figure 8.18, note that the inline query output returns one single value (the average product’s price) and that the
value is the same in every row. Note also that the query used the full expression instead of the column aliases when
computing the difference. In fact, if you try to use the alias in the difference expression, you will get an error message.
The column alias cannot be used in computations in the attribute list when the alias is defined in the same attribute
list. That DBMS requirement is due to the way the DBMS parses and executes queries.

Another example will help you understand the use of attribute list subqueries and column aliases. For example, suppose
you want to know the product code, the total sales by product, and the contribution by employee of each product’s
sales. To get the sales by product, you need to use only the LINE table. To compute the contribution by employee, you
need to know the number of employees (from the EMPLOYEE table). As you study the tables’ structures, you can see
that the LINE and EMPLOYEE tables do not share a common attribute. In fact, you don’t need a common attribute.
You need to know only the total number of employees, not the total employees related to each product. So to answer
the query, you would write the following code:

SELECT P_CODE, SUM(LINE_UNITS * LINE_PRICE) AS SALES,
(SELECT COUNT(*) FROM EMPLOYEE) AS ECOUNT,
SUM(LINE_UNITS * LINE_PRICE)/(SELECT COUNT(*) FROM EMPLOYEE) AS CONTRIB

FROM LINE
GROUP BY P_CODE;

The result of that query is shown in Figure 8.19.

As you can see in Figure 8.19, the number of employees remains the same for each row in the result set. The use of
that type of subquery is limited to certain instances where you need to include data from other tables that are not
directly related to a main table or tables in the query. The value will remain the same for each row, like a constant in
a programming language. (You will learn another use of inline subqueries in Section 8.3.7, Correlated Subqueries).

FIGURE
8.18

Inline subquery example

C6545_08 8/15/2007 16:14:54 Page 320

320 C H A P T E R 8

Note that you cannot use an alias in the attribute list to write the expression that computes the contribution per
employee.

Another way to write the same query by using column aliases requires the use of a subquery in the FROM clause, as
follows:

SELECT P_CODE, SALES, ECOUNT, SALES/ECOUNT AS CONTRIB
FROM (SELECT P_CODE, SUM(LINE_UNITS * LINE_PRICE) AS SALES,

(SELECT COUNT(*) FROM EMPLOYEE) AS ECOUNT
FROM LINE
GROUP BY P_CODE);

In that case, you are actually using two subqueries. The subquery in the FROM clause executes first and returns a virtual
table with three columns: P_CODE, SALES, and ECOUNT. The FROM subquery contains an inline subquery that
returns the number of employees as ECOUNT. Because the outer query receives the output of the inner query, you
can now refer to the columns in the outer subquery using the column aliases.

8.3.7 Correlated Subqueries

Until now, all subqueries you have learned execute independently. That is, each subquery in a command sequence
executes in a serial fashion, one after another. The inner subquery executes first; its output is used by the outer query,
which then executes until the last outer query executes (the first SQL statement in the code).

In contrast, a correlated subquery is a subquery that executes once for each row in the outer query. That process
is similar to the typical nested loop in a programming language. For example:

FOR X = 1 TO 2
FOR Y = 1 TO 3

PRINT “X = “X, “Y = “Y
END

END

FIGURE
8.19

Another example of an inline subquery

C6545_08 8/15/2007 16:14:54 Page 321

321A D V A N C E D S Q L

will yield the output

X = 1 Y = 1
X = 1 Y = 2
X = 1 Y = 3
X = 2 Y = 1
X = 2 Y = 2
X = 2 Y = 3

Note that the outer loop X = 1 TO 2 begins the process by setting X = 1; then the inner loop Y = 1 TO 3 is completed
for each X outer loop value. The relational DBMS uses the same sequence to produce correlated subquery results:

1. It initiates the outer query.

2. For each row of the outer query result set, it executes the inner query by passing the outer row to the
inner query.

That process is the opposite of the subqueries you have seen so far. The query is called a correlated subquery because
the inner query is related to the outer query by the fact that the inner query references a column of the outer subquery.

To see the correlated subquery in action, suppose you want to know all product sales in which the units sold value is
greater than the average units sold value for that product (as opposed to the average for all products). In that case,
the following procedure must be completed:

1. Compute the average-units-sold value for a product.

2. Compare the average computed in Step 1 to the units sold in each sale row; then select only the rows in which
the number of units sold is greater.

The following correlated query completes the preceding two-step process:

SELECT INV_NUMBER, P_CODE, LINE_UNITS
FROM LINE LS
WHERE LS.LINE_UNITS > (SELECT AVG(LINE_UNITS)

FROM LINE LA
WHERE LA.P_CODE = LS.P_CODE);

The first example in Figure 8.20 shows the result of that query.

In the top query and its result in Figure 8.20, note that the LINE table is used more than once; so you must use table
aliases. In that case, the inner query computes the average units sold of the product that matches the P_CODE of the
outer query P_CODE. That is, the inner query runs once using the first product code found in the (outer) LINE table
and returns the average sale for that product. When the number of units sold in that (outer) LINE row is greater than
the average computed, the row is added to the output. Then the inner query runs again, this time using the second
product code found in the (outer) LINE table. The process repeats until the inner query has run for all rows in the (outer)
LINE table. In that case, the inner query will be repeated as many times as there are rows in the outer query.

To verify the results and to provide an example of how you can combine subqueries, you can add a correlated inline
subquery to the previous query. That correlated inline subquery will show the average units sold column for each
product. (See the second query and its results in Figure 8.20.) As you can see, the new query contains a correlated
inline subquery that computes the average units sold for each product. You not only get an answer, but you also can
verify that the answer is correct.

C6545_08 8/15/2007 16:14:55 Page 322

322 C H A P T E R 8

Correlated subqueries can also be used with the EXISTS special operator. For example, suppose you want to know all
customers who have placed an order lately. In that case, you could use a correlated subquery like the first one shown
in Figure 8.21:

SELECT CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER
WHERE EXISTS (SELECT CUS_CODE FROM INVOICE

WHERE INVOICE.CUS_CODE = CUSTOMER.CUS_CODE);

The second example of an EXISTS correlated subquery in Figure 8.21 will help you understand how to use correlated
queries. For example, suppose you want to know what vendors you must contact to start ordering products that are
approaching the minimum quantity-on-hand value. In particular, you want to know the vendor code and name of
vendors for products having a quantity on hand that is less than double the minimum quantity. The query that answers
that question is as follows:

SELECT V_CODE, V_NAME
FROM VENDOR
WHERE EXISTS (SELECT *

FROM PRODUCT
WHERE P_QOH < P_MIN * 2
AND VENDOR.V_CODE = PRODUCT.V_CODE);

FIGURE
8.20

Correlated subquery examples

C6545_08 9/13/2007 15:29:43 Page 323

323A D V A N C E D S Q L

In the second query in Figure 8.21, note that:

1. The inner correlated subquery runs using the first vendor.

2. If any products match the condition (quantity on hand is less than double the minimum quantity), the vendor
code and name are listed in the output.

3. The correlated subquery runs using the second vendor, and the process repeats itself until all vendors are used.

8.4 SQL FUNCTIONS

The data in databases are the basis of critical business information. Generating information from data often requires
many data manipulations. Sometimes such data manipulation involves the decomposition of data elements. For
example, an employee’s date of birth can be subdivided into a day, a month, and a year. A product manufacturing code
(for example, SE-05-2-09-1234-1-3/12/04-19:26:48) can be designed to record the manufacturing region, plant,
shift, production line, employee number, date, and time. For years, conventional programming languages have had
special functions that enabled programmers to perform data transformations like those data decompositions. If you
know a modern programming language, it’s very likely that the SQL functions in this section will look familiar.

SQL functions are very useful tools. You’ll need to use functions when you want to list all employees ordered by year
of birth or when your marketing department wants you to generate a list of all customers ordered by zip code and the
first three digits of their telephone numbers. In both of those cases, you’ll need to use data elements that are not
present as such in the database; instead you’ll need an SQL function that can be derived from an existing attribute.
Functions always use a numerical, date, or string value. The value may be part of the command itself (a constant or
literal) or it may be an attribute located in a table. Therefore, a function may appear anywhere in an SQL statement
where a value or an attribute can be used.

FIGURE
8.21

EXISTS correlated subquery examples

C6545_08 8/15/2007 16:14:55 Page 324

324 C H A P T E R 8

There are many types of SQL functions, such as arithmetic, trigonometric, string, date, and time functions. This section
will not explain all of those types of functions in detail, but it will give you a brief overview of the most useful ones.

8.4.1 Date and Time Functions

All SQL-standard DBMSs support date and time functions. All date functions take one parameter (of a date or
character data type) and return a value (character, numeric, or date type). Unfortunately, date/time data types are
implemented differently by different DBMS vendors. The problem occurs because the ANSI SQL standard defines date
data types, but it does not say how those data types are to be stored. Instead, it lets the vendor deal with that issue.

Because date/time functions differ from vendor to vendor, this section will cover basic date/time functions for MS
Access/SQL Server and for Oracle. Table 8.3 shows a list of selected MS Access/SQL Server date/time functions.

TABLE
8.3

Selected MS Access/SQL Server Date/Time Functions

FUNCTION EXAMPLE(S)
YEAR
Returns a four-digit year
Syntax:
YEAR(date_value)

Lists all employees born in 1966:
SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,

YEAR(EMP_DOB) AS YEAR
FROM EMPLOYEE
WHERE YEAR(EMP_DOB) = 1966;

MONTH
Returns a two-digit month code
Syntax:
MONTH(date_value)

Lists all employees born in November:
SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,

MONTH(EMP_DOB) AS MONTH
FROM EMPLOYEE
WHERE MONTH(EMP_DOB) = 11;

DAY
Returns the number of the day
Syntax:
DAY(date_value)

Lists all employees born on the 14th day of the month:
SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,

DAY(EMP_DOB) AS DAY
FROM EMPLOYEE
WHERE DAY(EMP_DOB) = 14;

DATE() − MS Access
GETDATE() − SQL Server
Returns today’s date

Lists how many days are left until Christmas:
SELECT #25-Dec-2008# − DATE();
Note two features:

• There is no FROM clause, which is acceptable in MS Access.
• The Christmas date is enclosed in # signs because you are doing date

arithmetic.
In MS SQL Server:
Use GETDATE() to get the current system date. To compute the difference
between dates, use the DATEDIFF function (see below).

Note

Although the main DBMS vendors support the SQL functions covered here, the syntax or degree of support will
probably differ. In fact, DBMS vendors invariably add their own functions to products to lure new customers.
The functions covered in this section represent just a small portion of functions supported by your DBMS. Read
your DBMS SQL reference manual for a complete list of available functions.

C6545_08 9/7/2007 9:19:59 Page 325

325A D V A N C E D S Q L

TABLE
8.3

Selected MS Access/SQL Server Date/Time Functions (continued)

FUNCTION EXAMPLE(S)
DATEADD − SQL Server
Adds a number of selected time
periods to a date
Syntax:
DATEADD(datepart,
number, date)

Adds a number of dateparts to a given date. Dateparts can be minutes, hours,
days, weeks, months, quarters, or years. For example:
SELECT DATEADD(day,90, P_INDATE) AS DueDate
FROM PRODUCT;
The above example adds 90 days to P_INDATE.
In MS Access use:
SELECT P_INDATE+90 AS DueDate
FROM PRODUCT;

DATEDIFF − SQL Server
Subtracts two dates
Syntax:
DATEDIFF(datepart, startdate,
enddate)

Returns the difference between two dates expressed in a selected datepart. For
example:
SELECT DATEDIFF(day, P_INDATE, GETDATE()) AS DaysAgo
FROM PRODUCT;
In MS Access use:
SELECT DATE() - P_INDATE AS DaysAgo
FROM PRODUCT;

Table 8.4 shows the equivalent date/time functions used in Oracle. Note that Oracle uses the same function
(TO_CHAR) to extract the various parts of a date. Also, another function (TO_DATE) is used to convert character
strings to a valid Oracle date format that can be used in date arithmetic.

TABLE
8.4

Selected Oracle Date/Time Functions

FUNCTION EXAMPLE(S)
TO_CHAR
Returns a character string or a
formatted string from a date
value
Syntax:
TO_CHAR(date_value, fmt)
fmt = format used; can be:
MONTH: name of month
MON: three-letter month name
MM: two-digit month name
D: number for day of week
DD: number day of month
DAY: name of day of week
YYYY: four-digit year value
YY: two-digit year value

Lists all employees born in 1982:
SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,

TO_CHAR(EMP_DOB, 'YYYY') AS YEAR
FROM EMPLOYEE
WHERE TO_CHAR(EMP_DOB, 'YYYY') = '1982';
Lists all employees born in November:
SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,

TO_CHAR(EMP_DOB, 'MM') AS MONTH
FROM EMPLOYEE
WHERE TO_CHAR(EMP_DOB, 'MM') = '11';
Lists all employees born on the 14th day of the month:
SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,

TO_CHAR(EMP_DOB, 'DD') AS DAY
FROM EMPLOYEE
WHERE TO_CHAR(EMP_DOB, 'DD') = '14';

C6545_08 9/13/2007 15:30:19 Page 326

326 C H A P T E R 8

TABLE
8.4

Selected Oracle Date/Time Functions (continued)

FUNCTION EXAMPLE(S)
TO_DATE
Returns a date value using a
character string and a date for-
mat mask; also used to translate
a date between formats
Syntax:
TO_DATE(char_value, fmt)
fmt = format used; can be:
MONTH: name of month
MON: three-letter month name
MM: two-digit month name
D: number for day of week
DD: number day of month
DAY: name of day of week
YYYY: four-digit year value
YY: two-digit year value

Lists the approximate age of the employees on the company’s tenth anniversary
date (11/25/2008):
SELECT EMP_LNAME, EMP_FNAME,

EMP_DOB, '11/25/2008' AS ANIV_DATE,
(TO_DATE('11/25/1998','MM/DD/YYYY') - EMP_DOB)/365 AS YEARS

FROM EMPLOYEE
ORDER BY YEARS;
Note the following:

• '11/25/2008' is a text string, not a date.
• The TO_DATE function translates the text string to a valid Oracle date used

in date arithmetic.
How many days between Thanksgiving and Christmas 2008?
SELECT TO_DATE('2008/12/25','YYYY/MM/DD') −

TO_DATE('NOVEMBER 27, 2008','MONTH DD, YYYY')
FROM DUAL;
Note the following:

• The TO_DATE function translates the text string to a valid Oracle date used
in date arithmetic.

• DUAL is Oracle’s pseudo table used only for cases where a table is not
really needed.

SYSDATE
Returns today’s date

Lists how many days are left until Christmas:
SELECT TO_DATE('25-Dec-2008','DD-MON-YYYY') SYSDATE
FROM DUAL;
Notice two things:

• DUAL is Oracle’s pseudo table used only for cases where a table is not
really needed.

• The Christmas date is enclosed in a TO_DATE function to translate the
date to a valid date format.

ADD_MONTHS
Adds a number of months to a
date; useful for adding months
or years to a date
Syntax:
ADD_MONTHS(date_value, n)
n = number of months

Lists all products with their expiration date (two years from the purchase date):
SELECT P_CODE, P_INDATE, ADD_MONTHS(P_INDATE,24)
FROM PRODUCT
ORDER BY ADD_MONTHS(P_INDATE,24);

LAST_DAY
Returns the date of the last day
of the month given in a date
Syntax:
LAST_DAY(date_value)

Lists all employees who were hired within the last seven days of a month:
SELECT EMP_LNAME, EMP_FNAME, EMP_HIRE_DATE
FROM EMPLOYEE
WHERE EMP_HIRE_DATE >=LAST_DAY(EMP_HIRE_DATE)-7;

8.4.2 Numeric Functions

Numeric functions can be grouped in many different ways, such as algebraic, trigonometric, and logarithmic. In this
section, you will learn two very useful functions. Do not confuse the SQL aggregate functions you saw in the previous
chapter with the numeric functions in this section. The first group operates over a set of values (multiple rows—hence,
the name aggregate functions), while the numeric functions covered here operate over a single row. Numeric
functions take one numeric parameter and return one value. Table 8.5 shows a selected group of numeric functions
available.

C6545_08 9/7/2007 9:26:18 Page 327

327A D V A N C E D S Q L

TABLE
8.5

Selected Numeric Functions

FUNCTION EXAMPLE(S)
ABS
Returns the absolute value of a number
Syntax:
ABS(numeric_value)

In Oracle use:
SELECT 1.95, -1.93, ABS(1.95), ABS(-1.93)
FROM DUAL;
In MS Access/SQL Server use:
SELECT 1.95, -1.93, ABS(1.95), ABS(-1.93);

ROUND
Rounds a value to a specified precision
(number of digits)
Syntax:
ROUND(numeric_value, p)
p = precision

Lists the product prices rounded to one and zero decimal places:
SELECT P_CODE, P_PRICE,

ROUND(P_PRICE,1) AS PRICE1,
ROUND(P_PRICE,0) AS PRICE0

FROM PRODUCT;

CEIL/CEILING/FLOOR
Returns the smallest integer greater than or
equal to a number or returns the largest
integer equal to or less than a number,
respectively
Syntax:
CEIL(numeric_value) − Oracle
CEILING(numeric_value) − SQL Server
FLOOR(numeric_value)

Lists the product price, smallest integer greater than or equal to the
product price, and the largest integer equal to or less than the
product price.
In Oracle use:
SELECT P_PRICE, CEIL(P_PRICE), FLOOR(P_PRICE)
FROM PRODUCT;
In SQL Server use:
SELECT P_PRICE, CEILING(P_PRICE), FLOOR(P_PRICE)
FROM PRODUCT;
MS Access does not support these functions.

8.4.3 String Functions

String manipulations are among the most-used functions in programming. If you have ever created a report using any
programming language, you know the importance of properly concatenating strings of characters, printing names in
uppercase, or knowing the length of a given attribute. Table 8.6 shows a subset of useful string manipulation functions.

C6545_08 9/7/2007 9:27:10 Page 328

328 C H A P T E R 8

TABLE
8.6

Selected String Functions

FUNCTION EXAMPLE(S)
Concatenation
|| − Oracle
+ − MS Access/SQL Server
Concatenates data from two different
character columns and returns a
single column
Syntax:
strg_value || strg_value
strg_value + strg_value

Lists all employee names (concatenated).
In Oracle use:
SELECT EMP_LNAME || ', ' || EMP_FNAME AS NAME
FROM EMPLOYEE;
In MS Access / SQL Server use:
SELECT EMP_LNAME + ', ' + EMP_FNAME AS NAME
FROM EMPLOYEE;

UPPER/LOWER
Returns a string in all capital or all
lowercase letters
Syntax:
UPPER(strg_value)
LOWER(strg_value)

Lists all employee names in all capital letters (concatenated).
In Oracle use:
SELECT UPPER(EMP_LNAME) || ', ' || UPPER(EMP_FNAME) AS NAME
FROM EMPLOYEE;
In SQL Server use:
SELECT UPPER(EMP_LNAME) + ', ' + UPPER(EMP_FNAME) AS NAME
FROM EMPLOYEE;
Lists all employee names in all lowercase letters (concatenated).
In Oracle use:
SELECT LOWER(EMP_LNAME) || ', ' || LOWER(EMP_FNAME) AS NAME
FROM EMPLOYEE;
In SQL Server use:
SELECT LOWER(EMP_LNAME) + ', ' + LOWER(EMP_FNAME) AS NAME
FROM EMPLOYEE;
Not supported by MS Access.

SUBSTRING
Returns a substring or part of a given
string parameter
Syntax:
SUBSTR(strg_value, p, l) − Oracle
SUBSTRING(strg_value,p,l) − SQL
Server
p = start position
l = length of characters

Lists the first three characters of all employee phone numbers.
In Oracle use:
SELECT EMP_PHONE, SUBSTR(EMP_PHONE,1,3) AS PREFIX
FROM EMPLOYEE;
In SQL Server use:
SELECT EMP_PHONE, SUBSTRING(EMP_PHONE,1,3) AS PREFIX
FROM EMPLOYEE;
Not supported by MS Access.

LENGTH
Returns the number of characters in
a string value
Syntax:
LENGTH(strg_value) − Oracle
LEN(strg_value) − SQL Server

Lists all employee last names and the length of their names; ordered
descended by last name length.
In Oracle use:
SELECT EMP_LNAME, LENGTH(EMP_LNAME) AS NAMESIZE
FROM EMPLOYEE;
In MS Access / SQL Server use:
SELECT EMP_LNAME, LEN(EMP_LNAME) AS NAMESIZE
FROM EMPLOYEE;

C6545_08 9/7/2007 9:28:44 Page 329

329A D V A N C E D S Q L

8.4.4 Conversion Functions

Conversion functions allow you to take a value of a given data type and convert it to the equivalent value in another
data type. In Section 8.4.1, you learned about two of the basic Oracle SQL conversion functions: TO_CHAR and
TO_DATE. Note that the TO_CHAR function takes a date value and returns a character string representing a day, a
month, or a year. In the same way, the TO_DATE function takes a character string representing a date and returns
an actual date in Oracle format. SQL Server uses the CAST and CONVERT functions to convert one data type to
another. A summary of the selected functions is shown in Table 8.7.

TABLE
8.7

Selected Conversion Functions

FUNCTION EXAMPLE(S)
Numeric to Character:
TO_CHAR − Oracle
CAST − SQL Server
CONVERT − SQL Server
Returns a character string from a
numeric value.
Syntax:
Oracle: TO_CHAR(numeric_value,
fmt)
SQL Server:
CAST (numeric AS varchar(length))
CONVERT(varchar(length), numeric)

Lists all product prices, quantity on hand, percent discount, and total
inventory cost using formatted values.
In Oracle use:
SELECT P_CODE,

TO_CHAR(P_PRICE,'999.99') AS PRICE,
TO_CHAR(P_QOH,'9,999.99') AS QUANTITY,
TO_CHAR(P_DISCOUNT,'0.99') AS DISC,
TO_CHAR(P_PRICE*P_QOH,'99,999.99')
AS TOTAL_COST

FROM PRODUCT;
In SQL Server use:
SELECT P_CODE, CAST(P_PRICE AS VARCHAR(8)) AS PRICE,

CONVERT(VARCHAR(4),P_QOH) AS QUANTITY,
CAST(P_DISCOUNT AS VARCHAR(4)) AS DISC,
CAST(P_PRICE*P_QOH AS VARCHAR(10)) AS TOTAL_COST

FROM PRODUCT;
Not supported in MS Access.

Date to Character:
TO_CHAR − Oracle
CAST − SQL Server
CONVERT − SQL Server
Returns a character string or a format-
ted character string from a date value
Syntax:
Oracle: TO_CHAR(date_value, fmt)
SQL Server:
CAST (date AS varchar(length))
CONVERT(varchar(length), date)

Lists all employee dates of birth, using different date formats.
In Oracle use:
SELECT EMP_LNAME, EMP_DOB,

TO_CHAR(EMP_DOB, ‘DAY, MONTH DD, YYYY’)
AS ‘DATEOFBIRTH’

FROM EMPLOYEE;
SELECT EMP_LNAME, EMP_DOB,

TO_CHAR(EMP_DOB, ‘YYYY/MM/DD’)
AS ‘DATEOFBIRTH’

FROM EMPLOYEE;
In SQL Server use:
SELECT EMP_LNAME, EMP_DOB,

CONVERT(varchar(11),EMP_DOB) AS “DATE OF BIRTH”
FROM EMPLOYEE;
SELECT EMP_LNAME, EMP_DOB,

CAST(EMP_DOB as varchar(11)) AS “DATE OF BIRTH”
FROM EMPLOYEE;
Not supported in MS Access.

C6545_08 9/13/2007 15:35:2 Page 330

330 C H A P T E R 8

TABLE
8.7

Selected Conversion Functions (continued)

FUNCTION EXAMPLE(S)
String to Number:
TO_NUMBER
Returns a formatted number from a
character string, using a given format
Syntax:
Oracle:
TO_NUMBER(char_value, fmt)
fmt = format used; can be:
9 = displays a digit
0 = displays a leading zero
, = displays the comma
. = displays the decimal point
$ = displays the dollar sign
B = leading blank
S = leading sign
MI = trailing minus sign

Converts text strings to numeric values when importing data to a table
from another source in text format; for example, the query shown below
uses the TO_NUMBER function to convert text formatted to Oracle
default numeric values using the format masks given.
In Oracle use:
SELECT TO_NUMBER('-123.99', 'S999.99'),

TO_NUMBER('99.78-','B999.99MI')
FROM DUAL;
In SQL Server use:
SELECT CAST('-123.99' AS NUMERIC(8,2)),

CAST('-99.78' AS NUMERIC(8,2))
The SQL Server CAST function does not support the trailing sign on the
character string.
Not supported in MS Access.

CASE − SQL Server
DECODE − Oracle
Compares an attribute or expression
with a series of values and returns an
associated value or a default value if
no match is found
Syntax:
Oracle:
DECODE(e, x, y, d)
e = attribute or expression
x = value with which to compare e
y = value to return in e = x
d = default value to return if e is not
equal to x
SQL Server:
CASE When condition
THEN value1 ELSE value2 END

The following example returns the sales tax rate for specified states:
• Compares V_STATE to 'CA'; if the values match, it returns .08.
• Compares V_STATE to 'FL'; if the values match, it returns .05.
• Compares V_STATE to 'TN'; if the values match, it returns .085.

If there is no match, it returns 0.00 (the default value).
SELECT V_CODE, V_STATE,

DECODE(V_STATE,'CA',.08,'FL',.05, 'TN',.085, 0.00)
AS TAX

FROM VENDOR;
In SQL Server use:
SELECT V_CODE, V_STATE,

CASE WHEN V_STATE = 'CA' THEN .08
WHEN V_STATE = 'FL' THEN .05
WHEN V_STATE = 'TN' THEN .085

ELSE 0.00 END AS TAX
FROM VENDOR
Not supported in MS Access.

8.5 ORACLE SEQUENCES

If you use MS Access, you might be familiar with the AutoNumber data type, which you can use to define a column
in your table that will be automatically populated with unique numeric values. In fact, if you create a table in MS Access
and forget to define a primary key, MS Access will offer to create a primary key column; if you accept, you will notice
that MS Access creates a column named ID with an AutoNumber data type. After you define a column as an
AutoNumber type, every time you insert a row in the table, MS Access will automatically add a value to that column,
starting with 1 and increasing the value by 1 in every new row you add. Also, you cannot include that column in your
INSERT statements—Access will not let you edit that value at all. MS SQL Server uses the Identity column property
to serve a similar purpose. In MS SQL Server a table can have at most one column defined as an Identity column. This
column behaves similarly to an MS Access column with the AutoNumber data type.

Oracle does not support the AutoNumber data type or the Identity column property. Instead, you can use a “sequence”
to assign values to a column on a table. But an Oracle sequence is very different from the Access AutoNumber data
type and deserves close scrutiny:

� Oracle sequences are an independent object in the database. (Sequences are not a data type.)

� Oracle sequences have a name and can be used anywhere a value is expected.

C6545_08 9/13/2007 15:36:22 Page 331

331A D V A N C E D S Q L

� Oracle sequences are not tied to a table or a column.

� Oracle sequences generate a numeric value that can be assigned to any column in any table.

� The table attribute to which you assigned a value based on a sequence can be edited and modified.

� An Oracle sequence can be created and deleted anytime.

The basic syntax to create a sequence in Oracle is:

CREATE SEQUENCE name [START WITH n] [INCREMENT BY n] [CACHE | NOCACHE]

where:

� name is the name of the sequence.

� n is an integer value that can be positive or negative.

� START WITH specifies the initial sequence value. (The default value is 1.)

� INCREMENT BY determines the value by which the sequence is incremented. (The default increment value
is 1. The sequence increment can be positive or negative to enable you to create ascending or descending
sequences.)

� The CACHE or NOCACHE clause indicates whether Oracle will preallocate sequence numbers in memory.
(Oracle preallocates 20 values by default.)

For example, you could create a sequence to automatically assign values to the customer code each time a new
customer is added and create another sequence to automatically assign values to the invoice number each time a new
invoice is added. The SQL code to accomplish those tasks is:

CREATE SEQUENCE CUS_CODE_SEQ START WITH 20010 NOCACHE;
CREATE SEQUENCE INV_NUMBER_SEQ START WITH 4010 NOCACHE;

You can check all of the sequences you have created by using the following SQL command, illustrated in Figure 8.22:

SELECT * FROM USER_SEQUENCES;

FIGURE
8.22

Oracle sequence

C6545_08 8/15/2007 16:17:21 Page 332

332 C H A P T E R 8

To use sequences during data entry, you must use two special pseudo columns: NEXTVAL and CURRVAL. NEXTVAL
retrieves the next available value from a sequence, and CURRVAL retrieves the current value of a sequence. For
example, you can use the following code to enter a new customer:

INSERT INTO CUSTOMER
VALUES (CUS_CODE_SEQ.NEXTVAL, ‘Connery’, ‘Sean’, NULL, ‘615’, ‘898-2008’, 0.00);

The preceding SQL statement adds a new customer to the CUSTOMER table and assigns the value 20010 to the
CUS_CODE attribute. Let’s examine some important sequence characteristics:

� CUS_CODE_SEQ.NEXTVAL retrieves the next available value from the sequence.

� Each time you use NEXTVAL, the sequence is incremented.

� Once a sequence value is used (through NEXTVAL), it cannot be used again. If, for some reason, your SQL
statement rolls back, the sequence value does not roll back. If you issue another SQL statement (with another
NEXTVAL), the next available sequence value will be returned to the user—it will look as though the sequence
skips a number.

� You can issue an INSERT statement without using the sequence.

CURRVAL retrieves the current value of a sequence—that is, the last sequence number used, which was generated with
a NEXTVAL. You cannot use CURRVAL unless a NEXTVAL was issued previously in the same session. The main use
for CURRVAL is to enter rows in dependent tables. For example, the INVOICE and LINE tables are related in a
one-to-many relationship through the INV_NUMBER attribute. You can use the INV_NUMBER_SEQ sequence to
automatically generate invoice numbers. Then, using CURRVAL, you can get the latest INV_NUMBER used and assign
it to the related INV_NUMBER foreign key attribute in the LINE table. For example:

INSERT INTO INVOICE VALUES (INV_NUMBER_SEQ.NEXTVAL, 20010, SYSDATE);
INSERT INTO LINE VALUES (INV_NUMBER_SEQ.CURRVAL, 1,’13-Q2/P2’, 1, 14.99);
INSERT INTO LINE VALUES (INV_NUMBER_SEQ.CURRVAL, 2,’23109-HB’, 1, 9.95);
COMMIT;

The results are shown in Figure 8.23.

In the example shown in Figure 8.23, INV_NUMBER_SEQ.NEXTVAL retrieves the next available sequence number
(4010) and assigns it to the INV_NUMBER column in the INVOICE table. Also note the use of the SYSDATE attribute
to automatically insert the current date in the INV_DATE attribute. Next, the following two INSERT statements add the
products being sold to the LINE table. In this case, INV_NUMBER_SEQ.CURRVAL refers to the last-used INV_
NUMBER_SEQ sequence number (4010). In this way, the relationship between INVOICE and LINE is established
automatically. The COMMIT statement at the end of the command sequence makes the changes permanent. Of
course, you can also issue a ROLLBACK statement, in which case the rows you inserted in INVOICE and LINE tables
would be rolled back (but remember that the sequence number would not). Once you use a sequence number (with
NEXTVAL), there is no way to reuse it! This “no-reuse” characteristic is designed to guarantee that the sequence will
always generate unique values.

Remember these points when you think about sequences:

� The use of sequences is optional. You can enter the values manually.

� A sequence is not associated with a table. As in the examples in Figure 8.23, two distinct sequences were
created (one for customer code values and one for invoice number values), but you could have created just one
sequence and used it to generate unique values for both tables.

Finally, you can drop a sequence from a database with a DROP SEQUENCE command. For example, to drop the
sequences created earlier, you would type:

DROP SEQUENCE CUS_CODE_SEQ;
DROP SEQUENCE INV_NUMBER_SEQ;

C6545_08 9/7/2007 9:45:11 Page 333

333A D V A N C E D S Q L

Dropping a sequence does not delete the values you assigned to table attributes (CUS_CODE and INV_NUMBER); it
deletes only the sequence object from the database. The values you assigned to the table columns (CUS_CODE and
INV_NUMBER) remain in the database.

Because the CUSTOMER and INVOICE tables are used in the following examples, you’ll want to keep the original data
set. Therefore, you can delete the customer, invoice, and line rows you just added by using the following commands:

DELETE FROM INVOICE WHERE INV_NUMBER = 4010;
DELETE FROM CUSTOMER WHERE CUS_CODE = 20010;
COMMIT;

Those commands delete the recently added invoice and all of the invoice line rows associated with the invoice (the LINE
table’s INV_NUMBER foreign key was defined with the ON DELETE CASCADE option) and the recently added
customer. The COMMIT statement saves all changes to permanent storage.

FIGURE
8.23

Oracle sequence examples

Note

The latest SQL standard (SQL-2003) defines the use of Identity columns and sequence objects. However, some
DBMS vendors might not adhere to the standard. Check your DBMS documentation.

C6545_08 8/15/2007 16:18:44 Page 334

334 C H A P T E R 8

8.6 UPDATABLE VIEWS

In Chapter 7, you learned how to create a view and why and how views are used. You will now take a look at how
views can be made to serve common data management tasks executed by database administrators.

One of the most common operations in production database environments is using batch update routines to update
a master table attribute (field) with transaction data. As the name implies, a batch update routine pools multiple
transactions into a single batch to update a master table field in a single operation. For example, a batch update
routine is commonly used to update a product’s quantity on hand based on summary sales transactions. Such routines

are typically run as overnight batch jobs to
update the quantity on hand of products in
inventory. The sales transactions performed,
for example, by traveling salespeople were
entered during periods when the system was
offline.

To demonstrate a batch update routine, let’s
begin by defining the master product table
(PRODMASTER) and the product monthly
sales totals table (PRODSALES) shown in
Figure 8.24. Note the 1:1 relationship
between the two tables.

Note

At this point, you’ll need to re-create the CUS_CODE_SEQ and INV_NUMBER_SEQ sequences, as they will be
used again later in the chapter. Enter:

CREATE SEQUENCE CUS_CODE_SEQ START WITH 20010 NOCACHE;
CREATE SEQUENCE INV_NUMBER_SEQ START WITH 4010 NOCACHE;

Table name: PRODMASTER

Database name: CH08_UV

Table name: PRODSALES

FIGURE
8.24

The PRODMASTER and PRODSALES tables

O n l i n e C o n t e n t

For MS Access users, the PRODMASTER and PRODSALES tables are located in the Ch08_UV database, which
is located in the Student Online Companion.

O n l i n e C o n t e n t

For Oracle users, all SQL commands you see in this section are located in the Student Online Companion. After
you locate the script files (uv-01.sql through uv-04.sql), you can copy and paste the command sequences
into your SQL*Plus program.

C6545_08 8/15/2007 16:18:44 Page 335

335A D V A N C E D S Q L

Using the tables in Figure 8.24, let’s update the PRODMASTER table by subtracting the PRODSALES table’s product
monthly sales quantity (PS_QTY) from the PRODMASTER table’s PROD_QOH. To produce the required update, the
update query would be written like this:

UPDATE PRODMASTER, PRODSALES
SET PRODMASTER.PROD_QOH = PROD_QOH − PS_QTY
WHERE PRODMASTER.PROD_ID = PRODSALES.PROD_ID;

Note that the update statement reflects the following sequence of events:

� Join the PRODMASTER and PRODSALES tables.

� Update the PROD_QOH attribute (using the PS_QTY value in the PRODSALES table) for each row of the
PRODMASTER table with matching PROD_ID values in the PRODSALES table.

To be used in a batch update, the PRODSALES data must be stored in a base table rather than in a view. That query
will work fine in Access, but Oracle will return the error message shown in Figure 8.25.

Oracle produced the error message because Oracle expects to find a single table name in the UPDATE statement. In
fact, you cannot join tables in the UPDATE statement in Oracle. To solve that problem, you have to create an
updatable view. As its name suggests, an updatable view is a view that can be used to update attributes in the base
table(s) that is (are) used in the view. You must realize that not all views are updatable. Actually, several restrictions
govern updatable views, and some of them are vendor-specific.

The most common updatable view restrictions are as follows:

� GROUP BY expressions or aggregate functions cannot be used.

� You cannot use set operators such as UNION, INTERSECT, and MINUS.

� Most restrictions are based on the use of JOINs or group operators in views.

To meet the Oracle limitations, an updatable view named PSVUPD has been created, as shown in Figure 8.26.

One easy way to determine whether a view can be used to update a base table is to examine the view’s output. If the
primary key columns of the base table you want to update still have unique values in the view, the base table is
updatable. For example, if the PROD_ID column of the view returns the A123 or BX34 values more than once, the
PRODMASTER table cannot be updated through the view.

FIGURE
8.25

The Oracle UPDATE error message

Note

Keep in mind that the examples in this section are generated in Oracle. To see what restrictions are placed on
updatable views by the DBMS you are using, check the appropriate DBMS documentation.

C6545_08 8/15/2007 16:19:24 Page 336

336 C H A P T E R 8

After creating the updatable view shown in Figure 8.26, you can use the UPDATE command to update the view,
thereby updating the PRODMASTER table. Figure 8.27 shows how the UPDATE command is used and what the final
contents of the PRODMASTER table are after the UPDATE has been executed.

FIGURE
8.26

Creating an updatable view in Oracle

FIGURE
8.27

PRODMASTER table update, using an updatable view

C6545_08 8/15/2007 16:19:24 Page 337

337A D V A N C E D S Q L

Although the batch update procedure just illustrated meets the goal of updating a master table with data from a
transaction table, the preferred real-world solution to the update problem is to use procedural SQL, which you’ll learn
about next.

8.7 PROCEDURAL SQL

Thus far, you have learned to use SQL to read, write, and delete data in the database. For example, you learned to
update values in a record, to add records, and to delete records. Unfortunately, SQL does not support the conditional
execution of procedures that are typically supported by a programming language using the general format:

IF <condition>
THEN <perform procedure>

ELSE <perform alternate procedure>
END IF

SQL also fails to support the looping operations in programming languages that permit the execution of repetitive
actions typically encountered in a programming environment. The typical format is:

DO WHILE
<perform procedure>

END DO

Traditionally, if you wanted to perform a conditional (IF-THEN-ELSE) or looping (DO-WHILE) type of operation (that
is, a procedural type of programming), you would use a programming language such as Visual Basic.Net, C#, or
COBOL. That’s why many older (so-called “legacy”) business applications are based on enormous numbers of COBOL
program lines. Although that approach is still common, it usually involves the duplication of application code in many
programs. Therefore, when procedural changes are required, program modifications must be made in many different
programs. An environment characterized by such redundancies often creates data management problems.

A better approach is to isolate critical code and then have all application programs call the shared code. The advantage
of that modular approach is that the application code is isolated in a single program, thus yielding better maintenance
and logic control. In any case, the rise of distributed databases (see Chapter 12, Distributed Database Management
Systems) and object-oriented databases (see Appendix G in the Student Online Companion) required that more
application code be stored and executed within the database. To meet that requirement, most RDBMS vendors created
numerous programming language extensions. Those extensions include:

� Flow-control procedural programming structures (IF-THEN-ELSE, DO-WHILE) for logic representation.

� Variable declaration and designation within the procedures.

� Error management.

To remedy the lack of procedural functionality in SQL and to provide some standardization within the many vendor
offerings, the SQL-99 standard defined the use of persistent stored modules. A persistent stored module (PSM) is
a block of code containing standard SQL statements and procedural extensions that is stored and executed at the
DBMS server. The PSM represents business logic that can be encapsulated, stored, and shared among multiple
database users. A PSM lets an administrator assign specific access rights to a stored module to ensure that only
authorized users can use it. Support for persistent stored modules is left to each vendor to implement. In fact, for many
years, some RDBMSs (such as Oracle, SQL Server, and DB2) supported stored procedure modules within the database
before the official standard was promulgated.

MS SQL Server implements persistent stored modules via Transact-SQL and other language extensions, the most
notable of which are the .NET family of programming languages. Oracle implements PSMs through its procedural SQL
language. Procedural SQL (PL/SQL) is a language that makes it possible to use and store procedural code and SQL

C6545_08 8/15/2007 16:19:24 Page 338

338 C H A P T E R 8

statements within the database and to merge SQL and traditional programming constructs, such as variables,
conditional processing (IF-THEN-ELSE), basic loops (FOR and WHILE loops,) and error trapping. The procedural code
is executed as a unit by the DBMS when it is invoked (directly or indirectly) by the end user. End users can use PL/SQL
to create:

� Anonymous PL/SQL blocks.

� Triggers (covered in Section 8.7.1).

� Stored procedures (covered in Section 8.7.2 and Section 8.7.3).

� PL/SQL functions (covered in Section 8.7.4).

Do not confuse PL/SQL functions with SQL’s built-in aggregate functions such as MIN and MAX. SQL built-in
functions can be used only within SQL statements, while PL/SQL functions are mainly invoked within PL/SQL
programs such as triggers and stored procedures. Functions can also be called within SQL statements, provided they
conform to very specific rules that are dependent on your DBMS environment.

Using Oracle SQL*Plus, you can write a PL/SQL code block by enclosing the commands inside BEGIN and END
clauses. For example, the following PL/SQL block inserts a new row in the VENDOR table, as shown in Figure 8.28.

BEGIN
INSERT INTO VENDOR
VALUES (25678,'Microsoft Corp. ', 'Bill Gates','765','546-8484','WA','N');

END;
/

The PL/SQL block shown in Figure 8.28 is known as an anonymous PL/SQL block because it has not been given
a specific name. (Incidentally, note that the block’s last line uses a forward slash (“/”) to indicate the end of the
command-line entry.) That type of PL/SQL block executes as soon as you press the Enter key after typing the forward
slash. Following the PL/SQL block’s execution, you will see the message “PL/SQL procedure successfully completed.”

But suppose you want a more specific message displayed on the SQL*Plus screen after a procedure is completed, such
as “New Vendor Added.” To produce a more specific message, you must do two things:

1. At the SQL > prompt, type SET SERVEROUTPUT ON. This SQL*Plus command enables the client console
(SQL*Plus) to receive messages from the server side (Oracle DBMS). Remember, just like standard SQL, the
PL/SQL code (anonymous blocks, triggers, and procedures) are executed at the server side, not at the client
side. (To stop receiving messages from the server, you would enter SET SERVEROUT OFF.)

2. To send messages from the PL/SQL block to the SQL*Plus console, use the DBMS_OUTPUT.PUT_LINE
function.

The following anonymous PL/SQL block inserts a row in the VENDOR table and displays the message “New Vendor
Added!” (See Figure 8.28).

BEGIN
INSERT INTO VENDOR
VALUES (25772,'Clue Store', 'Issac Hayes', '456','323-2009', 'VA', 'N');
DBMS_OUTPUT.PUT_LINE('New Vendor Added!');

END;
/

Note

PL/SQL, triggers, and stored procedures are illustrated within the context of an Oracle DBMS. All examples in
the following sections assume the use of Oracle RDBMS.

C6545_08 9/13/2007 15:37:17 Page 339

339A D V A N C E D S Q L

In Oracle, you can use the SQL*Plus command SHOW ERRORS to help you diagnose errors found in PL/SQL blocks.
The SHOW ERRORS command yields additional debugging information whenever you generate an error after
creating or executing a PL/SQL block.

The following example of an anonymous PL/SQL block demonstrates several of the constructs supported by the
procedural language. Remember that the exact syntax of the language is vendor-dependent; in fact, many vendors
enhance their products with proprietary features.

DECLARE
W_P1 NUMBER(3) := 0;
W_P2 NUMBER(3) := 10;
W_NUM NUMBER(2) := 0;
BEGIN
WHILE W_P2 < 300 LOOP

SELECT COUNT(P_CODE) INTO W_NUM FROM PRODUCT
WHERE P_PRICE BETWEEN W_P1 AND W_P2;
DBMS_OUTPUT.PUT_LINE('There are ' || W_NUM || ' Products with price between ' || W_P1 ||

' and ' || W_P2);

FIGURE
8.28

Anonymous PL/SQL block examples

C6545_08 9/7/2007 10:0:30 Page 340

340 C H A P T E R 8

W_P1 := W_P2 + 1;
W_P2 := W_P2 + 50;

END LOOP;
END;
/

The block’s code and execution are shown in Figure 8.29.

The PL/SQL block shown in Figure 8.29 has the following characteristics:

� The PL/SQL block starts with the DECLARE section in which you declare the variable names, the data types,
and, if desired, an initial value. Supported data types are shown in Table 8.8.

TABLE
8.8

PL/SQL Basic Data Types

DATA TYPE DESCRIPTION
CHAR Character values of a fixed length; for example:

W_ZIPCHAR(5)
VARCHAR2 Variable length character values; for example:

W_FNAMEVARCHAR2(15)
NUMBER Numeric values; for example:

W_PRICENUMBER(6,2)
DATE Date values; for example:

W_EMP_DOBDATE
%TYPE Inherits the data type from a variable that you declared previously or from an attribute of a

database table; for example:
W_PRICEPRODUCT.P_PRICE%TYPE
Assigns W_PRICE the same data type as the P_PRICE column in the PRODUCT table

FIGURE
8.29

Anonymous PL/SQL block with variables and loops

C6545_08 8/15/2007 16:19:25 Page 341

341A D V A N C E D S Q L

� A WHILE loop is used. Note the syntax:

WHILE condition LOOP
PL/SQL statements;

END LOOP

� The SELECT statement uses the INTO keyword to assign the output of the query to a PL/SQL variable. You
can use the INTO keyword only inside a PL/SQL block of code. If the SELECT statement returns more than
one value, you will get an error.

� Note the use of the string concatenation symbol “||” to display the output.

� Each statement inside the PL/SQL code must end with a semicolon “;”.

The most useful feature of PL/SQL blocks is that they let you create code that can be named, stored, and
executed—either implicitly or explicitly—by the DBMS. That capability is especially desirable when you need to use
triggers and stored procedures, which you will explore next.

8.7.1 Triggers

Automating business procedures and automatically maintaining data integrity and consistency are critical in a modern
business environment. One of the most critical business procedures is proper inventory management. For example,
you want to make sure that current product sales can be supported with sufficient product availability. Therefore, it is
necessary to ensure that a product order be written to a vendor when that product’s inventory drops below its minimum
allowable quantity on hand. Better yet, how about ensuring that the task is completed automatically?

To accomplish automatic product ordering, you first must make sure the product’s quantity on hand reflects an
up-to-date and consistent value. After the appropriate product availability requirements have been set, two key issues
must be addressed:

1. Business logic requires an update of the product quantity on hand each time there is a sale of that product.

2. If the product’s quantity on hand falls below its minimum allowable inventory (quantity-on-hand) level, the
product must be reordered.

To accomplish those two tasks, you could write multiple SQL statements: one to update the product quantity on hand
and another to update the product reorder flag. Next, you would have to run each statement in the correct order each
time there was a new sale. Such a multistage process would be inefficient because a series of SQL statements must
be written and executed each time a product is sold. Even worse, that SQL environment requires that somebody must
remember to perform the SQL tasks.

A trigger is procedural SQL code that is automatically invoked by the RDBMS upon the occurrence of a given data
manipulation event. It is useful to remember that:

� A trigger is invoked before or after a data row is inserted, updated, or deleted.

� A trigger is associated with a database table.

� Each database table may have one or more triggers.

� A trigger is executed as part of the transaction that triggered it.

Note

PL/SQL blocks can contain only standard SQL data manipulation language (DML) commands such as SELECT,
INSERT, UPDATE, and DELETE. The use of data definition language (DDL) commands is not directly supported
in a PL/SQL block.

C6545_08 8/15/2007 16:20:34 Page 342

342 C H A P T E R 8

Triggers are critical to proper database operation and management. For example:

� Triggers can be used to enforce constraints that cannot be enforced at the DBMS design and implementation
levels.

� Triggers add functionality by automating critical actions and providing appropriate warnings and suggestions
for remedial action. In fact, one of the most common uses for triggers is to facilitate the enforcement of
referential integrity.

� Triggers can be used to update table values, insert records in tables, and call other stored procedures.

Triggers play a critical role in making the database truly useful; they also add processing power to the RDBMS and to
the database system as a whole. Oracle recommends triggers for:

� Auditing purposes (creating audit logs).

� Automatic generation of derived column values.

� Enforcement of business or security constraints.

� Creation of replica tables for backup purposes.

To see how a trigger is created and used, let’s examine a simple inventory management problem. For example, if a
product’s quantity on hand is updated when the product is sold, the system should automatically check whether the
quantity on hand falls below its minimum allowable quantity. To demonstrate that process, let’s use the PRODUCT
table in Figure 8.30. Note the use of the minimum order quantity (P_MIN_ORDER) and the product reorder flag
(P_REORDER) columns. The P_MIN_ORDER indicates the minimum quantity for restocking an order. The
P_REORDER column is a numeric field that indicates whether the product needs to be reordered (1 = Yes, 0 = No).
The initial P_REORDER values will be set to 0 (No) to serve as the basis for the initial trigger development.

FIGURE
8.30

The PRODUCT table

O n l i n e C o n t e n t

Oracle users can run the PRODLIST.SQL script file to format the output of the PRODUCT table shown in
Figure 8.30. The script file is located in the Student Online Companion.

C6545_08 9/7/2007 10:1:57 Page 343

343A D V A N C E D S Q L

Given the PRODUCT table listing shown in Figure 8.30, let’s create a trigger to evaluate the product’s quantity on
hand, P_QOH. If the quantity on hand is below the minimum quantity shown in P_MIN, the trigger will set the
P_REORDER column to 1. (Remember that the number 1 in the P_REORDER column represents “Yes.”) The syntax
to create a trigger in Oracle is:

CREATE OR REPLACE TRIGGER trigger_name
[BEFORE / AFTER] [DELETE / INSERT / UPDATE OF column_name] ON table_name
[FOR EACH ROW]
[DECLARE]

[variable_namedata type[:=initial_value]]
BEGIN

PL/SQL instructions;
���.

END;

As you can see, a trigger definition contains the following parts:

� The triggering timing: BEFORE or AFTER. This timing indicates when the trigger’s PL/SQL code executes;
in this case, before or after the triggering statement is completed.

� The triggering event: the statement that causes the trigger to execute (INSERT, UPDATE, or DELETE).

� The triggering level: There are two types of triggers: statement-level triggers and row-level triggers.

- A statement-level trigger is assumed if you omit the FOR EACH ROW keywords. This type of trigger
is executed once, before or after the triggering statement is completed. This is the default case.

- A row-level trigger requires use of the FOR EACH ROW keywords. This type of trigger is executed once
for each row affected by the triggering statement. (In other words, if you update 10 rows, the trigger
executes 10 times.)

� The triggering action: The PL/SQL code enclosed between the BEGIN and END keywords. Each statement
inside the PL/SQL code must end with a semicolon “;”.

In the PRODUCT table’s case, you will create a statement-level trigger that is implicitly executed AFTER an UPDATE
of the P_QOH attribute for an existing row or AFTER an INSERT of a new row in the PRODUCT table. The trigger
action executes an UPDATE statement that compares the P_QOH with the P_MIN column. If the value of P_QOH is
equal to or less than P_MIN, the trigger updates the P_REORDER to 1. To create the trigger, Oracle’s SQL*Plus will
be used. The trigger code is shown in Figure 8.31.

FIGURE
8.31

Creating the TRG_PRODUCT_REORDER trigger

C6545_08 8/15/2007 16:20:45 Page 344

344 C H A P T E R 8

To test the TRG_PRODUCT_REORDER trigger, let’s update the quantity on hand of product ‘11QER/31’ to 4. After
the UPDATE completes, the trigger is automatically fired and the UPDATE statement (inside the trigger code) sets the
P_REORDER to 1 for all products that are below the minimum. See Figure 8.32.

The trigger shown in Figure 8.32 seems to work fine, but what happens if you reduce the minimum quantity of product
‘2232/QWE’? Figure 8.33 shows that when you update the minimum quantity, the quantity on hand of the product
‘2232/QWE’ falls below the new minimum, but the reorder flag is still 0. Why?

The answer is simple: you updated the P_MIN column, but the trigger is never executed. TRG_PRODUCT_
REORDER executes only after an update of the P_QOH column! To avoid that inconsistency, you must modify the
trigger event to execute after an update of the P_MIN field, too. The updated trigger code is shown in Figure 8.34.

O n l i n e C o n t e n t

The source code for all of the triggers shown in this section can be found in the Student Online Companion.

FIGURE
8.32

Verifying the TRG_PRODUCT_REORDER trigger execution

FIGURE
8.33

The P_REORDER value mismatch after update of the P_MIN attribute

C6545_08 9/24/2007 11:47:39 Page 345

345A D V A N C E D S Q L

To test this new trigger version, let’s change the minimum quantity for product ‘23114-AA’ to 8. After that update, the
trigger makes sure that the reorder flag is properly set for all of the products in the PRODUCT table. See Figure 8.35.

This second version of the trigger seems to work well, but what happens if you change the P_QOH value for product
‘11QER/31’, as shown in Figure 8.36? Nothing! (Note that the reorder flag is still set to 1.) Why didn’t the trigger
change the reorder flag to 0?

The answer is that the trigger does not consider all possible cases. Let’s examine the second version of the
TRG_PRODUCT_REORDER trigger code (Figure 8.34) in more detail:

� The trigger fires after the triggering statement is completed. Therefore, the DBMS always executes two statements
(INSERT plus UPDATE or UPDATE plus UPDATE). That is, after you do an update of P_MIN or P_QOH or you
insert a new row in the PRODUCT table, the trigger executes another UPDATE statement automatically.

� The triggering action performs an UPDATE that updates all of the rows in the PRODUCT table, even if the
triggering statement updates just one row! This can affect the performance of the database. Imagine what
will happen if you have a PRODUCT table with 519,128 rows and you insert just one product. The trigger will
update all 519,129 rows (519,128 original rows plus the one you inserted), including the rows that do not need
an update!

� The trigger sets the P_REORDER value only to 1; it does not reset the value to 0, even if such an action is
clearly required when the inventory level is back to a value greater than the minimum value.

FIGURE
8.34

Second version of the TRG_PRODUCT_REORDER trigger

FIGURE
8.35

Successful trigger execution after the P_MIN value is updated

C6545_08 8/15/2007 16:19:28 Page 346

346 C H A P T E R 8

In short, the second version of the TRG_PRODUCT_REORDER trigger still does not complete all of the necessary
steps. Now let’s modify the trigger to handle all update scenarios, as shown in Figure 8.37.

The trigger in Figure 8.37 sports several new features:

� The trigger is executed before the actual triggering statement is completed. In Figure 8.37, the triggering
timing is defined in line 2, BEFORE INSERT OR UPDATE. This clearly indicates that the triggering statement
is executed before the INSERT or UPDATE completes, unlike the previous trigger examples.

� The trigger is a row-level trigger instead of a statement-level trigger. The FOR EACH ROW keywords make the
trigger a row-level trigger. Therefore, this trigger executes once for each row affected by the triggering
statement.

� The trigger action uses the :NEW attribute reference to change the value of the P_REORDER attribute.

The use of the :NEW attribute references deserves a more detailed explanation. To understand its use, you must first
consider a basic computing tenet: all changes are done first in primary memory, then transferred to permanent
memory. In other words, the computer cannot change anything directly in permanent storage (disk). It must first read
the data from permanent storage to primary memory; then it makes the change in primary memory; and finally, it
writes the changed data back to permanent memory (disk).

FIGURE
8.36

The P_REORDER value mismatch after increasing the P_QOH value

FIGURE
8.37

The third version of the TRG_PRODUCT_REORDER trigger

C6545_08 8/15/2007 16:19:28 Page 347

347A D V A N C E D S Q L

The DBMS does the same thing, and one thing more. Because ensuring data integrity is critical, the DBMS makes two
copies of every row being changed by a DML (INSERT, UPDATE, or DELETE) statement. (You will learn more about
this in Chapter 10, Transaction Management and Concurrency Control.) The first copy contains the original (“old”)
values of the attributes before the changes. The second copy contains the changed (“new”) values of the attributes that
will be permanently saved to the database (after any changes made by an INSERT, UPDATE, or DELETE). You can
use :OLD to refer to the original values; you can use :NEW to refer to the changed values (the values that will be stored
in the table). You can use :NEW and :OLD attribute references only within the PL/SQL code of a database trigger
action. For example:

� IF :NEW.P_QOH < = :NEW.P_MIN compares the quantity on hand with the minimum quantity of a product.
Remember that this is a row-level trigger. Therefore, this comparison is done for each row that is updated by
the triggering statement.

� Although the trigger is a BEFORE trigger, this does not mean that the triggering statement hasn’t executed yet.
To the contrary, the triggering statement has already taken place; otherwise, the trigger would not have fired
and the :NEW values would not exist. Remember, BEFORE means before the changes are permanently saved
to disk, but after the changes are made in memory.

� The trigger uses the :NEW reference to assign a value to the P_REORDER column before the UPDATE or
INSERT results are permanently stored in the table. The assignment is always done to the :NEW value (never
to the :OLD value), and the assignment always uses the “ := “ assignment operator. The :OLD values are
read-only values; you cannot change them. Note that :NEW.P_REORDER := 1; assigns the value 1 to the
P_REORDER column and :NEW.P_REORDER := 0; assigns the value 0 to the P_REORDER column.

� This new trigger version does not use any DML statement!

Before testing the new trigger, note that product ‘11QER/31’ currently has a quantity on hand that is above the
minimum quantity, yet the reorder flag is set to 1. Given that condition, the reorder flag must be 0. After creating the
new trigger, you can execute an UPDATE statement to fire it, as shown in Figure 8.38.

FIGURE
8.38

Execution of the third trigger version

C6545_08 8/15/2007 16:19:28 Page 348

348 C H A P T E R 8

Note the following important features of the code in Figure 8.38:

� The trigger is automatically invoked for each affected row—in this case, all rows of the PRODUCT table. If your
triggering statement would have affected only three rows, not all PRODUCT rows would have the correct
P_REORDER value set. That’s the reason the triggering statement was set up as shown in Figure 8.38.

� The trigger will run only if you insert a new product row or update P_QOH or P_MIN. If you update any other
attribute, the trigger won’t run.

You can also use a trigger to update an attribute in a table other than the one being modified. For example, suppose
you would like to create a trigger that automatically reduces the quantity on hand of a product with every sale. To
accomplish that task, you must create a trigger for the LINE table that updates a row in the PRODUCT table. The
sample code for that trigger is shown in Figure 8.39.

Note that the TRG_LINE_PROD row-level trigger executes after inserting a new invoice’s LINE and reduces the
quantity on hand of the recently sold product by the number of units sold. This row-level trigger updates a row in a
different table (PRODUCT), using the :NEW values of the recently added LINE row.

A third trigger example shows the use of variables within a trigger. In this case, you want to update the customer
balance (CUS_BALANCE) in the CUSTOMER table after inserting every new LINE row. This trigger code is shown
in Figure 8.40.

Let’s carefully examine the trigger in Figure 8.40.

� The trigger is a row-level trigger that executes after each new LINE row is inserted.

� The DECLARE section in the trigger is used to declare any variables used inside the trigger code.

� You can declare a variable by assigning a name, a data type, and (optionally) an initial value, as in the case of
the W_TOT variable.

� The first step in the trigger code is to get the customer code (CUS_CODE) from the related INVOICE table.
Note that the SELECT statement returns only one attribute (CUS_CODE) from the INVOICE table. Also note
that that attribute returns only one value as specified by the use of the WHERE clause to restrict the query
output to a single value.

� Note the use of the INTO clause within the SELECT statement. You use the INTO clause to assign a value from
a SELECT statement to a variable (W_CUS) used within a trigger.

� The second step in the trigger code computes the total of the line by multiplying the :NEW.LINE_UNITS times
:NEW.LINE_PRICE and assigning the result to the W_TOT variable.

FIGURE
8.39

TRG_LINE_PROD trigger to update the PRODUCT quantity on hand

C6545_08 8/15/2007 16:19:29 Page 349

349A D V A N C E D S Q L

� The final step updates the customer balance by using an UPDATE statement and the W_TOT and W_CUS
trigger variables.

� Double dashes “--” are used to indicate comments within the PL/SQL block.

Let’s summarize the triggers created in this section.

� The TRG_PROD_REORDER is a row-level trigger that updates P_REORDER in PRODUCT when a new
product is added or when the P_QOH or P_MIN columns are updated.

� The TRG_LINE_PROD is a row-level trigger that automatically reduces the P_QOH in PRODUCT when a new
row is added to the LINE table.

� TRG_LINE_CUS is a row-level trigger that automatically increases the CUS_BALANCE in CUSTOMER when
a new row is added in the LINE table.

The use of triggers facilitates the automation of multiple data management tasks. Although triggers are independent
objects, they are associated with database tables. When you delete a table, all its trigger objects are deleted with it.
However, if you needed to delete a trigger without deleting the table, you could use the following command:

DROP TRIGGER trigger_name

Trigger Action Based on Conditional DML Predicates
You could also create triggers whose actions depend on the type of DML statement (INSERT, UPDATE, or DELETE)
that fires the trigger. For example, you could create a trigger that executes after an insert, an update, or a delete on

FIGURE
8.40

TRG_LINE_CUS trigger to update the customer balance

C6545_08 8/15/2007 16:19:29 Page 350

350 C H A P T E R 8

the PRODUCT table.But how do you know which one of the three statements caused the trigger to execute? In those
cases, you could use the following syntax:

IF INSERTING THEN � END IF;
IF UPDATING THEN � END IF;
IF DELETING THEN � END IF;

8.7.2 Stored Procedures

A stored procedure is a named collection of procedural and SQL statements. Just like database triggers, stored
procedures are stored in the database. One of the major advantages of stored procedures is that they can be used to
encapsulate and represent business transactions. For example, you can create a stored procedure to represent a
product sale, a credit update, or the addition of a new customer. By doing that, you can encapsulate SQL statements
within a single stored procedure and execute them as a single transaction. There are two clear advantages to the use
of stored procedures:

� Stored procedures substantially reduce network traffic and increase performance. Because the procedure is
stored at the server, there is no transmission of individual SQL statements over the network. The use of stored
procedures improves system performance because all transactions are executed locally on the RDBMS, so each
SQL statement does not have to travel over the network.

� Stored procedures help reduce code duplication by means of code isolation and code sharing (creating unique
PL/SQL modules that are called by application programs), thereby minimizing the chance of errors and the
cost of application development and maintenance.

To create a stored procedure, you use the following syntax:

CREATE OR REPLACE PROCEDURE procedure_name [(argument [IN/OUT] data-type, �)] [IS/AS]
[variable_name data type[:=initial_value]]

BEGIN
PL/SQL or SQL statements;
�

END;

Note the following important points about stored procedures and their syntax:

� argument specifies the parameters that are passed to the stored procedure. A stored procedure could have
zero or more arguments or parameters.

� IN/OUT indicates whether the parameter is for input, output, or both.

� data-type is one of the procedural SQL data types used in the RDBMS. The data types normally match those
used in the RDBMS table-creation statement.

� Variables can be declared between the keywords IS and BEGIN. You must specify the variable name, its data
type, and (optionally) an initial value.

To illustrate stored procedures, assume that you want to create a procedure (PRC_PROD_DISCOUNT) to assign an
additional 5 percent discount for all products when the quantity on hand is more than or equal to twice the minimum
quantity. Figure 8.41 shows how the stored procedure is created.

Note in Figure 8.41 that the PRC_PROD_DISCOUNT stored procedure uses the DBMS_OUTPUT.PUT_LINE
function to display a message when the procedure executes. (This action assumes you previously ran SET
SERVEROUTPUT ON.)

C6545_08 8/15/2007 16:19:29 Page 351

351A D V A N C E D S Q L

To execute the stored procedure, you must use the following syntax:

EXEC procedure_name[(parameter_list)];

For example, to see the results of running the PRC_PROD_DISCOUNT stored procedure, you can use the EXEC
PRC_PROD_DISCOUNT command shown in Figure 8.42.

Using Figure 8.42 as your guide, you can see how the product discount attribute for all products with a quantity on
hand more than or equal to twice the minimum quantity was increased by 5 percent. (Compare the first PRODUCT
table listing to the second PRODUCT table listing.)

FIGURE
8.41

Creating the PRC_PROD_DISCOUNT stored procedure

O n l i n e C o n t e n t

The source code for all of the stored procedures shown in this section can be found in the Student Online
Companion.

C6545_08 8/15/2007 16:19:30 Page 352

352 C H A P T E R 8

One of the main advantages of procedures is that you can pass values to them. For example, the previous
PRC_PRODUCT_DISCOUNT procedure worked fine, but what if you wanted to make the percentage increase an
input variable? In that case, you can pass an argument to represent the rate of increase to the procedure. Figure 8.43
shows the code for that procedure.

FIGURE
8.42

Results of the PRC_PROD_DISCOUNT stored procedure

C6545_08 8/15/2007 16:19:30 Page 353

353A D V A N C E D S Q L

Figure 8.44 shows the execution of the second version of the PRC_PROD_DISCOUNT stored procedure. Note that
if the procedure requires arguments, those arguments must be enclosed in parentheses and they must be separated by
commas.

Stored procedures are also useful to encapsulate shared code to represent business transactions. For example, you can
create a simple stored procedure to add a new customer. By using a stored procedure, all programs can call the stored
procedure by name each time a new customer is added. Naturally, if new customer attributes are added later, you would
need to modify the stored procedure. However, the programs that use the stored procedure would not need to know
the name of the newly added attribute and would need to add only a new parameter to the procedure call. (Notice the
PRC_CUS_ADD stored procedure shown in Figure 8.45.)

As you examine Figure 8.45, note these features:

� The PRC_CUS_ADD procedure uses several parameters, one for each required attribute in the
CUSTOMER table.

� The stored procedure uses the CUS_CODE_SEQ sequence to generate a new customer code.

FIGURE
8.43

Second version of the PRC_PROD_DISCOUNT stored procedure

FIGURE
8.44

Results of the second version of the PRC_PROD_DISCOUNT stored procedure

C6545_08 8/15/2007 16:19:31 Page 354

354 C H A P T E R 8

� The required parameters—those specified in the table definition—must be included and can be null only when
the table specifications permit nulls for that parameter. For example, note that the second customer addition
was unsuccessful because the CUS_AREACODE is a required attribute and cannot be null.

� The procedure displays a message in the SQL*Plus console to let the user know that the customer was added.

The next two examples further illustrate the use of sequences within stored procedures. In this case, let’s create two
stored procedures:

1. The PRC_INV_ADD procedure adds a new invoice.

2. The PRC_LINE_ADD procedure adds a new product line row for a given invoice.

Both procedures are shown in Figure 8.46. Note the use of a variable in the PRC_LINE_ADD procedure to get the
product price from the PRODUCT table.

To test the procedures shown in Figure 8.46:

1. Call the PRC_INV_ADD procedure with the new invoice data as arguments.

2. Call the PRC_LINE_ADD procedure and pass the product line arguments.

FIGURE
8.45

The PRC_CUS_ADD stored procedure

C6545_08 8/15/2007 16:19:31 Page 355

355A D V A N C E D S Q L

That process is illustrated in Figure 8.47.

FIGURE
8.46

The PRC_INV_ADD and PRC_LINE_ADD stored procedures

FIGURE
8.47

Testing the PRC_INV_ADD and PRC_LINE_ADD procedures

C6545_08 8/15/2007 16:19:31 Page 356

356 C H A P T E R 8

8.7.3 PL/SQL Processing with Cursors

Until now, all of the SQL statements you have used inside a PL/SQL block (trigger or stored procedure) have returned
a single value. If the SQL statement returns more than one value, you will generate an error. If you want to use an SQL
statement that returns more than one value inside your PL/SQL code, you need to use a cursor. A cursor is a special
construct used in procedural SQL to hold the data rows returned by an SQL query. You can think of a cursor as a
reserved area of memory in which the output of the query is stored, like an array holding columns and rows. Cursors
are held in a reserved memory area in the DBMS server, not in the client computer.

There are two types of cursors: implicit and explicit. An implicit cursor is automatically created in procedural SQL
when the SQL statement returns only one value. Up to this point, all of the examples created an implicit cursor. An
explicit cursor is created to hold the output of an SQL statement that may return two or more rows (but could return
0 or only one row). To create an explicit cursor, you use the following syntax inside a PL/SQL DECLARE section:

CURSOR cursor_name IS select-query;

Once you have declared a cursor, you can use specific PL/SQL cursor processing commands (OPEN, FETCH, and
CLOSE) anywhere between the BEGIN and END keywords of the PL/SQL block. Table 8.9 summarizes the main use
of each of those commands.

TABLE
8.9

Cursor Processing Commands

CURSOR
COMMAND EXPLANATION
OPEN Opening the cursor executes the SQL command and populates the cursor with data, opening the

cursor for processing. The cursor declaration command only reserves a named memory area for
the cursor; it doesn’t populate the cursor with the data. Before you can use a cursor, you need to
open it. For example:

OPEN cursor_name
FETCH Once the cursor is opened, you can use the FETCH command to retrieve data from the cursor and

copy it to the PL/SQL variables for processing. The syntax is:
FETCH cursor_name INTO variable1 [, variable2, �]

The PL/SQL variables used to hold the data must be declared in the DECLARE section and must
have data types compatible with the columns retrieved by the SQL command. If the cursors SQL
statement returns five columns, there must be five PL/SQL variables to receive the data from the
cursor.

This type of processing resembles the one-record-at-a-time processing used in previous database
models. The first time you fetch a row from the cursor, the first row of data from the cursor is cop-
ied to the PL/SQL variables; the second time you fetch a row from the cursor, the second row of
data is placed in the PL/SQL variables; and so on.

CLOSE The CLOSE command closes the cursor for processing.

Cursor-style processing involves retrieving data from the cursor one row at a time. Once you open a cursor, it becomes
an active data set. That data set contains a “current” row pointer. Therefore, after opening a cursor, the current row
is the first row of the cursor.

When you fetch a row from the cursor, the data from the “current” row in the cursor is copied to the PL/SQL variables.
After the fetch, the “current” row pointer moves to the next row in the set and continues until it reaches the end of
the cursor.

C6545_08 9/7/2007 10:3:19 Page 357

357A D V A N C E D S Q L

How do you know what number of rows are in the cursor? Or how do you know when you have reached the end of
the cursor data set? You know because cursors have special attributes that convey important information. Table 8.10
summarizes the cursor attributes.

TABLE
8.10

Cursor Attributes

ATTRIBUTE DESCRIPTION
%ROWCOUNT Returns the number of rows fetched so far. If the cursor is not OPEN, it returns an error. If

no FETCH has been done but the cursor is OPEN, it returns 0.
%FOUND Returns TRUE if the last FETCH returned a row and FALSE if not. If the cursor is not

OPEN, it returns an error. If no FETCH has been done, it contains NULL.
%NOTFOUND Returns TRUE if the last FETCH did not return any row and FALSE if it did. If the cursor is

not OPEN, it returns an error. If no FETCH has been done, it contains NULL.
%ISOPEN Returns TRUE if the cursor is open (ready for processing) or FALSE if the cursor is closed.

Remember, before you can use a cursor, you must open it.

To illustrate the use of cursors, let’s use a simple stored procedure example that lists all products that have a quantity
on hand greater than the average quantity on hand for all products. The code is shown in Figure 8.48.

FIGURE
8.48

A simple PRC_CURSOR_EXAMPLE

C6545_08 8/15/2007 16:19:32 Page 358

358 C H A P T E R 8

As you examine the stored procedure code shown in Figure 8.48, note the following important characteristics:

� Lines 2 and 3 use the %TYPE data type in the variable definition section. As indicated in Table 8.8, the %TYPE
data type is used to indicate that the given variable inherits the data type from a variable previously declared
or from an attribute of a database table. In this case, you are using the %TYPE to indicate that the W_P_CODE
and W_P_DESCRIPT will have the same data type as the respective columns in the PRODUCT table. This
way, you ensure that the PL/SQL variable will have a compatible data type.

� Line 5 declares the PROD_CURSOR cursor.

� Line 12 opens the PROD_CURSOR cursor and populates it.

� Line 13 uses the LOOP statement to loop through the data in the cursor, fetching one row at a time.

� Line 14 uses the FETCH command to retrieve a row from the cursor and place it in the respective PL/SQL
variables.

� Line 15 uses the EXIT command to evaluate when there are no more rows in the cursor (using the
%NOTFOUND cursor attribute) and to exit the loop.

� Line 19 uses the %ROWCOUNT cursor attribute to obtain the total number of rows processed.

� Line 21 issues the CLOSE PROD_CURSOR command to close the cursor.

The use of cursors, combined with standard SQL, makes relational databases very desirable because programmers can
work in the best of both worlds: set-oriented processing and record-oriented processing. Any experienced programmer
knows to use the tool that best fits the job. Sometimes you will be better off manipulating data in a set-oriented
environment; at other times, it might be better to use a record-oriented environment. Procedural SQL lets you have
your proverbial cake and eat it, too. Procedural SQL provides functionality that enhances the capabilities of the DBMS
while maintaining a high degree of manageability.

8.7.4 PL/SQL Stored Functions

Using programmable or procedural SQL, you can also create your own stored functions. Stored procedures and
functions are very similar. A stored function is basically a named group of procedural and SQL statements that
returns a value (indicated by a RETURN statement in its program code). To create a function, you use the following
syntax:

CREATE FUNCTION function_name (argument IN data-type, �) RETURN data-type [IS]
BEGIN

PL/SQL statements;
�

RETURN (value or expression);
END;

Stored functions can be invoked only from within stored procedures or triggers and cannot be invoked from SQL
statements (unless the function follows some very specific compliance rules). Remember not to confuse built-in SQL
functions (such as MIN, MAX, and AVG) with stored functions.

8.8 EMBEDDED SQL

There is little doubt that SQL’s popularity as a data manipulation language is in part due to its ease of use and its
powerful data-retrieval capabilities. But in the real world, database systems are related to other systems and programs,
and you still need a conventional programming language such as Visual Basic.Net, C#, or COBOL to integrate
database systems with other programs and systems. If you are developing Web applications, you are most likely familiar
with Visual Studio.Net, Java, ASP, or ColdFusion. Yet, almost regardless of the programming tools you use, if your

C6545_08 8/15/2007 16:23:10 Page 359

359A D V A N C E D S Q L

Web application or Windows-based GUI system requires access to a database such as MS Access, SQL Server, Oracle,
or DB2, you will likely need to use SQL to manipulate the data in the database.

Embedded SQL is a term used to refer to SQL statements that are contained within an application programming
language such as Visual Basic.Net, C#, COBOL, or Java. The program being developed might be a standard binary
executable in Windows or Linux, or it might be a Web application designed to run over the Internet. No matter what
language you use, if it contains embedded SQL statements, it is called the host language. Embedded SQL is still the
most common approach to maintaining procedural capabilities in DBMS-based applications. However, mixing SQL
with procedural languages requires that you understand some key differences between SQL and procedural languages.

� Run-time mismatch: Remember that SQL is a nonprocedural, interpreted language; that is, each instruction
is parsed, its syntax is checked, and it is executed one instruction at a time.1 All of the processing takes place
at the server side. Meanwhile, the host language is generally a binary-executable program (also known as a
compiled program). The host program typically runs at the client side in its own memory space (which is
different from the DBMS environment).

� Processing mismatch: Conventional programming languages (COBOL, ADA, FORTRAN, PASCAL, C++,
and PL/I) process one data element at a time. Although you can use arrays to hold data, you still process the
array elements one row at a time. This is especially true for file manipulation, where the host language typically
manipulates data one record at a time. However, newer programming environments (such as Visual Studio.Net)
have adopted several object-oriented extensions that help the programmer manipulate data sets in a cohesive
manner.

� Data type mismatch: SQL provides several data types, but some of those data types might not match data
types used in different host languages (for example, the date and varchar2 data types).

To bridge the differences, the Embedded SQL standard2 defines a framework to integrate SQL within several
programming languages. The Embedded SQL framework defines the following:

� A standard syntax to identify embedded SQL code within the host language (EXEC SQL/END-EXEC).

� A standard syntax to identify host variables. Host variables are variables in the host language that receive data
from the database (through the embedded SQL code) and process the data in the host language. All host
variables are preceded by a colon (“:”).

� A communication area used to exchange status and error information between SQL and the host language.
This communications area contains two variables—SQLCODE and SQLSTATE.

Another way to interface host languages and SQL is through the use of a call level interface (CLI)3 , in which the
programmer writes to an application programming interface (API). A common CLI in Windows is provided by the
Open Database Connectivity (ODBC) interface.

1The authors are particularly grateful for the thoughtful comments provided by Emil T. Cipolla, who teaches at Mount Saint Mary College and whose
IBM experience is the basis for his considerable and practical expertise.
2 You can obtain more details about the Embedded SQL standard at www.ansi.org, SQL/Bindings is in the SQL Part II – SQL/Foundation section of
the SQL 2003 standard.
3 You can find additional information about the SQL Call Level Interface standard at www.ansi.org, in the SQL Part 3: Call Level Interface (SQL/CLI)
section of the SQL 2003 standard.

O n l i n e C o n t e n t

Additional coverage of CLIs and ODBC is found in Appendix F, Client/Server Systems, and Appendix J,
Web Database Development with ColdFusion in the Student Online Companion.

C6545_08 9/24/2007 11:48:23 Page 360

360 C H A P T E R 8

Before continuing, let’s explore the process required to create and run an executable program with embedded SQL
statements. If you have ever programmed in COBOL or C++, you are familiar with the multiple steps required to
generate the final executable program. Although the specific details vary among language and DBMS vendors, the
following general steps are standard:

1. The programmer writes embedded SQL code within the host language instructions. The code follows the
standard syntax required for the host language and embedded SQL.

2. A preprocessor is used to transform the embedded SQL into specialized procedure calls that are DBMS- and
language-specific. The preprocessor is provided by the DBMS vendor and is specific to the host language.

3. The program is compiled using the host language compiler. The compiler creates an object code module for
the program containing the DBMS procedure calls.

4. The object code is linked to the respective library modules and generates the executable program. This process
binds the DBMS procedure calls to the DBMS run-time libraries. Additionally, the binding process typically
creates an “access plan” module that contains instructions to run the embedded code at run time.

5. The executable is run, and the embedded SQL statement retrieves data from the database.

Note that you can embed individual SQL statements or even an entire PL/SQL block. Up to this point in the book,
you have used a DBMS-provided application (SQL*Plus) to write SQL statements and PL/SQL blocks in an interpretive
mode to address one-time or ad hoc data requests. However, it is extremely difficult and awkward to use ad hoc queries
to process transactions inside a host language. Programmers typically embed SQL statements within a host language
that it is compiled once and executed as often as needed. To embed SQL into a host language, follow this syntax:

EXEC SQL
SQL statement;

END-EXEC.

The preceding syntax will work for SELECT, INSERT, UPDATE, and DELETE statements. For example, the following
embedded SQL code will delete employee 109, George Smith, from the EMPLOYEE table:

EXEC SQL
DELETE FROM EMPLOYEE WHERE EMP_NUM = 109;

END-EXEC.

Remember, the preceding embedded SQL statement is compiled to generate an executable statement. Therefore, the
statement is fixed permanently and cannot change (unless, of course, the programmer changes it). Each time the
program runs, it deletes the same row. In short, the preceding code is good only for the first run; all subsequent runs
will likely generate an error. Clearly, this code would be more useful if you could specify a variable to indicate the
employee number to be deleted.

In embedded SQL, all host variables are preceded by a colon (“:”). The host variables may be used to send data from
the host language to the embedded SQL, or they may be used to receive the data from the embedded SQL. To use
a host variable, you must first declare it in the host language. Common practice is to use similar host variable names
as the SQL source attributes. For example, if you are using COBOL, you would define the host variables in the
Working Storage section. Then you would refer to them in the embedded SQL section by preceding them with a colon
(“:”). For example, to delete an employee whose employee number is represented by the host variable W_EMP_NUM,
you would write the following code:

EXEC SQL
DELETE FROM EMPLOYEE WHERE EMP_NUM = :W_EMP_NUM;

END-EXEC.

C6545_08 8/15/2007 16:19:33 Page 361

361A D V A N C E D S Q L

At run time, the host variable value will be used to execute the embedded SQL statement. What happens if the
employee you are trying to delete doesn’t exist in the database? How do you know that the statement has been
completed without errors? As mentioned previously, the embedded SQL standard defines a SQL communication area
to hold status and error information. In COBOL, such an area is known as the SQLCA area and is defined in the Data
Division as follows:

EXEC SQL
INCLUDE SQLCA

END-EXEC.

The SQLCA area contains two variables for status and error reporting. Table 8.11 shows some of the main values
returned by the variables and their meaning.

TABLE
8.11

SQL Status and Error Reporting Variables

VARIABLE NAME VALUE EXPLANATION
SQLCODE Old-style error reporting supported for backward compatibility only; returns

an integer value (positive or negative).
0 Successful completion of command.
100 No data; the SQL statement did not return any rows or did not select, update,

or delete any rows.
-999 Any negative value indicates that an error occurred.

SQLSTATE Added by SQL-92 standard to provide predefined error codes; defined as a
character string (5 characters long).

00000 Successful completion of command.
Multiple values in the format XXYYY where:
XX-> represents the class code.
YYY-> represents the subclass code.

The following embedded SQL code illustrates the use of the SQLCODE within a COBOL program.

EXEC SQL
EXEC SQL

SELECT EMP_LNAME, EMP_LNAME INTO :W_EMP_FNAME, :W_EMP_LNAME
WHERE EMP_NUM = :W_EMP_NUM;

END-EXEC.
IF SQLCODE = 0 THEN

PERFORM DATA_ROUTINE
ELSE

PERFORM ERROR_ROUTINE
END-IF.

In this example, the SQLCODE host variable is checked to determine whether the query completed successfully. If that
is the case, the DATA_ROUTINE is performed; otherwise, the ERROR_ROUTINE is performed.

C6545_08 9/7/2007 10:5:48 Page 362

362 C H A P T E R 8

Just as with PL/SQL, embedded SQL requires the use of cursors to hold data from a query that returns more than one
value. If COBOL is used, the cursor can be declared either in the Working Storage Section or in the Procedure
Division. The cursor must be declared and processed as you learned earlier in Section 8.7.3. To declare a cursor, you
use the syntax shown in the following example:

EXEC SQL
DECLARE PROD_CURSOR FOR

SELECT P_CODE, P_DESCRIPT FROM PRODUCT
WHERE P_QOH > (SELECT AVG(P_QOH) FROM PRODUCT);

END-EXEC.

Next, you must open the cursor to make it ready for processing:

EXEC SQL
OPEN PROD_CURSOR;

END-EXEC.

To process the data rows in the cursor, you use the FETCH command to retrieve one row of data at a time and place
the values in the host variables. The SQLCODE must be checked to ensure that the FETCH command completed
successfully. This section of code typically constitutes part of a routine in the COBOL program. Such a routine is
executed with the PERFORM command. For example:

EXEC SQL
FETCH PROD_CURSOR INTO :W_P_CODE, :W_P_DESCRIPT;

END-EXEC.
IF SQLCODE = 0 THEN

PERFORM DATA_ROUTINE
ELSE

PERFORM ERROR_ROUTINE
END-IF.

When all rows have been processed, you close the cursor as follows:

EXEC SQL
CLOSE PROD_CURSOR;

END-EXEC.

Thus far, you have seen examples of embedded SQL in which the programmer used predefined SQL statements and
parameters. Therefore, the end users of the programs are limited to the actions that were specified in the application
programs. That style of embedded SQL is known as static SQL, meaning that the SQL statements will not change
while the application is running. For example, the SQL statement might read like this:

SELECT P_CODE, P_DESCRIPT, P_QOH, P_PRICE
FROM PRODUCT
WHERE P_PRICE > 100;

C6545_08 8/15/2007 16:19:33 Page 363

363A D V A N C E D S Q L

Note that the attributes, tables, and conditions are known in the preceding SQL statement. Unfortunately, end users
seldom work in a static environment. They are more likely to require the flexibility of defining their data access
requirements on the fly. Therefore, the end user requires that SQL be as dynamic as the data access requirements.

Dynamic SQL is a term used to describe an environment in which the SQL statement is not known in advance;
instead, the SQL statement is generated at run time. At run time in a dynamic SQL environment, a program can
generate the SQL statements that are required to respond to ad hoc queries. In such an environment, neither the
programmer nor the end user is likely to know precisely what kind of queries are to be generated or how those queries
are to be structured. For example, a dynamic SQL equivalent of the preceding example could be:

SELECT :W_ATTRIBUTE_LIST
FROM :W_TABLE
WHERE :W_CONDITION;

Note that the attribute list and the condition are not known until the end user specifies them. W_TABLE,
W_ATRIBUTE_LIST, and W_CONDITION are text variables that contain the end-user input values used in the query
generation. Because the program uses the end-user input to build the text variables, the end user can run the same
program multiple times to generate varying outputs. For example, in one instance, the end user might want to know
what products have a price less than $100; in another case, the end user might want to know how many units of a
given product are available for sale at any given moment.

Although dynamic SQL is clearly flexible, such flexibility carries a price. Dynamic SQL tends to be much slower than
static SQL. Dynamic SQL also requires more computer resources (overhead). Finally, you are more likely to find
inconsistent levels of support and incompatibilities among DBMS vendors.

C6545_08 9/7/2007 10:6:5 Page 364

364 C H A P T E R 8

S u m m a r y

◗ SQL provides relational set operators to combine the output of two queries to generate a new relation. The UNION
and UNION ALL set operators combine the output of two (or more) queries and produce a new relation with all
unique (UNION) or duplicate (UNION ALL) rows from both queries. The INTERSECT relational set operator selects
only the common rows. The MINUS set operator selects only the rows that are different. UNION, INTERSECT,
and MINUS require union-compatible relations.

◗ Operations that join tables can be classified as inner joins and outer joins. An inner join is the traditional join in
which only rows that meet a given criteria are selected. An outer join returns the matching rows as well as the rows
with unmatched attribute values for one table or both tables to be joined.

◗ A natural join returns all rows with matching values in the matching columns and eliminates duplicate columns. This
style of query is used when the tables share a common attribute with a common name. One important difference
between the syntax for a natural join and for the “old-style” join is that the natural join does not require the use
of a table qualifier for the common attributes.

◗ Joins may use keywords such as USING and ON. If the USING clause is used, the query will return only the rows
with matching values in the column indicated in the USING clause; that column must exist in both tables. If the ON
clause is used, the query will return only the rows that meet the specified join condition.

◗ Subqueries and correlated queries are used when it is necessary to process data based on other processed data.
That is, the query uses results that were previously unknown and that are generated by another query. Subqueries
may be used with the FROM, WHERE, IN, and HAVING clauses in a SELECT statement. A subquery may return
a single row or multiple rows.

◗ Most subqueries are executed in a serial fashion. That is, the outer query initiates the data request, and then the
inner subquery is executed. In contrast, a correlated subquery is a subquery that is executed once for each row in
the outer query. That process is similar to the typical nested loop in a programming language. A correlated
subquery is so named because the inner query is related to the outer query—the inner query references a column
of the outer subquery.

◗ SQL functions are used to extract or transform data. The most frequently used functions are date and time
functions. The results of the function output can be used to store values in a database table, to serve as the basis
for the computation of derived variables, or to serve as a basis for data comparisons. Function formats can be
vendor-specific. Aside from time and date functions, there are numeric and string functions as well as conversion
functions that convert one data format to another.

◗ Oracle sequences may be used to generate values to be assigned to a record. For example, a sequence may be used
to number invoices automatically. MS Access uses an AutoNumber data type to generate numeric sequences. MS
SQL Server uses the Identity column property to designate the column that will have sequential numeric values
automatically assigned to it. There can only be one Identity column per SQL Server table.

◗ Procedural SQL (PL/SQL) can be used to create triggers, stored procedures, and PL/SQL functions. A trigger is
procedural SQL code that is automatically invoked by the DBMS upon the occurrence of a specified data
manipulation event (UPDATE, INSERT, or DELETE). Triggers are critical to proper database operation and
management. They help automate various transaction and data management processes, and they can be used to
enforce constraints that are not enforced at the DBMS design and implementation levels.

◗ A stored procedure is a named collection of SQL statements. Just like database triggers, stored procedures are
stored in the database. One of the major advantages of stored procedures is that they can be used to encapsulate
and represent complete business transactions. Use of stored procedures substantially reduces network traffic and
increases system performance. Stored procedures help reduce code duplication by creating unique PL/SQL

C6545_08 8/15/2007 16:19:34 Page 365

365A D V A N C E D S Q L

modules that are called by the application programs, thereby minimizing the chance of errors and the cost of
application development and maintenance.

◗ When SQL statements are designed to return more than one value inside the PL/SQL code, a cursor is needed.
You can think of a cursor as a reserved area of memory in which the output of the query is stored, like an array
holding columns and rows. Cursors are held in a reserved memory area in the DBMS server, rather than in the
client computer. There are two types of cursors: implicit and explicit.

◗ Embedded SQL refers to the use of SQL statements within an application programming language such as Visual
Basic.Net, C#, COBOL, or Java. The language in which the SQL statements are embedded is called the host
language. Embedded SQL is still the most common approach to maintaining procedural capabilities in DBMS-based
applications.

K e y T e r m s

anonymous PL/SQL block, 339

batch update routine, 335

correlated subquery, 321

cross join, 306

cursor, 357

dynamic SQL, 364

embedded SQL, 360

explicit cursor, 357

host language, 360

implicit cursor, 357

inner join, 305

outer join, 305

persistent stored module
(PSM), 338

procedural SQL (PL/SQL), 338

row-level trigger, 344

statement-level trigger, 344

static SQL, 363

stored function, 359

stored procedure, 359

trigger, 342

union-compatible, 298

updatable view, 336

R e v i e w Q u e s t i o n s

1. The relational set operators UNION, INTERSECT, and MINUS work properly only when the relations are
union-compatible. What does union-compatible mean, and how would you check for this condition?

2. What is the difference between UNION and UNION ALL? Write the syntax for each.

3. Suppose you have two tables: EMPLOYEE and EMPLOYEE_1. The EMPLOYEE table contains the records for
three employees: Alice Cordoza, John Cretchakov, and Anne McDonald. The EMPLOYEE_1 table contains the
records for employees John Cretchakov and Mary Chen. Given that information, list the query output for the
UNION query.

4. Given the employee information in Question 3, list the query output for the UNION ALL query.

5. Given the employee information in Question 3, list the query output for the INTERSECT query.

6. Given the employee information in Question 3, list the query output for the MINUS query.

7. What is a CROSS JOIN? Give an example of its syntax.

8. What three join types are included in the OUTER JOIN classification?

9. Using tables named T1 and T2, write a query example for each of the three join types you described in
Question 8. Assume that T1 and T2 share a common column named C1.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_08 8/15/2007 16:19:35 Page 366

366 C H A P T E R 8

10. What is a subquery, and what are its basic characteristics?

11. What is a correlated subquery? Give an example.

12. What MS Access/SQL Server function should you use to calculate the number of days between the current date
and January 25, 1999?

13. What Oracle function should you use to calculate the number of days between the current date and
January 25, 1999?

14. Suppose a PRODUCT table contains two attributes, PROD_CODE and VEND_CODE. Those two attributes have
values of ABC, 125, DEF, 124, GHI, 124, and JKL, 123, respectively. The VENDOR table contains a single
attribute, VEND_CODE, with values 123, 124, 125, and 126, respectively. (The VEND_CODE attribute in the
PRODUCT table is a foreign key to the VEND_CODE in the VENDOR table.) Given that information, what
would be the query output for:

a. A UNION query based on the two tables?

b. A UNION ALL query based on the two tables?

c. An INTERSECT query based on the two tables?

d. A MINUS query based on the two tables?

15. What string function should you use to list the first three characters of a company’s EMP_LNAME values? Give
an example using a table named EMPLOYEE. Provide examples for Oracle and SQL Server.

16. What is an Oracle sequence? Write its syntax.

17. What is a trigger, and what is its purpose? Give an example.

18. What is a stored procedure, and why is it particularly useful? Give an example.

19. What is embedded SQL, and how is it used?

20. What is dynamic SQL, and how does it differ from static SQL?

P r o b l e m s

Use the database tables in Figure P8.1 as the basis for Problems 1−18.

1. Create the tables. (Use the MS Access example shown in Figure P8.1 to see what table names and attributes
to use.)

2. Insert the data into the tables you created in Problem 1.

3. Write the query that will generate a combined list of customers (from the tables CUSTOMER and CUSTOMER_2)
that do not include the duplicate customer records. (Note that only the customer named Juan Ortega shows up
in both customer tables.)

4. Write the query that will generate a combined list of customers to include the duplicate customer records.

5. Write the query that will show only the duplicate customer records.

6. Write the query that will generate only the records that are unique to the CUSTOMER_2 table.

7. Write the query to show the invoice number, the customer number, the customer name, the invoice date, and the
invoice amount for all customers with a customer balance of $1,000 or more.

O n l i n e C o n t e n t

The Ch08_SimpleCo database is located in the Student Online Companion, as are the script files to
duplicate this data set in Oracle.

C6545_08 8/15/2007 16:19:35 Page 367

367A D V A N C E D S Q L

8. Write the query that will show (for all the invoices) the invoice number, the invoice amount, the average invoice
amount, and the difference between the average invoice amount and the actual invoice amount.

9. Write the query that will write Oracle sequences to produce automatic customer number and invoice number
values. Start the customer numbers at 1000 and the invoice numbers at 5000.

10. Modify the CUSTOMER table to included two new attributes: CUST_DOB and CUST_AGE. Customer 1000
was born on March 15, 1979, and customer 1001 was born on December 22, 1988.

11. Assuming you completed Problem 10, write the query that will list the names and ages of your customers.

12. Assuming the CUSTOMER table contains a CUST_AGE attribute, write the query to update the values in that
attribute. (Hint: Use the results of the previous query.)

13. Write the query that lists the average age of your customers. (Assume that the CUSTOMER table has been
modified to include the CUST_DOB and the derived CUST_AGE attribute.)

14. Write the trigger to update the CUST_BALANCE in the CUSTOMER table when a new invoice record is entered.
(Assume that the sale is a credit sale.) Test the trigger, using the following new INVOICE record:

8005, 1001, ‘27-APR-08’, 225.40

Name the trigger trg_updatecustbalance.

15. Write a procedure to add a new customer to the CUSTOMER table. Use the following values in the new record:

1002, ‘Rauthor’, ‘Peter’, 0.00

Name the procedure prc_cust_add. Run a query to see if the record has been added.

16. Write a procedure to add a new invoice record to the INVOICE table. Use the following values in the new record:

8006, 1000, ‘30-APR-08’, 301.72

Name the procedure prc_invoice_add. Run a query to see if the record has been added.

17. Write a trigger to update the customer balance when an invoice is deleted. Name the trigger trg_
updatecustbalance2.

18. Write a procedure to delete an invoice, giving the invoice number as a parameter. Name the procedure
prc_inv_delete. Test the procedure by deleting invoices 8005 and 8006.

Use the Ch08_SaleCo2 database to work Problems 19−22, shown in Figure P8.19.

Table name: CUSTOMER

Database name: CH08_SimpleCo

Table name: INVOICE

Table name: CUSTOMER_2

FIGURE
P8.1

Ch08_SimpleCo database tables

Note

The following problem sets can serve as the basis for a class project or case.

C6545_08 9/7/2007 10:6:44 Page 368

368 C H A P T E R 8

19. Create a trigger named trg_line_total to write the LINE_TOTAL value in the LINE table every time you add a
new LINE row. (The LINE_TOTAL value is the product of the LINE_UNITS and the LINE_PRICE values.)

20. Create a trigger named trg_line_prod that will automatically update the quantity on hand for each product sold
after a new LINE row is added.

21. Create a stored procedure named prc_inv_amounts to update the INV_SUBTOTAL, INV_TAX, and INV_
TOTAL. The procedure takes the invoice number as a parameter. The INV_SUBTOTAL is the sum of the
LINE_TOTAL amounts for the invoice, the INV_TAX is the product of the INV_SUBTOTAL and the tax rate
(8%), and the INV_TOTAL is the sum of the INV_SUBTOTAL and the INV_TAX.

22. Create a procedure named prc_cus_balance_update that will take the invoice number as a parameter and
update the customer balance. (Hint: You can use the DECLARE section to define a TOTINV numeric variable
that holds the computed invoice total.)

Use the Ch08_AviaCo database to work Problems 23−34, shown in Figure P8.23.

Table name: CUSTOMER

Database name: CH08_SaleCo2

Table name: INVOICE

Table name: LINE
Table name: PRODUCT

Table name: VENDOR

FIGURE
P8.19

Ch08_SaleCo2 database tables

O n l i n e C o n t e n t

The Ch08_SaleCo2 database used in Problems 19−22 is located in the Student Online Companion for this
book, as are the script files to duplicate this data set in Oracle.

C6545_08 9/7/2007 10:7:18 Page 369

369A D V A N C E D S Q L

23. Modify the MODEL table to add the attribute and insert the values shown in the following table.

24. Write the queries to update the MOD_WAIT_CHG attribute values based on Problem 23.

25. Modify the CHARTER table to add the attributes shown in the following table.

Table name: CHARTER Database name: CH08_AviaCo

Table name: EARNEDRATING

Table name: CREW Table name: CREW

Table name: CREW

Table name: RATING

Table name: MODEL

Table name: AIRCRAFT
Table name: PILOT

FIGURE
P8.23

Ch08_AviaCo database tables

O n l i n e C o n t e n t

The Ch08_AviaCo database used for Problems 23−34 is located in the Student Online Companion for this
book, as are the script files to duplicate this data set in Oracle.

ATTRIBUTE NAME ATTRIBUTE DESCRIPTION ATTRIBUTE TYPE ATTRIBUTE VALUES
MOD_WAIT_CHG Waiting charge per hour for each model Numeric $100 for C-90A

$50 for PA23-250
$75 for PA31-350

C6545_08 8/15/2007 16:19:38 Page 370

370 C H A P T E R 8

26. Write the sequence of commands required to update the CHAR_WAIT_CHG attribute values in the CHARTER
table. (Hint: Use either an updatable view or a stored procedure.)

27. Write the sequence of commands required to update the CHAR_FLT_CHG_HR attribute values in the
CHARTER table. (Hint: Use either an updatable view or a stored procedure.)

28. Write the command required to update the CHAR_FLT_CHG attribute values in the CHARTER table.

29. Write the command required to update the CHAR_TAX_CHG attribute values in the CHARTER table.

30. Write the command required to update the CHAR_TOT_CHG attribute values in the CHARTER table.

31. Modify the PILOT table to add the attribute shown in the following table.

32. Create a trigger named trg_char_hours that will automatically update the AIRCRAFT table when a new
CHARTER row is added. Use the CHARTER table’s CHAR_HOURS_FLOWN to update the AIRCRAFT table’s
AC_TTAF, AC_TTEL, and AC_TTER values.

33. Create a trigger named trg_pic_hours that will automatically update the PILOT table when a new CREW row
is added and the CREW table uses a ‘pilot’ CREW_JOB entry. Use the CHARTER table’s CHAR_HOURS_
FLOWN to update the PILOT table’s PIL_PIC_HRS only when the CREW table uses a ‘pilot’ CREW_JOB entry.

34. Create a trigger named trg_cust_balance that will automatically update the CUSTOMER table’s CUST_
BALANCE when a new CHARTER row is added. Use the CHARTER table’s CHAR_TOT_CHG as the update
source. (Assume that all charter charges are charged to the customer balance.)

ATTRIBUTE NAME ATTRIBUTE DESCRIPTION ATTRIBUTE
TYPE

CHAR_WAIT_CHG Waiting charge for each model (copied from the MODEL table) Numeric
CHAR_FLT_CHG_HR Flight charge per mile for each model (copied from the MODEL table

using the MOD_CHG_MILE attribute)
Numeric

CHAR_FLT_CHG Flight charge (calculated by CHAR_HOURS_FLOWN x
CHAR_FLT_CHG_HR)

Numeric

CHAR_TAX_CHG CHAR_FLT_CHG x tax rate (8%) Numeric
CHAR_TOT_CHG CHAR_FLT_CHG + CHAR_TAX_CHG Numeric
CHAR_PYMT Amount paid by customer Numeric
CHAR_BALANCE Balance remaining after payment Numeric

ATTRIBUTE NAME ATTRIBUTE DESCRIPTION ATTRIBUTE
TYPE

PIL_PIC_HRS Pilot in command (PIC) hours; updated by adding the CHARTER table’s
CHAR_HOURS_FLOWN to the PIL_PIC_HRS when the CREW table shows the
CREW_JOB to be pilot

Numeric

C6545_08 9/7/2007 10:7:39 Page 371

371A D V A N C E D S Q L

Preview

Database Design

In this chapter, you will learn:

� That successful database design must reflect the information system of which the database is
a part

� That successful information systems are developed within a framework known as the
Systems Development Life Cycle (SDLC)

� That within the information system, the most successful databases are subject to frequent
evaluation and revision within a framework known as the Database Life Cycle (DBLC)

� How to conduct evaluation and revision within the SDLC and DBLC frameworks

� About database design strategies: top-down vs. bottom-up design and centralized vs.
decentralized design

Databases are a part of a larger picture called an information system. Database designs that

fail to recognize that the database is part of this larger whole are not likely to be successful.

That is, database designers must recognize that the database is a critical means to an end

rather than an end in itself. (Managers want the database to serve their management needs,

but too many databases seem to require that managers alter their routines to fit the

database requirements.)

Information systems don’t just happen; they are the product of a carefully staged

development process. Systems analysis is used to determine the need for an information

system and to establish its limits.Within systems analysis, the actual information system is

created through a process known as systems development.

The creation and evolution of information systems follows an iterative pattern called the

Systems Development Life Cycle, a continuous process of creation, maintenance, enhance-

ment, and replacement of the information system.A similar cycle applies to databases.The

database is created, maintained, and enhanced. When even enhancement can no longer

stretch the database’s usefulness and the database can no longer perform its functions

adequately, it might have to be replaced.The Database Life Cycle is carefully traced in this

chapter and is shown in the context of the larger Systems Development Life Cycle.

At the end of the chapter, you are introduced to some classical approaches to database

design: top-down vs. bottom-up and centralized vs. decentralized.

9
N

I
N

E

C6545_09 8/16/2007 13:2:36 Page 372

9.1 THE INFORMATION SYSTEM

Basically, a database is a carefully designed and constructed repository of facts. The database is a part of a larger whole
known as an information system, which provides for data collection, storage, and retrieval. The information system
also facilitates the transformation of data into information, and it allows for the management of both data and
information. Thus, a complete information system is composed of people, hardware, software, the database(s),
application programs, and procedures. Systems analysis is the process that establishes the need for and the extent
of an information system. The process of creating an information system is known as systems development.

One key characteristic of current information systems is the strategic value of information in the age of global business.
Therefore, information systems should always be aligned with the strategic business goals; the view of isolated and
independent information systems is no longer valid. Current information systems should always be integrated with the
company’s enterprise-wide information systems architecture.

Within the framework of systems development, applications transform data into the information that forms the basis
for decision making. Applications usually produce formal reports, tabulations, and graphic displays designed to
produce insight into the information. Figure 9.1 illustrates that every application is composed of two parts: the data
and the code (program instructions) by which the data are transformed into information. Data and code work together
to represent real-world business functions and activities. At any given moment, physically stored data represent a
snapshot of the business. But the picture is not complete without an understanding of the business activities that are
represented by the code.

Note

This chapter is not meant to cover all aspects of systems analysis and development—those usually are covered
in a separate course or book. However, this chapter should help you develop a better understanding of the
issues associated with database design, implementation, and management that are affected by the information
system in which the database is a critical component.

4th Qtr3rd Qtr2nd Qtr

90
80
70
60
50
40
30
20
10
0

1st Qtr

FIGURE
9.1

Generating information for decision making

Application
code

Information

Decisions

East

West

North

South

Data

C6545_09 9/4/2007 14:33:21 Page 373

373D A T A B A S E D E S I G N

The performance of an information system depends on a triad of factors:

� Database design and implementation.

� Application design and implementation.

� Administrative procedures.

This book emphasizes the database design and implementation segment of the triad—arguably the most important of
the three. However, failure to address the other two segments will likely yield a poorly functioning information system.
Creating a sound information system is hard work: systems analysis and development require much planning to ensure
that all of the activities will interface with each other, that they will complement each other, and that they will be
completed on time.

In a broad sense, the term database development describes the process of database design and implementation.
The primary objective in database design is to create complete, normalized, nonredundant (to the extent possible), and
fully integrated conceptual, logical, and physical database models. The implementation phase includes creating the
database storage structure, loading data into the database, and providing for data management.

To make the procedures discussed in this chapter broadly applicable, the chapter focuses on the elements that are
common to all information systems. Most of the processes and procedures described in this chapter do not depend on
the size, type, or complexity of the database being implemented. However, the procedures that would be used to design
a small database, such as one for a neighborhood shoe store, do not precisely scale up to the procedures that would
be needed to design a database for a large corporation or even a segment of such a corporation. To use an analogy,
building a small house requires a blueprint, just as building the Golden Gate Bridge does, but the bridge requires more
complex and further-ranging planning, analysis, and design than the house.

The next sections will trace the overall Systems Development Life Cycle and the related Database Life Cycle. Once you
are familiar with those processes and procedures, you will learn about various approaches to database design, such as
top-down vs. bottom-up and centralized vs. decentralized design.12

1See Rapid Application Development, James Martin, Prentice-Hall, Macmillan College Division, 1991.
2Further information about Agile Software Development can be found at www.agilealliance.org.

Note

The Systems Development Life Cycle (SDLC) is a general framework through which you can track and come to
understand the activities required to develop and maintain information systems. Within that framework, there
are several ways to complete various tasks specified in the SDLC. For example, this texts focus is on ER modeling
and on relational database implementation issues, and that focus is maintained in this chapter. However, there
are alternative methodologies, such as:

• Unified Modeling Language (UML) provides object-oriented tools to support the tasks associated with the
development of information systems. UML is covered in Appendix H, Unified Modeling
Language (UML), in the Student Online Companion.

• Rapid Application Development (RAD)1 is an iterative software development methodology that uses
prototypes, CASE tools, and flexible management to develop application systems. RAD started as an
alternative to traditional structured development which had long deliverable times and unfulfilled
requirements.

• Agile Software Development2 is a framework for developing software applications that divides the work to
be done in smaller subprojects to obtain valuable deliverables in shorter times and with better cohesion.
This method emphasizes close communication among all users and continuous evaluation with the
purpose of increasing customer satisfaction.

Although the development methodologies may change, the basic framework within which those method-
ologies are used does not change.

C6545_09 9/4/2007 14:33:56 Page 374

374 C H A P T E R 9

9.2 THE SYSTEMS DEVELOPMENT LIFE CYCLE (SDLC)

The Systems Development Life Cycle (SDLC) traces the history (life cycle) of an information system. Perhaps
more important to the system designer, the SDLC provides the big picture within which the database design and
application development can be mapped out and evaluated.

As illustrated in Figure 9.2, the traditional SDLC is divided into five phases: planning, analysis, detailed systems design,
implementation, and maintenance. The SDLC is an iterative rather than a sequential process. For example, the details
of the feasibility study might help refine the initial assessment, and the details discovered during the user requirements
portion of the SDLC might help refine the feasibility study.

Because the Database Life Cycle (DBLC) fits into and resembles the Systems Development Life Cycle (SDLC), a brief
description of the SDLC is in order.

FIGURE
9.2

The Systems Development Life Cycle (SDLC)

Planning

Analysis

Detailed
systems design

Implementation

Maintenance

Phase

Initial assessment
Feasibility study

User requirements
Existing system evaluation
Logical system design

Detailed system specification

Coding, testing, and debugging
Installation, fine-tuning

Evaluation
Maintenance
Enhancement

Action(s) Section

9.2.1

9.2.2

9.2.3

9.2.4

9.2.5

C6545_09 8/16/2007 13:20:31 Page 375

375D A T A B A S E D E S I G N

9.2.1 Planning

The SDLC planning phase yields a general overview of the company and its objectives. An initial assessment of the
information flow-and-extent requirements must be made during this discovery portion of the SDLC. Such an
assessment should answer some important questions:

� Should the existing system be continued? If the information generator does its job well, there is no point in
modifying or replacing it. To quote an old saying, “If it ain’t broke, don’t fix it.”

� Should the existing system be modified? If the initial assessment indicates deficiencies in the extent and flow
of the information, minor (or even major) modifications might be in order. When considering modifications, the
participants in the initial assessment must keep in mind the distinction between wants and needs.

� Should the existing system be replaced? The initial assessment might indicate that the current system’s flaws
are beyond fixing. Given the effort required to create a new system, a careful distinction between wants and
needs is perhaps even more important in this case than it is in modifying the system.

Participants in the SDLC’s initial assessment must begin to study and evaluate alternative solutions. If it is decided that
a new system is necessary, the next question is whether it is feasible. The feasibility study must address the following:

� The technical aspects of hardware and software requirements. The decisions might not (yet) be vendor-
specific, but they must address the nature of the hardware requirements (desktop computer, multiprocessor
computer, mainframe, or supercomputer) and the software requirements (single- or multiuser operating
systems, database type and software, programming languages to be used by the applications, and so on).

� The system cost. The admittedly mundane question, “Can we afford it?” is crucial. (And the answer to that
question might force a careful review of the initial assessment.) It bears repeating that a million-dollar solution
to a thousand-dollar problem is not defensible.

� The operational cost. Does the company possess the human, technical, and financial resources to keep the
system operational? Do we count in the cost the management and end-user support needed to put in place the
operational procedures to ensure the success of this system?

9.2.2 Analysis

Problems defined during the planning phase are examined in greater detail during the analysis phase. A macroanalysis
must be made of both individual needs and organizational needs, addressing questions such as:

� What are the requirements of the current system’s end users?

� Do those requirements fit into the overall information requirements?

The analysis phase of the SDLC is, in effect, a thorough audit of user requirements.

The existing hardware and software systems are also studied during the analysis phase. The result of analysis should
be a better understanding of the system’s functional areas, actual and potential problems, and opportunities.

End users and the system designer(s) must work together to identify processes and to uncover potential problem areas.
Such cooperation is vital to defining the appropriate performance objectives by which the new system can be judged.

Along with a study of user requirements and the existing systems, the analysis phase also includes the creation of a
logical systems design. The logical design must specify the appropriate conceptual data model, inputs, processes, and
expected output requirements.

When creating a logical design, the designer might use tools such as data flow diagrams (DFDs), hierarchical input
process output (HIPO) diagrams, and entity relationship (ER) diagrams. The database design’s data-modeling activities
take place at this point to discover and describe all entities and their attributes and the relationships among the entities
within the database.

C6545_09 8/16/2007 13:20:52 Page 376

376 C H A P T E R 9

Defining the logical system also yields functional descriptions of the system’s components (modules) for each process
within the database environment. All data transformations (processes) are described and documented using such
systems analysis tools as DFDs. The conceptual data model is validated against those processes.

9.2.3 Detailed Systems Design

In the detailed systems design phase, the designer completes the design of the system’s processes. The design includes
all the necessary technical specifications for the screens, menus, reports, and other devices that might be used to help
make the system a more efficient information generator. The steps are laid out for conversion from the old to the new
system. Training principles and methodologies are also planned and must be submitted for management’s approval.

9.2.4 Implementation

During the implementation phase, the hardware, DBMS software, and application programs are installed, and the
database design is implemented. During the initial stages of the implementation phase, the system enters into a cycle
of coding, testing, and debugging until it is ready to be delivered. The actual database is created, and the system is
customized by the creation of tables and views, user authorizations, and so on.

The database contents might be loaded interactively or in batch mode, using a variety of methods and devices:

� Customized user programs.

� Database interface programs.

� Conversion programs that import the data from a different file structure, using batch programs, a database
utility, or both.

The system is subjected to exhaustive testing until it is ready for use. Traditionally, the implementation and testing of
a new system took 50 to 60 percent of the total development time. However, the advent of sophisticated application
generators and debugging tools has substantially decreased coding and testing time. After testing is concluded, the final
documentation is reviewed and printed and end users are trained. The system is in full operation at the end of this
phase but will be continuously evaluated and fine-tuned.

Note

Because attention has been focused on the details of the systems design process, the book has not until this
point explicitly recognized the fact that management approval is needed at all stages of the process. Such
approval is needed because a GO decision requires funding. There are many GO/NO GO decision points along
the way to a completed systems design!

C6545_09 8/16/2007 13:24:1 Page 377

377D A T A B A S E D E S I G N

9.2.5 Maintenance

Almost as soon as the system is operational, end users begin to request changes in it. Those changes generate system
maintenance activities, which can be grouped into three types:

� Corrective maintenance in response to systems errors.

� Adaptive maintenance due to changes in the business environment.

� Perfective maintenance to enhance the system.

Because every request for structural change requires retracing the SDLC steps, the system is, in a sense, always at
some stage of the SDLC.

Each system has a predetermined operational life span. The actual operational life span of a system depends on its
perceived utility. There are several reasons for reducing the operational life of certain systems. Rapid technological
change is one reason, especially for systems based on processing speed and expandability. Another common reason
is the cost of maintaining a system.

If the system’s maintenance cost is high, its value becomes suspect. Computer-aided systems engineering (CASE)
technology, such as System Architect or Visio Professional, helps make it possible to produce better systems within a
reasonable amount of time and at a reasonable cost. In addition, CASE-produced applications are more structured,
documented, and especially standardized, which tends to prolong the operational life of systems by making them
easier and cheaper to update and maintain. For example, if you have used Microsoft’s Visio Professional to develop
your database design, you already know that Visio Professional tests the internal consistency of your ERDs when you
create the relationships. Visio Professional implements the FKs according to the design’s entity types (weak, strong)
and the nature of the relationship (identifying, non-identifying) between those entities. When you see the result of the
implementation, you immediately see whether the results are what you intended them to be. In addition, if there are
circular arguments in the design, Visio Professional will make that clear. Therefore, you will be able to spot design
problems before they become permanent.

9.3 THE DATABASE LIFE CYCLE (DBLC)

Within the larger information system, the database, too, is subject to a life cycle. The Database Life Cycle (DBLC)
contains six phases, as shown in Figure 9.3: database initial study, database design, implementation and loading,
testing and evaluation, operation, and maintenance and evolution.

C6545_09 9/4/2007 14:37:7 Page 378

378 C H A P T E R 9

9.3.1 The Database Initial Study

If a designer has been called in, chances are the current system has failed to perform functions deemed vital by the
company. (You don’t call the plumber unless the pipes leak.) So in addition to examining the current system’s operation
within the company, the designer must determine how and why the current system fails. That means spending a lot of time
talking with (but mostly listening to) end users. Although database design is a technical business, it is also people-oriented.
Database designers must be excellent communicators, and they must have finely tuned interpersonal skills.

Depending on the complexity and scope of the database environment, the database designer might be a lone operator
or part of a systems development team composed of a project leader, one or more senior systems analysts, and one
or more junior systems analysts. The word designer is used generically here to cover a wide range of design team
compositions.

FIGURE
9.3

The Database Life Cycle (DBLC)

Database initial
study

Database design

Implementation
and loading

Testing and
evaluation

Operation

Maintenance and
evolution

Phase

Analyze the company situation

Action(s) Section

9.3.1

9.3.2

9.3.3

9.3.4

9.3.5

9.3.6

Define problems and constraints
Define objectives
Define scope and boundaries

Create the conceptual design
DBMS software selection
Create the logical design
Create the physical design

Install the DBMS
Create the database(s)
Load or convert the data

Test the database
Fine-tune the database
Evaluate the database and its application programs

Produce the required information flow

Introduce changes
Make enhancements

C6545_09 9/4/2007 14:37:8 Page 379

379D A T A B A S E D E S I G N

The overall purpose of the database initial study is to:

� Analyze the company situation.

� Define problems and constraints.

� Define objectives.

� Define scope and boundaries.

Figure 9.4 depicts the interactive and iterative processes required to complete the first phase of the DBLC successfully.
As you examine Figure 9.4, note that the database initial study phase leads to the development of the database system
objectives. Using Figure 9.4 as a discussion template, let’s examine each of its components in greater detail.

Analyze the Company Situation
The company situation describes the general conditions in which a company operates, its organizational structure,
and its mission. To analyze the company situation, the database designer must discover what the company’s
operational components are, how they function, and how they interact.

FIGURE
9.4

A summary of activities in the database initial study

Analysis of the
company situation

Company operationsCompany objectives Company structure

Definition of
problems and constraints

Database system
specifications

ScopeObjectives Boundaries

C6545_09 8/16/2007 13:25:2 Page 380

380 C H A P T E R 9

These issues must be resolved:

� What is the organization’s general operating environment, and what is its mission within that
environment? The design must satisfy the operational demands created by the organization’s mission. For
example, a mail-order business is likely to have operational requirements involving its database that are quite
different from those of a manufacturing business.

� What is the organization’s structure? Knowing who controls what and who reports to whom is quite useful
when you are trying to define required information flows, specific report and query formats, and so on.

Define Problems and Constraints
The designer has both formal and informal sources of information. If the company has existed for any length of time,
it already has some kind of system in place (either manual or computer-based). How does the existing system function?
What input does the system require? What documents does the system generate? By whom and how is the system
output used? Studying the paper trail can be very informative. In addition to the official version of the system’s
operation, there is also the more informal, real version; the designer must be shrewd enough to see how these differ.

The process of defining problems might initially appear to be unstructured. Company end users are often unable to
describe precisely the larger scope of company operations or to identify the real problems encountered during
company operations. Often the managerial view of a company’s operation and its problems is different from that of
the end users, who perform the actual routine work.

During the initial problem definition process, the designer is likely to collect very broad problem descriptions. For
example, note these concerns expressed by the president of a fast-growing transnational manufacturing company:

Although the rapid growth is gratifying, members of the management team are concerned that such growth is
beginning to undermine the ability to maintain a high customer service standard and, perhaps worse, to diminish
manufacturing standards control.

The problem definition process quickly leads to a host of general problem descriptions. For example, the marketing
manager comments:

I’m working with an antiquated filing system. We manufacture more than 1,700 specialty machine parts. When
a regular customer calls in, we can’t get a very quick inventory scan. If a new customer calls in, we can’t do a
current parts search by using a simple description, so we often do a machine setup for a part that we have in
inventory. That’s wasteful. And of course, some new customers get irritated when we can’t give a quick response.

The production manager comments:

At best, it takes hours to generate the reports I need for scheduling purposes. I don’t have hours for quick
turnarounds. It’s difficult to manage what I don’t have information about.

I don’t get quick product request routing. Take machine setup. Right now I’ve got operators either waiting for
the right stock or getting it themselves when a new part is scheduled for production. I can’t afford to have an
operator doing chores that a much lower-paid worker ought to be doing. There’s just too much waiting around
with the current scheduling. I’m losing too much time, and my schedules back up. Our overtime bill is ridiculous.

I sometimes produce parts that are already in inventory because we don’t seem to be able to match what we’ve
got in inventory with what we have scheduled. Shipping yells at me because I can’t turn out the parts, and often
they’ve got them in inventory one bay down. That’s costing us big bucks sometimes.

New reports can take days or even weeks to get to my office. And I need a ton of reports to schedule personnel,
downtime, training, etc. I can’t get new reports that I need NOW. What I need is the ability to get quick updates
on percent defectives, percent rework, the effectiveness of training, you name it. I need such reports by shift, by
date, by any characteristic I can think of to help me manage scheduling, training, you name it.

C6545_09 8/16/2007 13:25:2 Page 381

381D A T A B A S E D E S I G N

A machine operator comments:

It takes a long time to set my stuff up. If I get my schedule banged up because John doesn’t get the paperwork
on time, I wind up looking for setup specs, startup material, bin assignments, and other stuff. Sometimes I spend
two or three hours just setting up. Now you know why I can’t meet schedules. I try to be productive, but I’m
spending too much time getting ready to do my job.

After the initial declarations, the database designer must continue to probe carefully in order to generate additional
information that will help define the problems within the larger framework of company operations. How does the
problem of the marketing manager’s customer fit within the broader set of marketing department activities? How does
the solution to the customer’s problem help meet the objectives of the marketing department and the rest of the
company? How do the marketing department’s activities relate to those of the other departments? That last question
is especially important. Note that there are common threads in the problems described by the marketing and
production department managers. If the inventory query process can be improved, both departments are likely to find
simple solutions to at least some of the problems.

Finding precise answers is important, especially concerning the operational relationships among business units. If a
proposed system will solve the marketing department’s problems but exacerbate those of the production department,
not much progress will have been made. Using an analogy, suppose your home water bill is too high. You have
determined the problem: the faucets leak. The solution? You step outside and cut off the water supply to the house.
Is that an adequate solution? Or would the replacement of faucet washers do a better job of solving the problem? You
might find the leaky faucet scenario simplistic, yet almost any experienced database designer can find similar instances
of so-called database problem solving (admittedly more complicated and less obvious).

Even the most complete and accurate problem definition does not always lead to the perfect solution. The real world
usually intrudes to limit the design of even the most elegant database by imposing constraints. Such constraints include
time, budget, personnel, and more. If you must have a solution within a month and within a $12,000 budget, a solution
that takes two years to develop at a cost of $100,000 is not a solution. The designer must learn to distinguish
between what’s perfect and what’s possible.

Define Objectives
A proposed database system must be designed to help solve at least the major problems identified during the problem
discovery process. As the list of problems unfolds, several common sources are likely to be discovered. In the previous
example, both the marketing manager and the production manager seem to be plagued by inventory inefficiencies. If
the designer can create a database that sets the stage for more efficient parts management, both departments gain.
The initial objective, therefore, might be to create an efficient inventory query and management system.

Note that the initial study phase also yields proposed problem solutions. The designer’s job is to make sure that the
database system objectives, as seen by the designer, correspond to those envisioned by the end user(s). In any case,
the database designer must begin to address the following questions:

� What is the proposed system’s initial objective?

� Will the system interface with other existing or future systems in the company?

� Will the system share the data with other systems or users?

Note

When trying to develop solutions, the database designer must look for the source of the problems. There are
many cases of database systems that failed to satisfy the end users because they were designed to treat the
symptoms of the problems rather than their source.

C6545_09 8/17/2007 14:20:13 Page 382

382 C H A P T E R 9

Define Scope and Boundaries
The designer must recognize the existence of two sets of limits: scope and boundaries. The system’s scope defines
the extent of the design according to operational requirements. Will the database design encompass the entire
organization, one or more departments within the organization, or one or more functions of a single department? The
designer must know the “size of the ballpark.” Knowing the scope helps in defining the required data structures, the
type and number of entities, the physical size of the database, and so on.

The proposed system is also subject to limits known as boundaries, which are external to the system. Has any
designer ever been told, “We have all the time in the world” or “Use an unlimited budget and use as many people as
needed to make the design come together”? Boundaries are also imposed by existing hardware and software. Ideally,
the designer can choose the hardware and software that will best accomplish the system goals. In fact, software
selection is an important aspect of the Systems Development Life Cycle. Unfortunately, in the real world, a system
often must be designed around existing hardware. Thus, the scope and boundaries become the factors that force the
design into a specific mold, and the designer’s job is to design the best system possible within those constraints. (Note
that problem definitions and the objectives sometimes must be reshaped to meet the system scope and boundaries.)

9.3.2 Database Design

The second phase focuses on the design of the database model that will support company operations and objectives.
This is arguably the most critical DBLC phase: making sure that the final product meets user and system requirements.
In the process of database design, you must concentrate on the data characteristics required to build the database
model. At this point, there are two views of the data within the system: the business view of data as a source of
information and the designer’s view of the data structure, its access, and the activities required to transform the data
into information. Figure 9.5 contrasts those views. Note that you can summarize the different views by looking at the
terms what and how. Defining data is an integral part of the DBLC’s second phase.

As you examine the procedures required to complete the design phase in the DBLC, remember these points:

� The process of database design is loosely related to the analysis and design of a larger system. The data
component is only one element of a larger information system.

� The systems analysts or systems programmers are in charge of designing the other system components. Their
activities create the procedures that will help transform the data within the database into useful information.

� The database design does not constitute a sequential process. Rather, it is an iterative process that provides
continuous feedback designed to trace previous steps.

C6545_09 8/16/2007 13:26:41 Page 383

383D A T A B A S E D E S I G N

The database design process is depicted in Figure 9.6. Look at the procedure flow in the figure.

Now let’s explore in detail each of the components in Figure 9.6. Knowing those details will help you successfully
design and implement databases in a real-world setting.

Co m p a n y D a t a b a s e

FIGURE
9.5

Two views of data: business manager and database designer

Company

PurchasingEngineering Manufacturing

Shared information

Manager’s view

Designer’s view

What are the problems?
What are the solutions?
What information is needed to
implement the solutions?
What data are required to
generate the desired information?

How must the data be structured?
How will the data be accessed?
How are the data transformed
into information?

C6545_09 8/16/2007 13:29:13 Page 384

384 C H A P T E R 9

I. Conceptual Design
In the conceptual design stage, data modeling is used to create an abstract database structure that represents
real-world objects in the most realistic way possible. The conceptual model must embody a clear understanding of the
business and its functional areas. At this level of abstraction, the type of hardware and/or database model to be used
might not yet have been identified. Therefore, the design must be software- and hardware-independent so the system
can be set up within any hardware and software platform chosen later.

Keep in mind the following minimal data rule:

All that is needed is there, and all that is there is needed.

FIGURE
9.6

Procedure flow in the database design

Database analysis
and requirements

I. Conceptual Design

Entity relationship modeling
and normalization

Data model verification

Distributed database design*

DBMS software selection

Logical design

Physical design

II.

III.

IV.

Determine end-user views, outputs,
and transaction-processing requirements.

Define entities, attributes, and relationships.
Draw ER diagrams. Normalize tables.

Identify main processes, insert, update,
and delete rules.

Define the location of tables, access
requirements, and fragmentation strategy.

Translate the conceptual model into definitions
for tables, views, and so on.

Define storage structures and access paths for
optimum performance.

* See Chapter 12, Distributed Database Management Systems.

DBMS-
dependent

Hardware-
dependent

DBMS-
independent

O n l i n e C o n t e n t

In Appendixes B and C in the Student Online Companion, The University Lab: Conceptual Design
and The University Lab: Conceptual Design Verification, Logical Design, and
Implementation, respectively, you learn what happens during each of these stages in developing real
databases.

C6545_09 8/16/2007 13:29:25 Page 385

385D A T A B A S E D E S I G N

In other words, make sure that all data needed are in the model and that all data in the model are needed. All data
elements required by the database transactions must be defined in the model, and all data elements defined in the
model must be used by at least one database transaction.

However, as you apply the minimal data rule, avoid an excessive short-term bias. Focus not only on the immediate data
needs of the business, but also on the future data needs. Thus, the database design must leave room for future
modifications and additions, ensuring that the business’s investment in information resources will endure.

Note in Figure 9.6 that conceptual design requires four steps, examined in the next sections:

1. Data analysis and requirements

2. Entity relationship modeling and normalization

3. Data model verification

4. Distributed database design

Data Analysis and Requirements The first step in conceptual design is to discover the characteristics of the
data elements. An effective database is an information factory that produces key ingredients for successful decision
making. Appropriate data element characteristics are those that can be transformed into appropriate information.
Therefore, the designer’s efforts are focused on:

� Information needs. What kind of information is needed—that is, what output (reports and queries) must be
generated by the system, what information does the current system generate, and to what extent is that
information adequate?

� Information users. Who will use the information? How is the information to be used? What are the various
end-user data views?

� Information sources. Where is the information to be found? How is the information to be extracted once it
is found?

� Information constitution. What data elements are needed to produce the information? What are the data
attributes? What relationships exist among the data? What is the data volume? How frequently are the data
used? What data transformations are to be used to generate the required information?

The designer obtains the answers to those questions from a variety of sources in order to compile the necessary
information. Note these sources:

� Developing and gathering end-user data views. The database designer and the end user(s) interact to jointly
develop a precise description of end-user data views. In turn, the end-user data views will be used to help
identify the database’s main data elements.

� Directly observing the current system: existing and desired output. The end user usually has an existing
system in place, whether it’s manual or computer-based. The designer reviews the existing system to identify
the data and their characteristics. The designer examines the input forms and files (tables) to discover the data
type and volume. If the end user already has an automated system in place, the designer carefully examines the
current and desired reports to describe the data required to support the reports.

� Interfacing with the systems design group. As noted earlier in this chapter, the database design process is part
of the Systems Development Life Cycle (SDLC). In some cases, the systems analyst in charge of designing the
new system will also develop the conceptual database model. (This is usually true in a decentralized
environment.) In other cases, the database design is considered part of the database administrator’s job. The
presence of a database administrator (DBA) usually implies the existence of a formal data-processing
department. The DBA designs the database according to the specifications created by the systems analyst.

To develop an accurate data model, the designer must have a thorough understanding of the company’s data types and
their extent and uses. But data do not by themselves yield the required understanding of the total business. From a
database point of view, the collection of data becomes meaningful only when business rules are defined. Remember

C6545_09 8/16/2007 13:29:42 Page 386

386 C H A P T E R 9

from Chapter 2, Data Models, that a business rule is a brief and precise description of a policy, procedure, or principle
within a specific organization’s environment. Business rules, derived from a detailed description of an organization’s
operations, help to create and enforce actions within that organization’s environment. When business rules are written
properly, they define entities, attributes, relationships, connectivities, cardinalities, and constraints.

To be effective, business rules must be easy to understand and they must be widely disseminated to ensure that every
person in the organization shares a common interpretation of the rules. Using simple language, business rules describe
the main and distinguishing characteristics of the data as viewed by the company. Examples of business rules are as
follows:

� A customer may make many payments on account.

� Each payment on account is credited to only one customer.

� A customer may generate many invoices.

� Each invoice is generated by only one customer.

Given their critical role in database design, business rules must not be established casually. Poorly defined or inaccurate
business rules lead to database designs and implementations that fail to meet the needs of the organization’s end users.

Ideally, business rules are derived from a formal description of operations, which is a document that provides a
precise, up-to-date, and thoroughly reviewed description of the activities that define an organization’s operating
environment. (To the database designer, the operating environment is both the data sources and the data users.)
Naturally, an organization’s operating environment is dependent on the organization’s mission. For example, the
operating environment of a university would be quite different from that of a steel manufacturer, an airline, or a nursing
home. Yet no matter how different the organizations may be, the data analysis and requirements component of the
database design process is enhanced when the data environment and data use are described accurately and precisely
within a description of operations.

In a business environment, the main sources of information for the description of operations—and, therefore, of
business rules—are company managers, policy makers, department managers, and written documentation such as
company procedures, standards, and operations manuals. A faster and more direct source of business rules is direct
interviews with end users. Unfortunately, because perceptions differ, the end user can be a less reliable source when
it comes to specifying business rules. For example, a maintenance department mechanic might believe that any
mechanic can initiate a maintenance procedure, when actually only mechanics with inspection authorization should
perform such a task. Such a distinction might seem trivial, but it has major legal consequences. Although end users are
crucial contributors to the development of business rules, it pays to verify end-user perceptions. Often interviews with
several people who perform the same job yield very different perceptions of their job components. While such a
discovery might point to “management problems,” that general diagnosis does not help the database designer. Given
the discovery of such problems, the database designer’s job is to reconcile the differences and verify the results of the
reconciliation to ensure that the business rules are appropriate and accurate.

Knowing the business rules enables the designer to understand fully how the business works and what role the data
plays within company operations. Consequently, the designer must identify the company’s business rules and analyze
their impact on the nature, role, and scope of data.

Business rules yield several important benefits in the design of new systems:

� They help standardize the company’s view of data.

� They constitute a communications tool between users and designers.

� They allow the designer to understand the nature, role, and scope of the data.

� They allow the designer to understand business processes.

� They allow the designer to develop appropriate relationship participation rules and foreign key constraints.
(See Chapter 4, Entity Relationship (ER) Modeling.)

C6545_09 8/17/2007 14:20:35 Page 387

387D A T A B A S E D E S I G N

The last point is especially noteworthy: whether a given relationship is mandatory or optional is usually a function of
the applicable business rule.

Entity Relationship Modeling and Normalization Before creating the ER model, the designer must com-
municate and enforce appropriate standards to be used in the documentation of the design. The standards include the
use of diagrams and symbols, documentation writing style, layout, and any other conventions to be followed during
documentation. Designers often overlook this very important requirement, especially when they are working as
members of a design team. Failure to standardize documentation often means a failure to communicate later, and
communications failures often lead to poor design work. In contrast, well-defined and enforced standards make design
work easier and promise (but do not guarantee) a smooth integration of all system components.

Because the business rules usually define the nature of the relationship(s) among the entities, the designer must
incorporate them into the conceptual model. The process of defining business rules and developing the conceptual
model using ER diagrams can be described using the steps shown in Table 9.1.3

TABLE
9.1

Developing the Conceptual Model Using ER Diagrams

STEP ACTIVITY
1 Identify, analyze, and refine the business rules.
2 Identify the main entities, using the results of Step 1.
3 Define the relationships among the entities, using the results of Steps 1 and 2.
4 Define the attributes, primary keys, and foreign keys for each of the entities.
5 Normalize the entities. (Remember that entities are implemented as tables in an RDBMS.)
6 Complete the initial ER diagram.
7 Have the main end users verify the model in Step 6 against the data, information, and processing

requirements.
8 Modify the ER diagram, using the results of Step 7.

Some of the steps listed in Table 9.1 take place concurrently. And some, such as the normalization process, can
generate a demand for additional entities and/or attributes, thereby causing the designer to revise the ER model. For
example, while identifying two main entities, the designer might also identify the composite bridge entity that
represents the many-to-many relationship between those two main entities.

To review, suppose you are creating a conceptual model for the JollyGood Movie Rental Corporation, whose end users
want to track customers’ movie rentals. The simple ER diagram presented in Figure 9.7 shows a composite entity that
helps track customers and their video rentals. Business rules define the optional nature of the relationships between the
entities VIDEO and CUSTOMER depicted in Figure 9.7. (For example, customers are not required to check out a video.
A video need not be checked out in order to exist on the shelf. A customer may rent many videos, and a video may be
rented by many customers.) In particular, note the composite RENTAL entity that connects the two main entities.

As you will likely discover, the initial ER model may be subjected to several revisions before it meets the system’s
requirements. Such a revision process is quite natural. Remember that the ER model is a communications tool as well as
a design blueprint. Therefore, when you meet with the proposed system users, the initial ER model should give rise to
questions such as, “Is this really what you meant?” For example, the ERD shown in Figure 9.7 is far from complete.
Clearly, many more attributes must be defined and the dependencies must be checked before the design can be
implemented. In addition, the design cannot yet support the typical video rental transactions environment. For example,
each video is likely to have many copies available for rental purposes. However, if the VIDEO entity shown in Figure 9.7
is used to store the titles as well as the copies, the design triggers the data redundancies shown in Table 9.2.

3 See “Linking Rules to Models,” Alice Sandifer and Barbara von Halle, Database Programming and Design, 4(3), March 1991, pp. 13−16. Although
the source seems dated, it remains the current standard. The technology has changed substantially, but the process has not.

C6545_09 9/4/2007 14:39:34 Page 388

388 C H A P T E R 9

TABLE
9.2

Data Redundancies in the VIDEO Table

VIDEO_ID VIDEO_TITLE VIDEO_COPY VIDEO_CHG VIDEO_DAYS
SF-12345FT-1 Adventures on Planet III 1 $4.50 1
SF-12345FT-2 Adventures on Planet III 2 $4.50 1
SF-12345FT-3 Adventures on Planet III 3 $4.50 1
WE-5432GR-1 TipToe Canu and Tyler 2: A Journey 1 $2.99 2
WE-5432GR-2 TipToe Canu and Tyler 2: A Journey 2 $2.99 2

The initial ERD shown in Figure 9.7 must be modified to reflect the answer to the question, “Is more than one copy
available for each title?” Also, payment transactions must be supported. (You will have an opportunity to modify this
initial design in Problem 5 at the end of the chapter.)

From the preceding discussion, you might get the impression that ER modeling activities (entity/attribute definition,
normalization, and verification) take place in a precise sequence. In fact, once you have completed the initial ER model,
chances are you will move back and forth among the activities until you are satisfied that the ER model accurately
represents a database design that is capable of meeting the required system demands. The activities often take place in
parallel, and the process is iterative. Figure 9.8 summarizes the ER modeling process interactions. Figure 9.9 summarizes
the array of design tools and information sources that the designer can use to produce the conceptual model.

All objects (entities, attributes, relations, views, and so on) are defined in a data dictionary, which is used in tandem with
the normalization process to help eliminate data anomalies and redundancy problems. During this ER modeling
process, the designer must:

� Define entities, attributes, primary keys, and foreign keys. (The foreign keys serve as the basis for the
relationships among the entities.)

� Make decisions about adding new primary key attributes to satisfy end-user and/or processing requirements.

� Make decisions about the treatment of multivalued attributes.

� Make decisions about adding derived attributes to satisfy processing requirements.

� Make decisions about the placement of foreign keys in 1:1 relationships. (If necessary, review the supertype/
subtype relationships in Chapter 6, Advanced Data Modeling.)

� Avoid unnecessary ternary relationships.

� Draw the corresponding ER diagram.

� Normalize the entities.

� Include all data element definitions in the data dictionary.

� Make decisions about standard naming conventions.

FIGURE
9.7

A composite entity

C6545_09 8/16/2007 13:50:4 Page 389

389D A T A B A S E D E S I G N

FIGURE
9.8

ER modeling is an iterative process based on many activities

Database initial study

DBLC
processes and

database transactions

Verification Attributes

Initial ER model

Normalization

Data analysis
User views and
business rules

Final ER model

FIGURE
9.9

Conceptual design tools and information sources

Conceptual model

Definition
and

validation

Design toolsInformation sources

ERD

Business rules and
data constraints

Data flow diagrams
DFD*

Process functional
descriptions (FD)*

(user views)

ER diagram

Normalization

Data dictionary

* Output generated by the systems analysis and design activities

C6545_09 8/16/2007 13:50:5 Page 390

390 C H A P T E R 9

The naming conventions requirement is important, yet it is frequently ignored at the designer’s risk. Real database
design is generally accomplished by teams. Therefore, it is important to ensure that the team members work in an
environment in which naming standards are defined and enforced. Proper documentation is crucial to the successful
completion of the design. Therefore, it is very useful to establish procedures that are, in effect, self-documenting.

Although some useful entity and attribute naming conventions were established in Chapter 4, they will be revisited in
greater detail here. However, keep in mind that such conventions are sometimes subject to constraints imposed by the
DBMS software. In an enterprise-wide database environment, the lowest common denominator rules. For example,
Microsoft Access finds the attribute name LINE_ITEM_NUMBER to be perfectly acceptable. Many older DBMSs,
however, are likely to truncate such long names when they are exported from one DBMS to another, thus making
documentation more difficult. Therefore, table-exporting requirements might dictate the use of shorter names. (The
same is true for data types. For example, many older DBMSs cannot handle OLE or memo formats.)

This book uses naming conventions that are likely to be acceptable across a reasonably broad range of DBMSs and
will meet self-documentation requirements to the greatest extent possible. As the older DBMSs fade from the scene,
the naming conventions will be more broadly applicable. You should try to adhere to the following conventions:

� Use descriptive entity and attribute names wherever possible. For example, in the University Computer Lab
database, the USER entity contains data about the lab’s users and the LOCATION entity is related to the
location of the ITEMs that the lab director wants to track.

� Composite entities usually are assigned a name that describes the relationship they represent. For example, in
the University Computer Lab database, an ITEM may be stored in many LOCATIONs and a LOCATION may
have many ITEMs stored in it. Therefore, the composite (bridge) entity that links ITEM and LOCATION will be
named STORAGE. Occasionally, the designer finds it necessary to show what entities are being linked by the
composite entity. In such cases, the composite entity name may borrow segments of those entity names. For
example, STU_CLASS may be the composite entity that links STUDENT and CLASS. However, that naming
convention might make the next one more cumbersome, so it should be used sparingly. (A better choice would
be the composite entity name ENROLL, to indicate that the STUDENT enrolls in a CLASS.)

� An attribute name should be descriptive, and it should contain a prefix that helps identify the table in which it
is found. For the purposes here, the maximum prefix length will be five characters. For example, the VENDOR
table might contain attributes such as VEND_ID and VEND_PHONE. Similarly, the ITEM table might contain
attribute names such as ITEM_ID and ITEM_DESCRIPTION. The advantage of that naming convention is that
it immediately identifies a table’s foreign key(s). For example, if the EMPLOYEE table contains attributes such
as EMP_ID, EMP_LNAME, and DEPT_CODE, it is immediately obvious that DEPT_CODE is the foreign key
that probably links EMPLOYEE to DEPARTMENT. Naturally, the existence of relationships and table names
that start with the same characters might dictate that you bend this naming convention occasionally, as you can
see in the next bulleted item.

� If one table is named ORDER and its weak counterpart is named ORDER_ITEM, the prefix ORD will be used
to indicate an attribute originating in the ORDER table. The ITEM prefix will identify an attribute originating
in the ITEM table. Clearly, you cannot use ORD as a prefix to the attributes originating in the ORDER_ITEM
table, so you should use a combination of characters, such as OI, as the prefix to the ORDER_ITEM attribute
names. In spite of that limitation, it is generally possible to assign prefixes that identify an attribute’s origin.
(Keep in mind that some RDBMSs use a “reserved word” list. For example, ORDER might be interpreted as
a reserved word in a SELECT statement. In that case, you should use a table name other than ORDER.)

As you can tell, it is not always possible to strictly adhere to the naming conventions. Sometimes the requirement to
limit name lengths makes the attribute or entity names less descriptive. Also, with a large number of entities and
attributes in a complex design, you might have to be somewhat inventive about using proper attribute name prefixes.
But then those prefixes are less helpful in identifying the precise source of the attribute. Nevertheless, the consistent
use of prefixes will reduce sourcing doubts significantly. For example, while the prefix CO does not obviously relate to
the CHECK_OUT table, just as obvious is the fact that it does not originate in WITHDRAW, ITEM, or USER.

C6545_09 8/16/2007 13:50:28 Page 391

391D A T A B A S E D E S I G N

Adherence to the naming conventions just described serves database designers well. In fact, a common refrain from
users seems to be this: “I didn’t know why you made such a fuss over naming conventions, but now that I’m doing this
stuff for real, I’ve become a true believer.”

Data Model Verification The ER model must be verified against the proposed system processes in order to
corroborate that the intended processes can be supported by the database model. Verification requires that the model
be run through a series of tests against:

� End-user data views and their required transactions: SELECT, INSERT, UPDATE, and DELETE operations and
queries and reports.

� Access paths and security.

� Business-imposed data requirements and constraints.

Revision of the original database design starts with a careful reevaluation of the entities, followed by a detailed
examination of the attributes that describe those entities. This process serves several important purposes:

� The emergence of the attribute details might lead to a revision of the entities themselves. Perhaps some of the
components first believed to be entities will, instead, turn out to be attributes within other entities. Or what was
originally considered to be an attribute might turn out to contain a sufficient number of subcomponents to
warrant the introduction of one or more new entities.

� The focus on attribute details can provide clues about the nature of relationships as they are defined by the
primary and foreign keys. Improperly defined relationships lead to implementation problems first and to
application development problems later.

� To satisfy processing and/or end-user requirements, it might be useful to create a new primary key to replace an
existing primary key. For example, in the invoicing example illustrated in Figure 3.30 in Chapter 3, The Relational
Database Model, a primary key composed of INV_NUMBER and LINE_NUMBER replaced the original primary
key composed of INV_NUMBER and PROD_CODE. That change ensured that the items in the invoice would
always appear in the same order as they were entered. To simplify queries and to increase processing speed, you
may create a single-attribute primary key to replace an existing multiple-attribute primary key.

� Unless the entity details (the attributes and their characteristics) are precisely defined, it is difficult to evaluate
the extent of the design’s normalization. Knowledge of the normalization levels helps guard against undesirable
redundancies.

� A careful review of the rough database design blueprint is likely to lead to revisions. Those revisions will help
ensure that the design is capable of meeting end-user requirements.

Because real-world database design is generally done by teams, you should strive to organize the design’s major
components into modules. A module is an information system component that handles a specific function, such as
inventory, orders, payroll, and so on. At the design level, a module is an ER segment that is an integrated part of the
overall ER model. Creating and using modules accomplishes several important ends:

� The modules (and even the segments within them) can be delegated to design groups within teams, greatly
speeding up the development work.

� The modules simplify the design work. The large number of entities within a complex design can be daunting.
Each module contains a more manageable number of entities.

� The modules can be prototyped quickly. Implementation and applications programming trouble spots can be
identified more readily. (Quick prototyping is also a great confidence builder.)

� Even if the entire system can’t be brought online quickly, the implementation of one or more modules will
demonstrate that progress is being made and that at least part of the system is ready to begin serving the end users.

As useful as modules are, they represent ER model fragments. Fragmentation creates a potential problem: the
fragments might not include all of the ER model’s components and might not, therefore, be able to support all of the
required processes. To avoid that problem, the modules must be verified against the complete ER model. That
verification process is detailed in Table 9.3.

C6545_09 8/16/2007 13:53:48 Page 392

392 C H A P T E R 9

Keep in mind that the verification process requires the con-
tinuous verification of business transactions as well as system
and user requirements. The verification sequence must be
repeated for each of the system’s modules. Figure 9.10 illus-
trates the iterative nature of the process.

The verification process starts with selecting the central
(most important) entity. The central entity is defined in terms
of its participation in most of the model’s relationships, and
it is the focus for most of the system’s operations. In other
words, to identify the central entity, the designer selects the
entity involved in the greatest number of relationships. In the
ER diagram, it is the entity that has more lines connected to
it than any other.

The next step is to identify the module or subsystem to which the central entity belongs and to define that module’s
boundaries and scope. The entity belongs to the module that uses it most frequently. Once each module is identified,
the central entity is placed within the module’s framework to let you focus your attention on the module’s details.

TABLE
9.3

The ER Model Verification
Process

STEP ACTIVITY
1 Identify the ER model’s central entity.
2 Identify each module and its

components.
3 Identify each module’s transaction

requirements:
Internal: Updates/Inserts/Deletes/
Queries/Reports
External: Module interfaces

4 Verify all processes against the
ER model.

5 Make all necessary changes suggested
in Step 4.

6 Repeat Steps 2−5 for all modules.

FIGURE
9.10

Iterative ER model verification process

ER model verified

Yes

No

Identify central entity,
module and components

Define processes and
transaction steps

Verify ER model

Make changes
to ER model

Does ER
require changes

C6545_09 8/16/2007 13:54:39 Page 393

393D A T A B A S E D E S I G N

Within the central entity/module framework, you must:

� Ensure the module’s cohesivity. The term cohesivity describes the strength of the relationships found
among the module’s entities. A module must display high cohesivity—that is, the entities must be strongly
related, and the module must be complete and self-sufficient.

� Analyze each module’s relationships with other modules to address module coupling. Module coupling
describes the extent to which modules are independent of one another. Modules must display low coupling,
indicating that they are independent of other modules. Low coupling decreases unnecessary intermodule
dependencies, thereby allowing the creation of a truly modular system and eliminating unnecessary relation-
ships among entities.

Processes may be classified according to their:

� Frequency (daily, weekly, monthly, yearly, or exceptions).

� Operational type (INSERT or ADD, UPDATE or CHANGE, DELETE, queries and reports, batches, mainte-
nance, and backups).

All identified processes must be verified against the ER model. If necessary, appropriate changes are implemented. The
process verification is repeated for all of the model’s modules. You can expect that additional entities and attributes will
be incorporated into the conceptual model during its validation.

At this point, a conceptual model has been defined as hardware- and software-independent. Such independence
ensures the system’s portability across platforms. Portability can extend the database’s life by making it possible to
migrate to another DBMS and/or another hardware platform.

Distributed Database Design Portions of a database may reside in several physical locations. Processes that
access the database may also vary from one location to another. For example, a retail process and a warehouse storage
process are likely to be found in different physical locations. If the database process is to be distributed across the
system, the designer must also develop the data distribution and allocation strategies for the database. The design
complications introduced by distributed processes are examined in detail in Chapter 12, Distributed Database Systems.

II. DBMS Software Selection
The selection of DBMS software is critical to the information system’s smooth operation. Consequently, the
advantages and disadvantages of the proposed DBMS software should be carefully studied. To avoid false expectations,
the end user must be made aware of the limitations of both the DBMS and the database.

Although the factors affecting the purchasing decision vary from company to company, some of the most
common are:

� Cost. This includes the original purchase price, along with maintenance, operational, license, installation,
training, and conversion costs.

� DBMS features and tools. Some database software includes a variety of tools that facilitate the application
development task. For example, the availability of query by example (QBE), screen painters, report generators,
application generators, data dictionaries, and so on, helps to create a more pleasant work environment for
both the end user and the application programmer. Database administrator facilities, query facilities, ease of
use, performance, security, concurrency control, transaction processing, and third-party support also influence
DBMS software selection.

� Underlying model. This can be hierarchical, network, relational, object/relational, or object-oriented.

� Portability. A DBMS can be portable across platforms, systems, and languages.

� DBMS hardware requirements. Items to consider include processor(s), RAM, disk space, and so on.

C6545_09 8/16/2007 13:55:11 Page 394

394 C H A P T E R 9

III. Logical Design
Logical design translates the conceptual design into the internal model for a selected database management system
(DBMS) such as DB2, SQL Server, MySQL, Oracle, and Access. Therefore, the logical design is software-dependent.

Logical design requires that all objects in the model be mapped to the specific constructs used by the selected database
software. For example, the logical design for a relational DBMS includes the specifications for the tables, indexes,
views, transactions, access authorizations, and so on. In the following discussion, a small portion of the simple
conceptual model shown in Figure 9.11 is converted into a logical design based on the relational model.

The translation of the conceptual model in Figure 9.11 requires the definition of the attribute domains, design of
the required tables, and appropriate access restriction formats. For example, the domain definitions for the
CLASS_CODE, CLASS_DAYS, and CLASS_TIME attributes displayed in the CLASS entity in Figure 9.11 are written
this way:

CLASS_CODE is a valid class code.
Type: numeric
Range: low value = 1000 high value = 9999
Display format: 9999
Length: 4

CLASS_DAYS is a valid day code.
Type: character
Display format: XXX
Valid entries: MWF, TTh, M, T, W, Th, F, S
Length: 3

CLASS_TIME is a valid time.
Type: character
Display format: 99:99 (24-hour clock)
Display range: 06:00 to 22:00
Length: 5

The logical design’s tables must correspond to the entities (EMPLOYEE, PROFESSOR, COURSE, and CLASS) shown
in the conceptual design of Figure 9.11, and the table columns must correspond to the attributes specified in the
conceptual design. For example, the initial table layout for the COURSE table might look like Table 9.4.

FIGURE
9.11

A simple conceptual model

C6545_09 8/17/2007 14:21:0 Page 395

395D A T A B A S E D E S I G N

TABLE
9.4

Sample Layout for the COURSE Table

CRS_CODE CRS_TITLE CRS_DESCRIPT CRS_CREDIT
CIS-4567 Database Systems Design Design and implementation of database

systems; includes conceptual design, logical
design, implementation, and management;
prerequisites: CIS 2040, CIS 2345, CIS 3680,
and upper-division standing

4

QM-3456 Statistics II Statistical applications; course requires use
of statistical software (MINITAB and SAS) to
interpret data; prerequisites: MATH 2345 and
QM 2233

3

The right to use the database is also specified during the logical design phase. Who will be allowed to use the tables,
and what portion(s) of the table(s) will be available to which users? Within a relational framework, the answers to those
questions require the definition of appropriate access rights and views.

The logical design translates the software-independent conceptual model into a software-dependent model by defining
the appropriate domain definitions, the required tables, and the necessary access restrictions. The stage is now set to
define the physical requirements that allow the system to function within the selected hardware environment.

IV. Physical Design
Physical design is the process of selecting the data storage and data access characteristics of the database. The
storage characteristics are a function of the types of devices supported by the hardware, the type of data access
methods supported by the system, and the DBMS. Physical design affects not only the location of the data in the
storage device(s), but also the performance of the system.

Physical design is a very technical job, more typical of the client/server and mainframe world than of the PC world.
Yet even in the more complex midrange and mainframe environments, modern database software has assumed much
of the burden of the physical portion of the design and its implementation.

In spite of the fact that relational models tend to hide the complexities of the computer’s physical characteristics, the
performance of relational databases is affected by physical characteristics. For example, performance can be affected
by the characteristics of the storage media, such as seek time, sector and block (page) size, buffer pool size, and the
number of disk platters and read/write heads. In addition, factors such as the creation of an index can have a
considerable effect on the relational database’s performance, that is, data access speed and efficiency.

Even the type of data request must be analyzed carefully to determine the optimum access method for meeting the
application requirements, establishing the data volume to be stored, and estimating the performance. Some DBMSs
automatically reserve the space required to store the database definition and the user’s data in permanent storage
devices. This ensures that the data are stored in sequentially adjacent locations, thereby reducing data access time and

O n l i n e C o n t e n t

Physical design is particularly important in the older hierarchical and network models described in
Appendixes K and L, The Hierarchical Database Model and The Network Database Model,
respectively, in the Student Online Companion. Relational databases are more insulated from physical details
than the older hierarchical and network models.

C6545_09 8/16/2007 14:1:9 Page 396

396 C H A P T E R 9

increasing system performance. (Database performance tuning is covered in detail in Chapter 11, Database
Performance Tuning and Query Optimization.)

Physical design becomes more complex when data are distributed at different locations because the performance is
affected by the communication media’s throughput. Given such complexities, it is not surprising that designers favor
database software that hides as many of the physical-level activities as possible.

The preceding sections have separated the discussions of logical and physical design activities. In fact, logical and
physical design can be carried out in parallel, on a table-by-table (or file-by-file) basis. Logical and physical design can
also be carried out in parallel when the designer is working with hierarchical and network models. Such parallel
activities require the designer to have a thorough understanding of the software and hardware in order to take full
advantage of both software and hardware characteristics.

9.3.3 Implementation and Loading

In most modern relational DBMSs, such as IBM DB2, Microsoft SQL Server, and Oracle, a new database
implementation requires the creation of special storage-related constructs to house the end-user tables. The constructs
usually include the storage group, the table space, and the tables. See Figure 9.12. Note that a table space may contain
more than one table.

For example, the implementation of the logical design in IBM’s DB2 would require that you:

1. Create the database storage group. This step (done by the system administrator or SYSADM) is mandatory
for such mainframe databases as DB2. Other DBMS software may create equivalent storage groups
automatically when a database is created. (See Step 2.) Consult your DBMS documentation to see if you must
create a storage group and, if so, what the command syntax must be.

Table
Table

Table space

FIGURE
9.12

Physical organization of a DB2 database environment

Table

Table space

Table

Table
Table

Table

Table space

Table space

Database

Storage group

Table space

C6545_09 8/16/2007 14:1:27 Page 397

397D A T A B A S E D E S I G N

2. Create the database within the storage group (also done by the SYSADM).

3. Assign the rights to use the database to a database administrator (DBADM).

4. Create the table space(s) within the database (usually done by a DBADM).

5. Create the table(s) within the table space(s) (also usually done by a DBADM). A generic SQL table creation
might look like this:

CREATE TABLE COURSE (
CRS_CODE CHAR(10) NOT NULL,
CRS_TITLE CHAR(C15) NOT NULL,
CRS_DESCRIPT CHARC(8) NOT NULL
CRS_CREDIT NUMBER,
PRIMARY KEY (CRS_CODE));
CREATE TABLE CLASS (
CLASS_CODE CHAR(4) NOT NULL,
CLASS_DAYS CHAR(3) NOT NULL,
CLASS_TIME CHAR(14) NOT NULL,
CLASS_DAY CHAR(3) NOT NULL,
CRS_CODE CHAR(10) NOT NULL,
PRIMARY KEY (CLASS_CODE),
FOREIGN KEY (CRS_CODE) REFERENCES COURSE;

(Note that the COURSE table is created first because it is referenced by the CLASS table.)

6. Assign access rights to the table spaces and to the tables within specified table spaces (another DBADM duty).
Access rights may be limited to views rather than to whole tables. The creation of views is not required for
database access in the relational environment, but views are desirable from a security standpoint.

Access rights to a table named PROFESSOR may be granted to a person whose identification code is PROB
by typing:

GRANT USE OF TABLE PROFESSOR
TO PROB;

A view named PROF may be substituted for the PROFESSOR table:

CREATE VIEW PROF
SELEC TEMP_LNAME
FROM EMPLOYEE
WHERE PROFESSOR.EMP_NUM = EMPLOYEE.EMP_NUM;

After the database has been created, the data must be loaded into the database tables. If the data are currently stored
in a format different from that required by the new DBMS, the data must be converted prior to being loaded.

During the implementation and loading phase, you also must address performance, security, backup and recovery,
integrity, and company standards. They will be discussed next.

Note

The following summary of database implementation activities assumes the use of a sophisticated DBMS. All
current generation DBMSs offer the features discussed next.

C6545_09 8/16/2007 14:8:39 Page 398

398 C H A P T E R 9

Performance
Database performance is one of the most important factors in certain database implementations. Chapter 11 covers
the subject in greater detail. However, not all DBMSs have performance-monitoring and fine-tuning tools embedded
in their software, thus making it difficult to evaluate performance.

Performance evaluation is also rendered more difficult because there is no standard measurement for database
performance. Performance varies according to the hardware and software environment used. Naturally, the database’s
size also affects database performance: a search of 10 tuples will be faster than a search of 100,000 tuples.

Important factors in database performance also include system and database configuration parameters, such as data
placement, access path definition, the use of indexes, and buffer size.

Security
Data stored in the company database must be protected from access by unauthorized users. (It does not take much
imagination to predict the likely results when students have access to a student database or when employees have
access to payroll data!) Consequently, you must provide for (at least) the following:

� Physical security allows only authorized personnel physical access to specific areas. Depending on the type of
database implementation, however, establishing physical security might not always be practical. For example,
a university student research database is not a likely candidate for physical security. The existence of large
multiserver PC networks often makes physical security impractical.

� Password security allows the assignment of access rights to specific authorized users. Password security is
usually enforced at logon time at the operating system level.

� Access rights can be established through the use of database software. The assignment of access rights may
restrict operations (CREATE, UPDATE, DELETE, and so on) on predetermined objects such as databases,
tables, views, queries, and reports.

� Audit trails are usually provided by the DBMS to check for access violations. Although the audit trail is an
after-the-fact device, its mere existence can discourage unauthorized use.

� Data encryption can be used to render data useless to unauthorized users who might have violated some of
the database security layers.

� Diskless workstations allow end users to access the database without being able to download the information
from their workstations.

For a more detailed discussion of security issues, please refer to Chapter 15, Database Administration and Security.

Backup and Recovery
Timely data availability is crucial for almost every database. Unfortunately, the database can be subject to data loss
through unintended data deletion, power outages, and so on. Data backup and recovery (restore) procedures create a
safety valve, allowing the database administrator to ensure the availability of consistent data. Typically, database
vendors encourage the use of fault-tolerant components such as uninterruptible power supply (UPS) units, RAID
storage devices, clustered servers, and data replication technologies to ensure the continuous operation of the database
in case of a hardware failure. Even with these components, backup and restore functions constitute a very important
component of daily database operations. Some DBMSs provide functions that allow the database administrator to
schedule automatic database backups to permanent storage devices such as disks, DVDs, and tapes. Database backups
can be performed at different levels:

� A full backup of the database, or dump of the entire database. In this case, all database objects are backed
up in their entirety.

C6545_09 8/16/2007 14:9:25 Page 399

399D A T A B A S E D E S I G N

� A differential backup of the database, in which only the last modifications to the database (when compared
with a previous full backup copy) are copied. In this case, only the objects that have been updated since the
last full backup are backed up.

� A transaction log backup, which backs up only the transaction log operations that are not reflected in a
previous backup copy of the database. In this case, only the transaction log is backed up; no other database
objects are backed up. (For a complete explanation of the use of the transaction log see Chapter 10,
Transaction Management and Concurrency Control.)

The database backup is stored in a secure place, usually in a different building from the database itself, and is protected
against dangers such as fire, theft, flood, and other potential calamities. The main purpose of the backup is to
guarantee database restoration following system (hardware/software) failures.

Failures that plague databases and systems are generally induced by software, hardware, programming exemptions,
transactions, or external factors. Table 9.5 briefly summarizes the most common sources of database failure.

TABLE
9.5

Common Sources of Database Failure

SOURCE DESCRIPTION EXAMPLE
Software Software-induced failures may be traceable to

the operating system, the DBMS software,
application programs, or viruses.

The SQL.Slammer worm affected many
unpatched MS SQL Server systems in 2003
causing damages valued in millions of dollars.

Hardware Hardware-induced failures may include
memory chip errors, disk crashes, bad disk
sectors, and “disk full” errors.

A bad memory module or a multiple hard
disk failure in a database system can bring a
database system to an abrupt stop.

Programming
exemptions

Application programs or end users may roll
back transactions when certain conditions are
defined. Programming exemptions can also
be caused by malicious or improperly tested
code that can be exploited by hackers.

Hackers constantly searching for exploits in
unprotected Web database systems.

Transactions The system detects deadlocks and aborts one
of the transactions. (See Chapter 10.)

Deadlock occurs when executing multiple
simultaneous transactions.

External factors Backups are especially important when a sys-
tem suffers complete destruction due to fire,
earthquake, flood, or other natural disaster.

The 2005 Katrina hurricane in New Orleans
caused data losses in the millions of dollars.

Depending on the type and extent of the failure, the recovery process ranges from a minor short-term inconvenience
to a major long-term rebuild. Regardless of the extent of the required recovery process, recovery is not possible without
a usable backup.

The database recovery process generally follows a predictable scenario. First, the type and extent of the required
recovery are determined. If the entire database needs to be recovered to a consistent state, the recovery uses the most
recent backup copy of the database in a known consistent state. The backup copy is then rolled forward to restore all
subsequent transactions by using the transaction log information. If the database needs to be recovered but the
committed portion of the database is still usable, the recovery process uses the transaction log to “undo” all of the
transactions that were not committed.

Integrity
Data integrity is enforced by the DBMS through the proper use of primary and foreign key rules. In addition, data
integrity is also the result of properly implemented data management policies. Such policies are part of a
comprehensive data administration framework. For a more detailed study of this topic, see The DBA’s Managerial Role
section in Chapter 15.

C6545_09 8/16/2007 14:10:1 Page 400

400 C H A P T E R 9

Company Standards
Database standards may be partially defined by specific company requirements. The database administrator must
implement and enforce such standards.

9.3.4 Testing and Evaluation

Once the data have been loaded into the database, the DBA tests and fine-tunes the database for performance,
integrity, concurrent access, and security constraints. The testing and evaluation phase occurs in parallel with
applications programming.

Programmers use database tools to prototype the applications during coding of the programs. Tools such as report
generators, screen painters, and menu generators are especially useful to the applications programmers during the
prototyping phase.

If the database implementation fails to meet some of the system’s evaluation criteria, several options may be considered
to enhance the system:

� For performance-related issues, the designer must consider fine-tuning specific system and DBMS configura-
tion parameters. The best sources of information are the hardware and software technical reference manuals.

� Modify the physical design. (For example, the proper use of indexes tends to be particularly effective in
facilitating pointer movements, thus enhancing performance.)

� Modify the logical design.

� Upgrade or change the DBMS software and/or the hardware platform.

9.3.5 Operation

Once the database has passed the evaluation stage, it is considered to be operational. At that point, the database, its
management, its users, and its application programs constitute a complete information system.

The beginning of the operational phase invariably starts the process of system evolution. As soon as all of the targeted
end users have entered the operations phase, problems that could not have been foreseen during the testing phase
begin to surface. Some of the problems are serious enough to warrant emergency “patchwork,” while others are
merely minor annoyances. For example, if the database design is implemented to interface with the Web, the sheer
volume of transactions might cause even a well-designed system to bog down. In that case, the designers have to
identify the source(s) of the bottleneck(s) and produce alternative solutions. Those solutions may include using
load-balancing software to distribute the transactions among multiple computers, increasing the available cache for the
DBMS, and so on. In any case, the demand for change is the designer’s constant concern, which leads to phase 6,
maintenance and evolution.

9.3.6 Maintenance and Evolution

The database administrator must be prepared to perform routine maintenance activities within the database. Some of
the required periodic maintenance activities include:

� Preventive maintenance (backup).

� Corrective maintenance (recovery).

� Adaptive maintenance (enhancing performance, adding entities and attributes, and so on).

� Assignment of access permissions and their maintenance for new and old users.

� Generation of database access statistics to improve the efficiency and usefulness of system audits and to
monitor system performance.

� Periodic security audits based on the system-generated statistics.

� Periodic (monthly, quarterly, or yearly) system-usage summaries for internal billing or budgeting purposes.

C6545_09 8/16/2007 14:10:21 Page 401

401D A T A B A S E D E S I G N

The likelihood of new information requirements and the demand for additional reports and new query formats require
application changes and possible minor changes in the database components and contents. Those changes can be
easily implemented only when the database design is flexible and when all documentation is updated and online.
Eventually, even the best-designed database environment will no longer be capable of incorporating such evolutionary
changes; then the whole DBLC process begins anew.

You should not be surprised to discover that many of the activities described in the Database Life Cycle (DBLC) remind
you of those in the Systems Development Life Cycle (SDLC). After all, the SDLC represents the framework within
which the DBLC activities take place. A summary of the parallel activities that take place within the SDLC and the
DBLC is shown in Figure 9.13.

9.4 DATABASE DESIGN STRATEGIES

There are two classical approaches to database design:

� Top-down design starts by identifying the data sets, and then defines the data elements for each of those sets.
This process involves the identification of different entity types and the definition of each entity’s attributes.

� Bottom-up design first identifies the data elements (items), and then groups them together in data sets. In
other words, it first defines attributes, and then groups them to form entities.

FIGURE
9.13

Parallel activities in the DBLC and the SDLC

Database maintenance
and evolution

Operation

Application program
maintenance

Testing and
evaluation

Implementation
and loading

Database design

Database initial
study

System
design

System
implementation

Creation
Loading
Fine-tuning

Conceptual
Logical
Physical

DBLC SDLC

Analysis

Detailed design

Coding

Testing and
evaluation

Screens
Reports
Procedures

Prototyping

Debugging

C6545_09 8/16/2007 14:10:40 Page 402

402 C H A P T E R 9

The two approaches are illustrated in Figure 9.14. The selection of a primary emphasis on top-down or bottom-up
procedures often depends on the scope of the problem or on personal preferences. Although the two methodologies are
complementary rather than mutually exclusive, a primary emphasis on a bottom-up approach may be more productive for
small databases with few entities, attributes, relations, and transactions. For situations in which the number, variety, and
complexity of entities, relations, and transactions is overwhelming, a primarily top-down approach may be more easily
managed. Most companies have standards for systems development and database design already in place.

9.5 CENTRALIZED VS. DECENTRALIZED DESIGN

The two general approaches (bottom-up and top-down) to database design can be influenced by factors such as the
scope and size of the system, the company’s management style, and the company’s structure (centralized or
decentralized). Depending on such factors, the database design may be based on two very different design
philosophies: centralized and decentralized.

Centralized design is productive when the data component is composed of a relatively small number of objects and
procedures. The design can be carried out and represented in a fairly simple database. Centralized design is typical of
relatively simple and/or small databases and can be successfully done by a single person (database administrator) or by
a small, informal design team. The company operations and the scope of the problem are sufficiently limited to allow
even a single designer to define the problem(s), create the conceptual design, verify the conceptual design with the user
views, define system processes and data constraints to ensure the efficacy of the design, and ensure that the design
will comply with all the requirements. (Although centralized design is typical for small companies, do not make the
mistake of assuming that centralized design is limited to small companies. Even large companies can operate within
a relatively simple database environment.) Figure 9.15 summarizes the centralized design option. Note that a single
conceptual design is completed and then validated in the centralized design approach.

B
o
t
t
o
m

U
p

T
o
p

D
o
w
n

Conceptual model

Entity Entity

Attribute Attribute Attribute Attribute

FIGURE
9.14

Top-down vs. bottom-up design sequencing

Note

Even when a primarily top-down approach is selected, the normalization process that revises existing table
structures is (inevitably) a bottom-up technique. ER models constitute a top-down process even when the
selection of attributes and entities can be described as bottom-up. Because both the ER model and normaliza-
tion techniques form the basis for most designs, the top-down vs. bottom-up debate may be based on a
theoretical distinction rather than an actual difference.

C6545_09 8/16/2007 14:11:26 Page 403

403D A T A B A S E D E S I G N

Decentralized design might be used when the data component of the system has a considerable number of entities
and complex relations on which very complex operations are performed. Decentralized design is also likely to be
employed when the problem itself is spread across several operational sites and each element is a subset of the entire
data set. See Figure 9.16.

In large and complex projects, the database design typically cannot be done by only one person. Instead, a carefully
selected team of database designers is employed to tackle a complex database project. Within the decentralized design
framework, the database design task is divided into several modules. Once the design criteria have been established,
the lead designer assigns design subsets or modules to design groups within the team.

FIGURE
9.15

Centralized design

Conceptual model

User views System processes Data constraints

Conceptual model verification

Data dictionary

C6545_09 8/16/2007 14:12:1 Page 404

404 C H A P T E R 9

Because each design group focuses on modeling a subset of the system, the definition of boundaries and the
interrelation among data subsets must be very precise. Each design group creates a conceptual data model
corresponding to the subset being modeled. Each conceptual model is then verified individually against the user views,
processes, and constraints for each of the modules. After the verification process has been completed, all modules are
integrated into one conceptual model. Because the data dictionary describes the characteristics of all objects within the
conceptual data model, it plays a vital role in the integration process. Naturally, after the subsets have been aggregated
into a larger conceptual model, the lead designer must verify that the combined conceptual model is still able to support
all of the required transactions.

FIGURE
9.16

Decentralized design

Data component

PurchasingEngineering Manufacturing

Views
Processes

Constraints

Views
Processes

Constraints

Views
Processes

Constraints

Aggregation

Submodule criteria

Conceptual
models

Verification

Conceptual model

Data dictionary

C6545_09 8/16/2007 14:12:13 Page 405

405D A T A B A S E D E S I G N

Keep in mind that the aggregation process requires the designer to create a single model in which various aggregation
problems must be addressed. See Figure 9.17.

� Synonyms and homonyms. Various departments might know the same object by different names (synonyms),
or they might use the same name to address different objects (homonyms). The object can be an entity, an
attribute, or a relationship.

� Entity and entity subtypes. An entity subtype might be viewed as a separate entity by one or more
departments. The designer must integrate such subtypes into a higher-level entity.

� Conflicting object definitions. Attributes can be recorded as different types (character, numeric), or different
domains can be defined for the same attribute. Constraint definitions, too, can vary. The designer must remove
such conflicts from the model.

Entity X

Synonyms: two departments use different names for the same entity.

Department A

Entity X

Entity Y

Entity X

Entity X1 Entity X2

EMPLOYEE

SECRETARY PILOT

Label used:

Department B
X
Y

Homonyms: two different entities are addressed by the same label.
(Department B uses the label X to describe both entity X and entity Y.)

Entity and entity subclass: The entities X1 and X2 are subsets of entity X.
Example:

Name
Address
Phone

Common
attributes

Department A Typing speed
Classification

Hours flown
License

Distinguishing
attributes

Conflicting object definitions: attributes for the entity PROFESSOR

Conflicting
definitions

Primary key:
Phone attribute:

Payroll Dept.
PROF_SSN
898-2853

Label used:
X
X

Department B

Systems Dept.
PROF_NUM
2853

FIGURE
9.17

Summary of aggregation problems

C6545_09 8/16/2007 14:12:24 Page 406

406 C H A P T E R 9

S u m m a r y

◗ An information system is designed to facilitate the transformation of data into information and to manage both data
and information. Thus, the database is a very important part of the information system. Systems analysis is the
process that establishes the need for and the extent of an information system. Systems development is the process
of creating an information system.

◗ The Systems Development Life Cycle (SDLC) traces the history (life cycle) of an application within the information
system. The SDLC can be divided into five phases: planning, analysis, detailed systems design, implementation,
and maintenance. The SDLC is an iterative rather than a sequential process.

◗ The Database Life Cycle (DBLC) describes the history of the database within the information system. The DBLC
is composed of six phases: database initial study, database design, implementation and loading, testing and
evaluation, operation, and maintenance and evolution. Like the SDLC, the DBLC is iterative rather than sequential.

◗ The database design and implementation process moves through a series of well-defined stages: database initial
study, database design, implementation and loading, testing and evaluation, operation, and maintenance and
evolution.

◗ The conceptual portion of the design may be subject to several variations based on two basic design philosophies:
bottom-up vs. top-down and centralized vs. decentralized.

K e y T e r m s

bottom-up design, 402

boundaries, 383

centralized design, 403

cohesivity, 394

computer-aided systems engineering
(CASE), 378

conceptual design, 385

database development, 374

Database Life Cycle (DBLC), 378

decentralized design, 404

description of operations, 387

differential backup, 400

full backup, 399

information system, 373

logical design, 395

minimal data rule, 385

module, 392

module coupling, 392

physical design, 396

scope, 383

systems analysis, 373

systems development, 373

Systems Development Life Cycle
(SDLC), 373

top-down design, 402

transaction log backup, 400

R e v i e w Q u e s t i o n s

1. What is an information system? What is its purpose?

2. How do systems analysis and systems development fit into a discussion about information systems?

3. What does the acronym SDLC mean, and what does an SDLC portray?

4. What does the acronym DBLC mean, and what does a DBLC portray?

5. Discuss the distinction between centralized and decentralized conceptual database design.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_09 9/4/2007 14:40:43 Page 407

407D A T A B A S E D E S I G N

6. What is the minimal data rule in conceptual design? Why is it important?

7. Discuss the distinction between top-down and bottom-up approaches in database design.

8. What are business rules? Why are they important to a database designer?

9. What is the data dictionary’s function in database design?

10. What steps are required in the development of an ER diagram? (Hint: See Table 9.1.)

11. List and briefly explain the activities involved in the verification of an ER model.

12. What factors are important in a DBMS software selection?

13. What three levels of backup may be used in database recovery management? Briefly describe what each of those
three backup levels does.

P r o b l e m s

1. The ABC Car Service & Repair Centers are owned by the SILENT car dealer; ABC services and repairs only
SILENT cars. Three ABC Car Service & Repair Centers provide service and repair for the entire state.

Each of the three centers is independently managed and operated by a shop manager, a receptionist, and at least
eight mechanics. Each center maintains a fully stocked parts inventory.

Each center also maintains a manual file system in which each car’s maintenance history is kept: repairs made,
parts used, costs, service dates, owner, and so on. Files are also kept to track inventory, purchasing, billing,
employees’ hours, and payroll.

You have been contacted by the manager of one of the centers to design and implement a computerized database
system. Given the preceding information, do the following:

a. Indicate the most appropriate sequence of activities by labeling each of the following steps in the correct
order. (For example, if you think that “Load the database.” is the appropriate first step, label it “1.”)

___________ Normalize the conceptual model.

___________ Obtain a general description of company operations.

___________ Load the database.

___________ Create a description of each system process.

___________ Test the system.

___________ Draw a data flow diagram and system flowcharts.

___________ Create a conceptual model using ER diagrams.

___________ Create the application programs.

___________ Interview the mechanics.

___________ Create the file (table) structures.

___________ Interview the shop manager.

b. Describe the various modules that you believe the system should include.

c. How will a data dictionary help you develop the system? Give examples.

d. What general (system) recommendations might you make to the shop manager? (For example, if the system
will be integrated, what modules will be integrated? What benefits would be derived from such an integrated
system? Include several general recommendations.)

e. What is the best approach to conceptual database design? Why?

f. Name and describe at least four reports the system should have. Explain their use. Who will use those reports?

C6545_09 9/19/2007 16:4:32 Page 408

408 C H A P T E R 9

2. Suppose you have been asked to create an information system for a manufacturing plant that produces nuts and
bolts of many shapes, sizes, and functions. What questions would you ask, and how would the answers to those
questions affect the database design?

a. What do you envision the SDLC to be?

b. What do you envision the DBLC to be?

3. Suppose you perform the same functions noted in Problem 2 for a larger warehousing operation. How are the
two sets of procedures similar? How and why are they different?

4. Using the same procedures and concepts employed in Problem 1, how would you create an information system
for the Tiny College example in Chapter 4?

5. Write the proper sequence of activities in the design of a video rental database. (The initial ERD was shown in
Figure 9.7.) The design must support all rental activities, customer payment tracking, and employee work
schedules, as well as track which employees checked out the videos to the customers. After you finish writing the
design activity sequence, complete the ERD to ensure that the database design can be successfully implemented.
(Make sure that the design is normalized properly and that it can support the required transactions.)

C6545_09 8/16/2007 14:13:25 Page 409

409D A T A B A S E D E S I G N

PART

IV
Advanced Database

Concepts

10Transaction Management and
Concurrency Control

11Database Performance Tuning and Query
Optimization

12Distributed Database Management Systems

13Business Intelligence and Data Warehouses

C6545_10 9/14/2007 14:11:57 Page 410

B
V

usiness
ignette

JetBlue’s Database Crisis

During the Valentine’s Day snowstorm of 2007, JetBlue, hailed as the discount airline

model of success, nearly destroyed its reputation in a single day when, rather than cancel

flights at JFK, the airline sent planes out to the tarmac hoping for a break in the weather.

The weather worsened, and the airplanes were grounded. Passengers spent all morning,

then the afternoon, waiting inside the planes. Finally, the airline sent busses out to the

stranded planes to retrieve the passengers.Then the real disaster hit.As angry passengers

arrived in the terminal, they had only one method of rebooking their flights: via telephone.

Unlike JetBlue’s larger competitors that offered airport kiosks and Internet booking,

JetBlue relied exclusively on the Navitaire Open Skies reservation system that was set up

to accommodate only 650 reservation agents who, working from home, logged into the

system via the Internet.While JetBlue managers recruited off-duty reservation agents to

pitch in during the crisis, Navitaire worked to boost the number of concurrent users the

system could handle. Navitaire discovered that it could only increase the number of

concurrent users to 950 before the system began to fail. Many passengers waited over an

hour to reach a reservation agent. Others could not reach agents at all.

Navitaire had built Open Skies, a reservation system serving 50 airlines, on HP3000 mini

mainframe computers with a proprietary HP operating system and database products.

Prior to the crisis, the company knew the system was approaching the limits of its

processing capabilities for its larger clients. In 2006, the company decided to boost

processing capabilities by re-platforming Open Skies with Microsoft SQL Server 2005 on

Intel-based 8-CPU 64-bit database servers. Navitaire created a new system with

Microsoft Visual Studio and the Microsoft .NET Framework. The system is expected to

enjoy faster development and easier database management capabilities.

Yet JetBlue’s Open Skies problem was only one of several database crises the company faced.

The database storing reservation and check-in information, for example, tracked bag tag

identification numbers but not the location where bags were picked up. Lost bags had always

been recovered manually. In the past, this approach worked because of JetBlue’s policy of

avoiding flight cancellations. Now, an IT team arrived at the airport, had the bags hauled

offsite, and spent three days building a database application using Microsoft SQL Server and

handheld scanning devices that agents accessed to locate lost luggage.

After six days and over 1000 canceled flights, the crisis abated. However, JetBlue’s reputation

had been deeply marred.To improve its public standing, JetBlue issued a Customer Bill of

Rights.At the same time, internally JetBlue focused attention on revising its database systems

to respond in a timely fashion to situations demanding flight cancellations and to efficiently

track luggage, so that the airline would not be crippled in times of crisis.

C6545_10 8/20/2007 13:45:9 Page 411

Preview

Transaction Management and Concurrency Control

In this chapter, you will learn:

� About database transactions and their properties

� What concurrency control is and what role it plays in maintaining the database’s integrity

� What locking methods are and how they work

� How stamping methods are used for concurrency control

� How optimistic methods are used for concurrency control

� How database recovery management is used to maintain database integrity

Database transactions reflect real-world transactions that are triggered by events such as

buying a product, registering for a course, or making a deposit in a checking account.

Transactions are likely to contain many parts. For example, a sales transaction might require

updating the customer’s account, adjusting the product inventory, and updating the seller’s

accounts receivable. All parts of a transaction must be successfully completed to prevent

data integrity problems. Therefore, executing and managing transactions are important

database system activities.

The main database transaction properties are atomicity, consistency, isolation, and durability.

In addition, serializability is a characteristic of the schedule of operations for the execution

of concurrent transactions. After defining those transaction properties, the chapter shows

how SQL can be used to represent transactions and how transaction logs can ensure the

DBMS’s ability to recover transactions.

When many transactions take place at the same time, they are called concurrent

transactions. Managing the execution of such transactions is called concurrency control.As

you can imagine, concurrency control is especially important in a multiuser database

environment. (Just imagine the number of transactions routinely handled by companies that

conduct sales and provide services via the Web!) This chapter discusses some of the

problems that can occur with concurrent transactions—lost updates, uncommitted data,

and inconsistent summaries. And you discover that such problems can be solved when a

DBMS scheduler enforces concurrency control.

In this chapter you learn about the most common algorithms for concurrency control:

locks, time stamping, and optimistic methods. Because locks are the most widely used

method, you examine various levels and types of locks. Locks can also create deadlocks, so

you learn about strategies for managing deadlocks.

Database contents can be damaged or destroyed by critical operational errors, including

transaction management failures. Therefore, in this chapter you also learn how database

recovery management maintains a database’s contents.

10
T

E
N

C6545_10 8/20/2007 13:48:15 Page 412

10.1 WHAT IS A TRANSACTION?

To illustrate what transactions are and how they work, let’s use the Ch10_SaleCo database. The relational diagram
for that database is shown in Figure 10.1.

As you examine the relational diagram in Figure 10.1, note the following features:

� The design stores the customer balance (CUST_BALANCE) value in the CUSTOMER table to indicate the total
amount owed by the customer. The CUST_BALANCE attribute is increased when the customer makes a purchase

FIGURE
10.1

The Ch10_SaleCo database relational diagram

O n l i n e C o n t e n t

The Ch10_SaleCo database used to illustrate the material in this chapter is found in the Student Online
Companion for this book.

Note

Although SQL commands illustrate several transaction and concurrency control issues, you should be able to
follow the discussions even if you have not studied Chapter 7, Introduction to Structured Query Language
(SQL), and Chapter 8, Advanced SQL. If you don’t know SQL, ignore the SQL commands and focus on the
discussions. If you have a working knowledge of SQL, you can use the Ch10_SaleCo database to generate your
own SELECT and UPDATE examples and to augment the material presented in Chapters 7 and 8 by writing your
own triggers and stored procedures.

C6545_10 8/20/2007 13:50:15 Page 413

413T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

on credit, and it is decreased when the customer makes a payment. Including the current customer account balance
in the CUSTOMER table makes it very easy to write a query to determine the current balance for any customer
and to generate important summaries such as total, average, minimum, and maximum balances.

� The ACCT_TRANSACTION table records all customer purchases and payments to track the details of
customer account activity.

Naturally, you can change the database design of the Ch10_SaleCo database to reflect accounting practice more
precisely, but the implementation provided here will enable you to track the transactions well enough to serve the
purpose of the chapter’s discussions.

To understand the concept of a transaction, suppose that you sell a product to a customer. Further, suppose that the
customer may charge the purchase to the customer’s account. Given that scenario, your sales transaction consists of
at least the following parts:

� You must write a new customer invoice.

� You must reduce the quantity on hand in the product’s inventory.

� You must update the account transactions.

� You must update the customer balance.

The preceding sales transaction must be reflected in the database. In database terms, a transaction is any action that
reads from and/or writes to a database. A transaction may consist of a simple SELECT statement to generate a list
of table contents; it may consist of a series of related UPDATE statements to change the values of attributes in various
tables; it may consist of a series of INSERT statements to add rows to one or more tables; or it may consist of a
combination of SELECT, UPDATE, and INSERT statements. The sales transaction example includes a combination of
INSERT and UPDATE statements.

Given the preceding discussion, you can now augment the definition of a transaction. A transaction is a logical unit
of work that must be entirely completed or entirely aborted; no intermediate states are acceptable. In other words, a
multicomponent transaction, such as the previously mentioned sale, must not be partially completed. Updating only
the inventory or only the accounts receivable is not acceptable. All of the SQL statements in the transaction must be
completed successfully. If any of the SQL statements fail, the entire transaction is rolled back to the original database
state that existed before the transaction started. A successful transaction changes the database from one consistent
state to another. A consistent database state is one in which all data integrity constraints are satisfied.

To ensure consistency of the database, every transaction must begin with the database in a known consistent state. If
the database is not in a consistent state, the transaction will yield an inconsistent database that violates its integrity and
business rules. For that reason, subject to limitations discussed later, all transactions are controlled and executed by the
DBMS to guarantee database integrity.

Most real-world database transactions are formed by two or more database requests. A database request is the
equivalent of a single SQL statement in an application program or transaction. For example, if a transaction is
composed of two UPDATE statements and one INSERT statement, the transaction uses three database requests. In
turn, each database request generates several input/output (I/O) operations that read from or write to physical
storage media.

10.1.1 Evaluating Transaction Results

Not all transactions update the database. Suppose you want to examine the CUSTOMER table to determine the
current balance for customer number 10016. Such a transaction can be completed by using the SQL code:

SELECT CUST_NUMBER, CUST_BALANCE
FROM CUSTOMER
WHERE CUST_NUMBER = 10016;

C6545_10 8/21/2007 15:26:45 Page 414

414 C H A P T E R 1 0

Although that query does not make any changes in the CUSTOMER table, the SQL code represents a transaction
because it accesses the database. If the database existed in a consistent state before the access, the database remains
in a consistent state after the access because the transaction did not alter the database.

Remember that a transaction may consist of a single SQL statement or a collection of related SQL statements. Let’s
revisit the previous sales example to illustrate a more complex transaction, using the Ch10_SaleCo database.
Suppose that on January 18, 2008 you register the credit sale of one unit of product 89-WRE-Q to customer 10016
in the amount of $277.55. The required transaction affects the INVOICE, LINE, PRODUCT, CUSTOMER, and
ACCT_TRANSACTION tables. The SQL statements that represent this transaction are as follows:

INSERT INTO INVOICE
VALUES (1009, 10016,'18-Jan-2008', 256.99, 20.56, 277.55, 'cred', 0.00, 277.55);

INSERT INTO LINE
VALUES (1009, 1, '89-WRE-Q', 1, 256.99, 256.99);

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH – 1

WHERE PROD_CODE = '89-WRE-Q';
UPDATE CUSTOMER

SET CUST_BALANCE = CUST_BALANCE + 277.55
WHERE CUST_NUMBER = 10016;

INSERT INTO ACCT_TRANSACTION
VALUES (10007, '18-Jan-08', 10016, 'charge', 277.55);

COMMIT;

The results of the successfully completed transaction are shown in Figure 10.2. (Note that all records involved in the
transaction have been highlighted.)

To further your understanding of the transaction results, note the following:

� A new row 1009 was added to the INVOICE table. In this row, derived attribute values were stored for the
invoice subtotal, the tax, the invoice total, and the invoice balance.

� The LINE row for invoice 1009 was added to reflect the purchase of one unit of product 89-WRE-Q with a
price of $256.99. In this row, the derived attribute values for the line amount were stored.

� The product 89-WRE-Q’s quantity on hand (PROD_QOH) in the PRODUCT table was reduced by one (the
initial value was 12), thus leaving a quantity on hand of 11.

� The customer balance (CUST_BALANCE) for customer 10016 was updated by adding $277.55 to the existing
balance (the initial value was $0.00).

� A new row was added to the ACCT_TRANSACTION table to reflect the new account transaction number
10007.

� The COMMIT statement is used to end a successful transaction. (See Section 10.1.3.)

Now suppose that the DBMS completes the first three SQL statements. Further, suppose that during the execution of
the fourth statement (the UPDATE of the CUSTOMER table’s CUST_BALANCE value for customer 10016), the
computer system experiences a loss of electrical power. If the computer does not have a backup power supply, the
transaction cannot be completed. Therefore, the INVOICE and LINE rows were added, the PRODUCT table was
updated to represent the sale of product 89-WRE-Q, but customer 10016 was not charged, nor was the required
record in the ACCT_TRANSACTION table written. The database is now in an inconsistent state, and it is not usable
for subsequent transactions. Assuming that the DBMS supports transaction management, the DBMS will roll back the
database to a previous consistent state.

C6545_10 8/20/2007 13:54:48 Page 415

415T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

Although the DBMS is designed to recover a database to a previous consistent state when an interruption prevents the
completion of a transaction, the transaction itself is defined by the end user or programmer and must be semantically
correct. The DBMS cannot guarantee that the semantic meaning of the transaction truly represents the real-world
event. For example, suppose that following the sale of 10 units of product 89-WRE-Q, the inventory UPDATE
commands were written this way:

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH + 10
WHERE PROD_CODE = '89-WRE-Q';

The sale should have decreased the PROD_QOH value for product 89-WRE-Q by 10. Instead, the UPDATE added
10 to product 89-WRE-Q’s PROD_QOH value.

Although the UPDATE command’s syntax is correct, its use yields incorrect results. Yet the DBMS will execute the
transaction anyway. The DBMS cannot evaluate whether the transaction represents the real-world event correctly; that
is the end user’s responsibility. End users and programmers are capable of introducing many errors in this fashion.
Imagine the consequences of reducing the quantity on hand for product 1546-QQ2 instead of product 89-WRE-Q or
of crediting the CUST_BALANCE value for customer 10012 rather than customer 10016.

FIGURE
10.2

Tracing the transaction in the Ch10_SaleCo database

Table name: PRODUCT

Table name: INVOICE Table name: LINE

Table name: ACCT TRANSACTIONTable name: CUSTOMER

Note

By default, MS Access does not support transaction management as discussed here. More sophisticated DBMSs,
such as Oracle, SQL Server, and DB2, do support the transaction management components discussed in this
chapter.

C6545_10 9/26/2007 12:34:35 Page 416

416 C H A P T E R 1 0

Clearly, improper or incomplete transactions can have a devastating effect on database integrity. Some DBMSs—
especially the relational variety—provide means by which the user can define enforceable constraints based on
business rules. Other integrity rules, such as those governing referential and entity integrity, are enforced automatically
by the DBMS when the table structures are properly defined, thereby letting the DBMS validate some transactions.
For example, if a transaction inserts a new customer number into a customer table and the customer number being
inserted already exists, the DBMS will end the transaction with an error code to indicate a violation of the primary key
integrity rule.

10.1.2 Transaction Properties

Each individual transaction must display atomicity, consistency, isolation, and durability. These properties are
sometimes referred to as the ACID test. In addition, when executing multiple transactions, the DBMS must schedule
the concurrent execution of the transaction’s operations. The schedule of such transaction’s operations must exhibit
the property of serializability. Let’s look briefly at each of the properties.

� Atomicity requires that all operations (SQL requests) of a transaction be completed; if not, the transaction is
aborted. If a transaction T1 has four SQL requests, all four requests must be successfully completed; otherwise,
the entire transaction is aborted. In other words, a transaction is treated as a single, indivisible, logical unit
of work.

� Consistency indicates the permanence of the database’s consistent state. A transaction takes a database from
one consistent state to another consistent state. When a transaction is completed, the database must be in a
consistent state; if any of the transaction parts violates an integrity constraint, the entire transaction is aborted.

� Isolation means that the data used during the execution of a transaction cannot be used by a second
transaction until the first one is completed. In other words, if a transaction T1 is being executed and is using
the data item X, that data item cannot be accessed by any other transaction (T2 ... Tn) until T1 ends. This
property is particularly useful in multiuser database environments because several users can access and update
the database at the same time.

� Durability ensures that once transaction changes are done (committed), they cannot be undone or lost, even
in the event of a system failure.

� Serializability ensures that the schedule for the concurrent execution of the transactions yields consistent
results. This property is important in multiuser and distributed databases, where multiple transactions are likely
to be executed concurrently. Naturally, if only a single transaction is executed, serializability is not an issue.

By its very nature, a single-user database system automatically ensures serializability and isolation of the database
because only one transaction is executed at a time. The atomicity, consistency, and durability of transactions must be
guaranteed by the single-user DBMSs. (Even a single-user DBMS must manage recovery from errors created by
operating-system-induced interruptions, power interruptions, and improper application execution.)

Multiuser databases are typically subject to multiple concurrent transactions. Therefore, the multiuser DBMS must
implement controls to ensure serializability and isolation of transactions—in addition to atomicity and durability—to
guard the database’s consistency and integrity. For example, if several concurrent transactions are executed over the
same data set and the second transaction updates the database before the first transaction is finished, the isolation
property is violated and the database is no longer consistent. The DBMS must manage the transactions by using
concurrency control techniques to avoid such undesirable situations.

C6545_10 8/20/2007 13:56:45 Page 417

417T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

10.1.3 Transaction Management with SQL

The American National Standards Institute (ANSI) has defined standards that govern SQL database transactions.
Transaction support is provided by two SQL statements: COMMIT and ROLLBACK. The ANSI standards require that
when a transaction sequence is initiated by a user or an application program, the sequence must continue through all
succeeding SQL statements until one of the following four events occurs:

� A COMMIT statement is reached, in which case all changes are permanently recorded within the database. The
COMMIT statement automatically ends the SQL transaction.

� A ROLLBACK statement is reached, in which case all changes are aborted and the database is rolled back to
its previous consistent state.

� The end of a program is successfully reached, in which case all changes are permanently recorded within the
database. This action is equivalent to COMMIT.

� The program is abnormally terminated, in which case the changes made in the database are aborted and the
database is rolled back to its previous consistent state. This action is equivalent to ROLLBACK.

The use of COMMIT is illustrated in the following simplified sales example, which updates a product’s quantity on hand
(PROD_QOH) and the customer’s balance when the customer buys two units of product 1558-QW1 priced at $43.99
per unit (for a total of $87.98) and charges the purchase to the customer’s account:

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH – 2
WHERE PROD_CODE = '1558-QW1';
UPDATE CUSTOMER
SET CUST_BALANCE = CUST_BALANCE + 87.98
WHERE CUST_NUMBER = '10011';
COMMIT;

(Note that the example is simplified to make it easy to trace the transaction. In the Ch10_SaleCo database, the
transaction would involve several additional table updates.)

Actually, the COMMIT statement used in that example is not necessary if the UPDATE statement is the application’s
last action and the application terminates normally. However, good programming practice dictates that you include the
COMMIT statement at the end of a transaction declaration.

A transaction begins implicitly when the first SQL statement is encountered. Not all SQL implementations follow the
ANSI standard; some (such as SQL Server) use transaction management statements such as:

BEGIN TRANSACTION;

to indicate the beginning of a new transaction. Other SQL implementations allow you to assign characteristics for the
transactions as parameters to the BEGIN statement. For example, the Oracle RDBMS uses the SET TRANSACTION
statement to declare a new transaction start and its properties.

10.1.4 The Transaction Log

A DBMS uses a transaction log to keep track of all transactions that update the database. The information stored
in this log is used by the DBMS for a recovery requirement triggered by a ROLLBACK statement, a program’s
abnormal termination, or a system failure such as a network discrepancy or a disk crash. Some RDBMSs use the
transaction log to recover a database forward to a currently consistent state. After a server failure, for example, Oracle
automatically rolls back uncommitted transactions and rolls forward transactions that were committed but not yet
written to the physical database. This behavior is required for transactional correctness and is typical of any
transactional DBMS.

C6545_10 8/20/2007 15:14:28 Page 418

418 C H A P T E R 1 0

While the DBMS executes transactions that modify the database, it also automatically updates the transaction log. The
transaction log stores:

� A record for the beginning of the transaction.

� For each transaction component (SQL statement):

- The type of operation being performed (update, delete, insert).

- The names of the objects affected by the transaction (the name of the table).

- The “before” and “after” values for the fields being updated.

- Pointers to the previous and next transaction log entries for the same transaction.

� The ending (COMMIT) of the transaction.

Although using a transaction log increases the processing overhead of a DBMS, the ability to restore a corrupted
database is worth the price.

Table 10.1 illustrates a simplified transaction log that reflects a basic transaction composed of two SQL UPDATE
statements. If a system failure occurs, the DBMS will examine the transaction log for all uncommitted or incomplete
transactions and restore (ROLLBACK) the database to its previous state on the basis of that information. When the
recovery process is completed, the DBMS will write in the log all committed transactions that were not physically
written to the database before the failure occurred.

TABLE
10.1

A Transaction Log

TRL_
ID

TRX_
NUM

PREV
PTR

NEXT
PTR

OPERATION TABLE ROW ID ATTRIBUTE BEFORE
VALUE

AFTER
VALUE

341 101 Null 352 START ****Start
Transaction

352 101 341 363 UPDATE PRODUCT 1558-QW1 PROD_QOH 25 23
363 101 352 365 UPDATE CUSTOMER 10011 CUST_

BALANCE
525.75 615.73

365 101 363 Null COMMIT **** End of
Transaction

TRL_ID = Transaction log record ID
TRX_NUM = Transaction number
(Note: The transaction number is auto-
matically assigned by the DBMS.)

PTR = Pointer to a transaction log record ID

If a ROLLBACK is issued before the termination of a transaction, the DBMS will restore the database only for that
particular transaction, rather than for all transactions, to maintain the durability of the previous transactions. In other
words, committed transactions are not rolled back.

The transaction log is a critical part of the database, and it is usually implemented as one or more files that are
managed separately from the actual database files. The transaction log is subject to common dangers such as disk-full
conditions and disk crashes. Because the transaction log contains some of the most critical data in a DBMS, some
implementations support logs on several different disks to reduce the consequences of a system failure.

C6545_10 9/26/2007 9:20:5 Page 419

419T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

10.2 CONCURRENCY CONTROL

The coordination of the simultaneous execution of transactions in a multiuser database system is known as
concurrency control. The objective of concurrency control is to ensure the serializability of transactions in a
multiuser database environment. Concurrency control is important because the simultaneous execution of transactions
over a shared database can create several data integrity and consistency problems. The three main problems are lost
updates, uncommitted data, and inconsistent retrievals.

10.2.1 Lost Updates

The lost update problem occurs when two concurrent transactions, T1 and T2, are updating the same data element
and one of the updates is lost (overwritten by the other transaction). To see an illustration of lost updates, let’s examine
a simple PRODUCT table. One of the PRODUCT table’s attributes is a product’s quantity on hand (PROD_QOH).
Assume that you have a product whose current PROD_QOH value is 35. Also assume that two concurrent
transactions, T1 and T2, occur that update the PROD_QOH value for some item in the PRODUCT table. The
transactions are shown in Table 10.2:

TABLE
10.2

Two Concurrent Transactions to Update QOH

TRANSACTION COMPUTATION
T1: Purchase 100 units PROD_QOH = PROD_QOH + 100
T2: Sell 30 units PROD_QOH = PROD_QOH - 30

Table 10.3 shows the serial execution of those transactions under normal circumstances, yielding the correct answer
PROD_QOH = 105.

TABLE
10.3

Serial Execution of Two Transactions

TIME TRANSACTION STEP STORED VALUE
1 T1 Read PROD_QOH 35
2 T1 PROD_QOH = 35 + 100
3 T1 Write PROD_QOH 135
4 T2 Read PROD_QOH 135
5 T2 PROD_QOH = 135 − 30
6 T2 Write PROD_QOH 105

But suppose that a transaction is able to read a product’s PROD_QOH value from the table before a previous
transaction (using the same product) has been committed. The sequence depicted in Table 10.4 shows how the lost
update problem can arise. Note that the first transaction (T1) has not yet been committed when the second transaction
(T2) is executed. Therefore, T2 still operates on the value 35, and its subtraction yields 5 in memory. In the meantime,
T1 writes the value 135 to disk, which is promptly overwritten by T2. In short, the addition of 100 units is “lost” during
the process.

C6545_10 8/21/2007 15:27:1 Page 420

420 C H A P T E R 1 0

TABLE
10.4

Lost Updates

TIME TRANSACTION STEP STORED VALUE
1 T1 Read PROD_QOH 35
2 T2 Read PROD_QOH 35
3 T1 PROD_QOH = 35 + 100
4 T2 PROD_QOH = 35 − 30
5 T1 Write PROD_QOH (Lost update) 135
6 T2 Write PROD_QOH 5

10.2.2 Uncommitted Data

The phenomenon of uncommitted data occurs when two transactions, T1 and T2, are executed concurrently and
the first transaction (T1) is rolled back after the second transaction (T2) has already accessed the uncommitted
data—thus violating the isolation property of transactions. To illustrate that possibility, let’s use the same transactions
described during the lost updates discussion. T1 has two atomic parts to it, one of which is the update of the inventory,
the other possibly being the update of the invoice total (not shown). T1 is forced to roll back due to an error during
the update of the invoice total; hence, it rolls back all the way, undoing the inventory update as well. This time the T1
transaction is rolled back to eliminate the addition of the 100 units (Table 10.5). Because T2 subtracts 30 from the
original 35 units, the correct answer should be 5.

TABLE
10.5

Transactions Creating Uncommitted Data Problem

TRANSACTION COMPUTATION
T1: Purchase 100 units PROD_QOH = PROD_QOH + 100 (Rolled back)
T2: Sell 30 units PROD_QOH = PROD_QOH 30

Table 10.6 shows how, under normal circumstances, the serial execution of those transactions yields the correct
answer.

TABLE
10.6

Correct Execution of Two Transactions

TIME TRANSACTION STEP STORED VALUE
1 T1 Read PROD_QOH 35
2 T1 PROD_QOH = 35 + 100
3 T1 Write PROD_QOH 135
4 T1 *****ROLLBACK ***** 35
5 T2 Read PROD_QOH 35
6 T2 PROD_QOH = 35 − 30
7 T2 Write PROD_QOH 5

Table 10.7 shows how the uncommitted data problem can arise when the ROLLBACK is completed after T2 has
begun its execution.

C6545_10 8/20/2007 14:8:46 Page 421

421T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

TABLE
10.7

An Uncommitted Data Problem

TIME TRANSACTION STEP STORED VALUE
1 T1 Read PROD_QOH 35
2 T1 PROD_QOH = 35 + 100
3 T1 Write PROD_QOH 135
4 T2 Read PROD_QOH

(Read uncommitted data)
135

5 T2 PROD_QOH = 135 − 30
6 T1 ***** ROLLBACK ***** 35
7 T2 Write PROD_QOH 105

10.2.3 Inconsistent Retrievals

Inconsistent retrievals occur when a transaction accesses data before and after another transaction(s) finish working
with such data. For example, an inconsistent retrieval would occur if transaction T1 calculates some summary
(aggregate) function over a set of data while another transaction (T2) is updating the same data. The problem is that
the transaction might read some data before they are changed and other data after they are changed, thereby yielding
inconsistent results.

To illustrate that problem, assume the following conditions:

1. T1 calculates the total quantity on hand of the products stored in the PRODUCT table.

2. At the same time, T2 updates the quantity on hand (PROD_QOH) for two of the PRODUCT table’s products.

The two transactions are shown in Table 10.8.

TABLE
10.8

Retrieval During Update

TRANSACTION T1 TRANSACTION T2
SELECT SUM(PROD_QOH)
FROM PRODUCT

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH + 10
WHERE PROD_CODE = '1546-QQ2'
UPDATE PRODUCT
SET PROD_QOH = PROD_QOH − 10
WHERE PROD_CODE = '1558-QW1'
COMMIT;

While T1 calculates the total quantity on hand (PROD_QOH) for all items, T2 represents the correction of a typing
error: the user added 10 units to product 1558-QW1’s PROD_QOH, but meant to add the 10 units to product
1546-QQ2’s PROD_QOH. To correct the problem, the user adds 10 to product 1546-QQ2’s PROD_QOH and
subtracts 10 from product 1558-QW1’s PROD_QOH. (See the two UPDATE statements in Table 10.7.) The initial
and final PROD_QOH values are reflected in Table 10.9. (Only a few of the PROD_CODE values for the PRODUCT
table are shown. To illustrate the point, the sum for the PROD_QOH values is given for those few products.)

C6545_10 9/26/2007 9:28:1 Page 422

422 C H A P T E R 1 0

TABLE
10.9

Transaction Results: Data Entry Correction

BEFORE AFTER
PROD_CODE PROD_QOH PROD_QOH
11QER/31 8 8
13-Q2/P2 32 32
1546-QQ2 15 (15 + 10) 25
1558-QW1 23 (23 − 10) 13
2232-QTY 8 8
2232-QWE 6 6
Total 92 92

Although the final results shown in Table 10.8 are correct after the adjustment, Table 10.10 demonstrates that
inconsistent retrievals are possible during the transaction execution, making the result of T1’s execution incorrect. The
“After” summation shown in Table 10.9 reflects the fact that the value of 25 for product 1546-QQ2 was read after
the WRITE statement was completed. Therefore, the “After” total is 40 + 25 = 65. The “Before” total reflects the fact
that the value of 23 for product 1558-QW1 was read before the next WRITE statement was completed to reflect the
corrected update of 13. Therefore, the “Before” total is 65 + 23 = 88.

TABLE
10.10

Inconsistent Retrievals

TIME TRANSACTION ACTION VALUE TOTAL
1 T1 Read PROD_QOH for PROD_CODE = '11QER/31' 8 8
2 T1 Read PROD_QOH for PROD_CODE = '13-Q2/P2' 32 40
3 T2 Read PROD_QOH for PROD_CODE = '1546-QQ2' 15
4 T2 PROD_QOH = 15 + 10
5 T2 Write PROD_QOH for PROD_CODE = '1546-QQ2' 25
6 T1 Read PROD_QOH for PROD_CODE = '1546-QQ2' 25 (After) 65
7 T1 Read PROD_QOH for PROD_CODE = '1558-QW1' 23 (Before) 88
8 T2 Read PROD_QOH for PROD_CODE = '1558-QW1' 23
9 T2 PROD_QOH = 23 − 10
10 T2 Write PROD_QOH for PROD_CODE = '1558-QW1' 13
11 T2 ***** COMMIT *****
12 T1 Read PROD_QOH for PROD_CODE = '2232-QTY' 8 96
13 T1 Read PROD_QOH for PROD_CODE = '2232-QWE' 6 102

The computed answer of 102 is obviously wrong because you know from Table 10.9 that the correct answer is 92.
Unless the DBMS exercises concurrency control, a multiuser database environment can create havoc within the
information system.

10.2.4 The Scheduler

You now know that severe problems can arise when two or more concurrent transactions are executed. You also know
that a database transaction involves a series of database I/O operations that take the database from one consistent
state to another. Finally, you know that database consistency can be ensured only before and after the execution of
transactions. A database always moves through an unavoidable temporary state of inconsistency during a transaction’s
execution if such transaction updates multiple tables/rows. (If the transaction contains only one update, then there is
no temporary inconsistency.) That temporary inconsistency exists because a computer executes the operations serially,
one after another. During this serial process, the isolation property of transactions prevents them from accessing the
data not yet released by other transactions. The job of the scheduler is even more important today, with the use of
multicore processors which have the capability of executing several instructions at the same time. What would happen
if two transactions execute concurrently and they are accessing the same data?

C6545_10 8/20/2007 14:23:44 Page 423

423T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

In previous examples, the operations within a transaction were executed in an arbitrary order. As long as two
transactions, T1 and T2, access unrelated data, there is no conflict and the order of execution is irrelevant to the final
outcome. But if the transactions operate on related (or the same) data, conflict is possible among the transaction
components and the selection of one execution order over another might have some undesirable consequences. So
how is the correct order determined, and who determines that order? Fortunately, the DBMS handles that tricky
assignment by using a built-in scheduler.

The scheduler is a special DBMS process that establishes the order in which the operations within concurrent
transactions are executed. The scheduler interleaves the execution of database operations to ensure serializability and
isolation of transactions. To determine the appropriate order, the scheduler bases its actions on concurrency control
algorithms, such as locking or time stamping methods, which are explained in the next sections. However, it is
important to understand that not all transactions are serializable. The DBMS determines what transactions are
serializable and proceeds to interleave the execution of the transaction’s operations. Generally, transactions that are
not serializable are executed on a first-come, first-served basis by the DBMS. The scheduler’s main job is to create a
serializable schedule of a transaction’s operations. A serializable schedule is a schedule of a transaction’s operations
in which the interleaved execution of the transactions (T1, T2, T3, etc.) yields the same results as if the transactions
were executed in serial order (one after another).

The scheduler also makes sure that the computer’s central processing unit (CPU) and storage systems are used
efficiently. If there were no way to schedule the execution of transactions, all transactions would be executed on a
first-come, first-served basis. The problem with that approach is that processing time is wasted when the CPU waits
for a READ or WRITE operation to finish, thereby losing several CPU cycles. In short, first-come, first-served
scheduling tends to yield unacceptable response times within the multiuser DBMS environment. Therefore, some other
scheduling method is needed to improve the efficiency of the overall system.

Additionally, the scheduler facilitates data isolation to ensure that two transactions do not update the same data
element at the same time. Database operations might require READ and/or WRITE actions that produce conflicts. For
example, Table 10.11 shows the possible conflict scenarios when two transactions, T1 and T2, are executed
concurrently over the same data. Note that in Table 10.11, two operations are in conflict when they access the same
data and at least one of them is a WRITE operation.

TABLE
10.11

READ/WRITE Conflict Scenarios: Conflicting Database Operations Matrix

TRANSACTIONS
T1 T2 RESULT

Operations Read Read No conflict
Read Write Conflict
Write Read Conflict
Write Write Conflict

Several methods have been proposed to schedule the execution of conflicting operations in concurrent transactions.
Those methods have been classified as locking, time stamping, and optimistic. Locking methods, discussed next, are
used most frequently.

10.3 CONCURRENCY CONTROL WITH LOCKING METHODS

A lock guarantees exclusive use of a data item to a current transaction. In other words, transaction T2 does not have
access to a data item that is currently being used by transaction T1. A transaction acquires a lock prior to data access;
the lock is released (unlocked) when the transaction is completed so that another transaction can lock the data item
for its exclusive use.

C6545_10 8/20/2007 14:23:54 Page 424

424 C H A P T E R 1 0

Recall from the earlier discussions (Evaluating Transaction Results and Transaction Properties) that data consistency
cannot be guaranteed during a transaction; the database might be in a temporary inconsistent state when several
updates are executed. Therefore, locks are required to prevent another transaction from reading inconsistent data.

Most multiuser DBMSs automatically initiate and enforce locking procedures. All lock information is managed by a
lock manager, which is responsible for assigning and policing the locks used by the transactions.

10.3.1 Lock Granularity

Lock granularity indicates the level of lock use. Locking can take place at the following levels: database, table, page,
row, or even field (attribute).

Database Level
In a database-level lock, the entire database is locked, thus preventing the use of any tables in the database by
transaction T2 while transaction Tl is being executed. This level of locking is good for batch processes, but it is
unsuitable for multiuser DBMSs. You can imagine how s-l-o-w the data access would be if thousands of transactions
had to wait for the previous transaction to be completed before the next one could reserve the entire database.
Figure 10.3 illustrates the database-level lock. Note that because of the database-level lock, transactions T1 and T2
cannot access the same database concurrently even when they use different tables.

1

2

3

4

5

6

7

8

9

Time

Table A

Table B

Payroll Database

Transaction 1 (T1)
(Update Table A)

Lock database request

Locked OK

Unlocked

Transaction 2 (T2)
(Update Table B)

Lock database request

WAIT

LockedOK

Unlocked

FIGURE
10.3

Database-level locking sequence

C6545_10 8/21/2007 15:27:13 Page 425

425T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

Table Level
In a table-level lock, the entire table is locked, preventing access to any row by transaction T2 while transaction T1
is using the table. If a transaction requires access to several tables, each table may be locked. However, two transactions
can access the same database as long as they access different tables.

Table-level locks, while less restrictive than database-level locks, cause traffic jams when many transactions are waiting
to access the same table. Such a condition is especially irksome if the lock forces a delay when different transactions
require access to different parts of the same table, that is, when the transactions would not interfere with each other.
Consequently, table-level locks are not suitable for multiuser DBMSs. Figure 10.4 illustrates the effect of a table-level
lock. Note that in Figure 10.4, transactions T1 and T2 cannot access the same table even when they try to use different
rows; T2 must wait until T1 unlocks the table.

Page Level
In a page-level lock, the DBMS will lock an entire diskpage. A diskpage, or page, is the equivalent of a diskblock,
which can be described as a directly addressable section of a disk. A page has a fixed size, such as 4K, 8K, or 16K.
For example, if you want to write only 73 bytes to a 4K page, the entire 4K page must be read from disk, updated
in memory, and written back to disk. A table can span several pages, and a page can contain several rows of one or
more tables. Page-level locks are currently the most frequently used multiuser DBMS locking method. An example of
a page-level lock is shown in Figure 10.5. Note that T1 and T2 access the same table while locking different diskpages.
If T2 requires the use of a row located on a page that is locked by T1, T2 must wait until the page is unlocked by T1.

1

2

3

4

5

6

7

8

9

Time Table ATransaction 1 (T1)
(Update row 5)

Lock Table A request

Locked OK

Unlocked (end of transaction 1)

Transaction 2 (T2)
(Update row 30)

Lock Table A request

WAIT

LockedOK

Unlocked
(end of transaction 2)

Payroll Database

FIGURE
10.4

An example of a table-level lock

C6545_10 8/20/2007 15:15:45 Page 426

426 C H A P T E R 1 0

Row Level
A row-level lock is much less restrictive than the locks discussed earlier. The DBMS allows concurrent transactions
to access different rows of the same table even when the rows are located on the same page. Although the row-level
locking approach improves the availability of data, its management requires high overhead because a lock exists for
each row in a table of the database involved in a conflicting transaction. Modern DBMS automatically escalate a lock
from row level to page level lock when the application session requests multiple locks on the same page. Figure 10.6
illustrates the use of a row-level lock.

Note in Figure 10.6 that both transactions can execute concurrently, even when the requested rows are on the same
page. T2 must wait only if it requests the same row as T1.

Page 1

Page 2

1
2
3
4
5
6
7

Time
Table A

Transaction 1 (T1)
(Update row 1)

Lock page 1 request

Locked OK

Unlock page 1
(end of transaction)

Transaction 2 (T2)
(Update rows 5 and 2)

Lock page 2 request

Lock page 1 request

OK

Unlock pages 1 and 2
(end of transaction)

1

2

3

4

5

6

Locked

Row number

Payroll Database

OK

Locked

Wait

FIGURE
10.5

An example of a page-level lock

1

2

3

4

5

6

Time
Table A

Transaction 1 (T1)
(Update row 1)

Lock row 1 request

OK

Transaction 2 (T2)
(Update row 2)

1

2

3

4

5

6

Lock row 2 request

Row number

Locked

Unlock row 1
(end of transaction)

Payroll Database

OK
Locked

Unlock row 2
(end of transaction)

Page 1

Page 2

FIGURE
10.6

An example of a row-level lock

C6545_10 8/20/2007 15:15:56 Page 427

427T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

Field Level
The field-level lock allows concurrent transactions to access the same row as long as they require the use of different
fields (attributes) within that row. Although field-level locking clearly yields the most flexible multiuser data access, it is
rarely implemented in a DBMS because it requires an extremely high level of computer overhead and because the
row-level lock is much more useful in practice.

10.3.2 Lock Types

Regardless of the level of locking, the DBMS may use different lock types: binary or shared/exclusive.

Binary Locks
A binary lock has only two states: locked (1) or unlocked (0). If an object—that is, a database, table, page, or row—is
locked by a transaction, no other transaction can use that object. If an object is unlocked, any transaction can lock the
object for its use. Every database operation requires that the affected object be locked. As a rule, a transaction must
unlock the object after its termination. Therefore, every transaction requires a lock and unlock operation for each data
item that is accessed. Such operations are automatically managed and scheduled by the DBMS; the user does not need
to be concerned about locking or unlocking data items. (Every DBMS has a default locking mechanism. If the end user
wants to override the default, the LOCK TABLE and other SQL commands are available for that purpose.)

The binary locking technique is illustrated in Table 10.12, using the lost updates problem you encountered in Table
10.4. Note that the lock and unlock features eliminate the lost update problem because the lock is not released until
the WRITE statement is completed. Therefore, a PROD_QOH value cannot be used until it has been properly updated.
However, binary locks are now considered too restrictive to yield optimal concurrency conditions. For example, the
DBMS will not allow two transactions to read the same database object even though neither transaction updates the
database, and therefore, no concurrency problems can occur. Remember from Table 10.11 that concurrency conflicts
occur only when two transactions execute concurrently and one of them updates the database.

TABLE
10.12

An Example of a Binary Lock

TIME TRANSACTION STEP STORED VALUE
1 T1 Lock PRODUCT
2 T1 Read PROD_QOH 15
3 T1 PROD_QOH = 15 + 10
4 T1 Write PROD_QOH 25
5 T1 Unlock PRODUCT
6 T2 Lock PRODUCT
7 T2 Read PROD_QOH 23
8 T2 PROD_QOH = 23 − 10
9 T2 Write PROD_QOH 13
10 T2 Unlock PRODUCT

Shared/Exclusive Locks
The labels “shared” and “exclusive” indicate the nature of the lock. An exclusive lock exists when access is reserved
specifically for the transaction that locked the object. The exclusive lock must be used when the potential for conflict
exists. (See Table 10.9, READ vs. WRITE.) A shared lock exists when concurrent transactions are granted read
access on the basis of a common lock. A shared lock produces no conflict as long as all the concurrent transactions
are read only.

A shared lock is issued when a transaction wants to read data from the database and no exclusive lock is held on that
data item. An exclusive lock is issued when a transaction wants to update (write) a data item and no locks are currently

C6545_10 8/20/2007 15:16:9 Page 428

428 C H A P T E R 1 0

held on that data item by any other transaction. Using the shared/exclusive locking concept, a lock can have three
states: unlocked, shared (read), and exclusive (write).

As shown in Table 10.11, two transactions conflict only when at least one of them is a WRITE transaction. Because
the two READ transactions can be safely executed at once, shared locks allow several READ transactions to read the
same data item concurrently. For example, if transaction T1 has a shared lock on data item X and transaction T2 wants
to read data item X, T2 may also obtain a shared lock on data item X.

If transaction T2 updates data item X, an exclusive lock is required by T2 over data item X. The exclusive lock is
granted if and only if no other locks are held on the data item. Therefore, if a shared or exclusive lock is already
held on data item X by transaction T1, an exclusive lock cannot be granted to transaction T2 and T2 must wait to begin
until T1 commits. This condition is known as the mutual exclusive rule: only one transaction at a time can own an
exclusive lock on the same object.

Although the use of shared locks renders data access more efficient, a shared/exclusive lock schema increases the lock
manager’s overhead, for several reasons:

� The type of lock held must be known before a lock can be granted.

� Three lock operations exist: READ_LOCK (to check the type of lock), WRITE_LOCK (to issue the lock), and
UNLOCK (to release the lock).

� The schema has been enhanced to allow a lock upgrade (from shared to exclusive) and a lock downgrade (from
exclusive to shared).

Although locks prevent serious data inconsistencies, they can lead to two major problems:

� The resulting transaction schedule might not be serializable.

� The schedule might create deadlocks. A database deadlock, which is equivalent to traffic gridlock in a big city,
is caused when two or more transactions wait for each other to unlock data.

Fortunately, both problems can be managed: serializability is guaranteed through a locking protocol known as
two-phase locking, and deadlocks can be managed by using deadlock detection and prevention techniques. Those
techniques are examined in the next two sections.

10.3.3 Two-Phase Locking to Ensure Serializability

Two-phase locking defines how transactions acquire and relinquish locks. Two-phase locking guarantees serializ-
ability, but it does not prevent deadlocks. The two phases are:

1. A growing phase, in which a transaction acquires all required locks without unlocking any data. Once all locks
have been acquired, the transaction is in its locked point.

2. A shrinking phase, in which a transaction releases all locks and cannot obtain any new lock.

The two-phase locking protocol is governed by the following rules:

� Two transactions cannot have conflicting locks.

� No unlock operation can precede a lock operation in the same transaction.

� No data are affected until all locks are obtained—that is, until the transaction is in its locked point.

Figure 10.7 depicts the two-phase locking protocol.

C6545_10 8/20/2007 14:34:36 Page 429

429T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

In this example, the transaction acquires all of the locks it needs until it reaches its locked point. (In this example, the
transaction requires two locks.) When the locked point is reached, the data are modified to conform to the transaction
requirements. Finally, the transaction is completed as it releases all of the locks it acquired in the first phase.

Two-phase locking increases the transaction processing cost and might cause additional undesirable effects. One
undesirable effect is the possibility of creating deadlocks.

10.3.4 Deadlocks

A deadlock occurs when two transactions wait indefinitely for each other to unlock data. For example, a deadlock
occurs when two transactions, T1 and T2, exist in the following mode:

T1 = access data items X and Y
T2 = access data items Y and X

If T1 has not unlocked data item Y, T2 cannot begin; if T2 has not unlocked data item X, T1 cannot continue.
Consequently, T1 and T2 each wait for the other to unlock the required data item. Such a deadlock is also known as
a deadly embrace. Table 10.13 demonstrates how a deadlock condition is created.

FIGURE
10.7

Two-phase locking protocol

Locked
point

Acquire
lock

Acquire
lock

Release
lock

Release
lock

Time

Start Operations End

Growing phase
Locked
phase Shrinking phase

1 2 3 4 5 6 7 8

C6545_10 8/20/2007 14:34:46 Page 430

430 C H A P T E R 1 0

The preceding example used only two concurrent transactions to demonstrate a deadlock condition. In a real-world
DBMS, many more transactions can be executed simultaneously, thereby increasing the probability of generating
deadlocks. Note that deadlocks are possible only when one of the transactions wants to obtain an exclusive lock on a
data item; no deadlock condition can exist among shared locks.

The three basic techniques to control deadlocks are:

� Deadlock prevention. A transaction requesting a new lock is aborted when there is the possibility that a
deadlock can occur. If the transaction is aborted, all changes made by this transaction are rolled back and all
locks obtained by the transaction are released. The transaction is then rescheduled for execution. Deadlock
prevention works because it avoids the conditions that lead to deadlocking.

� Deadlock detection. The DBMS periodically tests the database for deadlocks. If a deadlock is found, one of
the transactions (the “victim”) is aborted (rolled back and restarted) and the other transaction continues.

� Deadlock avoidance. The transaction must obtain all of the locks it needs before it can be executed. This
technique avoids the rollback of conflicting transactions by requiring that locks be obtained in succession.
However, the serial lock assignment required in deadlock avoidance increases action response times.

The choice of the best deadlock control method to use depends on the database environment. For example, if the
probability of deadlocks is low, deadlock detection is recommended. However, if the probability of deadlocks is high,
deadlock prevention is recommended. If response time is not high on the system’s priority list, deadlock avoidance might
be employed. All current DBMSs support deadlock detention in transactional databases, while some DBMSs use a blend
of prevention and avoidance techniques for other types of data, such as data warehouses or XML data.

10.4 CONCURRENCY CONTROL WITH TIME STAMPING METHODS

The time stamping approach to scheduling concurrent transactions assigns a global, unique time stamp to each
transaction. The time stamp value produces an explicit order in which transactions are submitted to the DBMS. Time
stamps must have two properties: uniqueness and monotonicity. Uniqueness ensures that no equal time stamp values
can exist, and monotonicity1 ensures that time stamp values always increase.

1 The term monotonicity is part of the standard concurrency control vocabulary. The authors’ first introduction to this term and its proper use was in
an article written by W. H. Kohler, “A Survey of Techniques for Synchronization and Recovery in Decentralized Computer Systems,” Computer Surveys
3(2), June 1981, pp. 149−283.

TABLE
10.13

How a Deadlock Condition Is Created

TIME TRANSACTION REPLY LOCK STATUS
0 Data X Data Y
1 T1:LOCK(X) OK Unlocked Unlocked
2 T2: LOCK(Y) OK Locked Unlocked
3 T1:LOCK(Y) WAIT Locked Locked
4 T2:LOCK(X) WAIT Locked Locked
5 T1:LOCK(Y) WAIT Locked Locked
6 T2:LOCK(X) WAIT Locked Locked
7 T1:LOCK(Y) WAIT Locked Locked
8 T2:LOCK(X) WAIT Locked Locked
9 T1:LOCK(Y) WAIT Locked Locked
� ����.. ��.. ��� ��.�
� ����.. ��.. ��� ��.�
� ����.. ��.. ��� ��.�
� ����.. ��.. ��� ���

C6545_10 9/26/2007 9:31:14 Page 431

431T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

All database operations (READ and WRITE) within the same transaction must have the same time stamp. The DBMS
executes conflicting operations in time stamp order, thereby ensuring serializability of the transactions. If two
transactions conflict, one is stopped, rolled back, rescheduled, and assigned a new time stamp value.

The disadvantage of the time stamping approach is that each value stored in the database requires two additional time
stamp fields: one for the last time the field was read and one for the last update. Time stamping thus increases memory
needs and the database’s processing overhead. Time stamping demands a lot of system resources because many
transactions might have to be stopped, rescheduled, and restamped.

10.4.1 Wait/Die and Wound/Wait Schemes

You have learned that time stamping methods are used to manage concurrent transaction execution. In this section,
you will learn about two schemes used to decide which transaction is rolled back and which continues executing: the
wait/die scheme and the wound/wait scheme.2 An example illustrates the difference. Assume that you have two
conflicting transactions: T1 and T2, each with a unique time stamp. Suppose T1 has a time stamp of 11548789 and
T2 has a time stamp of 19562545. You can deduce from the time stamps that T1 is the older transaction (the
lower time stamp value) and T2 is the newer transaction. Given that scenario, the four possible outcomes are shown
in Table 10.14.

TABLE
10.14

Wait/Die and Wound/Wait Concurrency Control Schemes

TRANSACTION
REQUESTING LOCK

TRANSACTION
OWNING LOCK

WAIT/DIE SCHEME WOUND/WAIT SCHEME

T1 (11548789) T2 (19562545) • T1 waits until T2 is
completed and T2 releases
its locks.

• T1 preempts (rolls back) T2.
• T2 is rescheduled using the

same time stamp.
T2 (19562545) T1 (11548789) • T2 dies (rolls back)

• T2 is rescheduled using
the same time stamp

• T2 waits until T1 is com-
pleted and T1 releases
its locks.

Using the wait/die scheme:

� If the transaction requesting the lock is the older of the two transactions, it will wait until the other transaction
is completed and the locks are released.

� If the transaction requesting the lock is the younger of the two transactions, it will die (roll back) and is
rescheduled using the same time stamp.

In short, in the wait/die scheme, the older transaction waits for the younger to complete and release its locks.

In the wound/wait scheme:

� If the transaction requesting the lock is the older of the two transactions, it will preempt (wound) the younger
transaction (by rolling it back). T1 preempts T2 when T1 rolls back T2. The younger, preempted transaction
is rescheduled using the same time stamp.

� If the transaction requesting the lock is the younger of the two transactions, it will wait until the other
transaction is completed and the locks are released.

In short, in the wound/wait scheme, the older transaction rolls back the younger transaction and reschedules it.

2 The procedure was first described by R. E. Stearnes and P. M. Lewis II in “System-level Concurrency Control for Distributed Database Systems,” ACM
Transactions on Database Systems, No. 2, June 1978, pp. 178−198.

C6545_10 11/8/2007 13:12:27 Page 432

432 C H A P T E R 1 0

In both schemes, one of the transactions waits for the other transaction to finish and release the locks. However, in
many cases, a transaction requests multiple locks. How long does a transaction have to wait for each lock request?
Obviously, that scenario can cause some transactions to wait indefinitely, causing a deadlock. To prevent that type of
deadlock, each lock request has an associated time-out value. If the lock is not granted before the time-out expires, the
transaction is rolled back.

10.5 CONCURRENCY CONTROL WITH OPTIMISTIC METHODS

The optimistic approach is based on the assumption that the majority of the database operations do not conflict.
The optimistic approach requires neither locking nor time stamping techniques. Instead, a transaction is executed
without restrictions until it is committed. Using an optimistic approach, each transaction moves through two or three
phases, referred to as read, validation, and write.3

� During the read phase, the transaction reads the database, executes the needed computations, and makes the
updates to a private copy of the database values. All update operations of the transaction are recorded in a
temporary update file, which is not accessed by the remaining transactions.

� During the validation phase, the transaction is validated to ensure that the changes made will not affect the
integrity and consistency of the database. If the validation test is positive, the transaction goes to the write
phase. If the validation test is negative, the transaction is restarted and the changes are discarded.

� During the write phase, the changes are permanently applied to the database.

The optimistic approach is acceptable for most read or query database systems that require few update transactions.

In a heavily used DBMS environment, the management of deadlocks—their prevention and detection—constitutes an
important DBMS function. The DBMS will use one or more of the techniques discussed here, as well as variations on
those techniques. However, the deadlock is sometimes worse than the disease that locks are supposed to cure.
Therefore, it may be necessary to employ database recovery techniques to restore the database to a consistent state.

10.6 DATABASE RECOVERY MANAGEMENT

Database recovery restores a database from a given state (usually inconsistent) to a previously consistent state.
Recovery techniques are based on the atomic transaction property: all portions of the transaction must be treated
as a single, logical unit of work in which all operations are applied and completed to produce a consistent database.
If, for some reason, any transaction operation cannot be completed, the transaction must be aborted and any changes
to the database must be rolled back (undone). In short, transaction recovery reverses all of the changes that the
transaction made to the database before the transaction was aborted.

Although this chapter has emphasized the recovery of transactions, recovery techniques also apply to the database
and to the system after some type of critical error has occurred. Critical events can cause a database to become
non-operational and compromise the integrity of the data. Examples of critical events are:

� Hardware/software failures. Failure of this type could be a hard disk media failure, a bad capacitor on a
motherboard, or a failing memory bank. Other causes of errors under this category include application
program or operating system errors that cause data to be overwritten, deleted, or lost. Some database
administrators argue that this is one of the most common sources of database problems.

3 The optimistic approach to concurrency control is described in an article by H. T. King and J. T. Robinson, “Optimistic Methods for Concurrency
Control,” ACM Transactions on Database Systems 6(2), June 1981, pp. 213−226. Even the most current software is built on conceptual standards
that were developed more than two decades ago.

C6545_10 8/20/2007 15:16:54 Page 433

433T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

� Human-caused incidents. This type of event can be categorized as unintentional or intentional.

- An unintentional failure is caused by carelessness by end-users. Such errors include deleting the wrong rows
from a table, pressing the wrong key on the keyboard, or shutting down the main database server by accident.

- Intentional events are of a more severe nature and normally indicate that the company data are at serious
risk. Under this category are security threats caused by hackers trying to gain unauthorized access to data
resources and virus attacks caused by disgruntled employees trying to compromise the database operation
and damage the company.

� Natural disasters. This category includes fires, earthquakes, floods, and power failures.

Whatever the cause, a critical error can render the database in an inconsistent state. The following section introduces
the various techniques used to recover the database from an inconsistent state to a consistent state.

10.6.1 Transaction Recovery

In Section 10.1.4, you learned about the transaction log and how it contains data for database recovery purposes.
Database transaction recovery uses data in the transaction log to recover a database from an inconsistent state to a
consistent state.

Before continuing, let’s examine four important concepts that affect the recovery process:

� The write-ahead-log protocol ensures that transaction logs are always written before any database data are
actually updated. This protocol ensures that, in case of a failure, the database can later be recovered to a
consistent state, using the data in the transaction log.

� Redundant transaction logs (several copies of the transaction log) ensure that a physical disk failure will not
impair the DBMS’s ability to recover data.

� Database buffers are temporary storage areas in primary memory used to speed up disk operations. To
improve processing time, the DBMS software reads the data from the physical disk and stores a copy of it on
a “buffer” in primary memory. When a transaction updates data, it actually updates the copy of the data in the
buffer because that process is much faster than accessing the physical disk every time. Later on, all buffers that
contain updated data are written to a physical disk during a single operation, thereby saving significant
processing time.

� Database checkpoints are operations in which the DBMS writes all of its updated buffers to disk. While this
is happening, the DBMS does not execute any other requests. A checkpoint operation is also registered in the
transaction log. As a result of this operation, the physical database and the transaction log will be in sync. This
synchronization is required because update operations update the copy of the data in the buffers and not in the
physical database. Checkpoints are automatically scheduled by the DBMS several times per hour. As you will
see next, checkpoints also play an important role in transaction recovery.

The database recovery process involves bringing the database to a consistent state after a failure. Transaction recovery
procedures generally make use of deferred-write and write-through techniques.

When the recovery procedure uses a deferred–write technique (also called a deferred update), the transaction
operations do not immediately update the physical database. Instead, only the transaction log is updated. The database
is physically updated only after the transaction reaches its commit point, using information from the transaction log.
If the transaction aborts before it reaches its commit point, no changes (no ROLLBACK or undo) need to be made to
the database because the database was never updated. The recovery process for all started and committed transactions
(before the failure) follows these steps:

1. Identify the last checkpoint in the transaction log. This is the last time transaction data was physically saved
to disk.

2. For a transaction that started and was committed before the last checkpoint, nothing needs to be done because
the data are already saved.

C6545_10 9/14/2007 14:22:43 Page 434

434 C H A P T E R 1 0

3. For a transaction that performed a commit operation after the last checkpoint, the DBMS uses the transaction
log records to redo the transaction and to update the database, using the “after” values in the transaction log.
The changes are made in ascending order, from oldest to newest.

4. For any transaction that had a ROLLBACK operation after the last checkpoint or that was left active (with
neither a COMMIT nor a ROLLBACK) before the failure occurred, nothing needs to be done because the
database was never updated.

When the recovery procedure uses a write-through technique (also called an immediate update), the database is
immediately updated by transaction operations during the transaction’s execution, even before the transaction reaches
its commit point. If the transaction aborts before it reaches its commit point, a ROLLBACK or undo operation needs
to be done to restore the database to a consistent state. In that case, the ROLLBACK operation will use the transaction
log “before” values. The recovery process follows these steps:

1. Identify the last checkpoint in the transaction log. This is the last time transaction data were physically saved
to disk.

2. For a transaction that started and was committed before the last checkpoint, nothing needs to be done because
the data are already saved.

3. For a transaction that was committed after the last checkpoint, the DBMS redoes the transaction, using the
“after” values of the transaction log. Changes are applied in ascending order, from oldest to newest.

4. For any transaction that had a ROLLBACK operation after the last checkpoint or that was left active (with
neither a COMMIT nor a ROLLBACK) before the failure occurred, the DBMS uses the transaction log records
to ROLLBACK or undo the operations, using the “before” values in the transaction log. Changes are applied
in reverse order, from newest to oldest.

Use the transaction log in Table 10.15 to trace a simple database recovery process. To make sure you understand the
recovery process, a simple transaction log is used that includes three transactions and one checkpoint. This transaction
log includes the transaction components used earlier in the chapter, so you should already be familiar with the basic
process. Given the transaction, the transaction log has the following characteristics:

� Transaction 101 consists of two UPDATE statements that reduce the quantity on hand for product 54778-2T
and increase the customer balance for customer 10011 for a credit sale of two units of product 54778-2T.

� Transaction 106 is the same credit sales event you saw in Section 10.1.1. This transaction represents the credit
sale of one unit of product 89-WRE-Q to customer 10016 in the amount of $277.55. This transaction consists
of five SQL DML statements: three INSERT statements and two UPDATE statements.

� Transaction 155 represents a simple inventory update. This transaction consists of one UPDATE statement
that increases the quantity on hand of product 2232/QWE from 6 units to 26 units.

� A database checkpoint wrote all updated database buffers to disk. The checkpoint event writes only the
changes for all previously committed transactions. In this case, the checkpoint applies all changes done by
transaction 101 to the database data files.

C6545_10 8/20/2007 15:17:35 Page 435

435T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

TA
BL

E
10

.1
5

A
Tr

an
sa

ct
io

n
Lo

g
fo

r
Tr

an
sa

ct
io

n
Re

co
ve

ry
Ex

am
pl

es

TR
L

ID
TR

X
N

U
M

PR
EV

PT
R

N
EX

T
PT

R
O

PE
RA

TI
O

N
TA

BL
E

RO
W

ID
AT

TR
IB

U
TE

BE
FO

RE
VA

LU
E

AF
TE

R
VA

LU
E

34
1

10
1

N
ul

l
35

2
ST

A
RT

**
**

St
ar

tT
ra

ns
ac

tio
n

35
2

10
1

34
1

36
3

U
PD

AT
E

PR
O

D
U

C
T

54
77

8-
2T

PR
O

D
_Q

O
H

45
43

36
3

10
1

35
2

36
5

U
PD

AT
E

C
U

ST
O

M
ER

10
01

1
C

U
ST

_B
AL

AN
C

E
61

5.
73

67
5.

62
36

5
10

1
36

3
N

ul
l

C
O

M
M

IT
**

**
En

d
of

Tr
an

sa
ct

io
n

39
7

10
6

N
ul

l
40

5
ST

AR
T

**
**

St
ar

tT
ra

ns
ac

tio
n

40
5

10
6

39
7

41
5

IN
SE

RT
IN

VO
IC

E
10

09
10

09
,1

00
16

,�
41

5
10

6
40

5
41

9
IN

SE
RT

LI
N

E
10

09
,1

10
09

,1
,8

9-
W

RE
-Q

,1
,�

41
9

10
6

41
5

42
7

U
PD

AT
E

PR
O

D
U

C
T

89
-W

RE
-Q

PR
O

D
_Q

O
H

12
11

42
3

C
H

EC
KP

O
IN

T
42

7
10

6
41

9
43

1
U

PD
AT

E
C

U
ST

O
M

ER
10

01
6

C
U

ST
_B

AL
AN

C
E

0.
00

27
7.

55
43

1
10

6
42

7
45

7
IN

SE
RT

AC
C

T_
TR

AN
SA

C
TI

O
N

10
00

7
10

07
,1

8-
JA

N
-2

00
8,

�

45
7

10
6

43
1

N
ul

l
C

O
M

M
IT

**
**

En
d

of
Tr

an
sa

ct
io

n
52

1
15

5
N

ul
l

52
5

ST
A

RT
**

**
St

ar
tT

ra
ns

ac
tio

n
52

5
15

5
52

1
52

8
U

PD
AT

E
PR

O
D

U
C

T
22

32
/Q

W
E

PR
O

D
_Q

O
H

6
26

52
8

15
5

52
5

N
ul

l
C

O
M

M
IT

**
**

En
d

of
Tr

an
sa

ct
io

n
*

*
*

*
*

C
*R

*A
*

S*
H

*
*

*
*

C6545_10 8/20/2007 14:53:49 Page 436

436 C H A P T E R 1 0

Using Table 10.15, you can now trace the database recovery process for a DBMS, using the deferred update method
as follows:

1. Identify the last checkpoint. In this case, the last checkpoint was TRL ID 423. This was the last time database
buffers were physically written to disk.

2. Note that transaction 101 started and finished before the last checkpoint. Therefore, all changes were already
written to disk, and no additional action needs to be taken.

3. For each transaction that committed after the last checkpoint (TRL ID 423), the DBMS will use the transaction
log data to write the changes to disk, using the “after” values. For example, for transaction 106:

a. Find COMMIT (TRL ID 457).

b. Use the previous pointer values to locate the start of the transaction (TRL ID 397).

c. Use the next pointer values to locate each DML statement and apply the changes to disk, using the “after”
values. (Start with TRL ID 405, then 415, 419, 427 and 431.) Remember that TRL ID 457 was the
COMMIT statement for this transaction.

d. Repeat the process for transaction 155.

4. Any other transactions will be ignored. Therefore, for transactions that ended with ROLLBACK or that were
left active (those that do not end with a COMMIT or ROLLBACK), nothing is done because no changes were
written to disk.

C6545_10 8/20/2007 14:45:44 Page 437

437T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

S u m m a r y

◗ A transaction is a sequence of database operations that access the database. A transaction represents a real-world
event. A transaction must be a logical unit of work; that is, no portion of the transaction can exist by itself. Either
all parts are executed or the transaction is aborted. A transaction takes a database from one consistent state to
another. A consistent database state is one in which all data integrity constraints are satisfied.

◗ Transactions have four main properties: atomicity (all parts of the transaction are executed; otherwise, the
transaction is aborted), consistency (the database’s consistent state is maintained), isolation (data used by one
transaction cannot be accessed by another transaction until the first transaction is completed), and durability (the
changes made by a transaction cannot be rolled back once the transaction is committed). In addition, transaction
schedules have the property of serializability (the result of the concurrent execution of transactions is the same as
that of the transactions being executed in serial order).

◗ SQL provides support for transactions through the use of two statements: COMMIT (saves changes to disk) and
ROLLBACK (restores the previous database state).

◗ SQL transactions are formed by several SQL statements or database requests. Each database request originates
several I/O database operations.

◗ The transaction log keeps track of all transactions that modify the database. The information stored in the
transaction log is used for recovery (ROLLBACK) purposes.

◗ Concurrency control coordinates the simultaneous execution of transactions. The concurrent execution of
transactions can result in three main problems: lost updates, uncommitted data, and inconsistent retrievals.

◗ The scheduler is responsible for establishing the order in which the concurrent transaction operations are executed.
The transaction execution order is critical and ensures database integrity in multiuser database systems. Locking,
time stamping, and optimistic methods are used by the scheduler to ensure the serializability of transactions.

◗ A lock guarantees unique access to a data item by a transaction. The lock prevents one transaction from using the data
item while another transaction is using it. There are several levels of locks: database, table, page, row, and field.

◗ Two types of locks can be used in database systems: binary locks and shared/exclusive locks. A binary lock can have
only two states: locked (1) or unlocked (0). A shared lock is used when a transaction wants to read data from a
database and no other transaction is updating the same data. Several shared or “read” locks can exist for a
particular item. An exclusive lock is issued when a transaction wants to update (write to) the database and no other
locks (shared or exclusive) are held on the data.

◗ Serializability of schedules is guaranteed through the use of two-phase locking. The two-phase locking schema has
a growing phase, in which the transaction acquires all of the locks that it needs without unlocking any data, and
a shrinking phase, in which the transaction releases all of the locks without acquiring new locks.

◗ When two or more transactions wait indefinitely for each other to release a lock, they are in a deadlock, also called
a deadly embrace. There are three deadlock control techniques: prevention, detection, and avoidance.

◗ Concurrency control with time stamping methods assigns a unique time stamp to each transaction and schedules
the execution of conflicting transactions in time-stamp order. Two schemes are used to decide which transaction
is rolled back and which continues executing: the wait/die scheme and the wound/wait scheme.

◗ Concurrency control with optimistic methods assumes that the majority of database transactions do not conflict and
that transactions are executed concurrently, using private, temporary copies of the data. At commit time, the
private copies are updated to the database.

◗ Database recovery restores the database from a given state to a previous consistent state. Database recovery is
triggered when a critical event occurs, such a hardware error or application error.

C6545_10 9/26/2007 9:31:46 Page 438

438 C H A P T E R 1 0

K e y T e r m s

atomicity, 417

atomic transaction property, 433

binary lock, 428

buffers, 434

checkpoints, 434

concurrency control, 420

consistency, 417

consistent database state, 414

database recovery, 433

database request, 414

deadlock, 430

deadly embrace, 430

deferred update, 434

deferred-write technique, 434

durability, 417

exclusive lock, 428

immediate update, 435

inconsistent retrievals, 422

isolation, 417

lock, 425

lock granularity, 425
database-level lock, 425
table-level lock, 426
page-level lock, 426
row-level lock, 427
field-level lock, 428

lock manager, 425

lost updates, 420

monotonicity, 431

mutual exclusive rule, 429

optimistic approach, 433

page, 426

redundant transaction logs, 434

scheduler, 424

serializable schedule, 424

serializability, 417

shared lock, 428

time stamping, 431

transaction, 414

transaction log, 418

two-phase locking, 429

uncommitted data, 421

uniqueness, 431

wait/die, 432

wound/wait, 432

write-ahead-log protocol, 434

write-through technique, 435

R e v i e w Q u e s t i o n s

1. Explain the following statement: a transaction is a logical unit of work.

2. What is a consistent database state, and how is it achieved?

3. The DBMS does not guarantee that the semantic meaning of the transaction truly represents the real-world event.
What are the possible consequences of that limitation? Give an example.

4. List and discuss the four transaction properties.

5. What is a transaction log, and what is its function?

6. What is a scheduler, what does it do, and why is its activity important to concurrency control?

7. What is a lock, and how, in general, does it work?

8. What is concurrency control, and what is its objective?

9. What is an exclusive lock, and under what circumstances is it granted?

10. What is a deadlock, and how can it be avoided? Discuss several strategies for dealing with deadlocks.

11. What are the three types of database critical events that can trigger the database recovery process? Give some
examples for each one.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_10 8/20/2007 15:18:23 Page 439

439T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

P r o b l e m s

1. Suppose you are a manufacturer of product ABC, which is composed of parts A, B, and C. Each time a new
product ABC is created, it must be added to the product inventory, using the PROD_QOH in a table named
PRODUCT. And each time the product is created, the parts inventory, using PART_QOH in a table named
PART, must be reduced by one each of parts A, B, and C. The sample database contents are shown in the
following tables.

Given that information, answer Questions a through e.

a. How many database requests can you identify for an inventory update for both PRODUCT and PART?

b. Using SQL, write each database request you identified in Step a.

c. Write the complete transaction(s).

d. Write the transaction log, using Table 10.1 as your template.

e. Using the transaction log you created in Step d, trace its use in database recovery.

2. Describe the three most common concurrent transaction execution problems. Explain how concurrency control
can be used to avoid those problems.

3. What DBMS component is responsible for concurrency control? How is this feature used to resolve conflicts?

4. Using a simple example, explain the use of binary and shared/exclusive locks in a DBMS.

5. Suppose your database system has failed. Describe the database recovery process and the use of deferred-write
and write-through techniques.

6. ABC Markets sell products to customers. The relational diagram shown in Figure P10.6 represents the main
entities for ABC’s database. Note the following important characteristics:

� A customer may make many purchases, each one represented by an invoice.

- The CUS_BALANCE is updated with each credit purchase or payment and represents the amount the
customer owes.

- The CUS_BALANCE is increased (+) with every credit purchase and decreased (–) with every customer
payment.

- The date of last purchase is updated with each new purchase made by the customer.

- The date of last payment is updated with each new payment made by the customer.

TABLE
P10.1
TABLE NAME: PRODUCT
PROD_CODE PROD_QOH
ABC 1,205

TABLE NAME: PART
PART_CODE PART_QOH
A 567
B 98
C 549

O n l i n e C o n t e n t

The Ch10_ABC_Markets database is located in the Student Online Companion for this book.

C6545_10 9/14/2007 14:24:47 Page 440

440 C H A P T E R 1 0

� An invoice represents a product purchase by a customer.

- An INVOICE can have many invoice LINEs, one for each product purchased.

- The INV_TOTAL represents the total cost of the invoice, including taxes.

- The INV_TERMS can be “30,” “60,” or “90” (representing the number of days of credit) or “CASH,”
“CHECK,” or “CC.”

- The invoice status can be “OPEN,” “PAID,” or “CANCEL.”

� A product’s quantity on hand (P_QTYOH) is updated (decreased) with each product sale.

� A customer may make many payments. The payment type (PMT_TYPE) can be one of the following:

- “CASH” for cash payments.

- “CHECK” for check payments.

- “CC” for credit card payments.

� The payment details (PMT_DETAILS) are used to record data about check or credit card payments:

- The bank, account number, and check number for check payments.

- The issuer, credit card number, and expiration date for credit card payments.

Note: Not all entities and attributes are represented in this example. Use only the attributes indicated.

Using this database, write the SQL code to represent each of the following transactions. Use BEGIN
TRANSACTION and COMMIT to group the SQL statements in logical transactions.

a. On May 11, 2008, customer 10010 makes a credit purchase (30 days) of one unit of product 11QER/31
with a unit price of $110.00; the tax rate is 8 percent. The invoice number is 10983, and this invoice has
only one product line.

b. On June 3, 2008, customer 10010 makes a payment of $100 in cash. The payment ID is 3428.

c. Create a simple transaction log (using the format shown in Table 10.14) to represent the actions of the two
previous transactions.

FIGURE
P10.6

The ABC Markets relational diagram

C6545_10 9/14/2007 14:25:10 Page 441

441T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

Preview

Database Performance Tuning and
Query Optimization

In this chapter, you will learn:

� Basic database performance-tuning concepts

� How a DBMS processes SQL queries

� About the importance of indexes in query processing

� About the types of decisions the query optimizer has to make

� Some common practices used to write efficient SQL code

� How to formulate queries and tune the DBMS for optimal performance

Database performance tuning is a critical topic, yet it usually receives minimal coverage in

the database curriculum. Most databases used in classrooms have only a few records per

table. As a result, the focus often is on making SQL queries perform an intended task,

without considering the efficiency of the query process. In fact, even the most efficient

query environment yields no visible performance improvements over the least efficient

query environment when only 20 or 30 table rows (records) are queried. Unfortunately,

that lack of attention to query efficiency can yield unacceptably slow results, when in the

real world, queries are executed over tens of millions of records. In this chapter, you learn

what it takes to create a more efficient query environment.

11
E

L
E

V
E

N

C6545_11 8/21/2007 14:39:22 Page 442

11.1 DATABASE PERFORMANCE-TUNING CONCEPTS

One of the main functions of a database system is to provide timely answers to end users. End users interact with the
DBMS through the use of queries to generate information, using the following sequence:

1. The end-user (client-end) application generates a query.

2. The query is sent to the DBMS (server end).

3. The DBMS (server end) executes the query.

4. The DBMS sends the resulting data set to the end-user (client-end) application.

End users expect their queries to return results as quickly as possible. How do you know that the performance of a
database is good? Good database performance is hard to evaluate. How do you know if a 1.06-second query response
time is good enough? It’s easier to identify bad database performance than good database performance—all it takes
is end-user complaints about slow query results. Unfortunately, the same query might perform well one day and not
so well two months later. Regardless of end-user perceptions, the goal of database performance is to execute queries
as fast as possible. Therefore, database performance must be closely monitored and regularly tuned. Database
performance tuning refers to a set of activities and procedures designed to reduce the response time of the database
system—that is, to ensure that an end-user query is processed by the DBMS in the minimum amount of time.

The time required by a query to return a result set depends on many factors. Those factors tend to be wide-ranging
and to vary from environment to environment and from vendor to vendor. The performance of a typical DBMS is
constrained by three main factors: CPU processing power, available primary memory (RAM), and input/output (hard
disk and network) throughput. Table 11.1 lists some system components and summarizes general guidelines for
achieving better query performance.

TABLE
11.1

General Guidelines for Better System Performance

SYSTEM
RESOURCES

CLIENT SERVER

Hardware CPU The fastest possible
Dual-core CPU or higher

The fastest possible
Multiple processors (Quad-core technology)

RAM The maximum possible The maximum possible
Hard Disk Fast SATA/EIDE hard disk with

sufficient free hard disk space
Multiple high-speed, high-capacity hard disks
(SCSI / SATA / Firewire / Fibre Channel) in RAID
configuration

Network High-speed connection High-speed connection
Software Operating

System
Fine-tuned for best client
application performance

Fine-tuned for best server application
performance

Network Fine-tuned for best throughput Fine-tuned for best throughput
Application Optimize SQL in client

application
Optimize DBMS server for best performance

Note

Because this book focuses on databases, this chapter covers only those factors directly affecting database
performance. Also, because performance-tuning techniques can be DBMS-specific, the material in this chapter
might not be applicable under all circumstances, nor will it necessarily pertain to all DBMS types. This chapter
is designed to build a foundation for the general understanding of database performance-tuning issues and to
help you choose appropriate performance-tuning strategies. (For the most current information about tuning
your database, consult the vendor’s documentation.)

C6545_11 9/14/2007 14:27:37 Page 443

443D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Naturally, the system will perform best when its hardware and software resources are optimized. However, in the real
world, unlimited resources are not the norm; internal and external constraints always exist. Therefore, the system
components should be optimized to obtain the best throughput possible with existing (and often limited) resources,
which is why database performance tuning is important.

Fine-tuning the performance of a system requires a holistic approach. That is, all factors must be checked to ensure
that each one operates at its optimum level and has sufficient resources to minimize the occurrence of bottlenecks.
Because database design is such an important factor in determining the database system’s performance efficiency, it
is worth repeating this book’s mantra:

Good database performance starts with good database design. No amount of fine tuning will make a poorly
designed database perform as well as a well-designed database. This is particularly true in the case of redesigning
existing databases, where the end user expects unrealistic performance gains from older databases.

What constitutes a good, efficient database design? From the performance tuning point of view, the database designer
must ensure that the design makes use of the database features available in the DBMS that guarantee the integrity and
optimal performance of the database. This chapter provides you with fundamental knowledge that will help you to
optimize database performance by selecting the appropriate database server configuration, utilizing indexes, under-
standing table storage organization and data locations, and implementing the most efficient SQL query syntax.

11.1.1 Performance Tuning: Client and Server

In general, database performance-tuning activities can be divided into those taking place on the client side and those
taking place on the server side.

� On the client side, the objective is to generate a SQL query that returns the correct answer in the least amount
of time, using the minimum amount of resources at the server end. The activities required to achieve that goal
are commonly referred to as SQL performance tuning.

� On the server side, the DBMS environment must be properly configured to respond to clients’ requests in the
fastest way possible, while making optimum use of existing resources. The activities required to achieve that
goal are commonly referred to as DBMS performance tuning.

Keep in mind that DBMS implementations are typically more complex than just a two-tier client/server configuration.
However, even in multi-tier (client front-end, application middleware, and database server back-end) client/server
environments, performance-tuning activities are frequently divided into subtasks to ensure the fastest possible response
time between any two component points.

This chapter covers SQL performance-tuning practices on the client side and DBMS performance-tuning practices on
the server side. But before you can start learning about the tuning processes, you must first learn more about the
DBMS architectural components and processes and how those processes interact to respond to end-users requests.

11.1.2 DBMS Architecture

The architecture of a DBMS is represented by the processes and structures (in memory and in permanent storage) used
to manage a database. Such processes collaborate with one another to perform specific functions. Figure 11.1
illustrates the basic DBMS architecture.

O n l i n e C o n t e n t

If you want to learn more about clients and servers, check Appendix F, Client/Server Systems, located
in the Student Online Companion for this book.

C6545_11 8/21/2007 9:27:1 Page 444

444 C H A P T E R 1 1

Note the following components and functions in Figure 11.1:

� All data in a database are stored in data files. A typical enterprise database is normally composed of several
data files. A data file can contain rows from one single table, or it can contain rows from many different tables.
A database administrator (DBA) determines the initial size of the data files that make up the database; however,
as required, the data files can automatically expand in predefined increments known as extends. For example,
if more space is required, the DBA can define that each new extend will be in 10 KB or 10 MB increments.

� Data files are generally grouped in file groups or table spaces. A table space or file group is a logical
grouping of several data files that store data with similar characteristics. For example, you might have a system
table space where the data dictionary table data are stored; a user data table space to store the user-created
tables; an index table space to hold all indexes; and a temporary table space to do temporary sorts, grouping,
and so on. Each time you create a new database, the DBMS automatically creates a minimum set of table
spaces.

� The data cache or buffer cache is a shared, reserved memory area that stores the most recently accessed
data blocks in RAM. The data cache is where the data read from the database data files are stored after the
data have been read or before the data are written to the database data files. The data cache also caches system
catalog data and the contents of the indexes.

� The SQL cache or procedure cache is a shared, reserved memory area that stores the most recently
executed SQL statements or PL/SQL procedures, including triggers and functions. (To learn more about
PL/SQL procedures, triggers, and SQL functions, study Chapter 8, Advanced SQL.) The SQL cache does not
store the end-user written SQL. Rather, the SQL cache stores a “processed” version of the SQL that is ready
for execution by the DBMS.

� To work with the data, the DBMS must retrieve the data from permanent storage (data files in which the data
are stored) and place it in RAM (data cache).

FIGURE
11.1

Basic DBMS architecture

DBMS server
computer

Client
computer

Client
process

Result set
is sent
back to
client

I/O
operations

Data files

Table spaces

Database

Scheduler
Lock

manager
Optimizer

SQL cache

Listener

User
process

DBMS processes
running in primary

memory (RAM)

Database data files
stored in permanent
secondary memory

(hard disk)

Data cache

SQL
query

C6545_11 8/21/2007 9:27:37 Page 445

445D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

� To move data from the permanent storage (data files) to the RAM (data cache), the DBMS issues I/O requests
and waits for the replies. An input/output (I/O) request is a low-level (read or write) data access operation
to and from computer devices, such as memory, hard disks, video, and printers. The purpose of the I/O
operation is to move data to and from various computer components and devices. Note that an I/O disk read
operation retrieves an entire physical disk block, generally containing multiple rows, from permanent storage
to the data cache, even if you will be using only one attribute from only one row. The physical disk block size
depends on the operating system and could be 4K, 8K, 16K, 32K, 64K, or even larger. Furthermore,
depending on the circumstances, a DBMS might issue a single-block read request or a multiblock read request.

� Working with data in the data cache is many times faster than working with data in the data files because the
DBMS doesn’t have to wait for the hard disk to retrieve the data. This is because no hard disk I/O operations
are needed to work within the data cache.

� The majority of performance-tuning activities focus on minimizing the number of I/O operations because using
I/O operations is many times slower than reading data from the data cache. For example, as of this writing,
RAM access times range from 5 to 70 ns (nanoseconds), while hard disk access times range from 5 to 15 ms
(milliseconds).This means that hard disks are about six orders of magnitude (a million times) slower than RAM.1

Also illustrated in Figure 11.1 are some typical DBMS processes. Although the number of processes and their names
vary from vendor to vendor, the functionality is similar. The following processes are represented in Figure 11.1:

� Listener. The listener process listens for clients’ requests and handles the processing of the SQL requests to
other DBMS processes. Once a request is received, the listener passes the request to the appropriate user
process.

� User. The DBMS creates a user process to manage each client session. Therefore, when you log on to the
DBMS, you are assigned a user process. This process handles all requests you submit to the server. There are
many user processes—at least one per each logged-in client.

� Scheduler. The scheduler process organizes the concurrent execution of SQL requests. (See Chapter 10,
Transaction Management and Concurrency Control.)

� Lock manager. This process manages all locks placed on database objects, including disk pages. (See
Chapter 10.)

� Optimizer. The optimizer process analyzes SQL queries and finds the most efficient way to access the data.
You will learn more about this process later in the chapter.

11.1.3 Database Statistics

Another DBMS process that plays an important role in query optimization is gathering database statistics. The term
database statistics refers to a number of measurements about database objects, such as number of processors used,
processor speed, and temporary space available. Such statistics give a snapshot of database characteristics.

As you will learn later in this chapter, the DBMS uses these statistics to make critical decisions about improving query
processing efficiency. Database statistics can be gathered manually by the DBA or automatically by the DBMS. For
example, many DBMS vendors support the ANALYZE command in SQL to gather statistics. In addition, many vendors
have their own routines to gather statistics. For example, IBM’s DB2 uses the RUNSTATS procedure, while Microsoft’s
SQL Server uses the UPDATE STATISTICS procedure and provides the Auto-Update and Auto-Create Statistics
options in its initialization parameters. A sample of measurements that the DBMS may gather about various database
objects is shown in Table 11.2.

1Low Latency, Eliminating Application Jitters with Solaris, White Paper, May 2007, Sun Microsystems, http://www.sun.com/solutions/documents/
white-papers/fn_lowlatency_solaris.pdf.

C6545_11 8/21/2007 9:27:52 Page 446

446 C H A P T E R 1 1

TABLE
11.2

Sample Database Statistics Measurements

DATABASE OBJECT SAMPLE MEASUREMENTS
Tables Number of rows, number of disk blocks used, row length, number of columns in each

row, number of distinct values in each column, maximum value in each column, mini-
mum value in each column, and columns that have indexes

Indexes Number and name of columns in the index key, number of key values in the index,
number of distinct key values in the index key, histogram of key values in an index, and
number of disk pages used by the index

Environment Resources Logical and physical disk block size, location and size of data files, and number of
extends per data file

If the object statistics exist, the DBMS will use them in query processing. Although some of the newer DBMSs (such
as Oracle, SQL Server, and DB2) automatically gather statistics, others require the DBA to gather statistics manually.
To generate the database object statistics manually, you could use the following syntax:

ANALYZE <TABLE/INDEX> object_name COMPUTE STATISTICS;

(In SQL Server, use UPDATE STATISTICS <object_name>, where the object_name refers to a table or a view.)

For example, to generate statistics for the VENDOR table, you would use the following command:

ANALYZE TABLE VENDOR COMPUTE STATISTICS;

(In SQL Server, use UPDATE STATISTICS VENDOR;.)

When you generate statistics for a table, all related indexes are also analyzed. However, you could generate statistics
for a single index by using the following command:

ANALYZE INDEX VEND_NDX COMPUTE STATISTICS;

In the above example, VEND_NDX is the name of the index.

(In SQL Server, use UPDATE STATISTICS <table_name> <index_name>. For example: UPDATE STATISTICS
VENDOR VEND_NDX;)

Database statistics are stored in the system catalog in specially designated tables. It is common to periodically
regenerate the statistics for database objects, especially those database objects that are subject to frequent change. For
example, if you are the owner of a video store and you have a video rental DBMS, your system will likely use a
RENTAL table to store the daily video rentals. That RENTAL table (and its associated indexes) would be subject to
constant inserts and updates as you record your daily rentals and returns. Therefore, the RENTAL table statistics you
generated last week do not depict an accurate picture of the table as it exists today. The more current the statistics,
the better the chances are for the DBMS to properly select the fastest way to execute a given query.

Now that you know the basic architecture of DBMS processes and memory structures, and the importance and timing
of the database statistics gathered by the DBMS, you are ready to learn how the DBMS processes a SQL query request.

C6545_11 8/20/2007 16:15:11 Page 447

447D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

11.2 QUERY PROCESSING

What happens at the DBMS server end when the client’s SQL statement is received? In simple terms, the DBMS
processes a query in three phases:

1. Parsing. The DBMS parses the SQL query and chooses the most efficient access/execution plan.

2. Execution. The DBMS executes the SQL query using the chosen execution plan.

3. Fetching. The DBMS fetches the data and sends the result set back to the client.

The processing of SQL DDL statements (such as CREATE TABLE) is different from the processing required by DML
statements. The difference is that a DDL statement actually updates the data dictionary tables or system catalog, while
a DML statement (SELECT, INSERT, UPDATE, and DELETE) mostly manipulates end-user data. Figure 11.2 shows
the general steps required for query processing. Each of the steps will be discussed in the following sections.

FIGURE
11.2

Query processing

Parsing
phase

Fetching
phase

Data files

Select
From ...

Where ...

Data cache

• Syntax check
• Naming check
• Access rights check
• Decompose and analyze
• Generate access plan
• Store access plan in SQL cache

• Execute I/O operations
• Add locks for transaction mgmt
• Retrieve data blocks from data files
• Place data blocks in data cache

• Generate result set

Execution
phase

SQL cache

Access plan

C6545_11 8/20/2007 16:15:12 Page 448

448 C H A P T E R 1 1

11.2.1 SQL Parsing Phase

The optimization process includes breaking down—parsing—the query into smaller units and transforming the original
SQL query into a slightly different version of the original SQL code, but one that is fully equivalent and more efficient. Fully
equivalent means that the optimized query results are always the same as the original query. More efficient means that
the optimized query will almost always execute faster than the original query. (Note that it almost always executes
faster because, as explained earlier, many factors affect the performance of a database. Those factors include the
network, the client computer’s resources, and other queries running concurrently in the same database.) To determine
the most efficient way to execute the query, the DBMS may use the database statistics you learned about earlier.

The SQL parsing activities are performed by the query optimizer, which analyzes the SQL query and finds the most
efficient way to access the data. This process is the most time-consuming phase in query processing. Parsing a SQL
query requires several steps, in which the SQL query is:

� Validated for syntax compliance.

� Validated against the data dictionary to ensure that tables and column names are correct.

� Validated against the data dictionary to ensure that the user has proper access rights.

� Analyzed and decomposed into more atomic components.

� Optimized through transformation into a fully equivalent but more efficient SQL query.

� Prepared for execution by determining the most efficient execution or access plan.

Once the SQL statement is transformed, the DBMS creates what is commonly known as an access or execution plan.
An access plan is the result of parsing an SQL statement; it contains the series of steps a DBMS will use to execute
the query and to return the result set in the most efficient way. First, the DBMS checks to see if an access plan already
exists for the query in the SQL cache. If it does, the DBMS reuses the access plan to save time. If it doesn’t, the
optimizer evaluates various plans and makes decisions about what indexes to use and how to best perform join
operations. The chosen access plan for the query is then placed in the SQL cache and made available for use and
future reuse.

Access plans are DBMS-specific and translate the client’s SQL query into the series of complex I/O operations required
to read the data from the physical data files and generate the result set. Access plans are DBMS-specific; some
commonly found I/O operations are illustrated in Table 11.3.

TABLE
11.3

Sample DBMS Access Plan I/O Operations

OPERATION DESCRIPTION
Table Scan (Full) Reads the entire table sequentially, from the first row to the last row, one row at a time

(slowest)
Table Access (Row ID) Reads a table row directly, using the row ID value (fastest)
Index Scan (Range) Reads the index first to obtain the row IDs and then accesses the table rows directly

(faster than a full table scan)
Index Access (Unique) Used when a table has a unique index in a column
Nested Loop Reads and compares a set of values to another set of values, using a nested loop

style (slow)
Merge Merges two data sets (slow)
Sort Sorts a data set (slow)

Table 11.3 shows just a few database access I/O operations. (This illustration is based on an Oracle RDBMS.)
However, Table 11.3 does illustrate the type of I/O operations that most DBMSs perform when accessing and
manipulating data sets.

In Table 11.3, note that a table access using a row ID is the fastest method. A row ID is a unique identification for every
row saved in permanent storage; it can be used to access the row directly. Conceptually, a row ID is similar to a parking

C6545_11 9/14/2007 14:28:5 Page 449

449D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

slip you get when you park your car in an airport parking lot. The parking slip contains the section number and lot
number. Using that information, you can go directly to your car without having to go through every section and lot.

11.2.2 SQL Execution Phase

In this phase, all I/O operations indicated in the access plan are executed. When the execution plan is run, the proper
locks —if needed—are acquired for the data to be accessed, and the data are retrieved from the data files and placed
in the DBMSs data cache. All transaction management commands are processed during the parsing and execution
phases of query processing.

11.2.3 SQL Fetching Phase

After the parsing and execution phases are completed, all rows that match the specified condition(s) are retrieved,
sorted, grouped, and/or aggregated (if required). During the fetching phase, the rows of the resulting query result set
are returned to the client. The DBMS might use temporary table space to store temporary data. In this stage, the
database server coordinates the movement of the result set rows from the server cache to the client cache. For
example, a given query result set might contain 9,000 rows; the server would send the first 100 rows to the client and
then wait for the client to request the next set of rows, until the entire result set is sent to the client.

11.2.4 Query Processing Bottlenecks

The main objective of query processing is to execute a given query in the fastest way possible with the least amount
of resources. As you have seen, the execution of a query requires the DBMS to break down the query into a series of
interdependent I/O operations to be executed in a collaborative manner. The more complex a query is, the more
complex the operations are, and the more likely it is that there will be bottlenecks. A query processing bottleneck
is a delay introduced in the processing of an I/O operation that causes the overall system to slow down. In the same
way, the more components a system has, the more interfacing among the components is required, and the more likely
it is that there will be bottlenecks. Within a DBMS, there are five components that typically cause bottlenecks:

� CPU. The CPU processing power of the DBMS should match the system’s expected work load. A high CPU
utilization might indicate that the processor speed is too slow for the amount of work performed. However,
heavy CPU utilization can be caused by other factors, such as a defective component, not enough RAM (the
CPU spends too much time swapping memory blocks), a badly written device driver, or a rogue process. A
CPU bottleneck will affect not only the DBMS but all processes running in the system.

� RAM. The DBMS allocates memory for specific usage, such as data cache and SQL cache. RAM must be
shared among all running processes (operating system, DBMS, and all other running processes). If there is not
enough RAM available, moving data among components that are competing for scarce RAM can create a
bottleneck.

� Hard disk. Another common cause of bottlenecks is hard disk speed and data transfer rates. Current hard disk
storage technology allows for greater storage capacity than in the past; however, hard disk space is used for
more than just storing end user data. Current operating systems also use the hard disk for virtual memory,
which refers to copying areas of RAM to the hard disk as needed to make room in RAM for more urgent tasks.
Therefore, the greater the hard disk storage space is and the faster the data transfer rates are, the lesser
likelihood of bottlenecks.

� Network. In a database environment, the database server and the clients are connected via a network. All
networks have a limited amount of bandwidth that is shared among all clients. When many network nodes
access the network at the same time, bottlenecks are likely.

� Application code. Not all bottlenecks are caused by limited hardware resources. One of the most common
sources of bottlenecks is badly written application code. No amount of coding will make a poorly designed
database perform better. We should also add: you can throw unlimited resources at a badly written application
and it will still perform as a badly written application!

Learning how to avoid these bottlenecks and thus optimize database performance is the main focus of this chapter.

C6545_11 8/21/2007 9:28:21 Page 450

450 C H A P T E R 1 1

11.3 INDEXES AND QUERY OPTIMIZATION

Indexes are crucial in speeding up data access because they facilitate searching, sorting, and using aggregate functions
and even join operations. The improvement in data access speed occurs because an index is an ordered set of values
that contains the index key and pointers. The pointers are the row IDs for the actual table rows. Conceptually, a data
index is similar to a book index. When you use a book index, you look up the word, similar to the index key, which
is accompanied by the page number(s), similar to the pointer(s), which direct you to the appropriate page(s).

An index scan is more efficient than a full table scan because the index data are preordered and the amount of data
is usually much smaller. Therefore, when performing searches, it is almost always better for the DBMS to use the index
to access a table than to scan all rows in a table sequentially. For example, Figure 11.3 shows the index representation
of a CUSTOMER table with 14,786 rows and the index STATE_NDX on the CUS_STATE attribute.

Suppose you submit the following query:

SELECT CUS_NAME, CUS_STATE
FROM CUSTOMER
WHERE CUS_STATE = 'FL';

If there is no index, the DBMS will perform a full table scan, thus reading all 14,786 customer rows. Assuming that
the index STATE_NDX is created (and ANALYZED), the DBMS will automatically use the index to locate the first
customer with a state equal to 'FL' and then proceed to read all subsequent CUSTOMER rows, using the row IDs in
the index as a guide. Assuming that only five rows meet the condition CUS_STATE = 'FL' then, there are 5 accesses
to the index and 5 accesses to the data, for a total of 10 I/O accesses. The DBMS would save approximately 14,776
I/O requests for customer rows that do not meet the criteria. That’s a lot of CPU cycles!

If indexes are so important, why not index every column in every table? It’s not practical to do so. Indexing every
column in every table taxes the DBMS too much in terms of index-maintenance processing, especially if the table has
many attributes; has many rows; and/or requires many inserts, updates, and/or deletes.

FIGURE
11.3

Index representation for the CUSTOMER table

STATE_NDX INDEX

CUSTOMER TABLE
(14,786 rows)

C6545_11 9/20/2007 12:46:29 Page 451

451D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

One measure that determines the need for an index is the data sparsity of the column you want to index. Data
sparsity refers to the number of different values a column could possibly have. For example, a STU_SEX column in
a STUDENT table can have only two possible values, M or F; therefore that column is said to have low sparsity. In
contrast, the STU_DOB column that stores the student date of birth can have many different date values; therefore,
that column is said to have high sparsity. Knowing the sparsity helps you decide whether the use of an index is
appropriate. For example, when you perform a search in a column with low sparsity, you are likely to read a high
percentage of the table rows anyway; therefore, index processing might be unnecessary work. In Section 11.5, you
learn how to determine when an index is recommended.

Most DBMSs implement indexes using one of the following data structures:

� Hash indexes. A hash algorithm is used to create a hash value from a key column. This value points to an entry
in a hash table which in turn points to the actual location of the data row. This type of index is good for simple
and fast lookup operations.

� B-tree indexes. This is the default and most common type of index used in databases. The B-tree index is used
mainly in tables in which column values repeat a relative smaller number of times. The B-tree index is an
ordered data structure organized as an upside down tree. The index tree is stored separate from the data. The
lower-level leaves of the B-tree index contain the pointers to the actual data rows. B-tree indexes are
“self-balanced,” which means that it takes the same amount of access to find any given row in the index.

� Bitmap indexes. Used in data warehouse applications in tables with large number of rows in which a small
number of column values repeat many times. Bitmap indexes tend to use less space than B-tree indexes
because they use bits (instead of bytes) to store their data.

Using the above index characteristics, a database designer can determine the best type of index to use. For example,
assume a CUSTOMER table with several thousand rows. The CUSTOMER table has two columns that are used
extensively for query purposes: CUS_LNAME that represents a customer last name and REGION_CODE that could
have one of four values (NE, NW, SW, and, SE). Based on this information, you could conclude that:

� Because the CUS_LNAME column contains many different values that repeat a relatively small number of
times (compared to the total number of rows in the table), a B-tree index will be used.

� Because the REGION_CODE column contains fewer different values that repeat a relatively large number of
times (compared to the total number of rows in the table), a bitmap index will be used. Figure 11.4 shows the
B-tree and bitmap representations for a CUSTOMER table used in the previous discussion.

Current generation DBMSs are intelligent enough to determine the best type of index to use under certain
circumstances (provided the DBMS has updated database statistics). Whatever the index chosen, the DBMS determines
the best plan to execute a given query. The next section guides you through a simplified example of the type of choices
that the query optimizer must perform.

C6545_11 9/14/2007 14:56:9 Page 452

452 C H A P T E R 1 1

11.4 OPTIMIZER CHOICES

Query optimization is the central activity during the parsing phase in query processing. In this phase, the DBMS must
choose what indexes to use, how to perform join operations, what table to use first, and so on. Each DBMS has its
own algorithms for determining the most efficient way to access the data. The query optimizer can operate in one of
two modes:

� A rule-based optimizer uses preset rules and points to determine the best approach to execute a query. The
rules assign a “fixed cost” to each SQL operation; the costs are then added to yield the cost of the execution
plan. For example, a full table scan has a set cost of 10, while a table access by row ID has a set cost of 3.

� A cost-based optimizer uses sophisticated algorithms based on the statistics about the objects being accessed
to determine the best approach to execute a query. In this case, the optimizer process adds up the processing
cost, the I/O costs, and the resource costs (RAM and temporary space) to come up with the total cost of a given
execution plan.

FIGURE
11.4

B-tree and bitmap index representation

C6545_11 9/14/2007 14:56:16 Page 453

453D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

The optimizer objective is to find alternative ways to execute a query—to evaluate the “cost” of each alternative and
then to choose the one with the lowest cost. To understand the function of the query optimizer, let’s use a simple
example. Assume that you want to list all products provided by a vendor based in Florida. To acquire that information,
you could write the following query:

SELECT P_CODE, P_DESCRIPT, P_PRICE, V_NAME, V_STATE
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE

AND VENDOR.V_STATE = 'FL';

Furthermore, let’s assume that the database statistics indicate that:

� The PRODUCT table has 7,000 rows.

� The VENDOR table has 300 rows.

� Ten vendors are located in Florida.

� One thousand products come from vendors in Florida.

It’s important to point out that only the first two items are available to the optimizer. The second two items are assumed
to illustrate the choices that the optimizer must make. Armed with the information in the first two items, the optimizer
would try to find the most efficient way to access the data. The primary factor in determining the most efficient access
plan is the I/O cost. (Remember, the DBMS always tries to minimize I/O operations.) Table 11.4 shows two sample
access plans for the previous query and their respective I/O costs.

TABLE
11.4

Comparing Access Plans and I/O Costs

PLAN STEP OPERATION I/O
OPERATIONS

I/O
COST

RESULTING
SET ROWS

TOTAL I/O
COST

A A1 Cartesian product
(PRODUCT, VENDOR)

7,000 + 300 7,300 2,100,000 7,300

A2 Select rows in A1 with
matching vendor codes

2,100,000 2,100,000 7,000 2,107,300

A3 Select rows in A2 with
V_STATE = ‘FL’

7,000 7,000 1,000 2,114,300

B B1 Select rows in VENDOR
with V_STATE = ‘FL’

300 300 10 300

B2 Cartesian Product
(PRODUCT, B1)

7,000 + 10 7,010 70,000 7,310

B3 Select rows in B2 with
matching vendor codes

70,000 70,000 1,000 77,310

To make the example easier to understand, the I/O Operations and I/O Cost columns in Table 11.4 estimate only the
number of I/O disk reads the DBMS must perform. For simplicity’s sake, it is assumed that there are no indexes and
that each row read has an I/O cost of 1. For example, in step A1, the DBMS must perform a Cartesian product of
PRODUCT and VENDOR. To do that, the DBMS must read all rows from PRODUCT (7,000) and all rows from
VENDOR (300), yielding a total of 7,300 I/O operations. The same computation is done in all steps. In Table 11.4,
you can see how plan A has a total I/O cost that is almost 30 times higher than plan B. In this case, the optimizer
will choose plan B to execute the SQL.

C6545_11 8/20/2007 16:20:43 Page 454

454 C H A P T E R 1 1

Given the right conditions, some queries could be answered entirely by using only an index. For example, assume the
PRODUCT table and the index P_QOH_NDX in the P_QOH attribute. Then a query such as SELECT MIN(P_QOH)
FROM PRODUCT could be resolved by reading only the first entry in the P_QOH_NDX index, without the need to
access any of the data blocks for the PRODUCT table. (Remember that the index defaults to ascending order.)

You learned in Section 11.3 that columns with low sparsity are not good candidates for index creation. However, there
are cases where an index in a low sparsity column would be helpful. For example, assume that the EMPLOYEE table
has 122,483 rows. If you want to find out how many female employees are in the company, you would write a query
such as:

SELECT COUNT(EMP_SEX) FROM EMPLOYEE WHERE EMP_SEX = 'F';

If you do not have an index for the EMP_SEX column, the query would have to perform a full table scan to read all
EMPLOYEE rows—and each full row includes attributes you do not need. However, if you have an index on
EMP_SEX, the query could be answered by reading only the index data, without the need to access the employee
data at all.

11.4.1 Using Hints to Affect Optimizer Choices

Although the optimizer generally performs very well under most circumstances, in some instances the optimizer might
not choose the best execution plan. Remember, the optimizer makes decisions based on the existing statistics. If the
statistics are old, the optimizer might not do a good job in selecting the best execution plan. Even with current statistics,
the optimizer choice might not be the most efficient one. There are some occasions when the end user would like to
change the optimizer mode for the current SQL statement. In order to do that, you need to use hints. Optimizer hints
are special instructions for the optimizer that are embedded inside the SQL command text. Table 11.5 summarizes a
few of the most common optimizer hints used in standard SQL.

TABLE
11.5

Optimizer Hints

HINT USAGE
ALL_ROWS Instructs the optimizer to minimize the overall execution time, that is, to minimize the time it

takes to return all rows in the query result set. This hint is generally used for batch mode
processes. For example:
SELECT /*+ ALL_ROWS */ *
FROM PRODUCT
WHERE P_QOH < 10;

FIRST_ROWS Instructs the optimizer to minimize the time it takes to process the first set of rows, that is, to
minimize the time it takes to return only the first set of rows in the query result set. This hint
is generally used for interactive mode processes. For example:
SELECT /*+ FIRST_ROWS */ *
FROM PRODUCT
WHERE P_QOH < 10;

INDEX(name) Forces the optimizer to use the P_QOH_NDX index to process this query. For example:
SELECT /*+ INDEX(P_QOH_NDX) */ *
FROM PRODUCT
WHERE P_QOH < 10;

Note

Not all DBMSs optimize SQL queries the same way. As a matter of fact, Oracle parses queries differently than
what is described in several sections in this chapter. Always read the documentation to examine the optimiza-
tion requirements for your DBMS implementation.

C6545_11 9/14/2007 14:56:36 Page 455

455D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Now that you are familiar with the way the DBMS processes SQL queries, let’s turn our attention to some general SQL
coding recommendations to facilitate the work of the query optimizer.

11.5 SQL PERFORMANCE TUNING

SQL performance tuning is evaluated from the client perspective. Therefore, the goal is to illustrate some common
practices used to write efficient SQL code. A few words of caution are appropriate:

1. Most current-generation relational DBMSs perform automatic query optimization at the server end.

2. Most SQL performance optimization techniques are DBMS-specific, and therefore, are rarely portable, even
across different versions of the same DBMS. Part of the reason for this behavior is the constant advancement
in database technologies.

Does this mean that you should not worry about how a SQL query is written because the DBMS will always optimize
it? No, because there is considerable room for improvement. (The DBMS uses general optimization techniques, rather
than focusing on specific techniques dictated by the special circumstances of the query execution.) A poorly written
SQL query can, and usually will, bring the database system to its knees from a performance point of view. The
majority of current database performance problems are related to poorly written SQL code. Therefore, although a
DBMS provides general optimizing services, a carefully written query almost always outperforms a poorly written one.

Although SQL data manipulation statements include many different commands (such as INSERT, UPDATE, DELETE,
and SELECT), most recommendations in this section are related to the use of the SELECT statement, and in particular,
the use of indexes and how to write conditional expressions.

11.5.1 Index Selectivity

Indexes are the most important technique used in SQL performance optimization. The key is to know when an index
is used. As a general rule, indexes are likely to be used:

� When an indexed column appears by itself in a search criteria of a WHERE or HAVING clause.

� When an indexed column appears by itself in a GROUP BY or ORDER BY clause.

� When a MAX or MIN function is applied to an indexed column.

� When the data sparsity on the indexed column is high.

Indexes are very useful when you want to select a small subset of rows from a large table based on a given condition.
If an index exists for the column used in the selection, the DBMS may choose to use it. The objective is to create
indexes with high selectivity. Index selectivity is a measure of how likely an index will be used in query processing.
Here are some general guidelines for creating and using indexes:

� Create indexes for each single attribute used in a WHERE, HAVING, ORDER BY, or GROUP BY clause.
If you create indexes in all single attributes used in search conditions, the DBMS will access the table using
an index scan instead of a full table scan. For example, if you have an index for P_PRICE, the condition
P_PRICE > 10.00 can be solved by accessing the index instead of sequentially scanning all table rows and
evaluating P_PRICE for each row. Indexes are also used in join expressions, such as in CUSTOMER.CUS_
CODE = INVOICE.CUS_CODE.

� Do not use indexes in small tables or tables with low sparsity. Remember, small tables and low-sparsity
tables are not the same thing. A search condition in a table with low sparsity may return a high percentage of
table rows anyway, making the index operation too costly and making the full table scan a viable option. Using
the same logic, do not create indexes for tables with few rows and few attributes—unless you must ensure the
existence of unique values in a column.

� Declare primary and foreign keys so the optimizer can use the indexes in join operations. All natural joins
and old-style joins will benefit if you declare primary keys and foreign keys because the optimizer will use the

C6545_11 8/21/2007 9:29:13 Page 456

456 C H A P T E R 1 1

available indexes at join time. (The declaration of a PK or FK will automatically create an index for the declared
column.) Also, for the same reason, it is better to write joins using the SQL JOIN syntax. (See Chapter 8,
Advanced SQL.)

� Declare indexes in join columns other than PK or FK. If you do join operations on columns other than the
primary and foreign keys, you might be better off declaring indexes in those columns.

You cannot always use an index to improve performance. For example, using the data shown in Table 11.6 in the next
section, the creation of an index for P_MIN will not help the search condition P_QOH > P_MIN * 1.10. The reason
is because in some DBMSs, indexes are ignored when you use functions in the table attributes. However, major
databases (such as Oracle, SQL Server, and DB2) now support function-based indexes. A function-based index is
an index based on a specific SQL function or expression. For example, you could create an index on YEAR(INV_
DATE). Function-based indexes are especially useful when dealing with derived attributes. For example, you could
create an index on EMP_SALARY + EMP_COMMISSION.

How many indexes should you create? It bears repeating that you should not create an index for every column in a
table. Too many indexes will slow down INSERT, UPDATE, and DELETE operations, especially if the table contains
many thousands of rows. Furthermore, some query optimizers will choose only one index to be the driving index for
a query, even if your query uses conditions in many different indexed columns. Which index does the optimizer use?
If you use the cost-based optimizer, the answer will change with time as new rows are added or deleted from the tables.
In any case, you should create indexes in all search columns and then let the optimizer choose. It’s important to
constantly evaluate the index usage—monitor, test, evaluate, and improve it if performance is not adequate.

11.5.2 Conditional Expressions

A conditional expression is normally expressed within the WHERE or HAVING clauses of a SQL statement. Also
known as conditional criteria, a conditional expression restricts the output of a query to only the rows matching the
conditional criteria. Generally, the conditional criteria have the form shown in Table 11.6.

In Table 11.6, note that an operand can be:

� A simple column name such as P_PRICE or
V_STATE.

� A literal or a constant such as the value 10.00 or the
text 'FL'.

� An expression such as P_MIN * 1.10.

Most of the query optimization techniques mentioned next
are designed to make the optimizer’s work easier. Let’s
examine some common practices used to write efficient
conditional expressions in SQL code.

� Use simple columns or literals as operands in a conditional expression—avoid the use of conditional
expressions with functions whenever possible. Comparing the contents of a single column to a literal is faster
than comparing to expressions. For example, P_PRICE > 10.00 is faster than P_QOH > P_MIN * 1.10
because the DBMS must evaluate the P_MIN * 1.10 expression first. The use of functions in expressions also
adds to the total query execution time. For example, if your condition is UPPER (V_NAME) = 'JIM', try to use
V_NAME = 'Jim' if all names in the V_NAME column are stored with proper capitalization.

� Numeric field comparisons are faster than character, date, and NULL comparisons. In search conditions,
comparing a numeric attribute to a numeric literal is faster than comparing a character attribute to a character
literal. In general, the CPU handles numeric comparisons (integer and decimal) faster than character and date
comparisons. Because indexes do not store references to null values, NULL conditions involve additional
processing, and therefore, tend to be the slowest of all conditional operands.

TABLE
11.6

Conditional Criteria

OPERAND1 CONDITIONAL
OPERATOR

OPERAND2

P_PRICE > 10.00
V_STATE = FL
V_CONTACT LIKE Smith%
P_QOH > P_MIN * 1.10

C6545_11 8/21/2007 9:7:44 Page 457

457D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

� Equality comparisons are faster than inequality comparisons. As a general rule, equality comparisons are
processed faster than inequality comparisons. For example, P_PRICE = 10.00 is processed faster because the
DBMS can do a direct search using the index in the column. If there are no exact matches, the condition is
evaluated as false. However, if you use an inequality symbol (>, >=, <, <=), the DBMS must perform additional
processing to complete the request. The reason is because there will almost always be more “greater than” or
“less than” values than exactly “equal” values in the index. With the exception of NULL, the slowest of all
comparison operators is LIKE with wildcard symbols, such as in V_CONTACT LIKE “%glo%”. Also, using the
“not equal” symbol (<>) yields slower searches, especially when the sparsity of the data is high, that is, when
there are many more different values than there are equal values.

� Whenever possible, transform conditional expressions to use literals. For example, if your condition is
P_PRICE − 10 = 7, change it to read P_PRICE = 17. Also, if you have a composite condition such as:

P_QOH < P_MIN AND P_MIN = P_REORDER AND P_QOH = 10

change it to read:

P_QOH = 10 AND P_MIN = P_REORDER AND P_MIN > 10

� When using multiple conditional expressions, write the equality conditions first. Note that this was done
in the previous example. Remember, equality conditions are faster to process than inequality conditions.
Although most RDBMSs will automatically do this for you, paying attention to this detail lightens the load for
the query optimizer. The optimizer won’t have to do what you have already done.

� If you use multiple AND conditions, write the condition most likely to be false first. If you use this
technique, the DBMS will stop evaluating the rest of the conditions as soon as it finds a conditional expression
that is evaluated to be false. Remember, for multiple AND conditions to be found true, all conditions must be
evaluated as true. If one of the conditions evaluates to false, the whole set of conditions will be evaluated as
false. If you use this technique, the DBMS won’t waste time unnecessarily evaluating additional conditions.
Naturally, the use of this technique implies an implicit knowledge of the sparsity of the data set. For example,
look at the following condition list:

P_PRICE > 10 AND V_STATE = 'FL'

If you know that only a few vendors are located in Florida, you could rewrite this condition as:

V_STATE = 'FL' AND P_PRICE > 10

� When using multiple OR conditions, put the condition most likely to be true first. By doing this, the DBMS
will stop evaluating the remaining conditions as soon as it finds a conditional expression that is evaluated to be
true. Remember, for multiple OR conditions to evaluate to true, only one of the conditions must be evaluated
to true.

� Whenever possible, try to avoid the use of the NOT logical operator. It is best to transform a SQL
expression containing a NOT logical operator into an equivalent expression. For example:

NOT (P_PRICE > 10.00) can be written as P_PRICE <= 10.00.

Also, NOT (EMP_SEX = 'M') can be written as EMP_SEX = 'F'.

Note

Oracle does not evaluate queries as described here. Instead, Oracle evaluates conditions from last to first.

C6545_11 8/21/2007 9:9:43 Page 458

458 C H A P T E R 1 1

11.6 QUERY FORMULATION

Queries are usually written to answer questions. For example, if an end user gives you a sample output and tells you
to match that output format, you must write the corresponding SQL. To get the job done, you must carefully evaluate
what columns, tables, and computations are required to generate the desired output. And to do that, you must have
a good understanding of the database environment and of the database that will be the focus of your SQL code.

This section focuses on SELECT queries because they are the queries you will find in most applications. To formulate
a query, you would normally follow the steps outlined below.

1. Identify what columns and computations are required. The first step is to clearly determine what data values
you want to return. Do you want to return just the names and addresses, or do you also want to include some
computations? Remember that all columns in the SELECT statement should return single values.

a. Do you need simple expressions? That is, do you need to multiply the price times the quantity on hand to
generate the total inventory cost? You might need some single attribute functions such as DATE(),
SYSDATE(), or ROUND().

b. Do you need aggregate functions? If you need to compute the total sales by product, you should use a
GROUP BY clause. In some cases, you might need to use a subquery.

c. Determine the granularity of the raw data required for your output. Sometimes, you might need to
summarize data that are not readily available on any table. In such cases, you might consider breaking the
query into multiple subqueries and storing those subqueries as views. Then you could create a top-level
query that joins those views and generates the final output.

2. Identify the source tables. Once you know what columns are required, you can determine the source tables
used in the query. Some attributes appear in more than one table. In those cases, try to use the least number
of tables in your query to minimize the number of join operations.

3. Determine how to join the tables. Once you know what tables you need in your query statement, you must
properly identify how to join the tables. In most cases, you will use some type of natural join, but in some
instances, you might need to use an outer join.

4. Determine what selection criteria is needed. Most queries involve some type of selection criteria. In this case,
you must determine what operands and operators are needed in your criteria. Ensure that the data type and
granularity of the data in the comparison criteria are correct.

a. Simple comparison. In most cases, you will be comparing single values. For example, P_PRICE > 10.

b. Single value to multiple values. If you are comparing a single value to multiple values, you might need
to use an IN comparison operator. For example, V_STATE IN ('FL', 'TN', 'GA').

c. Nested comparisons. In other cases, you might need to have some nested selection criteria involving
subqueries. For example: P_PRICE > = (SELECT AVG(P_PRICE) FROM PRODUCT).

d. Grouped data selection. On other occasions, the selection criteria might apply not to the raw data, but
to the aggregate data. In those cases, you need to use the HAVING clause.

5. Determine in what order to display the output. Finally, the required output might be ordered by one or more
columns. In those cases, you need to use the ORDER BY clause. Remember that the ORDER BY clause is one
of the most resource-intensive operations for the DBMS.

C6545_11 9/14/2007 15:13:18 Page 459

459D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

11.7 DBMS PERFORMANCE TUNING

DBMS performance tuning includes global tasks such as managing the DBMS processes in primary memory (allocating
memory for caching purposes) and managing the structures in physical storage (allocating space for the data files).

Fine-tuning the performance of the DBMS also includes applying several practices examined in the previous section.
For example, the DBA must work with developers to ensure that the queries perform as expected—creating the
indexes to speed up query response time and generating the database statistics required by cost-based optimizers.

DBMS performance tuning at the server end focuses on setting the parameters used for:

� Data cache. The data cache must be set large enough to permit as many data requests as possible to be
serviced from the cache. Each DBMS has settings that control the size of the data cache; some DBMSs might
require a restart. This cache is shared among all database users. The majority of primary memory resources
will be allocated to the data cache.

� SQL cache. The SQL cache stores the most recently executed SQL statements (after the SQL statements have
been parsed by the optimizer). Generally, if you have an application with multiple users accessing a database,
the same query will likely be submitted by many different users. In those cases, the DBMS will parse the query
only once and execute it many times, using the same access plan. In that way, the second and subsequent SQL
requests for the same query are served from the SQL cache, skipping the parsing phase.

� Sort cache. The sort cache is used as a temporary storage area for ORDER BY or GROUP BY operations,
as well as for index-creation functions.

� Optimizer mode. Most DBMSs operate in one of two optimization modes: cost-based or rule-based. Others
automatically determine the optimization mode based on whether database statistics are available. For
example, the DBA is responsible for generating the database statistics that are used by the cost-based
optimizer. If the statistics are not available, the DBMS uses a rule-based optimizer.

Managing the physical storage details of the data files also plays an important role in DBMS performance tuning.
Following are some general recommendations for the creation of databases.

� Use RAID (redundant array of independent disks) to provide balance between performance and fault tolerance.
RAID systems use multiple disks to create virtual disks (storage volumes) formed by several individual disks.
RAID systems provide performance improvement and fault tolerance. Table 11.7 shows the most common
RAID configurations.

TABLE
11.7

Common RAID Configurations

RAID
LEVEL DESCRIPTION
0 The data blocks are spread over separate drives. Also known as striped array. Provides increased perfor-

mance but no fault tolerance. (Fault tolerance means that in case of failure, data could be reconstructed
and retrieved.) Requires a minimum of two drives.

1 The same data blocks are written (duplicated) to separate drives. Also referred to as mirroring or
duplexing. Provides increased read performance and fault tolerance via data redundancy. Requires a
minimum of two drives.

3 The data are striped across separate drives, and parity data are computed and stored in a dedicated
drive. (Parity data are specially generated data that permit the reconstruction of corrupted or missing
data.) Provides good read performance and fault tolerance via parity data. Requires a minimum of three
drives.

5 The data and the parity are striped across separate drives. Provides good read performance and fault
tolerance via parity data. Requires a minimum of three drives.

C6545_11 8/21/2007 9:10:34 Page 460

460 C H A P T E R 1 1

� Minimize disk contention. Use multiple, independent storage volumes with independent spindles (a spindle is
a rotating disk) to minimize hard disk cycles. Remember, a database is composed of many table spaces, each
with a particular function. In turn, each table space is composed of several data files in which the data are
actually stored. A database should have at least the following table spaces:

- System table space. This is used to store the data dictionary tables. It is the most frequently accessed table
space and should be stored in its own volume.

- User data table space. This is used to store end-user data. You should create as many user data table spaces
and data files as are required to balance performance and usability. For example, you can create and assign
a different user data table space for each application and/or for each distinct group of users; but not
necessary for each user.

- Index table space. This is used to store indexes. You can create and assign a different index table space for
each application and/or for each group of users. The index table space data files should be stored on a
storage volume that is separate from user data files or system data files.

- Temporary table space. This is used as a temporary storage area for merge, sort, or set aggregate
operations. You can create and assign a different temporary table space for each application and/or for
each group of users.

- Rollback segment table space. This is used for transaction-recovery purposes.

� Put high-usage tables in their own table spaces. By doing this, the database minimizes conflict with other tables.

� Assign separate data files in separate storage volumes for the indexes, system, and high-usage tables. This
ensures that index operations will not conflict with end-user data or data dictionary table access operations.
Another advantage of this approach is that you can use different disk block sizes in different volumes. For
example, the data volume can use a 16K block size, while the index volume can use an 8K block size.
Remember that the index record size is generally smaller, and by changing the block size you will be reducing
contention and/or minimizing I/O operations. This is very important; many database administrators overlook
indexes as a source of contention. By using separate storage volumes and different block sizes, the I/O
operations on data and indexes will happen asynchronously (at different times), and more importantly, the
likelihood of write operations blocking read operations is reduced (as page locks tend to lock less records).

� Take advantage of the various table storage organizations available in the database. For example, in Oracle
consider the use of index organized tables (IOT); in SQL Server consider clustered index tables. An index
organized table (or clustered index table) is a table that stores the end user data and the index data in
consecutive locations on permanent storage. This type of storage organization provides a performance
advantage to tables that are commonly accessed by a given index order. This is due to the fact that the index
contains the index key as well as the data rows, and therefore the DBMS tends to perform fewer I/O
operations.

� Partition tables based on usage. Some RDBMSs support horizontal partitioning of tables based on attributes.
(See Chapter 12, Distributed Database Management Systems.) By doing so, a single SQL request could be
processed by multiple data processors. Put the table partitions closest to where they are used the most.

� Use denormalized tables where appropriate. Another performance-improving technique involves taking a table
from a higher normal form to a lower normal form—typically, from third to second normal form. This
technique adds data duplication, but it minimizes join operations. (Denormalization was discussed in Chapter
5, Normalization of Database Tables.)

� Store computed and aggregate attributes in tables. In short, use derived attributes in your tables. For example,
you might add the invoice subtotal, the amount of tax, and the total in the INVOICE table. Using derived
attributes minimizes computations in queries and join operations.

C6545_11 9/14/2007 15:14:48 Page 461

461D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

11.8 QUERY OPTIMIZATION EXAMPLE

Now that you have learned the basis of query optimization, you are ready to test your new knowledge. Let’s use a
simple example to illustrate how the query optimizer works and how you can help it do its work. The example is based
on the QOVENDOR and QOPRODUCT tables. Those tables are similar to the ones you used in previous chapters.
However, the QO prefix is used for the table name to ensure that you do not overwrite previous tables.

To perform this query optimization illustration, you will be using the Oracle SQL*Plus interface. Some preliminary
work must be done before you can start testing query optimization. The following steps will guide you through this
preliminary work:

1. Log in to Oracle SQL Plus using the username and password provided by your instructor.

2. Create a fresh set of tables using the QRYOPTDATA.SQL script file located on the Student Online Companion
for this book. This step is necessary so Oracle has a new set of tables and the new tables contain no statistics.
At the SQL> prompt, type:

@path\ QRYOPTDATA.SQL

where path is the location of the file in your computer.

3. Create the PLAN_TABLE. The PLAN_TABLE is a special table used by Oracle to store the access plan
information for a given query. End users can then query the PLAN_TABLE to see how Oracle will execute the
query. To create the PLAN_TABLE, run the UTLXPLAN.SQL script file located in the RDBMS\ADMIN folder
of your Oracle RDBMS installation. The UTLXPLAN.SQL script file is also found in the Student Online
Companion for this book. At the SQL prompt, type:

@path\UTLXPLAN.SQL

You use the EXPLAIN PLAN command to store the execution plan of a SQL query in the PLAN_TABLE. Then, you
would use the SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY) command to display the access plan for a given
SQL statement.

O n l i n e C o n t e n t

The databases and scripts used in this chapter can be found in the Student Online Companion for this book.

Note

Oracle 10g automatically defaults to cost-based optimization without giving you a choice. All previous versions
of Oracle default to the Choose optimization mode, which implies that the DBMS will choose either rule-based
or cost-based optimization, depending on the availability of table statistics.

C6545_11 9/14/2007 15:15:4 Page 462

462 C H A P T E R 1 1

To see the access plan used by the DBMS to execute your query, use the EXPLAIN PLAN and SELECT statements
as shown in Figure 11.5. Note that the first SQL statement in Figure 11.5 generates the statistics for the QOVENDOR
table. Also note that the initial access plan in Figure 11.5 uses a full table scan on the QOVENDOR table and that the
cost of the plan is 4.

FIGURE
11.5

Initial explain plan

C6545_11 8/21/2007 9:15:14 Page 463

463D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Let’s now create an index on V_AREACODE (note that V_AREACODE is used in the ORDER BY clause) and see how
that affects the access plan generated by the cost-based optimizer. The results are shown in Figure 11.6.

In Figure 11.6, note that the new access plan cuts the cost of executing the query by half! Also note that this new plan
scans the QOV_NDX1 index and accesses the QOVENDOR rows, using the index row ID. (Remember that access by
row ID is one of the fastest access methods.) In this case, the creation of the QOV_NDX1 index had a positive impact
on overall query optimization results.

FIGURE
11.6

Explain plan after index on V_AREACODE

C6545_11 8/21/2007 9:15:47 Page 464

464 C H A P T E R 1 1

At other times, indexes do not necessarily help in query optimization. This is the case when you have indexes on small
tables or when the query accesses a great percentage of table rows anyway. Let’s see what happens when you create
an index on V_NAME. The new access plan is shown in Figure 11.7. (Note that V_NAME is used on the WHERE
clause as a conditional expression operand.)

FIGURE
11.7

Explain plan after index on V_NAME

C6545_11 8/21/2007 9:16:0 Page 465

465D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

As you can see in Figure 11.7, creation of the second index did not help the query optimization. However, there are
occasions when an index might be used by the optimizer, but it is not executed because of the way in which the query
is written. For example, Figure 11.8 shows the access plan for a different query using the V_NAME column.

FIGURE
11.8

Access plan using index on V_NAME

C6545_11 8/21/2007 9:16:15 Page 466

466 C H A P T E R 1 1

In Figure 11.8, note that the access plan for this new query uses the QOV_NDX2 index on the V_NAME column.
What would happen if you wrote the same query, using the UPPER function on V_NAME? The results of that action
are illustrated in Figure 11.9.

As Figure 11.9 shows, the use of a function on an indexed column caused the DBMS to perform additional operations
that increased the cost of the query. Note that the same query might produce different costs if your tables contain many
more rows and if the index sparsity is different.

FIGURE
11.9

Access plan using functions on indexed columns

C6545_11 8/21/2007 9:16:15 Page 467

467D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Let’s now use the table QOPRODUCT to demonstrate how an index can help when aggregate function queries are
being run. For example, Figure 11.10 shows the access plan for a SELECT statement using the MAX(P_PRICE)
aggregate function. Note that this plan uses a full table scan with a total cost of 3.

FIGURE
11.10

First explain plan: aggregate function on a non-indexed column

C6545_11 8/21/2007 9:16:43 Page 468

468 C H A P T E R 1 1

A cost of 3 is very low already, but could you improve it? Yes, you could improve the previous query performance by
creating an index on P_PRICE. Figure 11.11 shows how the plan cost is reduced by two-thirds after the index is
created and the QOPRODUCT table is analyzed. Also note that the second version of the access plan uses only the
index QOP_NDX2 to answer the query; the QOPRODUCT table is never accessed.

FIGURE
11.11

Second explain plan: aggregate function on an indexed column

C6545_11 8/21/2007 9:16:43 Page 469

469D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Although the few examples in this section show how important proper index selection is for query optimization, you
also saw examples in which index creation does not improve query performance. As a DBA, you should be aware that
the main goal is to optimize overall database performance—not just for a single query, but for all requests and query
types. Most database systems provide advanced graphical tools for performance monitoring and testing. For example,
Figure 11.12 shows the graphical representation of the access plan using the Oracle 9i graphical tools. (Oracle 10g
does not include this interface.)

FIGURE
11.12

Oracle 9i tools for query optimization

C6545_11 8/21/2007 9:16:43 Page 470

470 C H A P T E R 1 1

S u m m a r y

◗ Database performance tuning refers to a set of activities and procedures designed to ensure that an end-user query
is processed by the DBMS in the minimum amount of time.

◗ SQL performance tuning refers to the activities on the client side that are designed to generate SQL code that
returns the correct answer in the least amount of time, using the minimum amount of resources at the server end.

◗ DBMS performance tuning refers to activities on the server side that are oriented to ensure that the DBMS is
properly configured to respond to clients’ requests in the fastest way possible while making optimum use of existing
resources.

◗ The DBMS architecture is represented by the many processes and structures (in memory and in permanent storage)
used to manage a database.

◗ Database statistics refers to a number of measurements gathered by the DBMS that describe a snapshot of the
database objects’ characteristics. The DBMS gathers statistics about objects such as tables, indexes, and available
resources such as number of processors used, processor speed, and temporary space available. The DBMS uses
the statistics to make critical decisions about improving the query processing efficiency.

◗ DBMSs process queries in three phases:

� Parsing. The DBMS parses the SQL query and chooses the most efficient access/execution plan.

� Execution. The DBMS executes the SQL query, using the chosen execution plan.

� Fetching. The DBMS fetches the data and sends the result set back to the client.

◗ Indexes are crucial in the process that speeds up data access. Indexes facilitate searching, sorting, and using
aggregate functions and join operations. The improvement in data access speed occurs because an index is an
ordered set of values that contains the index key and pointers. Data sparsity refers to the number of different values
a column could possibly have. Indexes are recommended in high-sparsity columns used in search conditions.

◗ During query optimization, the DBMS must choose what indexes to use, how to perform join operations, which
table to use first, and so on. Each DBMS has its own algorithms for determining the most efficient way to access
the data. The two most common approaches are rule-based optimization and cost-based optimization.

� A rule-based optimizer uses preset rules and points to determine the best approach to execute a query. The
rules assign a “fixed cost” to each SQL operation; the costs are then added to yield the cost of the
execution plan.

� A cost-based optimizer uses sophisticated algorithms based on the statistics about the objects being accessed
to determine the best approach to execute a query. In this case, the optimizer process adds up the processing
cost, the I/O costs, and the resource costs (RAM and temporary space) to come up with the total cost of a
given execution plan.

◗ Hints are used to change the optimizer mode for the current SQL statement. Hints are special instructions for the
optimizer that are embedded inside the SQL command text.

◗ SQL performance tuning deals with writing queries that make good use of the statistics. In particular, queries should
make good use of indexes. Indexes are very useful when you want to select a small subset of rows from a large table
based on a condition. When an index exists for the column used in the selection, the DBMS may choose to use
it. The objective is to create indexes with high selectivity. Index selectivity is a measure of how likely an index will
be used in query processing. It is also important to write conditional statements using some common principles.

C6545_11 8/21/2007 9:22:1 Page 471

471D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

◗ Query formulation deals with how to translate business questions into specific SQL code to generate the required
results. To do this, you must carefully evaluate what columns, tables, and computations are required to generate the
desired output.

◗ DBMS performance tuning includes tasks such as managing the DBMS processes in primary memory (allocating
memory for caching purposes) and managing the structures in physical storage (allocating space for the data files).

K e y T e r m s

access plan, 449

cost-based optimizer, 453

database performance tuning, 443

database statistics, 446

data cache or buffer cache, 445

data files, 445

data sparsity, 452

DBMS performance tuning, 444

extends, 445

function-based index, 457

index organized table or cluster
indexed table, 461

index selectivity, 456

input/output (I/O) request, 446

optimizer hints, 455

query optimizer, 449

query processing bottleneck, 450

RAID, 460

rule-based optimizer, 453

SQL cache or procedure cache, 445

SQL performance tuning, 444

table space or file group, 445

R e v i e w Q u e s t i o n s

1. What is SQL performance tuning?

2. What is database performance tuning?

3. What is the focus of most performance-tuning activities, and why does that focus exist?

4. What are database statistics, and why are they important?

5. How are database statistics obtained?

6. What database statistics measurements are typical of tables, indexes, and resources?

7. How is the processing of SQL DDL statements (such as CREATE TABLE) different from the processing required
by DML statements?

8. In simple terms, the DBMS processes queries in three phases. What are those phases, and what is accomplished
in each phase?

9. If indexes are so important, why not index every column in every table? (Include a brief discussion of the role
played by data sparsity.)

10. What is the difference between a rule-based optimizer and a cost-based optimizer?

11. What are optimizer hints, and how are they used?

12. What are some general guidelines for creating and using indexes?

13. Most query optimization techniques are designed to make the optimizer’s work easier. What factors should you
keep in mind if you intend to write conditional expressions in SQL code?

14. What recommendations would you make for managing the data files in a DBMS with many tables and indexes?

15. What does RAID stand for, and what are some commonly used RAID levels?

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_11 8/21/2007 9:29:59 Page 472

472 C H A P T E R 1 1

P r o b l e m s

Problems 1 and 2 are based on the following query:

SELECT EMP_LNAME, EMP_FNAME, EMP_AREACODE, EMP_SEX
FROM EMPLOYEE
WHERE EMP_SEX = 'F' AND EMP_AREACODE = '615'
ORDER BY EMP_LNAME, EMP_FNAME;

1. What is the likely data sparsity of the EMP_SEX column?

2. What indexes should you create? Write the required SQL commands.

3. Using Table 11.4 as an example, create two alternative access plans. Use the following assumptions:

a. There are 8,000 employees.

b. There are 4,150 female employees.

c. There are 370 employees in area code 615.

d. There are 190 female employees in area code 615.

Problems 4−6 are based on the following query:

SELECT EMP_LNAME, EMP_FNAME, EMP_DOB, YEAR(EMP_DOB) AS YEAR
FROM EMPLOYEE
WHERE YEAR(EMP_DOB) = 1966;

4. What is the likely data sparsity of the EMP_DOB column?

5. Should you create an index on EMP_DOB? Why or why not?

6. What type of database I/O operations will likely be used by the query? (See Table 11.3.)

Problems 7−10 are based on the ER model shown in Figure P11.7 and on the query shown after the figure. Given
the following query:

SELECT P_CODE, P_PRICE
FROM PRODUCT
WHERE P_PRICE >= (SELECT AVG(P_PRICE) FROM PRODUCT);

7. Assuming that there are no table statistics, what type of optimization will the DBMS use?

8. What type of database I/O operations will likely be used by the query? (See Table 11.3.)

9. What is the likely data sparsity of the P_PRICE column?

10. Should you create an index? Why or why not?

Problems 11−14 are based on the following query:

SELECT P_CODE, SUM(LINE_UNITS)
FROM LINE
GROUP BY P_CODE
HAVING SUM(LINE_UNITS) > (SELECT MAX(LINE_UNITS) FROM LINE);

11. What is the likely data sparsity of the LINE_UNITS column?

12. Should you create an index? If so, what would the index column(s) be, and why would you create that index? If
not, explain your reasoning.

13. Should you create an index on P_CODE? If so, write the SQL command to create that index. If not, explain your
reasoning.

14. Write the command to create statistics for this table.

C6545_11 9/14/2007 15:16:23 Page 473

473D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Problems 15 and 16 are based on the following query:

SELECT P_CODE, P_QOH*P_PRICE
FROM PRODUCT
WHERE P_QOH*P_PRICE > (SELECT AVG(P_QOH*P_PRICE) FROM PRODUCT)

15. What is the likely data sparsity of the P_QOH and P_PRICE columns?

16. Should you create an index, what would the index column(s) be, and why should you create that index?

Problems 17−21 are based on the following query:

SELECT V_CODE, V_NAME, V_CONTACT, V_STATE
FROM VENDOR
WHERE V_STATE = 'TN'
ORDER BY V_NAME;

17. What indexes should you create and why? Write the SQL command to create the indexes.

18. Assume that 10,000 vendors are distributed as shown in Table P11.18. What percentage of rows will be returned
by the query?

19. What type of I/O database operations would most likely be used to execute that query?

20. Using Table 11.4 as an example, create two alternative access plans.

21. Assume that you have 10,000 different products stored in the PRODUCT table and that you are writing a
Web-based interface to list all products with a quantity on hand (P_QOH) that is less than or equal to the minimum
quantity, P_MIN. What optimizer hint would you use to ensure that your query returns the result set to the Web
interface in the least time possible? Write the SQL code.

FIGURE
P11.7

The Ch11_SaleCo ER model

C6545_11 9/14/2007 15:16:42 Page 474

474 C H A P T E R 1 1

Problems 22−24 are based on the following query:

SELECT P_CODE, P_DESCRIPT, P_PRICE, P.V_CODE, V_STATE
FROM PRODUCT P, VENDOR V
WHERE P.V_CODE = V.V_CODE

AND V_STATE = 'NY'
AND V_AREACODE = '212'

ORDER BY P_PRICE;

22. What indexes would you recommend?

23. Write the commands required to create the indexes you recommended in Problem 22.

24. Write the command(s) used to generate the statistics for the PRODUCT and VENDOR tables.

Problems 25 and 26 are based on the following query:

SELECT P_CODE, P_DESCRIPT, P_QOH, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE = '21344'
ORDER BY P_CODE;

25. What index would you recommend, and what command would you use?

26. How should you rewrite the query to ensure that it uses the index you created in your solution to Problem 25?

TABLE
P11.18

STATE NUMBER OF
VENDORS

STATE NUMBER OF
VENDORS

AK 15 MS 47
AL 55 NC 358
AZ 100 NH 25
CA 3244 NJ 645
CO 345 NV 16
FL 995 OH 821
GA 75 OK 62
HI 68 PA 425
IL 89 RI 12
IN 12 SC 65
KS 19 SD 74
KY 45 TN 113
LA 29 TX 589
MD 208 UT 36
MI 745 VA 375
MO 35 WA 258

C6545_11 9/14/2007 15:17:24 Page 475

475D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Problems 27 and 28 are based on the following query:

SELECT P_CODE, P_DESCRIPT, P_QOH, P_PRICE, V_CODE
FROM PRODUCT
WHERE P_QOH < P_MIN

AND P_MIN = P_REORDER
AND P_REORDER = 50

ORDER BY P_QOH;

27. Use the recommendations given in Section 11.5.2 to rewrite the query to produce the required results more
efficiently.

28. What indexes would you recommend? Write the commands to create those indexes.

Problems 29−32 are based on the following query:

SELECT CUS_CODE, MAX(LINE_UNITS*LINE_PRICE)
FROM CUSTOMER NATURAL JOIN INVOICE NATURAL JOIN LINE
WHERE CUS_AREACODE = '615'
GROUP BY CUS_CODE;

29. Assuming that you generate 15,000 invoices per month, what recommendation would you give the designer
about the use of derived attributes?

30. Assuming that you follow the recommendations you gave in Problem 29, how would you rewrite the query?

31. What indexes would you recommend for the query you wrote in Problem 30, and what SQL commands would
you use?

32. How would you rewrite the query to ensure that the index you created in Problem 31 is used?

C6545_11 9/14/2007 15:18:5 Page 476

476 C H A P T E R 1 1

Preview

Distributed Database Management Systems

In this chapter, you will learn:

� What a distributed database management system (DDBMS) is and what its components are

� How database implementation is affected by different levels of data and process distribution

� How transactions are managed in a distributed database environment

� How database design is affected by the distributed database environment

In this chapter, you learn that a single database can be divided into several fragments.The

fragments can be stored on different computers within a network. Processing, too, can be

dispersed among several different network sites, or nodes.The multisite database forms the

core of the distributed database system.

The growth of distributed database systems has been fostered by the dispersion of business

operations across the country and the world, along with the rapid pace of technological

change that has made local and wide area networks practical and more reliable. The

network-based distributed database system is very flexible: it can serve the needs of a small

business operating two stores in the same town while at the same time meeting the needs

of a global business.

Although a distributed database system requires a more sophisticated DBMS, the end user

should not be burdened by increased operational complexity.That is, the greater complexity

of a distributed database system should be transparent to the end user.

The distributed database management system (DDBMS) treats a distributed database as a

single logical database; therefore, the basic design concepts you learned in earlier chapters

apply. However, although the end user need not be aware of the distributed database’s

special characteristics, the distribution of data among different sites in a computer network

clearly adds to a system’s complexity. For example, the design of a distributed database must

consider the location of the data and the partitioning of the data into database fragments.

You examine such issues in this chapter.

12

T
W

E
L

V
E

C6545_12 8/31/2007 12:31:34 Page 477

12.1 THE EVOLUTION OF DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

A distributed database management system (DDBMS) governs the storage and processing of logically related
data over interconnected computer systems in which both data and processing functions are distributed among several
sites. To understand how and why the DDBMS is different from the DBMS, it is useful to briefly examine the changes
in the business environment that set the stage for the development of the DDBMS.

During the 1970s, corporations implemented centralized database management systems to meet their structured
information needs. Structured information is usually presented as regularly issued formal reports in a standard format.
Such information, generated by procedural programming languages, is created by specialists in response to precisely
channeled requests. Thus, structured information needs are well served by centralized systems.

The use of a centralized database required that corporate data be stored in a single central site, usually a mainframe
computer. Data access was provided through dumb terminals. The centralized approach, illustrated in Figure 12.1,
worked well to fill the structured information needs of corporations, but it fell short when quickly moving events
required faster response times and equally quick access to information. The slow progression from information request
to approval, to specialist, to user simply did not serve decision makers well in a dynamic environment. What was
needed was quick, unstructured access to databases, using ad hoc queries to generate on-the-spot information.

Database management systems based on the relational model could provide the environment in which unstructured
information needs would be met by employing ad hoc queries. End users would be given the ability to access data when
needed. Unfortunately, the early relational model implementations did not yet deliver acceptable throughput when
compared to the well-established hierarchical or network database models.

The last two decades gave birth to a series of crucial social and technological changes that affected database
development and design. Among those changes were:

� Business operations became decentralized.

� Competition increased at the global level.

� Customer demands and market needs favored a decentralized management style.

Local database

FIGURE
12.1

Centralized database management system

DBMS

Data

Request

Reply

Read

End user
Application

issues
a data request
to the DBMS

C6545_12 8/31/2007 13:52:5 Page 478

478 C H A P T E R 1 2

� Rapid technological change created low-cost computers with mainframe-like power, impressive multifunction
handheld portable wireless devices with cellular phone and data services, and increasingly complex and fast
networks to connect them. As a consequence, corporations have increasingly adopted advanced network
technologies as the platform for their computerized solutions.

� The large number of applications based on DBMSs and the need to protect investments in centralized DBMS
software made the notion of data sharing attractive. Data realms are converging in the digital world more and
more. As a result, single applications manage multiple different types of data (voice, video, music, images, etc.),
and such data are accessed from multiple geographically dispersed locations.

Those factors created a dynamic business environment in which companies had to respond quickly to competitive and
technological pressures. As large business units restructured to form leaner and meaner, quickly reacting, dispersed
operations, two database requirements became obvious:

� Rapid ad hoc data access became crucial in the quick-response decision-making environment.
� The decentralization of management structures based on the decentralization of business units made

decentralized multiple-access and multiple-location databases a necessity.

During recent years, the factors just described became even more firmly entrenched. However, the way those factors
were addressed was strongly influenced by:

� The growing acceptance of the Internet as the platform for data access and distribution. The World Wide
Web (WWW or just the Web) is, in effect, the repository for distributed data.

� The wireless revolution. The widespread use of wireless digital devices, such as personal digital assistants
(PDAs) like Palm and BlackBerry and multipurpose “smart phones” like the iPhone, has created high demand
for data access. Such devices access data from geographically dispersed locations and require varied data
exchanges in multiple formats (data, voice, video, music, pictures, etc.) Although distributed data access does
not necessarily imply distributed databases; performance and failure tolerance requirements often make use of
data replication techniques similar to the ones found in distributed databases.

� The accelerated growth of companies providing “application as a service” type of services. This new type
of service provides remote application services to companies wanting to outsource their application develop-
ment, maintenance, and operations. The company data is generally stored on central servers and is not
necessarily distributed. Just as with wireless data access, this type of service may not require fully distributed
data functionality; however, other factors such as performance and failure tolerance often require the use of
data replication techniques similar to the ones found in distributed databases.

� The increased focus on data analysis that led to data mining and data warehousing. Although a data
warehouse is not usually a distributed database, it does rely on techniques such as data replication and
distributed queries that facilitate data extraction and integration. (Data warehouse design, implementation, and
use are discussed in Chapter 13, Business Intelligence and Data Warehouses.)

At this point, the long-term impact of the Internet and the wireless revolution on distributed database design and
management is still unclear. Perhaps the success of the Internet and wireless technologies will foster the use of
distributed databases as bandwidth becomes a more troublesome bottleneck. Perhaps the resolution of bandwidth
problems will simply confirm the centralized database standard. In any case, distributed databases exist today and many
distributed database operating concepts and components are likely to find a place in future database developments.

The decentralized database is especially desirable because centralized database management is subject to problems
such as:

� Performance degradation due to a growing number of remote locations over greater distances.

O n l i n e C o n t e n t

To learn more about the Internet’s impact on data access and distribution, see Appendix I in the Student
Online Companion, Databases in Electronic Commerce.

C6545_12 9/24/2007 17:12:20 Page 479

479D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

� High costs associated with maintaining and operating large central (mainframe) database systems.

� Reliability problems created by dependence on a central site (single point of failure syndrome) and the need
for data replication.

� Scalability problems associated with the physical limits imposed by a single location (power, temperature
conditioning, and power consumption.)

� Organizational rigidity imposed by the database might not support the flexibility and agility required by
modern global organizations.

The dynamic business environment and the centralized database’s shortcomings spawned a demand for applications
based on accessing data from different sources at multiple locations. Such a multiple-source/multiple-location database
environment is best managed by a distributed database management system (DDBMS).

12.2 DDBMS ADVANTAGES AND DISADVANTAGES

Distributed database management systems deliver several advantages over traditional systems. At the same time, they
are subject to some problems. Table 12.1 summarizes the advantages and disadvantages associated with a DDBMS.

TABLE
12.1

Distributed DBMS Advantages and Disadvantages

ADVANTAGES DISADVANTAGES
• Data are located near the greatest demand site.

The data in a distributed database system are dis-
persed to match business requirements.

• Faster data access. End users often work with only
a locally stored subset of the company’s data.

• Faster data processing. A distributed database sys-
tem spreads out the systems workload by process-
ing data at several sites.

• Growth facilitation. New sites can be added to
the network without affecting the operations of
other sites.

• Improved communications. Because local sites are
smaller and located closer to customers, local sites
foster better communication among departments
and between customers and company staff.

• Reduced operating costs. It is more cost-effective to
add workstations to a network than to update a
mainframe system. Development work is done
more cheaply and more quickly on low-cost PCs
than on mainframes.

• User-friendly interface. PCs and workstations are
usually equipped with an easy-to-use graphical
user interface (GUI). The GUI simplifies training
and use for end users.

• Less danger of a single-point failure. When one of
the computers fails, the workload is picked up by
other workstations. Data are also distributed at
multiple sites.

• Processor independence. The end user is able to
access any available copy of the data, and an end
user’s request is processed by any processor at the
data location.

• Complexity of management and control. Applications
must recognize data location, and they must be able to
stitch together data from various sites. Database admin-
istrators must have the ability to coordinate database
activities to prevent database degradation due to data
anomalies.

• Technological difficulty. Data integrity, transaction man-
agement, concurrency control, security, backup, recov-
ery, query optimization, access path selection, and so
on, must all be addressed and resolved.

• Security. The probability of security lapses increases
when data are located at multiple sites. The responsi-
bility of data management will be shared by different
people at several sites.

• Lack of standards. There are no standard communica-
tion protocols at the database level. (Although TCP/IP
is the de facto standard at the network level, there is
no standard at the application level.) For example,
different database vendors employ different—and
often incompatible—techniques to manage the distri-
bution of data and processing in a DDBMS
environment.

• Increased storage and infrastructure requirements. Mul-
tiple copies of data are required at different sites, thus
requiring additional disk storage space.

• Increased training cost. Training costs are generally
higher in a distributed model than they would be in a
centralized model, sometimes even to the extent of
offsetting operational and hardware savings.

• Costs. Distributed databases require duplicated infra-
structure to operate (physical location, environment,
personnel, software, licensing, etc.)

C6545_12 9/24/2007 17:13:42 Page 480

480 C H A P T E R 1 2

Distributed databases are used successfully but have a long way to go before they will yield the full flexibility and power
of which they are theoretically capable. The inherently complex distributed data environment increases the urgency for
standard protocols governing transaction management, concurrency control, security, backup, recovery, query
optimization, access path selection, and so on. Such issues must be addressed and resolved before DDBMS technology
is widely embraced.

The remainder of this chapter explores the basic components and concepts of the distributed database. Because the
distributed database is usually based on the relational database model, relational terminology is used to explain the basic
concepts and components of a distributed database.

12.3 DISTRIBUTED PROCESSING AND DISTRIBUTED DATABASES

In distributed processing, a database’s logical processing is shared among two or more physically independent sites
that are connected through a network. For example, the data input/output (I/O), data selection, and data validation
might be performed on one computer, and a report based on that data might be created on another computer.

A basic distributed processing environment is illustrated in Figure 12.2, which shows that a distributed processing
system shares the database processing chores among three sites connected through a communications network.
Although the database resides at only one site (Miami), each site can access the data and update the database. The
database is located on Computer A, a network computer known as the database server.

A distributed database, on the other hand, stores a logically related database over two or more physically
independent sites. The sites are connected via a computer network. In contrast, the distributed processing system uses
only a single-site database but shares the processing chores among several sites. In a distributed database system, a
database is composed of several parts known as database fragments. The database fragments are located at
different sites and can be replicated among various sites. Each database fragment is, in turn, managed by its local
database process. An example of a distributed database environment is shown in Figure 12.3.

Employee database

FIGURE
12.2

Distributed processing environment

Site 2
New York user Donna

Computer B

Database records are processed in different locations

Site 3
Atlanta user Victor

Computer C

Generate
payroll
report

DBMS

Computer ASite 1
Miami user Joe

Communications network

Update
payroll

data

C6545_12 8/31/2007 13:52:57 Page 481

481D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

The database in Figure 12.3 is divided into three database fragments (E1, E2, and E3) located at different sites. The
computers are connected through a network system. In a fully distributed database, the users Alan, Betty, and
Hernando do not need to know the name or location of each database fragment in order to access the database. Also,
the users might be located at sites other than Miami, New York, or Atlanta, and still be able to access the database as
a single logical unit.

As you examine Figures 12.2 and 12.3, you should keep the following points in mind:

� Distributed processing does not require a distributed database, but a distributed database requires distributed
processing (each database fragment is managed by its own local database process).

� Distributed processing may be based on a single database located on a single computer. For the management
of distributed data to occur, copies or parts of the database processing functions must be distributed to all data
storage sites.

� Both distributed processing and distributed databases require a network to connect all components.

E1

E3E2

FIGURE
12.3

Distributed database environment

Site 2
New York user Betty

Site 3
Atlanta user Hernando

DBMS

Computer A

Site 1
Miami user Alan

Communications network

DBMS

Computer B

DBMS

Computer C

C6545_12 8/31/2007 12:43:12 Page 482

482 C H A P T E R 1 2

12.4 CHARACTERISTICS OF DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

A DDBMS governs the storage and processing of logically related data over interconnected computer systems in which
both data and processing functions are distributed among several sites. A DBMS must have at least the following
functions to be classified as distributed:

� Application interface to interact with the end user, application programs, and other DBMSs within the
distributed database.

� Validation to analyze data requests for syntax correctness.

� Transformation to decompose complex requests into atomic data request components.

� Query optimization to find the best access strategy. (Which database fragments must be accessed by the query,
and how must data updates, if any, be synchronized?)

� Mapping to determine the data location of local and remote fragments.

� I/O interface to read or write data from or to permanent local storage.

� Formatting to prepare the data for presentation to the end user or to an application program.

� Security to provide data privacy at both local and remote databases.

� Backup and recovery to ensure the availability and recoverability of the database in case of a failure.

� DB administration features for the database administrator.

� Concurrency control to manage simultaneous data access and to ensure data consistency across database
fragments in the DDBMS.

� Transaction management to ensure that the data moves from one consistent state to another. This activity
includes the synchronization of local and remote transactions as well as transactions across multiple distributed
segments.

A fully distributed database management system must perform all of the functions of a centralized DBMS, as follows:

1. Receive an application’s (or an end user’s) request.

2. Validate, analyze, and decompose the request. The request might include mathematical and/or logical
operations such as the following: Select all customers with a balance greater than $1,000. The request might
require data from only a single table, or it might require access to several tables.

3. Map the request’s logical-to-physical data components.

4. Decompose the request into several disk I/O operations.

5. Search for, locate, read, and validate the data.

6. Ensure database consistency, security, and integrity.

7. Validate the data for the conditions, if any, specified by the request.

8. Present the selected data in the required format.

In addition, a distributed DBMS must handle all necessary functions imposed by the distribution of data and processing.
And it must perform those additional functions transparently to the end user. The DDBMS’s transparent data access
features are illustrated in Figure 12.4.

The single logical database in Figure 12.4 consists of two database fragments, A1 and A2, located at sites 1 and 2,
respectively. Mary can query the database as if it were a local database; so can Tom. Both users “see” only one logical
database and do not need to know the names of the fragments. In fact, the end users do not even need to know
that the database is divided into fragments, nor do they need to know where the fragments are located.

To better understand the different types of distributed database scenarios, let’s first define the distributed database
system’s components.

C6545_12 9/24/2007 17:14:15 Page 483

483D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

12.5 DDBMS COMPONENTS

The DDBMS must include at least the following components:

� Computer workstations (sites or nodes) that form the network system. The distributed database system must
be independent of the computer system hardware.

� Network hardware and software components that reside in each workstation. The network components allow
all sites to interact and exchange data. Because the components—computers, operating systems, network
hardware, and so on—are likely to be supplied by different vendors, it is best to ensure that distributed database
functions can be run on multiple platforms.

� Communications media that carry the data from one workstation to another. The DDBMS must be
communications-media-independent; that is, it must be able to support several types of communications media.

� The transaction processor (TP), which is the software component found in each computer that requests
data. The transaction processor receives and processes the application’s data requests (remote and local). The
TP is also known as the application processor (AP) or the transaction manager (TM).

� The data processor (DP), which is the software component residing on each computer that stores and
retrieves data located at the site. The DP is also known as the data manager (DM). A data processor may
even be a centralized DBMS.

Figure 12.5 illustrates the placement of the components and the interaction among them. The communication among
TPs and DPs shown in Figure 12.5 is made possible through a specific set of rules, or protocols, used by the DDBMS.

FIGURE
12.4

A fully distributed database management system

Database fragment A2Database fragment A1

Distributed processing
Site 1 Site 2

Single logical database

User Mary User Tom

Communication line

C6545_12 8/31/2007 13:53:54 Page 484

484 C H A P T E R 1 2

The protocols determine how the distributed database system will:

� Interface with the network to transport data and commands between data processors (DPs) and transaction
processors (TPs).

� Synchronize all data received from DPs (TP side) and route retrieved data to the appropriate TPs (DP side).

� Ensure common database functions in a distributed system. Such functions include security, concurrency
control, backup, and recovery.

DPs and TPs can be added to the system without affecting the operation of the other components. A TP and a DP
can reside on the same computer, allowing the end user to access local as well as remote data transparently. In theory,
a DP can be an independent centralized DBMS with proper interfaces to support remote access from other
independent DBMSs in the network.

12.6 LEVELS OF DATA AND PROCESS DISTRIBUTION

Current database systems can be classified on the basis of how process distribution and data distribution are supported.
For example, a DBMS may store data in a single site (centralized DB) or in multiple sites (distributed DB) and may
support data processing at a single site or at multiple sites. Table 12.2 uses a simple matrix to classify database systems
according to data and process distribution. These types of processes are discussed in the sections that follow.

FIGURE
12.5

Distributed database system management components

Note: Each TP can access data on any DP, and
each DP handles all requests for local data from any TP.

José

Communications network

TP TP DP

Peter Mary
Dedicated

data processor

Amy Chantal Dedicated
data processor

DP
TP
DP

TP
DP

TP
DP

C6545_12 8/31/2007 12:44:3 Page 485

485D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

TABLE
12.2

Database Systems: Levels of Data and Process Distribution

SINGLE-SITE DATA MULTIPLE-SITE DATA
Single-site process Host DBMS Not applicable

(Requires multiple processes)
Multiple-site process File server

Client/server DBMS (LAN DBMS)
Fully distributed
Client/server DDBMS

12.6.1 Single-Site Processing, Single-Site Data (SPSD)

In the single-site processing, single-site data (SPSD) scenario, all processing is done on a single host computer
(single-processor server, multiprocessor server, mainframe system) and all data are stored on the host computer’s local
disk system. Processing cannot be done on the end user’s side of the system. Such a scenario is typical of most
mainframe and midrange server computer DBMSs. The DBMS is located on the host computer, which is accessed by
dumb terminals connected to it. See Figure 12.6. This scenario is also typical of the first generation of single-user
microcomputer databases.

Using Figure 12.6 as an example, you can see that the functions of the TP and the DP are embedded within the DBMS
located on a single computer. The DBMS usually runs under a time-sharing, multitasking operating system, which
allows several processes to run concurrently on a host computer accessing a single DP. All data storage and data
processing are handled by a single host computer.

FIGURE
12.6

Single-site processing, single-site data (centralized)

Database

Dumb
terminals

Remote
dumb

terminal

DBMS

Front-end
processor

T1

T3

T2

Communication through
DSL or T-1 line

C6545_12 8/31/2007 12:44:42 Page 486

486 C H A P T E R 1 2

12.6.2 Multiple-Site Processing, Single-Site Data (MPSD)

Under the multiple-site processing, single-site data (MPSD) scenario, multiple processes run on different
computers sharing a single data repository. Typically, the MPSD scenario requires a network file server running
conventional applications that are accessed through a network. Many multiuser accounting applications running under
a personal computer network fit such a description. (See Figure 12.7.)

As you examine Figure 12.7, note that:

� The TP on each workstation acts only as a redirector to route all network data requests to the file server.

� The end user sees the file server as just another hard disk. Because only the data storage input/output (I/O)
is handled by the file server’s computer, the MPSD offers limited capabilities for distributed processing.

� The end user must make a direct reference to the file server in order to access remote data. All record- and
file-locking activities are done at the end-user location.

� All data selection, search, and update functions take place at the workstation, thus requiring that entire files
travel through the network for processing at the workstation. Such a requirement increases network traffic,
slows response time, and increases communication costs.

The inefficiency of the last condition can be illustrated easily. For example, suppose the file server computer stores a
CUSTOMER table containing 10,000 data rows, 50 of which have balances greater than $1,000. Suppose site A
issues the following SQL query:

SELECT *
FROM CUSTOMER
WHERE CUS_BALANCE > 1000;

All 10,000 CUSTOMER rows must travel through the network to be evaluated at site A.

FIGURE
12.7

Multiple-site processing, single-site data

Site A

TP

File Server

Communications network

DP

Site B

TP

Site C

TP

C6545_12 8/31/2007 13:54:35 Page 487

487D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

A variation of the multiple-site processing, single-site data approach is known as client/server architecture. Client/
server architecture is similar to that of the network file server except that all database processing is done at the
server site, thus reducing network traffic. Although both the network file server and the client/server systems
perform multiple-site processing, the latter’s processing is distributed. Note that the network file server approach
requires the database to be located at a single site. In contrast, the client/server architecture is capable of supporting
data at multiple sites.

12.6.3 Multiple-Site Processing, Multiple-Site Data (MPMD)

The multiple-site processing, multiple-site data (MPMD) scenario describes a fully distributed DBMS with
support for multiple data processors and transaction processors at multiple sites. Depending on the level of support
for various types of centralized DBMSs, DDBMSs are classified as either homogeneous or heterogeneous.

Homogeneous DDBMSs integrate only one type of centralized DBMS over a network. Thus, the same DBMS will
be running on different server platforms (single processor server, multi-processor server, server farms, or server blades).
In contrast, heterogeneous DDBMSs integrate different types of centralized DBMSs over a network. See
Figure 12.8. A fully heterogeneous DDBMS will support different DBMSs that may even support different data
models (relational, hierarchical, or network) running under different computer systems, such as mainframes and PCs.

Some DDBMS implementations support several platforms, operating systems, and networks and allow remote data
access to another DBMS. However, such DDBMSs still are subject to certain restrictions. For example:

� Remote access is provided on a read-only basis and does not support write privileges.

� Restrictions are placed on the number of remote tables that may be accessed in a single transaction.

� Restrictions are placed on the number of distinct databases that may be accessed.

� Restrictions are placed on the database model that may be accessed. Thus, access may be provided to relational
databases but not to network or hierarchical databases.

The preceding list of restrictions is by no means exhaustive. The DDBMS technology continues to change rapidly, and
new features are added frequently. Managing data at multiple sites leads to a number of issues that must be addressed
and understood. The next section will examine several key features of distributed database management systems.

O n l i n e C o n t e n t

Appendix F, Client/Server Systems, is located in the Student Online Companion for this book.

C6545_12 9/5/2007 8:55:51 Page 488

488 C H A P T E R 1 2

12.7 DISTRIBUTED DATABASE TRANSPARENCY FEATURES

A distributed database system requires functional characteristics that can be grouped and described as transparency
features. DDBMS transparency features have the common property of allowing the end user to feel like the database’s
only user. In other words, the user believes that (s)he is working with a centralized DBMS; all complexities of a
distributed database are hidden, or transparent, to the user.

The DDBMS transparency features are:

� Distribution transparency, which allows a distributed database to be treated as a single logical database. If
a DDBMS exhibits distribution transparency, the user does not need to know:

- That the data are partitioned—meaning the table’s rows and columns are split vertically or horizontally and
stored among multiple sites.

- That the data can be replicated at several sites.

- The data location.

FIGURE
12.8

Heterogeneous distributed database scenario

IBM 3090

DEC/VAX

IBM AS/400

RISC computer

Pentium CPU

DB2 MVS APPC LU 6.2

VAX rdb

SQL/400

Informix

Oracle

OpenVMS

OS/400

UNIX

Windows
Server 2003

DECnet

3270

TCP/IP

TCP/IP

Platform DBMS
Operating

System

Network
Communications

Protocol

C6545_12 8/31/2007 14:3:51 Page 489

489D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

� Transaction transparency, which allows a transaction to update data at more than one network site.
Transaction transparency ensures that the transaction will be either entirely completed or aborted, thus
maintaining database integrity.

� Failure transparency, which ensures that the system will continue to operate in the event of a node failure.
Functions that were lost because of the failure will be picked up by another network node.

� Performance transparency, which allows the system to perform as if it were a centralized DBMS. The
system will not suffer any performance degradation due to its use on a network or due to the network’s
platform differences. Performance transparency also ensures that the system will find the most cost-effective
path to access remote data.

� Heterogeneity transparency, which allows the integration of several different local DBMSs (relational,
network, and hierarchical) under a common, or global, schema. The DDBMS is responsible for translating the
data requests from the global schema to the local DBMS schema.

Distribution, transaction, and performance transparency features will be examined in greater detail in the next few
sections.

12.8 DISTRIBUTION TRANSPARENCY

Distribution transparency allows a physically dispersed database to be managed as though it were a centralized
database. The level of transparency supported by the DDBMS varies from system to system. Three levels of distribution
transparency are recognized:

� Fragmentation transparency is the highest level of transparency. The end user or programmer does not
need to know that a database is partitioned. Therefore, neither fragment names nor fragment locations are
specified prior to data access.

� Location transparency exists when the end user or programmer must specify the database fragment names
but does not need to specify where those fragments are located.

� Local mapping transparency exists when the end user or programmer must specify both the fragment
names and their locations.

Transparency features are summarized in Table 12.3.

TABLE
12.3

A Summary of Transparency Features

IF THE SQL STATEMENT REQUIRES:
FRAGMENT NAME? LOCATION NAME? THEN THE DBMS

SUPPORTS
LEVEL OF DISTRIBUTON
TRANSPARENCY

Yes Yes Local mapping Low
Yes No Location transparency Medium
No No Fragmentation transparency High

As you examine Table 12.3, you might ask why there is no reference to a situation in which the fragment name is “No”
and the location name is “Yes.” The reason for not including that scenario is simple: you cannot have a location name
that fails to reference an existing fragment. (If you don’t need to specify a fragment name, its location is clearly
irrelevant.)

To illustrate the use of various transparency levels, suppose you have an EMPLOYEE table containing the attributes
EMP_NAME, EMP_DOB, EMP_ADDRESS, EMP_DEPARTMENT, and EMP_SALARY. The EMPLOYEE data are
distributed over three different locations: New York, Atlanta, and Miami. The table is divided by location; that is, New

C6545_12 8/31/2007 13:55:45 Page 490

490 C H A P T E R 1 2

York employee data are stored in fragment E1, Atlanta employee data are stored in fragment E2, and Miami employee
data are stored in fragment E3. See Figure 12.9.

Now suppose the end user wants to list all employees with a date of birth prior to January 1, 1960. To focus on the
transparency issues, also suppose the EMPLOYEE table is fragmented and each fragment is unique. The unique
fragment condition indicates that each row is unique, regardless of the fragment in which it is located. Finally, assume
that no portion of the database is replicated at any other site on the network.

Depending on the level of distribution transparency support, you may examine three query cases.

Case 1: The Database Supports Fragmentation Transparency
The query conforms to a nondistributed database query format; that is, it does not specify fragment names or locations.
The query reads:

SELECT *
FROM EMPLOYEE
WHERE EMP_DOB < '01-JAN-1960';

Case 2: The Database Supports Location Transparency
Fragment names must be specified in the query, but fragment location is not specified. The query reads:

SELECT *
FROM E1
WHERE EMP_DOB < '01-JAN-1960';
UNION
SELECT *
FROM E2
WHERE EMP_DOB < '01-JAN-1960';
UNION
SELECT *
FROM E3
WHERE EMP_DOB < '01-JAN-1960';

FIGURE
12.9

Fragment locations

Distributed DBMS

Fragment

Location

EMPLOYEE table

E1 E2 E3

New York Atlanta Miami

C6545_12 9/24/2007 17:14:50 Page 491

491D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Case 3: The Database Supports Local Mapping Transparency
Both the fragment name and location must be specified in the query. Using pseudo-SQL:

SELECT *
FROM El NODE NY
WHERE EMP_DOB < '01-JAN-1960';
UNION
SELECT *
FROM E2 NODE ATL
WHERE EMP_DOB < '01-JAN-1960';
UNION
SELECT *
FROM E3 NODE MIA
WHERE EMP_DOB < '01-JAN-1960';

As you examine the preceding query formats, you can see how distribution transparency affects the way end users and
programmers interact with the database.

Distribution transparency is supported by a distributed data dictionary (DDD), or a distributed data catalog
(DDC). The DDC contains the description of the entire database as seen by the database administrator. The database
description, known as the distributed global schema, is the common database schema used by local TPs to translate
user requests into subqueries (remote requests) that will be processed by different DPs. The DDC is itself distributed,
and it is replicated at the network nodes. Therefore, the DDC must maintain consistency through updating at all sites.

Keep in mind that some of the current DDBMS implementations impose limitations on the level of transparency
support. For instance, you might be able to distribute a database, but not a table, across multiple sites. Such a condition
indicates that the DDBMS supports location transparency but not fragmentation transparency.

12.9 TRANSACTION TRANSPARENCY

Transaction transparency is a DDBMS property that ensures that database transactions will maintain the distributed
database’s integrity and consistency. Remember that a DDBMS database transaction can update data stored in many
different computers connected in a network. Transaction transparency ensures that the transaction will be completed
only when all database sites involved in the transaction complete their part of the transaction.

Distributed database systems require complex mechanisms to manage transactions and to ensure the database’s
consistency and integrity. To understand how the transactions are managed, you should know the basic concepts
governing remote requests, remote transactions, distributed transactions, and distributed requests.

12.9.1 Distributed Requests and Distributed Transactions1

Whether or not a transaction is distributed, it is formed by one or more database requests. The basic difference
between a nondistributed transaction and a distributed transaction is that the latter can update or request data from

1The details of distributed requests and transactions were originally described in David McGoveran and Colin White, “Clarifying Client/Server,” DBMS
3(12), November 1990, pp. 78−89.

Note

NODE indicates the location of the database fragment. NODE is used for illustration purposes and is not part
of the standard SQL syntax.

C6545_12 9/24/2007 17:15:11 Page 492

492 C H A P T E R 1 2

several different remote sites on a network. To better illustrate the distributed transaction concepts, let’s begin by
establishing the difference between remote and distributed transactions, using the BEGIN WORK and COMMIT
WORK transaction format. Assume the existence of location transparency to avoid having to specify the data location.

A remote request, illustrated in Figure 12.10, lets a single SQL statement access the data that are to be processed
by a single remote database processor. In other words, the SQL statement (or request) can reference data at only one
remote site.

Similarly, a remote transaction, composed of several requests, accesses data at a single remote site. A remote
transaction is illustrated in Figure 12.11.

As you examine Figure 12.11, note the following remote transaction features:

� The transaction updates the PRODUCT and INVOICE tables (located at site B).

� The remote transaction is sent to and executed at the remote site B.

� The transaction can reference only one remote DP.

� Each SQL statement (or request) can reference only one (the same) remote DP at a time, and the entire
transaction can reference and be executed at only one remote DP.

FIGURE
12.10

A remote request

CUSTOMER
Network

SELECT *
 FROM CUSTOMER
 WHERE CUS_STATE = ‘AL’;

Comment: The request is
directed to the CUSTOMER
table at site B.

Site A Site B

TP DP

FIGURE
12.11

A remote transaction

INVOICE

PRODUCT
BEGIN WORK;
UPDATE PRODUCT

 SET PROD_QTY = PROD_QTY — 1
 WHERE PROD_NUM = ‘231785’;

INSERT INTO INVOICE (CUS_NUM, INV_DATE, INV_TOTAL)
VALUES ‘100’, ‘15-FEB-2008’, 120.00;

COMMIT WORK;

Network

Site A Site B

TP DP

C6545_12 8/31/2007 13:56:48 Page 493

493D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

A distributed transaction allows a transaction to reference several different local or remote DP sites. Although
each single request can reference only one local or remote DP site, the transaction as a whole can reference multiple
DP sites because each request can reference a different site. The distributed transaction process is illustrated in
Figure 12.12.

Note the following features in Figure 12.12:

� The transaction references two remote sites (B and C).

� The first two requests (UPDATE PRODUCT and INSERT INTO INVOICE) are processed by the DP at the
remote site C, and the last request (UPDATE CUSTOMER) is processed by the DP at the remote site B.

� Each request can access only one remote site at a time.

The third characteristic may create problems. For example, suppose the table PRODUCT is divided into two
fragments, PRODl and PROD2, located at sites B and C, respectively. Given that scenario, the preceding distributed
transaction cannot be executed because the request:

SELECT *
FROM PRODUCT
WHERE PROD_NUM = &'231785';

cannot access data from more than one remote site. Therefore, the DBMS must be able to support a distributed
request.

A distributed request lets a single SQL statement reference data located at several different local or remote DP sites.
Because each request (SQL statement) can access data from more than one local or remote DP site, a transaction can
access several sites. The ability to execute a distributed request provides fully distributed database processing
capabilities because of the ability to:

� Partition a database table into several fragments.

� Reference one or more of those fragments with only one request. In other words, there is fragmentation
transparency.

FIGURE
12.12

A distributed transaction

CUSTOMER

PRODUCT

INVOICEBEGIN WORK;
UPDATE PRODUCT

SET PROD_QTY=PROD_QTY — 1
 WHERE PROD_NUM = ‘231785’;

INSERT INTO INVOICE (CUS_NUM, INV_DATE, INV_TOTAL)
VALUES (‘100’, ‘15-FEB-2008’, 120.00);

UPDATE CUSTOMER
SET CUS_BALANCE = CUS_BALANCE + 120
 WHERE CUS_NUM = ‘100’;

COMMIT WORK;

Network

Site A Site B

TP DP

DP

Site C

C6545_12 8/31/2007 13:57:13 Page 494

494 C H A P T E R 1 2

The location and partition of the data should be transparent to the end user. Figure 12.13 illustrates a distributed
request. As you examine Figure 12.13, note that the transaction uses a single SELECT statement to reference two
tables, CUSTOMER and INVOICE. The two tables are located at two different sites, B and C.

The distributed request feature also allows a single request to reference a physically partitioned table. For example, suppose
a CUSTOMER table is divided into two fragments, C1 and C2, located at sites B and C, respectively. Further suppose the
end user wants to obtain a list of all customers whose balances exceed $250. The request is illustrated in Figure 12.14.
Full fragmentation transparency support is provided only by a DDBMS that supports distributed requests.

FIGURE
12.13

A distributed request

INVOICE

PRODUCT

CUSTOMER

BEGIN WORK;
 SELECT CUS_NUM, INV_TOTAL

 FROM CUSTOMER, INVOICE
 WHERE CUS_NUM = ‘100’ AND

INVOICE.CUS_NUM = CUSTOMER.CUS_NUM;
COMMIT WORK;

Network

Site A Site B

TP DP

DP

Site C

FIGURE
12.14

Another distributed request

C1

C2

SELECT *
FROM CUSTOMER

WHERE CUS_BALANCE > 250;

Network

Site A Site B

TP DP

DP

Site C

C6545_12 8/31/2007 13:12:27 Page 495

495D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Understanding the different types of database requests in distributed database systems helps you address the
transaction transparency issue more effectively. Transaction transparency ensures that distributed transactions are
treated as centralized transactions, ensuring the serializability of transactions. (Review Chapter 10, Transaction
Management and Concurrency Control, if necessary.) That is, the execution of concurrent transactions, whether or not
they are distributed, will take the database from one consistent state to another.

12.9.2 Distributed Concurrency Control

Concurrency control becomes especially important in the distributed database environment because multisite,
multiple-process operations are more likely to create data inconsistencies and deadlocked transactions than single-site
systems are. For example, the TP component of a DDBMS must ensure that all parts of the transaction are completed
at all sites before a final COMMIT is issued to record the transaction.

Suppose each transaction operation was committed by each local DP, but one of the DPs could not commit the
transaction’s results. Such a scenario would yield the problems illustrated in Figure 12.15: the transaction(s) would yield
an inconsistent database, with its inevitable integrity problems, because committed data cannot be uncommitted! The
solution for the problem illustrated in Figure 12.15 is a two-phase commit protocol, which you will explore next.

12.9.3 Two-Phase Commit Protocol

Centralized databases require only one DP. All database operations take place at only one site, and the consequences
of database operations are immediately known to the DBMS. In contrast, distributed databases make it possible for a
transaction to access data at several sites. A final COMMIT must not be issued until all sites have committed their parts
of the transaction. The two-phase commit protocol guarantees that if a portion of a transaction operation cannot

FIGURE
12.15

The effect of a premature COMMIT

Data are
committed

Rollback at
site C

Site A

Site B

Site C

Can’t roll back
sites A and B

DP

DP

LOCK (Z)
...
...
ROLLBACK

DP

LOCK (X)
WRITE (X)
COMMIT

LOCK (Y)
WRITE (Y)
COMMIT

C6545_12 8/31/2007 13:12:43 Page 496

496 C H A P T E R 1 2

be committed, all changes made at the other sites participating in the transaction will be undone to maintain a
consistent database state.

Each DP maintains its own transaction log. The two-phase commit protocol requires that the transaction entry log for
each DP be written before the database fragment is actually updated. (See Chapter 10.) Therefore, the two-phase
commit protocol requires a DO-UNDO-REDO protocol and a write-ahead protocol.

The DO-UNDO-REDO protocol is used by the DP to roll back and/or roll forward transactions with the help of the
system’s transaction log entries. The DO-UNDO-REDO protocol defines three types of operations:

� DO performs the operation and records the “before” and “after” values in the transaction log.

� UNDO reverses an operation, using the log entries written by the DO portion of the sequence.

� REDO redoes an operation, using the log entries written by the DO portion of the sequence.

To ensure that the DO, UNDO, and REDO operations can survive a system crash while they are being executed, a
write-ahead protocol is used. The write-ahead protocol forces the log entry to be written to permanent storage
before the actual operation takes place.

The two-phase commit protocol defines the operations between two types of nodes: the coordinator and one or
more subordinates, or cohorts. The participating nodes agree on a coordinator. Generally, the coordinator role is
assigned to the node that initiates the transaction. However, different systems implement various, more sophisticated
election methods. The protocol is implemented in two phases:

Phase 1: Preparation
The coordinator sends a PREPARE TO COMMIT message to all subordinates.

1. The subordinates receive the message; write the transaction log, using the write-ahead protocol; and send an
acknowledgment (YES/PREPARED TO COMMIT or NO/NOT PREPARED) message to the coordinator.

2. The coordinator makes sure that all nodes are ready to commit, or it aborts the action.

If all nodes are PREPARED TO COMMIT, the transaction goes to phase 2. If one or more nodes reply NO or NOT
PREPARED, the coordinator broadcasts an ABORT message to all subordinates.

Phase 2: The Final COMMIT
1. The coordinator broadcasts a COMMIT message to all subordinates and waits for the replies.

2. Each subordinate receives the COMMIT message, and then updates the database using the DO protocol.

3. The subordinates reply with a COMMITTED or NOT COMMITTED message to the coordinator.

If one or more subordinates did not commit, the coordinator sends an ABORT message, thereby forcing them to
UNDO all changes.

The objective of the two-phase commit is to ensure that each node commits its part of the transaction; otherwise, the
transaction is aborted. If one of the nodes fails to commit, the information necessary to recover the database is in the
transaction log, and the database can be recovered with the DO-UNDO-REDO protocol. (Remember that the log
information was updated using the write-ahead protocol.)

12.10 PERFORMANCE TRANSPARENCY AND QUERY OPTIMIZATION

One of the most important functions of a database is its ability to make data available. Because all data reside at a single
site in a centralized database, the DBMS must evaluate every data request and find the most efficient way to access the
local data. In contrast, the DDBMS makes it possible to partition a database into several fragments, thereby rendering

C6545_12 8/31/2007 13:12:57 Page 497

497D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

the query translation more complicated, because the DDBMS must decide which fragment of the database to access.
In addition, the data may also be replicated at several different sites. The data replication makes the access problem
even more complex, because the database must decide which copy of the data to access. The DDBMS uses query
optimization techniques to deal with such problems and to ensure acceptable database performance.

The objective of a query optimization routine is to minimize the total cost associated with the execution of a request.
The costs associated with a request are a function of the:

� Access time (I/O) cost involved in accessing the physical data stored on disk.

� Communication cost associated with the transmission of data among nodes in distributed database systems.

� CPU time cost associated with the processing overhead of managing distributed transactions.

Although costs are often classified as either communication or processing costs, it is difficult to separate the two. Not
all query optimization algorithms use the same parameters, and all algorithms do not assign the same weight to each
parameter. For example, some algorithms minimize total time; others minimize the communication time; and still
others do not factor in the CPU time, considering it insignificant relative to other cost sources.

To evaluate query optimization, keep in mind that the TP must receive data from the DP, synchronize it, assemble the
answer, and present it to the end user or an application. Although that process is standard, you should consider that
a particular query may be executed at any one of several different sites. The response time associated with remote sites
cannot be easily predetermined because some nodes are able to finish their part of the query in less time than others.

One of the most important characteristics of query optimization in distributed database systems is that it must provide
distribution transparency as well as replica transparency. (Distribution transparency was explained earlier in this
chapter.) Replica transparency refers to the DDBMS’s ability to hide the existence of multiple copies of data from
the user.

Most of the algorithms proposed for query optimization are based on two principles:

� The selection of the optimum execution order.

� The selection of sites to be accessed to minimize communication costs.

Within those two principles, a query optimization algorithm can be evaluated on the basis of its operation mode or
the timing of its optimization.

Operation modes can be classified as manual or automatic. Automatic query optimization means that the DDBMS
finds the most cost-effective access path without user intervention. Manual query optimization requires that the
optimization be selected and scheduled by the end user or programmer. Automatic query optimization is clearly more
desirable from the end user’s point of view, but the cost of such convenience is the increased overhead that it imposes
on the DDBMS.

Query optimization algorithms can also be classified according to when the optimization is done. Within this timing
classification, query optimization algorithms can be classified as static or dynamic.

� Static query optimization takes place at compilation time. In other words, the best optimization strategy is
selected when the query is compiled by the DBMS. This approach is common when SQL statements are
embedded in procedural programming languages such as C# or Visual Basic .NET. When the program is
submitted to the DBMS for compilation, it creates the plan necessary to access the database. When the
program is executed, the DBMS uses that plan to access the database.

Note

Chapter 11, Database Performance Tuning and Query Optimization, provides additional details about query
optimization.

C6545_12 9/5/2007 8:56:19 Page 498

498 C H A P T E R 1 2

� Dynamic query optimization takes place at execution time. Database access strategy is defined when the
program is executed. Therefore, access strategy is dynamically determined by the DBMS at run time, using the
most up-to-date information about the database. Although dynamic query optimization is efficient, its cost is
measured by run-time processing overhead. The best strategy is determined every time the query is executed;
this could happen several times in the same program.

Finally, query optimization techniques can be classified according to the type of information that is used to optimize
the query. For example, queries may be based on statistically based or rule-based algorithms.

� A statistically based query optimization algorithm uses statistical information about the database. The
statistics provide information about database characteristics such as size, number of records, average access
time, number of requests serviced, and number of users with access rights. These statistics are then used by the
DBMS to determine the best access strategy.

� The statistical information is managed by the DDBMS and is generated in one of two different modes: dynamic
or manual. In the dynamic statistical generation mode, the DDBMS automatically evaluates and updates
the statistics after each access. In the manual statistical generation mode, the statistics must be updated
periodically through a user-selected utility such as IBM’s RUNSTAT command used by DB2 DBMSs.

� A rule-based query optimization algorithm is based on a set of user-defined rules to determine the best
query access strategy. The rules are entered by the end user or database administrator, and they typically are
very general in nature.

12.11 DISTRIBUTED DATABASE DESIGN

Whether the database is centralized or distributed, the design principles and concepts described in Chapter 3, The
Relational Database Model; Chapter 4, Entity Relationship Modeling; and Chapter 5, Normalization of Database
Tables, are still applicable. However, the design of a distributed database introduces three new issues:

� How to partition the database into fragments.

� Which fragments to replicate.

� Where to locate those fragments and replicas.

Data fragmentation and data replication deal with the first two issues, and data allocation deals with the third issue.

12.11.1 Data Fragmentation

Data fragmentation allows you to break a single object into two or more segments or fragments. The object might
be a user’s database, a system database, or a table. Each fragment can be stored at any site over a computer network.
Information about data fragmentation is stored in the distributed data catalog (DDC), from which it is accessed by the
TP to process user requests.

Data fragmentation strategies, as discussed here, are based at the table level and consist of dividing a table into logical
fragments. You will explore three types of data fragmentation strategies: horizontal, vertical, and mixed. (Keep in mind
that a fragmented table can always be re-created from its fragmented parts by a combination of unions and joins.)

� Horizontal fragmentation refers to the division of a relation into subsets (fragments) of tuples (rows). Each
fragment is stored at a different node, and each fragment has unique rows. However, the unique rows all have
the same attributes (columns). In short, each fragment represents the equivalent of a SELECT statement, with
the WHERE clause on a single attribute.

� Vertical fragmentation refers to the division of a relation into attribute (column) subsets. Each subset
(fragment) is stored at a different node, and each fragment has unique columns—with the exception of the key
column, which is common to all fragments. This is the equivalent of the PROJECT statement in SQL.

� Mixed fragmentation refers to a combination of horizontal and vertical strategies. In other words, a table
may be divided into several horizontal subsets (rows), each one having a subset of the attributes (columns).

C6545_12 9/5/2007 8:57:14 Page 499

499D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

To illustrate the fragmentation strategies, let’s use the CUSTOMER table for the XYZ Company, depicted in
Figure 12.16. The table contains the attributes CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_STATE, CUS_
LIMIT, CUS_BAL, CUS_RATING, and CUS_DUE.

Horizontal Fragmentation
Suppose XYZ Company’s corporate management requires information about its customers in all three states, but
company locations in each state (TN, FL, and GA) require data regarding local customers only. Based on such
requirements, you decide to distribute the data by state. Therefore, you define the horizontal fragments to conform to
the structure shown in Table 12.4.

TABLE
12.4

Horizontal Fragmentation of the Customer Table by State

FRAGMENT
NAME LOCATION CONDITION NODE NAME CUSTOMER

NUMBERS
NUMBER
OF ROWS

CUST_H1 Tennessee CUS_STATE = ‘TN’ NAS 10, 12 2
CUST_H2 Georgia CUS_STATE = ‘GA’ ATL 15 1
CUST_H3 Florida CUS_STATE = ‘FL’ TAM 11, 13, 14 3

Each horizontal fragment may have a different number of rows, but each fragment must have the same attributes. The
resulting fragments yield the three tables depicted in Figure 12.17.

Vertical Fragmentation
You may also divide the CUSTOMER relation into vertical fragments that are composed of a collection of attributes.
For example, suppose the company is divided into two departments: the service department and the collections
department. Each department is located in a separate building, and each has an interest in only a few of the
CUSTOMER table’s attributes. In this case, the fragments are defined as shown in Table 12.5.

O n l i n e C o n t e n t

The databases used to illustrate the material in this chapter are found in the Student Online Companion for
this book.

Table name: CUSTOMER

FIGURE
12.16

A sample CUSTOMER table

C6545_12 9/5/2007 8:57:32 Page 500

500 C H A P T E R 1 2

TABLE
12.5

Vertical Fragmentation of the Customer Table

FRAGMENT
NAME LOCATION NODE

NAME ATTRIBUTE NAMES

CUST_V1 Service Bldg. SVC CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_STATE
CUST_V2 Collection Bldg. ARC CUS_NUM, CUS_LIMIT, CUS_BAL, CUS_RATING, CUS_DUE

Each vertical fragment must have the same number of rows, but the inclusion of the different attributes depends on
the key column. The vertical fragmentation results are displayed in Figure 12.18. Note that the key attribute
(CUS_NUM) is common to both fragments CUST_V1 and CUST_V2.

Table name: CUST_H1

Table name: CUST_H2

Table name: CUST_H3

Location: Tennessee

Location: Georgia

Location: Florida

Node: NAS

Node: ATL

Node: TAM

FIGURE
12.17

Table fragments in three locations

Table name: CUST_V1

Table name: CUST_V2

Location: Service Building

Location: Collection Building

Node: SVC

Node: ARC

FIGURE
12.18

Vertically fragmented table contents

C6545_12 8/31/2007 13:17:26 Page 501

501D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Mixed Fragmentation
The XYZ Company’s structure requires that the CUSTOMER data be fragmented horizontally to accommodate the
various company locations; within the locations, the data must be fragmented vertically to accommodate the two
departments (service and collection). In short, the CUSTOMER table requires mixed fragmentation.

Mixed fragmentation requires a two-step procedure. First, horizontal fragmentation is introduced for each site based
on the location within a state (CUS_STATE). The horizontal fragmentation yields the subsets of customer tuples
(horizontal fragments) that are located at each site. Because the departments are located in different buildings, vertical
fragmentation is used within each horizontal fragment to divide the attributes, thus meeting each department’s
information needs at each subsite. Mixed fragmentation yields the results displayed in Table 12.6.

TABLE
12.6

Mixed Fragmentation of the Customer Table

FRAGMENT
NAME

LOCATION HORIZONTAL
CRITERIA

NODE
NAME

RESULTING
ROWS AT SITE

VERTICAL CRITERIA
ATTRIBUTES AT
EACH FRAGMENT

CUST_M1 TN-Service CUS_STATE =
‘TN’

NAS-S 10, 12 CUS_NUM, CUS_NAME
CUS_ADDRESS, CUS_STATE

CUST_M2 TN-Collection CUS_STATE =
‘TN’

NAS-C 10, 12 CUS_NUM, CUS_LIMIT,
CUS_BAL, CUS_RATING,
CUS_DUE

CUST_M3 GA-Service CUS_STATE =
‘GA’

ATL-S 15 CUS_NUM, CUS_NAME
CUS_ADDRESS, CUS_STATE

CUST_M4 GA-Collection CUS_STATE =
‘GA’

ATL-C 15 CUS_NUM, CUS_LIMIT,
CUS_BAL, CUS_RATING,
CUS_DUE

CUST_M5 FL-Service CUS_STATE = ‘FL’ TAM-S 11, 13, 14 CUS_NUM, CUS_NAME
CUS_ADDRESS, CUS_STATE

CUST_M6 FL-Collection CUS_STATE = ‘FL’ TAM-C 11, 13, 14 CUS_NUM, CUS_LIMIT,
CUS_BAL, CUS_RATING,
CUS_DUE

Each fragment displayed in Table 12.6 contains customer data by state and, within each state, by department location,
to fit each department’s data requirements. The tables corresponding to the fragments listed in Table 12.6 are shown
in Figure 12.19.

C6545_12 8/31/2007 13:22:53 Page 502

502 C H A P T E R 1 2

12.11.2 Data Replication

Data replication refers to the storage of data copies at multiple sites served by a computer network. Fragment copies
can be stored at several sites to serve specific information requirements. Because the existence of fragment copies can
enhance data availability and response time, data copies can help to reduce communication and total query costs.

Suppose database A is divided into two fragments, A1 and A2. Within a replicated distributed database, the scenario
depicted in Figure 12.20 is possible: fragment A1 is stored at sites S1 and S2, while fragment A2 is stored at sites S2
and S3.

Replicated data are subject to the mutual consistency rule. The mutual consistency rule requires that all copies of
data fragments be identical. Therefore, to maintain data consistency among the replicas, the DDBMS must ensure that
a database update is performed at all sites where replicas exist.

Although replication has some benefits (such as improved data availability, better load distribution, improved data
failure-tolerance, and reduced query costs), it also imposes additional DDBMS processing overhead— because each
data copy must be maintained by the system. Furthermore, because the data are replicated at another site, there are

Table name: CUST_M1

Table name: CUST_M2

Table name: CUST_M3

Location: TN-Service

Location: TN-Collection

Location: GA-Service

Node: NAS-S

Node: NAS-C

Node: ATL-S

Table name: CUST_M4

Table name: CUST_M5

Table name: CUST_M6

Location: GA-Collection

Location: FL-Service

Location: FL-Collection

Node: ATL-C

Node: TAM-S

Node: TAM-C

FIGURE
12.19

Table contents after the mixed fragmentation process

C6545_12 8/31/2007 13:58:50 Page 503

503D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

associated storage costs and increased transaction times (as data must be updated at several sites concurrently to
comply with the mutual consistency rule). To illustrate the replica overhead imposed on a DDBMS, consider the
processes that the DDBMS must perform to use the database.

� If the database is fragmented, the DDBMS must decompose a query into subqueries to access the appropriate
fragments.

� If the database is replicated, the DDBMS must decide which copy to access. A READ operation selects the
nearest copy to satisfy the transaction. A WRITE operation requires that all copies be selected and updated
to satisfy the mutual consistency rule.

� The TP sends a data request to each selected DP for execution.

� The DP receives and executes each request and sends the data back to the TP.

� The TP assembles the DP responses.

The problem becomes more complex when you consider additional factors such as network topology and communi-
cation throughputs.

Three replication scenarios exist: a database can be fully replicated, partially replicated, or unreplicated.

� A fully replicated database stores multiple copies of each database fragment at multiple sites. In this case,
all database fragments are replicated. A fully replicated database can be impractical due to the amount of
overhead it imposes on the system.

� A partially replicated database stores multiple copies of some database fragments at multiple sites. Most
DDBMSs are able to handle the partially replicated database well.

� An unreplicated database stores each database fragment at a single site. Therefore, there are no duplicate
database fragments.

Several factors influence the decision to use data replication:

� Database size. The amount of data replicated will have an impact on the storage requirements and also on the
data transmission costs. Replicating large amounts of data requires a window of time and higher network
bandwidth that could affect other applications.

A 1 A 2A 1 A 2

FIGURE
12.20

Data replication

Site S1 Site S3Site S2

DP DP DP

C6545_12 9/5/2007 8:57:59 Page 504

504 C H A P T E R 1 2

� Usage frequency. The frequency of data usage determines how frequently the data needs to be updated.
Frequently used data needs to be updated more often, for example, than large data sets that are used only every
quarter.

� Costs, including those for performance, software overhead, and management associated with synchronizing
transactions and their components vs. fault-tolerance benefits that are associated with replicated data.

When the usage frequency of remotely located data is high and the database is large, data replication can reduce the
cost of data requests. Data replication information is stored in the distributed data catalog (DDC), whose contents are
used by the TP to decide which copy of a database fragment to access. The data replication makes it possible to restore
lost data.

12.11.3 Data Allocation

Data allocation describes the process of deciding where to locate data. Data allocation strategies are as follows:

� With centralized data allocation, the entire database is stored at one site.

� With partitioned data allocation, the database is divided into two or more disjointed parts (fragments) and
stored at two or more sites.

� With replicated data allocation, copies of one or more database fragments are stored at several sites.

Data distribution over a computer network is achieved through data partition, through data replication, or through a
combination of both. Data allocation is closely related to the way a database is divided or fragmented. Most data
allocation studies focus on one issue: which data to locate where.

Data allocation algorithms take into consideration a variety of factors, including:

� Performance and data availability goals.

� Size, number of rows, and number of relations that an entity maintains with other entities.

� Types of transactions to be applied to the database and the attributes accessed by each of those transactions.

� Disconnected operation for mobile users. In some cases, the design might consider the use of loosely
disconnected fragments for mobile users, particularly for read-only data that does not require frequent updates
and for which the replica update windows (the amount of time available to perform a certain data processing
task that cannot be executed concurrently with other tasks) may be longer.

Some algorithms include external data, such as network topology or network throughput. No optimal or universally
accepted algorithm exists yet, and very few algorithms have been implemented to date.

12.12 CLIENT/SERVER VS. DDBMS

Because the trend toward distributed databases is firmly established, many database vendors have used the
“client/server” label to indicate distributed database capability. However, distributed databases do not always accurately
reflect the characteristics implied by the client/server label.

Client/server architecture refers to the way in which computers interact to form a system. The client/server
architecture features a user of resources, or a client, and a provider of resources, or a server. The client/server
architecture can be used to implement a DBMS in which the client is the TP and the server is the DP.

Client/server interactions in a DDBMS are carefully scripted. The client (TP) interacts with the end user and sends a
request to the server (DP). The server receives, schedules, and executes the request, selecting only those records that
are needed by the client. The server then sends the data to the client only when the client requests the data.

C6545_12 9/5/2007 8:58:12 Page 505

505D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Client/server applications offer several advantages.

� Client/server solutions tend to be less expensive than alternate minicomputer or mainframe solutions in terms
of startup infrastructure requirements.

� Client/server solutions allow the end user to use the microcomputer’s GUI, thereby improving functionality and
simplicity. In particular, using the ubiquitous Web browser in conjunction with Java and .NET frameworks
provides a familiar end-user interface.

� More people in the job market have PC skills than mainframe skills. The majority of new generation students
are learning Java and .NET programming skills.

� The PC is well established in the workplace. In addition, the increased use of the Internet as a business channel,
coupled with security advances (SSL, Virtual Private Networks, multifactor authentication, etc.) provide a more
reliable and secure platform for business transactions.

� Numerous data analysis and query tools exist to facilitate interaction with many of the DBMSs that are available
in the PC market.

� There is a considerable cost advantage to offloading applications development from the mainframe to
powerful PCs.

Client/server applications are also subject to some disadvantages.

� The client/server architecture creates a more complex environment in which different platforms (LANs,
operating systems, and so on) are often difficult to manage.

� An increase in the number of users and processing sites often paves the way for security problems.

� The client/server environment makes it possible to spread data access to a much wider circle of users. Such
an environment increases the demand for people with a broad knowledge of computers and software
applications. The burden of training increases the cost of maintaining the environment.

12.13 C. J. DATE’S TWELVE COMMANDMENTS FOR DISTRIBUTED DATABASES

The notion of distributed databases has been around for at least 20 years. With the rise of relational databases, most
vendors implemented their own versions of distributed databases, generally highlighting their respective product’s
strengths. To make the comparison of distributed databases easier, C. J. Date formulated twelve “commandments” or
basic principles of distributed databases.2 Although no current DDBMS conforms to all of them, they constitute a useful
target. The twelve rules are as follows:

1. Local site independence. Each local site can act as an independent, autonomous, centralized DBMS. Each site
is responsible for security, concurrency control, backup, and recovery.

2. Central site independence. No site in the network relies on a central site or any other site. All sites have the
same capabilities.

3. Failure independence. The system is not affected by node failures. The system is in continuous operation even
in the case of a node failure or an expansion of the network.

4. Location transparency. The user does not need to know the location of data in order to retrieve those data.

2 Date, C. J. “Twelve Rules for a Distributed Database,” Computer World, June 8, 1987, 2(23) pp. 77–81.

O n l i n e C o n t e n t

Refer to Appendix F, Client/Server Systems, for complete coverage of client/server computing
concepts, components, and managerial implications.

C6545_12 9/24/2007 17:15:54 Page 506

506 C H A P T E R 1 2

5. Fragmentation transparency. Data fragmentation is transparent to the user, who sees only one logical
database. The user does not need to know the name of the database fragments in order to retrieve them.

6. Replication transparency. The user sees only one logical database. The DDBMS transparently selects the
database fragment to access. To the user, the DDBMS manages all fragments transparently.

7. Distributed query processing. A distributed query may be executed at several different DP sites. Query
optimization is performed transparently by the DDBMS.

8. Distributed transaction processing. A transaction may update data at several different sites, and the
transaction is executed transparently.

9. Hardware independence. The system must run on any hardware platform.

10. Operating system independence. The system must run on any operating system platform.

11. Network independence. The system must run on any network platform.

12. Database independence. The system must support any vendor’s database product.

C6545_12 8/31/2007 13:44:58 Page 507

507D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

S u m m a r y

◗ A distributed database stores logically related data in two or more physically independent sites connected via a
computer network. The database is divided into fragments, which can be horizontal (a set of rows) or vertical (a set
of attributes). Each fragment can be allocated to a different network node.

◗ Distributed processing is the division of logical database processing among two or more network nodes. Distributed
databases require distributed processing. A distributed database management system (DDBMS) governs the
processing and storage of logically related data through interconnected computer systems.

◗ The main components of a DDBMS are the transaction processor (TP) and the data processor (DP). The
transaction processor component is the software that resides on each computer node that requests data. The data
processor component is the software that resides on each computer that stores and retrieves data.

◗ Current database systems can be classified by the extent to which they support processing and data distribution.
Three major categories are used to classify distributed database systems: (1) single-site processing, single-site data
(SPSD); (2) multiple-site processing, single-site data (MPSD); and (3) multiple-site processing, multiple-site
data (MPMD).

◗ A homogeneous distributed database system integrates only one particular type of DBMS over a computer
network. A heterogeneous distributed database system integrates several different types of DBMSs over a computer
network.

◗ DDBMS characteristics are best described as a set of transparencies: distribution, transaction, failure, heterogene-
ity, and performance. All transparencies share the common objective of making the distributed database behave as
though it were a centralized database system; that is, the end user sees the data as part of a single logical centralized
database and is unaware of the system’s complexities.

◗ A transaction is formed by one or more database requests. An undistributed transaction updates or requests data
from a single site. A distributed transaction can update or request data from multiple sites.

◗ Distributed concurrency control is required in a network of distributed databases. A two-phase COMMIT protocol
is used to ensure that all parts of a transaction are completed.

◗ A distributed DBMS evaluates every data request to find the optimum access path in a distributed database. The
DDBMS must optimize the query to reduce access, communications, and CPU costs associated with the query.

◗ The design of a distributed database must consider the fragmentation and replication of data. The designer must
also decide how to allocate each fragment or replica to obtain better overall response time and to ensure data
availability to the end user.

◗ A database can be replicated over several different sites on a computer network. The replication of the database
fragments has the objective of improving data availability, thus decreasing access time. A database can be partially,
fully, or not replicated. Data allocation strategies are designed to determine the location of the database fragments
or replicas.

◗ Database vendors often label software as client/server database products. The client/server architecture label refers
to the way in which two computers interact over a computer network to form a system.

C6545_12 8/31/2007 13:26:24 Page 508

508 C H A P T E R 1 2

K e y T e r m s

application processor (AP), 484

automatic query optimization, 498

client/server architecture, 488

coordinator, 497

data allocation, 505
centralized, 505
partitioned, 505
replicated, 505

database fragments, 481

data fragmentation, 499
horizontal, 499
mixed, 499
vertical, 499

data manager (DM), 484

data processor (DP), 484

data replication, 503

distributed database, 481

distributed database management
system (DDBMS), 478

distributed data catalog (DDC), 492

distributed data dictionary
(DDD), 492

distributed global schema, 492

distributed processing, 481

distributed request, 494

distributed transaction, 494

distribution transparency, 489

DO-UNDO-REDO protocol, 497

dynamic query optimization, 499

dynamic statistical generation
mode, 499

failure transparency, 490

fragmentation transparency, 490

fully heterogeneous DDBMS, 488

fully replicated database, 504

heterogeneity transparency, 490

heterogeneous DDBMS, 488

homogeneous DDBMS, 488

local mapping transparency, 490

location transparency, 490

manual query optimization, 498

manual statistical generation
mode, 499

multiple-site processing, multiple-site
data (MPMD), 488

multiple-site processing, single-site
data (MPSD), 487

mutual consistency rule, 503

partially replicated database, 504

performance transparency, 490

remote request, 493

remote transaction, 493

replica transparency, 498

rule-based query optimization
algorithm, 499

single-site processing, single-site
data (SPSD), 487

static query optimization, 498

statistically based query optimization
algorithm, 499

subordinates, 497

transaction manager (TM), 484

transaction processor (TP), 484

transaction transparency, 490

two-phase commit protocol, 496

unique fragment, 491

unreplicated database, 504

write-ahead protocol, 497

R e v i e w Q u e s t i o n s

1. Describe the evolution from centralized DBMSs to distributed DBMSs.

2. List and discuss some of the factors that influenced the evolution of the DDBMS.

3. What are the advantages of the DDBMS?

4. What are the disadvantages of the DDBMS?

5. Explain the difference between a distributed database and distributed processing.

6. What is a fully distributed database management system?

7. What are the components of a DDBMS?

8. List and explain the transparency features of a DDBMS.

9. Define and explain the different types of distribution transparency.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_12 8/31/2007 14:8:7 Page 509

509D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

10. Describe the different types of database requests and transactions.

11. Explain the need for the two-phase commit protocol. Then describe the two phases.

12. What is the objective of query optimization functions?

13. To which transparency feature are the query optimization functions related?

14. What are the different types of query optimization algorithms?

15. Describe the three data fragmentation strategies. Give some examples of each.

16. What is data replication, and what are the three replication strategies?

17. Explain the difference between distributed databases and client/server architecture.

P r o b l e m s

The first problem is based on the DDBMS scenario in Figure P12.1.

1. Specify the minimum type(s) of operation(s) the database must support (remote request, remote transaction,
distributed transaction, or distributed request) to perform the following operations:

At site C

a. SELECT *
FROM CUSTOMER;

b. SELECT *
FROM INVOICE
WHERE INV_TOT > 1000;

c. SELECT *
FROM PRODUCT
WHERE PROD_ QOH < 10;

FIGURE
P12.1

The DDBMS scenario for Problem 1

CUSTOMER

PROD_A

INVOICE INV_LINE PROD_B

TABLES LOCATIONFRAGMENTS

CUSTOMER
PRODUCT

INVOICE
INV_LINE

N/A
PROD_A
PROD_B
N/A
N/A

A
A
B
B
B

Site C

C6545_12 8/31/2007 13:39:7 Page 510

510 C H A P T E R 1 2

d. BEGIN WORK;
UPDATE CUSTOMER
SET CUS_BAL = CUS_BAL + 100
WHERE CUS_NUM = '10936';
INSERT INTO INVOICE(INV_NUM, CUS_NUM, INV_DATE, INV_TOTAL)

VALUES ('986391', '10936', '15-FEB-2008', 100);
INSERT INTO LINE(INV_NUM, PROD_NUM, LINE_PRICE)

VALUES('986391', '1023', 100);
UPDATE PRODUCT
SET PROD_QOH = PROD_ QOH –1
WHERE PROD_NUM = '1023'; COMMIT WORK;

e. BEGIN WORK;
INSERT INTO CUSTOMER(CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_BAL)

VALUES ('34210', 'Victor Ephanor', '123 Main St.', 0.00);
INSERTINTO INVOICE(INV_NUM, CUS_NUM, INV_DATE, INV_TOTAL)

VALUES ('986434', '34210', '10-AUG-2007', 2.00);
COMMIT WORK;

At site A

f. SELECT CUS_NUM,CUS_NAME,INV_TOTAL
FROM CUSTOMER, INVOICE
WHERE CUSTOMER.CUS_NUM = INVOICE.CUS_NUM;

g. SELECT *
FROM INVOICE
WHERE INV_TOTAL > 1000;

h. SELECT *
FROM PRODUCT
WHERE PROD_QOH < 10;

At site B

i. SELECT *
FROM CUSTOMER;

j. SELECT CUS_NAME, INV_TOTAL
FROM CUSTOMER, INVOICE
WHERE INV_TOTAL > 1000

AND CUSTOMER.CUS_NUM = INVOICE.CUS_NUM;

k. SELECT *
FROM PRODUCT
WHERE PROD_QOH < 10;

C6545_12 9/24/2007 17:17:22 Page 511

511D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

2. The following data structure and constraints exist for a magazine publishing company:

a. The company publishes one regional magazine in each region: Florida (FL), South Carolina (SC), Georgia
(GA), and Tennessee (TN).

b. The company has 300,000 customers (subscribers) distributed throughout the four states listed in Part a.

c. On the first of each month, an annual subscription INVOICE is printed and sent to each customer whose
subscription is due for renewal. The INVOICE entity contains a REGION attribute to indicate the state (FL,
SC, GA, TN) in which the customer resides:

CUSTOMER (CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_CITY, CUS_ZIP, CUS_SUBSDATE)
INVOICE (INV_NUM, INV_REGION, CUS_NUM, INV_DATE, INV_TOTAL)

The company’s management is aware of the problems associated with centralized management and has
decided to decentralize management of the subscriptions into the company’s four regional subsidiaries. Each
subscription site will handle its own customer and invoice data. The management at company headquarters,
however, will have access to customer and invoice data to generate annual reports and to issue ad hoc queries
such as:

� List all current customers by region.

� List all new customers by region.

� Report all invoices by customer and by region.

Given those requirements, how must you partition the database?

3. Given the scenario and the requirements in Question 2, answer the following questions:

a. What recommendations will you make regarding the type and characteristics of the required database system?

b. What type of data fragmentation is needed for each table?

c. What criteria must be used to partition each database?

d. Design the database fragments. Show an example with node names, location, fragment names, attribute
names, and demonstration data.

e. What type of distributed database operations must be supported at each remote site?

f. What type of distributed database operations must be supported at the headquarters site?

C6545_12 8/31/2007 13:43:21 Page 512

512 C H A P T E R 1 2

Preview

Business Intelligence and Data Warehouses

In this chapter, you will learn:

� How business intelligence is a comprehensive framework to support business decision
making

� How operational data and decision support data differ

� What a data warehouse is, how to prepare data for one, and how to implement one

� What star schemas are and how they are constructed

� What data mining is and what role it plays in decision support

� About online analytical processing (OLAP)

� How SQL extensions are used to support OLAP-type data manipulations

Data are crucial raw material in this information age, and data storage and management have

become the focus of database design and implementation. Ultimately, the reason for

collecting, storing, and managing data is to generate information that becomes the basis for

rational decision making. Decision support systems (DSSs) were originally developed to

facilitate the decision-making process. However, as the complexity and range of information

requirements increased, so did the difficulty of extracting all the necessary information from

the data structures typically found in an operational database.Therefore, a new data storage

facility, called a data warehouse, was developed.The data warehouse extracts or obtains its

data from operational databases as well as from external sources, providing a more

comprehensive data pool.

In parallel with data warehouses, new ways to analyze and present decision support data

were developed. Online analytical processing (OLAP) provides advanced data analysis and

presentation tools (including multidimensional data analysis). Data mining employs advanced

statistical tools to analyze the wealth of data now available through data warehouses and

other sources and to identify possible relationships and anomalies.

Business intelligence (BI) is the collection of best practices and software tools developed to

support business decision making in this age of globalization, emerging markets, rapid change,

and increasing regulation. BI encompasses tools and techniques such as data warehouses and

OLAP, with a more comprehensive focus on integrating them from a company-wide

perspective.

This chapter explores the main concepts and components of business intelligence and

decision support systems that gather,generate, and present information for business

decision makers, focusing especially on the use of data warehouses.

13

T
H

I
R

T
E

E
N

C6545_13 10/5/2007 13:18:6 Page 513

13.1 THE NEED FOR DATA ANALYSIS

Organizations tend to grow and prosper as they gain a better understanding of their environment. Most managers want
to be able to track daily transactions to evaluate how the business is performing. By tapping into the operational
database, management can develop strategies to meet organizational goals. In addition, data analysis can provide
information about short-term tactical evaluations and strategies such as these: Are our sales promotions working? What
market percentage are we controlling? Are we attracting new customers? Tactical and strategic decisions are also
shaped by constant pressure from external and internal forces, including globalization, the cultural and legal
environment, and (perhaps most importantly) technology.

Given the many and varied competitive pressures, managers are always looking for a competitive advantage through
product development and maintenance, service, market positioning, sales promotion, and so on. Managers understand
that the business climate is dynamic, and thus, mandates their prompt reaction to change in order to remain
competitive. In addition, the modern business climate requires managers to approach increasingly complex problems
that involve a rapidly growing number of internal and external variables. It should also come as no surprise that interest
is growing in creating support systems dedicated to facilitating quick decision making in a complex environment.

Different managerial levels require different decision support needs. For example, transaction-processing systems,
based on operational databases, are tailored to serve the information needs of people who deal with short-term
inventory, accounts payable, and purchasing. Middle-level managers, general managers, vice presidents, and presi-
dents focus on strategic and tactical decision making. Those managers require detailed information designed to help
them make decisions in a complex data and analysis environment.

Companies and software vendors addressed these multilevel decision support needs by creating independent
applications to fit the needs of particular areas (finance, customer management, human resources, product support,
etc.). Applications were also tailored to different industry sectors such as education, retail, health care, or financial. This
approach worked well for some time, but changes in the business world (globalization, expanding markets, mergers
and acquisitions, increased regulation, and more) called for new ways of integrating and managing data across levels
and sectors. This more comprehensive and integrated decision support framework within organizations became known
as business intelligence.

13.2 BUSINESS INTELLIGENCE

Business intelligence (BI)1 is a term used to describe a comprehensive, cohesive, and integrated set of tools and
processes used to capture, collect, integrate, store, and analyze data with the purpose of generating and presenting
information used to support business decision making. As the names implies, BI is about creating intelligence about
a business. This intelligence is based on learning and understanding the facts about a business environment. BI is a
framework that allows a business to transform data into information, information into knowledge, and knowledge into
wisdom. BI has the potential to positively affect a company’s culture by creating “business wisdom” and distributing it
to all users in an organization. This business wisdom empowers users to make sound business decisions based on the
accumulated

1 In 1989, while working at Gartner Inc., Howard Dresner popularized “BI” as an umbrella term to describe a set of concepts and methods to
improve business decision making by using fact-based support systems. Source: http://www.computerworld.com/action/article.do?
command=viewArticleBasic&articleId=266298

C6545_13 10/5/2007 13:18:49 Page 514

514 C H A P T E R 1 3

knowledge of the business as reflected on recorded facts (historic operational data). Table 13.1 gives some real-world
examples of companies that have implemented BI tools (data warehouse, data mart, OLAP, and/or data mining tools)
and shows how the use of such tools benefited the companies.

TABLE
13.1

Solving Business Problems and Adding Value with BI Tools

COMPANY PROBLEM BENEFIT
MOEN
Manufacturer of bathroom
and kitchen fixtures and
supplies
Source: Cognos Corp.
www.cognos.com

• Information generation very lim-
ited and time-consuming.

• How to extract data using a 3GL
known by only five people.

• Response time unacceptable for
managers' decision-making
purposes.

• Provided quick answers to ad hoc
questions for decision making.

• Provided access to data for
decision-making purposes.

• Received in-depth view of product
performance and customer
margins.

NASDAQ
Largest U.S. electronic stock
market trading organization
Source: Oracle
www.oracle.com

• Inability to provide real-time ad
hoc query and standard reporting
to executives, business analysts,
and other users.

• Excessive storage costs for many
terabytes of data.

• Reduced storage cost by moving to
a multitier storage solution.

• Implemented new data warehouse
center with support for ad hoc
query and reporting and near real-
time data access for end users.

Sega of America, Inc.
Interactive entertainment
systems and video games
Source: Oracle Corp.
www.oracle.com

• Needed a way to rapidly analyze a
great amount of data.

• Needed to track advertising, cou-
pons, and rebates associated with
effects of pricing changes.

• Used to do it with Excel spread-
sheets, leading to human-caused
errors.

• Eliminated data-entry errors.
• Identified successful marketing

strategies to dominate interactive
entertainment niches.

• Used product analysis to identify
better markets/product offerings.

Owens and Minor, Inc.
Medical and surgical supply
distributor
Source: CFO Magazine
www.cfomagazine.com

• Lost its largest customer, which
represented 10% of its annual rev-
enue ($360 million).

• Stock plunged 23%.
• Cumbersome process to get infor-

mation out of antiquated main-
frame system.

• Increased earnings per share in just
five months.

• Gained more business, thanks to
opening the data warehouse to
its clients.

• Managers gained quick access to
data for decision-making purposes.

Amazon.com
Leading online retailer
Source: PC Week Online
whitepapers.zdnet.com/
whitepaper.aspx?
docid=241748

• Difficulty in managing a very rap-
idly growing data environment.

• Existing data warehouse solution
not capable of supporting
extremely rapid growth.

• Needed more flexible and reliable
data warehouse solution to protect
its investment in data and
infrastructure.

• Implemented new data warehouse
with superior scalability and
performance.

• Improved business intelligence.
• Improved management of product

flow through the entire
supply chain.

• Improved customer experience.

BI is a comprehensive endeavor because it encompasses all business processes within an organization. Business
processes are the central units of operation in a business. Implementing BI in an organization involves capturing not
only business data (internal and external) but also the metadata, or knowledge about the data. In practice, BI is a
complex proposition that requires a deep understanding and alignment of the business processes, the internal and
external data, and the information needs of users at all levels in an organization.

C6545_13 10/5/2007 13:20:31 Page 515

515B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

BI is not a product by itself, but a framework of concepts, practices, tools, and technologies that help a business better
understand its core capabilities, provide snapshots of the company situation, and identify key opportunities to create
competitive advantage. In practice, BI provides a well-orchestrated framework for the management of data that works
across all levels of the organization. BI involves the following general steps:

1. Collecting and storing operational data

2. Aggregating the operational data into decision support data

3. Analyzing decision support data to generate information

4. Presenting such information to the end user to support business decisions

5. Making business decisions, which in turn generate more data that is collected, stored, etc. (restarting the
process)

6. Monitoring results to evaluate outcomes of the business decisions (providing more data to be collected, stored, etc.)

To implement all these steps, BI uses varied components and technologies. In the following sections, you will learn
about the basic BI architecture and implementations.

13.3 BUSINESS INTELLIGENCE ARCHITECTURE

BI covers a range of technologies and applications to manage the entire data life cycle from acquisition to storage,
transformation, integration, analysis, monitoring, presentation, and archiving. BI functionality ranges from simple data
gathering and extraction to very complex data analysis and presentation applications. There is no single BI
architecture; instead, it ranges from highly integrated applications from a single vendor to a loosely integrated,
multivendor environment. However, there are some general types of functionality that all BI implementations share.

Like any critical business IT infrastructure, the BI architecture is composed of data, people, processes, technology, and
the management of such components. Figure 13.1 depicts how all those components fit together within the BI
framework.

Remember that the main focus of BI is to gather, integrate, and store business data for the purpose of creating
information. As depicted in Figure 13.1, BI integrates people and processes using technology in order to add value to
the business. Such value is derived from how end users use such information in their daily activities, and in particular,
their daily business decision making. Also note that the BI technology components are varied. This chapter will explain
those components in greater detail in the following sections.

The focus of traditional information systems was on operational automation and reporting; in contrast, BI tools focus
on the strategic and tactical use of information. In order to achieve this goal, BI recognizes that technology alone is
not enough. Therefore, BI uses an arrangement of best management practices to manage data as a corporate asset.
One of the most recent developments in this area is the use of master data management techniques. Master data
management (MDM) is a collection of concepts, techniques, and processes for the proper identification, definition,
and management of data elements within an organization. MDM’s main goal is to provide a comprehensive and
consistent definition of all data within an organization. MDM ensures that all company resources (people, procedures,
and IT systems) that operate over data have uniform and consistent views of the company’s data.

C6545_13 10/5/2007 13:20:59 Page 516

516 C H A P T E R 1 3

An added benefit of this meticulous approach to data management and decision making is that it provides a framework
for business governance. Governance is a method or process of government. In this case, BI provides a method for
controlling and monitoring business health and for consistent decision making. Furthermore, having such governance
creates accountability for business decisions. In the present age of business flux, accountability is increasingly
important. Had governance been as pivotal to business operations a few years back, crises precipitated by the likes of
Enron, WorldCom, and Arthur Andersen might have been avoided.

Monitoring a business’s health is crucial to understanding where the company is and where it is headed. In order to
do this, BI makes extensive use of a special type of metrics known as key performance indicators. Key performance
indicators (KPI) are quantifiable measurements (numeric or scale based) that assess the company’s effectiveness or
success in reaching its strategic and operational goals. There are many different KPI used by different industries. Some
examples of KPI are:

� General. Year-to-year measurements of profit by line of business, same store sales, product turnovers, product
recalls, sales by promotion, sales by employee, etc.

� Finance. Earnings per share, profit margin, revenue per employee, percentage of sales to account receivables,
assets to sales, etc.

� Human resources. Applicants to job openings, employee turnover, employee longevity, etc.

� Education. Graduation rates, number of incoming freshmen, student retention rates, etc.

FIGURE
13.1

Business intelligence framework

Business Intelligence Technologies

Processes

Management Governance

Data visualization

Query
tool

Reporting
tool

Data
mining

OLAP

People

Extraction,
Transformation,

Loading

Operational
data

Data
warehouse

Data mart

C6545_13 9/24/2007 15:9:58 Page 517

517B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

KPIs are determined after the main strategic, tactical, and operational goals for a business are defined. To tie the KPI
to the strategic master plan of an organization, a KPI will be compared to a desired goal within a specific time frame.
For example, if you are in an academic environment, you might be interested in ways to measure student satisfaction
or retention. In this case, a sample goal would be to “Increase the graduating senior average exit exam grades from
9 to 12 by fall, 2010.” Another sample KPI would be: “Increase the returning student rate of freshman year to
sophomore year from 60% to 75% by 2012.” In this case, such performance indicators would be measured and
monitored on a year-to-year basis, and plans to achieve such goals would be set in place.

Another way to understand BI architecture is by describing the basic components that form part of its infrastructure.
Some of the components have overlapping functionality; however, there are four basic components that all BI
environments should provide. These are described in Table 13.2 and illustrated in Figure 13.2.

TABLE
13.2

Basic BI Architectural Components

COMPONENT DESCRIPTION
Data extraction, trans-
formation, and loading
(ETL) tools

This component is in charge of collecting, filtering, integrating, and aggregating opera-
tional data to be saved into a data store optimized for decision support. For example, to
determine the relative market share by selected product lines, you require data from
competitors' products. Such data can be located in external databases provided by indus-
try groups or by companies that market the data. As the name implies, this component
extracts the data, filters the extracted data to select the relevant records, and packages the
data in the right format to be added to the data store component.

Data store The data store is optimized for decision support and is generally represented by a data
warehouse or a data mart. The data store contains business data extracted from the
operational database and from external data sources. The business data are stored in
structures that are optimized for data analysis and query speed. The external data sources
provide data that cannot be found within the company but that are relevant to the busi-
ness, such as stock prices, market indicators, marketing information (such as demograph-
ics), and competitors' data.

Data query and
analysis tools

This component performs data retrieval, data analysis, and data mining tasks using the data in
the data store and business data analysis models. This component is used by the data analyst
to create the queries that access the database. Depending on the implementation, the query
tool accesses either the operational database, or more commonly, the data store. This tool
advises the user on which data to select and how to build a reliable business data model.
This component is generally represented in the form of an OLAP tool.

Data presentation and
visualization tools

This component is in charge of presenting the data to the end user in a variety of ways. This
component is used by the data analyst to organize and present the data. This tool helps the
end user select the most appropriate presentation format, such as summary report, map, pie
or bar graph, or mixed graphs. The query tool and the presentation tool are the front end to
the BI environment.

C6545_13 10/22/2007 14:44:34 Page 518

518 C H A P T E R 1 3

Each BI component shown in Table 13.2 has generated a fast-growing market for specialized tools. And thanks to the
advancement of client/server technologies, those components can interact with other components to form a truly
open architecture. As a matter of fact, you can integrate multiple tools from different vendors into a single BI
framework. Table 13.3 shows a sample of common BI tools and vendors.

TABLE
13.3

Sample of Business Intelligence Tools

TOOL DESCRIPTION SAMPLE VENDORS
Decision support
systems

A decision support system (DSS) is an arrangement of com-
puterized tools used to assist managerial decision making
within a business. Decision support systems were the precur-
sors of modern BI systems. A DSS typically has a much nar-
rower focus and reach than a BI solution.

SAP
Teradata
IBM
Proclarity

Dashboards and
business activity
monitoring

Dashboards use Web-based technologies to present key busi-
ness performance indicators or information in a single inte-
grated view, generally using graphics in a clear, concise, and
easy to understand manner.

Salesforce
VisualCalc
Cognos
BusinessObjects
Information Builders
Actuate

Portals Portals provide a unified, single point of entry for information
distribution. Portals are a Web-based technology that uses a
Web browser to integrate data from multiple sources into a
single Web page. Many different types of BI functionality can
be accessed through a portal.

Oracle Portal
Actuate
Microsoft

FIGURE
13.2

Business intelligence components

End-user
query tool

Data extraction,
transformation,

and loading

Data store

End-user presentation and
data visualization tool

External data

Operational data
25,000
20,000
15,000
10,000
 5,000
 0

Sales Expenses Profits
14,000 9,500 4,500

17,000 11,000 6,000

21,000 14,000 7,000

Decision support
data

Business data
analysis models

C6545_13 10/5/2007 13:29:50 Page 519

519B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

TABLE
13.3

Sample of Business Intelligence Tools (continued)

TOOL DESCRIPTION SAMPLE VENDORS
Data analysis and
reporting tools

Advanced tools used to query multiple diverse data sources to
create single integrated reports.

Mircrosoft Reporting
Services
Information Builders
Eclipse BIRT
MicroStrategy
SAS WebReportStudio

Data mining tools Tools that provide advanced statistical analysis to uncover
problems and opportunities hidden within business data.

MicroStrategy Intelligence
Server
MS Analytics Services

Data warehouses The data warehouse is the foundation on which a BI infra-
structure is built. Data is captured from the OLTP system and
placed on the DW on near-real time basis. BI provides com-
panywide integration of data and the capability to respond to
business issues in a timely manner.

Microsoft
Oracle
IBM
MicroStrategy

OLAP tools Online analytical processing provides multidimensional data
analysis.

Cognos
BusinessObjects
Oracle
Microsoft

Data visualization Tools that provide advanced visual analysis and techniques to
enhance understanding of business data.

Advanced Visual Systems
Dundas
iDashboards

Although BI has an unquestionably important role in modern business operations, keep in mind that the manager must
initiate the decision support process by asking the appropriate questions. The BI environment exists to support the
manager; it does not replace the management function. If the manager fails to ask the appropriate questions, problems
will not be identified and solved, and opportunities will be missed. In spite of the very powerful BI presence, the human
component is still at the center of business technology.

13.4 DECISION SUPPORT DATA

Although BI is used at strategic and tactical managerial levels within organizations, its effectiveness depends on the
quality of data gathered at the operational level. Yet operational data are seldom well suited to the decision support
tasks. The differences between operational data and decision support data are examined in the next section.

13.4.1 Operational Data vs. Decision Support Data

Operational data and decision support data serve different purposes. Therefore, it is not surprising to learn that their
formats and structures differ.

Most operational data are stored in a relational database in which the structures (tables) tend to be highly normalized.
Operational data storage is optimized to support transactions that represent daily operations. For example, each time
an item is sold, it must be accounted for. Customer data, inventory data, and so on, are in a frequent update mode.
To provide effective update performance, operational systems store data in many tables, each with a minimum number
of fields. Thus, a simple sales transaction might be represented by five or more different tables (for example, invoice,

Note

Although the term BI includes a variety of components and tools, this chapter focuses on its data warehouse
component.

C6545_13 9/24/2007 15:9:59 Page 520

520 C H A P T E R 1 3

invoice line, discount, store, and department). Although such an arrangement is excellent in an operational database,
it is not efficient for query processing. For example, to extract a simple invoice, you would have to join several tables.
Whereas operational data are useful for capturing daily business transactions, decision support data give tactical and
strategic business meaning to the operational data. From the data analyst’s point of view, decision support data differ
from operational data in three main areas: time span, granularity, and dimensionality.

� Time span. Operational data cover a short time frame. In contrast, decision support data tend to cover a longer
time frame. Managers are seldom interested in a specific sales invoice to customer X; rather, they tend to focus
on sales generated during the last month, the last year, or the last five years.

� Granularity (level of aggregation). Decision support data must be presented at different levels of aggregation,
from highly summarized to near-atomic. For example, if managers must analyze sales by region, they must be
able to access data showing the sales by region, by city within the region, by store within the city within the
region, and so on. In that case, summarized data to compare the regions is required, but also data in a structure
that enables a manager to drill down, or decompose, the data into more atomic components (that is,
finer-grained data at lower levels of aggregation). In contrast, when you roll up the data, you are aggregating
the data to a higher level.

� Dimensionality. Operational data focus on representing individual transactions rather than on the effects of
the transactions over time. In contrast, data analysts tend to include many data dimensions and are interested
in how the data relate over those dimensions. For example, an analyst might want to know how product X
fared relative to product Z during the past six months by region, state, city, store, and customer. In that case,
both place and time are part of the picture.

Figure 13.3 shows how decision support data can be examined from multiple dimensions (such as product, region, and
year), using a variety of filters to produce each dimension. The ability to analyze, extract, and present information in
meaningful ways is one of the differences between decision support data and transaction-at-a-time operational data.

From the designer’s point of view, the differences between operational and decision support data are as follows:

� Operational data represent transactions as they happen in real time. Decision support data are a snapshot of
the operational data at a given point in time. Therefore, decision support data are historic, representing a time
slice of the operational data.

� Operational and decision support data are different in terms of transaction type and transaction volume. Whereas
operational data are characterized by update transactions, decision support data are mainly characterized by
query (read-only) transactions. Decision support data also require periodic updates to load new data that are
summarized from the operational data. Finally, the concurrent transaction volume in operational data tends to
be very high when compared with the low-to-medium levels found in decision support data.

� Operational data are commonly stored in many tables, and the stored data represent the information about a
given transaction only. Decision support data are generally stored in a few tables that store data derived from
the operational data. The decision support data do not include the details of each operational transaction.
Instead, decision support data represent transaction summaries; therefore, the decision support database
stores data that are integrated, aggregated, and summarized for decision support purposes.

� The degree to which decision support data are summarized is very high when contrasted with operational data.
Therefore, you will see a great deal of derived data in decision support databases. For example, rather than
storing all 10,000 sales transactions for a given store on a given day, the decision support database might
simply store the total number of units sold and the total sales dollars generated during that day. Decision
support data might be collected to monitor such aggregates as total sales for each store or for each product.
The purpose of the summaries is simple: they are to be used to establish and evaluate sales trends, product
sales comparisons, and so on, that serve decision needs. (How well are items selling? Should this product be
discontinued? Has the advertising been effective as measured by increased sales?)

� The data models that govern operational data and decision support data are different. The operational
database’s frequent and rapid data updates make data anomalies a potentially devastating problem. Therefore,

C6545_13 10/16/2007 9:48:41 Page 521

521B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

the data requirements in a typical relational transaction (operational) system generally require normalized
structures that yield many tables, each of which contains the minimum number of attributes. In contrast, the
decision support database is not subject to such transaction updates, and the focus is on querying capability.
Therefore, decision support databases tend to be non-normalized and include few tables, each of which
contains a large number of attributes.

� Query activity (frequency and complexity) in the operational database tends to be low to allow additional
processing cycles for the more crucial update transactions. Therefore, queries against operational data typically
are narrow in scope, low in complexity, and speed-critical. In contrast, decision support data exist for the sole
purpose of serving query requirements. Queries against decision support data typically are broad in scope, high
in complexity, and less speed-critical.

� Finally, decision support data are characterized by very large amounts of data. The large data volume is the result
of two factors. First, data are stored in non-normalized structures that are likely to display many data redundancies
and duplications. Second, the same data can be categorized in many different ways to represent different
snapshots. For example, sales data might be stored in relation to product, store, customer, region, and manager.

FIGURE
13.3

Transforming operational data into decision support data

Operational Data Decision Support Data

Operational data have a narrow time span, low
granularity, and single focus. Such data are usually
presented in tabular format, in which each row
represents a single transaction. This format often
makes it difficult to derive useful information.

Decision support system (DSS) data focus on a broader
time span, tend to have high levels of granularity, and can be
examined in multiple dimensions. For example, note these
possible aggregations:

• Sales by product, region, agent, etc.
• Sales for all years or only a few selected years.
• Sales for all products or only a few selected products.

Sales

Region

Time

Product

Agent

O n l i n e C o n t e n t

The operational data in Figure 13.3 are found in the Student Online Companion for this book. The decision
support data in Figure 13.3 shows the output for the solution to Problem 2 at the end of this chapter.

C6545_13 10/5/2007 13:36:39 Page 522

522 C H A P T E R 1 3

Table 13.4 summarizes the differences between operational and decision support data from the database designer’s
point of view.

TABLE
13.4

Contrasting Operational and Decision Support Data Characteristics

CHARACTERISTIC OPERATIONAL DATA DECISION SUPPORT DATA
Data currency Current operations

Real-time data
Historic data
Snapshot of company data
Time component (week/month/year)

Granularity Atomic-detailed data Summarized data
Summarization level Low; some aggregate yields High; many aggregation levels
Data model Highly normalized

Mostly relational DBMS
Non-normalized
Complex structures
Some relational, but mostly multidimensional DBMS

Transaction type Mostly updates Mostly query
Transaction volumes High update volumes Periodic loads and summary calculations
Transaction speed Updates are critical Retrievals are critical
Query activity Low to medium High
Query scope Narrow range Broad range
Query complexity Simple to medium Very complex
Data volumes Hundreds of megabytes, up to

gigabytes
Hundreds of gigabytes, up to terabytes

The many differences between operational data and decision support data are good indicators of the requirements of
the decision support database, described in the next section.

13.4.2 Decision Support Database Requirements

A decision support database is a specialized DBMS tailored to provide fast answers to complex queries. There are four
main requirements for a decision support database: the database schema, data extraction and loading, the end-user
analytical interface, and database size.

Database Schema
The decision support database schema must support com-
plex (non-normalized) data representations. As noted earlier,
the decision support database must contain data that are
aggregated and summarized. In addition to meeting those
requirements, the queries must be able to extract multidimen-
sional time slices. If you are using an RDBMS, the conditions
suggest using non-normalized and even duplicated data. To
see why this must be true, take a look at the 10-year sales
history for a single store containing a single department. At
this point, the data are fully normalized within the single
table, as shown in Table 13.5.

This structure works well when you have only one store with
only one department. However, it is very unlikely that such a
simple environment has much need for a decision support

database. One would suppose that a decision support database becomes a factor when dealing with more than one
store, each of which has more than one department. To support all of the decision support requirements, the database
must contain data for all of the stores and all of their departments—and the database must be able to support

TABLE
13.5

Ten-Year Sales History for a Single-
Department, in Millions of Dollars

YEAR SALES
1998 8,227
1999 9,109
2000 10,104
2001 11,553
2002 10,018
2003 11,875
2004 12,699
2005 14,875
2006 16,301
2007 19,986

C6545_13 9/24/2007 15:10:0 Page 523

523B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

multidimensional queries that track sales by stores, by departments, and over time. For simplicity, suppose there are
only two stores (A and B) and two departments (1 and 2) within each store. Let’s also change the time dimension to
include yearly data. Table 13.6 shows the sales figures under the specified conditions. Only 1998, 2002, and 2007
are shown; ellipses (...) are used to indicate that data values were omitted. You can see in Table 13.6 that the number
of rows and attributes already multiplies quickly and that the table exhibits multiple redundancies.

TABLE
13.6

Yearly Sales Summaries, Two Stores and Two Departments per Store,
in Millions of Dollars

YEAR STORE DEPARTMENT SALES
1998 A 1 1,985
1998 A 2 2,401
1998 B 1 1,879
1998 B 2 1,962
� � � �

2002 A 1 3,912
2002 A 2 4,158
2002 B 1 3,426
2002 B 2 1,203
� � � �

2007 A 1 7,683
2007 A 2 6,912
2007 B 1 3,768
2007 B 2 1,623

Now suppose that the company has 10 departments per store and 20 stores nationwide. And suppose you want to
access yearly sales summaries. Now you are dealing with 200 rows and 12 monthly sales attributes per row. (Actually,
there are 13 attributes per row if you add each store’s sales total for each year.)

The decision support database schema must also be optimized for query (read-only) retrievals. To optimize query speed,
the DBMS must support features such as bitmap indexes and data partitioning to increase search speed. In addition,
the DBMS query optimizer must be enhanced to support the non-normalized and complex structures found in decision
support databases.

Data Extraction and Filtering
The decision support database is created largely by extracting data from the operational database and by importing
additional data from external sources. Thus, the DBMS must support advanced data extraction and data filtering tools.
To minimize the impact on the operational database, the data extraction capabilities should allow batch and scheduled
data extraction. The data extraction capabilities should also support different data sources: flat files and hierarchical,
network, and relational databases, as well as multiple vendors. Data filtering capabilities must include the ability to
check for inconsistent data or data validation rules. Finally, to filter and integrate the operational data into the decision
support database, the DBMS must support advanced data integration, aggregation, and classification.

Using data from multiple external sources also usually means having to solve data-formatting conflicts. For example,
data such as Social Security numbers and dates can occur in different formats; measurements can be based on different
scales, and the same data elements can have different names. In short, data must be filtered and purified to ensure that
only the pertinent decision support data are stored in the database and that they are stored in a standard format.

C6545_13 9/24/2007 15:10:1 Page 524

524 C H A P T E R 1 3

End-User Analytical Interface
The decision support DBMS must support advanced data modeling and data presentation tools. Using those tools
makes it easy for data analysts to define the nature and extent of business problems. Once the problems have been
defined, the decision support DBMS must generate the necessary queries to retrieve the appropriate data from the
decision support database. If necessary, the query results may then be evaluated with data analysis tools supported by
the decision support DBMS. Because queries yield crucial information for decision makers, the queries must be
optimized for speedy processing. The end-user analytical interface is one of the most critical DBMS components.
When properly implemented, an analytical interface permits the user to navigate through the data to simplify and
accelerate the decision-making process.

Database Size
Decision support databases tend to be very large; gigabyte and terabyte ranges are not unusual. For example, in 2005,
Wal-Mart, the world’s largest company, had 260 terabytes of data in its data warehouses. As mentioned earlier, the
decision support database typically contains redundant and duplicated data to improve data retrieval and simplify
information generation. Therefore, the DBMS must be capable of supporting very large databases (VLDBs). To
support a VLDB adequately, the DBMS might be required to use advanced hardware, such as multiple disk arrays, and
even more importantly, to support multiple-processor technologies, such as a symmetric multiprocessor (SMP) or a
massively parallel processor (MPP).

The complex information requirements and the ever-growing demand for sophisticated data analysis sparked the
creation of a new type of data repository. This repository contains data in formats that facilitate data extraction, data
analysis, and decision making. This data repository is known as a data warehouse and has become the foundation for
a new generation of decision support systems.

13.5 THE DATA WAREHOUSE

Bill Inmon, the acknowledged “father” of the data warehouse, defines the term as “an integrated, subject-oriented,
time-variant, nonvolatile collection of data (italics added for emphasis) that provides support for decision making.”2

To understand that definition, let’s take a more detailed look at its components.

� Integrated. The data warehouse is a centralized, consolidated database that integrates data derived from the
entire organization and from multiple sources with diverse formats. Data integration implies that all business
entities, data elements, data characteristics, and business metrics are described in the same way throughout
the enterprise. Although this requirement sounds logical, you would be amazed to discover how many different
measurements for “sales performance” can exist within an organization; the same scenario holds true for any
other business element. For instance, the status of an order might be indicated with text labels such as “open,”
“received,” “cancelled,” and “closed” in one department and as “1,” “2,” “3,” and “4” in another department.
A student’s status might be defined as “freshman,” “sophomore,” “junior,” or “senior” in the accounting
department and as “FR,” “SO,” “JR,” or “SR” in the computer information systems department. To avoid the
potential format tangle, the data in the data warehouse must conform to a common format acceptable
throughout the organization. This integration can be time-consuming, but once accomplished, it enhances
decision making and helps managers better understand the company’s operations. This understanding can be
translated into recognition of strategic business opportunities.

� Subject-oriented. Data warehouse data are arranged and optimized to provide answers to questions coming
from diverse functional areas within a company. Data warehouse data are organized and summarized by topic,
such as sales, marketing, finance, distribution, and transportation. For each topic, the data warehouse contains

2 Inmon, Bill and Chuck Kelley. “The Twelve Rules of Data Warehouse for a Client/Server World,” Data Management Review, 4(5), May 1994,
pp. 6−16.

C6545_13 9/24/2007 15:10:1 Page 525

525B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

specific subjects of interest—products, customers, departments, regions, promotions, and so on. This form of
data organization is quite different from the more functional or process-oriented organization of typical
transaction systems. For example, an invoicing system designer concentrates on designing normalized data
structures (relational tables) to support the business process by storing invoice components in two tables:
INVOICE and INVLINE. In contrast, the data warehouse has a subject orientation. Data warehouse designers
focus specifically on the data rather than on the processes that modify the data. (After all, data warehouse data
are not subject to numerous real-time data updates!) Therefore, instead of storing an invoice, the data
warehouse stores its “sales by product” and “sales by customer” components because decision support
activities require the retrieval of sales summaries by product or customer.

� Time-variant. In contrast to operational data, which focus on current transactions, warehouse data represent
the flow of data through time. The data warehouse can even contain projected data generated through
statistical and other models. It is also time-variant in the sense that once data are periodically uploaded to the
data warehouse, all time-dependent aggregations are recomputed. For example, when data for previous weekly
sales are uploaded to the data warehouse, the weekly, monthly, yearly, and other time-dependent aggregates
for products, customers, stores, and other variables are also updated. Because data in a data warehouse
constitute a snapshot of the company history as measured by its variables, the time component is crucial. The
data warehouse contains a time ID that is used to generate summaries and aggregations by week, month,
quarter, year, and so on. Once the data enter the data warehouse, the time ID assigned to the data cannot be
changed.

� Nonvolatile. Once data enter the data warehouse, they are never removed. Because the data in the warehouse
represent the company’s history, the operational data, representing the near-term history, are always added to
it. Because data are never deleted and new data are continually added, the data warehouse is always growing.
That’s why the DBMS must be able to support multigigabyte and even multiterabyte databases, operating on
multiprocessor hardware. Table 13.7 summarizes the differences between data warehouses and operational
databases.

TABLE
13.7

Characteristics of Data Warehouse Data and Operational Database Data

CHARACTERISTIC OPERATIONAL DATABASE DATA DATA WAREHOUSE DATA
Integrated Similar data can have different representa-

tions or meanings. For example, Social Secu-
rity numbers may be stored as ###-##-
or as #########, and a given
condition may be labeled as T/F or 0/1 or
Y/N. A sales value may be shown in thou-
sands or in millions.

Provide a unified view of all data elements
with a common definition and representa-
tion for all business units.

Subject-oriented Data are stored with a functional, or process,
orientation. For example, data may be stored
for invoices, payments, and credit amounts.

Data are stored with a subject orientation
that facilitates multiple views of the data
and facilitates decision making. For
example, sales may be recorded by prod-
uct, by division, by manager, or by region.

Time-variant Data are recorded as current transactions.
For example, the sales data may be the sale
of a product on a given date, such as
$342.78 on 12-MAY-2008.

Data are recorded with a historical perspec-
tive in mind. Therefore, a time dimension is
added to facilitate data analysis and various
time comparisons.

Nonvolatile Data updates are frequent and common. For
example, an inventory amount changes with
each sale. Therefore, the data environment
is fluid.

Data cannot be changed. Data are added
only periodically from historical systems.
Once the data are properly stored, no
changes are allowed. Therefore, the data
environment is relatively static.

C6545_13 9/24/2007 15:12:22 Page 526

526 C H A P T E R 1 3

In summary, the data warehouse is usually a read-only database optimized for data analysis and query processing.
Typically, data are extracted from various sources and are then transformed and integrated—in other words, passed
through a data filter—before being loaded into the data warehouse. Users access the data warehouse via front-end tools
and/or end-user application software to extract the data in usable form. Figure 13.4 illustrates how a data warehouse
is created from the data contained in an operational database.

Although the centralized and integrated data warehouse can be a very attractive proposition that yields many benefits,
managers may be reluctant to embrace this strategy. Creating a data warehouse requires time, money, and considerable
managerial effort. Therefore, it is not surprising that many companies begin their foray into data warehousing by focusing
on more manageable data sets that are targeted to meet the special needs of small groups within the organization. These
smaller data stores are called data marts. A data mart is a small, single-subject data warehouse subset that provides
decision support to a small group of people. In addition, a data mart could also be created from data extracted from
a larger data warehouse with the specific function to support faster data access to a target group or function. That is,
data marts and data warehouses can coexist within a business intelligence environment.

Some organizations choose to implement data marts not only because of the lower cost and shorter implementation
time, but also because of the current technological advances and inevitable “people issues” that make data marts
attractive. Powerful computers can provide a customized decision support system to small groups in ways that might
not be possible with a centralized system. Also, a company’s culture may predispose its employees to resist major
changes, but they might quickly embrace relatively minor changes that lead to demonstrably improved decision
support. In addition, people at different organizational levels are likely to require data with different summarization,
aggregation, and presentation formats. Data marts can serve as a test vehicle for companies exploring the potential
benefits of data warehouses. By migrating gradually from data marts to data warehouses, a specific department’s
decision support needs can be addressed within a reasonable time frame (six months to one year), as compared to the

Data extraction
Data warehouse

Operational data

• Extract

• Filter

• Transform

• Integrate

• Classify

• Aggregate

• Summarize

• Integrated

• Subject-oriented

• Time-variant

• Nonvolatile

FIGURE
13.4

Creating a data warehouse

C6545_13 9/24/2007 15:13:9 Page 527

527B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

longer time frame usually required to implement a data warehouse (one to three years). Information technology (IT)
departments also benefit from this approach because their personnel have the opportunity to learn the issues and
develop the skills required to create a data warehouse.

The only difference between a data mart and a data warehouse is the size and scope of the problem being solved.
Therefore, the problem definitions and data requirements are essentially the same for both. To be useful, the data
warehouse must conform to uniform structures and formats to avoid data conflicts and to support decision making. In
fact, before a decision support database can be considered a true data warehouse, it must conform to the rules
described in the next section.

13.5.1 Twelve Rules that Define a Data Warehouse

In 1994, William H. Inmon and Chuck Kelley created 12 rules defining a data warehouse, which summarize many of
the points made in this chapter about data warehouses.3

1. The data warehouse and operational environments are separated.

2. The data warehouse data are integrated.

3. The data warehouse contains historical data over a long time.

4. The data warehouse data are snapshot data captured at a given point in time.

5. The data warehouse data are subject oriented.

6. The data warehouse data are mainly read-only with periodic batch updates from operational data. No online
updates are allowed.

7. The data warehouse development life cycle differs from classical systems development. The data warehouse
development is data-driven; the classical approach is process-driven.

8. The data warehouse contains data with several levels of detail: current detail data, old detail data, lightly
summarized data, and highly summarized data.

9. The data warehouse environment is characterized by read-only transactions to very large data sets. The
operational environment is characterized by numerous update transactions to a few data entities at a time.

10. The data warehouse environment has a system that traces data sources, transformations, and storage.

11. The data warehouse’s metadata are a critical component of this environment. The metadata identify and define
all data elements. The metadata provide the source, transformation, integration, storage, usage, relationships,
and history of each data element.

12. The data warehouse contains a chargeback mechanism for resource usage that enforces optimal use of the data
by end users.

Note how those 12 rules capture the complete data warehouse life cycle—from its introduction as an entity separate
from the operational data store to its components, functionality, and management processes. The next section
illustrates the historical progression of decision support architectural styles. This discussion will help you understand
how the data store components evolved to produce the data warehouse.

13.5.2 Decision Support Architectural Styles

Several decision support database architectural styles are available. These architectures provide advanced decision
support features, and some are capable of providing access to multidimensional data analysis. Table 13.8 summarizes
the main architectural styles that you are likely to encounter in the decision support database environment.

3 Inmon, Bill and Chuck Kelley. “The Twelve Rules of Data Warehouse for a Client/Server World,” Data Management Review, 4 (5), May 1994,
pp. 6−16.

C6545_13 10/16/2007 13:52:36 Page 528

528 C H A P T E R 1 3

TA
BL

E
13

.8
D

ec
is

io
n

Su
pp

or
t

Ar
ch

ite
ct

ur
al

St
yl

es

SY
ST

EM
TY

PE
SO

U
RC

E
D

AT
A

D
AT

A
EX

TR
AC

TI
O

N
/

IN
TE

G
RA

TI
O

N
PR

O
C

ES
S

D
EC

IS
IO

N
SU

PP
O

RT
D

AT
A

ST
O

RE
EN

D
-U

SE
R

Q
U

ER
Y

TO
O

L
EN

D
U

SE
R

PR
ES

EN
TA

TI
O

N
TO

O
L

Tr
ad

iti
on

al
m

ai
nf

ra
m

e-
ba

se
d

on
lin

e
tra

ns
ac

-
tio

n
pr

oc
es

sin
g

(O
LT

P)

O
pe

ra
tio

na
ld

at
a

N
on

e
Re

po
rts

,r
ea

ds
,a

nd
su

m
m

a-
riz

es
da

ta
di

re
ct

ly
fro

m
op

er
at

io
na

ld
at

a

N
on

e
Te

m
po

ra
ry

fil
es

us
ed

fo
r

re
po

rti
ng

pu
rp

os
es

Ve
ry

ba
sic

Pr
ed

ef
in

ed
re

po
rti

ng
fo

rm
at

s
Ba

sic
so

rti
ng

,t
ot

al
in

g,
an

d
av

er
ag

in
g

Ve
ry

ba
sic

M
en

u-
dr

iv
en

,p
re

de
fin

ed
re

po
rts

,t
ex

ta
nd

nu
m

be
rs

on
ly

M
an

ag
er

ia
li

nf
or

m
a-

tio
n

sy
st

em
(M

IS
)w

ith
th

ird
-g

en
er

at
io

n
la

n-
gu

ag
e

(3
G

L)

O
pe

ra
tio

na
ld

at
a

Ba
sic

ex
tra

ct
io

n
an

d
ag

gr
eg

at
io

n
Re

ad
s,

fil
te

rs
,a

nd
su

m
m

a-
riz

es
op

er
at

io
na

ld
at

a
in

to
in

te
rm

ed
ia

te
da

ta
st

or
e

Li
gh

tly
ag

gr
eg

at
ed

da
ta

in
RD

BM
S

Sa
m

e
as

ab
ov

e,
in

ad
di

-
tio

n
to

so
m

e
ad

ho
c

re
po

rti
ng

us
in

g
SQ

L

Sa
m

e
as

ab
ov

e,
in

ad
di

tio
n

to
so

m
e

ad
ho

c
co

lu
m

na
r

re
po

rt
de

fin
iti

on
s

Fi
rs

t-
ge

ne
ra

tio
n

de
pa

rtm
en

ta
lD

SS
O

pe
ra

tio
na

ld
at

a
D

at
a

ex
tra

ct
io

n
an

d
in

te
gr

a-
tio

n
pr

oc
es

s
to

po
pu

la
te

a
D

SS
da

ta
st

or
e;

is
ru

n
pe

rio
di

ca
lly

Fi
rs

tD
SS

da
ta

ba
se

ge
ne

ra
tio

n
U

su
al

ly
RD

BM
S

Q
ue

ry
to

ol
w

ith
so

m
e

an
al

yt
ic

al
ca

pa
bi

lit
ie

s
an

d
pr

ed
ef

in
ed

re
po

rts

Ad
va

nc
ed

pr
es

en
ta

tio
n

to
ol

s
w

ith
pl

ot
tin

g
an

d
gr

ap
hi

cs
ca

pa
bi

lit
ie

s

Fi
rs

t-
ge

ne
ra

tio
n

en
te

r-
pr

ise
da

ta
w

ar
eh

ou
se

us
in

g
RD

BM
S

O
pe

ra
tio

na
ld

at
a

Ex
te

rn
al

da
ta

(c
en

su
s

da
ta

)

Ad
va

nc
ed

da
ta

ex
tra

ct
io

n
an

d
in

te
gr

at
io

n
to

ol
s

Fe
at

ur
es

in
cl

ud
e

ac
ce

ss
to

di
ve

rs
e

da
ta

so
ur

ce
s,

tra
ns

-
fo

rm
at

io
ns

,f
ilt

er
s,

ag
gr

eg
a-

tio
ns

,c
la

ss
ifi

ca
tio

ns
,

sc
he

du
lin

g,
an

d
co

nf
lic

t
re

so
lu

tio
n

D
at

a
w

ar
eh

ou
se

in
te

-
gr

at
ed

de
ci

sio
n

su
pp

or
t

da
ta

ba
se

to
su

pp
or

tt
he

en
tir

e
or

ga
ni

za
tio

n
U

se
s

RD
BM

S
te

ch
no

l-
og

y
op

tim
iz

ed
fo

r
qu

er
y

pu
rp

os
es

St
ar

sc
he

m
a

m
od

el

Sa
m

e
as

ab
ov

e,
in

ad
di

-
tio

n
to

su
pp

or
tf

or
m

or
e

ad
va

nc
ed

qu
er

ie
s

an
d

an
al

yt
ic

al
fu

nc
tio

ns
w

ith
ex

te
ns

io
ns

Sa
m

e
as

ab
ov

e,
in

ad
di

tio
n

to
ad

di
tio

na
lm

ul
tid

im
en

sio
na

l
pr

es
en

ta
tio

n
to

ol
s

w
ith

dr
ill

-
do

w
n

ca
pa

bi
lit

ie
s

Se
co

nd
-g

en
er

at
io

n
da

ta
w

ar
eh

ou
se

us
in

g
m

ul
tid

im
en

sio
na

l
da

ta
ba

se
m

an
ag

em
en

t
sy

st
em

(M
D

BM
S)

O
pe

ra
tio

na
ld

at
a

Ex
te

rn
al

da
ta

(In
du

st
ry

gr
ou

p
da

ta
)

Sa
m

e
as

ab
ov

e
D

at
a

w
ar

eh
ou

se
st

or
es

da
ta

by
us

in
g

M
D

BM
S

te
ch

no
lo

gy
ba

se
d

on
da

ta
st

ru
ct

ur
es

;
re

fe
rr

ed
to

as
cu

be
s

w
ith

m
ul

-
tip

le
di

m
en

sio
ns

Sa
m

e
as

ab
ov

e,
bu

t
us

es
di

ffe
re

nt
qu

er
y

in
te

rfa
ce

to
ac

ce
ss

M
D

BM
S

(p
ro

pr
ie

ta
ry

)

Sa
m

e
as

ab
ov

e,
bu

tu
se

s
cu

be
s

an
d

m
ul

tid
im

en
sio

na
lm

at
rix

es
Li

m
ite

d
in

te
rm

s
of

cu
be

siz
e

C6545_13 9/24/2007 15:13:9 Page 529

529B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

You might be tempted to think that the data warehouse is just a big summarized database. The previous discussion
indicates that a good data warehouse is much more than that. A complete data warehouse architecture includes
support for a decision support data store, a data extraction and integration filter, and a specialized presentation
interface. In the next section you will learn more about a common decision support architectural style known as Online
Analytical Processing (OLAP).

13.6 ONLINE ANALYTICAL PROCESSING

The need for more intensive decision support prompted the introduction of a new generation of tools. Those new
tools, called online analytical processing (OLAP), create an advanced data analysis environment that supports
decision making, business modeling, and operations research. OLAP systems share four main characteristics:

� They use multidimensional data analysis techniques.

� They provide advanced database support.

� They provide easy-to-use end-user interfaces.

� They support client/server architecture.

Let’s examine each of those characteristics.

13.6.1 Multidimensional Data Analysis Techniques

The most distinct characteristic of modern OLAP tools is their capacity for multidimensional analysis. In multidimen-
sional analysis, data are processed and viewed as part of a multidimensional structure. This type of data analysis is
particularly attractive to business decision makers because they tend to view business data as data that are related to
other business data.

To better understand this view, let’s examine how, as a business data analyst, you might investigate sales figures. In this
case, you are probably interested in the sales figures as they relate to other business variables such as customers and
time. In other words, customers and time are viewed as different dimensions of sales. Figure 13.5 illustrates how the
operational (one-dimensional) view differs from the multidimensional view of sales.

Note in Figure 13.5 that the tabular (operational) view of sales data is not well suited to decision support, because the
relationship between INVOICE and LINE does not provide a business perspective of the sales data. On the other hand,
the end user’s view of sales data from a business perspective is more closely represented by the multidimensional view
of sales than by the tabular view of separate tables. Note also that the multidimensional view allows end users to
consolidate or aggregate data at different levels: total sales figures by customers and by date. Finally, the multidimen-
sional view of data allows a business data analyst to easily switch business perspectives (dimensions) from sales by
customer to sales by division, by region, and so on.

Multidimensional data analysis techniques are augmented by the following functions:

� Advanced data presentation functions. 3-D graphics, pivot tables, crosstabs, data rotation, and three-
dimensional cubes. Such facilities are compatible with desktop spreadsheets, statistical packages, and query
and report packages.

� Advanced data aggregation, consolidation, and classification functions. These allow the data analyst to
create multiple data aggregation levels, slice and dice data (see Section 13.6.3), and drill down and roll up data
across different dimensions and aggregation levels. For example, aggregating data across the time dimension
(by week, month, quarter, and year) allows the data analyst to drill down and roll up across time dimensions.

� Advanced computational functions. These include business-oriented variables (market share, period compari-
sons, sales margins, product margins, and percentage changes), financial and accounting ratios (profitability,
overhead, cost allocations, and returns), and statistical and forecasting functions. These functions are provided
automatically, and the end user does not need to redefine their components each time they are accessed.

� Advanced data modeling functions. These provide support for what-if scenarios, variable assessment,
variable contributions to outcome, linear programming, and other modeling tools.

C6545_13 10/16/2007 13:53:22 Page 530

530 C H A P T E R 1 3

Because many analysis and presentation functions are common to desktop spreadsheet packages, most OLAP vendors
have closely integrated their systems with spreadsheets such as Microsoft Excel and IBM Lotus 1-2-3. Using the
features available in graphical end-user interfaces such as Windows, the OLAP menu option simply becomes another
option within the spreadsheet menu bar, as shown in Figure 13.6. This seamless integration is an advantage for OLAP
systems and for spreadsheet vendors because end users gain access to advanced data analysis features by using familiar
programs and interfaces. Therefore, additional training and development costs are minimized.

13.6.2 Advanced Database Support

To deliver efficient decision support, OLAP tools must have advanced data access features. Such features include:

� Access to many different kinds of DBMSs, flat files, and internal and external data sources.

� Access to aggregated data warehouse data as well as to the detail data found in operational databases.

� Advanced data navigation features such as drill-down and roll-up.

� Rapid and consistent query response times.

Totals

FIGURE
13.5

Operational vs. multidimensional view of sales

Database name: Ch13_Text
Table name: DW_INVOICE

Table name: DW_LINE

Multidimensional View of Sales

Sales are located in the intersection
of a customer row and time column

Aggregations are provided
for both dimensions

Dartonik

Summer Lake

Trydon

Customer Dimension 15-May-08 16-May-08

$1,400.00 $1,350.00

$1,800.00 $3,100.00

$400.00

$3,200.00 $4,850.00

Totals

$2,750.00

$4,900.00

$400.00

$8,050.00

Time Dimension

C6545_13 9/24/2007 15:13:10 Page 531

531B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

� The ability to map end-user requests, expressed in either business or model terms, to the appropriate data
source and then to the proper data access language (usually SQL). The query code must be optimized to match
the data source, regardless of whether the source is operational or data warehouse data.

� Support for very large databases. As already explained, the data warehouse can easily and quickly grow to
multiple gigabytes and even terabytes.

To provide a seamless interface, OLAP tools map the data elements from the data warehouse and from the operational
database to their own data dictionaries. These metadata are used to translate end-user data analysis requests into the
proper (optimized) query codes, which are then directed to the appropriate data source(s).

13.6.3 Easy-to-Use End-User Interface

Advanced OLAP features become more useful when access to them is kept simple. OLAP tool vendors learned this
lesson early and have equipped their sophisticated data extraction and analysis tools with easy-to-use graphical
interfaces. Many of the interface features are “borrowed” from previous generations of data analysis tools that are
already familiar to end users. This familiarity makes OLAP easily accepted and readily used.

13.6.4 Client/Server Architecture

Client/server architecture provides a framework within which new systems can be designed, developed, and
implemented. The client/server environment enables an OLAP system to be divided into several components that
define its architecture. Those components can then be placed on the same computer, or they can be distributed among
several computers. Thus, OLAP is designed to meet ease-of-use requirements while keeping the system flexible.

FIGURE
13.6

Integration of OLAP with a spreadsheet program

C6545_13 9/24/2007 15:13:11 Page 532

532 C H A P T E R 1 3

13.6.5 OLAP Architecture

OLAP operational characteristics can be divided into three main modules:

� Graphical user interface (GUI).

� Analytical processing logic.

� Data-processing logic.

In the client/server environment, those three OLAP modules make the defining features of OLAP possible:
multidimensional data analysis, advanced database support, and an easy-to-use interface. Figure 13.7 illustrates
OLAP’s client/server components and attributes.

O n l i n e C o n t e n t

If necessary, review the coverage in Appendix F, Client/Server Systems in the Student Online
Companion for this book, which provides an in-depth look at client/server system architecture and principles.

FIGURE
13.7

OLAP client/server architecture

• Drill-down
• Roll-up
• Detailed

Operational data

Data warehouse

• Integrated
• Subject-oriented

• Time-variant
• Nonvolatile

OLAP GUI

Analytical processing logic

Data-processing logic

• Dimensional
• Aggregated
• Very large DB

OLAP System

The OLAP system exhibits...

•Client/Server architecture

•Easy-to-use GUI
Dimensional presentation
Dimensional modeling
Dimensional analysis

•Multidimensional data
Analysis
Manipulation
Structure

•Database support
Data warehouse
Operational DB
Relational
Multidimensional

C6545_13 10/22/2007 14:47:36 Page 533

533B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

As Figure 13.7 illustrates, OLAP systems are designed to use both operational and data warehouse data. Figure 13.7
shows the OLAP system components located on a single computer, but this single-user scenario is only one of many.
In fact, one problem with the installation shown here is that each data analyst must have a powerful computer to store
the OLAP system and perform all data processing locally. In addition, each analyst uses a separate copy of the data.
Therefore, the data copies must be synchronized to ensure that analysts are working with the same data. In other
words, each end user must have his/her own “private” copy (extract) of the data and programs, thus returning to the
islands of information problems discussed in Chapter 1, Database Systems. This approach does not provide the
benefits of a single business image shared among all users.

A more common and practical architecture is one in which the OLAP GUI runs on client workstations, while the OLAP
engine, or server, composed of the OLAP analytical processing logic and OLAP data-processing logic, runs on a
shared computer. In that case, the OLAP server will be a front end to the data warehouse’s decision support data. This
front end or middle layer (because it sits between the data warehouse and the end-user GUI) accepts and processes the
data-processing requests generated by the many end-user analytical tools. The end-user GUI might be a custom-made
program or, more likely, a plug-in module that is integrated with Lotus 1-2-3, Microsoft Excel, or a third-party data
analysis and query tool. Figure 13.8 illustrates such an arrangement.

Note in Figure 13.8 that the data warehouse is created and maintained by a process or software tool that is
independent of the OLAP system. This independent software performs the data extraction, filtering, and integration
necessary to transform operational data into data warehouse data. This scenario reflects the fact that in most cases,
the data warehousing and data analysis activities are handled separately.

FIGURE
13.8

OLAP server arrangement

Analytical processing logic

Data-processing logic

Multiple users
access OLAP engine

OLAP GUI

OLAP GUI

OLAP GUI

OLAP GUI
The OLAP “engine” provides

a front end to the data warehouse

Shared OLAP “engine”

OLAP System

Excel plug-in

Lotus plug-in

Query tool plug-in

Operational data

Data warehouse
• Integrated
• Subject-oriented
• Time-variant
• Nonvolatile

C6545_13 9/24/2007 15:13:12 Page 534

534 C H A P T E R 1 3

At this point, you might ask why you need a data warehouse if OLAP provides the necessary multidimensional data
analysis of operational data. The answer lies in the definition of OLAP. OLAP is defined as an “advanced data analysis
environment that supports decision making, business modeling, and research activities.” The keyword here is
environment, which includes client/server technology. Environment is defined as “surroundings or atmosphere.” And
an atmosphere surrounds a nucleus. In this case, the nucleus is composed of all business activities within an
organization as represented by the operational data. Just as there are several layers within the atmosphere, there
are several layers of data processing, each outer layer representing a more aggregated data analysis. The fact is that
an OLAP system might access both data storage types (operational or data warehouse) or only one; it depends on the
vendor’s implementation of the product selected. In any case, multidimensional data analysis requires some type of
multidimensional data representation, which is normally provided by the OLAP engine.

In most implementations, the data warehouse and OLAP are interrelated, complementary environments. While the
data warehouse holds integrated, subject-oriented, time-variant, and nonvolatile decision support data, the OLAP
system provides the front end through which end users access and analyze such data. Yet an OLAP system can also
directly access operational data, transforming it and storing it in a multidimensional structure. In other words, the
OLAP system can provide a multidimensional data store component, as shown in Figure 13.9.

Figure 13.9 represents a scenario in which the OLAP engine extracts data from an operational database and then
stores it in a multidimensional structure for further data analysis. The extraction process follows the same conventions
used with data warehouses. Therefore, the OLAP provides a mini data-warehouse component that looks remarkably

Operational data

Data warehouse

Multidimensional
data

Analytical processing logic

Data-processing logic

Multiple users
access OLAP engine

OLAP GUI

OLAP GUI

OLAP GUI

OLAP GUI

Operational data when
drill-down, detailed

data are needed

Shared OLAP “engine”

OLAP System

FIGURE
13.9

OLAP server with multidimensional data store arrangement

C6545_13 9/24/2007 15:13:13 Page 535

535B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

like the data mart mentioned in previous sections. In this scenario, the OLAP engine has to perform all of the data
extraction, filtering, integration, classification, and aggregation functions that the data warehouse normally provides.
In fact, when properly implemented, the data warehouse performs all data preparation functions instead of letting
OLAP perform those chores; as a result, there is no duplication of functions. Better yet, the data warehouse handles
the data component more efficiently than OLAP does; so you can appreciate the benefits of having a central data
warehouse serve as the large enterprise decision support database.

To provide better performance, some OLAP systems merge the data warehouse and data mart approaches by storing
small extracts of the data warehouse at end-user workstations. The objective is to increase the speed of data access and
data visualization (the graphic representations of data trends and characteristics). The logic behind that approach is the
assumption that most end users usually work with fairly small, stable data warehouse data subsets. For example, a sales
analyst is most likely to work with sales data, whereas a customer representative is likely to work with customer data.
Figure 13.10 illustrates that scenario.

Whatever the arrangement of the OLAP components, one thing is certain: multidimensional data must be used. But
how are multidimensional data best stored and managed? OLAP proponents are sharply divided. Some favor the use
of relational databases to store the multidimensional data; others argue for the superiority of specialized multidimen-
sional databases to store multidimensional data. The basic characteristics of each approach are examined next.

Operational

Data warehouse

Multidimensional
data

Analytical
processing

logic

Data-
processing

logic

Multiple users
access OLAP engine

OLAP GUI

OLAP GUI

OLAP GUI

OLAP GUI

Shared
OLAP “engine”

OLAP System

data

Data extracted from the
data warehouse provide

faster processing

Local data marts

FIGURE
13.10

OLAP server with local mini data marts

Customers

Marketing

Production

Vendors

C6545_13 9/24/2007 15:13:13 Page 536

536 C H A P T E R 1 3

13.6.6 Relational OLAP

Relational online analytical processing (ROLAP) provides OLAP functionality by using relational databases and
familiar relational query tools to store and analyze multidimensional data. That approach builds on existing relational
technologies and represents a natural extension to all of the companies that already use relational database
management systems within their organizations. ROLAP adds the following extensions to traditional RDBMS
technology:

� Multidimensional data schema support within the RDBMS.

� Data access language and query performance optimized for multidimensional data.

� Support for very large databases (VLDBs).

Multidimensional Data Schema Support within the RDBMS
Relational technology uses normalized tables to store data. The reliance on normalization as the design methodology
for relational databases is seen as a stumbling block to its use in OLAP systems. Normalization divides business entities
into smaller pieces to produce the normalized tables. For example, sales data components might be stored in four or
five different tables. The reason for using normalized tables is to reduce redundancies, thereby eliminating data
anomalies, and to facilitate data updates. Unfortunately, for decision support purposes, it is easier to understand
data when they are seen with respect to other data. (See the example in Figure 13.5.) Given that view of the data
environment, this book has stressed that decision support data tend to be non-normalized, duplicated, and
pre-aggregated. Those characteristics seem to preclude the use of standard relational design techniques and RDBMSs
as the foundation for multidimensional data.

Fortunately for those heavily invested in relational technology, ROLAP uses a special design technique to enable
RDBMS technology to support multidimensional data representations. This special design technique is known as a star
schema, which is covered in detail in Section 13.7.

The star schema is designed to optimize data query operations rather than data update operations. Naturally, changing
the data design foundation means that the tools used to access such data will have to change. End users who are
familiar with the traditional relational query tools will discover that those tools do not work efficiently with the new star
schema. However, ROLAP saves the day by adding support for the star schema when familiar query tools are used.
ROLAP provides advanced data analysis functions and improves query optimization and data visualization methods.

Data Access Language and Query Performance Optimized for Multidimensional Data
Another criticism of relational databases is that SQL is not suited for performing advanced data analysis. Most decision
support data requests require the use of multiple-pass SQL queries or multiple nested SQL statements. To answer this
criticism, ROLAP extends SQL so that it can differentiate between access requirements for data warehouse data (based
on the star schema) and operational data (normalized tables). In that way, a ROLAP system is able to generate the SQL
code required to access the star schema data.

Query performance is also improved because the query optimizer is modified to identify the SQL code’s intended query
targets. For example, if the query target is the data warehouse, the optimizer passes the requests to the data warehouse.
However, if the end user performs drill-down queries against operational data, the query optimizer identifies that operation
and properly optimizes the SQL requests before passing them through to the operational DBMS.

Another source of improved query performance is the use of advanced indexing techniques such as bitmapped indexes
within relational databases. As the name suggests, a bitmapped index is based on 0 and 1 bits to represent a given
condition. For example, if the REGION attribute in Figure 13.3 has only four outcomes—North, South, East, and
West—those outcomes may be represented as shown in Table 13.9. (Only the first 10 rows from Figure 13.3 are
represented in Table 13.9. The “1” represents “bit on,” and the “0” represents “bit off.” For example, to represent
a row with a REGION attribute = “East,” only the “East” bit would be on. Note that each row must be represented
in the index table.)

C6545_13 9/24/2007 15:15:49 Page 537

537B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

Note that the index in Table 13.9 takes a minimum amount
of space. Therefore, bitmapped indexes are more efficient at
handling large amounts of data than are the indexes typically
found in many relational databases. But do keep in mind that
bitmapped indexes are primarily used in situations where the
number of possible values for an attribute (in other words,
the attribute domain) is fairly small. For example, REGION
has only four outcomes in this example. Marital status—
married, single, widowed, divorced—would be another good
bitmapped index candidate, as would gender—M or F.

ROLAP tools are mainly client/server products in which the
end-user interface, the analytical processing, and the data
processing take place on different computers. Figure 13.11
shows the interaction of the client/server ROLAP
components.

TABLE
13.9

Bitmap Representation
of Region Values

NORTH SOUTH EAST WEST
0 0 1 0
0 0 1 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1

FIGURE
13.11

Typical ROLAP client/server architecture

Data

ROLAP analytical
processing logic

ROLAP data-
processing logic

ROLAP GUI

ROLAP GUI

ROLAP GUI

ROLAP GUI

ROLAP server

ROLAP System

warehouse
data

Operational
data

The ROLAP server interprets
end-user requests and builds

complex SQL queries required
to access the data warehouse.
If an end user requests a drill-
down operation, the ROLAP

server builds the required SQL
code to access the operational

database.

The GUI front end runs on the
client computer and passes
data-analysis requests to the

ROLAP server. The GUI
receives data replies from the

ROLAP server and formats
them according to the end
user’s presentation needs.

C6545_13 9/24/2007 15:13:14 Page 538

538 C H A P T E R 1 3

Support for Very Large Databases
Recall that support for VLDBs is a requirement for decision support databases. Therefore, when the relational database
is used in a decision support role, it also must be able to store very large amounts of data. Both the storage capability
and the process of loading data into the database are crucial. Therefore, the RDBMS must have the proper tools to
import, integrate, and populate the data warehouse with data. Decision support data are normally loaded in bulk
(batch) mode from the operational data. However, batch operations require that both the source and the destination
databases be reserved (locked). The speed of the data-loading operations is important, especially when you realize that
most operational systems run 24 hours a day, 7 days a week, 52 weeks a year. Therefore, the window of opportunity
for maintenance and batch loading is open only briefly, typically during slack periods.

With an open client/server architecture, ROLAP provides advanced decision support capabilities that are scalable to
the entire enterprise. Clearly, ROLAP is a logical choice for companies that already use relational databases for their
operational data. Given the size of the relational database market, it is hardly surprising that most current RDBMS
vendors have extended their products to support data warehouses.

13.6.7 Multidimensional OLAP

Multidimensional online analytical processing (MOLAP) extends OLAP functionality to multidimensional
database management systems (MDBMSs). (An MDBMS uses special proprietary techniques to store data in
matrix-like n-dimensional arrays.) MOLAP’s premise is that multidimensional databases are best suited to manage,
store, and analyze multidimensional data. Most of the proprietary techniques used in MDBMSs are derived from
engineering fields such as computer-aided design/computer-aided manufacturing (CAD/CAM) and geographic
information systems (GIS).

Conceptually, MDBMS end users visualize the stored data as a three-dimensional cube known as a data cube. The
location of each data value in the data cube is a function of the x-, y-, and z-axes in a three-dimensional space. The
x-, y-, and z-axes represent the dimensions of the data value. The data cubes can grow to n number of dimensions,
thus becoming hypercubes. Data cubes are created by extracting data from the operational databases or from the data
warehouse. One important characteristic of data cubes is that they are static; that is, they are not subject to change
and must be created before they can be used. Data cubes cannot be created by ad hoc queries. Instead, you query
pre-created cubes with defined axes; for example, a cube for sales will have the product, location, and time dimensions,
and you can query only those dimensions. Therefore, the data cube creation process is critical and requires in-depth
front-end design work. The front-end design work may be well justified because MOLAP databases are known to be
much faster than their ROLAP counterparts, especially when dealing with small to medium data sets. To speed data
access, data cubes are normally held in memory in what is called the cube cache. (A data cube is only a window to
a predefined subset of data in the database. A data cube and a database are not the same thing.) Because MOLAP
also benefits from a client/server infrastructure, the cube cache can be located at the MOLAP server, at the MOLAP
client, or in both locations. Figure 13.12 shows the basic MOLAP architecture.

Because the data cube is predefined with a set number of dimensions, the addition of a new dimension requires that
the entire data cube be re-created. This re-creation process is time consuming. Therefore, when data cubes are created
too often, the MDBMS loses some of its speed advantage over the relational database. And although MDBMSs have
performance advantages over relational databases, the MDBMS is best suited to small and medium data sets. Scalability
is somewhat limited because the size of the data cube is restricted to avoid lengthy data access times caused by having
less work space (memory) available for the operating system and the application programs. In addition, the MDBMS
makes use of proprietary data storage techniques that, in turn, require proprietary data access methods using a
multidimensional query language.

Multidimensional data analysis is also affected by how the database system handles sparsity. Sparsity is a
measurement of the density of the data held in the data cube and is computed by dividing the total number of actual
values in the cube by the total number of cells in the cube. Because the data cube’s dimensions are predefined, not all
cells are populated. In other words, some cells are empty. Returning to the sales example, there may be many products

C6545_13 9/24/2007 15:13:14 Page 539

539B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

that are not sold during a given time period in a given location. In fact, you will often find that fewer than 50 percent
of the data cube’s cells are populated. In any case, multidimensional databases must handle sparsity effectively to
reduce processing overhead and resource requirements.

Relational proponents also argue that using proprietary solutions makes it difficult to integrate the MDBMS with other
data sources and tools used within the enterprise. Although it takes a substantial investment of time and effort to
integrate the new technology and the existing information systems architecture, MOLAP may be a good solution for
those situations in which small- to medium-sized databases are the norm and application software speed is critical.

13.6.8 Relational vs. Multidimensional OLAP

Table 13.10 summarizes some OLAP and MOLAP pros and cons. Keep in mind, too, that the selection of one or the
other often depends on the evaluator’s vantage point. For example, a proper evaluation of OLAP must include price,
supported hardware platforms, compatibility with the existing DBMS, programming requirements, performance, and
availability of administrative tools. The summary in Table 13.10 provides a useful starting point for comparison.

Data

MOLAP analytical
processing logic

MOLAP data-
processing logic

MOLAP GUI

MOLAP GUI

MOLAP GUI

MOLAP GUI

MOLAP server

MOLAP System

warehouse
data

Operational
data

The MOLAP engine receives
data requests from end users
and translates them into data
cube requests that are passed

to the MDBMS.

Data cube is created
within predefined

dimensions.

The MOLAP GUI allows end
users to interact with the

MOLAP server and request
data for analysis.

RDBMS

MDBMS

Data cube

Multidimensional
database

FIGURE
13.12

MOLAP client/server architecture

C6545_13 9/24/2007 15:13:14 Page 540

540 C H A P T E R 1 3

TABLE
13.10

Relational vs. Multidimensional OLAP

CHARACTERISTIC ROLAP MOLAP
Schema Uses star schema

Additional dimensions can be added
dynamically

Uses data cubes
Additional dimensions require re-creation
of the data cube

Database size Medium to large Small to medium
Architecture Client/server

Standards-based
Open

Client/server
Proprietary

Access Supports ad hoc requests
Unlimited dimensions

Limited to predefined dimensions

Resources High Very high
Flexibility High Low
Scalability High Low
Speed Good with small data sets; average for

medium to large data sets
Faster for small to medium data sets; aver-
age for large data sets

ROLAP and MOLAP vendors are working toward the integration of their respective solutions within a unified decision
support framework. Many OLAP products are able to handle tabular and multidimensional data with the same ease.
For example, if you are using Excel OLAP functionality, as shown earlier in Figure 13.6, you can access relational
OLAP data in a SQL server as well as cube (multidimensional data) in the local computer. In the meantime, relational
databases successfully use the star schema design to handle multidimensional data, and their market share makes it
unlikely that their popularity will fade anytime soon.

13.7 STAR SCHEMAS

The star schema is a data modeling technique used to map multidimensional decision support data into a relational
database. In effect, the star schema creates the near equivalent of a multidimensional database schema from the
existing relational database. The star schema was developed because existing relational modeling techniques, ER, and
normalization did not yield a database structure that served advanced data analysis requirements well.

Star schemas yield an easily implemented model for multidimensional data analysis while still preserving the relational
structures on which the operational database is built. The basic star schema has four components: facts, dimensions,
attributes, and attribute hierarchies.

13.7.1 Facts

Facts are numeric measurements (values) that represent a specific business aspect or activity. For example, sales
figures are numeric measurements that represent product and/or service sales. Facts commonly used in business data
analysis are units, costs, prices, and revenues. Facts are normally stored in a fact table that is the center of the star
schema. The fact table contains facts that are linked through their dimensions, which are explained in the next
section.

Facts can also be computed or derived at run time. Such computed or derived facts are sometimes called metrics to
differentiate them from stored facts. The fact table is updated periodically (daily, weekly, monthly, and so on) with data
from operational databases.

C6545_13 9/24/2007 15:13:14 Page 541

541B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

13.7.2 Dimensions

Dimensions are qualifying characteristics that provide additional perspectives to a given fact. Recall that dimensions
are of interest because decision support data are almost always viewed in relation to other data. For instance, sales
might be compared by product from region to region and from one time period to the next. The kind of problem
typically addressed by a BI system might be to make a comparison of the sales of unit X by region for the first quarters
of 1998 through 2007. In that example, sales have product, location, and time dimensions. In effect, dimensions are
the magnifying glass through which you study the facts. Such dimensions are normally stored in dimension tables.
Figure 13.13 depicts a star schema for sales with product, location, and time dimensions.

13.7.3 Attributes

Each dimension table contains attributes. Attributes are often used to search, filter, or classify facts. Dimensions provide
descriptive characteristics about the facts through their attributes. Therefore, the data warehouse designer must
define common business attributes that will be used by the data analyst to narrow a search, group information, or
describe dimensions. Using a sales example, some possible attributes for each dimension are illustrated in Table 13.11.

TABLE
13.11

Possible Attributes for Sales Dimensions

DIMENSION NAME DESCRIPTION POSSIBLE ATTRIBUTES
Location Anything that provides a description of the location. For

example, Nashville, Store 101, South Region, and TN
Region, state, city, store,
and so on

Product Anything that provides a description of the product sold.
For example, hair care product, shampoo, Natural
Essence brand, 5.5-oz. bottle, and blue liquid

Product type, product ID,
brand, package, presentation,
color, size, and so on

Time Anything that provides a time frame for the sales fact. For
example, the year 2008, the month of July, the date
07/29/2008, and the time 4:46 p.m.

Year, quarter, month, week,
day, time of day, and so on

FIGURE
13.13

Simple star schema

Product
dimension

Time
dimension

Location
dimension

HP calculator

Sales
Fact

$125,000

C6545_13 9/24/2007 15:13:15 Page 542

542 C H A P T E R 1 3

These product, location, and time dimensions add a business perspective to the sales facts. The data analyst can now
group the sales figures for a given product, in a given region, and at a given time. The star schema, through its facts
and dimensions, can provide the data in the required format when the data are needed. And it can do so without
imposing the burden of the additional and unnecessary data (such as order number, purchase order number, and status)
that commonly exist in operational databases.

Conceptually, the sales example’s multidimensional data model is best represented by a three-dimensional cube. Of
course, this does not imply that there is a limit on the number of dimensions that can be associated to a fact table.
There is no mathematical limit to the number of dimensions used. However, using a three-dimensional model makes
it easy to visualize the problem. In this three-dimensional example, the multidimensional data analysis terminology, the
cube illustrated in Figure 13.14 represents a view of sales dimensioned by product, location, and time.

Note that each sales value stored in the cube in Figure 13.14 is associated with the location, product, and time
dimensions. However, keep in mind that this cube is only a conceptual representation of multidimensional data, and
it does not show how the data are physically stored in a data warehouse. A ROLAP engine stores data in an RDBMS
and uses its own data analysis logic and the end-user GUI to perform multidimensional analysis. A MOLAP system
stores data in an MDBMS, using proprietary matrix and array technology to simulate this multidimensional cube.

Whatever the underlying database technology, one of the main features of multidimensional analysis is its ability to
focus on specific “slices” of the cube. For example, the product manager may be interested in examining the sales of
a product while the store manager is interested in examining the sales made by a particular store. In multidimensional
terms, the ability to focus on slices of the cube to perform a more detailed analysis is known as slice and dice. Figure
13.15 illustrates the slice-and-dice concept. As you look at Figure 13.15, note that each cut across the cube yields a
slice. Intersecting slices produce small cubes that constitute the “dice” part of the “slice-and-dice” operation.

To slice and dice, it must be possible to identify each slice of the cube. That is done by using the values of each attribute
in a given dimension. For example, to use the location dimension, you might need to define a STORE_ID attribute in
order to focus on a particular store.

Given the requirement for attribute values in a slice-and-dice environment, let’s reexamine Table 13.11. Note that each
attribute adds an additional perspective to the sales facts, thus setting the stage for finding new ways to search, classify,
and possibly aggregate information. For example, the location dimension adds a geographic perspective of where the

Sales facts are stored in
the intersection of each
product, time, and location
dimension

Conceptual three-dimensional
cube of sales by product,
location, and time

Lo
ca

tio
n

Pr
od

uc
t

Time

FIGURE
13.14

Three-dimensional view of sales

C6545_13 9/24/2007 15:13:15 Page 543

543B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

sales took place: in which region, state, city, store, and so on. All of the attributes are selected with the objective of
providing decision support data to the end users so that they can study sales by each of the dimension’s attributes.

Time is an especially important dimension. The time dimension provides a framework from which sales patterns can
be analyzed and possibly predicted. Also, the time dimension plays an important role when the data analyst is
interested in looking at sales aggregates by quarter, month, week, and so on. Given the importance and universality
of the time dimension from a data analysis perspective, many vendors have added automatic time dimension
management features to their data warehousing products.

13.7.4 Attribute Hierarchies

Attributes within dimensions can be ordered in a well-defined
attribute hierarchy. The attribute hierarchy provides a
top-down data organization that is used for two main
purposes: aggregation and drill-down/roll-up data analysis.
For example, Figure 13.16 shows how the location dimen-
sion attributes can be organized in a hierarchy by region,
state, city, and store.

The attribute hierarchy provides the capability to perform
drill-down and roll-up searches in a data warehouse. For
example, suppose a data analyst looks at the answers to the
query, How does the 2007 month-to-date sales performance
compare to the 2008 month-to-date sales performance?
The data analyst spots a sharp sales decline for March 2008.
The data analyst might decide to drill down inside the month
of March to see how sales by regions compared to the
previous year. By doing that, the analyst can determine
whether the low March sales were reflected in all regions or
in only a particular region. This type of drill-down operation
can even be extended until the data analyst identifies the
store that is performing below the norm.

Product manager’s
view of sales data

Sales manager’s
view of sales data

Lo
ca

tio
n

Pr
od

uc
t

Time

FIGURE
13.15

Slice-and-dice view of sales

FIGURE
13.16

Location attribute hierarchy

The attribute
hierarchy

allows the end
user to

perform drill-down
and roll-up
searches.

Region

State

City

Store

C6545_13 9/24/2007 15:13:16 Page 544

544 C H A P T E R 1 3

The March sales scenario is possible because the attribute hierarchy allows the data warehouse and OLAP systems to
have a defined path that will identify how data are to be decomposed and aggregated for drill-down and roll-up
operations. It is not necessary for all attributes to be part of an attribute hierarchy; some attributes exist merely to
provide narrative descriptions of the dimensions. But keep in mind that the attributes from different dimensions can
be grouped to form a hierarchy. For example, after you drill down from city to store, you might want to drill down using
the product dimension so the manager can identify slow products in the store. The product dimension can be based
on the product group (dairy, meat, and so on) or on the product brand (Brand A, Brand B, and so on).

Figure 13.17 illustrates a scenario in which the data analyst studies sales facts, using the product, time, and location
dimensions. In this example, the product dimension is set to “All products,” meaning that the data analyst will see all
products on the y-axis. The time dimension (x-axis) is set to “Quarter,” meaning that the data are aggregated by quarters
(for example, total sales of products A, B, and C in Q1, Q2, Q3, and Q4). Finally, the location dimension is initially set
to “Region,” thus ensuring that each cell contains the total regional sales for a given product in a given quarter.

The simple data analysis scenario illustrated in Figure 13.17 provides the data analyst with three different information
paths. On the product dimension (the y-axis), the data analyst can request to see all products, products grouped by
type, or just one product. On the time dimension (the x-axis), the data analyst can request time-variant data at different
levels of aggregation: year, quarter, month, or week. Each sales value initially shows the total sales, by region, of each
product. When a GUI is used, clicking on the region cell enables the data analyst to drill down to see sales by states
within the region. Clicking again on one of the state values yields the sales for each city in the state, and so forth.

Year Quarter Month Week

Time dimension

Product
dimension

All products

By product type

One product

Q1

Product A

Product B
Product C

........

........

........

Total of
quarters

Q2Q3 Q4
Total of
product

Region

State

City

Store

Location hierarchy

FIGURE
13.17

Attribute hierarchies in multidimensional analysis

C6545_13 9/24/2007 15:16:44 Page 545

545B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

As the preceding examples illustrate, attribute hierarchies determine how the data in the data warehouse are extracted
and presented. The attribute hierarchy information is stored in the DBMS’s data dictionary and is used by the OLAP
tool to access the data warehouse properly. Once such access is ensured, query tools must be closely integrated with
the data warehouse’s metadata and they must support powerful analytical capabilities.

13.7.5 Star Schema Representation

Facts and dimensions are normally represented by physical tables in the data warehouse database. The fact table is related
to each dimension table in a many-to-one (M:1) relationship. In other words, many fact rows are related to each dimension
row. Using the sales example, you can conclude that each product appears many times in the SALES fact table.

Fact and dimension tables are related by foreign keys and are subject to the familiar primary key/foreign key
constraints. The primary key on the “1” side, the dimension table, is stored as part of the primary key on the “many”
side, the fact table. Because the fact table is related to many dimension tables, the primary key of the fact table
is a composite primary key. Figure 13.18 illustrates the relationships among the sales fact table and the product,
location, and time dimension tables. To show you how easily the star schema can be expanded, a customer dimension
has been added to the mix. Adding the customer dimension merely required including the CUST_ID in the SALES fact
table and adding the CUSTOMER table to the database.

FIGURE
13.18

Star schema for SALES

365 records

LOCATION

SALES

CUSTOMER

TIME

PRODUCT

LOC_ID

LOC_DESCRIPTION

REGION_ID

LOC_STATE

LOC_CITY

CUST_ID

CUST_LNAME

CUST_FNAME

CUST_INITIAL

CUST_DOB

TIME_ID

LOC_ID

CUST_ID

PROD_ID

SALES_QUANTITY

SALES_PRICE

SALES_TOTAL

TIME_ID

TIME_YEAR

TIME_QUARTER

TIME_MONTH

TIME_DAY

TIME_CLOCKTIME

PROD_ID

PROD_DESCRIPTION

PROD_TYPE_ID

PROD_BRAND

PROD_COLOR

PROD_SIZE

PROD_PACKAGE

PROD_PRICE

3,000 records

125 records

25 records

3,000,000 records

Daily sales aggregates
by store, customer, and

product

M

M

1

1 M

M

1

1

C6545_13 9/24/2007 15:16:45 Page 546

546 C H A P T E R 1 3

The composite primary key for the SALES fact table is composed of TIME_ID, LOC_ID, CUST_ID, and PROD_ID.
Each record in the SALES fact table is uniquely identified by the combination of values for each of the fact table’s
foreign keys. By default, the fact table’s primary key is always formed by combining the foreign keys pointing to
the dimension tables to which they are related. In this case, each sales record represents each product sold to a
specific customer, at a specific time, and in a specific location. In this schema, the TIME dimension table represents
daily periods, so the SALES fact table represents daily sales aggregates by product and by customer. Because fact tables
contain the actual values used in the decision support process, those values are repeated many times in the fact tables.
Therefore, the fact tables are always the largest tables in the star schema. Because the dimension tables contain only
nonrepetitive information (all unique salespersons, all unique products, and so on), the dimension tables are always
smaller than the fact tables.

In a typical star schema, each dimension record is related to thousands of fact records. For example, “widget” appears
only once in the product dimension, but it has thousands of corresponding records in the SALES fact table. That
characteristic of the star schema facilitates data retrieval functions because most of the time the data analyst will look
at the facts through the dimension’s attributes. Therefore, a data warehouse DBMS that is optimized for decision
support first searches the smaller dimension tables before accessing the larger fact tables.

Data warehouses usually have many fact tables. Each fact table is designed to answer specific decision support
questions. For example, suppose you develop a new interest in orders while maintaining your original interest in sales.
In that scenario, you should maintain an ORDERS fact table and a SALES fact table in the same data warehouse. If
orders are considered to be an organization’s key interest, the ORDERS fact table should be the center of a star schema
that might have vendor, product, and time dimensions. In that case, an interest in vendors yields a new vendor
dimension, represented by a new VENDOR table in the database. The product dimension is represented by the same
product table used in the initial sales star schema. However, given the interest in orders as well as sales, the time
dimension now requires special attention. If the orders department uses the same time periods as the sales department,
time can be represented by the same time table. If different time periods are used, you must create another table,
perhaps named ORDER_TIME, to represent the time periods used by the orders department. In Figure 13.19, the
orders star schema shares the product, vendor, and time dimensions.

Multiple fact tables also can be created for performance and semantic reasons. The following section explains several
performance-enhancing techniques that can be used within the star schema.

C6545_13 10/11/2007 15:35:19 Page 547

547B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

13.7.6 Performance-Improving Techniques for the Star Schema

The creation of a database that provides fast and accurate answers to data analysis queries is the data warehouse
design’s prime objective. Therefore, performance-enhancement actions might target query speed through the
facilitation of SQL code as well as through better semantic representation of business dimensions. Four techniques are
often used to optimize data warehouse design:

� Normalizing dimensional tables.

� Maintaining multiple fact tables to represent different aggregation levels.

� Denormalizing fact tables.

� Partitioning and replicating tables.

Normalizing Dimensional Tables
Dimensional tables are normalized to achieve semantic simplicity and facilitate end-user navigation through the
dimensions. For example, if the location dimension table contains transitive dependencies among region, state, and
city, you can revise those relationships to the 3NF (third normal form), as shown in Figure 13.20. (If necessary, review

FIGURE
13.19

Orders star schema

365 records

PRODUCT

ORDER

VENDOR

TIME

PROD_ID

PROD_DESCRIPTION

PROD_TYPE_ID

PROD_BRAND

PROD_COLOR

VEND_ID

VEND_NAME

VEND_AREACODE

VEND_PHONE

VEND_EMAIL

TIME_ID

PROD_ID

VEND_ID

ORDER_QUANTITY

ORDER_PRICE

ORDER_AMOUNT

TIME_ID

TIME_YEAR

TIME_QUARTER

TIME_MONTH

TIME_DAY

TIME_CLOCKTIME

50 records

3,000 records
85,000 records

Daily sales aggregates
by product and vendor

M

M

1

1

M 1

PROD_SIZE

PROD_PACKAGE

PROD_PRICE

C6545_13 10/11/2007 15:36:11 Page 548

548 C H A P T E R 1 3

normalization techniques in Chapter 5, Normalization of Database Tables.) The star schema shown in Figure 13.20
is known as a snowflake schema, which is a type of star schema in which the dimension tables can have their own
dimension tables. The snowflake schema is usually the result of normalizing dimension tables.

By normalizing the dimension tables, you simplify the data-filtering operations related to the dimensions. In this
example, the region, state, city, and location contain very few records compared to the SALES fact table. Only the
location table is directly related to the sales fact table.

Maintaining Multiple Fact Tables that Represent Different Aggregation Levels
You can also speed up query operations by creating and maintaining multiple fact tables related to each level of
aggregation (region, state, and city) in the location dimension. These aggregate tables are precomputed at the
data-loading phase rather than at run time. The purpose of this technique is to save processor cycles at run time,
thereby speeding up data analysis. An end-user query tool optimized for decision analysis then properly accesses the
summarized fact tables instead of computing the values by accessing a lower level of detail fact table. This technique
is illustrated in Figure 13.21, which adds aggregate fact tables for region, state, and city to the initial sales example.

FIGURE
13.20

Normalized dimension tables

REGION

LOCATIONSTATE

SALES

REGION_ID

REGION_NAME

STATE_ID

STATE_NAME

REGION_ID

LOC_ID

LOC_DESCRIPTION

CITY_ID

TIME_ID

LOC_ID

CUST_ID

PROD_ID

SALES_QUANTITY

SALES_PRICEM
M

1

1

M

1

CITY

CITY_ID

CITY_NAME

STATE_ID

SALES_TOTAL

M

1

Note

Although using the dimension tables shown in Figure 13.20 gains structural simplicity, there is a price to pay for
that simplicity. For example, if you want to aggregate the data by region, you must use a four-table join, thus
increasing the complexity of the SQL statements. The star schema in Figure 13.18 uses a LOCATION dimension
table that greatly facilitates data retrieval by eliminating multiple join operations. This is yet another example of
the trade-offs that designers must consider.

C6545_13 9/24/2007 15:17:57 Page 549

549B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

The data warehouse designer must identify which levels of aggregation to precompute and store in the database. These
multiple aggregate fact tables are updated during each load cycle in batch mode. And because the objective is to
minimize access and processing time, according to the expected frequency of use and the processing time required to
calculate a given aggregation level at run time, the data warehouse designer must select which aggregation fact tables
to create.

Denormalizing Fact Tables
Denormalizing fact tables improves data access performance and saves data storage space. The latter objective,
however, is becoming less of an issue. Data storage costs decrease almost daily, and DBMS limitations that restrict
database and table size limits, record size limits, and the maximum number of records in a single table have far more
negative effects than raw storage space costs.

Denormalization improves performance by using a single record to store data that normally take many records. For
example, to compute the total sales for all products in all regions, you might have to access the region sales aggregates
and summarize all of the records in this table. If you have 300,000 product sales, you could be summarizing at least
300,000 rows. Although this might not be a very taxing operation for a DBMS, a comparison of, say, 10 years’ worth
of previous sales begins to bog down the system. In such cases, it is useful to have special aggregate tables that are

FIGURE
13.21

Multiple fact tables

SALES_REGION REGION SALES_CITY

TIME_ID

REGION_ID

REGION_ID

REGION_NAME

TIME_ID

CITY_ID

CUST_ID

PROD_ID

SLSCIT_QUANTITY

SLSCIT_PRICE

SLSCIT_AMOUNT

M
1

CUST_ID

PROD_ID

SLSREG_QUANTITY

SLSREG_PRICE

SLSREG_AMOUNT

SALES_STATE

TIME_ID

STATE_ID

CUST_ID

PROD_ID

SLSSTA_QUANTITY

SLSSTA_PRICE

SLSSTA_AMOUNT

STATE

STATE_ID

STATE_NAME

REGION_ID

CITY

CITY_ID

CITY_NAME

LOCATION

LOC_ID

LOC_DESCRIPTION

CITY_ID

STATE_ID

SALES_LOCATION

TIME_ID

LOC_ID

CUST_ID

PROD_ID

SLSLOC_QUANTITY

SLSLOC_PRICE

SLSLOC_AMOUNT

M

1

1

M

1

M

1

M

M

1

M

1

C6545_13 9/24/2007 15:16:46 Page 550

550 C H A P T E R 1 3

denormalized. For example, a YEAR_TOTALS table might contain the following fields: YEAR_ID, MONTH_1,
MONTH_2 ... MONTH_12, and each year’s total. Such tables can easily be used to serve as a basis for year-to-year
comparisons at the top month level, the quarter level, or the year level. Here again, design criteria, such as frequency
of use and performance requirements, are evaluated against the possible overload placed on the DBMS to manage the
denormalized relations.

Partitioning and Replicating Tables
Because table partitioning and replication were covered in detail in Chapter 12, Distributed Database Management
Systems, those techniques are discussed here only as they specifically relate to the data warehouse. Table partitioning
and replication are particularly important when a BI system is implemented in dispersed geographic areas.
Partitioning splits a table into subsets of rows or columns and places the subsets close to the client computer to
improve data access time. Replication makes a copy of a table and places it in a different location, also to improve
access time.

No matter which performance-enhancement scheme is used, time is the most common dimension used in business
data analysis. Therefore, it is very common to have one fact table for each level of aggregation defined within the time
dimension. For example, in the sales example, you might have five aggregate sales fact tables: daily, weekly, monthly,
quarterly, and yearly. Those fact tables must have an implicit or explicit periodicity defined. Periodicity, usually
expressed as current year only, previous years, or all years, provides information about the time span of the data stored
in the table.

At the end of each year, daily sales for the current year are moved to another table that contains previous years’ daily
sales only. This table actually contains all sales records from the beginning of operations, with the exception of the
current year. The data in the current year and previous years’ tables thus represent the complete sales history of the
company. The previous years’ sales table can be replicated at several locations to avoid remote access to the historic
sales data, which can cause slow response time. The possible size of this table is enough to intimidate all but the bravest
of query optimizers. Here is one case in which denormalization would be of value!

13.8 IMPLEMENTING A DATA WAREHOUSE

Organization-wide information system development is subject to many constraints. Some of the constraints are based
on available funding. Others are a function of management’s view of the role played by an IS department and of the
extent and depth of the information requirements. Add the constraints imposed by corporate culture, and you
understand why no single formula can describe perfect data warehouse development. Therefore, rather than proposing
a single data warehouse design and implementation methodology, this section identifies a few factors that appear to
be common to data warehousing.

13.8.1 The Data Warehouse as an Active Decision Support Framework

Perhaps the first thing to remember is that a data warehouse is not a static database. Instead, it is a dynamic framework
for decision support that is, almost by definition, always a work in progress. Because it is the foundation of a modern
BI environment, the design and implementation of the data warehouse means that you are involved in the design and
implementation of a complete database-system-development infrastructure for company-wide decision support.
Although it is easy to focus on the data warehouse database as the BI central data repository, you must remember that
the decision support infrastructure includes hardware, software, people, and procedures, as well as data. The argument
that the data warehouse is the only critical BI success component is as misleading as the argument that a human being
needs only a heart or a brain to function. The data warehouse is a critical component of a modern BI environment,
but it is certainly not the only critical component. Therefore, its design and implementation must be examined in light
of the entire infrastructure.

C6545_13 9/24/2007 15:16:47 Page 551

551B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

13.8.2 A Company-Wide Effort That Requires User Involvement

Designing a data warehouse means being given an opportunity to help develop an integrated data model that captures
the data that are considered to be essential to the organization, from both end-user and business perspectives. Data
warehouse data cross departmental lines and geographical boundaries. Because the data warehouse represents an
attempt to model all of the organization’s data, you are likely to discover that organizational components (divisions,
departments, support groups, and so on) often have conflicting goals, and it certainly will be easy to find data
inconsistencies and damaging redundancies. Information is power, and the control of its sources and uses is likely to
trigger turf battles, end-user resistance, and power struggles at all levels. Building the perfect data warehouse is not just
a matter of knowing how to create a star schema; it requires managerial skills to deal with conflict resolution,
mediation, and arbitration. In short, the designer must:

� Involve end users in the process.

� Secure end users’ commitment from the beginning.

� Solicit continuous end-user feedback.

� Manage end-user expectations.

� Establish procedures for conflict resolution.

13.8.3 Satisfy the Trilogy: Data, Analysis, and Users

Great managerial skills are not, of course, solely sufficient. The technical aspects of the data warehouse must be
addressed as well. The old adage of input-process-output repeats itself here. The data warehouse designer must satisfy:

� Data integration and loading criteria.

� Data analysis capabilities with acceptable query performance.

� End-user data analysis needs.

The foremost technical concern in implementing a data warehouse is to provide end-user decision support with
advanced data analysis capabilities—at the right moment, in the right format, with the right data, and at the right cost.

13.8.4 Apply Database Design Procedures

You learned about the database life cycle and the database design process in Chapter 9, Database Design, so perhaps
it is wise to review the traditional database design procedures. These design procedures must then be adapted to fit the
data warehouse requirements. If you remember that the data warehouse derives its data from operational databases,
you will understand why a solid foundation in operational database design is important. (It’s difficult to produce good
data warehouse data when the operational database data are corrupted.) Figure 13.22 depicts a simplified process for
implementing the data warehouse.

As noted, developing a data warehouse is a company-wide effort that requires many resources: human, financial, and
technical. Providing company-wide decision support requires a sound architecture based on a mix of people skills,
technology, and managerial procedures that is often difficult to find and implement. For example:

� The sheer and often mind-boggling quantity of decision support data is likely to require the latest hardware and
software—that is, advanced computers with multiple processors, advanced database systems, and large-
capacity storage units. In the not-too-distant past, those requirements usually prompted the use of a
mainframe-based system. Today’s client/server technology offers many other choices to implement a data
warehouse.

� Very detailed procedures are necessary to orchestrate the flow of data from the operational databases to the
data warehouse. Data flow control includes data extraction, validation, and integration.

� To implement and support the data warehouse architecture, you also need people with advanced database
design, software integration, and management skills.

C6545_13 9/24/2007 15:16:47 Page 552

552 C H A P T E R 1 3

13.9 DATA MINING

The purpose of data analysis is to discover previously unknown data characteristics, relationships, dependencies, or
trends. Such discoveries then become part of the information framework on which decisions are built. A typical data
analysis tool relies on the end users to define the problem, select the data, and initiate the appropriate data
analyses to generate the information that helps model and solve problems that the end users uncover. In other
words, the end user reacts to an external stimulus—the discovery of the problem itself. If the end user fails to detect
a problem, no action is taken. Given that limitation, some current BI environments now support various types of
automated alerts. The alerts are software agents that constantly monitor certain parameters, such as sales indicators
and inventory levels, and then perform specified actions (send e-mail or alert messages, run programs, and so on) when
such parameters reach predefined levels.

In contrast to the traditional (reactive) BI tools, data mining is proactive. Instead of having the end user define the
problem, select the data, and select the tools to analyze the data, data-mining tools automatically search the data
for anomalies and possible relationships, thereby identifying problems that have not yet been identified by the
end user. In other words, data mining refers to the activities that analyze the data, uncover problems or opportunities
hidden in the data relationships, form computer models based on their findings, and then use the models to predict
business behavior—requiring minimal end-user intervention. Therefore, the end user is able to use the system’s findings

FIGURE
13.22

Data warehouse design and implementation road map

Initial data
gathering

Design
and mapping

Loading and
testing

Building and
testing

Rollout
and feedback

• Identify and interview key users
• Define main subjects
• Identify operational data model
• Define ownership of data
• Define frequency of use and update
• Define end-user interface
• Define outputs

• Design star schema
• Facts, dimensions, attributes
• Create star schema diagrams
• Attribute hierarchies
• Map to relational tables
• Naming conventions

• Prepare for loading
• Define initial and update processes
• Define transformation
• Map from operational data
• Integrate and transform
• Load data, index data, and
 validate data
• Verify metadata and star schemas

• Roll out system
• Get end-user feedback
• System maintenance
• System expansion

• Training in development environment
• Build menus
• Customize query tools
• Build required queries
• Lay out outputs
• Test interfaces and results
• Optimize for speed and accuracy
• End-user prototyping and testing

C6545_13 10/22/2007 14:47:49 Page 553

553B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

to gain knowledge that might yield competitive advantages. Data mining describes a new breed of specialized decision
support tools that automate data analysis. In short, data-mining tools initiate analyses to create knowledge. Such
knowledge can be used to address any number of business problems. For example, banks and credit card companies
use knowledge-based analysis to detect fraud, thereby decreasing fraudulent transactions.

To put data mining in perspective, look at the pyramid in Figure 13.23, which represents how knowledge is extracted
from data. Data form the pyramid base and represent what most organizations collect in their operational databases.
The second level contains information that represents the purified and processed data. Information forms the basis
for decision making and business understanding. Knowledge is found at the pyramid’s apex and represents highly
specialized information.

It is difficult to provide a precise list of characteristics of data-mining tools. For one thing, the current generation of
data-mining tools contains many design and application variations to fit data-mining requirements. Additionally, the
many variations exist because there are no established standards that govern the creation of data-mining tools. Each
data-mining tool seems to be governed by a different approach and focus, thus generating families of data-mining tools
that focus on market niches such as marketing, retailing, finance, healthcare, investments, insurance, and banking.
Within a given niche, data-mining tools can use certain algorithms, and those algorithms can be implemented in
different ways and/or applied over different data.

Data-mining tools use advanced techniques from knowledge
discovery, artificial intelligence, and other fields to obtain “knowledge”
and apply it to business needs. Knowledge is then used to make
predictions of events or forecasts of values such as sales returns.
Several OLAP tools have integrated at least some of these data-mining
features in their products.

Low

High • Artificial intelligence
• Knowledge discovery
• Neural networks, etc.

• Data mining
• OLAP
• DSS
• Data warehouse

• OLTP
• Operational database

Knowledge

Information

Data

Processing

FIGURE
13.23

Extracting knowledge from data

C6545_13 9/24/2007 15:16:48 Page 554

554 C H A P T E R 1 3

In spite of the lack of precise standards, data mining is subject to four general phases:

1. Data preparation.

2. Data analysis and classification.

3. Knowledge acquisition.

4. Prognosis.

In the data preparation phase, the main data sets to be used by the data mining operation are identified and cleansed
of any data impurities. Because the data in the data warehouse are already integrated and filtered, the data warehouse
usually is the target set for data mining operations.

The data analysis and classification phase studies the data to identify common data characteristics or patterns.
During this phase, the data-mining tool applies specific algorithms to find:

� Data groupings, classifications, clusters, or sequences.

� Data dependencies, links, or relationships.

� Data patterns, trends, and deviations.

The knowledge acquisition phase uses the results of the data analysis and classification phase. During the knowledge
acquisition phase, the data-mining tool (with possible intervention by the end user) selects the appropriate modeling
or knowledge acquisition algorithms. The most common algorithms used in data mining are based on neural networks,
decision trees, rules induction, genetic algorithms, classification and regression trees, memory-based reasoning, and
nearest neighbor and data visualization. A data-mining tool may use many of these algorithms in any combination to
generate a computer model that reflects the behavior of the target data set.

Although many data-mining tools stop at the knowledge-acquisition phase, others continue to the prognosis phase.
In that phase, the data mining findings are used to predict future behavior and forecast business outcomes. Examples
of data mining findings can be:

� Sixty-five percent of customers who did not use a particular credit card in the last six months are 88 percent
likely to cancel that account.

� Eighty-two percent of customers who bought a 27-inch or larger TV are 90 percent likely to buy an
entertainment center within the next four weeks.

� If age < 30 and income <= 25,000 and credit rating < 3 and credit amount > 25,000, then the minimum loan
term is 10 years.

The complete set of findings can be represented in a decision tree, a neural net, a forecasting model, or a visual
presentation interface that is used to project future events or results. For example, the prognosis phase might project
the likely outcome of a new product rollout or a new marketing promotion. Figure 13.24 illustrates the different phases
of the data mining techniques.

Because data mining technology is still in its infancy, some of the data mining findings might fall outside the boundaries
of what business managers expect. For example, a data-mining tool might find a close relationship between a
customer’s favorite brand of soda and the brand of tires on the customer’s car. Clearly, that relationship might not be
held in high regard among sales managers. (In regression analysis, those relationships are commonly described by the
label “idiot correlation.”) Fortunately, data mining usually yields more meaningful results. In fact, data mining has
proved to be very helpful in finding practical relationships among data that help define customer buying patterns,
improve product development and acceptance, reduce healthcare fraud, analyze stock markets, and so on.

Ideally, you can expect the development of databases that not only store data and various statistics about data usage,
but also have the ability to learn about and extract knowledge from the stored data. Such database management
systems, also known as inductive or intelligent databases, are the focus of intense research in many laboratories.
Although those databases have yet to lay claim to substantial commercial market penetration, both “add-on” and
DBMS-integrated data mining tools have proliferated in the data warehousing database market.

C6545_13 9/24/2007 15:19:1 Page 555

555B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

13.10 SQL EXTENSIONS FOR OLAP

The proliferation of OLAP tools has fostered the development of SQL extensions to support multidimensional data
analysis. Most SQL innovations are the result of vendor-centric product enhancements. However, many of the
innovations have made their way into standard SQL. This section introduces some of the new SQL extensions that
have been created to support OLAP-type data manipulations.

The SaleCo snowflake schema shown in Figure 13.25 will be used to demonstrate the use of the SQL extensions. Note
that this snowflake schema has a central DWSALESFACT fact table and three dimension tables: DWCUSTOMER,
DWPRODUCT, and DWTIME. The central fact table represents daily sales by product and customer. However, as you
examine the star schema shown in Figure 13.25 more carefully, you will see that the DWCUSTOMER and
DWPRODUCT dimension tables have their own dimension tables: DWREGION and DWVENDOR.

Keep in mind that a database is at the core of all data warehouses. Therefore, all SQL commands (such as CREATE,
INSERT, UPDATE, DELETE, and SELECT) will work in the data warehouse as expected. However, most queries you
run in a data warehouse tend to include a lot of data groupings and aggregations over multiple columns. That’s why
this section introduces two extensions to the GROUP BY clause that are particularly useful: ROLLUP and CUBE. In
addition, you will learn about using materialized views to store preaggregated rows in the database.

Operational

Data warehouse

Data preparation phase
• Identify data set
• Clean data set
• Integrate data set

Data analysis and
classification phase

Knowledge
acquisition phase

Prognosis phase

• Classification analysis
• Clustering and sequence analysis
• Link analysis
• Trend and deviation analysis

• Select and apply algorithms
Neural nets
Inductive logic
Decision trees
Classification and regression tree
Nearest neighbor
Visualization, etc.

• Prediction
• Forecasting
• Modeling

database

FIGURE
13.24

Data–mining phases

C6545_13 10/23/2007 14:47:48 Page 556

556 C H A P T E R 1 3

13.10.1 The ROLLUP Extension

The ROLLUP extension is used with the GROUP BY clause to generate aggregates by different dimensions. As you
know, the GROUP BY clause will generate only one aggregate for each new value combination of attributes listed in
the GROUP BY clause. The ROLLUP extension goes one step further; it enables you to get a subtotal for each column
listed except for the last one, which gets a grand total instead. The syntax of the GROUP BY ROLLUP is as follows:

SELECT column1, column2 [, ...], aggregate_function(expression)
FROM table1 [,table2, �]
[WHERE condition]
GROUP BY ROLLUP (column1, column2 [, ...])
[HAVING condition]
[ORDER BY column1 [, column2, �]]

The order of the column list within the GROUP BY ROLLUP is very important. The last column in the list will generate
a grand total. All other columns will generate subtotals. For example, Figure 13.26 shows the use of the ROLLUP
extension to generate subtotals by vendor and product.

FIGURE
13.25

SaleCo snowflake schema

O n l i n e C o n t e n t

The script files used to populate the database and run the SQL commands are available in the Student Online
Companion.

Note

This section uses the Oracle RDBMS to demonstrate the use of SQL extensions to support OLAP functionality.
If you use a different DBMS, consult the documentation to verify whether the vendor supports similar
functionality and what the proper syntax is for your DBMS.

C6545_13 9/24/2007 15:19:2 Page 557

557B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

Note that Figure 13.26 shows the subtotals by vendor code and a grand total for all product codes. Contrast that with
the normal GROUP BY clause that will generate only the subtotals for each vendor and product combination rather
than the subtotals by vendor and the grand total for all products. The ROLLUP extension is particularly useful when
you want to obtain multiple nested subtotals for a dimension hierarchy. For example, within a location hierarchy, you
can use ROLLUP to generate subtotals by region, state, city, and store.

13.10.2 The CUBE Extension

The CUBE extension is also used with the GROUP BY clause to generate aggregates by the listed columns, including
the last one. The CUBE extension will enable you to get a subtotal for each column listed in the expression, in addition
to a grand total for the last column listed. The syntax of the GROUP BY CUBE is as follows:

SELECT column1 [, column2, ...], aggregate_function(expression)
FROM table1 [,table2, �]
[WHERE condition]
GROUP BY CUBE (column1, column2 [, �])
[HAVING condition]
[ORDER BY column1 [, column2, �]]

For example, Figure 13.27 shows the use of the CUBE extension to compute the sales subtotals by month and by
product, as well as a grand total.

In Figure 13.27, note that the CUBE extension generates the subtotals for each combination of month and product,
in addition to subtotals by month and by product, as well as a grand total. The CUBE extension is particularly useful
when you want to compute all possible subtotals within groupings based on multiple dimensions. Cross-tabulations are
especially good candidates for application of the CUBE extension.

FIGURE
13.26

ROLLUP extension

Subtotals by V_CODE

Grand total for all P_CODE values

C6545_13 9/24/2007 15:19:2 Page 558

558 C H A P T E R 1 3

13.10.3 Materialized Views

The data warehouse normally contains fact tables that store specific measurements of interest to an organization. Such
measurements are organized by different dimensions. The vast majority of OLAP business analysis of “everyday
activities” is based on comparisons of data that are aggregated at different levels, such as totals by vendor, by product,
and by store.

Because businesses normally use a predefined set of summaries for benchmarking, it is reasonable to predefine such
summaries for future use by creating summary fact tables. (See Section 13.5.6 for a discussion of additional
performance-improving techniques.) However, creating multiple summary fact tables that use GROUP BY queries with
multiple table joins could become a resource-intensive operation. In addition, data warehouses must also be able to
maintain up-to-date summarized data at all times. So what happens with the summary fact tables after new sales data
have been added to the base fact tables? Under normal circumstances, the summary fact tables are re-created. This
operation requires that the SQL code be run again to re-create all summary rows, even when only a few rows needed
updating. Clearly, this is a time-consuming process.

To save query processing time, most database vendors have implemented additional “functionality” to manage
aggregate summaries more efficiently. This new functionality resembles the standard SQL views for which the SQL
code is predefined in the database. However, the added functionality difference is that the views also store the

FIGURE
13.27

CUBE extension

Subtotals by Quarter

Subtotals by Product

Grand total for all products and quarters

C6545_13 9/24/2007 15:19:2 Page 559

559B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

preaggregated rows, something like a summary table. For example, Microsoft SQL Server provides indexed views,
while Oracle provides materialized views. This section explains the use of materialized views.

A materialized view is a dynamic table that not only contains the SQL query command to generate the rows, but
also stores the actual rows. The materialized view is created the first time the query is run and the summary rows are
stored in the table. The materialized view rows are automatically updated when the base tables are updated. That way,
the data warehouse administrator will create the view but will not have to worry about updating the view. The use of
materialized views is totally transparent to the end user. The OLAP end user can create OLAP queries, using the
standard fact tables, and the DBMS query optimization feature will automatically use the materialized views if those
views provide better performance.

The basic syntax for the materialized view is:

CREATE MATERIALIZED VIEW view_name
BUILD {IMMEDIATE | DEFERRED}
REFRESH {[FAST | COMPLETE | FORCE]} ON COMMIT
[ENABLE QUERY REWRITE]
AS select_query;

The BUILD clause indicates when the materialized view rows are actually populated. IMMEDIATE indicates that the
materialized view rows are populated right after the command is entered. DEFERRED indicates that the materialized
view rows will be populated at a later time. Until then, the materialized view is in an “unusable” state. The DBMS
provides a special routine that an administrator runs to populate materialized views.

The REFRESH clause lets you indicate when and how to update the materialized view when new rows are added to
the base tables. FAST indicates that whenever a change is made in the base tables, the materialized view updates only
the affected rows. COMPLETE indicates that a complete update will be made for all rows in the materialized view when
the select query on which the view is based is rerun. FORCE indicates that the DBMS will first try to do a FAST update;
otherwise, it will do a COMPLETE update. The ON COMMIT clause indicates that the updates to the materialized view
will take place as part of the commit process of the underlying DML statement, that is, as part of the commit of the
DML transaction that updated the base tables. The ENABLE QUERY REWRITE option allows the DBMS to use the
materialized views in query optimization.

To create materialized views, you must have specified privileges and you must complete specified prerequisite steps.
As always, you must defer to the DBMS documentation for the latest updates. In the case of Oracle, you must create
materialized view logs on the base tables of the materialized view. Figure 13.28 shows the steps required to create the
MONTH_SALES_MV materialized view in the Oracle RDBMS.

C6545_13 9/24/2007 15:19:3 Page 560

560 C H A P T E R 1 3

The materialized view in Figure 13.28 computes the monthly total units sold and the total sales aggregates by product.
The SALES_MONTH_MV materialized view is configured to automatically update after each change in the base tables.
Note that the last row of SALES_MONTH_MV indicates that during October, the sales of product 'SM-18277' are
three units, for a total of $20.97. Figure 13.29 shows the effects of an update to the DWDAYSALESFACT base table.

FIGURE
13.28

Creating a materialized view

C6545_13 9/24/2007 15:19:3 Page 561

561B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

Figure 13.29 shows how the materialized view was automatically updated after the insertion of a new row in the
DWDAYSALESFACT table. Note that the last row of the SALES_MONTH_MV now shows that in October, the sales
of product 'SM-18277' are four units, for a total of $27.96.

FIGURE
13.29

Refreshing a materialized view

C6545_13 9/24/2007 15:19:3 Page 562

562 C H A P T E R 1 3

Although all of the examples in this section focus on SQL extensions to support OLAP reporting in an Oracle DBMS,
you have seen just a small fraction of the many business intelligence features currently provided by most DBMS
vendors. For example, most vendors provide rich graphical user interfaces to manipulate, analyze, and present the data
in multiple formats. Figure 13.30 shows two sample screens, one for Oracle and one for Microsoft OLAP products.

Oracle DBMS
OLAP Services

Microsoft SQL Server
Analysis Services

FIGURE
13.30

Sample OLAP applications

C6545_13 9/24/2007 15:19:4 Page 563

563B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

S u m m a r y

◗ Business intelligence (BI) is a term used to describe a comprehensive, cohesive, and integrated set of applications
used to capture, collect, integrate, store, and analyze data with the purpose of generating and presenting
information used to support business decision making.

◗ BI covers a range of technologies and applications to manage the entire data life cycle from acquisition to storage,
transformation, integration, analysis, monitoring, presentation, and archiving. BI functionality ranges from simple
data gathering and extraction to very complex data analysis and presentation.

◗ Decision support systems (DSS) refers to an arrangement of computerized tools used to assist managerial decision
making within a business. DSS were the original precursor of current generation BI systems.

◗ Operational data are not well-suited for decision support. From the end-user point of view, decision support data
differ from operational data in three main areas: time span, granularity, and dimensionality.

◗ The requirements for a decision support DBMS are divided into four main categories: database schema, data
extraction and loading, end-user analytical interface, and database size requirements.

◗ The data warehouse is an integrated, subject-oriented, time-variant, nonvolatile collection of data that provides
support for decision making. The data warehouse is usually a read-only database optimized for data analysis and
query processing. A data mart is a small, single-subject data warehouse subset that provides decision support to a
small group of people.

◗ Online analytical processing (OLAP) refers to an advanced data analysis environment that supports decision
making, business modeling, and operations research. OLAP systems have four main characteristics: use of
multidimensional data analysis techniques, advanced database support, easy-to-use end-user interfaces, and client/
server architecture.

◗ Relational online analytical processing (ROLAP) provides OLAP functionality by using relational databases and
familiar relational query tools to store and analyze multidimensional data. Multidimensional online analytical
processing (MOLAP) provides OLAP functionality by using multidimensional database management systems
(MDBMSs) to store and analyze multidimensional data.

◗ The star schema is a data-modeling technique used to map multidimensional decision support data into a relational
database with the purpose of performing advanced data analysis. The basic star schema has four components:
facts, dimensions, attributes, and attribute hierarchies. Facts are numeric measurements or values representing a
specific business aspect or activity. Dimensions are general qualifying categories that provide additional perspec-
tives to a given fact. Conceptually, the multidimensional data model is best represented by a three-dimensional
cube. Attributes can be ordered in well-defined attribute hierarchies. The attribute hierarchy provides a top-down
organization that is used for two main purposes: to permit aggregation and to provide drill-down/roll-up data
analysis.

◗ Four techniques are generally used to optimize data warehouse design: normalizing dimensional tables, maintaining
multiple fact tables representing different aggregation levels, denormalizing fact tables, and partitioning and
replicating tables.

◗ Data mining automates the analysis of operational data with the intention of finding previously unknown data
characteristics, relationships, dependencies, and/or trends. The data mining process has four phases: data
preparation, data analysis and classification, knowledge acquisition, and prognosis.

◗ SQL has been enhanced with extensions that support OLAP-type processing and data generation.

C6545_13 9/24/2007 15:19:5 Page 564

564 C H A P T E R 1 3

K e y T e r m s

attribute hierarchy, 544

cube cache, 539

dashboard, 519

data cube, 539

data mart, 527

data mining, 553

data store, 518

data warehouse, 525

decision support system (DSS), 519

dimensions, 542

dimension tables, 542

drill down, 521

facts, 541

fact table, 541

governance, 517

key performance indicators
(KPI), 517

master data management (MDM),
516

materialized view, 560

metrics, 541

multidimensional database
management system
(MDBMS), 539

multidimensional online analytical
processing (MOLAP), 539

online analytical processing
(OLAP), 530

partitioning, 551

periodicity, 551

relational online analytical
processing (ROLAP), 537

replication, 551

roll up, 521

slice and dice, 543

snowflake schema, 549

sparsity, 539

star schema, 541

very large databases (VLDBs), 525

R e v i e w Q u e s t i o n s

1. What is business intelligence?

2. Describe the BI framework.

3. What are decision support systems, and what role do they play in the business environment?

4. Explain how the main components of the BI architecture interact to form a system.

5. What are the most relevant differences between operational and decision support data?

6. What is a data warehouse, and what are its main characteristics?

7. Give three examples of problems likely to be encountered when operational data are integrated into the data
warehouse.

Use the following scenario to answer Questions 8−14.

While working as a database analyst for a national sales organization, you are asked to be part of its data warehouse
project team.

8. Prepare a high-level summary of the main requirements for evaluating DBMS products for data warehousing.

9. Your data warehousing project group is debating whether to prototype a data warehouse before its
implementation. The project group members are especially concerned about the need to acquire some data
warehousing skills before implementing the enterprise-wide data warehouse. What would you recommend?
Explain your recommendations.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_13 9/24/2007 15:21:14 Page 565

565B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

10. Suppose you are selling the data warehouse idea to your users. How would you define multidimensional data
analysis for them? How would you explain its advantages to them?

11. Before making a commitment, the data warehousing project group has invited you to provide an OLAP overview.
The group’s members are particularly concerned about the OLAP client/server architecture requirements and
how OLAP will fit the existing environment. Your job is to explain to them the main OLAP client/server
components and architectures.

12. One of your vendors recommends using an MDBMS. How would you explain this recommendation to your
project leader?

13. The project group is ready to make a final decision, choosing between ROLAP and MOLAP. What should be the
basis for this decision? Why?

14. The data warehouse project is in the design phase. Explain to your fellow designers how you would use a star
schema in the design.

15. Briefly discuss the decision support architectural styles and their evolution. What major technologies influenced
this evolution?

16. What is OLAP, and what are its main characteristics?

17. Explain ROLAP and give the reasons you would recommend its use in the relational database environment.

18. Explain the use of facts, dimensions, and attributes in the star schema.

19. Explain multidimensional cubes and describe how the slice-and-dice technique fits into this model.

20. In the star schema context, what are attribute hierarchies and aggregation levels, and what is their purpose?

21. Discuss the most common performance improvement techniques used in star schemas.

22. Explain some of the most important issues in data warehouse implementation.

23. What is data mining, and how does it differ from traditional decision support tools?

24. How does data mining work? Discuss the different phases in the data mining process.

P r o b l e m s

1. The university computer lab’s director keeps track of lab usage, measured by the number of students using the
lab. This particular function is important for budgeting purposes. The computer lab director assigns you the task
of developing a data warehouse in which to keep track of the lab usage statistics. The main requirements for this
database are to:

� Show the total number of users by different time periods.

� Show usage numbers by time period, by major, and by student classification.

� Compare usage for different majors and different semesters.

O n l i n e C o n t e n t

The databases used for this problem set are found in the Student Online Companion for this book. These
databases are stored in Microsoft Access 2000 format. The databases, named Ch13_P1.mdb, Ch13_P3.
mdb, and Ch13_P4.mdb, contain the data for Problems 1, 3, and 4, respectively. The data for Problem 2
are stored in Microsoft Excel format in the Student Online Companion for this book. The spreadsheet filename
is Ch13_P2.xls.

C6545_13 9/24/2007 15:21:37 Page 566

566 C H A P T E R 1 3

Use the Ch13_P1.mdb database, which includes the following tables:

� USELOG contains the student lab access data.

� STUDENT is a dimension table containing student data.

Given the three bulleted requirements and using the Ch13_P1.mdb data, complete Problems 1a−1g.

a. Define the main facts to be analyzed. (Hint: These facts become the source for the design of the fact table.)

b. Define and describe the appropriate dimensions. (Hint: These dimensions become the source for the design
of the dimension tables.)

c. Draw the lab usage star schema, using the fact and dimension structures you defined in Problems 1a and 1b.

d. Define the attributes for each of the dimensions in Problem 1b.

e. Recommend the appropriate attribute hierarchies.

f. Implement your data warehouse design, using the star schema you created in Problem 1c and the attributes
you defined in Problem 1d.

g. Create the reports that will meet the requirements listed in this problem’s introduction.

2. Ms. Victoria Ephanor manages a small product distribution company. Because the business is growing fast, Ms.
Ephanor recognizes that it is time to manage the vast information pool to help guide the accelerating growth. Ms.
Ephanor, who is familiar with spreadsheet software, currently employs a small sales force of four people. She asks
you to develop a data warehouse application prototype that will enable her to study sales figures by year, region,
salesperson, and product. (This prototype is to be used as the basis for a future data warehouse database.)

Using the data supplied in the Ch13_P2.xls file, complete the following seven problems:

a. Identify the appropriate fact table components.

b. Identify the appropriate dimension tables.

c. Draw a star schema diagram for this data
warehouse.

d. Identify the attributes for the dimension tables
that will be required to solve this problem.

e. Using a Microsoft Excel spreadsheet (or any
other spreadsheet capable of producing pivot
tables), generate a pivot table to show the sales
by product and by region. The end user must be
able to specify the display of sales for any given
year. (The sample output is shown in the first
pivot table in Figure P13.2E.)

f. Using Problem 2e as your base, add a second
pivot table (see Figure P13.2E) to show the sales
by salesperson and by region. The end user
must be able to specify sales for a given year or
for all years and for a given product or for all
products.

FIGURE
P13.2E

Using a pivot table

C6545_13 10/11/2007 15:40:36 Page 567

567B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

g. Create a 3-D bar graph to show sales by sales-
person, by product, and by region. (See the
sample output in Figure P13.2G.)

3. Mr. David Suker, the inventory manager for a mar-
keting research company, is interested in studying
the use of supplies within the different company
departments. Mr. Suker has heard that his friend,
Ms. Ephanor, has developed a small spreadsheet-
based data warehouse model (see Problem 2) that
she uses to analyze sales data. Mr. Suker is inter-
ested in developing a small data warehouse model
like Ms. Ephanor’s so he can analyze orders by
department and by product. He will use Microsoft
Access as the data warehouse DBMS and Microsoft
Excel as the analysis tool.

a. Develop the order star schema.

b. Identify the appropriate dimensions attributes.

c. Identify the attribute hierarchies required to sup-
port the model.

d. Develop a crosstab report (in Microsoft Access),
using a 3-D bar graph to show orders by prod-
uct and by department. (The sample output is
shown in Figure P13.3.)

4. ROBCOR, whose sample data are contained in the
database named Ch13_P4.mdb, provides “on-
demand” aviation charters, using a mix of different
aircraft and aircraft types. Because ROBCOR has
grown rapidly, its owner has hired you to be its first
database manager. (The company’s database, devel-
oped by an outside consulting team, already has a
charter database in place to help manage all of its
operations.) Your first critical assignment is to
develop a decision support system to analyze the

charter data. (Review Problems 30−34 in Chapter 3, The Relational Database Model, in which the operations
have been described.) The charter operations manager wants to be able to analyze charter data such as cost,
hours flown, fuel used, and revenue. She would also like to be able to drill down by pilot, type of airplane, and
time periods.

Given those requirements, complete the following:

a. Create a star schema for the charter data.

b. Define the dimensions and attributes for the charter operation’s star schema.

c. Define the necessary attribute hierarchies.

d. Implement the data warehouse design, using the design components you developed in Problems 4a−4c.

e. Generate the reports that will illustrate that your data warehouse meets the specified information
requirements.

Using the data provided in the SaleCo snowflake schema in Figure 13.25, solve the following problems.

FIGURE
P13.2G

3-D bar graph showing the
relationships among agent,
product, and region

FIGURE
P13.3

Crosstab report: orders by
product and department

C6545_13 9/25/2007 10:22:12 Page 568

568 C H A P T E R 1 3

5. What is the SQL command to list the total sales by customer and by product, with subtotals by customer and a
grand total for all product sales? (Hint: Use the ROLLUP command.)

6. What is the SQL command to list the total sales by customer, month, and product, with subtotals by customer
and by month and a grand total for all product sales? (Hint: Use the ROLLUP command.)

7. What is the SQL command to list the total sales by region and customer, with subtotals by region and a grand
total for all sales? (Hint: Use the ROLLUP command.)

8. What is the SQL command to list the total sales by month and product category, with subtotals by month and
a grand total for all sales? (Hint: Use the ROLLUP command.)

9. What is the SQL command to list the number of product sales (number of rows) and total sales by month, with
subtotals by month and a grand total for all sales? (Hint: Use the ROLLUP command.)

10. What is the SQL command to list the number of product sales (number of rows) and total sales by month and
product category, with subtotals by month and product category and a grand total for all sales? (Hint: Use the
ROLLUP command.)

11. What is the SQL command to list the number of product sales (number of rows) and total sales by month, product
category, and product, with subtotals by month and product category and a grand total for all sales? (Hint: Use
the ROLLUP command.)

12. Using the answer to Problem 10 as your base, what command would you need to generate the same output but
with subtotals in all columns? (Hint: Use the CUBE command.)

O n l i n e C o n t e n t

The script files used to populate the database are available in the Student Online Companion. The script files
assume an Oracle RDBMS. If you use a different DBMS, consult the documentation to verify whether the
vendor supports similar functionality and what the proper syntax is for your DBMS.

C6545_13 10/11/2007 15:41:2 Page 569

569B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

PART

V
Databases and the

Internet

14Database Connectivity and Web Technologies

C6545_14 10/22/2007 11:17:41 Page 570

B
V

usiness
ignette

Casio Upgrades Customer Web Experience

A global leader, Casio Computer Co., Ltd., has been developing consumer electronics

since 1957. While the company creates high tech devices such as LCD TVs, digital

cameras, handheld computers, and other communications devices, its Web site was

behind the times. The site was written in HTML only, with little content and with an

e-commerce page that was managed by a third party.

“It was an OK site, but not the kind of breakthrough experience we were hoping to offer

our customers,” says Casio’s Internet services manager Michael McCormick.

The company wanted to upgrade the look and feel and add new functionality, including

better merchandising capabilities and a more comprehensive shopping cart.The company

chose Macromedia’s ColdFusion MX running on a Linux platform. (Macromedia recently

merged with Adobe and the product is now Adobe ColdFusion.) A 15-person team

including designers, programmers, and testers spent five months creating the new site.

ColdFusion’s tag-based language, its reusability of code modules, and its debugging tools

expedited this development. ColdFusion’s open architecture Web application server also

facilitated integration with the company’s enterprise system. Now, users can browse

through thousands of products, make purchases easily, and track their orders.

Casio also enjoys much greater administrative functionality, accessing inventory figures,

sales reports, membership information, and order process and fulfillment data through

the site. In addition, the company now can manage the site’s content itself, rather than

turning to its Web development partner, Pipeline Interactive, each time it needs to update

one of its 50,000 screens of content.

Yet, the most critical feature of the new site is its ability to cross-sell and upsell.“We can

cross-sell a printer when someone buys a digital camera,” explains McCormick. “Or we

can suggest additional ink cartridges when someone buys a printer. If a particular SKU

isn’t in stock, [we] suggest substitute products that are similar—perhaps a different

color.”

The result is that Casio’s e-commerce sales have doubled since the site was launched.The

site boasts more than 700,000 registered users with more than one million page views

per day.

C6545_14 10/22/2007 11:18:22 Page 571

Preview

Database Connectivity and Web Technologies

In this chapter, you will learn:

� About the various database connectivity technologies

� How Web-to-database middleware is used to integrate databases with the Internet

� About Web browser plug-ins and extensions

� What services are provided by Web application servers

� What Extensible Markup Language (XML) is and why it is important for Web database
development

As you know, a database is a central repository for critical business data. Such data can be

generated through traditional business applications or via newer business channels such as

the Web, a phone connection, a wireless PDA, or a smart phone.To be useful universally, the

data must be available to all business users.Those users need access to the data via many

avenues: a spreadsheet, a user-developedVisual Basic application, a Web front end, Microsoft

Access forms and reports, and so on. In this chapter, you learn about the architectures used

by applications to connect to databases.

The Internet has changed how organizations of all types operate. For example, buying goods

and services via the Internet has become commonplace. In today’s environment, intercon-

nectivity occurs not only between an application and the database, but also between

applications interchanging messages and data. Extensible Markup Language (XML) provides

a standard way of exchanging unstructured and structured data between applications.

Given the growing relationship between the Web and databases, database professionals

must know how to create, use, and manage Web interfaces to those databases.This chapter

examines the basics of Web database technologies.

14
F

O
U

R
T

E
E

N

C6545_14 10/22/2007 11:20:18 Page 572

14.1 DATABASE CONNECTIVITY

The term database connectivity refers to the mechanisms through which application programs connect and
communicate with data repositories. Database connectivity software is also known as database middleware because
it interfaces between the application program and the database. The data repository, also known as the data source,
represents the data management application (that is, an Oracle RDBMS, SQL Server DBMS, or IBM DBMS) that will
be used to store the data generated by the application program. Ideally, a data source or data repository could be
located anywhere and hold any type of data. For example, the data source could be a relational database, a hierarchical
database, a spreadsheet, or a text data file.

The need for standard database connectivity interfaces cannot be overstated. Just as SQL has become the de facto data
manipulation language, there is a need for a standard database connectivity interface that will enable applications to
connect to data repositories. There are many different ways to achieve database connectivity. This section will cover
only the following interfaces:

� Native SQL connectivity (vendor provided).

� Microsoft’s Open Database Connectivity (ODBC).

� Data Access Objects (DAO) and Remote Data Objects (RDO).

� Microsoft’s Object Linking and Embedding for Database (OLE-DB).

� Microsoft’s ActiveX Data Objects (ADO.NET).

� Sun’s Java Database Connectivity (JDBC).

You should not be surprised to learn that most interfaces you are likely to encounter are Microsoft offerings. After all,
client applications connect to databases, and the majority of those applications run on computers that are powered by
some version of Microsoft Windows. The data connectivity interfaces illustrated here are dominant players in the
market, and more importantly, they enjoy the support of the majority of database vendors. In fact, ODBC, OLE-DB,
and ADO.NET form the backbone of Microsoft’s Universal Data Access (UDA) architecture, a collection of
technologies used to access any type of data source and manage the data through a common interface. As you will
see, Microsoft’s database connectivity interfaces have evolved over time: each interface builds on top of the other, thus
providing enhanced functionality, features, flexibility, and support.

14.1.1 Native SQL Connectivity

Most DBMS vendors provide their own methods for connecting to their databases. Native SQL connectivity refers to
the connection interface that is provided by the database vendor and that is unique to that vendor. The best example
of that type of native interface is the Oracle RDBMS. To connect a client application to an Oracle database, you must
install and configure the Oracle’s SQL*Net interface in the client computer. Figure 14.1 shows the configuration of
Oracle SQL*Net interface on the client computer.

Native database connectivity interfaces are optimized for “their” DBMS, and those interfaces support access to most,
if not all, of the database features. However, maintaining multiple native interfaces for different databases can become
a burden for the programmer. Therefore, the need for “universal” database connectivity arises. Usually, the native
database connectivity interface provided by the vendor is not the only way to connect to a database; most current
DBMS products support other database connectivity standards, the most common being ODBC.

14.1.2 ODBC, DAO, and RDO

Developed in early 1990s, Open Database Connectivity (ODBC) is Microsoft’s implementation of a superset of the
SQL Access Group Call Level Interface (CLI) standard for database access. ODBC is probably the most widely
supported database connectivity interface. ODBC allows any Windows application to access relational data sources,
using SQL via a standard application programming interface (API). The Webopedia online dictionary

C6545_14 10/22/2007 11:21:38 Page 573

573D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

(www.webopedia.com) defines an API as “a set of routines, protocols, and tools for building software applications.”
A good API makes it easy to develop a program by providing all of the building blocks; the programmer puts the blocks
together. Most operating environments, such as Microsoft Windows, provide an API so programmers can write
applications consistent with the operating environment. Although APIs are designed for programmers, they are
ultimately good for users because they guarantee that all programs using a common API will have similar interfaces.
That makes it easy for users to learn new programs.

ODBC was the first widely adopted database middleware standard, and it enjoyed rapid adoption in Windows
applications. As programming languages evolved, ODBC did not provide significant functionality beyond the ability to
execute SQL to manipulate relational style data. Therefore, programmers needed a better way to access data. To
answer that need, Microsoft developed two other data access interfaces:

� Data Access Objects (DAO) is an object-oriented API used to access MS Access, MS FoxPro, and dBase
databases (using the Jet data engine) from Visual Basic programs. DAO provided an optimized interface that
exposed to programmers the functionality of the Jet data engine (on which the MS Access database is based).
The DAO interface can also be used to access other relational style data sources.

� Remote Data Objects (RDO) is a higher-level object-oriented application interface used to access remote
database servers. RDO uses the lower-level DAO and ODBC for direct access to databases. RDO was
optimized to deal with server-based databases, such as MS SQL Server, Oracle, and DB2.

Figure 14.2 illustrates how Windows applications can use ODBC, DAO, and RDO to access local and remote relational
data sources.

As you can tell by examining Figure 14.2, client applications can use ODBC to access relational data sources.
However, the DAO and RDO object interfaces provide more functionality. DAO and RDO make use of the underlying
ODBC data services. ODBC, DAO, and RDO are implemented as shared code that is dynamically linked to the
Windows operating environment through dynamic-link libraries (DLLs) which are stored as files with the .dll
extension. Running as a DLL, the code speeds up load and run times.

FIGURE
14.1

ORACLE native connectivity

C6545_14 10/22/2007 11:22:5 Page 574

574 C H A P T E R 1 4

The basic ODBC architecture has three main components:

� A high-level ODBC API through which application programs access ODBC functionality.

� A driver manager that is in charge of managing all database connections.

� An ODBC driver that communicates directly to the DBMS.

Defining a data source is the first step in using ODBC. To define a data source, you must create a data source name
(DSN) for the data source. To create a DSN you need to provide:

� An ODBC driver. You must identify the driver to use to connect to the data source. The ODBC driver is
normally provided by the database vendor, although Microsoft provides several drivers that connect to most
common databases. For example, if you are using an Oracle DBMS, you will select the Oracle ODBC driver
provided by Oracle, or if desired, the Microsoft-provided ODBC driver for Oracle.

FIGURE
14.2

Using ODBC, DAO, and RDO to access databases

MS Word MS Access MS Excel

RDO

DAO

Jet Engine

ODBC API

ODBC Driver Manager

ODBC Database Driver

Oracle
Driver

MS SQL
Driver

ODBC
Driver

Oracle MS SQL Access

Remote Data Objects

Data Access Objects

Jet Engine supports MS
Access databases and other

SQL-aware data sources

Database vendors provide ODBC
database drivers so Windows
applications can access their

respective databases

Client Applications

C6545_14 10/22/2007 11:20:21 Page 575

575D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

� A DSN name. This is a unique name by which the data source will be known to ODBC, and therefore, to
applications. ODBC offers two types of data sources: user and system. User data sources are available only
to the user. System data sources are available to all users, including operating system services.

� ODBC driver parameters. Most ODBC drivers require specific parameters in order to establish a connection
to the database. For example, if you are using an MS Access database, you must point to the location of the
MS Access (.mdb) file, and if necessary, provide a username and password. If you are using a DBMS server,
you must provide the server name, the database name, the username, and the password needed to connect
to the database. Figure 14.3 shows the ODBC screens required to create a System ODBC data source for an
Oracle DBMS. Note that some ODBC drivers use the native driver provided by the DBMS vendor.

Once the ODBC data source is defined, application programmers can write to the ODBC API by issuing specific
commands and providing the required parameters. The ODBC Driver Manager will properly route the calls to the
appropriate data source. The ODBC API standard defines three levels of compliance: Core, Level-1, and Level-2,
which provide increasing levels of functionality. For example, Level-1 might provide support for most SQL DDL and
DML statements, including subqueries and aggregate functions, but no support for procedural SQL or cursors. The
database vendors can choose which level to support. However, to interact with ODBC, the database vendor must
implement all of the features indicated in that ODBC API support level.

FIGURE
14.3

Configuring an Oracle ODBC data source

Defining an ODBC
System Data Source Name (DSN)
to Connect to an Oracle DBMS,

Using Oracle ODBC Driver

To create a new ODBC Data Source in Windows XP:
1. Click Start, Settings, Control Panel, Administrative
 Tools, Data Sources (ODBC).
2. Click the System DSN tab.
3. Click Add.
4. Select the database driver to use.
5. Click Finish to see the ODBC Driver Configuration screen.
6. Enter the new data source name and the parameters required.

Oracle ODBC Driver
uses the Native Oracle
SQL Connectivity

If no User ID is provded,
ODBC will prompt for the
User ID and Password at
run time

C6545_14 10/22/2007 11:20:21 Page 576

576 C H A P T E R 1 4

Figure 14.4 shows how you could use MS Excel to retrieve data from an Oracle RDBMS, using ODBC. Because much
of the functionality provided by these interfaces is oriented to accessing relational data sources, the use of the interfaces
was limited when they were used with other data source types. With the advent of object-oriented programming
languages, it has become more important to provide access to other nonrelational data sources.

14.1.3 OLE-DB

Although ODBC, DAO, and RDO were widely used, they did not provide support for nonrelational data. To answer
that need and to simplify data connectivity, Microsoft developed Object Linking and Embedding for Database
(OLE-DB). Based on Microsoft’s Component Object Model (COM), OLE-DB is database middleware that adds
object-oriented functionality for access to relational and nonrelational data. OLE-DB was the first part of Microsoft’s
strategy to provide a unified object-oriented framework for the development of next-generation applications.

FIGURE
14.4

MS EXCEL uses ODBC to connect to an Oracle database

CLIENT APPLICATION ODBC Interface

ODBC API

ODBC
DRIVER MGR

ODBC DRIVER

RDBMS
SERVER

DATABASE

DATABASE
SERVER

COMPUTER

1. From Excel, select Data, Import External Data and New
Database Query options to retrieve data from an Oracle
RDBMS.

2. Select the Oralab ODBC data source (see Figure 14.3).
3. Enter the authentication parameters. ODBC uses the

connection parameters to connect to the data source.
4. Select the table and the columns to use in the query.
5. Select Return Data to Microsoft Office Excel.
6. Excel uses the ODBC API to pass the SQL request down

to the database. Oracle executes the request and
generates a result set. Excel issues calls to the ODBC
API to retreive the result set and populate the
spreadsheet.

2

3

4

5

6

1

C6545_14 10/22/2007 11:20:21 Page 577

577D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

OLE-DB is composed of a series of COM objects that provide low-level database connectivity for applications. Because
OLE-DB is based on COM, the objects contain data and methods, also known as the interface. The OLE-DB model
is better understood when you divide its functionality into two types of objects:

� Consumers are objects (applications or processes) that request and use data. The data consumers request data
by invoking the methods exposed by the data provider objects (public interface) and passing the required
parameters.

� Providers are objects that manage the connection with a data source and provide data to the consumers.
Providers are divided into two categories: data providers and service providers.

- Data providers provide data to other processes. Database vendors create data provider objects that expose
the functionality of the underlying data source (relational, object-oriented, text, and so on).

- Service providers provide additional functionality to consumers. The service provider is located between the
data provider and the consumer. The service provider requests data from the data provider, transforms the
data, and then provides the transformed data to the data consumer. In other words, the service provider acts
like a data consumer of the data provider and as a data provider for the data consumer (end-user
application). For example, a service provider could offer cursor management services, transaction manage-
ment services, query processing services, and indexing services.

As a common practice, many vendors provide OLE-DB objects to augment their ODBC support, effectively creating
a shared object layer on top of their existing database connectivity (ODBC or native) through which applications can
interact. The OLE-DB objects expose functionality about the database; for example, there are objects that deal with
relational data, hierarchical data, and flat-file text data. Additionally, the objects implement specific tasks, such as
establishing a connection, executing a query, invoking a stored procedure, defining a transaction, or invoking an OLAP
function. By using OLE-DB objects, the database vendor can choose what functionality to implement in a modular way,
instead of being forced to include all of the functionality all of the time. Table 14.1 shows a sample of the
object-oriented classes used by OLE-DB and some of the methods (interfaces) exposed by the objects.

TABLE
14.1

Sample OLE-DB Classes and Interfaces

OBJECT CLASS USAGE SAMPLE INTERFACES
Session Used to create an OLE-DB session between a data consumer

application and a data provider.
IGetDataSource
ISessionProperties

Command Used to process commands to manipulate a data provider's data.
Generally, the command object will create RowSet objects to hold
the data returned by a data provider.

ICommandPrepare
ICommandProperties

RowSet Used to hold the result set returned by a relational style database
or a database that supports SQL. Represents a collection of rows
in a tabular format.

IRowsetInfo
IRowsetFind
IRowsetScroll

OLE-DB provided additional capabilities for the applications accessing the data. However, it did not provide support
for scripting languages, especially the ones used for Web development, such as Active Server Pages (ASP) and ActiveX.
(A script is written in a programming language that is not compiled, but is interpreted and executed at run time.) To
provide that support, Microsoft developed a new object framework called ActiveX Data Objects (ADO), which
provides a high-level application-oriented interface to interact with OLE-DB, DAO, and RDO. ADO provides a unified
interface to access data from any programming language that uses the underlying OLE-DB objects. Figure 14.5
illustrates the ADO/OLE-DB architecture, showing how it interacts with ODBC and native connectivity options.

C6545_14 10/22/2007 11:20:23 Page 578

578 C H A P T E R 1 4

ADO introduced a simpler object model that was composed of only a few interacting objects to provide the data
manipulation services required by the applications. Sample objects in ADO are shown in Table 14.2.

TABLE
14.2

Sample ADO Objects

OBJECT CLASS USAGE
Connection Used to set up and establish a connection with a data source. ADO will connect to any

OLE-DB data source. The data source can be of any type.
Command Used to execute commands against a specific connection (data source).
Recordset Contains the data generated by the execution of a command. It will also contain any new

data to be written to the data source. The Recordset can be disconnected from the data
source.

Fields Contains a collection of Field descriptions for each column in the Recordset.

Although the ADO model is a tremendous improvement over the OLE-DB model, Microsoft is actively encouraging
programmers to use its new data access framework, ADO.NET.

FIGURE
14.5

OLE-DB architecture

OLE-DB Data Providers

OLE-DB Provider
for SQL Server

OLE-DB Provider
for ODBC

OLE-DB Provider
for Exchange

OLE-DB Provider
for Oracle

SQL Server

ODBCSQL*NET

E-MAIL

OLE-DB Service Providers
Query

Processing
Cursor

Processing
E-mail

Processing
Indexing

Processing

DATABASEDATABASE

OLE-DB Consumers

ActiveX Data Objects (ADO)

Client Applications

Access Excel Visual C++

C6545_14 10/22/2007 11:20:24 Page 579

579D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

14.1.4 ADO.NET

Based on ADO, ADO.NET is the data access component of Microsoft’s .NET application development framework.
The Microsoft .NET framework is a component-based platform for developing distributed, heterogeneous,
interoperable applications aimed at manipulating any type of data over any network under any operating system and
any programming language. Comprehensive coverage of the .NET framework is beyond the scope of this book.
Therefore, this section will only introduce the basic data access component of the .NET architecture, ADO.NET.

It’s important to understand that the .NET framework extends and enhances the functionality provided by the
ADO/OLE-DB duo. ADO.NET introduced two new features critical for the development of distributed applications:
DataSets and XML support.

To understand the importance of this new model, you should know that a DataSet is a disconnected memory-resident
representation of the database. That is, the DataSet contains tables, columns, rows, relationships, and constraints.
Once the data are read from a data provider, the data are placed on a memory-resident DataSet, and the DataSet is
then disconnected from the data provider. The data consumer application interacts with the data in the DataSet object
to make changes (inserts, updates, and deletes) in the DataSet. Once the processing is done, the DataSet data are
synchronized with the data source and the changes are made permanent.

The DataSet is internally stored in XML format (you will learn about XML later in this chapter), and the data in the
DataSet can be made persistent as XML documents. This is critical in today’s distributed environments. In short, you
can think of the DataSet as an XML-based, in-memory database that represents the persistent data stored in the data
source. Figure 14.6 illustrates the main components of the ADO.NET object model.

The ADO.NET framework consolidates all data access functionality under one integrated object model. In this object
model, several objects interact with one another to perform specific data manipulation functions. Those objects can
be grouped as data providers and consumers.

Data provider objects are provided by the database vendors. However, ADO.NET comes with two standard data
providers: a data provider for OLE-DB data sources and a data provider for SQL Server. That way ADO.NET can work
with any previously supported database, including an ODBC database with an OLE-DB data provider. At the same
time, ADO.NET includes a highly optimized data provider for SQL Server.

Whatever the data provider is, it must support a set of specific objects in order to manipulate the data in the data
source. Some of those objects are shown in Figure 14.6. A brief description of the objects follows.

� Connection. The Connection object defines the data source used, the name of the server, the database, and
so on. This object enables the client application to open and close a connection to a database.

� Command. The Command object represents a database command to be executed within a specified database
connection. This object contains the actual SQL code or a stored procedure call to be run by the database.
When a SELECT statement is executed, the Command object returns a set of rows and columns.

� DataReader. The DataReader object is a specialized object that creates a read-only session with the database
to retrieve data sequentially (forward only) in a very fast manner.

� DataAdapter. The DataAdapter object is in charge of managing a DataSet object. This is the most specialized
object in the ADO.NET framework. The DataAdapter object contains the following objects that aid in
managing the data in the DataSet: SelectCommand, InsertCommand, UpdateCommand, and
DeleteCommand. The DataAdapter object uses those objects to populate and synchronize the data in the
DataSet with the permanent data source data.

� DataSet. The DataSet object is the in-memory representation of the data in the database. This object contains
two main objects. The DataTableCollection object contains a collection of DataTable objects that make up the
“in-memory” database, and the DataRelationCollection object contains a collection of objects describing the
data relationships and ways to associate one row in a table to the related row in another table.

C6545_14 10/22/2007 11:20:24 Page 580

580 C H A P T E R 1 4

� DataTable. The DataTable object represents the data in tabular format. This object has one very important
property: PrimaryKey, which allows the enforcement of entity integrity. In turn, the DataTable object is
composed of three main objects:

- DataColumnCollection contains one or more column descriptions. Each column description has properties
such as column name, data type, nulls allowed, maximum value, and minimum value.

- DataRowCollection contains zero rows, one row, or more than one row with data as described in the
DataColumnCollection.

- ConstraintCollection contains the definition of the constraints for the table. Two types of constraints are
supported: ForeignKeyConstraint and UniqueConstraint.

As you can see, a DataSet is, in fact, a simple database with tables, rows, and constraints. Even more important, the
DataSet doesn’t require a permanent connection to the data source. The DataAdapter uses the SelectCommand object
to populate the DataSet from a data source. However, once the DataSet is populated, it is completely independent of
the data source, which is why it’s called “disconnected.”

FIGURE
14.6

ADO.NET framework

DataReader

DataAdapter

Command

Connection

OLE-DB

DATABASE

ADO.NET

Client Applications

DataRelationCollection

DataTableCollection

DataTable

DataColumnCollection

DataRowCollection

ConstraintCollection

DataSet (XML)

Data Providers

Internet

Data Consumers

Access Excel

C6545_14 10/22/2007 11:20:24 Page 581

581D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

Additionally, DataTable objects in a DataSet can come from different data sources. This means that you could have an
EMPLOYEE table in an Oracle database and a SALES table in a SQL Server database. You could then create a DataSet
that relates both tables as though they were located in the same database. In short, the DataSet object paves the way
for truly heterogeneous distributed database support within applications.

The ADO.NET framework is optimized to work in disconnected environments. In a disconnected environment,
applications exchange messages in request/reply format. The most common example of a disconnected system is the
Internet. Modern applications rely on the Internet as the network platform and on the Web browser as the graphical
user interface. In the next section, you will learn details about how Internet databases work.

14.1.5 Java Database Connectivity (JDBC)

Java is an object-oriented programming language developed by Sun Microsystems that runs on top of Web browser
software. Java is one of the most common programming languages for Web development. Sun Microsystems created
Java as a “write once, run anywhere” environment. That means that a programmer can write a Java application once
and then without any modification, run the application in multiple environments (Microsoft Windows, Apple OS X,
IBM AIX, etc.). The cross-platform capabilities of Java are based on its portable architecture. Java code is normally
stored in pre-processed chunks known as applets that run on a virtual machine environment in the host operating
system. This environment has well-defined boundaries and all interactivity with the host operating system is closely
monitored. Sun provides Java runtime environments for most operating systems (from computers to hand-held devices
to TV set-top boxes.) Another advantage of using Java is its “on-demand” architecture. When a Java application loads,
it can dynamically download all its modules or required components via the Internet.

When Java applications want to access data outside the Java runtime environment, they use pre-defined application
programming interfaces. Java Database Connectivity (JDBC) is an application programming interface that allows
a Java program to interact with a wide range of data sources (relational databases, tabular data sources, spreadsheets,
and text files). JDBC allows a Java program to establish a connection with a data source, prepare and send the SQL
code to the database server, and process the result set.

One of the main advantages of JDBC is that it allows a company to leverage its existing investment in technology and
personnel training. JDBC allows programmers to use their SQL skills to manipulate the data in the company’s
databases. As a matter of fact, JDBC allows direct access to a database server or access via database middleware.
Furthermore, JDBC provides a way to connect to databases through an ODBC driver. Figure 14.7 illustrates the basic
JDBC architecture and the various database access styles.

As you see in Figure 14.7, the database access architecture in JDBC is very similar to the ODBC/OLE/ADO.NET
architecture. All database access middleware shares similar components and functionality. One advantage of JDBC
over other middleware is that it requires no configuration on the client side. The JDBC driver is automatically
downloaded and installed as part of the Java applet download. Because Java is a Web-based technology, applications
can connect to a database directly using a simple URL. Once the URL is invoked, the Java architecture comes into
place, the necessary applets are downloaded to the client (including the JDBC database driver and all configuration
information), and then the applets are executed securely in the client’s runtime environment.

Every day, more and more companies are investing resources in developing and expanding their Web presence and
finding ways to do more business on the Internet. Such business will generate increasing amounts of data that will be
stored in databases. Java and the .NET framework are part of the trend toward increasing reliance on the Internet as
a critical business resource. In fact, it has been said that the Internet will become the development platform of the
future. In the next section you will learn more about Internet databases and how they are used.

C6545_14 10/22/2007 11:23:27 Page 582

582 C H A P T E R 1 4

14.2 INTERNET DATABASES

Millions of people all over the world use computers and Web browser software to access the Internet, connecting to
databases over the Web. Web database connectivity opens the door to new innovative services that:

� Permit rapid responses to competitive pressures by bringing new services and products to market quickly.

� Increase customer satisfaction through the creation of Web-based support services.

� Yield fast and effective information dissemination through universal access from across the street or across
the globe.

Given those advantages, many organizations rely on their IS departments to create universal data access architectures
based on Internet standards. Table 14.3 shows a sample of Internet technology characteristics and the benefits they
provide.

Java Client Application

JDBC API

JDBC Driver Manager

Java DB Driver Java DB Driver
JDBC-ODBC
Bridge Driver

ODBC
Database

Middleware

FIGURE
14.7

JDBC architecture

DATABASE DATABASE DATABASE DATABASE

C6545_14 10/22/2007 11:20:25 Page 583

583D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

TABLE
14.3

Characteristics and Benefits of Internet Technologies

INTERNET CHARACTERISTIC BENEFIT
Hardware and software independence Savings in equipment/software acquisition

Ability to run on most existing equipment
Platform independence and portability
No need for multiple platform development

Common and simple user interface Reduced training time and cost
Reduced end-user support cost
No need for multiple platform development

Location independence Global access through Internet infrastructure
Reduced requirements (and costs!) for dedicated connections

Rapid development at manageable costs Availability of multiple development tools
Plug-and-play development tools (open standards)
More interactive development
Reduced development times
Relatively inexpensive tools
Free client access tools (Web browsers)
Low entry costs. Frequent availability of free Web servers
Reduced costs of maintaining private networks
Distributed processing and scalability, using multiple servers

In the current business and global information environment, it’s easy to see why many database professionals consider
the DBMS connection to the Internet to be a critical element in IS development. As you will learn in the following
sections, database application development—and, in particular, the creation and management of user interfaces and
database connectivity—are profoundly affected by the Web. However, having a Web-based database interface does not
negate the database design and implementation issues that were addressed in the previous chapters. In the final
analysis, whether you make a purchase by going online or by standing in line, the system-level transaction details are
essentially the same, and they require the same basic database structures and relationships. If any immediate lesson is
to be learned, it is this: The effects of bad database design, implementation, and management are multiplied in
an environment in which transactions might be measured in hundreds of thousands per day, rather than in
hundreds per day.

The Internet is rapidly changing the way information is generated, accessed, and distributed. At the core of this change
is the Web’s ability to access data in databases (local and remote), the simplicity of the interface, and cross-platform
(heterogeneous) functionality. The Web has helped create a new information dissemination standard.

The following sections examine how Web-to-database middleware enables end users to interact with databases over
the Web.

14.2.1 Web-to-Database Middleware: Server-Side Extensions

In general, the Web server is the main hub through which all Internet services are accessed. For example, when an end
user uses a Web browser to dynamically query a database, the client browser requests a Web page. When the Web
server receives the page request, it looks for the page on the hard disk; when it finds the page (for example, a stock
quote, product catalog information, or an airfare listing), the server sends it back to the client.

C6545_14 10/22/2007 11:20:26 Page 584

584 C H A P T E R 1 4

Dynamic Web pages are at the heart of current generation Web sites. In this database-query scenario, the Web server
generates the Web page contents before it sends the page to the client Web browser. The only problem with the
preceding query scenario is that the Web server must include the database query result on the page before it sends that
page back to the client. Unfortunately, neither the Web browser nor the Web server knows how to connect to and read
data from the database. Therefore, to support this type of request (database query), the Web server’s capability must
be extended so it can understand and process database requests. This job is done through a server-side extension.

A server-side extension is a program that interacts directly with the Web server to handle specific types of requests.
In the preceding database query example, the server-side extension program retrieves the data from databases and
passes the retrieved data to the Web server, which, in turn, sends the data to the client’s browser for display purposes.
The server-side extension makes it possible to retrieve and present the query results, but what’s more important is that
it provides its services to the Web server in a way that is totally transparent to the client browser. In short, the
server-side extension adds significant functionality to the Web server, and therefore, to the Internet.

A database server-side extension program is also known as Web-to-database middleware. Figure 14.8 shows the
interaction between the browser, the Web server, and the Web-to-database middleware.

Trace the Web-to-database middleware actions in Figure 14.8:

1. The client browser sends a page request to the Web server.

2. The Web server receives and validates the request. In this case, the server will pass the request to the
Web-to-database middleware for processing. Generally, the requested page contains some type of scripting
language to enable the database interaction.

3. The Web-to-database middleware reads, validates, and executes the script. In this case, it connects to the
database and passes the query using the database connectivity layer.

4. The database server executes the query and passes the result back to the Web-to-database middleware.

5. The Web-to-database middleware compiles the result set, dynamically generates an HTML-formatted page that
includes the data retrieved from the database, and sends it to the Web server.

6. The Web server returns the just-created HTML page, which now includes the query result, to the client browser.

7. The client browser displays the page on the local computer.

The interaction between the Web server and the Web-to-database middleware is crucial to the development of a
successful Internet database implementation. Therefore, the middleware must be well integrated with the other Internet
services and the components that are involved in its use. For example, when installing Web-to-database middleware,
the middleware must verify the type of Web server being used and install itself to match that Web server’s requirements.
In addition, how well the Web server and the Web-to-database service interact will depend on the Web server interfaces
that are supported by the Web server.

O n l i n e C o n t e n t

Client/server systems are covered in detail in Appendix F, Client/Server Systems, located in the Student
Online Companion for this book.

C6545_14 10/22/2007 11:20:26 Page 585

585D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

14.2.2 Web Server Interfaces

Extending Web server functionality implies that the Web server and the Web-to-database middleware will properly
communicate with each other. (Database professionals often use the word interoperate to indicate that each party can
respond to the communications of the other. This book’s use of communicate assumes interoperation.) If a Web server
is to communicate successfully with an external program, both programs must use a standard way to exchange
messages and to respond to requests. A Web server interface defines how a Web server communicates with external
programs. Currently, there are two well-defined Web server interfaces:

� Common Gateway Interface (CGI).

� Application programming interface (API).

CLIENT
COMPUTER

HTML
PAGE

The result of the
database query is

displayed in
HTML format

HTTP page
request

Web server
receives
request

WEB
SERVER

Web server determines the
page contains script language
and passes the script page to

the web-to-database
middleware

Web-to-database
middleware
connects
 to the database
and passes query
using database
connectivity layer

SCRIPT
PAGE

SERVER
COMPUTER

HTML
PAGE

Database server
passes the query

results back to the
web-to-database

middleware

RDBMS
Computer

Web server
sends the HTML
formatted page

to the client
Web-to-database

middleware passes the
query results in HTML

format back to the
web server

FIGURE
14.8

Web-to-database middleware

WEB-TO-DATABASE
MIDDLEWARE

JDBC
ADO.NET

ADO
OLE-DB
ODBC

5
RDBMS
SERVER

DATABASE

TCP/IP
NETWORK

7

6

4

3

2

1

8

C6545_14 10/22/2007 11:20:27 Page 586

586 C H A P T E R 1 4

The Common Gateway Interface (CGI) uses script files that perform specific functions based on the client’s
parameters that are passed to the Web server. The script file is a small program containing commands written in a
programming language—usually Perl, C++, or Visual Basic. The script file’s contents can be used to connect to the
database and to retrieve data from it, using the parameters passed by the Web server. Next, the script converts the
retrieved data to HTML format and passes the data to the Web server, which sends the HTML-formatted page to the
client.

The main disadvantage of using CGI scripts is that the script file is an external program that is individually executed
for each user request. That scenario decreases system performance. For example, if you have 200 concurrent
requests, the script is loaded 200 different times, which takes significant CPU and memory resources away from the
Web server. The language and method used to create the script also can affect system performance. For example,
performance is degraded by using an interpreted language or by writing the script inefficiently.

An application programming interface (API) is a newer Web server interface standard that is more efficient and faster
than a CGI script. APIs are more efficient because they are implemented as shared code or as dynamic-link libraries
(DLLs). That means the API is treated as part of the Web server program that is dynamically invoked when needed.

APIs are faster than CGI scripts because the code resides in memory, so there is no need to run an external program
for each request. Instead, the same API serves all requests. Another advantage is that an API can use a shared
connection to the database instead of creating a new one every time, as is the case with CGI scripts.

Although APIs are more efficient in handling requests, they have some disadvantages. Because the APIs share the
same memory space as the Web server, an API error can bring down the server. The other disadvantage is that APIs
are specific to the Web server and to the operating system.

At the time of this writing, there are four well-established Web server APIs:

� Netscape API (NSAPI) for Netscape servers.

� Internet Server API (ISAPI) for Microsoft Windows Web servers.

� WebSite API (WSAPI) for O’Reilly Web servers.

� JDBC to provide database connectivity for Java applications.

The various types of Web interfaces are illustrated in Figure 14.9.

Regardless of the type of Web server interface used, the Web-to-database middleware program must be able to connect
with the database. That connection can be accomplished in one of two ways:

� Use the native SQL access middleware provided by the vendor. For example, you can use SQL*Net if you are
using Oracle.

� Use the services of general database connectivity standards such as Open Database Connectivity (ODBC),
Object Linking and Embedding for Database (OLE-DB), ActiveX Data Objects (ADO), the ActiveX Data Objects
for .NET (ADO.NET) interface, or JDBC for Java connectivity.

14.2.3 The Web Browser

The Web browser is the application software in the client computer, such as Microsoft Internet Explorer, Apple Safari,
or Mozilla Firefox, that lets end users navigate (browse) the Web. Each time the end user clicks a hyperlink, the browser
generates an HTTP GET page request that is sent to the designated Web server, using the TCP/IP Internet protocol.

The Web browser’s job is to interpret the HTML code that it receives from the Web server and to present the various
page components in a standard formatted way. Unfortunately, the browser’s interpretation and presentation
capabilities are not sufficient to develop Web-based applications. That is because the Web is a stateless system—
which means that at any given time, a Web server does not know the status of any of the clients communicating with
it. That is, there is no open communication line between the server and each client accessing it, which, of course, is
impractical in a worldwide Web! Instead, client and server computers interact in very short “conversations” that follow

C6545_14 10/22/2007 11:20:27 Page 587

587D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

the request-reply model. For example, the browser is concerned only with the current page, so there is no way for the
second page to know what was done in the first page. The only time the client and server computers communicate
is when the client requests a page—when the user clicks a link—and the server sends the requested page to the client.
Once the client receives the page and its components, the client/server communication is ended. Therefore, although
you may be browsing a page and think that the communication is open, you are actually just browsing the HTML
document stored in the local cache (temporary directory) of your browser. The server does not have any idea what the
end user is doing with the document, what data is entered in a form, what option is selected, and so on. On the Web,
if you want to act on a client’s selection, you need to jump to a new page (go back to the Web server), therefore losing
track of whatever was done before!

A Web browser’s function is to display a page on the client computer. The browser—through its use of HTML—does
not have computational abilities beyond formatting output text and accepting form field inputs. Even when the browser
accepts form field data, there is no way to perform immediate data entry validation. Therefore, to perform such crucial
processing in the client, the Web defers to other Web programming languages such as Java, JavaScript, and VBScript.
The browser resembles a dumb terminal that displays only data and can perform only rudimentary processing such as

FIGURE
14.9

Web server CGI and API interfaces

CLIENT
COMPUTER

WEB
SERVER

CGI

SERVER
COMPUTER

RDBMS
COMPUTER

API
(DLL call)

TCP/IP
Network

External
Program

JDBC
ADO.NET

ADO
OLE-DB
ODBC

RDBMS
SERVER

DATABASE

Database Connectivity
Middleware

C6545_14 10/22/2007 11:20:28 Page 588

588 C H A P T E R 1 4

accepting form data inputs. To improve capabilities on the client side of the Web browser, you must use plug-ins and
other client-side extensions. On the server side, Web application servers provide the necessary processing power.

14.2.4 Client-Side Extensions

Client-side extensions add functionality to the Web browser. Although client-side extensions are available in various
forms, the most commonly encountered extensions are:

� Plug-ins.

� Java and JavaScript.

� ActiveX and VBScript.

A plug-in is an external application that is automatically invoked by the browser when needed. Because it is an
external application, the plug-in is operating-system specific. The plug-in is associated with a data object—generally
using the file extension—to allow the Web server to properly handle data that are not originally supported. For
example, if one of the page components is a PDF document, the Web server will receive the data, recognize it as a
“portable document format” object, and launch Adobe Acrobat Reader to present the document on the client
computer.

As noted earlier, Java runs on top of the Web browser software. Java applications are compiled and stored in the Web
server. (In many respects, Java resembles C++.) Calls to Java routines are embedded inside the HTML page. When
the browser finds this call, it downloads the Java classes (code) from the Web server and runs that code in the client
computer. Java’s main advantage is that it enables application developers to develop their applications once and run
them in many environments. (For developing Web applications, interoperability is a very important issue. Unfortu-
nately, different client browsers are not 100 percent interoperable, thus limiting portability.)

JavaScript is a scripting language (one that enables the running of a series of commands or macros) that allows Web
authors to design interactive sites. Because JavaScript is simpler to generate than Java, it is easier to learn. JavaScript
code is embedded in the Web pages. It is downloaded with the Web page and is activated when a specific event takes
place—such as a mouse click on an object or a page being loaded from the server into memory.

ActiveX is Microsoft’s alternative to Java. ActiveX is a specification for writing programs that will run inside the
Microsoft client browser (Internet Explorer). Because ActiveX is oriented mainly to Windows applications, it has low
portability. ActiveX extends the Web browser by adding “controls” to Web pages. (Examples of such controls are
drop-down lists, a slider, a calendar, and a calculator.) Those controls, downloaded from the Web server when needed,
let you manipulate data inside the browser. ActiveX controls can be created in several programming languages; C++
and Visual Basic are most commonly used. Microsoft’s .NET framework allows for wider interoperability of
ActiveX-based applications (such as ADO.NET) across multiple operating environments.

VBScript is another Microsoft product that is used to extend browser functionality. VBScript is derived from Microsoft
Visual Basic. Like JavaScript, VBScript code is embedded inside an HTML page and is activated by triggering events
such as clicking a link.

From the developer’s point of view, using routines that permit data validation on the client side is an absolute necessity.
For example, when data are entered on a Web form and no data validation is done on the client side, the entire data
set must be sent to the Web server. That scenario requires the server to perform all data validation, thus wasting
valuable CPU processing cycles. Therefore, client-side data input validation is one of the most basic requirements for
Web applications. Most of the data validation routines are done in Java, JavaScript, ActiveX, or VBScript.

14.2.5 Web Application Servers

A Web application server is a middleware application that expands the functionality of Web servers by linking them
to a wide range of services, such as databases, directory systems, and search engines. The Web application server also
provides a consistent run-time environment for Web applications.

C6545_14 10/22/2007 11:20:28 Page 589

589D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

Web application servers can be used to:

� Connect to and query a database from a Web page.

� Present database data in a Web page, using various formats.

� Create dynamic Web search pages.

� Create Web pages to insert, update, and delete database data.

� Enforce referential integrity in the application program logic.

� Use simple and nested queries and programming logic to represent business rules.

Web application servers provide features such as:

� An integrated development environment with session management and support for persistent application
variables.

� Security and authentication of users through user IDs and passwords.

� Computational languages to represent and store business logic in the application server.

� Automatic generation of HTML pages integrated with Java, JavaScript, VBScript, ASP, and so on.

� Performance and fault-tolerant features.

� Database access with transaction management capabilities.

� Access to multiple services, such as file transfers (FTP), database connectivity, e-mail, and directory services.

As of this writing, popular Web application servers include ColdFusion by Adobe, Oracle Application Server by Oracle,
WebLogic by BEA Systems, NetDynamics by Sun Microsystems, Fusion by NetObjects, Visual Studio.NET by
Microsoft, and WebObjects by Apple. All Web application servers offer the ability to connect Web servers to multiple
data sources and other services. They vary in terms of the range of available features, robustness, scalability, ease of
use, compatibility with other Web and database tools, and extent of the development environment.

Current-generation systems involve more than just the development of Web-enabled database applications. They also
require applications capable of intercommunicating with each other and with other systems not based on the Web.
Clearly, systems must be able to exchange data in a standard-based format. That’s the role of XML.

14.3 EXTENSIBLE MARKUP LANGUAGE (XML)

The Internet has brought about new technologies that facilitate the exchange of business data among business partners
and consumers. Companies are using the Internet to create new types of systems that integrate their data to increase
efficiency and reduce costs. Electronic commerce (e-commerce) enables all types of organizations to market and sell
products and services to a global market of millions of users. E-commerce transactions—the sale of products or
services—can take place between businesses (business-to-business, or B2B) or between a business and a consumer
(business-to-consumer, or B2C).

O n l i n e C o n t e n t

To see and try a particular Web-to-database interface in action, consult Appendix J, Web Database
Development with ColdFusion, in the Student Online Companion for this book. This appendix steps you
through the process of creating and using a simple Web-to-database interface, and gives more detailed
information on developing Web databases with Adobe ColdFusion middleware.

C6545_14 10/22/2007 11:24:35 Page 590

590 C H A P T E R 1 4

Most e-commerce transactions take place between businesses. Because B2B e-commerce integrates business
processes among companies, it requires the transfer of business information among different business entities. But the
way in which businesses represent, identify, and use data tends to differ substantially from company to company. (Is
a product code the same thing as an item ID?)

Until recently, the expectation was that a purchase order traveling over the Web would be in the form of an HTML
document. The HTML Web page displayed on the Web browser would include formatting tags as well as the order
details. HTML tags describe how something looks on the Web page, such as bold type or heading style, and often
come in pairs to start and end formatting features. For example, the following HTML tags would put the words FOR
SALE in bold in the Arial font:

FOR SALE

If an application wants to get the order data from the Web page, there is no easy way to extract the order details (such
as the order number, the date, the customer number, the item, the quantity, the price, or payment details) from an
HTML document. The HTML document can only describe how to display the order in a Web browser; it does not
permit the manipulation of the order’s data elements, that is, date, shipping information, payment details, product
information, and so on. To solve that problem, a new markup language, known as Extensible Markup Language, or
XML, was developed.

Extensible Markup Language (XML) is a metalanguage used to represent and manipulate data elements. XML is
designed to facilitate the exchange of structured documents, such as orders and invoices, over the Internet. The World
Wide Web Consortium (W3C)1 published the first XML 1.0 standard definition in 1998. That standard sets the stage
for giving XML the real-world appeal of being a true vendor-independent platform. Therefore, it is not surprising that
XML has rapidly become the data exchange standard for e-commerce applications.

The XML metalanguage allows the definition of new tags, such as <ProdPrice>, to describe the data elements used
in an XML document. This ability to extend the language explains the X in XML; the language is said to be extensible.
XML is derived from the Standard Generalized Markup Language (SGML), an international standard for the publication
and distribution of highly complex technical documents. For example, documents used by the aviation industry and the
military services are too complex and unwieldy for the Web. Just like HTML, which was also derived from SGML, an
XML document is a text file. However, it has a few very important additional characteristics, as follows:

� XML allows the definition of new tags to describe data elements, such as <ProductId>.

� XML is case sensitive: <ProductID> is not the same as <Productid>.

- XML tags must be well formed; that is, each opening tag has a corresponding closing tag. For example, the
product identification would require the format <ProductId>2345-AA</ProductId>.

- XML tags must be properly nested. For example, a properly nested XML tag might look like this:
<Product><ProductId>2345-AA</ProductId></Product>.

� You can use the <-- and --> symbols to enter comments in the XML document.

� The XML and xml prefixes are reserved for XML tags only.

XML is not a new version or replacement for HTML. XML is concerned with the description and representation of
the data, rather than the way the data are displayed. XML provides the semantics that facilitate the sharing, exchange,
and manipulation of structured documents over organizational boundaries. In short, XML and HTML perform
complementary, rather than overlapping, functions. Extensible Hypertext Markup Language (XHTML) is the next
generation of HTML based on the XML framework. The XHTML specification expands the HTML standard to include
XML features. Although more powerful than HTML, XHTML requires very strict adherence to syntax requirements.

1You can visit the W3C Web page, located at www.w3.org, to get additional information about the efforts that were made to develop the XML standard.

C6545_14 10/22/2007 11:24:55 Page 591

591D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

As an illustration of the use of XML for data exchange purposes, consider a B2B example in which Company A uses
XML to exchange product data with Company B over the Internet. Figure 14.10 shows the contents of the
ProductList.xml document.

The XML example shown in Figure 14.10 illustrates several important XML features, as follows:

� The first line represents the XML document declaration, and it is mandatory.

� Every XML document has a root element. In the example, the second line declares the ProductList root
element.

� The root element contains child elements or sub-elements. In the example, line 3 declares Product as a child
element of ProductList.

� Each element can contain sub-elements. For example, each Product element is composed of several child
elements, represented by P_CODE, P_DESCRIPT, P_INDATE, P_QOH, P_MIN, and P_PRICE.

� The XML document reflects a hierarchical tree structure where elements are related in a parent-child
relationship; each parent element can have many children elements. For example, the root element is
ProductList. Product is the child element of ProductList. Product has six child elements: P_CODE,
P_DESCRIPT, P_INDATE, P_QOH, P_MIN, and P_PRICE.

Once Company B receives the ProductList.xml document, it can process the document—assuming it understands the
tags created by Company A. The meaning of the XML tags in the example shown in Figure 14.10 is fairly self-evident,
but there is no easy way to validate the data or to check whether the data are complete. For example, you could
encounter a P_INDATE value of “25/14/2007”—but is that value correct? And what happens if Company B expects
a Vendor element as well? How can companies share data descriptions about their business data elements? The next
section will show how document type definitions and XML schemas are used to address those concerns.

14.3.1 Document Type Definitions (DTD) and XML Schemas

B2B solutions require a high degree of business integration between companies. Companies that use B2B transactions
must have a way to understand and validate each other’s tags. One way to accomplish that task is through the use of
Document Type Definitions. A Document Type Definition (DTD) is a file with a .dtd extension that describes XML
elements—in effect, a DTD file provides the composition of the database’s logical model and defines the syntax rules

FIGURE
14.10

Contents of the productlist.xml document

C6545_14 10/22/2007 11:25:14 Page 592

592 C H A P T E R 1 4

or valid tags for each type of XML document. (The DTD component is similar to having a public data dictionary for
business data.) Companies that intend to engage in e-commerce business transactions must develop and share DTDs.
Figure 14.11 shows the productlist.dtd document for the productlist.xml document shown earlier in Figure 14.10.

In Figure 14.11, note that the productlist.dtd file provides definitions of the elements in the productlist.xml document.
In particular, note that:

� The first line declares the ProductList root element.

� The ProductList root element has one child, the Product element.

� The plus “+” symbol indicates that Product occurs one or more times within ProductList.

� An asterisk “*” would mean that the child element occurs zero or more times.

� A question mark “?” would mean that the child element is optional.

� The second line describes the Product element.

� The question mark “?” after the P_INDATE and P_MIN indicates that they are optional elements.

� The third through eighth lines show that the Product element has six child elements.

� The #PCDATA keyword represents the actual text data.

To be able to use a DTD file to define elements within an XML document, the DTD must be referenced from within
that XML document. Figure 14.12 shows the productlistv2.xml document that includes the reference to the
productlist.dtd in the second line.

FIGURE
14.11

Contents of the productlist.dtd document

FIGURE
14.12

Contents of the productlistv2.xml document

C6545_14 10/22/2007 11:25:27 Page 593

593D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

In Figure 14.12, note that the P_INDATE and P_MIN do not appear in all Product definitions because they were
declared to be optional elements. The DTD can be referenced by many XML documents of the same type. For
example, if Company A routinely exchanges product data with Company B, it will need to create the DTD only once.
All subsequent XML documents will refer to the DTD, and Company B will be able to verify the data being received.

To further demonstrate the use of XML and DTD for e-commerce business data exchanges, assume the case of two
companies exchanging order data. Figure 14.13 shows the DTD and XML documents for that scenario.

Although the use of DTDs is a great improvement for data sharing over the Web, a DTD provides only descriptive
information for understanding how the elements—root, parent, child, mandatory, or optional—relate to one another.
A DTD provides limited additional semantic value, such as data type support or data validation rules. That information
is very important for database administrators who are in charge of large e-commerce databases. To solve the DTD
problem, the W3C published an XML Schema standard in May 2001 to provide a better way to describe XML data.

FIGURE
14.13

DTD and XML documents for order data

OrderData.dtd

OrderData.xml

“+” sign indicates
one or more

ORD_PRODS elements

Two ORD_PRODS
 elements in XML

document

C6545_14 10/22/2007 11:20:30 Page 594

594 C H A P T E R 1 4

The XML schema is an advanced data definition language that is used to describe the structure (elements, data types,
relationship types, ranges, and default values) of XML data documents. One of the main advantages of an XML schema
is that it more closely maps to database terminology and features. For example, an XML schema will be able to define
common database types such as date, integer or decimal, minimum and maximum values, list of valid values, and
required elements. Using the XML schema, a company would be able to validate the data for values that may be out
of range, incorrect dates, valid values, and so on. For example, a university application must be able to specify that
a GPA value be between zero and 4.0, and it must be able to detect an invalid birth date such as “14/13/1987.”
(There is no 14th month.) Many vendors are adopting this new standard and are supplying tools to translate DTD
documents into XML Schema Definition (XSD) documents. It is widely expected that XML schemas will replace DTD
as the method to describe XML data.

Unlike a DTD document, which uses a unique syntax, an XML schema definition (XSD) file uses a syntax that
resembles an XML document. Figure 14.14 shows the XSD document for the OrderData XML document.

The code shown in Figure 14.14 is a simplified version of the XML schema document. As you can see, the XML
schema syntax is similar to the XML document syntax. In addition, the XML schema introduces additional semantic
information for the OrderData XML document, such as string, date, and decimal data types; required elements; and
minimum and maximum cardinalities for the data elements.

FIGURE
14.14

The XML schema document for the order data

C6545_14 10/22/2007 11:20:31 Page 595

595D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

14.3.2 XML Presentation

One of the main benefits of XML is that it separates data structure from its presentation and processing. By separating
data and presentation, you are able to present the same data in different ways—which is similar to having views in
SQL. But what mechanisms are used to present data?

The Extensible Style Language (XSL) specification provides the mechanism to display XML data. XSL is used to define
the rules by which XML data are formatted and displayed. The XSL specification is divided in two parts: Extensible
Style Language Transformations (XSLT) and XSL style sheets.

� Extensible Style Language Transformations (XSLT) describe the general mechanism that is used to extract
and process data from one XML document and enable its transformation within another document. Using
XSLT, you can extract data from an XML document and convert it into a text file, an HTML Web page, or a
Web page that is formatted for a mobile device. What the user sees in those cases is actually a view (or HTML
representation) of the actual XML data. XSLT can also be used to extract certain elements from an XML
document, such as the product codes and product prices, to create a product catalog. XSLT can even be used
to transform one XML document into another XML document.

� XSL style sheets define the presentation rules applied to XML elements—something like presentation
templates. The XSL style sheet describes the formatting options to apply to XML elements when they are
displayed on a browser, cellular phone display, PDA screen, and so on.

Figure 14.15 illustrates the framework used by the various components to translate XML documents into viewable Web
pages, an XML document, or some other document.

FIGURE
14.15

Framework for XML transformations

HTML

XML
document

HTML

XSL
transformations

XSL
style sheets

•Extract
•Convert

XSLT can be used to transform one XML
document into another XML document

Apply
formatting

rules to
XML

elements The process can render
different Web pages

for different purposes,
such as one page for a

Web browser and
another for a mobile device

New
XML

document

C6545_14 10/22/2007 11:20:31 Page 596

596 C H A P T E R 1 4

To display the XML document with Microsoft Internet Explorer (MSIE) 5.0 or later, enter the URL of the XML
document in the browser’s address bar. Figure 14.16 is based on the productlist.xml document created earlier. As you
examine Figure 14.16, note that MSIE shows the XML data in a color-coded, collapsible, treelike structure. (Actually,
this is the MSIE default style sheet that is used to render XML documents.)

FIGURE
14.16

Displaying XML documents

C6545_14 10/22/2007 11:20:31 Page 597

597D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

Internet Explorer also provides data binding of XML data to HTML documents. Figure 14.17 shows the HTML code
that is used to bind an XML document to an HTML table. The example uses the <xml> tag to include the XML data
in the HTML document to later bind it to the HTML table. This example works in MSIE 5.0 or later.

14.3.3 XML Applications

Now that you have some idea what XML is, the next question is, how can you use it? What kinds of applications lend
themselves particularly well to XML? This section will list some of the uses of XML. Keep in mind that the future use
of XML is limited only by the imagination and creativity of the developers, designers, and programmers.

� B2B exchanges. As noted earlier, XML enables the exchange of B2B data, providing the standard for all
organizations that need to exchange data with partners, competitors, the government, or customers. In
particular, XML is positioned to replace EDI as the standard for the automation of the supply chain because
it is less expensive and more flexible.

� Legacy systems integration. XML provides the “glue” to integrate legacy system data with modern
e-commerce Web systems. Web and XML technologies could be used to inject some new life in “old but
trusted” legacy applications. Another example is the use of XML to import transaction data from multiple
operational databases to a data warehouse database.

FIGURE
14.17

XML data binding

C6545_14 10/22/2007 11:25:57 Page 598

598 C H A P T E R 1 4

� Web page development. XML provides several features that make it a good fit for certain Web development
scenarios. For example, Web portals with large amounts of personalized data can use XML to pull data from
multiple external sources (such as news, weather, and stocks) and apply different presentation rules to format
pages on desktop computers as well as mobile devices.

� Database support. Databases are at the heart of e-commerce applications. A DBMS that supports XML
exchanges will be able to integrate with external systems (Web, mobile data, legacy systems, and so on) and
thus enable the creation of new types of systems. These databases can import or export data in XML format
or generate XML documents from SQL queries while still storing the data, using their native data model format.
Alternatively, a DBMS can also support an XML data type to store XML data in its native format. The
implications of these capabilities are far-reaching—you would even be able to store a hierarchical-like tree
structure inside a relational structure. Of course, such activities would also require that the query language be
extended to support queries on XML data.

� Database meta-dictionaries. XML can also be used to create meta-dictionaries, or vocabularies, for databases.
These meta-dictionaries can be used by applications that need to access other external data sources. (Until
now, each time an application wanted to exchange data with another application, a new interface had to be
built for that purpose.) DBMS vendors can publish meta-dictionaries to facilitate data exchanges and the
creation of data views from multiple applications—hierarchical, relational, object-oriented, object-relational, or
extended-relational. The meta-dictionaries would all use a common language regardless of the DBMS type. The
development of industry-specific meta-dictionaries is expected. These meta-dictionaries would enable the
development of complex B2B interactions, such as those likely to be found in the aviation, automotive, and
pharmaceutical industries. Also likely are application-specific initiatives that would create XML meta-
dictionaries for data warehousing, system management, and complex statistical applications. Even the United
Nations and a not-for-profit standards-promoting organization named Oasis are working on a new specification
called ebXML that will create a standard XML vocabulary for e-business. Other examples of meta-dictionaries
are HR-XML for the human resources industry; the metadata encoding and transmission standard (METS) from
the Library of Congress; the clinical accounting information (CLAIM) data exchange standard for patient data
exchange in electronic medical record systems; and the extensible business reporting language (XBRL) standard
for exchanging business and financial information.

� XML databases.2 Given the huge number of expected XML-based data exchanges, businesses are already
looking for ways to better manage and utilize the data. Currently, many different products are on the market
to address this problem. The approaches range from simple middleware XML software, to object databases
with XML interfaces, to full XML database engines and servers. The current generation of relational databases
is tuned for the storage of normalized rows—that is, manipulating one row of data at a time. Because business
data do not always conform to such a requirement, XML databases provide for the storage of data in complex
relationships. For example, an XML database would be well suited to store the contents of a book. (The book’s
structure would dictate its database structure: a book typically consists of chapters, sections, paragraphs,
figures, charts, footnotes, endnotes, and so on.) Examples of XML databases are Oracle, IBM DB2, MS SQL
Server, Ipedo XML Database (www.ipedo.com), Tamino from Software AG (www.softwareag.com), and the
open source dbXML from http://sourceforge.net/projects/dbxml-core.

� XML services. Many companies are already working on the development of a new breed of services based on
XML and Web technologies. These services promise to break down the interoperability barriers among systems
and companies alike. XML provides the infrastructure that facilitates heterogeneous systems to work together
across the desk, the street, and the world. Services would use XML and other Internet technologies to publish
their interfaces. Other services, wanting to interact with existing services, would locate them and learn their
vocabulary (service request and replies) to establish a “conversation.”

2 For a comprehensive analysis of XML database products, see “XML Database Products” by Ronald Bourret at www.rpbourret.com.

C6545_14 10/22/2007 11:26:8 Page 599

599D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

S u m m a r y

◗ Database connectivity refers to the mechanisms through which application programs connect and communicate
with data repositories. Database connectivity software is also known as database middleware. The data repository
is also known as the data source because it represents the data management application (that is, an Oracle
RDBMS, SQL Server DBMS, or IBM DBMS) that will be used to store the data generated by the application
program.

◗ Microsoft database connectivity interfaces are dominant players in the market and enjoy the support of most
database vendors. In fact, ODBC, OLE-DB, and ADO.NET form the backbone of Microsoft’s Universal Data
Access (UDA) architecture. UDA is a collection of technologies used to access any type of data source and manage
any type of data, using a common interface.

◗ Native database connectivity refers to the connection interface that is provided by the database vendor and is unique
to that vendor. Open Database Connectivity (ODBC) is Microsoft’s implementation of a superset of the SQL Access
Group Call Level Interface (CLI) standard for database access. ODBC is probably the most widely supported
database connectivity interface. ODBC allows any Windows application to access relational data sources, using
standard SQL. Data Access Objects (DAO) is an object-oriented API used to access MS Access, MS FoxPro, and
dBase databases (using the Jet data engine) from Visual Basic programs. Remote Data Objects (RDO) is a
higher-level object-oriented application interface used to access remote database servers. RDO uses the lower-level
DAO and ODBC for direct access to databases. RDO was optimized to deal with server-based databases, such as
MS SQL Server and Oracle.

◗ Based on Microsoft’s Component Object Model (COM), Object Linking and Embedding for Database (OLE-DB) is
a database middleware developed with the goal of adding object-oriented functionality for access to relational and
nonrelational data. ActiveX Data Objects (ADO) provides a high-level application-oriented interface to interact with
OLE-DB, DAO, and RDO. Based on ADO, ADO.NET is the data access component of Microsoft’s .NET
application development framework, a component-based platform for developing distributed, heterogeneous,
interoperable applications aimed at manipulating any type of data over any network under any operating system
and any programming language. Java Database Connectivity (JDBC) is the standard way to interface Java
applications with data sources (relational, tabular, and text files).

◗ Database access through the Web is achieved through middleware. To improve capabilities on the client side of the
Web browser, you must use plug-ins and other client-side extensions such as Java and Javascript, or ActiveX and
VBScript. On the server side, Web application servers are middleware that expands the functionality of Web servers
by linking them to a wide range of services, such as databases, directory systems, and search engines.

◗ Extensible Markup Language (XML) facilitates the exchange of B2B and other data over the Internet. XML provides
the semantics that facilitates the exchange, sharing, and manipulation of structured documents across organiza-
tional boundaries. XML produces the description and the representation of data, thus setting the stage for data
manipulation in ways that were not possible before XML. XML documents can be validated through the use of
Document Type Definition (DTD) documents and XML Schema Definition (XSD) documents. The use of DTD,
XML schemas, and XML documents permits a greater level of integration among diverse systems than was possible
before this technology was made available.

C6545_14 10/22/2007 11:30:44 Page 600

600 C H A P T E R 1 4

K e y T e r m s

ActiveX, 589

ActiveX Data Objects (ADO), 578

ADO.NET, 580

application programming interface
(API), 573

Call Level Interface (CLI), 573

client-side extensions, 589

Common Gateway Interface
(CGI), 587

Data Access Objects (DAO), 574

database middleware, 573

DataSet, 580

data source name (DSN), 575

Document Type Definition
(DTD), 592

dynamic-link libraries (DLLs), 574

Extensible Markup Language
(XML), 591

Java, 582

JavaScript, 589

Java Database Connectivity
(JDBC), 582

Microsoft .NET framework, 580

Object Linking and Embedding for
Database (OLE-DB), 577

Open Database Connectivity
(ODBC), 573

plug-in, 589

Remote Data Objects (RDO), 574

script, 578

server-side extension, 585

stateless system, 587

tag, 591

Universal Data Access (UDA), 573

VBScript, 589

XML schema, 595

XML schema definition (XSD), 595

Web application server, 589

Web-to-database middleware, 585

R e v i e w Q u e s t i o n s

1. Give some examples of database connectivity options and what they are used for.

2. What are ODBC, DAO, and RDO? How are they related?

3. What is the difference between DAO and RDO?

4. What are the three basic components of the ODBC architecture?

5. What steps are required to create an ODBC data source name?

6. What is OLE-DB used for, and how does it differ from ODBC?

7. Explain the OLE-DB model based on its two types of objects.

8. How does ADO complement OLE-DB?

9. What is ADO.NET, and what two new features make it important for application development?

10. What is a DataSet, and why is it considered to be disconnected?

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_14 10/22/2007 11:20:33 Page 601

601D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

11. What are Web server interfaces used for? Give some examples.

12. Search the Internet for Web application servers. Choose one and prepare a short presentation for your class.

13. What does this statement mean: “The Web is a stateless system.” What implications does a stateless system have
for database application developers?

14. What is a Web application server, and how does it work from a database perspective?

15. What are scripts, and what is their function? (Think in terms of database application development.)

16. What is XML, and why is it important?

17. What are Document Type Definition (DTD) documents, and what do they do?

18. What are XML Schema Definition (XSD) documents, and what do they do?

19. What is JDBC, and what is it used for?

P r o b l e m s

In the following exercises, you set up database connectivity using MS Excel.

1. Use MS Excel to connect to the Ch02_InsureCo MS Access database using ODBC, and retrieve all of the
AGENTs.

2. Use MS Excel to connect to the Ch02_InsureCo MS Access database using ODBC, and retrieve all of the
CUSTOMERs.

3. Use MS Excel to connect to the Ch02_InsureCo MS Access database using ODBC, and retrieve the customers
whose AGENT_CODE is equal to 503.

4. Create an ODBC System Data Source Name Ch02_SaleCo using the Control Panel, Administrative Tools, Data
Sources (ODBC) option.

5. Use MS Excel to list all of the invoice lines for Invoice 103 using the Ch02_SaleCo System DSN.

6. Create an ODBC System Data Source Name Ch02_Tinycollege using the Control Panel, Administrative Tools,
Data Sources (ODBC) option.

7. Use MS Excel to list all classes taught in room KLR200 using the Ch02_TinyCollege System DSN.

O n l i n e C o n t e n t

The databases used in the Problems for this chapter can be found in the Student Online Companion for
this book.

C6545_14 10/23/2007 14:25:2 Page 602

602 C H A P T E R 1 4

8. Create a sample XML document and DTD for the exchange of customer data.

9. Create a sample XML document and DTD for the exchange of product and pricing data.

10. Create a sample XML document and DTD for the exchange of order data.

11. Create a sample XML document and DTD for the exchange of student transcript data. Use your college transcript
as a sample.

(Hint: To answer Problems 8−11, use Section 14.3.1 as your guide.)

C6545_14 10/22/2007 11:32:3 Page 603

603D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

PART

VI
Database

Administration

15Database Administration and Security

C6545_15 10/16/2007 14:9:1 Page 604

B
V

usiness
ignette

Oreck Revises Disaster Recovery Plan
After Katrina

Because companies design disaster recovery plans during normal business operations,

holes in the plan often become apparent only during crises. Oreck Corporation, the

vacuum manufacturer, had a decent disaster recovery plan.The company, headquartered

in New Orleans, had arranged with IBM to host its AS/400-based applications in a data

center in Boulder, CO. The staff in New Orleans would relocate to Long Beach,

Mississippi, where the company had a large manufacturing and distribution center. On

Sunday, August 28, two days before Hurricane Katrina hit New Orleans, the IT staff put

the plan into operation.

�It took 12 hours to make two backups,� remembers Michael Evanson, Oreck’s vice

president of IT. As roads out of the city were closing or clogged, his staff was still backing

up the AS/400 data. Finally, on Monday morning, CEO Tom Oreck grabbed the tapes and

his family, and they flew a private plane to Houston, where he overnighted the tapes to

Boulder. By the time Mr. Oreck arrived in Houston, however, a major oversight in their

plan had become apparent.

�We had two facilities, and we assumed that at least one would survive the hurricane.

They’re about 80 miles apart, but Katrina went right through the middle of the two,�

Evanson explains.The hurricane had flooded the Long Beach factory, and many of its 900

employees had evacuated the area. The company’s Intel-based data which were needed

for its facilities elsewhere had been left behind — in New Orleans. Like most backup and

recovery programs, Oreck’s plan did not cover all components of its IT system, and in

establishing its priorities, it had failed to prepare for a disaster that could take down both

its headquarters and its backup center.

The company scrambled to recover quickly. It established temporary headquarters in

Dallas, located workers by setting up an 800 number, bought RVs for its homeless

employees and generators for the plant, and brought in contractors to repair physical

damage. Two weeks later, the Long Beach facility was up and running.

Today, the company has revised its plan to provide for better access to and protection of

the hardware, software, and data it needs in the event of an emergency. Oreck now runs

backups every two hours instead of every eight hours. The company tests its data

recovery and contingency plans regularly. Recently, the company opened a new plant

further away in Cookeville, Tennessee.

�The plans that we had in place before Katrina, which I think served us well, have been

highly modified,� says Oreck. �Honestly, the plan hadn’t been updated in a long time,� says

Oreck. �We’ve obviously changed our view on that.�

C6545_15 10/30/2007 9:45:33 Page 605

Preview

Database Administration and Security

In this chapter, you will learn:

� That data are a valuable business asset requiring careful management

� How a database plays a critical role in an organization

� That the introduction of a DBMS has important technological, managerial, and cultural
organizational consequences

� What the database administrator’s managerial and technical roles are

� About data security, database security, and the information security framework

� About several database administration tools and strategies

� How various database administration technical tasks are performed with Oracle

This chapter shows you the basis for a successful database administration strategy. Such a

strategy requires that data be considered important and valuable resources to be treated

and managed as corporate assets.

The chapter explores how a database fits within an organization, what the data views and

requirements are at various management levels, and how the DBMS supports those views

and requirements. Database administration must be fully understood and accepted within an

organization before a sound data administration strategy can be implemented. In this

chapter, you learn about important data management issues by looking at the managerial

and technical roles of the database administrator (DBA). This chapter also explores

database security issues, such as the confidentiality, integrity, and availability of data. In our

information-based society, one of the key aspects of data management is to ensure that the

data are protected against intentional or unintentional access by unauthorized personnel. It

is also essential to ensure that the data are available when and where needed, even in the

face of natural disaster or hardware failure, and to maintain the integrity of the data in the

database.

The technical aspects of database administration are augmented by a discussion of database

administration tools and the corporate-wide data architectural framework.The managerial

aspects of database administration are explained by showing you how the database

administration function fits within classical organizational structures. Because Oracle is the

current leader in mid- to high-level corporate database markets, you learn how a DBA

performs some typical database management functions in Oracle.

15
F

I
F

T
E

E
N

C6545_15 11/1/2007 7:59:0 Page 606

15.1 DATA AS A CORPORATE ASSET

In Chapter 1, Database Systems, you learned that data are the raw material from which information is produced.
Therefore, it is not surprising that in today’s information-driven environment, data are a valuable asset that requires
careful management.

To assess data’s monetary value, take a look at what’s stored in a company database: data about customers, suppliers,
inventory, operations, and so on. How many opportunities are lost if the data are lost? What is the actual cost of data loss?
For example, an accounting firm whose entire database is lost would incur significant direct and indirect costs. The
accounting firm’s problems would be magnified if the data loss occurred during tax season. Data loss puts any company
in a difficult position. The company might be unable to handle daily operations effectively, it might be faced with the loss
of customers who require quick and efficient service, and it might lose the opportunity to gain new customers.

Data are a valuable resource that can translate into information. If the information is accurate and timely, it is likely
to trigger actions that enhance the company’s competitive position and generate wealth. In effect, an organization is
subject to a data-information-decision cycle; that is, the data user applies intelligence to data to produce information
that is the basis of knowledge used in decision making by the user. This cycle is illustrated in Figure 15.1.

Note in Figure 15.1 that the decisions made by high-level managers trigger actions within the organization’s lower
levels. Such actions produce additional data to be used for monitoring company performance. In turn, the additional
data must be recycled within the data/information/decision framework. Thus, data form the basis for decision making,
strategic planning, control, and operations monitoring.

A critical success factor of an organization is efficient asset management. To manage data as a corporate asset,
managers must understand the value of information—that is, processed data. In fact, there are companies (for
example, those that provide credit reports) whose only product is information and whose success is solely a function
of information management.

FIGURE
15.1

The data-information-decision-making cycle

Decision making
User

Information

Actions

Data

Knowledge

used in

triggers

which
generate

more

that is
the basis of

applies
intelligence

over
Analysis

to produce

C6545_15 10/16/2007 14:9:51 Page 607

607D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

15.2 THE NEED FOR AND ROLE OF A DATABASE IN AN ORGANIZATION

Data are used by different people in different departments for different reasons. Therefore, data management must
address the concept of shared data. Chapter 1 showed how the need for data sharing made the DBMS almost
inevitable. Used properly, the DBMS facilitates:

� Interpretation and presentation of data in useful formats by transforming raw data into information.

� Distribution of data and information to the right people at the right time.

� Data preservation and monitoring the data usage for adequate periods of time.

� Control over data duplication and use, both internally and externally.

Whatever the type of organization, the database’s predominant role is to support managerial decision making at all
levels in the organization while preserving data privacy and security.

An organization’s managerial structure might be divided into three levels: top, middle, and operational. Top-level
management makes strategic decisions, middle management makes tactical decisions, and operational management
makes daily operational decisions. Operational decisions are short term and affect only daily operations; for example,
deciding to change the price of a product to clear it from inventory. Tactical decisions involve a longer time frame and
affect larger-scale operations; for example, changing the price of a product in response to competitive pressures.
Strategic decisions are those that affect the long-term well-being of the company or even its survival; for example,
changing pricing strategy across product lines to capture market share.

The DBMS must provide tools that give each level of management a useful view of the data and that support the
required level of decision making. The following activities are typical of each management level.

At the top management level, the database must be able to:

� Provide the information necessary for strategic decision making, strategic planning, policy formulation, and
goals definition.

� Provide access to external and internal data to identify growth opportunities and to chart the direction of such
growth. (Direction refers to the nature of the operations: Will a company become a service organization, a
manufacturing organization, or some combination of the two?)

� Provide a framework for defining and enforcing organizational policies. (Remember that such polices are
translated into business rules at lower levels in the organization.)

� Improve the likelihood of a positive return on investment for the company by searching for new ways to reduce
costs and/or by boosting productivity.

� Provide feedback to monitor whether the company is achieving its goals.

At the middle management level, the database must be able to:

� Deliver the data necessary for tactical decisions and planning.

� Monitor and control the allocation and use of company resources and evaluate the performance of the various
departments.

� Provide a framework for enforcing and ensuring the security and privacy of the data in the database. Security
means protecting the data against accidental or intentional use by unauthorized users. Privacy deals with the
rights of individuals and the organization to determine the “who, what, when, where, and how” of data usage.

At the operational management level, the database must be able to:

� Represent and support the company operations as closely as possible. The data model must be flexible enough
to incorporate all required present and expected data.

C6545_15 10/16/2007 14:9:52 Page 608

608 C H A P T E R 1 5

� Produce query results within specified performance levels. Keep in mind that the performance requirements
increase for lower levels of management and operations. Thus, the database must support fast responses to a
greater number of transactions at the operational management level.

� Enhance the company’s short-term operational ability by providing timely information for customer support
and for application development and computer operations.

A general objective for any database is to provide a seamless flow of information throughout the company.

The company’s database is also known as the corporate or enterprise database. The enterprise database might be
defined as “the company’s data representation that provides support for all present and expected future operations.”
Most of today’s successful organizations depend on the enterprise database to provide support for all of their
operations—from design to implementation, from sales to services, and from daily decision making to strategic
planning.

15.3 INTRODUCTION OF A DATABASE: SPECIAL CONSIDERATIONS

Having a computerized database management system does not guarantee that the data will be properly used to provide
the best solutions required by managers. A DBMS is a tool for managing data; like any tool, it must be used effectively
to produce the desired results. Consider this analogy: in the hands of a carpenter, a hammer can help produce
furniture; in the hands of a child, it might do damage. The solution to company problems is not the mere existence
of a computer system or its database, but, rather, its effective management and use.

The introduction of a DBMS represents a big change and challenge; throughout the organization, the DBMS is likely
to have a profound impact, which might be positive or negative depending on how it is administered. For example,
one key consideration is adapting the DBMS to the organization rather than forcing the organization to adapt to the
DBMS. The main issue should be the organization’s needs rather than the DBMS’s technical capabilities. However, the
introduction of a DBMS cannot be accomplished without affecting the organization. The flood of new DBMS-
generated information has a profound effect on the way the organization functions, and therefore, on its corporate
culture.

The introduction of a DBMS into an organization has been described as a process that includes three important
aspects:1

� Technological: DBMS software and hardware.

� Managerial: Administrative functions.

� Cultural: Corporate resistance to change.

The technological aspect includes selecting, installing, configuring, and monitoring the DBMS to make sure that it
efficiently handles data storage, access, and security. The person or people in charge of addressing the technological
aspect of the DBMS installation must have the technical skills necessary to provide or secure adequate support for the
various users of the DBMS: programmers, managers, and end users. Therefore, database administration staffing is a
key technological consideration in the DBMS introduction. The selected personnel must exhibit the right mix of
technical and managerial skills to provide a smooth transition to the new shared-data environment.

The managerial aspect of the DBMS introduction should not be taken lightly. A high-quality DBMS does not guarantee
a high-quality information system, just as having the best race car does not guarantee winning a race.

The introduction of a DBMS into an organization requires careful planning to create an appropriate organizational
structure to accommodate the person or people responsible for administering the DBMS. The organizational structure
must also be subject to well-developed monitoring and controlling functions. The administrative personnel must have
excellent interpersonal and communications skills combined with broad organizational and business understanding.

1 Murray, John P. “The Managerial and Cultural Issues of a DBMS,” 370/390 Database Management 1(8), September 1991, pp. 32–33.

C6545_15 10/30/2007 9:49:43 Page 609

609D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Top management must be committed to the new system and must define and support the data administration
functions, goals, and roles within the organization.

The cultural impact of the introduction of a database system must be assessed carefully. The DBMS’s existence is likely
to have an effect on people, functions, and interactions. For example, additional personnel might be added, new roles
might be allocated to existing personnel, and employee performance might be evaluated using new standards.

A cultural impact is likely because the database approach creates a more controlled and structured information flow.
Department managers who are used to handling their own data must surrender their subjective ownership to the data
administration function and must share their data with the rest of the company. Application programmers must learn
and follow new design and development standards. Managers might be faced with what they consider to be an
information overload and might require some time to adjust to the new environment.

When the new database comes online, people might be reluctant to use the information provided by the system and
might question its value or accuracy. (Many will be surprised and possibly chagrined to discover that the information
does not fit their preconceived notions and strongly held beliefs.) The database administration department must be
prepared to open its doors to end users, listen to their concerns, act on those concerns when possible, and educate
end users about the system’s uses and benefits.

15.4 THE EVOLUTION OF THE DATABASE ADMINISTRATION FUNCTION

Data administration has its roots in the old, decentralized world of the file system. The cost of data and managerial
duplication in such file systems gave rise to a centralized data administration function known as the electronic data
processing (EDP) or data processing (DP) department. The DP department’s task was to pool all computer resources
to support all departments at the operational level. The DP administration function was given the authority to manage
all existing company file systems as well as resolve data and managerial conflicts created by the duplication and/or
misuse of data.

The advent of the DBMS and its shared view of data produced a new level of data management sophistication and led
the DP department to evolve into an information systems (IS) department. The responsibilities of the IS
department were broadened to include:

� A service function to provide end users with active data management support.

� A production function to provide end users with specific solutions for their information needs through
integrated application or management information systems.

The functional orientation of the IS department was reflected
in its internal organizational structure. IS departments typi-
cally were structured as shown in Figure 15.2. As the
demand for application development grew, the IS applica-
tion development segment was subdivided by the type of
supported system: accounting, inventory, marketing, and so
on. However, this development meant that the database
administration responsibilities were divided. The application
development segment was in charge of gathering database
requirements and logical database design, whereas the data-
base operations segment took charge of implementing,
monitoring, and controlling the DBMS operations.

As the number of database applications grew, data manage-
ment became an increasingly complex job, thus leading to
the development of the database administration function.

FIGURE
15.2

The IS department internal
organization

Information
systems (IS)

Application
development

Database
operations

C6545_15 10/16/2007 14:9:53 Page 610

610 C H A P T E R 1 5

The person responsible for the control of the centralized and shared database became known as the database
administrator (DBA).

The size and role of the DBA function varies from company to company, as does its placement within a company’s
organizational structure. On the organization chart, the DBA function might be defined as either a staff or line position.
Placing the DBA function in a staff position often creates a consulting environment in which the DBA is able to devise
the data administration strategy but does not have the authority to enforce it or to resolve possible conflicts.2 The DBA
function in a line position has both the responsibility and the authority to plan, define, implement, and enforce the
policies, standards, and procedures used in the data administration activity. The two possible DBA function placements
are illustrated in Figure 15.3.

There is no standard for how the DBA function fits in an organization’s structure. In part, that is because the DBA
function itself is probably the most dynamic of any organization’s functions. In fact, the fast-paced changes in DBMS
technology dictate changing organizational styles. For example:

� The development of distributed databases can force an organization to decentralize the data administration
function further. The distributed database requires the system DBA to define and delegate the responsibilities
of each local DBA, thus imposing new and more complex coordinating activities on the system DBA.

� The growing use of Internet-accessible data and the growing number of data warehousing applications are
likely to add to the DBA’s data modeling and design activities, thus expanding and diversifying the DBA’s job.

� The increasing sophistication and power of microcomputer-based DBMS packages provide an easy platform
for the development of user-friendly, cost-effective, and efficient solutions to the needs of specific departments.

2For a historical perspective on the development of the DBA function and a broader coverage of its organizational placement alternatives, refer to
Jay-Louise Weldon’s classic Data Base Administration (New York, Plenum Press, 1981). Although you might think that the book’s publication date
renders it obsolete, a surprising number of its topics are returning to the current operational database scene.

Information
systems (IS)

Application
development

Database
operations

Database
administration

Information
systems (IS)

Application
development

Database
operations

Database
administration

Line Authority Position

Staff Consulting Position

FIGURE
15.3

The placement of the DBA function

C6545_15 10/16/2007 14:10:55 Page 611

611D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

But such an environment also invites data duplication, not to mention the problems created by people who lack
the technical qualifications to produce good database designs. In short, the new microcomputer environment
requires the DBA to develop a new set of technical and managerial skills.

It is common practice to define the DBA function by dividing the DBA operations according to the Database Life Cycle
(DBLC) phases. If that approach is used, the DBA function requires personnel to cover the following activities:

� Database planning, including the definition of standards, procedures, and enforcement.

� Database requirements gathering and conceptual design.

� Database logical and transaction design.

� Database physical design and implementation.

� Database testing and debugging.

� Database operations and maintenance, including installation, conversion, and migration.

� Database training and support.

Figure 15.4 represents an appropriate DBA functional organization according to that model.

Keep in mind that a company might have several different and incompatible DBMSs installed to support different
operations. For example, it is not uncommon to find corporations with a hierarchical DBMS to support the daily
transactions at the operational level and a relational database to support middle and top management’s ad hoc
information needs. There may also be a variety of microcomputer DBMSs installed in the different departments. In
such an environment, the company might have one DBA assigned for each DBMS. The general coordinator of all
DBAs is sometimes known as the systems administrator; that position is illustrated in Figure 15.5.

There is a growing trend toward specialization in the data management function. For example, the organization charts
used by some of the larger corporations make a distinction between a DBA and the data administrator (DA). The
DA, also known as the information resource manager (IRM), usually reports directly to top management and is
given a higher degree of responsibility and authority than the DBA, although the two roles overlap some.

The DA is responsible for controlling the overall corporate data resources, both computerized and manual. Thus, the
DA’s job description covers a larger area of operations than that of the DBA because the DA is in charge of controlling
not only the computerized data, but also the data outside the scope of the DBMS. The placement of the DBA within
the expanded organizational structure may vary from company to company. Depending on the structure’s compo-
nents, the DBA might report to the DA, the IRM, the IS manager, or directly to the company’s CEO.

DBA

Planning Design Implementation Operations Training

Conceptual Logical Physical Testing

FIGURE
15.4

A DBA functional organization

C6545_15 10/16/2007 14:11:13 Page 612

612 C H A P T E R 1 5

15.5 THE DATABASE ENVIRONMENT’S HUMAN COMPONENT

A substantial portion of this book is devoted to relational database design and implementation and to examining DBMS
features and characteristics. Thus far the book has focused on the very important technical aspects of the database.
However, there is another important side of the database coin: even the most carefully crafted database system cannot
operate without the human component. So in this section, you will explore how people perform the data
administration activities that make a good database design useful.

Effective data administration requires both technical and managerial skills. For example, the DA’s job typically has a
strong managerial orientation with company-wide scope. In contrast, the DBA’s job tends to be more technically
oriented and has a narrower DBMS-specific scope. However, the DBA, too, must have a considerable store of people
skills. After all, both the DA and the DBA perform “people” functions common to all departments in an organization.
For example, both the DA and DBA direct and control personnel staffing and training within their respective
departments.

Table 15.1 contrasts the general characteristics of both positions by summarizing the typical DA and DBA activities.
All activities flowing from the characteristics shown in Table 15.1 are invested in the DBA if the organization does not
employ both a DA and a DBA.

TABLE
15.1

Contrasting DA and DBA Activities and Characteristics

DATA ADMINISTRATOR (DA) DATABASE ADMINISTRATOR (DBA)
Does strategic planning Controls and supervises
Sets long-term goals Executes plans to reach goals
Sets policies and standards Enforces policies and procedures

Enforces programming standards
Is broad in scope Is narrow in scope
Focuses on the long term Focuses on the short term (daily operations)
Has a managerial orientation Has a technical orientation
Is DBMS-independent Is DBMS-specific

Note that the DA is responsible for providing a global and comprehensive administrative strategy for all of the
organization’s data. In other words, the DA’s plans must consider the entire data spectrum. Thus, the DA is responsible
for the consolidation and consistency of both manual and computerized data.

Systems
administrator

DBA DBA DBA DBA
Microcomputer
DBMS manager

DB2
relational

Oracle
relational

IDS-II
network

SQL Server
relational

FIGURE
15.5

Multiple database administrators in an organization

C6545_15 10/16/2007 14:9:55 Page 613

613D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

The DA also must set data administration goals. Those goals are defined by issues such as:

� Data “sharability” and time availability.

� Data consistency and integrity.

� Data security and privacy.

� Data quality standards.

� Extent and type of data use.

Naturally, that list can be expanded to fit the organization’s specific data needs. Regardless of how data management
is conducted—and despite the fact that much authority is invested in the DA or DBA to define and control the way
company data are used—the DA and DBA do not own the data. Instead, DA and DBA functions are defined to
emphasize that data are a shared company asset.

The preceding discussion should not lead you to believe that there are universally accepted DA and DBA administrative
standards. As a matter of fact, the style, duties, organizational placement, and internal structure of both functions vary
from company to company. For example, many companies distribute DA duties between the DBA and the manager
of information systems. For simplicity and to avoid confusion, the label DBA is used here as a general title that
encompasses all appropriate data administration functions. Having made that point, let’s move on to the DBA’s role
as an arbitrator between data and users.

The arbitration of interactions between the two most important assets of any organization, people and data, places the
DBA in the dynamic environment portrayed in Figure 15.6.

Procedures
and standards

defines and enforces

used by

Application
programs

Programmer

verifies

writes

Managers
and clerks

DBMS
interface

and/or

DBMS

manages

Manages and
monitors

use

End users

Data

DBA

DBA
interface

FIGURE
15.6

A summary of DBA activities

C6545_15 10/16/2007 14:9:55 Page 614

614 C H A P T E R 1 5

As you examine Figure 15.6, note that the DBA is the focal point for data/user interaction. The DBA defines and
enforces the procedures and standards to be used by programmers and end users during their work with the DBMS.
The DBA also verifies that programmer and end-user access meets the required quality and security standards.

Database users might be classified by the:

� Type of decision-making support required (operational, tactical, or strategic).

� Degree of computer knowledge (novice, proficient, or expert).

� Frequency of access (casual, periodic, or frequent).

Those classifications are not exclusive and usually overlap. For example, an operational user can be an expert with
casual database access. Nevertheless, a typical top-level manager might be a strategic novice user with periodic
database access. On the other hand, a database application programmer is an operational expert and frequent
database user. Thus, each organization employs people whose levels of database expertise span an entire spectrum.
The DBA must be able to interact with all of those people, understand their different needs, answer questions at all
levels of the expertise scale, and communicate effectively.

The DBA activities portrayed in Figure 15.6 suggest the need for a diverse mix of skills. In large companies, such skills
are likely to be distributed among several people who work within the DBA function. In small companies, the
skills might be the domain of just one individual. The skills can be divided into two categories—managerial and
technical—as summarized in Table 15.2.

TABLE
15.2

Desired DBA Skills

MANAGERIAL TECHNICAL
Broad business understanding Broad data-processing background
Coordination skills Systems development life cycle knowledge
Analytical skills Structured methodologies:

Data flow diagrams
Structure charts
Programming languages

Conflict resolution skills Database life cycle knowledge
Communications skills (oral and written) Database modeling and design skills

Conceptual
Logical
Physical

Negotiation skills Operational skills: database implementation, data dictionary
management, security, and so on

Experience: 10 years in a large DP department

As you examine Table 15.2, keep in mind that the DBA must perform two distinct roles. The DBA’s managerial role
is focused on personnel management and on interactions with the end-user community. The DBA’s technical role
involves the use of the DBMS—database design, development, and implementation—as well as the production,
development, and use of application programs. The DBA’s managerial and technical roles will be examined in greater
detail in the following sections.

15.5.1 The DBA’s Managerial Role

As a manager, the DBA must concentrate on the control and planning dimensions of database administration.
Therefore, the DBA is responsible for:

� Coordinating, monitoring, and allocating database administration resources: people and data.

� Defining goals and formulating strategic plans for the database administration function.

C6545_15 10/30/2007 9:55:32 Page 615

615D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

More specifically, the DBA’s responsibilities are shown in Table 15.3.

Table 15.3 illustrates that the DBA is generally responsible for planning, organizing, testing, monitoring, and delivering
quite a few services. Those services might be performed by the DBA or, more likely, by the DBA’s personnel. Let’s
examine the services in greater detail.

End-User Support
The DBA interacts with the end user by providing data and information support services to the organization’s
departments. Because end users usually have dissimilar computer backgrounds, end-user support services include:

� Gathering user requirements. The DBA must work within the end-user community to help gather the data
required to identify and describe the end users’ problems. The DBA’s communications skills are very important
at this stage because the DBA works closely with people who have varying computer backgrounds and
communication styles. The gathering of user requirements requires the DBA to develop a precise understand-
ing of the users’ views and needs and to identify present and future information needs.

� Building end-user confidence. Finding adequate solutions to end users’ problems increases end-user trust and
confidence in the DBA function. The DBA function is also to educate the end-user in the services provided and
how those services enhance data stewardship and data security.

� Resolving conflicts and problems. Finding solutions to end users’ problems in one department might trigger
conflicts with other departments. End users are typically concerned with their own specific data needs rather
than with those of others, and they are not likely to consider how their data affect other departments within
the organization. When data/information conflicts arise, the DBA function has the authority and responsibility
to resolve them.

� Finding solutions to information needs. The ability and authority to resolve data conflicts enables the DBA
to develop solutions that will properly fit within the existing data management framework. The DBA’s primary
objective is to provide solutions to the end users’ information needs. Given the growing importance of the
Internet, those solutions are likely to require the development and management of Web servers to interface
with the databases. In fact, the explosive growth of e-commerce requires the use of dynamic interfaces to
facilitate interactive product queries and product sales.

� Ensuring quality and integrity of data and applications. Once the right solution has been found, it must be
properly implemented and used. Therefore, the DBA must work with both application programmers and end
users to teach them the database standards and procedures required for data quality, access, and manipulation.
The DBA must also make sure that the database transactions do not adversely affect the quality of the data.
Likewise, certifying the quality of the application programs that access the database is a crucial DBA function.
Special attention must be given to the DBMS Internet interfaces because those interfaces are prone to security
issues.

� Managing the training and support of DBMS users. One of the most time-consuming DBA activities is
teaching end users how to use the database properly. The DBA must ensure that all users accessing the
database have a basic understanding of the functions and use of the DBMS software. The DBA coordinates and
monitors all activities concerning end-user education.

TABLE
15.3

DBA Activities and Services

DBA ACTIVITY DBA SERVICE
Planning End-user support
Organizing Policies, procedures, and standards
Testing of Data security, privacy, and integrity
Monitoring Data backup and recovery
Delivering Data distribution and use

C6545_15 10/30/2007 9:55:32 Page 616

616 C H A P T E R 1 5

Policies, Procedures, and Standards
A prime component of a successful data administration strategy is the continuous enforcement of the policies,
procedures, and standards for correct data creation, usage, distribution, and deletion within the database. The DBA
must define, document, and communicate the policies, procedures, and standards before they can be enforced.
Basically:

� Policies are general statements of direction or action that communicate and support DBA goals.

� Standards describe the minimum requirements of a given DBA activity; they are more detailed and specific
than policies. In effect, standards are rules that are used to evaluate the quality of the activity. For example,
standards define the structure of application programs and the naming conventions programmers must use.

� Procedures are written instructions that describe a series of steps to be followed during the performance of
a given activity. Procedures must be developed within existing working conditions, and they must support and
enhance that environment.

To illustrate the distinctions among policies, standards, and procedures, look at the following examples:

Policies

All users must have passwords.

Passwords must be changed every six months.

Standards

A password must have a minimum of five characters.

A password must have a maximum of 12 characters.

Social Security numbers, names, and birth dates cannot be used as passwords.

Procedures

To create a password, (1) the end user sends to the DBA a written request for the creation of an account; (2)
the DBA approves the request and forwards it to the computer operator; (3) the computer operator creates the
account, assigns a temporary password, and sends the account information to the end user; (4) a copy of the
account information is sent to the DBA; and (5) the user changes the temporary password to a permanent one.

Standards and procedures defined by the DBA are used by all end users who want to benefit from the database.
Standards and procedures must complement each other and must constitute an extension of data administration
policies. Procedures must facilitate the work of end users and the DBA. The DBA must define, communicate, and
enforce procedures that cover areas such as:

� End-user database requirements gathering. What documentation is required? What forms must be used?

� Database design and modeling. What database design methodology is to be used (normalization or
object-oriented methodology)? What tools are to be used (CASE tools, data dictionaries, UML or ER diagrams)?

� Documentation and naming conventions. What documentation must be used in the definition of all data
elements, sets, and programs that access the database?

� Design, coding, and testing of database application programs. The DBA must define the standards for
application program coding, documentation, and testing. The DBA standards and procedures are given to the
application programmers, and the DBA must enforce those standards.

� Database software selection. The selection of the DBMS package and any other software related to the
database must be properly managed. For example, the DBA might require that software be properly interfaced
with existing software, that it have the features needed by the organization, and that it provide a positive return
on investment. In today’s Internet environment, the DBA must also work with Web administrators to
implement efficient and secure Web-to-database connectivity.

C6545_15 10/16/2007 14:9:56 Page 617

617D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

� Database security and integrity. The DBA must define the policies governing security and integrity. Database
security is especially crucial. Security standards must be clearly defined and strictly enforced. Security
procedures must be designed to handle a multitude of security scenarios to ensure that security problems are
minimized. Although no system can ever be completely secure, security procedures must be designed to meet
critical standards. The growing use of Internet interfaces to databases opens the door to new security threats
that are far more complex and difficult to manage than those encountered with more traditional internally
generated and controlled interfaces. Therefore, the DBA must work closely with Internet security specialists to
ensure that the databases are properly protected from attacks launched inadvertently or deliberately.

� Database backup and recovery. Database backup and recovery procedures must include the information
necessary to guarantee proper execution and management of the backups.

� Database maintenance and operation. The DBMS’s daily operations must be clearly documented. Operators
must keep job logs, and they must write operator instructions and notes. Such notes are helpful in pinpointing
the causes and solutions of problems. Operational procedures must also include precise information concern-
ing backup and recovery procedures.

� End-user training. A full-featured training program must be established within the organization, and
procedures governing the training must be clearly specified. The objective is to indicate clearly who does what,
when, and how. Each end user must be aware of the type and extent of the available training methodology.

Procedures and standards must be revised at least annually to keep them up to date and to ensure that the organization
can adapt quickly to changes in the work environment. Naturally, the introduction of new DBMS software, the
discovery of security or integrity violations, the reorganization of the company, and similar changes require revision of
the procedures and standards.

Data Security, Privacy, and Integrity
The security, privacy, and integrity of the data in the database are of great concern to DBAs who manage current
DBMS installations. Technology has pointed the way to greater productivity through information management.
Technology has also resulted in the distribution of data across multiple sites, thus making it more difficult to maintain
data control, security, and integrity. The multiple-site data configuration has made it imperative that the DBA use the
security and integrity mechanisms provided by the DBMS to enforce the database administration policies defined in the
previous section. In addition, DBAs must team up with Internet security experts to build security mechanisms to
safeguard data from possible attacks or unauthorized access. Section 15.6 covers security issues in more detail.

Data Backup and Recovery
When data are not readily available, companies face potentially ruinous losses. Therefore, data backup and recovery
procedures are critical in all database installations. The DBA also must ensure that the data in the database can be fully
recovered in case of physical data loss or loss of database integrity.

Data loss can be partial or total. A partial loss is caused by a physical loss of part of the database or when part of the
database has lost integrity. A total loss might mean that the database continues to exist but its integrity is entirely lost
or that the entire database is physically lost. In any case, backup and recovery procedures are the cheapest database
insurance you can buy.

The management of database security, integrity, backup, and recovery is so critical that many DBA departments have
created a position called the database security officer (DSO). The DSO’s sole job is to ensure database security and
integrity. In large organizations, the DSO’s activities are often classified as disaster management.

C6545_15 10/16/2007 14:9:57 Page 618

618 C H A P T E R 1 5

Disaster management includes all of the DBA activities designed to secure data availability following a physical
disaster or a database integrity failure. Disaster management includes all planning, organizing, and testing of database
contingency plans and recovery procedures. The backup and recovery measures must include at least:

� Periodic data and applications backups. Some DBMSs include tools to ensure backup and recovery of the
data in the database. The DBA should use those tools to render the backup and recovery tasks automatic.
Products such as IBM’s DB2 allow the creation of different backup types: full, incremental, and concurrent. A
full backup, also known as a database dump, produces a complete copy of the entire database. An
incremental backup produces a backup of all data since the last backup date; a concurrent backup takes
place while the user is working on the database.

� Proper backup identification. Backups must be clearly identified through detailed descriptions and date
information, thus enabling the DBA to ensure that the correct backups are used to recover the database. The
most common backup medium is tape; the storage and labeling of tapes must be done diligently by the
computer operators, and the DBA must keep track of tape currency and location. However, organizations that
are large enough to hire a DBA do not typically use CDs and DVDs for enterprise backup. Other emerging
backup solutions include optical and disk-based backup devices. Such backup solutions include online storage
based on Network Attached Storage (NAS) and Storage Area Networks (SAN). Enterprise backup solutions use
a layered backup approach in which the data are first backed up to fast disk media for intermediate storage and
fast restoration. Later, the data is transferred to tape for archival storage.

� Convenient and safe backup storage. There must be multiple backups of the same data, and each backup
copy must be stored in a different location. The storage locations must include sites inside and outside the
organization. (Keeping different backups in the same place defeats the purpose of having multiple backups in
the first place.) The storage locations must be properly prepared and may include fire-safe and quakeproof
vaults, as well as humidity and temperature controls. The DBA must establish a policy to respond to two
questions: (1) Where are the backups to be stored? (2) How long are backups to be stored?

� Physical protection of both hardware and software. Protection might include the use of closed installations
with restricted access, as well as preparation of the computer sites to provide air conditioning, backup power,
and fire protection. Physical protection also includes the provision of a backup computer and DBMS to be used
in case of emergency. For example, when Hurricane Katrina hit the U.S. Gulf Coast in 2005, New Orleans
suffered almost total destruction of its communications infrastructure. Many organizations and educational
institutions did not have adequate disaster recovery plans for such an extreme level of service interruption (see
the Part VI Business Vignette at the beginning of this chapter for one example).3

� Personal access control to the software of a database installation. Multilevel passwords and privileges and
hardware and software challenge/response tokens can be used to properly identify authorized users of
resources.

� Insurance coverage for the data in the database. The DBA or security officer must secure an insurance policy
to provide financial protection in the event of a database failure. The insurance might be expensive, but it is
less expensive than the disaster created by massive data loss.

Two additional points are worth making.

� Data recovery and contingency plans must be thoroughly tested and evaluated, and they must be practiced
frequently. So-called fire drills are not to be disparaged, and they require top-level management’s support and
enforcement.

� A backup and recovery program is not likely to cover all components of an information system. Therefore, it
is appropriate to establish priorities concerning the nature and extent of the data recovery process.

3See “AAUP Responds to Katrina’s Impact on New Orleans Universities,” http://www.aaup.org/AAUP/pubsres/academe/2006/MA/AW/kat.htm.

C6545_15 10/30/2007 9:59:42 Page 619

619D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Data Distribution and Use
Data are useful only when they reach the right users in a timely fashion. The DBA is responsible for ensuring that the
data are distributed to the right people, at the right time, and in the right format. The DBA’s data distribution and use
tasks can become very time-consuming, especially when the data delivery capacity is based on a typical applications
programming environment, where users depend on programmers to deliver the programs to access the data in the
database. Although the Internet and its intranet and extranet extensions have opened databases to corporate users,
their use has also created a new set of challenges for the DBA.

Current data distribution philosophy makes it easy for authorized end users to access the database. One way to
accomplish that task is to facilitate the use of a new generation of more sophisticated query tools and the new Internet
Web front ends. They enable the DBA to educate end users to produce the required information without being
dependent on applications programmers. Naturally, the DBA must ensure that all users adhere to appropriate
standards and procedures.

This data-sharing philosophy is common today, and it is likely that it will become more common as database
technology marches on. Such an environment is more flexible for the end user. Clearly, enabling end users to become
relatively self-sufficient in the acquisition and use of data can lead to more efficient use of data in the decision process.
Yet this “data democracy” can also produce some troublesome side effects. Letting end users micromanage their data
subsets could inadvertently sever the connection between those users and the data administration function. The DBA’s
job under those circumstances might become sufficiently complicated to compromise the efficiency of the data
administration function. Data duplication might flourish again without checks at the organizational level to ensure the
uniqueness of data elements. Thus, end users who do not completely understand the nature and sources of data might
make improper use of the data elements.

15.5.2 The DBA’s Technical Role

The DBA’s technical role requires a broad understanding of DBMS functions, configuration, programming languages,
data modeling and design methodologies, and so on. For example, the DBA’s technical activities include the selection,
installation, operation, maintenance, and upgrading of the DBMS and utility software, as well as the design,
development, implementation, and maintenance of the application programs that interact with the database.

Many of the DBA’s technical activities are a logical extension of the DBA’s managerial activities. For example, the
DBA deals with database security and integrity, backup and recovery, and training and support. Thus, the DBA’s dual
role might be conceptualized as a capsule whose technical core is covered by a clear managerial shell.

The technical aspects of the DBA’s job are rooted in the following areas of operation:

� Evaluating, selecting, and installing the DBMS and related utilities.

� Designing and implementing databases and applications.

� Testing and evaluating databases and applications.

� Operating the DBMS, utilities, and applications.

� Training and supporting users.

� Maintaining the DBMS, utilities, and applications.

The following sections will explore the details of those operational areas.

Evaluating, Selecting, and Installing the DBMS and Utilities
One of the DBA’s first and most important technical responsibilities is selecting the database management system,
utility software, and supporting hardware to be used in the organization. Therefore, the DBA must develop and execute
a plan for evaluating and selecting the DBMS, utilities, and hardware. That plan must be based primarily on the
organization’s needs rather than on specific software and hardware features. The DBA must recognize that the search
is for solutions to problems rather than for a computer or DBMS software. Put simply, a DBMS is a management tool
and not a technological toy.

C6545_15 10/16/2007 14:9:57 Page 620

620 C H A P T E R 1 5

The first and most important step of the evaluation and acquisition plan is to determine company needs. To establish
a clear picture of those needs, the DBA must make sure that the entire end-user community, including top- and
mid-level managers, is involved in the process. Once the needs are identified, the objectives of the data administration
function can be clearly established and the DBMS features and selection criteria can be defined.

To match DBMS capability to the organization’s needs, the DBA would be wise to develop a checklist of desired DBMS
features. That DBMS checklist should address at least these issues:

� DBMS model. Are the company’s needs better served by a relational, object-oriented, or object/relational
DBMS? If a data warehouse application is required, should a relational or multidimensional DBMS be used?
Does the DBMS support star schemas?

� DBMS storage capacity. What maximum disk and database size is required? How many disk packages must
be supported? How many tape units are needed? What are other storage needs?

� Application development support. Which programming languages are supported? What application devel-
opment tools (database schema design, data dictionary, performance monitoring, and screen and menu
painters) are available? Are end-user query tools provided? Does the DBMS provide Web front-end access?

� Security and integrity. Does the DBMS support referential and entity integrity rules, access rights, and so on?
Does the DBMS support the use of audit trails to spot errors and security violations? Can the audit trail size
be modified?

� Backup and recovery. Does the DBMS provide some automated backup and recovery tools? Does the
DBMS support tape, optical disc, or network-based backups? Does the DBMS automatically back up the
transaction logs?

� Concurrency control. Does the DBMS support multiple users? What levels of isolation (table, page, row) does
the DBMS offer? How much manual coding is needed in the application programs?

� Performance. How many transactions per second does the DBMS support? Are additional transaction
processors needed?

� Database administration tools. Does the DBMS offer some type of DBA management interface? What type
of information does the DBA interface provide? Does the DBMS provide alerts to the DBA when errors or
security violations occur?

� Interoperability and data distribution. Can the DBMS work with other DBMS types in the same
environment? What coexistence or interoperability level is achieved? Does the DBMS support READ and
WRITE operations to and from other DBMS packages? Does the DBMS support a client/server architecture?

� Portability and standards. Can the DBMS run on different operating systems and platforms? Can the DBMS
run on mainframes, midrange computers, and personal computers? Can the DBMS applications run without
modification on all platforms? What national and industry standards does the DBMS follow?

� Hardware. What hardware does the DBMS require?

� Data dictionary. Does the DBMS have a data dictionary? If so, what information is kept in it? Does the DBMS
interface with any data dictionary tool? Does the DBMS support any CASE tools?

� Vendor training and support. Does the vendor offer in-house training? What type and level of support does
the vendor provide? Is the DBMS documentation easy to read and helpful? What is the vendor’s upgrade
policy?

� Available third-party tools. What additional tools are offered by third-party vendors (query tools, data
dictionary, access management and control, storage allocation management tools)?

� Cost. What costs are involved in the acquisition of the software and hardware? How many additional personnel
are required, and what level of expertise is required of them? What are the recurring costs? What is the
expected payback period?

C6545_15 10/16/2007 14:9:57 Page 621

621D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Pros and cons of several alternative solutions must be evaluated during the selection process. Available alternatives are
often restricted because software must be compatible with the organization’s existing computer system. Remember
that a DBMS is just part of a solution; it requires support from collateral hardware, application software, and utility
programs. For example, the DBMS’s use is likely to be constrained by the available CPU(s), front-end processor(s),
auxiliary storage devices, data communication devices, the operating system, a transaction processor system, and so
on. The costs associated with the hardware and software components must be included in the estimations.

The selection process must also consider the site’s preparation costs. For example, the DBA must include both
one-time and recurring expenditures involved in the preparation and maintenance of the computer room installations.

The DBA must supervise the installation of all software and hardware designated to support the data administration
strategy; must have a thorough understanding of the components being installed; and must be familiar with the
installation, configuration, and startup procedures of such components. The installation procedures include details such
as the location of backup and transaction log files, network configuration information, and physical storage details.

Keep in mind that installation and configuration details are DBMS-dependent. Therefore, such details cannot be
addressed in this book. Consult the installation and configuration sections of your system’s DBMS administration guide
for those details.

Designing and Implementing Databases and Applications
The DBA function also provides data modeling and design services to end-users. Such services are often coordinated
with an application development group within the data-processing department. Therefore, one of the primary activities
of a DBA is to determine and enforce standards and procedures to be used. Once the appropriate standards and
procedures framework are in place, the DBA must ensure that the database modeling and design activities are
performed within the framework. The DBA then provides the necessary assistance and support during the design of
the database at the conceptual, logical, and physical levels. (Remember that the conceptual design is both DBMS- and
hardware-independent, the logical design is DBMS-dependent and hardware-independent, and the physical design is
both DBMS- and hardware-dependent.)

The DBA function usually requires that several people be dedicated to database modeling and design activities. Those
people might be grouped according to the organizational areas covered by the application. For example, database
modeling and design personnel may be assigned to production systems, financial and managerial systems, or executive
and decision support systems. The DBA schedules the design jobs to coordinate the data design and modeling
activities. That coordination may require reassignment of available resources based on externally determined priorities.

The DBA also works with applications programmers to ensure the quality and integrity of database design and
transactions. Such support services include reviewing the database application design to ensure that transactions are:

� Correct: The transactions mirror real-world events.

� Efficient: The transactions do not overload the DBMS.

� Compliant. Complies with integrity rules and standards.

These activities require personnel with broad database design and programming skills.

The implementation of the applications requires the implementation of the physical database. Therefore, the DBA
must provide assistance and oversight during the physical design, including storage space determination and creation,
data loading, conversion, and database migration services. The DBA’s implementation tasks also include the
generation, compilation, and storage of the application’s access plan. An access plan is a set of instructions
generated at application completion time that predetermines how the application will access the database at run time.
To be able to create and validate the access plan, the user must have the required rights to access the database (see
Chapter 11, Database Performance Tuning and Query Optimization).

C6545_15 10/16/2007 14:12:8 Page 622

622 C H A P T E R 1 5

Before an application comes online, the DBA must develop, test, and implement the operational procedures required
by the new system. Such operational procedures include utilizing training, security, and backup and recovery plans, as
well as assigning responsibility for database control and maintenance. Finally, the DBA must authorize application
users to access the database from which the applications draw the required data.

The addition of a new database might require the fine-tuning and/or reconfiguring of the DBMS. Remember that the
DBMS assists all applications by managing the shared corporate data repository. Therefore, when data structures are
added or modified, the DBMS might require the assignment of additional resources to service the new and original
users with equal efficiency (see Chapter 11, Database Performance Tuning and Query Optimization).

Testing and Evaluating Databases and Applications
The DBA must also provide testing and evaluation services for all of the database and end-user applications. Those
services are the logical extension of the design, development, and implementation services described in the preceding
section. Clearly, testing procedures and standards must already be in place before any application program can be
approved for use in the company.

Although testing and evaluation services are closely related to database design and implementation services, they
usually are maintained independently. The reason for the separation is that application programmers and designers
often are too close to the problem being studied to detect errors and omissions.

Testing usually starts with the loading of the testbed database. That database contains test data for the applications,
and its purpose is to check the data definition and integrity rules of the database and application programs.

The testing and evaluation of a database application cover all aspects of the system—from the simple collection and
creation of data to its use and retirement. The evaluation process covers:

� Technical aspects of both the applications and the database. Backup and recovery, security and integrity, use
of SQL, and application performance must be evaluated.

� Evaluation of the written documentation to ensure that the documentation and procedures are accurate and
easy to follow.

� Observance of standards for naming, documenting, and coding.

� Data duplication conflicts with existing data.

� The enforcement of all data validation rules.

Following the thorough testing of all applications, the database, and the procedures, the system is declared operational
and can be made available to end users.

Operating the DBMS, Utilities, and Applications
DBMS operations can be divided into four main areas:

� System support.

� Performance monitoring and tuning.

� Backup and recovery.

� Security auditing and monitoring.

System support activities cover all tasks directly related to the day-to-day operations of the DBMS and its applications.
These activities include filling out job logs, changing tape, and verifying the status of computer hardware, disk
packages, and emergency power sources. System-related activities include periodic, occasional tasks such as running
special programs and resource configurations for new and/or upgraded versions of database applications.

C6545_15 10/16/2007 14:9:58 Page 623

623D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Performance monitoring and tuning require much of the DBA’s attention and time. These activities are designed to
ensure that the DBMS, utilities, and applications maintain satisfactory performance levels. To carry out the
performance monitoring and tuning tasks, the DBA must:

� Establish DBMS performance goals.

� Monitor the DBMS to evaluate whether the performance objectives are being met.

� Isolate the problem and find solutions (if performance objectives are not met).

� Implement the selected performance solutions.

DBMSs often include performance-monitoring tools that allow the DBA to query database usage information.
Performance-monitoring tools are also available from many different sources: DBMS utilities are provided by
third-party vendors, or they might be included in operating system utilities or transaction processor facilities. Most of
the performance-monitoring tools allow the DBA to focus on selected system bottlenecks. The most common
bottlenecks in DBMS performance tuning are related to the use of indexes, query-optimization algorithms, and
management of storage resources.

Because improper index selection can have a deleterious effect on system performance, most DBMS installations
adhere to a carefully defined index creation and usage plan. Such a plan is especially important in a relational database
environment.

To produce satisfactory performance, the DBA is likely to spend much time trying to educate programmers and end
users on the proper use of SQL statements. Typically, DBMS programmers’ manuals and administration manuals
contain useful performance guidelines and examples that demonstrate the proper use of SQL statements, both in the
command-line mode and within application programs. Because relational systems do not give the user an index choice
within a query, the DBMS makes the index selection for the user. Therefore, the DBA should create indexes that can
be used to improve system performance. (For examples of database performance tuning, see Chapter 11, Database
Performance Tuning and Query Optimization.)

Query-optimization routines are usually integrated into the DBMS package, thereby allowing few tuning options.
Query-optimization routines are oriented to improve concurrent access to the database. Several database packages let
the DBA specify parameters for determining the desired level of concurrency. Concurrency is also affected by the types
of locks used by the DBMS and requested by the applications. Because the concurrency issue is important to the
efficient operation of the system, the DBA must be familiar with the factors that influence concurrency. (See Chapter
10, Transaction Management and Concurrency Control, for more information on that subject.)

During DBMS performance tuning, the DBA must also consider available storage resources in terms of both primary
and secondary memory. The allocation of storage resources is determined when the DBMS is configured. Storage
configuration parameters can be used to determine:

� The number of databases that may be opened concurrently.

� The number of application programs or users supported concurrently.

� The amount of primary memory (buffer pool size) assigned to each database and each database process.

� The size and location of the log files. (Remember that these files are used to recover the database. The log files
can be located in a separate volume to reduce the disk’s head movement and to increase performance.)

Performance-monitoring issues are DBMS-specific. Therefore, the DBA must become familiar with the DBMS
manuals to learn the technical details involved in the performance-monitoring task (see Chapter 11).

Because data loss is likely to be devastating to the organization, backup and recovery activities are of primary concern
during the DBMS operation. The DBA must establish a schedule for backing up database and log files at appropriate
intervals. Backup frequency is dependent on the application type and on the relative importance of the data. All critical
system components—the database, the database applications, and the transaction logs—must be backed up
periodically.

C6545_15 10/16/2007 14:9:58 Page 624

624 C H A P T E R 1 5

Most DBMS packages include utilities that schedule automated database backups, be they full or incremental. Although
incremental backups are faster than full backups, an incremental backup requires the existence of a periodic full backup
to be useful for recovery purposes.

Database recovery after a media or systems failure requires application of the transaction log to the correct database
copy. The DBA must plan, implement, test, and enforce a “bulletproof” backup and recovery procedure.

Security auditing and monitoring assumes the appropriate assignment of access rights and the proper use of access
privileges by programmers and end users. The technical aspects of security auditing and monitoring involve creating
users, assigning access rights, using SQL commands to grant and revoke access rights to users and database objects,
and creating audit trails to discover security violations or attempted violations. The DBA must periodically generate an
audit trail report to determine whether there have been actual or attempted security violations—and, if so, from what
locations, and if possible, by whom.

Training and Supporting Users
Training people to use the DBMS and its tools is included in the DBA’s technical activities. In addition, the DBA
provides or secures technical training in the use of the DBMS and its utilities for the applications programmers.
Applications programmer training covers the use of the DBMS tools as well as the procedures and standards required
for database programming.

Unscheduled, on-demand technical support for end users and programmers is also included in the DBA’s activities. A
technical troubleshooting procedure can be developed to facilitate such support. The technical procedure might include
the development of a technical database used to find solutions to common technical problems.

Part of the support is provided by interaction with DBMS vendors. Establishing good relationships with software
suppliers is one way to ensure that the company has a good external support source. Vendors are the source for
up-to-date information concerning new products and personnel retraining. Good vendor−company relations also are
likely to give organizations an edge in determining the future direction of database development.

Maintaining the DBMS, Utilities, and Applications
The maintenance activities of the DBA are an extension of the operational activities. Maintenance activities are
dedicated to the preservation of the DBMS environment.

Periodic DBMS maintenance includes management of the physical or secondary storage devices. One of the most
common maintenance activities is reorganizing the physical location of data in the database. (That is usually done as
part of the DBMS fine-tuning activities.) The reorganization of a database might be designed to allocate contiguous
disk-page locations to the DBMS to increase performance. The reorganization process also might free the space
allocated to deleted data, thus providing more disk space for new data.

Maintenance activities also include upgrading the DBMS and utility software. The upgrade might require the installation
of a new version of the DBMS software or an Internet front-end tool. Or it might create an additional DBMS gateway
to allow access to a host DBMS running on a different host computer. DBMS gateway services are very common in
distributed DBMS applications running in a client/server environment. Also, new-generation databases include features
such as spatial data support, data warehousing and star query support, and support for Java programming interfaces
for Internet access (see Chapter 14, Database Connectivity and Web Technologies).

Quite often companies are faced with the need to exchange data in dissimilar formats or between databases. The
maintenance efforts of the DBA include migration and conversion services for data in incompatible formats or for
different DBMS software. Such conditions are common when the system is upgraded from one version to another or
when the existing DBMS is replaced by an entirely new DBMS. Database conversion services also include downloading
data from the host DBMS (mainframe-based) to an end user’s personal computer to allow that user to perform a variety
of activities—spreadsheet analysis, charting, statistical modeling, and so on. Migration and conversion services can be

C6545_15 10/16/2007 14:9:58 Page 625

625D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

done at the logical level (DBMS- or software-specific) or at the physical level (storage media or operating-system-
specific). Current generation DBMSs support XML as a standard format for data exchange among database systems
and applications (see Chapter 14).

15.6 SECURITY

Security refers to activities and measures to ensure the confidentiality, integrity, and availability of an information
system and its main asset, data.4 It is important to understand that securing data requires a comprehensive,
company-wide approach. That is, you cannot secure data if you do not secure all the processes and systems around
it. Indeed, securing data entails securing the overall information system architecture, including hardware systems,
software applications, the network and its devices, people (internal and external users), procedures, and the data itself.
To understand the scope of data security, let’s discuss each of the three security goals in more detail:

� Confidentiality deals with ensuring that data is protected against unauthorized access, and if the data are
accessed by an authorized user, that the data are used only for an authorized purpose. In other words,
confidentiality entails safeguarding data against disclosure of any information that would violate the privacy
rights of a person or organization. Data must be evaluated and classified according to the level of
confidentiality: highly restricted (very few people have access), confidential (only certain groups have access),
and unrestricted (can be accessed by all users). The data security officer spends a great amount of time ensuring
that the organization is in compliance with the desired levels of confidentiality. Compliance refers to activities
undertaken to meet data privacy and security reporting guidelines. These reporting guidelines are either part
of internal procedures or are imposed by external regulatory agencies such as the federal government.
Examples of U.S. legislation enacted with the purpose of ensuring data privacy and confidentiality include the
Health Insurance Portability and Accountability Act (HIPAA), Gramm-Leach-Bliley Act (GLBA), and Sarbanes-
Oxley Act (SOX).5

� Integrity, within the data security framework, is concerned with keeping data consistent, free of errors or
anomalies. Integrity focuses on maintaining the data free of inconsistencies and anomalies (see Chapter 1,
Database Systems, to review the concepts of data inconsistencies and data anomalies). The DBMS plays a
pivotal role in ensuring the integrity of the data in the database. However, from the security point of view,
integrity deals not only with the data in the database, but also with ensuring that organizational processes,
users, and usage patterns maintain such integrity. For example, a work-at-home employee using the Internet
to access product costing could be considered an acceptable use; however, security standards might require the
employee to use a secure connection and follow strict procedures to manage the data at home (shredding
printed reports, using encryption to copy data to the local hard drive, etc.). Maintaining the integrity of the data
is a process that starts with data collection and continues with data storage, processing, usage, and archival (see
Chapter 13, Business Intelligence and Data Warehouses). The rationale behind integrity is to treat data as the
most valuable asset in the organization and therefore to ensure that rigorous data validation is carried out at
all levels within the organization.

� Availability refers to the accessibility of data whenever required by authorized users and for authorized
purposes. To ensure data availability, the entire system (not only the data component) must be protected from
service degradation or interruption caused by any source (internal or external). Service interruptions could be
very costly for companies and users alike--recall the JetBlue6 case in the Part V Business Vignette of this book,
and, more recently the case of SKYPE, the voice over IP (VoIP) telephone service provider who suffered a
48-hour worldwide service interruption.7 System availability is an important goal of security.

4The National Security Telecommunications and Information Systems Security Committee (NSTISSC) defines the CIA framework. See http://www.
nsa.gov/snac/wireless/I332-005R-2005.pdf.
5To find additional information about these various laws, please visit http://library.uis.edu/findinfo/govinfo/federal/law.html.
6�JetBlue’s C.E.O. Is ‘Mortified’ After Fliers Are Stranded,� Jeff Baily, February 19, 2007, New York Times, http://www.nytimes.com/2007/02/19/
business/19jetblue.html?ex=1189051200&en=d63f3b54a602bf0d&ei=5070.
7�Skype protection is limited,� Andrew Garcia, eWeek, p. 59, August 27, 2007.

C6545_15 10/30/2007 10:5:48 Page 626

626 C H A P T E R 1 5

15.6.1 Security Policies

Normally, the tasks of securing the system and its main asset, the data, are performed by the database security officer
and the database administrator(s), who work together to establish a cohesive data security strategy. Such security
strategy begins with defining a sound and comprehensive security policy. A security policy is a collection of
standards, policies and procedures created to guarantee the security of a system and ensure auditing and compliance.
The security audit process starts by identifying the security vulnerabilities in the organization’s information system
infrastructure and identifying measures to protect the system and data against those vulnerabilities.

15.6.2 Security Vulnerabilities

A security vulnerability is a weakness in a system component that could be exploited to allow unauthorized access
or cause service disruptions. The nature of such vulnerabilities could be of multiple types: technical (such as a flaw in
the operating system or Web browser), managerial (for example, not educating users about critical security issues),
cultural (hiding passwords under the keyboard or not shredding confidential reports), procedural (not requiring complex
passwords or not checking user IDs), and so on. Whatever the case, when a security vulnerability is left unchecked, it
could become a security threat. A security threat is an imminent security violation that could occur at any time due
to unchecked security vulnerability.

A security breach occurs when a security threat is exploited to negatively affect the integrity, confidentiality, or
availability of the system. Security breaches can yield a database whose integrity is either preserved or corrupted:

� Preserved: Action is required to avoid the repetition of similar security problems, but data recovery may not
be necessary. As a matter of fact, most security violations are produced by unauthorized and unnoticed access
for information purposes, but such snooping does not disrupt the database.

� Corrupted: Action is required to avoid the repetition of similar security problems, and the database must be
recovered to a consistent state. Corrupting security breaches include database access by computer viruses and
by hackers whose actions are intended to destroy or alter data.

Table 15.4 illustrates some security vulnerabilities that systems components are exposed to and some measures
typically taken to protect against them.

TABLE
15. 4

Sample Security Vulnerabilities and Related Measures

SYSTEM
COMPONENT

SECURITY
VULNERABILITY

SECURITY
MEASURES

People • User sets a blank password.
• Password is short or includes birth date.
• User leaves office door open all

the time.
• User leaves payroll information on

screen for long periods of time.

• Enforce complex password policies.
• Use multilevel authentication.
• Use security screens and screen savers.
• Educate users about sensitive data.
• Install security cameras.
• Use automatic door locks.

Workstations
and Servers

• User copies data to flash drive.
• Workstation is used by multiple users.
• Power failure crashes computer.
• Unauthorized personnel can use

computer.
• Sensitive data stored in laptop computer.
• Data lost due to stolen hard disk/laptop.
• Natural disasters−earthquake,

flood, etc.

• Use group policies to restrict use of flash
drives.

• Assign user access rights to workstations.
• Install Uninterrupted Power Supplies (UPS).
• Add security lock devices to computers.
• Implement a “kill” switch for stolen laptops.
• Create and test data backup and

recovery plans.
• Protect system against natural disasters−

use co-location strategies.

C6545_15 10/30/2007 10:13:10 Page 627

627D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

TABLE
15. 4

Sample Security Vulnerabilities and Related Measures (continued)

SYSTEM
COMPONENT

SECURITY
VULNERABILITY

SECURITY
MEASURES

Operating
System

• Buffer overflow attacks.
• Virus attacks.
• Root kits and worm attacks.
• Denial of service attacks.
• Trojan horses.
• Spyware applications.
• Password crackers.

• Apply OS security patches and updates.
• Apply application server patches.
• Install antivirus and antispyware software.
• Enforce audit trails on the computers.
• Perform periodic system backups.
• Install only authorized applications.
• Use group policies to prevent unauthorized

installs.
Applications • Application bugs−buffer overflow.

• SQL injection, session hijacking, etc.
• Application vulnerabilities—cross site

scripting, nonvalidated inputs.
• E-mail attacks: spamming, phishing, etc.
• Social engineering e-mails.

• Test application programs extensively.
• Built safeguards in code.
• Do extensive vulnerability testing in

applications.
• Install spam filter/antivirus for e-mail system.
• Use secure coding techniques (see

www.owasp.org).
• Educate users about social engineering

attacks.
Network • IP spoofing.

• Packet sniffers.
• Hacker attacks.
• Clear passwords on network.

• Install firewalls.
• Virtual Private Networks (VPN).
• Intrusion Detection Systems (IDS).
• Network Access Control (NAC).
• Network activity monitoring.

Data • Data shares are open to all users.
• Data can be accessed remotely.
• Data can be deleted from shared

resource.

• Implement file system security.
• Implement share access security.
• Use access permission.
• Encrypt data at the file system or

database level.

15.6.3 Database Security

Database security refers to the use of the DBMS features and other related measures to comply with the security
requirements of the organization. From the DBA’s point of view, security measures should be implemented to protect
the DBMS against service degradation and the database against loss, corruption, or mishandling. In short, the DBA
should secure the DBMS from the point of installation through operation and maintenance.

To protect the DBMS against service degradation there are certain minimum recommended security safeguards. For
example: change default system passwords, change default installation paths, apply the latest patches, secure
installation folders with proper access rights, make sure only required services are running, set up auditing logs, set up

Note

James Martin provides an excellent enumeration and description of the desirable attributes of a database
security strategy that remains relevant today (James Martin, Managing the Database Environment, Englewood
Cliffs, NJ: Prentice-Hall, 1977). Martin's security strategy is based on the seven essentials of database security
and may be summarized as one in which:

Data are Users are
Protected Identifiable
Reconstructable Authorized
Auditable Monitored
Tamperproof

C6545_15 11/7/2007 8:37:8 Page 628

628 C H A P T E R 1 5

session logging, and require session encryption. Furthermore, the DBA should work closely with the network
administrator to implement network security to protect the DBMS and all services running on the network. In current
organizations, one of the most critical components in the information architecture is the network.

Protecting the data in the database is a function of authorization management. Authorization management defines
procedures to protect and guarantee database security and integrity. Those procedures include, but are not limited to,
user access management, view definition, DBMS access control, and DBMS usage monitoring.

� User access management. This function is designed to limit access to the database and likely includes at least
the following procedures:

- Define each user to the database. This is achieved at the operating system level and at the DBMS level.
At the operating system level, the DBA can request the creation of a logon user ID that allows the end user
to log on to the computer system. At the DBMS level, the DBA can either create a different user ID or
employ the same user ID to authorize the end user to access the DBMS.

- Assign passwords to each user. This, too, can be done at both operating system and DBMS levels. The
database passwords can be assigned with predetermined expiration dates. The use of expiration dates
enables the DBA to screen end users periodically and to remind users to change their passwords
periodically, thus making unauthorized access less probable.

- Define user groups. Classifying users into user groups according to common access needs facilitates the
DBA’s job of controlling and managing the access privileges of individual users. Also, the DBA can use
database roles and resource limits to minimize the impact of rogue users in the system (see Section 15.9.6
for more information about these topics).

- Assign access privileges. The DBA assigns access privileges or access rights to specific users to access
specified databases. An access privilege describes the type of authorized access. For example, access rights
may be limited to read-only, or the authorized access might include READ, WRITE, and DELETE privileges.
Access privileges in relational databases are assigned through SQL GRANT and REVOKE commands.

- Control physical access. Physical security can prevent unauthorized users from directly accessing the
DBMS installation and facilities. Some common physical security practices found in large database
installations include secured entrances, password-protected workstations, electronic personnel badges,
closed-circuit video, voice recognition, and biometric technology.

� View definition. The DBA must define data views to protect and control the scope of the data that are
accessible to an authorized user. The DBMS must provide the tools that allow the definition of views that are
composed of one or more tables and the assignment of access rights to a user or a group of users. The SQL
command CREATE VIEW is used in relational databases to define views. Oracle DBMS offers Virtual Private
Database (VPD), which allows the DBA to create customized views of the data for multiple different users. With
this feature, the DBA could restrict a regular user querying a payroll database to see only the rows and columns
necessary, while the department manager would see only the rows and columns pertinent to that department.

� DBMS access control. Database access can be controlled by placing limits on the use of DBMS query and
reporting tools. The DBA must make sure that those tools are used properly and only by authorized personnel.

� DBMS usage monitoring. The DBA must also audit the use of the data in the database. Several DBMS
packages contain features that allow the creation of an audit log, which automatically records a brief
description of the database operations performed by all users. Such audit trails enable the DBA to pinpoint
access violations. The audit trails can be tailored to record all database accesses or just failed database accesses.

The integrity of a database could be lost because of external factors beyond the DBA’s control. For example, the
database might be damaged or destroyed by an explosion, a fire, or an earthquake. Whatever the reason, the specter
of database corruption or destruction makes backup and recovery procedures crucial to any DBA.

C6545_15 10/30/2007 10:7:55 Page 629

629D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

15.7 DATABASE ADMINISTRATION TOOLS

The importance of the data dictionary as a prime DBA tool cannot be overstated. This section will examine the data
dictionary as a data administration tool, as well as the DBA’s use of computer-aided software engineering (CASE) tools
to support database analysis and design.

15.7.1 The Data Dictionary

In Chapter 1, a data dictionary was defined as “a DBMS component that stores the definition of data characteristics
and relationships.” You may recall that such “data about data” are called metadata. The DBMS data dictionary
provides the DBMS with its self-describing characteristic. In effect, the data dictionary resembles an x-ray of the
company’s entire data set, and it is a crucial element in data administration.

Two main types of data dictionaries exist: integrated and standalone. An integrated data dictionary is included with
the DBMS. For example, all relational DBMSs include a built-in data dictionary or system catalog that is frequently
accessed and updated by the RDBMS. Other DBMSs, especially older types, do not have a built-in data dictionary;
instead, the DBA may use third-party standalone data dictionary systems.

Data dictionaries can also be classified as active or passive. An active data dictionary is automatically updated by
the DBMS with every database access, thereby keeping its access information up to date. A passive data dictionary
is not updated automatically and usually requires running a batch process. Data dictionary access information is
normally used by the DBMS for query optimization purposes.

The data dictionary’s main function is to store the description of all objects that interact with the database. Integrated data
dictionaries tend to limit their metadata to the data managed by the DBMS. Standalone data dictionary systems are usually
more flexible and allow the DBA to describe and manage all of the organization’s data, whether or not they are
computerized. Whatever the data dictionary’s format, its existence provides database designers and end users with a
much-improved ability to communicate. In addition, the data dictionary is the tool that helps the DBA resolve data conflicts.

Although there is no standard format for the information stored in the data dictionary, several features are common.
For example, the data dictionary typically stores descriptions of all:

� Data elements that are defined in all tables of all databases. Specifically, the data dictionary stores the
names, data types, display format, internal storage format, and validation rules. The data dictionary tells where
an element is used, by whom it is used, and so on.

� Tables defined in all databases. For example, the data dictionary is likely to store the name of the table
creator, the date of creation, access authorizations, and the number of columns.

� Indexes defined for each database table. For each index, the DBMS stores at least the index name, the
attributes used, the location, specific index characteristics, and the creation date.

� Defined databases. This includes who created each database, when the database was created, where the
database is located, who the DBA is, and so on.

� End users and administrators of the database.

� Programs that access the database. This includes screen formats, report formats, application programs, and
SQL queries.

� Access authorizations for all users of all databases.

� Relationships among data elements. This includes which elements are involved, whether the relationships are
mandatory or optional, and what the connectivity and cardinality requirements are.

If the data dictionary can be organized to include data external to the DBMS itself, it becomes an especially flexible tool
for more general corporate resource management. The management of such an extensive data dictionary thus makes
it possible to manage the use and allocation of all of the organization’s information, regardless of whether the

C6545_15 10/16/2007 14:10:0 Page 630

630 C H A P T E R 1 5

information has its roots in the database data. That is why some managers consider the data dictionary to be a key
element of information resource management. And that is also why the data dictionary might be described as the
information resource dictionary.

The metadata stored in the data dictionary are often the basis for monitoring database use and for assigning access
rights to the database users. The information stored in the data dictionary is usually based on a relational table format,
thus enabling the DBA to query the database with SQL commands. For example, SQL commands can be used to
extract information about the users of a specific table or about the access rights of a particular user. In the following
example, the IBM DB2 system catalog tables will be used as the basis for several examples of how a data dictionary
is used to derive information.

SYSTABLES stores one row for each table or view.
SYSCOLUMNS stores one row for each column of each table or view.
SYSTABAUTH stores one row for each authorization given to a user for a table or view in a database.

Examples of Data Dictionary Usage
Example 1

List the names and creation dates of all tables created by the user JONESVI in the current database.

SELECT NAME, CTIME
FROM SYSTABLES
WHERE CREATOR = 'JONESVI';

Example 2

List the names of the columns for all tables created by JONESVI in the current database.

SELECT NAME
FROM SYSCOLUMNS
WHERE TBCREATOR = 'JONESVI';

Example 3

List the names of all tables for which the user JONESVI has DELETE authorization.

SELECT TTNAME
FROM SYSTABAUTH
WHERE GRANTEE = 'JONESVI' AND DELETEAUTH = 'Y';

Example 4

List the names of all users who have some type of authority over the INVENTORY table.

SELECT DISTINCT GRANTEE
FROM SYSTABAUTH
WHERE TTNAME = 'INVENTORY';

Example 5

List the user and table names for all users who can alter the database structure for any table in the database.

SELECT GRANTEE, TTNAME
FROM SYSTABAUTH
WHERE ALTERAUTH = 'Y'
ORDER BY GRANTEE, TTNAME;

C6545_15 10/16/2007 14:10:0 Page 631

631D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

As you can see in the preceding examples, the data dictionary can be a tool for monitoring the security of data in the
database by checking the assignment of data access privileges. Although the preceding examples targeted database
tables and users, information about the application programs that access the database can also be drawn from the data
dictionary.

The DBA can use the data dictionary to support data analysis and design. For example, the DBA can create a report
that lists all data elements to be used in a particular application; a list of all users who access a particular program; a
report that checks for data redundancies, duplications, and the use of homonyms and synonyms; and a number of
other reports that describe data users, data access, and data structure. The data dictionary can also be used to ensure
that applications programmers have met all of the naming standards for the data elements in the database and that the
data validation rules are correct. Thus, the data dictionary can be used to support a wide range of data administration
activities and to facilitate the design and implementation of information systems. Integrated data dictionaries are also
essential to the use of computer-aided software engineering tools.

15.7.2 CASE Tools

CASE is the acronym for computer-aided systems engineering. A CASE tool provides an automated framework
for the Systems Development Life Cycle (SDLC). CASE uses structured methodologies and powerful graphical
interfaces. Because they automate many tedious system design and implementation activities, CASE tools play an
increasingly important role in information systems development.

CASE tools are usually classified according to the extent of support they provide for the SDLC. For example,
front-end CASE tools provide support for the planning, analysis, and design phases; back-end CASE tools
provide support for the coding and implementation phases. The benefits associated with CASE tools include:

� A reduction in development time and costs.

� Automation of the SDLC.

� Standardization of systems development methodologies.

� Easier maintenance of application systems developed with CASE tools.

One of the CASE tools’ most important components is an extensive data dictionary, which keeps track of all objects
created by the systems designer. For example, the CASE data dictionary stores data flow diagrams, structure charts,
descriptions of all external and internal entities, data stores, data items, report formats, and screen formats. A CASE
data dictionary also describes the relationships among the components of the system.

Several CASE tools provide interfaces that interact with the DBMS. Those interfaces allow the CASE tool to store its
data dictionary information by using the DBMS. Such CASE/DBMS interaction demonstrates the interdependence
that exists between systems development and database development, and it helps create a fully integrated development
environment.

In a CASE development environment, the database and application designers use the CASE tool to store the
description of the database schema, data elements, application processes, screens, reports, and other data relevant to
the development process. The CASE tool integrates all systems development information in a common repository,
which can be checked by the DBA for consistency and accuracy.

As an additional benefit, a CASE environment tends to improve the extent and quality of communication among the
DBA, the application designers, and the end users. The DBA can interact with the CASE tool to check the definition
of the data schema for the application, the observance of naming conventions, the duplication of data elements, the
validation rules for the data elements, and a host of other developmental and managerial variables. When the CASE
tool indicates conflicts, rule(s) violations, and inconsistencies, it facilitates making corrections. Better yet, a correction
is transported by the CASE tool to cascade its effects throughout the applications environment, thus greatly simplifying
the job of the DBA and the application designer.

C6545_15 10/16/2007 14:10:1 Page 632

632 C H A P T E R 1 5

A typical CASE tool provides five components:

� Graphics designed to produce structured diagrams such as data flow diagrams, ER diagrams, class diagrams,
and object diagrams.

� Screen painters and report generators to produce the information system’s input/output formats (for example,
the end-user interface).

� An integrated repository for storing and cross-referencing the system design data. This repository includes a
comprehensive data dictionary.

� An analysis segment to provide a fully automated check on system consistency, syntax, and completeness.

� A program documentation generator.

Figure 15.7 illustrates how Microsoft Visio Professional can be used to produce an ER diagram.

One CASE tool, ERwin Data Modeler by Computer Associates, produces fully documented ER diagrams that can be
displayed at different abstraction levels. In addition, ERwin can produce detailed relational designs. The user specifies
the attributes and primary keys for each entity and describes the relations. ERwin then assigns foreign keys based on
the specified relationships among the entities. Changes in primary keys are always updated automatically throughout
the system. Table 15.5 shows a short list of the many available CASE tool vendors.

Main menu
Modeling options

Completed ERD

FIGURE
15.7

An example of a CASE tool: Visio Professional

C6545_15 10/16/2007 14:10:1 Page 633

633D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

TABLE
15.5

CASE Tools

COMPANY PRODUCT WEB SITE
Casewise Corporate Modeler Suite www.casewise.com
Computer Associates ERwin www3.ca.com/Solutions/Product.asp?ID=260
Embarcadero Technologies ER/Studio www.embarcadero.com/products/erstudio
Microsoft Visio office.microsoft.com/en-us/FX010857981033.aspx
Oracle Designer www.oracle.com/technology/products/designer
Telelogic System Architect www.telelogic.com/products/system_architect/sa
Sybase Power Designer www.sybase.com/products/developmentintegration/

powerdesigner
Visible Visible Analyst www.visible.com/Products/Analyst

Major relational DBMS vendors, such as Oracle, now provide fully integrated CASE tools for their own DBMS software
as well as for RDBMSs supplied by other vendors. For example, Oracle’s CASE tools can be used with IBM’s DB2,
SQL/DS, and Microsoft’s SQL Server to produce fully documented database designs. Some vendors even take
nonrelational DBMSs, develop their schemas, and produce the equivalent relational designs automatically.

There is no doubt that CASE has enhanced the database designer’s and the applications programmer’s efficiency. But
no matter how sophisticated the CASE tool, its users must be well versed in conceptual design ideas. In the hands of
database novices, CASE tools simply produce impressive-looking but bad designs.

15.8 DEVELOPING A DATA ADMINISTRATION STRATEGY

For a company to succeed, its activities must be committed to its main objectives or mission. Therefore, regardless of
a company’s size, a critical step for any organization is to ensure that its information system supports its strategic plans
for each of its business areas.

The database administration strategy must not conflict with the information systems plans. After all, the information
systems plans are derived from a detailed analysis of the company’s goals, its condition or situation, and its business
needs. Several methodologies are available to ensure the compatibility of data administration and information systems
plans and to guide the strategic plan development. The most commonly used methodology is known as information
engineering.

Information engineering (IE) allows for the translation of the company’s strategic goals into the data and
applications that will help the company achieve those goals. IE focuses on the description of the corporate data instead
of the processes. The IE rationale is simple: business data types tend to remain fairly stable. In contrast, processes
change often and thus require the frequent modification of existing systems. By placing the emphasis on data, IE helps
decrease the impact on systems when processes change.

The output of the IE process is an information systems architecture (ISA) that serves as the basis for planning,
development, and control of future information systems. Figure 15.8 shows the forces that affect ISA development.

Implementing IE methodologies in an organization is a costly process that involves planning, a commitment of
resources, management liability, well-defined objectives, identification of critical factors, and control. An ISA provides
a framework that includes the use of computerized, automated, and integrated tools such as a DBMS and CASE tools.

C6545_15 10/16/2007 14:10:2 Page 634

634 C H A P T E R 1 5

The success of the overall information systems strategy, and therefore, of the data administration strategy depends on
several critical success factors. Understanding the critical success factors helps the DBA develop a successful corporate
data administration strategy. Critical success factors include managerial, technological, and corporate culture issues,
such as:

� Management commitment. Top-level management commitment is necessary to enforce the use of standards,
procedures, planning, and controls. The example must be set at the top.

� Thorough company situation analysis. The current situation of the corporate data administration must be
analyzed to understand the company’s position and to have a clear vision of what must be done. For example,
how are database analysis, design, documentation, implementation, standards, codification, and other issues
handled? Needs and problems should be identified first; then prioritized.

� End-user involvement. End-user involvement is another aspect critical to the success of the data administration
strategy. What is the degree of organizational change involved? Successful organizational change requires that
people be able to adapt to the change. Users should be given an open communication channel to upper-level
management to ensure success of the implementation. Good communication is key to the overall process.

� Defined standards. Analysts and programmers must be familiar with appropriate methodologies, procedures,
and standards. If analysts and programmers lack familiarity, they might need to be trained in the use of the
procedures and standards.

� Training. The vendor must train the DBA personnel in the use of the DBMS and other tools. End users must
be trained to use the tools, standards, and procedures to obtain and demonstrate the maximum benefit, thereby
increasing end-user confidence. Key personnel should be trained first so they can train others.

� A small pilot project. A small project is recommended to ensure that the DBMS will work in the company,
that the output is what was expected, and that the personnel have been trained properly.

That list of factors is not and cannot be comprehensive. Nevertheless, it does provide the initial framework for the
development of a successful strategy. Remember that no matter how comprehensive the list of success factors is, it
must be based on the notion that development and implementation of a successful data administration strategy are
tightly integrated with the overall information systems planning activity of the organization.

Strategic
plan

Information
systems

architecture

Information
engineering

Company
mission

Company
managers

Goals Critical success factors

FIGURE
15.8

Forces affecting the development of the ISA

C6545_15 10/16/2007 14:10:2 Page 635

635D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

15.9 THE DBA AT WORK: USING ORACLE FOR DATABASE ADMINISTRATION

Thus far you’ve learned about the DBA’s work environment and responsibilities in general terms. In this section, you
will get a more detailed look at how a DBA might handle the following technical tasks in a specific DBMS:

� Creating and expanding database storage structures.

� Managing database objects such as tables, indexes, triggers, and procedures.

� Managing the end-user database environment, including the type and extent of database access.

� Customizing database initialization parameters.

Many of those tasks require the DBA to use software tools and utilities that are commonly provided by the database
vendor. In fact, all DBMS vendors provide a set of programs to interface with the database and to perform a wide range
of database administrative tasks.

We chose Oracle 10g for Windows to illustrate the selected DBA tasks because it is typically found in organizations that
are sufficiently large and have a sufficiently complex database environment to require (and afford) the use of a DBA,
it has good market presence, and it is also often found in small colleges and universities.

Keep in mind that most of the tasks described in this section are encountered by DBAs regardless of their DBMS or
their operating system. However, the execution of those tasks tends to be specific to the DBMS and the operating
system. Therefore, if you use IBM DB2 Universal Database or Microsoft SQL Server, you must adapt the procedures
shown here to your DBMS. And because these examples run under the Windows operating system, if you use some
other OS, you must adapt the procedures shown in this section to your OS.

This section will not serve as a database administration manual. Instead, it will offer a brief introduction to the way
some typical DBA tasks would be performed in Oracle. Before learning how to use Oracle to accomplish specific
database administration tasks, you should become familiar with the tools Oracle offers for database administration and
with the procedures for logging on, which will be discussed in the next two sections.

15.9.1 Oracle Database Administration Tools

All database vendors supply a set of database administration tools. In Oracle, you perform most DBA tasks via the
Oracle Enterprise Manager interface. See Figure 15.9.

In Figure 15.9, note that it shows the status of the current database. (This section uses the ORALAB database.) In the
following sections, you will examine the tasks most commonly encountered by a DBA.

Note

Although Microsoft Access is a superb DBMS, it is typically used in smaller organizations or in organizations and
departments with relatively simple data environments. Access yields a superior database prototyping environ-
ment, and given its easy-to-use GUI tools, rapid front-end application development is a snap. Also, Access is one
of the components in the MS Office suite, thus making end-user applications integration relatively simple and
seamless. Finally, Access does provide some important database administration tools. However, an Access-
based database environment does not typically require the services of a DBA. Therefore, MS Access does not
fit this section's mission.

C6545_15 10/16/2007 14:10:2 Page 636

636 C H A P T E R 1 5

15.9.2 The Default Login

To perform any administrative task, you must connect to the database, using a username with administrative (DBA)
privileges. By default, Oracle automatically creates SYSTEM and SYS user IDs that have administrative privileges with
every new database you create. You can define the preferred credentials for each database by clicking on the
Preferences link at the top of the page, then click on Preferred Credentials. Finally, choose your target username
under Set Credentials. Figure 15.10 shows the Edit Local Preferred Credentials page that defines the user ID (SYS)
used to log on to the ORALAB database.

Keep in mind that usernames and passwords are database-specific. Therefore, each database can have different
usernames and passwords. One of the first things you must do is change the password for the SYSTEM and SYS users.
Immediately after doing that, you can start defining your users and assigning them database privileges.

FIGURE
15.9

The Oracle Enterprise Manager interface

C6545_15 10/16/2007 14:10:3 Page 637

637D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

15.9.3 Ensuring an Automatic RDBMS Start

One of the basic DBA tasks is to ensure that your database access is automatically started when you turn on the
computer. Startup procedures will be different for each operating system. Because Oracle is used for this section’s
examples, you would need to identify the required services to ensure automatic database startup. (A service is the
Windows system name for a special program that runs automatically as part of the operating system. This program
ensures the availability of required services to the system and to end users on the local computer or over the network.)
Figure 15.11 shows the required Oracle services that are started automatically when Windows starts up.

FIGURE
15.10

The Oracle Edit Local Preferred Credentials page

FIGURE
15.11

Oracle RDBMS services

C6545_15 10/16/2007 14:10:3 Page 638

638 C H A P T E R 1 5

As you examine Figure 15.11, note the following Oracle services:

� OracleOraDb10g_home1TNSListener is the process that “listens to” and processes the end-user connection
requests over the network. For example, when a SQL connection request such as “connect userid/
password@ORALAB” is sent over the network, the listener service will take the request, validate it, and
establish the connection.

� OracleServiceORALAB refers to the Oracle processes running in memory that are associated with the
ORALAB database instance. You can think of a database instance as a separate location in memory that is
reserved to run your database. Because you can have several databases (and, therefore, several instances)
running in memory at the same time, you need to identify each database instance uniquely, using a different
suffix for each one.

15.9.4 Creating Tablespaces and Datafiles

Each DBMS manages data storage differently. In this example, the Oracle RDBMS will be used to illustrate how the
database manages data storage at the logical and the physical levels. In Oracle:

A database is logically composed of one or more tablespaces. A tablespace is a logical storage space. Tablespaces
are used primarily to group related data logically.

The tablespace data are physically stored in one or more datafiles. A datafile physically stores the database’s data.
Each datafile is associated with one and only one tablespace, but each datafile can reside in a different directory on the
hard disk or even on one or more different hard disks.

Given the preceding description of tablespaces and datafiles, you can conclude that a database has a one-to-many
relationship with tablespaces and that a tablespace has a one-to-many relationship with datafiles. This set of 1:M
hierarchical relationships isolates the end user from any physical details of the data storage. However, the DBA must
be aware of these details in order to properly manage the database.

To perform database storage management tasks such as creating and managing tablespaces and datafiles, the DBA
uses Enterprise Manager, Administration, Storage option. See Figure 15.12.

When the DBA creates a database, Oracle automatically creates the tablespaces and datafiles shown in Figure 15.12.
A few of them are described here.

� The SYSTEM tablespace is used to store the data dictionary data.

� The USERS tablespace is used to store the table data created by the end users.

� The TEMP tablespace is used to store the temporary tables and indexes created during the execution of SQL
statements. For example, temporary tables are created when your SQL statement contains an ORDER BY,
GROUP BY, or HAVING clause.

� The UNDOTBS1 tablespace is used to store database transaction recovery information. If for any reason a
transaction must be rolled back (usually to preserve database integrity), the UNDOTBS1 tablespace is used to
store the undo information.

C6545_15 10/16/2007 14:10:4 Page 639

639D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Using the Storage Manager, the DBA can:

� Create additional tablespaces to organize the data in the database. Therefore, if you have a database with
several hundred users, you can create several user tablespaces to segment the data storage for different types
of users. For example, you might create a teacher tablespace and a student tablespace.

� Create additional tablespaces to organize the various subsystems that exist within the database. For example,
you might create different tablespaces for human resources data, payroll data, accounting data, and
manufacturing data. Figure 15.13 shows the page used to create a new tablespace called ROBCOR to hold the
tables used in this book. This tablespace will be stored in the datafile named D:\ORACLE\PRODUCT\
10.1.0\ORADATA\ORALAB\ROBCOR.DBF and its initial size is 5 megabytes. Note in Figure 15.13 that
the tablespace will be put online immediately so it is available to users for data storage purposes. Note also the
“Show SQL” button at the top of the page. You can use this button to see the SQL code generated by Oracle
to create the tablespace. (Actually, all DBA tasks can also be accomplished through the direct use of SQL
commands. In fact, some die-hard DBAs prefer writing their own SQL code rather than using the
“easy-way-out” GUI.)

� Expand the tablespace storage capacity by creating additional datafiles. Remember that the datafiles can be
stored in the same directory or on different hard disks to increase access performance. For example, you
could increase storage and access performance to the USERS tablespace by creating a new datafile in a
different drive.

FIGURE
15.12

The Oracle Storage Manager

C6545_15 10/30/2007 10:11:46 Page 640

640 C H A P T E R 1 5

15.9.5 Managing the Database Objects: Tables, Views, Triggers, and Procedures

Another important aspect of managing a database is monitoring the database objects that were created in the database.
The Oracle Enterprise Manager gives the DBA a graphical user interface to create, edit, view, and delete database
objects in the database. A database object is basically any object created by end users; for example, tables, views,
indexes, stored procedures, and triggers. Figure 15.14 shows some of the different types of objects listed in the Oracle
Schema Manager.

An Oracle schema is a logical section of the database that belongs to a given user, and that schema is identified by
the username. For example, if the user named SYSTEM creates a VENDOR table, the table will belong to the SYSTEM
schema. Oracle prefixes the table name with the username. Therefore, the SYSTEM’s VENDOR table name will be
named SYSTEM.VENDOR by Oracle. Similarly, if the user PEROB creates a VENDOR table, that table will be created
in the PEROB schema and will be named PEROB.VENDOR.

Within the schema, users can create their own tables and other objects. The database can contain as many different
schemas as there are users. Because users see only their own object(s), each user might gain the impression that there
are no other users of the database.

Normally, users are authorized to access only the objects that belong to their own schemas. Users could, of course,
give other users access to their data by changing access rights. In fact, all users with DBA authorization have access
to all objects in all schemas in the database.

FIGURE
15.13

Creating a new tablespace

C6545_15 10/16/2007 14:10:5 Page 641

641D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

As you can see in Figure 15.14, the Schema Manager presents an organized view of all of the objects in the database
schema. With this program, the DBA can create, edit, view, and delete tables, indexes, views, functions, triggers,
procedures, and other specialized objects.

15.9.6 Managing Users and Establishing Security

One of the most common database administration activities is creating and managing database users. (Actually, the
creation of user IDs is just the first component of any well-planned database security function. As was indicated earlier
in this chapter, database security is one of the most important database administration tasks.)

The Security section of the Oracle Enterprise Manager’s Administration page enables the DBA to create users, roles,
and profiles.

� A user is a uniquely identifiable object that allows a given person to log on to the database. The DBA assigns
privileges for accessing the objects in the database. Within the privilege assignment, the DBA may specify a
set of limits that define how many of the database’s resources the user can use.

� A role is a named collection of database access privileges that authorize a user to connect to the database and
use the database system resources. Examples of roles are as follows:

- CONNECT allows a user to connect to the database and create and modify tables, views, and other
data-related objects.

FIGURE
15.14

The Oracle Schema Manager

C6545_15 10/16/2007 14:10:5 Page 642

642 C H A P T E R 1 5

- RESOURCE allows a user to create triggers, procedures, and other data management objects.

- DBA gives the user database administration privileges.

� A profile is a named collection of settings that control how much of the database resource a given user can
use. (If you consider the possibility that a runaway query could cause the database to lock up or to stop
responding to the user’s commands, you’ll understand why it is important to limit access to the database
resource.) By specifying profiles, the DBA can limit how much storage space a user can use, how long a user
can be connected, how much idle time may be used before the user is disconnected, and so on. In an ideal
world, all users would have unlimited access to all resources at all times, but in the real world, such access is
neither possible nor desirable.

Figure 15.15 shows the Oracle Enterprise Manager Administration page. From here, the DBA can manage the
database and create security objects (users, roles, and profiles).

To create a new user, the DBA uses the Create User page, shown in Figure 15.16.

The Create User page contains many links; the most important ones are as follows:

� The General link allows the DBA to assign the name, profile, and password to the new user. Also in this
page, the DBA defines the default tablespace used to store table data and the temporary tablespace for
temporary data.

� The Roles link allows the DBA to assign the roles for a user.

� The Object Privileges link is used by the DBA to assign specific access rights to other database objects.

� The Quotas link allows the DBA to specify the maximum amount of storage that the user can have in each
assigned tablespace.

FIGURE
15.15

The Oracle Enterprise Manager Administration page

C6545_15 10/16/2007 14:10:6 Page 643

643D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

15.9.7 Customizing the Database Initialization Parameters

Fine-tuning a database is another important DBA task. This task usually requires the modification of database
configuration parameters, some of which can be changed in real time, using SQL commands. Others require the
database to be shut down and restarted. Also, some parameters may affect only the database instance, while others
affect the entire RDBMS and all instances running. So it is very important that the DBA become familiar with database
configuration parameters, especially those that affect performance.

Each database has an associated database initialization file that stores its run-time configuration parameters. The
initialization file is read at instance startup and is used to set the working environment for the database. Oracle’s
Enterprise Manager allows the DBA to start up, shut down, and view/edit the database configuration parameters
(stored in the initialization file) of a database instance. The Oracle Enterprise Manager interface provides a GUI to
modify that text file, shown in Figure 15.17.

One of the important functions provided by the initialization parameters is to reserve the resources that must be used
by the database at run time. One of those resources is the primary memory to be reserved for database caching. Such
caching is used to fine-tune database performance. For example, the “db_cache_size” parameter sets the amount of
memory reserved for database caching. This parameter should be set to a value that is large enough to support all
concurrent transactions.

Once you modify the initialization parameters, you may be required to restart the database. As you have seen in this
brief section, the DBA is responsible for a wide range of tasks. The quality and completeness of the administration tools
available to the DBA go a long way toward making the DBA job easier. Even so, the DBA must become familiar with
the tools and technical details of the RDBMS to perform the DBA tasks properly and efficiently.

FIGURE
15.16

The Create User page

C6545_15 10/16/2007 14:10:6 Page 644

644 C H A P T E R 1 5

15.9.8 Creating a New Database

Although the general database creation format tends to be generic, its execution tends to be DBMS-specific. The
leading RDBMS vendors offer the DBA the option to create databases manually, using SQL commands or using a
GUI-based process. Which option is selected depends on the DBA’s sense of control and style.

Using the Oracle Database Configuration Assistant, it is simple to create a database. The DBA uses a wizard interface
to answer a series of questions to establish the parameters for the database to be created. Figures 15.18 through 15.30
show you how to create a database with the help of the Oracle Database Configuration Assistant.

FIGURE
15.17

The Oracle Enterprise Manager – Initialization Parameters page

C6545_15 10/16/2007 14:10:7 Page 645

645D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

FIGURE
15.18

Creating a new database with the Database Configuration Assistant

FIGURE
15.19

Selecting the new database template

C6545_15 10/16/2007 14:10:8 Page 646

646 C H A P T E R 1 5

FIGURE
15.20

Naming the database

FIGURE
15.21

Selecting management options

C6545_15 10/16/2007 14:10:8 Page 647

647D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

FIGURE
15.22

Specifying database credentials

FIGURE
15.23

Selecting storage options

C6545_15 10/16/2007 14:10:9 Page 648

648 C H A P T E R 1 5

FIGURE
15.24

Specifying database file locations

FIGURE
15.25

Specifying database recovery configuration

C6545_15 10/16/2007 14:10:9 Page 649

649D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

FIGURE
15.26

Selecting database sample content

FIGURE
15.27

Selecting database initialization parameters

C6545_15 10/16/2007 14:10:10 Page 650

650 C H A P T E R 1 5

FIGURE
15.28

Confirming database storage parameters

FIGURE
15.29

Confirming database creation options

C6545_15 10/16/2007 14:10:11 Page 651

651D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Finally, after confirming all of the database options selected in Figures 15.18 through 15.29, the database creation
process starts. This process creates the database structure, including the necessary data dictionary tables, the
administrator user accounts, and other supporting processes required by the DBMS to manage the database. Figure
15.30 shows the rate at which the database creation process proceeds.

One of the disadvantages of using this graphical interface to create databases is that there are no records in the form
of SQL scripts to document the steps. Even given the GUI’s help, the database creation process requires a solid
understanding of the database’s underlying structures and components.

FIGURE
15.30

Database creation progress

C6545_15 10/16/2007 14:10:11 Page 652

652 C H A P T E R 1 5

S u m m a r y

◗ Data management is a critical activity for any organization. Data must be treated as a corporate asset. The value
of a data set is measured by the utility of the information derived from it. Good data management is likely to
produce good information, which is the basis for better decision making.

◗ The DBMS is the most commonly used electronic tool for corporate data management. The DBMS supports
strategic, tactical, and operational decision making at all levels of the organization. The company data that are
managed by the DBMS are stored in the corporate or enterprise database.

◗ The introduction of a DBMS into an organization is a very delicate job. In addition to managing the technical details
of DBMS introduction, the impact of the DBMS on the organization’s managerial and cultural framework must be
carefully examined.

◗ Development of the data administration function is based on the evolution from departmental data processing to
the more centralized electronic data processing (EDP) department to the more formal “data as a corporate asset”
information systems (IS) department. Typical file systems were characterized by applications that tended to behave
as distinct “islands of information.” As applications began to share a common data repository, the need for
centralized data management to control such data became clear.

◗ The database administrator (DBA) is responsible for managing the corporate database. The internal organization
of the database administration function varies from company to company. Although no standard exists, it is
common practice to divide DBA operations according to the database life cycle phases. Some companies have
created a position with a broader data management mandate to manage computerized and other data within the
organization. This broader data management activity is handled by the data administrator (DA).

◗ The DA and the DBA functions tend to overlap. Generally speaking, the DA is more managerially oriented than
the more technically-oriented DBA. Compared to the DBA function, the DA function is DBMS-independent, with
a broader and longer-term focus. However, when the organization chart does not include a DA position, the DBA
executes all of the DA’s functions. Because the DBA has both technical and managerial responsibilities, the
DBA must have a diverse mix of skills.

◗ The managerial services of the DBA function include at least: supporting the end-user community; defining and
enforcing policies, procedures, and standards for the database function; ensuring data security, privacy, and
integrity; providing data backup and recovery services; and monitoring the distribution and use of the data in the
database.

◗ The technical role requires the DBA to be involved in at least these activities: evaluating, selecting, and installing
the DBMS; designing and implementing databases and applications; testing and evaluating databases and
applications; operating the DBMS, utilities, and applications; training and supporting users; and maintaining the
DBMS, utilities, and applications.

◗ Security refers to activities and measures to ensure the confidentiality, integrity, and availability of an information
system and its main asset, data. A security policy is a collection of standards, policies, and practices created to
guarantee the security of a system and ensure auditing and compliance.

◗ A security vulnerability is weakness in a system component that could be exploited to allow unauthorized access or
service disruption. A security threat is an imminent security violation caused by an unchecked security vulnerability.
Security vulnerabilities exist in all components of an information system: people, hardware, software, network,
procedures, and data. Therefore, it is critical to have robust database security. Database security refers to the use
of DBMS features and related measures to comply with the security requirements of the organization.

C6545_15 10/30/2007 10:15:47 Page 653

653D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

◗ The development of the data administration strategy is closely related to the company’s mission and objectives.
Therefore, the development of an organization’s strategic plan corresponds to that of data administration, requiring
a detailed analysis of company goals, situation, and business needs. To guide the development of this overall plan,
an integrating methodology is required. The most commonly used integrating methodology is known as
information engineering (IE).

◗ To help translate strategic plans into operational plans, the DBA has access to an arsenal of database administration
tools. These tools include the data dictionary and computer-aided software engineering (CASE) tools.

K e y T e r m s

access plan, 622

active data dictionary, 630

audit log, 629

authorization management, 629

back-end CASE tools, 632

CASE (computer-aided systems
engineering), 632

concurrent backup, 619

data administrator (DA), 612

database administrator (DBA), 611

database instance (Oracle), 639

database object (Oracle), 641

database security, 628

database security officer (DSO), 618

datafile (Oracle), 639

disaster management, 619

enterprise database, 609

front-end CASE tools, 632

full backup (database dump), 619

incremental backup, 619

information engineering (IE), 634

information resource
dictionary, 631

information resource
manager (IRM), 612

information systems
architecture (ISA), 634

information systems (IS)
department, 610

passive data dictionary, 630

policies, 617

privacy, 608

procedures, 617

profile (Oracle), 643

role (Oracle), 642

schema (Oracle), 641

security, 627

security vulnerability, 627

security threat, 627

security breach, 627

standards, 0

systems administrator , 612

tablespace (Oracle), 639

user (Oracle), 642

R e v i e w Q u e s t i o n s

1. Explain the difference between data and information. Give some examples of raw data and information.

2. Explain the interactions among end user, data, information, and decision making. Draw a diagram and explain
the interactions.

3. Suppose you are a DBA staff member. What data dimensions would you describe to top-level managers to obtain
their support for the data administration function?

4. How and why did database management systems become the organizational data management standard? Discuss
some advantages of the database approach over the file-system approach.

5. Using a single sentence, explain the role of databases in organizations. Then explain your answer.

6. Define security and privacy. How are those two concepts related?

7. Describe and contrast the information needs at the strategic, tactical, and operational levels in an organization.
Use examples to explain your answer.

O n l i n e C o n t e n t

Answers to selected Review Questions for this chapter are contained in the Student Online Companion for
this book.

C6545_15 10/30/2007 10:16:59 Page 654

654 C H A P T E R 1 5

8. What special considerations must you take into account when contemplating the introduction of a DBMS into an
organization?

9. Describe the DBA’s responsibilities.

10. How can the DBA function be placed within the organization chart? What effect(s) will that placement have on
the DBA function?

11. Why and how are new technological advances in computers and databases changing the DBA’s role?

12. Explain the DBA department’s internal organization, based on the DBLC approach.

13. Explain and contrast the differences and similarities between the DBA and DA.

14. Explain how the DBA plays an arbitration role between an organization’s two main assets. Draw a diagram to
facilitate your explanation.

15. Describe and characterize the skills desired for a DBA.

16. What are the DBA’s managerial roles? Describe the managerial activities and services provided by the DBA.

17. What DBA activities are used to support the end-user community?

18. Explain the DBA’s managerial role in the definition and enforcement of policies, procedures, and standards.

19. Protecting data security, privacy, and integrity are important database functions. What activities are required in
the DBA’s managerial role of enforcing those functions?

20. Discuss the importance and characteristics of database backup and recovery procedures. Then describe the
actions that must be detailed in backup and recovery plans.

21. Assume that your company assigned you the responsibility of selecting the corporate DBMS. Develop a checklist
for the technical and other aspects involved in the selection process.

22. Describe the activities that are typically associated with the design and implementation services of the DBA
technical function. What technical skills are desirable in the DBA’s personnel?

23. Why are testing and evaluation of the database and applications not done by the same people who are
responsible for design and implementation? What minimum standards must be met during the testing and
evaluation process?

24. Identify some bottlenecks in DBMS performance. Then propose some solutions used in DBMS performance
tuning.

25. What are typical activities involved in the maintenance of the DBMS, utilities, and applications? Would you
consider application performance tuning to be part of the maintenance activities? Explain your answer.

26. How do you normally define security? How is your definition of security similar to or different from the definition
of database security in this chapter?

27. What are the levels of data confidentiality?

28. What are security vulnerabilities? What is a security threat? Give some examples of security vulnerabilities that
exist in different IS components.

29. Define the concept of a data dictionary. Discuss the different types of data dictionaries. If you were to manage
an organization’s entire data set, what characteristics would you look for in the data dictionary?

30. Using SQL statements, give some examples of how you would use the data dictionary to monitor the security of
the database.

31. What characteristics do a CASE tool and a DBMS have in common? How can those characteristics be used to
enhance the data administration function?

Note

If you use IBM DB2, the names of the main tables are SYSTABLES, SYSCOLUMNS, and SYSTABAUTH.

C6545_15 10/16/2007 14:10:13 Page 655

655D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

32. Briefly explain the concepts of information engineering (IE) and information systems architecture (ISA). How do
those concepts affect the data administration strategy?

33. Identify and explain some of the critical success factors in the development and implementation of a successful
data administration strategy.

34. What is the tool used by Oracle to create users?

35. In Oracle, what is a tablespace?

36. In Oracle, what is a database role?

37. In Oracle, what is a datafile? How does it differ from a file systems file?

38. In Oracle, what is a database profile?

39. In Oracle, what is a database schema?

40. In Oracle, what role is required to create triggers and procedures?

C6545_15 10/16/2007 14:10:14 Page 656

656 C H A P T E R 1 5

A

access plan—A set of instructions, generated at application
compilation time, that is created and managed by a
DBMS. The access plan predetermines the way an
application’s query will access the database at run time.

active data dictionary—A data dictionary that is
automatically updated by the database management
system every time the database is accessed, thereby
keeping its information current. See also data dictionary.

ActiveX—Microsoft’s alternative to Java. A specification for
writing programs that will run inside the Microsoft client
browser (Internet Explorer). Oriented mainly to Windows
applications, it is not portable. It adds “controls” such as
drop-down windows and calendars to Web pages.

ActiveX Data Objects (ADO)—A Microsoft object
framework that provides a high-level application-
oriented interface to interact with OLE-DB, DAO, and
RDO. ADO provides a unified interface to access data
from any programming language that uses the
underlying OLE-DB objects.

ad hoc query—A “spur-of-the-moment” question.

ADO.NET—The data access component of Microsoft’s
.NET application development framework. The Microsoft
.NET framework is a component-based platform for
developing distributed, heterogeneous, and interoperable
applications aimed at manipulating any type of data over
any network under any operating system and
programming language.

alias—An alternative name given to a column or table in
any SQL statement.

ALTER TABLE—The SQL command used to make
changes to table structure. Followed by a keyword (ADD
or MODIFY), it adds a column or changes column
characteristics.

American National Standards Institute (ANSI)—The
group that accepted the DBTG recommendations and
augmented database standards in 1975 through its
SPARC committee.

AND—The SQL logical operator used to link multiple
conditional expressions in a WHERE or HAVING clause. It
requires that all conditional expressions evaluate to true.

anonymous PL/SQL block—A PL/SQL block that has not
been given a specific name.

application processor—See transaction processor (TP).

application programming interface (API)—Software
through which programmers interact with middleware.
Allows the use of generic SQL code, thereby allowing
client processes to be database server-independent.

associative entity—See composite entity.

atomic attribute—An attribute that cannot be further
subdivided to produce meaningful components. For
example, a person’s last name attribute cannot be
meaningfully subdivided into other name components;
therefore, the last name attribute is atomic.

atomicity—See atomic transaction property.

atomic transaction property—A property of transactions
that states that all parts of a transaction must be treated as
a single logical unit of work in which all operations must be
completed (committed) to produce a consistent database.

attribute—A characteristic of an entity or object. An
attribute has a name and a data type.

attribute domain—See domain.

attribute hierarchy—Provides a top-down data
organization that is used for two main purposes:
aggregation and drill-down/roll-up data analysis.

audit log—A database management system security feature
that automatically records a brief description of the
database operations performed by all users.

authentication—The process through which a DBMS
verifies that only registered users are able to access the
database.

authorization management—Defines procedures to
protect and guarantee database security and integrity.
Such procedures include: user access management,
view definition, DBMS access control, and DBMS
usage monitoring.

automatic query optimization—A method by which a
DBMS takes care of finding the most efficient access path
for the execution of a query.

AVG—A SQL aggregate function that outputs the mean
average for the specified column or expression.

B

back-end CASE tools—A computer-aided software tool
that has been classified as “back end” because it provides
support for the coding and implementation phases of the
SDLC. In comparison, front-end case tools provide
support for the planning, analysis, and design phases.

GLOSSARY

657

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 657

base table—The table on which a view is based.

batch update routine—A routine that pools transactions
into a single “batch” to update a master table in a single
operation.

BETWEEN—In SQL, a special comparison operator used to
check whether a value is within a range of specified values.

binary lock—A lock that has only two states: locked (1)
and unlocked (0). If a data item is locked by a transaction,
no other transaction can use that data item. See also lock.

binary relationship—An ER term used to describe an
association (relationship) between two entities. Example:
PROFESSOR teaches COURSE.

Boolean algebra—A branch of mathematics that deals with
the use of the logical operators OR, AND, and NOT.

bottom-up design—A design philosophy that begins by
identifying individual design components and then
aggregates those components into larger units. In
database design, it is a process that begins by defining
attributes and then groups those attributes into entities.
Compare to top-down design.

boundaries—The external limits to which any proposed
system is subjected. These include budget, personnel, and
existing hardware and software.

Boyce-Codd normal form (BCNF)—A special form of
third normal form (3NF) in which every determinant is a
candidate key. A table that is in BCNF must be in 3NF.
See also determinant.

bridge entity—See composite entity.

buffer—See buffer cache.

buffer cache—A shared, reserved memory area that stores
the most recently accessed data blocks in RAM. Also
called data cache. Used to take advantage of a computer’s
fast primary memory compared to the slower secondary
memory, thereby minimizing the number of input/output
(I/O) operations between the primary and secondary
memories. Also called data cache.

business rule—Narrative descriptions of a policy,
procedure, or principle within an organization. Examples:
A pilot cannot be on duty for more than 10 hours during a
24-hour period. A professor may teach up to four classes
during any one semester.

C

Call Level Interface (CLI)—A standard developed by the
SQL Access Group for database access.

candidate key—See key.

cardinality—Assigns a specific value to connectivity.
Expresses the range (minimum to maximum) of allowed
entity occurrences associated with a single occurrence of
the related entity.

cascading order sequence—Refers to a nested ordering
sequence for a set of rows. For example, a list in which all
last names are alphabetically ordered and, within the last
names, all first names are ordered represents a cascading
sequence.

CASE—See computer-assisted software engineering (CASE).

centralized database—A database located at a single site.

centralized design—A process in which a single conceptual
design is modeled to match an organization’s database
requirements. Typically used when a data component
consists of a relatively small number of objects and
procedures. Compare to decentralized design.

checkpoint—In transaction management, an operation in
which the database management system writes all of its
updated buffers to disk.

Chen notation—See entity relationship (ER) model.

class—A collection of like objects with shared structure
(attributes) and behavior (methods). A class encapsulates
an object’s data representation and a method’s
implementation. Classes are organized in a class hierarchy.

class diagram—Used to represent data and their
relationships in UML object modeling system notation.

class hierarchy—The organization of classes in a
hierarchical tree where each “parent” class is a superclass
and each “child” class is a subclass. See also inheritance.

client/server architecture—Refers to the arrangement of
hardware and software components to form a system
composed of clients, servers, and middleware. The
client/server architecture features a user of resources, or
a client, and a provider of resources, or a server.

client-side extensions—These extensions add functionality
to a Web browser. Although available in various forms, the
most commonly encountered extensions are plug-ins,
Java, JavaScript, ActiveX, and VBScript.

closure—A property of relational operators that permits
the use of relational algebra operators on existing tables
(relations) to produce new relations.

cluster organized table—See index organized table.

cohesivity—The strength of the relationships between a
module’s components. Module cohesivity must be high.

GLOSSARY

658

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 658

COMMIT—The SQL command that permanently saves
data changes to a database.

Common Gateway Interface (CGI)—A Web server
interface standard that uses script files to perform specific
functions based on a client’s parameters.

completeness constraint—A constraint that specifies
whether each entity supertype occurrence must also be a
member of at least one subtype. The completeness
constraint can be partial or total. Partial completeness
means that not every supertype occurrence is a member
of a subtype; that is, there may be some supertype
occurrences that are not members of any subtype. Total
completeness means that every supertype occurrence
must be a member of at least one subtype.

composite attribute—An attribute that can be further
subdivided to yield additional attributes. For example, a
phone number (615-898-2368) may be divided into an
area code (615), an exchange number (898), and a
four-digit code (2368). Compare to simple attribute.

composite entity—An entity designed to transform an M:N
relationship into two 1:M relationships. The composite
entity’s primary key comprises at least the primary keys of
the entities that it connects. Also known as a bridge
entity. See also linking table.

composite identifier—In ER modeling, a key composed of
more than one attribute.

composite key—A multiple-attribute key.

computer-assisted software engineering (CASE)—Tools
used to automate part or all of the Systems Development
Life Cycle.

conceptual design—A process that uses data modeling
techniques to create a model of a database structure that
represents the real-world objects in the most realistic way
possible. Both software- and hardware-independent.

conceptual model—The output of the conceptual design
process. The conceptual model provides a global view of
an entire database. Describes the main data objects,
avoiding details.

conceptual schema—A representation of the conceptual
model, usually expressed graphically. See also
conceptual model.

concurrency control—A DBMS feature that is used to
coordinate the simultaneous execution of transactions in a
multiprocessing database system while preserving data
integrity.

concurrent backup—A backup that takes place while one
or more users are working on a database.

Conference on Data Systems Languages (CODASYL)—
A group originally formed to help standardize COBOL; its
DBTG subgroup helped to develop database standards in
the early 1970s.

connectivity—Describes the classification of the
relationship between entities. Classifications include 1:1,
1:M, and M:N.

consistency—A database condition in which all data
integrity constraints are satisfied. To ensure consistency of
a database, every transaction must begin with the database
in a known consistent state. If the database is not in a
consistent state, the transaction will yield an inconsistent
database that violates its integrity and business rules.

consistent database state—A database state in which all
data integrity constraints are satisfied.

constraint—A restriction placed on data. Constraints are
normally expressed in the form of rules. Example: “A
student’s GPA must be between 0.00 and 4.00.” Con-
straints are important because they help to ensure data
integrity.

coordinator—The transaction processor (TP) node that
coordinates the execution of a two-phase COMMIT in a
DDBMS. See also data processor (DP), transaction
processor (TP), and two-phase commit protocol.

correlated subquery—A subquery that executes once for
each row in the outer query.

cost-based optimizer—A query optimizer technique that
uses an algorithm based on statistics about the objects
being accessed, that is, number of rows, indexes available,
indexes sparsity, and so on.

COUNT—A SQL aggregate function that outputs the
number of rows containing not null values for a given
column or expression, sometimes used in conjunction with
the DISTINCT clause.

CREATE INDEX—A SQL command that creates indexes
on the basis of any selected attribute or attributes.

CREATE TABLE—A SQL command used to create a table’s
structures, using the characteristics and attributes given.

CREATE VIEW—A SQL command that creates a logical,
“virtual” table based on stored end-user tables. The view
can be treated as a real table.

cross join—A join that performs a relational product (also
known as the Cartesian product) of two tables.

Crow’s Foot notation—A representation of the entity
relationship diagram using a three-pronged symbol to
represent the “many” sides of the relationship.

GLOSSARY

659

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 659

cube cache—In multidimensional OLAP, refers to the
shared, reserved memory area where data cubes are held.
Using the cube cache assists in speeding up data access.

cursor—A special construct used in procedural SQL to hold
the data rows returned by a SQL query. A cursor may be
thought of as a reserved area of memory in which the
output of the query is stored, like an array holding
columns and rows. Cursors are held in a reserved memory
area in the DBMS server, not in the client computer.

D

dashboard—In business intelligence, refers to a Web-based
system that presents key business performance indicators
or information in a single, integrated view. Generally uses
graphics in a clear, concise, and easily understood
manner.

data—Raw facts, that is, facts that have not yet been
processed to reveal their meaning to the end user.

Data Access Objects (DAO)—An object-oriented API
(application programming interface) used to access MS
Access, MS FoxPro, and dBase databases (using the Jet
data engine) from Visual Basic programs. DAO provides
an optimized interface that exposes the functionality of
the Jet data engine (on which MS Access database is
based) to programmers. The DAO interface can also be
used to access other relational style data sources.

data administrator (DA)—The person responsible for
managing the entire data resource, whether computerized
or not. The DA has broader authority and responsibility
than the database administrator (DBA). Also known as an
information resource manager (IRM).

data allocation—In a distributed DBMS, describes the
process of deciding where to locate data fragments.

data anomaly—A data abnormality that exists when
inconsistent changes to a database have been made. For
example, an employee moves, but the address change is
corrected in only one file and not across all files in the
database.

data cache—A shared, reserved memory area that stores
the most recently accessed data blocks in RAM. Also
called buffer cache.

data cube—Refers to the multidimensional data structure
used to store and manipulate data in a multidimensional
DBMS. The location of each data value in the data cube is
based on the x-, y-, and z-axes of the cube. Data cubes are
static (must be created before they are used), so they
cannot be created by an ad hoc query.

data definition language (DDL)—The language that allows
a database administrator to define the database structure,
schema, and subschema.

data dependence—A data condition in which the data
representation and manipulation are dependent on the
physical data storage characteristics.

data dictionary—A DBMS component that stores
metadata—data about data. Thus, the data dictionary
contains the data definition as well as its characteristics
and relationships. A data dictionary may also include data
that are external to the DBMS. Also known as an
information resource dictionary. See also active data
dictionary, metadata, and passive data dictionary.

Data Encryption Standard (DES)—The most widely used
standard for private-key encryption. DES is used by the
U.S. government.

data extraction—A process used to extract and validate
data taken from an operational database and external data
sources prior to their placement in a data warehouse.

database—A shared, integrated computer structure that
houses a collection of related data. A database contains
two types of data: end-user data (raw facts) and metadata.
The metadata consist of data about data, that is, the data
characteristics and relationships.

database administrator (DBA)—The person responsible
for planning, organizing, controlling, and monitoring the
centralized and shared corporate database. The DBA is
the general manager of the database administration
department.

database design—The process that yields the description
of the database structure. The database design process
determines the database components. Database design is
the second phase of the database life cycle.

database development—A term used to describe the
process of database design and implementation.

database fragments—Subsets of a distributed database.
Although the fragments may be stored at different sites
within a computer network, the set of all fragments is
treated as a single database. See also horizontal
fragmentation and vertical fragmentation.

database instance—In an Oracle DBMS, refers to the
collection of processes and data structures used to manage
a specific database.

database-level lock—A type of lock that restricts database
access to only the owner of the lock. It allows only one
user at a time to access the database. Successful for batch
processes, but unsuitable for online multiuser DBMSs.

GLOSSARY

660

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 660

database life cycle (DBLC)—Traces the history of a
database within an information system. Divided into six
phases: initial study, design, implementation and loading,
testing and evaluation, operation and maintenance, and
evolution.

database management system (DBMS)—Refers to the
collection of programs that manages the database structure
and controls access to the data stored in the database.

database middleware—Database connectivity software
through which application programs connect and
communicate with data repositories.

database object—Any object in a database, such as a table,
a view, an index, a stored procedure, or a trigger.

database performance tuning—A set of activities and
procedures designed to reduce the response time of a
database system, that is, to ensure that an end-user query is
processed by the DBMS in the minimum amount of time.

database recovery—The process of restoring a database to
a previous consistent state.

database request—The equivalent of a single SQL
statement in an application program or a transaction.

database security—The use of DBMS features and other
related measures to comply with the security requirements
of an organization.

database security officer (DSO)—Person responsible for the
security, integrity, backup, and recovery of the database.

database statistics—In query optimization, refers to
measurements about database objects, such as the number
of rows in a table, number of disk blocks used, maximum
and average row length, number of columns in each row,
number of distinct values in each column, etc. Such
statistics give a snapshot of database characteristics.

database system—An organization of components that
defines and regulates the collection, storage, management,
and use of data in a database environment.

database task group (DBTG)—A CODASYL committee
that helped develop database standards in the early
1970s. See also Conference on Data Systems
Languages (CODASYL).

datafile—See data files.

data files—A named physical storage space that stores a
database’s data. It can reside in a different directory on a
hard disk or on one or more different hard disks. All data
in a database are stored in data files. A typical enterprise
database is normally composed of several data files. A
data file can contain rows from one table, or it can contain
rows from many different tables.

data filtering—See data extraction.

data fragmentation—A characteristic of a DDBMS that
allows a single object to be broken into two or more
segments or fragments. The object might be a user’s
database, a system database, or a table. Each fragment
can be stored at any site over a computer network.

data inconsistency—A condition in which different
versions of the same data yield different (inconsistent)
results.

data independence—A condition that exists when data
access is unaffected by changes in the physical data
storage characteristics.

data integrity—In a relational database, refers to a
condition in which the data in the database is in
compliance with all entity and referential integrity
constraints.

data management—A process that focuses on data
collection, storage, and retrieval. Common data
management functions include addition, deletion,
modification, and listing.

data manager (DM)—See data processing (DP) manager.

data manipulation language (DML)—The language (set of
commands) that allows an end user to manipulate the data
in the database (SELECT, INSERT, UPDATE, DELETE,
COMMIT, and ROLLBACK).

data mart—A small, single-subject data warehouse subset
that provides decision support to a small group of people.

data mining—A process that employs automated tools to
analyze data in a data warehouse and other sources and to
proactively identify possible relationships and anomalies.

data model—A representation, usually graphic, of a
complex “real-world” data structure. Data models are used
in the database design phase of the database life cycle.

data processing (DP) manager—A DP specialist who
evolved into a department supervisor. Roles include
managing the technical and human resources, supervising
the senior programmers, and troubleshooting the
program. Also known as a data manager (DM).

data processor (DP)—The software component residing on
a computer that stores and retrieves data through a
DDBMS. The DP is responsible for managing the local
data in the computer and coordinating access to that data.
See also transaction processor (TP).

data redundancy—A condition that exists when a data
environment contains redundant (unnecessarily
duplicated) data.

GLOSSARY

661

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 661

data replication—The storage of duplicated database
fragments at multiple sites on a DDBMS. Duplication of
the fragments is transparent to the end user. Used to
provide fault tolerance and performance enhancements.

DataSet—In ADO.NET, refers to a disconnected memory-
resident representation of the database. That is, the DataSet
contains tables, columns, rows, relationships, and constraints.

data source name (DSN)—Identifies and defines an ODBC
data source.

data sparsity—A column distribution of values or the
number of different values a column could have.

data store—The component of the decision support system
that acts as a database for storage of business data and
business model data. The data in the data store has
already been extracted and filtered from the external and
operational data and will be stored for access by the
end-user query tool for the business data model.

data warehouse—Bill Inmon, the acknowledged “father of
the data warehouse,” defines the term as “an integrated,
subject-oriented, time-variant, nonvolatile collection of
data that provides support for decision making.”

DBMS performance tuning—Refers to the activities
required to ensure that clients’ requests are responded to
in the fastest way possible, while making optimum use of
existing resources.

deadlock—A condition that exists when two or more
transactions wait indefinitely for each other to release the
lock on a previously locked data item. Also called deadly
embrace. See also lock.

deadly embrace—See deadlock.

decentralized design—A process in which conceptual
design is used to model subsets of an organization’s
database requirements. After verification of the views,
processes, and constraints, the subsets are then
aggregated into a complete design. Such modular designs
are typical of complex systems in which the data
component consists of a relatively large number of objects
and procedures. Compare to centralized design.

decision support system (DSS)—An arrangement of
computerized tools used to assist managerial decision
making within a business.

deferred update—In transaction management, refers to a
condition when transaction operations do not immediately
update a physical database. Also called deferred write
technique.

deferred write technique—See deferred update.

DELETE—A SQL command that allows specific data rows
to be deleted from a table.

denormalization—A process by which a table is changed
from a higher level normal form to a lower level normal
form. Usually done to increase processing speed.
Potentially yields data anomalies.

dependency diagram—A representation of all data
dependencies (primary key, partial, or transitive) within
a table.

derived attribute—An attribute that does not physically
exist within the entity and is derived via an algorithm.
Example: Age = current date – birth date.

description of operations—A document that provides a
precise, detailed, up-to-date, and thoroughly reviewed
description of the activities that define an organization’s
operating environment.

design trap—Occurs when a relationship is improperly or
incompletely identified and, therefore, is represented in a
way that is not consistent with the real world. The most
common design trap is known as a fan trap.

desktop database—A single-user database that runs on a
personal computer.

determinant—Any attribute in a specific row whose value
directly determines other values in that row. See also
Boyce-Codd normal form (BCNF).

determination—The role of a key. In the context of a
database table, the statement “A determines B” indicates
that knowing the value of attribute A means that (determine)
the value of attribute B can be looked up (determined).

differential backup—A level of database backup in which
only the last modifications to the database (when
compared with a previous full backup copy) are copied.

dimensions—In a star schema design, refers to qualifying
characteristics that provide additional perspectives to a
given fact.

dimension tables—In a data warehouse, used to search,
filter, or classify facts within a star schema. The fact table
is in a one-to-many relationship with dimension tables.

disaster management—The set of DBA activities dedicated
to securing data availability following a physical disaster or
a database integrity failure.

disjoint subtype (nonoverlapping subtype)—In a
specialization hierarchy, refers to a unique and
nonoverlapping subtype entity set.

GLOSSARY

662

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 662

diskpage—In permanent storage, the equivalent of a disk
block, which can be describe as a directly addressable
section of a disk. A diskpage has a fixed size, such as 4K,
8K, or 16K.

DISTINCT—A SQL clause designed to produce a list of
only those values that are different from one another.

distributed database—A logically related database that is
stored over two or more physically independent sites.

distributed database management system (DDBMS)—A
DBMS that supports a database distributed across several
different sites; governs the storage and processing of
logically related data over interconnected computer
systems in which both data and processing functions are
distributed among several sites.

distributed data catalog (DDC)—A data dictionary that
contains the description (fragment names, locations) of a
distributed database. Also known as a distributed data
dictionary (DDD).

distributed data dictionary (DDD)—See distributed data
catalog.

distributed global schema—The database schema
description of a distributed database as seen by the
database administrator.

distributed processing—The activity of sharing (dividing)
the logical processing of a database over two or more sites
connected by a network.

distributed request—A database request that allows a
single SQL statement to access data in several remote DPs
in a distributed database.

distributed transaction—A database transaction that accesses
data in several remote DPs in a distributed database.

distribution transparency—A DDBMS feature that allows
a distributed database to appear to the end-user as though
it were a single logical database.

document type definition (DTD)—A file with a .dtd
filename extension that describes XML elements; in effect,
a DTD file provides the description of a document’s
composition and defines the syntax rules or valid tags for
each type of XML document.

domain—In data modeling, refers to the construct used to
organize and describe an attribute’s set of possible values.

DO-UNDO-REDO protocol—Used by a DP to roll back
and/or roll forward transactions with the help of a
system’s transaction log entries.

drill down—To decompose data into more atomic
components, that is, data at lower levels of aggregation.
Used primarily in a decision support system to focus on
specific geographic areas, business types, and so on. See
also roll up.

DROP—A SQL command used to delete database objects
such as tables, views, indexes, and users.

durability—The transaction property indicating the
permanence of a database’s consistent state. Transactions
that have been completed will not be lost in the event of a
system failure if the database has proper durability.

dynamic-link libraries (DLLs)—Shared code libraries that
are treated as part of the operating system or server
process so they can be dynamically invoked at run time.

dynamic query optimization—Refers to the process of
determining the SQL access strategy at run time, using the
most up-to-date information about the database. Contrast
with static query optimization.

dynamic SQL—A term used to describe an environment in
which the SQL statement is not known in advance, but
instead is generated at run time. In a dynamic SQL
environment, a program can generate the SQL statements
at run time that are required to respond to ad hoc queries.

dynamic statistical generation mode—In a DBMS, the
capability to automatically evaluate and update the
database access statistics after each data access.

dynamic-link libraries (DLLs)—Shared code modules that
are treated as part of the operating system or server
process so they can be dynamically invoked at run time.

E

EER diagram (EERD)—Refers to the entity-relationship
diagram resulting from the application of extended entity
relationship concepts that provide additional semantic
content in the ER model.

embedded SQL—A term used to refer to SQL statements
that are contained within an application programming
language such as COBOL, C++, ASP, Java, and
ColdFusion.

end-user presentation tool—Used by a data analyst to
organize and present selected data compiled by the end-
user query tool.

end-user query tool—Used by a data analyst to create the
queries that access the specific desired information from
the data store.

GLOSSARY

663

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 663

enterprise database—The overall company data
representation, which provides support for present and
expected future needs.

entity—Something about which someone wants to store
data; typically a person, a place, a thing, a concept, or an
event. See also attribute.

entity cluster—A “virtual” entity type used to represent
multiple entities and relationships in the ERD. An entity
cluster is formed by combining multiple interrelated
entities into a single abstract entity object. An entity
cluster is considered “virtual” or “abstract” in the sense
that it is not actually an entity in the final ERD.

entity instance—A term used in ER modeling to refer to a
specific table row. Also known as an entity occurrence.

entity integrity—The property of a relational table that
guarantees that each entity has a unique value in a
primary key and that there are no null values in the
primary key.

entity occurrence—See entity instance.

entity relationship diagram (ERD)—A diagram that
depicts an entity relationship model’s entities, attributes,
and relations.

entity relationship (ER) model—A data model developed
by P. Chen in 1975. It describes relationships (1:1, 1:M,
and M:N) among entities at the conceptual level with the
help of ER diagrams.

entity set—In a relational model, refers to a grouping of
related entities.

entity subtype—In a generalization/specialization
hierarchy, refers to a subset of an entity supertype where
the entity supertype contains the common characteristics
and the entity subtypes contain the unique characteristics
of each entity subtype.

entity supertype—In a generalization/specialization
hierarchy, refers to a generic entity type that contains the
common characteristics of entity subtypes.

equijoin—A join operator that links tables based on an equality
condition that compares specified columns of the tables.

exclusive lock—A lock that is reserved by a transaction. An
exclusive lock is issued when a transaction requests
permission to write (update) a data item and no locks are
previously held on that data item by any other transaction.
An exclusive lock does not allow any other transactions to
access the database. See also shared lock.

existence-dependent—A property of an entity whose
existence depends on one or more other entities. In an
existence-dependent environment, the existence-independent

table must be created and loaded first because the
existence-dependent key cannot reference a table that
does not yet exist.

existence-independent—An entity that can exist apart
from one or more related entities. It must be created first
when referencing an existence-dependent table to it.

EXISTS—In SQL, a comparison operator used to check
whether a subquery returns any rows.

explicit cursor—In procedural SQL, a cursor created to
hold the output of a SQL statement that may return two or
more rows (but could return zero rows or only one row).

extended entity relationship model (EERM)—Sometimes
referred to as the enhanced entity relationship model; the
result of adding more semantic constructs (entity
supertypes, entity subtypes, and entity clustering) to the
original entity relationship (ER) model.

extended relational data model (ERDM)—A model that
includes the object-oriented model’s best features in an
inherently simpler relational database structural
environment. See EERM.

extends—In a DBMS environment, refers to the data files’
ability to automatically expand in size, using predefined
increments.

Extensible Markup Language (XML)—A metalanguage
used to represent and manipulate data elements. Unlike
other markup languages, XML permits the manipulation
of a document’s data elements. XML is designed to
facilitate the exchange of structured documents such as
orders and invoices over the Internet.

external model—The application programmer’s view of the
data environment. Given its business-unit focus, an
external model works with a data subset of the global
database schema.

external schema—The specific representation of an
external view, that is, the end user’s view of the data
environment.

F

facts—In a data warehouse, refers to the measurements
(values) that represent a specific business aspect or
activity. For example, sales figures are numeric
measurements that represent product and/or service sales.
Facts commonly used in business data analysis are units,
costs, prices, and revenues.

fact table—In a data warehouse, refers to the star schema
center table containing facts that are linked and classified
through their common dimensions. A fact table is in a one-
to-many relationship with each associated dimension table.

GLOSSARY

664

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 664

failure transparency—A DDBMS feature that allows
continuous operation of a DDBMS, even in the event of a
failure in one of the nodes of the network.

fan trap—A design trap that occurs when one entity is in
two 1:M relationships to other entities, thus producing an
association among the other entities that is not expressed
in the model.

field—A character or group of characters (alphabetic or
numeric) that defines a characteristic of a person, place, or
thing. For example, a person’s Social Security number,
address, phone number, and bank balance all constitute fields.

field-level lock—Allows concurrent transactions to access
the same row as long as they require the use of different
fields (attributes) within that row. Yields the most flexible
multiuser data access but requires a high level of computer
overhead.

file—A named collection of related records.

file group—See table space.

first normal form (1NF)—The first stage in the
normalization process. It describes a relation depicted in
tabular format, with no repeating groups and with a
primary key identified. All nonkey attributes in the relation
are dependent on the primary key.

flags—Special codes implemented by designers to trigger a
required response, to alert end users to specified
conditions, or to encode values. Flags may be used to
prevent nulls by bringing attention to the absence of a
value in a table.

foreign key—See key.

fourth normal form (4NF)—A table is in 4NF when it is in
3NF and contains no multiple independent sets of
multivalued dependencies.

fragmentation transparency—A DDBMS feature that
allows a system to treat a distributed database as a single
database even though the database is divided into two or
more fragments.

front-end CASE tools—A computer-aided software tool
that has been classified as “front end” because it provides
support for the planning, analysis, and design phases of
the SDLC. In comparison, back- end case tools provide
support for the coding and implementation phases.

full backup (database dump)—A complete copy of an
entire database saved and periodically updated in a
separate memory location. Ensures a full recovery of all
data in the event of a physical disaster or a database
integrity failure.

full functional dependence—A condition in which an
attribute is functionally dependent on a composite key but
not on any subset of that composite key.

fully heterogeneous distributed database system (fully
heterogeneous DDBMS)—Integrates different types of
database management systems (hierarchical, network, and
relational) over a network. It supports different database
management systems that may even support different
data models running under different computer systems,
such as mainframes, minicomputers, and
microcomputers. See also heterogeneous DDBMS and
homogeneous DDBMS.

fully replicated database—In a DDBMS, refers to the
distributed database that stores multiple copies of each
database fragment at multiple sites. See also partially
replicated database.

function-based index—A type of index based on a specific
SQL function or expression.

functional dependence—Within a relation R, an attribute B
is functionally dependent on an attribute A if and only if a
given value of the attribute A determines exactly one value
of the attribute B. The relationship “B is dependent on A”
is equivalent to “A determines B” and is written as A B.

G

granularity—Refers to the level of detail represented by the
values stored in a table’s row. Data stored at their lowest
level of granularity are said to be atomic data.

governance—In business intelligence, the methods for
controlling and monitoring business health and promoting
consistent decision making.

GROUP BY—A SQL clause used to create frequency
distributions when combined with any of the aggregate
functions in a SELECT statement.

H

hardware independence—Means that a model does not
depend on the hardware used in the implementation of
the model. Therefore, changes in the hardware will have
no effect on the database design at the conceptual level.

HAVING—A restriction placed on the GROUP BY clause
output. The HAVING clause is applied to the output of a
GROUP BY operation to restrict the selected rows.

heterogeneity transparency—A DDBMS feature that
allows a system to integrate several different centralized
DBMSs into one logical DDBMS.

GLOSSARY

665

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 665

heterogeneous DDBMS—Integrates different types of
centralized database management systems over a network.
See also fully heterogeneous distributed database
system (fully heterogeneous DDBMS) and homogeneous
DDBMS.

hierarchical model—No longer a major player in the
current database market; important to know, however,
because the basic concepts and characteristics form the
basis for subsequent database development. This model is
based on an “upside-down” tree structure in which each
record is called a segment. The top record is the root
segment. Each segment has a 1:M relationship to the
segment directly below it.

homogeneous DDBMS—Integrates only one particular
type of centralized database management system over a
network. See also heterogeneous DDBMS and fully
heterogeneous distributed database system (fully
heterogeneous DDBMS).

homonym—Indicates the use of the same name to label
different attributes; generally should be avoided. Some
relational software automatically checks for homo-nyms
and either alerts the user to their existence or automatically
makes the appropriate adjustments. See also synonym.

horizontal fragmentation—The distributed database design
process that breaks up a table into subsets consisting of
unique rows. See also database fragments and vertical
fragmentation.

host language—A term used to describe any language that
contains embedded SQL statements.

I

identifiers—The ERM uses identifiers to uniquely identify
each entity instance. In the relational model, such
identifiers are mapped to primary keys in tables.

identifying relationship—A relationship that exists when
the related entities are existence-dependent. Also called a
strong relationship or strong identifying relationship
because the dependent entity’s primary key contains the
primary key of the parent entity.

immediate update—When a database is immediately
updated by transaction operations during the transaction’s
execution, even before the transaction reaches its commit
point.

implicit cursor—A cursor that is automatically created in
procedural SQL when the SQL statement returns only
one value.

IN—In SQL, a comparison operator used to check whether
a value is among a list of specified values.

inconsistent retrievals—A concurrency control problem that
arises when a transaction calculating summary (aggregate)
functions over a set of data—while other transactions are
updating the data—yields erroneous results.

incremental backup—A process that makes a backup only
of data that has changed in the database since the last
backup (incremental or full).

index—An ordered array composed of index key values and
row ID values (pointers). Indexes are generally used to
speed up and facilitate data retrieval. Also known as an
index key.

index key—See index.

index organized table—In a DBMS, a type of table storage
organization that stores the end user data and the index
data in consecutive locations on permanent storage. Also
known as clustered index table.

index selectivity—A measure of how likely an index will be
used in query processing.

information—The result of processing raw data to reveal its
meaning. Information consists of transformed data and
facilitates decision making.

information engineering (IE)—A methodology that
translates a company’s strategic goals into data and
applications that will help the company achieve its goals.

information resource dictionary—See data dictionary.

information resource manager (IRM)—See data
administrator (DA).

information system (IS)—A system that provides for data
collection, storage, and retrieval; facilitates the
transformation of data into information and the
management of both data and information. An information
system is composed of hardware, software (DMBS and
applications), the database(s), people, and procedures.

information systems architecture (ISA)—The output of
the information engineering (IE) process that serves as the
basis for planning, developing, and controlling future
information systems. (IE allows for the translation of a
company’s strategic goals into the data and applications
that will help the company achieve those goals. IE focuses
on the description of the corporate data instead of the
processes.)

information systems (IS) department—An evolution of
the data-processing department when responsibilities were
broadened to include service and production functions.

inheritance—In the object-oriented data model, the ability
of an object to inherit the data structure and methods of
the classes above it in the class hierarchy. See also class
hierarchy.

GLOSSARY

666

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 666

inner join—A join operation in which only rows that meet
a given criteria are selected. The join criteria can be an
equality condition (natural join or equijoin) or an inequality
condition (theta join). Inner join is the most commonly
used type of join. Contrast with outer join.

inner query—A query that is embedded (or nested) inside
another query. Also known as a nested query or a
subquery.

input/output (IO) request—A low-level (read or write) data
access operation to/from computer devices (such as
memory, hard disks, video, and printers).

INSERT—A SQL command that allows the insertion of
data rows into a table, one row at a time or multiple rows
at a time, using a subquery.

internal model—In database modeling, refers to a level of
data abstraction that adapts the conceptual model to a
specific DBMS model for implementation.

internal schema—Depicts a specific representation of an
internal model, using the database constructs supported by
the chosen database. (The internal model is the
representation of a database as “seen” by the DBMS. In
other words, the internal model requires a designer to
match the conceptual model’s characteristics and
constraints to those of the selected implementation model.)

IS NULL—In SQL, a comparison operator used to check
whether an attribute has a value.

islands of information—A term used in the old-style file
system environment to refer to independent, often
duplicated, and inconsistent data pools created and
managed by different organizational departments.

isolation—A property of a database transaction that
guarantees that a data item used by one transaction is not
available to other transactions until the first transaction ends.

iterative process—A process based on repetition of steps
and procedures.

J

Java—An object-oriented programming language developed
by Sun Microsystems that runs on top of the Web browser
software. Java applications are compiled and stored in the
Web server. Java’s main advantage is its ability to let
application developers develop their applications once and
run them in many environments.

Java Database Connectivity (JDBC)—An application
programming interface that allows a Java program to
interact with a wide range of data sources (relational
databases, tabular data sources, spreadsheets, and text files).

JavaScript—A scripting language (one that enables the
running of a series of commands or macros) developed by
Netscape that allows Web authors to design interactive
Web sites. JavaScript code is embedded in Web pages.
This JavaScript is downloaded with the page and is
activated when a specific event takes place, such as a
mouse click on an object.

join columns—A term used to refer to the columns that
join two tables. The join columns generally share
similar values.

K

key—An entity identifier based on the concept of functional
dependence; may be classified as follows: Superkey: An
attribute (or combination of attributes) that uniquely
identifies each entity in a table. Candidate key: A minimal
superkey, that is, one that does not contain a subset of
attributes that is itself a superkey. Primary key (PK): A
candidate key selected as a unique entity identifier.
Secondary key: A key that is used strictly for data retrieval
purposes. For example, a customer is not likely to know his
or her customer number (primary key), but the combination
of last name, first name, middle initial, and telephone
number is likely to make a match to the appropriate table
row. Foreign key: An attribute (or combination of
attributes) in one table whose values must match the
primary key in another table or whose values must be null.

key attribute(s)—The attribute(s) that form(s) a primary
key. See also prime attribute.

key performance indicators (KPI)—In business
intelligence, refers to quantifiable measurements (numeric
or scale-based) that assess a company’s effectiveness or
success in reaching strategic and operational goals.
Examples of KPI are product turnovers, sales by
promotion, sales by employee, earnings per share, etc.

knowledge—The body of information and facts about a
specific subject. Knowledge implies familiarity, awareness,
and understanding of information as it applies to an
environment. A key characteristic of knowledge is that
“new” knowledge can be derived from “old” knowledge.

L

left outer join—In a pair of tables to be joined, a left outer
join yields all of the rows in the left table, including those
that have no matching values in the other table. For
example, a left outer join of Customer with Agent will
yield all of the Customer rows, including the ones that do
not have a matching Agent row. See also outer join and
right outer join.

GLOSSARY

667

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 667

LIKE—In SQL, a comparison operator used to check
whether a attribute’s text value matches a specified string
pattern.

linking table—In the relational model, a table that
implements a M:M relationship. See also composite entity.

local mapping transparency—A property of a DDBMS in
which access to the data requires the end user to know
both the name and the location of the fragments in order
to access the database. See also location transparency.

location transparency—The property of a DDBMS in
which access to the data requires that only the name of the
database fragments be known. (Fragment locations need
not be known.) See also local mapping transparency.

lock—A device that is employed to guarantee unique use of a
data item to a particular transaction operation, thereby
preventing other transactions from using that data item. A
transaction requires a lock prior to data access, and that
lock is released (unlocked) after the operation’s execution to
enable other transactions to lock the data item for their use.

lock granularity—Indicates the level of lock use. Lock-ing
can take place at the following levels: database, table,
page, row, and field (attribute).

lock manager—A DBMS component that is responsible for
assigning and releasing locks.

logical data format—The way in which a human being
views data.

logical design—A stage in the design phase that matches
the conceptual design to the requirements of the selected
DBMS and is, therefore, software-dependent. It is used to
translate the conceptual design into the internal model for
a selected database management system, such as DB2,
SQL Server, Oracle, IMS, Informix, Access, and Ingress.

logical independence—A condition that exists when the
internal model can be changed without affecting the
conceptual model. (The internal model is hardware-
independent because it is unaffected by the choice of
computer on which the software is installed. Therefore, a
change in storage devices or even a change in operating
systems will not affect the internal model.)

lost updates—A concurrency control problem in which
data updates are lost during the concurrent execution of
transactions.

M

mandatory participation—A term used to describe a
relationship in which one entity occurrence must have a
corresponding occurrence in another entity. Example:
EMPLOYEE works in DIVISION. (A person cannot be an

employee if he or she is not assigned to a company’s
division.)

manual query optimization—An operation mode that
requires the end user or programmer to define the access
path for the execution of a query.

manual statistical generation mode—One mode of
generating statistical data access information used for
query optimization. In this mode, the DBA must
periodically run a routine to generate the data access
statistics; for example, running the RUNSTAT command
in an IBM DB2 database.

many-to-many (M:N or M:M) relationships—One of three
types of relationships (associations among two or more
entities) in which one occurrence of an entity is associated
with many occurrences of a related entity and one
occurrence of the related entity is associated with many
occurrences of the first entity.

master data management (MDM)— In business
intelligence, a collection of concepts, techniques, and
processes for the proper identification, definition, and
management of data elements within an organization.

materialized view—A dynamic table that not only contains
the SQL query command to generate the rows, but also
stores the actual rows. The materialized view is created
the first time the query is run and the summary rows are
stored in the table. The materialized view rows are
automatically updated when the base tables are updated.

MAX—A SQL aggregate function that yields the maximum
attribute value encountered in a given column.

metadata—Data about data, that is, data concerning data
characteristics and relationships. See also data dictionary.

method—In the object-oriented data model, a named set of
instructions to perform an action. Methods represent real-
world actions. Methods are invoked through messages.

metrics—In a data warehouse, numeric facts that measure a
business characteristic of interest to the end user.

Microsoft .NET framework—A component-based platform
for the development of distributed, heterogeneous,
interoperable applications aimed at manipulating any type
of data over any network under any operating system and
any programming language.

MIN—A SQL aggregate function that yields the minimum
attribute value encountered in a given column.

minimal data rule—Defined as “All that is needed is there,
and all that is there is needed.” In other words, all data
elements required by database transactions must be
defined in the model, and all data elements defined in the
model must be used by at least one database transaction.

GLOSSARY

668

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 668

mixed fragmentation—Regarding data fragmentation,
refers to a combination of horizontal and vertical
strategies, meaning a table may be divided into several
rows, each row having a subset of the attributes (columns).

module—(1) A design segment that can be implemented
as an autonomous unit, sometimes linked to produce a
system. (2) An information system component that
handles a specific function, such as inventory, orders,
or payroll.

module coupling—A description of the extent to which
modules are independent of one another.

monotonicity—Ensures that time stamp values always
increase. (The time stamping approach to scheduling
concurrent transactions assigns a global, unique time
stamp to each transaction. The time stamp value
produces an explicit order in which transactions are
submitted to the DBMS.)

multidimensional database management system
(MDBMS)—A database management system that uses
proprietary techniques to store data in matrixlike arrays of
n-dimensions, known as cubes.

multidimensional online analytical processing (MOLAP)—
Extends online analytical processing functionality to
multidimensional database management systems.

multiple-site processing, multiple-site data (MPMD)—A
scenario describing a fully distributed database
management system with support for multiple DPs and
transaction processors at multiple sites.

multiple-site processing, single-site data (MPSD)—A
scenario in which multiple processes run on different
computers sharing a single data repository.

multiuser database—A database that supports multiple
concurrent users.

multivalued attribute—An attribute that can have many
values for a single entity occurrence. For example, an
EMP_DEGREE attribute might store the string “BBA,
MBA, PHD” to indicate three different degrees held.

mutual consistency rule—A data replication rule requiring
that all copies of data fragments be identical.

mutual exclusive rule—A condition in which only one
transaction at a time can own an exclusive lock on the
same object.

N

natural join—A relational operation that links tables by
selecting only the rows with common values in their
common attribute(s).

natural key (natural identifier)—A real-world, generally
accepted identifier used to identify real-world objects. As
its name implies, a natural key is familiar to end users and
forms part of their day-to-day business vocabulary.

nested query—In SQL, refers to a query that is embedded
in another query. See subquery.

network model—A data model standard created by the
CODASYL Data Base Task Group in the late 1960s. It
represented data as a collection of record types and
relationships as predefined sets with an owner record type
and a member record type in a 1:M relationship.

non-identifying relationship—A relationship that occurs
when the primary key of the dependent (many side) entity
does not contain the primary key of the related parent
entity. Also known as a weak relationship.

nonkey attribute—See nonprime attribute.

nonprime attribute—An attribute that is not part of a key.

normalization—A process that assigns attributes to entities
in such a way that data redundancies are reduced or
eliminated.

NOT—A SQL logical operator that negates a given
predicate.

null—In SQL, refers to the absence of an attribute value.
Note: A null is not a blank.

O

object—An abstract representation of a real-world entity
that has a unique identity, embedded properties, and the
ability to interact with other objects and with itself.

Object Linking and Embedding for Database
(OLE-DB)—Based on Microsoft’s Component Object
Model (COM), OLE-DB is database middleware that adds
object-oriented functionality for accessing relational and
nonrelational data. OLE-DB was the first part of
Microsoft’s strategy to provide a unified object-oriented
framework for the development of next- generation
applications.

object-oriented database management system
(OODBMS)—Data management software used to manage
data found within an object-oriented database model.

object-oriented data model (OODM)—A data model
whose basic modeling structure is an object.

object-oriented programming (OOP)—An alternative to
conventional programming methods based on object-
oriented concepts. It reduces programming time and lines
of code and increases programmers’ productivity.

GLOSSARY

669

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 669

object/relational database management system
(O/RDBMS)—A DBMS based on the extended relational
model (ERDM). The ERDM, championed by many
relational database researchers, constitutes the relational
model’s response to the OODM. This model includes
many of the object-oriented model’s best features within
an inherently simpler relational database structural
environment.

one-to-many (1:M) relationship—One of three types of
relationships (associations among two or more entities)
that are used by data models. In a 1:M relationship, one
entity instance is associated with many instances of the
related entity.

one-to-one (1:1) relationship—One of three types of
relationships (associations among two or more entities)
that are used by data models. In a 1:1 relationship, one
entity instance is associated with only one instance of the
related entity.

online analytical processing (OLAP)—Decision support
system (DSS) tools that use multidimensional data analysis
techniques. OLAP creates an advanced data analysis
environment that supports decision making, business
modeling, and operations research activities.

Open Database Connectivity (ODBC)—Database
middleware developed by Microsoft to provide a database
access API to Windows applications.

operational database—A database that is designed
primarily to support a company’s day-to-day operations.
Also known as a transactional database or production
database.

optimistic approach—In transaction management, refers
to a concurrency control technique based on the
assumption that the majority of database operations do
not conflict.

optimizer hints—Special instructions for the query optimizer
that are embedded inside the SQL command text.

optional attribute—In ER modeling, refers to an attribute
that does not require a value, therefore it can be left empty.

optional participation—In ER modeling, refers to a
condition where one entity occurrence does not require a
corresponding entity occurrence in a particular relationship.

OR—The SQL logical operator used to link multiple
conditional expressions in a WHERE or HAVING clause. It
requires that only one of the conditional expressions be true.

ORDER BY—A SQL clause useful for ordering the output
of a SELECT query (for example, in ascending or
descending order).

outer join—A relational-algebra JOIN operation that
produces a table in which all unmatched pairs are
retained; unmatched values in the related table are left
null. Contrast with inner join. See also left outer join and
right outer join.

overlapping—In a specialization hierarchy, describes a
condition where each entity instance (row) of the
supertype can appear in more than one subtype.

P

page—See diskpage.

page-level lock—In this type of lock, the database
management system will lock an entire diskpage, or
section of a disk. A diskpage can contain data for one or
more rows and from one or more tables.

partial completeness—In a generalization hierarchy,
means that not every supertype occurrence is a member
of a subtype; that is, there may be some supertype
occurrences that are not members of any subtype.

partial dependency—In normalization, a condition in
which an attribute is dependent on only a portion (subset)
of the primary key.

partially replicated database—A distributed database in
which copies of only some database fragments are stored
at multiple sites. See also fully replicated database.

participants—An ER term used to label the entities that
participate in a relationship. Example: PROFESSOR
teaches CLASS. (The teaches relationship is based on the
participants PROFESSOR and CLASS.)

partitioning—The process of splitting a table into subsets
of rows or columns.

passive data dictionary—A DBMS data dictionary that
requires an end-user-initiated command to update its data
access statistics. See also data dictionary.

performance transparency—A DDBMS feature that allows
a system to perform as though it were a centralized DBMS
(no degradation of response times).

performance tuning—Activities that make a database perform
more efficiently in terms of storage and access speed.

periodicity—Usually expressed as current year only,
previous years, or all years; provides information about
the time span of data stored in a table.

persistent stored module (PSM)—A block of code
(containing standard SQL statements and procedural
extensions) that is stored and executed at the DBMS server.

GLOSSARY

670

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 670

personalization—Customization of a Web page for
individual users.

physical data format—The way in which a computer
“sees” (stores) data.

physical design—A stage of database design that maps the
data storage and access characteristics of a database.
Since these characteristics are a function of the types of
devices supported by the hardware, the data access
methods supported by the system (and the selected
DBMS) physical design is both hardware- and software-
dependent. See also physical model.

physical independence—A condition that exists when the
physical model can be changed without affecting the
internal model.

physical model—A model in which the physical
characteristics (location, path, and format) are described
for the data. Both hardware- and software-dependent. See
also physical design.

plug-in—In the World Wide Web (WWW), a client-side,
external application that is automatically invoked by the
browser when it is needed to manage specific types of data.

policies—General statements of direction that are used to
manage company operations through the communication
and support of the organization’s objectives.

predicate logic—Used extensively in mathematics, provides
a framework in which an assertion (statement of fact) can
be verified as either true or false. For example, suppose
that a student with a student ID of 12345678 is named
Melissa Sanduski. That assertion can easily be
demonstrated to be true or false.

primary key (PK)—In the relational model, an identifier
composed of one or more attributes that uniquely
identifies a row. See also key.

prime attribute—A key attribute, that is, an attribute that is
part of a key or is the whole key. See also key attribute.

privacy—Control of data usage dealing with the rights of
individuals and organizations to determine the “who,
what, when, where, and how” of data access.

procedural SQL (PL/SQL)—A type of SQL that allows the
use of procedural code and SQL statements that are
stored in a database as a single callable object that can be
invoked by name.

procedure cache—A shared, reserved memory area that
stores the most recently executed SQL statements or
PL/SQL procedures (including triggers and functions).
Also called SQL cache.

procedures—Series of steps to be followed during the
performance of a given activity or process.

production database—The main database designed to
keep track of the day-to-day operations of a company.
See also transactional database.

profile—In Oracle, a named collection of settings that
controls how much of the database resource a given user
can use.

Q

query—A question or task asked by an end user of a
database in the form of SQL code. A specific request for
data manipulation issued by the end user or the
application to the DBMS.

query language—A nonprocedural language that is used by
a DBMS to manipulate its data. An example of a query
language is SQL.

query optimizer—A DBMS process that analyzes SQL
queries and finds the most efficient way to access the data.
The query optimizer generates the access or execution
plan for the query.

query processing bottleneck—In query optimization, a
delay introduced in the processing of an I/O operation
that causes the overall system to slow down.

query result set—The collection of data rows that are
returned by a query.

R

RAID—An acronym that means Redundant Array of
Independent Disks. RAID is used to provide balance
between performance and fault tolerance. RAID systems
use multiple disks to create virtual disks (storage volumes)
formed by several individual disks. RAID systems provide
performance improvement and fault tolerance.

record—A collection of related (logically connected) fields.

recursive query—A nested query that joins a table to itself.
For example, a recursive query joins the EMPLOYEE table
to itself.

recursive relationship—A relationship that is found within
a single entity type. For example, an EMPLOYEE is
married to an EMPLOYEE or a PART is a component of
another PART.

redundant transaction logs—Most database management
systems keep several copies of the transaction log to
ensure that the physical failure of a disk will not impair the
DBMS’s ability to recover data.

GLOSSARY

671

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 671

referential integrity—A condition by which a dependent
table’s foreign key must have either a null entry or a
matching entry in the related table. Even though an
attribute may not have a corresponding attribute, it is
impossible to have an invalid entry.

relation—In a relational database model, an entity set.
Relations are implemented as tables. Relations (tables) are
related to each other through the sharing of a common
entity characteristic (value in a column).

relational algebra—A set of mathematical principles that
form the basis of the manipulation of relational table
contents; composed of eight main functions: SELECT,
PROJECT, JOIN, INTERSECT, UNION, DIFFERENCE,
PRODUCT, and DIVIDE.

relational database management system (RDBMS)—A
collection of programs that manages a relational database.
The RDBMS software translates a user’s logical requests
(queries) into commands that physically locate and retrieve
the requested data. A good RDBMS also creates and
maintains a data dictionary (system catalog) to help provide
data security, data integrity, concurrent access, easy access,
and system administration to the data in the database
through a query language (SQL) and application programs.

relational diagram—A graphical representation of a
relational database’s entities, the attributes within those
entities, and the relationships among those entities.

relational model—Developed by E. F. Codd (of IBM) in
1970, it represents a major breakthrough for users and
designers because of its conceptual simplicity. The
relational model, based on mathematical set theory,
represents data as independent relations. Each relation
(table) is conceptually represented as a matrix of
intersecting rows and columns. The relations are related to
each other through the sharing of common entity
characteristics (values in columns).

relational online analytical processing (ROLAP)—
Provides online analytical processing functionality by using
relational databases and familiar relational query tools to
store and analyze multidimensional data.

relational schema—The description of the organization of a
relational database as seen by the database administrator.

relationship—An association between entities.

relationship degree—Indicates the number of entities or
participants associated with a relationship. A relationship
degree can be unary, binary, ternary, or higher level.

Remote Data Objects (RDO)—A higher-level object-
oriented application interface used to access remote
database servers. RDO uses the lower-level DAO and

ODBC for direct access to databases. RDO was optimized
to deal with server-based databases such as MS SQL
Server, Oracle, and DB2.

remote request—A DDBMS feature that allows a single
SQL statement to access data in a single remote DP. See
also remote transaction.

remote transaction—A DDBMS feature that allows a
transaction (formed by several requests) to access data in a
single remote DP. See also remote request.

repeating group—In a relation, a characteristic describing
a group of multiple entries of the same type that exist
for a single key attribute occurrence. For example, a car
can have multiple colors (top, interior, bottom, trim,
and so on).

replicated data allocation—A data allocation strategy by
which copies of one or more database fragments are
stored at several sites.

replica transparency—Refers to the DDBMS’s ability to
hide the existence of multiple copies of data from the user.

replication—The process of creating and managing
duplicate versions of a database. Used to place copies in
different locations and to improve access time and fault
tolerance.

required attribute—In ER modeling, refers to an attribute that
must have a value. In other words, it cannot be left empty.

reserved words—Words that are used by a system and that
cannot be used for any other purpose. For example, in
Oracle SQL , the word INITIAL cannot be used to name
tables or columns.

right outer join—In a pair of tables to be joined, a right
outer join yields all of the rows in the right table, including
the ones with no matching values in the other table. For
example, a right outer join of CUSTOMER with AGENT
will yield all of the agent rows, including the ones that do
not have a matching CUSTOMER row. See also left
outer join and outer join.

role—In Oracle, a named collection of database access
privileges that authorize a user to connect to a database
and use the database system resources.

ROLLBACK—A SQL command that restores the database
table contents to their original condition (the condition
that existed after the last COMMIT statement).

roll up—In SQL, an OLAP extension used with the
GROUP BY clause to aggregate data by different
dimensions. (Rolling up the data is the exact opposite of
drilling down the data.) See also drill down.

GLOSSARY

672

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 672

row-level lock—A comparatively less restrictive database
lock where the DBMS allows concurrent transactions to
access different rows of the same table, even when the
rows are located on the same page.

row-level trigger—A trigger that is executed once for each
row affected by the triggering SQL statement. A row-level
trigger requires the use of the FOR EACH ROW keywords
in the trigger declaration.

rule-based optimizer—A query optimization mode based
on the rule-based query optimization algorithm.

rule-based query optimization algorithm—A query
optimization technique that uses a set of preset rules and
points to determine the best approach to executing a query.

rules of precedence—Basic algebraic rules that specify the
order in which operations are performed, such as
conditions within parentheses being executed first. For
example, in the equation 2 � (3 � 5), the multiplication
portion is calculated first, making the correct answer 17.

S

scheduler—The DBMS component that is responsible for
establishing the order in which concurrent transaction
operations are executed. The scheduler interleaves the
execution of database operations in a specific order
(sequence) to ensure serializability.

schema—A logical grouping of database objects (tables,
indexes, views, queries, etc.) that are related to each other.
Usually, a schema belongs to a single user or application.

scope—That part of a system that defines the extent of the
design, according to operational requirements.

script—A programming language that is not compiled, but
rather is interpreted and executed at run time.

search services—Business-enabling Web services that allow
Web sites to perform searches on their contents.

secondary key—A key that is used strictly for data retrieval
purposes. For example, a customer is not likely to know
his or her customer number (primary key), but the
combination of last name, first name, middle initial, and
telephone number is likely to make a match to the
appropriate table row. See also key.

second normal form (2NF)—The second stage in the
normalization process in which a relation is in 1NF and
there are no partial dependencies (dependencies in only
part of the primary key).

security—Refers to activities and measures to ensure the
confidentiality, integrity and availability of an information
system and its main asset, data.

security breach—An event that occurs when a security
threat is exploited to negatively affect the integrity,
confidentiality, or availability of the system.

security threat—An imminent security violation that could
occur at any time due to unchecked security vulnerabilities.

security vulnerability—A weakness in a system’s
component that could be exploited to allow unauthorized
access or cause service disruptions.

segment—In the hierarchical data model, the equivalent of
a file system’s record type.

SELECT—A SQL command that yields the values of all
rows or a subset of rows in a table. The SELECT
statement is used to retrieve data from tables.

semantic data model—The first of a series of data models
that more closely represented the real world, modeling
both data and their relationships in a single structure
known as an object. The SDM, published in 1981, was
developed by M. Hammer and D. McLeod.

semistructured data—Data that have already been
processed to some extent.

serializable schedule—In transaction management, a
schedule of transaction operations in which the interleaved
execution of the transactions yields the same result as if
the transactions were executed in serial order.

serializability—A transaction property that ensures that the
selected order of transaction operations creates a final
database state that would have been produced if the
transactions had been executed in a serial fashion.

server-side extension—A program that interacts directly
with the server process to handle specific types of
requests. They add significant functionality to Web servers
and to intranets.

set theory—A mathematical science component that deals
with sets, or groups of things, and is used as the basis for
data manipulation in the relational model.

shared lock—A lock that is issued when a transaction
requests permission to read data from a database and no
exclusive locks are held on that data by another transaction.
A shared lock allows other read-only transactions to access
the database. See also exclusive lock.

simple attribute—An attribute that cannot be subdivided
into meaningful components. Compare to composite
attribute.

single-site processing, single-site data (SPSD)—A
scenario in which all processing is done on a single CPU
or host computer (mainframe, minicomputer, or PC) and
all data are stored on the host computer’s local disk.

GLOSSARY

673

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 673

single-user database—A database that supports only one
user at a time.

single-valued attribute—An attribute that can have only
one value.

slice and dice—Multidimensional jargon meaning the ability
to cut slices off of the data cube (drill down or drill up) to
perform a more detailed analysis.

snowflake schema—A type of star schema in which the
dimension tables can have their own dimension tables.
The snowflake schema is usually the result of normalizing
dimension tables.

software independence—A property of any model or
application that does not depend on the software used to
implement it.

sparsity—In multidimensional data analysis, a measurement
of the density of the data held in the data cube.

specialization hierarchy—A hierarchy that is based on the
top-down process of identifying lower-level, more specific
entity subtypes from a higher-level entity supertype.
Specialization is based on grouping unique characteristics
and relationships of the subtypes.

SQL cache—A shared, reserved memory area that stores
the most recently executed SQL statements or PL/SQL
procedures (including triggers and functions). Also called
procedure cache.

SQL performance tuning—Activities oriented toward
generating a SQL query that returns the correct answer in
the least amount of time, using the minimum amount of
resources at the server end.

standards—A detailed and specific set of instructions that
describes the minimum requirements for a given activity.
Standards are used to evaluate the quality of the output.

star schema—A data modeling technique used to map
multidimensional decision support data into a relational
database. The star schema represents data, using a central
table known as a fact table, in a 1:M relationship with one
or more dimension tables.

stateless system—Describes the fact that at any given time,
a Web server does not know the status of any of the
clients communicating with it. The Web does not reserve
memory to maintain an open communications “state”
between the client and the server.

statement-level trigger—A SQL trigger that is assumed if
the FOR EACH ROW keywords are omitted. This type of
trigger is executed once, before or after the triggering
statement completes, and is the default case.

static query optimization—A query optimization mode in
which the access path to a database is predetermined at
compilation time. Contrast with dynamic query
optimization.

static SQL—A style of embedded SQL in which the SQL
statements do not change while the application is running.

statistically based query optimization algorithm—A
query optimization technique that uses statistical
information about a database. These statistics are then
used by the DBMS to determine the best access strategy.

stored function—A named group of procedural and SQL
statements that returns a value, indicated by a RETURN
statement in its program code.

stored procedure—(1) A named collection of procedural
and SQL statements. (2) Business logic stored on a server
in the form of SQL code or some other DBMS-specific
procedural language.

strong (identifying) relationship—When two entities are
existence-dependent; from a database design perspective,
this exists whenever the primary key of the related entity
contains the primary key of the parent entity.

structural dependence—A data characteristic that exists
when a change in the database schema affects data
access, thus requiring changes in all access programs.

structural independence—A data characteristic that
exists when changes in the database schema do not
affect data access.

structured data—Unstructured data that have been
formatted (structured) to facilitate storage, use, and
information generation.

Structured Query Language (SQL)—A powerful and
flexible relational database language composed of
commands that enable users to create database and table
structures, perform various types of data manipulation and
data administration, and query the database to extract
useful information.

subordinate—In a DDBMS, a DP node that participates in
a distributed transaction, using the two-phase COMMIT
protocol.

subquery—A query that is embedded (or nested) inside another
query. Also known as a nested query or an inner query.

subschema—In the network model, the portion of the
database “seen” by the application programs that produce
the desired information from the data contained within the
database.

GLOSSARY

674

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 674

subtype (entity set)—An entity (set) that contains the
unique characteristics (attributes) of an entity whose
general characteristics are found in another, more broadly
defined entity known as a supertype. In a generalization
hierarchy, it is any entity that is found below a parent
entity. Example: The subtype PILOT of the supertype
EMPLOYEE.

subtype discriminator—The attribute in the supertype
entity that determines to which entity subtype each
supertype occurrence is related.

SUM—A SQL aggregate function that yields the sum of all
values for a given column or expression.

superkey—See key.

supertype (entity set)—An entity (set) that contains the
general (commonly shared) characteristics of an entity (see
subtype). If the entity set can include characteristics that
are not common to all entities within the set, the
supertype becomes the parent to one or more subtypes in
a generalization hierarchy.

surrogate key—A system-assigned primary key, generally
numeric and auto-incremented.

synonym—The use of different names to identify the same
object, such as an entity, an attribute, or a relationship;
should generally be avoided. See also homonym.

system catalog—A detailed system data dictionary that
describes all objects in a database.

systems administrator—The person responsible for
coordinating the activities of the data processing function.

systems analysis—The process that establishes the need
for and the extent of an information system.

systems development—The process of creating an
information system.

Systems Development Life Cycle (SDLC)—The cycle that
traces the history (life cycle) of an information system. The
SDLC provides the big picture within which the database
design and application development can be mapped out
and evaluated.

T

table—A (conceptual) matrix composed of intersecting rows
(entities) and columns (attributes) that represents an entity
set in the relational model. Also called a relation.

table-level lock—A locking scheme that allows only one
transaction at a time to access a table. A table-level lock
locks an entire table, preventing access to any row by
transaction T2 while transaction T1 is using the table.

table space—In a DBMS, a logical storage space used to
group related data. Also known as file group.

tag—In markup languages such as HTML and XML, a
command inserted in a document to specify how the
document should be formatted. Tags are used in server-
side markup languages and interpreted by a Web browser
for presenting data.

ternary relationship—An ER term used to describe an
association (relationship) between three entities. Example:
A CONTRIBUTOR contributes money to a FUND from
which a RECIPIENT receives money.

theta join—A join operator that links tables, using an
inequality comparison operator (<, >, <=, >=) in the join
condition.

third normal form (3NF)—A table is in 3NF when it is in
2NF and no nonkey attribute is functionally depen-dent on
another nonkey attribute; that is, it cannot include
transitive dependencies.

time stamping—In transaction management, a technique
used in scheduling concurrent transactions that assigns a
global unique time stamp to each transaction.

time-variant data—Data whose values are a function of
time. For example, time variant data can be seen at work
when the history of all administrative appointments (date
of appointment and date of termination) are tracked.

top-down design—A design philosophy that begins by
defining the main (macro) structures of a system and then
moves to define the smaller units within those structures.
In database design, it is a process that first identifies
entities and then defines the attributes within the entities.
Compare to bottom-up design.

total completeness—In a generalization/specialization
hierarchy, a condition in which every supertype
occurrence must be a member of at least one subtype.

transaction—A sequence of database operations (one or
more database requests) that accesses the database. A
transaction is a logical unit of work; that is, it must be
entirely completed or aborted—no intermediate ending
states are accepted. All transactions must have the following
properties: (1) Atomicity requires that, unless all operations
(parts) of a transaction are completed, the transaction be
aborted. A transaction is treated as a single, indivisible
logical unit of work. (2) Consistency indicates the
permanence of the database consistent state. Once a
transaction is completed, the database reaches a consistent
state. (3) Isolation assures that the data used during the
execution of a transaction cannot be used by a second
transaction until the first one is completed. (4) Durability
assures that once transaction changes are done, they cannot
be undone or lost, even in the event of a system failure.

GLOSSARY

675

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 675

transactional database—A database designed to keep
track of the day-to-day transactions of an organization.
See also production database.

transaction log—A feature used by the DBMS to keep
track of all transaction operations that update the
database. The information stored in this log is used by the
DBMS for recovery purposes.

transaction log backup—Backs up only the transaction log
operations that are not reflected in a previous backup
copy of the database.

transaction manager (TM)—See transaction processor (TP).

transaction processor (TP)—In a DDBMS, the software
component on each computer that requests data. The TP
is responsible for the execution and coordination of all
databases issued by a local application that access data on
any DP. Also called transaction manager (TM). See also
data processor (DP).

transaction transparency—A DDBMS property that
ensures that database transactions will maintain the
distributed database’s integrity and consistency. They
ensure that a transaction will be completed only when all
database sites involved in the transaction complete their
part of the transaction.

transitive dependency—A condition in which an attribute
is dependent on another attribute that is not part of the
primary key.

trigger—A procedural SQL code that is automatically
invoked by the relational database management system
upon the occurrence of a data manipulation event.

tuple—In the relational model, a table row.

two-phase commit protocol—In a DDBMS, an algorithm
used to ensure atomicity of transactions and database
consistency as well as integrity in distributed transactions.

two-phase locking—A set of rules that governs the way
transactions acquire and relinquish locks. Two-phase
locking guarantees serializability, but it does not prevent
deadlocks. The two-phase locking protocol is divided into
two phases: (1) A growing phase occurs when the
transaction acquires all of the locks that it needs without
unlocking any existing data locks. Once all locks have
been acquired, the transaction is in its locked point. (2) A
shrinking phase occurs when the transaction releases all
locks and cannot obtain a new lock.

U

unary relationship—An ER term used to describe an
association within an entity. Example: A COURSE is a
prerequisite to another COURSE.

uncommitted data—When trying to achieve concurrency
control, uncommitted data causes data integrity and
consistency problems. It occurs when two transactions are
executed concurrently and the first transaction is rolled
back after the second transaction has already accessed the
uncommitted data, thus violating the isolation property of
transactions.

Unified Modeling Language (UML)—A language based
on object-oriented concepts that provides tools such
as diagrams and symbols used to graphically model
a system.

union-compatible—Two or more tables are union-
compatible when they share the same column names and
the columns have compatible data types or domains.

unique fragment—In a DDBMS, a condition indicating that
each row is unique, regardless of which fragment it is
located in.

unique index—An index in which the index key can have
only one pointer value (row) associated with it.

uniqueness—In concurrency control, a property of time
stamping that ensures that no equal time stamp values
can exist.

Universal Data Access (UDA)—Within the Microsoft
application framework, a collection of technologies used
to access any type of data source and to manage the data
through a common interface.

unreplicated database—A distributed database in which
each database fragment is stored at a single site.

unstructured data—Data that exist in their original (raw)
state; that is in the format in which they were collected.

updatable view—A view that can be used to update
attributes in base tables that are used in the view.

UPDATE—A SQL command that allows attribute values to
be changed in one or more rows of a table.

user—In a system, a uniquely identifiable object that allows
a given person or process to log on to the database.

V

VBScript—A client-side extension in the form of a
Microsoft language product used to extend a browser’s
functionality; derived from Visual Basic.

vertical fragmentation—In distributed database design, the
process that breaks up a table into fragments consisting of
a subset of columns from the original table. Fragments
must share a common primary key. See also database
fragments and horizontal fragmentation.

GLOSSARY

676

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 676

very large databases (VLDBs)—As the name implies,
databases that contain huge amounts of data—gigabyte,
terabyte, and petabytes ranges are not unusual.

view—A virtual table based on a SELECT query.

W

wait/die—A concurrency control scheme that says that if the
transaction requesting the lock in the older, it waits for the
younger transaction to complete and release the locks.
Otherwise, the newer transaction dies and it is rescheduled.

weak entity—An entity that displays existence dependence
and inherits the primary key of its parent entity. Example:
A DEPENDENT requires the existence of an EMPLOYEE.

weak relationship—A relationship that exists when the PK
of the related entity does not contain a PK component of
the parent entity. Also known as a non-identifying
relationship.

Web application server—A middleware application that
expands the functionality of Web servers by linking them
to a wide range of services, such as databases, directory
systems, and search engines.

Web-to-database middleware—A database server-side
extension program that retrieves data from databases and
passes it on to the Web server, which sends it to the
client’s browser for display purposes.

wildcard character—A symbol that can be used as a
general substitute for one or more characters in an SQL
LIKE clause condition. The wildcard characters used in
SQL are the _ and % symbols.

workgroup database—A multiuser database that supports
a relatively small number of users (usually fewer than 50)
or that is used for a specific department in an
organization.

wound/wait—A concurrency control scheme that says that
if the transaction requesting the lock in the older, it
preempts the younger transaction and reschedules it.
Otherwise, the newer transaction waits until the older
transaction finishes.

write-ahead-log protocol—In concurrency control, a
process that ensures that transaction logs are always
written to permanent storage before any database data are
actually updated. Also called write-ahead protocol.

write-ahead protocol—See write-ahead-log protocol.

write-through technique—In concurrency control, a process
that ensures that a database is immediately updated by
transaction operations during the transaction’s execution,
even before the transaction reaches its commit point.

X

XML—See Extensible Markup Language (XML).

XML database—A database system that stores and
manages semistructured XML data.

XML schema—An advanced data definition language that is
used to describe the structure (elements, data types,
relationship types, ranges, and default values) of XML data
documents. One of the main advantages of an XML schema
is that it more closely maps to database terminology and
features. For example, an XML schema will be able to
define common database types such as date, integer or
decimal, minimum and maximum values, list of valid values,
and required elements. Using the XML schema, a company
could validate the data for values that may be out of range,
incorrect dates, valid values, and so on.

XML schema definition (XSD)—A file containing the
description of an XML document.

XSL (Extensible Style Language)—A specification used to
define the rules by which XML data are formatted and
displayed. The XSL specification is divided into two parts:
Extensible Style Language Transformations (XSLT) and
XSL style sheets.

XSL style sheets—Similar to presentation templates,
define the presentation rules applied to XML elements.
The XSL style sheet describes the formatting options to
apply to XML elements when they are displayed on a
browser, cellular phone display, PDA screen, and so on.

XSLT (Extensible Style Language Transformations)—A
term that describes the general mechanism used to extract
and process data from one XML document and to enable
its transformation within another document.

GLOSSARY

677

C6545_Gloss_CTP.4c 11/14/07 9:35 AM Page 677

INDEX

678

NOTE:
• Page numbers in bold type

indicate definitions.
• Page numbers in italic type

indicate illustrations.
• Page numbers followed by (2)

indicate two separate
discussions.

• Page numbers followed by n
indicate notes.

• Page numbers followed by t
indicate tables.

SYMBOLS
’ (apostrophe): character

attribute delimiter, 304n
* (asterisk):

wildcard character, 242
zero occurrence symbol, 593

|| (bars): concatenate sign, 329t
� (circle): optional participation

symbol, 115, 116, 118, 120t
: (colon): host variable prefix,

360, 361
, (comma):

argument delimiter, 354
table element delimiter, 234

-- (double dashes): comment
indicator (PL/SQL), 350

--> (double dashes + right angle
bracket): comment indicator
(XML), 591

“ (double quotation mark):
character attribute
delimiter, 304n

= (equal sign): equality
comparison operator, 77, 457t

/ (forward slash): end
command-line entry mark
(PL/SQL), 339

> (greater than sign): greater
than operator, 457t

<-- (left angle bracket + double
dashes): comment indicator
(XML), 591

(number sign): date delimiter
(in Access), 241n, 250

() (parentheses):
argument delimiters, 354
table definition

delimiters, 234
% (percent sign): wildcard

character, 254–255
%FOUND cursor attribute

(PL/SQL), 358t
%ISOPEN cursor attribute

(PL/SQL), 358t
%NOTFOUND cursor attribute

(PL/SQL), 358t
%ROWCOUNT cursor attribute

(PL/SQL), 358t
%TYPE data type (PL/SQL),

341t

+ (plus sign):
concatenate sign, 329t
multiple occurrence

symbol, 593
? (question mark): optional

element symbol, 593
; (semicolon): end command

mark, 229
’ (single quotation mark):

character attribute
delimiter, 304n

_ (underscore): wildcard
character, 254, 255

NUMBERS
1:1 (one-to-one) relationships,

32–33, 80, 82–84
ERDs of, 41, 42
foreign key

placement/selection,
206, 206t

implementing, 82–84,
206–207

problems with, 84, 128n
recursive relationships, 122,

123, 136–138
usefulness of, 84, 128

1:M (one-to-many)
relationships, 32–33, 36,
80–82

creating tables in, 234
ERDs of, 41, 42
fan traps in, 209, 210
implementing, 80–82
implementing M:N

relationships with, 42n,
86–87, 109–110,
125–126, 176–178,
203–204

recursive relationships, 122,
124, 124

1NF. See first normal form
2NF. See second normal form
3NF. See third normal form
4NF. See fourth normal form

A
ABS function, 328t
absolute values: returning, 328t
abstraction levels in database

design, 48–52, 49, 52t
Access (Microsoft):

advantages, 636
case sensitivity in search

criteria, 254–255
commands supported,

242n, 245n
complex query

alternatives, 302n
constraints supported/not

supported, 237n, 238n
copying parts of tables into

new tables in, 261–262

counting (tallying) non-null
values in, 267n

creating databases in, 229
data types, 86, 169, 234
database administration

using, 636
datasets, 64n
date and time functions,

325–326t
date arithmetic in, 110,

230, 241n
date formats, 66, 110
features, 9t, 416n
joining tables with

aliases, 278n
metadata (data definitions),

21, 22
numeric functions, 328t
QBE query generator, 247,

248n, 248
string functions, 329t
surrogate key

implementation
method, 169

access (to data). See data access
access control: of DBMSs, 629

See also access rights
(for users)

access plan module, 361
access plans (execution plans),

449, 622
displaying, 462, 470
I/O operations, 449t
optimizer comparisons of,

454, 454t
access rights (for users),

396, 399
assigning, 398, 629

active data dictionary, 630
Active Server Pages (ASP), 578
ActiveX, 578, 589
ActiveX Data Objects. See ADO
ad hoc queries, 8

difficulty in host
languages, 361

in dynamic SQL, 364
impossibility in file

systems, 14
ADD option (ALTER TABLE

command), 257, 258, 262
ADD_MONTHS function

(Oracle), 327t
Administration page (Oracle),

643, 643
ADO (ActiveX Data Objects),

578, 579
vs. OLE-DB, 579

ADO objects, 579t, 580–582
ADO.NET framework,

580–582, 581
data providers, 580
distributed application

development features,
580–582

advanced data modeling,
193–213

checklist, 211, 212t
EER model (EERM), 193,

194–199
entity clusters, 200, 201
flexible design cases,

206–211
key terms, 213
online content on, 196,

197, 214
primary key selection,

201–205
problems (exercises),

214–221
review questions, 214
summary, 213

aggregate fact tables, 549–550
aggregate functions, 226t,

265–270, 265t
with date columns, 268
grouping data from,

270–273
vs. numeric functions, 327
vs. PL/SQL functions, 339
in subqueries, 267–268,

314, 319–321
aggregation problems in

database design, 406, 406
Agile Software

Development, 374n
airline reservation system

crisis, 411
algorithms (methods):

for concurrency control,
412, 424–433

for data allocation, 505
for query optimization,

498, 499
aliases, 250

See also column aliases;
table aliases

ALL subqueries, 317–318
ALL_ROWS optimizer hint

(instruction), 455t
ALTER TABLE command

(statement), 257–258, 262
Amazon.com: BI tool–based

business problem
solutions, 515t

American National Standards
Institute (ANSI): SPARC data
modeling framework, 48–52

analysis phase (SDLC),
376–377

analytical interface, end-
user, 525

ANALYZE command
(statement), 446, 447

AND logical operator, 252
multiple AND conditional

expressions, 458

C6545_Index_CTP.4c 11/13/07 2:41 PM Page 678

INDEX

679

anonymous PL/SQL
blocks, 339

examples, 339–342
ANSI SQL, 226, 237
ANSI/ISO SQL standard, 226
ANSI/SPARC data modeling

framework, 48–52
ANY subqueries, 317–318
APIs (application programming

interfaces), 24,
573–574, 588

object-oriented APIs, 574
ODBC API compliance

levels, 576
Web server APIs, 587

apostrophe (‘): character
attribute delimiter, 304n

application code: as a query
processing bottleneck, 450

application processors
(APs), 484

application programming
interfaces. See APIs

application programs (in
DBMSs), 20

creating, 7
DBA design and

implementation tasks,
622–623

distributed access
services, 479

distributed application
development features
(ADO.NET), 580–582

interconnectivity
between, 572

prototyping, 401
SQL-based relational

database applications, 40
systems development

and, 373
testing, 623

APs (application
processors), 484

argument delimiters ((), ,), 354
arithmetic operators, 251t

in data updates, 260
rules of precedence, 251
in SELECT queries, 251

ASP (Active Server Pages), 578
associative entities. See

composite entities
asterisk (*):

wildcard character, 242
zero occurrence symbol, 593

atomic attributes, 165
atomic data, 166
atomicity (of transactions),

417, 433
atomicity property (of entity

attributes), 165

attribute domains (ranges of
value), 64, 66, 106

checking for values
within, 253

defining, 395
attribute hierarchies (of fact

attributes), 544–546, 545
attribute list subqueries,

319–321
attribute values (of entity

attributes):
counting (tallying), 266–267
generating aggregates,

556–559
listing rows with matching

values, 255–256, 331t
listing rows with nulls, 254
listing rows with unique

values, 265
nulls. See nulls
ranges. See attribute

domains
returning more than one,

357–359
See also numbers; strings

attributes:
character. See strings
of entities. See attributes (of

entities)
of facts, 542–544, 542t;

hierarchies, 544–545
of objects (OO model), 43
of PL/SQL cursors, 358t

attributes (of entities), 32
atomic attributes, 165
boldfaced attributes,

105–106
character. See strings
checklist, 212t
common. See foreign keys
composite attributes, 108
date formats, 65
definition conflicts, 406
dependencies

between/among. See
dependencies

derived. See derived
attributes

as determinants, 163
discriminator. See subtype

discriminator
display formats:

changing, 243n
domains. See attribute

domains
ERDs of, 105–106, 106,

108, 109, 110
functional dependence, 67,

157–158, 158; fully
functional dependence,
68, 158

identifying, 33–35, 165
inheritance of, 196

key. See primary key
attributes

LINE_NUMBER
attribute, 90

multivalued attributes,
108–110, 173

names, 391
:NEW and :OLD attribute

references, 347–348
nonkey attributes, 162
not displaying in entity

clusters, 200
numeric. See numbers
:OLD attribute references (in

SQL*Plus), 348
optional attributes, 106
refining for atomicity, 165
relational diagrams of, 39,

39, 70, 70
repeating groups of entities

for, 158–159
required attributes,

105–106
simple attributes, 108
single-valued attributes, 108
subtype discriminator. See

subtype discriminator
updating rows, 244, 259;

advanced options,
259–260; in other tables,
349–350

values. See attribute values
See also data types

audit logs, 629
audit trails, 399
authentication, 229
authorization management, 629
automatic query

optimization, 498
automatic startup (in Oracle):

ensuring, 638–639
AutoNumber data type (in

Access), 86, 169, 331
columns created as, 331

availability (of data), 626
AVG function, 265t, 269–270

B
B-tree indexes, 452, 453
B2B transactions. See business-

to-business (B2B) transactions
back-end CASE tools, 632
backup management (in

DBMSs), 23, 618–619,
624–625

backups, 399–400, 619
bars (||): concatenate sign

(Oracle), 329t
base tables (master tables), 273

updating, 335–336,
337–338

baseball player database, 223
batch update routine,

335–336, 337–338

BCNF. See Boyce-Codd
normal form

BEGIN statement (in
transactions), 418

BETWEEN special operator,
253, 253n

BI. See business intelligence
BI tools, 519–520t

business problem solutions
based on, 515t

binary locks, 428, 428t
binary relationships, 120,

121, 121
bitmap indexes, 452, 453,

537–538, 538t
boldfaced attributes, 105–106
Boolean algebra, 252
bottom-up design, 402

vs. top-down design, 403
boundaries (of systems), 383
boundaries and scope definition

process (database initial study
phase), 383

Boyce-Codd normal form
(BCNF), 157t, 169, 170

conversion to,
170–172, 171t

dependency diagrams,
171, 172

bridge entities. See composite
entities

browsers. See Web browsers
buffer cache (data cache), 445,

446, 460
buffers, 434
BUILD clause, 560
business governance, 517
business intelligence (BI),

514–516
architecture (framework),

516–520, 517
components, 518t, 519
process steps, 516
tools, 519–520t; business

problem solutions based
on, 515t

business manager’s view of
system data, 383, 384

business processes, 515
business rules, 33–35, 112, 387

checklist, 212t
and database design,

387–388
description of operations

documents as a source
of, 387

end users and, 34
ERD development example,

127–135
for ERMs, 112
importance, 34
online content on, 140
translating into data model

components, 34–35

C6545_Index_CTP.4c 11/13/07 2:41 PM Page 679

INDEX

680

business vignettes:
airline reservation system

crisis, 411
baseball player

database, 223
community support work, 61
disaster recovery plans, 605
RDBMS origins, 3
Web site upgrade, 571

business-to-business (B2B)
transactions, 590–591, 598

integration of, 592–595
businesses:

activity measurements.
See facts

data management capacity.
See business intelligence

governance, 517
key performance indicators

(KPIs), 517–518
problem solutions based on

BI tools, 515t
processes, 515
rules. See business rules
See also business vignettes

C
caches:

cube cache, 539
data cache (buffer cache),

445, 446, 460
sort cache, 460
SQL cache (procedure

cache), 445, 460
caching (database caching), 644
call level interfaces (CLIs),

360, 573
calling PL/SQL functions, 339
candidate keys, 68, 71, 82, 107

surrogate primary keys
as, 205

See also primary keys
cardinalities (in ERDs),

111–112, 120t
Cartesian products: creating,

74, 305, 306
cascading order: ordering

listings in, 263–264
CASE (computer-aided systems

engineering) technology,
378, 632

tools. See CASE tools
CASE development

environment, 632
case sensitivity:

in SQL searches, 254–255
in XML, 591

CASE tools, 632–634
components, 633
data dictionary, 632
DBMS interfaces, 632
vendors and vendor

products, 633–634,
633, 634t

Casio Computer Co.: Web site
upgrade, 571

CAST function (SQL Server),
330, 330t, 331t

Category symbol/shape (MS
Visio), 195, 197n, 198, 198

lines under, 199, 199
CEIL/CEILING function, 328t
central entity, 393
central processing units (CPUs):

as query processing
bottlenecks, 450

centralized data allocation, 505
centralized databases, 8

management problems,
479–480

centralized design, 403, 404
vs. decentralized design,

403–406
CGI (Common Gateway

Interface), 587, 588
CGI scripts, 587
Chamberlin, Don, 3
CHAR data type (PL/SQL), 341t
character attributes. See strings
character comparisons: numeric

comparisons as faster than, 457
character data, 65

data types, 79t, 231t,
232t, 234n

numbers as, 79n, 230
See also strings

character data types, 79t, 231t,
232t, 234n

CHECK constraint, 237, 238
check sequences command, 332
checklist for data modeling,

211, 212t
checkpoints (checkpoint

operations), 434
Chen, Peter, 40
Chen notation (ERDs), 40,

41–42, 42
attribute display, 105, 106,

108, 109, 110
relationship display, 40,

41, 42
weak entity display, 116, 117

circle (�): optional participation
symbol, 115, 116, 118, 120t

class hierarchy, 43
classes (of objects), 43

OLE-DB classes, 578t
client/server architecture/

technology, 486t, 488,
505, 528

vs. distributed database
management systems,
505–506

in OLAP systems, 532–536
in ROLAP systems, 538

client-side extensions (for Web
browsers), 589

CLIs (call level interfaces),
360, 573

CLOSE command (cursor
processing statement), 357t

closure property, 73
clustered organized tables, 461
CODASYL (Conference on

Data Systems Languages), 37
Codd, E. F. (“Ted”), 3, 39, 63

relational database rules,
91, 92t

code (application code): as a
query processing
bottleneck, 450

codes: data types for, 230
cohesivity (of modules), 394
colon (:): host variable prefix,

360, 361
column aliases:

attribute list subqueries and,
320–321

listing rows using computed
columns and, 250–251

column constraints, 72, 237
adding/changing/

deleting, 257
column names, 235n

expressions for, 268n
See also column aliases

column widths: changing,
257–258

columns (in database tables):
AutoNumber data type

columns, 331
changing data types, 257
changing widths, 257–258
constraints. See column

constraints
copying contents into new

tables, 261–262
data sparsity in. See data

sparsity
deleting, 258
inserting (adding), 258
join column(s), 76
listing rows using computed

columns and column
aliases, 250–251

names, 235n (See also
column aliases)

projecting, 319–321
pseudo columns (in Oracle),

332–333
COM (Component Object

Model), 577
COM objects, 578

See also consumers; providers
comma (,):

argument delimiter, 354
table element delimiter, 234

Command objects (in
ADO.NET), 580

commands: ADO.NET
Command objects, 580

See also SQL commands

comment indicator (--)
(PL/SQL), 350

comment indicators (<-- and -->)
(XML), 591

COMMIT command (statement):
saving changes, 242
in transaction sequences,

418; premature COMMIT
effects, 496; two-phase
commit protocol,
496–497

Common Gateway Interface
(CGI), 587, 588

communication area (in SQL),
360, 362

community support work: data
modeling use, 61

company database
standards, 401

company situation analysis
(database initial study phase),
380–381

comparing character/string
attributes, 249

comparing dates, 249–250
comparison operators, 226t,

247–251, 248t
comparing character/string

attributes, 249
comparing dates, 249–250
in join operations, 77

COMPLETE option, 560
completeness constraint, 195,

198, 199, 199t
compliance (with data privacy

and security guidelines), 626
Component Object Model

(COM), 577
composite attributes, 108
composite entities (associative

entities), 86–87, 125–126
composite primary keys as

identifiers of, 203–204
ERDs for, 126, 388, 389
names, 391

composite identifiers, 107–108
See also composite

primary keys
composite indexes, unique, 240
composite primary keys

(composite keys), 67–68, 82,
107–108, 162

defining, 235n
of fact tables, 546–547
problems with, 168–169
uses for, 203–204

computed attributes. See
derived attributes

computer-aided systems
engineering (CASE)
technology, 378, 632

tools. See CASE tools
concatenate signs (|| & +), 329t

C6545_Index_CTP.4c 11/13/07 2:41 PM Page 680

concatenating strings, 329t
conceptual design, 385
conceptual design process

(database design phase),
385–394

data analysis and
requirements step,
386–388

data model verification step,
392–394

distributed database design
step, 394

entity relationship modeling
and normalization step,
388–392

conceptual model(s) (of
data/databases), 46, 49,
50–51, 52t, 395

in centralized vs.
decentralized design,
403–406

design tools and information
sources, 390

developing, 386–387; using
ERDs, 388t

translation into the internal
model, 395–396

See also ER model (entity
relationship model)

conceptual schemas, 50
concurrency control (of

transactions), 412,
420–424, 624

data integrity and
consistency problems,
420–423

distributed concurrency
control, 496

first-come, first-served
scheduling, 424

locking methods, 424–431
methods (algorithms) for,

412, 424–433
optimistic methods, 433
scheduler, 423–424, 446
time stamping methods,

431–433
concurrent backups, 619
concurrent transactions, 412

conflict scenarios, 424
inconsistent retrievals

problem, 422–423,
422t, 423t

lost update problem, 420,
420t, 421t

normal/correct execution,
420t, 421t

scheduling methods
(algorithms), 412, 424(2),
424–433

uncommitted data problem,
421, 421t, 422t

See also concurrency control

conditional expressions
(conditions), 457–458, 457t

checking for, 237, 238
evaluation order, 458n
listing rows with, 247–256

conditional operands, 457
conditional operators, 457t
Conference on Data Systems

Languages (CODASYL), 37
confidentiality (of data), 626
Connection objects (in

ADO.NET), 580
connectivities (in ERDs), 41,

111–112
connectivity: between

applications, 572
See also connectivities (in

ERDs); database connectivity
(communication interfaces);
Web database connectivity

consistency (of transactions), 417
consistent database state, 414

rollbacks to, 416
constraints (on data), 33

CHECK constraint,
237, 238

column constraints, 72,
237, 257

completeness constraint,
195, 198, 199, 199t

DEFAULT constraint, 237,
238(2)

defining in Oracle, 236n
disjoint constraint, 195,

197, 198n, 198, 199t
foreign key constraint

definitions, 236, 236n
identifying, 33–35
NOT NULL constraint, 72,

234(2), 237
overlapping constraint, 195,

198, 198n, 198, 199t
primary key constraint

definitions, 236n
referential. See referential

constraints
specialization hierarchy

scenarios, 195, 198, 199t
SQL constraints, 235–239
table constraints, 236n,

237, 257
UNIQUE constraint, 72,

234(2), 237, 238, 239
constraints (on

transactions), 417
consumers (COM objects) (data

consumers), 578, 579
controlled redundancy, 69,

88–90
conversion functions, 330,

330–331t
See also string functions

CONVERT function (SQL
Server), 330, 330t

converting dates: to strings,
326, 326t, 330, 330t

converting numbers: to strings,
330, 330t

converting strings:
to dates, 326, 327t, 330
to lowercase, 329t
to numbers, 330, 331t
to uppercase, 329t

coordinator (DDBMS
node), 497

copying parts of tables into new
tables, 261–262

correlated subqueries, 321–324
with the EXISTS operator,

323–324
table aliases in, 322

Corrupted data security
breach, 627

cost-based optimizer, 453
vs. rule-based optimizer, 462

costs of DBMSs, 25
COUNT function, 265t,

266, 267n
counting (tallying) attribute

values, 266–267
CPU efficiency: the scheduler

and, 424
CPUs (central processing units):

as query processing
bottlenecks, 450

CREATE INDEX command
(statement), 239–240

CREATE TABLE command
(statement), 232–235,
261, 398

defining constraints in,
236n, 237

Create User page (Oracle), 644
links, 643

CREATE VIEW command
(statement), 273

credentials (for databases in
Oracle): specifying, 637,
638, 648

cross join, 306, 306t
See also PRODUCT

relational operator
Crow’s Foot notation (ERDs),

41–42, 42, 105
attribute display, 105–106,

106, 108, 109, 110
cardinalities display,

112, 112
cardinalities supported, 120t
composite entity

indication, 125
online content on, 106
optional participation

symbol, 115, 116,
118, 120t

relationship display, 41, 42,
81, 83, 84, 87

strong relationship display,
115, 115

weak entity display,
116, 117

weak relationship display,
113, 113

cube cache, 539
CUBE extension (to GROUP

BY clause), 556, 558, 559
cubes. See data cubes
cultural impact of DBMS

introductions, 610
currency (of data): for

operational data vs. decision
support data, 523t

CURRVAL pseudo column (in
Oracle), 332–333

cursors (in embedded
SQL), 363

cursors (in PL/SQL), 357–359
attributes, 358t
creating/declaring, 357
processing commands, 357t
types, 357

D
d. See disjoint constraint
DA (data administrator)

(information resource
manager), 612

responsibilities (activities),
612, 613–614, 613t

See also DBAs (database
administrators)

DAO (Data Access Objects),
574, 575

dashboards, 519t
data, 5, 12, 21

access. See data access
atomic data, 166
availability, 626
backups, 399–400, 619
confidentiality, 626
constraints on. See

constraints (on data)
data warehouse data,

525–526, 526t
data–information–decision-

making cycle, 607
data-information-knowledge

pyramid, 554
decision support. See

decision support data
(DSS data)

derived: denormalization
and, 179t

dimensionality, 521, 542
extracting. See data

extraction
filtering, 524
formats: logical vs.

physical, 15

INDEX

681

C6545_Index_CTP.4c 11/13/07 2:41 PM Page 681

formatting of (in
DBMSs), 23

fragmentation of, 499–503
granularity, 166, 521
historic. See time-variant data
inconsistency. See data

inconsistency
independence. See data

independence
vs. information, 5–6
integration in data

warehouses, 525, 526t
integrity. See data integrity
loading into databases, 398;

methods, 377
locks on data items, 412,

424–431
loss. See data loss
management of. See data

management
mining. See data mining
modeling. See data

modeling
models. See data models
multidimensional. See

multidimensional data
operational. See

operational data
periodicity, 551
privacy, 608
recovery. See database

recovery
redundant. See data

redundancy
replicated. See data

replication
security. See security

(of data)
semistructured data, 9
sparsity. See data sparsity
storage management. See

data storage management
structured data, 9, 25
of systems. See system data
timespan, 521
types, 65–66 (See also SQL

data types)
unstructured data, 9;

management need, 45
validation of. See data

validation
value as a corporate

asset, 607
as viewed differently by

different people, 30, 32
See also attributes (of

entities); metadata; rows
(in database tables)

data abstraction: levels in
database design, 48–52,
49, 52t

data access (data retrieval):
distributed data access, 479
file system programming

requirements, 14, 15
secondary keys for, 70
See also database access

programs; queries (in SQL)
Data Access Objects (DAO),

574, 575
data administration. See

database administration
data administrator. See DA
data allocation, 505
data allocation algorithms, 505
data analysis, 479, 553

business management need
for, 514

data dictionary support
for, 632

multidimensional. See
multidimensional data
analysis

proactive research
approach. See data
mining

tools, 518t, 520t
data analysis and classification

phase (data mining), 555
data analysis and requirements

step (conceptual design
process), 386–388

data anomalies, 17–18,
155–156

data redundancy and, 18,
88, 155–156

of theoretical interest
only, 179

data backups. See backups
data binding of XML data to

HTML documents, 598
data cache (buffer cache), 445,

446, 460
data consumers (COM objects),

578, 579
data cubes, 539–540,

543–544, 543
multidimensional data

analysis in, 544
slice and dice

operations/views,
543, 544

data currency: for operational
data vs. decision support
data, 523t

data definition commands (in
SQL), 225t, 226–240

advanced commands,
257–263

processing of, 448
data definition languages

(DDLs), 37
SQL as a DDL, 225

data definitions. See metadata

data democracy, 620
data dependence: of file

systems, 15
data dictionaries, 21, 78–80,

630–632
as an information resource,

630–631
CASE data dictionary, 632
creation of, 229
management of, 21,

630–631
metadata in, 21, 22, 78,

79t, 631
object descriptions stored

in, 630
queries against, 631
SQL commands example

database dictionary, 230,
231t, 232

types, 630
usage examples, 631

data distribution:
DBA tasks, 620
levels of data and process

distribution,
485–489, 486t

data encryption, 399
data entry: populating

tables, 246
data entry errors, 17
data extraction, 524

extracting date parts, 326,
326t, 330, 331t

data extraction, transformation,
and loading (ETL) tools,
518t, 519

data files, 445
assigning to separate

storage volumes, 461
groups of. See table spaces

(file groups)
data filtering, 524
data formats: logical vs.

physical, 15
data fragmentation, 499–503
data granularity: refining

primary keys for, 166
data inconsistency, 8, 17

concurrent transactions
problems, 420–423

data independence, 15
of the relational model,

39–40, 92t
data integration: in data

warehouses, 525, 526t
data integrity, 17, 626

concurrent transactions
problems, 420–423

enforcing in new tables
created from existing
tables, 262

management in DBMSs, 24,
400, 618

relational model rules,
71–72

security breaches, 627
See also entity integrity;

referential integrity
data integrity management (in

DBMSs), 24, 400, 618
data loss, 618

cost, 607
data management, 6

file system problems, 14–18
importance, 6, 607
See also database

administration; database
systems; file systems

data management languages
(DMLs), 37

SQL as, 225
data managers (DMs), 484
data manipulation commands.

See DML statements
data marts, 527–528

in OLAP systems, 535–536
data mining, 513,

553–556, 554
phases, 555, 556
tools, 520t, 554–555
uses of, 555

data model verification step
(conceptual design process),
392–394

data modeling, 30, 31,
104, 211

ANSI/SPARC framework,
48–52

checklist, 211, 212t
community support work

use of, 61
See also advanced data

modeling; star schemas
data models, 30–54, 31

abstraction levels, 48–52,
49, 52t

advantages and
disadvantages of various
models, 46, 47t

common characteristics, 46
Component Object Model

(COM), 577
components, 31, 32;

identifying, 33–35
conceptual. See conceptual

model(s)
entity relationship.

See ER model
evolution of, 35–46,

35t, 45
extended relational. See

extended relational data
model (ERDM)

external model, 48–50, 49,
50, 52t

INDEX

682

C6545_Index_CTP.4c 11/13/07 2:41 PM Page 682

hierarchical. See
hierarchical model

implementation models, 46
importance, 31–32
internal model, 49, 51–52,

52t; conceptual model
translation into, 395–396

and the Internet, 45
key terms, 54
network. See network model
object-oriented model. See

object-oriented data
model (OODM)

online content on, 36, 39,
42, 43, 54

for operational data vs.
decision support data,
521–522, 523t

physical model, 49, 52, 52t
problems (exercises), 55–59
relational. See relational model
review questions, 54–55
semantic. See semantic data

models
summary, 53
terminology, 48t
See also attributes (of

entities); constraints; data
modeling; database
models; entities;
relationships

data organization: in data
warehouses, 525–526, 526t

data preparation phase (data
mining), 555

data presentation and
visualization tool, 518t, 519

data processing (DP), 6
data processing

departments, 610
data processing managers, 13
data processing specialists, 11,

12, 13
data processors (DPs), 484,

485, 486, 497, 504
data providers (COM objects),

578, 579
ADO.NET providers, 580

data recovery. See database
recovery

data redundancy, 17–18,
69, 389t

checks for, 632
controlled redundancy, 69,

88–90
and data anomalies, 18, 88,

155–156
database performance

vs., 153
denormalization and,

153, 179
from partial

dependencies, 161

data replication, 498,
503–505, 504

database replication extents
(scenarios), 504

in tables, 551
use decision factors, 504–505

data repositories: logical (of
database systems), 18

See also data sources
data retrieval. See data access
data security. See security

(of data)
data sharing, 479
data source names (DSNs),

575–576
data sources (ODBC), 573

accessing relational sources,
573, 577

defining (configuring),
575–576, 576

types, 576
data sparsity (in columns), 452

and the need for indexes,
451–452, 455, 457

data sparsity (in data cubes),
539–540

data storage management (in
DBMSs), 22, 624

database statistics
storage, 447

database storage groups,
397, 461

in Oracle, 23, 639–641,
648, 651

physical design, 396
data storage management (in

hierarchical or network
models), 52

data stores, 518t, 519
See also data marts; data

warehouses
data transformation (in

DBMSs), 23
data type mismatches, 360
data types, 65–66

See also SQL data types
data validation:

Web database connectivity
and, 589

with XML schemas, 595
data visualization tools, 520t

presentation and visualization
tool, 518t, 519

data warehouse data,
525–526, 526t

vs. operational data,
526, 526t

data warehouses, 8–9, 10n,
479, 513, 520t, 525–530

as a framework for decision
support, 551–552

advanced data analysis
environment. See OLAP

(online analytical
processing) systems

architectural styles,
528–530, 529t

client/server
architecture/technology,
528, 532–536

creation process, 526, 527
data in, 525–526, 526t
data mart conversion to,

527–528
design procedures, 552
drill down operations,

544–545
fact tables in, 547
implementation of,

551–552, 553
lower normalization forms

in, 181
need for, 161
in OLAP systems, 534–536
queries in, 556
roll up operations, 544–545

(See also ROLLUP
extension)

rules defining, 528
smaller stores. See data marts

data–information–decision-
making cycle, 607

data-information-knowledge
pyramid, 554

DataAdapter objects (in
ADO.NET), 580

database access languages
(query languages), 24

See also database languages
database access programs, 572

Data Access Objects
interface, 574

DBMS utility software, 20
See also application

programs (in DBMSs)
database administration,

606–654
data processing

departments, 610
database administrators.

See DBAs
distributed databases

and, 611
function evolution,

610–613
information systems

departments, 610
key terms, 654
management levels,

608–609
online content on, 654
review questions, 654–656
strategy. See database

administration strategy
summary, 653–654

tools, 630–634
using Oracle. See database

administration using
Oracle

database administration
strategy, 634–635

IE methodologies, 634
vs. information systems

strategy, 634
success factors, 635

database administration using
Oracle, 636–652

creating a new database,
645, 646–652

creating datafiles, 639, 640
creating tablespaces,

639–640, 641, 650
customizing initialization

parameters,
644–645, 650

ensuring automatic startup,
638–639

logging in, 637
managing database objects,

641–642
managing users and

establishing security,
642–644

naming databases, 647
selecting management

options, 647
selecting sample

content, 650
selecting storage options,

648, 651
selecting templates, 646
specifying credentials, 637,

638, 648
specifying file locations, 649
specifying recovery

options, 649
tools, 636, 637

database administrators.
See DBAs

database applications.
See application programs (in
DBMSs)

database backups. See backups
database buffers, 434
database caching, 644
database checkpoints

(checkpoint operations), 434
Database Configuration

Assistant (Oracle), 645,
646–652

database connectivity
(communication interfaces),
24, 573–583

JDBC (Java Database
Connectivity), 582, 583

key terms, 601
native SQL connectivity,

573, 574

INDEX

683

C6545_Index_CTP.4c 11/13/07 2:41 PM Page 683

ODBC (Open Database
Connectivity), 360,
573–577

OLE-DB (Object Linking
and Embedding for
Database), 577–579, 579

online content on, 590,
601, 602

problems (exercises),
602–603

review questions, 601–602
scripting language support,

578, 582
summary, 600
on the Web. See Web

database connectivity
See also APIs

database conversion services,
625–626

database design (systems
design), 10, 31, 372–407

abstraction levels, 48–52,
49, 52t

aggregation problems in,
406, 406

as an iterative process,
127, 383

approaches to (strategies),
374, 402–403

business rules and,
387–388

centralized vs. decentralized
design, 403–406

concepts. See advanced
data modeling; ER model;
normalization; relational
model

contradictory
requirements/conflicting
goals/trade-off in, 88,
135–138, 169,
178–179, 181

data dictionary support for
and, 632

and data warehouse
design, 552

and database performance
tuning, 444

DBA tasks, 622–623
detailed systems design

phase (SDLC), 377
distributed database design,

394, 499–505
distributed processing, 394,

481, 482
documentation needs, 138
ERD design process,

127–135, 175
failures, 30
flexible design cases,

206–211
foreign keys in, 206n
importance, 10, 193, 444

information
requirements, 136

key terms, 407
logical design, 51,

376–377, 395–396
management approval

and, 377n
mantra on, 444
models. See data models
normalization in, 174–178

(See also normalization (of
database tables))

objective, 374
online content on, 140,

385, 396, 407
physical design, 396–397
problems (exercises),

408–409
process flow (procedure

flow), 385
processing speed

requirements, 136,
178–179

review questions, 407–408
revision process, 392
standards, 37–38, 135
summary, 407
system concepts, 4–26
top-down vs. bottom-up

design, 402–403
the Web and, 584
working groups, 404–405

database design phase (DBLC),
379, 383–397, 385

conceptual design process,
385–394

DBMS software selection
process, 394

logical design process,
395–396

physical design process,
396–397

database designers, 21, 379
view of system data,

383, 384
database development, 374

social and technological
changes affecting,
478–479

database drivers. See ODBC
drivers

database dumps (full backups),
399, 619

database fragments, 481
database initial study phase

(DBLC), 379, 379–383
company situation analysis,

380–381
objectives definition process,

382, 383
problem definition process,

381–382, 383
scope and boundaries

definition process, 383

database instances (in
Oracle), 639

database languages:
data management/definition

languages (DMLs/DDLs),
37, 225

query languages, 24
requirements for, 225
scripting language

connectivity support, 578
See also SQL

Database Life Cycle (DBLC),
378–402, 379

design phase, 383–397
implementation and loading

phase, 397–401
initial study phase, 379–383
maintenance and evolution

phase, 401–402
operation phase, 401
operational requirements for

DBAs, 612
Systems Development Life

Cycle parallels, 402, 402
testing and evaluation

phase, 401
database management. See

database administration
database management systems.

See DBMSs
database middleware, 573

See also database connectivity
(communication interfaces);
Web-to-database middleware

database migration services,
625–626

database modeling. See data
modeling

database models, 31
and the Internet, 45
SQL commands example

database model,
227–229, 227

See also data models
database objects, 641

measurement
parameters, 447t

See also indexes; stored
procedures; tables;
triggers; views

database performance, 396, 399
vs. data redundancy, 153
DBMS performance factors,

443–444
DBMS performance

guidelines, 443t
monitoring tools/issues,

624(2)
tuning. See database

performance tuning
database performance tuning,

22, 442–471
activities: client-side vs.

server-side, 444

basic concepts, 443–449
database design and, 444
DBMS tuning, 22, 401,

444, 460–461, 624
key terms, 472
online content on, 444,

462, 472
problems (exercises),

473–476
review questions, 472
SQL tuning, 444, 456–459
summary, 471–472
See also query optimization

database recovery, 23, 416, 433
disaster recovery plans, 605
process scenario, 400
transaction recovery, 433,

434–435; tracing
exercise, 435–437, 436t

database recovery management
(in DBMSs), 23, 433–437,
618–619, 624–625

specifying options in
Oracle, 649

database requests, 414
costs, 498
distributed requests,

494–496, 495
remote requests, 493, 493
See also queries

database schemas: creating,
229–230

database security, 628–629
See also security (of data)

database security officer
(DSO), 618

database servers. See servers
database standards: company

standards, 401
See also design standards

(for databases)
database statistics, 446–447

generating (gathering)
methods, 446

object measurement
parameters, 447t

regenerating, 447
storage of, 447

database storage groups:
assigning data files to

separate storage
volumes, 461

creating, 397
database structure: creating, 229
database systems, 18–25, 19

advantages, 18, 25
basic concepts, 4–26
data and process distribution

levels, 485–489, 486t
data repository, 18
design phase (DBLC), 379,

383–397
disadvantages, 25

INDEX

684

C6545_Index_CTP.4c 11/13/07 2:41 PM Page 684

distributed. See distributed
database systems

environment (components),
19–21

evolution of, 401
vs. file systems, 4, 10, 18,

19, 25
human component,

613–626
implementation and loading

phase (DBLC), 379,
397–401

initial study phase (DBLC),
379, 379–383

key terms, 26
maintenance and evolution

phase (DBLC), 379,
401–402

management focus, 25
management of. See

DBMSs (database
management systems)

modifying to meet
evaluation criteria, 401

online content on, 12,
16, 27

operation phase (DBLC),
379, 401

performance. See database
performance

problems (exercises), 27–29
review questions, 27
security. See security (of data)
summary, 26
testing and evaluation phase

(DBLC), 379, 401
users. See users (of database

systems)
database tables. See tables (of

relational databases)
Database Task Group

(DBTG), 37
database transactions. See

transactions (databases)
database-level locks, 425, 425
databases, 6, 373

accessing. See database
connectivity
(communication interfaces)

backups, 399–400, 619
baseball player

database, 223
centralized databases, 8,

479–480
connectivity. See database

connectivity
consistent state, 414, 415
conversion services,

625–626
creating, 229–239; in

Oracle, 645, 646–652

data storage. See data
storage management
(in DBMSs)

DataSets (in ADO.NET),
580(2), 581–582

decision support. See
decision support databases
(DSS databases)

design. See database design
desktop databases, 8
distributed. See distributed

databases
enterprise databases, 8, 609
failure sources, 400, 400t
fragments, 481
implementation of,

397–401; DBA tasks,
622–623

inconsistent state, 415, 423
information systems and,

373–374, 383
intelligent (inductive)

databases, 555
languages. See database

languages
life cycle. See Database Life

Cycle (DBLC)
loading data into, 398;

methods, 377
management of. See

database administration
management systems. See

DBMSs (database
management systems)

metadictionaries for, 599
migration services,

625–626
models. See database

models
MOLAP databases vs.

ROLAP databases, 539
naming (in Oracle), 647
object-oriented databases:

online content on, 43
online content on, 12, 39,

64, 84, 140, 155
operational. See operational

databases
partitioning of. See data

fragmentation
performance. See database

performance
recovery of. See database

recovery
reorganization of, 625
replication extents

(scenarios), 504
ScoutAdvisor database, 223
security, 628–629
single-user databases,

8, 417
standards. See database

standards

structure: creating, 229
systems. See database

systems
tables. See tables (of

relational databases)
testing, 401, 623
transactions. See

transactions (databases)
types, 8–10, 9t
usage monitoring, 629, 631
usage policies, standards,

and procedures, 617–618
users. See users (of database

systems)
very large databases

(VLDBs), 525, 539
Web connectivity. See Web

database connectivity
XML databases, 9, 599
XML support for, 599

datafiles (in Oracle), 639
creating, 639, 640

DataReader objects (in
ADO.NET), 580

datasets (in Access), 64n
DataSets (in ADO.NET),

580(2), 581–582
DataTables (in ADO.NET),

581–582
date arithmetic, 65, 110,

230, 241n
date columns: aggregate

functions with, 268
date comparisons: numeric

comparisons as faster
than, 457

DATE data type (PL/SQL), 341t
date data types, 65, 230, 325
date delimiter (#) (in Access),

241n, 250
DATE fields, 230
date formats. See date data types
date functions, 325, 325–326t,

326, 326–327t
DATE() function (Access), 325t
Date’s commandments for

distributed databases,
506–507

DATEADD functions
(Access/SQL Server), 326t

DATEDIFF functions
(Access/SQL Server), 326t

dates:
adding time to, 326t, 327t
comparing, 249–250
converting strings to, 326,

327t, 330
converting to strings, 326,

326t, 330, 330t
data types, 65, 230, 325
entering, 241n
extracting parts, 326, 326t,

330, 331t

returning, 325t, 327t
returning the last day of the

month given in, 327t
subtracting, 326t

DAY function (Access/SQL
Server), 325t

DB2 (IBM):
database administration

using, 636
enhancements, 45
features, 9t, 416n
main table names, 655n

DBAs (database administrators),
20, 398, 610–611

as arbiters between data and
users, 614–615

authorization
management, 629

data analysis tasks, 632
data backup and recovery

management, 618–619,
624–625

data distribution and use
tasks, 620

data integrity management,
24, 400, 618

data security management,
618, 625, 628–629,
631–632

database and application
design and
implementation, 622–623

database usage monitoring,
629, 631

DBLC operational
requirements for, 612

DBMS access control, 629
DBMS evaluation, selection,

and installation, 620–622
DBMS maintenance tasks,

625–626
DBMS operation tasks,

623–625
default administrator, 229
end-user support

services, 616
function evolution,

610–613
function placements,

611, 611
managerial role (services),

615–620
multiple DBAs, 612,

613, 615
policy, standard, and

procedure responsibilities,
617–618

security management, 618,
625, 628–629, 631–632

skills, 615, 615t
system support activities, 623

INDEX

685

C6545_Index_CTP.4c 11/13/07 2:41 PM Page 685

tasks (responsibilities/
activities), 611, 613,
613t, 614–615, 614,
615–620, 616t,
620–626, 644

technical role, 620–626
training and supporting

users, 625
user access

management, 629
DBLC. See Database Life Cycle
DBMS architecture,

444–446, 445
DBMS performance tuning, 22,

401, 444, 460–461, 624
DBMS software, 9t, 20

selection process (database
design phase), 394

See also Access (Microsoft);
application programs (in
DBMSs); DB2 (IBM);
Oracle (RDBMS); SQL
Server (Microsoft)

DBMSs (database management
systems), 8, 18–19

access control, 629
advantages, 7–8, 18, 25
architecture, 444–446, 445
backup management, 23,

618–619, 624–625
CASE tool interfaces, 632
cultural impacts of

introductions, 610
data formatting, 23
data integrity management,

24, 400, 618
data storage management.

See data storage
management (in DBMSs)

decision support. See
decision support databases
(DSS databases)

desired features
checklist, 621

disadvantages, 25
distributed systems. See

distributed database
management systems
(DDBMSs)

end-user analytical
interface, 525

evaluation, selection, and
installation tasks, 620–622

focus, 25
functions, 7, 21–24, 608
installation of, 622
intelligent systems, 555
introductions into

organizations: aspects and
impact, 609–610

maintenance tasks,
625–626

multidimensional systems
(MDBMSs), 539–540, 543

object-oriented systems
(OODBMSs), 43

object/relational systems
(O/RDBMSs), 44

operation tasks, 623–625
parsing methods, 455n
performance factors,

443–444
performance guidelines, 443t
performance monitoring

and tuning, 624
performance tuning, 22,

401, 444, 460–461, 624
portability, 394(2)
processes, 446
relational. See RDBMSs

(relational database
management systems)

requirements at each
management level,
608–609

security auditing and
monitoring, 625; data
dictionary as a tool for,
631–632

security management. See
security management

software. See DBMS
software

transaction management
support, 416n

updating of, 25
See also database systems

DBTG (Database Task
Group), 37

DDBMSs. See distributed
database management
systems

DDC (distributed data
catalog), 492

DDD (distributed data
dictionary), 492

DDL statements (data definition
commands) (in SQL), 225t,
226–240

advanced commands,
257–263

processing of, 448
DDLs (data definition

languages), 37
SQL as a DDL, 225

deadlocks, 429, 430–431, 431
control techniques, 431

deadly embrace (of
deadlocks), 430

debugging errors: in PL/SQL
blocks, 340–341

decentralized design, 404, 405
vs. centralized design,

403–406

decision support data (DSS
data), 8, 519, 520–525, 522

vs. operational data,
520–523, 523t

decision support databases (DSS
databases):

architectural styles,
528–530, 529t

operational data vs. decision
support data in, 521–522

requirements, 523–525
schemas, 523–524
size, 525
See also data marts; data

warehouses
decision support systems

(DSSs), 513–564, 519t
key terms, 565
online content on, 522,

557, 565, 566, 569
problems (exercises),

566–569
review questions, 565–566
summary, 564
See also business intelligence;

data marts; data mining;
data warehouses; decision
support databases; OLAP
(online analytical
processing) systems; star
schemas

decision-making:
data–information–decision-
making cycle, 607

declarative languages, 40, 92t
declaring cursors, 357
declaring host variables, 361–362
DECODE function (Oracle), 331t
DEFAULT constraint,

237, 238(2)
DEFERRED statement, 560
deferred writes/updates, 434
DELETE statement, 245
deleting:

columns, 258
indexes, 240
rows, 245, 334
tables, 263
triggers, 350

deletion anomalies, 18, 156
denormalization (of database

tables), 153, 178–181, 461
common examples, 179t
and data redundancy,

153, 179
fact tables, 550–551
need for, 153, 179–181

dependencies (between/among
attributes):

eliminating, 161–162,
163–164

functional dependence, 67,
157–158, 158; fully

functional dependence,
68, 158

identifying, 159–160,
161–162, 163

independent multivalued
dependencies: eliminating
problems caused by, 173

partial dependencies, 160,
161, 162; eliminating,
161–162

transitive dependencies,
160, 162, 165;
eliminating,
163–164, 179

dependency diagrams, 160
Boyce-Codd normal form

(BCNF), 171, 172
first normal form (1NF), 160
second normal form

(2NF), 162
third normal form (3NF), 164

derived attributes, 110
storing: advantages and

disadvantages, 110, 111t
using, 166, 461

derived data:
in decision support

databases, 521
denormalization and, 179t

descending order: ordering
listings in, 264–265, 273

description of operations
documents, 387

design. See database design
(systems design)

design groups, 404–405
design standards (for

databases), 135
establishment of, 37–38

design traps, 209
designers (database designers),

21, 379
desktop databases, 8
detailed systems design phase

(SDLC), 377
determinants (attributes as), 163
determination principle, 66–67

See also dependencies
difference expressions (DIFF):

column aliases in, 320
DIFFERENCE relational

operator, 73–74
differential backups, 400
dimension tables (dimensional

tables), 542
and fact tables, 546–547
normalization of, 548–549

dimensionality (of data),
521, 542

dimensions (of facts), 542,
542t, 543, 546

location dimension,
543–544, 545

INDEX

686

C6545_Index_CTP.4c 11/13/07 2:41 PM Page 686

product dimension, 545
time dimension, 544,

545, 551
disaster management, 619
disaster recovery plans: Oreck

Corporation, 605
disconnected

environments/systems, 582
discriminator attribute. See

subtype discriminator
disjoint constraint, 195, 197,

198n, 198, 199t
disjoint subtypes, 195,

197, 198
disk blocks (physical), 446

using different sizes in
different volumes, 461

disk contention: minimizing, 461
diskless workstations, 399
diskpages (pages), 426
display formats (of attributes):

changing, 243n
DISTINCT clause, 266, 267n
distributed applications:

ADO.NET development
features, 580–582

distributed concurrency
control, 496

distributed data access, 479
distributed data catalog

(DDC), 492
distributed data dictionary

(DDD), 492
distributed database design,

394, 499–505
distributed database design step

(conceptual design
process), 394

distributed database
environment, 482, 482

distributed database
management systems
(DDBMSs), 477–508,
478, 484

advantages and
disadvantages,
480–481, 480t

characteristics, 483
client/server architecture

vs., 505–506
components, 484, 485
evolution of, 478–480
functions, 483
heterogeneous DDBMSs,

488, 489
homogeneous

DDBMSs, 488
key terms, 509
online content on, 479,

506, 509
problems (exercises),

510–512
protocols, 484–485

review questions, 509–510
summary, 508
transparency features. See

transparency features (of
DDBMSs)

See also distributed
database systems

distributed database
systems, 477

query optimization in,
498–499

See also distributed
database management
systems (DDBMSs);
distributed databases

distributed databases, 8,
481–482

and database
administration, 611

Date’s commandments for,
506–507

design of, 394, 499–505
vs. distributed

processing, 482
management systems. See

distributed database
management systems
(DDBMSs)

protocols needed for, 481
distributed global schema, 492
distributed processing, 394,

481, 482, 484
vs. distributed databases, 482

distributed processing
environment, 481, 481

distributed requests,
494–496, 495

distributed transactions,
492–493, 494, 494

distribution independence, 92t
distribution transparency (of

DDBMSs), 489,
490–492, 490t

DIVIDE relational operator, 78
DLLs (dynamic-link

libraries), 574
DML statements (data

manipulation commands) (in
SQL), 225–226t, 240–246

processing of, 448
trigger predicates, 350–351

DMLs (data management
languages), 37

SQL as, 225
DMs (data managers), 484
DO-UNDO-REDO

protocol, 497
Document Type Definitions

(DTDs) (in XML), 592–594
documentation needs in

database design, 138
domains (attribute domains),

64, 66, 106

double dashes (--): comment
indicator (PL/SQL), 350

double dashes + right angle
bracket (-->): comment
indicator (XML), 591

double quotation mark (“):
character attribute
delimiter, 304n

DP (data processing), 6
DP departments, 610
DP managers, 13
DP specialists, 11, 12, 13
DPs (data processors), 484,

485, 486, 497, 504
drill down operations, 521

in data warehouses,
544–545

drivers. See ODBC drivers
DROP INDEX command

(statement), 240
DROP option (ALTER TABLE

command), 257, 258
DROP TABLE command

(statement), 263
dropping sequences (in Oracle),

333–334
DSNs (data source names),

575–576
DSO (database security

officer), 618
DSS data. See decision

support data
DSS databases. See decision

support databases
DSSs. See decision support

systems
DTDs (Document Type

Definitions) (in XML),
592–594

XML schemas vs., 594, 595
durability (of transactions), 417
dynamic query optimization, 499
dynamic SQL, 364
dynamic statistical generation

mode, 499
dynamic Web pages, 585
dynamic-link libraries

(DLLs), 574

E
E Solutions: ScoutAdvisor

database, 223
e-commerce transactions. See

business-to-business (B2B)
transactions

EER diagrams (EERDs), 194
EER model (extended entity

relationship model) (EERM),
193, 194–199

online content on, 196
EERDs (EER diagrams), 194
EERM. See EER model
efficiency of queries, 442, 449

Ellison, Larry, 3
embedded SQL, 359–364

creating and running
executable programs with
statements in, 361

cursors in, 363
framework, 360
syntax, 360

embedding SQL statements in
host languages, 361

ENABLE QUERY REWRITE
option, 560

end command mark (;), 229
end command-line entry mark

(/) (PL/SQL), 339
end users (of database systems),

21, 48
access rights, 396, 398,

399, 629
and business rules, 34

end-user interfaces:
analytical interface, 525
OLAP interfaces, 532, 563
of SQL-based relational

database applications, 40
end-user process (in

DBMSs), 446
end-user query tool, 518t, 519
end-user requirements: and

database design, 136
end-user support: DBA

services, 616
enterprise databases, 8, 609
Enterprise Manager (Oracle),

636, 637
enterprise RDBMSs, 237
entities, 32, 41

attributes. See attributes (of
entities)

central entity, 393
checklist, 212t
composite. See composite

entities
identifying attributes of and

relationships
between/among, 33–35

instances. See entity
occurrences

integrity. See entity integrity
multiple (entity clusters),

200, 201
names, 391
as objects, 32, 105
vs. objects (OO data

model), 43
regular entities, 113
relational diagrams of, 39,

39, 70, 70
relationship diagrams of.

See ERDs
relationships. See

relationships (between/
among entities)

INDEX

687

C6545_Index_CTP.4c 11/13/07 2:41 PM Page 687

repeating groups (for
attributes), 158–159

sets (entity sets), 41, 63
strong entities, 113
subtypes. See entity

subtypes
supertypes. See entity

supertypes
weak. See weak entities

entity clusters, 200, 201
entity instances. See entity

occurrences
entity integrity, 68, 71, 71t,

201–205
enforcement of, 235
enforcing in new tables

created from existing
tables, 262

violations of, 166
entity occurrences (instances),

41, 105
cardinalities in ERDs,

111–112, 120t
groups. See entity subtypes;

entity supertypes
entity relationship diagrams.

See ERDs
entity relationship model. See

ER model
entity relationship modeling.

See ER modeling
entity relationship modeling and

normalization step (conceptual
design process), 388–392

entity sets, 41, 63
See also entities

entity subtypes, 194–195,
195, 196, 198

aggregation problems
with, 406

disjoint subtypes, 195,
197, 198

identifying from
supertypes, 199

overlapping subtypes,
197–198, 198t, 198

entity supertypes, 194–195,
195, 196, 198

identifying from
subtypes, 199

See also entity subtypes
environment resources (of

relational databases):
measurement
parameters, 447t

equal sign (=): equality
comparison operator,
77, 457t

equality comparison operator
(=), 77, 457t

equality comparisons: as faster
than inequality
comparisons, 458

equijoin, 77, 305

ER diagrams. See ERDs
ER model (entity relationship

model) (ERM) (of
data/databases), 40–42, 46,
105–126

advantages and
disadvantages, 40,
42, 47t

business rules, 112
checklist, 212t
fragmentation problem, 392
graphical representations of.

See ERDs
historical significance,

35t, 45
revision process, 388–389
terminology, 48t
vs. the OO data model and

UML class diagrams,
44, 44

verification process,
392–394, 393t, 393

ER modeling (entity relationship
modeling), 104–139

as an iterative process,
389, 390

designer tasks, 389–390
key terms, 139
modular approach to, 392,

393–394
and normalization, 175
online content on, 106,

112, 114, 140
problems (exercises),

141–151
review questions, 140–141
standards, 388
summary, 139
See also ER model (entity

relationship model); ERDs
(entity relationship
diagrams)

ERD notation, 41, 42, 42
online content on, 42, 106
See also Chen notation;

Crow’s Foot notation;
UML notation

ERDM. See extended relational
data model

ERDs (entity relationship
diagrams), 40, 41–42, 105

for 1:1 (one-to-one)
relationships, 41, 42, 83

for 1:M (one-to-many)
relationships, 41, 42,
81, 82

for attributes, 105–106,
106, 108, 109, 110

cardinalities, 111–112,
120t

for composite entities, 126,
388, 389

connectivities, 41,
111–112

design process, 127–135,
175; tools for, 390,
633–634, 633, 634t

developing the conceptual
model using, 388–389t

fan traps in, 209, 210
foreign keys as not in, 206n
for M:N (many-to-many)

relationships, 41, 42, 85,
87, 126

notation. See ERD notation
online content on, 42, 106
relationship lines in, 113,

114n, 114, 115, 125
ERM. See ER model (entity

relationship model)
error messages:

from GROUP BY clause,
270, 271

from WHERE clause,
267, 272

errors: in data entry, 17
ERwin Data Modeler, 633
ETL tools (data extraction,

transformation, and loading
tools), 518t, 519

evolution of database
systems, 401

Excel (Microsoft): connecting to
Oracle databases from, 577

EXCEPT keyword, 298
exclusive locks, 428–429
executable programs: creating

and running with embedded
SQL statements, 361

execution phase of query
processing, 450

execution plans. See access
plans

existence dependence, 113
existence independence, 113
EXISTS correlated subqueries,

323–324
EXISTS special operator, 256

correlated subqueries with,
323–324

explicit cursor, 357
extended entity relationship

(EER) model (EERM), 193,
194–199

online content on, 196
extended relational data model

(ERDM), 44
historical significance, 35t,

45, 46
vs. the OO data model, 44

extends (of data files), 445
Extensible Hypertext Markup

Language (XHTML), 591
Extensible Markup Language.

See XML
Extensible Style Language (XSL)

specification, 596

Extensible Style Language
Transformations (XSLT), 596

external model (of
data/databases), 48–50, 49,
50, 52t

external schemas, 49
extracting data. See data

extraction

F
fact attributes, 542–544, 542t

hierarchies, 544–545
fact tables, 541, 559

in data warehouses, 547
denormalization of,

550–551
and dimension tables,

546–547
multiple/aggregate tables,

549–550
summary fact tables, 559

facts (business activity
measurements), 541

See also fact attributes; fact
tables

failure transparency (of
DDBMSs), 490

fan traps, 209, 210
FAST option, 560
FETCH command (cursor

processing statement),
357t, 363

fetching phase of query
processing, 450

field definitions, 15–16
field-level locks, 428
fields (of records), 12
file groups. See table spaces
file locations: specifying (in

Oracle), 649
file systems, 10–13

data dependence, 15
data inconsistency, 8, 17
data management problems,

14–18
database systems vs., 4, 10,

18, 19, 25
DP departments, 610
historical significance, 35t
manual systems, 10–11
programming requirements,

14, 15
structural dependence, 15
terminology, 12t, 48t

files, 12
data files, 445
tables as, 39, 63, 64n

filtering data, 524
first normal form (1NF), 157t,

159, 161
conversion to, 158–161
dependency diagram, 160

INDEX

688

C6545_Index_CTP.4c 11/13/07 2:41 PM Page 688

first-come, first-served
scheduling (of
transactions), 424

FIRST_ROWS optimizer hint
(instruction), 455t

FKs. See foreign keys
flags (for avoiding nulls), 72
flexible design cases, 206–211
FLOOR function, 328t
FORCE option, 560
foreign key constraint

definitions, 236, 236n
foreign keys (FKs), 70, 71, 82

composite primary keys
and, 168–169

constraint definitions,
236, 236n

and data redundancies, 88
in database design, 206n
defining in new tables

created from parts of
existing tables, 262

implementing relationships
with, 202

placement/selection in 1:1
relationships, 206, 206t

primary key–foreign key
links between tables, 69,
70, 70, 81, 275

formatting of data (in
DBMSs), 23

forward slash (/): end
command-line entry mark
(PL/SQL), 339

%FOUND cursor attribute
(PL/SQL), 358t

fourth normal form (4NF),
157t, 174

conversion to, 173–174
fragmentation (of data),

499–503
fragmentation (of ER models):

avoiding, 392
fragmentation transparency

level (of distribution
transparency), 490, 490t

query format, 491
FROM clause, 242, 274, 305

subqueries in,
318–319, 321

FROM subqueries,
318–319, 321

front-end CASE tools, 632
full backups, 399, 619
full equivalence (of optimized

queries), 449
full join, 306t, 310, 311, 312
fully functional dependence,

68, 158
fully heterogeneous

DDBMSs, 488
fully replicated databases, 504
function-based indexes, 457

functional dependence, 67,
157–158, 158

fully functional dependence,
68, 158

functions (in SQL), 324–331
aggregate. See aggregate

functions
conversion functions, 330,

330–331t
date functions, 325–327
numeric functions, 327,

328t
string functions, 328, 329t
time functions, 325–327

G
generalization (identifying entity

supertypes), 199
GETDATE() function (SQL

Server), 325t
good judgment in data

modeling, 31
governance (of business), 517
granularity (of data), 166,

521, 523t
refining primary keys

for, 166
greater than operator (>), 457t
GROUP BY clause,

270–271, 272n
CUBE extension, 556,

558, 559
extensions to, 556–559
HAVING clause with,

272–273
ROLLUP extension, 556,

557–558, 558
grouping data (from aggregate

functions), 270–273
groups (of data):

limiting/restricting, 272–273,
316–317

groups (of data files). See table
spaces

groups (of entity occurrences).
See entity subtypes; entity
supertypes

H
hard disks:

minimizing disk
contention, 461

as query processing
bottlenecks, 450

hardware (of database
systems), 20

DBMS performance
guidelines, 443t

system failures from, 400t
hardware independence,

50–51, 52, 394
hash indexes, 452
HAVING clause, 272–273

subqueries in, 316–317

HAVING subqueries, 316–317
heterogeneity transparency (of

DDBMSs), 490
heterogeneous DDBMSs,

488, 489
hierarchical model (of

data/databases), 36, 46
advantages and

disadvantages, 36, 47t
data storage

management, 52
historical significance,

35t, 45
online content on, 36
terminology, 48t

historic data. See time-
variant data

homogeneous DDBMSs, 488
homonyms:

checks for, 632
problems with, 80, 406

horizontal fragmentation, 499,
500, 500t, 501

host languages (for SQL), 360
embedding SQL statements

in, 361
host variables, 360, 361–362

declaring, 361–362
HTML (Hypertext Markup

Language): shortcomings, 591
HTML documents: data binding

of XML data to, 598
HTML tags, 591
human component in database

systems, 613–626
See also DA (data

administrator); DBAs
(database administrators)

hypercubes, 539
Hypertext Markup Language.

See HTML

I
I/O cost comparisons (of access

plans), 454, 454t
I/O operations, 446

access plan
operations, 449t

minimizing, 446
I/O requests, 446
IBM: RDBMS origins, 3
IBM DB2. See DB2 (IBM)
identifiers, 106–107

natural identifiers, 202
See also primary keys

identifying attributes and
relationships, 33–35, 165

identifying relationships. See
strong relationships

idiot correlations from data
mining, 555

IE (information
engineering), 634

IMMEDIATE statement, 560
immediate updates (write-

throughs), 435
implementation and loading

phase (DBLC), 379, 397–401
implementation models (of

data/databases), 46
implementation phase

(SDLC), 377
implicit cursor, 357
IN special operator, 255–256
IN subqueries, 303–304,

315–316
inconsistent database state,

415, 423
inconsistent retrievals

(concurrent transactions
problem), 422–423,
422t, 423t

incremental backups, 619
independent multivalued

dependencies: eliminating
problems caused by, 173

index access operation, 449t
index keys, 90
index organized tables, 461
index scan operation, 449t

vs. table scan, 451
index selectivity, 456–457
index table space, 461
Index(name) optimizer hint

(instruction), 455t
indexed views, 559

See also materialized views
indexes (in relational databases),

90–91
bitmap indexes, 452, 453,

537–538, 538t
creating, 239–240
data sparsity and the need

for, 451–452, 455, 457
data structures, 452
deleting, 240
determining the best type to

use, 452
function-based indexes, 457
guidelines for using,

456–457
measurement

parameters, 447t
processing cost, 451
and query optimization,

451–453, 455, 465–470
scan operation, 449t, 451
selectivity, 456–457
unique. See unique indexes
uses of, 456

indexing of relational databases
with unnormalized tables, 181

inductive databases, 555
inequality comparisons: equality

comparisons as faster
than, 458

INDEX

689

C6545_Index_CTP.4c 11/13/07 2:41 PM Page 689

information, 6
data vs., 5–6
data–information–decision-

making cycle, 607
data-information-knowledge

pyramid, 554
islands of information,

17, 534
information engineering

(IE), 634
information requirements:

and database design, 136
denormalization and, 179t

information resource
dictionary, 631

information resource manager
(IRM). See DA (data
administrator)

information sources: on system
data, 386, 387, 390

information systems (IS), 372,
373–374

assessment questions, 376
and databases,

373–374, 383
feasibility study issues, 376
framework. See Systems

Development Life Cycle
(SDLC)

operational life span, 378
performance factors, 374

information systems
architecture (ISA), 634, 635

information systems
departments, 610

information systems strategy:
vs. database administration

strategy, 634
success factors, 635

inheritance, 196–197
in the OO data model, 43

initialization parameters:
customizing (in Oracle),
644–645, 650

inline subqueries, 319–321
Inmon, Bill, 525
inner joins, 305, 305, 306t,

307–310
inner queries. See SELECT

subqueries
input/output topics. See after

“I”, above
INSERT command (statement),

240–242
See also inserting rows

inserting columns (in database
tables), 258

inserting rows (in database
tables), 240–241

with nulls, 241
with optional attributes, 242
from other tables, 245, 261

insertion anomalies, 18, 156

integrity. See data integrity;
entity integrity; referential
integrity

integrity independence, 92t
integrity rules (relational model),

71–72, 71t
enforcing in new tables

created from existing
tables, 262

intelligent databases, 555
interconnectivity: between

applications, 572
See also database connectivity

(communication interfaces);
Web database connectivity

interfaces:
call level interfaces (CLIs),

360, 573
Web server interfaces,

586–587, 588
See also APIs (application

programming interfaces);
database connectivity
(communication interfaces);
end-user interfaces

internal model, 49, 51–52, 52t
conceptual model translation

into, 395–396
internal schemas, 51
International Organization for

Standardization (ISO):
ANSI/ISO SQL standard, 226

Internet, 582(2)
and database models, 45
See also Web (World

Wide Web)
Internet databases. See Web

database connectivity
Internet Explorer: displaying

XML documents in, 597
Internet technologies:

characteristics and
benefits, 584t

uses of, 590
See also Web database

connectivity
INTERSECT relational

operator, 73
INTERSECT statement, 298,

301, 302
syntax alternative,

303–304, 304
invoicing system, 88–90
I/O topics. See after “I”, above
IRM (information resource

manager). See DA (data
administrator)

IS. See information systems
IS departments, 610
IS NULL special operator, 254
“IS-A” relationships, 195
ISA (information systems

architecture), 634, 635

islands of information, 17, 534
ISO (International Organization

for Standardization):
ANSI/ISO SQL standard, 226

isolation (of transactions),
417, 423

%ISOPEN cursor attribute
(PL/SQL), 358t

iterative processes, 127
database design, 127, 383
ER modeling, 389, 390

J
Java, 582, 589
Java Database Connectivity.

See JDBC
JavaScript, 589
JDBC (Java Database

Connectivity), 582
architecture, 582, 583

Jet Engine, 575
JetBlue’s database crisis, 411
join column(s), 76
join conditions, 275, 276–277
JOIN ON operation, 309–310
join operations (joins),

304–312, 306t
comparison operators in, 77
cross join, 306, 306t
equijoin, 77, 305
full join, 306t, 310,

311, 312
inner joins, 305, 305,

306t, 307–310
JOIN ON, 309–310
JOIN USING, 308–309
left outer join, 77–78, 279,

310, 311
natural join, 76–77, 305,

306t, 307–308
old-style joins, 305, 306t
outer joins, 77–78,

278–279, 305, 306t,
310–311, 311, 312

recursive joins, 277–278
right outer join, 77–78,

279, 310, 312
theta join, 77, 305

JOIN relational operator, 75–78
JOIN USING operation,

308–309
joining tables, 75–78,

274–279, 304–312
with aliases, 277–278
in subqueries, 315

Julian date arithmetic, 65,
110, 230

Julian date format, 65,
110, 230

K
key attributes. See primary key

attributes
key performance indicators

(KPIs) (for businesses),
517–518

key relational operators, 73n
key terms:

for advanced data
modeling, 213

for data models, 54
for database

administration, 654
for database

connectivity, 601
for database design, 407
for database performance

tuning, 472
for database systems, 26
for decision support

systems, 565
for distributed database

management systems, 509
for ER modeling, 139
for normalization (of

database tables), 184
for the relational model, 93
for SQL (Structured Query

Language), 281, 366
for transactions, 439
See also terminology

keys, 66–71
definitions of, 71t
determinants, 163
index keys, 90
natural keys, 202
secondary keys, 70, 71
superkeys, 68, 71
See also candidate keys;

composite primary keys;
foreign keys (FKs);
primary keys (PKs);
surrogate primary keys

keywords. See reserved words
(keywords) (in SQL)

knowledge, 6
data-information-knowledge

pyramid, 554
knowledge-acquisition phase

(data mining), 555
KPIs (key performance

indicators) (for businesses),
517–518

L
LAST_DAY function

(Oracle), 327t
left angle bracket + double

dashes (<--): comment
indicator (XML), 591

left outer join, 77–78, 279,
310, 311

INDEX

690

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 690

legacy systems integration: XML
and, 598

LEN/LENGTH functions, 329t
life span of information

systems, 378
LIKE special operator,

254–255, 457t
limiting groups of data,

272–273, 316–317
line numbers: in Oracle, 235
LINE_NUMBER attribute:

including, 90
linking tables (in M:N to 1:M

conversions), 86–87
links between tables, 69, 70,

70, 81, 275
linking tables as, 86–87

list-of-value subqueries, 314,
315–316, 317–318

listener process/service (in
DBMSs), 446, 639

listing rows, 74–75, 242–243
in both sets: 301: 302,

303–304, 304, 315–316
with conditional restrictions,

247–256
in the first set but not in the

second, 301–302, 303,
303, 304

grouping aggregate function
outputs, 270–273

limiting/restricting groups,
272–273, 316–317

with matching values,
255–256, 331t

with maximum/minimum
values, 267–268

with nulls, 254
with subquery returns, 256
with unique values, 265
using computed columns

and column aliases,
250–251

with values within
ranges, 253

listings: ordering (sorting),
263–265, 273

loading data into databases, 398
methods, 377

local mapping transparency
level (of distribution
transparency), 490, 490t

query format, 492
location dimension (of facts),

543, 543–544, 545
location transparency level (of

distribution transparency),
490, 490t

query format, 491
lock granularity (use levels),

425–428
lock manager, 425, 446

locks (on data items), 412,
424–431

granularity (use levels),
425–428

mutual exclusive rule
for, 429

problems with, 429
types, 428–429

logical conditional
expressions, 458

logical data, 66
logical data format, 15
logical data repository (of

database systems), 18
logical design, 51, 376–377,

395–396
and physical design, 397

logical design process (database
design phase), 395–396

logical independence, 52, 92t
logical operators, 226t,

251–253, 255
logical systems design,

376–377
looping subqueries. See

correlated subqueries
lost update problem (concurrent

transactions), 420,
420t, 421t

LOWER function, 329t
lowercase: converting strings

to, 329t

M
M:M relationships. See M:N

(many-to-many) relationships
M:N (many-to-many)

relationships, 32–33, 80,
84–88

ERDs of, 41, 42, 85,
87, 126

implementing: with 1:M
relationships, 42n,
86–87, 109–110,
125–126, 176–178,
203–204; as not to be
done, 85, 109

recursive relationships,
124, 124

maintenance and evolution
phase (DBLC), 379, 401–402

maintenance phase
(SDLC), 378

management approval: and
systems design, 377n

manager’s view of system data,
383, 384

managerial aspect of DBMS
introductions, 609–610

managerial information systems
(MISs): architectural
styles, 529t

mandatory participation (in
relationships), 118–120

mantra on database design, 444
manual file systems, 10–11
manual query optimization, 498
manual statistical generation

mode, 499
many-to-many relationships.

See M:N (many-to-many)
relationships

master data management
(MDM), 516

master tables. See base tables
matching values:

listing rows with matching
attribute values,
255–256, 331t

returning strings with
matching values inside,
254–255

materialized views,
559–563, 560

creating, 560–561
syntax, 560
updating of, 562
using in query

optimization, 560
mathematical symbols: naming

convention prohibition
of, 235n

MAX function, 265t, 267–268
MDBMSs. See multidimensional

database management
systems

MDM (master data
management), 516

merge operation, 449t
messages: displaying (in

SQL*Plus), 339
metadata (data definitions), 6

in data dictionaries, 21, 22,
78, 79t, 631

in OLAP multidimensional
data analysis
processing, 532

in the system catalog, 80
XML DTDs, 592–594

metadictionaries for
databases, 599

methods (OO data model), 43
OLE-DB interfaces, 578t

metrics, 541
Microsoft Access. See Access

(Microsoft)
Microsoft Excel. See Excel

(Microsoft)
Microsoft SQL Server. See SQL

Server (Microsoft)
Microsoft Visio. See Visio

(Microsoft)
middleware: database

middleware, 573

See also database connectivity
(communication interfaces);
Web-to-database middleware

MIN function, 265t, 267–268
minimal data rule, 385
MINUS statement, 298,

301–302, 303
syntax alternative, 303, 304

MISs (managerial information
systems): architectural
styles, 529t

mixed fragmentation, 499,
502, 502t, 503

models. See data models
MODIFY option (ALTER

TABLE command), 257–258
modular approach:

to ER modeling, 392,
393–394

to programming, 338
module coupling, 394
modules (ER model segments),

392, 393
cohesivity, 394

Moen: BI tool–based business
problem solutions, 515t

MOLAP (multidimensional
online analytical processing)
systems, 539–540, 540

multidimensional data
storage, 543

vs. ROLAP systems,
540–541, 541t

monotonicity (of time stamp
values), 431

MONTH function (Access/SQL
Server), 325t

MPMD scenario (multiple-site
processing, multiple-site data
scenario), 486t, 488–489

MPSD scenario (multiple-site
processing, single-site data
scenario), 486t, 487–488

MS Access. See Access
(Microsoft)

MS Excel. See Excel (Microsoft)
MS SQL Server. See SQL

Server (Microsoft)
MS Visio. See Visio (Microsoft)
multidimensional data, 530

cubic representation of,
539–540, 543–544

vs. operational data,
530, 531

multidimensional data analysis
(in OLAP systems), 530–531,
539–540

attribute hierarchies in,
544–546, 545

in data cubes, 544
query optimization for,

537–538

INDEX

691

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 691

SQL and, 537
SQL extensions for, 537,

556–563
multidimensional data schemas:

RDBMS support for, 537
multidimensional database

management systems
(MDBMSs), 539–540

multidimensional data
storage in, 543

multidimensional online
analytical processing. See
MOLAP (multidimensional
online analytical processing)
systems

multiple conditional
expressions, 458

“multiple duplicate records”
problem, 169

multiple entities (entity clusters),
200, 201

multiple fact tables, 549–550
multiple occurrence symbol

(+), 593
multiple-site processing,

multiple-site data (MPMD)
scenario, 486t, 488–489

multiple-site processing, single-
site data (MPSD) scenario,
486t, 487–488

multirow subquery operators,
317–318

multiuser access control (in
DBMSs), 23

multiuser databases, 8
transaction controls, 417

multivalued attributes, 108
implementing,

109–110, 173
mutual consistency rule (for

replicated data), 503
mutual exclusive rule (for

locks), 429
MySQL: features, 9t

N
name length issue, 156n, 391
naming conventions, 15–17,

156n, 391–392
checklist, 212t
checks on compliance

with, 632
evaluating, 165
SQL syntax, 233, 235n
table-exporting requirements

and, 391
naming databases (in

Oracle), 647
NASDAQ: BI tool–based

business problem
solutions, 515t

native SQL database
connectivity, 573, 574

natural join, 76–77, 305, 306t,
307–308

natural keys (natural
identifiers), 202

Navitaire Open Skies
reservation system crisis, 411

nested loop operation, 449t
nested queries. See SELECT

subqueries
.NET application development

framework (Microsoft), 580
network model (of

data/databases), 37–38, 46
advantages and

disadvantages, 37–38,
46, 47t

data storage
management, 52

historical significance, 35t,
45, 46

online content on, 36
terminology, 48t

network schemas, 37
network subschemas, 37
networks: as query processing

bottlenecks, 450
:NEW and :OLD attribute

references (in SQL*Plus),
347–348

NEXTVAL pseudo column (in
Oracle), 332–333

non-identifying relationships.
See weak relationships

non-null values: counting
(tallying), 266, 267n

non-overlapping subtypes. See
disjoint subtypes

nonkey attributes (nonprime
attributes), 162, 170

nonprocedural languages, 24
nonsubversion, 92t
nonvolatile data, 526, 526t
normal forms (of database

tables), 153, 157t
conversion processes,

157–164, 170–174
lower forms in data

warehouses, 181
See also first normal form

(1NF); second normal
form (2NF); third normal
form (3NF); fourth normal
form (4NF); Boyce-Codd
normal form (BCNF)

normalization (of database
tables), 152–184, 153

design enhancements,
164–168

in the design process,
174–178

dimensional tables,
548–549

eliminating partial
dependencies, 161–162

eliminating repeating
groups, 158–159

eliminating transitive
dependencies,
163–164, 179

and ER modeling, 175
example inputs, 153, 154,

155, 156
example outputs,

167–168, 168
key terms, 184
need for, 153–156
objective, 157
in OLAP systems, 537
online content on, 155, 184
for operational data vs.

decision support data,
521–522

problems (exercises),
185–192

processes of normal form
conversion, 157–164,
170–174

vs. resources, 153
review questions, 184–185
stages. See normal forms
summary, 182–184
using common sense

in, 179
See also denormalization (of

database tables)
NOT IN subqueries, 303, 304
NOT logical operator,

252–253
avoiding the use of, 458
syntax alternative, 253n

NOT NULL constraint, 72,
234(2), 237

%NOTFOUND cursor attribute
(PL/SQL), 358t

NULL comparisons: numeric
comparisons as faster
than, 457

NULL subqueries, 314
nulls, 68, 254

avoiding, 68, 72, 194
checking for, 254
counting (tallying) non-null

values, 266, 267n
inserting rows with, 241
IS NULL special

operator, 254
listing rows with, 254
NOT NULL constraint, 72,

234(2), 237
problems from, 69
systematic treatment

rule, 92t
unique attribute-created

nulls, 194

NUMBER data type
(PL/SQL), 341t

NUMBER data type
(SQL), 234n

number sign (#) (in Access): date
delimiter, 241n, 250

numbers (numeric attributes), 65
averaging, 269–270
as character data, 79n, 230
converting strings to,

330, 331t
converting to strings,

330, 330t
data types, 79t, 231t,

232t, 234n
listing rows with

maximum/minimum
values, 267–268

listing rows with values
within ranges, 253

returning absolute
values, 328t

rounding, 328t
summing, 269
See also attribute values;

attributes (of entities)
numeric attributes. See numbers
numeric comparisons:

as faster than character,
date, and NULL
comparisons, 457

as faster than nonnumeric
comparisons, 458

numeric data. See numbers
(numeric attributes)

numeric data types, 79t,
232t, 234n

numeric functions, 327, 328t
See also aggregate functions

O
o. See overlapping constraint
O/RDBMSs (object/relational

database management
systems), 44

Object Linking and Embedding
for Database. See OLE-DB

object-oriented APIs, 574
object-oriented data model

(OODM), 43–44
advantages and

disadvantages, 43,
44, 47t

components, 43
historical significance, 35t,

45, 46
online content on, 43, 196
terminology, 48t
vs. the ERDM, 44
vs. UML class diagrams and

the ER model, 44, 44

INDEX

692

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 692

object-oriented database
management systems
(OODBMSs), 43

object/relational database
management systems
(O/RDBMSs), 44

objectives definition process
(database initial study phase),
382, 383

objects:
ADO objects, 579t,

580–582
COM objects, 578 (See also

consumers; providers)
database objects, 641
definition conflicts, 406
entities as, 32, 105
in the OO data model, 43(2)

ODBC (Open Database
Connectivity), 360, 573–577

components, 575, 575
ODBC API standard

compliance levels, 576
ODBC Driver Manager,

575, 576
ODBC drivers, 575, 575

parameters, 576
OLAP (online analytical

processing) systems, 513,
520t, 530–541, 535

advanced data access
features, 531–532

advanced functions, 530
characteristics, 530
client/server architecture,

532, 533–536, 533
data marts in, 535–536
data mining features, 554
data warehouses in,

534–536
end-user interfaces,

532, 563
modules, 533
multidimensional data

analysis, 530–531
multidimensional extension

(MOLAP systems),
539–540; vs. ROLAP
systems, 540–541, 541t

normalization in, 537
operational databases in,

535–536
relational extension. See

ROLAP (relational online
analytical processing)
systems

server arrangements,
534–536

and spreadsheets, 531
SQL extensions, 537,

556–563
:OLD attribute references (in

SQL*Plus), 348

OLE-DB (Object Linking and
Embedding for Database),
577–579

ADO vs., 579
architecture, 578, 579

OLTP (online transaction
processing) systems:
architectural styles, 529t

ON clause: in join operations,
309–310

ON COMMIT clause, 560
ON DELETE CASCADE

specification, 237n, 239
ON DELETE clause: online

content on, 237
ON UPDATE CASCADE

specification, 234n,
235, 237n

ON UPDATE clause: online
content on, 237

one-to-many relationships. See
1:M (one-to-many)
relationships

one-to-one relationships. See
1:1 (one-to-one) relationships

online analytical processing.
See OLAP (online analytical
processing) systems

online content:
on advanced data modeling,

196, 197, 214
on business rules, 140
on Crow’s Foot notation

(ERDs), 106
on data models, 36, 39, 42,

43, 54
on database

administration, 654
on database connectivity,

590, 601, 602
on database design, 140,

385, 396, 407
on database performance

tuning, 444, 462, 472
on database systems, 12,

16, 27
on databases, 12, 39, 64,

84, 140, 155
on decision support

systems, 522, 557, 565,
566, 569

on distributed database
management systems,
479, 506, 509

on the EER model, 196
on ER modeling, 106, 112,

114, 140
on ERD notation, 42, 106
on ERDs, 42, 106
on the extended entity

relationship model, 196
on the hierarchical

model, 36
on the network model, 36

on normalization (of
database tables), 155, 184

on the object-oriented data
model, 43, 196

on ON DELETE/ON
UPDATE clause, 237

on operational data, 522
on physical design, 396
on the relational model, 64,

84, 94
on script files, 233, 557
on specialization

hierarchies, 197
on specialization lattices, 196
on SQL (Structured Query

Language), 233, 237,
246, 247, 258, 281,
285, 298, 299, 335,
343, 352, 366, 367

on SQL commands
(statements), 233, 246,
247, 258

on transactions, 413,
439, 440

on UML notation (class
diagrams), 106

on Web application
servers, 590

online transaction processing
(OLTP) systems: architectural
styles, 529t

OO data model. See object-
oriented data model (OODM)

OODBMSs (object-oriented
database management
systems), 43

OODM. See object-oriented
data model

OPEN command (cursor
processing statement), 357t

Open Database Connectivity.
See ODBC (Open Database
Connectivity)

Open Skies reservation system
crisis, 411

operating systems, 20
operation phase (DBLC),

379, 401
operational data, 519,

520–521, 522
data warehouse data vs.,

526, 526t
decision support data vs.,

520–523, 523t
multidimensional data vs.,

530, 531
online content on, 522

operational databases
(transactional/production
databases), 8, 10n

designing. See database
design

in OLAP systems, 535–536

operational life span of
information systems, 378

operators:
conditional operators, 457t
logical operators, 226t,

251–253, 255
special operators, 226t,

253–256
See also arithmetic operators;

comparison operators;
relational set operators

optimistic concurrency control
approach, 433

optimization. See query
optimization

optimizer (query optimizer), 446
I/O cost comparisons,

454, 454t
modes, 453, 460, 462;

specifying, 455–456, 455t
optimizer hints (instructions),

455–456, 455t
optional attributes, 106
optional element symbol (?), 593
optional participation (in

relationships), 118–120, 228
optional participation symbol

(O), 115, 116, 118, 120t
OR logical operator, 252

IN special operator
alternative, 255–256

multiple OR conditional
expressions, 458

Oracle (RDBMS):
Administration page,

643, 643
attribute display formats:

changing, 243n
automatic startup, 638–639
BETWEEN special operator

use, 253n
case sensitivity in search

criteria, 254–255
CASE tools, 634
column widths, 258n
conditions evaluation

order, 458n
connecting to from

Excel, 577
conversion functions, 330,

330–331t
Create User page, 644;

links, 643
creating databases in, 645,

646–652
data source

configuration, 576
data storage management,

23, 639–641, 648, 651
data types, 234n
database administration

using. See database
administration using
Oracle

INDEX

693

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 693

Database Configuration
Assistant, 645, 646–652

database object
management, 641–642

database recovery
options, 649

date and time functions,
326, 326–327t

date arithmetic, 110, 230
date formats, 66, 110
defining constraints

in, 236n
enhancements, 45
Enterprise Manager,

636, 637
features, 9t, 416n
file location options, 649
initialization parameters,

644–645, 650
line numbers in, 235
listener service, 639
logging in, 637
materialized views,

559–563, 560
native SQL connectivity,

573, 574
numeric functions, 328t
optimization mode, 462
origins, 3
parsing methods, 455n
query optimization in,

462–470
referential constraint

support, 237
Schema Manager, 642, 642
schemas, 641–642
security management in,

642–644
sequences. See sequences

(in Oracle)
services in, 639
Storage Manager, 640
string functions, 329t
surrogate key

implementation
method, 169

UPPER function, 255
version 9i graphical

representation, 470
version 10g, 45, 462n, 636

O/RDBMSs (object/relational
database management
systems), 44

ORDER BY clause, 263–265,
273, 275

ordering listings, 263–265, 273
Oreck Corporation: disaster

recovery plan, 605
outer joins, 77–78, 278–279,

305, 306t, 310–311,
311, 312

outer queries, 267, 313

overlapping constraint, 195,
198, 198n, 198, 199t

overlapping subtypes,
197–198, 198

subtype discriminator with,
198, 198t

Owens and Minor, Inc.: BI
tool–based business problem
solutions, 515t

P
page-level locks, 426, 427
pages (diskpages), 426
parentheses (()):

argument delimiters, 354
table definition

delimiters, 234
parsing phase of query

processing, 449–450
DBMS methods, 455n
See also query optimization

PART AS option (CREATE
TABLE command), 261

PART option (CREATE TABLE
command), 261

partial completeness constraint,
195, 199

partial dependencies, 160,
161, 162

eliminating, 161–162
partially replicated

databases, 504
participants (in

relationships), 111
participation in relationships as

optional or mandatory,
118–120

partitioned data allocation, 505
partitioning of databases. See

data fragmentation
partitioning tables, 461, 551
parts of tables: copying into

new tables, 261–262
parts tracking, 123
passive data dictionary, 630
password security, 399
percent sign (%): wildcard

character, 254–255
performance: information

system performance
factors, 373

See also database
performance

performance monitoring and
tuning (of DBMSs), 624

performance transparency (of
DDBMSs), 490, 498–499

performance tuning. See
database performance tuning

periodicity (of data), 551
persistent relations. See tables

(of relational databases)

persistent stored modules
(PSMs), 339

physical data format, 15
physical design, 396–397

and logical design, 397
online content on, 396

physical design process
(database design phase),
396–397

physical disk blocks. See disk
blocks

physical independence, 52, 92t
physical model, 49, 52, 52t
physical security, 399
PKs. See primary keys
PL/SQL (procedural SQL)

(Oracle), 338–359, 339
advantages, 359
code blocks. See PL/SQL

blocks
commands. See PL/SQL

commands
cursors in, 357–359
data types, 341t
functions (stored functions),

339, 359
procedures. See stored

procedures
syntax. See PL/SQL syntax
triggers. See triggers
uses, 339, 342

PL/SQL blocks, 339–342,
340, 341, 342n

comment indicator, 350
debugging errors in,

340–341
PL/SQL commands:

cursor processing
commands, 357t

returning more than one
value with, 357–359

SHOW ERRORS
command, 340

PL/SQL data types, 341t
PL/SQL functions (stored

functions), 339, 359
PL/SQL syntax:

explicit cursor, 357
stored functions, 359
stored procedures, 351
triggers, 344

planning phase (SDLC), 376
plug-ins (for Web

browsers), 589
plus sign (+):

concatenate sign
(Access/SQL Server), 329t

multiple occurrence
symbol, 593

policies (for database
usage), 617

security policies, 627
populating tables, 246

portability of DBMSs, 394(2)
portals, 519t
pound sign. See number sign (#)
pre-aggregated data:

denormalization and, 179t
precedence rules: for arithmetic

operators, 251
predicate logic, 63
prefixes: for attribute

names, 391
presentation and visualization

tool, 518t, 519
Preserved data security

breach, 627
primary key attributes (key

attributes), 67,
106–107, 162

in dependency
diagrams, 160

descriptive content overload
in, 168–169

inheritance of, 196
specifications, 234(2)

primary key constraint
definitions, 236n

primary keys (PKs) (identifiers),
66, 71, 106–107, 201–205

candidate. See
candidate keys

characteristics, 203t
composite. See composite

primary keys
constraint definitions, 236n
defining (identifying/selecting),

159, 201–205; in new
tables created from parts
of existing tables, 262

evaluating, 165
of fact tables, 546–547
foreign key–primary key

links between tables, 69,
70, 70, 81, 275

functions, 202
implementing relationships

with, 202
refining, 166
replacing, 392
surrogate. See surrogate

primary keys
values, 68–69

prime attributes. See primary
key attributes

privacy (of data), 608
problem definition process

(database initial study phase),
381–382, 383

problem domain, 31
procedural languages: SQL

vs., 360
procedural programming, 338
procedural SQL. See PL/SQL
procedure cache (SQL cache),

445, 460

INDEX

694

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 694

procedures (for database design,
management, and usage),
21, 617

DBA responsibilities,
617–618

See also stored procedures
process distribution: levels of

data and process distribution,
485–489, 486t

processing mismatches, 360
processing speed requirements:

and database design, 136,
178–179

product availability:
ensuring, 342

See also triggers
product dimension (of facts),

543, 545
PRODUCT relational

operator, 74
creating Cartesian

products, 74
See also cross join

production databases. See
operational databases

profiles (in Oracle), 643
prognosis phase (data

mining), 555
programmers: of database

systems, 21
programming:

file system requirements,
14, 15

modular approach, 339
programming exemptions:

system failures from, 400t
programming languages, 338

for Web browsers, 589
See also database

languages; SQL
programs (in DBMSs). See

application programs (in
DBMSs)

PROJECT relational
operator, 75

projecting columns, 319–321
protocols:

DDBMSs protocols,
484–485

distributed database
protocols needed, 481

two-phase commit protocol,
496–497

write-ahead protocol, 497
prototyping application

programs, 401
providers (COM objects), 578

data providers, 578,
579, 580

service providers, 578, 579
pseudo columns (in Oracle),

332–333

PSMs (persistent stored
modules), 339

pyramid: data-information-
knowledge pyramid, 554

Q
QBE query generator (Access),

247, 248n, 248
queries (in SQL), 226

ad hoc. See ad hoc queries
changing column data

types, 257
changing column widths,

257–258
copying parts of tables into

new tables, 261–262
creating indexes, 239–240
against data

dictionaries, 631
in data warehouses, 556
against decision support

data vs. operational data,
522, 523t

defining primary/foreign
keys in new tables created
from parts of existing
tables, 262

deleting columns, 258
deleting rows, 245
deleting tables, 263
efficiency, 442, 449
example database tables for,

228–229, 228
formulating, 459
fragmentation transparency

format, 491
inserting columns, 258
inserting rows, 240–241;

with nulls, 241; with
optional attributes, 242;
from other tables,
245, 261

INTERSECT queries,
301, 302

listing rows. See listing rows
local mapping transparency

format, 492
location transparency

format, 491
MINUS queries,

301–302, 303
against operational data vs.

decision support data,
522, 523t

optimization process. See
query optimization

process steps, 443
processing of,

448–450, 448
restoring saved changes,

244–245, 260n
result sets, 8

saving changes in
tables, 242

SELECT. See SELECT
queries

subqueries. See SELECT
subqueries

UNION ALL queries,
300, 301

UNION queries, 299–300
updating rows, 244, 259;

advanced options,
259–260

on the Web, 584
See also database requests

query generator (QBE) (Access),
247, 248n, 248

query languages
(in DBMSs), 24

See also SQL
query optimization, 449,

453, 624
algorithms for, 498, 499
in distributed database

systems, 498–499
indexes and, 451–453,

455, 465–470
manual vs. automatic, 498
for multidimensional data

analysis, 537–538
process example, 462–470
static vs. dynamic, 498–499
using materialized views

in, 560
See also concurrency

control; optimizer
query optimizer. See optimizer
query processing,

448–450, 448
bottlenecks, 450

query result sets, 8
query tool, 518t, 519
question mark (?): optional

element symbol, 593

R
RAD (Rapid Application

Development), 374n
RAID (Redundant Array of

Independent Disks), 460
common

configurations, 460t
RAM (random access memory):

as a query processing
bottleneck, 450

random access memory (RAM):
as a query processing
bottleneck, 450

ranges of attribute values. See
attribute domains

Rapid Application Development
(RAD), 374n

raw data. See data

RDBMSs (relational database
management systems), 38

advantages, 38, 359
enterprise RDBMSs, 237
multidimensional data

storage in, 543
O/RDBMSs, 44
object/relational systems

(O/RDBMSs), 44
origins, 3, 38
ROLAP extensions to,

537–539
XML support, 45
See also Access (Microsoft);

DB2 (IBM); DBMSs
(database management
systems); Oracle (RDBMS)

RDO (Remote Data Objects),
574, 575

read operations, 446
Rebuilding Together:

community support work, 61
records: in files, 12

See also time-variant data
(historic data)

recovery. See database
recovery; transaction recovery

recursive queries (joins),
277–278

recursive relationships, 120,
122–124

in 1:1 relationships, 122,
123, 136–138

in 1:M relationships, 122,
124, 124

in M:N relationships,
124, 124

Redundant Array of
Independent Disks. See RAID

redundant data: denormalization
and, 179t

See also data redundancy
redundant relationships,

210–211
redundant transaction logs, 434
referential constraints, 237n

ON DELETE CASCADE
specification, 237n, 239

ON UPDATE CASCADE
specification, 234n, 235,
237n

referential integrity, 70,
71, 71t

enforcement of, 235, 239
enforcing in new tables

created from existing
tables, 262

violations of, 165
REFRESH clause, 560
regenerating database

statistics, 447
regular entities, 113
relational algebra, 72

INDEX

695

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 695

relational data model. See
relational model

relational data sources:
accessing, 573, 577

See also relational databases
relational database management

systems. See RDBMSs
relational databases:

advantages, 38, 359
Cobb’s rules for, 91, 92t
indexes in. See indexes (in

relational databases)
management systems. See

RDBMSs (relational
database management
systems)

model. See relational model
(of data/databases)

operators, 72–78
performance. See database

performance
relational diagrams of, 39,

39, 70, 70
simple example, 69
tables. See tables (of

relational databases)
unnormalized table

defects, 181
relational diagrams, 39, 39,

70, 70
See also ERDs (entity

relationship diagrams)
relational model (of

data/databases), 38–40, 46,
62–93

1:M relationship
implementation in, 81n

advantages and
disadvantages, 39–40,
46, 47t

components, 63
data and structural

independence, 39–40
extended. See extended

relational data
model (ERDM)

historical significance, 35t,
45, 46

implementation of, 52
integrity rules, 71–72, 262
key terms, 93
logical view of data, 63–66
M:N relationship

implementation in, 42n
online content on, 64, 84, 94
problems (exercises), 96–103
query language. See SQL
review questions, 94–95
summary, 93
terminology, 48t, 64n
theoretical foundations, 63
See also ER model (entity

relationship model)

relational online analytical
processing. See ROLAP
(relational online analytical
processing) systems

relational operators. See
comparison operators;
relational set operators

relational schemas, 70
relational set operators, 72–78

closure property, 73
implementation commands

(statements), 298–304
key operators, 73n

relational tables. See tables (of
relational databases)

relational views. See views
(virtual tables)

relations: as tables/tables as,
38, 63, 64, 153n, 298

See also tables (of relational
databases)

relationship degree, 120–122
relationship lines in ERDs, 113,

114n, 114, 115, 125
relationships (between/among

entities), 32–33, 41, 80–88
cardinalities (in ERDs),

111–112, 120t
checklist, 212t
connectivities (in ERDs), 41,

111–112
defining, 111
entity relationship diagrams

of. See under ERDs
examples, 49
identifying, 33–35, 165
identifying relationships. See

strong relationships, below
implementing, 202
inheritance of, 196–197
“IS-A” relationships, 195
mandatory participation in,

118–120
non-identifying

relationships. See weak
relationships, below

optional participation in,
118–120, 228

participants, 111
participation in as optional

or mandatory, 118–120
redundant relationships,

210–211
relational diagrams of, 39,

39, 70, 70
sets as, 37
strength, 113–116, 118n;

among module
entities, 394

strong relationships,
115–116, 115, 118n,
125; weak entities in,
116–118, 117

types, 32–33
weak relationships,

113–114, 114, 118n,
176–177, 177

Remote Data Objects (RDO),
574, 575

remote database servers:
accessing, 574

remote requests, 493, 493
remote transactions, 493, 493
reorganization of databases, 625
repeating groups of entities (for

attributes), 158
eliminating, 158–159

replica transparency (of
DDBMSs), 498

replicated data allocation, 505
replication of data. See data

replication
requests: I/O requests, 446

See also database requests
required attributes, 105–106
reserved words (keywords) (in

SQL), 17n, 235
naming convention

prohibition of, 235n
resources (of relational

databases):
measurement

parameters, 447t
normalization vs., 153
reserving, 644

restoring saved changes,
244–245, 260n

RESTRICT relational operator,
74–75

restricting groups of data,
272–273, 316–317

right outer join, 77–78, 279,
310, 312

ROLAP (relational online
analytical processing) systems,
537–539

bitmapped indexes,
537–538

vs. MOLAP systems,
540–541, 541t

multidimensional data
storage, 543

SQL extensions, 537
very large database

support, 539
roles (in Oracle), 642
roll up operations, 521

in data warehouses,
544–545

See also ROLLUP extension
ROLLBACK command

(statement):
restoring saved changes,

244–245, 260n
in transactions, 418, 419
ultimate purpose, 242

rollback segment table
space, 461

ROLLUP extension (to GROUP
BY clause), 556,
557–558, 558

ROUND function, 328t
rounding numbers, 328t
row-level locks, 427, 427
row-level triggers, 344
%ROWCOUNT cursor attribute

(PL/SQL), 358t
rows (in database tables) (tuples),

38, 64, 105
access operation, 449t
deleting, 245, 334
inserting, 240–241; with

nulls, 241; with optional
attributes, 242; from other
tables, 245, 261

listing. See listing rows
updating, 244, 259;

advanced options,
259–260; in other tables,
349–350

rule-based optimizer, 453
rule-based query optimization

algorithm, 499
rules of precedence: for

arithmetic operators, 251
run-time mismatches, 360

S
saving changes in tables, 242
saving SELECT queries,

273–274
scan operation (table/index

scans), 449t, 451
scheduler (of transactions),

423–424, 446
scheduling transactions. See

concurrency control
Schema Manager (Oracle),

642, 642
schemas, 641

conceptual schemas, 50
database schemas,

229–230
decision support database

schemas, 523–524
distributed global

schema, 492
external schemas, 49
internal schemas, 51
multidimensional data

schemas, 537
network schemas, 37
in Oracle, 641–642, 650
relational schemas, 70
snowflake schemas, 549,

556, 557
star. See star schemas
XML schemas, 595

scope (of systems), 383

INDEX

696

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 696

scope and boundaries definition
process (database initial study
phase), 383

ScoutAdvisor database, 223
scripting languages: database

connectivity support for,
578, 582

scripts (script files), 578
CGI scripts, 587
online content on, 233, 557

SDLC. See Systems
Development Life Cycle

search criteria:
adding conditional

restrictions to, 247–256
case sensitivity, 254–255
wildcard characters, 242,

254, 255
See also SELECT queries

second normal form (2NF),
157t, 163

conversion to, 161–162
in data warehouses, 181
dependency diagrams, 162

secondary keys, 70, 71
security (of data), 608,

626–629
aspects, 399, 618
breaches of, 627
database security, 628–629
DBMSs and, 7
file system problems, 14
management of. See

security management
policies, 627
seven essentials, 628n
vulnerabilities, 627,

627–628t
security auditing and monitoring

(of DBMSs), 625
data dictionary as a tool for,

631–632
security breaches, 627
security management (in

DBMSs), 23
DBA tasks, 618, 625,

628–629, 631–632
in Oracle, 642–644
views as useful for, 274

security policies, 627
security threats, 627
security vulnerabilities, 627,

627–628t
Sega of America: BI tool–based

business problem
solutions, 515t

segments in the hierarchical
model, 36

SELECT command
(statement), 242

clauses with. See FROM
clause; GROUP BY
clause; HAVING clause;

ORDER BY clause;
USING clause; WHERE
clause

syntax, 242, 247, 263,
270, 275

See also SELECT queries
SELECT queries, 8, 247–256

ad hoc queries, 8, 14
advanced queries, 263–273
arithmetic operators in, 251
averaging attribute values,

269–270
checking for subquery

returns, 256
comparison operators in,

77, 226t, 247–251
counting (tallying) attribute

values, 266–267
example database tables for,

228–229, 228
formulating, 459
inner (nested). See SELECT

subqueries
INTERSECT queries,

301, 302
joining tables, 75–78,

274–279, 304–312; with
aliases, 277–278

listing rows. See listing rows
logical operators in, 226t,

251–253, 255
MINUS queries,

301–302, 303
ordering listings, 263–265
outer queries, 267, 313
projecting columns, 319–321
recursive queries, 277–278
saving, 273–274
special operators in, 226t,

253–256
summing attribute

values, 269
UNION ALL queries,

300, 301
UNION queries, 299–300
uniting tables, 299–300

SELECT relational operator,
74–75

SELECT subqueries (inner
queries), 245, 313–324

aggregate functions in,
267–268, 314, 319–321

ALL subqueries, 317–318
ANY subqueries, 317–318
attribute list subqueries,

319–321
characteristics, 313
correlated subqueries,

321–324
FROM subqueries,

318–319, 321
HAVING subqueries,

316–317

IN subqueries, 303–304,
315–316

inline subqueries, 319–321
inserting rows from other

tables, 245, 261
joining tables in, 315
list-of-value subqueries, 314,

315–316, 317–318
listing rows with subquery

returns, 256
multirow operators,

317–318
NOT IN subqueries,

303, 304
NULL subqueries, 314
return value types, 314
single-value subqueries,

314, 314–315, 319–321
uses (examples), 313, 314t
virtual-table subqueries,

314, 318–319, 321
WHERE subqueries,

314–315
semantic data models, 43

See also extended relational
data model (ERDM);
object-oriented data
model (OODM)

semicolon (;): end command
mark, 229

semistructured data, 9
sequences (in Oracle), 331–335

checking command, 332
dropping, 333–334
pseudo columns for, 332–333
in stored procedures,

354–356
syntax, 332

serializability (of
transactions), 417

serializability property (of
transactions): ensuring,
429–430

serializable schedule (of
transactions), 424

server-side extensions (for Web
servers), 585

See also Web-to-database
middleware

servers (database servers), 481
accessing remote

servers, 574
OLAP server arrangements,

534–536
See also Web servers

service providers (COM objects),
578, 579

services:
in Oracle, 639
in Windows systems, 638

set theory, 63
set-oriented commands,

243–244

sets:
datasets (in Access), 64
entity sets, 41, 63
as relationships, 37
as tables, 298

SGML (Standard Generalized
Markup Language), 591

SHOW ERRORS command
(SQL*Plus), 340

simple attributes, 108
single quotation mark (‘):

character attribute
delimiter, 304n

single-site processing, single-site
data (SPSD) scenario,
486, 486t

single-user databases, 8, 417
single-value subqueries, 314,

314–315, 319–321
single-valued attributes, 108
slice and dice operations/views,

543, 544
snowflake schemas, 549,

556, 557
software (of database

systems), 20
system failures from, 400t
See also DBMSs (database

management systems)
software dependence, 52
software independence,

50–51, 394
sort cache, 460
sort operation, 449t
sorting listings, 263–265, 273
SPARC (Standards Planning

and Requirements Committee)
(ANSI): data modeling
framework, 48–52

sparsity. See data sparsity
special operators, 226t, 253–256
specialization (identifying entity

subtypes), 199
specialization hierarchies,

195–196
constraint scenarios, 195,

198, 199t
online content on, 197
uses of, 196

specialization hierarchy
constraint scenarios, 199t

specialization lattices: online
content on, 196

spreadsheets: OLAP systems
and, 531

See also Excel (Microsoft)
SPSD scenario (single-site

processing, single-site data
scenario), 486, 486t

SQL (Structured Query
Language), 24, 40, 224–280

advanced SQL, 297–366

INDEX

697

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 697

call level interfaces (CLIs),
360, 573

commands. See SQL
commands

communication area
(SQLCA), 360, 362

constraints, 235–239
data types. See SQL

data types
dialects, 226
dynamic SQL, 364
embedded SQL, 359–364
extensions, 339; OLAP

extensions, 537,
556–563; ROLAP
extensions, 537

focus, 224
functions. See functions

(in SQL)
host languages, 360, 361
key terms, 281, 366
language categories, 225
limitations, 224, 338–339
and multidimensional data

analysis, 537
native connectivity,

573, 574
online content on, 233,

237, 246, 247, 258,
281, 285, 298, 299,
335, 343, 352, 366, 367

performance tuning, 444,
456–459

problems (exercises),
285–296, 367–371

procedural. See PL/SQL
vs. procedural

languages, 360
queries. See queries (in

SQL); SELECT queries
review questions, 281–285,

366–367
static SQL, 363–364, 364
status and error reporting

variables, 360, 362, 362t
summaries, 280, 365–366
syntax. See SQL syntax

SQL cache (procedure cache),
445, 460

SQL commands (statements):
data definition commands,

225t, 226–240; advanced
commands, 257–263

data manipulation
commands. See DML
statements

DML statement trigger
predicates, 350–351

embedding in host
languages, 361

end command mark (;), 229

online content on, 233,
246, 247, 258

as set-oriented commands,
243–244

table names as prefixes
in, 276n

See also PL/SQL
commands; and specific
SQL commands

SQL commands example
database:

data dictionary, 230,
231t, 232

model, 227–229, 227
tables, 228–229, 228

SQL communication area
(SQLCA), 360, 362

SQL constraints, 235–239
SQL data types, 65–66,

230–234, 232t
AutoNumber data type (in

Access), 86, 169, 331
for characters, 79t,

232t, 234n
for columns: changing, 257
compatible, 298
for dates, 65, 230, 325
for numbers, 79t,

232t, 234n
PL/SQL data types, 341t
for times, 325

SQL engine, 40
SQL execution phase, 450
SQL fetching phase, 450
SQL functions. See functions

(in SQL)
SQL parsing phase, 449–450

See also query optimization
SQL performance tuning, 444,

456–459
SQL queries. See queries

(in SQL)
SQL Server (Microsoft):

conversion functions, 330,
330–331t

database administration
using, 636

date and time functions,
325–326t

features, 9t, 416n
indexed views, 559
numeric functions, 328t
origins, 3
referential constraint

support, 237
string functions, 329t
surrogate key

implementation
method, 169

SQL statements. See SQL
commands (statements)

SQL status and error reporting
variables, 360, 362, 362t

SQL syntax:
embedded SQL syntax, 360
for generating database

statistics manually, 447
for materialized views, 560
for naming conventions,

233, 235n
notation, 233n
for the SELECT command,

242, 247, 263, 270, 275
for sequences (in Oracle), 332

See also PL/SQL syntax; and
specific commands, clauses,
and functions

SQL-99 standard, 298, 339
SQL-based relational database

application components, 40
SQL*Net interface (Oracle),

573, 574
SQL*Plus (Oracle):

displaying messages in, 339
:NEW and :OLD attribute

references in, 347–348
query optimization in,

462–470
SHOW ERRORS

command, 340
SQLCA (SQL communication

area), 360, 362
SQLCODE variable, 361, 361t
SQLSTATE variable, 361t
Standard Generalized Markup

Language (SGML), 591
standards:

company database
standards, 401

data modeling framework,
48–52

for database usage, 617
ER modeling standards, 388
ODBC API standard

compliance levels, 576
See also design standards (for
databases)

Standards Planning and
Requirements Committee
(SPARC) (ANSI): data
modeling framework, 48–52

star schemas, 537,
541–551, 542

advantages, 537, 543
components, 541–546
performance-improving

techniques, 548–551
representation of, 546–548,

546, 548
snowflake schemas, 549,

556, 557
startup: automatic startup in

Oracle, 638–639

stateless systems, 587
the Web as, 587–589

statement-level triggers, 344
statements. See SQL

commands (statements); and
specific commands

static query optimization,
498–499

static SQL, 363–364, 364
statistical information (on

databases): generation modes
in DDBMSs, 499

statistically based query
optimization algorithm, 499

Storage Manager (Oracle), 640
stored functions (in PL/SQL),

339, 359
stored procedures (in PL/SQL),

351–356
advantages, 351, 353
creating, 351–352,

354–356
executing, 352
sequences in, 354–356
syntax, 351
testing, 355–356
uses, 351, 354

strength of relationships,
113–116, 118n

among module entities, 394
string attributes. See strings
string delimiters (‘, “), 304n
string functions, 328, 329t

See also conversion
functions

strings (character/string
attributes):

comparing, 249
concatenating, 329t
converting dates to, 326,

326t, 330, 331t
converting numbers to,

330, 330t
converting to dates, 326,

327t, 330
converting to lowercase,

329t
converting to numbers,

330, 331t
converting to

uppercase, 329t
returning length

values, 329t
returning strings with

matching values inside,
254–255

returning substrings in, 329t
See also attribute values;

attributes (of entities)
strong entities, 113

INDEX

698

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 698

strong relationships (identifying
relationships), 115–116,
115, 118n, 125

weak entities in,
116–118, 117

structural dependence: of file
systems, 15

structural independence, 15
of the relational model,

39–40
structured data, 9, 25
Structured Query Language.

See SQL
subject-oriented data in data

warehouses, 525–526, 526t
subordinates (DDBMS

nodes), 497
subqueries. See SELECT

subqueries
subschemas: network

subschemas, 37
SUBSTR/SUBSTRING

functions, 329t
substrings: returning, 329t
subtype discriminator,

195, 197
with overlapping subtypes,

198, 198t
subtypes. See entity subtypes
SUM function, 265t, 269
summaries:

on advanced data
modeling, 213

on data models, 53
on database administration,

653–654
on database

connectivity, 600
on database design, 407
on database performance

tuning, 471–472
on database systems, 26
on decision support

systems, 564
on distributed database

management systems, 508
on ER modeling, 139
on normalization (of

database tables), 182–184
on the relational model, 93
on SQL (Structured Query

Language), 280, 365–366
on transactions, 438

summary fact tables, 559
dynamic. See materialized

views
superkeys, 68, 71

See also candidate keys
supertypes. See entity

supertypes
surrogate primary keys

(surrogate keys), 165, 166,
168–169, 176–177

uses for, 204–205

synonyms:
checks for, 632
problems with, 80, 406

syntax: embedded SQL
standard, 360

See also PL/SQL syntax;
SQL syntax

SYSADMs (systems
administrators), 20, 612

SYSDATE function
(Oracle), 327t

system administration: file
system problems, 14

See also database
administration

system catalog, 80
system data:

information sources, 386,
387, 390

manager’s view and
database designer’s view,
383, 384

system data sources, 576
system failures: sources, 400t
System R research project, 3
system security. See security

(of data)
system support activities, 623
system table space, 461
systems administrators

(SYSADMs), 20, 612
systems analysis, 372, 373
systems analysts, 21, 383
systems design. See database

design
systems development,

372, 373
and application

programs, 373
Systems Development Life

Cycle (SDLC), 374n,
375–378, 375

Database Life Cycle
parallels, 402, 402

methodologies, 374n
tool support for. See

CASE tools

T
table access operation, 449t
table aliases:

in correlated
subqueries, 322

joining tables with,
277–278

table constraints, 237
adding/changing/deleting,

236n, 257
table definition delimiters

(()), 234
table element delimiter (,), 234
table names: as prefixes in SQL

commands, 276n

table scan operation, 449t
vs. index scan, 451

table spaces (file groups), 397,
398, 445

types, 461
using multiple spaces, 461
See also tablespaces

(in Oracle)
table storage organizations, 461
table-level locks, 426, 426
tables (of relational databases),

38, 40
characteristics, 63–66, 64t
clustered organized

tables, 461
columns. See columns (in

database tables)
copying parts into new

tables, 261–262
creating, 232–235,

261, 398
creation and load order

importance, 115–116
DataTables (in ADO.NET),

581–582
for decision support data vs.

operational data,
521–522

deleting, 263
deleting columns in, 258
deleting rows in, 245
denormalization of, 153,

178–181, 461
dimension. See dimension

tables
fact. See fact tables
as files, 39, 63, 64n
generating attribute value

aggregates, 556–559
index organized tables, 461
inserting columns in, 258
inserting rows in. See

inserting rows
joining, 75–78, 274–279,

304–312; with aliases,
277–278; in
subqueries, 315

layouts, 395, 395t
linking tables (M:N to 1:M

conversions), 86–87
links between, 69, 70, 70,

81, 275; linking tables as,
86–87

listing rows in. See
listing rows

measurement
parameters, 447t

merge operation, 449t
normal forms. See normal

forms (of database tables)
normalization of. See

normalization

for operational data vs.
decision support data,
521–522

operators on. See relational
set operators

partitioning, 461, 551
populating, 246
relational operations on,

72–78
as relations/relations as,

38, 63, 64n, 153n, 298
replication of, 551
restoring saved changes in,

244–245, 260n
rows. See rows (in

database tables)
saving changes in, 242
scan operation, 449t, 451
sets as, 298
sort operation, 449t
SQL commands example

database tables,
228–229, 228

synonyms for, 38, 63, 64n
union-compatible, 73, 298
uniting, 298–300
unnormalized table

defects, 181
updating master (base)

tables, 335–336,
337–338

updating rows, 244, 259;
advanced options,
259–260; in other tables,
349–350

virtual. See views
See also table spaces

tablespaces (in Oracle), 639
creating, 639–640,

641, 650
See also table spaces

tags: HTML tags and XML
tags, 591

tallying attribute values,
266–267

technological aspect of DBMS
introductions, 609

telephone numbers: as
character data, 79n

templates: selecting (in
Oracle), 646

temporary table space, 461
Teorey, Toby J., 198
terminology: for data models,

12t, 48t, 64n
See also key terms

ternary relationships, 120,
121–122, 121

testing:
applications, 623
databases, 401, 623
stored procedures, 355–356
triggers, 344–347,

348–349

INDEX

699

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 699

testing and evaluation phase
(DBLC), 379, 401

theta join, 77, 305
third normal form (3NF),

157t, 164
conversion to, 163–164
dependency diagrams, 164
See also Boyce-Codd

normal form (BCNF)
time:

adding to dates, 326t, 327t
data types, 325

time data types, 325
time dimension (of facts), 543,

544, 545, 551
time functions. See date

functions
time IDs: for warehouse

data, 526
time stamping concurrency

control schemes, 431–433
time-variant data (historic data),

207, 526, 526t
maintaining, 88–90, 166,

207–209
separating current data

from, 209
timespan (of data), 521
TMs (transaction

managers), 484
TO_CHAR function (Oracle),

326, 326t, 330, 330t
TO_DATE function (Oracle),

326, 327t, 330
TO_NUMBER function

(Oracle), 331t
today’s date: returning,

325t, 327t
tools:

data extraction,
transformation, and
loading (ETL) tools,
518t, 519

for data mining, 554–555
for database administration,

630–634
for ERD design, 390,

633–634, 633, 634t
top-down design, 402

vs. bottom-up design, 403
total completeness constraint,

195, 199
TPs (transaction processors),

484, 485, 486, 487, 504
training and supporting

users, 625
transaction log, 418–419, 419t

example log, 436t
redundant logs (backups),

400, 434
write-ahead-log

protocol, 434
transaction log backups, 400

transaction managers
(TMs), 484

transaction processors (TPs),
484, 485, 486, 487, 504

transaction recovery, 433,
434–435

tracing exercise,
435–437, 436t

transaction transparency (of
DBMSSs), 490, 492–497

transactional databases. See
operational databases

transactions (database
transactions), 412,
413–419, 414

atomicity, 417, 433
COMMIT statement in:

premature COMMIT
effects, 496; two-phase
commit protocol,
496–497

concurrency control. See
concurrency control

concurrent. See concurrent
transactions

consistency, 417
constraints/controls

on, 417(2)
of decision support data vs.

operational data,
521, 523t

distributed transactions,
492–493, 494, 494

durability, 417
evaluating, 414–417
interruptions in, 416
isolation of, 417, 423
key terms, 439
locks for. See locks (on

data items)
management statements,

418, 419
online content on, 413,

439, 440
of operational data vs.

decision support data,
521, 523t

problems (exercises),
440–441

properties, 412, 417
recovery of. See transaction

recovery
remote transactions,

493, 493
as requests. See database

requests
review questions, 439
scheduler, 423–424, 446
scheduling. See concurrency

control
semantic errors in,

416–417

sequence–ending
events, 418

serializability, 417;
ensuring, 429–430

summary, 438
system failures from, 400t
tracing exercise,

414–415, 416
two-phase commit protocol,

496–497
validation methods, 417
See also queries

transactions (e-commerce
transactions). See business-to-
business (B2B) transactions

transitive dependencies,
160, 162

eliminating, 163–164, 179
as tolerable, 165

transparency features (of
DDBMSs), 489–499, 490t

distribution transparency,
489, 490–492

failure transparency, 490
heterogeneity

transparency, 490
performance transparency,

490, 498–499
replica transparency, 498
transaction transparency,

490, 492–497
triggers (in PL/SQL), 238,

342–351
creating, 343–344, 345,

347–348, 349–350
definition parts, 344
deleting, 350
DML statement predicates,

350–351
syntax, 344
testing, 344–347, 348–349
types, 344
uses, 343, 349, 350
using variables in, 349–350

tuples. See rows (in database
tables)

two-phase commit protocol,
496–497

two-phase locking,
429–430, 430

%TYPE data type
(PL/SQL), 341t

U
UDA (Universal Data Access

(architecture)), 573
UML (Unified Modeling

Language), 43, 374n
UML notation (class diagrams),

43, 105
online content on, 106

vs. the object-oriented data
model and the ER model,
44, 44

unary relationships, 120, 121
recursive relationships,

120, 122–123
uncommitted data (concurrent

transactions problem), 421,
421t, 422t

underscore (_): wildcard
character, 254, 255

Unified Modeling Language
(UML), 43, 374n

UNION ALL statement,
300, 301

UNION relational operator, 73
UNION statement, 298,

299–300
union-compatible tables

(relations), 73, 298
unique attributes: nulls created

by, 194
unique composite indexes, 240
UNIQUE constraint, 72,

234(2), 237, 238, 239
enforcement of, 239

unique fragment condition, 491
unique indexes, 91, 239

access operation, 449t
composite indexes, 240
creating, 234, 239–240
deleting, 240
use of, 169

unique values: listing rows
with, 265

uniqueness (of time stamp
values), 431

uniting tables, 299–300
Universal Data Access

(architecture) (UDA), 573
unnormalized table defects (in

relational databases), 181
unreplicated databases, 504
unstructured data, 9

management need, 45
updatable views,

335–338, 336
update anomalies, 18, 155
UPDATE command (statement):

updating rows, 244, 259;
advanced options,
259–260

update operations, 434–435
updating:

base tables (master tables),
335–336, 337–338

of DBMSs, 25
of materialized views, 562
of relational databases with

unnormalized tables, 181
rows, 244, 259; advanced

options, 259–260; in
other tables, 349–350

INDEX

700

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 700

upgrading utility software, 625
UPPER function, 255, 329t
uppercase: converting strings

to, 255, 329t
user access management: DBA

tasks, 629
user data sources, 576
user data table space, 461
user interfaces. See end-user

interfaces
user processes (in DBMSs), 446
users (of database systems),

20–21
access management of, 629
access rights, 396, 398,

399, 629
classifications, 615
database designers, 21, 379
as DBMS objects (in Oracle),

642; creating, 643
systems analysts, 21, 383
training and

supporting, 625
See also DBAs (database

administrators); end users
USING clause: in join

operations, 308–309
utility software (in DBMSs), 20

upgrading, 625

V
VARCHAR2 data type

(PL/SQL), 341t
variables:

host variables, 360,
361–362

SQL status and error
reporting variables, 360,
362, 362t

using in triggers, 349–350
VBScript, 589
vendor dependence in

DBMSs, 25
verification processes for ER

models, 392–394, 393t, 393
vertical fragmentation, 499,

500–501, 501t, 501
very large databases

(VLDBs), 525
ROLAP support for, 539

views (virtual tables), 273
creating, 273–274,

318–319, 321, 629; from
relational databases with
unnormalized tables, 181

updatable views,
335–338, 336

uses of, 274
Virtual Private Database

(VPD), 629
virtual tables. See views

virtual-table subqueries, 314,
318–319, 321

Visio (Microsoft):
Category symbol/shape,

195, 197, 198, 199
ERD design screens, 633
M:N relationship

implementation in, 42n
subtype discriminator, 195,

197; with overlapping
subtypes, 198, 198t

VLDBs. See very large
databases

VPD (Virtual Private
Database), 629

W
wait/die time stamping

concurrency control scheme,
432, 432t

warehouses. See data
warehouses

weak entities, 116–118, 117
composite primary keys as

identifiers of, 203–204
ON DELETE CASCADE as

recommended for, 239
weak relationships (non-

identifying relationships),
113–114, 114, 118n,
176–177, 177

Web (World Wide Web):
as a stateless system,

587–589
and database design, 584
and database

development, 479
queries on, 584
transactions on. See

business-to-business (B2B)
transactions

Web application servers,
589–590

online content on, 590
Web browsers, 587–589

plug-ins for, 589
programming languages

for, 589
Web database connectivity,

583–590
advantages, 583
client-side extensions, 589
and data validation, 589
HTML document

format, 591
plug-ins, 589
programming

languages, 589
Web application servers,

589–590
Web browsers, 587–589

Web server interfaces,
586–587, 588

Web-to-database
middleware,
584–585, 586

XML document format. See
XML (Extensible Markup
Language)

Web pages:
development features in

XML, 599
dynamic Web pages, 585

Web server APIs, 587
Web server interfaces,

586–587, 588
Web servers, 584–585

application servers,
589–590

extensions to. See Web-to-
database middleware

interfaces, 586–587, 588
server-side extensions, 585

Web sites: Casio Computer Co.
site upgrade, 571

Web-based transactions. See
business-to-business (B2B)
transactions

Web-to-database middleware,
584–585

operations (actions),
585, 586

Web server interfaces; Web
application servers

WHERE clause, 247, 280,
304–305

error messages from,
267, 272

in join operations, 274–278
logical operators with,

251–253
in row selection operations,

247–251
special operators with,

253–256, 323–324
subqueries in, 314–315

WHERE subqueries, 314–315
wildcard characters, 242,

254, 255
wireless data access, 479
workgroup databases, 8
workstations: diskless, 399
World Wide Web. See Web

(World Wide Web)
wound/wait time stamping

concurrency control scheme,
432, 432–433t

write-ahead protocol, 497
write-ahead-log protocol, 434
write-throughs (immediate

updates), 435

X
XHTML (Extensible Hypertext

Markup Language), 591
XML (Extensible Markup

Language), 9, 590–599, 591
benefits, 572, 591, 596
data presentation

mechanisms, 596–598
database support for, 599
databases, 9, 599
features, 592
and legacy systems

integration, 598
RDBMSs support for, 45
transformations. See XSL

transformations
uses (applications),

598–599
Web page development

features, 599
XML data: binding of to HTML

documents, 598
XML data model: historical

significance, 35t
XML databases, 9, 599
XML documents:

characteristics, 591
displaying, 597
with DTDs, 592–594
XSD documents, 595

XML schema definitions
(XSDs), 595

XML schemas, 594, 595
XML services, 599
XML tags, 591
XSD documents, 595
XSDs (XML schema

definitions), 595
XSL (Extensible Style Language)

specification, 596
XSL style sheets, 596
XSL transformations (XSLT),

596, 596
XSLT (Extensible Style

Language
Transformations), 596

Y
YEAR function (Access/SQL

Server), 325t

Z
zero occurrence symbol (*), 593

INDEX

701

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 701

C6545_Index_CTP.4c 11/13/07 2:42 PM Page 702

Preview

Designing Databases with Visio Professional:
A Tutorial

Microsoft Visio Professional is a powerful database design and modeling tool.
The Visio software has so many features that it is impossible to demonstrate all
of them in this short tutorial. However, you will learn how to:

� Start Visio Professional.

� Select the Crow’s Foot entity relationship diagram (ERD) option.

� Create the entities and define their components.

� Create the relationships between the entities and define the nature of those relationships.

� Edit the Crow’s Foot ERDs.

� Insert text into the design grid and format the text.

Once you have learned how to create a Visio Crow’s Foot ERD, you will be sufficiently

familiar with the basicVisio Professional software features to experiment on your own with

other modeling and diagramming options. You will also learn how to insert text into the

Visio diagram to document features you consider especially important or to simply provide

an explanation of some segment of the ERD.

Note:The screens and instructions in this tutorial are for Microsoft Visio Professional 2003.

If you are using an earlier version ofVisio, your screens will vary slightly. If you are usingVisio

2003 and you wish to save files that will be also usable in Visio 2002, you must use the File,

Save As menu choice and choose to save the file in Visio 2002 format.

A
A

P
P

E
N

D
I

X

41199_AppA 11/1/2007 15:38:30 Page 2

A.1 STARTING VISIO PROFESSIONAL

The typical Visio Professional software installation lets you select Visio through the Start, (All) Programs, Microsoft
Office, Microsoft Office Visio 2003 sequence. After the Visio software has been activated, click the Database
option to match the screen shown in Figure A.1. (Previously created Visio files show up in the Open a drawing
header on the right side of the screen. For example, the third drawing is stored in a file named Fig8-07-A-
Composite-Entity. Naturally, your screen will not yet show any drawings.)

As you examine Figure A.1, note the cursor over the arrow button next to the question mark at the upper-right corner
of the screen. The cursor shows the various toolbar options that you may select. Although you can customize your
toolbar through this selection, for this tutorial, keep the toolbar at its default view to make sure that you will see the
standard Visio screens.

With the Database selection shown in Figure A.1, move the cursor over the Database Model Diagram object. Note
that your selection results in a square outline placed around the object. Also note that the cursor changes to a hand
with a pointing finger, as shown in Figure A.2. In addition, you will see the Database Modeling Template description
in the lower-left corner of your screen.

FIGURE
A.1

The Visio Professional opening screen

35547_AppA 1/17/2006 12:6:0 Page 3

3D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

Click the Database Model Diagram selection shown in Figure A.2 to produce the screen shown in Figure A.3.
Because the preference here is for a larger grid than the one shown in Figure A.3, start by clicking the size selection
(zoom) list box located on the button bar at the top of the screen. Click the down arrow to generate the list of size
options, shown as percentages. Figure A.3 shows that the 100% option has been selected. When you click the 100%
selection, the grid expands to fill the screen.

By selecting the Visio Professional database option and its drawing board, you have completed the preliminary work
required to create ERDs. You are now ready to draw the ERDs on the drawing board. You will use the Crow’s Foot
option, the same one used to create all of the ERDs in this text.

FIGURE
A.2

The database model object selection

35547_AppA 1/17/2006 12:6:0 Page 4

4 A P P E N D I X A

A.2 SETTING THE STAGE FOR CREATING A CROW’S FOOT ERD

To select the Crow’s Foot option, select the Database, Options, Document� sequence shown in Figure A.4. (Note
that the drawing grid has expanded in response to the 100% selection shown in Figure A.3.)

FIGURE
A.3

The drawing board size option

FIGURE
A.4

The Database/Options/Document... selection

35547_AppA 1/17/2006 12:6:0 Page 5

5D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

When you click the Document� option shown in Figure A.4, you will see the Database Document Options
window in Figure A.5. The default selection is the General tab shown in Figure A.5. Note that the default selections
in the General tab are Relational and Physical names. Leave the default options shown in Figure A.5. (The black
dots inside the white circles, known as radio buttons, indicate that the option was selected.) If your screen does not
show these selections, click their radio buttons to place the black dot inside the white circle.

Move the cursor to the Relationship tab in Figure A.5. Click to select it to produce the screen shown in Figure A.6.
Make sure that a check mark is in the check box next to the Crow’s feet option to indicate that this option was
selected. If there is no check mark, click this check box to select this option. (If a check box is “grayed out,” it cannot
be changed. For example, at this point, the check boxes under the Show verb phrase option cannot be changed
because the option has not been selected.)

FIGURE
A.5

The Database Document Options window

35547_AppA 1/17/2006 12:6:1 Page 6

6 A P P E N D I X A

Examine Figure A.6 and note that the relationship name to be displayed has not yet been indicated; therefore, neither
has how the names are to be displayed. You will return to this dialog box later to see the effect of these selections and
to demonstrate that you can edit the displays when you are working on them.

Next, select the Table tab in the Database Document Options dialog box, as shown in Figure A.7. Make sure that the
check boxes are marked as shown here.

Click the OK button shown in Figure A.7 to begin creating Crow’s Foot ERDs.

A.2.1 The Business Rules

To illustrate the development of the Visio Professional’s Crow’s ERD, you will create a simple design based on the
following business rules:

1. A course can generate many classes.

2. Each class is generated by a course.

3. A course may or may not generate a class.

Note that a class has been defined as a section of a course. That definition reflects the real world’s use of the labels
class and course. Students have a class schedule rather than a section schedule. The catalog that lists all of the courses
offered by a department is called a course catalog. Some courses are not taught each semester, so they may not
generate a class during any given semester. In fact, some courses may be taught only when there is sufficient student
demand.

FIGURE
A.6

The Database Document Options, Relationship tab

35547_AppA 1/17/2006 12:6:1 Page 7

7D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

A.3 CREATING AN ENTITY

Now that you have some idea of the proposed design components, let’s create the first entity for the design. Click the
Entity object shown in Figure A.8. (It is circled in the figure.) Drag the Entity object to the grid and then drop it. That
action will produce the Table1 object shown in the grid in Figure A.8. (The 1 in the Table1 label indicates that this
is the first entity object to be placed on the grid.) Note that the entity object is shown as a table. That’s because the
entity object is represented by a conceptual table.

As you examine Figure A.8, note that the small “squares” around the Table1 object perimeter indicate that the
Table1 object has been selected. You can deselect the object by clicking an empty portion of the grid. If the Table1
object has not been selected, click it to select it.

A.3.1 The Database Properties Window

If the Table1 object has been selected as shown in Figure A.8, you will see the default Database Properties window
at the bottom of the screen. (You will see later in this section that the window’s location and format may be changed
to become the new default. However, you will start by using the standard default window shown in Figure A.8.)

As you examine the Database Properties window in Figure A.8, note the selection of the Definition option in the
Categories: listing. (To select any option in the list, click it. The selection is indicated by the arrow to the left of the
option. In this case, the arrow appears next to the Definition option.) At this point, the default Table1 label shows
up in the Physical name: slot.

FIGURE
A.7

The Database Document Options, Table tab

35547_AppA 1/17/2006 12:6:1 Page 8

8 A P P E N D I X A

A.3.2 Creating the Default Database Properties Window

Depending on how you configured the Visio Professional software and/or on what operating system you use, you may not
see the Database Properties window shown in Figure A.8. If your screen does not show a default Database Properties
window, right-click the Table1 object in the grid to generate the Database Properties� option shown in Figure A.9.

Click the Database Properties� option shown in Figure
A.9, and a Database Properties window appears some-
where on the screen. Figure A.10 shows you a typical result.
In that example, the Database Properties window is
located on the grid, next to the Table1 object. You will learn
how to change the window’s location and format.

A.3.3 Sizing the Database Properties Window

You can size the Database Properties window as you
would size any Windows object. For example, note that
placing the cursor on the right margin (see Figure A.11)
changes the cursor shape to a double-sided arrow in prepa-
ration for widening the window by dragging its right limit.

FIGURE
A.8

Placing the entity object in the grid

FIGURE
A.9

Selecting the Database
Properties... option

35547_AppA 1/17/2006 12:6:1 Page 9

9D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

A.3.4 Moving the Database Properties Window

You can also drag and drop the entire Database Properties window to the screen’s lower-left corner.
(See Figure A.12.)

FIGURE
A.10

The moved Database Properties window

FIGURE
A.11

Sizing the Database Properties window

35547_AppA 1/17/2006 12:6:50 Page 10

10 A P P E N D I X A

Naturally, you can also drag and drop the Database
Properties window back to its original position depicted in
Figure A.8. (Just drag and drop to the screen’s bottom
margin.) Because that location allows you to see more of the
database properties without blocking part of the entities you
draw on the screen, that’s the position you’ll use.

A.3.5 Creating the Entity Name

First, create a COURSE entity by placing the cursor in the
Physical name: slot and typing COURSE, as shown in
Figure A.13. Because the Sync names when typing
(default) option was selected in Figure A.13, the Physical
name: and Conceptual name: entries are the same.

When you have finished typing the COURSE label in the
Physical name: slot as shown in Figure A.13, note that the
conceptual table in the grid automatically inherits the
COURSE label. You are now ready to start defining the table
columns.

A.3.6 Defining the Entity Attributes (Columns)

Each table column represents one of the characteristics
(attributes or fields) of the entity. For example, if the
COURSE entity, represented by the COURSE table, is
described by the course code, the course description, and the
course credits, you can expect to define three columns in the
COURSE table. Table A.1 provides a preview of the
expected COURSE table structure. (A few sample records
are entered to give you an idea of the COURSE table
contents.)

TABLE
A.1

Some Sample Course Records

CRS_CODE CRS_TITLE CRS_DESCRIPTION CRS_CREDITS

ACCT-345 Managerial Accounting
Accounting as a management tool.
Prerequisites: Junior standing and
ACCT-234 and 245.

3

CIS-456 Database Systems Design

Creation of conceptual models, logical
models, and design implementation.
Includes basic database applications
development and the role of the data-
base administrator. Prerequisites:
Senior standing and at least 12 credit
hours in computer information sys-
tems, including CIS-234 and CIS-345.

4

ECON-101 Introduction to Economics

An introduction to economic history
and basic economic principles. Not
available for credit to economics and
finance majors.

3

FIGURE
A.12

The Database Properties
window in the lower-left
corner

35547_AppA 1/17/2006 12:6:2 Page 11

11D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

To define the columns of the COURSE table, you must assign column names and characteristics. The first column in
the COURSE table will be the CRS_CODE, which serves as the table’s primary key (PK). Because typical course code
entries might be values such as CIS-456 or ACCT-234, each data entry involves a character string. In structured query
language (SQL) terms, the CRS_CODE data are best defined as CHAR() data. Figure A.14 shows you how the
CRS_CODE name and data characteristics were specified.

To generate the appropriate input for the column characteristics shown in Figure A.14, follow these steps:

1. Make sure that the COURSE table object—shown in the grid—is selected. (The handles around the perimeter
show that the selection was made properly.)

2. Select the Columns option in the Database Properties window at the bottom of the screen. (Note that the
selection was marked with an arrow.)

3. Step 2 generates the column-specific dialog box. Type CRS_CODE in the first line under the Physical Name
header. Moving along the line for the CRS_CODE entry:

a. Select the Char option from the drop-down list under the Data Type header. (Click the down arrow to
generate the list.)

b. Because a course code is required to define the course offering, place a check mark—by clicking the check
box—under the Req’d header.

c. Because the CRS_CODE is the PK, place a check mark—by clicking the check box—under the PK
header.

FIGURE
A.13

Type the entity physical name

35547_AppA 1/17/2006 12:6:2 Page 12

12 A P P E N D I X A

When you have completed those steps, you will see the screen depicted in Figure A.14. Before you enter the remaining
attribute names and characteristics, enlarge the Database Properties window by dragging its upper limit (see Figure
A.15) to increase the desired space. That action lets you see all of the remaining attributes in the COURSE table. Now
place the cursor on the second Columns line and get ready to enter the remaining attributes.

You are now ready to make the entries for the second COURSE attribute. Name this attribute CRS_TITLE. Typical
entries are Database Design and Implementation or Intermediate Accounting. (Check the sample entries in Table
A.1.) Therefore, the CRS_TITLE is a character field. Similarly, enter the CRS_DESCRIPTION entries. The course
description is required, but it is not a PK. The CRS_CREDITS entries are numeric, and they are required; they will
be used at some point to help compute grade point averages for the students taking a section of this course. When
the appropriate entries are made, the screen will look like Figure A.16. (Only a portion of the screen is shown to save
space.) Note that the attribute names become boldfaced when the Req’d (required) option is checked for the Column
property. Selecting that option means that the end user will be required to make a value entry for the checked
attribute—after the design has been implemented—when the table is opened for data entry.

FIGURE
A.14

The column PK selection

35547_AppA 1/17/2006 12:6:2 Page 13

13D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

FIGURE
A.15

Drag the Database Properties box limit to show more columns

FIGURE
A.16

Enter the remaining columns

35547_AppA 1/17/2006 12:6:3 Page 14

14 A P P E N D I X A

A.4 SAVING AND OPENING THE VISIO ERD

So you don’t lose this first Visio Professional ERD segment, save it in an appropriate folder. Use the File, Save As
option to select the folder location and the filename, as shown in Figures A.17 and A.18.

As you examine Figure A.18, note that the filename
describes its origin and purpose. In this example, the ERD
was named Tiny-College-COURSE-and-CLASS-
segment. The naming convention serves the important
purpose of self-documentation. Note also that the file is
saved as a Visio Drawing.

If you want to see additional details about the file, go to the
desktop, select the folder in which you have saved the file,
right-click the filename, and select the Properties option to
see the results in Figure A.19. (Note that the General tab
is selected and that the file was saved as an Archive type. If
you place a check mark in the Read-only option, the file
cannot be modified until you remove the Read-only option
by clicking it to remove the check mark.)

FIGURE
A.17

Select the Save As option to
save the file

FIGURE
A.18

Select the folder, type the file name, and specify the file type

35547_AppA 1/17/2006 12:6:3 Page 15

15D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

The properties box shown in Figure A.19 was generated in
Windows XP. If you use another Windows version, your
Properties window will differ. However, the procedure for
generating and using the Properties window is the same.

You can now go ahead and close the file—and, of course,
make a backup copy! The next time you want to use the file,
after you start Visio Professional, use the standard Windows
File, Open option to retrieve and open the file. That’s how
the screen shown in Figure A.20 was generated.

Note that the just-opened file shown in Figure A.20 does not
show any entity properties. If you want to see this entity’s
properties, right-click the COURSE table and select
Database Properties to display its Database Properties
window again.

You are now ready to define the CLASS entity, using the
same techniques you used to create the COURSE entity.
When you are done, the screen will look like Figure A.21.

A.5 DEFINING RELATIONSHIPS

As you examine Figure A.21, note that a foreign key (FK) has not been defined in CLASS to relate CLASS to
COURSE. Instead, Visio Professional will define the FK field when you specify the relationship between the two
entities. Do not enter your own FK fields! (Visio Professional tells you what the relationship option will do for
you—read the relationship text in Figure A.22).

FIGURE
A.19

Describe the file properties

FIGURE
A.20

Open the previously saved file

35547_AppA 1/17/2006 12:6:3 Page 16

16 A P P E N D I X A

To create a relationship between the entities, click the Relationship object shown in Figure A.22, drag it to the grid,
and drop it between the COURSE and CLASS entities to produce the results shown in Figure A.23.

FIGURE
A.21

Adding the CLASS entity

FIGURE
A.22

Select the Relationship object

35547_AppA 1/17/2006 12:6:4 Page 17

17D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

Dropping the Relationship object on the grid produces the relationship line. Further note that the symbols at the two
ends of the relationship line reflect default cardinalities of (1,1) and (0,N). Finally, remember that the relationship to
be established between COURSE and CLASS reflects the business rule “One COURSE may generate many
CLASSes.” Therefore, the COURSE represents the “1” side of the relationship and the CLASS represents the “many”
side of the relationship.

Attach the “1” side of the relationship line to the COURSE entity by dragging the “1” end of the relationship line to
the COURSE entity, as shown in Figure A.24. Note—and this is very important—that the relationship is not
attached until the COURSE table is outlined in red. (You may have to drag the relationship line’s end all the way
to the inside of the table before the red outline shows up.) When you release the relationship line, its
attachment is verified by the red square on the entity (table) perimeter.

Using the same technique that was used to attach the “1” side of the relationship, drag the “M” side of the relationship
line to the CLASS entity to produce Figure A.25. (Make sure that you see the red square on the CLASS entity side
of the relationship line when you are done.)

FIGURE
A.23

Drag and drop the Relationship object

35547_AppA 1/17/2006 12:6:4 Page 18

18 A P P E N D I X A

FIGURE
A.24

Attach the “1” side of the relationship line

Note the red square.

FIGURE
A.25

Attach the “M” side of the relationship

35547_AppA 1/17/2006 12:6:4 Page 19

19D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

As you examine Figure A.25, note these features:

1. The two red rectangles at the margin of each table indicate that the relationship was successfully established
and that it is still selected. (If the relationship line is no longer selected, the red squares disappear. To reselect
the relationship line, click it.)

2. Visio Professional created the CRS_CODE foreign key in the CLASS table, labeling it FK1 to indicate that it
is the first FK created for this table. Note that CRS_CODE in the CLASS table is not in boldfaced type. This
lack of boldface indicates that, at this point, you have not yet specified that a FK value is mandatory. (Of course,
it should be because a CLASS cannot exist without a COURSE. You will edit this FK property later.)

3. The cardinality next to COURSE was automatically changed to indicate an optional (0,1) relationship between
CLASS and COURSE. Because each class must be related to one course, a depiction of a (1,1) cardinality is
appropriate. (A CLASS cannot exist without a COURSE.) Therefore, you’ll have to edit this cardinality later.

4. The Database Properties window shows that the (default) Definition option is selected. (Look under the
Categories: header.)

5. The relationship is reflected in the double-sided arrow linking the COURSE table’s CRS_CODE and the
CLASS table’s CRS_CODE.

A.5.1 Editing the Cardinalities

If you examine Figure A.25 carefully, you’ll notice that the CRS_CODE in the CLASS entity is not in boldfaced type.
This lack of boldface indicates that the CRS_CODE in CLASS may be null, thus indicating incorrectly that COURSE
is optional to CLASS. To change the (0,1) cardinality in Figure A.25 to a (1,1) cardinality:

1. Select the CLASS entity.

2. Check the CRS_CODE and note that its Req’d check box is not checked. (That means that a value entry is
not required, thus allowing nulls—and making the relationship between CLASS and COURSE optional.)

3. Click the CLASS entity’s CRS_CODE Req’d check box to place a check mark in it. (That means that a value
entry will be required, thus making the relationship between CLASS and COURSE mandatory.)

When you have completed those three steps, you will see the results in Figure A.26. Note that the CRS_CODE in the
CLASS entity is now in boldface to indicate the mandatory relationship between CLASS and COURSE. That
mandatory relationship is reflected by the change in the (0,1) cardinality to a (1,1) cardinality on the COURSE entity.

35547_AppA 1/17/2006 12:6:4 Page 20

20 A P P E N D I X A

You can edit the “M” side of the 1:M relationship by selecting the relationship line and the Miscellaneous option
in the Categories: list. Then select the Zero or more cardinality (if it is not already selected). Figure A.27 shows a
portion of the screen after the selections have been properly made.

FIGURE
A.26

Forcing a mandatory entry for a foreign key value

35547_AppA 1/17/2006 12:6:4 Page 21

21D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

A.5.2 Selecting the Relationship Type

As you examine Figure A.27, note the many options you have available. In this case, the relationship type is properly
defined to be Non-identifying because the dependent CLASS entity did not inherit its PK from the parent COURSE
entity. (When you created the CLASS entity, you defined its PK to be CLASS_CODE, which is not found in the
COURSE entity. In other words, the ERD in Figure A.27 indicates that the CLASS entity is not a weak entity. A weak
entity always has a strong relationship—that is, an identifying relationship—with its parent entity.)

The nature of the relationships between entities, the effect of optionalities, and the existence of weak entities all have
critical effects on the database design. If necessary, review Chapter 4, “Entity Relationship Modeling,” Section 4.1.5
(“Existence Dependence”), Section 4.1.6 (“Relationship Strength”), Section 4.1.7 (“Weak Entities”), and Section 4.1.8
(“Relationship Participation”) to review the nature and implementation of relationships.

Figure A.27 shows the relationship between COURSE and CLASS as a dashed line. A dashed relationship line between
two entities always indicates a non-identifying (weak) relationship between those entities. From reviewing the material
above, you know that a weak (non-identifying) relationship always indicates the existence of a strong dependent entity.
Conversely, a strong (identifying) relationship always indicates the existence of a weak dependent entity.

If you select an identifying relationship between COURSE and CLASS, Visio Professional will automatically rewrite
the PK of the CLASS entity for you and the relationship line will be solid. Figure A.28 shows the effect of the
relationship revision. After you have examined the effect of the identifying relationship selection, reset the relationship
type to the one shown in Figure A.27. (If you want to preserve the identifying relationship version of the ERD, save
it with a different name, such as Tiny-College-COURSE-and-CLASS-segment-Identifying-Relationship.)

FIGURE
A.27

Selecting the cardinality for the “many” side of a relationship

35547_AppA 1/25/2006 11:4:9 Page 22

22 A P P E N D I X A

A.5.3 Naming the Relationships

Make sure that the relationship line is still selected. Then click the Name option in the Database Properties
window—look under the Categories: header—to produce the results displayed in Figure A.29. (Note that the original
ERD has been used to show the preferred non-identifying relationship between COURSE and CLASS.)

FIGURE
A.28

An illustration of an identifying (strong) relationship

35547_AppA 1/17/2006 12:6:5 Page 23

23D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

As you examine Figure A.29, note that the default Verb phrase: selection is has and that the default Inverse
phrase: selection is is of. It’s useful to remember that:

1. All relationships are defined both ways—from the “1” to the “M” side and from the “M” to the “1” side.

2. Active verbs are used to label relationships from the “1” to the “M” side. Passive verbs are used to label
relationships from the “M” to the “1” side.

3. Relationship names are written in lowercase.

Using the Name selection in Figure A.29, type the Verb phrase: and Inverse phrase: entries as shown in Figure
A.30. Note that active and passive verbs have been selected to describe the relationship between COURSE and
CLASS both ways:

1. COURSE generates CLASS.

2. CLASS is generated by COURSE.

Also note that in Figure A.30, the ERD has been dragged to the bottom of the screen to save space and still show how
all of the components are relevant to the discussion.

A.5.4 Showing the Relationship Names

As you examine Figure A.30, you may note that the relationship names are not shown. If you do want those
relationship names shown, click the Database option shown at the top of the screen and then select the Options,
Document� sequence you first saw in Figure A.4.

FIGURE
A.29

The default relationship name

35547_AppA 1/17/2006 12:6:5 Page 24

24 A P P E N D I X A

Next, select the database document options Relationship tab (see Figure A.31), click the radio button in front of the
Show verb-phrase option, and then select the Forward text option only. (If you select both the Forward text and
the Inverse text options, Visio Professional writes the two relationship names on the same line and separates them
with a slash. That option takes more space, so you may have to move the tables farther apart to make the relationship
names readable.) Finally, select the Defaults option as shown in Figure A.31 and set the selection as the default. (Note
that the Database Document Options window has been moved to show you all of the components of this illustration.)

Click OK to save the new relationships default shown in Figure A.31 to see all of the relationship names in
Figure A.32.

As you can tell by looking at the relationship name in Figure A.32, it is written through the relationship line, thus
making it difficult to read. You can change the placement of the relationship name through font control. For example,
if you want to place the relationship name above the relationship line, use the Format, Text� selection shown in
Figure A.33. (Make sure that the relationship line is still selected because you’re working on a naming format for the
relationship line.)

FIGURE
A.30

The named relationship

35547_AppA 1/17/2006 12:6:6 Page 25

25D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

FIGURE
A.31

Set the relationship names as the default

FIGURE
A.32

Showing the relationship names

35547_AppA 1/17/2006 12:6:6 Page 26

26 A P P E N D I X A

You may want to save different versions of the ERD to experiment with the various options later. For example, you
might want to save the latest modification as Tiny-College-COURSE-and-CLASS-Segment-Named-
Relationship.

When you click the Text� selection shown in Figure A.33,
you will see the window in Figure A.34. Note that the
Position: has been selected to be Superscript and the font
Size: has been selected to be 14 pt.

After you have made the selections shown in Figure A.34,
click the Apply button and then click OK to accept the font
changes. The relationship name will appear above the
relationship line as shown in Figure A.35. (The relation-
ship line has been deselected by clicking an empty portion of
the grid to make it easier to read the repositioned
relationship name.)

FIGURE
A.33

Selecting the relationship
name text format

FIGURE
A.34

Repositioning the relationship name

35547_AppA 1/17/2006 12:6:6 Page 27

27D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

A.6 REFERENTIAL ACTION

Make sure that the relationship line is still selected. Then click the Referential Action option in the Database
Properties window—look under the Categories: header—to produce the results displayed in Figure A.36.

FIGURE
A.35

The repositioned relationship name

FIGURE
A.36

The default referential action

35547_AppA 1/17/2006 12:6:6 Page 28

28 A P P E N D I X A

As you examine Figure A.36, it is important to think of the consequences of a deletion in the parent (COURSE) table.
For example, if a COURSE is deleted, do you want to delete all of the classes that are associated with that course? That
is, do you want to Cascade the deletion? (To modify any action, simply click the radio button in front of that action.)

The Referential action selection forces you to make sure that the database design is appropriate to the data
environment and that you really do understand the ramification of any database action. Given the many action options
shown in Figure A.36, you may want to create a small database and try each action to see its effect.

A.7 CONTROLLING THE ERD’S PRESENTATION FORMAT

If you want to modify the ERD presentation format, Visio Professional provides many options. For example, if you
want to color the relationship lines brown, select the relationship line, and then select the Format, Line� option
shown in Figure A.37. (You can also right-click the relationship line and then select the Format, Line� option.)

When you select the Line� option shown in Figure A.37, you will see the options shown in Figure A.38. Each selection
option has its own drop-down list from which to make a selection. Note that the color brown and the line weight 09:
have been selected. We have left the remaining options in their default settings. Click the Apply button and then click
OK to accept the format changes shown in Figure A.38. (The formatting changes will take effect as soon as you click
the Apply button.)

You can format the relationship name’s text, too. To do that, select the Format, Text� option shown in Figure A.37
to generate the window displayed in Figure A.39. Note the selection of the brown text color to match the color of the
relationship line. The font Size: (14 pt.) and Position: (Superscript) reflect the choices made earlier in Figure A.34.
Note (again) that you must click the Apply button and then click OK to accept the format changes.

The results of the relationship line and text formatting are shown in Figure A.40.

FIGURE
A.37

Selecting the format option for the relationship line

35547_AppA 1/17/2006 12:6:7 Page 29

29D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

FIGURE
A.38

Formatting the relationship line

FIGURE
A.39

Formatting the relationship text

35547_AppA 1/17/2006 12:6:7 Page 30

30 A P P E N D I X A

Naturally, you can also control the table’s presentation format. To illustrate that process, let’s make the table borders
blue. To do that, select the table you want to format. Then select the format option (Format, Line�) shown in Figure
A.37 to generate the line options shown in Figure A.41.

FIGURE
A.40

The relationship line and text formatting results

FIGURE
A.41

Formatting the table line

35547_AppA 1/17/2006 12:6:7 Page 31

31D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

As you examine Figure A.41, note that the line Color: was selected to be 04:, which is blue. The selected line
Weight: is 05:. (The higher the line weight value, the thicker the line.) Remember to click the Apply button first and
then click the OK button to save the changes. Now repeat the process for the CLASS table to produce the results
shown in Figure A.42.

A.8 PLACING TEXT ON THE GRID

To help document the ERD, it may be helpful to place explanatory notes on the grid. To produce those notes, select
the Text Tool (marked A) shown at the top of the screen. Make sure that you have deselected the CLASS table by
clicking a blank area of the screen. You will see the effect of your selection when you note the cursor’s new look. Select
the text format to suit your needs—left justification and a font size of 12 have been selected. (See Figure A.43.)

After making the selections shown in Figure A.43, the text shown in Figure A.44 was typed. (You can modify any text
format such as the font, size, color, and justification later.)

FIGURE
A.42

The reformatted table lines

FIGURE
A.43

Selecting the text tool

35547_AppA 1/17/2006 12:6:8 Page 32

32 A P P E N D I X A

As you examine the text in Figure A.44, you’ll notice that there is no space to continue typing the business rules. To
make more space, drag and drop the ERD components farther down the screen. (Hold down the Shift key as you click
each of the two entity boxes and the relationship line to select them, allowing you to move them down together.)

To move the text box, you must first make sure that the text tool has been deselected. If the text tool is still active, click
it to deselect it. (You will know that the text tool is active when the cursor looks like the one shown in Figure A.43.)
You need to remember two important rules that govern the use of the text box.

1. You cannot move the text box unless the text tool is inactive.

2. You cannot edit the text unless the text tool is active. (In other words, the text tool must be selected before you
can create or edit text.)

FIGURE
A.44

The initial text

35547_AppA 1/17/2006 12:6:8 Page 33

33D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

If the text tool is not active, clicking the text box produces a set of small squares (handles) shown on the text box
perimeter. You can see the handles around the text box in Figure A.45, which also shows that the ERD has been
dragged and dropped farther down the screen. Also note that the four-sided arrow by the cursor indicates that the text
box may be moved by dragging and dropping. (If you don’t see the four-sided arrow on your screen, move the cursor
until the four-sided arrow appears.)

After the text box has been selected as shown in Figure A.45, you can drag and drop it as you would any other object
on the screen. In fact, the text box behaves like any other Windows object. For example, you can change the size of
the text box by dragging its perimeter to move it in or out. Just place the cursor anywhere along the text box perimeter
to produce the two-sided arrow shown in Figure A.46.

You can now finish typing the text, formatting it to suit your needs. The final text box is shown in Figure A.47. Note
that a light blue text color has been selected.

Don’t forget to save your Visio file before you exit. As with all Windows applications, you will be reminded to save the
file if you try to close it without first saving it.

FIGURE
A.45

Selecting the text box to move it

35547_AppA 1/17/2006 13:56:56 Page 34

34 A P P E N D I X A

A.9 USING MS VISIO TO CREATE A SPECIALIZATION HIERARCHY

In this part of the tutorial, you use MS Visio to create the basic specialization hierarchy shown in the text in Figure
A.48. Using MS Visio, the supertype and subtypes are created through the use of the three special shapes shown in
the following figure.

FIGURE
A.46

Selecting the text box to size it

FIGURE
A.47

The completed text box

35547_AppA 1/17/2006 13:56:56 Page 35

35D E S I G N I N G D A T A B A S E S W I T H V I S I O P R O F E S S I O N A L : A T U T O R I A L

To create the specialization hierarchy depicted in Figure A.48, do the following:

1. Create the EMPLOYEE entity supertype—identify only the common attributes.

2. Create each one of the subtypes (PILOT, MECHANIC, and ACCOUNTANT)—identifying only the unique
attributes of each subtype.

3. Add the Category shape to your diagram.

4. Use the Parent to category shape to connect the EMPLOYEE supertype to the category and define the
supertype discriminator. In this case, you could also indicate total completeness. However, the default is partial
completeness.

5. Use the Category to child shape to connect each one of the subtypes to the category. Note that the
EMPLOYEE FK is automatically added to each one of the subtypes. Make sure that you declare it as the PK
of each subtype.

6. Manually add the disjoint/overlapping constraint symbol and subtype discriminator values to the respective
category lines for each subtype.

That’s it � you are now able to create the supertype and subtype entities you learned about in Chapter 6, “Advanced
Data Modeling.”

FIGURE
A.48

MS Visio supertype/subtype modeling symbols

35547_AppA 1/17/2006 13:57:25 Page 36

36 A P P E N D I X A

Preview

THE UNIVERSITY LAB: CONCEPTUAL DESIGN

The pieces of the database design puzzle come together in this appendix and Appendix C,

“The University Lab: Conceptual Design Verification, Logical Design, and Implementation.”

You will develop a conceptual database design by using the ideas and techniques presented

in Chapter 4, “Entity Relationship (ER) Modeling”; Chapter 5, “Normalization of Database

Tables”; Chapter 6, “Advanced Data Modeling”; and Chapter 9, “Database Design.”

You will see the evolution of a database system, starting with the results of the database

initial study and moving through a conceptual design’s initial ER diagram. In Appendix D, you

will see how a conceptual design is evaluated and transformed into a logical design that can

be implemented in any relational DBMS environment.

B

A
P

P
E

N
D

I
X

35547_AppB 1/17/2006 11:31:50 Page 37

Many years of teaching database design have taught the authors a valuable lesson: If you have never stepped through
a complete example of database design, chances are that you will not be able to successfully design and implement a
database system.

The example will be the automation of a large university computer lab. Because the design detailed in this appendix
is based on a real project, you will confront a few real-world problems and develop some important analytical skills.

A well-functioning system represents the culmination of several small steps. To follow the steps, but avoid getting lost
in details, use Table B.1 as your map. Table B.1 shows that this appendix will take you through the first phase of a
conceptual database design, through its initial ER model. The remaining database design tasks outlined in Table B.1
will be completed in Appendix C.

TABLE
B.1

A Database Design Map for the University Computer Lab (UCL)

DATABASE LIFE CYCLE PHASE OUTPUT SECTION
Database initial study

UCL objectives
Organizational structure
Description of operations1

Problems and constraints
System objectives
Scope and boundaries

B.1.1
B.1.2
B.1.3
B.1.4
B.1.5
B.1.6

Database design
Conceptual design

Continued in Appendix C
Logical design

Physical design

Information sources and users
Information needs: user requirements
The initial ER model
Defining attributes and domains

Continued in Appendix C
Normalization
ER model verification
Tables
Indexes and views
Access methods

B.2.1
B.2.2
B.2.3
B.1−B.2

C.2
C.3
C.4.1
C.4.2
C.5

Implementation
Creation of databases
Database loading and conversion
System procedures

C.6.1
C.6.2
C.6.3

Testing and evaluation
Performance measures
Security measures
Backup and recovery procedures

C.7.1
C.7.2
C.7.3

Operation
Database is operational
Operational procedures

C.8.1
C.8.2

“I hear it and I forget it, I see it and I remember it, I do it and I learn it.” —Old Chinese proverb

Many of the small steps in Table B.1 might appear to be trivial at first glance. Don’t be tempted to overlook or rush
through them. Those little details may make the difference between design success and failure. Later, it will be much
easier to discard unnecessary details than to address omissions.

1 The term description of operations is sometimes used as a synonym of the database initial study. However, the use of that synonym is appropriate
only when the “operations” encompass the organization’s entire data environment, rather than just the transaction component of the data environment.
This appendix will use the label “description of operations” in its more restrictive sense.

35547_AppB 1/17/2006 12:17:39 Page 38

38 A P P E N D I X B

Database design is “detail” work. The details in this example should give you a better grasp of a design process that
sometimes appears to be disorganized.

B.1 THE DATABASE INITIAL STUDY

The database initial study is basically a detailed description of an organization’s current and proposed database system
environments. Therefore, the database initial study must include a careful accounting of the organization’s objectives,
its structure, its operations, its problems and constraints, the system’s objectives, the system’s scope and boundaries,
the information sources and users, and the end-user requirements.

A real-world database initial study is likely to have hundreds of pages because detail and accuracy are essential. The
need for such detail and accuracy is obvious when you realize that the database design is based on the business rules
derived from the database initial study. If the database initial study lacks detail and/or accuracy, the business rules are
likely to be incomplete or inaccurate. It follows that the database design based on such business rules is destined to fail.

The information contained in the database initial study is, to a large extent, the product of interviews with key end
users. Those people are the system’s main beneficiaries and must be identified carefully. The key users of the University
Computer Lab application developed in this appendix are:

� The assistant dean (dean) of the College of Business.

� The computer lab director (CLD), who is charged with the Lab’s operational management.

� The computer lab assistants (LAs), who are charged with the Lab’s daily operations.

� The computer lab secretary (CLS), who assists in the Lab’s general administrative functions.

� The computer lab’s graduate assistants (GAs), who work under the lab director to provide technical support and
training to faculty and staff using the College of Business resources.

In the interest of brevity, only a few excerpts of the numerous interviews that were undertaken for this project will
be shown.

B.1.1 UCL Objectives

The University Computer Lab (UCL) is in a central location on campus and is accessible by all university students
regardless of major. The UCL provides access to many resources, including 200 computers, laser printers, and
scanners, by all university members. The UCL provides service and support to a group of users composed of faculty,
staff, and students. The Lab’s objectives are to:

� Provide users with controlled access to the UCL’s assets, such as microcomputers, printers, supplies,
application software, and software documentation.

� Guide users working with the UCL’s assets and to provide general problem-solving services. Those services are
primarily designed to help users with basic computing operations, such as disk formatting, file copying,
(approved) software installation, and basic startup procedures.

B.1.2 Organizational Structure

Understanding the UCL’s organizational structure helps the designer define the organization’s lines of communication
and establish appropriate reporting requirements. (See Figure B.1.)

The computer lab director (CLD) manages all of the UCL’s operational functions. The CLD is assisted by the computer
lab secretary (CLS). Graduate assistants (GAs) and undergraduate students work in the Lab as lab assistants (LAs). The
CLD reports to the assistant dean of the College of Business, who reports to the College of Business dean, who, in
turn, reports to the university’s academic vice president, who reports to the university president. Although most of the
university chain of command for the College of Business is shown in Figure B.1, the design will focus exclusively on

35547_AppB 1/17/2006 12:17:39 Page 39

39T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

the UCL operations. However, because the other four department chairs receive periodic lab usage summaries,
provide feedback to the UCL’s director, and contribute to the UCL’s funding based on lab usage, they are included in
Figure B.1.

Figure B.1 is useful in these ways:

� It facilitates communication between the system’s end user(s) and the system’s designer(s). Knowledge of the
organizational structure helps you define information requirements. (Who needs what information, in what
form, and when?)

� It helps system end users specify and clarify areas of responsibility. (Where do I fit into the picture? What is my job?)

FIGURE
B.1

The UCL’s organizational structure

University President

Academic Vice President

College of Business Dean

Assistant Dean

UCL Director (CLD)

UCL Secretary (CLS)

UCL Assistants (LAs)

CIS
Chair

ACCT
Chair

MKTG/MGT
Chair

ECON/FIN
Chair

BMOM
Chair

CIS = Computer Information Systems
ACCT = Accounting
MKTG/MGT = Marketing/Management

BMOM = Business Education, Management Education,
 Office Management
UCL = University Computer Lab

Graduate Assistants (GAs)

Note

The structure shown in Figure B.1 omits details that do not affect the UCL’s database design. For example,
neither the purchasing department nor the other university colleges and their departments have been shown
within the organizational structure because they are not within the UCL’s reporting channels. For the same
reason, other components of the university’s organizational structure are not included in Figure B.1.

35547_AppB 1/17/2006 12:17:39 Page 40

40 A P P E N D I X B

Knowing the complete organizational structure is important even when a system is designed for only one component
because the system might be expanded later to include other parts of the structure. The designer must keep in mind
that different departments might have different, and sometimes conflicting, views of the data and/or the system
requirements. The job of the database designer is to develop a common and shared view of data within the
organization.

B.1.3 Description of Operations

Once the UCL’s objectives and organizational structure are defined, it is time to study the operations. The UCL has
six types of operations. They are organized as inventory/storage/order management, equipment maintenance and
repair management, equipment check-out and check-in management, lab assistant payroll management, lab reserva-
tions management, and lab access management.

Inventory/Storage/Order Management
The UCL’s items are classified as hardware, software, literature, and supplies.

� Hardware includes computers, terminals, printers, and so on.

� Software includes all application programs, such as spreadsheets, word-processing software, statistical
software, and database software.

� Literature includes reference texts and software manuals.

� Supplies include all consumables, such as printer ribbons and paper.

Each inventory item is classified by inventory type, and inventory type is used to group all similar items. The inventory
type defines a four-part hierarchy: the inventory category, the class, the type, and the subtype. Table B.2 illustrates the
hierarchy.

TABLE
B.2

Inventory Type Hierarchy

ITEM CATEGORY CLASS TYPE SUBTYPE
Gateway computer, Pentium IV,
2.3 GHz

Hardware Computer Desktop Pentium

Laser printer paper, 8.5" x 11" Supply Paper Laser 8.5" x 11"
Disks, 3.5", HD Supply Disks 3.5" HD

The database designer(s) and the end users must work together to develop a complete and implementable definition
of the appropriate inventory type hierarchy. That collaboration also yields appropriate identification codes and
descriptions for each inventory type.

The inventory type also plays an important role in the way inventory items and quantities are recorded. For example,
some inventory items do not require individual component tracking. Those inventory items, called nonserialized
items, include laser printer paper, disks, and other nondurable supplies. The term nonserialized means that the items
do not require tracking by an assigned serial number or code. (Keeping track of individual reams of laser printer paper
hardly seems appropriate.) On the other hand, durable inventory items, such as computers and printers, require careful
tracking with serial numbers or other codes. Therefore, durable inventory items are referred to as serialized items.

The assignment of serial numbers or codes enables end users to track an item’s location, user, status, and other relevant
information. Keep in mind that although hardware is usually considered to be a serialized item, the end users and
organizational policies create the business rules that define the extent of the serialized and nonserialized classifications.

35547_AppB 1/17/2006 12:17:39 Page 41

41T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

The inventory’s items are updated when:

� An ordered item is received.

� An item is checked out of inventory or checked into inventory by a Lab user.

� A consumable item (such as paper or an ink cartridge) is withdrawn from inventory for use.

� The CLD must adjust the inventory. For example, if a physical inventory check reveals that a box of paper is
missing, the quantity on hand for that item must be adjusted.

University regulations specify that if a requisition is issued for an amount exceeding $500, a university-wide committee
must approve the purchase. Once approved, the requisition is sent to the purchasing department for bidding and
purchasing.

An exception to the generic rule is made only when an item is purchased under state contract. Approved items not
purchased under the state contract are sent out for bids. The purchasing department sends a purchase order to the
vendor who made the winning bid. A copy of the purchase order is sent to the UCL. After receiving the item, the UCL
issues a payment authorization to the university accounts payable department for payment of the purchase order.

When the item is received, it might be placed in the UCL to be used or it might be stored. There are several storage
locations; each can contain many different kinds of items, and each type of item can be stored in several different
locations. For example, three printers might be distributed by storing one in location A and placing the other two in
the UCL for immediate use. Supplies are withdrawn from storage as needed.

Equipment Maintenance and Repair Management
Computer equipment occasionally malfunctions. Defective equipment is usually repaired by the CLB. If the problem
cannot be solved in-house, the equipment is sent to the vendor for repair.

If a piece of equipment requires maintenance, the CLD generates an entry in the Bad Equipment Log. If the equipment
must be returned to the vendor for repair, the CLD makes an entry in the Hardware Returned for Service Log.

Note

Generic Rule

The university-wide committee requires the CLD to request items without specifying a specific brand and/or
vendor unless the CLD can document compatibility problems. You will discover later that such a generic
requirement has an effect on the entity attribute selection. For example, you must define equipment by
inventory type, as follows:

• Category: Hardware

• Class: Computer

• Type: Desktop

• Subtype: Pentium
A sample requisition for the proposed purchase of five computers would be written this way:
Five (5) computers with the following characteristics: Pentium IV processor or equivalent, minimum

clock speed: 1.5 GHz, minimum 256 MB high-speed SDRAM, 17-inch .26 dpi color monitor, 64X
CD-ROM drive, 2 MB video memory, hard drive with minimum 30 GB capacity, 3.5-inch disk drive, 100
MB Zip drive, 101 keyboard or equivalent, MS IntelliMouse or equivalent, 56K modem, speakers, MS
Windows XP Professional and MS Office XP office suite included.

35547_AppB 1/17/2006 12:17:40 Page 42

42 A P P E N D I X B

Equipment Check-Out and Check-In Management
Although the Lab budget and the general administrative responsibility are assigned to the College of Business, any
university student, professor, or staff member can use the Lab facilities. The designer asks the following questions to
identify constraints:

Lab Assistant Payroll Management
The UCL pays lab assistants (LAs) on an hourly basis and keeps track of the total hours worked by each LA during
each 14-day pay period. Each LA is assigned a work schedule (the dates and times each LA must work) and must
submit a time sheet (showing the hours actually worked) before a paycheck can be issued. The CLD reviews the time
sheets and sends them to the payroll department for further processing. Graduate assistants (GAs) are paid a monthly
stipend and work a fixed number of hours per week; they are not included in payroll calculations.

Lab Reservations Management
The UCL can be reserved by faculty members for teaching purposes. A faculty member fills out a reservation form to
reserve the Lab, specifying the date, time, department, and course number of the class to be taught. If an instructor
reserves the Lab for a small class, students not enrolled in that class may use the remaining unoccupied computers at
the instructor’s discretion. Appropriate questions here would be as follows:

Q&A

DESIGNER:

“May equipment be borrowed from the Lab?”

END USER:

“Only professors or staff members may borrow equipment from the Lab. In order to keep a record of
equipment location and use, the CLD must check out the equipment. The professor who wants to borrow the
equipment must fill out the appropriate form before removing any equipment. The check-out form requires the
user to supply a date-out and an estimated date-in. If the equipment has not been returned by the date-in
deadline, a notice is sent to the professor whose name appears on the check-out form. Student manuals and
data disks may not be borrowed; they are for use only in the Lab.”

Q&A

DESIGNER:

“Are limits placed on how often a faculty member can reserve the Lab?”

END USER:

“No, but given the Lab’s limited resources, this may be the time to define limits.”

Q&A

DESIGNER:

“How far ahead of time must the Lab be reserved?”

END USER:

“A faculty member must reserve the Lab at least one calendar week ahead of time.”

35547_AppB 1/17/2006 12:17:40 Page 43

43T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

Each reservation covers only one class; the Lab can be used by only one class during its reservation period.
Reservations are handled on a first-come, first-served basis and must be approved by the CLD.

Computer Lab Access Management
The UCL is used by students, faculty, and staff members. Upon entering the UCL, the user signs the users’ log, located
at the LA’s desk, and leaves a (valid) University ID card with the LA. When the user leaves the UCL, the LA makes
sure that all items checked out by the user (for example, manuals and instructors’ data disks) have been returned. If all
items have been returned, the LA returns the ID to the user and the user signs out in the log. As long as the UCL is
open, there are no time restrictions placed on the user, except when the UCL is reserved for a class.

As you start to understand the operations taking place, you begin to create a Volume of Information Log that estimates
the amount of data the system will manage. Table B.3 is an example of such a log, It shows the types of information
and the number of entries you expect in designated periods of time.

TABLE
B.3

A Sample Volume of Information Log

TYPE OF INFORMATION EXPECTED NUMBER OF ENTRIES PER PERIOD
Lab assistants 14 per semester
Work schedule 8 hours per workday per lab assistant
Hours worked 1 (total hours summary) entry per pay period per lab assistant
Users
Faculty
Students
Staff

300
15,000
650

Reservations 4 per week
Daily lab users 570 per day
Orders 20 per month
Items ordered 3 per order
Inventory types 15
Locations 5
Repairs 20 per month
Vendors 40

Q&A

DESIGNER:

“Is the lead time OK?”

END USER:

“Yes.”

Q&A

DESIGNER:

“Is there a daily limit on the number of reserved hours?”

END USER:

“There is currently no policy governing the number of daily Lab reservations. Given the heavy student
demand for Lab time, especially during periods when class Lab projects are due, we should place limits on the
amount of reserved time. We propose to limit reserved time to one hour in the morning and one hour in the
afternoon.”

35547_AppB 1/17/2006 12:19:11 Page 44

44 A P P E N D I X B

B.1.4 Problems and Constraints

Once you understand the UCL’s operations, you must take stock of the current system’s shortcomings. Detailed
interviews with key users are likely to reveal operational problems. As you catalog the problems, you should also begin
to examine possible causes: poor, inadequate, or absent operational procedures; lack of operational controls; or
improper application of existing procedures. Problem-source identification helps the designer develop adequate
solutions to problems.

Problems can be common (systemwide) or specific (pertaining only to portions of the system). The following common
problems are identified by UCL key users:

� The manual system is never up to date and yields a constant stream of errors, especially in inventory.

� There is too much data duplication and data inconsistency.

� The manual system does not generate useful information. It’s too impractical (time-consuming) to generate
reports.

� The system does not allow ad hoc queries.

� The CLD spends too much time manually processing data.

� The lack of a computerized inventory system makes data management difficult. Those data management
shortcomings lead to lack of control and restrict the CLD’s ability to manage the UCL equipment effectively.

Specific problem areas must be targeted. In the case of the UCL, the following operational problems are identified:

Inventory/Storage/Order Management

� The CLD does not have ready access to crucial inventory management data; for example, what items have
been ordered, from what vendor they were ordered, and what items have been ordered but have not been
received.

� The UCL needs to know the available stock and average use of supplies, such as paper and printer ink
cartridges, to effectively manage the supply inventory, to determine optimal order quantities, and to place
necessary orders.

� The CLD does not always know the actual location of an item at any given time. The current system hinders
the CLD’s ability to track inventory by category, by location, or by manufacturer.

Equipment Maintenance and Repair Management

� The CLD cannot easily generate a repair and maintenance history for each piece of equipment.

� The CLD cannot easily determine the status of items currently subject to maintenance procedures.

Equipment Check-Out/Check-In Management

� The CLD lacks timely and correct information about the Lab assets: what equipment is checked out, to whom
it was checked out, when it was checked out, and so on. Item activity summaries are not available.

Lab Assistant Payroll Management

� The CLD spends too much time reconstructing summaries of hours worked by each LA. The summaries are
useful in determining work assignments. The summaries are also necessary to adjust the UCL budget.

� The CLD cannot easily estimate student workloads. Such estimates are necessary to help the CLD distribute
work schedules more equitably among the LAs.

35547_AppB 1/17/2006 12:19:52 Page 45

45T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

Lab Reservations Management

� The manual reservations system is inadequate; it takes too long to check whether desired dates and times are
available and to complete the required paperwork.

� The current system does not provide statistical information useful for scheduling Lab reservations.

Computer Lab Access Management

� The user log is not properly maintained.

� Some students do not return certain items. Given inadequate user log entries, too often the LAs do not detect
this problem. Items have been lost from the Lab as a result of this lack of control.

� Security problems, ranging from unauthorized network access and unauthorized software installation/deletion
to the disappearance of manuals, are also a major concern, and they appear to be increasing.

Given the large number of documented problems, the conclusion is that the current manual system is inadequate. The
paperwork tends to be overwhelming, and although reams of data are collected, the data are not readily available.
What’s more, transforming the data into useful information is usually too time-consuming to be practical.

Problems are solved within two sets of constraints: operational constraints imposed by organizational policy and
economic constraints imposed by the organization’s finances.

A well-designed database system should be able to address most of the Lab’s stated problems. Consequently, the
constraints within which the system is to be designed must be carefully defined.

Time Frame

� The College of Business wants the new system to be fully operational within three months.

Hardware and Software

� The new system must be developed (to the extent possible) with existing UCL hardware and software. The
system must be operated on the UCL’s existing local area network.

Distributed Aspects and Expandability

� The new system must operate within a multiuser environment.

� The system’s operation will be independent of existing administrative systems on campus.

Cost

� The development costs of the new system must be minimal. To save expenses and to provide CIS majors with
an educational bonus, the system must be developed by CIS majors. To minimize development costs, the design
and implementation will be undertaken as a class project under the direction of a faculty member.

� The new system will use no more than two additional terminals to enable the UCL secretary and the CLD to
access the system.

� The system must operate without requiring additional personnel in the department.

� Considering budgetary constraints, the College of Business has set aside $9,500 for the new system’s
unavoidable expenses.

35547_AppB 1/17/2006 12:19:22 Page 46

46 A P P E N D I X B

B.1.5 System Objectives

After identifying the problems and constraints, the designer and end users cooperate to establish the proposed new
system’s objectives, giving priority to problems that key users deem most significant. Two sets of objectives are defined
for the UCL. First are general objectives, which define the overall system requirements. They are as follows:

� Improve operational efficiency, thereby increasing the UCL’s capacity and the UCL’s ability to expand its
operations.

� Provide useful information for planning, control, and security.

Second are specific objectives, which define the system component requirements. They are described below.

Inventory/Storage/Order Management

� Provide better control of purchase orders, allowing the CLD to check open orders and purchases.

� Monitor the stock of supply items.

� Control inventory by type (group) as well as by individual item.

� Provide quick and efficient information about the location and status of individual items.

� Provide timely information about the use of supplies and generate the statistical information required to guide
the timing and extent of future purchases.

Equipment Maintenance and Repair Management

� Monitor the maintenance history of each item.

� Keep track of items that have been returned to the vendor for repair or replacement.

Equipment Check-Out/Check-In Management

� Keep track of the items that are checked out.

� Monitor the items’ check-out time.

� Generate usage statistics for reference purposes.

Lab Assistant Payroll Management

� Provide scheduling and workload information.

� Provide work summaries for each LA.

Lab Reservations Management

� Decrease the time spent processing a reservation.

� Produce reservation schedules.

� Generate statistical summaries by department, faculty, staff member, and date (to be used for planning
purposes).

Computer Lab Access Management

� Provide tighter control over users and resources in the Lab.

� Reduce the sign-in time.

� Provide information about peak use times (to be used for scheduling purposes).

35547_AppB 1/17/2006 12:19:22 Page 47

47T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

B.1.6 Scope and Boundaries

For legal and practical design reasons, the database designer (and, indeed, the entire development team) cannot work
on a system whose operational extent has not been carefully defined and limited—that is, the designer must not work
on an unbounded system. If the system limits have not been defined, the designer may be legally required to expand
the system indefinitely. In addition, an unbounded system environment will not contain the built-in constraints that
make its use practical in a real-world environment.

To define the UCL’s database scope and boundaries, the designer must answer the following questions:

1. What will be the extent of the system? The database design will cover only the UCL portion of the
organizational chart presented in Figure B.1. It will be independent of other database systems currently used
on campus.

2. What operational areas will be covered by the system? The University Computer Lab system will cover six
operational areas (see Section B.1.3) and will address the specific objectives listed in Section B.1.5. In other
words, the system will be limited to addressing the following operational areas:

a. Inventory/storage/order management.

b. Equipment maintenance and repair management.

c. Equipment check-out/check-in management.

d. Lab assistant payroll management.

e. Lab reservations management.

f. Computer Lab access management.

3. What design and implementation strategy should be adopted to bring the system online within the
specified time constraints? To maximize the system’s design efficiency, the operational areas should be
organized into system modules. A module is a design segment that can be implemented as an autonomous
unit. Modules may be linked to produce a system. Modules are especially useful because their existence makes
it possible to implement and test the system in stages.

4. What modules must be included in the system? The operational areas discussed in Question 2 can be
classified under two headings: Lab management and inventory management. Therefore, the two modules
shown in Table B.4 are appropriate. Note that each module is composed of named processes. For example,
the Lab Management System module contains the ACCESS, RESERVATION, and PERSONNEL processes.

TABLE
B.4

Required UCL System Modules

MODULE OPERATIONAL AREA PROCESS NAME
Lab Management System Computer lab access

Reservations
Lab assistants’ payroll

ACCESS
RESERVATION
PERSONNEL

Inventory Management System Inventory
Order
Storage
Equipment maintenance and repair
Equipment check-out and check-in

INVENTORY
ORDER
STORAGE
MAINTENANCE
CHECK_OUT

5. How do the modules interface? The Inventory Management System module’s INVENTORY process is the
system’s key component; its existence enhances the CLD’s ability to monitor the Lab’s operation and to
control the Lab’s administrative functions. Figure B.2 shows that the Inventory Management System module
interfaces with the Lab Management System module through the CHECK_OUT process.

35547_AppB 1/17/2006 12:19:23 Page 48

48 A P P E N D I X B

Although the INVENTORY process will be independent of other special-purpose inventory systems used on campus,
it will use the purchasing department’s inventory item classifications. Those classifications facilitate item referencing
and querying when users are communicating with purchasing. In addition, using the classifications makes it easy to
integrate with a campuswide inventory control system in the future.

The INVENTORY process must permit:

� Registering new inventory types and individual items.

� Keeping track of an item’s location, classification, and usage.

The INVENTORY process will interface with the ORDER, STORAGE, MAINTENANCE, and CHECK_OUT
processes.

The ORDER process tracks types of inventory items that are ordered from vendors. The system will be designed to
track the purchase orders and requisitions placed by the UCL. The ORDER process will interface with the
INVENTORY process.

The MAINTENANCE process will track the in-house repairs performed on items, as well as track items returned to the
vendor for repair. The MAINTENANCE process also interfaces with the INVENTORY process because items found in
inventory may have a repair history.

The CHECK_OUT process will track the items that are checked out by the Lab’s users: faculty, staff, and students.

The ACCESS process will help the CLD track the Lab’s users. The ACCESS process will interface with the
CHECK_OUT process because some items are checked out by students, faculty, or staff members.

The RESERVATION process will track Lab reservations made by faculty or staff members. The process interfaces with:

� ACCESS (because faculty members reserve the Lab).

� PERSONNEL (because an LA records the reservation).

The PERSONNEL process will facilitate the CLD’s ability to monitor the LAs’ work schedules and actual hours worked.
This process interfaces with the RESERVATION process because LAs record Lab reservations.

FIGURE
B.2

The University Computer Lab Management System

MAINTENANCE CHECK_OUT

INVENTORYORDER

STORAGE

ACCESS

RESERVATION

PERSONNEL

Inventory Management System Lab Management System

35547_AppB 1/17/2006 12:19:23 Page 49

49T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

B.2 DATABASE DESIGN PHASE: CONCEPTUAL DESIGN

To develop a good conceptual design, you must be able to gather information that lets you accurately identify the
entities and describe their attributes and relationships. The entity relationships must accurately reflect real-world
relationships.

B.2.1 Information Sources and Users

The initial study phase generated much useful information from the system’s key users. The conceptual design phase
must be begun by confirming good information sources. The confirmation process recertifies key users and carefully
catalogs all current and prospective end users. In addition, the confirmation process targets the current system’s paper
flow and documentation, including data and report forms. No document in the paper trail is considered irrelevant at
this stage. If the paper exists, somebody must have thought it was important at some point. For the UCL, the following
have been confirmed:

� Assistant dean.

� Computer lab director (CLD).

� Computer lab secretary (CLS).

� Computer lab assistants (LA) and graduate assistants (GA).

� Students, faculty, and staff who use the Lab’s resources.

� All currently used computer lab forms, file folders, and report forms.

It is not surprising that a list of prospective system users tends to be a duplicate of at least a portion of the list of
information sources:

� The CLD (who is also the UCL system administrator) will manage the system, enter data into the database, and
define reporting requirements.

� The LA and the GA are the primary UCL system users and will enter data into the database.

� The CLS is a system user and will query and update the database.

You should create a summary table to identify all system sources and users. You can use that table for cross-checking,
thereby enabling you to audit sources and users more easily. The UCL system summary is shown in Table B.5. Note
that the summary table also identifies the proposed system modules, processes, and interfaces discussed in the previous
section.

35547_AppB 1/17/2006 12:19:23 Page 50

50 A P P E N D I X B

TABLE
B.5

Data Sources and Users

MODULE PROCESS SOURCES USERS INTERFACE
Inventory
Management
System

INVENTORY
Inventory data
Item data
Withdrawal
Repairs
Check-out
Location

ORDER
Order data
Items ordered
Items received
Inventory type
Vendors

STORAGE
Location data
Item data

MAINTENANCE
Repair
Item data
Vendor data

CHECK-OUT
Item data
Users

Inventory forms, CLD
Inventory forms
Inventory forms
Bad equipment log
Check-out forms
Inventory forms

Order forms
Order forms
Order forms, Inventory
Inventory forms, CLD
Order forms

Inventory forms
Inventory forms

Bad equipment log
Inventory forms
Inventory forms

Inventory forms
Check-out log

CLD, CLS, Dean*
CLD, CLS, Dean
CLD, CLS, Dean
CLD, CLS, Dean
CLD, CLS, Dean
CLD, CLS, Dean

CLD, CLS, Dean
CLD, CLS, Dean
CLD, CLS, Dean
CLD, CLS, Dean
CLD, CLS, Dean

CLD, CLS
CLD, CLS

CLD, CLS, GA
CLD, CLS, GA
CLD, CLS, GA

CLD, CLS, LA, GA
CLD, CLS, LA, GA

Order
Maintenance
Check-out
Maintenance
Check-out
Storage

Inventory
Inventory
Inventory
Inventory
Inventory

Inventory
Inventory

Inventory
Inventory
Inventory

Inventory
Access

Lab
Management
System

ACCESS
User

RESERVATION
Reservation data

PERSONNEL
Lab assistants
Work schedule
Hours worked

Lab usage log

Lab reservation forms

Lab assistants’ form
Work schedule form
Time sheet forms

CLD, LA

CLD, CLS, LA

CLD, CLS
CLD, CLS, LA
CLD, CLS, LA

Reservation,
Check-out

Access
Personnel
Personnel
Personnel

CLD = Computer lab director CLS = Computer lab secretary LA = Lab assistant GA = Graduate assistant
* Although the dean is not an active system user, (s)he uses the system reports for decision making.

B.2.2 Information Needs: User Requirements

A design must match relevant user requirements. Relevant requirements are based on the proposed level of
information-generating efficiency. The summary of all relevant UCL user requirements yields a general systems
requirements description, as follows:

1. The system must be easy to use. A menu-driven interface might be most appropriate.

2. The system must provide security measures by using passwords and access rights.

3. The system must be fully integrated, thus eliminating redundant data entry and redundant updates.

The system must ensure database integrity.

4. Users must be able to access the system concurrently from several workstations. The workstation location
and use must conform to the setup shown in Table B.6. Figure B.3 depicts the University Computer Lab
Management System (UCLMS) setup.

35547_AppB 1/17/2006 12:19:23 Page 51

51T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

TABLE
B.6

Workstation Assignments: Uses and Users

USER PROCESSES ACCESSED USE STATION ID
UCL director (CLD) All System administration WS3
UCL secretary (CLS) INVENTORY

ORDER
STORAGE
MAINTENANCE
CHECK_OUT
RESERVATION
PERSONNEL

Updates and queries WS4

Lab assistants (LAs)
and
Graduate assistants (GAs)

ACCESS
RESERVATION
CHECK_OUT
MAINTENANCE
PERSONNEL *

Updates and queries WS1, WS2

* Restricted access.

5. The system processes must perform the following functions:

a. PERSONNEL process. Maintains data for all LAs, their schedules, and their hours worked.

b. INVENTORY and storage process. Controls the stock of items by location as well as by inventory type.
The system must also track consumable items by recording their usage (withdrawal). The system must track
nonserialized and serialized items.

c. ORDER process. Integrates with the inventory module to establish the relationship between orders and
inventory types. The system must generate information about the total orders placed and the total cost of
orders by vendor, by order, and by inventory type. It also must be able to generate a grand total cost to be
used for budgeting.

d. MAINTENANCE process. Tracks the equipment maintenance history for all hardware. The process must
also report items that have been returned to the vendor for replacement or maintenance.

ws 4 ws 1 ws 2 ws 3

Graduate Assistant
GA

Lab Assistant
LA

UCL Director
CLD

UCL Secretary
CLS

FIGURE
B.3

UCL Management System setup summary

UCL database

35547_AppB 1/17/2006 12:19:23 Page 52

52 A P P E N D I X B

e. RESERVATION process. Allows the CLD to schedule Lab reservations easily. The system must enable
professors and staff to request a reservation online. The system must automatically show the schedule of
reservations for the requested day, and it must accept reservations according to the departmental and/or
UCL policy.

f. CHECK_OUT process. Enables the user to track items that are checked out by faculty or staff members
for their temporary use.

g. ACCESS process. Tracks the UCL’s usage rate. The system enables LAs to register students who want to
use the Lab facilities. The system will retrieve the user identification number (ID) from bar code readers
installed on the LAs’ main desk computers. The system must also allow students to check out instructors’
data disks and software manuals.

6. The system’s input requirements are, to a major extent, driven by its output requirements—that is, its desired
query and reporting capabilities. The reports required by the UCL are shown in Table B.7. The reporting
requirements help define appropriate attributes within the entities. Precise report format specifications are a
crucial part of the conceptual design process.

TABLE
B.7

UCLMS Reports

NUMBER REPORT DESCRIPTION USERS
1 Inventory movements Inventory movements by date and type CLD, CLS
2 Inventory Inventory by inventory type CLD, CLS
3 Location inventory Inventory of items by location CLD, CLS
4 Orders Orders by date, vendor, and status Dean, CLD
5 Open orders Open orders by date and vendor Dean, CLD
6 Orders payable Orders received but not paid Dean, CLD
7 Payment history Orders paid by date and vendor Dean, CLD
8 Maintenance Maintenance history by date and item CLD, GA, LA
9 Check-out Items checked out by date and user CLD, CLS
10 LA schedule Lab assistants’ schedule CLD, CLS, GA, LA
11 LA hours worked Hours worked by lab assistants CLD, CLS, GA, LA
12 Reservation schedule Reservations by date and user CLD, CLS, LA
13 UCL usage statistics Computer Lab usage statistics Dean, CLD, chairs

B.2.3 Developing the Initial Entity Relationship Model

From the database initial study and conceptual design preparations, you can identify an initial set of entities. Those
entities represent the most important information system objects as viewed by the end user and the designer. Some
of the entities represent real-world objects, such as user, lab assistant, item, location, or vendor. Others represent
information about entities, such as work schedule, hours worked, repairs, Lab use log, or reservations. The UCL will
use the entities shown in Table B.8.

TABLE
B.8

Initial UCL Entities Based on the Initial Study

ENTITY NAME ENTITY DESCRIPTION ENTITY TYPE
USER User data: includes administration, faculty, and students
LAB_ASSISTANT Lab assistant data: includes graduate assistants
WORK_SCHEDULE Lab assistant work schedule data: hours each lab assistant is

assigned to work
HOURS_WORKED Lab assistant hours worked data: actual hours worked per

each pay period for each lab assistant
Weak

LOG Daily users of the UCL: one entry for each visitor

35547_AppB 1/17/2006 12:19:24 Page 53

53T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

TABLE
B.8

Initial UCL Entities Based on the Initial Study (continued)

ENTITY NAME ENTITY DESCRIPTION ENTITY TYPE
RESERVATION Lab reservation details
INV_TYPE Inventory types
ITEM Item details
LOCATION Storage locations
REPAIR Repair data by item
VENDOR Vendor details
ORDER Order details

The designer and the end user must agree on the entities. The designer then defines the relationships among the
entities, basing them generally on the description of operations (Section B.1.3). More specifically, the entity
relationships are based on business rules that have been derived from the careful description of operational procedures.

Business rules must be both identified and verified. The UCL database designer conducts a series of interviews with key
system users: the University Computer Lab director, who is responsible for the operational administration, and the
assistant dean of the computer information systems department, who is responsible for the system’s general
administration. After the appropriate business rules are identified and incorporated into the ER model, the designer
“reads” the model to those individuals to verify its accurate portrayal of the actual and/or proposed operations. The
designer also “reads” the ER model to end users to verify that it accurately describes their actions and activities. The
verification process may yield additional entities and relationships.

The UCL ER modeling process yields the following summary of business rules, entities, and relationships:

Business Rule 1
Each item belongs to only one inventory type, and each inventory type may have zero, one, or many items
belonging to it.

To clarify this business rule, look at the sample data shown in Table B.9. Note that an inventory type is a classification
that includes all items within a given category. For example, the Dell Dimension and the Toshiba are both personal
computers.

TABLE
B.9

Examples of Inventory Types

INVENTORY TYPE ITEM
CATEGORY CLASS TYPE SUBTYPE ITEM ID DESCRIPTION
Hardware Personal computer Desktop Pentium 3233452 Dell Dimension, 128 MB

RAM, 20 GB hard drive,
100 MB ZIP drive

Hardware Personal computer Laptop Pentium 3312455 Toshiba 128 MB RAM, 16
GB hard drive

Hardware Printer Laser BW 312246 HP LaserJet IV
Hardware Printer Ink-jet Color 313225 HP 592e color printer
Hardware Printer Laser Color 316757 Xerox Network printer
Supply Paper Single sheet 8.5” x 11” Laser printer paper
Supply CD Blank R/W Recordable CD
Supply Cartridge Ink-jet Color Color ink-jet cartridge

As you examine the entries in Table B.9, note that each individual item belongs to only one inventory type.

35547_AppB 1/17/2006 12:19:24 Page 54

54 A P P E N D I X B

The first business rule leads to the ER model segment shown in Figure B.4.

Business Rule 2
An item may be put in use upon its arrival, or it may be stored. In other words, an item might not be stored at all. Some
items, such as printer cartridges, are part of a generic grouping and may be stored in more than one location.
Therefore, some items could be stored in zero, one, or more locations. Each storage location might store zero, one,
or many items. (See Figure B.5.)

Business Rule 3
An order references only one vendor, and each vendor may have zero, one, or many orders. (See Figure B.6.)

FIGURE
B.4

The ER model segment for business rule 1

FIGURE
B.5

The ER model segment for business rule 2

FIGURE
B.6

The ER model segment for business rule 3

35547_AppB 1/17/2006 12:20:56 Page 55

55T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

Business Rule 4
Each order contains one or many ordered items, and each ordered item line belongs to only one order. (See Figure B.7.)

Business Rule 5
Each ordered item line corresponds to one inventory type, and each inventory type can be referenced by one or many
order item lines. (See Figure B.8.)

Example:

Business Rule 6
Each item may require zero, one, or many repairs, and each repair entry refers to only one item. (See Figure B.9.)

FIGURE
B.7

The ER model segment for business rule 4

ORDERED ITEM PENTIUM COMPUTER
Inventory type Category: Hardware

Class: Computer
Type: Desktop
Subtype: Pentium

Item 3233452 Serial number
Dell Dimension Pentium IV

FIGURE
B.8

The ER model segment for business rule 5

35547_AppB 1/17/2006 12:22:11 Page 56

56 A P P E N D I X B

Business Rule 7
Each item to be repaired may or may not be returned to the vendor (the CLD repairs some of them), and each vendor
may have zero, one, or many repair items returned. (See Figure B.10.)

Business Rule 8
Each user may check out zero, one, or many items, and each item may be checked out by zero, one, or many users
during the semester. (See Figure B.11.)

FIGURE
B.9

The ER model segment for business rule 6

FIGURE
B.10

The ER model segment for business rule 7

FIGURE
B.11

The ER model segment for business rule 8

35547_AppB 1/17/2006 12:20:56 Page 57

57T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

Business Rule 9
Each (faculty or staff) user may withdraw zero, one, or many items, and each item may be withdrawn by zero, one,
or many users during the semester. (See Figure B.12.)

Business Rule 10
Each (student) user may sign into the user log many times during the semester, and each user log entry is made by only
one (student) user. (See Figure B.13.)

Business Rule 11
Each (faculty) user may place zero, one, or many reservations during the semester, and each reservation is placed by
one faculty member. (See Figure B.14.)

FIGURE
B.12

The ER model segment for business rule 9

FIGURE
B.13

The ER model segment for business rule 10

35547_AppB 1/17/2006 12:20:56 Page 58

58 A P P E N D I X B

Business Rule 12
Each reservation is recorded by an LA, and each LA may record zero, one, or many reservations during the semester.
(See Figure B.15.)

Business Rule 13
Each LA is assigned to work at least one day in each week’s work schedule, and each work schedule assignment is
made for one LA. (See Figure B.16.)

Business Rule 14
Each LA accumulates hours worked during each two-week pay period, and each “hours worked” entry is associated
with one LA. (See Figure B.17.)

FIGURE
B.14

The ER model segment for business rule 11

FIGURE
B.15

The ER model segment for business rule 12

FIGURE
B.16

The ER model segment for business rule 13

35547_AppB 1/17/2006 12:20:57 Page 59

59T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

Business Rule 15
Each item is supplied by a specific vendor, and each vendor may supply several different items. (See Figure B.18.)

Although Tables B.8 and B.10 contain similar information, they reflect different stages in the entity relationship
modeling process. Table B.8 shows the initial entity information that is derived from the UCL description of
operations. That description is the source of the UCL’s business rules. Business rules often generate questions that
cause additional entities, relationships, and attributes to be identified. In addition, as the entities and their relationships
generate ERD segments, the modeling process may uncover the need for additional entities and/or relationships. The
entity information presented in Table B.10 reflects the results of this dynamic modeling process.

Table B.10 summarizes the proposed UCL management system’s entities. The ER components identified thus far come
together in an ER diagram. Figure B.19 represents the database as seen by the end users and designer at this point.

FIGURE
B.17

The ER model segment for business rule 14

FIGURE
B.18

The ER model segment for business rule 15

Note

Remember that a student can check out items only while (s)he is in the Lab. While such a constraint is written
as a business rule, this restriction cannot be represented in the ER diagram; instead, it must be reflected in the
program code to conform to the UCL’s operational procedures.

35547_AppB 1/17/2006 12:20:57 Page 60

60 A P P E N D I X B

TABLE
B.10

UCL Entities Based on the Business Rules

ENTITY NAME ENTITY DESCRIPTION ENTITY TYPE
USER User data
LAB_ASSISTANT Lab assistant data
WORK_SCHEDULE Lab assistant work schedule data
HOURS_WORKED Lab assistant hours worked data Weak
LOG Daily users of the UCL
RESERVATION Lab reservations data
INV_TYPE Inventory type data
ITEM Items data
CHECK_OUT Item check-out data
WITHDRAW Supply withdrawal data
LOCATION Location in which item is stored
STORAGE Item storage data Composite
REPAIR Repair data
VENDOR Vendor data
ORDER Order data
ORDER_ITEM Items ordered data Weak

Note

Business rules are generated from many sources, such as multiple end users, forms, and manuals. Therefore,
business rules are not generated in any particular order. For example, you began this appendix’s business rule
summary by specifying the inventory business rules, you shifted to the end users and their Lab activities, and
then you returned to inventory business rules. Those business rules were then converted into ER segments,
which were then placed in the framework shown in Figure B.19. If necessary, you can start anywhere in the ER
diagram and organize the business rules to match a path you trace through the design. Or you can group the
business rules to match the processes. Although this business rule rearrangement may appeal to your desire for
organization, it is not required.

Also keep in mind that different end users tend to view data relationships at different levels. For example,
note that the M:N relationship between ITEM and LOCATION is represented by a composite entity named
STORAGE. (Note that the STORAGE entity’s PK consists of the PKs of the related tables, thus making STORAGE
a composite entity.) Compare that relationship implementation with one for the M:N relationship between
ORDER and INV_TYPB. In the latter case, the ORDER_ITEM entity’s PK is composed of OI_LINE and ORD_ID,
thereby making the ORDER_ITEM entity weak. Note that the original business rule expressing the M:N
relationship between ITEM and LOCATION may be written as:

An ITEM may be stored in many LOCATIONs, and each LOCATION may be used to store many ITEMs.

However, that M:N relationship gives rise to two 1:M relationships that are expressed by these two
business rules:

1. Each ITEM may be found one or more times in STORAGE, and each STORAGE (location) may
contain many ITEMs.

2. Each LOCATION may be referenced one or more times in STORAGE, and each STORAGE entry
references one and only one LOCATION.

In short, the database designer must integrate the design components while keeping in mind the following:

• The design is based on multiple information sources.

• The order in which the business rules are developed and yield ER segments is immaterial.

• Different end users view relationships from different perspectives. Thus, the designer must make profes-
sional judgments about the way in which those perspectives are reflected in the database design.

35547_AppB 1/18/2006 12:15:14 Page 61

61T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

FIGURE
B.19

The UCL management system’s initial ERD

35547_AppB 1/17/2006 12:20:58 Page 62

62 A P P E N D I X B

K e y T e r m s

module, 48 nonserialized items, 41 serialized items, 41

R e v i e w Q u e s t i o n s

1. What factors relevant to database design are revealed during the initial study phase?

2. Why is the organizational structure relevant to the database designer?

3. What is the difference between the database design scope and its boundaries? Why is the scope and boundary
statement so important to the database designer?

4. What business rule(s) and relationships can be described for the ERD shown in Figure QB.4?

5. Write the connectivity and cardinality for each of the entities shown in Question 4.

6. What is a module, and what role does a module play within the system?

7. What is a module interface, and what does it accomplish?

FIGURE
QB.4

The ERD for question 4

35547_AppB 1/17/2006 13:21:20 Page 63

63T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

P r o b l e m s

1. Modify the initial ER diagram presented in Figure B.19 to include the following entity supertype and subtypes:
The University Computer Lab USER may be a student or a faculty member.

2. Using an ER diagram, illustrate how the change you made in Problem 1 affects the relationship of the USER
entity to the following entities:

a. LOG

b. RESERVATION

c. CHECK_OUT

d. WITHDRAW

3. Create the initial ER diagram for a car dealership. The dealership sells both new and used cars, and it operates
a service facility. Base your design on the following business rules:

a. A salesperson can sell many cars, but each car is sold by only one salesperson.

b. A customer can buy many cars, but each car is sold to only one customer.

c. A salesperson writes a single invoice for each car sold.

d. A customer gets an invoice for each car (s)he buys.

e. A customer might come in only to have a car serviced; that is, one need not buy a car to be classified as a
customer.

f. When a customer takes in one or more cars for repair or service, one service ticket is written for each car.

g. The car dealership maintains a service history for each car serviced. The service records are referenced by
the car’s serial number.

h. A car brought in for service can be worked on by many mechanics, and each mechanic can work on many cars.

i. A car that is serviced may or may not need parts. (For example, parts are not necessary to adjust a carburetor
or to clean a fuel injector nozzle.)

4. Create the initial ER diagram for a video rental shop. Use (at least) the following description of operations on
which to base your business rules.

The video rental shop classifies movie titles according to their type: comedy, western, classical, science fiction, cartoon,
action, musical, or new release. Each type contains many possible titles, and most titles within a type are available in
multiple copies. For example, note the summary in the following table of the relationship between video rental type
and title.

Keep the following conditions in mind as you design the video rental database:

� The movie type classification is standard; not all types are necessarily in stock.

TYPE TITLE COPY
Musical My Fair Lady

My Fair Lady
Oklahoma!
Oklahoma!
Oklahoma!

1
2
1
2
3

Cartoon Dilly Dally & Chit Chat Cat
Dilly Dally & Chit Chat Cat
Dilly Dally & Chit Chat Cat

1
2
3

Action Amazon Journey
Amazon Journey

1
2

35547_AppB 1/17/2006 12:20:58 Page 64

64 A P P E N D I X B

� The movie list is updated as necessary; however, a movie on that list might not be ordered if the video shop
owner decides that the movie is not desirable for some reason.

� The video rental shop does not necessarily order movies from all vendors on the vendor list; some vendors on
the vendor list are merely potential vendors from whom movies may be ordered in the future.

� Movies classified as new releases are reclassified to an appropriate type after they have been in stock for more
than 30 days. The video shop manager wants to have an end-of-period (week, month, year) report for the
number of rentals by type.

� If a customer requests a title, the clerk must be able to find it quickly. When a customer selects one or more
titles, an invoice is written. Each invoice can contain charges for one or more titles. All customers pay in cash.

� When a customer checks out a title, a record is kept of the check-out date and time and the expected return
date and time. When rented titles are returned, the clerk must be able to check quickly whether the return is
late and to assess the appropriate late return fee.

� The video store owner wants to generate periodic revenue reports by title and by type. The owner also wants
to generate periodic inventory reports and track titles on order.

� The video store owner, who employs two (salaried) full-time and three (hourly) part-time employees, wants to
keep track of all employee work time and payroll data. Part-time employees must arrange entries in a work
schedule, while all employees sign in and out on a work log.

5. Suppose a manufacturer produces three high-cost, low-volume products: P1, P2, and P3. Product P1 is
assembled with components C1 and C2; product P2 is assembled with components Cl, C3, and C4; and product
P3 is assembled with components C2 and C3. Components may be purchased from several vendors, as shown
in the following table.

Each product has a unique serial number, as does each component. To track product performance, careful records are
kept to ensure that each product’s components can be traced to the component supplier.

Products are sold directly to final customers; that is, no wholesale operations are permitted. The sales records include
the customer identification and the product serial number. Using the preceding information, do the following:

a. Write the business rules governing the production and sale of the products.

b. Create an ER diagram capable of supporting the manufacturer’s product/component tracking requirements.

6. Create an ER diagram for a hardware store. Make sure you cover (at least) store transactions, inventory, and
personnel. Base your ER diagram on an appropriate set of business rules that you develop. (Note: It would be
useful to visit a hardware store and conduct interviews to discover the type and extent of the store’s operations.)

7. Use the following brief description of operations as the source for the next database design.

All aircraft owned by ROBCOR require periodic maintenance. When maintenance is required, a maintenance log
form is used to enter the aircraft identification number, the general nature of the maintenance, and the
maintenance starting date. A sample maintenance log form is shown in Figure PB.7A.

VENDOR COMPONENT SUPPLIED
V1 C1, C2
V2 C1, C2, C3, C4
V3 C1, C2, C4

35547_AppB 1/17/2006 12:20:58 Page 65

65T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

Note that the maintenance log form contains a space used to enter the aircraft release date and a signature space for
the supervising mechanic who releases the aircraft into service. Each maintenance log form is numbered sequentially.
Note: A supervising mechanic is one who holds a special Federal Aviation Administration (FAA) Inspection
Authorization (IA). Three of ROBCOR’s ten mechanics hold such an IA.

Once the maintenance log form is initiated, the maintenance log form’s number is written on a maintenance specification
sheet, also known as a maintenance line form. When completed, the specification sheet contains the details of each
maintenance action, the time required to complete the maintenance, parts (if any) used in the maintenance action, and
the identification of the mechanic who performed the maintenance action. The maintenance specification sheet is the
billing source (time and parts for each of the maintenance actions), and it is one of the sources through which parts
use may be audited. A sample maintenance specification sheet (line form) is shown in Figure PB.7B.

FIGURE
PB.7A

The maintenance log form

35547_AppB 1/17/2006 12:20:59 Page 66

66 A P P E N D I X B

Parts used in any maintenance action must be signed out by the mechanic who used them, thus allowing ROBCOR
to track its parts inventory. Each sign-out form contains a listing of all parts associated with a given maintenance log
entry. Therefore, a parts sign-out form contains the maintenance log number against which the parts are charged. In
addition, the parts sign-out procedure is used to update the ROBCOR parts inventory. A sample parts sign-out form
is shown in Figure PB.7C.

Mechanics are highly specialized ROBCOR employees, and their qualifications are quite different from those of an
accountant or a secretary, for example.

Given this brief description of operations and using the Chen ER methodology, draw the fully labeled ER diagram.
Make sure you include all appropriate relationships, connectivities, and cardinalities.

8. You have just been employed by the ROBCOR Trucking Company to develop a database. To gain a sense of the
database’s intended functions, you spent some time talking to ROBCOR’s employees and you examined some
of the forms used to track driver assignments and truck maintenance. Your notes include the following
observations:

� Some drivers are qualified to drive more than one type of truck operated by ROBCOR. A driver may, therefore,
be assigned to drive more than one truck type during some period of time. ROBCOR operates several trucks
of a given type. For example, ROBCOR operates two panel trucks, four half-ton pick-up trucks, two single-axle
dump trucks, one double-axle truck, and one 16-wheel truck. A driver with a chauffeur’s license is qualified to
drive only a panel truck and a half-ton pick-up truck and, thus, may be assigned to drive any one of six trucks.
A driver with a commercial license with an appropriate heavy equipment endorsement may be assigned to drive
any of the nine trucks in the ROBCOR fleet. Each time a driver is assigned to drive a truck, an entry is made
in a log containing the employee number, the truck identification, and the sign-out (departure) date. Upon the
driver’s return, the log is updated to include the sign-in (return) date and the number of driver duty hours.

FIGURE
PB.7B

The maintenance line form

35547_AppB 1/17/2006 13:22:22 Page 67

67T H E U N I V E R S I T Y L A B : C O N C E P T U A L D E S I G N

� If trucks require maintenance, a maintenance log is filled out. The maintenance log includes the date the
truck was received by the maintenance crew. The truck cannot be released for service until the maintenance
log release date has been entered and the log has been signed off by an inspector.

� All inspectors are qualified mechanics, but not all mechanics are qualified inspectors.

� Once the maintenance log entry has been made, the maintenance log number is transferred to a service log
in which all service log transactions are entered. A single maintenance log entry can give rise to multiple
service log entries. For example, a truck might need an oil change as well as a fuel injector replacement, a
brake adjustment, and a fender repair.

� Each service log entry is signed off by the mechanic who performed the work. To track the maintenance
costs for each truck, the service log entries include the parts used and the time spent to install the part or
to perform the service. (Not all service transactions involve parts. For example, adjusting a throttle linkage
does not require the use of a part.)

� All employees are automatically covered by a standard health insurance policy. However, ROBCOR’s
benefits include optional copaid term life insurance and disability insurance. Employees may select both
options, one option, or no options.

Given those brief notes, create the ER diagram. Make sure you include all appropriate entities and relationships and
define all connectivities and cardinalities.

FIGURE
PB.7C

The parts sign-out form

35547_AppB 1/18/2006 12:24:6 Page 68

68 A P P E N D I X B

Preview

THE UNIVERSITY LAB: CONCEPTUAL DESIGN
VERIFICATION, LOGICAL DESIGN, AND

IMPLEMENTATION

This appendix will verify the ER model developed in Appendix B, “The University Lab:

Conceptual Design.” Verification represents the link between the database modeling and

design activities and the database applications design. Therefore, the verification process

requires that you identify and define all database transactions (insert, update, delete, and

outputs) and be flexible enough to support expected enhancements and modifications.

The verification process will also enable the designer to find and eliminate unnecessary data

redundancies, to help ensure database integrity, to discover appropriate enhancements, and

to verify that all stated end-user requirements are met.The verification process includes the

integration of all of the different end-user views of the database, each with its own set of

requirements and transactions. In this appendix, as in the real world, the verification process

leads to modifications in the initial ER model. This verification process makes use of

normalization procedures that are usually considered to be part of the logical design phase.

However, in a real-world environment, the verification process generally uses modeling and

normalization procedures concurrently. (See Chapter 9, “Database Design.”) The modifica-

tions may include the creation and/or deletion of new entities, additional attributes in

existing entities, and relationships.

Before the verification process can begin, you must identify and define all attributes and

domains for each entity in the initial ER model and normalize the entities. You must also

select a proper primary key and place foreign keys to link the entities.After completing the

verification process, you finish the design process by formulating the logical and physical

models.

C

A
P

P
E

N
D

I
X

41199_AppC 11/1/2007 15:58:29 Page 69

C.1 COMPLETING THE CONCEPTUAL AND LOGICAL DATABASE DESIGNS

The conceptual database blueprint developed in Appendix B is still in rough-draft format. Although it helps you define
the basic characteristics of the database environment, the design lacks the details that allow you to implement it
effectively. Using an analogy, if an architect’s blueprint shows a wall, it is important to know whether that wall will be
made of board, brick, block, or poured concrete and whether that wall will bear a load or merely act as a partition. In
short, detail matters.

Before continuing, you might find it helpful to review Chapter 9, Section 9.3 (“The Database Life Cycle (DBLC),”
including Figure 9.3). Doing this will help you evaluate what is accomplished in Appendix B and determine what
remains to be done. In Chapter 9, you completed:

� Phase 1 (the database initial study) of the Database Life Cycle (DBLC). Note particularly the summary
presented in Figure 9.4.

� The initial pass through the DBLC’s Phase 2 (the database design phase). You completed Steps 1–3 in Table
9.1. That is, in Appendix B, you identified, analyzed, and refined the business rules; identified the main entities;
and identified the relationships among those entities.

In this appendix, you will complete the conceptual and logical designs for the University Computer Lab’s database. The
physical design elements will be presented, and you will examine the issues to be confronted in the implementation
phase. Table C.1 shows the specific tasks addressed.

TABLE
C.1

Tasks Addressed in This Chapter

TASK SECTION
Entity relationship modeling and normalization C.2
Data model verification C.3
Logical design C.4
Physical design C.5
Implementation C.6
Testing and evaluation C.7
Operation C.8

The initial ER diagram in Appendix B (Figure B.19) will serve as the starting point. In other words, you will use the
initial design as the basis for attribute definition, table normalization, and model verification to see if the design meets
processing and information requirements. Keep in mind that the activities described are often concurrent and iterative.
That is, they often take place simultaneously and are often repeated. For example, the definition of entities and their
attributes is subject to normalization, which can generate additional entities and attributes, which are subject to
normalization. If done properly, that process will yield an ER model whose entities, attributes, and relationships are
capable of supporting the end-user data, information, and processing requirements.

To facilitate the completion of the conceptual model, you will use two modules, each supporting a functional area of
the University Computer Lab. Those two modules, first introduced in Appendix B, Table B.4, are the:

� Lab Management System, which reflects the Lab’s daily operations. This module targets the Lab’s users, the
people who work in the Lab, and the scheduling of Lab resources. This module allows the computer lab
director (CLD) to track the Lab’s resources by user type, department, and so on. Such tracking will be an
important resource when the Lab’s budget is written.

41199_AppC 11/1/2007 15:58:59 Page 70

70 A P P E N D I X C

� Inventory Management System, in which the equipment, supplies, orders, and repairs are tracked. (For
example, equipment sent out for repair is temporarily removed from inventory, while repaired equipment is
returned to inventory.) This module also allows the CLD to track equipment that is temporarily checked out
for use by faculty members and staff.

A list of the entities identified during this process, as well as the attribute prefixes used, is shown in Table C.2.

TABLE
C.2

The UCL Design Organization

MODULE ENTITIES ATTRIBUTE PREFIX
Lab Management System USER

LOG
LAB_ASSISTANT
WORK_SCHEDULE
HOURS_WORKED
RESERVATION
RES_SLOT

USER_
LOG_
LA_
SCHED_
HW_
RES_
RSLOT_

Inventory Management System INV_TYPE
ITEM
STORAGE
LOCATION
REPAIR
VENDOR
ORDER
ORDER_ITEM
WITHDRAW
WD_ITEM
CHECK_OUT
CHECK_OUT_ITEM
INV_TRANS
TR_ITEM

TY_
ITEM_
STOR_
LOC_
REP_
VEND_
ORD_
OI_
WD_
WI_
CO_
CI_
TRANS_
TI_

As you compare the entities listed in Table C.2 with the initial database design shown in Appendix B, you will note
that several new entities have been introduced. For example, RES_SLOT has emerged because a single RESERVA-
TION might trigger more than one reservation date and time. For example, on 11-Jan-2006, a professor might make
three Lab reservations: from 8:00 a.m.–8:50 a.m. and from 1:00 p.m.–1:50 p.m. on 23-Jan-2006 and from 6:00
p.m.–8:40 p.m. on 25-Jan-2006. Therefore, there is a 1:M relationship between RESERVATION and RES_SLOT.
The new entities will be discussed as you develop each module within the system. You will also discover that some of
the entities shown in Table C.2 will be replaced by other entities during the revision process.

C.2 COMPLETING THE CONCEPTUAL DESIGN: ENTITIES, ATTRIBUTES, AND NORMALIZATION

Section C.1 described two system modules. Each module’s entities and their attributes will be defined next. Even as
they are defined, entities and attributes are subject to the revisions that are often triggered by normalization. In other
words, normalization is treated as an integral part of the ER modeling process. Therefore, functional dependencies are
monitored carefully. The normalization techniques demonstrated in Chapter 5, “Normalization of Database Tables,”
are used to discover new entities and some practical ways to evaluate their functions. The entities and their attributes
are also subject to revision as they are evaluated in terms of end-user requirements.

The normalization techniques will not be covered again in this appendix. The structures presented here, however, have
all been subjected to proper evaluation of their normalization levels. Your knowledge of the normalization principles

35547_AppC 1/18/2006 9:47:0 Page 71

71C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

and techniques will be necessary as you create and revise the entities and their attributes. As the revised model is
developed, keep in mind the often conflicting requirements of design elegance, information requirements, and
processing speed.

C.2.1 The Lab Management System Module

Before examining the structure of each of the Lab Management System module components, let’s look at the ER
segment presented in Figure C.1.

The ER segment in Figure C.1 will be used as a map to track where you are in the process and where you are going. Using
Figure C.1 and Table C.2 as a guide, let’s begin by examining the USER entity’s characteristics, shown in Table C.3.

FIGURE
C.1

The Lab Management System module’s ER segment

35547_AppC 1/18/2006 9:47:0 Page 72

72 A P P E N D I X C

TABLE
C.3

The USER Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY (PK)
AND/OR FOREIGN
KEY (FK)

REFERENCES

USER_ID User identification code PK
DEPT_CODE Department code
USER_TYPE User type:

Fac = Faculty
Staff = Staff
Stu = Student

USER_CLASS User class:
UG = Undergraduate
GR = Graduate
Fac = Faculty
Staff = Staff

USER_GENDER M = Male
F = Female

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

As you examine Table C.3, note that the DEPT_CODE attribute has been added, which lets the CLD track which
departments use the Lab facilities. That information is important because departments share the Lab’s budgeting
equation; departments using the Lab more frequently contribute more to its operation than departments using the Lab

Note

To let you focus on the relationships among the entities, all of the ERDs used in this chapter will show only the
PK and FK attributes for each of the entities. You may, of course, add the additional attributes that will be defined
for you in each of the summary tables.

If you use Visio Professional or any similar CASE tool to design the database, remember that you create only
an entity’s PK attribute at the entity level if its relationship to its parent entity is non-identifying. You never define
the FK at the entity level for any entity, no matter what its relationship(s) to other entities. Instead, first create the
entities and their PK attributes—as long as none of those PK attributes is inherited from related entities. If you
use Visio Professional, attaching the relationship lines will ensure that the following actions are taken:

• All of the FKs will be inserted into the entities to properly reflect the relationships that you have defined for
those entities.

• All of the PK components that are inherited from related entities will be properly inserted into each entity
that requires the use of such inherited PK attribute(s).

• The FKs will always inherit the attribute characteristics from the PKs to which they point. That means you
will never see an “incompatible data type” error message when you try to implement the design.

• The software will automatically check for inconsistent relationships, circular relationships, and incorrectly
defined relationships. Therefore, you will, in effect, have a built-in design quality control feature.

Most CASE tools provide such PK/FK design services, and you should make use of those services when they
are available. After all, the objective is to produce a clean design that can be implemented successfully. Once
you know that the design contains no logical or implementation-level flaws, you can add the remaining
attributes.

Naturally, if you are doing the preliminary design using pencil and paper—you are using a design tool that
does not provide the just-described services—you will have to write all of the PK attributes and FK attributes at
the entity level so you can see what the implementation implications are. In effect, you will be serving the same
role as the “update foreign keys” function you’ll find in most advanced database design software.

35547_AppC 1/18/2006 9:47:1 Page 73

73C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

less frequently. Therefore, the ability to count Lab use by department code is important. Although the DEPT_CODE
is clearly a foreign key to a DEPARTMENT entity, there is no information requirement at this time for more detailed
departmental data. Therefore, DEPARTMENT will not be included in this design, and the DEPT_CODE in the USER
entity has not been designated as an FK at this point.

Note that the USER table structure produces some redundancy. For example, USER_CLASS clearly determines the
USER_TYPE. If you know that USER_CLASS = UG, you also know that USER_TYPE is Stu. On the other hand,
USER_TYPE is not a determinant of USER_CLASS because Stu can mean either UG or GR. In any case, you now
know that the table is in 2NF. To eliminate the 2NF condition, you could combine USER_TYPE and USER_CLASS
into a single attribute represented by a string to portray Stu/UG, Stu/GR, Fac, and Staff. However, because the
university requires a report that shows Lab usage summaries by faculty, staff, and students, the current table structure
is desirable. Additionally, the report requires a breakdown by various student subcategories (graduate/undergraduate,
male/female). Real-world database design often requires a trade-off between information efficiency and design purity.
Some sample USER data are shown in Figure C.2.

As you examine the data shown in Figure C.2, you should note that when the USER_TYPE is Fac or Staff, the
USER_CLASS is also Fac or Staff. That duplication serves reporting requirements well because it enables you to
generate USER_CLASS summaries easily. Finally, note that hyphens have been used in the USER_ID data. Social
Security numbers are read more easily when hyphens are used, and the cost of including hyphens in the string is only
2 bytes per entry. Data storage is cheap and getting cheaper, so the extra 2 bytes per USER_ID entry do not create
much of a burden. On the other hand, if the data search is keyed to the Social Security number, the search speed is
enhanced when the dashes are not included in an alphanumeric attribute. Modern database systems do provide the
designer with an option to use input masks for presentation purposes (999-99-9999, rather than 999999999)
without storing the dashes in the database table. As always, database professionals are expected to use sound
judgment to balance competing requirements.

Note

The USER entity was initially created to prototype the system and to make sure that a working database could
be supplied within this chapter. In the USER table, USER_ID, DEPT_CODE, and USER_TYPE can be used to
summarize Lab usage for budgeting purposes.

As in most real-world database designs, the University Computer Lab Management System's (UCLMS) actual
user data are part of an existing external database. That external database is controlled and maintained by the
university. Its data entry procedures and structures are different from those addressed in the UCLMS design. For
example, the Lab's user data are entered through a magnetic card reader that targets many more variables than
are included here. Adding those variables to the design shown in this chapter would not add insight into the
crucial design verification process on which you want to focus. For the same reason, the entities DEPARTMENT
and COLLEGE were not included. (The inclusion of the DEPT_CODE in USER is sufficient to track Lab usage
without having to access departmental and college details.) However, some aspects of the actual system's
structure and information requirements are addressed in the problems in Chapter 13, “Business Intelligence and
Data Warehouses.”

Also, the data used in this chapter constitute a very small subset of the actual data. For example, the real
system currently records over 30,000 Lab-use entries per semester, and that tally is growing rapidly. Finally, to
conform to privacy requirements, all data values have been simulated.

41199_AppC 11/5/2007 8:49:42 Page 74

74 A P P E N D I X C

Following the module layout in Table C.2, the LOG entity is examined next, represented by the LOG table. Each time
a USER accesses the Lab facilities, that user’s identification is read into the log by one of two magnetic card readers.

The LOG entity details are shown in Table C.4.

TABLE
C.4

THE LOG ENTITY

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

LOG_DATE Log-in (system) date PK
LOG_TIME Log-in (system) time PK
LOG_READER Magnetic card reader

number
PK

USER_ID User identification (ID) FK USER
* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

FIGURE
C.2

Sample USER data

Note

To prototype the system and keep the database self-contained, the USER entry procedure has been modified.
For example, if a USER_ID does not match a record in the USER table, the USER table is updated by the addition
of the new user. Keep in mind that the real system must provide security, so it must refuse entry to a user whose
identification does not match an existing record in the externally managed student database.

35547_AppC 1/18/2006 9:47:58 Page 75

75C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

Table C.4 shows a composite primary key based on LOG_DATE, LOG_TIME, and LOG_READER. The assumption
is that it is impossible for any magnetic card reader to record the same time (to the second) for more than one entry
because it takes a few seconds to complete the magnetic card swipe. If LOG_READER is not part of the primary key,
it is possible that two different card readers swiped at the same time would record the same time and, thus, violate the
entity integrity requirement.

The LOG’s sample data are shown in Figure C.3.

As you examine the LOG data in Figure C.3, it might occur
to you that adding an attribute such as LOG_ID would
eliminate the need for a composite primary key. You might
also argue that such a LOG_ID attribute would be redundant
because the combination of LOG_DATE, LOG_TIME, and
LOG_READER already performs the primary key function.
That’s true enough. But the existence of a candidate key is
not structurally damaging, and a single-attribute primary key
decreases system overhead by diminishing the primary key
index requirements. Here is yet another example of the
many decisions that the database designer must make. (As
you can tell, the decision was made to stick with the
composite primary key.) Try to answer questions such as
these: Is the attribute necessary or useful? If it is useful, what
is the cost of creating and using it? What function does it
have that cannot be well served by other attributes? As you
can see, database design requires the use of professional
judgment.

The CLD manages a group of lab assistants (LAs). The
University’s policy is to limit the Lab staffing for daily operations to graduate assistants (GAs), student workers (SW),
and work study students (WS). The GAs are limited to a 20-hour work week, the SWs are limited to a 10-hour work
week, and the WSs are limited to a 4-hour work week. The LA attributes are summarized in Table C.5.

TABLE
C.5

The LAB_ASSISTANT Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

LA_ID Lab assistant identification PK
LA_NAME Lab assistant name C
LA_PHONE Lab assistant campus phone C
LA_SEMESTER Most recent working

semester
C

LA_TYPE Lab assistant classification:
GA = Graduate assistant
SW = Student worker
WS = Work study student

LA_HIRE_DATE Date hired
* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

FIGURE
C.3

Sample LOG data

35547_AppC 1/18/2006 10:29:12 Page 76

76 A P P E N D I X C

As you examine Table C.5, remember that information requirements often determine the degree to which composite
entities are decomposed. For example, it is likely that the CLD will want to generate a phone list to simplify contacting
LAs. Therefore, the decomposition of the LA_NAME into its component first name, last name, and initial is
appropriate. On the other hand, it is unlikely that much will be gained by decomposing a phone number such as
4142345 into the 414 exchange number and its 2345 extension. Although information needs are generally better
served by greater atomism, the needless proliferation of attributes increases complexity without generating appropriate
return benefits. Similarly, the LA_SEMESTER is expressed by entries such as SPRING06 to indicate the most recent
semester during which the LA was working. End-user reporting requirements indicate that little would be gained by
decomposing that entry into the SPRING semester designation and the 06 year designation.

A few of the LAB_ASSISTANT records are shown in Figure C.4 to illustrate the data entries.

To keep track of the LA work schedules, the CLD keeps a scheduling sheet like the one shown in Table C.6. Table
C.6 defines the attributes of the WORK_SCHEDULE entity, which is shown in Table C.7.

FIGURE
C.4

Sample LAB_ASSISTANT data

Note

The LA_SEMESTER attribute enables the CLD to check whether an LA is available for assignment during the
current semester. Some LAs work in the Lab one semester, perform cooperative duties the next semester, and
return to their Lab assignment the following semester. Thus, a FALL05 entry would indicate that the LA’s last
work assignment was during the Fall of 2005. Because LAB_ASSISTANT records are purged (and archived) after
the LA’s graduation, termination, or resignation, an LA_SEMESTER designation other than the current semester’s
indicates the last semester during which the LA worked.

35547_AppC 1/18/2006 10:29:13 Page 77

77C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

TABLE
C.6

The Lab Assistant Work-Scheduling Sheet

TIME SLOT MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY

06−08

1. Jones (GA) Thomas
(GA) Gabril (GA) Evans (GA) Hernando

(GA)

2. Jamerson
(WS)

Chung
(SW)

Chung
(SW) Tabrin (GA) Mustava

(GA)

3. Hernando
(GA)

Womack
(SW)

Thomas
(GA) Jones (GA) Tabrin (GA)

4. Vann (SW) Dalton
(SW)

Smith, C
(SW)

Smith, C
(SW)

Rommel
(SW)

08−10

1. Jones (GA) Thomas
(GA) Gabril (GA) Evans (GA) Hernando

(GA)

2. Hernandez
(GA) Porter (WS) Chung

(SW) Tabrin (GA) Mustava
(GA)

3. Jamerson
(WS)

Womack
(SW)

Thomas
(GA)

Dalton
(SW) Tabrin (GA)

4. Vann (SW) Chung
(SW)

Smith, C
(SW)

Smith, C
(SW)

Rommel
(SW)

10−12

1. Hernandez
(GA) Jones (GA) Gabril (GA) Jones (GA) Hernando

(GA)

2. Troyana
(SW) Porter (WS) Troyana

(SW) Tabrin (GA) Antony
(SW)

3. Jamerson
(WS) Willis (GA) Willis (GA) Antony

(SW) Tabrin (GA)

4. Morris
(SW)

Womack
(SW)

Antony
(SW)

Dalton
(SW)

Rommel
(SW)

12−02

1. Evans (GA) Jones (GA) Gabril (GA) Jones (GA) Kallen (GA) Jones (GA) Tabrin (GA)

2. Trayana
(SW) Vann (SW) Troyana

(SW) Tabrin (GA) Evans (GA) Dalton
(SW)

Mustava
(GA)

3. Willis (GA) Willis (GA) Willis (GA) Antony
(SW)

Mustava
(GA)

4. Highlon
(SW)

Womack
(SW)

Antony
(SW)

Smith, C
(SW)

Rostav
(SW)

02−04

1. Evans (GA) Hernando
(GA) Kallen (GA) Kallen (GA) Kallen (GA) Gabril (GA) Tabrin (GA)

2. Inum (WS) Vann (SW) Troyana
(SW) Tabrin (GA) Willis (GA) Dalton

(SW)
Mustava
(GA)

3. Jones (GA) Morris
(SW)

Morris
(SW)

Mustava
(GA)

Mustava
(GA) Batey (SW) Kadin (SW)

4. Highlon
(SW)

Womack
(SW)

Chung
(SW) Jones (WS) Batey (WS) Avery (SW)

04−06

1. Evans (GA) Hernando
(GA) Kallen (GA) Kallen (GA) Kallen (GA) Gabril (GA) Sorals (GA)

2. Kadin (SW) Vann (SW) Sorals (GA) Thomas
(GA) Willis (GA) Dalton

(SW)
Mustava
(GA)

3. Winston
(SW)

Morris
(SW)

Morris
(SW)

Jones, A
(WS)

Jones, A
(SW) Batey (SW)

4. Rostav
(SW) Avery (SW) Avery (SW) Highlon

(SW) Jones (GA) Rommel
(SW)

35547_AppC 1/18/2006 10:29:13 Page 78

78 A P P E N D I X C

TABLE
C.6

The Lab Assistant Work-Scheduling Sheet (continued)

TIME SLOT MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY

06−08

1. Evans (GA) Hernando
(GA) Kallen (GA) Kallen (GA) Kallen (GA) Gabril (GA) Sorals (GA)

2. Kadin (SW) Thomas
(GA) Sorals (GA) Sorals (GA) Willis (GA) Aaron (SW) Mustava

(GA)

3. Winston
(SW) Avery (SW) Thomas

(GA)
Jones, A
(WS) Aaron (SW) Rommel

(SW)

4. Rostav
(SW)

Winston
(SW) Avery (SW) Kadin (SW) Batey (SW)

08−10

1. Evans (GA) Hernando
(GA) Kallen (GA) Sorals (GA) Kallen (GA) Gabril (GA) Sorals (GA)

2. Kadin (SW) Thomas
(GA) Sorals (GA) Thomas

(GA) Willis (GA) Aaron (SW) Witte (SW)

3. Highlon
(SW) Avery (SW) Thomas

(GA)
Jones, A
(WS) Aaron (SW) Winston

(SW)

4. Rostav
(SW)

Winston
(SW)

Winston
(SW) Rostav(SW) Rommel

(SW)

10−12

1. Casey (GA) Casey (GA) Casey (GA) Casey (GA) Casey (GA) Gabril (GA) Sorals (GA)

2. Thompson
(SW)

Thompson
(SW)

Thompson
(SW)

Karpov
(SW)

Karpov
(SW) Witte (SW) Witte (SW)

3.
4.

TABLE
C.7

The WORK_SCHEDULE Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

SCHED_SEMESTER Semester ID C PK
SCHED_WEEKDAY Schedule weekday PK
SCHED_IN Time slot start PK
SCHED_OUT Time slot end
SCHED_SLOT Weekday slot

number.
Value range 1−4.)

PK

LA_ID Lab assistant ID FK LAB_ASSISTANT
* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

The WORK_SCHEDULE’s primary key is a composite key, created by the combination of SCHED_SEMESTER,
SCHED_WEEKDAY, SCHED_IN, and SCHED_SLOT. The requirement is that any given LA cannot have two of the same
scheduled starting times for the same weekday. For example, an LA cannot have two starting times of 10 a.m. on Monday.
The SCHED_IN and SCHED_OUT entries are based on a 24-hour time clock and range from 0600 to 2400.

35547_AppC 1/18/2006 10:29:13 Page 79

79C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

A second requirement is that there can be no more than four lab assistants assigned to work during the same time slot.
Unfortunately, the initial primary key selection doesn’t fit those requirements well. Fortunately, the current design
shortcomings can be fixed by adopting a three-pronged approach, as follows:

1. Create a primary key composed of SCHED_SEMESTER, SCHED_WEEKDAY, SCHED_IN, and
SCHED_SLOT.

2. Create a unique index based on SCHED_SEMESTER, SCHED_WEEKDAY, SCHED_IN, and LA_ID.

3. Create a data validation rule to specify that the SCHED_SLOT values must be 1, 2, 3, or 4.

Option 1 can be implemented by declaring the PK components when the table is created. Option 2 can be
implemented through the CREATE INDEX command. Option 3 requires the use of application code to enforce the
validity of SCHED_SLOT values. If you are using Oracle, you can implement option 3 by using a trigger. (If you are
using MS Access, you can use a data validation rule to implement option 3.) The implementation of options 1 and 3
will ensure that a maximum of four lab assistants will be working at any given scheduled time. Option 2 ensures that
no lab assistant appears more than once in any given weekday/time combination.

Sample WORK_SCHEDULE data entries are shown in Figure C.5.

Keep in mind that the order in which the WORK_SCHEDULE attributes are stored in the table is immaterial to the
relational model. However, your DBMS is very likely to index the table according to its primary key. In this case, the
indexing order begins with SCHED_SEMESTER and, within that order, moves to index SCHED_WEEKDAY,
SCHED_IN, and SCHED_SLOT. The data displayed in Figure C.5 conform to such an indexing order. In that case,
the primary key ensures an order that is independent of the LA_ID or the assistant’s last name. Once again, you see
a condition that is inconsequential to the relational model, but that eventually affects how the designer evaluates the
design for implementation and applications development.

The HOURS_WORKED structure, shown in Table C.8, tracks the number of hours worked by each LA during a
two-week pay period.

FIGURE
C.5

Sample WORK_SCHEDULE data

35547_AppC 1/18/2006 10:29:13 Page 80

80 A P P E N D I X C

TABLE
C.8

The HOURS_WORKED Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

LA_ID Lab assistant ID PK, FK LAB-ASSISTANT
HW_SEMESTER Semester designation C PK
HW_DATE Work period ending data PK
HW_HOURS_WORKED Total hours worked

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

The HOURS_WORKED entity’s primary key is a composite key and consists of LA_ID, HW_SEMESTER,
and HW_DATC. The inclusion of HW_DATE as part of the primary key is required to maintain entity integrity
because the combination of LA_ID and HW_SEMESTER can produce many occurrences. (Each LA works many weeks
within the semester.) Also note that the HW_HOURS_WORKED attribute represents the total hours worked by the LA
during the pay period and is entered manually by the end user. (In this case, the HW_HOURS_WORKED attribute
is not a derived attribute. Note that there are no attributes in this table from which the HW_HOURS_WORKED
attribute could be computed. If the HOURS_WORKED entity had included HW_TIME_IN and HW_TIME_OUT
attributes, the HW_HOURS_WORKED attribute values could have been calculated from the other two time attributes
and would, in that case, have been a derived attribute.) The HOURS_WORKED data form the basis for payroll
applications. A few sample data entries are shown in Figure C.6.

Although the Lab is used mostly by students doing their
assignments, sections of the Lab may be reserved by faculty
members for teaching purposes or by staff members for
hardware and software maintenance and updates. To enable
the system to handle those reservations, the initial RESER-
VATION structure was developed, as shown in Table C.9.

TABLE
C.9

The RESERVATION Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

RES_DATE Reservation date PK
USER_ID User ID (faculty/staff

only)
PK, FK USER

RES_DATES_RESVD Date(s) reserved M PK
RES_TIME_IN Time(s) in reserved M
RES_TIME_OUT Time(s) out reserved M
RES_USERS Number of users dur-

ing the scheduled
reserved time

M

FIGURE
C.6

Sample HOURS_WORKED data

35547_AppC 1/18/2006 10:29:14 Page 81

81C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

TABLE
C.9

The RESERVATION Entity (continued)

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

LA_ID Lab assistant who
entered the
reservation

FK LAB_ASSISTANT

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

As you examine the RESERVATION entity’s structure, note its many multivalued attributes. For example, a faculty
member may reserve the Lab for several dates and, within those dates, several times per day, each time for a different
number of users. Such multivalued attributes are guaranteed to create problems at the implementation stage. For
example, how many RES_DATES_RESVD derivative attributes (RES_DATES_RESVD1, RES_DATES_RESVD2,
RES_DATES_RESVD3) should you reserve for storing the reservation dates? When you create too many, you have
many nulls. When you create too few, reservations are limited by the available attributes. And if you want to allow
additional reservation dates later, you’ll have to modify the table structure. The problem is magnified by the fact that,
for each reserved date, there are many possible reserved times. The number of such derivative attributes can multiply
dramatically. (The authors once did a database audit in which one of the tables contained 114 attributes—and the list
was growing. Not surprisingly, the database did not function very well.)

Applying the normalization rules you learned in Chapter 4, “Entity Relationship (ER) Modeling,” the RESERVATION
structure can be split into two tables in a 1:M relationship. The first of those two tables, still named RESERVATION,
represents the “1” side. Its structure is shown in Table C.10.

TABLE
C.10

The Revised RESERVATION Entity

ATTRIBUTE
NAME

CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

RES_ID Reservation ID PK
RES_DATE Date on which the

reservation was made
USER_ID User ID (faculty/staff only) FK USER
LA_ID Lab assistant who entered

the reservation
FK LAB_ASSISTANT

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

Some sample RESERVATION data are shown in Figure C.7.

FIGURE
C.7

Sample RESERVATION data

35547_AppC 1/18/2006 10:29:14 Page 82

82 A P P E N D I X C

This new RESERVATION structure works much better. Each time an LA records a set of reservations, the date on
which the reservations are made is recorded in RES_DATC. You can also track who (USER_ID) made the reservation
and who (LA_ID) recorded it. The multiple occurrences of the reservations are then handled by the “Many” side in a
table named RES_SLOT, whose structure is shown in Table C.11.

TABLE
C.11

The RES_SLOT (Weak) Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN KEY
(FK)

REFERENCES

RES_ID Reservation ID PK, FK RESERVATION
RSLOT_DATE Date reserved PK
RSLOT_TIME_IN Reservation time in PK
RSLOT_TIME_OUT Reservation time out
RSLOT_USERS Number of users dur-

ing the scheduled
reserved time

RSLOT_LAB_SECTION Reserved section of
the lab

PK

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

As you examine the structure in Table C.11, note that the participation of the RSLOT_LAB_SECTION makes it
possible to have two reservations on the same date and time when the reservations involve different sections of the
Lab. Also note that RES_SLOT is a weak entity because it is existence-dependent on RESERVATION and because one
of its primary key components, RES_ID, is inherited from the RESERVATION entity.

Figure C.8 shows some sample data to illustrate the reservation process.

By examining the sample data in Figure C.8, you can easily trace the reservation process when you keep in mind the
1:M relationship between RESERVATION and RES_SLOT. Note, for example, that on January 25, 2006 (see the
RESERVATION data in Figure C.7), user 255-67-4567 made reservations (see the RES_SLOT data in Figure C.8) for
23 users for February 3, 2006 from 8:00 a.m.−9:50 a.m. in Section A of the Lab and for 23 users for February 10,
2006 from 8:00 a.m.−9:50 a.m. in Section A of the Lab.

FIGURE
C.8

Sample RES_SLOT data

35547_AppC 1/18/2006 10:29:14 Page 83

83C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

C.2.2 The Inventory Management Module

To help track the Inventory Management System’s detailed development process, it is useful to look at its ER
components, shown in Figure C.9. Using that illustration as your guide, you will find it much easier to understand the
revision process. Refer to Figure C.9 often as the Inventory Management System’s entities and their attributes are
developed.

As you examine the ER segment in Figure C.9, you might wonder why the WITHDRAW and CHECK_OUT entities
used in the initial ER diagram in Appendix B and in Table C.2 in this appendix do not appear. You will also see that
a few new entities, such as INV_TRANS, have been added. Those changes are part of the ER data model verification
process, and they will be discussed in detail later in this section. Also, the USER entity, which is not an explicit part
of the Inventory Management System and was already discussed in Section C.2.1, is the “connector” between the two
entity segments. Therefore, although it will not be discussed further, the inclusion of USER makes sense in this
segment, too.

The INV_TYPE entity performs an important role in the Inventory Management module. Its presence makes it easy for
the CLD to generate detailed inventory summaries. (For example, how many boxes of 8.5” x 11” single-sheet paper are
in stock? How many laser printers are available? How many boxes of writable CDs are on hand?) To understand the
INV_TYPE’s function, you must first understand the role of a classification hierarchy, as shown in Table C.12.

TABLE
C.12

An Inventory Classification Hierarchy

GROUP CATEGORY CLASS TYPE SUBTYPE
HWPCDTP3 Hardware (HW) Personal computer (PC) Desktop (DT) Pentium IV (P4)
HWPCLTP4 Hardware (HW) Personal computer (PC) Laptop (LT) Pentium IV (P4)
HWPCLTCE Hardware (HW) Personal computer (PC) Laptop (LT) Pentium Centrino (CT)
HWPRLSBL Hardware (HW) Printer (PR) Laser (LS) Black (BL)
HWPRIJCO Hardware (HW) Printer (PR) Ink-jet (IJ) Color (CO)
SUPPSS11 Supply (SU) Paper (PP) Single-sheet (SS) 11-inch
HWEXVIXX Hardware (HW) Expansion board (EX) Video (VI) XX
SWDBXXXX Software (SW) Database (DB) XX XX

As you examine the classification hierarchy in Table C.12, note that three categories have been created: hardware,
software, and supply. Also note that each group code precisely describes the inventory type discussed here. For
example, the first group code, HWPCDTP3, describes the category “hardware” (HW), the class “personal computer”
(PC), the type “desktop” (DT), and the subtype “Pentium IV” (P4). Some group codes, such as the last one in Table
C.12, do not specifically identify type and subtype; rather, they use the code XX to indicate that no specification was
made. You will see later that the classification hierarchy group codes can be used as primary keys to define the
INV_TYPE rows and that the category, class, type, and subtype components will be stored as separate attributes to
enhance the inventory reporting capabilities.

35547_AppC 1/18/2006 10:29:14 Page 84

84 A P P E N D I X C

FIGURE
C.9

The Inventory Management module’s ER segment

35547_AppC 1/18/2006 10:29:14 Page 85

85C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

The classification hierarchy can also be presented as a tree diagram, as shown in Figure C.10.

The classification hierarchy illustrated in Table C.12 and Figure C.10 is reflected in the INV_TYPE structure shown in
Table C.13 and in the INV_TYPE’s sample data illustrated in Figure C.11.

TABLE
C.13

The INV_TYPE Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

TY_GROUP Inventory group code C PK
TY_CATEGORY Inventory category
TY_CLASS Inventory class
TY_TYPE Inventory type
TY_SUBTYPE Inventory subtype
TY_DESCRIPTION Group description
TY_UNIT Unit of measurement

(box, ream, and so on)
* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

As you examine the INV_TYPE structure in Table C.13, note that the INV_TYPE uses a single-attribute primary key
(TY_GROUP), which renders the system faster and more efficient in the query mode. Although a composite primary
key could have been created by combining TY_CATEGORY, TY_CLASS, TY_TYPE, and TY_SUBTYPE, such a
multiple-attribute primary key would produce a more complex pointer system for the DBMS, thus slowing down the
system. Yet the decomposition of TY_GROUP into TY_CATEGORY, TY_CLASS, TY_TYPE, and TY_SUBTYPE
allows a greater variety of reporting summaries to be performed easily while having the benefit of a single-attribute
primary key. (Chapter 4 noted that information requirements help drive the design process. Table C.13 and its sample
data in Figure C.11 provide an appropriate illustration of that point.)

FIGURE
C.10

The INV_TYPE classification hierarchy as a tree diagram

CATEGORY

CLASS

TYPE

SUBTYPE

Hardware

Personal
Computer (PC)

Printer
(PR)

Desktop
(DT)

Celeron
(CE)

Ink-jet
(IJ)

Centrino
(CT)

Color
(CO)

Laptop
(LT)

Laser
(LS)

Black
(BL)

Pentium 4
(P4)

35547_AppC 1/18/2006 11:41:16 Page 86

86 A P P E N D I X C

Although the INV_TYPE provides much flexibility in terms of inventory summary statements, you still must be able to
reference specific units. For example, it is useful to know that there are 217 computers in inventory, but you must also
be able to track each computer that was installed in a professor’s office or in the Lab. The relationship between
INV_TYPE and ITEM (review the ER segment in Figure C.9) provides that capability. The ITEM’s entity structure is
shown in Table C.14.

TABLE
C.14

The ITEM Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN KEY
(FK)

REFERENCES

ITEM_ID Item identification code PK
TY_GROUP Inventory group code FK INV_TYPE
ITEM_UNIV_ID University inventory ID
ITEM_SERIAL_NUM Item (manufacturer’s)

serial number
ITEM_DESCRIPTION Item description

FIGURE
C.11

Sample INV_TYPE data

35547_AppC 1/18/2006 10:29:15 Page 87

87C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

TABLE
C.14

The ITEM Entity (continued)

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN KEY
(FK)

REFERENCES

ITEM_QTY Total quantity on hand at
all locations

D

VEND_ID Original vendor code FK VENDOR
ITEM_STATUS Item status:

1 = available
2 = under repair
3 = out of order
4 = checked out

ITEM_BUY_DATE Purchase date
* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

Let’s examine the behavior of the ITEM entity’s attributes according to the three main inventory types:

� Hardware. If 20 computers are bought, each one will be assigned an ITEM_ID, an ITEM_UNIV_ID, and a
manufacturer’s ITEM_SERIAL_NUM, thus generating 20 records.

� Supply. If 20 boxes of laser printer paper are bought, only one record is generated because there is no need
to identify each box individually. Therefore, in the case of the boxes, no university ID number is required, and
the ITEM_UNIV_ID will be null. In addition, a box of paper would not have a serial number, so the
ITEM_SERIAL_NUM will be null. However, because the CLD must be able to track the boxes, it is necessary
to have ITEM_ID as the primary key. Naturally, you may use special codes, such as 00000, for the
ITEM_UNIV_ID and the ITEM_SERIAL_NUM to avoid the use of nulls.

� Software. If a license is bought for 180 software copies, only one license record will exist in the ITEM entity.
Individual installations can be tracked through the use of the STORAGE entity, shown in Table C.15.

TABLE
C.15

The STORAGE Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

LOC_ID Location ID PK, FK LOCATION
ITEM_ID Item ID PK, FK ITEM
STOR_QTY Quantity stored at this

location
* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

Note also that the ITEM_QTY in Table C.14 is a derived attribute because it sums the quantity on hand at all locations.
Keep in mind that design purity would dictate the elimination of a derived attribute. Yet its presence here reflects the
end user’s desire for simple and quick answers to such ad hoc questions as “How many boxes of 8.5" x 11" paper do
we have at all locations?” Because the derived attribute ITEM_QTY is computed and written into the ITEM table by
the application software any time there is a transaction involving the inventory, there is no chance of creating data
anomalies through its inclusion.

Some sample ITEM data are shown in Figure C.12.

35547_AppC 1/18/2006 10:29:15 Page 88

88 A P P E N D I X C

It is necessary to be able to locate an item in inventory at any given time. Therefore, the item’s storage location must
be known. The STORAGE entity, shown in Table C.15, plays an important role.

The STORAGE sample data are shown in Figure C.13.

By tracing the ITEM_ID in STORAGE (see Figure C.13) to the ITEM_ID in
ITEM (see Figure C.12) and then to TY_GROUP = SUPPSS11 in
INV_TYPE (see Figure C.11), you can determine that the first record in
STORAGE shows 19 boxes of single-sheet paper (ITEM_ID = 3154567)
located in KOM106-1. An additional 25 boxes of single-sheet paper are
located in KOM205B-1, 52 boxes are located in KOM245A-2, and 5
boxes are located in KOM245B-1.

The storage location details are stored in the LOCATION entity, shown in
Table C.16. By reviewing the ER segment in Figure C.9, you will note that
there is a 1:M relationship between LOCATION and STORAGE.

FIGURE
C.12

Sample ITEM data

FIGURE
C.13

Sample STORAGE
data

35547_AppC 1/18/2006 10:29:15 Page 89

89C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

TABLE
C.16

The LOCATION Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

LOC_ID Location ID PK
LOC_DESCRIPTION Location description.

(examples: faculty office,
classroom, cabinet, and
so on)

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

The LOCATION entity’s sample data are shown in Figure C.14.

You can create as much detail as necessary in the LOCATION entity’s
LOC_DESCRIPTION. For example, you can specify bins, shelves, and
other details within the storage location. In fact, if you were to use that
design technique in a store or plant location, you might create a series of
new attributes to specify section, aisle, shelf, and bin.

At this point, you are able to:

� Provide detailed descriptions of the items in the UCL’s inventory.

� Provide inventory category summaries easily and efficiently.

� Determine the item status.

� Trace the items to their storage locations.

Because inventory tracking is very important, especially at auditing time,
the emerging system is already showing considerable end-user potential.
The remaining Inventory Management System will be built on that solid
foundation.

Items in inventory are dynamic; that is, the items don’t stay in inventory
forever. In fact, some items, such as supplies, have a very limited inventory
life. Paper, for example, doesn’t last long in a computer lab. Software
becomes obsolete, as does hardware. Hardware might break down and
require repair, or it might require disposal. In fact, the need for repair

produces some special database handling. An item sent out for repair still belongs to the Lab, but it is not available for
use. Neither is an item that has broken down but has not yet been sent out for repair. Some items can be repaired
in-house, and some items are returned to the vendor for replacement. In short, repair is an ever-present issue that
requires tracking. Therefore, the REPAIR entity shown in Table C.17 plays an important role in the design.

TABLE
C.17

The REPAIR Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

REP_ID Repair ID PK
ITEM_ID Item identification code FK ITEM

FIGURE
C.14

Sample
LOCATION data

35547_AppC 1/18/2006 10:29:15 Page 90

90 A P P E N D I X C

TABLE
C.17

The REPAIR Entity (continued)

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

REP_DATE Date on which item
needed repair

REP_DESCRIPT Problem description
REP_STATUS Repair status:

1 = in repair
2 = repaired
3 = returned to vendor
4 = out of order

VEND_ID Vendor code FK VENDOR
REP_REF Reference number sup-

plied by vendor
REP_DATE_OUT Date on which item was

sent out
REP_DATE_IN Date on which item was

returned
REP_COST Repair cost

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

Several of the REPAIR attributes in Table C.17 require additional explanation.

� VEND_ID is an optional foreign key because the VENDOR does not enter the repair picture until the
REP_STATUS = 3. If the repair status is 3, the VEND_ID must contain a valid VEND_ID entry—that is, one
that matches a vendor in the VENDOR table. If you want to avoid nulls by using a “no vendor” code, the
VENDOR table that the code references must contain a “no vendor” entry to maintain referential integrity.

� Because the cost is not known until the repair has been completed, REP_COST will be $0.00 until
REP_STATUS has been changed to 2. Some repairs are done at the vendor’s expense, so it is quite possible
that the REP_COST will remain $0.00 when the REP_STATUS = 2. Also, the many repairs done in-house do
not carry a charge except the cost of replacement parts.

� REP_DESCRIPT cannot be null; there must be some description of the problem that occurred.

A few REPAIR records are shown in Figure C.15.

To place orders, to return equipment for repair, and so on, the system must contain VENDOR data. Table C.18 shows
a simplified structure for the VENDOR entity.

FIGURE
C.15

Sample REPAIR data

35547_AppC 1/18/2006 10:29:16 Page 91

91C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

TABLE
C.18

The VENDOR Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

VEND_ID Vendor identification
code

PK

VEND_NAME Vendor name C
VEND_ADDRESS Vendor street address
VEND_CITY Vendor city
VEND_STATE Vendor state
VEND_ZIP Vendor zip code
VEND_PHONE Vendor phone C
VEND_CONTACT Vendor contact person C
VEND_CON_PHONE Vendor contact phone C
VEND_TECH_PHONE Vendor tech support

phone
C

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

As you examine the VENDOR entity’s structure, keep the following points in mind:

� Because the system must be able to generate shipping labels for items returned to the vendor, it is necessary
to decompose the vendor address into street address, city, state, and zip code.

� There was no end-user requirement for a vendor telephone number to be broken down by area code, nor was
there a requirement for an alphabetically arranged list of contacts and technical support people. Therefore, the
last four VENDOR attributes were left as composites.

A few sample VENDOR records are shown in Figure C.16.

Given the Lab’s frequent hardware, software, and supply updates, the system’s ORDER entity plays a crucial role. Its
necessary attributes, required to satisfy budgeting, auditing, and various system end-user requirements, are reflected in
the ORDER entity in Table C.19.

FIGURE
C.16

Sample VENDOR data

Sample VENDOR data,
continued

35547_AppC 1/18/2006 11:41:55 Page 92

92 A P P E N D I X C

TABLE
C.19

The ORDER Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

ORD_ID Order ID code PK
ORD_DATE Order date
VEND_ID Vendor ID code FK VENDOR
ORD_VEND_REF Reference number sup-

plied by the vendor
(optional)

ORD_PO_NUM Purchase order number
ORD_TOT_COST Total order cost, including

shipping and handling
ORD_STATUS Order status:

OPEN = open order
REC = received
CANCEL = canceled

order
PAID = paid order

ORD_FUND_TYPE Order funding source:
BUS = College of Busi-

ness budget
USER_ID Person who requested

the order
FK USER

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

Appendix B stated that each order contains one or many ordered items. Using the normalization rules, the order was
split into two entities: ORDER and ORDER_ITEM. The ORDER entity is related in a one-to-many relationship with the
ORDER_ITEM entity. (Review Figure C.9 to see the precise relationship between ORDER and ORDER_ITEM.) The
ORDER entity (the “1” side) contains general data about the order; the ORDER_ITEM entity (the “M” side) contains
the items in the order.

The ORDER entity’s ORD_STATUS reflects reporting requirements. Clearly, it is possible for an order to have been
received and not yet paid for, so a distinction must be made between REC and PAID. Although canceled orders have
no impact on inventory movements, it is important to keep track of them. For example, before you make the payment
on a bill, it would be wise to find out if the order has been canceled. The ORD_FUND_TYPE lets you know to which
budget you should charge the payments. And because accountability is an ever-present factor, you must be able to track
(through USER_ID) the person who originated the order.

Information requirements might also determine on which side of the 1:M relationship the data is stored. For example,
it is quite possible for only part of an order to arrive at a given time. Let’s say that the order consisted of 12 computers
and 25 boxes of paper. All 25 boxes of paper but only 8 computers might have arrived. Because you must trace those
portions of the order that are complete, the receipt date must be stored on the “M” side of the 1:M relationship. Using
a similar approach, you must decide where to store the USER_ID attribute. For example, if information requirements
demand that you get a precise listing of who ordered what specific item in any one order, the USER_ID must be stored
on the “M” side. On the other hand, if you merely need to know who placed the entire order, the USER_ID is stored
on the “1” side. Given the latter scenario, you may then list the person who requested the specific item within an order
as part of each order line description.

35547_AppC 1/18/2006 10:29:16 Page 93

93C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

The placement of the VEND_ID depends on a simple business rule. In this case, it is quite reasonable to assume that
each order is placed with a single vendor. (Just think how many checks you would have to write if each order line were
tied to a different vendor within the same order.) Therefore, the VEND_ID is written on the “1” side of the relationship
between the order and its order lines. The revised ORDER structure, shown in Table C.19, shows what decisions were
made in that design.

To illustrate the data placement, some ORDER sample data are shown in Figure C.17.

The “M” side of the relationship between orders and their components will be stored in the ORDER_ITEM table. Thus,
each ORDER references one or more ORDER_ITEM records, but each ORDER_ITEM entry refers to a single ORDER
record. (That solution was also addressed in Chapter 3, “The Relational Database Model,” Section 3.8 (“Indexes”),
when invoicing was discussed.) The ORDER_ITEM’s structure is shown in Table C.20.

TABLE
C.20

The ORDER_ITEM Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY (PK)
AND/OR FOREIGN
KEY (FK)

REFERENCES

ORD_ID Order number PK, FK ORDER
OI_LINE Order line number PK
TY_GROUP Inventory group FK INV_TYPE
OI_DESCRIPTION Item description
OI_UNIT_COST Unit cost
OI_QTY_ORD Order quantity
OI_COST Total line cost D
OI_QTY_RECVD Quantity received
OI_DATE_IN Last date received

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

Using two entities, ORDER and ORDER_ITEM, results in some additional advantages, as follows:

� The ORDER_ITEM entity will contain an OI_LINE attribute to represent the order in which the INV_TYPE
(items) are actually entered. If ORD_ID and TY_GROUP are used instead, any change will produce a different
listing each time an item is added to an order. In that case, if an end user were to review a previous order, it
might have an arrangement quite different from that of the original entries and would likely confuse the end
user. By keeping the OI_LINE attribute in ORDER_ITEM, that problem is eliminated.

� The OI_DESCRIPTION has a special purpose. Although application software can be used to read the
description found in INV_TYPE when the end user enters the TY_GROUP code, that description can still be
modified to clarify the order details. (See the sample data in Figure C.18.) Because this description does not
serve the purpose of a foreign key, the redundancy does not create structural problems. Additionally, the
descriptive material can prove to be helpful if questions arise later about the precise nature of the order.

FIGURE
C.17

Sample ORDER data

35547_AppC 1/18/2006 10:29:16 Page 94

94 A P P E N D I X C

The sample data for the ORDER_ITEM are shown in Figure C.18.

As you examine the ORDER and ORDER_ITEM data presented in Figure C.17 and Figure C.18, respectively, you can
easily trace all orders and their components. For example, as you look at ORDER’s ORD_ID = 121 and trace it
through ORDER_ITEM’s ORD_ID = 121, you can draw the following conclusions:

� The order consisted of three items: one token ring card, five Dell desktop Pentium III computers, and two Dell
laptop Pentium III computers. (Note that the ORDER_ITEM’s OI_LINE numbers range from 1 to 3 for ORD_ID
= 121.)

� The order was written by user 352-14-5875 on Saturday, February 6, 2006 to vendor PCJUN.

� The order is still open because the ORDER_ITEM’s second order line (OI_LINE = 2) shows that only two of
the five computers have been received. (Note that the ORDER_ITEM’s OI_DATE_IN is null.)

Keeping track of the items in inventory is a challenge in the UCL’s environment because there are two different types
of transactions. Some items, such as paper, ink-jet cartridges, and other consumables, are withdrawn from inventory
as they are used. For example, if a faculty member needs a box of paper for the classroom or the office, the stock of
“boxes of paper” is simply decreased by one box. However, faculty and staff might also check out items temporarily,
such as flat panel displays for use in the classroom or laptop computers to take to remote classes for demonstration
purposes. In that case, the checked-out item remains in inventory, but its availability status and location change. You
must be able to track each item’s user and location. When the item is returned, another (check-in) transaction changes
the availability status and location again.

FIGURE
C.18

Sample ORDER_ITEM data

Sample ORDER_ITEM data,
continued

35547_AppC 1/18/2006 11:42:10 Page 95

95C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

To examine the inventory transactions, let’s begin with some simple withdrawals. The following scenario covers four
transactions, recorded as withdrawals 325, 326, 327, and 328. (You can evaluate the transaction components by
reviewing the previously shown sample data. For example, you know that user 299-87-9234 is a CIS faculty member
from examining the USER table. You can find item 4238131 in the ITEM table; you determine that this item is a laser
printer cartridge by looking at the INV_TYPE table, and so on.)

� Transaction 325: CIS faculty member 299-87-9234 withdrew a laser printer cartridge (ITEM_ID = 4238131)
from the computer lab (KOM245A-1) on February 4, 2006.

� Transaction 326: CIS staff member 352-14-5875 withdrew three laser printer cartridges from KOM245A-1,
five boxes of single-sheet 8.5" x 11" paper (ITEM_ID = 3154567) from KOM245B-1, and two boxes of 3.5"
disks (ITEM_ID = 4238132) from KOM245A-1 on February 4, 2006.

� Transaction 327: CIS staff member 352-14-5875 withdrew one box of 3.5" floppy disks from KOM106-1 on
February 7, 2006.

� Transaction 328: CIS faculty member 255-67-4567 withdrew one box of single-sheet 8.5" x 11" paper from
KOM106-1 and one black ink-jet cartridge (ITEM_ID = 4238130) from KOM1061-1 on February 8, 2006.

Before those transactions can be tracked, there must be a set of database tables to support them. At this point, you
cannot track the transactions because the database reflects withdrawals as the M:N relationship between USER and
ITEM shown in Figure C.19, Panel A. For example, a qualified user can withdraw many boxes of paper, and a box
of paper in inventory can be withdrawn by any number of qualified users.

Because the M:N relationship cannot be properly implemented in a relational database design, your first thought might
be to transform the “withdraws” relationship into a composite entity named WITHDRAW, shown in Figure C.19,
Panel B. That entity’s structure is illustrated in Table C.21.

TABLE
C.21

The WITHDRAW Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

WD_DATE Withdrawal date PK
USER_ID User ID (faculty or staff) PK, FK USER
ITEM_ID Item ID for withdrawn item M PK, FK ITEM
LOC_ID Location ID M PK, FK LOCATION
WD_QTY Quantity withdrawn M

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

The WITHDRAW entity in Table C.21 seems to have all of the required attributes. In addition, Figure C.19, Panel B
indicates that the addition of the WITHDRAW entity certainly has transformed the M:N relationship between USER
and ITEM into two sets of 1:M relationships. Yet in spite of the design’s improvement, WITHDRAW will not perform
its intended functions well. Although its components help tie USER, ITEM, and LOCATION together, it contains three
multivalued attributes. To eliminate those multivalued attributes, the WITHDRAW entity in Table C.21 can be
decomposed into the two entities shown in Figure C.19, Panel C.

35547_AppC 1/18/2006 10:29:17 Page 96

96 A P P E N D I X C

FIGURE
C.19

The WITHDRAW revision process

Panel A

Panel B

Panel C

35547_AppC 1/18/2006 10:29:17 Page 97

97C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

Using Figure C.19, Panel C as a guide, you can revise the WITHDRAW entity to eliminate the multivalued attributes
and place them in WD_ITEM. Those two entities are shown in Tables C.22 and C.23 and their sample data are shown
in Figures C.20 and C.21, respectively. (The data trace the withdrawal scenario presented at the beginning of this
discussion.)

TABLE
C.22

The Revised WITHDRAW Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

WD_ID Withdrawal number PK
WD_DATE Withdrawal date
USER_ID User ID (faculty or staff) FK USER

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

TABLE
C.23

The WD_ITEM (Weak) Entity

ATTRIBUTE
NAME

CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

WD_ID Withdrawal ID PK, FK WITHDRAW
ITEM_ID Item ID for withdrawn item PK, FK ITEM
LOC_ID Location ID PK, FK LOCATION
WD_QTY Quantity withdrawn

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

WITHDRAW and WD_ITEM are capable of supporting the
required withdrawal transactions, so this revision could be
incorporated into the final design. However, another revision
will be made later to standardize all inventory transactions.

Because the check-out transactions are subject to the same
basic process as the withdrawal transactions, Figure C.22
illustrates that their design revisions mirror those of the
withdrawal revision process. The difference between WITH-
DRAW and CHECK_OUT is that the latter yields two
expected transactions for each item: one when the item is
checked out and one when the item is returned.

FIGURE
C.20

Sample
WITHDRAW data

FIGURE
C.21

Sample WD_ITEM data

35547_AppC 1/18/2006 10:29:17 Page 98

98 A P P E N D I X C

Because the check-out revision process basically mirrors that of the withdrawal revision, the discussion will simply note
Figure C.22, Panels A and B without providing any further revision details.

Using Figure C.22, Panel C as a design guide, Table C.24 defines the CHECK_OUT structure.

FIGURE
C.22

The CHECK_OUT revision process

Panel A

Panel B

Panel C

35547_AppC 1/18/2006 10:29:17 Page 99

99C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

TABLE
C.24

The CHECK_OUT Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

CO_ID Check-out ID PK
CO_DATE Check-out date
USER_ID User ID FK USER

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

To see the check-out process in action, let’s trace the following transactions. (You will also see the difference between
withdrawal and check-out when you look at the CO_ITEM’s structure and sample data.)

� CO_ID = 101: Accounting faculty member 301-23-4245 checked out a laptop computer (4228753) from
KOM245A-1 on February 2, 2006 and returned it on February 3, 2006.

� CO_ID = 102: CIS faculty member 255-67-4567 checked out a laptop computer (4358255) from
KOM245B-1 and a projector panel (4358258) from KOM245B-1 on February 3, 2006. Only the laptop
computer was returned on February 4, 2006.

� CO_ID = 103: CIS faculty member 264-77-0032 checked out the laptop computer (4228753) that was
returned by the Accounting faculty member in transaction 101, from KOM245A-1 on February 3, 2006. The
CIS faculty member has not yet returned the laptop.

� CO_ID = 104: CIS staff member 386-12-3456 checked out a laptop computer (4112151) from KOM245A-2
on February 4, 2006 and returned it on February 5, 2006.

Note how those transactions are reflected in Figures C.23 and C.24.

Each of the CHECK_OUT records will point to the transaction details—
that is, the “Many” side, represented by the CHECK_OUT_ITEM entity
shown in Table C.25.

TABLE
C.25

The CHECK_OUT_ITEM (Weak) Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

CO_ID Check-out ID PK
ITEM_ID Item ID PK, FK ITEM
LOC_ID Location ID PK, FK LOCATION
COI_QTY Check-out item quantity
COI_DATE_IN Date the item was returned

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

FIGURE
C.23

Sample
CHECK_OUT data

35547_AppC 1/18/2006 16:35:56 Page 100

100 A P P E N D I X C

The scenario is completed as shown in the sample data in Figure C.24.

As you examine Figure C.24, note that it accurately portrays
the transactions described earlier. Because item 4358258 in
transaction 102 and item 4228753 in transaction 103 have
not yet been returned, their COI_DATE_IN values are null.
As was true in the case of the withdrawal process, you can
now support the check-out and check-in transactions. How-
ever, you will discover in the next section that the inventory
transaction process can be streamlined further.

C.3 ER MODEL VERIFICATION

Let’s look at what you have accomplished. At this point, you have identified:

� Entity sets, attributes, and domains.

� Composite attributes. Such attributes may be (and usually are) decomposed into several independent
attributes.

� Multivalued attributes. You implemented them in a new entity set in a 1:M relationship with the original
entity set.

� Primary keys. You ensured primary key integrity.

� Foreign keys. You ensured referential integrity through the foreign keys.

� Derived attributes. You ensured the ability to compute their values.

� Composite entities. You implemented them with 1:M relations.

Although you have made considerable progress, much remains to be done before the model can be implemented.

To complete the UCL conceptual database design, you must verify the model. Verification represents the link between
the database modeling and design activities, database implementation, and database application design. Therefore, the
verification process is used to establish that:

� The design properly reflects the end-user or application views of the database.

� All database transactions—inserts, updates, deletes—are defined and modeled to ensure that the implemen-
tation of the design will support all transaction-processing requirements.

� The database design is capable of meeting all output requirements, such as query screens, forms, and report
formats. (Remember that information requirements may drive part of the design process.)

� All required input screens and data entry forms are supported.

� The design is sufficiently flexible to support expected enhancements and modifications.

In spite of the fact that you were forced to revise the ER diagram initially depicted in Appendix B’s Figure B.19, it is
still possible that:

� Some of the relationships are not clearly identified and may even have been misidentified.

� The model contains design redundancies. (Consider the similarity between the WITHDRAW and CHECK_OUT
entities.)

� The model can be enhanced to improve semantic precision and to better represent the operations in the real world.

� The model must be modified to better meet user requirements (such as processing performance or security).

The following few paragraphs will demonstrate the verification process for some of the application views in the
Inventory Management module. (This verification process should be repeated for all of the system’s modules.)

FIGURE
C.24

Sample CHECK_OUT_ITEM
data

35547_AppC 1/18/2006 10:32:47 Page 101

101C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

� Identifying the central entity. Although the satisfaction of the UCL’s end users is vital, inventory management
has the top priority from an administrative point of view. The reason for that priority rating is simple: state
auditors target the Lab’s considerable and costly inventory to ensure accountability to the state’s taxpayers.
Failure to track items properly may have serious consequences; therefore, ITEM becomes the UCL’s central
entity.

� Identifying each module and its components. Table C.2 identifies the modules and their components. It is
important to “connect” the components by using shared entities. For example, although USER is classified as
belonging to the Lab Management module and ITEM is classified as belonging to the Inventory Management
module, the USER and ITEM entities interface with both. For example, the USER is written into the LOG in
the Lab Management module. USER also features prominently in the Inventory Management module’s
withdrawal of supplies and in the check-out/check-in processes.

� Identifying each module transaction requirement. You will focus your attention on one of the INVENTORY
module’s reporting requirements. The authors suggest that you identify other transaction requirements using
the information gathered in the database initial study. Then you can validate those requirements against the
UCL database for all system modules.

An examination of the Inventory Management module’s reporting requirements uncovers the following problems:

� The Inventory module generates three reports, one being an inventory movement report. But the inventory
movements are spread across several different entities (CHECK_OUT and WITHDRAW and ORDER). That
spread makes it difficult to generate the output and reduces system performance.

� An item’s quantity on hand is updated with an inventory movement that can represent a purchase,
withdrawal, check-out, check-in, or inventory adjustment. Yet only the withdrawals and check-outs are
represented in the model.

The solution to those problems is described by the database designer:

What the Inventory Management module needs is a common entry point for all movements. In other words, the
system must track all inputs to and withdrawals from inventory. To accomplish that task, we must create a new
entity to record all inventory movements; that is, we need an inventory transaction entity. We will name that
entity INV_TRANS.

The creation of a common entry point serves two purposes:

1. It standardizes the Inventory module’s interface with other (external) modules. Any inventory movement
(whether it adds or withdraws) will generate an inventory transaction entry.

2. It facilitates control and generation of required outputs, such as the inventory movement report.

Figure C.25 illustrates a solution to the problems just described.

The INV_TRANS entity in Figure C.25 is a simple inventory transaction log, and it will contain any inventory I/O
movement. Each INV_TRANS entry represents one of two types of movement: input (+) or output (-). Each INV_TRANS
entry must contain a line in TR_ITEM for each item that is added, withdrawn, checked in, or checked out.

The INV_TRANS entity’s existence also enables you to build additional I/O movements efficiently. For example, when
an ordered item is received, an inventory transaction entry (+) is generated. That INV_TRANS entry will update the
quantity received (OI_QTY_RECVD) attribute of the ORDER_ITEM entity in the Inventory Management module. The
Inventory Management module will generate an inventory transaction entry (-) to register the items checked out by a
user, and it will generate another inventory transaction entry (+) to register the items checked in. The withdrawal of
items (supplies) will also generate an inventory transaction entry (-) to register the items that are being withdrawn.
Those relationships are depicted in Figure C.25.

41199_AppC 11/1/2007 16:1:26 Page 102

102 A P P E N D I X C

The new INV_TRANS entity’s attributes are shown in Table C.26.

TABLE
C.26

The INV_TRANS Entity

ATTRIBUTE
NAME

CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY (PK)
AND/OR FOREIGN
KEY (FK)

REFERENCES

TRANS_ID Inventory transaction ID (This
code is generated by the system.)

PK

TRANS_TYPE Inventory transaction type:
I = input

(add to inventory)
O = output

(subtract from inventory)

FIGURE
C.25

The inventory transaction process

35547_AppC 1/18/2006 10:32:28 Page 103

103C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

TABLE
C.26

The INV_TRANS Entity (continued)

ATTRIBUTE
NAME

CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY (PK)
AND/OR FOREIGN
KEY (FK)

REFERENCES

TRANS_PURPOSE Reason for inventory transaction:
PO = purchase order

(add to the inventory)
CC = check-out

(subtract from inventory)
WD = withdrawal

(subtract from inventory)
AD = adjustment

(add to or subtract from
inventory, depending on
the type of adjustment)

TRANS_DATE Inventory transaction date
LA_ID Lab assistant who recorded the

transaction
FK LAB_ASSISTANT

USER_ID Person who created the
transaction

FK USER

ORDER_ID Order ID FK ORDER
TRANS_
COMMENT

Comments

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

To see how INV_TRANS in Table C.26 works, refer to the ER segment in Figure C.25 and note that its detail lines
are kept in the (weak) TR_ITEM. Figure C.25 also illustrates that all of the inventory movements can now be traced.
For example, any item must be stored somewhere, so its location can be accessed through STORAGC. Because
INV_TRANS is related to both LAB_ASSISTANT and USER, you know who recorded the transaction and who
generated it. Figure C.26 contains sample data that will allow you to trace the:

� Withdrawal transactions first examined in Figures C.20 and C.21.

� Check-in and check-out transactions first examined in Figures C.23 and C.24.

� Purchase of 2 HP laser printers and 35 boxes of paper.

FIGURE
C.26

Sample INV_TRANS data

35547_AppC 1/18/2006 10:32:29 Page 104

104 A P P E N D I X C

For example, the first INV_TRANS row reveals that on February 4, 2006, a laser printer cartridge was withdrawn from
inventory by user 299-87-9234. The transaction was recorded by LA 387-99-9565, and the transaction decreased
(TRANS_TYPE = O) the stock in inventory.

The transaction details in Figure C.26 are stored in TR_ITEM, so before you can examine those details, you must
examine the TR_ITEM structure in Table C.27.

TABLE
C.27

The TR_ITEM (Weak) Entity

ATTRIBUTE NAME CONTENTS ATTRIBUTE
TYPE (*)

PRIMARY KEY
(PK) AND/OR
FOREIGN
KEY (FK)

REFERENCES

TRANS_ID Inventory transaction ID
(This code is generated
by the system in the
INV_TRANS entity.)

PK, FK INV_TRANS

ITEM_ID Item ID PK, FK ITEM
LOC_ID Location ID PK, FK LOCATION
TRANS_QTY Quantity withdrawn

* The attribute type may be Composite (C), Derived (D), or Multivalued (M).

By examining the sample data shown in Figure C.27, you can trace the transaction details in Figure C.26.

For example, note that the first INV_TRANS row’s
TRANS_ID = 325 entry (see Figure C.26) now points to the
TR_ITEM’s TRANS_ID = 325 entry shown in Figure C.27,
thus allowing you to conclude that that transaction involved
the withdrawal of a single unit of item 4238131, a laser
printer cartridge. (You can conclude that item 4238131 is a
laser printer cartridge by examining the INV_TYPE and
ITEM data in Figures C.11 and C.12, respectively, and
noting that ITEM_ID = 4238131 corresponds to
TY_GROUP = SUCALPXX.) Transaction 326 involved
three items, so the TR_ITEM table contains three detail lines
for that transaction.

Examine how check-outs and check-ins are handled. In
Figure C.26, INV_TRANS transaction 401 records TRANS_
PURPOSE = CC and TRANS_TYPE = O, indicating that a
check-out was made. That transaction recorded the
following: check-out of a laptop, ITEM_ID = 4228753 (see
Figure C.21), on February 2, 2006 by an Accounting faculty
member, USER_ID = 301-23-4245. The laptop was
returned on February 3, 2006, and that transaction was

recorded as TRANS_ID = 402, whose TRANS_PURPOSE = CC and TRANS_TYPE = I, indicating that this particular
laptop was returned to the available inventory. Incidentally, because the department owns several laptops, faculty
members need not wait for a laptop to be returned before checking one out, as long as there are laptops in inventory.
However, if no additional laptops are available, the system can trace who has them and when they were checked out.
If the CLD wants to place restrictions on the length of time an item can be checked out, this design makes it easy to
notify users to return the items in question.

FIGURE
C.27

Sample TR_ITEM data

35547_AppC 1/18/2006 10:32:29 Page 105

105C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

The final entity relationship diagram reflects the changes that have been made. Although the original ER diagram is
easier to understand from the user’s point of view, the revised ER diagram has more meaning from the procedural
point of view. For example, the changes made are totally transparent (invisible) to the user because the user never sees
the INV_TRANS entity. The final ER diagram is shown in Figure C.28.

C.4 LOGICAL DESIGN

When the conceptual design phase is completed, the ERD reflects—at the conceptual level—the business rules that,
in turn, define the entities, relationships, optionalities, connectivities, cardinalities, and constraints. (Remember that
some of the design elements cannot be modeled and are, therefore, enforced at the application level. For example, the
constraint “a checked-out item must be returned within five days” cannot be reflected in the ERD.) In addition, the
conceptual model includes the definition of the attributes that describe each of the entities and that are required to meet
information requirements.

FIGURE
C.28

The revised University Computer Lab ERD

35547_AppC 1/18/2006 10:32:29 Page 106

106 A P P E N D I X C

Keep in mind that the conceptual model’s entities must be normalized before they can be properly implemented. The
normalization process may yield additional entities and relationships, thus requiring the modification of the initial ERD.
Because the focus was on the verification of the conceptual design to produce an implementable design, the model
verified in this chapter was certain to meet the requisite normalization requirements. In short, design and normalization
processes were used concurrently. In fact, such concurrent use of design and normalization reflects real-world practice.
However, you should remember from Chapter 9 that the logical design process is used to translate the conceptual
design into the internal model for the selected DBMS. To the extent that normalization helps establish the appropriate
attributes, their characteristics, and their domains, normalization moves you to the logical design phase. Nevertheless,
because the conceptual modeling process does not preclude the definition of attributes, you can reasonably argue that
normalization occasionally straddles the line between conceptual and logical modeling.

It bears repeating that the logical design translates the conceptual model in order to match the format expected of the
DBMS that is used to implement the system. Because you will be using a relational database model, the logical design
phase sets the stage for creating the relational table structures, indexes, and views.

C.4.1 Tables

The following few examples illustrate the design of the logical model, using SQL. (Make sure that the tables conform
to the ER model’s structure and that they obey the foreign key rules if your DBMS software allows you to specify
foreign keys.)

Using SQL, you can create the table structures within the database you have designated. For example, the STORAGE
table would be created with:

CREATE TABLE STORAGE (
LOC_ID CHAR(12) NOT NULL,
ITEM_ID CHAR(10) NOT NULL,
STOR_QTY NUMBER,
PRIMARY KEY (LOC_ID, ITEM_ID),
FOREIGN KEY (LOC_ID) REFERENCES LOCATION

ON DELETE RESTRICT
ON UPDATE RESTRICT,

FOREIGN KEY (ITEM_ID) REFERENCES ITEM
ON DELETE CASCADE
ON UPDATE CASCADE);

Most DBMSs now use interfaces that allow you to type the attribute names into a template and to select the attribute
characteristics you want from pick lists. You can even insert comments that will be reproduced on the screen to prompt
the user for input. For example, the preceding STORAGE table structure might be created in a Microsoft Access
template, as shown in Figure C.29.

When all of the tables required by the design have been created, the relationships specified in the design are
established. A good CASE tool will let you accomplish those tasks directly from the design. For example, the design
shown in Figure C.28 can be written into the specified database structure by the CASE tool. The advantages of letting
the CASE tool write all of the table structures and relationships are that:

� The database will match the design precisely.

� All of the relationships have already been tested by the CASE tool to ensure that they are logically correct and
that they are implementable as designed.

� All of the FK attribute definitions and characteristics match those of the referenced PKs.

35547_AppC 1/18/2006 10:32:29 Page 107

107C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

Regardless of how you translate the design shown in Figure C.28 into the matching database structure, the database’s
relational schema must match the design. For example, Figure C.30 shows the relational schema in MS Access format.

As you examine the relational diagram in Figure C.30, note that all of its tables and relationships match the design
specifications in Figure C.29 Note also that the relational diagram shows the addition of attributes that serve the
end-user information and data management requirements.

C.4.2 Indexes and Views

In the logical design phase, the designer can specify appropriate indexes to enhance operational speed. Indexes also
enable the production of logically ordered output sequences. For example, if you want to generate the LA schedule
shown in Table C.6, you need data from two tables, LAB_ASSISTANT and WORK_SCHEDULE. Because the report
output is ordered by semester, LA, weekday, and time, indexes must be available for the primary key fields in each
table. Using SQL, you would type:

CREATE UNIQUE INDEX LA_DEX
ON LAB_ASSISTANT (LA_ID);

and

CREATE UNIQUE INDEX WS_DEX
ON WORK_SCHEDULE (SCHED_SEMESTER, LA_ID, SCHED_WEEKDAY, SCHED _IN);

Most modern DBMSs automatically index on the primary key components.

FIGURE
C.29

The STORAGE table structure defined in Microsoft Access

35547_AppC 1/18/2006 10:32:29 Page 108

108 A P P E N D I X C

Views (see Chapter 8, “Advanced SQL”) are often used for security purposes. However, views are also used to
streamline the system’s processing requirements. For example, output limits may be defined efficiently by specifying
appropriate views. To define the view necessary for the LA schedule report for the Spring semester of 2006, the
CREATE VIEW command is used:

CREATE VIEW LA_SCHED AS
SELECT LA_ID, LA_NAME, SCHED_WEEKDAY, SCHED _IN, SCHED _OUT
FROM WORK_SCHEDULE
WHERE SCHED_SEMESTER=‘SPRING06’;

The designer creates the views necessary for each database output operation.

FIGURE
C.30

The UCL relational diagram

Note

Unlike some other databases, the relational database model does not require the use of views in order to access
the database. However, using views yields security benefits and greater output efficiency.

35547_AppC 1/18/2006 10:32:30 Page 109

109C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

C.5 PHYSICAL DESIGN

Physical design requires the definition of specific storage or access methods that will be used by the database. (Review
the physical design comments in Chapter 9, Section 9.3.2, if necessary.) Within the DBMS’s confines, the physical
design must include an estimate of the space required to store the database. The required space estimate is translated
into the space to be reserved within the available storage devices.

Physical storage characteristics are a function of the DBMS and the operating systems being used. Most of the
information necessary to define the physical storage characteristics is found in the technical manuals of the software
you are using. For example, if you use IBM’s OS/2 Database Manager Version 1.2, an estimate of the physical storage
required for database creation (empty database) is provided by a table such as the one shown in Table C.28.

TABLE
C.28

Fixed Space Claimed by OS/2 DBM V1.2 per Database

DISK SPACE IN KB
Fixed space per table created within the database 535
17 tables 2-4 KB per table 68
Total fixed overhead used by database 603

Next, you need to estimate the data storage requirements for each table. Table C.29 shows the calculation for the
USER table only.

TABLE
C.29

Physical Storage Requirements: The USER Table

ATTRIBUTE NAME DATA TYPE STORAGE REQUIREMENT (BYTES)
USER_ID CHAR(11) 11
DEPT_CODE CHAR(7) 7
USER_TYPE CHAR(5) 5
USER_CLASS CHAR(5) 5
USER_GENDER CHAR(1) 1
Row length 29
Number of rows 15,950
Total space required 462,550

If the DBMS does not automate the process of determining storage locations and data access paths, physical design
requires well-developed technical skills and a precise knowledge of the physical-level details of the database, operating
system, and hardware used by the database. Fortunately, the more recent versions of relational DBMS software hide
most of the complexities inherent in the physical design phase.

You might store the database within a single volume of permanent storage space, or you can use several volumes,
distributing the data in order to decrease data-retrieval time. Some DBMSs also allow you to create cluster tables and
indexes. Cluster tables store rows of different tables together in consecutive disk locations. That arrangement speeds
up data access; it is mainly used in master/detail relationships such as ORDER and ORDER_ITEM or INV_TRANS and
TR_ITEM.

The database designer must make decisions that affect data access time by fine-tuning the buffer pool size, the page
frame size, and so on. Those decisions are based on the selected hardware platform and the DBMS. Consult the
hardware and DBMS software manuals for the specific storage and access methodologies.

35547_AppC 1/18/2006 16:36:13 Page 110

110 A P P E N D I X C

In the UCLMS, several indexes can be created to improve access time:

� Indexes created for all primary keys will increase access speed when you use foreign key references in tables.
This is done automatically by the DBMS.

� Indexes can also be created for all alternative search keys. For example, if you want to search the
LAB_ASSISTANT table by username, you should create an index for the LA_LNAME attribute; for example:

CREATE INDEX LA001 ON LAB_ASSISTANT (LA_LNAME);

� Indexes can be created for all secondary access keys used in reports or queries. For example, an inventory
movement report is likely to be ordered by inventory type and item ID. Therefore, an index is created for the
ITEM table:

CREATE INDEX INV002 ON ITEM(TY_GROUP, ITEM_ID);

� Indexes can be created for all columns used in the WHERE, ORDER BY, and GROUP BY clauses of a SELECT
statement.

C.6 IMPLEMENTATION

One of the significant advantages of using a database is that it enables users to share data. When data are held in
common, rather than being “owned” by various organizational divisions, data management becomes a more
specialized task. Thus, the database environment favors the creation of a new organizational structure designed to
manage the database resources. Database management functions are controlled by the database administrator (DBA).
The DBA must define the standards and procedures required to interact with the database. (See Chapter 15, “Database
Administration and Security.”)

Once the database designer has completed the conceptual, logical, and physical design phases, the DBA adopts an
appropriate implementation plan. The plan includes formal definitions of the processes and standards to be followed,
the chronology of the required activities (creation, loading, testing, and evaluation), the development of adequate
documentation standards, the specific documentation needed, and the precise identification of responsibilities for
continued development and maintenance.

Keep in mind that the technical details of the implementation are of little concern to the end user. Once the design
has been implemented, the end users must be able to use the database and its contents—according to their work
requirements and clearances—with relative ease and great utility. Therefore, the hard work of developing a
user-friendly interface remains. Figures C.31 through C.34 show a sample main menu, a selection from that menu,
some sample data entries, and the completed record based on a Microsoft Access database. Note that the end user
interface shown in those figures uses several techniques to ensure appropriate data entries.

� Drop-down lists to limit the input selections. As you examine Figure C.32, note that the customer data have
already been entered. In this case, the customer number 10011 was selected from a drop-down list of existing
customers. The drop-down list is triggered by clicking on the downward-facing arrow button at the right margin
of the customer input field. (Naturally, if the customer is new, a customer record must first be created.) Note
that the customer financial data show up after the selection from the customer list, enabling the end user to
authorize charges or to require full payment of the charter charges. Similarly, clicking on the downward-facing
arrow button located on the right of the aircraft input field produces a drop-down list that shows all of the
available aircraft and the relevant data for each aircraft. Those features enable the end user to answer customer
questions without having to leave the input screen.

� Automatic data entry completions based on the input selections. For example, once an aircraft has been
selected from the drop-down list, all appropriate field values for the selected aircraft—such as the charge per
mile and charge per waiting hour—are automatically written into the entry blanks. That feature eliminates
end-user input errors and improves efficiency. (The end user does not need to type the values.)

41199_AppC 11/1/2007 16:2:22 Page 111

111C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

� System-generated computations to avoid end-user computational errors. Once the distance flown and the
waiting hours have been entered, all charges are calculated by the system, thus avoiding end-user calculation
errors. (For example, Hours flown = Hobbs return − Hobbs out. A Hobbs meter is an instrument that records
time.) Similarly, once the amount paid is entered, the balance is automatically calculated and entered into the
“Balance owed” input field.

FIGURE
C.31

The RC-Charter2 Company main menu

35547_AppC 1/18/2006 10:32:30 Page 112

112 A P P E N D I X C

Many of the data entries in Figure C.33 are computed automatically. For example, the flight hours are computed after
you have entered the Hobb’s time in and you leave that field. The charges and the unpaid balance, if any, are also
computed automatically. When the data entry is complete and you press the Update button, the affected tables are
updated, too. Note, for example, that the unpaid balance shown in Figure C.33 has been added to show the new
customer balance. (Compare the customer balance value in Figure C.33 with its counterpart in Figure C.34.)

FIGURE
C.32

The RC-Charter2 Company new charter record selection

35547_AppC 1/18/2006 10:32:30 Page 113

113C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

FIGURE
C.33

Charter record sample data entries

Select the customer.

Select the aircraft.

Select the first assignment (Pilot in Command) from the crew assignment list.

Select the crew member for the assignment and then submit the selection.

Select the next assignment and a crew member and then submit the selection. (Note that the first assignment is
now shown to the right of the trip number.)

Complete at least the passenger and loading information and the destination. The remaining information is
supplied at the conclusion of the trip. (See the bottom half of the form in Figure C.32.)

35547_AppC 1/18/2006 11:42:24 Page 114

114 A P P E N D I X C

As organizations become increasingly Internet-oriented, most of the database transaction interfaces tend to become
Web interfaces. You were introduced to Web development issues in Chapter 14, “Database Connectivity and Web
Technologies.” Appendix J, “Web Database Development with ColdFusion,” also discusses that topic.

C.6.1 Database Creation

All of the tables, indexes, and views that were defined during the logical design phase are created during this phase.
The commands (or use utility programs) to create storage space and the access methods that were defined by the
physical design are also issued at this time.

C.6.2 Database Loading and Conversion

The newly created database contains the (still empty) table structures. Those table structures can be filled by entering
(typing) the data one table at a time or by copying the data from existing databases or files. If the new table structures
and formats are incompatible with those used by the original DBMS or file system software, the copy procedure
requires the use of special loading or conversion utilities.

FIGURE
C.34

Sample completed charter record

Note

Keep in mind that even a beautifully crafted interface cannot overcome a poor database design. Unfortunately,
too many organizations try to use applications development to overcome the limitations produced by poor
database designs. Such attempts will lead to the inevitable failure of the organization's information
requirements. (To use an analogy, you cannot overcome the problems of a poor building design by hiring better
bricklayers—you just wind up with a poor building with beautiful brickwork.) That point is worth stressing—over
and over and over!

41199_AppC 11/1/2007 16:2:51 Page 115

115C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

Because many processes require a precise sequencing of data activities, data are loaded in a specific order. Because
of foreign key requirements, the University Computer Lab database must be initially loaded in the following order:

1. User, vendor, and location data.

2. Lab assistant and work schedule data.

3. Inventory type data.

4. Item data. After those main entities have been loaded, the system is ready for testing and evaluation.

C.6.3 System Procedures

System procedures describe the steps required to manage, access, and maintain the database system. The development
of those procedures constitutes a concurrent and parallel activity that started in the early stages of the system’s design.

A well-run database environment requires and enforces strict standards and procedures to ensure that the data
repository is managed in an organized manner. Although operational and management activities are logically
connected, it is important to define distinct operations and management procedures.

In the case of the University Computer Lab Management System, procedures must be established to:

� Test and evaluate the database.

� Fine-tune the database.

� Ensure database security and integrity.

� Back up and recover the database.

� Access and use the database system.

Several databases may exist within a database environment. Each database must have its own set of system procedures
and must be evaluated in terms of how it fits into the organization’s information system.

C.7 TESTING AND EVALUATION

The purpose of testing and evaluation is to determine how well the database meets its goals. Although testing and
evaluation constitute a distinct DBLC phase, the implementation, testing, and evaluation of the database are
concurrent and related. Database testing and evaluation should be ongoing. A database that is acceptable today may
not be acceptable a few years from now because of rapidly changing information needs. In fact, an important reason
for the relational database’s growing dominance is its flexibility. (Because relational database tables are independent,
changes can be made relatively quickly and efficiently.)

C.7.1 Performance Measures

Performance refers to the ability to retrieve information within a reasonable time and at a reasonable cost. A database
system’s performance can be affected by factors such as communication speeds, number of concurrent users, and
resource limits. Performance, measured primarily in terms of database query response time, is generally evaluated by
computing the number of transactions per second. Performance issues are addressed in Chapter 11, “Database
Performance Tuning and Query Optimization.”

C.7.2 Security Measures

Security measures seek to ensure that data are safely stored in the database. Security is especially critical in a multiuser
database environment, in which someone might deliberately enter inconsistent data. The DBA must define (with the
help of end users) a company information policy that specifies how data are stored, accessed, and managed within a
data security and privacy framework.

35547_AppC 1/18/2006 10:32:31 Page 116

116 A P P E N D I X C

Access may be limited by using access rights or access authorizations. Such rights are assigned on the basis of the user’s
need to know or the user’s system responsibilities. In the case of the UCL database, access rights must be assigned to
LAs, the CLD, and the CLS. But those rights are limited. For example, the LAs may read their work schedules, but
they are not able to modify the data stored in the LAB_ASSISTANT or HOURS_WORKED tables.

The database administrator may, for example, grant the use of a previously created LA_SCHED view to the lab
assistant Anne Smith by using the following (SQL) syntax:

GRANT SELECT ON LA_SCHED TO LA_ASMITH;

In this case, only the LA identified as LA_ASMITH may use the view LA_SCHED to check the LA schedules. A similar
procedure is used to enable other LAs to check the Lab schedules.

Physical security deals with controlling access to rooms or buildings where data reside or are processed. Imagine
someone unplugging the main computer while several update transactions are being executed! Physical security also
includes protection of the database environment against fire, earthquakes, and other calamities.

C.7.3 Backup and Recovery Procedures

Database backup is crucial to the continued availability of the database system after a database or hardware failure has
occurred. Backup must be a formal and frequent procedure, and backup files should be located in predetermined sites.
Recovery procedures must delineate the steps to ensure full recovery of the system after a system failure or physical
disaster.

The UCL system’s backup and recovery scenario includes the following procedures:

� Each computer in the system has an uninterrupted power supply to protect the computers against electrical
interruptions.

� Periodic backups are made: daily for the most active tables and weekly for the less active tables. The backups
are created during low system-use periods and are stored in different places to ensure physical safety.

� The database management system uses a transaction log to permit the recovery of the database from a given
state when a disaster occurs.

C.8 OPERATION

Database operation, also called database management, is an ongoing venture, including all of the DBA’s administrative
and technical functions, designed to ensure the database’s continuity. Before a database is declared operational, it must
pass all operational tests and evaluations. The test and evaluation results must be formally approved by company
management.

C.8.1 Is Operational

An operational database provides all necessary support for the system’s daily operations and maintains all appropriate
operational procedures. If the database is properly designed and implemented, its existence not only enhances
management’s ability to obtain relevant information quickly, but also strengthens the entire organization’s operational
structure.

C.8.2 Operational Procedures

Database operational procedures are written documents in which the activities of the daily database operations are
described. The operational procedures delineate the steps required to carry out specific tasks, such as data entry,
database maintenance, backup and recovery procedures, and security measures.

35547_AppC 1/18/2006 10:32:31 Page 117

117C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

C.8.3 Managing the Database: Maintenance and Evolution

After the database has become operational, management and control measures must be established for the database
to be effective. The DBA is responsible for coordinating all operational and managerial aspects of the new DBMS
environment. The DBA’s responsibilities include:

� Monitoring and fine-tuning the database.

� Planning for and allocating resources for changes and enhancements.

� Planning for and allocating resources for periodic system upgrades.

� Providing preventive and corrective maintenance (backup and recovery procedures).

� Providing end-user management services by creating and defining users, passwords, privileges, and so on.

� Performing periodic security audits.

� Performing necessary training.

� Establishing and enforcing database standards.

� Marketing the database to the organization’s users.

� Obtaining funding for database operations, upgrades, and enhancements.

� Ensuring completion of database projects within time and budget constraints.

In short, the DBA performs technical and managerial duties that ensure the proper operation of the database to
support the organization’s mission. Therefore, the DBA’s activities are designed to support the end-user community
through the creation and enforcement of database-related policies, procedures, standards, security, and integrity that,
in turn, foster the generation and proper use of information. A more detailed discussion of the database administration
function is provided in Chapter 15.

35547_AppC 1/18/2006 10:32:31 Page 118

118 A P P E N D I X C

K e y T e r m s

cluster tables, 110 verification, 69

R e v i e w Q u e s t i o n s

1. Why must a conceptual model be verified? What steps are involved in the verification process?

2. What steps must be completed before the database design is fully implemented? (Make sure that you list the steps
in the correct sequence and discuss each step briefly.)

3. What major factors should be addressed when database system performance is evaluated? Discuss each factor
briefly.

4. How would you verify the ER diagram shown in Figure QC.4? Make specific recommendations.

FIGURE
QC.4

The ERD for question 4

35547_AppC 1/18/2006 12:20:52 Page 119

119C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

5. Describe and discuss the ER model’s treatment of the UCL’s inventory/order hierarchy:

a. Category

b. Class

c. Type

d. Subtype

6. Modern businesses tend to provide continuous training to keep their employees productive in a fast-changing and
competitive world. In addition, government regulations often require certain types of training and periodic
retraining. (For example, pilots must take semiannual courses involving weather, air regulations, and so on.) To
make sure that an organization can track all training received by each of its employees, trace the development
of the ERD segment in Figure QC.6 from the initial business rule that states:

An employee can take many courses, and each course can be taken by many employees.

Once you have traced the development of the ERD segment, verify it and then provide sample data for each of the
three tables to illustrate how the design would be implemented.

7. You read in this chapter that an examination of the UCL’s Inventory Management module reporting
requirements uncovered the following problems:

� The Inventory module generates three reports, one of which is an inventory movement report. But the
inventory movements are spread across two different entities (CHECK_OUT and WITHDRAW). That
spread makes it difficult to generate the output and reduces the system’s performance.

� An item’s quantity on hand is updated with an inventory movement that can represent a purchase, a
withdrawal, a check-out, a check-in, or an inventory adjustment. Yet only the withdrawals and
check-outs are represented in the system.

What solution was proposed for that set of problems? How would such a solution be useful in other types of inventory
environments?

P r o b l e m s

1. Verify the conceptual model you created in Appendix B, Problem 3. Create a data dictionary for the verified model.

2. Verify the conceptual model you created in Appendix B, Problem 4. Create a data dictionary for the verified model.

3. Verify the conceptual model you created in Appendix B, Problem 5. Create a data dictionary for the verified model.

4. Verify the conceptual model you created in Appendix B, Problem 6. Create a data dictionary for the verified model.

5. Verify the conceptual model you created in Appendix B, Problem 7. Create a data dictionary for the verified model.

6. Design (through the logical phase) a student-advising system that will enable an advisor to access a student’s
complete performance record at the university. A sample output screen should look like the one shown in the
following table.

FIGURE
QC.6

The ERD for question 6

35547_AppC 1/18/2006 12:20:52 Page 120

120 A P P E N D I X C

NAME: XXXXXXXXXXXXXXXXX X
XXXXXXXXXXXXXXXXX

PAGE # OF ##

Department:
Xxxxxxxxxxxxxxxxxxxx

Major:
Xxxxxxxxxxxxxxxxxxxx

Social Security Number: ###-
##-####

Report Date: ##
Xxxxxxxxxxxxxxx ####

Fall 2006
Course
CIS 200 (Intro to Microcomputers)
XXX #### (Xxxxxxxxxxxxxxxxxx)
XXX #### (Xxxxxxxxxxxxxxxxxx)
XXX #### (Xxxxxxxxxxxxxxxxxx)
XXX #### (Xxxxxxxxxxxxxxxxxx)

Hours Grade Grade Points
3 B ##
X
X
X
X

Total this semester: ## GPA #.##
Total to date: ### Cumulative GPA #.##
Spring 2007
Course
CIS 300 (Computers in Society)
XXX #### (Xxxxxxxxxxxxxxxxxx)
XXX #### (Xxxxxxxxxxxxxxxxxx)
XXX #### (Xxxxxxxxxxxxxxxxxx)
XXX #### (Xxxxxxxxxxxxxxxxxx)

Hours Grade Grade Points
3 B ##
X
X
X
X

Total this semester: ## GPA #.##
Total to date: ### Cumulative GPA #.##
Summer 2007
Course
CIS 400 (Systems Analysis)
XXX #### (Xxxxxxxxxxxxxxxxxx)
XXX #### (Xxxxxxxxxxxxxxxxxx)
XXX #### (Xxxxxxxxxxxxxxxxxx)

Hours Grade Grade Points
3 B ##
X
X
X

Total this semester: ## GPA #.##
Total to date: ### Cumulative GPA #.##

7. Design and verify a database application for one of your local not-for-profit organizations (for example, the Red
Cross, the Salvation Army, your church or synagogue). Create a data dictionary for the verified design.

8. Using the information given in the physical design section (C.5), estimate the space requirements for the
following entities:

� RESERVATION

� INV_TRANS

� TR_ITEM

� LOG

� ITEM

� INV_TYPE

Hint: You may want to check Appendix B, Table B.3, A Sample Volume of Information Log.

35547_AppC 1/18/2006 12:20:52 Page 121

121C O N C E P T U A L D E S I G N V E R I F I C A T I O N , L O G I C A L D E S I G N , A N D I M P L E M E N T A T I O N

Preview

Converting an ER Model into a Database
Structure

Converting any ER model to a set of tables in a database requires following specific rules

that govern the conversion.The application of those rules requires an understanding of the

effects of updates and deletions on the tables in the database. Before discussing these rules

in detail, let’s briefly review a simple ER model and the SQL commands used to generate

the tables.

D
A

P
P

E
N

D
I

X

41199_AppD 11/2/2007 10:48:34 Page 122

D.1 THE ARTIST DATABASE

To illustrate the conversion of an ER model into a database structure, let’s use the Artist database, located in the
Online Student Companion. The Artist database conforms to the following conditions:

� A painter might paint many paintings. To be considered a painter in the ARTIST database, the painter must
have painted at least one painting. This business rule decrees that the cardinality is (1,N) in the relationship
between PAINTER and PAINTING.

� Each painting is painted by one (and only one) painter.

� A painting might (or might not) be exhibited in a gallery; that is, GALLERY is an optional entity to the
PAINTING entity.

Given that description, let’s use a simple ER model and some matching tables for the Artist database shown in Figure D.1.

The data dictionary in Table D.1 shows the characteristics of the attributes found in the three tables.

Given the information in Figure D.1 and Table D.1, note that:

� PTR_NUM in the PAINTING table is the foreign key that references the PAINTER table. Because the
relationship between PAINTER and PAINTING is mandatory, the PTR_NUM foreign key must be classified as
NOT NULL.

� GAL_NUM in PAINTING is the foreign key that references the GALLERY table. Because the relationship
between PAINTING and GALLERY is optional, the GAL_NUM foreign key may be null.

FIGURE
D.1

The Artist database ERD and tables

The Artist Database ERD

Database name: Artist Table name: PAINTER

Table name: GALLERY

Table name: PAINTING

35547_AppD 1/18/2006 10:35:28 Page 123

123C O N V E R T I N G A N E R M O D E L I N T O A D A T A B A S E S T R U C T U R E

TA
BL

E
D

.1
A

D
at

a
D

ic
tio

na
ry

fo
r

th
e

Ar
tis

t
D

at
ab

as
e

TA
BL

E
N

AM
E

AT
TR

IB
U

TE
N

AM
E

C
O

N
TE

N
TS

TY
PE

FO
RM

AT
RA

N
G

E
RE

Q
U

IR
ED

PK O
R

FK

FK RE
FE

RE
N

C
ED

TA
BL

E
PA

IN
TE

R
PT

R_
N

U
M

Pa
in

te
r

nu
m

be
r

C
H

AR
(4

)
99

99
10

00
−

99
99

Y
PK

PT
R_

LA
ST

N
A

M
E

Pa
in

te
r

la
st

na
m

e
VA

RC
H

AR
(1

5)
Xx

xx
xx

xx
xx

xx
Y

PT
R_

FI
RS

TN
AM

E
Pa

in
te

r
fir

st
na

m
e

VA
RC

H
AR

(1
5)

Xx
xx

xx
xx

xx
xx

Y
PT

R_
AR

EA
C

O
D

E
Pa

in
te

r
ar

ea
co

de
C

H
AR

(3
)

99
9

PT
R_

PH
O

N
E

Pa
in

te
r

ph
on

e
C

H
AR

(8
)

99
9-

99
99

G
A

LL
ER

Y
G

A
L_

N
U

M
G

al
le

ry
nu

m
be

r
C

H
AR

(4
)

99
99

10
00

−
99

99
Y

PK
G

AL
_O

W
N

ER
G

al
le

ry
ow

ne
r

VA
RC

H
AR

(3
5)

Xx
xx

xx
xx

xx
xx

G
AL

_A
RE

AC
O

D
E

G
al

le
ry

ar
ea

co
de

C
H

AR
(3

)
99

9
Y

G
A

L_
PH

O
N

E
G

al
le

ry
ph

on
e

C
H

AR
(8

)
99

9-
99

99
Y

G
A

L_
RA

TE
G

al
le

ry
co

m
m

iss
io

n
ra

te
(p

ct
.)

N
U

M
BE

R(
4,

2)
99

.9
9

0.
00

−
60

.0
0

Y

PA
IN

TI
N

G
PT

N
G

_N
U

M
Pa

in
tin

g
nu

m
be

r
C

H
AR

(4
)

99
99

10
00

−
99

99
Y

PK
PT

N
G

_T
IT

LE
Pa

in
tin

g
tit

le
VA

RC
H

AR
(3

5)
Xx

xx
xx

xx
xx

xx
PT

N
G

_P
RI

C
E

Pa
in

tin
g

pr
ic

e
N

U
M

BE
R(

9,
2)

99
,9

99
.9

9
10

.0
0−

99
,9

99
.9

9
Y

PT
R_

N
U

M
Pa

in
te

r
nu

m
be

r
C

H
AR

(4
)

99
99

10
00

−
99

99
Y

FK
PA

IN
TE

R
G

AL
_N

U
M

G
al

le
ry

nu
m

be
r

C
H

AR
(4

)
99

99
10

00
−

99
99

FK
G

AL
LE

RY

FK
=

Fo
re

ig
n

ke
y

PK
=

Pr
im

ar
y

ke
y

C
H

A
R

=
Fi

xe
d

ch
ar

ac
te

r
le

ng
th

da
ta

,1
to

25
5

ch
ar

ac
te

rs
VA

RC
H

AR
=

Va
ria

bl
e

ch
ar

ac
te

r
le

ng
th

da
ta

,1
to

2,
00

0
ch

ar
ac

te
rs

.M
ay

al
so

be
la

be
le

d
VA

RC
H

AR
2.

N
U

M
BE

R
=

N
um

er
ic

da
ta

.N
U

M
BE

R(
9,

2)
is

us
ed

to
sp

ec
ify

nu
m

be
rs

w
ith

tw
o

de
ci

m
al

pl
ac

es
an

d
up

to
ni

ne
di

gi
ts

lo
ng

,i
nc

lu
di

ng
th

e
de

ci
m

al
pl

ac
es

.S
om

e
RD

BM
Ss

pe
rm

it
th

e
us

e
of

a
M

O
N

EY
or

a
C

U
RR

EN
C

Y
da

ta
ty

pe
.

35547_AppD 1/18/2006 10:35:28 Page 124

124 A P P E N D I X D

D.1.1 The Effect of Foreign Key Constraints on Data Manipulation

Given the Artist database table structures, let’s examine the effect of the following data manipulation events of the
foreign key constraint actions:

1. Adding a painter (row) to the PAINTER table. Adding a painter does not cause any problems because the
PAINTER table does not have any dependencies in other tables.

2. Updating the PAINTER table’s primary key. Changing a PAINTER key causes problems in the database
because some paintings in the PAINTING table may make reference to this key. The option is to use the
UPDATE CASCADE. This option makes sure that a change in the PAINTER’s PTR_NUM automatically
triggers the required changes in the PTR_NUM foreign key found in other tables. This is the recommended
option. This behavior (UPDATE CASCADE) is not supported by some RDBMS products, such as Oracle.

3. Deleting a painter (row) from the PAINTER table. If you delete a row (painter) from the PAINTER table, the
PAINTING table may contain references to a painter who no longer exists, thereby creating a deletion
anomaly. (A painting does not cease to exist just because the painter does.) Given this situation, it is wise to
restrict the ability to delete a row from a table when there is a foreign key in another table that references the
row. The restriction means that you can delete a painter from the PAINTER table only when there is no foreign
key in another table related to this painter row. This behavior is enforced automatically by the RDBMS when
using the FOREIGN KEY clause.

4. Adding a gallery (row) to the GALLERY table. Adding a new row does not affect the database because the
GALLERY does not have dependencies in other tables.

5. Updating the GALLERY table’s primary key. Changing a primary key value in a GALLERY row requires that
all foreign keys making reference to it be updated as well. Therefore, you must use an UPDATE CASCADE
clause. This option makes sure that a change in the GALLERY’s GAL_NUM automatically triggers the required
changes in the GAL_NUM foreign key found in other tables. This is the recommended option. This behavior
(UPDATE CASCADE) is not supported by some RDBMS products, such as Oracle.

6. Deleting a gallery (row) from the GALLERY table. Deleting a GALLERY row creates problems in the
database when rows in the PAINTING table make reference to the GALLERY row’s primary key. Because
GALLERY is optional to PAINTING, you may set all of the deleted gallery GAL_NUM values to null (DELETE
SET NULL). Or you may want the database user to be alerted to the problem by specifying that the deletion
of a GALLERY row is permitted only when there is no foreign key (GAL_NUM) in another table that requires
the GALLERY row’s existence. This behavior is enforced automatically by the RDBMS when using the
FOREIGN KEY clause.

D.1.2 Transforming the ER Model into a Set of Tables

Armed with the results discussed in Section D.1.1, you can now transform the ER model into a set of tables by using
the following SQL commands:

1. Create the PAINTER table:

CREATE TABLE PAINTER (

PTR_NUM CHAR(4) NOT NULL UNIQUE,

PTR_LASTNAME CHAR(15) NOT NULL,

PTR_FIRSTNAME CHAR(15) NOT NULL,

PTR_AREACODE CHAR(3),

PTR_PHONE CHAR(8),

PRIMARY KEY (PTR_NUM));

35547_AppD 1/18/2006 10:35:28 Page 125

125C O N V E R T I N G A N E R M O D E L I N T O A D A T A B A S E S T R U C T U R E

2. Create the GALLERY table:

CREATE TABLE GALLERY (

GAL_NUM CHAR(4) NOT NULL UNIQUE,

GAL_OWNER CHAR(35),

GAL_AREACODE CHAR(3) NOT NULL,

GAL_PHONE CHAR(8) NOT NULL,

GAL_RATE NUMBER(4,2),

PRIMARY KEY (GAL_NUM));

3. Create the PAINTING table:

CREATE TABLE PAINTING (

PTNG_NUM CHAR(4) NOT NULL UNIQUE,

PTNG_TITLE CHAR(35),

PTNG_PRICE NUMBER(9,2),

PTR_NUM CHAR(4) NOT NULL,

GAL_NUM CHAR(4),

PRIMARY KEY(PNTG_NUM),

FOREIGN KEY (PTR_NUM) REFERENCES PAINTER

ON UPDATE CASCADE,

FOREIGN KEY (GAL_NUM) REFERENCES GALLERY

ON UPDATE CASCADE);

After creating the database tables and entering their contents, you are now ready for data entry, queries, and reports.
Note that the decisions made by the designer to govern data integrity are reflected in the foreign key rules.
Implementation decisions vary according to the problem being addressed.

D.2 GENERAL RULES GOVERNING RELATIONSHIPS AMONG TABLES

Given the experience with the simple Artist database in the previous section, here is a general set of rules to help you
create any database table structure that will meet the required integrity constraints.

1. All primary keys must be defined as NOT NULL and UNIQUE. If your applications software does not support
the NOT NULL option, you should enforce the condition by using programming techniques. This is another
argument for using DBMS software that meets ANSI SQL standards.

2. Define all foreign keys to conform to the following requirements for binary relationships.

1:M Relationships
Create the foreign key by putting the primary key of the “one” in the table of the “many.” The “one” side is referred to
as the parent table, and the “many” side is referred to as the dependent table. Observe the following foreign key rules:

If both sides are MANDATORY:

Column constraint: NOT NULL

FK constraint: Default behavior (on delete restrict)
ON UPDATE CASCADE

35547_AppD 1/18/2006 10:35:28 Page 126

126 A P P E N D I X D

If both sides are OPTIONAL:

Column constraint: NULL ALLOWED

FK constraint: ON DELETE SET NULL
ON UPDATE CASCADE

If one side is OPTIONAL and one side is MANDATORY:

a. If the “many” and the mandatory components of the relationship are on the same side in the ER diagram,
a NULL ALLOWED condition must be defined for the dependent table’s foreign key. The foreign key rules
should be:

Column constraint: NULL ALLOWED

FK constraint: ON DELETE SET NULL or
default behavior: ON DELETE RESTRICT
ON UPDATE CASCADE

b. If the “many” and the mandatory components of the relationship are not on the same side in the ER
diagram, a NOT NULL condition must be defined for the dependent table’s foreign key. Deletion and
update in the parent table of the foreign key should be subject to default behavior (on delete restrict) and
UPDATE CASCADE restrictions.

Weak Entities
a. Put the key of the parent table (the strong entity) in the weak entity. The key of the weak entity will be a

composite key composed of the parent table key and the weak entity candidate key, if any. (The designer
may decide to create a new unique ID for the entity.)

b. The weak entity relationship conforms to the same rules as the 1:M relationship, except for the following
foreign key restrictions:

Column constraint: NOT NULL

FK constraint: ON DELETE CASCADE
ON UPDATE CASCADE

M:N Relationships
Convert the M:N relationship to a composite (bridge) entity consisting of (at least) the parent tables’ primary keys.
Thus, the composite entity primary key is a composite key that is subject to the NOT NULL restriction.

1:1 Relationships
If both entities are in a mandatory participation in the relationship and they do not participate in other relationships,
it is most likely that the two entities should be part of the same entity.

Table D.2 summarizes the ramifications of the foreign key actions that could be used to represent multiple cases of 1:1,
1:M, and M:N relationships.

35547_AppD 1/18/2006 16:36:59 Page 127

127C O N V E R T I N G A N E R M O D E L I N T O A D A T A B A S E S T R U C T U R E

TA
BL

E
D

.2
Su

m
m

ar
y

of
Fo

re
ig

n
Ke

y
Ru

le
s

FO
RE

IG
N

KE
Y

AC
TI

O
N

S
RE

LA
TI

O
N

SH
IP

FO
RE

IG
N

KE
Y

LO
C

AT
IO

N
TH

E
EN

TI
TI

ES
PA

RT
IC

IP
AT

IN
G

IN
TH

E
RE

LA
TI

O
N

SH
IP

S
AR

E.
..

FO
RE

IG
N

KE
Y

AT
TR

IB
U

TE
C

O
N

ST
RA

IN
T

D
EL

ET
E

U
PD

AT
E

M
:N

N
ew

en
tit

y
co

m
po

sit
e

pr
im

ar
y

ke
y

Bo
th

m
an

da
to

ry
Bo

th
op

tio
na

l
O

ne
m

an
da

to
ry

,o
ne

op
tio

na
l

If
FK

lo
ca

te
d

on
m

an
da

to
ry

sid
e

If
FK

lo
ca

te
d

on
op

tio
na

ls
id

e

N
N

N
N

N
N

N
N

R C C R

C C C C
1:

M
M

an
y

sid
e

Bo
th

m
an

da
to

ry
Bo

th
op

tio
na

l
O

ne
m

an
da

to
ry

,o
ne

op
tio

na
l

If
FK

lo
ca

te
d

on
m

an
da

to
ry

sid
e

If
FK

lo
ca

te
d

on
op

tio
na

ls
id

e

N
N

N
A

N
A

N
N

R
SN

or
R

SN
or

R
R

C C C C
1:

1
Fo

re
ig

n
ke

y
pl

ac
em

en
ti

s
a

m
at

te
r

of
in

fo
rm

ed
ch

oi
ce

.*
Pu

tt
he

FK
in

th
e

ER
D

’s
op

tio
na

ls
id

e,
th

e
st

ro
ng

en
tit

y,
th

e
m

os
tf

re
qu

en
tly

ac
ce

ss
ed

sid
e,

or
th

e
sid

e
di

ct
at

ed
by

th
e

ca
se

se
m

an
tic

s.
D

o
no

tp
ut

th
e

FK
in

bo
th

sid
es

.

Bo
th

m
an

da
to

ry
Bo

th
op

tio
na

l
O

ne
m

an
da

to
ry

,o
ne

op
tio

na
l

If
FK

lo
ca

te
d

on
m

an
da

to
ry

sid
e

If
FK

lo
ca

te
d

on
op

tio
na

ls
id

e

N
N

N
A

N
A

N
N

R SN SN R

C C C C

W
ea

k
W

ea
k

en
tit

y
N

N
**

C
C

M
ul

tiv
al

ue
d

At
tr

ib
ut

es
C

re
at

e
a

se
to

fn
ew

ta
bl

es
in

1:
M

re
la

tio
ns

hi
ps

.C
on

fo
rm

to
th

e
w

ea
k

en
tit

y
ru

le
s.

N
N

C
C

N
N

=
N

ot
N

ul
l

N
A

=
N

ul
lA

llo
w

ed
R

=
Re

st
ric

t
**

=
In

he
rit

ed
fro

m
pa

re
nt

en
tit

y
SN

=
Se

tt
o

N
ul

l
C

=
C

as
ca

de
*

=
Se

e
C

ha
pt

er
6,

“A
dv

an
ce

d
D

at
a

M
od

el
in

g,
”

fo
r

a
de

ta
ile

d
di

sc
us

sio
n

of
th

e
1:

1
re

la
tio

ns
hi

p.

35547_AppD 1/18/2006 16:37:29 Page 128

128 A P P E N D I X D

Preview

Comparison of ER Modeling Notations

The ER models used in this text are based on the Chen and Crow’s Foot notations.

However, you should be aware of other ER notations, including the Rein85 and the IDEF1X.

Although those ER notations are based on the same modeling concepts, such alternative

notations were developed because they fit computer-based modeling tools more easily than

the original Chen notation. It is quite likely that you will convert even the finest Chen model

into those (or very similar) models when you are using computer-assisted systems

engineering (CASE) tools in the database environment.

E

A
P

P
E

N
D

I
X

41199_AppE 11/2/2007 10:54:56 Page 129

The following list summarizes the major characteristics of each notation:

� The Chen model is based on Peter Chen’s landmark work “The Entity-Relationship Model: Toward a Unified
View of Data,” ACM Transactions on Database Systems 1(1), March 1971. The Chen model moved
conceptual modeling into the practical database design arena by establishing the basic building blocks: entities
and relationships. Chen’s work was enhanced by T. J. Teorey, D. Yang, and J. P. Fry when they published “A
Logical Design Methodology for Relational Databases Using the Extended Entity Relationship Model,” ACM
Computing Surveys, June 1986, pp. 197−222. The Chen model’s basic structure, with the enhancements
made by Teorey, Yang, and Fry, became a dominant player in the CASE tool market during the late 1980s and
early 1990s. (See especially Mike Ricciuti’s “Database Vendors Make Their CASE,” Datamation 38(5), March
1992.) Excelerator, a CASE tool of choice for many database designers in the early 1990s, is perhaps the best
“pure” Chen modeling tool. Although the Chen model is no longer the dominant ERD generator, all current
ERD tools find their conceptual origins in the Chen model.

� The Crow’s Foot model, developed by C. W. Bachman, was made popular by the Knowledgeware modeling
tool. You used the Crow’s Foot model extensively in Chapter 4, “Entity Relationship (ER) Modeling,” so you
are already familiar with its notation. With that in mind, you will find the following comparisons between the
various notations easier to understand if you use the Crow’s Foot notation as your reference point. You also
saw illustrations of the Chen model in Chapter 3, “The Relational Database Model.” You should remember that
the Chen-style connectivity designations 1 and M and cardinality designations such as (0,1), (0,N), (1,1), and
(1,N) are replaced by the Crow’s Foot’s sticklike symbols illustrated in Figure E.1. (The name “Crow’s Foot”
is a reflection of the symbol used for the connectivity M, which resembles a three-toed bird’s foot.) Note that
the Crow’s Foot model combines connectivity and cardinality information in a single symbol set. Unlike the
Chen methodology, the Crow’s Foot model cannot detail cardinalities other than 0, 1, or N. For example, the
cardinality (5,25) cannot be shown in a Crow’s Foot model. However, the commercial modeling tools that use
the Crow’s Foot—such as Microsoft Visio Professional—let you add those cardinalities to the diagram, using
text, and to define the cardinalities in a data dictionary.

� The Rein85 model was developed by D. Reiner in 1985. Although the Rein85 model is based on the same
modeling conventions as the Crow’s Foot, its symbols are quite different. It also operates at a higher level of
abstraction than the Crow’s Foot. The Rein85 methodology does not recognize cardinalities explicitly, relying
on connectivities to lead to logical cardinality conclusions. The Rein85 symbols are displayed in Figure E.1.

� IDEF1X is a derivative of the integrated computer-aided manufacturing (ICAM) studies that were conducted in
the late 1970s. ICAM became the source of graphical methods for defining the functions, data structures, and
dynamics of manufacturing businesses. The integration of those methods became known as IDEF (ICAM
DEFinition). The original version of IDEF, developed by Hughes Aircraft, became known as IDEF1. The
extended version of IDEF1, known as IDEF1X, became the U.S. Air Force standard and has gained acceptance
as a general manufacturing data-modeling tool. As you examine Figure E.1, note that IDEF1X uses fewer
symbols than the other modeling methods, thus providing fewer explicit details of the type and extent of the
relationships being modeled.

Note

Figure E.1 shows Crow's Foot composite and weak entities to reflect the early implementations of that model.
However, modern modeling tools such as Microsoft Visio do not depict the composite and weak entities.
Instead, the existence of weak and composite entities is inferred from the relationship lines, which are solid
when the relationship between parent and child entities is strong or identifying. In addition, the nature of the
entity can be established by examining the PK/FK depictions. Therefore, the special weak/composite depictions
are redundant in the Crow's Foot model.

41199_AppE 11/2/2007 10:54:57 Page 130

130 A P P E N D I X E

To illustrate the use of the four methods, let’s examine the invoicing example discussed in Chapter 3, Section 3.7. The
invoicing example is based on the following business rules:

� A CUSTOMER may generate zero INVOICEs, one INVOICE, or many INVOICEs. An INVOICE is generated
by one CUSTOMER.

� An INVOICE refers to many PRODUCTs—for example, you can sell many hammers over some period of time,
and a PRODUCT may or may not be referred to in many INVOICEs. (Products that are stocked are not
necessarily sold.) You should remember from Chapter 4 that the M:N relationship between INVOICE and
PRODUCT is implemented through LINE, in order to decompose the M:N relationship into two 1:M
relationships. Therefore, LINE becomes optional to PRODUCT because an unsold product will never appear
in an invoice line.

Based on the preceding business rules, the four ERD notations are illustrated in Figures E.2 through E.5.

Entity

Relationship line

Relationship

Option symbol

One (1) symbol

Many (M) symbol

Composite entry

Weak entity

Chen Rein85 IDEF1X

FIGURE
E.1

A comparison of ER modeling symbols

1

M

41199_AppE 11/2/2007 10:54:57 Page 131

131C O M P A R I S O N O F E R M O D E L I N G N O T A T I O N S

FIGURE
E.2

The Chen ERD for the invoicing problem

CUSTOMER generates

PRODUCT

LINE

INVOICE

1

(0,N)

M

(1,1)
(1,N)

(0,N)

1

(1,1)

(1,1)

M

M

1

This model may be read as follows:

each CUSTOMER may generate one or more INVOICEs
each INVOICE is generated by one CUSTOMER

each INVOICE contains one or more invoice LINEs
each invoice LINE is contained in an INVOICE

each invoice LINE references one PRODUCT
each PRODUCT may be referenced in one or more invoice LINEs

FIGURE
E.3

41199_AppE 11/2/2007 10:54:57 Page 132

132 A P P E N D I X E

FIGURE
E.4

The Rein85 ERD for the invoicing problem

CUSTOMER

generates

PRODUCT

INVOICE

This model may be read as follows:

each CUSTOMER may generate one or more INVOICEs
each INVOICE is generated by one CUSTOMER

each INVOICE contains one or more invoice LINEs
each invoice LINE is contained in an INVOICE

each invoice LINE references one PRODUCT
each PRODUCT may be referenced in one or more invoice LINEs

contains

references

LINE

FIGURE
E.5

The IDEF1X ERD for the invoicing problem

CUSTOMER
generates

PRODUCT

INVOICE

This model may be read as follows:

each CUSTOMER may generate one or more INVOICEs
each INVOICE is generated by one CUSTOMER

each INVOICE contains one or more invoice LINEs
each invoice LINE is contained in an INVOICE

each invoice LINE references one PRODUCT
each PRODUCT may be referenced in one or more invoice LINEs

contains

references

LINE

41199_AppE 11/2/2007 10:54:58 Page 133

133C O M P A R I S O N O F E R M O D E L I N G N O T A T I O N S

Preview

Client/Server Systems

Today client/server computing is a fact of life.The Internet—and its intranet and extranet

derivatives—is perhaps the most pervasive example of client/server computing, and it has

taken center stage with regard to application development. Because of the Internet’s wide

reach and acceptance, you should know what client/server computing is; what its compo-

nents are; how the components interact; and what effects client/server computing has on

database design, implementation, and management.

F
A

P
P

E
N

D
I

X

41199_AppF 11/9/2007 10:33:41 Page 134

F.1 WHAT IS CLIENT/SERVER COMPUTING?

Client/server is a term used to describe a computing model for the development of computerized systems. The model
is based on the distribution of functions between two types of independent and autonomous processes: servers and
clients. A client is any process that requests specific services from server processes. A server is a process that
provides requested services for clients. Client and server processes can reside in the same computer or in different
computers connected by a network.

When client and server processes reside on two or more independent computers on a network, the server can provide
services for more than one client. In addition, a client can request services from several servers on the network without
regard to the location or the physical characteristics of the computer in which the server process resides. The network
ties the servers and clients together, providing the medium through which clients and servers communicate. (See Figure
F.1.) As you examine Figure F.1, note that the services can be provided by a variety of computers on the network. For
example, one computer may be dedicated to providing file and print services, another may provide communication and
fax services, some may be used as Web servers, and others may provide database services.

The key to client/server power is where the request processing takes place. For example, in a client/server database,
the client requests data from the database server. The actual processing of the request (selection of the records) takes
place in the database server computer. In other words, the server selects the records that match the selection criteria
and sends them over the network to the client. Information processing can be divided among different types of (server)
computers ranging from workstations to mainframes.

The extent of the separation of data-processing tasks is the key difference between client/server systems and
mainframe systems. In mainframe systems, all processing takes place on the mainframe and the (usually dumb) terminal
is used only to display the data screens. In that environment, there is no autonomy—the terminal is simply an
appendage to the mainframe. In contrast, the client/server environment provides a clear separation of server and client
processes and both processes are autonomous. The relationship between servers and clients is many-to-many; one
server can provide services to many clients, and one client can request services from many servers.

Depending on the extent to which the processing is shared between the client and the server, a server or a client may be
described as fat or thin. A thin client conducts a minimum of processing on the client side, while a fat client carries
a relatively larger proportion of the processing load. A fat server carries the bulk of processing burdens, while a thin
server carries a lesser processing load. Thus, thin clients are associated with fat servers; conversely, fat clients are
associated with thin servers.

Services:
File
Print
Communication
Fax
Multimedia
and so on

Server process Client process(Requests and replies
travel through
the network)

Client requests
services from
different server
processes.

FIGURE
F.1

Basic client/server computing model

Network

41199_AppF 11/9/2007 10:33:49 Page 135

135C L I E N T / S E R V E R S Y S T E M S

Finally, client/server systems may also be classified as two-tier or three-tier. In a two-tier client/server system, a
client requests services directly from the server. In a three-tier client/server system, the client’s requests are
handled by intermediate servers that coordinate the execution of the client requests with subordinate servers.

To understand why client/server computing is such a powerful player in the modern computing arena, you must
examine its evolution, its architecture, and its functions.

F.2 THE EVOLUTION OF CLIENT/SERVER INFORMATION SYSTEMS

In the mid-1970s, corporate data resided safely within big, expensive mainframes that were driven by complex,
proprietary operating systems. Dumb terminals, connected to front-end processors, communicated with the mainframe
to produce the required information. The mainframe and its accompanying devices were jealously guarded, and access
was rigorously restricted to authorized personnel. That computing style, partly dictated by available hardware and
software and partly made possible by a relatively static data environment, suited the usually large companies that could
afford the high cost of such computing. The centralized computing style imposed rigid control on the applications,
strict limits to end-user data access, and a complex MIS department bureaucracy.

With the introduction of microcomputers in the 1980s, users were able to manipulate data locally with the help of
relatively easy-to-use software such as spreadsheets and microcomputer-based database systems. However, the data on
which the software operated still resided in the mainframe. Users often manually reentered the necessary data to make
them accessible to the local application. This “manual download” of information was not very productive and was
subject to the data anomalies discussed in Chapter 1, “Database Systems.” In the early 1980s, many managers’ desks
were home to a dumb terminal and a PC. A substantial portion of the information game required the concurrent use
of both devices. Few MIS department managers viewed the PC as a first-class citizen in their information delivery
infrastructure.

The use of the PC grew steadily over the years and eventually replaced the dumb terminals on end users’ desks.
Communications and terminal emulation programs allowed the PC to connect to and integrate with the MIS data
center. The PCs connected to the mainframe were usually referred to as intelligent terminals. By this time, the
electronic download of data from the mainframe to the PC was the standard way to extract required data from the
mainframe to be manipulated by the local PC. Given that data access environment, the end users’ data were only a
snapshot of the company’s changing mainframe data. Therefore, current mainframe data had to be downloaded
frequently to avoid outdated reports or inaccurate query results.

Using their PCs, end users could create their own databases and reports, thus relying less on the MIS department’s
centralized control and services. Unfortunately, that new end-user freedom caused the proliferation of snapshot
versions of the corporate database. This scenario created so-called islands of information that were independent of the
MIS department. Data sharing between the islands was unsophisticated. When users needed to share data, they would
simply copy the data to a disk and walk to the coworker’s office, disk in hand. That data-sharing approach was later
labeled the sneakernet.

It was no surprise that the PC’s introduction caused data security, data replication, and data integrity problems for
corporate MIS departments. However, because PCs yielded many end-user information benefits, their growth could not
be controlled easily. Consequently, to retain some semblance of control, MIS departments encouraged the develop-
ment of departmental PC users’ groups to share information electronically.

The new willingness to share information electronically was made possible, in large part, by a company known as
Novell Data Systems, which introduced Netware/86 (originally called ShareNet) in 1983. The Novell software and
hardware allowed MIS managers to connect PCs through a local area network (LAN). The LAN made it possible for
end-user PCs to share files via a central PC that acted as a network file server. Netware/86, which evolved into

41199_AppF 11/2/2007 11:54:10 Page 136

136 A P P E N D I X F

NetWare 2.15, 3.lx, 4.x, 5.x, and now 6.x, became the first widely accepted network operating system (NOS) for
IBM personal computers and compatibles.

As PC microprocessor and data storage technology advanced rapidly in the 1990s, new PCs began to rival mainframe
processing power. That trend accelerated in the late 1990s and into the first few years of the 21st century. The new
PC power made it possible and, based on relative computing cost, even desirable for MIS development teams to shift
much of their work to PC-based application development tools. A welcome result of that operational shift was that the
end user and the MIS specialist were now working on a common PC platform. As more PCs were integrated into the
corporate data centers, MIS department needs grew closer to those of the end user. As operating systems and network
technology matured, even some mission-critical applications and business functions were moved from the mainframe
to the PC platform.

The evolution from mainframe computing to PC-based client/server information systems generated many changes in
key aspects of information management. Some of those differences are highlighted in Table F.1.

TABLE
F.1

Contrasting Mainframe and Client/Server Information Systems

ASPECT MAINFRAME-BASED
INFORMATION SYSTEM

PC-BASED CLIENT/SERVER
INFORMATION SYSTEM

Management Centralized Distributed/decentralized
Vendor Single-vendor solution Multiple-vendor solution
Hardware Proprietary Multiple vendors
Software Proprietary Multiple vendors
Security Highly centralized Decentralized
Data manipulation Very limited Extensive and very flexible
System management Integrated Few tools available
Application development Overstructured

Time-consuming
Creation of application backlogs

Flexible
Rapid application development
Better productivity tools

End-user platform Dumb terminal
Character-based
Single task
Limited productivity

Intelligent PC
Graphical user interface (GUI)
Multitasking OS
Better productivity tools

Figure F.2 summarizes the preceding discussion by depicting the four stages of the information systems’ evolution from
the mainframe to the PC-based infrastructure required for client/server computing.

The general forces behind the move to PC-based client/server computing are:

� The changing business environment. Businesses must meet global competitive pressures by streamlining their
operations and by providing an ever-expanding array of customer services. Information management has
become critical in this competitive environment, making fast, efficient, and widespread data access key to
survival. The corporate database has become a far more dynamic asset than it used to be, and it must be
available at a relatively low cost.

� The growing need for enterprise data access. When corporations grow, especially when they grow by
merging with other corporations, it is common to find a mixture of disparate data sources in their systems. In
such a multiple-source data environment, managers and decision makers need fast, on-demand data access and
easy-to-use tools to integrate and aggregate data. Client/server computing makes it possible to mix and match
data as well as hardware. In addition, the Internet’s inherent client/server structure makes it relatively easy to
access both external and internal data sources.

41199_AppF 11/9/2007 10:34:31 Page 137

137C L I E N T / S E R V E R S Y S T E M S

� The demand for end-user productivity gains, based on the efficient use of data resources. Client/server
computing supports end users’ demands for better ad hoc data access and data manipulation, better user
interfaces, and better computer integration.

� Technological advances that have made client/server computing practical. The change to PC-based
information systems was also driven by advances in microprocessor technology and storage capacity, data
communications and the Internet, database systems, operating systems and GUI interfaces, and sophisticated
application software.

� Growing cost/performance advantages of PC-based platforms. PC platforms often offer unbeatable price/
performance ratios compared to mainframe and minicomputer platforms. PC application costs, including
acquisition, installation, and use, are usually lower than those of similar minicomputer and mainframe
applications. (In complex client/server system implementations, PC-based training and support costs might be
higher than those in a mainframe environment. Purchasing hardware and software from multiple sources can
also become a major management headache, especially when system problems occur. Yet for many
organizations, the dollar cost comparison between PC-based client/server systems and mainframe systems
favors PC-based systems.)

F.3 CLIENT/SERVER ARCHITECTURE

The client/server infrastructure, known as the client/server architecture, is a prerequisite to the proper deployment of
client/server systems. The client/server architecture is based on hardware and software components that interact
to form a system. That system includes three main components: clients, servers, and communications middleware.

FIGURE
F.2

Evolution of the computing environment

1. Centralized processing
 Dumb terminals

3. Intelligent terminals
 Electronic download
 Snapshot
 processing

4. Local area networks
 On-demand data access
 Distributed read/write access

2. Standalone PCs
Manual download
Sneakernet

41199_AppF 11/9/2007 10:34:41 Page 138

138 A P P E N D I X F

� The client is any computer process that requests services from the server. The client is also known as the
front-end application, reflecting that the end user usually interacts with the client process.

� The server is any computer process providing services to the clients. The server is also known as the back-end
application, reflecting that the server process provides the background services for the client process.

� The middleware is any computer process through which clients and servers communicate. The middleware,
also known as communications middleware or the communications layer, is made up of several layers of
software that aid the transmission of data and control information between clients and servers. The
communications middleware is usually associated with a network. All client requests and server replies travel
through the network in the form of messages that contain control information and data.

F.3.1 How Client/Server Components Interact

To illustrate how the components interact, let’s examine how a client requests services from a database server. Examine
Figure F.3, noting that the application processing has been split into two main, independent processes: a client and
a server. The communications middleware makes it possible for the client and server processes to work together. As
you examine Figure F.3, also note that the communications middleware becomes the supporting platform on which
clients and servers rest. Although the communications middleware is a key component in the system, its presence
exacts a price by creating substantial additional overhead; adding system failure points; and, in general, adding
complexity to the system’s implementation.

In Figure F.3, for example, the client process is in charge of the end-user interface, some portion of the local data
validation, some processing logic, and data presentation. The communications middleware ensures that the messages
between clients and servers are properly routed and delivered. SQL requests are handled by the database server, which
validates the requests, executes them, and sends the results to the clients.

The server and client do not need to be in different computers. They can reside in the same computer and share the
same processor, assuming the operating system allows it, assuming the use of a multitasking operating system.
However, most client/server implementations place the client and server processes in separate computers. Figure F.4
illustrates a client/server system with two servers and three clients.

Given the environment shown in Figure F.4, a database server process runs on an HP computer, while an imaging
server process runs on an IBM computer. The three client processes run under three different operating systems:
Windows, Linux, and Apple Mac OS. The client and server processes are connected through a token ring network.
The front-end applications in the client computers request data and images from the back-end processes (database and
imaging servers). The network and supporting software form the communications middleware through which clients
and servers communicate. Note that the communications can take place between clients and servers as well as between
servers. Remember from Chapter 12, “Distributed Database Management Systems,” that that scenario is typical of
distributed database environments, in which requested data can be stored in different locations.

FIGURE
F.3

Interaction between client/server components

Client
process

Client process
sends SQL request through

communications middleware.

Communications
middleware

network

Database
server

Communications middleware
routes SQL request to

database server process.

Database server process
receives request, validates it,

and executes it.

SQL

Data

SQL

Data

41199_AppF 11/9/2007 10:34:51 Page 139

139C L I E N T / S E R V E R S Y S T E M S

Figure F.4 illustrates a complex, yet common client/server environment in which the server processes are running
under two different operating systems, the client processes are running under three different operating systems, and
the system contains three different hardware platforms. In that scenario, the communications middleware (network and
supporting software) becomes the integrating platform for all components. The following section examines the
communications middleware components in greater detail.

F.3.2 Client Components

As mentioned earlier, the client is any process that requests services from a server process. The client is proactive and
will, therefore, always initiate the conversation with the server. The client includes hardware and software components.
Desirable client hardware and software features are:

� Powerful hardware.

� An operating system capable of multitasking.

� A graphical user interface (GUI).

� Communications capabilities.

Because client processes typically require a lot of hardware resources, they should be stationed on a computer with
sufficient processing power, such as a fast 64-bit processor workstation. Such processing power facilitates the creation
of systems with multimedia capabilities. Multimedia systems handle multiple data types, such as voice, images, and
video. Client processes also require large amounts of hard disk space and physical memory. You should have as much
memory and hard disk space available as possible.

The client should have access to an operating system with at least some multitasking capabilities. Various versions of
Microsoft Windows are the most common client platforms as of this writing. Windows provides access to memory,
preemptive multitasking capabilities, and a graphical user interface. Those capabilities, in addition to the abundance
of applications developed for the Windows interface, make Windows the platform of choice in the majority of

FIGURE
F.4

An example of client/server architecture

Back-end database
server process

Communications
middleware

token ring network

Back-end imaging
server process

Front-end application
client processes

Mac OSLinuxWindows

HP RISC
server

Compaq
server

Token ring
network

41199_AppF 11/9/2007 12:11:4 Page 140

140 A P P E N D I X F

client/server implementations. However, although the Windows operating system is popular at the client side, other
operating systems—such as Microsoft Windows Server and the many “flavors” of UNIX, including Linux—are better
suited to handle the client/server processing that is largely done on the server side.

To interact efficiently in a client/server environment, the client computer must be able to connect and communicate
with other computers in a network environment. Therefore, the combination of hardware and operating system must
also provide adequate connectivity to multiple network operating systems (NOSs). The reason for requiring a client
computer to be capable of connecting and accessing multiple network operating systems is simple: services may be
located in different networks.

The client application, or front end, runs on top of the operating system and connects with the communications
middleware to access services available in the network. Several third-generation programming languages (3GLs) and
fourth-generation languages (4GLs) can be used to create the front-end application. Most front-end applications are
GUI-based to hide the complexity of the client/server components from the end user. Figure F.5 depicts the basic client
components.

As you examine Figure F.5, note that the front-end application interacts with the operating system to access the
multitasking and graphical user interface capabilities provided by the operating system. The front-end application also
interacts with the network software component of the communications middleware to access the services located in the
network. The hardware components of the communications middleware (network cable and network board) physically
transport the requests and replies between clients and servers. While the request is being processed by the server, the
client is free to perform other tasks.

FIGURE
F.5

Client components

Front-end
application

Software

Multitasking
GUI services

Operating
system

Network
software
interface

Communications layer
components provide
access to the network and
to the services.

Hardware

Memory (RAM)

Hard disk

CPU Network card

Video card Network cable

41199_AppF 11/2/2007 11:55:48 Page 141

141C L I E N T / S E R V E R S Y S T E M S

F.3.3 Server Components

As mentioned, the server is any process that provides services to client processes. The server is reactive because it waits
for the client’s requests. Servers typically provide:

� File services for a LAN environment in which a computer with a big, fast hard disk or an array of disks is
shared among different users. A client connected to the network can store files on the file server as if it were
another local hard disk.

� Print services for a LAN environment in which a PC with one or more printers attached is shared among
several clients. A client can access any one of the printers as if it were directly connected to its own computer.
The data to be printed travel from the client’s PC to the print server PC, where they are temporarily stored
on the hard disk. When the client finishes sending the print job, the data are moved from the hard disk on the
print server to the appropriate printer.

� Fax services that require at least one server equipped (internally or externally) with a fax device. The client PC
need not have a fax machine or even a phone line connection. Instead, the client submits the data to be faxed
to the fax server, with the required information, such as the fax number or name of the recipient. The fax server
schedules the fax, dials the fax number, and transmits the fax. The fax server should also be able to handle any
problems that occur in the process.

� Communications services that let client PCs connected to the communications server access other host
computers or services to which the client is not directly connected. For example, a communications server
allows a client PC to dial out to access a bulletin board or a remote LAN location.

� Database services, which constitute the most common and most successful client/server implementation. The
client sends SQL requests to a database server. The server receives the SQL code, validates it, executes it, and
sends only the results to the client. The data and the database engine are located on the database server
computer. The client is required to have only the front-end application to access the database server.

� Transaction services, which are provided by transaction servers that are connected to the database server. A
transaction server contains the database transaction code or procedures that manipulate the data in the
database. A front-end application in a client computer sends a request to the transaction server to execute a
specific procedure stored on the database server. No SQL code travels through the network. Transaction
servers reduce network traffic and provide better performance than database servers.

� Miscellaneous services that include CD-ROM, DVD, video, and backup.

A common misconception is that the server process must run on the computer that contains the network operating
system. This is not necessarily so. Unless circumstances dictate otherwise, separation of the server process and the
NOS is highly recommended. That separation allows the server process to be located on any of the network’s
computers and still be available to all client computers. For example, suppose you have a CD-ROM server in a Novell
NetWare network. If the server software requires the CD-ROM server process to be run on the same computer with
the NetWare operating system, the host computer will be severely taxed. The host must double as a file server and a
CD-ROM server. If the product does not require such “doubling,” it can be installed on any PC in the network, thereby
effectively distributing the workload. Both types of products use the network services (IPX or TCP/IP) provided by
Novell NetWare to transport the messages between clients and the server. Each solution is subject to advantages and
disadvantages. The best solution always depends on the specific circumstances.

Like the client, the server also has hardware and software components. The hardware components include the
computer, CPU, memory, hard disk, video, and network card. The computer that houses the server process should be
a more powerful computer than the “average” client computer because the server process must be able to handle
concurrent requests from multiple clients. Server components are illustrated in Figure F.6.

The server application, or back end, runs on top of the operating system and interacts with the communications
middleware components to “listen” for the client’s requests for services. Unlike the front-end client process, the server
process need not be GUI-based. Keep in mind that the back-end application interacts with the operating system
(network or standalone) to access local resources (hard disk, memory, CPU cycles, and so on). The back-end server

41199_AppF 11/9/2007 10:35:1 Page 142

142 A P P E N D I X F

constantly “listens” for the client’s requests. Once a request is received, the server processes it locally. The server
knows how to process the request; the client tells the server only what it needs done, not how to do it. When the
request is met, the answer is sent back to the client through the communications middleware.

Server hardware characteristics depend on the extent of the required services. For example, a database server for a
network of 50 clients may require a computer with the following minimum characteristics:

� Fast CPU (Pentium Xeon, AMD Opteron 64-bit, or multiprocessor).

� Fault-tolerant capabilities:

- Dual power supply to prevent power supply problems.

- Standby power supply to protect against power line failures.

- Error checking and correcting (ECC) memory to protect against memory module failures.

- Redundant array of independent disks (RAID) to protect against physical hard disk failures.

� Expandability of CPU, memory, disk, and peripherals.

� Bus support for multiple add-on boards.

� Multiple communications options.

In theory, any computer process that can be clearly divided into client and server components can be implemented
through the client/server model. When properly implemented, the client/server architectural principles for process
distribution are translated into the following server process benefits:

� Location independence. The server process can be located anywhere in the network.

� Resource optimization. The server process can be shared by several client processes.

� Scalability. The server process can be upgraded to run on more powerful platforms.

� Interoperability and integration. The server process should be able to work in a plug-and-play environment.

FIGURE
F.6

Server components

Back-end
server

Software

Network OS or
Standalone OS

Operating
system

Network
software
interface

Communications layer
components provide
access to the network.
Requests and replies
travel through the
network.

Hardware

Memory (RAM)

Hard disk

CPU Network card

Video card

Network cable

41199_AppF 11/9/2007 10:35:10 Page 143

143C L I E N T / S E R V E R S Y S T E M S

Those benefits, in addition to the hardware and software independence principles of the client/server computing
model, facilitate the integration of PCs, minicomputers, and mainframes in a nearly seamless environment.

F.3.4 Communications Middleware Components

The communications middleware software provides the means through which clients and servers communicate to
perform specific actions. In the client process, the communications middleware software also provides the specialized
services that insulate the front-end applications programmer from the internal workings of the database server and
network protocols. In the past, applications programmers had to write code that would directly interface with the
specific database language (generally, a variation of SQL) and the specific network protocol used by the database
server. If the same application were to be used with a different database and network, the application’s routines had
to be rewritten for the new database and network protocols. Clearly, that condition is undesirable, which is where
middleware is valuable.

Although middleware can be used in different scenarios, such as e-mail, fax, or network protocol translation, most
first-generation middleware used in client/server applications is oriented toward providing transparent data access to
several database servers. The use of database middleware yields:

� Network independence by allowing the front-end application to access data without regard to the network
protocols.

� Database server independence by allowing the front-end application to access data from multiple database
servers without having to write code that is specific to each database server.

The use of database middleware makes it possible for the programmer to use generic SQL sentences to access different
and multiple database servers. The middleware layer isolates the programmer from the differences among SQL dialects
by transforming generic SQL sentences into the database server’s expected syntax. For example, a problem in
developing front-end systems for multiple database servers occurs because applications programmers must have
in-depth knowledge of the network communications and the database access language characteristics of each database
in order to access remote data. The problem is aggravated because each DBMS vendor implements its own version
of SQL (with differences in syntax, additional functions, and enhancements with respect to the SQL standard).
Furthermore, the data might reside in a nonrelational DBMS that doesn’t support SQL, thus making it harder for the
programmers to access the data. Given such cumbersome requirements, programming in client/server systems can be
more difficult than programming in traditional mainframe systems. Database middleware eases the problem of
accessing multiple sources of data in multiple networks and releases the programmer from the details of managing the
network communications.

To accomplish its functions, the communications middleware software operates at two levels:

� The physical level deals with the communications between client and server computers (computer to
computer). In other words, it addresses how the computers are physically linked. The physical links include the
network hardware and software. The network software includes the network protocols. Recall that network
protocols are the rules that govern how computers must interact with other computers in a network. They
ensure that computers are able to send and receive signals to and from each other. Physically, the
communications middleware is, in most cases, the network. Because the client/server model allows the client
and the server to reside on the same computer, it may exist without the benefit of a computer network.

� The logical level deals with the communications between client and server processes (process to process), that
is, with how the client and server processes communicate. The logical characteristics are governed by
interprocess (or process-to-process) communication (IPC) protocols that give the signals meaning or
purpose. It is at this level that most client/server conversation takes place.

To illustrate the two levels at which client/server communications take place, let’s use an analogy. Suppose you order
a pizza by phone. You start by picking up the phone, dialing the number, and waiting for someone to answer. When
the phone is answered, you identify yourself, tell the clerk what type of pizza you want, how many pizzas you want,

41199_AppF 11/9/2007 10:35:17 Page 144

144 A P P E N D I X F

and other details. In turn, the clerk asks for your address, provides price information, and gives you an estimated
delivery time. That simple transaction required both physical- and logical-level actions:

� The physical-level actions included the telephone changing your voice to analog signals and the subsequent
movement of those signals through phone lines to the phone company’s central PBX and from there to the
phone installed at the pizza place.

� The logical-level actions were handled by you and the clerk. Because you and the clerk spoke the same
language, you requested the service in a format that the clerk understood and the two of you discussed the
details of the transaction successfully.

Other than requiring that you know how to use the phone, the physical details of the phone connection are hidden.
The phone company handled all of the physical details of your conversation, whereas you and the pizza clerk handled
all of the logical details.

F.3.5 The OSI Model

Although the preceding analogy helps you understand the basic client/server interactions, you should know some
details of computer communications to better understand the flow of data and control information in a client/server
environment. Consider the Open Systems Interconnection (OSI) network reference model as an illustration of
those details. That model, published in 1984, was developed by the International Organization for Standardization
(ISO) in an effort to standardize the diverse network systems. The OSI model is based on seven layers, which are
isolated from one another. No layer needs to know the details of another layer in order to operate. The OSI model,
shown in Table F.2, was designed to let each layer provide specific services to the layer above it.

TABLE
F.2

The OSI Network Reference Model

LAYER DESCRIPTION
Application End-user applications program. Client: front-end application such as e-mail or a spreadsheet.

Server: back-end application such as a file server, a database server, or e-mail.
Presentation Provides formatting functions for application layer protocol conversion, compression, encod-

ing, and so on.
Session Establishes and controls communication between applications. Ensures security, delivery, and

communications recovery.
Transport Provides error recognition and recovery, ensures that all data are properly delivered, and adds

transport-layer-specific ID.
Network Provides end-to-end routing of packets. Splits long messages into smaller units.
Data-Link Creates “frames” for transmission and controls the shared access to the network physical

medium (cable). Includes error checking, correction, and so on.
Physical Provides standards dealing with the electrical details of the transmission (network cards,

cable types, voltages, and so on). Physically transmits frames of data through the cable or
other media.

As you examine the OSI network reference model, note how data flow in a network. The objective of the bottom layers
is to hide the network complexity from all of the layers above. In short:

� The Application and Presentation layers provide end-user application-oriented functions.

� The Session layer ensures and controls program-to-program communications.

� The Transport, Network, Data-Link, and Physical layers provide network-oriented functions.

To better illustrate the functions contained within the OSI reference model, let’s examine how a client requests services
from a database server in a network. Figure F.7 depicts the flow of information through each layer of the OSI model.

41199_AppF 11/9/2007 10:35:22 Page 145

145C L I E N T / S E R V E R S Y S T E M S

Using Figure F.7 as a guide, you can trace the data flow.

1. The client application (Application layer) generates a SQL request.

2. The SQL request is sent down to the Presentation layer, where it is changed to a format that the SQL server
engine can understand. Actions include translating ASCII characters, indicating single- and double-precision
numbers, and specifying date formats (for example, mm/dd/yyyy instead of dd/mm/yyyy).

3. The SQL request is handed down to the Session layer. The Session layer establishes the connection of the
client process with the server process. If the database server process requires user verification, the Session layer
generates the necessary messages to log on and verify the end user. At this point, usually at the beginning of
the session, the end user may be required to enter a user ID and a password to access the database server, after
which additional messages may be transmitted between the client and the server processes. The Session layer
will identify which messages are control messages and which are data messages.

4. After the session is established and validated, the SQL request is sent to the Transport layer. The Transport
layer generates some error validation checksums and adds some Transport-layer-specific ID information. For
example, when several processes run on the client, each process may be executing a different SQL request or
each process may access a different database server. The Transport layer ID helps the Transport layer identify
which data correspond to which session.

5. Once the Transport layer has performed its functions, the SQL request is handed down to the Network layer.
The Network layer takes the SQL request, identifies the address of the receiving node (where the server is
located), adds the address of the next node in the path (if any), divides the SQL request into several smaller
packets, and adds a sequence number to each packet to ensure that they are assembled in the correct order.

FIGURE
F.7

Information flow through the OSI model

Client

Application

Presentation

Session

Transport

Network

Data-Link

Physical

Server

Application

Presentation

Session

Transport

Network

Data-Link

Physical

SQL request

Formats SQL request to
server’s native SQL format

Establishes “session”
(conversation between two
programs or processes)

Adds checksum to data,
adds transport layer ID

Formats data into packets for
transmittal to next node

Determines when to
transmit data frames
to the next node

Transmits data through
network physical media Receives data

frames

Validates data
frames

Assembles
message

Validates data, verifies
transport ID

Validates session
information

Formats SQL

Receives and
Executes SQL

Only bits of data travel
through the network.

41199_AppF 11/9/2007 10:35:39 Page 146

146 A P P E N D I X F

6. The packet is handed to the Data-Link layer. The Data-Link layer adds more control information. That control
information depends on the network and on which physical media are used. This information is added at the
beginning (header) and at the end (trailer) of the packet, which is why the output of this process is called a
frame. Then the Data-Link layer sends the frame to the next node. The Data-Link layer is responsible for
sharing the network medium (cable) and ensuring that no frames are lost.

7. When the Data-Link layer determines that it is safe to send a frame, it hands the frame down to the Physical
layer, which transforms the frame into a collection of ones and zeros (bits) and then transmits the bits through
the network cable. The Physical layer does not interpret the data; its only function is to transmit the signals.

8. The signals transmitted by the Physical layer are received at the server end by its Physical layer, which passes
the data to the Data-Link layer. The Data-Link layer reconstructs the bits into frames and validates them. At
this point, the Data-Link layers of the client and the server computer may exchange additional messages to
verify that the data were received correctly and that no retransmission is necessary. Then the Data-Link layer
strips the header and trailer information from the packet and sends the packet up to the Network layer.

9. The Network layer checks the packet’s destination address. If the final destination is some other node in the
network, the Network layer identifies it and sends the packet down to the Data-Link layer for transmission to
that node. If the destination is the current node, the Network layer assembles the packets and assigns
appropriate sequence numbers. Then the Network layer generates the SQL request and sends it to the
Transport layer.

10. The Transport layer provides additional validation checks and then routes the message to the proper session
by using the transport ID. Figure F.8 illustrates how the transport process ID correctly distributes network
requests for a database server process that serves multiple clients.

11. Most of the client/server “conversation” takes place in the Session layer. If the communication between client
and server processes is broken, the Session layer tries to reestablish the session. The Session layer identifies
and validates the request and then sends it to the Presentation layer.

FIGURE
F.8

Transport process ID

Application

Presentation

Session

Transport

Network

A database server servicing
multiple requests may have
independent sessions and
process IDs for each of those
sessions.

Database server

Client
process 1

Client
process 2

Session ID Session ID A session layer provides client
process verification.

Transport
process ID

7167

Transport
process ID

3491

The transport layer distributes
the requests to the correct
session, using the process ID.

The network layer receives messages from different clients,
assembles them, and sends them to the transport layer.

41199_AppF 11/9/2007 10:35:52 Page 147

147C L I E N T / S E R V E R S Y S T E M S

12. The Presentation layer provides additional validation and formatting.

13. The SQL request is sent to the database server or Application layer, where it is executed.

Keep in mind that although the OSI framework helps you understand network communications, it functions within a
system that requires considerable infrastructure. The network protocols constitute the core of the network infrastruc-
ture because all data traveling through the network must adhere to some network protocol. In a client/server
environment, it is not unusual to work with several different network protocols. Different server processes may support
different network protocols to communicate over a network.

F.3.6 Database Middleware Components

As depicted in Figure F.9, database middleware is divided into the following three main components:

� Application programming interface (API).

� Database translator.

� Network translator.

Those components (or their functions) are generally distributed among several software layers that are interchangeable
in a plug-and-play fashion.

The application programming interface (API) is public to the client application. The programmer interacts with
the middleware through the APIs provided by the middleware software. The middleware API allows the programmer
to write generic SQL code instead of code specific to each database server. In other words, the middleware API allows
the client process to be independent of the database server. That independence means that the server can be changed
without requiring the client applications to be completely rewritten.

FIGURE
F.9

Database middleware components

API

Database
translator

Database
middleware

Network
translator

Client
front end

Network
protocol

41199_AppF 11/9/2007 10:36:0 Page 148

148 A P P E N D I X F

}The database translator translates the SQL requests into the specific database server syntax. The database
translator layer takes the generic SQL request and maps it to the database server’s SQL protocol. If a database server
has some nonstandard features, the database translator layer will opt to translate the generic SQL request into the
specific format used by the database server. If the SQL request uses data from two different database servers, the
database translator layer will take care of communicating with each server, retrieving the data using the common
format expected by the client application.

The network translator manages the network communications protocols. Remember that database servers can use
any of the network protocols discussed earlier. Therefore, if a client application taps into two databases, one that uses
TCP/IP and another that uses IPX/SPX, the network layer handles all the communications details of each database
transparently to the client application. Figure F.10 illustrates the interaction between client and middleware database
components.

Given the existence of the three middleware components shown in Figure F.9, the three main benefits of using
middleware software can be identified. Clients can:

� Access multiple (and quite different) databases.

� Be database-server-independent.

� Be network-protocol-independent.

To illustrate how all of those pieces work together, let’s see how a client accesses two different database servers. Figure
F.11 shows how a client application requests data from an Oracle database server (Oracle Corporation) and from a
SQL Server database server (Microsoft Corporation). The Oracle database server uses SQL*Net as its communications
protocol with the client; the SQL Server database server uses Net-Library routines. SQL*Net, a proprietary solution
limited to Oracle databases, is used by Oracle to send SQL requests over a network. Net-Library routines provide an
interprocess communications (IPC) protocol used in SQL Server to manage client and server communications across
the network.

As you examine Figure F.11, note that the Oracle server runs under the UNIX operating system and uses TCP/IP as
its network protocol. The SQL server runs under the Windows NT operating system and uses NetBIOS as its network
protocol. In this case, the client application uses a generic SQL query to access data in two tables: an Oracle table and
a SQL Server table. The database translator layer of the middleware software contains two modules, one for each
database server type to be accessed.

FIGURE
F.10

Interaction between client/server middleware components

The program makes generic
SQL requests that are
translated to the specific
database server by the
middleware layer.

The middleware then sends the
SQL requests to the server
through the network.

Database
Client

front end

Front-end application
interfaces with the
middleware application.

Middleware

Network
protocol

Database
server

Middleware

Network
protocol

41199_AppF 11/9/2007 10:36:15 Page 149

149C L I E N T / S E R V E R S Y S T E M S

Each module handles the details of each database communications protocol. The network translator layer takes care
of using the correct network protocol to access each database. When the data from the query are returned, they are
presented in a format common to the client application. The end user or programmer need not be aware of the details
of data retrieval from the servers. The end user might not even know where the data reside or from what type of DBMS
the data were retrieved.

Another example of how middleware can be used to provide transparent access to databases is shown in Figure F.12.
In this case, the network serves several clients that draw their data from an IBM mainframe containing a DB2 database.
The clients are Windows Vista, Windows XP, and Linux computers that request data through the network.

Using the bottom of Figure F.12 as a guide, note that the mainframe DB2 database uses the Application
Program-to-Program Communications (APPC) protocol to communicate with the computers in the network. A
computer in the network is used to translate the TCP/IP requests of the clients into the APPC protocol needed to
access the mainframe database. This computer is known as a gateway. A gateway computer provides communica-
tions translation functions between dissimilar computers and networks. The term gateway refers to another type of
middleware software; thus, a gateway computer is one that uses gateway middleware. In this case, the middleware
software is installed on several computers.

Given the scenario shown in Figure F.12, the client applications request data from the IBM DB2 mainframe database.
The DB2 component on the client computer performs some database translator functions. The CM component on the
client computer manages the network communications in the token ring network. The gateway computer uses the
DB2, DDCS, and CM components to provide database transparency features across the network. The CM on the
gateway computer translates the requests from TCP/IP to APPC and sends the requests to the DB2 mainframe
database. The middleware components, residing on the client and gateway computers, work together across the
network to provide database and network transparency features to all client applications.

FIGURE
F.11

Middleware accessing multiple database servers

Oracle

SQL*Net

TCP/IP

Database
communications

protocol

Network

UNIX

SQL Server

Windows

TCP/IP

SQL*Net

Oracle SQL Server

API

Client application

Middleware

Network

Database
communications

protocol

Named
pipes

NetBIOS

Named
pipes

NetBIOS

41199_AppF 11/2/2007 12:11:59 Page 150

150 A P P E N D I X F

F.3.7 Middleware Classifications

Database middleware software can be classified according to the way clients and servers communicate across the
network. Therefore, middleware software is usually classified as:

� Message-oriented middleware (MOM).

� Remote-procedure-call-based (RPC-based) middleware.

� Object-based middleware.

Choosing the best-suited middleware depends on the application. For example, RPC-based middleware is probably
best for highly integrated systems in which data integrity is paramount, as well as for high-throughput networks.
Message-oriented middleware is generally more efficient in local area networks with limited bandwidth and in
applications in which data integrity is not quite as critical. Object-based middleware is an emerging type of middleware
that is based on object-oriented technology. Although not as widely used as the other two, it promises better systems
integration and management.

FIGURE
F.12

Middleware accessing mainframe databases

DB2 database

IBM mainframe

UNIX Linux

Windows Linux
(database gateway)

Windows

Note: DB2/2 = DB 2 for OS/2 CM/2 = Communications manager for OS/2
DDCS/2 = Distributed Database Connection Services for OS/2

Middleware

Network

Distributed
Database

Connection
Services/2

Client PC Database gateway IBM mainframe

PC

PC

PC

PC

PC

Token ring
network

Client application

DB2/2

CM/2

NetBIOS

DB2/2

DDCS/2

CM/2

APPC APPC

DB2

NetBIOS

41199_AppF 11/2/2007 12:11:21 Page 151

151C L I E N T / S E R V E R S Y S T E M S

F.4 SOFTWARE INFRASTRUCTURE: NETWORK PROTOCOLS

A network protocol is a set of rules that determines how messages between computers are sent, interpreted, and
processed. Network protocols enable computers to interact in a network and work at different levels of the OSI model.
Other terms that are used to label the network protocols are LAN protocol and network transport protocol. The
main network protocols are as follows:

� Transmission Control Protocol/Internet Protocol (TCP/IP) is the official communications protocol of
the Internet, a worldwide network of heterogeneous computer systems. TCP/IP is the main communications
protocol used by UNIX systems, is supported by most operating systems at the midrange and personal
computer levels, and has become the de facto standard for heterogeneous network connections. Because UNIX
is the preferred operating system for medium- and large-scale database servers, TCP/IP is an important player
in the client/server arena.

� Internetwork Packet Exchange/Sequenced Packet Exchange (IPX/SPX) is the communications
protocol developed by Novell, one of the world’s leading LAN operating systems companies. The IPX/SPX
protocol does not behave well when integrated into MANs (metropolitan area networks) or WANs (wide area
networks), given their high levels of network traffic. That is why the latest versions of Novell operating systems
have adopted TCP/IP as their default network protocol.

� Network Basic Input/Output System (NetBIOS) is a network protocol originally developed by IBM
Corporation and Sytek in 1984 as a standard for PC applications communications. NetBIOS is supported by
the majority of PC operating systems and by a large number of PC applications. NetBIOS’s limitations render
it unusable in geographically dispersed internetworks. It is also perceived to be a poorer performer than the
IPX/SPX protocol.

� Application Program-to-Program Communications (APPC) is a communications protocol used in IBM
mainframe Systems Network Architecture (SNA) environments. This protocol allows communications
between personal computers and IBM mainframe applications, such as DB2, running on the mainframe. APPC
is used in IBM shops to create client/server applications that blend PCs, midrange computers such as the IBM
AS/400 and RISC/6000, and mainframe systems.

� AppleTalk is the proprietary communications protocol used by Apple computers for network
communications.

The TCP/IP and IPX/SPX protocols are the leading networking protocols in use today. Although the NetBIOS
protocol is slowly fading away, some critical business applications still use it today. Mainframe network protocols are
also used in many companies, especially when the company has a mainframe or minicomputer as its main data
repository. As a result of the client/server computing boom, many mainframes and midrange computers are now
implementing support for more open, nonproprietary network protocols, such as TCP/IP, to allow direct access from
client/server PC-based front-end applications.

The network protocol you select directly affects the software products you can use. For example, an older Novell
PC-based database server may be limited to supporting IPX as the network protocol. Most database servers based on
UNIX and recent versions of Windows and NetWare use the TCP/IP network protocol. In companies with multiple
servers, networks, and clients, the network communications hardware (bridges, routers, and so on) must be able to
translate network messages from one protocol to another.

The selection of network topology (covered later in this appendix) and protocols is a critical decision in the
development of a client/server system. For commercial software developers, that decision may be market-driven
because they want to sell their products to the largest markets as quickly as possible. Therefore, commercial software
developers use the network protocols that provide access to the largest number of customers. A commercially
developed client/server front-end or back-end application program must support multiple network protocols to
communicate with different servers or clients. The network protocol decision may include additional critical variables
for MIS systems developers or consultants. For example, does the company already have a network infrastructure in

41199_AppF 11/9/2007 10:36:30 Page 152

152 A P P E N D I X F

place? Does the company have a mainframe or a wide area network that must be integrated into the system? What
type of internal expertise is available? It would not be economically feasible or efficient for commercial software
developers or corporate MIS developers to create applications more than once to support multiple network protocols
and multiple database systems.

F.5 HARDWARE INFRASTRUCTURE: CABLING AND DEVICES

The primary hardware components of network infrastructure are cabling and devices that permit and regulate network
communications.

F.5.1 Network Cabling

Usually, cables are used to physically connect computers and to transmit data between them. There are three main
types of network cabling systems: twisted pair, coaxial, and fiber-optic cable. There are also some wireless connection
alternatives.

� Twisted pair cable is chosen for most installations because it is easy to install and carries a low price tag.
Twisted pair cable resembles typical telephone cable and is formed by pairs of wires that are twisted inside a
cover. The wires are classified as shielded twisted pair (STP) or unshielded twisted pair (UTP). Quality
requirements of twisted pair cable depend on the intended use. Quality is classified by a system that grades the
cable’s quality and reliability on a scale from category 1 (lowest) to category 6 (highest). The scale reflects cable
resistance to electromagnetic interference, electrical resistance, speed, and so on. STP or UTP category 5 or
above is recommended for client/server system implementations.

� Coaxial cable uses copper cables enclosed in two layers of insulation or shielding. This cable comes in a
variety of types and is similar to the cable used for cable TV. The most common varieties used in local area
network installations are thicknet and thinnet. Thinnet is cheaper and easier to install than thicknet, but
thicknet allows greater distances between computers.

� Fiber-optic cable is the most expensive option, but it offers the highest data transmission quality and allows
greater distances between computers. This cable is free of electromagnetic interference because it uses laser
technology to transmit signals through glass cables. Fiber-optic cable is recommended for the connection of
critical network points, such as a connection between two database server computers.

� Wireless communications media, such as satellite and radio, are gaining popularity in connecting remote sites
and in providing an alternative to cables in office networks. These media possess great potential in replacing
conventional cables in the long run. Several standards (including 802.11b, 802.11g, 802.11a, and others)
allow wireless networks to achieve high transmission speeds.

F.5.2 Network Communications Devices

Network communication devices include network interface cards (NICs), hubs, repeaters, concentrators, bridges,
routers, and other devices. Those devices allow you to extend and connect networks, even dissimilar ones. They also
allow you to mix different cable media within the same network. Because networks are crucial components of
client/server architecture, you should know the following basic device descriptions:

� Network interface cards (NICs) are electronic boards that allow computers to communicate within a
network. An NIC interfaces with the physical cable to send and receive signals through the cable media. In the
case of wireless networks, the wireless adapter, sometimes called a wireless NIC, allows a computer to
communicate using a wireless network.

� A bridge is a device that connects similar networks. The bridge, which allows computers in one network to
communicate with computers in another network, operates at the OSI model’s Data-Link layer and allows two
or more networks to be managed as a single logical network.

41199_AppF 11/9/2007 10:37:10 Page 153

153C L I E N T / S E R V E R S Y S T E M S

� The repeater is a device used in Ethernet networks to add network segments to the network and to extend
the reach of the network. This device, which regenerates the signal and retransmits the signal to all segments,
operates at the OSI model’s Physical layer.

� A hub is a special repeater that allows computers to be added to a network that conforms to a star
configuration. A hub will retransmit the packet through all ports (computers); therefore, only one transmission
takes place at a time. In the case of wireless networks, a network access point allows the connection of
wireless devices to a wired or wireless network.

� A switch is an intelligent device that connects computers. Unlike a hub, a switch allows multiple simultaneous
transmissions between two ports (computers). Therefore, switches have greater throughput and speed than
regular hubs.

� A router is an intelligent device used to connect dissimilar networks. Routers operate at the network layer and
allow a network to span different protocols, topologies, and cable types. A router is frequently used to divide
a network into smaller subnetworks. A router also can be programmed to support specific network protocols
and provide multiple functions, such as packet filtering and address blocking.

� The concentrator is a device that resembles a network wiring closet. It provides multiple functions, such as
bridge, router, repeater, and network segmentation, in a single box. Concentrators support different network
topologies, cabling, and protocols. Some also provide network management capabilities.

Network devices are used to extend and expand a network’s “reach” and to interconnect existing networks with similar
or dissimilar ones. The preceding list is far from exhaustive; it represents only a sampling of the most frequently used
network devices. New network communications devices, designed to combine and enhance the capabilities of existing
devices, appear at a dizzying rate. Keeping abreast of the new network technology is a full-time, never-ending job in
the network world.

F.6 NETWORK TOPOLOGIES

The term network topology refers to the way data travel along the network. Network topology is closely related to the
way computers are connected physically. There are three main network topologies, as follows:

� Bus topology requires that all computers be connected to a main network cable. In this case, messages traveling
through the network are handled by all computers in the bus until they reach their final destination. For example,
if A sends a message to D, the message travels through B and C before it reaches D. See Figure F.13.

FIGURE
F.13

Bus topology

Network
segment

File server

A B C D

41199_AppF 11/9/2007 10:37:20 Page 154

154 A P P E N D I X F

Bus topology, usually implemented through coax cable, is widely used in medium- to small-sized networks. The
principal disadvantage of bus topology is that if node B or C breaks down, the entire network segment goes
down. (A network segment is a single section of cable that connects several computers.)

� Ring topology computers are connected to one another through a cabling setup that, as the name implies,
resembles a ring. Messages are sent from computer to computer until they reach their final destination. IBM
uses the ring topology in its token ring network. The token ring implementation uses a device called a multiple
access unit (MAU) as a wiring concentrator through which the network’s computers are connected physically.
Ring topology, shown in Figure F.14, is more flexible than bus topology because computers can be added to
or disconnected from the ring without affecting the rest of the computers.

The computers logically exchange messages by passing them along the ring. For a message to be sent from
a computer in a token ring network, it must use a token. The token, which resembles a baton in a relay race,
travels through the ring from computer to computer. Only the computer with the token can transmit at a
given time.

� Star topology allows all computers to be connected to a central computer, as shown in Figure F.15. Like ring
topology, star topology allows workstations to be added to or removed from the network without affecting the
operation of the rest of the computers. Unlike ring topology, however, star topology computers are not
connected to one another. Instead, they are connected to a central computer. Therefore, all network messages
travel through the central computer.

The network topology is independent of the cabling system used. Any network can use coaxial, twisted pair,
or fiber-optic cable.

FIGURE
F.14

Ring topology

File server

A

C D

B

41199_AppF 11/9/2007 10:37:29 Page 155

155C L I E N T / S E R V E R S Y S T E M S

F.7 NETWORK TYPES

Networks are usually classified by the extent of their geographical area coverage: local area, campuswide, metropolitan
area, and wide area networks.

� A local area network (LAN) typically connects PCs in an office, a department, a floor, or a building. The
LAN is the most frequently encountered network type and is preferred when workgroups are connected. There
are two main LAN types: Ethernet and token ring. Ethernet is based on a bus or star topology that can use
coaxial, twisted pair, or fiber-optic cabling. Most Ethernet LANs transfer data at a speed of l00 Mbps (one
hundred million bits per second). Token ring networks are based on a ring topology that can use shielded
twisted pair (STP), unshielded twisted pair (UTP), or fiber-optic cabling. Token ring networks can transfer data
at speeds of 4 Mbps to 16 Mbps. In addition, there are wireless LANs (WLANs) that can be configured
according to several different standards.

� A campuswide network (CWN) is the typical college or university network in which buildings containing
LANs and often WLANs are (usually) connected through a main network cabling system known as a network
backbone.

� The metropolitan area network (MAN) is used to connect computers across a city or metropolitan area.
The MAN is designed to cover much more territory than the CWN. It can even be used to connect CWNs
located within a city or metropolitan area.

� A wide area network (WAN) is used to connect computer users across and between countries. The MAN and
WAN generally make use of telephone and specialized communications companies to connect networks in sites
separated by great distances.

FIGURE
F.15

Star topology

A B

C D

File server

41199_AppF 11/9/2007 10:37:39 Page 156

156 A P P E N D I X F

F.8 NETWORK STANDARDS

Because client/server computing is focused on the sharing of resources, adherence to network standards is crucial.
Fortunately, the Institute of Electrical and Electronics Engineers (IEEE) developed standards to provide uniformity
among networks. Those IEEE standards specify the technical details that define network topology and data
transmission across shared media. In addition, the IEEE standards yield the rules that govern network cabling, cable
distances between computers, devices used in networks, and so on. Three important IEEE network standards are:

� IEEE 802.3: Ethernet network.

� IEEE 802.5: Token ring networks.

� IEEE 802.11: Wireless networks.

F.9 THE QUEST FOR STANDARDS

Standards ensure that dissimilar computers, networks, and applications can interact to form a system. But what
constitutes a standard? A standard is a publicly defined method to accomplish specific tasks or purposes within a given
discipline or technology. Given the use of standards, it is possible to use a TV set to receive video from different
broadcasters, to use a VCR to view tapes manufactured by different companies located in different countries, and so
on. Standards make networks practical.

There are several organizations whose members work to establish the standards that govern specific activities. For
example, the Institute of Electrical and Electronics Engineers (IEEE) is dedicated to defining standards for network
hardware. Similarly, the American National Standards Institute (ANSI) has created standards for programming
languages such as COBOL and SQL. The International Organization for Standardization (ISO) produced the
Open Systems Interconnection (OSI) reference model to achieve network systems communications compatibility.

Truly universal standards for all client/server components do not yet exist. There are many different standards from
which to choose. There are standards for the user interface, data access, network protocols, interprocess communi-
cations, and so on.

For example, a system might use ODBC, OLE DB, or ADO.Net database middleware. Open Database
Connectivity (ODBC), developed by Microsoft Corporation and the de facto standard for database middleware, is
designed to provide Windows applications with an API that is independent of the data source. ODBC also provides
applications programmers with a generic format for data access. A specific ODBC driver (for example, an Oracle
ODBC driver or a SQL Server ODBC driver) must be used for each database being accessed. ODBC requires the
database communications protocol to be present—for example, TCP/IP or SQL*Net—for communication to take
place with the database server. ODBC also provides the capability to access database-specific options if they are
required by the client application. Microsoft also offers OLE DB and ADO.Net as other alternatives for database
connectivity.

An application that does not use a single standard can still be a client/server application. The point is to ensure that
all components (server, clients, and communications middleware) are able to interact as long as they use the same
standards. What really defines client/server computing is that application processing is split into client and server
components.

Figure F.16 shows some of the options available to client/server systems developers. Ultimately, the objective is to
have options that allow systems to interact regardless of the selection made from this list, thus producing a
plug-and-play environment.

41199_AppF 11/9/2007 10:37:46 Page 157

157C L I E N T / S E R V E R S Y S T E M S

Ultimately, standards must be developed that provide systems interoperability at all levels. Recent technological
advances have removed some major systems integration barriers, thus setting the stage for realizing a client/server
environment that was just a dream only a few years ago: standards-based systems that function seamlessly across
operating systems, graphical user interfaces, networks, and hardware platforms.

F.10 CLIENT/SERVER DBMSS

A database management system (DBMS) lies at the center of most client/server systems in use today. To function
properly, the client/server DBMS must be able to:

� Provide transparent data access to multiple and heterogeneous clients, regardless of the hardware, software,
and network platform used by the client application.

� Allow client requests to the database server (using SQL requests) over the network.

� Process client data requests at the local server.

� Send only the SQL results to the clients over the network.

A client/server DBMS reduces network traffic because only the rows that match the query are returned. Therefore, the
client computer resources are available to perform other system chores such as managing the graphical user interface.
Client/server DBMSs differ from other DBMSs in terms of where the processing takes place and what data are sent
over the network to the client computer. However, client/server DBMSs do not necessarily require distributed data.

Client/server systems change the way in which data processing is approached. Data may be stored in one site or in
multiple sites. When the data are stored in multiple sites, client/server databases are closely related to distributed
databases. (See Chapter 12.) Distributed client/server database systems (DDBMSs) must have the following
characteristics:

� The location of data is transparent to the user. The user does not need to know what the data location is, how
to get there, or what protocols are used to get there.

FIGURE
F.16

Client/server options

Client operating system and GUI

Middleware

Mail, database, and so on

Network

Server services

Database, file, print, mail, and so on

Hardware platforms Intel Xeon, AMD Opteron, and so on

Databases: Oracle, DB2, SQL Server, and so on

Server OS: Windows, UNIX, Linux, and so on

Network protocols: TCP/IP, NetBIOS, and so on

Database middleware: ODBC, OLE DB, ADO.Net

Windows, UNIX, Linux, Mac OS, and so on

41199_AppF 11/9/2007 10:37:53 Page 158

158 A P P E N D I X F

� Data can be accessed and manipulated by the end user at any time and in many ways. Powerful applications
stored on the end user’s side allow access and manipulation of data in ways that had never before been
available. The data request is processed on the server side; the data formatting and presentation are done on
the client side.

� The processing of data (retrieval, storage, validation, formatting, presentation, and so on) is distributed among
multiple computers.

The distinctions between client/server systems and DDBMSs are sometimes blurred. The client/server system
distributes data processing among several sites. The DDBMS distributes data at different locations. In other words,
client/server systems and DDBMSs involve mainly complementary functions, as well as some overlapping functions.
In fact, DDBMSs use distributed processing to access data at multiple sites. Therefore, the DDBMS resembles a
client/server implementation.

F.11 CLIENT/SERVER APPLICATION-PROCESSING LOGIC

Because the division of the application-processing logic components is a prime client/server characteristic, the two key
questions that every client/server systems designer must answer are these:

� How is the division to be made?

� Where in the system should the results of that division be placed?

To answer those questions, you must first look at application-processing logic components. (See Figure F.17.)

Figure F.17 illustrates that an application’s logic can be divided into three main components: input/output, processing,
and storage.

FIGURE
F.17

Application logic components

Processing

Input Output

Storage

41199_AppF 11/9/2007 10:38:2 Page 159

159C L I E N T / S E R V E R S Y S T E M S

� The input/output (I/O) component works to format and present data in output devices such as the screen and
manages the end-user input through devices such as the keyboard. For example, the input logic shows a menu
screen, waits for the end user to enter data, and then responds to the data entry. (Within this I/O component,
the application uses presentation logic to manage the graphical user interface and data formatting.)

� The processing component refers to the application code that performs data validation, error checking, and
so on. The processing component’s logic represents the business rules and the data management logic for data
retrieval and storage. For example, the processing logic “knows” that a sales transaction generates an invoice
record entry, an inventory update, and a customer’s accounts receivable entry. The processing logic performs
several functions, including managing input and output, enforcing business rules, managing information flows
within a business, and mapping the real-world business transactions to the actual computer database.
Therefore, the processing component can be further divided into three functional subcomponents, as follows:

1. I/O processing logic manages data entry validation and basic error checking.

2. Business logic is applied through the code that represents the business rules.

3. Data management logic determines which data are needed for each business transaction. For example,
a sales transaction might require vendor, customer, and product data.

� The storage component uses data manipulation logic to deal with the actual data storage and retrieval from
the physical storage devices. For example, data manipulation logic is used to access the files and to check for
data integrity.

In short, the three main client/server application logic components can be subdivided into the following five main
functional logic components:

� Presentation logic.

� I/O processing logic.

� Business logic.

� Data management logic.

� Data manipulation logic.

Figure F.18 shows the five functional components that form the basis for splitting the application logic processing in
the client/server model.

Although there is no methodology to dictate the precise distribution of the logic components shown in Figure F.18
among clients and servers, the client/server architectural principles of process distribution (autonomy, resource
maximization, scalability, and interoperability) and hardware and software independence may be used as a guide.

So where should each component be placed? With the probable exception of the presentation logic, which normally
goes on the client side, each of the remaining components may be placed on the server, thus becoming a service for
all of the clients. Given that arrangement, even the purest mainframe environment can be classified as client/server.
It may even be argued that a mainframe resembles a primitive client/server incarnation in which the mainframe
provides services to dumb, rather than intelligent, terminals. However, if the objective is to create a distributed
environment, the pure mainframe yields few advantages compared to the naturally distributed client/server architec-
ture, in which clients are not necessarily entirely dependent on a single server. What’s more, the pure mainframe’s
architecture is not designed to allow the distribution of the various functional areas because the other services cannot
be split out of the mainframe to be placed on other computers. (That is not, of course, referring to mainframes that
are part of a client/server setup!) In fact, given a pure mainframe environment, none of the processing logic
components is split: only the presentation logic can be kept on the client. The price of such architectural rigidity is high
because, as has been illustrated several times in this appendix, the greatest distributed processing benefits are obtained
when the processing logic is split between server(s) and client(s).

41199_AppF 11/9/2007 10:38:17 Page 160

160 A P P E N D I X F

The location combinations reflect different computing styles. For example, all components for a typical home
computer are located on a single PC. The pure mainframe style reflects a condition in which only the data presentation
takes place on the client side, whereas all other processing takes place on the mainframe side. It is not practical to put
each component on a unique server—saving only the presentation logic for the client side—though it can be done.

Although it is possible to select any combination of logic component locations, practical considerations require that
specific services such as file, print, communications, and fax be logically identified and separated and then a decision
be made on the placement of each component. The following placement is typical:

� The presentation logic is always placed on the client side because it is required for end-user interaction. The
GUI usually provides the services to the front-end application services.

� The I/O processing logic may be placed on the client side or on the server side. Although it is most commonly
located on the client side in the client/server model, it may be placed on the server side when a fat server/thin
client implementation exists. (Naturally, the latter scenario is the norm when the mainframe model is
considered.) If a three-tier client/server system is used, the intermediate servers usually contain all of the I/O
processing logic, thus making it available to all clients.

FIGURE
F.18

Application functional logic components

I/O processing logic

Input Output

Presentation logic

Business logic

Data management logic

1. Presentation logic:
GUI formatting

2. I/O processing logic:
I/O validation and
error checking

3. Business logic

4. Data management logic

5. Data manipulation logic:
Storage and retrieval

Database manipulation services

41199_AppF 11/2/2007 12:12:32 Page 161

161C L I E N T / S E R V E R S Y S T E M S

� The business logic can also go to either the client or the server. However, it is usually located on the client side.
This logic component can also be split into client and server subcomponents. If a three-tier client/server system
is used, the intermediate servers usually contain all of the business logic. Given this three-tier arrangement,
changes in business logic are available to all clients.

� The data management logic can also be placed on either the client or the server side. However, it is normally
placed on the client side or on an intermediate business logic server. The data management logic can also be
split into client and server subcomponents, as is done in database middleware. Or in the case of distributed
databases, the subcomponents can be placed within multiple server computers.

� The data manipulation logic is most commonly located on the server side. However, the data manipulation
logic can also be divided among several computers in the distributed database environment.

� The split and distribution of the application-processing components are also a function of the architectural
style. Figure F.19 shows the likely distribution of application-processing components within the four basic
client/server architectural styles: the file server model, the database server model, the transaction server model,
and the application server model.

As you examine Figure F.19, keep in mind that the server side provides services for many clients. Further, the server
column represents one or more server computers. Examine Figure F.19 with the following details in mind:

� The file server architectural style reflects a setup in which the client does most of the processing, whereas the
server side manages only the data storage and retrieval. If a client application wants to select some database
table rows, the actual selection of the records takes place in the client rather than in the server.

� The data management logic is split between the client and the server computers in the database server
architectural style. For example, the client sends a SQL request to the server and the server executes it locally,
returning only the requested rows to the client. Keep in mind that there may be many servers and that a client
may access many servers concurrently. If the client application executes a transaction that requires access to
multiple servers, the client computer must address all of the transaction management details. Therefore, each
SQL transaction must travel from the client to the server, thus increasing network traffic.

FIGURE
F.19

Functional logic splitting in four client/server architectural styles

File
server

Component
Client Server Client Server Client Server Client Server

Database
server

Transaction
server

Application
server

Presentation logic

I/O processing logic

Application business logic

Data management logic

Data manipulation logic

41199_AppF 11/2/2007 12:12:58 Page 162

162 A P P E N D I X F

� The transaction server architectural style permits the sharing of transaction details between the client and the
server. For example, if the server side has some knowledge about the transaction details, some of the business
logic must reside on the server. This architectural style is favored when the application transaction details are
known beforehand (that is, they are not ad hoc) and do not change very often. In this scenario, some business
logic is stored on the server in the form of SQL code or some other DBMS-specific procedural language. Such
stored code, usually known as stored procedures (see Chapter 8, “Advanced SQL”) is verified, compiled, and
stored in the DBMS. The client application merely calls the stored procedure, passing it the necessary
parameters for its execution. No code travels through the network, and the transaction server can be connected
to many database servers.

� The application server architecture makes it possible to enjoy the benefits of client/server computing even
when the client computers are not powerful enough to run some of the client/server applications. This
architectural style allows any application to reside on a powerful computer known as the application server and
then be executed and shared by many less powerful clients. In this case, all of the processing is done on the
application server side and the client computers deal just with the application output presentation. The
application server architectural style is favored when it is necessary to use remote control computers over a
network or when office workers are likely to require access to their office desktop PCs through their home
phones.

The use of one architectural style does not preclude the use of another. In fact, it is possible to create several server
“layers” by daisy chaining the server processes. For example, an application server may access a transaction server
that, in turn, may access multiple database servers. It is possible to have several client/server computing styles
supported concurrently within the same network. Such flexibility makes it imperative that the client/server network
infrastructure be carefully planned to enable it to support diverse client/server information requirements. The
client/server’s ability to work with multiple servers is also the reason the client/server model works so well as an
integrating platform on which personal computers, minicomputers, and mainframes can be brought together in a
seamless fashion.

F.12 CLIENT/SERVER IMPLEMENTATION ISSUES

Implementing client/server systems is best described as a challenge. The development of client/server systems differs
greatly in process and style from the traditional information systems development methods. For example, the systems
development approach, oriented toward the centralized mainframe environment and based on traditional program-
ming language, can hardly be expected to function well in a client/server environment that is based on hardware and
software diversity. In addition, modern end users are more demanding and are likely to know more about computer
technology than users did before the PC made its inroads. Therefore, MIS department managers are constantly racing
the knowledge clock to assimilate new technologies that are based on multiple platforms, multiple GUIs, multiple
network protocols, and so on. In addition, MIS managers must cope with rapid application development as well as the
issues that arise from greater end-user autonomy in information management.

Note

The Web application server represents a new computing style that integrates all of the architectural styles
presented in this appendix. A Web server acts like a file server; the Web server transmits files to clients for
execution. At the same time, the Web server acts like a transaction server to coordinate database access by
multiple clients. The Web server is also able to provide session status control for each client as it accesses the
server, effectively behaving like an application server. (The Web application server model is discussed in detail
in Chapter 14, “Database Connectivity and Web Technologies.”)

41199_AppF 11/2/2007 12:14:39 Page 163

163C L I E N T / S E R V E R S Y S T E M S

This section explores some of the managerial and technical issues involved in the development and implementation of
client/server systems. Discussion begins by examining how the client/server and traditional data-processing models
differ. Next, you will examine the management issues that arise from the adoption of the client/server model. Then
some basic technical issues will be presented. Finally, a basic framework will be developed within which you can
approach the development and implementation of client/server systems.

F.12.1 Client/Server Versus Traditional Data Processing

You already know that the new client/server computing model environment is more complex technically than the
traditional data-processing model because the former may be based on multiple platforms, operating systems, and
networks. Yet the basic technical characteristics of the client/server model cannot explain why it has set the stage for
another information shake-up. Instead, it is more important to note that the client/server model changes the way you
look at the most fundamental data-processing issues. The client/server model’s impact is far greater than the measure
of its technological prowess alone.

Client/server computing expands the reach of information systems, thus changing how things are done and creating
information-aware end users who will not settle for less than information autonomy. End users traditionally relied on
the MIS department for information; they now create their own information by tapping into a common data pool and
producing their own queries and reports to support their decision making.

This new view of the information world creates a paradox. On the one hand, end users have declared their
independence from the MIS department. But on the other hand, end users have become very dependent on the
client/server infrastructure (servers, networks, middleware, and client front ends) that is managed by—you guessed
it—the MIS department. Clearly, client/server computing has introduced major changes from traditional data
processing.

� From proprietary to open systems. Traditional data-processing architecture is typically based on single-vendor
solutions. Integrating multiple-vendor products within this architecture was a difficult and often impossible task.
The new client/server environment demands systems that are easily integrated—systems that are open to other
systems.

� From maintenance-oriented coding to analysis, design, and service. Given the traditionally centralized
mainframe environment, most of the MIS department’s focus was on application maintenance. Although
client/server systems do require substantial infrastructure maintenance, the MIS department that manages such
systems spends the greater portion of its time on end-user support functions. Traditional systems development
life cycles dedicated most of their time to limited-use application coding and maintenance. The client/server
environment changes the role of programmers by letting them use sophisticated 4GL, CASE, and other
development tools to free them from coding. The price tag for using the new tools is that programmers must
spend more time on systems analysis and design because errors tend to be very costly. (For one thing, end-user
autonomy means that errors will be more widespread.) In short, the focus changes from coding to design.

� From data collection to data deployment. Instead of focusing on centralized data storage and data
management, the client/server-based MIS department must concentrate on making data more easily and
efficiently available to end users.

� From a centralized to a more distributed style of data management. Typical data management in the
traditional mainframe environment was tightly structured and required rigid procedural enforcement. The new
client/server environment requires a more flexible data management style. Characterized by a more decen-
tralized management and decision-making approach, client/server computing forces a shift in focus toward the
solution of end-user information problems and customer needs.

� From vertical, inflexible organizational style to a more horizontal, flexible organizational style. Traditional
MIS department structures will be flattened. Direct data access empowers individual users to be more
information-independent from the MIS department. Consequently, the MIS department must modify or
restructure its activities to accommodate people with diverse PC, GUI, and network skills.

41199_AppF 11/9/2007 10:38:35 Page 164

164 A P P E N D I X F

The change in the data-processing environment brought about by client/server computing may also be evaluated by
examining information systems components.

� Hardware. Information systems are no longer single-vendor-dependent; instead, they are likely to integrate
many different hardware platforms.

� Software. Traditional systems consisted of procedural language routines written in a 3GL such as COBOL or
FORTRAN and supported character-based applications only. All of the processing was done by the mainframe.
New client/server systems are the result of the integration of many routines created by and supported by
graphical user interfaces, databases, networks, and communications. The new systems split application
processing into many subcomponents that integrate seamlessly. Usually, these new systems are created
through the use of languages such as Visual Basic, C++, and Java.

� Data. Traditionally, data were centralized within a single repository. New systems tend to distribute data among
multiple computers, thus putting data closer to the end user. In addition, multiple data formats (sound, images,
video, text, and so on) are available.

� Procedures. Traditional systems were based on centralized procedures that were very rigid and complex. New
distributed systems have made the procedures more flexible and decentralized.

� People. Client/server computing changes people’s roles and functions. Updated skills are required to support
and use the new technology, thus demanding intensive training and retraining to stay up to date. Such changes
are not limited to the MIS department, but are spread throughout the organization.

F.12.2 Managerial Considerations

You have seen how client/server systems change the data-processing style and how those changes affect the
organization. You will now look at some of the managerial issues that result from the introduction of client/server
systems. Those issues are based on managing multiple platforms, hardware, networks, operating systems, and
development environments and on dealing with multiple vendors.

� Management and support of communications infrastructure. One of the most complex issues in client/
server environments is management of the communications infrastructure (network hardware and software).
Managers must deal with several layers of network equipment to make sure that equipment from multiple
vendors works together properly. The situation is especially complex because there are no comprehensively
integrated client/server network management tools. Mainframe systems administrators are often afraid of the
changes induced by the client/server environment because they are used to the integrated management tools
that mainframe systems provide. Managers cannot count on equivalent comprehensive monitoring and
management tools to support the client/server environment.

� Management and support of applications. Client/server applications are characterized by the distribution of
processing among multiple computers. Each of those computers may be running a different operating system.
An enterprise client/server system may support multiple GUIs (Windows and Apple Macintosh) on the client
side, several operating systems (Novell NetWare, UNIX, or Windows Server on the server side, and Windows
Vista, Windows XP, and Apple Macintosh on the client side), and appropriate versions of middleware
components. Managers must ensure that all of the components maintain current version levels at all stages:
client application modules, middleware components, network components, and the back-end server side.
Fortunately, there are software tools that use the network to distribute and update software automatically at the
client computers. End-user support may be enhanced by creating a Help Desk to give end users a central point
of support for all of their computer needs. Help Desk personnel staffing and training must be the priority of
MIS management.

41199_AppF 11/2/2007 12:15:34 Page 165

165C L I E N T / S E R V E R S Y S T E M S

� Control of escalating and hidden costs. Client/server systems generally are expected to reduce MIS costs.
Part of such cost reduction is based on the economy of scale enjoyed by the personal computer industry. (You
can afford to sell complex database software for $299 when you expect to sell 2 million copies.) Although cost
reductions are expected when client/server solutions are compared to an all-mainframe alternative, there are
significant startup costs. In fact, costs associated with the adaptation of resources (personnel and computer
systems) to the client/server environment might be higher than expected because:

- It may be difficult and expensive to find personnel who have the right mix of wide-ranging skills.

- Training (or retraining) of data-processing staff, managerial personnel, and end users can be time-consuming
and expensive.

- The acquisition of sophisticated new hardware and software technologies is expensive.

- Establishing new procedures or adapting existing procedures to the new system can be cumbersome.

The initial costs associated with client/server computing must be treated as an investment that is likely to yield good
returns through subsequent savings in new systems development, increased flexibility, and improved customer service
benefits. Nevertheless, the hidden costs of maintaining and supporting the client/server environment must be carefully
determined in the planning stage. (One hidden cost that managers often overlook is the “people cost” of
retraining—retraining not only the data-processing personnel, but also the managers and end users. Such educational
investments help minimize the culture shock associated with the freedom of information management fostered by
client/server computing.) The cost of implementing client/server computing must include the following:

� Managing people and cultural changes. Dealing with the psychological impact of the employees’ changing
roles is a never-ending task. Managers must involve the end user in the implementation of the client/server
infrastructure. In the long run, the effectiveness of the system depends on whether end users put it to good use.
Although the garbage-in-garbage-out (GIGO) phenomenon is encountered in any system, the wide reach of
client/server computing and the power of its applications make it especially easy for users to make bigger
mistakes—and make them faster. Managers also must understand that not all end users are equal. Some will
be eager to learn how to use SQL or a graphical query tool to get data or to produce a report, whereas others
may still be very dependent on the MIS department for the required information. The MIS department must
develop and implement a gradual and progressive educational plan.

� Managing multiple vendor relationships. In the past, mainframe MIS managers could dial a single phone
number to find solutions to hardware and software problems. In contrast, the client/server environment forces
the MIS manager to deal with multiple vendors. Therefore, managers often must develop partnership-like
relationships with vendors to ensure that the multiple-vendor environment works satisfactorily.

F.12.3 Client/Server Development Tools

In today’s rapidly changing environment, choosing the right tools to develop client/server applications is a critical
decision. As a rule of thumb, managers tend to choose a tool that has long-term survival potential. However, the
selection of a design or application development tool must also be driven by the system requirements. Once such
requirements have been delineated, it is appropriate to determine the characteristics of the tool you want to have.
Client/server tools include:

� GUI-based development.

� A GUI builder that supports multiple interfaces.

� Object-oriented development with support for code reusability.

� A data dictionary with a central repository for data and applications.

� Support for multiple databases (relational, network, hierarchical, and flat file).

� Data access regardless of data model (using SQL or native navigational access).

� Seamless access to multiple databases.

� Complete SDLC support from planning to implementation and maintenance.

41199_AppF 11/9/2007 10:38:54 Page 166

166 A P P E N D I X F

� Team development support.

� Support for third-party development tools (CASE, libraries, and so on).

� Prototyping and rapid application development (RAD) capabilities.

� Support for multiple platforms (operating systems, hardware, and GUIs).

� Support for middleware protocols (ODBC, IDAPI, APPC, and so on).

� Support for multiple network protocols (TCP/IP, IPX/SPX, NetBIOS, and so on).

There is no single best choice for any application development tool. For one thing, not all tools will support all GUIs,
operating systems, middleware, and databases. Managers must choose a tool that fits the application development
requirements and that matches the available human resources, as well as the hardware infrastructure. Chances are the
system will require multiple tools to make sure that all or most of the requirements are met. Selecting the development
tools is just one step. Making sure the system meets its objectives at the client, server, and network levels is another
issue.

F.12.4 An Integrated Approach

The development of client/server systems is based on the premise that those systems are effective in helping
management reach the organization’s goals. Client/server-based systems should never be developed because the
available tools are so technically advanced or because management wants to ride a new technology wave. Remember
that client/server technology is one possible road to an objective; it is not the objective.

If a thorough study of the client/server system’s technical and human dimensions indicates that its use can help achieve
desired ends, a marketing plan should be developed before the client/server design and development effort is started.
The objective of that plan is to build and obtain end-user and managerial support for the future client/server
environment. Although there is no single recipe for the process, the overall idea is to conceptualize client/server
systems in terms of their scope, optimization of resources, and managerial benefits. In short, the plan requires an
integrated effort across all departments within the organization. If the client/server decision is being made for the first
time, such an effort includes the following six phases:

1. Information systems infrastructure self-study. The objective is to determine the actual state of the available
computer resources. The self-study will generate at least the following:

- A software and hardware inventory.

- A detailed and descriptive list of critical applications.

- A detailed human resources (personnel and skills) inventory.

- A detailed list of problems and opportunities.

2. Client/server infrastructure definition. The output of phase 1, combined with the company’s computer
infrastructure goals, is the input for the design of the basic client/server infrastructure blueprint. This blueprint
will address the main hardware and software issues for the client, server, and networking platforms.

3. Selection of a window of opportunity. The next phase is to find the right system on which to base the
client/server pilot project. After identifying the pilot project, you must define it very carefully by concentrating
on the problem(s), the available resources, and a set of clear and realistic goals. Describe the project in business
terms rather than in technological jargon. When defining the system, make sure to plan carefully for costs. Try
to balance the costs with the effective benefits of the system. Also make sure to select a pilot implementation
that provides immediate and tangible benefits. A system that takes two years to develop and another three to
generate tangible benefits is not acceptable.

41199_AppF 11/9/2007 10:39:1 Page 167

167C L I E N T / S E R V E R S Y S T E M S

4. Management commitment. Top-to-bottom commitment is essential when you are introducing new technolo-
gies that affect the entire organization. You also need managerial commitment to ensure that the necessary
resources (people, hardware, software, money, and infrastructure) will be available and dedicated to the system.
A common practice is to designate a person to work as a guide, or an agent of change, within the
organization’s departments. The main role of this person is to ease the process that changes people’s roles
within the organization.

5. Implementation. Guidelines to implementation should include at least:

- Using “open” tools or standards-based tools.

- Fostering continuing education in hardware, software, tools, and development principles.

- Looking for vendors and consultants to provide vendor-specific training and implementation of designs,
hardware, and application software.

6. Review and evaluation. Make sure that the systems conform to the criteria defined in phase 3. Continuously
measure system performance as the system load increases because typical client/server solutions tend to
increase the network traffic and slow down the network. Careful network performance modeling ensures that
the system performs well under heavy end-user demand conditions. Such performance modeling should be
done at the server end, the client end, and the Network layer.

K e y T e r m s

access point, 154

American National Standards
Institute (ANSI), 157

AppleTalk, 152

application programming interface
(API), 148

Application Program-to-Program
Communications (APPC), 152

back-end application, 139

bridge, 153

bus topology, 154

campuswide network (CWN), 156

client, 135

client/server architecture, 138

coaxial cable, 153

concentrator, 154

database translator, 149

Ethernet, 156

fat client, 135

fat server, 135

fiber-optic cable, 153

frame, 147

front-end application, 139

gateway, 150

hub, 154

IEEE 802.3, 157

IEEE 802.5, 157

IEEE 802.11, 157

imaging server, 139

Institute of Electrical and Electronics
Engineers (IEEE), 157

intelligent terminals, 136

International Organization for
Standardization (ISO), 157

Internetwork Packet Exchange/
Sequenced Packet Exchange
(IPX/SPX), 152

interprocess communication
(IPC), 144

local area network (LAN), 156

metropolitan area network
(MAN), 156

middleware, 139

multiple access unit (MAU), 155

network backbone, 156

Network Basic Input/Output System
(NetBIOS), 152

network interface cards (NICs), 153

network operating system
(NOS), 137

network protocol, 152

network segment, 155

network translator, 149

Open Database Connectivity
(ODBC), 157

Open Systems Interconnection
(OSI), 145

repeater, 154

ring topology, 155

router, 154

server, 135

sneakernet, 136

star topology, 155

switch, 154

Systems Network Architecture
(SNA), 152

thin client, 135

thin server, 135

three-tier client/server system, 136

token, 155

token ring networks, 155

Transmission Control Protocol/
Internet Protocol (TCP/IP), 152

twisted pair cable, 153

two-tier client/server system, 136

wide area network (WAN), 156

wireless adapter, 153

wireless LANs (WLANs), 156

41199_AppF 11/2/2007 12:16:7 Page 168

168 A P P E N D I X F

R e v i e w Q u e s t i o n s

1. Mainframe computing used to be the only way to manage enterprise data. Then personal computers changed the
data management scene. How do those two computing styles differ, and how did the shift to PC-based computing
evolve?

2. What is client/server computing, and what benefits can be expected from client/server systems?

3. Explain how client/server system components interact.

4. Describe and explain the client/server architectural principles.

5. Describe the client and the server components of the client/server computing model. Give examples of server
services.

6. Using the OSI network reference model, explain the function of the communications middleware component.

7. What major network communications protocols are currently in use?

8. Explain what middleware is and what it does. Why would MIS managers be particularly interested in such
software?

9. Suppose you are currently considering the purchase of a client/server DBMS. What characteristics should you
look for? Why?

10. Describe and contrast the client/server computing architectural styles that were introduced in this appendix.

11. Contrast client/server data processing and traditional data processing.

12. Discuss and evaluate the following statement: There are no unusual managerial issues related to the introduction
of client/server systems.

P r o b l e m s

1. ROBCOR, a medium-sized company, has decided to update its computing environment. ROBCOR has been a
minicomputer-based shop for several years, and all of its managerial and clerical personnel have personal
computers on their desks. ROBCOR has offered you a contract to help the company move to a client/server
system. Write a proposal that shows how you would implement such an environment.

2. Identify the main computing style of your university computing infrastructure. Then recommend improvements
based on a client/server strategy. (You might want to talk with your department’s secretary or your advisor to find
out how well the current system meets their information needs.)

41199_AppF 11/9/2007 10:39:15 Page 169

169C L I E N T / S E R V E R S Y S T E M S

Preview

Object-Oriented Databases

Object-oriented (OO) technology draws its strength from powerful programming and

modeling techniques and advanced data-handling capabilities. Because OO technology has

become an important contributor to the evolution of database systems, this appendix

explores the characteristics of OO systems and how those characteristics affect data

modeling and design.This appendix also investigates how, through the creation of what are

known as extended relational or object/relational databases, relational database vendors

have responded to the demand for databases capable of handling increasingly complex data

types.You will see how some of those features are implemented in Oracle.

G
A

P
P

E
N

D
I

X

41199_AppG 12/12/2007 15:33:45 Page 170

G.1 OBJECT ORIENTATION AND ITS BENEFITS

Object orientation is a modeling and development methodology based on object-oriented (OO) concepts. More
precisely, object orientation is defined as a set of design and development principles based on conceptually
autonomous computer structures known as objects. Each object represents a real-world entity with the ability to act
upon itself and to interact with other objects.

Considering that definition, it does not require much imagination to see that using objects makes modularity almost
inevitable. Object orientation concepts have been widely applied to many computer-related disciplines, especially those
involving complex programming and design problems. Table G.1 summarizes some object orientation contributions to
computer-related disciplines.

TABLE
G.1

Object Orientation Contributions

COMPUTER-RELATED AREA OO CONTRIBUTIONS
Programming languages Reduces the number of lines of code

Decreases development time
Enhances code reusability
Makes code maintenance easier
Enhances programmer productivity

Graphical user interfaces (GUIs) Enhances ability to create easy-to-use interfaces
Improves system end-user friendliness
Makes it easy to define standards

Databases Supports abstract data types
Supports complex objects
Supports multimedia data types

Design Captures more of the data model's semantics
Represents the real world more accurately
Supports complex data manipulations in specialized applications
that target graphics, imaging, mapping, financial modeling, tele-
communications, geospatial applications, medical applications,
and so on

Operating systems Enhances system portability by creating layers of abstractions to
handle hardware-specific issues
Facilitates system extensibility through the use of inheritance and
other object-oriented constructs

G.2 THE EVOLUTION OF OBJECT-ORIENTED CONCEPTS

Object-oriented concepts stem from object-oriented programming (OOP), which was developed as an alternative
to traditional programming methods. In an OOP environment, the programmer creates or uses objects (self-contained,
reusable modules that contain data as well as the procedures used to operate on the data).

OO concepts first appeared in programming languages such as Ada, ALGOL, LISP, and SIMULA. Those program-
ming languages set the stage for the introduction of more refined OO concepts. Smalltalk, C++, and Java are popular
object-oriented programming languages (OOPLs). Java is used to create Web applications that run on the
Internet and are independent of operating systems.

OOPLs were developed to:

� Provide an easy-to-use software development environment.

� Provide a powerful software modeling tool for application development.

41199_AppG 12/12/2007 15:33:56 Page 171

171O B J E C T - O R I E N T E D D A T A B A S E S

� Decrease development time by reducing the amount of code.

� Improve programmer productivity by making the code reusable.

OOP changes not only the way in which programs are written, but also how those programs behave. In the
object-oriented view of the world, each object can manipulate the data that is part of the object. In addition, each object
can send messages to change the data of other objects. Consequently, the OO environment has several important
attributes:

� The data set is no longer passive.

� Data and procedures are bound together, creating an object.

� The object has an innate ability to act on itself.

An object can interact with other objects to create a system. Because such objects carry their own data and code, it
becomes easier to produce reusable modular systems. It is precisely that characteristic that makes OO systems seem
natural to those with little programming experience, but confusing to many whose traditional programming expertise
has trained them to split data and procedures. It is not surprising that OO notions became more viable with the advent
of personal computers because personal computers are typically operated by end users rather than by programmers
and systems design specialists.

OO programming concepts have also had an effect on most computer-based activities, including those based on
databases. Because a database is designed to capture data about a business system, it can be viewed as a set of
interacting objects. Each object has certain characteristics (attributes) and has relationships with other objects
(methods). Given that structure, OO systems have an intuitive appeal for those doing database design and
development. As database designers rather than programmers, you cannot afford to ignore the OO revolution.

G.3 OBJECT-ORIENTED CONCEPTS

Although OO concepts have their roots in programming languages and the programmers among you will recognize
basic programming elements, you do not need to know anything about programming to understand these
concepts.

G.3.1 Objects: Components and Characteristics

In OO systems, everything you deal with is an object, whether it is a student, an invoice, an airplane, an employee,
a service, a menu panel, or a report. Some objects are tangible, and some are not. An object can be defined as an
abstract representation of a real-world entity that has a unique identity, embedded properties, and the ability to interact
with other objects and act upon itself.

Note the difference between object and entity. An entity has data components and relationships, but lacks
manipulative ability. Other differences will be identified later.

A defining characteristic of an object is its unique identity. To emphasize this point, let’s examine the real-world
objects displayed in Figure G.1. As you examine those simple objects, note that the student named J. D. Wilson has
a unique (biological) identity and therefore constitutes a different object from M. R. Gonzalez or V. K. Spelling. Note
also that although they share common general characteristics such as name, Social Security number, address, and date
of birth, each object exists independently in time and space.

G.3.2 Object Identity

The object’s identity is represented by an object ID (OID), which is unique to the object. The OID is assigned by the
system at the moment of the object’s creation and cannot be changed under any circumstances.

41199_AppG 12/12/2007 15:33:59 Page 172

172 A P P E N D I X G

Do not confuse the relational model’s primary key with an OID. In contrast to the OID, a primary key is based on
user-given values of selected attributes and can be changed at any time. The OID is assigned by the system, does not
depend on the object’s attribute values, and cannot be changed. The OID can be deleted only when the object is
deleted, and that OID cannot be reused.

G.3.3 Attributes (Instance Variables)

Objects are described by their attributes, known as instance variables in an OO environment. For example, the
student John D. Smith may have the attributes (instance variables) shown in Table G.2. Each attribute has a unique
name and a data type associated with it. In Table G.2, the attribute names are SOCIAL_SECURITY_NUMBER,
FIRST_NAME, MIDDLE_INITIAL, LAST_NAME, and so on. Traditional data types, also known as base data types
or conventional data types, are used in most programming languages and include real, integer, string, and so on.

TABLE
G.2

Object Attributes

ATTRIBUTE NAME ATTRIBUTE VALUE
SOCIAL_SECURITY_NUMBER 414-48-0944
FIRST_NAME John
MIDDLE_INITIAL D
LAST_NAME Smith
DATE_OF_BIRTH 11/23/1966
MAJOR * Accounting
SEMESTER_GPA 2.89
OVERALL_GPA 3.01
COURSES_TAKEN * ENG201;MATH243;HIST201;ACCT211;ECON210;ECON212; ACCT212;

CIS220;ENG202;MATH301;HIST202;CIS310; ACCT343;ACCT345;
ENG242;MKTG301;FIN331;ACCT355

ADVISOR* Dr. W. R. Learned
* Represents an attribute that references one or more other objects

Attributes also have a domain. The domain logically groups and describes the set of all possible values that an attribute
can have. For example, the possible values of SEMESTER_GPA (see Table G.2) can be represented by the real number
base data type. But that does not mean that any real number is a valid GPA. Keep in mind that base data types define
base domains; that is, real represents all real numbers, integer represents all integers, date represents all possible
dates, string represents any combination of characters, and so on. However, base data type domains are the building

FIGURE
G.1

Real-world Student objects

Objects

J. D. Wilson M. R. Gonzalez V. K. Spelling

41199_AppG 12/12/2007 15:34:0 Page 173

173O B J E C T - O R I E N T E D D A T A B A S E S

blocks used to construct more restrictive named domains at a higher logical level. For example, to define the domain
for the GPA attribute precisely, a domain named GPA must be created. Every domain has a name and a description,
including the base data type, size, format, and constraints for the domain’s values. Therefore, the GPA domain can
be defined as “any positive number between 0.00 and 4.00 with only two decimal places.” In this case, there is a
domain name “GPA,” a base data type “real,” a constraint rule “any positive number between 0.00 and 4.00,” and
a format “with only two decimal places.” The GPA domain will provide the values for the SEMESTER_GPA and
OVERALL_GPA attributes. Domains can also be defined as lists of possible values separated by commas. For example
the GENDER domain can be defined as “Male, Female” or as “M, F.”

It is important to note that the relational database model also supports domains. In fact, C. J. Date, one of the
relational database model’s “parents,” presents domains as the way in which relational systems are able to support
abstract data types, thus providing the same functionality as object-oriented databases.1

Just as in the ER model, an object’s attribute can be single-valued or multivalued. Therefore, the object’s attribute
can draw a single value or multiple values from its domain. For example, the SOCIAL_SECURITY_NUMBER attribute
takes only one value from its domain because the student can have only one Social Security number. In contrast, an
attribute such as LANGUAGE or HOBBY can have many values because a student might speak many languages or
have many hobbies.

Object attributes may reference one or more other objects. For example, the attribute MAJOR refers to a Department
object, the attribute COURSES_TAKEN refers to a list (or collection) of Course objects, and the attribute ADVISOR
refers to a Professor object. At the implementation level, the OID of the referenced object is used to link both objects,
thus allowing the implementation of relationships between two or more objects. Using the example in Table G.2, the
MAJOR attribute contains the OID of a Department object (Accounting) and the ADVISOR attribute contains the OID
of a Professor object (Dr. W. R. Learned). The COURSES_TAKEN attribute contains the OID of an object that contains
a list of Course objects; such an object is known as a collection object.

G.3.4 Object State

The object state is the set of values that the object’s attributes have at any given time. Although the object’s state can
vary, its OID remains the same. If you want to change the object’s state, you must change the values of the object’s
attributes. To change the object’s attribute values, you must send a message to the object. This message will invoke
a method.

G.3.5 Messages and Methods

A method is the code that performs a specific operation on the object’s data. Methods protect data from direct and
unauthorized access by other objects. To help you understand messages and methods, imagine that the object is a
nutshell. The nutshell’s nucleus (the nut) represents the object’s data structure, and the shell represents its methods.
(See Figure G.2.)

Every operation performed on an object must be implemented by a method. Methods are used to change the object’s
attribute values or to return the value of selected object attributes. Methods represent real-world actions, such as
changing a student’s major, adding a student to a course, or printing a student’s name and address. In effect, methods

1 See C. J. Date and Hugh Darwen, Foundation for Object/Relational Databases: The Third Manifesto, Addison Wesley, 1998.

Note

Observe the difference between the relational and OO models at this point. In the relational model, a table's
attribute may contain only a value used to join rows in different tables. The OO model does not need such joins
to relate objects to one another.

41199_AppG 12/12/2007 15:34:3 Page 174

174 A P P E N D I X G

are the equivalent of procedures in traditional programming languages. In OO terms, methods represent the
object’s behavior.

Every method is identified by a name and has a body. The body is composed of computer instructions written in some
programming language to represent a real-world action. For example, using the object attributes described in Table
G.2, you can define a method Avegpa that will return the average GPA of a student by using the object’s attributes
SEMESTER_GPA and OVERALL_GPA. Thus, the method named Avegpa may be represented by the transformation
shown in Figure G.3.

As you examine Figure G.3, note that the Return(xgpa) would yield (3.2 * 15) + (3.0 * 60)/(15 + 60) = (48 + 180)/75
= 3.04 for a student with the following characteristics:

� Current semester GPA is 3.2.

FIGURE
G.2

Depiction of an object

Object X

Method 1 Method 2

Method 3 Method 4

Data

FIGURE
G.3

Method components

Xgpa = (SEMESTER_GPA*SEMESTER_HOURS+PREVIOUS_GPA*PREVIOUS_HOURS)/
 (SEMESTER_HOURS+PREVIOUS_HOURS)

Method Avegpa

Xgpa = 0

Return(xgpa)

(Method’s name)

Instance variable names

(Returns the average GPA)

Method body

41199_AppG 12/12/2007 15:34:6 Page 175

175O B J E C T - O R I E N T E D D A T A B A S E S

� Current class load is 15 semester hours.

� Previous GPA was 3.0 earned for a total of 60 hours.

As you examine that example, note that a method can access the instance variables (attributes) of the object for which
the method is defined.

To invoke a method, you send a message to the object. A message is sent by specifying a receiver object, the name
of the method, and any required parameters. The internal structure of the object cannot be accessed directly by the
message sender, which is another object. Denial of access to the structure ensures the integrity of the object’s state and
hides the object’s internal details. The ability to hide the object’s internal details (attributes and methods) is known as
encapsulation.

An object may also send messages to change or interrogate another object’s state. (To interrogate means to ask for
the interrogated object’s instance variable value or values.) To perform such object-change and interrogation tasks, the
method’s body can contain references to other objects’ methods (send messages to other objects), as depicted in
Figure G.4.

G.3.6 Classes

OO systems classify objects according to their similarities and differences. Objects that share common characteristics
are grouped into classes. In other words, a class is a collection of similar objects with shared structure (attributes) and
behavior (methods).

A class contains the description of the data structure and the method implementation details for the objects in the class.
Therefore, all objects in a class share the same structure and respond to the same messages. In addition, a class acts
as a “storage bin” for similar objects. Each object in a class is known as a class instance or an object instance. (See
Figure G.5.)

Using the example shown earlier in Table G.2, a class named Student can be defined to store student objects. All
objects of the class Student shown in Figure G.6 share the same structure (attributes) and respond to the same
messages (implemented by methods). Note that the Avegpa method was defined earlier; the Enroll and Grade
methods shown in Figure G.6 have been added. Each instance of a class is an object with a unique OID, and each
object knows to which class it belongs.

FIGURE
G.4

Objects send messages to each other

Real World Event

Object A Object B Object C

Method X Method Y Method Z

Data Data Data

Messages

41199_AppG 12/12/2007 15:34:9 Page 176

176 A P P E N D I X G

G.3.7 Protocol

The class’s collection of messages, each identified by a message name, constitutes the object or class protocol. The
protocol represents an object’s public aspect, that is, how it is known by other objects as well as end users. In contrast,
the implementation of the object’s structure and methods constitutes the object’s private aspect. Both are illustrated
in Figure G.7. For example, Figure G.6 shows three methods (Avegpa, Enroll, Grade) that represent the public aspect
of the Student object. Because those methods are public, other objects communicate with the Student object, using any
of the methods. The internal representation of the methods (see Figure G.3) yields the private aspect of the object. The
private aspect of an object is not available for use by other objects.

FIGURE
G.5

Class illustration

Object instances (1, 2, 3, 4, 5, 6) share the structure and methods of the class.

The class
contains the
description of
the methods
that describe
the behavior
of the objects
in the class.

A class is
composed of a
collection of
objects (object
instances).

Class Representation

Method
A

Method
B

Method
C

Method
D

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

FIGURE
G.6

Representation of the class Student

J. D. Smith

Enroll and Grade are additional methods for the class Student.

SOCIAL_SECURITY_NUMBER
FIRST_NAME
MIDDLE_INITIAL
LAST_NAME
DATE_OF_BIRTH
MAJOR
SEMESTER_GPA
OVERALL_GPA
COURSES_TAKEN
ADVISOR

Instance
variables

Methods

Object
instancesAvegpa

M. R. Gonzalez

Enroll Grade

V. K. Spelling

41199_AppG 12/12/2007 15:34:13 Page 177

177O B J E C T - O R I E N T E D D A T A B A S E S

Usually, a message is sent to an object instance. However, it is also possible to send a message to the class rather than
to the object. When the receiver object is a class, the message will invoke a class method. One example of a class
method is new. The new class method creates a new object instance (with a unique OID) in the receiver class. Because
the object does not exist yet, the message new is sent to the class and not to the object.

The preceding discussions have laid the foundation for your understanding of object-oriented concepts. Figure G.8 is
designed to put together all of the pieces of this part of the OO puzzle, so examine it carefully before you continue.

G.3.8 Superclasses, Subclasses, and Inheritance

Classes are organized into a class hierarchy. A class hierarchy resembles an upside-down tree in which each class
has only one parent class. The class hierarchy is known as a class lattice when its classes can have multiple parent
classes. Class is used to categorize objects into groups of objects that share common characteristics. For example, the
class automobile includes large luxury sedans as well as compact cars, and the class government includes federal,
state, and local governments. Figure G.9 illustrates that the generalization musical instruments includes stringed
instruments as well as wind instruments.

As you examine Figure G.9, note that Piano, Violin, and Guitar are subclasses of Stringed instruments, which is, in
turn, a subclass of Musical instruments. Musical instruments defines the superclass of Stringed instruments, which is,
in turn, the superclass of the Piano, Violin, and Guitar classes. As you can see, the superclass is a more general
classification of its subclasses, which, in turn, are more specific components of the general classification.

The class hierarchy introduces a powerful OO concept known as inheritance. Inheritance is the ability of an object
within the hierarchy to inherit the data structure and behavior (methods) of the classes above it. For example, the Piano
class in Figure G.9 inherits its data structure and behavior from the superclasses Stringed instruments and Musical
instruments. Thus, Piano inherits the strings and its sounding board characteristic from the Stringed instruments
superclass and the musical scale from its Musical instruments superclass. It is through inheritance that OO systems
can deliver code reusability.

In OO systems, all objects are derived from the superclass Object, or the Root class. Therefore, all classes share the
characteristics and methods of the superclass Object. The inheritance of data and methods goes from top to bottom
in the class hierarchy. There are two types of inheritance: single inheritance and multiple inheritance.

FIGURE
G.7

Public and private aspects of an object

Public
interface

Protocol

Message 1

Message 2

Message 3

Message 4

Private
implementation

Method
C

Method
A

Method
D

Method
B

Data

41199_AppG 12/12/2007 15:34:16 Page 178

178 A P P E N D I X G

Single Inheritance
Single inheritance exists when a class has only one immediate (parent) superclass above it. Such a condition is
illustrated by the Stringed instruments and Wind instruments classes in Figure G.9. Most of the current OO systems
support single inheritance. When the system sends a message to an object instance, the entire hierarchy is searched
for the matching method, using the following sequence:

1. Scan the class to which the object belongs.

2. If the method is not found, scan the superclass.

State OID
(unique) Behavior

Object

defines a
set of values

for its

Remember: A class is a collection of similar objects.

is implemented
by a set of

belongs
to a

has

is a collection of

that triggers a

FIGURE
G.8

Summary of object characteristics

Private Aspect

Class defines

Instance
variables Methods

Messages

Protocol

Public Aspect

are the names
of the

Class
hierarchy
or
class
lattice

SuperclassMusical instruments

Stringed instruments Wind instruments

Piano Violin Guitar

Superclass/
Subclass

SubclassesTrumpet Flute

FIGURE
G.9

Musical instruments class hierarchy

41199_AppG 12/12/2007 15:34:19 Page 179

179O B J E C T - O R I E N T E D D A T A B A S E S

The scanning process is repeated until either one of the following occurs:

� The method is found.

� The top of the class hierarchy is reached without finding the method. The system then generates a message
to indicate that the method was not found.

For an illustration of the scanning process, let’s examine the Employee class hierarchy shown in Figure G.10. If the
monthPay message is sent to a pilot’s object instance, the object will execute the monthPay method defined in its
Employee superclass. Note the code reusability benefits obtained through object-oriented systems: the monthPay
method’s code is available to both the Pilot and Mechanic subclasses.

Multiple Inheritance
Multiple inheritance exists when a class can have more than one immediate (parent) superclass above it. Figure
G.11 provides an example of multiple inheritance, illustrating that the Motorcycle subclass inherits characteristics from
both the Motor Vehicle and Bicycle superclasses. From the Motor Vehicle superclass, the Motorcycle subclass inherits:

� Characteristics such as fuel requirements, engine pistons, and horsepower.

� Behavior such as start motor, fill gas, and depress clutch.

From the Bicycle superclass, the Motorcycle subclass inherits:

� Characteristics such as two wheels and handlebars.

� Behavior such as straddle the seat and move the handlebar to turn.

SuperclassEmployee

Pilot Mechanic Subclasses

Instance variable: SALARY

Method: Monthly Pay = SALARY/12

FIGURE
G.10

Single inheritance

SuperclassesMotor Vehicle Bicycle

Motorcycle Subclass

FIGURE
G.11

Multiple inheritance

41199_AppG 12/12/2007 15:34:23 Page 180

180 A P P E N D I X G

The assignment of instance variable or method names must be treated with some caution in a multiple inheritance class
hierarchy. For example, if you use the same name for an instance variable or method in each of the superclasses, the
OO system must be given some way to decide which method or attribute to use. To illustrate that point, let’s suppose
that both the Motor Vehicle and Bicycle superclasses shown in Figure G.12 use a MAXSPEED instance variable.

Which version of the MAXSPEED instance variable will be inherited by the Motorcycle’s method in this case? A human
being would use judgment to correctly assign the 100 miles/hour value to the motorcycle. The OO system, however,
cannot make such value judgments and might:

� Produce an error message in a pop-up window, explaining the problem.

� Ask the end user to supply the correct value or to define the appropriate action.

� Yield an inconsistent or unpredictable result.

� Use user-defined inheritance rules for the subclasses in the class lattice. These inheritance rules govern a
subclass’s inheritance of methods and instance variables.

G.3.9 Method Overriding and Polymorphism

You may override a superclass’s method definition by redefining the method at the subclass level. For an illustration
of the method override, look at the Employee class hierarchy depicted in Figure G.13.

FIGURE
G.12

Motor vehicle and bicycle instance variables

Motor Vehicle

Bicycle

MAX SPEED
Miles/hour

MAX SPEED
Miles/hour

100

35

Name Value

Superclass
of Motorcycle

Instance variables

SuperclassEmployee

Pilot Mechanic Subclasses

Instance variable:
SALARY

Method:
Bonus = SALARY * 0.05

Instance variable:
ACCUMFLIGHTPAY

Method:
Bonus = ACCUMFLIGHTPAY * 0.05

FIGURE
G.13

Employee class hierarchy method override

41199_AppG 12/12/2007 15:34:26 Page 181

181O B J E C T - O R I E N T E D D A T A B A S E S

As you examine the summary presented in Figure G.13, note that a Bonus method has been defined to compute a
Christmas bonus for all employees. The specific bonus computation depends on the type of employee. In this case,
with the exception of pilots, an employee receives a Christmas bonus equal to 5 percent of his/her salary. Pilots
receive a Christmas bonus based on accumulated flight pay rather than annual salary. By defining the Bonus method
in the Pilot subclass, you are overriding the Employee Bonus method for all objects that belong to the Pilot subclass.
However, the Pilot subclass bonus redefinition does not affect the bonus computation for the Mechanic subclass. In
contrast to method overriding, polymorphism allows different objects to respond to the same message in different
ways. Polymorphism is a very important feature of OO systems because it allows objects to behave according to their
specific characteristics. In OO terms, polymorphism means that:

� You may use the same name for a method defined in different classes in the class hierarchy.

� The user may send the same message to different objects that belong to different classes and yet will always
generate the correct response.

To illustrate the effect of polymorphism, let’s examine the expanded Employee class hierarchy shown in Figure G.14.
Using the class hierarchy in Figure G.14, the system computes a pilot’s or mechanic’s monthly pay by sending the
same message, monthPay, to the pilot or mechanic object. The object will return the correct monthly pay amount
even though the monthPay includes flyPay for the pilot object and overtimePay for the mechanic object. The
computation of the regular monthly salary payment for both subclasses (Pilot and Mechanic) is the same: the annual
salary divided by 12 months.

As you examine the polymorphism example in Figure G.14, note that:

� The Pilot monthPay method definition overrides and expands the Employee monthPay method defined in the
Employee superclass.

� The monthPay method defined in the Employee superclass is reused by the Pilot and Mechanic subclasses.

Thus, polymorphism augments method override to enhance the code reusability so prized in modular programming
and design.

SuperclassEmployee

Pilot Mechanic Subclasses

Instance variable: SALARY
Method: monthPay = SALARY / 12

Instance variable:

Method:

flyPay

monthPay

overtimePay

monthPay

Super monthPay + flyPay Super monthPay + overtimePay

FIGURE
G.14

Employee class hierarchy polymorphism

Note

Figure G.14 used Smalltalk syntax: Super monthPay in the pilot's monthPay method indicates that the object
inherits its superclass monthPay method. Other OOPLs, such as C++, use the Employee.monthPay syntax.

41199_AppG 12/12/2007 15:34:30 Page 182

182 A P P E N D I X G

G.3.10 Abstract Data Types

A data type describes a set of objects with similar characteristics. All conventional programming languages use a set
of predefined base data types (real, integer, and string or character). Base data types are subject to a predefined set
of operations. For example, the integer base data type allows operations such as addition, subtraction, multiplication,
and division.

Conventional programming languages also include type constructors, the most common of which is the record type
constructor. For example, a programmer can define a CUSTOMER record type by describing its data fields. The
CUSTOMER record represents a new data type that will store CUSTOMER data, and the programmer can directly
access that data structure by referencing the record’s field names. A record data type allows operations such as WRITE,
READ, or DELETE. However, new operations cannot be defined for base data types.

Like conventional data types, an abstract data type (ADT) describes a set of similar objects. However, an abstract
data type differs from a conventional data type in that:

� The ADT’s operations are user-defined.

� The ADT does not allow direct access to its internal data representation or method implementation. In other
words, the ADT encapsulates its definition, thereby hiding its characteristics.

Some OO systems, such as Smalltalk, implement base data types as ADTs.

To create an abstract data type you must define:

� Its name.

� The data representation or instance variables of the objects belonging to the abstract data type; each instance
variable has a data type that may be a base data type or another ADT.

� The abstract data type operations and constraints, both of which are implemented through methods.

You might have noted that the abstract data type definition resembles a class definition. Some OO systems differentiate
between class and type, using type to refer to the class data structure and methods and class to refer to the
collection of object instances. A type is a more static concept, while a class is a more run-time concept. In other
words, when you define a new class, you are actually defining a new type. The type definition is used as a pattern or
template to create new objects belonging to a class at run time.

A simple example will help you understand the subtle distinction between OO type and class. Suppose you bought a
cross-stitch pattern with which to create pillow covers. The pattern you bought includes the description of its structure
as well as instructions about its use. That pattern will be the type definition. The collection of all actual pillow covers,
each with a unique serial number or OID, that you create with the help of that pattern constitutes the class.

Together with inheritance, abstract data types provide support for complex objects. A complex object is formed by
combining other objects in a set of complex relations. An example of such a complex object might be found in a
security system that uses different data types, such as:

� Conventional (tabular) employee data; for example name, phone, or date of birth.

� Bitmapped data to store the employee’s picture.

� Voice data to store the employee’s voice pattern.

The ability to deal in a relatively easy manner with such a complex data environment gives OO credibility in today’s
database marketplace.

G.3.11 Object Classification

An object can be classified according to the characteristics (simple, composite, compound, hybrid, and associative) of
its attributes. A simple object is an object that contains only single-valued attributes and has no attributes that refer
to another object. For example, an object that describes the current semester can be defined as having the following
single-valued attributes: SEM_ID, SEM_NAME, SEM_BEGIN_DATE, and SEM_END_DATE.

41199_AppG 12/12/2007 15:34:32 Page 183

183O B J E C T - O R I E N T E D D A T A B A S E S

A composite object is an object that contains at least one multivalued attribute and has no attributes that refer to
another object. An example of a composite object would be a MOVIE object in a movie rental system. For example,
MOVIE might be defined as having the following attributes: MOVIE_ID, MOVIE_NAME, MOVIE_PRICE, MOVIE_
TYPE, and MOVIE_ACTORS. In that case, MOVIE_ACTORS is a multivalued attribute that tracks the many
performers in the movie.

A compound object is an object that contains at least one attribute that references another object. An example is
the STUDENT object in Table G.2. In that example, the ADVISOR attribute refers to the PROFESSOR object.

A hybrid object is an object that contains a repeating group of attributes, at least one of which refers to another
object. A typical example of a hybrid object is the invoice example introduced in Chapter 3, “The Relational Database
Model,” in Figure 3.30. In that case, an invoice contains many products and each product has a quantity sold and a
unit price. The object representation of the invoice contains a repeating group of attributes that represent the product,
quantity sold, and unit price (PROD_CODE, LINE_UNITS, and LINE_PRICE) for each product sold. Therefore, the
object representation of the invoice does not require a new INV_LINE object as in the ER model representation.

Finally, an associative object is an object used to represent a relationship between two or more objects. The
associative object can contain its own attributes to represent specific characteristics of the relationship. A good
example of an associative object is the Enroll example in Chapter 3, Figure 3.26. In that case, the ENROLL object
relates to a STUDENT and a CLASS object and includes an ENROLL_GRADE attribute that represents the grade
earned by the student in the class.

In real-world data models, you find fewer simple and composite objects and more compound, hybrid, and associative
objects. Those types of objects will be discussed in greater detail in Section G.4.3.

G.4 CHARACTERISTICS OF AN OBJECT-ORIENTED DATA MODEL

The object-oriented concepts described in previous sections represent the core characteristics of an object oriented data
model (OODM), also known as an object data model, or ODM. At the very least, an object-oriented data model must:

� Support the representation of complex objects.

� Be extensible; that is, it must be capable of defining new data types as well as the operations to be performed
on them.

� Support encapsulation; that is, the data representation and the method’s implementation must be hidden from
external entities.

� Exhibit inheritance; an object must be able to inherit the properties (data and methods) of other objects.

� Support the notion of object identity (OID) described earlier in this chapter.

For instructional purposes and to the extent possible, OODM component descriptions and definitions will be used to
correspond to the entity relationship model components described in Chapter 3. Although most of the basic OODM
components were defined earlier in this chapter, a quick summary may help you read the subsequent material more easily:

� The OODM models real-world entities as objects.

� Each object is composed of attributes and a set of methods.

� Each attribute can reference another object or a set of objects.

� The attributes and the methods’ implementation are hidden, encapsulated, from other objects.

� Each object is identified by a unique object ID (OID), which is independent of the value of its attributes.

� Similar objects are described and grouped in a class that contains the description of the data (attributes or
instance variables) and the methods’ implementation.

41199_AppG 12/12/2007 15:34:33 Page 184

184 A P P E N D I X G

� The class describes a type of object.

� Classes are organized in a class hierarchy.

� Each object of a class inherits all properties of its superclasses in the class hierarchy.

Armed with that summarized OO component description, note the comparison between the OO and ER model
components presented in Table G.3.

TABLE
G.3

Comparing the OO and ER Model Components

OO DATA MODEL ER MODEL
Type Entity definition
Object Entity
Class Entity set
Instance variable Attribute
N/A Primary key
OID N/A
Method N/A
Class hierarchy ER diagram

G.4.1 Object Schemas: The Graphical Representation of Objects

A graphical representation of an object resembles a box, with the instance variable names inside the box. Generally
speaking, the object representation is shared by all objects in the class. Therefore, you will discover that the terms
object and class are often used interchangeably in the illustrations. With that caveat in mind, let’s begin by examining
the illustration based on the Person class, shown in Figure G.15. In that case, the instance variables NAME,
ADDRESS, DOB, and SEX use a string base data type and the AGE instance variable uses an integer base data type.

Next, let’s examine the state of a Person object instance. (See Figure G.16.) As you examine Figure G.16, note that
the AGE instance variable can also be viewed as a derived attribute. Derived attributes may be implemented through
methods. For instance, a method named Age can be created for the Person class. That method will return the
difference in years between the current date and the date of birth (DOB) for a given object instance. Aside from the
fact that methods can generate derived attribute values, methods have the added advantages of encapsulation and
inheritance.

FIGURE
G.15

Shared representation for all objects of the class Person

John D. Smith
123 Main Street
23-Nov-1974
M
32

PERSON
NAME s

ADDRESS s

DOB s

SEX s

AGE i

Instance
variables

Object instances

41199_AppG 12/12/2007 15:34:35 Page 185

185O B J E C T - O R I E N T E D D A T A B A S E S

Keep in mind that the OO environment allows you to create abstract data types from base data types. For example,
NAME, ADDRESS, and DOB are composite attributes that can be implemented through classes or ADTs. To illustrate
that point, Name, Address, and DOB have been defined to be abstract data types in Figure G.17.

As you examine Figure G.17, note that the Person class now contains attributes that point to objects of other classes
or abstract data types. The new data types for each instance variable of the class Person are shown in Figure G.18.

The object space, or object schema, is used to represent the composition of the state of an object at a given time.

FIGURE
G.16

State of a Person object instance

System-generatedPERSON OID:

NAME
ADDRESS
DOB
SEX
AGE

X20

John D. Smith
123 Main Street, Miami, FL 37457
23-Nov-1974
M
32

Instance variable
values

FIGURE
G.17

Defining three abstract data types

NAME ADDRESS

STREET_NUM s
STREET s
APARTMENT s
CITY s
STATE s
ZIP i

DOB

FIRST_NAME s
MIDDLE_NAME s
LAST_NAME s

DAY i
MONTH i
YEAR i

s = string data type
i = integer data type

FIGURE
G.18

Object representation for instances of the class Person with ADTs

Abstract data types

PERSON

NAME
ADDRESS
DOB
SEX
AGE Base data typesinteger

Instance
variables

Data Types
NAME
ADDRESS
DOB
string

41199_AppG 12/12/2007 15:34:39 Page 186

186 A P P E N D I X G

The object’s state for an instance of class Person is illustrated in Figure G.19. As you examine Figure G.19, note the
use of OIDs to reference other objects. For example, the attributes NAME, ADDRESS, and DOB now contain an OID
of an instance of their respective class or ADT instead of the base value. The use of OIDs for object references avoids
the data consistency problem that would appear in a relational system if the end user were to change the primary key
value when changing the object’s state. That is because the OID is independent of the object’s state.

To illustrate this point further, a rental property application will be used by which many rental properties and the
persons living in them are tracked. In that case, two people living at the same address are likely to reference the same
Address object instance. (See Figure G.20.) This condition is sometimes labeled as referential object sharing. A
change in the Address object instance will be reflected in both Person instances.

Figure G.20 illustrates the state of two different object instances of the class Person; both object instances reference
the same Address object instance. Note that Figure G.20 depicts four different classes or ADTs: Person (two instances),
Name (two instances), Address, and DOB (two instances).

G.4.2 Class-Subclass Relationships

Do you remember that classes inherit the properties of their superclasses in the class hierarchy? That property leads
to the use of the label “is a” to describe the relationship between the classes within the hierarchy. That is, an employee
is a person and a student is a person. This basic idea is sufficiently important to warrant a more detailed illustration
based on the class hierarchy. (See Figure G.21.)

FIGURE
G.19

Object state for an instance of the class Person, using ADTs

PERSON OID: X20

NAME [X201]
ADDRESS [X202]
DOB [X203]
SEX M
AGE 32

ADDRESS OID: X202

STREET_NUM 123
STREET Main Street
APARTMENT
CITY Miami
STATE FL
ZIP 37457

NAME OID: X201

FIRST_NAME John
MIDDLE_NAME D
LAST_NAME Smith

DOB OID: X203

DAY 23
MONTH 11
YEAR 1974

41199_AppG 12/12/2007 15:34:42 Page 187

187O B J E C T - O R I E N T E D D A T A B A S E S

In the hierarchy shown in Figure G.21, the Employee object is described by seven attributes, shown in Figure G.22.
Social Security number (SS#) is recorded as a string base data type, and SALARY is recorded as an integer base data
type. The NAME, ADDRESS, DOB, SEX, and AGE are all inherited from the Person superclass.

FIGURE
G.20

Referential object sharing

PERSON OID: X20

NAME [X201]
ADDRESS [X202]
DOB [X203]
SEX M
AGE 32

ADDRESS OID: X202

STREET_NUM 123
STREET Main Street
APARTMENT
CITY Miami
STATE FL
ZIP 37457

NAME OID: X201

FIRST_NAME John
MIDDLE_NAME D
LAST_NAME Smith

DOB OID: X203

DAY 23
MONTH 11
YEAR 1974

DOB OID: D45R

DAY 20
MONTH 11
YEAR 1976

PERSON OID: X26

NAME [1029]
ADDRESS [X202]
DOB [D45R]
SEX F
AGE 30

NAME OID: 1029

FIRST_NAME Mary
MIDDLE_NAME S
LAST_NAME Smith

SuperclassPerson

Employee Student Subclasses

FIGURE
G.21

Class hierarchy

41199_AppG 12/12/2007 15:34:45 Page 188

188 A P P E N D I X G

That example is based on the fact that the OODM supports the class-subclass relationship, for which it enforces the
necessary integrity constraints. Note that the relationship between a superclass and its subclasses is 1:M; that is, if you
assume single inheritance, each superclass can have many subclasses and each subclass is related to only one
superclass.

G.4.3 Interobject Relationships: Attribute-Class Links

In addition to supporting the class-subclass relationship, the OODM supports the attribute-class relationship. An
attribute-class relationship, or interobject relationship, is created when an object’s attribute references another
object of the same or different class.

The interobject relationship is different from the class-subclass relationship explored earlier. To illustrate this difference,
let’s examine the class hierarchy for the EDLP (Every Day Low Prices) Retail Corporation, shown in Figure G.23.

EMPLOYEE

SS#

NAME

ADDRESS

DOB

SEX

AGE

SALARY

Attributes inherited from
the Person superclass

FIGURE
G.22

Employee object representation

Root Object

Manufacturer Item Person Facility

StoreWarehouseEmployee

StockerCashierSecretaryClerkManager

FIGURE
G.23

Class hierarchy for the EDLP Retail Corporation

41199_AppG 12/12/2007 15:34:52 Page 189

189O B J E C T - O R I E N T E D D A T A B A S E S

As you examine Figure G.23, note that all classes are based on the Root Object superclass. The class hierarchy
contains the classes Manufacturer, Item, Person, and Facility. The Facility class contains the subclasses Warehouse and
Store. The Person class contains the subclass Employee, which, in turn, contains the subclasses Manager, Clerk,
Secretary, Cashier, and Stocker. The following discussion will use the simple class hierarchy shown in Figure G.23 to
illustrate basic 1:M and M:N relationships.

Representing 1:M Relationships
Based on the class hierarchy in Figure G.23, a one-to-many relationship exists between Employee and Facility: each
Employee works in only one Facility, but each Facility has several Employees. Figure G.24 shows how that relationship
may be represented.

As you examine the relationship between Employee and Facility portrayed in Figure G.24, note that the Facility object
is included within the Employee object and vice versa; that is, the Employee object is also included within the Facility
object. The following techniques will be used to examine the relationships in greater detail:

� Related classes are enclosed in boxes to make relationships more noticeable.

� The double line on the boxes’ right side indicates that the relationship is mandatory.

� Connectivity is indicated by labeling each box. In this case, a 1 was put next to Facility in the Employee object
to indicate that each employee works in only one facility. The M beside Employee in the Facility object indicates
that each facility has many employees.

Note that the ER notation is used to represent a mandatory entity and to indicate the connectivity of a relationship
(1:M). The purpose of the notation is to maintain consistency with earlier diagrams.

FIGURE
G.24

Representing a 1:M relationship

EMPLOYEE

SS#
NAME
ADDRESS
DOB
SEX
AGE
SALARY

FACILITY 1

FACILITY

CODE
NAME
ADDRESS
BUDGET

EMPLOYEE M

= mandatory participation

1,M = connectivity

41199_AppG 12/12/2007 15:34:55 Page 190

190 A P P E N D I X G

Rather than just include the object box within the class, the preference is to use a name that is descriptive of the class
characteristic being modeled. That procedure is especially useful when two classes are involved in more than one
relationship. In those cases, the attribute’s name should be written above the class box and the class box should be
indented to indicate that the attribute will reference the class. For example, two relationships between Employee and
Facility can be represented by using WORKS_AT and WORKERS, as indicated in Figure G.25. Note that two
relationships exist:

1. The 1:M relationship is based on the business rule “each facility employs many employees, and each employee
is employed by only one facility.”

2. The 1:1 relationship is based on the business rule “each facility is managed by only one employee, and each
manager manages only one facility.”

As you examine Figure G.25, note that the relationships are represented in both participating classes. That condition
allows you to invert the relationship, if necessary. For example, the Facility object within the Employee object
represents the “Manager_of” relationship. In this case, the Facility object is optional and has a maximum connectivity
of 1. The Employee and Facility objects are examples of compound objects. Another type of 1:M relationship can be
illustrated by examining the relationship between employees and their dependents. To establish that relationship, you
first create a Dependent subclass, using Person as its superclass. Note that a Dependent subclass cannot be created
by using Employee as its superclass because the class hierarchy represents an “is a” relationship. In other words,
each Manager is an Employee, each Employee is a Person, each Dependent is a Person, and each Person is an Object
in the object space—but each Dependent is not an Employee. Figure G.26 shows the proper presentation of the
relationship between Employee and Dependent.

As you examine Figure G.26, note that Dependent is optional to Employee and that Dependent has a 1:M relationship
with Employee. However, Employee is mandatory to Dependent. The weak entity concept disappears in the OODM
because each object instance is identified by a unique OID.

FIGURE
G.25

Representing 1:1 and 1:M relationships

EMPLOYEE

SS#
NAME
ADDRESS
DOB
SEX
AGE
SALARY
WORKS_AT:

FACILITY 1

FACILITY

CODE
NAME
ADDRESS
BUDGET
WORKERS:

EMPLOYEE M

Note: the Manager attribute indicates the facility’s general manager

FACILITY 1

MANAGER_OF:

EMPLOYEE 1

MANAGER:

41199_AppG 12/12/2007 15:34:57 Page 191

191O B J E C T - O R I E N T E D D A T A B A S E S

Representing M:N Relationships
Using the same EDLP Retail Corporation class hierarchy, a many-to-many (M:N) relationship can be illustrated by
exploring the relationship between Manufacturer and Item, as represented in Figure G.27. Figure G.27 depicts a
condition in which each Item may be produced by many Manufacturers and each Manufacturer may produce many
Items. Thus, Figure G.27 represents a conceptual view of the M:N relationship between Item and Manufacturer. In this
representation, Item and Manufacturer are both compound objects.

Also note that the CONTACT attribute in the Manufacturer class in Figure G.27 references only one instance of the
Person class. A slight complication arises at this point. It is likely that each contact (person) has a phone number, yet
no phone number attribute was included in the Person class. In that case, the designer may add the attribute so it will
be available to all Person subclasses.

FIGURE
G.26

Employee-Dependent relationship

EMPLOYEE

SS#
NAME
ADDRESS
DOB
SEX
AGE
SALARY
WORKS_AT:

FACILITY 1

DEPENDENT

NAME
ADDRESS
DOB
SEX
AGE
DEPENDENT_OF:

EMPLOYEE 1

DEPENDENT M

DEPENDENTS:

FIGURE
G.27

Representing the M:N relationship

MANUFACTURER

CODE
NAME
ADDRESS
CONTACT:

PERSON 1

ITEM

CODE
DESCRIPTION
QUANTITY
UNIT_PRICE
MANUFACTURERS:

MANUFACTURER M

ITEM M

ITEMS:

41199_AppG 12/12/2007 15:35:0 Page 192

192 A P P E N D I X G

Representing M:N Relationships with an Intersection Class
Suppose you add a condition to the just-explored ITEM class that allows you to track additional data for each item. For
example, let’s represent the relationship between Item and Facility so that each Facility may contain several Items and
each Item may be located at several Facilities. In addition, you want to track the quantity and location (aisle and row)
of an Item at each Facility. Those conditions are illustrated in Figure G.28. The right square bracket “]” in Figure G.28
indicates that the included attributes are treated as one logical unit. Therefore, each Item instance may contain several
occurrences of Facility, each accompanied by related values for the AISLE, ROW, QTY_ON_HAND and UNIT_PRICE
attributes. The inverse is true for each instance of Facility. The Item and Facility objects in this relationship are hybrid
objects with a repeating group of attributes. Note that the semantic requirements for this relationship indicate that the
Item or Facility objects are accessed first so the aisle, row, and quantity on hand are known for each item.

To translate the preceding discussion to a more relational view of the M:N scenario, you would have to define an
intersection (bridge) class to connect both Facility and Item and store the associated attributes. In that case, you
might create a Stocked_Item associative object class to contain the Facility and Item object instances and the values for
each of the AISLE, ROW, QTY_ON_HAND and UNIT_PRICE attributes. Such a class is equivalent to the
Interclass_Connection construct of the Semantic Data Model. Figure G.29 shows how the Item, Facility, and
Stocked_Item object instances might be represented.

Having examined the depiction of the basic OO relationships, you can represent the object space as shown in
Figure G.30.

FIGURE
G.28

Representing the M:N relationship with associated attributes

ITEM

CODE
DESCRIPTION
MANUFACTURERS:

FACILITY

CODE
NAME
ADDRESS
BUDGET
WORKERS:MANUFACTURER M

FACILITY

M

EMPLOYEE M

MANAGER:

EMPLOYEE 1
AISLE
ROW
QTY_ON_HAND
UNIT_PRICE

ITEM

MAISLE
ROW
QTY_ON_HAND
UNIT_PRICE

41199_AppG 12/12/2007 15:35:3 Page 193

193O B J E C T - O R I E N T E D D A T A B A S E S

FIGURE
G.29

Representing the M:N relationship with intersection class

ITEM

CODE
DESCRIPTION
MANUFACTURERS:

STOCKED_ITEM

ITEMS_STOCKED:

MANUFACTURER M

STOCKED_ITEM M

STOCKED_AT:

ITEM 1

LOCATED_AT:

FACILITY 1

UNIT_PRICE

FACILITY

CODE
NAME
ADDRESS
BUDGET
WORKERS:

EMPLOYEE M

MANAGER:

EMPLOYEE 1

STOCKED_ITEM M

AISLE
ROW
QTY_ON_HAND

ITEMS_STORED:

FIGURE
G.30

Object space representation

OID: A001

11237
COLOR TV 13"
[V3402]
[Z45621]
29.95

Collection of Manufacturer class

OID: Z3402

[X333],
..........,
..........,

OID: X333

ACME CORP.
............
............

Collection of Stocked_Item class

OID: Z45621

[ST0975],
..........,
..........,

OID: Z67461

[ST0975],
..........,
..........,

OID: ST0975

OID: C0980

W010
MAIN WAREHOUSE
[V3245]
$100,000.00
[S2390]
[M5764]
[Z67461]

Manufacturer

Facility

Stocked_Item

Two instances
of the same

class

Item

[A001]
[C0980]
123
03
450.00

41199_AppG 12/12/2007 15:35:5 Page 194

194 A P P E N D I X G

Because Figure G.30 contains much critical design information, you should examine the following points in particular:

� The Stocked_Item associative object instance contains references to an instance of each related (Item and
Facility) class. The Stocked_Item intersection class is necessary only when you must keep track of the additional
information referred to earlier.

� The Item object instance in this object schema contains the collection of Stocked_Item object instances, each
one of which contains a Facility object instance. The inverse of that relationship is also true: a Facility object
instance contains the collection of Stocked_Item object instances, each one of which contains an Item object
instance. You should realize that those two relationships represent two different application views of the
same object schema. It is desirable for a data model to provide such flexibility.

� The interobject references use the OID of the referenced objects in order to access and include them in the
object space.

� The values inside square brackets “[]” represent the OID of an object instance of some class. The “collection
of” classes represent a class of objects in which each object instance contains a collection of objects of
some class. For example, the Z3402 and Z45621 OIDs reference objects that constitute a collection of
Manufacturers and a collection of Stocked_Items, respectively.

� In the relational model, the ITEM table would not contain any data regarding the MANUFACTURERs or the
STOCKED_ITEMs in its structure. To provide (combined) information about ITEM, STOCKED_ITEM, and
FACILITY, you would have to perform a relational join operation. The OODM does not need joins to combine
data from different objects because the Item object contains the references to the related objects; those
references are automatically brought into the object space when the Item object is accessed.

G.4.4 Late and Early Binding: Use and Importance

A desirable OODM characteristic is its ability to let any object’s attribute contain objects that define different data types
(or classes) at different times. With that feature, an object can contain a numeric value for a given instance variable
and the next object (of the same class) can contain a character value for the same instance variable. That characteristic
is achieved through late binding. With late binding, the data type of an attribute is not known until execution time
or run time. Therefore, two different object instances of the same class can contain values of different data types for
the same attribute.

In contrast to the OODM’s ability to use late binding, a conventional DBMS requires that a base data type be defined
for each attribute at the time of its creation. For example, suppose you want to define an INVENTORY to contain the
following attributes: ITEM_TYPE, DESCRIPTION, VENDOR, WEIGHT, and PRICE. In a conventional DBMS, you
create a table named INVENTORY and assign a base data type to each attribute, as shown in Figure G.31.

Recall from earlier chapters that when the designer is working with conventional database systems, (s)he must define
the data type for each attribute when the table structure is defined. That approach to data type definition is called
early binding. Early binding allows the database to check the data type for each of the attribute’s values at
compilation or definition time. For instance, the ITEM_TYPE attribute in Figure G.31 is limited to numeric values.
Similarly, the VENDOR attribute may contain only numeric values to match the primary key of some row in a
VENDOR table with the same numeric value restriction.

Now let’s take a look at Figure G.32 to see how an OODM would handle this early-binding problem. As was true in
the conventional database environment, the OODM allows the data types to be defined at creation time. However,
quite unlike the conventional database, the OODM allows the data types to be user-defined ADTs. In this example of
early binding, the abstract data types Inv_type, String_of_characters, Vendor, Weight, and Money are associated with
the instance variables at definition time. Therefore, the designer may define the required operations for each data type.
For example, the Weight data type can have methods to show the weight of the item in pounds or kilograms. Similarly,
the Money data type may have methods to return the price as numbers or letters denominated in U.S. dollars, euros,
or British pounds. (Remember that abstract data types are implemented through classes.)

41199_AppG 12/12/2007 15:35:13 Page 195

195O B J E C T - O R I E N T E D D A T A B A S E S

In a late-binding environment, the object’s attribute data type is not known prior to its use. Therefore, an attribute can
have any type of value assigned to it. Using the same basic data set described earlier, Figure G.33 shows the attributes
(instance variables) ITEM_TYPE, DESCRIPTION, VENDOR, WEIGHT, and PRICE without a prior data type definition.
Because no data types are predefined for the class instance variables, two different objects of the Inventory class may
have different value types for the same attribute. For example, ITEM_TYPE can be assigned a character value in one
object instance and a numeric value in the next instance. Late binding also plays an important role in polymorphism,
allowing the object to decide which implementation method to use at run time.

G.4.5 Support for Versioning

Versioning is an OODM feature that allows you to track the history of change in the state of an object. Versioning
is a very powerful modeling feature, especially in computer-aided design (CAD) environments. For example, an
engineer using CAD can load a machine component design in his/her workstation, make some changes, and see how
those changes affect the component’s operation. If the changes do not yield the expected results, the engineer can

FIGURE
G.31

Inventory table with predetermined (base) data types

Table: INVENTORY

Attributes Conventional (Base) Data Type

ITEM_TYPE Numeric

DESCRIPTION Character

VENDOR Numeric

WEIGHT Numeric

PRICE Numeric

FIGURE
G.32

Inventory class with early binding

Class: INVENTORY

Instance variables Type

ITEM_TYPE Inv_type

DESCRIPTION String_of_characters

VENDOR Vendor

WEIGHT Weight

PRICE Money

41199_AppG 12/12/2007 15:35:16 Page 196

196 A P P E N D I X G

undo those changes and restore the component to its original state. Versioning is one of the reasons the OODBMS
is such a strong player in the CAD and computer-aided manufacturing (CAM) arenas.

G.5 OODM AND PREVIOUS DATA MODELS: SIMILARITIES AND DIFFERENCES

Although the OODM has much in common with relational and ER data models, the OODM introduces some
fundamental differences. The following summary is designed to offer detailed comparisons to help clarify the OODM
characteristics introduced in this chapter.

G.5.1 Object, Entity, and Tuple

The OODM concept of object extends well beyond the concept of entity or tuple in other data models. Although an
OODM object resembles the entity and the tuple in the ER and relational models, an OODM object has additional
characteristics, such as behavior, inheritance, and encapsulation. Those OODM characteristics make OO modeling
more natural than ER and relational modeling. In fact, the ER and relational models often force the designer to create
new artificial entities to represent real-world entities. For example, in the ER model, an invoice is usually represented
by two separate entities; the second (LINE) entity is usually weak because its existence depends on the first (INVOICE)
entity and its primary key is partially derived from the INVOICE entity. (See Figure G.34.)

As you examine Figure G.34, note that the ER approach requires the use of two different entities to model a single
real-world INVOICE entity. That artificial construct is imposed by the relational model’s inherent limitations. The ER
model’s artificial representation introduces additional overhead in the underlying system. In contrast, the OODM’s
INVOICE object is directly modeled as an object into the object space, or object schema.

G.5.2 Class, Entity Set, and Table

The concept of class can be associated with the ER and relational models’ concepts of entity set and table,
respectively. However, class is a more powerful concept that allows not only the description of the data structure, but
also the description of the behavior of the class objects. A class also allows for both the concept and the
implementation of abstract data types in the OODM. The ADT is a very powerful modeling tool because it allows the
end user to create new data types and use them like any other base data type that accompanies a database. Thus, the
ADT yields an increase in the semantic content of the objects being modeled.

FIGURE
G.33

OODM Inventory class with late binding

Class: INVENTORY

Instance variables Type

ITEM_TYPE

DESCRIPTION

VENDOR
No data type is known when the class is created

WEIGHT

PRICE

41199_AppG 12/12/2007 15:35:19 Page 197

197O B J E C T - O R I E N T E D D A T A B A S E S

G.5.3 Encapsulation and Inheritance

ADT brings two other OO features that are not supported in previous models: encapsulation and inheritance. Classes
are organized in class hierarchies. An object belonging to a class inherits all properties of its superclasses.
Encapsulation means that the data representation and the method’s implementation are hidden from other objects and
from the end user. In an OODM, only the methods can access the instance variables. In contrast, the conventional
system’s data components or fields are directly accessible from the external environment.

Conventional models do not incorporate the methods found in the OODM. The closest thing to methods is the use
of triggers and stored procedures in SQL databases. However, because triggers do not include the encapsulation and
inheritance benefits that are typical of the object model’s methods, triggers do not yield the same functionality as
methods.

G.5.4 Object ID

The object ID (OID) is not supported in either the ER or the relational model. Although database users may argue that
Oracle Sequences and MS Access AutoNumber provide the same functionality as an OID, that argument is true only
to the extent that they can be used to uniquely identify data elements. However, unlike the object model, in which the
relationships are implicit, the relational model still uses value-based relationships such as:

SELECT *
FROM INVOICE, INV_LINE
WHERE INVOICE.INV_ID = INV_LINE.INV_ID;

The hierarchical and CODASYL models support some form of ID that can be considered similar to the OID, thus
supporting the argument presented by some researchers who insist that the OO evolution is a step back on the road
to the old pointer systems. Therefore, OO-based systems return to the modeling and implementation complexities that
were typical of the hierarchical and network models.

G.5.5 Relationships

The main property of any data model is found in its representation of relationships among the data components. The
relationships in an OODM can be of two types: interclass references or class hierarchy inheritance. The ER and the
relational models use a value-based relationship approach. Using a value-based approach means that a relationship
among entities is established through a common value in one or several of the entity attributes. In contrast, the OODM

INVOICE

DATE
NUMBER

CUSTOMER 1

LINE M

OO Data Model ER Data Model

FIGURE
G.34

An invoice representation

41199_AppG 12/12/2007 15:35:22 Page 198

198 A P P E N D I X G

uses the object ID, which is identity-based, to establish relationships among objects, and those relationships are
independent of the state of the object. (While that property makes it easy to deal with the database objects at the
end-user applications level, you may have concluded that the price of the convenience is greater conceptual
complexity.)

G.5.6 Access Methods

The ER and relational data models depend on the use of SQL to retrieve data from the database. SQL is a set-oriented
query language that is based on a formally defined mathematical model. Given its set-oriented heritage and based on
the value of some of its attributes, SQL uses associative access methods to retrieve related information from a database.
For example, to retrieve a list of customer records based on the value of their year-to-date purchases, SQL would use:

SELECT *
FROM CUSTOMER
WHERE CUS_YTD_BUYS >= 5000;

If no CUS_YTD_BUYS value parameter is specified, SQL “understands” that condition to mean “any value,” thus
reducing the query statement to:

SELECT *
FROM CUSTOMER;

As a consequence of having more semantics in its data model, the OODM produces a schema in which relations form
part of the structure of the database. Accessing the structured object space resembles the record-at-a-time access of the
old structured hierarchical and network models, especially if you use a 3GL or even the OOPL supported by the
OODBMS. The OODM is suited to support both navigational (record-at-a-time) and set-oriented access. The
navigational access is provided and implemented directly by the OODM through the OIDs. The OODM uses the OIDs
to navigate through the object space structure developed by the designer.

Associative set-oriented access in the OODM must be provided through explicitly defined methods. Therefore, the
designer must implement operations to manipulate the object instances in the object schema. The implementation of
those operations will have an effect on performance and on the database’s ability to manage data. This is where the
main problem of the object model appears: the lack of a universally accepted underlying mathematical model for data
manipulation. Not having a universal access standard hampers the OODM because it forces each implementation to
create its own version of an object query language (OQL). The OQL is the database query language used by an
OODBMS. Of course, different vendors create different versions of OQL, and that, in turn, limits true interoperability.
However, several groups, such as the Object Management Group (OMG, www.omg.org)2, are currently working on the
development of standards for object-oriented technology. For example, to facilitate modeling in an OO environment,
the OMG has developed the Unified Modeling Language (UML) standard. UML represents an attempt to create a
universal modeling notation to facilitate activities such as system development, data modeling, and network design.
(See Appendix H to learn more about UML.)

Although there is no standard way to manipulate sets with an OQL, the relational model’s SQL2 standard did not
provide ways to manipulate objects in an object-oriented database, either. However, the mismatch between OQL and
SQL was reduced with the publication of the SQL3, or SQL-99, standard in 1999 by the American National Standards
Institute (ANSI). SQL3 paves the way toward the integration of object-oriented extensions within relational databases.
For more information about this standard, see document number ANSI/ISO/IEC 9075, Parts 1−5, at www.ansi.org.

Previous sections discussed the object-oriented concepts that were derived from OOPLs. Those concepts were used to
establish the characteristics of the object-oriented data model (OODM) and to study its graphical representation. This

2 Check the OMG main Web site (www.omg.org) for the most recent object standards developments. In spite of the fact that OMG develops standards,
the authors see little evidence that the OMG standards are being widely adopted in the database modeling marketplace, which is the focus of their
interest.

41199_AppG 12/12/2007 15:35:23 Page 199

199O B J E C T - O R I E N T E D D A T A B A S E S

section compared the OODM to previous data models and explained that one of the major problems of the OODM
is that it fails to conform to a universally accepted standard. Yet in spite of the lack of standards, there is agreement
about minimal OODBMS characteristics. Those characteristics will be explored in the next section.

G.6 OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEMS

During the past few years, the data management and application environment has become far more complex than the one
envisioned by the creators of the hierarchical, network, or relational DBMSs. Those complex application environments
may best be served by an object-oriented database management system (OODBMS). The OODBMS is a database
management system that integrates the benefits of typical database systems with the more powerful modeling and
computational (programming) characteristics of the object-oriented data model. (See Figure G.35.)

OODBMS products are used to develop complex systems such as:

� Medical applications that handle digitized data such as x-rays, MRI scans, and ultrasounds, together with textual
data used for medical research and patient medical history analysis.

� Financial applications in portfolio and risk management. These applications yield a real-time view of data that
is based on multiple computations and aggregations applied to data acquired from complex stock transactions
around the world. These applications can handle “time series” data as a user-defined data type with its own
internal representation and methods.

� Telecommunications applications such as network configuration management applications that automatically
monitor, track, and reconfigure communications networks based on hundreds of parameters in real time.
Companies such as Ericsson, Ameritech, and Bay Networks use OODBMSs to support their telecommunica-
tions management applications. Motorola’s Iridium global communications system manages its complex
network of satellites and ground stations using an OODBMS.

FIGURE
G.35

Object-oriented database management systems

OODBMS

OO concepts
OO data model
OOPL
GUI (graphical user interface)

Object-oriented
features

Conventional
DBMS features

Data accessibility
Persistence
Backup and recovery
Transaction
Concurrency
Security and integrity
Administration

Note

A DBMS based on the object model may be labeled an object-oriented database management system
(OODBMS) or an object database management system (ODBMS). Given the frequent use of “OO” and
“OODBMS” labels in the early stages of object-oriented research, the OODBMS label will be used here as a
matter of personal preference.

41199_AppG 12/12/2007 15:35:25 Page 200

200 A P P E N D I X G

� The BaBar Physics experiment at the Stanford Linear Accelerator Center, which enters 1 terabyte of data per
day into an OODBMS.

� Computer-aided design (CAD) and computer-aided manufacturing (CAM). These applications make use of
complex data relations as well as multiple data types.

� Computer-assisted software engineering (CASE) applications, which are designed to handle very large amounts
of interrelated data.

� Multimedia applications, such as geographic information systems (GIS), that use video, sound, and high-quality
graphics that require specialized data-management features such as intersect, inside, within, point, line, and
polygon.

Many OODBMSs use a subset of the object-oriented data model features. Therefore, those who create the OODBMS
tend to select the OO features that best serve the particular OODBMS’s purpose, such as support for early or late
binding of the data types and methods and support for single or multiple inheritance. Whatever the choices, the critical
factor for a successful OODBMS implementation appears to be finding the best mix of OO and conventional DBMS
features that will not sacrifice the benefits of either one.

G.6.1 Features of an Object-Oriented DBMS

As shown in Figure G.35, an OODBMS is the result of combining OO features such as class inheritance, encapsulation,
and polymorphism with database features such as data integrity, security, persistence, transaction management,
concurrency control, backup, recovery, data manipulation, and system tuning. The “Object-Oriented Database System
Manifesto” (Atkinson et al., 1989)3 was the first comprehensive attempt to define OODBMS features. The document
included 13 mandatory features as well as optional characteristics of the OODBMS. The 13 rules are divided into two
sets: the first eight characterize an OO system, and the last five characterize a DBMS. The 13 rules are listed in Table
G.4. Each rule will be discussed briefly.

TABLE
G.4

The 13 OODBMS Rules

RULES THAT MAKE IT AN OO SYSTEM
Rule 1 The system must support complex objects.
Rule 2 Object identity must be supported.
Rule 3 Objects must be encapsulated.
Rule 4 The system must support types or classes.
Rule 5 The system must support inheritance.
Rule 6 The system must avoid premature binding.
Rule 7 The system must be computationally complete.
Rule 8 The system must be extensible.

RULES THAT MAKE IT A DBMS
Rule 9 The system must be able to remember data locations.
Rule 10 The system must be able to manage very large databases.
Rule 11 The system must accept concurrent users.
Rule 12 The system must be able to recover from hardware and software failures.
Rule 13 Data query must be simple.

3 Malcolm Atkinson et al., “The Object-Oriented Database System Manifesto.” This white paper first presented at the First International Conference
on Deductive and Object-Oriented Databases, Kyoto, Japan, in 1989 may be downloaded from the Object Data Management Group Web site at
www.odmg.org. Select “White papers,” then “Database,” then “OO Database System Manifesto.” You will also find a series of follow-up white papers
that explore the 1997−1999 OO rule extensions and standards. The extensions and standards are designed to augment the manifesto, and none claims
to replace any part thereof.

41199_AppG 12/12/2007 15:35:27 Page 201

201O B J E C T - O R I E N T E D D A T A B A S E S

� Rule 1. The system must support complex objects. It must be possible to construct complex objects from
existing objects. Examples of such object constructors are sets, lists, and tuples that allow the user to define
aggregations of objects as attributes.

� Rule 2. Object identity must be supported. The OID must be independent of the object’s state. This feature
allows the system to compare objects at two different levels: comparing the OID (identical objects) and
comparing the object’s state (equal or shallow equal objects).

� Rule 3. Objects must be encapsulated. Objects have a public interface, but private implementation of data
and methods. The encapsulation feature ensures that only the public aspect of the object is seen, while the
implementation details are hidden.

� Rule 4. The system must support types or classes. This rule allows the designer to choose whether the
system supports types or classes. Types are used mainly at compile time to check type errors in attribute value
assignments. Classes are used to store and manipulate similar objects at execution time. In other words, class
is a more dynamic concept, and type is a more static one.

� Rule 5. The system must support inheritance. An object must inherit the properties of its superclasses in the
class hierarchy. This property ensures code reusability.

� Rule 6. The system must avoid premature binding. This feature allows you to use the same method’s name
in different classes. Based on the class to which the object belongs, the OO system decides which
implementation to access at run time. This feature is also known as late binding or dynamic binding.

� Rule 7. The system must be computationally complete. The basic notions of programming languages are
augmented by features common to the database data manipulation language (DML), thereby allowing you to
express any type of operation in the language.

� Rule 8. The system must be extensible. The final OO feature concerns the system’s ability to define new
types. There is no management distinction between user-defined types and system-defined types.

� Rule 9. The system must be able to remember data locations. The conventional DBMS stores its data
permanently on disk; that is, the DBMS displays data persistence. OO systems usually keep the entire object
space in memory; once the system is shut down, the entire object space is lost. Much of the OODBMS research
has focused on finding a way to permanently store objects and to retrieve them from secondary storage (disk).

� Rule 10. The system must be able to manage very large databases. Typical OO systems limit the object
space to the amount of primary memory available. For example, Smalltalk cannot handle objects larger than
64K. Therefore, a critical OODBMS feature is to optimize the management of secondary storage devices by
using buffers, indexes, data clustering, and access path selection techniques.

� Rule 11. The system must support concurrent users. Conventional DBMSs are especially capable in this
area. The OODBMS must support the same level of concurrency as conventional systems.

� Rule 12. The system must be able to recover from hardware and software failures. The OODBMS must
offer the same level of protection from hardware and software failures that the traditional DBMS provides; that
is, the OODBMS must provide support for automated backup and recovery tools.

� Rule 13. Data query must be simple. Efficient querying is one of the most important features of any DBMS.
Relational DBMSs have provided a standard database query method through SQL, and the OODBMS must
provide an object query language (OQL) with similar capability.

Note

If the objects have different OIDs but their attribute values are equal, the objects are not identical, but they are
considered to be “shallow equal.” To use an analogy, identical twins are alike, yet different.

41199_AppG 12/12/2007 15:35:28 Page 202

202 A P P E N D I X G

Optional OODBMS features include:

� Support for multiple inheritance. Multiple inheritance introduces greater complexity by requiring the system
to manage potentially conflicting properties between classes and subclasses.

� Support for distributed OODBMSs. The trend toward systems application integration constitutes a powerful
argument in favor of distributed databases. If the OODBMS is to be integrated seamlessly with other systems
through networks, the database must support some degree of distribution.

� Support for versioning. Versioning is a new characteristic of the OODBMS that is especially useful in
applications such as CAD and CAM. Versioning allows you to maintain a history that tracks all object
transformations. Therefore, you can browse through all of the different object states, in effect letting you walk
back and forth in time.

G.6.2 Oracle Object Examples

Oracle databases (since version 8) support object-oriented extensions. The extensions allow users to create object
types, using DDL commands. Those object types are the equivalent of classes (see Section G.3.6) or abstract data types
(ADT) in the object model (see Section G.3.10). Oracle supports various object types:

� Column type. This object type provides data type extensibility by allowing the user to define his/her own data
types. A column object type is the equivalent of an abstract data type (ADT). An ADT can be used when
defining a column data type within a relational table. An ADT can also have methods associated with it; those
methods are implemented using PL/SQL or C++ or Java.

� Row type. A row type object is used to define an object table object. An object table is the equivalent of a
relational table composed of many rows where each row is an object of the same type. Each row object has
a unique system generated object ID (OID), or object identifier. (See Section G.3.2.)

� Collection objects. Oracle also provides support for two types of collection objects. (Note the discussion that
accompanies Figure G.29 in Section G.4.3.)

- Variable length arrays (VARRAY). Enables the user to create an object type as an array of objects of a
given type.

- Nested tables. Allows the creation of a relational table in which one of the attributes is a table. Specifically,
a relational table contains an attribute with an object table type.

To illustrate creating and using various object types, Oracle9i will be used in the following discussion.

Column Type
A column type is basically a new data type (abstract data type) you can use when you define an attribute in a table.
By creating a column type, you are defining a new class with shared attributes and methods. To illustrate the use of
column types, let’s create two column types named T_ADDRESS and T_JOB. The T_ADDRESS column type will
contain the street, city, state, and zip code attributes. The T_JOB column type will be used to store data about a job
(company name, start date, end date, and monthly salary.) The T_JOB column type will have two methods:
monthsonjob, which returns the number of months spent in a given job, and totalearned, which returns the result of
the multiplication of the number of months employed and the monthly salary. Figure G.36 shows use of the CREATE
TYPE command to create the two column types.

In Figure G.36, note that the T_JOB column data type creation command includes references to the methods that are
to be created. By using the MEMBER FUNCTION clause, you define the name of the method to be created, any
optional parameters that may be required (shown in parentheses), and the type of value (such as number or character)
to be returned. To actually create the methods, you use the CREATE TYPE BODY command as shown in Figure G.37.

As you examine Figure G.37, note that the method definition uses standard PL/SQL commands. You might also
define methods using other languages, such as C++ or Java. Each method definition starts with the MEMBER
FUNCTION keywords. The actual method code is contained within the BEGIN and END clauses.

41199_AppG 12/12/2007 15:35:29 Page 203

203O B J E C T - O R I E N T E D D A T A B A S E S

Figure G.38 shows the creation of a WORKER table that uses the T_ADDRESS and T_JOB column types defined
earlier.

FIGURE
G.36

Creation of the T_ADDRESS and T_JOB column data types

FIGURE
G.37

Creation of the T_JOB methods

41199_AppG 12/12/2007 15:35:32 Page 204

204 A P P E N D I X G

Once you have created the table, you use standard SQL commands to insert data. However, to enter data in a column
type attribute, you must use the column type name as indicated in Figure G.39, with the INSERT statements.

FIGURE
G.38

Creation of the WORKER table, using T_ADDRESS and T_JOB column types

FIGURE
G.39

Working with column types in the WORKER table

41199_AppG 12/12/2007 15:35:44 Page 205

205O B J E C T - O R I E N T E D D A T A B A S E S

To retrieve data from a column type attribute using a SELECT statement, you must first declare an alias for the table.
In this case, the alias W has been used. Next, you can refer to a column type attribute or method using a dot-separated
notation such as W.WRK_ADDRESS.STREET or W.WRK_PREVJOB.TOTALEARNED(), as shown in Figure G.39.

Row Type
A row type enables you to create a table in which each row is an object instance. That table is called an object table
to differentiate it from a relational table. To demonstrate the use of row types, let’s create the OTBL_BAND object
table in which each row is a musician object. To accomplish that task, let’s first create a T_MUSICIAN column type.
(Remember that a column type is an object.) The T_MUSICIAN column type will have an AGE method that uses the
system date and the musician’s date of birth to return the age of each musician. To create the object table, you use
the CREATE TABLE OF command as shown in Figure G.40.

To insert data to the newly created object table, you use the INSERT command as shown in Figure G.41. Note that
you do not have to identify the column type as was required with the WORKER table. The difference is that the
WORKER table is a relational table containing attributes with abstract data types. In such cases, you need to specify
the abstract data (column type). In the case of the OTBL_BAND table, you are adding rows to an object table.
However, you still must use an alias to invoke a method. (See Figure G.41.)

VARRAY Collection Type
The variable length array creates a new object type that represents a collection of objects of a similar type (objects or base
data types.) For example, an employee may have multiple dependents. In that case, you can store all of the dependents
in an array for each of the employees. Figure G.42 shows the commands required to create the T_DEPENDLIST variable
array object type and the EMP3 table containing the E_DEPENDENTS attribute, which uses the T_DEPENDLIST data
type. Note that the variable array has been defined to hold a maximum of 10 dependent names.

FIGURE
G.40

Creation of the OTBL_BAND object table

41199_AppG 12/12/2007 15:35:47 Page 206

206 A P P E N D I X G

Nested Table Collection Type
When you have related data that are more extensive than you would expect to find in an array, you can use a nested
table. A nested table is created when an attribute within a relational table definition (CREATE TABLE) is assigned a
table data type. For example, Figure G.43 shows the creation of the EMP4 table containing the E_DEPENDTS
attribute, which uses the T_DEPTAB data type. In turn, the T_DEPTAB data type is defined as a table type.
Conceptually speaking, the attribute is, in effect, a table.

FIGURE
G.41

Working with the OTBL_BAND object table

41199_AppG 12/12/2007 15:35:49 Page 207

207O B J E C T - O R I E N T E D D A T A B A S E S

FIGURE
G.42

Creating and working with the VARRAY object type

41199_AppG 12/12/2007 15:35:51 Page 208

208 A P P E N D I X G

G.7 HOW OBJECT ORIENTATION AFFECTS DATABASE DESIGN

A conventional relational database design process involves the application of ER modeling and normalization
techniques to develop and implement a design. During a design process, emphasis is placed on modeling real-world
objects through simple tabular relations, usually presented in 3NF. Unfortunately, as you have already seen, sometimes
the relational and ER models cannot adequately represent some objects. Consequently, the ER model makes use of
constructs such as bridge (composite) entities that widen the semantic gap between the real-world objects and their
corresponding representations.

You may have noticed the database design process generally focusing on identification of the data elements, rather
than including data operations as part of the process. In fact, the definition of data constraints and data transformations
is usually considered late in the database design process. Those definitions are implemented by external application
program code. In short, operations are not a part of the database model.

Why does the conventional model tolerate and even require the existence of the data/procedures dichotomy? After all,
the idea of object-oriented design had been contemplated even in the classical database environment. The reason is
simple: until recently, database designers simply had no access to tools that bonded data and procedures.

FIGURE
G.43

Creating and working with a nested table object type

41199_AppG 12/12/2007 15:35:53 Page 209

209O B J E C T - O R I E N T E D D A T A B A S E S

The object-oriented database design approach answers the problem of a split between data and procedures by
providing both data identification and the procedures or manipulations to be performed on the data. Object-oriented
database design forces you to think of data and procedures as a self-contained entity. Specifically, the OO design
requires the database description to include the objects and their data representation, constraints, and operations. That
design can produce a more complete and meaningful description of the database than was possible in the conventional
database design.

OO design is iterative and incremental in nature. The database designer identifies each real-world object and defines
its internal data representation, semantic constraints, and operations. Next, the designer groups similar objects in
classes and implements the constraints and operations through methods. At this point, the designer faces two major
challenges:

1. Build the class hierarchy or the class lattice (if multiple inheritance is allowed), using base data types and existing
classes. This task will define the superclass-subclass relationships.

2. Define the interclass relationships (attribute-class links), using both base data types and ADTs.

The importance of those tasks can hardly be overestimated because the better the use of the class hierarchy and the
treatment of the interclass relationships, the more flexible and closer to the real world the final model will be.

Code reusability does not come easy. One of the hardest tasks in OODB design is creation of the class hierarchy, using
existing classes to construct new ones. Future DBAs will have to develop specialized skills to perform that task properly
and to incorporate code that represents data behavior. Thus, DBAs are likely to become surrogate database
programmers who must define data-intrinsic behavior. The role of DBAs is likely to change when they take over some
of the programming burden of defining and implementing operations that affect the data.

Both DBAs and designers face additional problems. In contrast to the relational or ER design processes, there are few
computerized OODB design tools, and if the design is to be implemented in any of the conventional DBMSs, it must
be translated carefully. The reason is because conventional databases do not support abstract data types, nonnormal-
ized data, inheritance, encapsulation, or other OO features.

As is true in any of the object-oriented technologies, the lack of standards also affects OO database design. There is neither
a widely accepted standard methodology to guide the design process, nor a set of rules (like the normalization rules in the
relational model) to evaluate the design. This situation is improving. The Object Management Group (OMG), mentioned
earlier, produces vendor-independent standards and specifications for object-based systems and components. The OMG
created the Unified Modeling Language (UML), a graphical language for the modeling, design, and visualization of
object-oriented systems. UML is used to model not only the database component of a system, but also its processes,
modules, and network components and the interaction among them. OMG also created object standards that define the
Object Management Architecture (OMA), which allows the interoperation of objects across diverse systems and platforms.
The OMA standard includes the Common Object Request Broker Architecture (CORBA) and the Common Object Services
Specifications (COSS). That framework is used by OODBMS vendors and developers to implement systems that are highly
interoperable with other OODBMSs, as well as with RDBMSs and older DBMS systems.

Some vendors are already offering products that comply with the OMG’s CORBA and COSS specifications, such as
IBM’s System Object Model (SOM) and HP’s Object Request Broker (ORB). Other object architectures have emerged
as alternatives to the concerted standards efforts, especially Microsoft’s object linking and embedding (OLE) and
Component Object Model (COM). Although the OLE/COM specification is not a standards-based effort, the sheer
established market volume is making it the de facto object standard for the Microsoft Windows environment.

Note

Appendix H in the Student Online Companion provides an introduction to the Unified Modeling
Language (UML).

41199_AppG 12/12/2007 15:35:55 Page 210

210 A P P E N D I X G

G.8 OODBMS: ADVANTAGES AND DISADVANTAGES

Compared to the RDBMS market share, OODBMSs have a long way to go before they can claim double-digit market
percentage. In fact, at this point, the OODBMS occupies a strong niche market, like the Apple Mac does in the
microcomputing arena. As with the Mac’s impact on microcomputing, the OODBMS has been the vehicle for
technological innovation, but it has not been the beneficiary of market share growth based on its technological
innovations. Yet in spite of its lack of market share, the OODBMS is worth examining, especially because its OO
features drive the changes in database technology that define today’s object/relational DBMS.

Part of the OODBMS’s lack of market acceptance is that the RDBMS has incorporated many OO features while
retaining its conceptual simplicity, thus diminishing the OODBMS’s allure. Nevertheless, as long as the RDBMS does
not incorporate C. J. Date’s recommended domain implementation, the OODBMS offers benefits that are worth
examining.4 Most of those benefits are expressed in terms of the complex object management capabilities you have
explored in some detail. To obtain those benefits, the OODBMS depends on the use of an OOPL. That is why you
examine some of the OODBMS’s benefits with reference to programming issues.

G.8.1 Advantages

� OODBMSs allow the inclusion of more semantic information in the database, thus providing a more natural
and realistic representation of real-world objects.

� OODBMSs provide an edge in supporting complex objects, which makes them especially desirable in
specialized application areas. Conventional databases simply lack the ability to provide efficient applications in
CAD, CAM, medical imaging, spatial imaging, and specialized multimedia environments.

� OODBMSs permit the extensibility of base data types, thereby increasing both the database functionality and
its modeling capabilities.

� If the platform allows efficient caching, when managing complex objects, OODBMSs provide dramatic
performance improvements compared to relational database systems.

� Versioning is a useful feature for specialized applications such as CAD, CAM, medical imaging, spatial imaging,
engineering, text management, and desktop publishing.

� The reusability of classes allows for faster development and easier maintenance of the database and its
applications.

� Faster application development time is obtained through inheritance and reusability. This benefit is obtained
only after mastering the use of OO development features such as:

- Proper use of the class hierarchy; for example, how to use existing classes to create new classes.

- OO design methodology.

� The OODBMS provides a possible solution to the problem of integrating existing and future DBMSs into a
single environment. This solution is based on the OODBMS’s strong data-abstraction capabilities and its
promise of portability.

G.8.2 Disadvantages

� OODBMSs face strong and effective opposition from the firmly established RDBMSs, especially when those
RDBMSs—such as IBM’s DB2 Universal Database and Oracle 9i—incorporate many OO features that would
otherwise have given the OODBMS the clear competitive edge in a complex data environment. Therefore, the
OODBMS’s design and implementation complexities become more difficult to justify.

� The OODBMS is based on the object model, which lacks the solid theoretical foundation of the relational model
on which the RDBMS is built.

4 See C. J. Date’s “Back to the Relational Future,” www.dbpd.com/vault/9808date.html.

41199_AppG 12/12/2007 15:35:56 Page 211

211O B J E C T - O R I E N T E D D A T A B A S E S

� In some sense, OODBMSs are considered a throwback to the traditional pointer systems used by hierarchical
and network models. This criticism is not quite true when it associates the pointer system with the navigational
data manipulation style and fixed access paths that led to the relational system’s dominance. Nevertheless, the
complexity of the OODBMS pointer systems cannot be denied.

� OODBMSs do not provide a standard ad hoc query language, as relational systems do. At this point,
development of the object query language (OQL) is far from complete. Some OODBMS implementations are
beginning to provide extensions to the relational SQL to make the integration of the OODBMS and RDBMS
possible.

� The relational DBMS provides a comprehensive solution to business database design and management needs,
supplying both a data model and a set of fairly straightforward normalization rules for designing and evaluating
relational databases. OODBMSs do not yet provide a similar set of tools.

� The initial learning curve for the OODBMS is steep. If you consider the direct training costs and the time it
takes to fully master the uses and advantages of object orientation, you will appreciate why OODBMSs seldom
are rated as the first option when solutions are sought for noncomplex business-oriented problems.

� The OODBMS’s low market presence, combined with its steep learning curve, means that few people are
qualified to make use of the presumed power of OO technology. Most of the technology is currently focused
on engineering application areas of software development. Therefore, only companies with the right mix of
resources (money, time, and qualified personnel) can afford to invest in OO technology.

� The lack of compatibility between different OODBMSs makes switching from one piece of software to another
very difficult. With RDBMSs, different products are very similar and switching from one to another is
relatively easy.

A few years ago, the authors speculated that future systems would manage objects with embedded data and methods,
rather than with records, tuples, or files. The authors also suggested that although the portability details were not clear
yet, they would have a major and lasting impact on how databases would be designed and used. Given the benefit of
hindsight, the authors now know that the OODBMS’s reach has been limited by the object-relational DBMS’s
successful integration of many OO concepts. In any case, the OODBMS has had a major impact on how databases
are viewed and managed, and the battle of the relational and object titans is far from over. Finally, because the object
concepts are likely to remain the focus for future DBMS developments, they continue to be worth understanding.

G.9 HOW OO CONCEPTS HAVE INFLUENCED THE RELATIONAL MODEL

Most relational databases are designed to serve general business applications that require ad hoc queries and easy
interaction. The data types encountered in those applications are well defined and are easily represented in common
tabular formats with equally common short and well-defined transactions. However, RDBMSs are not as well suited as
OODBMSs to the complex requirements of some applications, and the RDBMS is beginning to reach its limits in a
business data environment that is changing with the advent of mixed-media data storage and retrieval.

The fast-changing data environment has forced relational model advocates to respond to the OO challenge by
extending the relational model’s conceptual reach. The result of their efforts is usually referred to as the extended
relational model (ERM) or, more appropriately, the object/relational model (O/RM). Although this O/RM effort is still
a work in progress, its basic features provide support for:

� Extensibility of new user-defined (abstract) data types.

� Complex objects.

� Inheritance.

� Procedure calls (rules or triggers).

� System-generated identifiers (OID surrogates).

41199_AppG 12/12/2007 15:35:57 Page 212

212 A P P E N D I X G

That is not an exhaustive list of all of the extensions added to the relational model, nor do all extended relational models
incorporate all of the listed additions. However, the list contains the most crucial and desirable extended relational features.

The enhancements to the relational model enhancements are based on the following concepts:

� Semantic and object-oriented concepts are necessary to support the new generation of applications—especially
if those applications will be deployed through the Internet.

� The concepts can and must be added to the relational model.

� The benefits of the relational model must be preserved to protect the investment in relational technology and
to provide downward compatibility.

Most current extended relational DBMSs conform to the notions expressed in C. J. Date’s “Third Manifesto.” (See
preceding note.) They also provide the following useful features:

� Oracle Corporation and IBM have developed suites of products marketed as Universal Database Servers.
Although the Universal Database Server is not a pure object-oriented DBMS—it lacks the object storage
component—this product supports complex data types such as multimedia data and spatial data, and it’s
Internet-ready. The Internet feature allows users to query the database using the World Wide Web (WWW).
Oracle 9i also includes support for object-oriented extensions and storage. IBM’s DB2 Universal Database
Server has similar capabilities.

� IBM’s DB2 Universal Database system is a proven database that is used by many Fortune 1000 corporations.
IBM’s system supports digitized data (video and audio) as well as user-defined data types and procedures. The
Universal Database is also being positioned as a key player in the Internet area with its support for Web access
and Java programming interfaces.

G.10 THE NEXT GENERATION OF DATABASE MANAGEMENT SYSTEMS

The adaptation of OO concepts in several computer-related areas has changed both systems design and system
behavior. The next generation of DBMSs is likely to incorporate features borrowed from object-oriented database
systems, artificial intelligence systems, expert systems, distributed databases, and the Internet.

OODBMSs represent only one step toward the next generation of database systems. The use of OO concepts will
enable future DBMSs to handle more complex problems with normalized and nonnormalized data. The extensibility
of database systems is one of the many major object-oriented contributions that enable databases to support new data
types such as sets, lists, arrays, video, bitmap pictures, voice, and maps. The SQL3 standard provides such extensibility
by supporting user-defined data types in addition to its predefined data types (numeric, integer, string, and so on). For
example, in SQL3, a DBA can create a new abstract data type that represents a collection of objects, then use that
data type in a table definition. That procedure enables a database column to contain a collection of values instead of
a single value.

Note

It's worth noting again that C. J. Date's “Third Manifesto” is based on Date's observation that the relational model
already contains the desired capabilities through its support of domains. Therefore, the implementation of that
domain support will yield the benefits now claimed for the OO “extensions” of the relational model. (See C. J.
Date's April 1999 “Back to the Relational Future: The Third Manifesto Is Ready for Prime Time,” www.dbpd.
com/vault/9808date.html.) However, the relational domain implementations have not (yet?) been developed
commercially, while the OO “extensions“ to the relational database model are a commercial fact
of life.

41199_AppG 12/12/2007 15:35:59 Page 213

213O B J E C T - O R I E N T E D D A T A B A S E S

Recent market history indicates that the OODBMS will probably continue to occupy a niche within the database
market. That niche will be characterized by applications that require very large amounts of data with several complex
relations and with specialized data types. For example, the OODBMS seems likely to maintain its standing in CAD,
CAM, computer-integrated manufacturing, specialized multimedia applications, medical applications, architectural
applications, mapping applications, simulation modeling, and scientific applications.

However, current market conditions seem to dictate that the object/relational databases will become dominant in most
complex business applications. That conclusion is based on the need to maintain compatibility with existing systems,
the universal acceptance of the relational model as a standard, and the sheer weight of the relational database’s
considerable market share.

41199_AppG 12/14/2007 11:25:12 Page 214

214 A P P E N D I X G

K e y T e r m s

abstract data type (ADT), 183

associative object, 184

base data types, 173

class, 176

class hierarchy, 178

class instance, 176

class lattice, 178

collection object, 174

complex object, 183

composite object, 184

compound object, 184

conventional data types, 173

domain, 173

early binding, 195

encapsulation, 176

extensible, 184

hybrid object, 184

inheritance, 178

instance variables, 173

interobject relationship, 189

interrogate, 176

intersection class, 193

late binding, 195

message, 176

method, 174

multiple inheritance, 180

object, 172

object ID (OID), 172

object instance, 176

object orientation, 171

object-oriented data model
(OODM), 184

object-oriented database
management system
(OODBMS), 200

object-oriented programming
(OOP), 171

object-oriented programming
languages (OOPLs), 171

object query language (OQL), 199

object space (object schema), 186

object state, 174

object table, 203

polymorphism, 182

protocol, 177

referential object sharing, 187

simple object, 183

single inheritance, 179

subclasses, 178

superclass, 178

versioning, 196

R e v i e w Q u e s t i o n s

1. Discuss the evolution of object-oriented concepts. Explain how those concepts have affected computer-related
activities.

2. How would you define object orientation? What are some of its benefits? How are OO programming languages
related to object orientation?

3. Define and describe the following:

a. Object

b. Attributes

c. Object state

d. Object ID (OID)

4. Define and contrast the concepts of method and message. What OO concept provides the differentiation between
a method and a message? Give examples.

5. Explain how encapsulation provides a contrast to traditional programming constructs such as record definition.
What benefits are obtained through encapsulation? Give an example.

6. Using an example, illustrate the concepts of class and class instances.

7. What is a class protocol, and how is it related to the concepts of methods and classes? Draw a diagram to show
the relationships among these OO concepts: object, class, instance variables, methods, object state, object ID,
behavior, protocol, and messages.

8. Define the concepts of class hierarchy, superclasses, and subclasses. Explain the concept of inheritance and the
different types of inheritance. Use examples in your explanations.

9. Define and explain the concepts of method overriding and polymorphism. Use examples in your explanations.

10. Explain the concept of abstract data types. How do they differ from traditional or base data types? What is the
relationship between a type and a class in OO systems?

41199_AppG 12/12/2007 15:36:1 Page 215

215O B J E C T - O R I E N T E D D A T A B A S E S

11. What are the five minimum attributes of an OO data model?

12. Describe the difference between early and late binding. How does each of those affect the object-oriented data
model? Give examples.

13. What is an object space? Using a graphic representation of objects, depict the relationship(s) that exist between
a student taking several courses and a course taken by several students. What type of object is needed to depict
that relationship?

14. Compare and contrast the OODM with the ER and relational models. How is a weak entity represented in the
OODM? Give examples.

15. Name and describe the 13 mandatory features of an OODBMS.

16. What are the advantages and disadvantages of an OODBMS?

17. Explain how OO concepts affect database design. How does the OO environment affect the DBA’s role?

18. What are the essential differences between the relational database model and the object database model?

19. Using a simple invoicing system as your point of departure, explain how its representation in an entity
relationship model (ERM) differs from its representation in an object data model (ODM). (Hint: See Figure G.34.)

20. What are the essential differences between an RDBMS and an OODBMS?

21. Discuss the object/relational model’s characteristics.

P r o b l e m s

1. Convert the following relational database tables to the equivalent OO conceptual representation. Explain each of
your conversions with the help of a diagram. (Note: The RRE Trucking Company database includes the three
tables shown in Figure PG.1).

FIGURE
PG.1

The RRE Trucking Company database

41199_AppG 12/12/2007 15:36:2 Page 216

216 A P P E N D I X G

2. Using the tables in Figure PG.1 as a source of information:

a. Define the implied business rules for the relationships.

b. Using your best judgment, choose the type of participation of the entities in the relationship (mandatory or
optional). Explain your choices.

c. Develop the conceptual object schema.

3. Using the data presented in Problem 1, develop an object space diagram representing the object’s state for the
instances of Truck listed below. Label each component clearly with proper OIDs and attribute names.

a. The instance of the class Truck with TRUCK_NUM = 5001.

b. The instances of the class Truck with TRUCK_NUM = 5003 and 5004.

4. Given the information in Problem 1, define a superclass Vehicle for the Truck class. Redraw the object space you
developed in Problem 3, taking into consideration the new superclass that you just added to the class hierarchy.

5. Assume the following business rules:

� A course contains many sections, but each section has only one course.

� A section is taught by one professor, but each professor may teach one or more different sections of one or
more courses.

� A section may contain many students, and each student is enrolled in many sections, but each section
belongs to a different course. (Students may take many courses, but they cannot take many sections of the
same course.)

� Each section is taught in one room, but each room may be used to teach several different sections of one
or more courses.

� A professor advises many students, but a student has only one advisor.

Based on those business rules:

a. Identify and describe the main classes of objects.

b. Modify your description in (a) to include the use of abstract data types such as Name, DOB, and Address.

c. Use object representation diagrams to show the relationships between:

� Course and Section.

� Section and Professor.

� Professor and Student.

d. Use object representation diagrams to show the relationships between:

� Section and Students.

� Room and Section.

What type of object is necessary to represent those relationships?

e. Using an OO generalization, define a superclass Person for Student and Professor. Describe this new
superclass and its relationship to its subclasses.

6. Convert the following relational database tables to the equivalent OO conceptual representation. Explain each of
your conversions with the help of a diagram. (Note: The R&C Stores database includes the three tables shown
in Figure PG.6.)

41199_AppG 12/12/2007 15:36:4 Page 217

217O B J E C T - O R I E N T E D D A T A B A S E S

7. Convert the following relational database tables to the equivalent OO conceptual representation. Explain each of your
conversions with the help of a diagram. (Note: The Avion Sales database includes the tables shown in Figure PG.7.)

FIGURE
PG.6

The R&C Stores database

41199_AppG 12/12/2007 15:36:6 Page 218

218 A P P E N D I X G

8. Using the ERD shown in Appendix C, “The University Lab: Conceptual Design Verification, Logical Design, and
Implementation,” Figure C.22 (the Check_Out component), create the equivalent OO representation. (Appendix C
is in the student online companion.)

9. Using the contracting company’s ERD in Chapter 5, “Normalization of Database Tables,” Figure 5.15, create the
equivalent OO representation.

FIGURE
PG.7

The Avion Sales database

41199_AppG 12/12/2007 15:36:9 Page 219

219O B J E C T - O R I E N T E D D A T A B A S E S

Preview

Unified Modeling Language (UML)

The Unified Modeling Language (UML) is an object-oriented modeling language sponsored

by the Object Management Group (OMG) and published as a standard in 1997. UML is the

result of an effort headed by the OMG to develop a common set of object-oriented

diagrams and notations (symbols and constructs) for the analysis, design, and modeling of

systems. Because the origin of UML is closely related to the object-oriented concepts you

explored in Appendix G,“Object-Oriented Databases,” object terminology is used through-

out this section.

Keep in mind that UML is not a methodology or procedure for developing databases.

Rather, UML is a language that describes a set of diagrams and symbols that can be used to

model a system graphically. UML diagrams encompass static data components (classes and

their associations) and components such as business processes, data flows, and hardware.

Table H.1 shows the nine different types of diagrams that the UML standard offers.

H
A

P
P

E
N

D
I

X

35547_AppH 1/18/2006 14:37:27 Page 220

TABLE
H.1

UML Diagrams

DIAGRAM NAME USAGE
Activity diagram Describes the behavior of a system. Very similar to data flow diagrams that model spe-

cific business processes. Related to Use Case diagrams.
Class diagram Describes the static components of object classes. (Remember, a class is a collection of

similar objects.) Similar to the function of the ER diagram in relational database
modeling.

Collaboration diagram Describes the interaction between objects in a system—messages sent among objects,
parameters passed, actions taken, and so on. An alternative to the Sequence diagram.

Component diagram Describes the arrangement of software components that form a system and the way
those components interact.

Deployment diagram Describes the arrangement of hardware components within a system. Describes what
objects run in each component.

Sequence diagram Describes the interaction between objects in a system—(what messages are invoked
and in what order). Very similar to Collaboration diagrams and related to Use Case
diagrams.

State diagram Describes the object’s state during object interactions. Models the changes in an
object’s state during its interactions with other objects.

Object diagram Describes the static nature of object instances within a system at a given point in time.
Use Case diagram Describes business processes within a system. Very similar to data flow diagrams.

Because the main focus here is on database design, all of the different types of diagrams that UML offers are not
covered. Instead, the content focuses on the use of Class diagrams to model the static data components (object classes
and their relationships) that are part of a database system.

H.1 USING CLASS DIAGRAMS TO MODEL DATABASE TABLES

The UML Class diagram is the equivalent of the ER diagram in the relational model. The Class diagram is used to
model object classes and their associations. Because an object class is a collection of similar objects, a class is the
equivalent of an entity set in the ER model. Therefore, a class is described by its attributes—and by its methods.

H.1.1 Classes to Represent Entity Sets

In a UML Class diagram, a class is represented by a box that is subdivided into three parts.

1. The top part is used to name the class.

2. The middle part is used to name and describe the class attributes. (A class attribute is identified by a name and
a data type.)

3. The bottom part is used to list the class methods. Both the attributes and the methods are displayed.

Note

MS Visio Professional has been used to develop the examples shown in this appendix. To create Class diagrams
in MS Visio Professional, from the menu select File, New, Software, UML Model Diagram, UML Static
Structure. The sequence is illustrated in Figure H.1.

35547_AppH 1/18/2006 14:37:27 Page 221

221U N I F I E D M O D E L I N G L A N G U A G E (U M L)

The three parts are illustrated in Figure H.2.

As you can see in Figure H.2, the UML representation of a
class is very similar to the ER representation of an entity, but
there are some important differences.

� A class box also lists the methods of the class in the
bottom part of the box.

� A + symbol is placed before attributes and methods.
The + symbol indicates the visibility of the UML
element.

FIGURE
H.1

Creating Class diagrams in Viso: Starting the process

UML
diagram

types

Class name

Class attributes

Class methods

FIGURE
H.2

UML representation of the
Customer class

35547_AppH 1/18/2006 14:37:28 Page 222

222 A P P E N D I X H

H.1.2 Visibility

The visibility concept is derived from object-oriented programming. Visibility describes the availability of an object
attribute or method to other objects or methods. Visibility characteristics are summarized in Table H.2.

TABLE
H.2

Attribute and Method Visibility

PUBLIC (+) PROTECTED (#) PRIVATE (-)
Attribute The attribute is available for

read/write purposes to any
method of any class.

The attribute is available for
read/write purposes only to the
methods of the class and its
subclasses.

The attribute is available only to
the methods of the class.

Method The method can be invoked
by any method of any class.

The method can be invoked
only by the methods of the class
and its subclasses.

The method is available only to
the methods of the class.

H.2 ASSOCIATIONS TO REPRESENT RELATIONSHIPS

The UML Class diagram represents relationships as associations among objects. (An object is an instance of a class.)
Because associations among classes are critical for database design purposes, you begin by studying how the UML
Class diagram represents 1:M associations.

H.2.1 Representing 1:M Associations

Figure H.3 shows a UML Class diagram with two 1:M relationships: a CUSTOMER generates many INVOICEs, and
a VENDOR provides many PRODUCTs.

FIGURE
H.3

Representing 1:M relationships with Class diagrams

Roles

Multiplicity

35547_AppH 1/18/2006 14:37:28 Page 223

223U N I F I E D M O D E L I N G L A N G U A G E (U M L)

By examining Figure H.3, you can see that associations are represented by lines that connect the classes. Associations
have several characteristics.

� Association name. Each association has a name. Normally, the name of the association is written over the
association line. In the example, the association name is not shown; instead, role names are used.

� Role name. The participating classes in the relationship can also have role names. A role name expresses the
role played by a given class in the relationship. In Figure H.3, the role names represent the relationship “as
seen” by each class; for example:

A CUSTOMER generates an INVOICE, and each INVOICE belongs to a CUSTOMER.

A VENDOR supplies a PRODUCT, and each PRODUCT is supplied by a VENDOR.

� Association direction. Associations also have a direction, represented by an arrow (→) pointing to the
direction in which the relationship flows. (Relationship direction is not displayed in Figure H.3.)

� Multiplicity. Multiplicity refers to the number of instances of one class that are associated with one instance
of a related class. Multiplicity in the UML model provides the same information as the connectivity, cardinality,
and relationship participation constructs in the ER model. For example:

- One (and only one) CUSTOMER generates zero to many INVOICEs, and one INVOICE belongs to one and
only one CUSTOMER.

- One (and only one) VENDOR supplies zero to many PRODUCTs, and one PRODUCT is supplied by one
and only one VENDOR.

Table H.3 shows the different multiplicity values that can be used.

TABLE
H.3

Multiplicity

MULTIPLICITY DESCRIPTION
0..1 A minimum of zero and a maximum of one instance of this class are associated with an instance

of the other related class (indicates an optional class).
0..* A minimum of zero and a maximum of many instances of this class are associated with an

instance of the other related class (indicates an optional class).
1..1 A minimum of one and a maximum of one instance of this class are associated with an instance

of the other related class (indicates a mandatory class).
1..* A minimum of one and a maximum of many instances of this class are associated with an

instance of the other related class (indicates a mandatory class).
1 Exactly one instance of this class is associated with an instance of the other related class (indi-

cates a mandatory class).
* Many instances of this class are associated with an instance of the other related class.

The multiplicity symbols implicitly describe the relationship participation concept used in the ER model. For example,
a “1..1” multiplicity on the CUSTOMER side indicates a mandatory participation. A “0..*” multiplicity on the INVOICE
side indicates an optional participation.

Note

UML Class diagrams do not require the foreign key attribute to be added to the “many” side of the 1:M
relationship. The object-oriented model implements class associations through the use of object IDs, which are
internally managed by the OODBMS. (See Appendix G.) However, because the focus here is on the use of UML
Class diagrams to model relational databases, the foreign key attributes are shown in the class diagrams.

35547_AppH 1/18/2006 14:37:28 Page 224

224 A P P E N D I X H

If you examine Figure H.3, you will note that the visibility of the foreign key attributes CUS_CODE and V_CODE have
been defined as private (-). Although there is no requirement to specify the foreign key attributes in the UML class
diagram, this option has been chosen to highlight the use of the visibility property within the attributes of a class.

H.2.2 Representing M:N Associations

UML Class diagrams can use the multiplicity element to represent M:N relationships directly. For example, Figure H.4
shows the following two examples of M:N associations:

� A STUDENT enrolls in many CLASSes, and each CLASS is taken by many STUDENTs.

� An INVOICE contains many PRODUCTs, and each PRODUCT is sold in many INVOICEs.

If you examine Figure H.4, you will see that the M:N association between STUDENT and CLASS is optional at both
ends. (The optionality is represented by the “0..*” multiplicity.) However, the M:N association between INVOICE and
PRODUCT exhibits two different multiplicity values. The “1..*” multiplicity at the PRODUCT end indicates that an
INVOICE contains a minimum of one and a maximum of many PRODUCT instances. The “0..*” multiplicity at the
INVOICE end indicates that a PRODUCT is sold in a minimum of zero and a maximum of many INVOICE instances.

In the UML diagram, the multiplicity value always refers to the class to which that value is attached. That is, you always
try to find out how many instances of a class are associated to one instance of another class. Contrast that to the use
of role names, which are always close to the class that plays the role.

H.2.3 Association Class

An association class is used to represent a M:N association between two classes. The association class exists within the
context of the associated objects, and as in the ER model, the association class can have its own attributes. Figure H.5
shows the use of a LINE association class to represent the M:N relationship between INVOICE and PRODUCT.

H.2.4 Composition and Aggregation

The UML Class diagram uses symbols to indicate the strength of the association between two class instances. In
particular, the UML Class diagram uses aggregation and composition to indicate the strength of dependency between
two classes participating in an association. Table H.4 summarizes the main characteristics of the aggregation and
composition UML constructs.

FIGURE
H.4

M:N associations in a UML Class diagram

35547_AppH 1/18/2006 14:37:28 Page 225

225U N I F I E D M O D E L I N G L A N G U A G E (U M L)

TABLE
H.4

Aggregations and Compositions

UML CONSTRUCT UML
SYMBOL

DESCRIPTION

Aggregation ◊___ This type of association represents a “has a” type of relation-
ship (that is, an object that is formed as a collection of other
objects). An aggregation indicates that the dependent (child)
object instance has an optional association with the strong
(parent) object instance. When the parent object instance is
deleted, the child object instances are not deleted. The aggre-
gation association is represented by an empty diamond in the
side of the parent entity.

Composition �
___ This type of association represents a special case of the aggre-

gation association. A composition indicates that a dependent
(child) object instance has a mandatory association with a
strong (parent) object instance. When the parent object
instance is deleted, all child object instances are automatically
deleted. The composition association is represented with a
filled diamond in the side of the parent object instance. This is
the equivalent of a weak entity in the ER model.

Examine the relationships depicted in Figure H.6 to help you understand the use of aggregation and composition.

The UML standard guides the use of the aggregation and composition constructs as follows:

� An aggregation construct is used when an object is composed of (or is formed by) a collection of other objects,
but the objects are independent of each other. That is, the relationship can be classified as a “has a”
relationship type. For example, an owner owns many cars, a team has many players, or a band has many
musicians.

� A composition construct is used when two objects are associated in an aggregation association with a strong
identifying relationship. That is, deleting the parent deletes the children instances. For example, an invoice
contains invoice lines, an order contains order lines, or an employee has dependents. The use of a composition
construct implies the use of the CASCADE DELETE foreign key rule in the relational database model.

FIGURE
H.5

Association class representation

35547_AppH 1/18/2006 14:37:28 Page 226

226 A P P E N D I X H

H.3 GENERALIZATIONS TO REPRESENT SUPERTYPES AND SUBTYPES

The UML diagram also enables you to represent class generalization hierarchies in which a class “is a” subtype of
another (supertype) class. You learned about those classification types in Chapter 4, “Entity Relationship (ER)
Modeling,” and in Appendix G. Figure H.7 shows an example of a UML generalization hierarchy.

The generalization hierarchy is represented by an arrow that points to the parent class. Figure H.7 shows an
EMPLOYEE class supertype with three class subtypes: PILOT, MECHANIC, and ACCOUNTANT. In this case, the
class hierarchy represents disjoint subtypes; that is, one employee can be related to only one subtype class (a pilot or
a mechanic or an accountant).

FIGURE
H.6

Aggregation and composition examples

Aggregation
Deleting an OWNER parent instance does not delete all related CAR children instances.

Composition
Deleting an INVOICE parent instance deletes all related LINE children instances.

FIGURE
H.7

Generalization example

41199_AppH 11/19/2007 15:29:56 Page 227

227U N I F I E D M O D E L I N G L A N G U A G E (U M L)

Generalizations can also have constraints. The job_type label next to the generalization line indicates the EMPLOYEE
attribute that was used to determine to which class subtype the instance belongs.

H.4 UML AND THE RELATIONAL MODEL

This brief tutorial has examined the use of the Unified Modeling Language (UML) Class diagram as a database design
option. The main focus of UML notation is to facilitate the analysis, design, and implementation of computerized
database solutions. To accomplish that task, UML uses a set of diagramming notations derived from object-oriented
concepts and, in particular, object-oriented programming. Several points are worth emphasizing.

� UML is not a design methodology. It is best described as a design notation.

� UML notation is not geared specifically toward data modeling or relational database design. On the contrary,
UML focuses on supporting the process of analyzing and designing information systems.

� One of UML’s main characteristics is that it is extensible, thus enabling the designer to create new constructs
through the use of so-called stereotypes. As used in the context of UML, a stereotype is a new element that
represents a distinctive object, characteristic, or functionality in the model. For example, a designer can add
new stereotypes to represent primary keys, foreign keys, indexes, triggers, stored procedures, views, and
so on.

UML is becoming common in systems analysis and design, but not in database design, where relational database
modeling tools such as Microsoft’s Visio Professional, Computer Associates’ ERwin Data Modeler, or Embarcadero’s
ER/Studio are the norm. Because the relational model is still the dominant data model, the adoption of a relational
data modeling notation within UML would help to increase its penetration in the design and modeling market. If such
a merger took place, database designers and system analysts would be able to use the same set of design tools, thus
facilitating the creation of information systems.

The extensibility of UML is the characteristic that opens the door for UML to directly support relational database
modeling notation. For example, as of this writing, IBM offers its Rational Rose Professional Data Modeler product,
which introduces a Data Modeling Profile for UML. (See www-306.ibm.com/software/awdtools/developer/
rose.) This tool allows database designers to create semantically rich relational database models with support for all
relational constructs, such as primary keys, foreign keys, indexes, triggers, and stored procedures. Although the Data
Modeling Profile is not yet a UML standard, it is backed by IBM, an active member of the OMG consortium. So this
merger of concepts and tools could yield the best of both worlds.

41199_AppH 12/7/2007 21:43:47 Page 228

228 A P P E N D I X H

Preview

Databases in Electronic Commerce

Electronic commerce (e-commerce) enables organizations—whether they are public or

private, for profit or not for profit—to market and sell products and services to a global

market of millions of users. Intranets (networks that use Internet technology but operate

within an organization) have likewise streamlined internal business operations.

E-commerce companies sell products or services not only to consumers and end users, but

also to other companies.The Internet has brought about new technologies that facilitate the

exchange of business documents and data among business partners. Companies are using

the Internet to create new types of systems that integrate their data to increase efficiency

and reduce costs.

Online databases are critical components of many e-commerce applications.This appendix

introduces the world of e-commerce and illustrates some special concerns that must be

addressed in designing e-commerce databases.

I

A
P

P
E

N
D

I
X

35547_AppI 1/18/2006 15:10:15 Page 229

I.1 WHAT IS ELECTRONIC COMMERCE?

The term e-commerce—short for electronic commerce—has had many definitions. The Webopedia online technology
dictionary (webopedia.com) defines e-commerce as “conducting business online.” However, even a cursory examina-
tion of professional publications makes it obvious that the definition of e-commerce changes according to whom you
ask—and the definitions appear to evolve as fast as the underlying technology. In this book, electronic commerce
(e-commerce) is defined as the use of electronic networked computer-based technology to:

� Bring new products, services, or ideas to market.

� Support and enhance business operations (including sales of products/services over the Web).

Although businesses have used many different types of electronic technology, e-commerce is mainly identified with the
use of the Internet as a medium to transact business (buy, sell, and trade products and services) and to add value to an
organization. Because the Internet—and, in particular, the Web—plays a crucial role in enabling the development and
execution of e-commerce, some experts argue that e-commerce should be called Internet commerce (I-commerce),
instead.

Although it is easy to view e-commerce as just an online extension of common customer activities, most e-commerce
transactions actually take place among businesses. Companies use the Internet and intranets (internal networks that
use Internet technology but are used within organizations) to streamline their production and distribution processes and
to enhance their internal and external operations. In fact, one of the main selling points of e-commerce is that it
provides a competitive advantage to the organizations that use it. Because e-commerce operations have become so
embedded in the business environment, many people refer to e-commerce as electronic business (e-business).

The external evidence of a company’s e-commerce activities is the company’s Web site. A Web site can be as simple
as a few static pages that provide product line and contact information or as complex as a complete online
database-driven product catalog with dynamic ordering and credit card payment processing.

E-commerce is now recognized as a prime revenue source. Putting products online makes them immediately available
to millions of potential buyers. Companies are competing for a share of the online market by attracting customers and
keeping them focused on their Web sites. But the Internet is a challenging place; many companies are discovering that
competing in the online market is more difficult than just creating and using Web pages. In short, e-commerce is more
than just another marketing channel; e-commerce is the kernel of a new business model dedicated to bringing products,
ideas, or services to large markets rapidly in relatively inexpensive ways through the use of Internet technology.

E-commerce is not an end in itself; it is a road that businesses travel to compete and survive in the 21st century. On
this road, Internet technology has played—and will continue to play—a crucial role. To know where you are going, it
is useful to know where you have been. Therefore, the next section provides a brief glimpse of major milestones on
the e-commerce road.

I.2 THE ROAD TO ELECTRONIC COMMERCE

For many decades, businesses have been using technology to enhance their operations. For example, phones and fax
machines are long-standing business uses of technology. Should such technologies be considered part of the
e-commerce model? The short answer is no (assuming the phone is not connected to a computer modem). The
just-mentioned examples are not strictly e-commerce because they depend on human intervention for business
transactions to take place. Phones and fax machines simply connect the sender with the receiver by transmitting sound
or images. To complete the business transaction, a human at the receiving end of the transmission still has to process
the information manually. The key to e-commerce is using computer networks, especially the Internet, to automate
and streamline business transactions. The development of the Internet is closely allied with the development of
e-commerce.

41199_AppI 12/7/2007 21:9:32 Page 230

230 A P P E N D I X I

The Internet was born as an extension of the DARPA network, started in the early 1960s by the U.S. federal
government as a military project to ensure computer communications in case of nuclear attack. Almost immediately
after its creation, the Internet was extended to include higher education institutions to facilitate critical research. The
Internet’s reach did not extend into the business arena until many years later.

The following list summarizes a few of the major technological milestones in business. As you examine the list, note
that all of the technological milestones share the common feature of drastically reducing human intervention,

� In the early 1960s, banks created a private telephone network to do electronic funds transfers (EFT). This
service allowed two banks to exchange funds electronically in a fast, efficient, and secure manner. The service
was restricted to the participating banks, and those banks were required to cover the costs associated with using
and maintaining the system.

� In the early 1970s, banks created the automated teller machine (ATM) to provide after-hours services to their
customers. In the beginning, ATMs where installed by a few banks nationwide and customers were allowed only
a limited number of transactions. As popularity of the ATMs grew, companies were created to provide ATM
service to most banks.

� In the late 1970s and early 1980s, Electronic Data Interchange (EDI) emerged. EDI is a communications
protocol that enabled companies to exchange business documents over private phone networks. The use of
EDI facilitated the coordination of business operations between business partners. The use of EDI became
especially well established in the automotive industry. For example, Nissan used EDI to send a request for parts
(car seats, tires, or other components) to subcontractors as soon as a car entered the assembly line. The
problem with EDI was that its maintenance and implementation costs were high and that the EDI formats
varied from company to company. Given those drawbacks, EDI became a secondary (niche) player as Internet
communications capabilities grew. However, more recently, EDI has been adapted to Internet technology and
now rides the Internet wave, thereby drastically reducing the investment in the communication infrastructure
required by previous generations of EDI.

� During the early 1980s and through the 1990s, the personal computer (PC) facilitated the rapid expansion of
the Internet and ultimately provided the spark that led to the explosive use of the World Wide Web, usually
referred to as “the Web.” The Web, perhaps the best-known of many Internet services, made the transfer of
information among multiple organizations as simple as a mouse click. The Web also became the basis for the
exploration and exploitation of new Internet-based technologies that led to the enhancement of business
processes within and between corporations.

� In the late 1990s and early 2000s, networking technologies blossomed and expanded the reach, the speed,
and (in some cases) the security of Internet-based communications and transactions. Many companies began
to take advantage of virtual private networks (VPNs), which are private, relatively secure networks that “tunnel”
through the Internet, using Internet technology. Wide area networks (WANs) that incorporate satellite and
microwave links and wireless technologies such as cell phones and wireless networks have also increased the
scope and possibilities for businesses large and small. New developments such as Extensible Markup
Language (XML) are being used to facilitate the dynamic exchange of data among geographically disperse
applications. XML has introduced a new dimension in the provision of Internet-based services.

� In the early 2000s, cell phone and wireless technologies began to merge with computer and Internet
technologies, creating a whole new arena for e-commerce via cell phones and other wireless devices.

Note

If you want to examine a more detailed history of the Internet, visit the following Web sites:

• www.pbs.org/opb/nerds2.0.1/timeline

• www.zakon.org/robert/internet/timeline

35547_AppI 1/18/2006 15:10:16 Page 231

231D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

As an example of how e-commerce has developed, it is worthwhile to take a look at one well-known e-commerce
success story. In 1992, Jeff Bezos launched the Web site Amazon.com to sell books directly to consumers over the
Internet. Five years later, sales exceeded $131 million. Soon Amazon began expanding into other retailing areas,
selling everything from baby goods to music and electronics to clothing and home goods. (See Figure I.1.) Amazon
pioneered the “personalized” Web page based on tracking customers’ buying habits and preferences, and it established
alliances and cross-links with other major retailers such as Target. In 2007, net sales were expected to be between
$14.263 billion and $14.613 billion, a growth of between 33 and 36 percent compared to the previous year. (For the
most current data, visit Amazon.com and select Investor Relations.) In just a few years, Amazon.com had become one
of the most successful retail Web sites and a model for many other Internet-based businesses.

Why did businesses jump on the Internet bandwagon with such abandon? Previous technologies took much longer to
find a place at the business table. The next section examines why the Web’s acceptance was so broad and deep.

I.3 THE IMPACT OF E-COMMERCE

In the 1990s, economists coined the term the new economy to refer to the business marketplace based on computer
technologies and delivered through the Internet. And although the “tech bubble burst” of 2000 scrubbed the luster off
of some e-commerce businesses, many of those businesses quickly adapted to the new market realities and continued
to expand. Today a majority of businesses, even traditional (or so-called brick-and-mortar) businesses, have a presence
on the Web. (Can you think of a major business that does not have a substantial Web presence?)

Aside from the aspects of marketing that are enhanced by e-commerce, organizations have many other reasons for
implementing e-commerce. The reasons—including rapid response to competitive pressures and customer service
requirements, facilitation of transaction management, and inventory management—are given added urgency in today’s
world of global markets, mergers, and acquisitions.

FIGURE
I.1

Amazon.com home page

Note choices,
such as

New Releases

There is a
wide variety of
product choices

A Search feature
lets customers
find products
quickly and
conveniently

41199_AppI 11/20/2007 8:58:36 Page 232

232 A P P E N D I X I

The Internet economy works within a global market of interconnected consumers and sellers. Businesses no longer
compete only with businesses down the street, across town, or in the same country. Even small organizations have
discovered that there is, at least potentially, a global market for their products, services, and ideas. This global market
has attracted millions of businesses and organizations to the Internet and e-commerce. The Internet has reached critical
mass with hundreds of millions of consumers worldwide, and it has become the new frontier for organizations in the
quest for profits and enhanced public services.

For IS departments, the new frontier is the use of Internet technologies to provide services to customers, partners,
employees, and the general public. The Internet is driving the development of a new generation of information
systems. For many IS applications, the use of Internet technologies facilitates sharing heterogeneous information in an
environment that provides multiple benefits at a fraction of the cost.

I.3.1 Advantages of E-Commerce

E-commerce has benefits for both buyers and sellers, including:

� Easy comparison shopping. Consumers can quickly compare prices for just about anything, using sites such
as www.mysimon.com or www.pricewatch.com. Such sites have had a major impact on industries such as
insurance (www.quotesmith.com), automobiles (www.autobytel.com), and air travel (www.qixo.com).

� Reduced costs and increased competition. Online comparison shopping means intense competition by the
suppliers of goods and services, which means lower costs for consumers. For businesses, cost reductions are
reflected in a lower cost per transaction. Even though initial Internet infrastructure and implementation costs
are high, the cost per transaction tends to be lower because of the marginal cost of each additional transaction
and the growing volume of customers using the Internet.

� Convenience. Online shoppers can purchase products from the convenience of their homes. By not having to
drive to a store, shoppers save substantial time and transportation costs.

� Operations 24/7/365. Online stores, unlike their brick-and-mortar counterparts, remain open all year, including
weekends and holidays. (Most transactions are automated to the extent that they do not require full-time staffing.)
The benefit to businesses is clear, too—they can gain new customers day or night all year-round.

� Global access. Through the Internet, businesses have access to millions of users worldwide. Companies can
develop national and international exposure. That exposure creates brand awareness and, with a bit of luck,
customer loyalty.

� Lower entry barriers. An organization looking to establish an online presence expends less in physical location
start-up costs; in the hiring and training of a large sales and managerial staff; and in expensive rental, utilities,
and advertising fees. Because there is no need to build and furnish attractive offices and/or store interiors, the
total time required to launch an online store is reduced. E-commerce has revolutionized the concepts of
business time and place.

� Increased market (customer) knowledge. The Internet environment makes it relatively easy to compile and
track customer information. Businesses can create extensive customer profiles that include purchasing
preferences, demographic and geographic information, online behavior, and personal preferences. That
information can be used to design Web sites that attract more users, target specific markets, and display
features customized to individuals’ interests. Businesses benefit by increasing customer loyalty and generating
repeat sales.

I.3.2 Disadvantages of E-Commerce

Although the list of e-commerce advantages is long, the e-commerce environment is far from perfect. In fact, some
disadvantages cause consumers and businesses to suffer considerable anxiety.

� Hidden costs. Online purchases are often accompanied by high shipping and restocking fees, a lack of
warranty coverage, and unacceptable delivery times. In fact, excessive shipping fees is one of the most
frequently cited reasons why shoppers choose not to buy online.

35547_AppI 1/18/2006 15:10:16 Page 233

233D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

� Vulnerability to technical failure. When an e-commerce Web site cannot service customers because of a
network failure, a software virus, or internal hardware failure, the organization loses sales, credibility, and
customers.

� Cost of staying in business. Although getting into business is relatively easy in an e-commerce environment,
staying in business may be more difficult. Increased competition means businesses operate with very thin profit
margins. To be profitable, e-businesses must maintain high sales volumes, which means developing and
maintaining large and loyal customer bases. Also, to survive and remain competitive, businesses must invest
heavily in often costly technology.

� Lack of security. One of the main roadblocks to the wide acceptance of e-commerce by businesses and
consumers alike is the perceived lack of adequate security for online transactions. For example, many
consumers are wary of providing credit card information over the Internet. Several credit card companies are
currently working on a set of standards to make online credit card transactions more secure.

� Invasion of privacy. The incredible capacity for online data collection is a mixed blessing to customers.
Information about their purchases, purchasing habits, demographics, credit history, and so on is stored in
databases connected to Web servers, potentially exposing the information to cybercriminals. Another concern
is that customer information is often sold to marketing companies who engage in e-mail campaigns to attract
new customers. The customer’s e-mail box is soon filled with unwanted and unsolicited e-mail, or spam.

� Low service levels. Another common complaint about doing business online is the low level of customer
service that online companies tend to provide. Although technology has automated business transactions to a
large extent, a need for the human touch still remains. Therefore, customer service has become a major
differentiating factor.

� Legal issues. Legal problems encountered in the e-commerce environment include software and copyright
infringements, credit card fraud and stolen identities, and online fraud (failure to deliver products and/or
services to the customers who paid for them).

I.4 E-COMMERCE STYLES

E-commerce transactions can be grouped according to whom the sellers and the buyers are. Using that distinction, the
principal e-commerce styles can be classified as:

� Business to business (B2B): electronic commerce between businesses.

� Business to consumer (B2C): electronic commerce between business and consumers.

� Intrabusiness: internal electronic commerce activities, most of which involve interactions between employers
and their employees.

Although some may argue that government to business (G2B) and government to consumer (G2C) should be
included as additional e-commerce styles, this book considers them to be special cases of B2B and B2C.
Consumer-to-consumer (C2C) transactions, particularly C2C transactions facilitated by an intermediary business
(C2B2C), are also growing, facilitated by Web sites such as eBay and Amazon that provide avenues for consumers to
buy and sell from each other. Figure I.2 identifies the primary e-commerce players and their interactions.

I.4.1 Business to Business (B2B)

Although B2B transactions include intangibles such as transmitting contracts and moving accounts, most transactions
involve sellers and buyers of products and/or services. Generally, the seller is any company that sells a product and/or
service, using electronic exchanges such as the Internet or EDI. Examples of B2B transactions are as follows:

� A Nissan Corporation manufacturing plant issues an electronic order for a number of tires of a given model
and size. One of the approved tire providers receives and fulfills the order. When Nissan receives the tires, it
issues a payment electronically through a bank funds transfer.

35547_AppI 1/18/2006 15:20:17 Page 234

234 A P P E N D I X I

� Using the Web, an assistant at the University of Tennessee makes hotel reservations for a group of researchers
who will be conducting a seminar at the university.

� The Red Cross uses the Web to compare hardware and software prices and subsequently orders hardware and
software via the Web.

B2B is the biggest and fastest-growing component of the e-commerce market, and the Internet is clearly a dominant
player in the B2B economy. In that economy, the main focus is on the use of technology to automate the value chain
of a business. The value chain refers to all activities required to design, plan, manufacture, market, sell, and support
a product or service. By examining the value chain components with reference to Internet technologies, businesses can
automate and enhance their operations. For example, many companies now use Enterprise Resource Planning (ERP)
to manage and enhance all aspects of their value chain, from procuring raw materials to promoting customer
satisfaction. Figure I.3 illustrates the use of the value chain to automate B2B transactions.

Business

SELLER BUYER

Consumer

Government

B2B: Business to Business
B2C: Business to Consumer
C2B: Consumer to Business

C2C: Consumer to Consumer
G2C: Government to Consumer
G2B: Government to Business

Consumer

Government

G2B

Business

Business

G2C

C2C

C2B

B2C

B2B

Business

Business

Consumer

Consumer

Consumer

FIGURE
I.2

E-commerce styles

35547_AppI 1/18/2006 15:10:17 Page 235

235D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

B2B transactions are subject to different types of implementation. The two most important versions are:

� B2B integration. In this scenario, companies establish partnerships to reduce costs and time and to increase
business and competitiveness. For example, a company that manufactures computers will partner with
suppliers for hard disks, memory, and other components. That partnership allows the company to automate
its purchasing system, integrating that system with its suppliers’ ordering systems, thereby linking their
respective inventory systems. In that case, when a component in Company C gets below the minimum
quantity-on-hand requirement, the system will automatically generate an order to Supplier S. Both systems
would be integrated and would exchange business data, generally using XML through the Internet. In addition,
the company may integrate its distribution system with that of its distributors. Finally, the distributors may
integrate their activities with those of their retailers. And the retailers may, in turn, integrate their operations
with those of their customers. Given such integration, sellers align their operations with those of buyers,
thereby achieving levels of efficiency that make it difficult to switch to other buyers and/or sellers.

� B2B marketplace. In this scenario, the objective is to provide a way in which businesses can easily search,
compare, and purchase products and services from other businesses. The Web-based system basically works
as an online broker to service both buyers and sellers. Within this system, the focus shifts to attracting new
members, either sellers or buyers. The “broker” offers sellers a way to market their products or services to other

FIGURE
I.3

E-commerce automation of supply chains

Retailer

Consumer

Distributor

Manufacturer

Supplier

B2C
Marketing - Sales

Inventory - Shipping
Customer Support

B2B
Purchasing

Inventory tracking
Shipping - Sales

B2B
Inventory tracking

Shipping
Marketing

B2B
Procurement

Just-in-time inventory
Shipping

35547_AppI 1/18/2006 15:10:17 Page 236

236 A P P E N D I X I

businesses, while buyers are attracted by the fact that they can compare products from different buyers and get
access to special deals offered only to members. In that scenario, the broker obtains revenue through
membership and transaction fees. Figure I.4 shows an example of B2B Web marketplaces for the manufac-
turing sector.

One important aspect involved in implementing B2B solutions is integrating the databases to support information
(data) exchanges with other database systems.

I.4.2 Business to Consumers (B2C)

A business-to-consumer (B2C) operation is one that uses the Internet to sell products and/or services directly to
consumers and/or end users. In B2C e-commerce, the Internet—and, in particular, the Web—is the marketing, sales,
and postsales support channel. B2C is oriented toward attracting customers to the Web sites and offering products and
services in new and innovative ways. Table I.1 lists a sample of B2C e-commerce Web sites.

FIGURE
I.4

Covisint.com: Automotive B2B marketplace

35547_AppI 1/18/2006 15:13:47 Page 237

237D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

TABLE
I.1

Sample B2C Web Sites

INDUSTRY B2C WEB SITES INDUSTRY B2C WEB SITES
Travel Travelocity.com

Expedia.com
CheapTickets.com

Computer Dell.com
IBM.com
Pricewatch.com

Retailing Landsend.com
Spiegel.com
JCPenney.com

Health Services HealthNet.com
WebMD.com

Financial Fidelity.com
Etrade.com

Auctions eBay.com

Banking Netbank.com
www.hsbcdirect.com

Reverse Auctions Priceline.com
LendingTree.com

Music www.itunes.com Insurance Quotesmith.com
Government Internal Revenue Service

(www.irs.com)
Education www.elearners.com

Two variations of the B2C marketplace are as follows:

� Consumer to Business to Consumer (C2B2C). A consumer offers items for sale to other consumers through
a third-party Web site. The Web’s many auction sites, such as www.ebay.com, are good examples.

� Business to Business to Consumer (B2B2C). A business offers products or services to consumers through a
third-party Web site. A typical example of B2B2C is a reverse auction such as LendingTree.com where
consumers request bids for loans and financial institutions compete for consumers’ business.

I.5 E-COMMERCE ARCHITECTURE

Companies embracing e-commerce must deal with both managerial and technological issues. Managerial issues range
from establishing partnerships with suppliers, distributors, and vendors to designing and developing well-orchestrated
business plans. (Although managerial issues are critical to the success of an e-commerce initiative, they are beyond the
scope of this book.) Technological issues include the hardware and software components that provide the backbone
for reliable and secure e-commerce transactions. Regardless of the type and extent of an organization’s information
structure prior to the company’s decision to embrace e-commerce, there is an obvious need for the proper design,
development, and deployment of a well-planned architecture to support e-commerce business transactions, both
internal and external. How those issues are confronted depends on whether the information systems architecture is
already established and what the e-commerce style is.

This section describes the basic architectural components that must exist to support e-commerce transactions.

To ensure better understanding of e-commerce architecture, it can be divided into a series of layers. Each layer provides
services to the layer below it. Those layers are:

� Basic Internet services.

� Business-enabling services.

� E-commerce business services.

Figure I.5 offers a bird’s-eye view of e-commerce architecture.

41199_AppI 11/20/2007 8:59:13 Page 238

238 A P P E N D I X I

I.5.1 Basic Internet Services

The Internet provides the basic services that facilitate the transmission of data and information between computers.
The terms Internet and World Wide Web are often used interchangeably, but they are not synonyms. The World Wide
Web functions as one of the many services of the Internet. Table I.2 describes the basic building blocks and services
provided by both the Internet and the World Wide Web.

Storefronts

E-Commerce
Business
Services

Business-
Enabling
Services

Basic
Internet
Services

B2B

B2C

Intrabusiness

Portals
Marketplaces

Procurement
Inventory

Ordering
Shipping

Tracking
Customer Service

Product Support

Security
PersonalizationSearch

Wireless

Transaction
Processing

Content
Management

Database
Integration

Load Testing
and Balancing

Web Site Monitoring
and Analysis

Usability
Testing

Web Server

Web Browser
HTML

Dynamic
Web Page

E-mail

Static Web Page

TCP/IP

HTTP

FTP

DNS

FIGURE
I.5

E-commerce architecture

35547_AppI 1/18/2006 15:10:17 Page 239

239D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

TABLE
I.2

Internet Building Blocks and Basic Services

BASIC SERVICE DESCRIPTION
Internet A worldwide network of networks. The Internet acts as a “super network” that connects

thousands of smaller networks around the world. You can think of the Internet as the
“highway” on which data travel, as in the phrase the information superhighway. To connect
thousands of heterogeneous networks, the Internet uses a standard network protocol
known as TCP/IP and devices known as routers.

TCP/IP Transmission Control Protocol/Internet Protocol. The basic network protocol that deter-
mines the rules used to create and route “packets” of data between computers in the same
network or in different networks. Each computer connected to the Internet has a unique
TCP/IP address. The TCP/IP address is divided into two parts used to identify the network
and the computer (or host).

Router Special hardware/software equipment that connects multiple and diverse networks. The
router is in charge of delivering packets of data from a local network to a remote network.
Routers are the traffic cops of the Internet, monitoring all traffic and moving data from one
network to another.

World Wide Web
(WWW or the Web)

A worldwide network collection of specially formatted and interconnected documents
known as Web pages. The Web is just one of many services provided by the Internet.

Web page A document containing text and special commands (or tags) written in Hypertext Markup
Language (HTML). A Web page can contain text, graphics, video, audio, and other
elements.

Hypertext Markup
Language (HTML)

The standard document-formatting language for Web pages. HTML allows documents to
be presented in a Web browser in a standard manner.

Hyperlink Web pages are linked to each other—that is, each Web page calls other Web pages—
creating the effect of a “web.” Because a link can connect to different types of documents,
such as text, graphics, animated graphics, video, and audio, it is known as a hyperlink. A
hyperlink is generally expressed as an URL in an HTML-formatted Web page.

Uniform Resource
Locator (URL) or
Web address

An URL identifies the address of a resource on the Internet. The URL is an abbreviation
(ideally easily remembered) that uniquely identifies an Internet resource. Examples of URLs
include www.dell.com, www.ford.com, www.amazon.com, www.faa.gov, and
www.mtsu.edu).

Hypertext Transfer
Protocol (HTTP)

The standard protocol used by the Web browser and Web server to communicate—that is,
to send requests and replies between servers and browsers. HTTP uses TCP/IP to transmit
the data between computers on the Internet.

Domain Name
System (Service)

The DNS service translates the “English-like” domain names (such as whitehouse.org and
ebay.com) to the appropriate TCP/IP addresses. The DNS service lies at the heart of the
Internet because most hyperlinks use URLs to refer to other Web pages.

Web browser The end-user application used to browse or navigate (move from page to page) through the
Internet. The browser is a graphical application that runs on the client computer, and its
main function is to display Web pages. A client uses the Web browser (for example,
Netscape Navigator, Microsoft Internet Explorer, or Opera) to request Web pages from a
Web server.

Web server A specialized application whose only function is to “listen” for client requests, process
them, and send the requested Web page back to the client browser. The Web server and
the Web client communicate using a special protocol known as Hypertext Transfer Protocol,
or HTTP.

Web site The term used to refer to the Web server and the collection of Web pages stored on the
local hard disk of the server computer or an accessible shared directory.

Static Web page A Web page whose contents remain the same (when viewed in a browser) unless the page
is manually edited. An example of a static Web page is a standard price list posted by a
manufacturer for inspection by the manufacturer’s customers.

Dynamic Web page A Web page whose contents are automatically created and tailored to an end user’s needs
each time the end user requests the page. For example, an end user can access a Web
page that displays the latest stock prices for the companies (s)he selects.

35547_AppI 1/18/2006 15:10:18 Page 240

240 A P P E N D I X I

TABLE
I.2

Internet Building Blocks and Basic Services (continued)

BASIC SERVICE DESCRIPTION
File Transfer
Protocol (FTP)

The protocol used to provide file transfer capabilities among computers on the Internet. An
FTP client requests a file to an FTP server. The FTP server listens for clients’ requests, pro-
cesses them, and sends the requested files back to the client.

Electronic
mail (e-mail)

Messages transmitted electronically among computers on the Internet. A mail server stores
e-mail messages in end users’ mailboxes. Mail clients retrieve e-mail from the mail server.
When a client sends an e-mail, it is temporarily stored on the mail server, which then
delivers the e-mail to the correct destination.

News and
discussion group
services

Specialized services that allow the creation of “virtual communities” in which users
exchange messages regarding specific topics; for example, aviation, sports, or computers.
This service allows end users to post information on shared bulletin boards for public
access.

Figure I.6 shows the relationships among the components defined in Table I.2.

As you examine Figure I.6, note that the client enters a Web address, or URL, in the Web browser. In turn, the Web
browser issues an HTTP page request to the Web server. The request is handled through TCP/IP for transmission over
the network. TCP/IP transforms the request into packets and sends them to the router, which, in turn, routes them
to the Internet. Once on the Internet, the TCP/IP packets travel across several routers until they reach the destination
server. The server receives the Web page request, fetches the page, and sends it to the client’s Web browser in the
same way. The client receives the HTML-formatted Web page and displays it on the screen.

TCP/IP
HTTP

TCP/IP
HTTP

Dynamic
Web
Page

Static
Web
Page

HTML
DOCUMENTS

Static Web Page HTTP request

Dynamic Web Page HTTP request

Web Site

SERVICES:
Web Server

FTP
Mail
News

Discussion
Groups

WEB BROWSER

WEB
BROWSER

ROUTER
HTTP

TCP/IP

HTTP

TCP/IP

WEB BROWSER

WEB BROWSER

ROUTER

FIGURE
I.6

Basic Internet services

35547_AppI 1/18/2006 15:10:18 Page 241

241D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

The client and the server can be located in the same building or across the globe, which makes the Web a great medium
for delivering information across geographic boundaries. The Web browser integrates all of the services provided by
the Web site. The end user does not care or know about all of the different applications running on the server side.

Web pages are either static or dynamic. Static Web pages display information that does not change much over time
or is not time-critical. The content of dynamic Web pages change over time and cannot be anticipated, for example,
an online ordering system. Static Web pages are adequate to display information such as product catalogs or contact
information; dynamic Web pages are better suited to e-commerce applications such as online ordering with product
customization options. For example, at Dell’s e-commerce site (www.dell.com), you can dynamically configure your
computer. Dynamic Web pages are at the heart of most B2B and B2C Web transactions.

I.5.2 Business-Enabling Services

The Internet services described in the previous section are sufficient to operate a basic Web site. However, they do not
provide the support required to conduct even rudimentary business transactions. Business-enabling services are
implemented by hardware and software components that work together to provide the additional functionality not
provided by basic Internet services. Table I.3 describes the services that are used to enhance Web sites by providing
the ability to perform searches, authenticate and secure business data, manage Web site contents, and more. The list
in Table I.3 is not comprehensive; technological advances continue to enable new services, which are used to bring
about even more services.

TABLE
I.3

Business-Enabling Services

SERVICE DESCRIPTION
Search services Search services provide Web sites with the ability to perform searches on their contents. These

services can be used in intranets to search for payroll information, benefits, vacation time, con-
tract information, and so on. A B2C Web site can use this feature to search for product return
information or customer support data. Search services are a must-have for all e-commerce
Web sites.

Security Services that ensure the security and privacy of data by providing encryption, digital certificates,
SSL, S-HTTP, firewalls, and proxy servers. Those services are covered in greater detail in
Section I.6.

Site
monitoring
and data
analysis

Ensures that the Web site is performing at an optimal level. Monitors the main indicators of sys-
tem and network performance. This service also includes the identification of network bottle-
necks, often noticed by the end user when Web pages load very slowly. Analysis features study
network traffic to determine which pages are attracting visitors and which are not. This feedback
provides answers to questions about the effectiveness of the pages.

Load testing,
balancing, and
Web caching

Load testing is performed before an e-commerce site goes online. The main objective is to test
the Web site to ensure that it can support the load imposed by thousands of users accessing it.
When the expected transaction load is too much for a single server to handle, multiple servers
are required. Load balancing ensures that the processing load is distributed evenly among mul-
tiple servers. Web caching technologies increase the performance of Web servers by creating a
“caching” layer between the Web server and Web client sessions and servicing selected requests
directly from the cache without taxing the Web server. These services provide performance-
enhancing techniques to operate the system at optimum speed.

Usability
testing

In an e-commerce environment, not having a Web site is bad enough, but having a badly
designed Web site may be even worse. Usability testing ensures that Web site features and ser-
vices are presented in a user-friendly manner. Is the search function hard to find? Are the colors
chosen for the Web site difficult to read on laptop computers? Are the options presented
logically?

41199_AppI 11/20/2007 8:59:56 Page 242

242 A P P E N D I X I

TABLE
I.3

Business-Enabling Services (continued)

SERVICE DESCRIPTION
Personalization Personalization features allow for the customization of Web pages for individual users. The idea

behind personalization is making the site user-friendly to attract more users and to keep users
coming back. To see personalization in action, go to www.yahoo.com and click on “My Yahoo.”
You can then specify your interests and your zip code to get a personalized Web page tailored
for your local weather, news, and so on.

Web
development

E-commerce applications require business logic to be integrated into the Web site. Web devel-
opment tools provide the means by which to add business logic to Web pages. HTML is not a
programming language; it is a document-formatting specification created to present documents
properly in a Web browser. Business logic can be added to Web sites by using one of many
Web-based programming environments, such as Java, JavaScript, JScript, or VBScript. Such pro-
gramming environments allow the creation of dynamic Web pages that form the basis of
e-commerce Web sites.

Database
integration

Business transaction data are normally stored in databases. The integration of enterprise data-
bases with the Web is a requirement for e-commerce success. Many DBMSs, such as Oracle and
Microsoft SQL Server, already come with Web development environments that integrate the
database with the Internet. Third-party vendors provide solutions that allow corporate databases
(including legacy data) to be integrated into a company’s Web site.

Transaction
processing

As you might imagine, transaction processing services are very important in e-commerce. Chap-
ter 10, “Transaction Management and Concurrency Control,” examined the importance of trans-
action management. In an e-commerce environment, the problem is vastly magnified because
transactions often originate from customers around the world.

Content
management

Content management automates the creation and management of a Web site’s contents and
provides a flexible and consistent way for many different individuals and departments to create
Web pages. Content management is critical for companies in the business of providing
information.

Messaging The Internet is a “highway” through which applications communicate. An e-commerce applica-
tion sends messages from a client to a server, and vice versa. Messaging ensures the proper rout-
ing and delivery of applications-oriented messages among multiple services.

Wireless
device support

Wireless and mobile devices promise to become big players in e-commerce in the near future.
Services to support wireless communication will become increasingly important in e-commerce.

I.5.3 E-Commerce Business Services

E-commerce business services form the top layer of the e-commerce architecture. (See Figure I.5.) That layer uses the
services of the two layers below it to map business logic and to automate business processes. Automating business
processes enhances the business unit, department, and intrabusiness operations. At the top layer, business-enabling
services (layer 2) interact with basic Internet services (layer 1) to provide support for the front-end e-commerce services.
Note that it is the business functions that drive the operations of the services below it—not the other way around. The
top layer takes longer to implement because care must be taken to develop a thorough understanding of the business,
to establish business partnerships, and to understand customer behavior.

When the Web front end is designed and implemented, a decision must be made about what business services to
provide and how to provide them. For B2C e-commerce sites, the front end could be as simple as an online product
catalog or as sophisticated as a database-based “storefront” with three-dimensional (3D) views of the available products,
in addition to a shopping cart application that enables users to order items while they browse the products.

Common services provided by e-commerce Web sites include automation of the supply chain for B2B purposes. That
automation covers online procurement, just-in-time inventory, online ordering, order tracking, product delivery,
product support, customer satisfaction management, and so on.

The next two sections introduce two essential features of e-commerce that enable complete online transactions:
security and payment processing.

35547_AppI 1/18/2006 15:10:18 Page 243

243D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

I.6 SECURITY

For e-commerce to be successful, it must ensure the security and privacy of all business transactions and the data
associated with those transactions. In an e-commerce context, security encompasses all of the activities related to
protecting data and other e-commerce components against accidental or intentional (usually illegal) access or use by
unauthorized users. Privacy deals with the rights of individuals and organizations to determine the “who, what, when,
where, and how” of data use.

Even before the emergence of e-commerce, information privacy and security was a major concern in business
organizations. In some cases, those concerns merited the hiring of a data security officer to oversee data security and
privacy standards and procedures. Integrating databases with the Web and using the Internet as a transmission medium
for business transactions have made the need for security even greater.

The World Wide Web was originally created with the objective of sharing data easily, rather than securely. For that
purpose, the Web is a good fit for nonprofit organizations and business/consumer advocacy groups that are more
concerned with information distribution than with secure transactions. However, private for-profit organizations
require security and privacy to engage in e-commerce business transactions. For example, who would use a credit card
to pay online if there were no measures to protect the credit card information from being stolen? How can messages
traveling over the Internet be protected against modifications? How can the identity of the sender be verified? How can
the Web storefront be protected against attacks from cybervandals? Although there is no foolproof way to protect
against all possible threats, several technologies do address security problems. Although Internet security is a vast topic,
the focus here is on the principal mechanisms used to protect electronic business transactions, Web-store front ends,
and associated data.

E-commerce data must be secured from the beginning of a transaction to its end. Let’s examine the following online
purchasing scenario, illustrated in Figure I.7:

1. A customer orders products online, entering order and credit card information on a merchant’s Web page.

2. The information travels from the customer’s computer over the Internet to the merchant’s Web server.

3. The merchant uses a third-party company to process payment authorization.

4. The payment processing company contacts the customer’s credit card-issuing company to authorize the
transaction.

5. The customer’s credit card issuer authorizes the transaction.

6. The merchant receives authorization, stores the order and payment data in a database, and sends order
confirmation to the customer.

7. The seller uses a third-party shipping company to deliver the products.

8. The customer receives order and shipping confirmation.

Given the just-described scenario, security (procedures and technology) must be maintained to:

� Authenticate the identity of the transaction’s participants by ensuring that both the buyer and the seller are
who they say they are. In other words, there needs to be a secure way to properly identify transaction
participants and the authenticity of their messages.

� Protect the transaction data from unauthorized modifications while it travels over the Internet. The Internet
is formed by millions of interconnected networks. E-commerce data must pass through several different
networks when traveling from the client to the server, thereby increasing the risks of data being stolen,
modified, or forged.

35547_AppI 1/18/2006 15:10:18 Page 244

244 A P P E N D I X I

� Protect the resources (data and computers). This includes protecting the end user and the business data
stored on the Web server and in the databases from unauthorized access. It also includes securing the Web
server against attacks from hackers wanting to break into the system to modify or steal data or to impair normal
operations by limiting resource availability.

I.6.1 Authentication

Authentication refers to the process of properly and uniquely identifying entities. Such an entity could be a user in
a computer system or a database, a computer in a network, or participants in an e-commerce transaction. You
probably are familiar with the authentication used in local area network systems in which you are given a unique user
ID and password. For example, on most systems that use Microsoft Windows, you must enter your user ID and
password to log on. In that way, Windows authenticates who you are. Based on your user ID (identity), Windows
assigns you access rights (read, write, and so on) to resources such as printers and files.

In the case of e-commerce, authentication concerns properly identifying a user on the Internet. Suppose you have
placed an online order for a Sony STR-DE525 receiver. After a week, your order still has not arrived. But when you
call the merchant, you are informed that the item was shipped several days ago to an address that is not yours.
Apparently, somebody changed the shipping address while the order traveled over the Internet prior to being delivered
to the merchant’s Web site. From this admittedly simplified scenario, you can see why verifying the identity of
participants and hiding the contents of communications from intruders are important.

Internet authentication is a bit more complicated than the Windows scenario. On the Internet, digital certificates issued
by a certification authority (CA) are used to authenticate both users and vendors. A certification authority (CA) is
a private entity or company that certifies that the user or vendor is who (s)he claims to be. Certification authority

7

1

4

6

5

2

3

8

Customer
enters order
and payment
information

Credit Card-
Issuing

Company

Consumer

Customer
receives

order and
shipping

confirmation

Shipping
Company Merchant contacts

shipping company to
deliver products to

customer

Issuing company
authorizes
transaction

Payment
processing
company

Payment-processing
company contacts issuing

company to authorize
transaction

Merchant uses third-
party company to
process payment

authorization

Merchant receives
authorization, stores order

data, and sends order
confirmation to customer

Merchant
receives

order data

Merchant

Database

FIGURE
I.7

A sample e-commerce transaction

35547_AppI 1/18/2006 15:21:39 Page 245

245D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

companies work with credit card verification companies and other financial institutions to verify the identity of the
certificate’s requesters. When a user registers with a CA such as VeriSign, (s)he will be asked to provide appropriate
verification information. (See Figure I.8.) Using the end-user data provided, the CA verifies the identity of the requester
and issues a digital certificate to the end user. A digital certificate is a unique identifier given to an entity. The holder
of the certificate may be an end user, a Web site, a computer, a Web page, or even a program. Digital certificates are
used in combination with encryption to provide security and authentication.

I.6.2 Encryption

Digital certification does not totally guard against improper use of data. So what further assurances can be made that
the original sender sent the document and that it has not been forged? That is where encryption comes into the picture.
Encryption is a process of inputting data in “plain text” to yield an “encoded” output of the data, making the data
unintelligible to unauthorized users. To secure e-commerce transactions on the Web, the client Web browser must
encrypt the data before sending it over the Internet to the merchant’s Web server. The merchant’s Web server receives
the encrypted transaction data and decrypts it. All sensitive communications between client and server must be
encrypted. Encryption works to promote:

� Data privacy to ensure that the data cannot be understood if intercepted.

� Data authenticity to ensure that the data were not forged.

FIGURE
I.8

Registering with a certification authority

35547_AppI 1/18/2006 15:10:19 Page 246

246 A P P E N D I X I

Most encryption algorithms use mathematical formulas and an encryption key to encode the data. The encryption
key is a very large number used to encrypt and decrypt the data. The length of the key—that is, the number of digits
in it—determines how secure the data will be. The longer the key, the more secure the data. Most encryption
algorithms use key lengths that range from 40 bits to 128 bits or more. You can download Web browsers such as
Netscape and Internet Explorer with support for either 40-bit or 128-bit encryption.

Encryption algorithms are of two types: symmetric (private-key) or asymmetric (public-key). Symmetric or private-
key encryption uses a single numeric key to encode and decode data. Both sender and receiver must know the
encryption key. The most widely used standard for private-key encryption is Data Encryption Standard (DES) used
by the U.S. government. Because each client/server combination requires a different key, this type of encryption is
usually used by government entities only and is not used for e-commerce transactions over the Internet.

Asymmetric or public-key encryption uses two numeric keys.

� The public key is available to anyone wanting to communicate securely with the key’s owner.

� The private key is available only to the owner.

Both keys can encrypt and decrypt each other’s messages.

An example of public-key encryption is Pretty Good Privacy (PGP) by Pretty Good Privacy, Inc. PGP is a fairly
popular and inexpensive method for encrypting e-mail messages on the Internet. The most commonly used public-key
encryption technology is RSA encryption by RSA Data Security Inc. RSA has become the de facto standard for
Internet encryption. Figure I.9 shows security settings for the most common Web browsers.

Digital certificates use public-key encryption techniques to create digital signatures. A digital signature is an
encrypted attachment added to the electronic message to verify the sender’s identity. The digital certificate received by
the user includes a copy of its public key. The owner of the digital certificate makes its public key available to anyone
wanting to send encrypted documents to the certificate’s owner.

I.6.3 Transaction Security

As you know, Web pages are plain-text documents created through the use of HTML. In fact, the vast majority of Web
pages that travel the Web are transferred in plain text. Those plain-text transmissions are acceptable for many
applications, but they are clearly unacceptable when sensitive e-commerce data such as credit card and bank account
information are transmitted. This section examines protocols that are used to transmit HTML documents securely over
the Internet.

Secure Sockets Layer (SSL) is a protocol used to implement secure communication channels between client and
server computers on the Internet. SSL was originally created by a group of companies led by Netscape Communi-
cations, IBM, and Microsoft. The SSL protocol requires that the following conditions be met:

� The client accesses a merchant’s Web server that supports SSL.

� The server sends its digital certificate, including the server’s public key, to the client.

� The client uses the certificate to verify the server with the certification authority (CA).

� The client generates a private key for the session, encrypts the key using the server’s public key, and sends it
over the Internet to the server.

� The server receives the data, decrypts the data with its private key, and extracts the SSL session private key.

Once the client and the server each have the SSL session private key, they communicate by sending encrypted data
back and forth. Transport Layer Security (TLS) is a more recent version of SSL that is even more secure.

The advantage of SSL and TLS is that they can be used with many different Internet services (FTP, Telnet, and HTTP),
which means they are widely supported on the Internet.

35547_AppI 1/19/2006 15:15:34 Page 247

247D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

To request a secure connection, just add an https prefix to the server’s Web address. For example, to access a secure
connection to Microsoft, enter https://www.microsoft.com in your browser to generate the screen shown in Figure
I.10. (To see the Properties window, right-click on the Web page and select “Properties.” Note that the Properties
window shows a secure connection based on 128-bit encryption.)

Secure Hypertext Transfer Protocol (S-HTTP) is used to transfer Web documents securely over the Internet.
S-HTTP supports use of private and public keys for authentication and encryption. S-HTTP has not been widely used
because it supports only encrypted HTTP data, not other Internet protocols as SSL does.

The next section looks at the technologies that are used to protect the integrity of the resources that are connected
to the Internet.

FIGURE
I.9

Web browser security settings

Note

Secure Sockets Layer (SSL) is now being superseded by its successor Transport Layer Security (TLS). TLS uses
the same principles as SSL and includes some improvements that are beyond the scope of this discussion.

35547_AppI 1/18/2006 15:10:19 Page 248

248 A P P E N D I X I

I.6.4 Resource Security

Resource security refers to the protection of the resource(s) connected to the Internet from external and internal
threats. Specifically, resource security means protecting the computers connected to the Internet from viruses,
intrusion by hackers, and denial-of-service attacks.

The most common threat is probably the virus. A virus is a malicious program that affects the normal operation of
a computer system. Both client and server computers must be protected against this threat by use of a virus protection
program. Virus protection programs must be constantly updated with the latest signature files to identify new viruses.
For more information about viruses, visit the Web sites of vendors such as Symantec (www.symantec.com) and
McAfee (http://www.mcafee.com).

A hacker is a person who maliciously and illegally accesses a Web site with the intention of stealing data, changing
Web pages, or impairing Web site operations. Illegally accessing Web sites with the intention of defacing or changing

FIGURE
I.10

Web browser secure session

35547_AppI 1/18/2006 15:10:19 Page 249

249D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

Web page contents is very common. Because e-commerce Web servers connect directly to the Internet, they are prime
targets for hackers. One of the most common activities of hackers is to render Web sites unusable with a
denial-of-service attack. A denial-of-service attack overloads Web servers and routers with millions of requests for
service, rendering the services unavailable to legitimate users. A distributed denial-of-service attack originates from
many different computers at the same time. Currently, no methodology is totally effective in protecting Web sites
against distributed denial-of-service attacks. However, one of the most effective and commonly used defenses against
viruses and hacker attacks is a firewall.

A firewall is used to protect the network from unauthorized access by the outside world (public Internet). Specifically,
a firewall is a hardware and/or software component that is used to limit and control Internet traffic that goes into the
company’s network infrastructure and data that are allowed to be moved outside the company’s network.

Firewalls can be classified as follows:

� Packet filter firewall. It works at the TCP/IP packet level, examining every packet that moves into and out
of the company’s private network.

� Gateway server firewall. It works at the application level, examining every application request (HTTP, FTP,
Telnet, and so on) that moves into or out of the company’s network.

� Proxy server firewall. A proxy server is an intermediary between client computers inside a private network
and the Internet. The proxy server accepts requests from clients and forwards them to the Internet. When
replies come back from the Internet, the proxy server sends the data back to the client that made the request.
The client computer application must be configured to work with the proxy server. (Figure I.11 shows an
example of the Internet Explorer proxy settings.)

� State inspection firewall.1 This new firewall technology compares only parts of incoming packets to parts
of the related outgoing packets.

Firewalls, proxy servers, and virus protection programs are
just a few of the technologies used to secure and protect
e-commerce sites. No single technology can protect an
e-commerce Web server against viruses, hacker intrusions,
and denial-of-service attacks. Implementing resource security
includes a mixture of the technologies examined in this
section, in addition to others that are not within the scope of
this book (for example, intrusion detection systems, vulner-
ability assessment tools, and secure operating systems).

1 For additional information about this type of firewall, visit Check Point Software at www.checkpoint.com.

FIGURE
I.11

Web browser proxy settings

41199_AppI 12/7/2007 21:10:21 Page 250

250 A P P E N D I X I

I.7 WEB PAYMENT PROCESSING

A key function of e-commerce Web sites is their ability to process online payments for products and/or services. In a
traditional business transaction such as buying a CD at a music store, you pay for your purchase using cash, check,
money order, or credit card. On the Web, the most common method of payment is credit card, but there are some
less common alternatives. This section briefly introduces three technologies that aid in the processing of electronic
payments: digital cash, online credit card processing, and electronic wallets.

I.7.1 Digital Cash

One of the risks of paying with credit cards is theft. If your credit card information is stolen, you may find extra charges
on your next credit card bill. If somebody steals a $5 bill from your wallet, you lose only $5. Thus, the use of cash has
certain advantages. Digital cash is the digital equivalent of hard currency (coins or bills). Digital cash uses digital
certificates to verify the identity of the transaction’s participants and requires the existence of a bank or financial
institution from which the user will buy digital cash. When the user buys digital cash, (s)he receives digital bills or coins
backed by a financial institution and represented by binary IDs. The user will later transfer the digital cash to a merchant
to pay for products and/or services. The merchant submits the digital cash to the bank to credit the account. Digital
cash remains an evolving technology, with a number of competing companies and few standards.

One of the main advantages of digital cash is its lower cost per transaction when compared to bank checks and credit
cards. In fact, given relatively high transaction cost, some online merchants have imposed a minimum purchase for
credit card transactions. Nevertheless, digital cash usage pales in comparison to credit card transactions. Reasons for
the reluctance to embrace digital cash include the following:

� Difficulty in getting merchants, banks, and customers to change the way they do business.

� Regulatory obstacles.

� Customers’ acceptance of credit cards as the most convenient way to pay for online purchases.

Given the current lack of general acceptance, the future of digital cash providers is uncertain.

A more successful approach to Web payment processing has been undertaken by companies such as PayPal. PayPal
sets up secure transfers from and to users’ credit cards or bank accounts. Registered PayPal users can shop at
thousands of PayPal-enabled sites. In addition, users can safely send money to or request money from anyone with an
e-mail address. PayPal has been popular because it offers business services and is widely used as a payment system for
online auctions. eBay acquired PayPal in 2002. By 2007, it had more than 153 million members in 56 countries. (You
can get more up-to-date figures by visiting www.paypal.com and clicking “About.”)

I.7.2 Credit Card Processing

Most online purchases are made with a credit card. Although Web merchants accept credit cards as a form of payment,
not all merchants use identical methods to process credit card payments. In previous sections, you learned about
different security techniques used to protect credit card information. This section briefly explores some of the ways in
which merchants can process credit card payments.

The simplest payment processing method is manual processing. In this scenario, a seller collects credit card
information from the customer via the Web site, using a secure connection. (In some cases, the buyer must place the
actual order by phone.) The seller then contacts the credit card issuer—by phone or through a credit card verification
device—to get authorization information. If problems arise (such as insufficient credit, a wrong card number, or a stolen
card), the merchant e-mails the customer to inform him/her about the problem. Although this multistep manual
process continues to survive, thanks to the existence of many small Web companies, its inefficiency has caused most
sellers to modify or abandon it.

41199_AppI 11/20/2007 9:0:26 Page 251

251D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

A more efficient variation of the manual method is for the merchant to use third-party credit card processing software
such as ICVERIFY (www.icverify.com) or to employ the services of a third-party processing company such as
InternetSecure Inc.(www.internetsecure.com). In this scenario, the client customer computer, the merchant’s Web
server, the payment processing company server, the customer, and the merchant’s bank work together to process the
payment. In its simplest form, the procedure requires the following steps:

1. The customer sends credit card information via the Web to the seller’s Web server.

2. The seller’s Web server verifies the order and sends the credit card information to the credit card processing
company.

3. The credit card processing company verifies the credit card with the customer’s bank and obtains authorization
information.

4. The merchant’s Web server receives confirmation of the transaction.

5. The merchant’s Web server e-mails the purchase order confirmation to the client.

6. When the merchandise is delivered, the seller and the credit card company settle the payment.

One important feature of all credit card payment processing systems is that the charge is issued only after the seller
ships the products and/or services to the client.

Two of the major credit card companies, Visa and MasterCard, have created a system known as Secure Electronic
Transactions. The Secure Electronic Transaction (SET) standard provides for security and privacy of credit card
information through the use of digital certificates, digital signatures, and public-key encryption. Security is automatically
enforced for all communications between customer, merchant, and financial institutions. One of the main advantages
of SET is that it provides a way for the buyer to transfer his/her credit card information to the credit card issuer without
the seller being able to see the credit card information—by requiring merchants to encrypt all credit card
information. SET has been widely accepted by the most prominent Internet companies and vendors, such as Netscape,
Microsoft, IBM, and GTE. SET also defines the minimum network and security infrastructure requirements for
companies that want to perform electronic payment verification on the Web. That standard includes the use of
firewalls, encryption, digital signatures, encrypted database data, antivirus software, operating system patches,
end-user authentication, auditing, and other security policies.

I.7.3 Electronic Wallets

In the real world, you probably keep your coins, bills, and credit cards in your wallet. An electronic wallet is the
equivalent of a physical wallet—it can contain credit card information; digital cash; and other personal information such
as shipping addresses, phone numbers, and e-mail addresses. The electronic wallet is a small program that is used in
conjunction with a Web browser and the merchant’s Web site to automatically enter payment information when online
purchases are made. Figure I.12 shows the configuration of the Microsoft Wallet.

Clearly, payment processing is a critical component of e-commerce Web sites. Merchants who want to succeed in
e-commerce must be able to accept credit cards for online purchases. (Customers are more likely to buy from
merchants who accept credit card payments than from merchants who use other payment methods.) While security
and privacy of e-commerce transactions are still a concern, new standards are emerging that create a framework for
facilitating credit card transactions in more secure ways.

Now that you’ve had an overview of the world of electronic commerce, let’s turn to database design for e-commerce
applications.

35547_AppI 1/18/2006 15:10:20 Page 252

252 A P P E N D I X I

I.8 DATABASE DESIGN FOR E-COMMERCE APPLICATIONS

Through experience, you know that reinventing a heat source is not necessary each time you want hot water for a cup
of coffee. Similarly, to design e-commerce databases, you do not need to invent “new” design techniques. To the
contrary, the design techniques you have learned in this book (ER modeling, normalization, SDLC, DBLC, transaction
management, and so on) provide the basic tools and the knowledge required to build successful e-commerce databases.
However, e-commerce databases have a few requirements that you have not encountered yet. That is why this section
illustrates a basic database design for an e-commerce application. In Chapter 14, “Database Connectivity and Web
Technologies,” you learned how to set up a Web-enabled database and you learned about Web database development.

Let’s start by defining the scope of the database. The simple e-commerce Web site must include at least the core
features that facilitate the sale of products and/or services. Therefore, the database must support the Web site’s ability
to show the available products and/or services and to conduct basic sales transactions. In addition, the e-commerce
Web site should offer features that focus on customer service, product returns, and Web customer profiling, which
make the customer’s Web experience a pleasant one. To accomplish that end, an e-commerce database design must
include a few additional support tables. However, the focus here is mainly on the database entities that directly support
the sale of products in an e-commerce database.

FIGURE
I.12

Setting up a Microsoft electronic wallet

41199_AppI 11/20/2007 12:54:36 Page 253

253D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

To start the design process, let’s establish some basic business rules and their effect(s) on the design.

� The objective of the e-commerce design is to sell products to customers. Therefore, the database’s first two
tables will be PRODUCT and CUSTOMER.

� Each customer may place one or more orders. Each order is placed by one customer. Therefore, there is a 1:M
relationship between CUSTOMER and ORDER.

� Each order contains one or more order lines. Each order line is contained within an order. Therefore, there is
a 1:M relationship between ORDER and ORDLINE.

� Each order line references one product. Each product may appear on many order lines. (The company can sell
more than one HP ink-jet printer.) Therefore, there is a 1:M relationship between PRODUCT and ORDLINE.

� Customers who browse the product catalog would like to see products grouped by category or type. (For
example, customers would find it useful to see product lists broken down as computers, printers, application
software, operating systems, and so on.) Therefore, each PRODUCT belongs to one PRODTYPE, and each
PRODTYPE has one or many PRODUCTs associated with it.

� Customers who browse the Web catalog must be able to select products and store them in an electronic
shopping cart. The shopping cart temporarily holds the products until the customer checks out. Therefore, the
next entity is SHOPCART. Each SHOPCART belongs to one CUSTOMER and references one or more
PRODUCTs.

� When the customer checks out, (s)he enters credit card and shipping information. That information is added
to the ORDER. (Note that the business rule identifies required attributes.)

� When the credit card authorization is received, an order is placed for the products found in the shopping cart.
The SHOPCART information is used to create an ORDER, which contains one or more ORDLINEs. After the
order is placed and the customer leaves the Web site, the shopping cart data are deleted.

� Because the merchant offers many shipping options, a SHIPOPTION table is created to store the details of
each shipping option, that is, Land, 2-day, Next day, UPS, FedEx, and so on.

� Because the merchant offers many payment options, a PMTOPTION table is created to store the details of
each payment option, that is, MasterCard, Visa, American Express, and so on.

� Because each state may have a different tax rate, two tables are created, (STATE and TAXRATE) to keep track
of the states (and countries) and the tax rate for each.

Given that brief summary of business rules and their effect(s) on the design, a summary of the entities are shown in
Table I.4.

TABLE
I.4

Main Tables for E-Commerce Database

TABLE NAME TABLE DESCRIPTIONS
CUSTOMER Contains details for each registered customer. This table contains general customer

data, shipping preference, credit card data, and billing data (for customer accounts).
Some customers may prefer not to register; if so, they will have to enter the cus-
tomer details each time they place an order.

PRODUCT Contains product details such as stock IDs, prices, and quantity on hand.
PRODTYPE Identifies the main product type classifications.
ORDER Contains details about general orders, such as date, number, and customer.
ORDLINE Contains the products ordered for each order.

35547_AppI 1/18/2006 15:10:20 Page 254

254 A P P E N D I X I

TABLE
I.4

Main Tables for E-Commerce Database (continued)

SUPPORT TABLES
SHOPCART Contains the purchase quantity for each product selected by the customer. This is a

“working” table—whose contents are deleted when the customer exits the Web site
or closes the browser.

PMTTYPE Contains the different payment options offered by the merchant.
SHIPTYPE Contains the different shipping options offered by the merchant.
TAXRATE Contains the tax rate for each state and/or country.
STATE Contains the list of each state and/or country for which the tax is charged.
PROMOTION Includes special promotions such as vouchers and sales discounts.
PRICEWATCH Includes customers who want to be notified if a product's price reaches a

certain level.
PRODPRICE Is an optional table used to manage multiple price levels.

After defining the tables that are required to support the e-commerce activities, the basic attributes for each table are
identified. Note that the following attribute summary is only a sample of the most important—and most commonly
used—attributes; it is not meant to be comprehensive. (Your specific environment will determine what attributes are
relevant and/or what attributes might be added.)

I.8.1 The CUSTOMER Table

The CUSTOMER table contains the details for each registered customer. Keep in mind that some customers may
prefer not to register. They may feel uncomfortable providing registration information. Therefore, a decision will have
to be made about whether to require registration for all purchases.

� With mandatory registration, the Web site needs a form for registering new customers. Also, a login form is
required for returning customers before they start browsing the product catalog. Given the registration data, the
customer’s shipping and credit card data can be automatically placed in the order when the customer checks
out. (One of the benefits of registration is that customers may be rewarded with discounted prices.)

� With optional registration, there is no need to generate a registration or login form for each sale or visit. The
customer must enter all shipping and credit card information with each order.

Obviously, the simplest option is not to require registration. Therefore, the decision has been made here to make
registration optional. The main CUSTOMER table attributes are shown in Table I.5.

Note

To save space and to recognize your ability to translate the business rules into an ERD, which you learned in
Chapter 4, “Entity Relationship (ER) Modeling,” and Chapter 5 “Normalization of Database Tables,” you will not
develop the ERD for this design.

Note

The discussion will mention some programming and design practices that may be used to build e-commerce
Web sites. For example, because the data stored in the tables exist to support Web transactions, it would be
advisable to define some fields—such as product names or descriptions—for Web page display purposes. Also,
fields such as credit card numbers and passwords should be stored in an encrypted format. The fields
themselves also may be encrypted, thus making it unlikely that even a field's contents would be improperly
accessed. (Databases such as Oracle and IBM's DB2 support encryption.)

41199_AppI 11/20/2007 9:1:54 Page 255

255D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

TABLE
I.5

CUSTOMER Table

ATTRIBUTE NAME DESCRIPTION PK/FK
CUST_ID Customer ID—automatically generated PK
CUST_DATEIN Date the customer was added to the table
CUST_LNAME Last name
CUST_FNAME First name
CUST_ADDR1 Address line 1
CUST_ADDR2 Address line 2
CUST_CITY City
CUST_STATE State or region if international customer FK
CUST_ZIP Zip code
CUST_CNTRY Country
CUST_PHONE Phone
CUST_EMAIL E-mail address
CUST_LOGINID Login ID for registered customers
CUST_PASSWD Password for login—encrypted field
CUST_CCNAME Name as it appears on credit card
CUST_CCNUM Credit card number—encrypted field
CUST_CCEXDATE Credit card expiration date in mm/yy format
CUST_ACRNUM Accounts Receivable number—to interface with the internal accounts

receivable system or a reference PO number for clients set up for net
30 terms

CUST_BLLADDR1 Billing address line 1
CUST_BLLADDR2 Billing address line 2
CUST_BLLCITY Billing address city
CUST_BLLSTATE Billing address state FK
CUST_BLLZIP Billing address zip
CUST_BLLCNTRY Billing address country
SHIP_ID Favorite shipping type FK
CUST_SHPADDR1 Shipping address line 1
CUST_SHPADDR2 Shipping address line 2
CUST_SHPCITY Shipping address city
CUST_SHPSTATE Shipping address state FK
CUST_SHPZIP Shipping address zip
CUST_SHPCNTRY Shipping address country
CUST_TAXID Tax ID for tax-exempt customers
CUST_MBRTYPE Membership type—used to identify special promotions and to determine

product pricing according to membership level; for example, regular price,
member price, or gold member price

I.8.2 The PRODUCT Table

The PRODUCT table is the central entity in the database. The PRODUCT table contains the relevant product
information about all of the products offered on the Web site. This table (see Table I.6) is related to the PRODTYPE,
ORDLINE, and PROMOTION tables.

35547_AppI 1/18/2006 15:10:20 Page 256

256 A P P E N D I X I

TABLE
I.6

PRODUCT Table

ATTRIBUTE NAME DESCRIPTION PK/FK
PROD_ID Product ID—automatically generated PK
PROD_NAME Product short name—shown in promotions, invoices, and so on; for

example, Verbatim CD-R
PROD_DESCR Product description—a long description of the product; used in Web

pages for product information
PROD_OPTIONS Product options; for example, color, size, and style. (There are many ways

to handle sizes or colors for apparel and shoe industries; several of them
require separate product entries or the creation of other tables in 1:M
relationships.)

PROD_IMAGE_1 URL of the product’s image file; could occur many times (front view, back
view, side view, top view)

PROD_SKU Stock number used by the vendor or supplier
PROD_PARTNUM Part number from manufacturer; for example, VBTM 34563
VEND_ID Vendor—the vendor ID for the product; for example, Global Suppliers FK
PTYPE_ID Product type (category); for example, Storage FK
PROD_UNIT_SIZE Unit size of the product: box, case, each
PROD_UNIT_QTY Unit quantity in unit size: 12, 6, 1
PROD_QOH Quantity on hand in the warehouse per each product
PROD_QORDER Quantity on order—items that have been ordered but not yet shipped. To

determine if an item is in stock, subtract the quantity on order from the
quantity on hand.

PROD_REORD_LEVEL Reorder level—When the quantity on hand is equal to this amount, the
product is reordered.

PROD_REORD_QTY How much to reorder from the vendor
PROD_REORD_DATE Estimated date the order will arrive from the vendor
PROD_PRICE Regular price per unit quantity (each); for example, $1.05 per CD-R
PROD_MSRP Manufacturer’s suggested retail price—to show savings
PROD_PRICE_D1 Price discount 1—for members or order quantity level; for example, 3%
PROD_PRICE_D2 Price discount 2—for gold members or order quantity level; for

example, 6%
PROD_TAX Yes or No—Is the product taxable?
PROD_ALTER_1 Alternative product if not in stock. Could occur many times. This is a for-

eign key to the same product table. Again, this could be implemented by
creating another separate table in a 1:M relationship.

FK

PROD_PROMO Yes/No. Product participates in promotions? Default Yes.
PROD_WEIGHT Weight of product, used for shipping purposes
PROD_DIMEN Product dimensions, used for shipping purposes
PROD_NOTES Notes about the product, shipping, handling instructions, and so on.
PROD_ACTIVE Yes/No. If not active, the product is not available to customers. Useful to

recall products or to stop sales of a given product.

Generally, there is one row for each product. The exception is those products that come in various sizes, colors, or
styles, such as shoes and shirts. In those cases, there are three options, as follows:

� Enter the product’s size, color, and style as additional attributes in the order.

� Create unique product entries for each product size, color, and style combination.

� Create a new product option (PRODOPT) table in a 1:M relationship with the PRODUCT table. This table will
have one record for each combination of color, size, and style for a given product.

35547_AppI 1/18/2006 15:10:21 Page 257

257D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

I.8.3 The PRODTYPE Table

This table describes the different product categories. The categories could be limited to just one level or could be
multiple levels. In this example, two levels are used. This will permit the use of categories such as “printer”; within that
category, subcategories such as “laser” or “inkjet” could be referenced. (See Table I.7.)

TABLE
I.7

PRODTYPE Table

ATTRIBUTE NAME DESCRIPTION PK/FK
PTYPE_ID Product Type ID—automatically generated PK
PTYPE_NAME Product Type Name—”Inkjet Printer”
PTYPE_PARENT Product Type Parent—”Printer” FK

I.8.4 The ORDER Table

This table contains all of the customer orders. After the credit card company approves the transaction, the order is
added to the ORDER table. If the credit card is rejected (invalid number, expired, or stolen), the order is not added.
There will be one ORDER row for each new customer order, regardless of the number of products ordered. If a
registered customer places an order, the credit card and shipping information could be automatically entered in the
ORDER table. The ORDER table is in a 1:M relationship with ORDLINE table. (See Table I.8.)

TABLE
I.8

ORDER Table

ATTRIBUTE NAME DESCRIPTION PK/FK
ORD_ID Order ID—automatically generated PK
ORD_DATE Date the order was added
CUST_ID Customer ID (optional)—some customers will not register. If this were a

registered customer, the CUS_ID would be automatically added by the
Web system.

FK

PMT_ID Payment type ID—selected by the customer FK
ORD_CCNAME Name as it appears on credit card—copied from CUSTOMER data; manu-

ally entered by an unregistered customer or by electronic wallet software
ORD_CCNUM Credit card number (encrypted field)—copied from CUSTOMER data;

manually entered by an unregistered customer or by electronic wallet
software

ORD_CCEXDATE Credit card expiration date in mm/yy format—copied from CUSTOMER
data; manually entered by an unregistered customer or by electronic wallet
software

SHIP_ID Selected shipping type—automatically or manually entered; used when
only one company or shipment is used to fulfill the order

FK

ORD_SHIPADDR1 Shipping address line 1—automatically or manually entered
ORD_SHIPADDR2 Shipping address line 2—automatically or manually entered
ORD_SHIPCITY Shipping address city—automatically or manually entered
ORD_SHIPSTATE Shipping address state—automatically or manually entered FK
ORD_SHIPZIP Shipping address zip—automatically or manually entered
ORD_SHIPCNTRY Shipping address country—automatically or manually entered
ORD_SHIPDATE Date the order shipped if complete shipment. If partial shipment, see

ORDLINE for shipment dates for each product line.
ORD_SHIPCOST Total shipment cost—estimated shipment cost for order. This is the result of

applying a given shipment cost formula according to the shipment method.
ORD_PRODCOST Total product cost—the sum of all product prices * quantity ordered
ORD_TAXCOST Total cost of sales tax—computed by adding the taxes for each individual

product ORDLINE table

35547_AppI 1/18/2006 15:10:21 Page 258

258 A P P E N D I X I

TABLE
I.8

ORDER Table (continued)

ATTRIBUTE NAME DESCRIPTION PK/FK
PROM_ID Promotion ID applied to order (optional)
ORD_TOTCOST Total cost of order: PRODCOST + SHIPCOST + TAXCOST − PRO_AMT

(from promotion table)
ORD_TRXNUM Transaction confirmation number from credit card company
ORD_STATUS Status of the order: Open, Shipped, or Paid

I.8.5 The ORDLINE Table

This table contains one or more products related to each order. Each ORDLINE row is related to one PRODUCT row
and to one ORDER row. The ORDLINE contains the quantity and price for each product ordered. The ORDLINE table
gets the PROD_ID and ORL_QTY from the SHOPCART table. (See Table I.9.)

TABLE
I.9

ORDLINE Table

ATTRIBUTE NAME DESCRIPTION PK/FK
ORL_ID Order line ID—automatically generated PK
ORD_ID Order ID from ORDER table FK
PROD_ID Product ID FK
ORL_QTY Quantity ordered
ORL_PRICE Product price—after all promotions and discounts
ORL_TAX Percentage tax rate applied to this product. Some products or customers

may be tax-exempt. If the product/customer is taxable, the tax rate is
obtained according to the STATE in the shipping address.

SHIP_ID Shipping company and type used to ship this product—for cases in which
partial shipment is required

FK

ORL_SHIPDATE Date this product shipped

I.8.6 The SHOPCART Table

The SHOPCART table is a special table used by the Web site to store the products temporarily during the customer’s
shopping activities. To understand how the SHOPCART table works, you need to understand the online ordering
process.

� When a customer first visits the Web site, (s)he may or may not log in. If (s)he logs in, the Web server keeps
his/her customer ID (CUST_ID) in memory.

� The customer browses the product catalog. If the customer is registered, (s)he sees the member prices;
otherwise, (s)he sees regular prices (PROD_PRICE minus the respective discount percentage, PROD_
PRICE_D1 or PROD_PRICE_D2).

� A shopping cart is automatically assigned to the user the first time (s)he orders a product by clicking on the
“Add to Shopping Cart” or the “Order Now” button. A unique shopping cart ID is negotiated between the
client’s browser and the merchant’s Web server through use of a secure session. This ID lasts only until the
customer successfully checks out, cancels the order, exits the Web site, or closes the browser.

� The shopping cart stores the PROD_ID and the quantity for each product selected by the customer.

� When the customer clicks the “Check Out” button, an Order confirmation screen is shown. This screen shows
all of the product details for the product(s) placed in the shopping cart.

� When the customer accepts the order, (s)he is shown another screen in which to enter the shipping and
payment information. The customer then confirms the order.

35547_AppI 1/18/2006 15:10:21 Page 259

259D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

� After the customer has confirmed the order, the Web server requests a transaction confirmation from the credit
card company. The completion of this process may take from 10 to 60 seconds.

� Once the confirmation has been received, the ORDER data and the ORDLINE data are saved.

� The SHOPCART data are deleted.

The SHOPCART structure is shown in Table I.10.

TABLE
I.10

SHOPCART Table

ATTRIBUTE NAME DESCRIPTION PK/FK
CART_ID Shopping cart unique ID—automatically generated PK
CART_PROD_ID Product ID—a copy of the PROD_ID value. Because the SHOPCART table

has the potential of becoming a high-traffic table with many add and delete
operations, you do not want to relate it to the PRODUCT table for perfor-
mance reasons. Remember, these values will be automatically copied to the
ORDLINE table when the customer transaction is processed. However, a
relationship could be established if so desired.

CART_QTY Quantity ordered

I.8.7 The PMTTYPE Table

This table contains one row for each payment method accepted by the merchant. (See Table I.11.)

TABLE
I.11

PMTTYPE Table

ATTRIBUTE NAME DESCRIPTION PK/FK
PMT_ID Payment type ID—automatically generated PK
PMT_NAME Name: Visa, MasterCard, American Excess, Net30
PMT_MCHNT_ID Merchant ID—used by payment processing systems; given to the merchant

when it registers with a credit card company
PMT_NOTES Additional notes

I.8.8 The SHIPTYPE Table

This table contains one row for each shipping method supported by the merchant. (See Table I.12.)

TABLE
I.12

SHIPTYPE Table

ATTRIBUTE NAME DESCRIPTION PK/FK
SHIP_ID Shipping type ID—automatically generated PK
SHIP_NAME Name: UPS Next Day, UPS Three Days, FedEx Overnight, and so on.
SHIP_COST Shipping cost per weight unit—is dependent on the formula used by the

shipping company. Most are based on the shipping zip code and the size
and weight of the products being shipped. Therefore, it’s very likely that
you are going to need additional attributes in this table as you develop the
design.

SHIP_NOTES Additional shipping notes

35547_AppI 1/18/2006 15:10:21 Page 260

260 A P P E N D I X I

I.8.9 The TAXRATE Table

This table contains the different sales tax rates used in each state. Note that the sales tax is not applied to every order,
but only to orders in those states in which the merchant is required by the state to collect taxes on products sold in
the state. How is the sales tax requirement determined? Federal and state regulations determine the requirement.
Normally, the sales tax determination could be based on the shipping address. However, the customer billing address
or the credit card billing address may also be used for this purpose. This table is related to the STATE table. Also,
tax-exempt institutions are not charged tax. (See Table I.13.)

TABLE
I.13

TAXRATE Table

ATTRIBUTE NAME DESCRIPTION PK/FK
STATE_ID State ID from the STATE table—required PK, FK
TAX_RATE Percent sales tax rate applied—required
TAX_NOTES Additional notes, such as reason for the tax charge

I.8.10 The STATE Table

This table contains one entry for each state or country. This table is related to the TAXRATE table. The table may
contain modified entries for countries that use postal regions or other identifiers. This table can also contain a
COUNTRY field for businesses that have multinational offices. (See Table I.14.)

TABLE
I.14

STATE Table

ATTRIBUTE NAME DESCRIPTION PK/FK
STATE_ID State ID—automatically generated PK
STATE_NAME Name of the state—required

I.8.11 The PROMOTION Table

This table is used to represent special sales promotions. It contains one entry for each sale or promotion offered by
the merchant. All promotions have a start and end date. Some promotions apply to one product line or to a specific
product. Some promotions offer a percent discount; other promotions, such as vouchers, have a specific face amount.
You could combine the attributes shown in Table I.15 in many ways to represent different promotions.

TABLE
I.15

PROMOTION Table

ATTRIBUTE NAME DESCRIPTION PK/FK
PROMO_ID Promotion ID—automatically generated PK
PROMO_NAME Name of the promotion: Summer sale, Christmas sale, Voucher
PROMO_DATE Date the promotion was introduced
PROMO_BEGDATE Date promotion begins
PROD_ENDDATE Date promotion ends
PTYPE_ID Product type ID—optional

Type of product(s) affected by the promotion
FK

PROD_ID Product(s) affected by the promotion—optional FK
PROMO_MINQTY Minimum purchase quantity required for promotion—optional
PROMO_MAXQTY Maximum purchase quantity to which the promotion applies
PROMO_MINPUR Minimum total purchase cost required for promotion—optional
PROMO_PCTDISC Percent discount of promotion—optional
PROMO_DOLLAR Dollar amount of promotion—optional
PROMO_CEILING Maximum value of promotion (if percentage)—optional

35547_AppI 1/18/2006 15:16:39 Page 261

261D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

I.8.12 The PRICEWATCH Table

Many e-commerce Web sites offer a “pricewatch” service. This service sends an e-mail to a customer when the price
of a product is below or equal to a price that was preselected by the customer. The PRICEWATCH table implements
this feature. (See Table I.16.) A variation of this table can also be used for reverse bids.

TABLE
I.16

PRICEWATCH Table

ATTRIBUTE NAME DESCRIPTION PK/FK
PW_ID Pricewatch ID—automatically generated PK
PW_DATE Date and time when the row was inserted in the table
CUST_ID Customer ID—optional; service is to be offered to all prospective visitors as

well as registered customers
FK

PW_CUST_NAME Name of customer—required; manually entered or automatically copied
from CUSTOMER data

PW_CUST_EMAIL Customer e-mail—required; e-mail address to send e-mail notification
PW_ENDDATE Date the pricewatch stops—optional; customer has the option of entering

this date
PROD_ID The product for which the pricewatch is done—required FK
PW_LOWPRICE The price at which the customer wants to be informed; if the product price

is equal to or less than this value, the system will send an e-mail to the
customer.

I.8.13 The PRODPRICE Table

The PRODPRICE table is used to manage multilevel pricing. Some e-commerce sites offer multiple prices depending
on the order quantity. For example, if you purchase one to five (inclusive) pairs of shoes, the price per pair might be
$39.95. However, if you purchase six or more pairs, the price per pair might drop to $35.95. This table is in a 1:M
relationship with the PRODUCT table. (See Table I.17.) If multilevel pricing is used, the PROD_PRICE in the
PRODUCT table is not used.

TABLE
I.17

PRODPRICE Table

ATTRIBUTE NAME DESCRIPTION PK/FK
PROD_ID Product ID from the PRODUCT table PK, FK
PROD_QTYFROM Product purchase quantity minimum value—required; for example,

1 or 6 or 11
PK

PROD_QTYTO Product purchase quantity maximum revalue—required; for example, 5 or
10 or 9999

PK

PROD_PRICE Price for the quantity range—required

35547_AppI 1/18/2006 15:16:39 Page 262

262 A P P E N D I X I

K e y T e r m s

asymmetric or public-key
encryption, 247

authentication, 245

business to business (B2B), 234

business to consumer (B2C), 234

certification authority (CA), 245

content management, 243

database integration, 243

Data Encryption Standard
(DES), 247

denial-of-service, 250

digital cash, 251

digital certificate, 246

digital signature, 247

Domain Name Service (DNS), 240

dynamic Web page, 240

electronic commerce
(e-commerce), 230

Electronic Data Interchange
(EDI), 231

electronic mail (e-mail), 241

electronic wallet, 252

encryption, 246

encryption key, 247

Extensible Markup Language
(XML), 231

File Transfer Protocol (FTP), 241

firewall, 250

gateway server firewall, 250

government to business (G2B), 234

government to consumer
(G2C), 234

hacker, 249

hyperlink, 240

Hypertext Markup Language
(HTML), 240

Hypertext Transfer Protocol
(HTTP), 240

Internet, 240

intrabusiness, 234

intranets, 230

load balancing, 242

load testing, 242

messaging, 243

news and discussion group
services, 241

packet filter firewall, 250

personalization, 243

Pretty Good Privacy (PGP), 247

privacy, 244

private key, 247

proxy server firewall, 250

public key, 247

resource security, 249

router, 240

search services, 242

Secure Electronic Transaction
(SET), 252

Secure Hypertext Transfer Protocol
(S-HTTP), 248

Secure Sockets Layer (SSL), 247

security, 244

site monitoring and data
analysis, 242

state inspection firewall, 250

static Web page, 240

symmetric or private-key
encryption, 247

TCP/IP, 240

transaction processing, 243

Transport Layer Security (TLS), 248

Uniform Resource Locator (URL) or
Web address, 240

Usability-testing, 242

value chain, 235

virus, 249

Web browser, 240

Web caching, 242

Web development, 243

Web page, 240

Web server, 240

Web site, 240

wireless device support, 243

World Wide Web (WWW or
the Web), 240

R e v i e w Q u e s t i o n s

1. What does e-commerce mean, and how did it evolve?

2. Identify and briefly explain five advantages and five disadvantages of e-commerce.

3. Define and contrast B2B and B2C e-commerce styles.

4. Describe and give an example of each of the two principal B2B forms.

5. Describe e-commerce architecture; then briefly describe each of its components.

6. What types of services are provided by the bottom layer of the e-commerce architecture?

7. Name and explain the operation of the main building blocks of the Internet and its basic services.

8. What does business enabling do? What services layer does it provide? Give six examples of business-enabling
services.

9. What is the definition of security? Explain why security is so important for e-commerce transactions.

35547_AppI 1/19/2006 15:15:39 Page 263

263D A T A B A S E S I N E L E C T R O N I C C O M M E R C E

10. Give an example of an e-commerce transaction scenario. What three things should security be concerned with
in this e-commerce transaction?

11. You are hired as a resource security officer for an e-commerce company. Briefly discuss what technical issues you
must address in your security plan.

P r o b l e m s

1. Use the Internet at your university computer lab or home to research the scenarios described in Problems 1–10.
Then work through the following problems:

a. What Web sites did you visit?

b. Classify each site (B2B, B2C, and so on).

c. What information did you collect? Was the information useful? Why or why not?

d. What decision(s) did you make based on the information you collected?

2. Research—and document—the purchase of a new car. Based on your research, explain why you plan to buy
this car.

3. Research—and document—the purchase of a new house.

4. You are in the market for a new job. Search the Web for your ideal job. Document your job search and your job
selection.

5. You need to do your taxes. Download IRS form 1040 and look for online tax processing help, documenting your
search.

6. Research the purchase of a 20-year level term life insurance policy and report your findings.

7. Research—and document—the purchase of a new computer.

8. Vacation time is almost here! Research—and document—the destination(s) and activities of next summer’s
vacation.

9. You have some money to invest. Research—and document—mutual funds information for investment purposes.
Report your investment decision(s) based on the research you conduct.

35547_AppI 1/18/2006 15:23:6 Page 264

264 A P P E N D I X I

Preview

Web Database Development with ColdFusion

This appendix examines the basics of Web database development with ColdFusion, an

important Web application server tool for creating Web database front ends.This appendix

also explores some of the reasons why and how Web application development differs from

more traditional database application development.

J

A
P

P
E

N
D

I
X

41199_AppJ 1/7/2008 14:4:53 Page 265

J.1 USING A WEB-TO-DATABASE PRODUCTION TOOL: COLDFUSION

To understand how Web-to-database interfaces work, you need to know how they are created and to see them in
action. In this section, you have a chance to try Adobe ColdFusion, one of a new breed of products known as
Web application servers. A Web application server is a middleware application that expands the functionality of
Web servers by linking them to a wide range of services, such as databases, directory systems, and search engines.
The Web application server also provides a consistent run-time environment for Web applications.

ColdFusion application middleware can be used to:

� Connect to and query a database from a Web page.

� Present database data in a Web page using various formats.

� Create dynamic Web search pages.

� Create Web pages to insert, update, and delete database data.

� Define required and optional relationships.

� Define required and optional form fields.

� Enforce referential integrity in form fields.

� Use simple and nested queries and form select fields to represent business rules.

ColdFusion has several important characteristics:

� It is a powerful and stable software product that can be used to produce and support even the most complex
Web-to-database access solutions.

� In spite of its power, it is a developer- and user-friendly product. ColdFusion has a strong and growing
corporate presence. Using ColdFusion, you can get some hands-on experience with the Web-to-database
environment, while improving the marketability of your knowledge.

� Adobe offers a free 30-day evaluation version of the latest ColdFusion software, which can be downloaded
from www.adobe.com. Because ColdFusion includes a complete set of online documentation with full working
demo applications that illustrate all of the functionality of the product, you will incur no documentation charges.

ColdFusion is, of course, not the only player in the Web application server market. Some of the many other Web
application servers, as of this writing, include Oracle Application Server by Oracle Corporation, WebLogic by BEA
Systems, NetDynamics by Sun Microsystems, NetObjects’ Fusion, Microsoft’s Visual Studio.NET, and WebObjects
by Apple.

Web application servers provide features such as:

� An integrated development environment with session management and support for persistent application
variables.

� Security and authentication of users through user IDs and passwords.

� Computational languages to represent and store business logic in the application server.

� Automatic generation of HTML pages integrated with Java, JavaScript, VBScript, ASP, and so on.

� Performance and fault-tolerant features.

Note

Although ColdFusion has a wide range of features, the purpose of this section is to show you how to create and
use a simple, yet useful Web-to-database interface. You can learn additional ColdFusion features by tapping into
its detailed and well-organized online documentation (www.adobe.com).

41199_AppJ 1/7/2008 14:23:37 Page 266

266 A P P E N D I X J

� Database access with transaction management capabilities.

� Access to multiple services, such as file transfers (FTP), database connectivity, e-mail, and directory services.

All of these products offer the ability to connect Web servers to multiple data sources and other services. These
products vary in terms of the range of available features, robustness, scalability, ease of use, compatibility with other
Web and database tools, and extent of the development environment.

J.1.1 HOW COLDFUSION WORKS

ColdFusion has been described as a full-fledged Web application server that provides hooks to databases, e-mail
systems, directory systems, search engines, and so on. To do its job, ColdFusion provides a server-side markup
language (HTML extensions, or tags) known as the ColdFusion Markup Language (CFML), which is used to create
ColdFusion application pages known as scripts. A script is a series of instructions executed in interpreter mode. The
script is a plain-text file that is not compiled like COBOL, C++, or Java. ColdFusion scripts contain the code that is
required to connect, query, and update a database from a Web front end.

ColdFusion scripts contain a combination of HTML, ColdFusion tags, and when necessary, Java, JavaScript, or
VBScript. ColdFusion tags start with <CF and may include an opening and closing component such as <CFQUERY>
(begin a query) and </CFQUERY> (end a query). ColdFusion scripts are saved in files with .cfm extensions. When a
client browser requests a .cfm page from the Web server, the ColdFusion application server executes the .cfm script
instructions and sends the resulting output—in HTML format—to the Web server. The Web server then sends the
document to the client computer for display. Figure J.1 shows the application server components and actions.

FIGURE
J.1

How ColdFusion works

CLIENT
COMPUTER

HTML
PAGE

The result of the
database query is

displayed in
HTML format

HTTP
page

request

Web server
receives
request

SCRIPT
PAGE

HTML
PAGE

COLDFUSION
APPLICATION SERVER

Web server
sends the HTML-
formatted page to

the client ColdFusion sends
HTML-formatted document

to the Web server

ColdFusion
processes the

script page and
connects to the

requested service
DATABASE

SERVER

E-MAIL
SYSTEMS

DIRECTORY
SYSTEMS

FILE
SYSTEMS

COM/DCOM

WEB
SERVERS

Services can reside
in the same computer
or in other computers

on a network

SERVER
COMPUTER

TCP/IP
NETWORK

NETWORK

OTHER
SERVICES

WEB
BROWSER

1

3

2

5

4

6

OLE-DB
ODBC

41199_AppJ 11/26/2007 10:8:29 Page 267

267W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

J.1.2 THE ORDERDB SAMPLE DATABASE

To illustrate how ColdFusion can be used to provide the Web-to-database interface, a small Microsoft Access database
named Orderdb will be used. The following sections will guide you through the creation of several ColdFusion scripts
designed to select, insert, update, and delete data from the Orderdb database.

The Orderdb database, whose relational diagram is shown in Figure J.2, was designed to track the purchase orders
placed by users in a multidepartment company.

Note

To focus your efforts on the use of CFML to access databases, these exercises assume that you are familiar with
basic HTML tags and the HTML editing process. The examples shown in this chapter can be created using any
standard text editor such as Notepad.exe.

FIGURE
J.2

The Orderdb database’s relational diagram

Note

The database and script files used in this appendix are located on the Student Online Companion for this book.
The database name is orderdb.mdb. Note that this database has been saved in MS Access 2000 format. Please
do not change the database format to a newer version. Unless you have the latest MS Access ODBC/OLE
drivers, changing the format could render the database inaccessible to the ColdFusion scripts. The orderdb.mdb
is accessed using the ODBC data source name ‘RobCor’.

41199_AppJ 11/28/2007 8:20:57 Page 268

268 A P P E N D I X J

As you examine Figure J.2, note that the database contains the following tables: USER, DEPARTMENT, VENDOR,
INVTYPE, ORDERS, and ORDER_LINE. The relationships between the tables are derived from the following
business rules:

� A department employs many users.

� A department may be managed by one of those users.

� Each user belongs to one department, and each department can have many users.

� Each department may have a department manager. (That is, a department manager is optional.)

� Each order is placed to only one vendor, and each vendor can receive many orders.

� Each order contains one or more order lines.

� Each order line refers to one inventory type.

USER_1 is a virtual component created by MS Access when multiple relationships between USER and DEPART-
MENT are set. MS Access created the USER_1 virtual table to represent the “USER manages DEPARTMENT”
relationship. This is a one-to-one optional relationship, thus allowing the USR_ID field in the DEPARTMENT table to
be null. (This relationship will be used to illustrate how you can manage optional relationships within a Web interface.)

J.1.3 CREATING A SIMPLE QUERY WITH CFQUERY AND CFOUTPUT

Let’s begin by creating a simple script to produce a query that will list all of the vendors in the VENDOR table. This
script will perform two tasks:

1. Query the database, using standard SQL to retrieve a data set that contains all records found in the VENDOR table.

2. Format all of the records generated in Step 1 in HTML so they are included in the page that is returned to the
client browser.

Script J.1 contains the required code.

As you examine Script J-1 (rc-1.cfm), note that its ColdFusion tags are CFQUERY (to query a database) and
CFOUTPUT (to display the data returned by the query). Note that the CFML and HTML tags are shown in different
colors. Let’s take a closer look at these two CFML tags.

� <CFQUERY> tag (lines 4−6). This tag sets the stage for the database connection and the execution of the
enclosed SQL statement. You should include all query statements before or within the document’s HTML
header (<HEAD>) section. Using that procedure, the page will display the output on the client side after all
queries have been executed. If you do not use that procedure, the browser will be perceived as “slow” because
the page will start to display output and then pause to wait for additional data to arrive from the Web server.
The CFQUERY tag requires the following parameters:

- NAME = “queryname”. This is a mandatory parameter, whose name uniquely identifies the record set
returned by the database query—in this case, venlist. You can have multiple queries, each with a unique
name, in a single script.

- DATASOURCE = “datasourcename”. This, too, is a mandatory parameter that uses the database name
as defined in ODBC. Keep in mind that the database name is case sensitive. Therefore, if the database name

Note

If you install the ColdFusion demo, you can run this script (and all subsequent scripts) by pointing the browser
to the Web server address. For example, if your computer is the Web server, you can use http://127.0.0.1/
robcor/rc-1.cfm as your Web address. If your Web server is a different computer selected by your instructor, use
the address supplied by your instructor. You can also access a menu for all ColdFusion scripts by going to
http://127.0.0.1/robcor.

41199_AppJ 11/26/2007 10:10:41 Page 269

269W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

is “RobCor,” do not use “ROBCOR” or “robcor.” You use the ColdFusion Administrator interface to define
all data sources. Data sources can use ODBC, a native driver such as Oracle SQL*Net, or Microsoft OLE-DB
(object linking and embedding).

- SQL statement (line 5) is another mandatory parameter. In this case, the parameter is defined by the
following query, but you could use any ODBC SQL-compliant statement:

SELECT * FROM VENDOR ORDER BY VEN_CODE

� <CFOUTPUT> tag (lines 15–17 and 18–35). This tag is used to display the results from a CFQUERY or to
call other ColdFusion variables or functions. Its parameters are:

- QUERY = “queryname”. This is an optional parameter (see line 18). If you use a query name for a query
that returns 10 rows, this tag will execute all commands between the opening and closing CFOUTPUT tags
10 times—one per row. In short, this tag works like a loop that is executed as many times as the number
of rows in the named query set.

- You can include any valid HTML tags or text within the opening and closing CFOUTPUT tags. ColdFusion
uses pound signs (#) to reference query fields in the resulting query set or to call other ColdFusion functions
or variables. When ColdFusion encounters a name enclosed within pound signs, it evaluates this named
variable to verify that it is a field name of the named query, an internal variable, or a function. Following

SCRIPT
J.1

A simple query using CFQUERY and CFOUTPUT (rc-1.cfm)

41199_AppJ 1/11/2008 11:4:12 Page 270

270 A P P E N D I X J

this evaluation, ColdFusion will replace the named variable with the value that corresponds to the query, the
internal variable, or the function. In this case, line 16 is a call to a ColdFusion internal variable. When the
query is executed, this variable’s value is the number of rows in the query output. The name of the query
must precede the RecordCount keyword, and the two components must be separated by a period. For
example, #venlist.RecordCount# is used to name the variable in line 16.

- Lines 19−34. These lines are repeated as a loop, one for each record returned in the named query. In this
example, the loop is defined by QUERY = “venlist”. Note that in lines 20−33, the field names (enclosed
in pound signs) will be replaced by the actual values of the fields that are returned by the query.

The output produced by rc-1.cfm is shown in Figure J.3.

A variation of the just-described approach is found in Script J.2 (rc-2.cfm), in which the output is preformatted (using
the HTML <PRE> tag) one row per record, using the CFOUTPUT tag.

FIGURE
J.3

The rc-1.cfm script output (vertical listing)

41199_AppJ 11/26/2007 10:8:31 Page 271

271W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

The output of script rc-2.cfm is shown in Figure J.4.

SCRIPT
J.2

CFQUERY with tabular CFOUTPUT (rc-2.cfm)

41199_AppJ 11/26/2007 10:8:31 Page 272

272 A P P E N D I X J

J.1.4 CREATING A SIMPLE QUERY WITH CFQUERY AND CFTABLE

As you can see in Figure J.4, the output produced by CFOUTPUT is not aligned. To give the output a more polished
look, the vendor list can be displayed in tabular format, based on the CFTABLE tag. That tag will automatically create
a tabular output in which each row in the data set is placed in a row in the table. The source code for this example
is stored in Script J.3 (rc-3.cfm).

The output of script rc-3.cfm is shown in Figure J.5.

The rc-3.cfm script’s CFTABLE ColdFusion tag contents are as follows:

� <CFTABLE> tag (line 16). This tag, used to display the results from a CFQUERY (lines 4–6) in a tabular
format, requires the following parameters:

- QUERY = “queryname”. A required parameter that uses the name of the query that generated the data set
to be displayed in tabular format.

- STARTROW = “1”. An optional parameter that is used to tell ColdFusion which query row will be the
table’s first row. This parameter is particularly useful when your query returns many rows and you do not
want to display them all in one long page. Instead, you can display them in multiple pages, each page
displaying the number of rows defined by the parameter. For example, if you want to list 10 rows per page,
the starting row will be 1 for the first page, 11 for the second page, 21 for the third, and so on.

- COLSPACING = “1”. An optional parameter that is used to define the number of spaces to be placed
between columns.

- COLHEADERS. An optional parameter that will make the first row in the table a row header. This row
header contains the name of each column, using the values defined in the CFCOL tags.

FIGURE
J.4

The rc-2.cfm script output (horizontal listing)

41199_AppJ 11/26/2007 10:12:15 Page 273

273W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

SCRIPT
J.3

CFQUERY with CFTABLE (rc-3.cfm)

FIGURE
J.5

The rc-3.cfm script output (formatted horizontal listing)

41199_AppJ 11/26/2007 10:12:16 Page 274

274 A P P E N D I X J

� The CFCOL tag (lines 17–29) is used to define each table column, using the following parameters:

- HEADER = “header text”. This is the header text that will appear in the table’s header row for each of
the displayed columns. The header text can include HTML tags.

- WIDTH = “x”. This parameter defines the column width.

- TEXT = “#queryfieldname#”. This is the actual value to be placed in the selected column. For example,
line 17 will cause ColdFusion to replace #VEN_CODE# with the actual values retrieved by the query for
this field.

J.1.5 CREATING A DYNAMIC SEARCH PAGE

At this point, you have seen how the CFQUERY, CFOUTPUT, and CFTABLE tags are used to send the SQL statement
to the database to retrieve a data set. Given the script files used thus far, the query will always retrieve the same records
from the VENDOR table. (Because the SQL statement is “hard-coded” inside the page, it cannot be changed unless
the SQL code is manually edited each time it is to be used to generate a different query output.) Such a static output
display clearly limits the query’s usefulness.

To create a practical dynamic query environment, you can create a dynamic search query in which the query search
condition can be changed at the user’s option—without requiring script page editing. To demonstrate the process, two
fields, vendor code and vendor state, will be used to search for user-specified vendor records. (Naturally, you can create
a search form that uses as many fields as you think are necessary.)

To perform a dynamic query over the Web, you must complete these two steps:

1. Create a script that will generate a form that will be used to enter the criteria used in the search. In other words,
the form allows the user to enter the parameter values that are to be used in the query statement.

2. Create a script that will execute the query and display the results based on the parameters that are passed to
it by the script created in Step 1.

The script required to complete Step 1 is listed in Script J.4A (rc-4a.cfm).

41199_AppJ 11/27/2007 10:51:32 Page 275

275W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

SCRIPT
J.4A

Dynamic search query: criteria-entry form (rc-4a.cfm)

41199_AppJ 11/26/2007 10:13:33 Page 276

276 A P P E N D I X J

The rc-4a.cfm script output is shown in Figure J.6.

As you examine Figure J.6, note that the rc-4a.cfm script generates a form in which the user enters the search
parameters. Let’s follow the rc-4a.cfm script to see how it works.

� In lines 2−4, all existing values are retrieved from the VEN_STATE field in the VENDOR table. This query
effectively tells you what states are represented in the vendor table. If no vendor is listed for a given state, that
state will not be shown in the returned data set. This query is named “STATELIST”, and it will be used later
in your form.

� In lines 12–32, the form is defined. Note that when the user clicks the “submit” button, the rc-4b.cfm script
(shown later) will be called to receive the form’s variables, VEN_CODE and VEN_STATE.

� Line 17 presents the first input text box to let the user enter a value for the VEN_CODE form variable. This
value will be used in the SQL statement to search for all records with matching VEN_CODE values.

� Lines 21–26 create a drop-down SELECT box to let the user pick the state to be used in the vendor table
query. This selection will later be passed to the rc-4b.cfm script.

� In lines 23–25, the CFOUTPUT tag is used to build the selection options, using the states that occur in the
VENDOR table. The default (“SELECTED”) option shown in line 22 gives the user the ability to search without
selecting any particular state. If line 22 is not included, there will be no way to limit the search to only a vendor
code, nor will the user be able to display all vendors from all states. To limit the search, the VEN_STATE form
field must have the option to contain a null “value.” In short, line 22’s default condition provides crucial
flexibility.

FIGURE
J.6

The rc-4a.cfm script output (state search criteria entry form)

41199_AppJ 11/26/2007 10:13:34 Page 277

277W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

When the user clicks the Search button, the rc-4b.cfm script is executed, and the two form variables (VEN_CODE and
VEN_STATE) are passed to the rc-4b.cfm script. The rc-4b.cfm script is shown in Script J.4B.

SCRIPT
J.4B

The VENDOR search results (rc-4b.cfm)

41199_AppJ 11/26/2007 10:13:34 Page 278

278 A P P E N D I X J

The rc-4b.cfm script output is shown in Figure J.7.

As you examine Script J.4B (rc-4b.cfm,) note how it references the form variables received from the calling script
(rc-4a.cfm) and how it uses the CFIF tag to dynamically build SQL statements. Let’s take a closer look at this script.

� Lines 2–13 are used to create the SQL statement and to query the database.

� Line 5 creates a dummy WHERE clause that will be used to anchor the query’s conditional criteria. The “0=0”
conditional criterion is the default condition that will list all records. This line is required to form the basis for
additional conditions, using SQL’s logical operators. Naturally, if no additional conditions are specified, the
default value ensures that the query will list all records.

� Lines 6–8 use a CFIF tag to evaluate the VEN_CODE form field passed from the calling page. (In this case,
the rc-4a.cfm script created the calling page.) If the field specified in line 6 is not null (““), the condition
specified in line 7 is added to the query.

� Lines 9–11 use the CFIF tag to evaluate the VEN_STATE form field passed from the calling page (rc-4a.cfm).
If this field is not “ANY”, line 10 adds the “state” condition to the query. (Remember that “ANY” is the default
selection for the rc-4a.cfm script’s VEN_STATE field.) This default selection ensures that it is not necessary to
search for any specific state. Therefore, the user can select a state to limit the query output to that state, or
by not selecting a state, the user can generate the query output for all states.

� Lines 22–30 indicate that the CFTABLE and CFCOL tags are used to display the query result set in a tabular
format.

� Finally, a CFIF statement is used to evaluate the number of records in the resulting record set and to display
the appropriate message. For example, line 31 ensures that the “No records were found matching your
search criteria” message is displayed in line 32 if the record set returns zero (0) rows. If the record count is
not zero, line 34 generates a message that indicates the number of records returned in the query result set.

FIGURE
J.7

The rc-4b.cfm script output (vendor search results: all states)

41199_AppJ 11/26/2007 10:13:34 Page 279

279W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

Figure J.8 shows the output for a dynamic search based on Vendors for the condition VEN_STATE = “GA”.

The dynamic search process clearly makes the Web a viable end-user information-generation tool. However, to
conduct transactions, you must be able to modify the database’s table contents. (For example, if you make a
withdrawal from inventory, you must be able to update the inventory table; if you make a purchase, you must be able
to generate an invoice record; and so on.) Therefore, the focus now will be on the basic procedures that may be used
to insert, update, and delete data through Web interfaces. Before you can develop Web-based transaction applications,
you need to know why and how the shortcomings of HTML and browsers affect data manipulation activities. Those
shortcomings are a function of the Web’s basic structure, which is often described as a so-called stateless system.

J.1.6 THE WEB AS A STATELESS SYSTEM

The Web is said to be a stateless system. Simply put, the label stateless system indicates that at any given time, a
Web server does not know the status of any of the clients communicating with it. That is, there is no open
communication line between the server and each client accessing it, which, of course, is impractical in a worldwide
Web! Instead, client and server computers interact in very short “conversations” that follow the request-reply model.
For example, the browser is concerned only with the current page, so there is no way for the second page to know
what was done in the first page. The only time the client and server computers communicate is when the client requests
a page—when the user clicks a link—and the server sends the requested page to the client. Once the client receives

FIGURE
J.8

The vendor list for the condition VEN_STATE = “GA”

41199_AppJ 11/26/2007 10:12:18 Page 280

280 A P P E N D I X J

the page and its components, the client/server communication is ended. Therefore, although you may be browsing a
page and think that the communication is open, you are actually just browsing the HTML document stored in the local
cache (temporary directory) of the client browser. The server does not have any idea what the end user is doing with
the document, what data is entered in a form, what option is selected, and so on. On the Web, if you want to act on
a client’s selection, you need to jump to a new page (go back to the Web server), therefore losing track of whatever
was done before!

Not knowing what was done before (or what a client selected before getting to this page) makes adding business logic
to the Web cumbersome. For example, suppose you need to write a program that performs the following steps: display
a data-entry screen, capture data, validate data, and save data. That entire sequence can be completed in a single
COBOL program because COBOL uses a working storage section that holds in memory all variables used in the
program. Now imagine the same COBOL program—but each section (PERFORM statement) is now a separate
program! That is precisely how the Web works. In short, the Web’s stateless nature means that extensive processing
required by a program’s execution cannot be done directly through a single Web page; the client browser’s processing
ability is limited by the lack of processing ability and the lack of a working storage area to hold variables used by all
pages on a Web site.

Keep in mind that a Web browser’s function is to display a page on the client computer. The browser—through its use
of HTML—does not have computational abilities beyond formatting output text and accepting form field inputs. Even
when the browser accepts form field data, there is no way to perform immediate data entry validation. Therefore, to
perform such crucial processing in the client, the Web defers to other Web programming languages such as Java,
JavaScript, and VBScript. The browser most resembles a dumb terminal that displays only data and can perform only
rudimentary processing such as accepting form data inputs. Most of the processing takes place at the server end—in
this case, the Web application server.

To circumvent the above-mentioned shortcomings of the Web environment, most Web application servers have session
management capabilities that allow a Web server to maintain status information for each client session in the server’s
memory. Each Web server vendor has its own way to maintain that information. In the case of ColdFusion, session
variables are declared using the <CFSET session.variablename=value> command syntax. For example, to declare a
user-type session variable, you would say, <CFSET session.usertype = “ADMIN”>. Then the variable would be
available to all pages in the same client session. The client session starts the first time the client’s browser connects to
the Web server; it ends when the client accesses a page outside the Web site, closes his/her browser, or stays idle for
a given time-out period.

J.1.7 INSERTING DATA

In this section, you will create a data entry form to insert data in the DEPARTMENT table. In the following example,
the DEPARTMENT table contains three fields: department ID and department description, which are required, and an
optional manager user ID that references the USER table. Of course, if the user enters a user ID, that ID must match
a user ID in the USER table. Given that basic scenario, let’s see how ColdFusion can be used to establish basic
server-side data validation for the required fields and how ColdFusion can implement and manage data entry for an
optional relationship.

At least two pages are needed to accomplish the just-described tasks. The first page, generated by a script named
rc-5a.cfm, creates a form to get the data. The second page, generated by a script named rc-5b.cfm, inserts the data
in the table. Data validation will take place at the server side. Let’s first look at script J.5A (rc-5a.cfm). The script is
followed by its output in Figure J.9.

41199_AppJ 11/26/2007 10:18:7 Page 281

281W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

The rc-5a.cfm script produces a data entry form to enable the end user to enter the new department data. To show
you how the form works, let’s add a new Transportation department (TRANS) and assign a manager to run the
department. The rc-5a.cfm script is designed to perform a data validation check in the USR_ID field, using a query and
a select box. To see how the script accomplishes those tasks, let’s look at some key lines, as follows:

� Lines 4–9 execute a nested query to find all user IDs for employees who are not already department managers.
Performing this portion of the data validation procedure ensures that there are no duplicate user IDs in the
DEPARTMENT table. Therefore, it will not be possible to have a manager manage more than one department.
Also, because a department might not yet have a manager assigned to it, the USR_ID might not have a value
in it. To perform the requisite checks, start with a nested query, using the USR_ID > 0 condition. This
condition will be true only for those records in which a manager (USR_ID) exists.

SCRIPT
J.5A

Insert query—data entry (rc-5a.cfm)

41199_AppJ 11/26/2007 10:18:31 Page 282

282 A P P E N D I X J

� Lines 14–34 define the form that will be used to enter the data. Note that the rc-5b.cfm script will be called
when the user clicks the Add Record button.

� Lines 16 and 17 are special form tags ColdFusion uses to perform data validation at the server side. In this
case, the entries will be validated for the two required fields, the department identification code (DEPT_ID) and
the department description (DEPT_DESC). This task is performed by using an INPUT form tag with the
following parameters:

- TYPE = “hidden”. This parameter ensures that the field will not be displayed on the screen.

- NAME = “fieldname_required”. This parameter specifies the field to be checked, followed by the word
_required. Other parameter options are:

• _integer to check for integer values only.

• _date to check for valid dates only in the format mm/dd/yy.

• _range to check for a value within a range. The range is given in the value = parameter; for example,
value = “MIN=10 MAX=20”.

- VALUE = “error message”. This parameter contains the error message to be displayed when the constraint
is violated (in this case, when the field is empty). When the parameter type = _range, this field contains the
maximum and minimum values used in the validation.

� Lines 25–30 create a drop-down select box to show all of the available users who can be selected as
department manager. Note in particular the following lines:

- Line 26 defines a null option, represented on the screen by a dotted line to indicate that the department
does not have a manager assigned. This line implements the optionality of the USR_ID field. If this line is
not included, there will be no way to assign a null to the USR_ID field.

- Lines 27–29 generate a list of all users who are eligible to manage the new department. Remember that
the USRLIST query returns only the USR_ID of users who are not already in the DEPARTMENT table. In
other words, the USRLIST query lists only those users who are still available to become department
managers. (Remember that the business rule specifies that a manager can manage only one department.)

FIGURE
J.9

Insert query—data entry screen (rc-5a.cfm)

41199_AppJ 1/7/2008 14:45:50 Page 283

283W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

When the user clicks the Add Record button, the form is sent to the Web server for processing. There, ColdFusion
will evaluate the required fields, sending an error message if one of the required fields is empty. (See Figure J.10.)

If the server-side data validation yields the conclusion that the data entry is valid, the second script, rc-5b.cfm, is
executed. This script receives the form fields from the rc-5a.cfm script and uses the CFINSERT tag to add the record
to the database. Once the record has been added, the rc-5b.cfm script presents a confirmation screen to the end user.

Script rc-5b.cfm (Script J.5B) is shown next. The execution of the rc-5b.cfm script is shown in Figure J.11.

FIGURE
J.10

Server-side validation error message

SCRIPT
J.5B

Insert query—result confirmation (rc-5b.cfm)

41199_AppJ 11/26/2007 10:21:55 Page 284

284 A P P E N D I X J

To see how the rc-5b.cfm script uses the CFINSERT tag to add the record to the database, check line 5. Note that this
tag uses the following two parameters:

� DATASOURCE = “datasource_name” (the name of the ODBC database connection).

� TABLENAME = “table_name” (the name of the table to be updated).

How does the CFINSERT tag know what fields to insert in the table? And where does it get the values to insert into
the table columns? The answer to both questions is found by examining the rc-5b.cfm script CFINSERT tag. That tag
uses the field names that were defined on the form generated by the rc-5a.cfm script. Recall that the rc-5a.cfm script
produced a form containing the DEPT_ID, DEPT_DESC, and USR_ID fields. The CFINSERT tag compares those
form field names with the names of the table columns in order to do the insert. To avoid an error condition, the form
that was created in the calling page must have form field names that match the table column names.

The MS Access database enforces entity integrity for the Orderdb database’s DEPARTMENT table. Therefore, entering
an existing department ID on the input form automatically triggers an ODBC database integrity violation error, as

FIGURE
J.11

Insert query—result confirmation screen

User enters data on the department
data entry form.

Manager is selected from a drop-down
select list.

ColdFusion validates the data and inserts
the new record in the database.

41199_AppJ 11/26/2007 10:22:35 Page 285

285W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

shown in Figure J.12. (Remember that entity integrity is violated when a primary key value is duplicated; your error
message may look slightly different depending on your version of ColdFusion.)

FIGURE
J.12

ODBC integrity violation error

Trying to add an already existing department
causes an ODBC database integrity constraint
violation error message to be displayed.

41199_AppJ 11/26/2007 10:23:24 Page 286

286 A P P E N D I X J

J.1.8 UPDATING DATA

Data updates require multiple pages. For example, if you want to produce a simple update in the DEPARTMENT
table’s records, the update process requires three different pages.

� The first page, produced by the rc-6a.cfm script, lets the end user select the record to be updated. When the
user clicks this page’s Edit button, the second page, produced by the rc-6b.cfm script, is called and the first
page’s search field value is passed to the second page. (To keep the process as simple as possible, the primary
key, DEPT_ID, will be used to ensure a unique match. If you use secondary search fields, you may find more
than one record. You would need to use an additional page to select one of the multiple records to generate
a unique match.)

� The second page (rc-6b.cfm) reads the selected record, then displays a data entry form to let the end user
modify the data. When the end user clicks the Update button, this page calls the third script and passes the
second page’s form fields to the third page.

� The third and last page, generated by the rc-6c.cfm script, updates the data in the database and presents a
confirmation message to the end user.

Although this process seems simple enough, several issues must be addressed, as you will see next. Let’s begin by
taking a close look at Script J.6A (rc-6a.cfm). The rc-6a.cfm script output is shown in Figure J.13.

SCRIPT
J.6A

Update query—record selection (rc-6a.cfm)

41199_AppJ 1/7/2008 14:46:3 Page 287

287W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

The rc-6a.cfm script produces the form that lets the end user select the record to be updated. This record selection
process requires the completion of the following steps:

� Lines 4–6 execute a query (“Deptlist”) to retrieve all DEPARTMENT table records. This record set will be used
later to create a drop-down selection box.

� Lines 17–19 use a CFOUTPUT tag to produce a list of available options. In this example, ColdFusion uses an
OPTION tag for each department in the “Deptlist” query.

� Lines 15–25 produce the record selection form. This form uses an HTML form tag to pick the department to
be updated.

� Line 21 defines the “DEPT_ID” form field to be a required field. This definition ensures that the end user will
not generate “variable not defined” errors when the next page is called.

When the end user clicks the form’s Edit button, the rc-6b.cfm script is called. The rc-6b.cfm script will receive the
DEPT_ID form field as a parameter, using it to find the matching department table record. It will then prepare and
display the data edit form.

FIGURE
J.13

Update query—record selection screen

41199_AppJ 11/26/2007 10:23:25 Page 288

288 A P P E N D I X J

The script rc-6b.cfm is shown next in Script J.6B. The rc-6b.cfm script output is shown in Figure J.14.

SCRIPT
J.6B

Update query—edit record (rc-6b.cfm)

41199_AppJ 11/26/2007 10:23:26 Page 289

289W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

As you compare the rc-6b.cfm script and the sequence shown in Figure J.14, note that the script generates the
following actions:

� Lines 4–6 read the Department data, using the “#form.DEPT_ID#” parameter received from the rc-6a.cfm
script.

� Lines 7–13 specify and execute a key query. When a new department is to be inserted, the “USRLIST” query
lists all users who are not already managers of a department. This query applies only to new record inserts; it
cannot be used to edit an existing record.

To see why it is necessary to modify the original USRLIST query, let’s suppose that USR_ID = 13 is the current ACTG
department’s manager. If you try to edit the ACTG department record using the original USRLIST query, the list of
“available users” will yield all users who are not already in the DEPARTMENT table. Therefore, because the ACTG
department’s current manager is listed in the DEPARTMENT table’s USR_ID column, the current manager will not
appear on the list of users who are available as ACTG department manager. In short, if you try to edit (update) a record

FIGURE
J.14

Update query—edit record screen

This form enables the end user to assign a new
manager to the transportation department.

Note that the existing manager appears as the
default selection.

41199_AppJ 1/7/2008 14:46:28 Page 290

290 A P P E N D I X J

using the original USRLIST query, you will be forced to select a manager other than the current one. That is clearly
not what’s intended!

To avoid the just-described dilemma, the nested query criteria of the USRLIST query must be modified to exclude the
“to be edited” department’s DEPT_ID from the subquery. Therefore, line 11 specifies the nested query criteria to be
WHERE USR_ID > 0 AND DEPT_ID <> ‘#form.DEPT_ID#’.

Given that modification, the ACTG department’s current manager (USR_ID = 13) will appear on the list of available
user IDs.

� Lines 19–40 produce the user edit form. This form allows the end user to modify only two DEPARTMENT
table fields: department description (DEPT_DESC) and department manager (USR_ID).

- Because the DEPT_ID is the DEPARTMENT table’s primary key, the end user cannot be allowed to
modify its value. The reason for this restriction is simple. Suppose that the end user edits the ACTG
department, that is, the DEPT_ID = ‘ACTG’. If the end user is permitted to change the DEPT_ID from
‘ACTG’ to ‘ACTNG’, the department data update will pass the DEPT_ID = ‘ACTNG’ form field to the
update script. Unfortunately, the DEPT_ID = ‘ACTNG’ does not exist in the DEPARTMENT table.
Therefore, the database will return an error to indicate that the end user is trying to update a record that
does not exist—which is true: ‘ACTG’ exists, but ‘ACTNG’ does not.

� Line 25 creates an input form variable named DEPT_ID, to which the “#DEPTDATA.DEPT_ID#” value is
assigned. In other words, the script assigns the current record value to the edit mode. Note that this variable
is hidden, so it will not be shown on the screen. This value assignment ensures that the DEPT_ID is passed to
the rc-6c.cfm script. (Remember that all form variables that are defined with an INPUT or SELECT form tag
are passed to the called program.)

� Line 26 ensures that the current department ID is shown on the screen. Note that the end user cannot edit
this value.

� Line 27 allows the end user to modify the department’s description. Note that the INPUT tag sets the default
value for this field to “#DEPT_DESC#”, thus ensuring that the previous field’s contents are displayed. The end
user can then modify the displayed values.

� Lines 28–35 allow the end user to choose a manager for the selected department. These lines create a select
box that lists all valid options for the manager field. The valid options are:

- All users who are not managers.

- If the department has a manager, the existing manager.

- A null manager option to indicate that no manager has yet been assigned to the selected department.

Given those options, the end user can set the manager to null, leave the current manager unchanged, or
choose another manager. If the department being edited already has a manager, that manager must appear as
the default (SELECTED) option.

� Line 29 allows the manager ID to be set to null. (Note that VALUE = ““.) This line also contains a CFIF tag
to evaluate the current value of the department’s USR_ID field. If the USR_ID is ““ (that is, the selected
department does not have a manager), this null will be the SELECTED option. Otherwise, this option will
appear on the list of options, but will not be preselected. This null option must be available to ensure that a
department’s manager can be removed.

� Lines 31–34 use the CFOUTPUT tag to create OPTION entries for each of the user IDs in the “USRLIST”
query. (Remember that the CFOUTPUT tag will loop through each record in the named query.) For each added
option, a CFIF tag compares the existing USR_ID in the department table (#DEPTDATA.USR_ID#) with the
USR_ID being added (#USRLIST.USR_ID#). If the two are equal, the “SELECTED” keyword is added to the
OPTION tag.

When the user clicks the form’s Update button, Script J.6B (rc.6b.cfm) calls Script J.6C (rc.6c.cfm), passing its
variable values.

41199_AppJ 11/26/2007 10:24:56 Page 291

291W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

The rc-6c.cfm script’s output is shown in Figure J.15.

The rc-6c.cfm script uses the CFUPDATE tag to update the DEPARTMENT table. The parameters for this tag are:

� DATASOURCE = “datasource_name” (the name of the ODBC database connection).

� TABLENAME = “table_name” (the name of the table to be updated).

The CFUPDATE tag uses the form fields passed from the calling page (DEPT_ID, DEPT_DESC, and USR_ID) to
update the named table. As was true with the other .cfm pages, the form created in the calling page must name its
form fields to match the table column names. Failure to adhere to that naming requirement will generate a “variable
not found” error.

The most basic Web-based data management process requires at least three actions: create a new record, modify an
existing record, and delete a record. The first two have been discussed, so it’s time to examine the “delete” action.

SCRIPT
J.6C

Update query—result confirmation (rc-6c.cfm)

FIGURE
J.15

Update query—result confirmation screen

41199_AppJ 11/26/2007 10:23:27 Page 292

292 A P P E N D I X J

J.1.9 Deleting Data

The “delete” query examined in this section enables the end user to delete a department record. As was true for the
update query, the delete query’s implementation requires three pages.

� The first page (the rc-7a.cfm script shown in Script J.7A) allows the end user to select the record to be deleted.
When the user clicks the form’s Delete button, the rc-7b.cfm script is invoked and the DEPT_ID form field
value is passed to it.

� The second page (the rc-7b.cfm script shown in Script J.7B) reads the selected record and displays its data on
the screen. This query also performs a referential integrity check to ensure that the end user cannot delete a
department that still contains users. When the user clicks the Delete button, this page calls the third page,
passing the DEPT_ID form’s field value to that page.

� The last page (the rc-7c.cfm script) deletes the department row from the database table, using the DEPT_ID
form field value passed from its calling program, rc-7b.cfm.

Let’s look at the first of these three scripts. The rc-7a.cfm script output is shown in Figure J.16.

SCRIPT
J.7A

Delete query—record selection (rc-7a.cfm)

41199_AppJ 11/26/2007 10:25:49 Page 293

293W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

The rc-7a.cfm script allows the end user to select a record to be deleted. To trace its operations, let’s examine the
following lines:

� Lines 4–6 perform a query (“Deptlist”) to retrieve all records from the DEPARTMENT table. This query result
set will be used to display a record selection form.

� Lines 15–25 define the record selection form. When the user clicks the form’s Delete button, the rc-7a.cfm
script calls script rc-7b.cfm. As before, the rc-7a.cfm script form passes its DEPT_ID form field to the rc-7b.cfm
script.

� Lines 16–20 create the SELECT form control.

� Lines 17–19 use a CFOUTPUT tag to dynamically create the OPTION list.

� Line 21 uses the INPUT tag to define the DEPT_ID field as a required field. ColdFusion uses this command
to perform server-side validation on this field. If this field is left blank, ColdFusion will return the error message
text entered in the “VALUE” parameter. Therefore, line 21 ensures that the end user selects a record before
trying to delete it. (You can’t delete a record without first specifying which one it is.) If the end user fails to select
a record before clicking the Delete button, an ODBC database error message will result, indicating the
attempted deletion of a nonexistent record—or, even worse, the deletion of all table rows!

The second script (rc-7b.cfm) performs the following two important functions:

� It reads the record to be deleted and presents its data on the screen to let the end user confirm that this is the
record (s)he wants to delete.

� It performs the referential integrity validation. Remember that the DEPARTMENT and USER tables maintain
a 1:M relationship expressed by “each department may have one or more users.” Therefore, the end user
cannot be allowed to delete a department if it still contains users.

Script rc-7b.cfm is shown in Script J7.B. The rc-7b.cfm script output is shown in Figure J.17.

FIGURE
J.16

Delete query—record selection screen

41199_AppJ 11/26/2007 10:23:28 Page 294

294 A P P E N D I X J

SCRIPT
J.7B

Delete query—show record (rc-7b.cfm)

41199_AppJ 11/26/2007 10:23:29 Page 295

295W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

Let’s examine the rc-7b.cfm script to understand how it works.

� Lines 5–7 use the CFQUERY tag to read the selected department data. The query uses the “#form.DEPT_
ID#” form field passed from the rc-7a.cfm script.

� Lines 8–13 retrieve the department manager data from the USER table. Because this is an optional field, the user
ID is checked first to see whether it is not null. If this non-null condition is met, the user data is read from the USER
table, using the “#deptdata.usr_id#” value. If the user ID is null, there is no need to read the user data.

� Lines 14–17 perform referential integrity validation checks. The process starts by executing a query to see if
users are still assigned to the department to be deleted. Note that the SQL query in lines 15 and 16 counts the
number of users assigned to the department. (If this count yields a value greater than zero, the department
contains at least one user.) Note that the count is stored in variable T1.

� Lines 21–42 define a form to display the department data and to confirm the record deletion. When the user
clicks the Delete button, the rc-7c.cfm script (shown in Script J.7C) is called and the three variables (DEPT_ID,
DEPT_DESC, and USR_ID) are passed to it.

� Line 23 defines the form’s DEPT_ID field as “hidden,” and the to-be-deleted DEPARTMENT table’s DEPT_ID
value is assigned to this hidden field. (Although this hidden input field does not show on the screen, it is passed
to the next script.)

� Lines 24 and 25 perform the same function as line 23, defining the remaining form fields (DEPT_DESC and
USR_ID) as “hidden” and assigning the corresponding department field values to the hidden form fields. These
hidden form field values also are passed to the next script.

� Lines 30–32 display the department data for the record to be deleted. This action enables the end user to see
the record to confirm that this is, in fact, the department record (s)he wants to delete. Note that the fields
specified in lines 30 and 31 use the “DeptData” query source as specified in line 22’s CFOUTPUT tag. In
contrast, note that line 32’s field name prefix indicates that it uses fields from the “Usrdata” query.

� Line 32 uses a CFIF tag to check whether there are user data. If the “#deptdata.usr_id#” is not null, the user
data are displayed.

� Lines 37–41 check to see if any users are assigned to the department. If user records do not exist
(#usrtot.t1# EQ 0), the Delete button is shown. (Check line 15 again and note that its count is now the basis
for the condition check.) If the count is anything other than zero, the form displays a message to indicate that
users are still assigned to this department and the Delete button is not shown.

FIGURE
J.17

Delete query—show record screen

41199_AppJ 1/7/2008 14:49:38 Page 296

296 A P P E N D I X J

If the record can be deleted and the user clicks the Delete button, script rc-7c.cfm (Script J.7C) is called and the
(hidden) form fields are passed to it. The rc-7c.cfm script output is shown in Figure J.18.

The rc-7c.cfm script deletes the department record from the database and displays a confirmation screen. To see how
the script accomplishes those tasks, examine the following lines:

� Lines 4–6 perform a query used to delete the department record from the database. This query executes the
SQL “Delete” statement, using the form’s DEPT_ID field received from the rc-7b.cfm script.

� Lines 10–17 confirm that the record has been deleted, and they display the deleted data.

SCRIPT
J.7C

Delete query—result confirmation (rc-7c.cfm)

FIGURE
J.18

Delete query—result confirmation screen

41199_AppJ 11/26/2007 10:26:33 Page 297

297W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

Figure J.19 shows how the delete sequences work. As you examine the screens, note that the attempt failed to delete
a department that still contains users. Also note that the Delete button is not shown in the second screen. There is,
after all, no reason to display a Delete button if the selected department record cannot be deleted.

In today’s increasingly Web-driven business environment, there is little doubt that you will work with databases that are
Web-enabled. Given the clear competitive advantages provided by database Web access, it is tempting to focus on the
Web side of the Web-database equation. Yet it is important to realize that a Web interface to a badly designed database
is a recipe for database disasters. On the other hand, good database design and implementation, coupled with sound
Web development techniques, yield countless business tactical and strategic advantages, virtually boundless professional
opportunities, and personal satisfaction.

FIGURE
J.19

Delete query—record validation

The end-user selects
a department for
which users exist.

The department cannot
be deleted because users
are assigned to the
department.

Note

The ColdFusion techniques presented in this chapter represent just the tip of the proverbial iceberg in the
development of database-enabled Web applications. At the time of this writing, ColdFusion provides hundreds
of additional tags and functions to help you develop professional Web applications properly. Although the
preceding examples are far from exhaustive, they do provide a compelling illustration of the Web interfaces
power and flexibility.

41199_AppJ 11/26/2007 10:27:33 Page 298

298 A P P E N D I X J

J.2 INTERNET DATABASE SYSTEMS: SPECIAL CONSIDERATIONS

Internet database systems involve more than just the development of database-enabled Web applications. In addition,
certain issues must be addressed when Web interfaces are used as the gateway to corporate and institutional databases.
For example, data security, transaction management, client-side data validation, and many other operational and
management challenges must be met. Although many of those issues were discussed in detail in Chapter 14, Database
Connectivity and Web Technologies, they are particularly relevant to Web database development. Therefore, some of
them are revisited here.

Whether you are talking about databases in a conventional client/server environment or in the latest Internet arena,
database systems development requires sound database design and implementation. The database system must exist
within a secure environment that is well suited to maintaining well-monitored and protected data access, robust
transaction management with a focus on data integrity maintenance, and solid data recovery. Finally, from the end
user’s and business manager’s points of view, the database is not particularly useful unless its front end is characterized
by user-friendly, information-capable, and transaction-supportive end-user applications.

Production database and data warehouse designs are not affected—at the conceptual level—by the change from the
conventional client/server environment to the Internet’s client/server environment. Therefore, the basic design
processes and procedures need not be revisited. However, Internet database application development is quite different
from that found in the traditional client/server environment. And given the vastness of the Internet, development issues
such as security, backup, and transaction volume are even more critical than they were in the traditional environment.

Clearly, concurrent database access by multiple heterogeneous clients affects how transactions are defined and
managed. Support for multiple data sources and types, the advent of increasing platform independence and portability,
process distribution and scalability, and open standards have a major effect on how applications are developed,
installed, and managed.

No doubt, database application development is most affected by the Internet. Characteristics of the Internet—
particularly its Web service—fundamentally change the way that applications work. The stateless nature of the Web has
a major impact on how database queries are presented and executed. Just think of the Web’s request-reply model and
how different it is from the conventional programmer’s view.

If database systems are to be developed and managed intelligently, today’s database administrator must understand the
Internet-based business environment in order to cope successfully with the issues that drive the development, use, and
management of Web-to-database interfaces. Since it all begins and ends with data, you will begin by looking at the
incredibly diverse data types that are supported in the Internet environment.

J.2.1 WHAT DATA TYPES ARE SUPPORTED?

Web development requires the concurrent management of many and quite different data types. Typically, conventional
databases support data types such as Julian dates, various types of numbers (integer, floating point, and currency), and
text (fixed and variable length). Most leading RDBMS vendors support extended data types such as binary and OLE
(Object Linking and Embedding) objects in the conventional database environment.

Because interactive Web sites tend to integrate data from multiple sources—word-processed documents, spreadsheets,
presentations, pictures, movies, sounds, and even holograms—some Web and database designers use extended data
types to store page components (in binary format) for later incorporation into the Web pages. Although the page
arrangement may provide better data organization from the database point of view, several issues must be addressed.

� How does someone store and extract data objects such as documents, pictures, and movies through a Web
browser? Remember that the Web client expects every page component to be a file stored in the Web server’s

41199_AppJ 1/7/2008 14:50:6 Page 299

299W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

directory. Therefore, the DBMS or the Web-to-database middleware must provide special functions or
subroutines that allow objects to be extracted dynamically from a database field to the Web server’s directory,
and vice versa.

� How much overhead will be created by the storage of binary objects in the database? How robust must the
DBMS be to handle binary object transactions? What are the limitations for extended or OLE data types? How
many extended or OLE data type fields can tables have?

� Does the client browser support the data type of the object being accessed? Are the necessary plug-ins
available? Is there a way to automatically translate documents from their native format to HTML? For example,
a PowerPoint presentation can be viewed within an Internet Explorer browser through use of the PowerPoint
Viewer plug-in, but Netscape Navigator cannot do that.

� Finally, storing pictures or multimedia presentations in the database can very quickly increase the size of the
database. Does the DBMS support very large databases? What about transaction speed? The concurrent
insertion and extraction of binary objects in database fields can take quite a toll on database transaction
performance. How many users are going to access the database? How frequently?

Web-to-database interface design must juggle all of those issues and find the right balance to ensure that the database
does not become the Web-based system’s bottleneck.

J.2.2 DATA SECURITY

Security is a key issue when databases are accessible through the Internet. Most DBMS vendors provide interfaces to
manage database security. When you create a database Web interface, security can be implemented in the Web server,
in the database, and in the networking infrastructure. In many ways, building multiple firewalls is the essence of Internet
database security.

At the Web server level, most Web clients and servers can perform secure transactions by using encryption routines
at the TCP/IP protocol level. Clients and servers can exchange security certificates to ensure that the clients and
servers are who they say they are. Therefore, you must ensure that the clients and servers are properly registered and
that they have compatible encryption protocols. Also, the Web administrator can use TCP/IP addresses and firewalls
to restrict access to the site. The firewalls ensure that only authorized data travel outside the company.

All RDBMS vendors provide security mechanisms at the database end, providing some form of login authentication for
users who are trying to access the database. At the SQL level, administrators can use the GRANT and REVOKE
commands to assign access restrictions to tables and/or to specific SQL commands.

Web-to-database middleware vendors usually have several security mechanisms available for interfacing with databases.
For example, when using ODBC data sources, the administrator can restrict end-user access to certain SQL statements
(such as SELECT, UPDATE, INSERT, or DELETE) or to some combination of those commands. And although the Web
pages operate in the request-reply model, the use of Web interfaces does not preclude the creation of algorithms to
guarantee data entity and referential integrity requirements. Data security measures must also include logs to relate data
manipulation activities to specific end users. Those logs ensure that each database update is directly associated with an
authorized user.

Security must also be extended to support electronic commerce, or e-commerce. That support is key to the Web site’s
ability to execute secure business transactions over the Internet. If a vendor wants to be able to take credit card orders
over the Internet, the order processing, rooted in a production database environment, must have strict security
mechanisms in place to safeguard the transactions. In addition, the order transaction must be able to interact securely
with multiple sites—such as distributors and banks—making sure that the transaction information cannot be modified
and that the information cannot be stolen.

41199_AppJ 11/26/2007 10:27:33 Page 300

300 A P P E N D I X J

J.2.3 TRANSACTION MANAGEMENT

Although the preceding comments focus on transaction-management issues that must be addressed for e-commerce
to be conducted successfully, the concept of database transactions is foreign to the Web. Remember that the Web’s
request-reply model means that the Web client and the Web server interact by using very short messages. Those
messages are limited to the request for and delivery of pages and their components. (Page components may include
pictures, multimedia files, and so on.) The dilemma created by the Web’s request-reply model is that:

� The Web cannot maintain an open line between the client and the database server.

� The mechanics of a recovery from incomplete or corrupted database transactions require that the client must
maintain an open communications line with the database server.

Clearly, the creation of mission-critical Web applications mandates support for database transaction management
capabilities. Given the just-described dilemma, designers must ensure proper transaction management support at
the database server level.

Many Web-to-middleware products provide transaction management support. For example, ColdFusion provides this
support through the use of its CFTRANSACTION tag. If the transaction load is very high, this function can be assigned
to an independent computer. By using that approach, the Web application and database servers are free to perform
other tasks and the overall transaction load is distributed among multiple processors.

J.2.4 DENORMALIZATION OF DATABASE TABLES

When the Web is used to interact with databases, the application design must take into account the fact that the Web
forms cannot use the multiple data entry lines that are typical of parent-child (1:M) relationships. Yet those 1:M
relationships are crucial in e-commerce. For example, think of order and order line, or invoice and invoice line. Most
end users are familiar with the conventional GUI entry forms that support multitable (parent-child) data entry through
a multiple-component structure composed of a main form and a subform. Using such main-form/subform forms, the
end user can enter multiple purchases associated with a single invoice. All data entry is done on a single screen.

Unfortunately, the Web environment does not support this very common type of data entry screen. As illustrated in
the ColdFusion script examples, the Web can easily handle single-table data entry. However, when multitable data
entries or updates are needed—such as order with order lines, invoice with invoice lines, and reservation with
reservation lines—the Web falls short. Although implementing the parent/child data entry is not impossible in a Web
environment, its final outcome is less than optimum, usually counterintuitive, less user-friendly, and prone to errors.

To see how the Web developer might deal with the parent/child data entry, let’s briefly examine how you might deal
with the ORDER and ORDER_LINE relationship used to store customer orders. Using an applications middleware
server such as ColdFusion to create a Web front end to update orders, one or more of the following techniques might
be used:

� Design HTML frames to separate the screen into order header and detail lines. An additional frame would be
used to provide status information or menu navigation.

� Use recursive calls to pages to refresh and display the latest items added to an order.

� Create temporary tables or server-side arrays to hold the child table data while in the data entry mode. This
technique is usually based on the bottom-up approach in which the end user first selects the products to order.
When the ordering sequence is completed, the order-specific data, such as customer ID, shipping information,
and credit card details, are entered. Using this technique, the order detail data are stored in the temporary
tables or arrays.

� Use stored procedures or triggers to move the data from the temporary table or array to the master tables.

41199_AppJ 11/26/2007 10:27:34 Page 301

301W E B D A T A B A S E D E V E L O P M E N T W I T H C O L D F U S I O N

Although the Web itself does not support the parent/child data entry directly, it is possible to resort to Web programming
languages such as Java, JavaScript, or VBScript to create the required Web interfaces. The price of that approach is a
steeper application development learning curve and a need to hone programming skills. And while that augmentation
works, it also means that complete programs are stored outside the HTML code that is used in a Web site.

K e y T e r m s

ColdFusion Markup Language
(CFML), 267

script, 267

stateless system, 280

tags, 267

Web application server, 266

R e v i e w Q u e s t i o n s

1. What are scripts, and how are they created in ColdFusion?

2. Describe the basic services provided by the ColdFusion Web application server.

3. Discuss the following assertion: The Web is not capable of performing transaction management.

4. Transaction management is critical to the e-commerce environment. Given the assertion made in Question 3,
how is transaction management supported?

5. Describe the Web page development problems related to database parent/child relationships.

P r o b l e m s

In the following exercises, you are required to create ColdFusion scripts. When you create these scripts, include one
main script to show the records and the main options, for a total of five scripts for each table (show, search, add, edit,
and delete). Consider and document foreign key and business rules when creating your scripts.

1. Create ColdFusion scripts to search, add, edit, and delete records for the USER table in the RobCor database.

2. Create ColdFusion scripts to search, add, edit, and delete records for the INVTYPE table in the RobCor database.

3. Create ColdFusion scripts to search, add, edit, and delete records for the VENDOR table in the RobCor database.

4. Modify the insert scripts (rc-5a.cfm and rc-5b.cfm) for the DEPARTMENT table so the users who can be manager
of a department are only those who belong to that department.

5. Create an Order data-entry screen, using the ORDERS and ORDER_LINE tables in the RobCor database. To do
this, you can use frames and other advanced ColdFusion tags. Consult the online manual and review the demo
applications.

41199_AppJ 1/7/2008 14:52:58 Page 302

302 A P P E N D I X J

Preview

The Hierarchical Database Model

Chapter 2, Data Models, briefly introduced the hierarchical model’s history and basic

structure. The focus in this appendix is on implementation issues. IBM’s Information

Management System (IMS) is used to show you how the hierarchical model’s basic

structures are implemented. Although the hierarchical model now labors on as a mere

legacy system, its structure and the implementation issues examined in this appendix remain

a valuable part of your database knowledge base. In fact, many hierarchical concepts survive

within the modern database environment, thus illustrating that “the more things change, the

more they stay the same.”

You will discover that, when properly implemented, the hierarchical model creates an

environment in which some very important data integrity rules are maintained

automatically. If the database design conforms to the hierarchical structure, the hierarchical

model yields fast access and is capable of handling large amounts of data.

K

A
P

P
E

N
D

I
X

41199_AppK 1/7/2008 11:55:49 Page 303

Recall from Chapter 2 that the hierarchical database model is based on a tree structure. You will see how each tree
structure is stored in its own (physical) database and how each is defined by a detailed database description (DBD)
statement. After the physical database has been defined through the DBD, you will see how application programs
are given a subset of the physical database through a program communication block (PCB). Although the
hierarchical model’s application programs tend to be less complex than those written for file systems, the complexity
of the database-definition process makes the hierarchical model’s implementation more difficult.

Before reading about how to implement a hierarchical database model, you should understand its basic concepts and
components. To review, augment, and illustrate the hierarchical database discussion presented in Chapter 2, you will
examine some of the details of the hierarchical database structure in the next two sections.

K.1 A SIMPLE BILLING SYSTEM

One of the billing system’s components is the invoice. A typical invoice form, shown in Figure K.1, shows that a
customer named Mary D. Allen purchased three items on 12-Feb-2008. Note that the invoice in Figure K.1 contains:

� Basic customer data, such as the customer number, name, and address. The label CUSTOMER will be used to
refer to such data.

� Specific invoice data, such as the invoice number and date. The label INVOICE will be used when referring to
such data.

� A variable number of invoice detail lines, one for each product bought. The label INVLINE will be used when
referring to the invoice detail-line data.

� Computed (derived) data such as subtotals, taxes, and totals.

Naturally, a billing system contains additional components. Because customers may make purchases on credit, the
payments made by customers must be tracked. The label PAYMENT will be used to refer to the customer payment
data. To keep the billing system simple, there will be no need to track customer balances at this point.

FIGURE
K.1

An invoice form

$1.00Discount

Customer Address: 23 Main, Anytown, TN 37121

Customer number: 1276
Customer name: Mary D. Allen

Invoice number: 102
Invoice date: 12-Feb-2008

$17.98$8.992Chisel

$2.45$0.495Drill bit

$12.95$12.951Glue gun

TotalUnit Price
Number

PurchasedProduct Purchased

Subtotal $33.38

$2.45

Invoice header
(Fixed number of lines)

Invoice detail
(Variable number of lines)

Invoice footer
(Fixed number of lines)Tax

Total due $34.83

41199_AppK 1/7/2008 11:57:59 Page 304

304 A P P E N D I X K

From a hierarchical point of view, the purchase and payment information introduced thus far can be represented by
a hierarchy based on four segment types, CUSTOMER, INVOICE, PAYMENT, and INVLINE, as shown in Figure K.2.

The four segment types or segments you see in Figure K.2 exist within a database named CUSREC. Each segment
type represents a specific entity set and contains several segment occurrences. For example, the CUSTOMER
segment type may contain segment occurrences such as Mary D. Allen, John P. Marsutto, and Jean M. Valverde.
Given the structures shown in Figure K.2, you can now describe the following relationships:

1. A customer can have one or more invoices and can make one or more payments. However, each payment is
made by only one customer, and each invoice belongs to only one customer. In other words, the model depicts
a 1:M relationship between CUSTOMER and the two segments INVOICE and PAYMENT. The CUSTOMER
segment is the parent of the INVOICE and PAYMENT segments.

2. Each INVOICE and each PAYMENT segment occurrence is related to only one CUSTOMER segment occurrence.

3. The INVOICE segment is the parent of the INVLINE segment.

4. Each INVLINE segment occurrence is related to only one INVOICE segment occurrence. Given the conditions
in Numbers 3 and 4, you may conclude that a 1:M relationship exists between INVOICE and INVLINE.
(Remember, a single INVOICE may contain many items that are entered as detail lines.)

Each match of a root segment occurrence with its child segment occurrences represents a hierarchical database record
occurrence. Figure K.3 illustrates several relationships produced by the root segment occurrence of the customer
named Mary D. Allen. As you examine Figure K.3, note that Mary D. Allen’s record consists of two INVOICE segment
occurrences and two PAYMENT segment occurrences. Invoice number 102 contains the detail lines for the items “Glue
gun,” “Drill bit,” and “Chisel” and is related to Mary D. Allen. The item “Power saw,” located in invoice number 324,
is also related to Mary D. Allen.

Figure K.3 illustrates that the hierarchical database record is formed by the segment types CUSTOMER, INVOICE,
INVLINE, and PAYMENT. The segment components are the equivalent of file fields. In other words, the CUSTOMER
segment components CUST_NUMBER, CUST_NAME, and CUST_ADDRESS are equivalent to a file system’s
CUSTOMER file fields.

The tree structure depicted in Figure K.3 cannot be duplicated (as shown) on the computer’s storage media. Instead,
the tree is defined by the path that traces the parents to their children, beginning from the left. This ordered sequencing
of segments to represent the hierarchical structure is known as the hierarchical path.

FIGURE
K.2

Hierarchical structure of a sample database

INVOICE

Root segment

INVLINE

PAYMENT Segment typeSegment type

CUSTOMER

1:M

1:M

1:M

41199_AppK 1/7/2008 13:45:51 Page 305

305T H E H I E R A R C H I C A L D A T A B A S E M O D E L

Given the structure depicted in Figure K.3, the hierarchical path for the record composed of the segments
CUSTOMER, INVOICE, INVLINE, and PAYMENT can be traced as shown in Figure K.4. Note that the path followed
in Figure K.4 traces all segments from the root, starting at the leftmost segment. The left-list path is known as the
preorder traversal or the hierarchic sequence. Given such a path, designers must make sure that the most frequently
accessed segments and their components are located closest to the tree’s leftmost branches.

K.2 CONTRASTING FILE SYSTEMS WITH THE HIERARCHICAL MODEL

To help you better understand the segment concept, it might be useful to examine the relationship between file
structures and the hierarchical database. For example, consider the small file system depicted in Figure K.5. Note that
the three physical files are connected through the use of pointers. Thus, the Classical pointer in the STYLE file points
to Beethoven and Tchaikovsky in the ARTIST file. In turn, the ARTIST file’s pointers lead to specific music in the
MUSIC file.

The file system depicted in Figure K.5 is composed of three distinct physical files: STYLE, ARTIST, and MUSIC. The
records in each of the three files are physically isolated from the records in the other files. Therefore, the first record
in each of the three files may be depicted as shown in Table K.1.

In sharp contrast to the file system, the hierarchical model merges the separate physical files into a single structure
known as a database. Therefore, there is no equivalent of a file in the hierarchical model. The fields encountered
in the file system are simply segment components in the hierarchical database.

FIGURE
K.3

A single occurrence of a CUSREC record

INVOICE
 INV_NUM
 INV_DATE
 INV_SUBTOTAL
 INV_DISCOUNT
 INV_TAX
 INV_TOTAL

CUSTOMER
 CUST_NUM
 CUST_NAME
 CUST_ADDRESS

INVLINE
 LINE_PRODUCT
 LINE_PRICE
 LINE_QUANT
 LINE_AMOUNT

324

325.95
0.00

24.77
350.72

26-Feb-2008

102
12-Feb-2008

33.38
1.00
2.45

34.83

1243

34.83
12-Feb-2008

1985
12-Mar-2008

50.00

PAYMENT
 PAY_NUM
 PAY_DATE
 PAY_AMOUNT

Glue gun
12.95

12.95
1

Drill bit
0.49

5
2.45 Chisel

8.99
2

17.98

Power saw
325.95

1
325.95

Customer number: 1276
Customer name: Mary D. Allen
Customer Address: 23 Main, Anytown, TN 37121

41199_AppK 1/7/2008 11:58:56 Page 306

306 A P P E N D I X K

FIGURE
K.4

Tracing the path of a single hierarchical record

1276 Mary D. Allen 23 Main, Anytown,TN 37121 102 12-Feb-2008 33.38 1.00 2.45 34.83

Glue gun 12.95 1 12.95 Drill bit 0.49 5 2.45 Chisel 8.99 2 17.98

324 26-Feb-2008 325.95 0.00 24.77 350.72 Power saw 325.95 1 325.95

1243 12-Feb-2008 34.83 1985 15-Mar-2008 50.00

FIGURE
K.5

Composition of a small file system

1 Classical 1,2

2 Rock 3,4

 1 Beethoven 1,2

 2 Tchaikovsky 5

 3 Beatles 3,4

 4 Rolling Stones 6

 1 Moonlight Sonata

 2 Ninth Symphony

 3 Hard Day’s Night

 4 Yesterday

 5 1812 Overture

 6 Satisfaction

Record

STYLE File ARTIST File MUSIC File

Pointers

TABLE
K.1

Sample M_STORE File
Components

FILE RECORD
STYLE Classical
ARTIST Beethoven
MUSIC Moonlight Sonata

41199_AppK 1/7/2008 12:0:9 Page 307

307T H E H I E R A R C H I C A L D A T A B A S E M O D E L

Translating the small file system into a hierarchical database (named HITS) yields a structure in which each file record
becomes a database segment. Thus, the HITS database structure will be composed of three different segment types:
STYLE, ARTIST, and MUSIC. Figure K.6 shows you how the file system’s records are arranged within a hierarchical
database.

Given the contrasting structures shown in Figure K.6, keep in mind that the file system’s user must maintain physical
control of the indexes and pointers that validate data integrity. However, in the hierarchical model, the DBMS takes
care of those complex chores, and the pointer movement is transparent to the user. (The word transparent indicates
that the user is unaware of the system’s operation.) Figure K.7 shows the hierarchical representation of the first
database record for the HITS database.

FIGURE
K.6

The hierarchical equivalent of the file system

Hierarchical Database
(Database name: HITS)

HITS File System

Classical

Rock

Rolling Stones

Hard Day’s Night

Yesterday

Beethoven

Moonlight Sonata

Ninth Symphony

1812 Overture

Tchaikovsky

Beatles

TYPE File

Classical

Rock

ARTIST File
Beethoven

Tchaikovsky

Beatles

Rolling Stones

MUSIC File

Moonlight Sonata

Ninth Symphony

Hard Day’s Night

Yesterday

1812 Overture

Segment Segment

Satisfaction

Segment

Segment

Records

Satisfaction

41199_AppK 1/7/2008 12:0:9 Page 308

308 A P P E N D I X K

K.3 DEFINING A HIERARCHICAL DATABASE

You will now learn how Figure K.2’s simple billing system can be implemented through IBM’s Information
Management System (IMS). IMS uses a language named Data Language One (DL/1). At the conceptual level, IMS may
control several databases. Each database is composed of a collection of physical records (segments) that are
occurrences of a single tree structure. Therefore, each tree requires its own database. For example, the tree structure
depicted in Figure K.8 may be stored in a database named CUSREC to reflect its CUStomer RECord orientation.
(Incidentally, you could name the database GEORGE or SALLY; however, it is helpful to give the database a name that
describes its contents.) Each of the physical databases is defined by a database description (DBD) statement when the
database is created.

The hierarchical model’s segment relationships are determined explicitly by the user when the database is defined,
using the data definition language (DDL). Those segment relationships do not depend on the contents of a field in the
child record (as was true in the relational model). Therefore, the relationships between the segments cannot be derived
via each segment’s components or fields. For an illustration of the use of the DDL, refer to the field names as shown
in Figure K.8.

As you examine Figure K.8, note that the field lengths, measured in bytes, are shown next to each field. For example,
the three fields describing the segment named CUSTOMER are CUST_NUMBER, CUST_NAME, and CUST_
ADDRESS and their field lengths are 5, 25, and 30, respectively. Therefore, the segment named CUSTOMER is 5
+ 25 + 30 = 60 bytes long. The INVOICE segment is 40 bytes long, the INVLINE segment is 41 bytes long, and the
PAYMENT segment is 21 bytes long. Therefore, the total hierarchical database record length is 60 + 40 + 41 + 21
= 162 bytes.

To define the CUSREC database, a simplified syntax of DL/1, the data access-and-manipulation language of IMS, will
be used. DL/1 is used to describe the conceptual and logical views of the database. The conceptual view encompasses
the entire database as seen by the database administrator; the logical view describes the programmer’s and user’s
perceptions of the database. Thus, the logical view is more restrictive, limiting the programmer/user to the portion of
the database that is currently in use. The existence of logical views constitutes a security measure that helps avoid the
unauthorized use of the database. Both the conceptual and logical views are necessary when the database administrator
is working with a hierarchical database.

FIGURE
K.7

The first hierarchical database record

HITS Database

Classical

TchaikovskyBeethoven

Moonlight Sonata Ninth Symphony 1812 Overture

41199_AppK 11/26/2007 10:42:3 Page 309

309T H E H I E R A R C H I C A L D A T A B A S E M O D E L

K.3.1 The Conceptual View Definition

Remember from the discussion in Chapter 2 that the tree structure is defined starting from the left. Therefore, the
sequence shown in the DDL conforms to the path:

CUSTOMER →INVOICE → INVLINE → PAYMENT

Based on that structure definition, Table K.2 shows the DL/1 statements used to define the conceptual view of the
CUSREC database as seen by the database administrator.

TABLE
K.2

DL/1 Statements That Define the Conceptual View of the CUSREC Database

STATEMENT # CODE STATEMENT
1 DBD NAME=CUSREC, ACCESS=HISAM

2 SEGM NAME=CUSTOMER,BYTES=60
3 FIELD NAME=(CUST_NUMBER,SEQ,U),BYTES=5,START=1
4 FIELD NAME=CUST_NAME,BYTES=25,START=6
5 FIELD NAME=CUST_ADDRESS,BYTES=30,START=31

6 SEGM NAME= INVOICE, PARENT=CUSTOMER,BYTES=40
7 FIELD NAME=(INV_NUMBER,SEQ,U),BYTES= 6,START=1
8 FIELD NAME=INV_DATE,BYTES=8,START=7
9 FIELD NAME=INV_SUBTOTAL,BYTES=7,START=15
10 FIELD NAME=INV_DISCOUNT,BYTES=6,START=22

FIGURE
K.8

Segment fields and field lengths (bytes) in the CUSREC database

CUST_NUMBER
CUST_NAME
CUST_ADDRESS

INV_NUMBER
INV_DATE
INV_SUBTOTAL
INV_DISCOUNT
INV_TAX
INV_TOTAL

PAY_NUMBER
PAY_DATE
PAY_AMOUNT

LINE_PRODUCT
LINE_PRICE
LINE_QUANTITY
LINE_AMOUNT

25
6
3
7

41 (total)

Field length

Field length
5

25
30

60 (total)

6
8
7

21 (total)

Field length

CUSTOMER

INVOICE PAYMENT

INVLINE

Field length

40 (total)

6
8
7
6
6
7

41199_AppK 11/26/2007 10:42:4 Page 310

310 A P P E N D I X K

TABLE
K.2

DL/1 Statements That Define the Conceptual View of the CUSREC Database
(continued)

STATEMENT # CODE STATEMENT
11 FIELD NAME=INV_TAX,BYTES=6,START=28
12 FIELD NAME=INV_TOTAL,BYTES=7,START=34

13 SEGM NAME=INVLINE,PARENT= INVOICE,BYTES= 42
14 FIELD NAME=LINE_PRODUCT,SEQ,M),BYTES=25,START=1
15 FIELD NAME=LINE_PRICE,BYTES=7,START=26
16 FIELD NAME=LINE_QUANTITY,BYTES=3,START=33

FIELD NAME=LINE_AMOUNT,BYTES=7,START=36

17 SEGM NAME=PAYMENT,PARENT=CUSTOMER,BYTES=21
18 FIELD NAME=(PAY_NUMBER,SEQ,U),BYTES= 6,START=1
19 FIELD NAME=PAY_DATE,BYTES=8,START=7
20 FIELD NAME=PAY_AMOUNT,BYTES=7,START=15

21 DBGEN
22 FINISH
23 END

Table K.2’s DL/1 lines describe the database and its contents this way:

1. The first line tells IMS that a database named CUSREC is being defined. (The acronym DBD stands for
database description.) The selected access mode is HISAM, or Hierarchical Indexed Sequential Access
Method.

2. Line 2 defines the root segment; IMS uses the term segment (SEGM) to serve as a reference to the logical
records of a database. This example defines the root segment to be the CUSTOMER segment, composed of
the fields CUS_NUMBER, CUS_NAME, and CUS_ADDRESS. The CUSTOMER segment is 60 bytes long.

3. Lines 3–5 define the fields that are contained in the CUSTOMER segment. The FIELD specification defines
the name, the size, and the starting position for each field making up a segment.

4. Line 3 defines CUST_NUMBER as the Sequence (SEQ) field for the CUSTOMER segment. By definition, the
hierarchical database contains ordered collections of records. To avoid having two customers with the same
customer number, the ID values are unique (U) for this field.

5. Line 6 defines the INVOICE segment; the parameter PARENT is used to indicate the parent of a segment. The
parent of INVOICE is CUSTOMER in this example.

6. Note (in line 14) that there can be multiple (M) occurrences of the product’s value.

7. Similar definitions are used for the remaining segments (INVLINE and PAYMENT).

8. DBGEN generates the physical database with all of its necessary structures. (The hierarchical database creation
is not an interactive process.)

9. Note that the hierarchical model’s implementation requires that you keep track of physical details such as the
number of bytes and the starting position for each field. Figure K.9 illustrates how the starting position for each
of the PAYMENT fields is determined.

41199_AppK 11/26/2007 10:42:4 Page 311

311T H E H I E R A R C H I C A L D A T A B A S E M O D E L

As you can see, the hierarchical model’s database definition must conform to its physical characteristics. Even given
the simplified DL/1 syntax, the details make the hierarchical model sufficiently complex to be described as a system
designed by programmers for programmers. For instance, the physical storage details may require the definition of
complex storage schemes such as:

� HSAM (Hierarchical Sequential Access Method).

� SHSAM (Simple Hierarchical Sequential Access Method).

� HISAM (Hierarchical Indexed Sequential Access Method).

� SHISAM (Simple Hierarchical Indexed Sequential Access Method).

� HDAM (Hierarchical Direct Access Method).

� HIDAM (Hierarchical Indexed Direct Access Method).

� MSDB (Main Storage DataBase).

� DEDB (Data Entry DataBase).

� GSAM (Generalized Sequential Access Method).

Specific access methods are best suited to particular kinds of applications. HSAM, SHSAM, HISAM, and SHISAM are
particularly well suited for storing and retrieving data in hierarchic sequence, putting parent and children records in
contiguous disk locations. (GSAM is a special case of the sequential access method.) On the other hand, if direct-access
pointers are required to keep track of the hierarchy of segments, HDAM, HIDAM, MSDB, and DEBD are preferred.
That series of access methods is generally more valuable when many (and frequent) changes are made to the database.
Generally, the IMS manuals suggest that you:

1. Use HSAM when relatively small databases with relatively few access requirements are used.

2. Use HISAM with databases that require direct segment access, especially when:

a. Fixed record lengths are used.

b. All segments are the same size.

c. Few root segments and many child segments exist.

d. Few deletions are made.

3. Use HDAM with databases designed for fast direct access.

4. Use HIDAM with databases having users who require both random (direct) and sequential access.

5. Use MSDB with databases that use fixed-length segments and that require very fast processing. MSDB will
reside in virtual storage during execution.

6. Use DEBD with databases that are characterized by high data volume.

FIGURE
K.9

Field starting positions for the PAYMENT segment

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

PAY_NUMBER
6 bytes

PAY_DATE
8 bytes

Start

PAY_AMOUNT
7 bytes

PAYMENT Segment

Start (7 + 8 =15)Start (1 + 6 = 7)

41199_AppK 11/26/2007 10:42:4 Page 312

312 A P P E N D I X K

7. Use SHSAM, SHISAM, and GSAM when you frequently import and export data between database and
nondatabase applications.

Table K.2’s database definition requires each segment to be identified by a so-called sequence field. The identifier
is also known as a key. Working with sequence fields requires that you recognize these features and conditions:

� Sequence fields allow direct access to segments when you are working with HISAM, HDAM, or HIDAM access
methods. Those access methods make it possible to address segments directly, without having to search the
entire database. Direct access increases performance substantially.

� Sequence fields do not have to be defined for every segment.

� Sequence fields may be either unique (U) or duplicate (M).

Keep in mind that an IMS database is rather limited structurally:

� Each database can have a maximum of 255 different segment types.

� Each segment can have a maximum of 255 segment fields.

� Each database can have a maximum of 1,000 different fields.

Having defined the conceptual view of the database, now let’s define the logical views for each application program
that will access the database.

K.3.2 The Logical View Definition

The logical view depicts the application program’s view. Application programs use embedded DL/1 statements to
manipulate the data in the database. Each application that accesses an IMS database requires the creation of a
program specification block (PSB). The PSB defines the database(s), segments, and types of operations that can
be performed by the application. The PSB represents a logical view of a selected portion of the database. The use of
PSBs yields better data security as well as improved program efficiency by allowing access to only the portion of the
database that is required to perform a given function.

The application program and the database system communicate through a common storage area in primary memory
known as the program communication block (PCB). The PSB contains one or more PCBs, one for each database that
is accessed by the application program.

To illustrate the use of the PCB, let’s create one for an application that displays customer payments. Since the program
access requirements can be defined, you need only be in the database portion defined by the CUSTOMER and the
PAYMENT segments shown in Figure K.8. You may then use DL/1 to define the type of access or processing option
(PROCOPT) granted to the program. The access types are (G)et, (I)nsert, (R)eplace, and (D)elete. Table K.3 shows the
appropriate DL/1 statements used to create the PSB for the application.

TABLE
K.3

The DL/1 Statements Used to Create the PSB

BLOCK DL/1 STATEMENT DEFINITION
1 PCB DBNAME = CUSREC
2 SENSEG NAME = CUSTOMER, PROCOPT = G
3 SENSEG NAME = PAYMENT, PARENT = CUSTOMER, PROCOFF = G
4 SENFLD NAME = PAY_DATE, START 8
5 SENFLD NAME = PAY_AMOUNT, START 15
6 PSBCEN LANG = COBOL, PSBNAME ROBPROG

The SENSEG (SENsitive SEGment) declares the segments that will be available, starting with the root segment. The
SENFLD indicates which fields are available to the program. In Table K.3’s example, all of the CUSTOMER fields will
be available, but only the PAY_DATE and PAY_AMOUNT will be available in the PAYMENT segment because the

41199_AppK 11/26/2007 10:42:5 Page 313

313T H E H I E R A R C H I C A L D A T A B A S E M O D E L

PAY_NUMBER field was omitted. (Note: The logical views may be limited to only a portion of a physical database or
to parts of several different physical databases.)

The creation of the database structure and the PSBs is not based on interactive operations. Instead, independent utility
programs that run from the operating-system prompt must be used. Therefore, the database definitions must be
re-created (recompiled) and reloaded, and all of the user views must be re-created and validated if any changes are
made to the database.

The order of the SEGM statements indicates the physical order of the records in the database. In other words, the
physical order represents the hierarchical path that must be followed to access any segment. In this case, the order of
the segments is shown in Table K.4.

TABLE
K.4

The Hierarchical Path for the CUSREC Database

HIERARCHICAL PATH SAMPLE DATA
CUSTOMER 1 Mary D. Allen
INVOICE 1 102
INVLINE 1 Glue gun
INVLINE 2 Drill bit
INVLINE 3 Chisel
INVOICE 2 324
INVLINE 1 Power saw
PAYMENT 1 1243
PAYMENT 2 1985
CUSTOMER 2 John G. Washington
INVOICE 1 410
INVLINE 1 Grease pencils
INVLINE 2 Masking tape
INVOICE 2 306
INVLINE 1 Computer paper
INVLINE 2 Ink-jet cartridge
� �

� �

Remember that IMS provides support for several different data-access methods. Some are very efficient at sequential
file processing; others work well in an indexed file environment; yet others work best in a direct-access environment.
The example shown in Table K.3 assumes the use of the HSAM storage structure in which the database is represented
as an ordered sequence of segments and all dependent segments are located close to their parent segments for fast
sequential access.

K.4 LOADING IMS DATABASES

An IMS database must be loaded before any program can access it. You cannot load a database from an interactive
application program. Instead, a batch program must be used to perform the loading, and this batch program must be
run in “load” mode (PROCOPT=L in the PCB).

The database must be loaded in the proper hierarchic sequence; the segment order is crucial. (Load the parent segments
before loading the child segments!) If you have defined sequence fields, the segment order must conform to the
sequence field order. You must maintain the proper segment order, or the subsequent applications programs will fail.

41199_AppK 11/26/2007 10:42:5 Page 314

314 A P P E N D I X K

K.5 ACCESSING THE DATABASE

Hierarchical databases are so-called record-at-a-time databases. The term record at a time indicates that the
database commands affect a single record at a time. You may remember that other database types, such as the
relational database, allow a command to affect several (many) records at a time.

The record-at-a-time structure implies that each record is accessed independently when database operations are
performed. Therefore, to access a specific record, you must follow the tree’s hierarchical path, starting at the root and
following the appropriate branches of the tree, using preorder traversal. For example, if you want to access the
payments of CUSTOMER Mary D. Allen, you must first access the parent segment, after which you can access the
first PAYMENT child, then the next PAYMENT child, and so on, until you have accessed all PAYMENT segments in
the subtree. (Remember that PAYMENT segments are ordered by the PAY_NUMBER field.) Similarly, if you want to
access the INVOICE segment occurrences, you must first access the parent CUSTOMER segment; then you must
access the INVOICE segment occurrences, starting with the first one. For each INVOICE, you can access the subtree
of INVLINE segment occurrences for that INVOICE. (Remember that the segments are ordered according to the field
specified as the sequence field when the database is defined.)

After the database and its characteristics have been defined, you can navigate through the database by using the data
manipulation language (DML) invoked from some host language such as COBOL, PL/1, or assembler. Keep in mind
that some lines of code must be written by an experienced programmer before you can access the database. Given the
complexity of the hierarchical database environment, end users are not likely to have the technical expertise to
generate even the simplest query output, thus putting “spur-of-the-moment” queries out of reach. For example, a query
such as “list all customers who reside in the 12345 zip code” requires detailed knowledge of the hierarchical database’s
physical file structure and the physical storage details. (In contrast, that query is easy to generate in a relational database
environment, merely requiring the execution of the brief SQL command SELECT * FROM CUSTOMER WHERE
CUST_ZIP = “12345”.)

IMS requires the use of a (3GL) host language such as COBOL to access the database. To communicate with the
application program correctly, IMS assumes the use of certain parameters. Therefore, each application must declare:

1. An input area (program record area) reserved to:

a. Receive the data retrieved from the database.

b. Temporarily store data to be written into the database.

2. A PCB to store a return code for every operation that is executed. (The program must check this area to see
if the requested operation was completed successfully.)

A COBOL application communicates with the IMS DBMS through call statements in its procedure division. Figure
K.10 illustrates the use of the PCB. When the application program calls IMS, the following flow parameters are
needed:

� The function code, that is, the operation to be executed on the database.

� The PCB name to be used.

� The input area address.

� The (optional) segment search argument (SSA). The SSA parameter identifies the key of the segment being
retrieved.

After the completion of a call to the database, the program must check the status of the return code in the PCB to
ensure that the operation was executed correctly.

41199_AppK 11/26/2007 10:42:5 Page 315

315T H E H I E R A R C H I C A L D A T A B A S E M O D E L

K.5.1 Data Retrieval: Get Unique

The IMS statement Get Unique (GU) is used to retrieve a database segment into the application program input area
or record area. The syntax for the Get Unique statement is:

CU (segment) (SSA)

Using the data shown earlier in Figure K.3, the GU statement required to retrieve the customer Mary D. Allen
must read:

GU CUSTOMER (CUST_NUMBER=1276)

Similarly, the GU statement:

GU INVOICE (INV_NUMBER=102)

will retrieve the INVOICE segment whose number is 102. If HSAM is being used, the DBMS will search the database
sequentially until it finds the INVOICE segment whose field value INV_NUMBER is 102. If this INV_NUMBER is the
last segment in the database, the DBMS will have searched the entire database, thereby producing significant
performance degradation. It is strongly recommended that the hierarchical path be specified to maximize the DBMS
performance!

Retrieval by a nonkey field is also possible; for example:

GU CUSTOMER (CUST_NAME ‘Mary D. Allen’)

will achieve its intended purpose. If two customers have the same name, that command will retrieve the first segment
that satisfies the condition.

Logical operators may be used to search for several customer records that meet a specified condition. For instance,
the GU statements:

GU CUSTOMER (CUST_NUMBER>1034)

and

GU CUSTOMER (CUST_NUMBER<=1167)

FIGURE
K.10

How a PCB is used

Physical database IMS

Data

(Segments)

Flow parameters

Call statements

PSB

Data area

PCB

Applications

41199_AppK 11/26/2007 10:42:6 Page 316

316 A P P E N D I X K

are both valid. If the user fails to specify the SSA, the database search automatically locates the first segment of the
database. Therefore, the GU statement:

GU CUSTOMER

will yield the first CUSTOMER segment.

IMS can retrieve more than one segment at a time. For example, if you want to access the INVOICE segment with
an INV_NUMBER = 102 as well as its parent CUSTOMER segment, the command:

GU CUSTOMER *D
INVOICE (IN_NUMBER=102)

will retrieve both the parent CUSTOMER segment and the specified INVOICE child segment; the *D indicates that the
user wants to retrieve both. In contrast:

GU CUSTOMER
INVOICE

will retrieve only the first INVOICE segment found. IMS always retrieves the last referenced segment unless the
*D is used.

K.5.2 Sequential Retrieval: Get Next

The Get Next (GN) statement is used to retrieve segments sequentially. (Naturally, the retrieval sequence is based on
the preorder traversal requirements.) The GN syntax conforms to the format:

GN (segment) SSA

For example, the statements in Table K.5 will retrieve all payments. (Note that Pseudocode has been used to indicate
the use of some programming language to complete the request.)

TABLE
K.5

Retrieve All Payments

PSEUDOCODE COMMENTS
GU PAYMENT Retrieve 1st PAYMENT segment.
DO WHILE PCB-CODE IS OKAY Check the PCB return code.
PRINT (PAY_NUMBER, PAY_DATE) Process the segment.
ENDDO

Similarly, if you want to retrieve all payments over $1,000, you would write the pseudocode shown in Table K.6.

TABLE
K.6

Retrieve All Payments Over 1000

PSEUDOCODE COMMENTS
GU PAYMENT (PAY_AMOUNT> 1000) Retrieve the first PAYMENT segment.
DO WHILE PCB-CODE IS OKAY Check the PCB return code.
PRINT (PAY_NUMBER,PAY_DATE) Print the requested data.
GNPAYMENT (PAY_AMOUNT> 1000) Retrieve the next PAYMENT segment.
ENDDO

41199_AppK 11/26/2007 10:42:6 Page 317

317T H E H I E R A R C H I C A L D A T A B A S E M O D E L

K.5.3 Get Next Within Parent

Get Next Within Parent (GNP) will return all of the segments within the current parent. The following command
sequence will retrieve all INVOICE segments for the CUSTOMER whose CUST_NUMBER= 1276 in the preorder
traversal sequence shown in Table K.7.

TABLE
K.7

Retrieve Invoices for Specified Customer

PSEUDOCODE COMMENTS
GU CUSTOMER (CUSTOMER=1276) Retrieve the first INVOICE segment for customer 1276.
INVOICE
DO WHILE PCB-CODE IS OKAY
��.
��.(process segment)
��.
GNP INVOICE Retrieve the next INVOICE

segment for customer 1276.
ENDDO

K.5.4 Data Deletion and Replacement

The Get Hold (GH) statement is used to hold a segment for delete or replace operations. There are three different
Get Hold statements, as shown in Table K.8.

Used in combination with the GH statement, DLET deletes
a segment occurrence from the database. For example, to
delete the PAYMENT segment numbered 1985 in Table K.3,
you would use:

GHU CUSTOMER (CUSTOMER=1276)
PAYMENT (PAY_NUMBER=1985)

DLET

If a root segment is deleted, all dependent segments are deleted. Therefore, the command sequence:

CHU CUSTOMER (CUST_NUMBER=1276)
DLET

will delete the occurrence Mary D. Allen in the CUSTOMER segment and all dependent segments (INVOICE,
INVLINE, and PAYMENT).

The REPL statement allows you to change (update) the contents of a field within a segment. REPL also requires the
GH operation before it can be invoked. Keep in mind that the REPL function cannot be used to update a key field.

Note

The use of OKAY indicates that the return code is correct. The return code is part of the PCB.

TABLE
K.8

Get Hold Statements

STATEMENT MEANING
GHU Get Hold Unique
GHN Get Hold Next
GHNP Get Hold Next Within Parent

41199_AppK 11/26/2007 10:42:6 Page 318

318 A P P E N D I X K

Instead, first delete the record, then insert the updated version. The application program should use the input area to
store the necessary fields that are to be updated and the new values. The operation sequence thus becomes:

1. Retrieve the data and put it in the input area.

2. Make the changes in the input area.

3. Invoke REPL to move the changed values into the physical database.

For example, to change Mary Allen’s address, you can use the pseudocode shown in Table K.9.

TABLE
K.9

Update Field Contents for a Specified Customer

PSEUDOCODE COMMENTS
GU CUSTOMER (CUST_NUMBER = 1276) Find the CUSTOMER segment.
STORE '103 E. Main St. D-44' TO CUST_ADDRESS Move the data to the input area.
REPL Save the data to the disk.

K.5.5 Adding a New Segment to the Database

The Insert (ISRT) statement is used to add a segment to the database. The parent segment must already exist if a child
segment is to be inserted. The segment will be inserted in the database in the sequence field order specified for the
segment.

The input area in the applications program must contain the data to be stored in the segment. Therefore, if you want
to insert the segment PAYMENT for customer number 1276, you write the pseudocode shown in Table K.10.

TABLE
K.10

Adding a New Segment

PSEUDOCODE COMMENTS
STORE 1632 TO PAY_NUMBER Move the data into the input area.
STORE '20060315' TO PAY_DATE
STORE 345.66 TO PAY_AMOUNT
ISRT CUSTOMER (CUS_NUMBER= 1276) Insert the field values. (Naturally, customer 1276 must

exist in the database.)
PAYMENT

K.6 LOGICAL RELATIONSHIPS

Suppose you want to keep product information in the database system. Further suppose that the product information
is to be stored in an INVENTORY database and that you want this database to be related to the CUSREC database.
Because the invoice lines contain product information, the PRODUCT segment in the INVENTORY database must be
related to the INVLINE segment in the CUSREC database.

Given the preceding scenario, you face the problem of having a segment with two parents, a condition that cannot be
easily supported by the hierarchical model. The multiple-parent problem can be solved by creating a logical relationship
between INVLINE and PRODUCT in which INVLINE becomes the logical child of PRODUCT and PRODUCT
becomes the logical parent of INVLINE. Unfortunately, this solution has some drawbacks.

41199_AppK 11/26/2007 10:42:7 Page 319

319T H E H I E R A R C H I C A L D A T A B A S E M O D E L

� Implementing such a solution yields an even more complex applications environment.

� Creating logical parent/child relationships is very complex and requires the services of an experienced
programmer. To accomplish the task, referential rules must be defined for each of the operations (Insert,
Replace, and Delete) for each logical segment involved in the two physical databases. The rules may be
unidirectional or bidirectional depending on which way the database is to be accessed.

Nonetheless, using logical relationships, you can link two independent physical databases and treat them as though
they were one. Thus, logical relationships allow you to reduce data redundancy. In addition, IMS can manage all of the
data required to link the databases in logical relationships; it is always better to have the DBMS software do the delicate
work of keeping track of such data rather than trust the applications software to do those chores.

IMS supports three different types of logical relationships, as follows:

1. Unidirectional logical relationships are established by linking a logical child with a logical parent in a
one-way arrangement. In this case, a pointer in the logical child points to the logical parent. (See Figure K.11.)

The two segments may be in the same database, or they may be located in different databases. If the two segments
of the unidirectional relationship are located in different databases, the segments are treated independently of one
another. Therefore, if a parent segment is deleted, the logical children are not deleted (see Figure K.12) because the
logical parent does not point to the logical child.

1. Bidirectional physically paired logical relationships link a logical child with its logical parent in two
directions. IMS creates a duplicate of the child segment in the logical parent’s database and manages all
operations (Insert, Delete, Replace) applied to the segments, as shown in Figure K.13. IMS uses pointers in the
logical child segments pointing to their logical parents. The segments may be in one database, or they may be
in different (physical) databases. In this type of relationship, the user can navigate from the CUSREC database
to the INVENTORY database, and vice versa, because a two-way link exists between the INVOICE and the
PRODUCT segments through their common child INVLINE. Although the process creates data redundancy,
IMS manages the redundancies transparently.

FIGURE
K.11

A unidirectional logical relationship

CUSTOMER

INVOICE

INVLINE

PRODUCT

Logical child of PRODUCT

CUSREC Database

One-way pointer

INVENTORY Database

41199_AppK 11/26/2007 10:42:7 Page 320

320 A P P E N D I X K

FIGURE
K.12

Two unidirectional logical relationships

Logical parent of
INVLINE and
physical parent of
PRODORD

CUSTOMER

INVOICE

INVLINE

PRODUCT

CUSREC Database

One-way pointer

INVENTORY Database

Logical child of INVOICE

Logical child of
PRODUCT

Logical parent of
PRODORD and
physical parent of
INVLINE

PRODORD

FIGURE
K.13

Bidirectional physically paired logical relationships

CUSTOMER

INVOICE

INVLINE

PRODUCT

Logical parent of
INVPROD

CUSREC Database

Duplicated segment

INVENTORY Database

INVPROD Logical child of
INVOICE

Logical parent of
INVLINE

Logical child of
PRODUCT

41199_AppK 11/26/2007 10:42:7 Page 321

321T H E H I E R A R C H I C A L D A T A B A S E M O D E L

2. Bidirectional virtually paired logical relationships are created when a logical child segment is linked to its
logical parent in two directions. The virtually paired relationship is different from the physically paired relationship
in that no duplicates are created; IMS stores one pointer in the logical parent to point to the logical child’s database
and another pointer in the logical child to point to the logical parent. Thus, the virtually paired method reduces data
duplication and overhead in the management of both hierarchical paths. (See Figure K.14.)

The creation of bidirectional virtually paired logical relationships is a delicate, cumbersome task that requires a skilled
designer with extensive knowledge of the physical details this task requires. For example, if you want to implement
logical relationships, IMS requires that you follow the rules listed in Table K.11.

TABLE
K.11

Rules for Defining Logical Relationships in Physical Databases

RULE LOGICAL CHILD
1 A logical child must have a physical and a logical parent.
2 A logical child can have only one physical and one logical parent.
3 A logical child is defined as a physical child in the physical database of its physical parent.
4 A logical child is always a dependent segment in a physical database and can, therefore, be defined

at any level except the first level of the database.
5 In its physical database, a logical child cannot have a physical child defined at the next lower level in

the database that is also a logical child.
6 A logical child can have a physical child. However, if the logical child is physically paired with

another logical child, only one of the paired segments can have physical children.
RULE LOGICAL PARENT
1 A logical parent can be defined at any level in the physical database, including the root level.
2 A logical parent can have one or more logical children. Each logical child related to the same logical

parent defines a logical relationship.
3 A segment in a physical database cannot be defined as both a logical parent and a logical child.
4 A logical parent can be defined in the same physical database as its logical child or in a different

database.

FIGURE
K.14

A bidirectional virtually paired logical relationship

CUSTOMER

INVOICE

INVLINE

PRODUCT

CUSREC Database INVENTORY Database

Logical parent of
INVLINE

Physical child of INVOICE and
logical child of PRODUCT

41199_AppK 11/26/2007 10:42:8 Page 322

322 A P P E N D I X K

TABLE
K.11

Rules for Defining Logical Relationships in Physical Databases (continued)

RULE PHYSICAL PARENT
1 A physical parent of a logical child cannot also be a logical child.
Source: IBM IMS Manual, IMS/ESA Version 3 Database Administration Guide, Release 1, 2d ed., October, 1990, Pur-
chase, NY 10577, pp. 155−56.

Assuming that the designer has the required knowledge of the implementation details, you can conclude that using
logical relationships solves the problem of relating INVLINE and PRODUCT by creating a logical link between the two
database segments, as shown in Figure K.15.

Based on the structure shown in Figure K.15, PRODUCT will be the logical parent of INVLINE and INVLINE will be
the logical child of PRODUCT. Therefore, (I)nsert, (R)eplace, and (D)elete rules must be defined for each segment in
the relationship—for CUSTOMER, INVOICE, and INVLINE in the CUSREC database and for PRODUCT in the
INVENTORY database. For example, if a CUSTOMER segment is erased, all of the corresponding CUSTOMER
children must be erased, too. Similarly, if a PRODUCT segment is to be deleted, all of the corresponding INVLINE
segments must also be deleted.

The use of logical parents is rather limited. One of DL/1’s restrictions is that any given segment can have only one
logical parent. That restriction severely limits IMS’s ability to deal with complex structures. In fact, the two-parent
problem is one of the reasons the network model examined in Appendix L was developed.

FIGURE
K.15

A bidirectional virtually paired logical relationship between two databases

CUSTOMER

INVOICE

INVLINE

Physical Database CUSREC Physical Database INVENTORY

Logical child of PRODUCT

PAYMENT

PRODUCT

SUPPLIER ORDER

 Bidirectional virtually
paired logical relationship

Logical parent
of INVLINE

41199_AppK 11/26/2007 10:42:8 Page 323

323T H E H I E R A R C H I C A L D A T A B A S E M O D E L

K.7 ALTERING THE HIERARCHICAL DATABASE STRUCTURE

The hierarchical model’s database structure modifications are cumbersome. For example, suppose the sales depart-
ment manager asks the data processing department’s database administrator to add a VENDOR field to the INVOICE
segment. That is a simple request, yet even that minor alteration is not naturally supported by the hierarchical system.

Database modifications require the performance of the following tasks in sequence:

1. Unload the database.

2. Define the new database structure.

3. Load the old database into the new structure.

4. Delete the old database.

Since those four tasks are time-consuming and potentially dangerous from a database point of view, database structure
modifications require very careful planning, excellent system coordination skills, and a high level of technical
understanding of the DBMS.

41199_AppK 11/26/2007 10:42:8 Page 324

324 A P P E N D I X K

K e y T e r m s

bidirectional physically paired logical
relationships, 320

bidirectional virtually paired logical
relationships, 322

database description (DBD)
statement, 303

DBGEN, 311

Get Hold (GH), 318

Get Hold Next (GHN), 318

Get Hold Next Within Parent
(GHNP), 318

Get Hold Unique (GHU), 318

Get Next (GN), 317

Get Next within Parent (GNP), 318

Get Unique (GU), 316

Insert (ISRT), 319

key, 313

processing option (PROCOPT), 313

program communication block
(PCB), 303

program specification block
(PSB), 313

record at a time, 315

segment (SEGM), 311

sensitive segment (SENSEG), 313

sequence field, 313

transparent, 308

unidirectional logical
relationships, 320

41199_AppK 11/26/2007 10:42:9 Page 325

325T H E H I E R A R C H I C A L D A T A B A S E M O D E L

Preview

The Network Database Model

In this appendix, you will learn about network database model implementation. (You learned

about the network database model concepts in Chapter 2, Data Models.) Like the

hierarchical database model, the network model may be represented by a tree structure in

which 1:M relationships are maintained. However, the network model easily handles

complex multiparent relationships without resorting to the creation of logical (as opposed

to physical) database links.

Also remember from Chapter 2 that a close kinship exists between hierarchical and

network models. For example, the network model’s owner corresponds to the hierarchical

model’s parent, and the network model’s member corresponds to the hierarchical model’s

child. However, the network model places a set between the owner and the member, using

that set to describe the relationship between the two.You will see that the set makes it

possible to describe more complex relationships between owners and members than was

feasible in the hierarchical model.

Although the pointer movement is more complex in the network model than in its

hierarchical counterpart, the DBMS creates and maintains the pointer system, making it

transparent to the user and even to the applications programmer. However, the cost of such

pointer system transparency is greater system complexity. For example, you will learn that

the schema requires careful delineation of the model’s components. In short, the network

model requires the database administrator to pay close attention to the model’s physical

environment. In turn, application programmers must note the model’s physical details.

L
A

P
P

E
N

D
I

X

41199_AppL 1/7/2008 11:46:25 Page 326

L.1 A QUICK REVIEW OF BASIC NETWORK DATA MODEL CONCEPTS

In Chapter 2, you learned that the network model’s end users perceive the network database to be a collection of
records in one-to-many (1:M) relationships. But unlike the hierarchical database model, a record in the network
database model can have more than one parent. Both 1:M and multiparent relationships are evident in the ROBCOR
database shown in Figure L.1. Figure L.1 depicts a simple network database model for the ROBCOR Corporation.
ROBCOR engages in retail sales, and its management wants to automate both the sales and the billing operations.

The following basic network model concepts are illustrated in Figure L.1:

� SALESREP, CUSTOMER, PRODUCT, INVOICE, PAYMENT, and INVLINE and represent record types.

� INVOICE is owned by both SALESREP and CUSTOMER. Similarly, INVLINE has two owners, PRODUCT
and INVOICE.

� The network database model may still include hierarchical one-owner relationships (for example, CUSTOMER
owns PAYMENT).

Finally, relationships among records must be decomposed into a series of sets before a network database model can
be implemented. For example, Figure L.2 shows two sets that describe the relationships between owners and
members.

1. The SALES set includes all of the INVOICE tickets that belong to a specific CUSTOMER.

2. The PAIDBY set defines the relationship between CUSTOMER (the owner of the set) and PAYMENT (the
member of the set).

ROBCOR’s network database model contains other sets, too. In fact, before the network database model can be
implemented, all of its data structures must be decomposed into sets of 1:M relationships. The sets that can be defined
for Figure L.2’s network database model are listed in Table L.1. Each set listed represents a relationship between
owners and members. When you implement a network database design, every set must be given a name and all owner
and member record types must be defined.

FIGURE
L.1

A network model of the ROBCOR database

SALESREP

PRODUCT

INVLINE

INVOICE

CUSTOMER

PAYMENT

1:M1:M

1:M1:M1:M

41199_AppL 11/26/2007 11:15:41 Page 327

327T H E N E T W O R K D A T A B A S E M O D E L

TABLE
L.1

A Table of Sets for the Network Model Shown in Figure L.2

SET NAME OWNER MEMBER
PAIDBY CUSTOMER PAYMENT
SALES CUSTOMER INVOICE
INVLINE INVOICE INVLINE
COMMISSION SALESREP INVOICE
PRODSOLD PRODUCT INVLINE

Figure L.3 depicts the contents of the member records for the PAIDBY set and the SALES set. The Mary D. Allen owner
record has been used to illustrate how the data fit into the network structure. As you examine Figure L.3, note that the
CUSTOMER named Mary D. Allen is the owner of two sets, SALES and PAIDBY. Mary D. Allen is also the owner of two
INVOICE records, Invoices 102 and 324, which are members of the SALES set. She is also the owner of two PAYMENT
records, Payments 1243 and 1985, which are members of the PAIDBY set. Given that structure, the user may navigate
through any one of those two sets, using the data manipulation language (DML) provided by the DBMS.

Keep in mind that the INVOICE and PAYMENT records shown in Figure L.3 are related only to the CUSTOMER Mary
D. Allen. When the user accesses another CUSTOMER record, a different series of INVOICE and PAYMENT records
are available for that customer. Therefore, network database designers must also be aware of currency. The word
currency indicates the position of the record pointer within the database and refers to the most recently accessed
record.

The DBMS automatically updates the pointers after the execution of each operation. A pointer exists for each record
type in a set. A pointer’s current value refers to a current record. Actually, two types of currency pointers exist: a record

FIGURE
L.2

Set illustration

CUSTOMER

PAYMENT

Customer

Invoice

Customer

Payment

1:M1:M

1

M

SALES set PAIDBY set

1

M

1:M 1:M

INVOICE

41199_AppL 11/26/2007 11:15:42 Page 328

328 A P P E N D I X L

pointer and a set pointer. Record pointers, also known as record type pointers, exist for each record type within the
database, and they always point to the current record within each record type. Because a set must contain two
record types, an owner and a member, the set pointer points to either an owner record or a member record.

To illustrate the use of pointers, let’s examine the condition shown in Figure L.4. Figure L.4 depicts two occurrences
of the SALES set. The first occurrence corresponds to CUSTOMER number 1276. The second occurrence
corresponds to CUSTOMER number 1045. Note that the occurrences are determined by the owner of the set: Every
time you move to a new CUSTOMER record, a new group of INVOICE member records is made available.

Given the SALES set components, the owner record is CUSTOMER and the member record is INVOICE. Therefore,
the pointer locations for the current record of each record type and for the current record of a set after the completion
of each operation will correspond to those found in Table L.2.

FIGURE
L.3

Contents of SALES and PAIDBY sets

SALES
set

PAIDBY
set

324

CUSTOMER
(owner)

INVOICE
(member)

PAYMENT
(member)

Mary D. Allen

102

1985

1243

FIGURE
L.4

Two occurrences within the SALES set

Number: 324

First
Occurrence

CUSTOMER

INVOICE

Next invoice in set for customer 1276

ID: 1276

Number: 102 Number: 567Number: 403

Second
Occurrence

ID: 1045
Next customer

Next invoice in set for customer 1045

41199_AppL 11/26/2007 11:15:42 Page 329

329T H E N E T W O R K D A T A B A S E M O D E L

TABLE
L.2

Pointer Locations Within the SALES Set

RECORD TYPE POINTERS CURRENT RECORD OF THE SET

OPERATION CUSTOMER
POINTER

INVOICE
POINTER SET POINTER

LOCATE CUSTOMER=1276 a 1276 NULL b CUSTOMER RECORD (1276)
LOCATE FIRST IN SALES SET c 1276 102 INVOICE RECORD (102)
LOCATE NEXT IN SALES SET d 1276 324 INVOICE RECORD (324)
LOCATE INVOICE=403 1276 403 INVOICE RECORD (403)
LOCATE OWNER IN SALES SET 1045 403 CUSTOMER RECORD (1045)
a The summary in this table employs a pseudosyntax. For example, LOCATE CUSTOMER=1276 indicates a search
for a CUSTOMER record whose customer number is 1276.
b Using network database jargon, NULL is used to indicate that no operation has been initiated yet and no pointer

location has yet been designated.
c LOCATE FIRST IN SALES SET means “Locate the first member record in the current SALES set.”
d LOCATE NEXT IN SALES SET means “Locate the next member record in the SALES set.”

L.2 THE DATABASE DEFINITION LANGUAGE (DDL)

The database standardization efforts of the Data Base Task Group (DBTG) led to the development of standard data
definition language (DDL) specifications. Those specifications include DDL instructions that are used to define a
network database.

The examples of DDL will be based on Honeywell’s Integrated Data Store/II (L-D-S/II) network database management
system. Since L-D-S/II’s DDL is very extensive, a subset of it will be used. (If you want to learn more about L-D-S/II, look
at an L-D-S/II reference manual.) Don’t despair if you don’t have access to L-D-S/II; because the network model is based
on CODASYL standards, database definition and creation are similar when other commercial applications are used.

Network database definition and creation are not interactive processes. Therefore, they must be done through the use
of DBMS utility programs at the system prompt level. Creating an L-D-S/II database requires three steps: a logical
definition of the database, using the DDL; a physical definition of the database, using the DMCL (device media control
language); and the physical creation of the database storage files on secondary storage.

To see what general procedures are followed to design, create, and manipulate a network database, examine Figure
L.5. (The illustration is based on CP-6 L-D-S/IL. CP-6 is a Honeywell operating system.)

The network database schema view or schema describes the entire database as seen by the database administrator.
The schema defines the database name; the record type for each record; and the field, set, owner, and member
records. The database subschema view, or subschema, describes the portion of the database used by each application
program.

As you examine Figure L.5, note that the schema view and subschema view(s) are normal text files. Those schema and
subschema text files may be created with any text-processor program. The files contain DDL and DMCL instructions,
which describe the database and application views of the database and indicate what utility programs must be invoked
to validate and create the database structure. Subschema views must be defined and validated for each application that
uses the database.

L-D-S/II has an Interactive Database Processor (IDP), which allows users to manipulate databases. The IDP front
end is intended for users who have some programming knowledge; it is not well suited for most end users.

41199_AppL 11/26/2007 11:15:42 Page 330

330 A P P E N D I X L

L.3 THE SCHEMA DEFINITION

The first step in implementing a network database is defining the entire database as seen by the database
administrator (DBA). The ROBCOR database will be used to illustrate the schema definition. The complete DDL
description for the ROBCOR database is listed in Table L.3.

TABLE
L.3

Schema Definition for the ROBCOR Database

LINE NUMBER DLL CODE
1 DBACS TRANSLATE SCHEMA ROBCOR DDL END
2 SCHEMA NAME IS ROBCOR
3 AREA NAME IS MTSU
4 RECORD NAME IS CUSTOMER
5 LOCATION MODE IS CALC USING CUSID
6 DUPLICATES ARE NOT ALLOWED
7 WITHIN MTSU
8 02 CUSID TYPE IS CHARACTER 5
9 02 CUSTNAME TYPE IS CHARACTER 20

FIGURE
L.5

A flow diagram for the creation of a network database

Section

I.3
I.4
I.5

I.6

I.7

I.8
I.9

DBA

Creates
subschema view(s)

Designs DB

Creates
schema view

Initializes DB

Schema file

Database files

Subschema files

Create application
program, using
DML sentences

Invoke application

Application programmer

End user
Source: CP-6 I-D-S/II Manual (CE54-00).

(IDP)

Invoke IDP

Interactive
Database Processor

41199_AppL 11/26/2007 11:15:42 Page 331

331T H E N E T W O R K D A T A B A S E M O D E L

TABLE
L.3

Schema Definition for the ROBCOR Database (continued)

LINE NUMBER DLL CODE
10 02 CUSTADDRESS TYPE IS CHARACTER 35
11 RECORD NAME IS INVOICE
12 LOCATION MODE IS CALC USING INVNUM
13 DUPLICATES ARE NOT ALLOWED
14 WITHIN MTSU
15 02 INVNUM TYPE IS DECIMAL 5
16 02 INVDATE TYPE IS DECIMAL 8
17 02 INVAMOUNT TYPE IS DECIMAL 6,2
18 RECORD NAME IS INVLINE
19 LOCATION MODE IS VIA INVLINE SET
20 WITHIN MTSU
21 02 LIPRO TYPE IS CHARACTER 4
22 02 LIQTY TYPE IS DECIMAL 2
23 02 LIPRICE TYPE IS DECIMAL 4,2
24 RECORD NAME IS PAYMENT
25 LOCATION MODE IS CALC USING PAYNUM
26 SET DUPLICATES ARE NOT ALLOWED
27 WITHIN MTSU
28 02 PAYNUM TYPE IS DECIMAL 5
29 02 PAYDATE TYPE IS DECIMAL 8
30 02 PAYAMOUNT TYPE IS DECIMAL 6,2
31 RECORD NAME IS SALESREP
32 LOCATION MODE IS CALC USING SLSNUM
33 SET DUPLICATES ARE NOT ALLOWED
34 WITHIN MTSU
35 02 SLSNUM TYPE IS DECIMAL 5
36 02 SLSDATE TYPE IS DECIMAL 8
37 RECORD NAME IS PRODUCT
38 LOCATION MODE IS CALC USING PRODNUM
39 SET DUPLICATES ARE NOT ALLOWED
40 WITHIN MTSU
41 02 PRODNUM TYPE IS CHARACTER 4
42 02 PRODDATE TYPE IS DECIMAL 8
43 02 PRODQTY TYPE IS NUMERIC 6,2
44 SET NAME IS SALES
45 OWNER IS CUSTOMER
46 SET IS PRIOR PROCESSABLE
47 ORDER IS PERMANENT
48 INSERTION IS NEXT
49 MEMBER IS INVOICE
50 INSERTION IS AUTOMATIC
51 RETENTION IS MANDATORY
52 LINKED TO OWNER
53 SET SELECTION IS THRU SALES
54 OWNER IDENTIFIED BY APPLICATION
55 SET NAME IS PAIDBY
56 OWNER IS CUSTOMER
57 SET IS PRIOR PROCESSABLE
58 ORDER IS PERMANENT

41199_AppL 11/26/2007 11:17:17 Page 332

332 A P P E N D I X L

TABLE
L.3

Schema Definition for the ROBCOR Database (continued)

LINE NUMBER DLL CODE
59 INSERTION IS NEXT
60 MEMBER IS PAYMENT
61 INSERTION IS AUTOMATIC
62 RETENTION IS MANDATORY
63 LINKED TO OWNER
64 SET SELECTION IS THRU PAIDBY
65 OWNER IDENTIFIED BY APPLICATION
66 SET NAME IS INVLINE
67 OWNER IS INVOICE
68 SET PRIOR PROCESSABLE
69 ORDER IS PERMANENT
70 INSERTION IS NEXT
71 MEMBER IS INVLINE
72 INSERTION IS AUTOMATIC
73 RETENTION IS MANDATORY
74 LINKED TO OWNER
75 SET SELECTION THRU INVLINE
76 OWNER IDENTIFIED BY APPLICATION
77 SET NAME IS COMMISSION
78 OWNER IS SALESREP
79 SET PRIOR PROCESSABLE
80 ORDER IS PERMANENT
81 INSERTION IS NEXT
82 MEMBER IS INVOICE
83 INSERTION IS AUTOMATIC
84 RETENTION IS MANDATORY
85 LINKED TO OWNER
86 SET SELECTION IS THRU COMMISSION
87 OWNER IDENTIFIED BY APPLICATION
88 SET NAME IS PRODSOLD
89 OWNER IS PRODUCT
90 SET PRIOR PROCESSABLE
91 ORDER IS PERMANENT
92 INSERTION IS NEXT
93 MEMBER IS INVLINE
94 INSERTION IS AUTOMATIC
95 RETENTION IS MANDATORY
96 LINKED TO OWNER
97 SET SELECTION IS THRU PRODSOLD
98 OWNER IDENTIFIED BY APPLICATION
99 END SCHEMA

To understand the DDL sequence shown in Table L.3, you must first learn how the database components work
together. Keep in mind that a network database is basically a system driven by pointers. Think of a network database
as a system having two components: the data and the pointer structures. The data (records with fields) are the raw facts
kept in permanent storage devices for processing and retrieval. The pointers represent the structure that models the
data and describes the required relationships (sets).

41199_AppL 11/26/2007 11:15:43 Page 333

333T H E N E T W O R K D A T A B A S E M O D E L

More precisely, the pointers define the way relationships are represented among entities. When an application
program stores data in the network database, two different structures are updated: the data and the sets (pointers).
Remembering that information will help you understand the DDL commands used to describe the database.

L.4 AN EXPLANATION OF THE SCHEMA DEFINITION

Table L.3’s main schema definition components may be described this way:

� Line 1 invokes the Database Administrator Control System (DBACS). The DBACS is the database
definition processor that reads the ROBCOR database definition and validates the schema. (The DBACS works
like a compiler.)

� Line 2 defines the schema name, which may be up to 30 characters long. Line 3 invokes the AREA clause.
An AREA is a section of physical storage space that is reserved to store the database. The AREA clause allows
the (physical) storage of a database in more than one location, thereby improving access speed. The area name
must be unique, and there must be at least one area defined for the database.

L.4.1 Record Definitions

In L-D-S/II, you must first define all of the required record types. Table L.3 illustrates how that is done.

� Lines 4–10 in Table L.3 yield the CUSTOMER record definition. The RECORD NAME clause initiates the
record’s definition by assigning it a unique name. A valid schema must contain at least one record type.

� The LOCATION MODE clause in Table L.3 determines where the record will be (physically) stored in the
database and how the record will be retrieved. Four location modes are supported under L-D-S/II: DIRECT,
CALC, VIA SET, and INDEXED.

1. DIRECT is the fastest location mode and requires that the application program assign a unique numeric
key for each record. Using the DIRECT approach, the user exercises direct control over the arrangement
of the records in the database. The DIRECT location mode allows the application program (programmer)
to exercise the greatest degree of control over the location and retrieval of records from the database.

2. CALC mode in Table L.3 uses a hashing algorithm over a record’s field to generate the database key for each
record. The same algorithm is used to retrieve the records. The DBA indicates the field over which L-D-S/II
will apply the algorithm in the schema definition, text. This method yields a uniform dispersion of the records
across the database. Note the use of CALC in lines 5 and 6 of the database schema definition and observe
that line 6 specifies that DUPLICATES of key values are not allowed for this record type.

3. VIA � SET places member records together near the owner record occurrence in a set. The VIA � SET
approach is particularly useful when member records will be accessed sequentially. Note especially line 19
in Table L.3’s database schema definition: To store an INVLINE occurrence, the INVOICE record must
first be stored; then the INVLINE records will be stored around it.

4. INDEXED defines an independent storage structure. Indexed records do not participate in any sets.
Instead, indexes are stored in an independent file. A unique primary index is created over a record’s field.
The index represents the order in which the records are stored in the database. There can be one primary
key and several secondary keys for each record. Note the example in Table L.4.

41199_AppL 11/26/2007 11:15:43 Page 334

334 A P P E N D I X L

TABLE
L.4

Defining the Index File

LINE CODE COMMENTS
1 RECORD NAME IS JOB_HISTORY
2 LOCATION MODE IS INDEXED USING EMP_NUM Record field is EMP_NUM.

Primary key is EMP_NUM.
3 WITHIN EMP_HISTORY Area name is EMP_

HISTORY.
4 KEY NAME IS EMP_NUM
5 ASCENDING EMP_SSNUM
6 DUPLICATES ARE NOT ALLOWED
7 KEY NAME IS JOB_DATE Secondary key is JOB_

DATE.
8 ASCENDING DATE_EMP Record field is DATE_EMP.
9 DUPLICATES ARE NOT ALLOWED
10 02 EMP_NUM TYPE IS DECIMAL 9 Record field
11 02 EMP_NAME TYPE IS CHARACTER Record field

02 DATE_EMP TYPE IS DECIMAL 8 Record field
02 COMP_NAME TYPE IS CHARACTER Record field
02 JOB_SALARY TYPE IS DECIMAL 6 Record field

As you examine Table L.4, note these features:

� EMP_NUM represents the record’s key field.

� There can be only one record type in an indexed area.

� Secondary keys may also be defined for the record.

� The DUPLICATES clauses determine whether the system will allow the use of duplicate primary key values.
Because each CUSTOMER must have a unique customer identification number (CUSID) in the application, the
DUPLICATES clause specifies that duplicates are not allowed.

� The WITHIN clauses specify in which area the records will be stored. In this case, all of the records that make
up the ROBCOR database will be stored in the area named MTSU.

� The TYPE clauses allow you to define any of the following data types: fixed binary, float hexadecimal, decimal,
character, database key, or unspecified (string). The database key will store the record key, and the unspecified
data type is a string. (Note that field definitions in L-D-S/II resemble COBOL data definitions.) Using a
COBOL-like syntax, you may define the name of the field, the TYPE of the field, and its length.

L.4.2 Set Definitions

After you have defined all of the records that make up your database, you must define the sets or relations among
record types. Lines 44–54 in Table L.3 yield a set definition, as follows:

� Line 44 names the set. Note that the name must be unique within the current schema.

� Line 45 identifies the OWNER record type, which must be a valid record type already defined in the schema.
A record can be an owner or a member of more than one set. However, a set may have only one OWNER.
Line 46’s SET IS PRIOR PROCESSABLE clause allows the L-D-S/II system to include a pointer to the
previous record, thereby allowing efficient backward processing.

� The ORDER clause (lines 47 and 48) specifies where the record will be inserted within the set. The INSERTION
clause can be FIRST, LAST, NEXT, or PRIOR.

� FIRST and LAST refer to the owner record. Specifically, FIRST defines the position directly after the owner
record. The use of FIRST yields a chronologically reverse-ordered set, as shown in Figure L.6.

41199_AppL 11/26/2007 11:15:43 Page 335

335T H E N E T W O R K D A T A B A S E M O D E L

� LAST defines the position directly before the owner record in the set, yielding a chronologically ordered set
shown in Figure L.7.

� NEXT and PRIOR in Table L.3 refer to the position relative to the current record of the set. The current record
may be either the owner or a member of the set, whichever was last selected.

� The MEMBER clause in Table L.3 identifies the set’s member record type. (The record must have been defined
previously.) A given set may contain several member record types.

� The INSERTION and RETENTION clauses in Table L.3 define the way in which L-D-S/II associates the
member records with their respective owner records. Valid parameters are shown in Table L.5.

TABLE
L.5

Valid Insertion and Retention Parameters

CODE COMMENT
INSERTION IS {AUTOMATIC} The member record is automatically a member of the set when it

is first stored.
INSERTION IS {MANUAL} The record is not a member of any set when it is first stored. It

can be related (manually) to a set later.
RETENTION IS {MANDATORY} A member record should always belong to a set.
RETENTION IS {OPTIONAL} The member record does not need to belong to a set.

FIGURE
L.6

Chronologically reverse-ordered set

Member records

C BA E D

Owner
record

The new member record will
 be inserted between A and E.

FIGURE
L.7

Chronologically ordered set

Member records

D EA B C

Owner
record

The new member record
will be inserted after E.

41199_AppL 11/26/2007 11:19:2 Page 336

336 A P P E N D I X L

� The INSERTION clause in Table L.3 specifies when a member record will be linked to an owner record.

� The RETENTION clause indicates whether a record should always belong to a specified set (mandatory) or if
it can be in the database without belonging to any set (optional). The definition of the INSERTION and
RETENTION parameters helps assure enforcement of the database’s integrity.

� The LINKED TO OWNER clause in Table L.3 creates a pointer to the member record’s owner. Such a link
allows you to find the owner when the current record is a member record.

� The SET SELECTION clause in Table L.3 (lines 53 and 54) identifies how the current record of a set is selected
prior to the record’s retrieval or insertion. The application program will identify the owner record first, then
make that record the current record before allowing the insertion or retrieval of any member record.

You can see that the network model uses several pointers to create the database’s logical structure. For example, the
database schema includes pointers to the next record, pointers to the prior record, pointers to the owner record, and
so on. The degree of physical detail involved in the database definition is also very clear. As a result, learning the
intricacies of such a database environment takes a considerable amount of time and effort.

Network database programmers must also be familiar with the available storage structures at the physical level. The
DBACS not only validates and translates the schema specifications, but also defines and validates the database’s
physical storage characteristics. (The physical characteristics are defined using a device media control language.)

L.4.3 Device Media Control Language

After defining the database schema, the database administrator (DBA) must define the physical storage characteristics.
For example, the system must “know” how the database will be stored on disk, what the area name is, and what
records and sets belong to the specified area. The ROBCOR schema’s DMCL is depicted in Table L.6. The DBACS
translates the schema and DMCL files to validate the physical structure that will support the database.1

TABLE
L.6

The ROBCOR Schema DMCL

LINE NUMBER DLL CODE
1 DBACS TRANSLATE SCHEMA ROBCOR DCML
2 MODE IS ALTER
3 END
4 SCHEMA NAME IS ROBCOR
5 AREA NAME IS MTSU
6 ALLOCATE 512 DATA_BASE_KEYS
7 RECORD NAME IS CUSTOMER TYPE IS 1
8 RECORD NAME IS INVOICE TYPE IS 2
9 RECORD NAME IS PAYMENT TYPE IS 3
10 RECORD NAME IS INVL1NE TYPE IS 4
11 RECORD NAME IS SALESREP TYPE IS 5
12 RECORD NAME IS PRODUCT TYPE IS 6
13 SET NAME IS SALES
14 SET NAME IS PAIDBY
15 SET NAME IS INVLINE
16 SET NAME IS COMMISSION
17 SET NAME IS PRODSOLD
18 END_DMCL

1 A complete description of all possible system options is available in Honeywell’s CP-6 L-D-S/II Database Administrator Manual, order number
CE36-02.

41199_AppL 11/26/2007 11:19:2 Page 337

337T H E N E T W O R K D A T A B A S E M O D E L

The DMCL file contains the following five components:

1. The schema name.

2. The area name and physical characteristics.

3. The record definitions.

4. The set entry.

5. The key entries used to name all of the record keys found in the area.

L.5 DATABASE INITIALIZATION

After the schema DDL and DMCL have been validated by the DBACS, the database must be initialized using a utility
program named DBUTIL. The database initialization process creates the physical files that will contain the database.
The database files will be located in the physical storage devices identified in the AREA clause specified in the DDL
and DMCL schema files.

L.6 SUBSCHEMA DEFINITION

All applications programs view L-D-S/II databases through a subschema. The subschema contains all of the fields,
records, and sets that are available to the application. In effect, the subschema is a “window” that the DBCS (Data Base
Control System) opens to the application. The application uses this window to communicate with the database. Keep
in mind that the subschema is contained within the database’s (total) conceptual schema. The DBCS validates all
subschema entries against the schema. When an application program invokes a subschema, a User Work Area (UWA)
is created by the DBCS. The UWA is a specific area of memory that contains several fields used to access and inform
regarding the status of the database. The UWA also contains space for each record type defined in the subschema.

The UWA allows the application to communicate with the DBCS. Application programs read from and write to the
UWA when the database is accessed or updated. Application programs can also check the database status after each
operation to see if the operation was performed properly. The UWA’s role as the interface between an application and
the database is illustrated in Figure L.8.

FIGURE
L.8

The UWA as an interface between the application and database

Application UWA
Database

control system

Stored
database

41199_AppL 11/26/2007 11:19:2 Page 338

338 A P P E N D I X L

When an application retrieves a database record, the DBCS reads that record and places it in the space reserved for
it by the application program’s UWA. The DBCS also updates all of the required UWA status fields. The application
can also check and validate the database status after its last operation.

Subschemas are created manually by the DBA. In this case, the DBA must assure that all subschema definitions are
correct and valid to the schema. A better way to create subschemas is to use the DBACS to create a full subschema
from the main schema. That subschema will allow an unconstrained manipulation of the entire database. This
all-encompassing subschema can then be modified by erasing all of the fields, records, and relations not required by
the application program. L-D-S/II can generate subschemas for APL, BASIC, COBOL, and FORTRAN.

Table L.7 shows a COBOL subschema definition for the ROBCOR database. If this subschema is used, all sets and
records of the database are available to the application program.

TABLE
L.7

COBOL Subschema Definition for the ROBCOR Database

LINE NUMBER DLL CODE
1 DBACS TRANSLATE COBOL SUBSCHEMA SUB_ROBCOR DDL END
2 TITLE DIVISION
3 SS SUB_ROBCOR WITHIN ROBCOR
4 MAPPING DIVISION
5 STRUCTURE DIVISION
6 REALM SECTION
7 RD MTSU
8 SET SECTION
9 SD COMMISSION
10 SD INVLINE
11 SD PAIDBY
12 SD PRODSOLD
13 SD SALES
14 KEY SECTION
15 RECORD SECTION
16 01 CUSTOMER
17 02 CUSTID DISPLAY PIC X(5)
18 02 CUSTNAME DISPLAY PIC X(20)
19 02 CUSTADDRESS DISPLAY PIC X(35)
20 01 INVLINE
21 02 LINEPROD DISPLAY PIC X(4)
22 02 LINEQTY DISPLAY PIC 9(2)V9(2)
23 02 LINEPRICE DISPLAY PIC 9(2)V9(2)
24 01 INVOICE
25 02 INVNUM DISPLAY PIC 9(5)
26 02 INVDATE DISPLAY PIC 9(8)
27 02 INVAMOUNT DISPLAY PIC 9(4)V9(2)
28 01 PAYMENT
29 02 PAYNUM DISPLAY PIC 9(5)
30 02 PAYDATE DISPLAY PIC 9(8)
31 02 PAYAMOUNT DISPLAY PIC 9(4)V9(2)
32 01 PRODUCT
33 02 PRODNUM DISPLAY PIC X(4)
34 02 PRODNAME DISPLAY PIC X(20)
35 02 PRODQTY DISPLAY PIC 9(4)V9(2)
36 01 SALESREP
37 02 SLSNUM DISPLAY PIC X(4)

41199_AppL 11/26/2007 11:19:2 Page 339

339T H E N E T W O R K D A T A B A S E M O D E L

TABLE
L.7

COBOL Subschema Definition for the ROBCOR Database (continued)

LINE NUMBER DLL CODE
38 02 SLSNAME DISPLAY PIC X(20)
39 END

Note that the subschema defined in Table L.7 contains the following three main components:

1. The Title Division, containing schema and subschema names.

2. The Mapping Division, containing all aliases used in the subschema.

3. The Structure Division, in which the area, sets, keys, and records used by the application are defined.

Given the components of the subschema depicted in Table L.7, note that a database file is referenced by its realm,
rather than by its area, as is done in the schema definition. Actually, realm and area refer to the same thing. (The use
of different terms to describe the same thing reflects the early lack of database terminology standards.)

The DBACS processes and validates the subschema definition in two independent steps. Those steps must be
completed before any application programs based on the subschema can be compiled. (Keep in mind that the
ROBCOR schema DDL and DMCL must be processed before the subschema can be processed.)

Figure L.9 shows the arrangement of the interactions between the DBMS and the ROBCOR information system
components.

As you examine Figure L.9, note that each application program is given a UWA to manipulate the subset of the
database needed by the application. The UWA is created at run time and uses the application’s subschema definition
data. Also remember that each subschema is a subset of the global database schema and must, therefore, be validated
against the global schema. The DBMS (the DBCS component in L-D-S/II) is responsible for coordinating and
controlling all of the interactions between the application programs, the user work areas, and the database.

L.7 AN INTRODUCTION TO THE DATA MANIPULATION LANGUAGE

Application programs navigate in a database by using a data manipulation language (DML). As previously noted,
L-D-S/II provides interfaces to four languages: APL, BASIC, COBOL, and FORTRAN. A COBOL-like syntax will be
used to illustrate the DML’s use.

41199_AppL 11/26/2007 11:19:2 Page 340

340 A P P E N D I X L

The UWA has eight special status registers. The registers are used by the DBCS and the application program to share
information about the status of the database. Here is a list of the registers’ names (for COBOL) and an explanation
of each:

1. DB-STATUS. This register returns the status of the DML statement after its execution. If no error occurs, the
DB-STATUS returns zero. For example:

IF DB-STATUS = 00 Check for a “no error” condition
(COBOL SENTENCES)
�

�

2. DB-REALM-NAME. This register returns the name of the realm at the conclusion of DML sentences. Whether
the DML’s completion is successful or unsuccessful, the realm name is updated. The realm name can be blank.
A COBOL program can check the value of this register.

3. DB-SET-NAME. This register returns the set name after an unsuccessful DML statement. (It can be blank.) A
COBOL program can check the status of this register, but only the DBCS can update it.

4. DB-RECORD. This register returns the record name at the conclusion of DML statements. Whether or not the
statement was successful, the DB-RECORD is updated by the DBCS after each statement. DB-RECORD can
be set to blank. A COBOL program can check its value.

FIGURE
L.9

Interaction between the DBMS and ROBCOR information system components

Payroll Billing Inventory

DBDBDBDB

UWA UWA UWA

Subschema Subschema Subschema

Schema
ROBCOR DB

Storage structures (“realms”)

Embedded
DML commands

DBMS controls
Storage

and
retrieval

Applications

User work areas

Application view

Conceptual level

Physical level

41199_AppL 11/26/2007 11:20:53 Page 341

341T H E N E T W O R K D A T A B A S E M O D E L

5. DB-PRIVACY-KEY. The DBCS places the value of the PRIVACY key in this register during the schema
translation. The PRIVACY key is a keyword used to restrict access to the database’s authorized users.

6. DIRECT-REFERENCE. This register passes on a record key for DIRECT access. A COBOL command can
update this register. The DBCS updates this register with the value of the key for the current record in the last
DML statement.

7. DB-DATA-NAME. If the subschema was translated with the INCLUDE DATA NAMES option, the DBCS
returns the DATA-ITEM name when an invalid data type problem occurs.

8. DB-KEY-NAME. The DBCS returns the name of the record key at the conclusion of an unsuccessful DML
statement.

To understand the DML statements, it is important that you note the currency concept described in Section L.1. So
you can appreciate the role played by currency, let’s examine an instance of sequential file processing (see Figure L.10)
with only one record type.

When working with a single record type, there is only one logical path for each record occurrence. If the pointer is located
in record A, the next record will always be B, the record after that will always be C, and so on. However, when there are
several record types in a network database environment, each record can be involved in more than one relation. That
is, a record can be an owner or a member of more than one set. That condition is illustrated in Figure L.11.

FIGURE
L.10

An instance of sequential file processing with only one record type

D EA B C … XF … …

FIGURE
L.11

Several record types in multiple relations

D

E

A

B C

F

G H

(AB) (AD)

(CE) (CF) (DF)

(EG) (FG) (FH)

41199_AppL 11/26/2007 11:20:53 Page 342

342 A P P E N D I X L

In Figure L.11, several logical paths may be taken to navigate from one record to another. For example, if the record
pointer is in record A, the path may lead to B (AB set), C (AC set), or D (AD set). If the record pointer is in record
F, the path may lead to D (DF set) or C (CF set), or you may elect to move to C (CF set) or H (FH set).

To keep track of the record and set pointers, L-D-S/II keeps five currency register records in the UWA. The currency
registers are:

1. Current record of the run unit. A pointer updated by the DBCS after certain DML statements. This is the
pointer to the last valid record accessed by the application.

2. Current record of a set type. A pointer for each set defined in the subschema. Such pointers specify the last
record in each set that was accessed by the application.

3. Current record of a realm. A pointer for each realm specified in the subschema. Remember that a database
can be stored in one or more areas or realms (physical files).

4. Current record of a record type. A pointer for each of the subschema’s record types.

5. Current record of a record key type. A pointer for each record key type defined in the subschema. Each
record key type points to a specific record. DBCS keeps a pointer to the last record accessed for each of the
defined record key types.

L.8 DATA MANIPULATION LANGUAGE COMMANDS

The data in a database (especially a transaction-type database) are subject to change. Therefore, end users must be able
to add, delete, and modify the data. You will examine how data manipulation is done in a network database
environment.

L.8.1 Opening Realms

An application program must invoke the READY command to access a database. The READY command makes the
database available to the program. The three following usage modes are available:

1. UPDATE—Read/write to the database.

2. LOAD—Initial load of the database.

3. RETRIEVAL—Read from the database.

The command syntax conforms to the following sequence:

 LOAD
READY ROBCOR; USAGE IS UPDATE
 RETRIEVAL

L.8.2 Closing Realms

When the database’s use is no longer required, close the realm using the syntax:

FINISH (realm list)

The realm list refers to the realm names that make up a database. If no realm names are specified, all realms
(databases) are closed.

41199_AppL 11/26/2007 11:20:53 Page 343

343T H E N E T W O R K D A T A B A S E M O D E L

L.8.3 STORE

The STORE command saves a database record and updates the current record of the run unit in the UWA. The
appropriate syntax is:

STORE (record-name)

To store a CUSTOMER record in the ROBCOR database, first move the new values to the corresponding fields:

MOVE ‘‘12421’’ TO CUSTID
MOVE ‘‘Mary D. Allen’’ TO CUSTNAME
MOVE ‘‘1418 E. Main Street’’ TO CUSTADDRESS
STORE CUSTOMER

Given that command sequence, the record will become the current record of the run unit, the current record of the
PAIDBY and SALES sets, the current record of the realm, and the current record for the CUSTOMER record type,
as shown in Figure L.12.

The order in which the records are stored is very important. Member records can be stored only after the record owner
of the set has been stored. When a member record is stored, it is automatically inserted in all of the sets where the
record was declared a member—if the INSERTION IS AUTOMATIC clause was specified in the schema definition.
For example, a PAYMENT record may be inserted in the ROBCOR database by using:

MOVE 40913 TO PAYNUM
MOVE ‘‘20081029’’ TO PAYDATE
MOVE 123.00 TO PAYAMOUNT
STORE PAYMENT

In that case, the PAYMENT record is inserted into the database; it is also automatically inserted into the PAIDBY set and
linked to the CUSTOMER Mary D. Allen CUSTOMER record. The new values of the sets are indicated in Figure L.13.

If a record belongs to more than one set, the programmer must make sure that the current occurrences of the owner
records (for the sets to which the new record belongs) are correct before the record is inserted. For example, if the
INVOICE record belongs to two sets (SALES and COMMISSIONS), the SALESREP record must be stored prior to the
storage of the INVOICE record:

MOVE ‘‘D234’’ TO SLSNUM

MOVE ‘‘Johnny I. Diaz’’
STORE SALESREP

FIGURE
L.12

Storing the customer record

Mary D. Allen

PAIDBY set SALES set

Current CUSTOMER record

The set is empty
(no member records)

The set is empty
(no member records)

Mary D. Allen

41199_AppL 11/26/2007 11:20:54 Page 344

344 A P P E N D I X L

After the insertion, the sets are represented as shown in Figure L.14.

Next, the INVOICE record can be stored:

MOVE 3280 TO INVNUM
MOVE ‘‘20080114’’ TO INVDATE
MOVE 169.50 TO INVAMOUNT
STORE INVOICE

After that insertion, the sets look like Figure L.15.

L.8.4 FIND

The FIND command is used to locate records in the database and works with the LOCATION MODE used in the
schema definition. The FIND command updates the currency values of the UWA. The syntax for the FIND command
varies according to the access type.

FIGURE
L.13

The results of the PAYMENT record insertion

Mary D. Allen

PAIDBY set SALES set

Current CUSTOMER record

The set is empty
(no member records)

Mary D. Allen

Current PAYMENT record 40913

FIGURE
L.14

The empty COMMISSION and SALES sets

Johnny I. Diaz

COMMISSION set SALES set

The set is empty
(no member records)

The set is empty
(no member records)

Mary D. Allen

Current SALESREP record Current CUSTOMER record

41199_AppL 11/26/2007 11:20:54 Page 345

345T H E N E T W O R K D A T A B A S E M O D E L

Direct Access Mode

The command syntax for the direct access mode is:

FIND (record name); DB-KEY IS (dbkey)

The dbkey is the DIRECT-REFERENCE special field in the UWA. The direct-reference value must be moved to the
DIRECT-REFERENCE field before the record can be accessed. For example:

MOVE “101” TO DIRECT-REFERENCE
FIND CUSTOMER; DB-KEY IS DIRECT-REFERENCE

The CUSTOMER record type must have been described as LOCATION MODE IS DIRECT in the schema definition.

CALC Access Mode

There are two options. The command syntax for each option follows:

FIND ANY <record name>
FIND DUPLICATE <record name>

Either FIND locates a record with LOCATION MODE IS CALC. The value to the key field is given before issuing the
command:

MOVE ‘‘12421’’ TO CUSID
FIND ANY CUSTOMER RECORD

This command sequence locates the CUSTOMER record “Mary D. Allen.”

To use the CALC access mode, the CUSTOMER record must have been defined in the ROBCOR schema as
LOCATION MODE CALC USING CUSID. That means that the contents of CUSID are used to find the record.

To store the occurrence of a PAYMENT record in the PAIDBY set, the commands shown in Table L.8 are necessary.

FIGURE
L.15

The COMMISSION and SALES set after the insertion

Johnny I. Diaz

COMMISSION set SALES set

Mary D. Allen

Current SALESREP record Current CUSTOMER record

INVOICE record

3280

41199_AppL 11/26/2007 11:20:54 Page 346

346 A P P E N D I X L

TABLE
L.8

Store the Occurrence of a PAYMENT Record in the PAIDBY Set

PSEUDOCODE COMMENT
MOVE “12421” TO CUSID
FIND ANY CUSTOMER Makes CUSTOMER the current record.
MOVE 40913 TO PAYNUM
MOVE “20081029” TO PAYDATE
MOVE 123.00 TO PAYAMOUNT
STORE PAYMENT

Navigating Within Sets

There are four options. The command syntax for each option follows:

Find PRIOR <record name> FIRST <set-name>
Find PRIOR <record name> NEXT <set-name>
Find PRIOR <record name> PRIOR <set-name>
Find PRIOR <record name> LAST <set-name>

As the syntax suggests, the FIND command locates the FIRST, NEXT, PRIOR, or LAST occurrence of a given record
type within a set. The pseudocode in Table L.9 shows an example.

TABLE
L.9

An Example of the FIND Syntax

PSEUDOCODE COMMENT
MOVE “12421” TO CUSID
FIND ANY CUSTOMER RECORD Locates the owner of a set
IF DB-STATUS NOT = 00
DISPLAY “CUSTOMER NOT FOUND”
GO TO ERROR-RTN
FIND FIRST INVOICE RECORD WITHIN SALES Locates the first INVOICE in the SALES set for cus-

tomer 12421
IF DB-STATUS NOT = 00 Check status
DISPLAY “ERROR”
GOTO ERROR-RTN

Locating Owner Records

To locate the owner of a member record in a set, use a modification of the FIND syntax:

FIND OWNER WITHIN <set-name>

An example of the command syntax is shown in Table L.10.

41199_AppL 11/26/2007 11:20:54 Page 347

347T H E N E T W O R K D A T A B A S E M O D E L

TABLE
L.10

Locating Owner Records

PSEUDOCODE COMMENT
MOVE “12421” TO CUSID Makes CUSTOMER the current record
FIND ANY CUSTOMER
IF DB-STATUS NOT = 00 Check status
DISPLAY “ERROR”
GOTO ERROR-RTN
FIND FIRST INVOICE RECORD WITHIN SALES
IF DB-STATUS NOT = 00 Check status
DISPLAY “ERROR”
GOTO ERROR-RTN
FIND OWNER WITHINCOMMISSION
IF DB-STATUS NOT = 00 Check status
DISPLAY “ERROR”
GOTO ERROR-RTN

The command sequence in Table L.10 is a good example of how the application program navigates the database. First,
locate the CUSTOMER record 12421 for a customer named “Mary D. Allen.” Next, move into the SALES set to
locate Mary D. Allen’s first INVOICE. Finally, the

FIND OWNER WITHIN COMMISSION

command locates the SALESREP record for that INVOICE.

L.8.5 CONNECT

The purpose of the CONNECT command is to insert an existing record as a set member. Both the member and the
owner records must already be stored in the database. The command syntax is:

CONNECT <record-name> TO <set-name>

The CONNECT command is used when the INSERTION IS MANUAL and the OWNER IDENTIFIED BY APPLICA-
TION clauses were specified for the member record in the schema definition. The user has to manually CONNECT
the record with the appropriate owner record in each of the sets to which the record belongs. Assuming the PAYMENT
record was defined as INSERTION IS MANUAL in the PAIDBY set, the correct sequence of commands is shown in
Table L.11.

TABLE
L.11

Inserting an Existing Record as a Set Member

PSEUDOCODE COMMENT
MOVE “12421” TO PAYNUM Makes CUSTOMER the current record
FIND ANY CUSTOMER
MOVE “40913” TO PAYNUM
MOVE “20081029” TO PAYDATE
MOVE 123.00 TO PAYAMOUNT
STORE PAYMENT Stores PAYMENT
CONNECT PAYMENT TO PAIDBY Inserts record in PAIDBY set

41199_AppL 11/26/2007 11:20:54 Page 348

348 A P P E N D I X L

L.8.6 DISCONNECT

The DISCONNECT command removes a record from a set. The command is used only when records were declared
as AUTOMATIC OPTIONAL or MANUAL OPTIONAL members of a set in the schema definition. The syntax is:

DISCONNECT <record-name> FROM <set-name>

Table L.12 shows an example.

TABLE
L.12

Remove a Record from a Set

PSEUDOCODE COMMENT
MOVE “40913” TO PAYNUM Locates the PAYMENT record
FIND ANY PAYMENT
DISCONNECT PAYMENT FROM PAIDBY Disconnects the PAYMENT record from the PAIDBY set

Note that the DISCONNECT command in Table L.12 does not physically remove the record from the stored database;
it merely manipulates the pointers to bypass the record.

L.8.7 GET

The GET command reads a record from the database, making the record’s field available to the program. Only the
fields defined in the subschema are available. The command syntax is:

GET <record-name>

Table L.13 shows an example.

TABLE
L.13

Read a Record with GET

PSEUDOCODE COMMENT
MOVE “12421” TO CUSTID Locates the customer record
FIND ANY CUSTOMER
GET CUSTOMER Reads the customer's data

L.8.8 MODIFY

The MODIFY command changes the current record’s field contents, using the syntax:

MODIFY <record-name>

The command flushes the contents of the UWA buffers to the database. An example of the MODIFY command is
shown in Table L.14.

41199_AppL 11/26/2007 11:20:54 Page 349

349T H E N E T W O R K D A T A B A S E M O D E L

TABLE
L.14

Modify a Record

PSEUDOCODE COMMENT
MOVE “12421” TO CUSTID Locates the customer record
FIND ANY CUSTOMER
GET CUSTOMER Reads the customer record
MOVE “245 S.W. Clark St.” TO CUSTADDRESS Changes the address in the UWA buffer
MODIFY CUSTOMER Writes the changes to the (physical) database

L.8.9 ERASE

The ERASE command removes the current record from the database and automatically removes all member records
associated with it. The command syntax is:

ERASE <record-name> ALL MEMBERS

The ERASE command ensures that the record is eliminated from all of the sets in which it was declared a member.
If the record was declared owner of one or more sets, all member occurrences related to the record are also removed.
Table L.15 shows an example.

TABLE
L.15

Delete a Record

PSEUDOCODE COMMENT
MOVE “14206” TO INVNUM
FIND ANY INVOICE Locates the invoice
ERASE INVOICE ALL MEMBERS Erases the INVOICE record and all member records of all sets

from which INVOICE is the owner record

The command sequence shown in Table L.15 will erase the INVOICE records from:

1. All of the sets (COMMISSIONS and SALES) for which it was declared a member.

2. All of the INVLINE records associated with the INVOICE in the INVLINES set.

3. All of the INVLINE members associated with the PRODSOLD set.

L.9 THE NETWORK MODEL’S CONTRIBUTION TO DATABASE SYSTEMS

The network database model provided several advantages over its file-system and hierarchical-database predecessors.
In fact, the network database model paved the way for subsequent database developments through CODASYL’s
attempt to standardize basic database concepts such as schema, subschema, and DML. The network database model
also set the stage for more complex and better data modeling by providing support for relations in which a record could
be related to more than one owner or parent record.

41199_AppL 11/26/2007 11:20:54 Page 350

350 A P P E N D I X L

K e y T e r m s

AREA, 334

currency, 328

Database Administrator Control
System (DBACS), 334

data definition language (DDL), 330

Interactive Database Processor
(IDP), 330

LOCATION MODE clause, 334

RECORD NAME clause, 334

schema, 330

subschema, 338

UWA (user work area), 338

41199_AppL 11/26/2007 11:20:55 Page 351

351T H E N E T W O R K D A T A B A S E M O D E L

answers to selected questions and problems

CHAPTER 1 DATABASE SYSTEMS

Answers to Selected Review Questions
2. Data redundancy exists when unnecessarily duplicated data are found in the database. For example, a

customer’s telephone number may be found in the customer file, in the sales agent file, and in the invoice file.
Data redundancy is symptomatic of a (computer) file system, given its inability to represent and manage data
relationships. Data redundancy may also be the result of poorly-designed databases that allow the same data
to be kept in different locations. (Here’s another opportunity to emphasize the need for good database design!)
(See Section 1.5.3, Data Redundancy.)

4. A DBMS is a collection of programs that manages the database structure and controls access to the data stored
in the database. (See Section 1.2, Introducing the Database and the DBMS.) The DBMS’s main functions are
data dictionary management, data storage management, data transformation and presentation, security
management, multiuser access control, backup and recovery management, data integrity management,
database access languages and application programming interfaces, and database communication interfaces.
(See Section 1.6.2, DBMS Functions.)

6. Data are raw facts—more precisely, real-world facts that have been formatted and stored. Data are the raw
material from which information is derived. Information is the result of processing raw data to reveal its
meaning. (See Section 1.1, Data vs. Information.)

8. Databases can be classified according to the number of uses supported: single-user, desktop, multiuser,
workgroup, and enterprise databases. According to data distribution, a database can be classified as centralized
and distributed. According to its intended use, databases can be classified as operational (transactional) or data
warehouse databases. (See Section 1.2.2, Types of Databases.)

10. Metadata is data about data. The metadata provide a description of the data characteristics and the set of
relationships that link the data found in the database. (See Section 1.2, Introducing the Database and
the DBMS.)

12. The potential costs are increased hardware, software, and personnel costs; complexity of management;
currency; and vendor dependence. (See Section 1.6.3, Managing the Database: A Shift in Focus.)

Answers to Selected Problems
1. The file contains seven records (21-5Z through 31-7P) and each of the records is composed of five fields

(PROJECT_CODE through PROJECT_BID_PRICE.)

3. The PROJ_MANAGER and MANAGER_ADDRESS fields should be broken up and moved into the following
fields: First_Name, Initial, Last_Name, Area_Code, City, State, and Zip.

5. The project name, employee name, job code, job charge per hour, and employee phone fields are
unnecessarily duplicated. That duplication will lead to data anomalies.

7. The file structure in Figure P1.5 can be subdivided into simpler files, each representing a single subject; for
example, project data, employee data, job data, and proj_emp data. (The proj_emp data file would store the
hours that an employee worked on a project.)

9. The file structure in Figure P1.9 contains redundant data (teacher last name, first name, and initial). That data
duplication could lead to data anomalies. It would be preferable to use a teacher ID or a teacher number column
to relate the schedule data to a Teacher data file.

41199_AppAns 1/23/2008 9:23:9 Page 352

CHAPTER 2 DATA MODELS

Answers to Selected Review Questions
2. A business rule is a brief, precise, and unambiguous description of a policy, procedure, or principle within a

specific organization’s environment. Properly written business rules are used to define entities, attributes,
relationships, and constraints.

6. The relational data model illustrates end-user data as being stored in tables. Each table is a matrix consisting
of a series of row/column intersections. Tables, also called relations, are related to each other by the sharing
of a common entity characteristic (value in a column). The relational database is perceived by the user to be
a collection of tables in which data are stored. The relational data model allows the designer to focus on how
the data components interact, rather than on the physical details of how the data are stored. This makes is
much easier to model the complex real-world data environment.

7. An entity relationship model, also known as an ERM, helps identify the database’s main entities and their
relationships. Because the ERM components are graphically represented, their role is more easily understood.
Using the ER diagram, it’s easy to map the ERM to the relational database model’s tables and attributes. The
mapping process uses a series of well-defined steps to generate all of the required database structures.

10. An object is an instance of a specific class. The object is a run-time concept, while the class is a more static
description. Objects that share similar characteristics are grouped in classes. A class is a collection of similar
objects with shared structure (attributes) and behavior (methods.) Therefore, a class resembles an entity set.
However, a class also includes a set of procedures known as methods.

14. A relationship is an association among two or more entities. Three types of relationships exist: one-to-one
(1:1), one-to-many (1:M), and many-to-many (M:N or M:M).

Answers to Selected Problems
1. An AGENT can have many CUSTOMERs. Each CUSTOMER has only one AGENT.

6. The relationship types and business rules are as follows:

8. The relationship types and business rules are as follows:

ENTITY RELATIONSHIP TYPE ENTITY BUSINESS RULES
REGION 1:M STORE A region can have many stores.

Each store is located in one region.
STORE 1:M EMPLOYEE One store can employee many employees.

Each employee works in only one store.
JOB 1:M EMPLOYEE A job can be held by many employees.

Each employee holds only one job.

ENTITY RELATIONSHIP TYPE ENTITY BUSINESS RULES
COURSE 1:M CLASS A course can generate many classes.

Each class is a section of only one course.
CLASS 1:M ENROLL A class can enroll many students.

(This means that a class can appear many times in the ENROLL
table—that's because a class can have many students.)

STUDENT 1:M ENROLL A student can enroll in many classes.
(This means that a student can appear many times in the
ENROLL table—that's because a student can take more than
one class.)

41199_AppAns 1/23/2008 9:28:34 Page 353

353A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

12. a. The segment types are PAINTER and PAINTING.

b. PT_NUMBER, PT_NAME, and PT_PHONE are the segment components of the PAINTER segment.
PTG_NUMBER and PTG_TITLE are the segment components of the PAINTING segment.

c. The DBMS must access the PAINTER segment first:

10014, Josephine G. Artiste, 615-999-8963.

Next, the two PAINTING segments are accessed:

21003, Database Sunshine,

11987, Hierarchical Paths.

Finally, the third PAINTING segment is accessed:

25108, File Systems Folly.

18. a. You would create three tables:

b. The PAINTING table will be related to both the GALLERY and PAINTER tables. The PAINTING table will
contain the attribute PTR_NUMBER, which will relate it to the PAINTER table. The PAINTING table
will also contain the GAL_NUM attribute, which will relate it to the GALLERY where the painting is
being shown.

22. The relationship type and business rules are summarized as follows:

CHAPTER 3 THE RELATIONAL DATABASE MODEL

Answers to Selected Review Questions
1. A table is a logical structure representing an entity set. A database is a structure that houses one or more tables,

as well as other objects that are used to manage the data.

2. Entity integrity exists when all primary key (PK) entries are unique and no part of the PK is null. Entity integrity
is important because it ensures that there will be no duplicate rows. Referential integrity ensures that a foreign
key references only an existing related entity, thus avoiding ambiguity and/or invalid references. By
maintaining entity and referential integrity, the system enforces data integrity.

10. To implement a 1:M relationship, place the primary key of the “1” side as a foreign key on the “M” side. (See
Section 3.6.1, The 1:M Relationship, Figure 3.19.)

12. DIRECTOR primary key is DIR_NUM.

PLAY primary key is PLAY_CODE.

13. DIR_NUM is foreign key in PLAY.

TABLE NAME TABLE COMPONENTS
PAINTER PTR_NUMBER, PTR_NAME, PTR_PHONE
PAINTING PTG_NUMBER, PTG_TITLE, PTR_NUMBER, GAL_NUM
GALLERY GAL_NUM, GAL_NAME, GAL_ADDRESS

ENTITY RELATIONSHIP TYPE ENTITY BUSINESS RULES
PROFESSOR 1:M STUDENT A professor can advise many students.

Each student is advised by only one professor.
PROFESSOR 1:M CLASS A professor can teach many classes.

Each class is taught by only one professor.

41199_AppAns 1/23/2008 9:29:43 Page 354

354 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

Answers to Selected Problems
8. Primary and foreign keys are identified as follows:

9. Answers on entity integrity are as follows:

10. Answers on referential integrity are as follows:

CHAPTER 4 ENTITY RELATIONSHIP (ER) MODELING

Answers to Selected Review Questions
2. A strong relationship exists when an entity is existence-dependent on another entity and inherits at least part

of its primary key from that entity. The Visio Professional software shows the strong relationship as a solid line.
In other words, a strong relationship exists when a weak entity is related to its parent entity.

4. A composite entity, also known as a bridge entity, is one that has a primary key composed of multiple
attributes. The PK attributes are inherited from the entities that it relates to one another. A composite entity
is generally used to transform M:N relationships into 1:M relationships.

8. A composite key is a primary key that consists of more than one attribute. A composite attribute is an attribute
that can be subdivided to yield attributes for each of its components. If the ER diagram contains the attribute
names for each of its entities, a composite key is indicated in the ER diagram by the fact that more than one
attribute name is underlined to indicate its participation in the primary key. There is no ER convention that
enables you to indicate that an attribute is a composite attribute.

10. A derived attribute is an attribute whose value is calculated (derived) from other attributes. The derived attribute
need not be physically stored within the database; instead, it can be derived by using an algorithm. For
example, an employee’s age, EMP_AGE, may be found by computing the integer value of the difference
between the current date and the EMP_DOB. In MS Access, the computation would be INT((DATE() –
EMP_DOB)/365).

TABLE PRIMARY KEY FOREIGN KEY(S)
EMPLOYEE EMP_CODE STORE_CODE
STORE STORE_CODE REGION_CODE, EMP_CODE
REGION REGION_CODE NONE

TABLE ENTITY INTEGRITY EXPLANATION
EMPLOYEE Yes Each EMP_CODE value is unique, and there are no nulls.
STORE Yes Each STORE_CODE value is unique, and there are no nulls.
REGION Yes Each REGION_CODE value is unique, and there are no nulls.

TABLE REFERENTIAL INTEGRITY EXPLANATION
EMPLOYEE Yes Each STORE_CODE value in EMPLOYEE points to an

existing STORE_CODE value in STORE.
STORE Yes Each REGION_CODE value in STORE points to an

existing REGION_CODE value in REGION, and each
EMP_CODE value in STORE points to an existing EMP_
CODE value in EMPLOYEE.

REGION NA

41199_AppAns 1/30/2008 8:24:18 Page 355

355A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

Similarly, a salesclerk’s total gross pay can be computed by adding a computed sales commission to base pay.
For instance, if the salesclerk’s commission is 1 percent, the gross pay may be computed by:

EMP_GROSSPAY = INV_SALES * 1.01 + EMP_BASEPAY

Or the invoice line item amount can be calculated by:

LINE_TOTAL = LINE_UNITS * PROD_PRICE

15. A single-valued attribute is one that can have only one value. For example, a person has only one first name
and only one Social Security number. A simple attribute is one that cannot be decomposed into its component
pieces. For example, a person’s sex is classified as either M or F, and there is no reasonable way to decompose
M or F. Similarly, a person’s first name cannot be decomposed into meaningful components. (In contrast, if a
phone number includes the area code, it can be decomposed into the area code and the phone number itself.
And a person’s name may be decomposed into a first name, an initial, and a last name.)

Single-valued attributes are not necessarily simple. For example, an inventory code HWPRIJ23145 may refer
to a classification scheme in which HW indicates Hardware, PR indicates Printer, IJ indicates Inkjet, and 23145
indicates an inventory control number. Therefore, HWPRIJ23145 may be decomposed into its component
parts even though it is single-valued. To facilitate product tracking, manufacturing serial codes must be
single-valued, but they may not be simple. For instance, the product serial number TNP5S2M231109154321
might be decomposed this way:

TN = state = Tennessee

P5 = plant number 5

S2 = shift 2

M23 = machine 23

11 = month; that is, November

09 = day

154321 = time on a 24-hour clock, that is, 15:43:21, or 3:43 p.m. plus 21 seconds

Answers to Selected Problems
1. The solution is shown in Figure P4.1.

FIGURE
P4.1

Solution to Problem 4.1

41199_AppAns 1/23/2008 11:36:9 Page 356

356 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

7. The Crow’s Foot ERD is shown in Figure P4.7. (Some attributes have been made up for each of the entities
in the Crow’s Foot model.)

FIGURE
P4.7

Crow’s foot ERD solution for Problem 7

41199_AppAns 1/23/2008 11:39:35 Page 357

357A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

11. The Visio ERD is shown in Figure P4.11.

Note

Keep in mind that the preceding ER diagram reflects a set of business rules that can easily be modified to reflect
a given environment. For example:

• If customers are supplied via a commercial customer list, many of the customers on that list will not (yet)
have bought anything, so INVOICE is shown to be optional to CUSTOMER.

• To simply track a PRODUCT's VENDOR information, each product is supplied by a single vendor who may
supply many products. The PRODUCT may be optional to VENDOR if the vendor list includes potential
vendors who have not (yet) supplied any product.

• Some products may never sell, so LINE is optional to PRODUCT because an unsold product will never
appear in an invoice line.

• LINE is shown as weak to INVOICE because it borrows the invoice number as part of its primary key and
it is existence-dependent on INVOICE.

In short, the ERD must reflect the business rules properly and those business rules are derived from the
description of operations, which must accurately describe the actual operational environment. Successful
real-world designers learn to ask questions that determine the entities, attributes, relationships, optionalities,
connectivities, and cardinalities. The design's final iteration depends on the exact nature of the business rules
and the desired level of implementation detail.

41199_AppAns 1/4/2008 11:34:54 Page 358

358 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

CHAPTER 5 NORMALIZATION OF DATABASE TABLES

Answers to Selected Review Questions
1. Normalization is a process for evaluating and correcting table structures to minimize data redundancies, thereby

reducing the likelihood of data anomalies.

3. A table is in second normal form (2NF) when it is in 1NF and includes no partial dependencies; that is, no
attribute is dependent on only a portion of the primary key. (But it is possible for a table in 2NF to exhibit
transitive dependency; that is, one or more attributes may be functionally dependent on nonkey attributes.)

FIGURE
P4.11

Crow’s Foot ERD for the EverFail Company

41199_AppAns 1/4/2008 11:37:14 Page 359

359A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

5. A table is in Boyce-Codd normal form (BCNF) when every determinant in the table is a candidate key. Clearly,
if a table contains only one candidate key, the 3NF and the BCNF are equivalent. Putting that proposition
another way, BCNF can be violated only when the table contains more than one candidate key. Most designers
consider the Boyce-Codd normal form as a special case of the 3NF. In fact, when you use the techniques
shown, most tables conform to the BCNF requirements once the 3NF is reached.

7. A partial dependency is a dependency that is based on only a part of a composite primary key. Partial
dependencies are associated with the second normal form (2NF.)

9. A transitive dependency exists when one or more attributes may be functionally dependent on nonkey
attributes. This dependency is associated with a table in second normal form (2NF.)

12. This condition is known as a transitive dependency.

Answers to Selected Problems
1. Relational schema:

1NF

(INV_NUM, PROD_NUM, SALE_DATE, PROD_DESCRIPTION, VEND_CODE, VEND_NAME,

NUM_SOLD, PROD_PRICE)

Partial Dependencies:

(INV_NUM → SALE_DATE)

(PROD_NUM → PROD_DESCRIPTION, VEND_CODE, PROD_PRICE)

Transitive Dependency:

(VEND_CODE → VEND_NAME)

The dependency diagram is shown in Figure P5.1.

2. Relational schemas:

INVOICE (INV_NUM, SALE_DATE)

PRODUCT (PROD_NUM, PROD_DESCRIPTION, VEND_CODE, PROD_PRICE)

INV_LINE (INV_NUM, PROD_NUM, NUM_SOLD)

Transitive dependency:

(VEND_CODE → VEND_NAME)

Note that to ensure historical accuracy, the INV_LINE relation should include the product price that was valid
at the time of the transaction. The dependency diagram is shown in Figure P5.2.

FIGURE
P5.1

Dependency Diagram for Problem 1

41199_AppAns 1/23/2008 11:42:28 Page 360

360 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

8. The dependency diagram is shown in Figure P5.8.

Relational schemas:

1NF

(ITEM_ID, ITEM_DESCRIPTION, BLDG_ROOM, BLDG_CODE,

BLDG_NAME, BLDG_MANAGER)

Transitive dependencies:

(BLDG_CODE → BLDG_NAME, BLDG_MANAGER)

Note the dashed line used in the dependency diagram. You may wonder why BLDG_ROOM is not the
determinant of BLDG_CODE; for example, whether the room is numbered to reflect the building it is in. For
instance, HE105 indicates that Room 105 in the Heinz building. However, if you define dependencies in
strictly relational algebra terms, you might argue that partitioning the attribute value to “create” a dependency
indicates that the partitioned attribute is not (in that strict sense) a determinant.

9. The dependency diagram is shown in Figure P5.9.

Relational schemas:

ITEM (ITEM_ID, ITEM_DESCRIPTION, BLDG_ROOM, BLDG_CODE)

BUILDING (BLDG_CODE, BLDG_NAME, EMP_CODE)

EMPLOYEE (EMP_CODE, EMP_LNAME, EMP_FNAME, EMP_INITIAL)

FIGURE
P5.2

Dependency Diagram for Problem 2

FIGURE
P5.8

Dependency Diagram for Problem 8

41199_AppAns 1/24/2008 16:9:58 Page 361

361A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

24. The initial dependency diagram is shown in Figure P5.24.

CHAPTER 6 ADVANCED DATA MODELING

Answers to Selected Review Questions
1. An entity supertype is a generic entity type that is related to one or more entity subtypes, where the entity

supertype contains the common characteristics and the entity subtypes contain the unique characteristics of
each entity subtype. The reason for using supertypes is to minimize the number of nulls and to minimize the
likelihood of redundant relationships.

4. A subtype discriminator is the attribute in the supertype entity that is used to determine to which entity subtype
the supertype occurrence is related. For any given supertype occurrence, the value of the subtype discriminator
will determine to which subtype the supertype occurrence is related. For example, an EMPLOYEE supertype
may include the EMP_TYPE value “P” to indicate the PROFESSOR subtype.

FIGURE
P5.9

Dependency Diagram for Problem 9: All tables in 3NF

A B

FIGURE
P5.24

Initial Dependency Diagram for Problem 24

A

Transitive dependency

C E F G3 NF 2 NF

Note that this is not a transitive dependency, because
C does not determine another non-key Attribute value.
Instead, C determines the value of a key attribute.

D

41199_AppAns 1/10/2008 8:11:15 Page 362

362 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

7. An entity cluster is a “virtual” entity type used to represent multiple entities and relationships in the ERD. An
entity cluster is formed by combining multiple interrelated entities into a single abstract entity object. An entity
cluster is considered “virtual” or “abstract” in the sense that it is not actually an entity in the final ERD, but
rather a temporary entity used to represent multiple entities and relationships with the purpose of simplifying
the ERD and thus enhancing its readability.

10. A surrogate primary key is an “artificial” PK that is used to uniquely identify each entity occurrence when there
is no good natural key available or when the “natural” PK includes multiple attributes. A surrogate PK is also
used when the natural PK is a long text variable. The reason for using a surrogate PK is to ensure entity
integrity, to simplify application development by making queries simpler, to ensure query efficiency (for
example, a query based on a simple numeric attribute is faster than one based on a 200-bit character string),
and to ensure that relationships between entities can be created more easily than would be the case with a
composite PK that may have to be used as a FK in a related entity.

13. A design trap occurs when a relationship is improperly or incompletely identified and, therefore, is represented
in a way that is not consistent with the real world. The most common design trap is known as a fan trap. A
fan trap occurs when you have one entity in two 1:M relationships to other entities, thus producing an
association among the other entities that is not expressed in the model.

Answers to Selected Problems
2. The solution for Problem 6.2 is shown in Figure P6.2.

FIGURE
P6.2

Problem 2 Avantive Corp Solution

41199_AppAns 1/4/2008 11:43:52 Page 363

363A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

CHAPTER 7 INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL)

Answers to Selected Review Questions
2. INSERT INTO EMP_1 VALUES ('101', 'News', 'John', 'G', '08-Nov-98', '502');

INSERT INTO EMP_1 VALUES ('102', 'Senior', 'David', 'H', '12-Jul-87', '501');

5. UPDATE EMP_1
SET JOB_CODE = '501'
WHERE EMP_NUM = '106';

To see the changes:

SELECT *
FROM EMP_1
WHERE EMP_NUM = '106';

To reset, use

ROLLBACK;

9. UPDATE EMP_2
SET EMP_PCT = 3.85
WHERE EMP_NUM = '103';

To enter the remaining EMP_PCT values:

UPDATE EMP_2
SET EMP_PCT = 5.00
WHERE EMP_NUM = '101';

UPDATE EMP_2
SET EMP_PCT = 8.00
WHERE EMP_NUM = '102';

Follow that format for the remaining rows.

15. SELECT *
FROM EMP_2
WHERE EMP_LNAME LIKE 'Smith%';

16. SELECT PROJ_NAME, PROJ_VALUE, PROJ_BALANCE, EMPLOYEE.EMP_LNAME,
EMP_FNAME, EMP_INITIAL,
EMPLOYEE.JOB_CODE, JOB.JOB_DESCRIPTION,
JOB.JOB_CHG_HOUR

FROM PROJECT, EMPLOYEE, JOB
WHERE EMPLOYEE.EMP_NUM = PROJECT.EMP_NUM

AND JOB.JOB_CODE = EMPLOYEE.JOB_CODE;

24. SELECT Sum(ASSIGNMENT.ASSIGN_HOURS) AS SumOfASSIGN_HOURS,
Sum(ASSIGNMENT.ASSIGN_CHARGE) AS SumOfASSIGN_CHARGE

FROM ASSIGNMENT;

41199_AppAns 1/23/2008 13:22:51 Page 364

364 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

Answers to Selected Problems
2. SELECT DISTINCTROW CHARTER.CHAR_DATE, CHARTER.AC_NUMBER,

CHARTER.CHAR_DESTINATION, CHARTER.CHAR_DISTANCE,
CHARTER.CHAR_HOURS_FLOWN

FROM CHARTER
WHERE CHARTER.AC_NUMBER)="2778V";

4. SELECT DISTINCTROW CHARTER.CHAR_DATE, CHARTER.AC_NUMBER,
CHARTER.CHAR_DESTINATION, CUSTOMER.CUS_LNAME,
CUSTOMER.CUS_AREACODE, CUSTOMER.CUS_PHONE

FROM CUSTOMER, CHARTER
WHERE CUSTOMER.CUS_CODE = CHARTER.CUS_CODE

AND CHARTER.AC_NUMBER)='2778V';

9. SELECT CHARTER.CHAR_DATE, CUSTOMER.CUS_LNAME,
CHARTER.CHAR_DISTANCE, MODEL.MOD_CHG_MILE,
CHARTER.CHAR_DISTANCE*MODEL.MOD_CHG_MILE AS Expr1

FROM MODEL, CUSTOMER, AIRCRAFT, CHARTER
WHERE AIRCRAFT.AC_NUMBER = CHARTER.AC_NUMBER

AND CUSTOMER.CUS_CODE =
CHARTER.CUS_CODE
AND MODEL.MOD_CODE =
AIRCRAFT.MOD_CODE
AND CHARTER.CHAR_DATE>=
#2/9/2008#

ORDER BY CHARTER.CHAR_DATE, CUSTOMER.CUS_LNAME;

(Note the use of the MS Access date delimiters # and #.)

14. SELECT CHARTER.AC_NUMBER, Count(CHARTER.AC_NUMBER) AS CountOfAC_NUMBER,
Sum(CHARTER.CHAR_DISTANCE) AS SumOfCHAR_DISTANCE,
Avg(CHARTER.CHAR_DISTANCE) AS AvgOfCHAR_DISTANCE,
Sum(CHARTER.CHAR_HOURS_FLOWN) AS SumOfCHAR_HOURS_FLOWN,
Avg(CHARTER.CHAR_HOURS_FLOWN) AS AvgOfCHAR_HOURS_FLOWN

FROM CHARTER
GROUP BY CHARTER.AC_NUMBER;

18. SELECT INVOICE.CUS_CODE, INVOICE.INV_NUMBER, INVOICE.INV_DATE,
PRODUCT.P_DESCRIPT, LINE.LINE_UNITS, LINE.LINE_PRICE

FROM CUSTOMER, INVOICE, LINE, PRODUCT
WHERE CUSTOMER.CUS_CODE = INVOICE.CUS_CODE
AND INVOICE.INV_NUMBER = LINE.INV_NUMBER
AND PRODUCT.P_CODE = LINE.P_CODE
ORDER BY INVOICE.CUS_CODE, INVOICE.INV_NUMBER, PRODUCT.P_DESCRIPT;

24. SELECT INVOICE.CUS_CODE, LINE.INV_NUMBER,
Sum(LINE.LINE_UNITS*LINE.LINE_PRICE) AS [Invoice Total]

FROM INVOICE, LINE
WHERE INVOICE.INV_NUMBER = LINE.INV_NUMBER
GROUP BY INVOICE.CUS_CODE, LINE.INV_NUMBER;

41199_AppAns 1/24/2008 14:50:33 Page 365

365A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

29. SELECT Sum(CUS_BALANCE) AS [Total Balance], Min(CUS_BALANCE) AS
[Minimum Balance], Max(CUS_BALANCE) AS [Maximum Balance],
Avg(CUS_BALANCE) AS [Average Balance]

FROM CUSTOMER;

32. SELECT P_DESCRIPT, P_QOH, P_PRICE, P_QOH*P_PRICE AS Subtotal
FROM PRODUCT;

CHAPTER 8 ADVANCED SQL

Answers to Selected Review Questions
1. Union-compatible means that the relations yield attributes with identical names and compatible data types.

That is, the relation A(c1,c2,c3) and the relation B(c1,c2,c3) have union compatibility if the columns have
the same names, the columns are in the same order, and the columns have “compatible” data types.
Compatible data types do not require that the attributes be identical—only that they are comparable. For
example, VARCHAR(15) and CHAR(15) are comparable, as are NUMBER (3,0) and INTEGER.

3. The query output will be as follows:

Alice Cordoza

John Cretchakov

Anne McDonald

Mary Chen

7. A CROSS JOIN is identical to the PRODUCT relational operator. The cross join is also known as the Cartesian
product of two tables. For example, if you have two tables, AGENT with 10 rows and CUSTOMER with 21
rows, the cross join resulting set will have 210 rows and will include all of the columns from both tables. Syntax
examples are:

SELECT *
FROM CUSTOMER CROSS JOIN AGENT;

or

SELECT *
FROM CUSTOMER, AGENT

If you do not specify a join condition when joining tables, the result will be a CROSS JOIN or PRODUCT
operation.

10. A subquery is a query (expressed as a SELECT statement) that is located inside another query. The first SQL
statement is known as the outer query; the second is known as the inner query or subquery. The inner query
or subquery is normally executed first. The output of the inner query is used as the input for the outer query.
A subquery is normally expressed inside parentheses and can return zero, one, or more rows. Each row can
have one or more columns.

A subquery can appear in many places in a SQL statement:

- As part of a FROM clause.

- To the right of a WHERE conditional expression.

- To the right of the IN clause.

- In an EXISTS operator.

- To the right of a HAVING clause conditional operator.

- In the attribute list of a SELECT clause.

41199_AppAns 1/23/2008 13:33:51 Page 366

366 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

Examples of subqueries are as follows:

INSERT INTO PRODUCT
SELECT * FROM P;

DELETE FROM PRODUCT
WHERE V_CODE IN (SELECT V_CODE FROM VENDOR

WHERE V_AREACODE = '615');

SELECT V_CODE, V_NAME
FROM VENDOR
WHERE V_CODE NOT IN (SELECT V_CODE FROM PRODUCT);

15. You must use the SUBSTR function:

SELECT SUBSTR(EMP_LNAME,1,3) FROM EMPLOYEE;

19. Embedded SQL is a term used to refer to SQL statements that are contained within application programming
languages such as COBOL, C++, ASP, Java, and ColdFusion. The program may be a standard binary
executable in Windows or Linux, or it may be a Web application designed to run over the Internet. No matter
what language you use, if it contains embedded SQL statements, it is called the host language. Embedded SQL
is still the most common approach to maintaining procedural capabilities in DBMS-based applications.

Answers to Selected Problems
3. SELECT CUST_LNAME, CUST_FNAME FROM CUSTOMER

UNION
SELECT CUST_LNAME, CUST_FNAME FROM CUSTOMER_2;

6. Both Oracle and MS Access query formats are shown.

Oracle

SELECT CUST_LNAME, CUST_FNAME FROM CUSTOMER_2
MINUS
SELECT CUST_LNAME, CUST_FNAME FROM CUSTOMER;

MS Access

SELECT C2.CUST_LNAME, C2.CUST_FNAME
FROM CUSTOMER_2 AS C2
WHERE C2.CUST_LNAME + C2.CUST_FNAME NOT IN

(SELECT C1.CUST_LNAME + C1.CUST_FNAME FROM CUSTOMER C1);

Because Access doesn’t support the MINUS SQL operator, you need to list only the rows in CUSTOMER_2
that do not have a matching row in CUSTOMER.

12. Both Oracle and MS Access query formats are shown.

Oracle

UPDATE CUSTOMER
SET CUST_AGE = ROUND((SYSDATE-CUST_DOB)/365,0);

MS Access

UPDATE CUSTOMER
SET CUST_AGE = ROUND((DATE()-CUST_DOB)/365,0);

41199_AppAns 1/23/2008 13:34:43 Page 367

367A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

15. CREATE OR REPLACE PROCEDURE PRC_CUST_ADD
(W_CN IN NUMBER, W_CLN IN VARCHAR, W_CFN IN VARCHAR, W_CBAL IN NUMBER) AS

BEGIN
INSERT INTO CUSTOMER (CUST_NUM, CUST_LNAME, CUST_FNAME, CUST_BALANCE)
VALUES (W_CN, W_CLN, W_CFN, W_CBAL);

END;

To test the procedure:

EXEC PRC_CUST_ADD(1002,'Rauthor','Peter',0.00);
SELECT * FROM CUSTOMER;

19. CREATE OR REPLACE TRIGGER TRG_LINE_TOTAL
BEFORE INSERT ON LINE
FOR EACH ROW
BEGIN

NEW.LINE_TOTAL:= :NEW.LINE_UNITS * :NEW.LINE_PRICE;
END;

23. ALTER TABLE MODEL ADD MOD_WAIT_CHG NUMBER;

UPDATE MODEL
SET MOD_WAIT_CHG = 100
WHERE MOD_CODE = 'C-90A';

UPDATE MODEL
SET MOD_WAIT_CHG = 50
WHERE MOD_CODE = 'PA23-250';

UPDATE MODEL
SET MOD_WAIT_CHG = 75
WHERE MOD_CODE = 'PA31-350';

29. UPDATE CHARTER
SET CHAR_TAX_CHG = CHAR_FLT_CHG * 0.08;

35. CREATE OR REPLACE TRIGGER TRG_CUST_BALANCE
AFTER INSERT ON CHARTER
FOR EACH ROW
BEGIN

UPDATE CUSTOMER
SET CUS_BALANCE = CUS_BALANCE + :NEW.CHAR_TOT_CHG
WHERE CUSTOMER.CUS_CODE = :NEW.CUS_CODE;

END;

41199_AppAns 1/23/2008 13:41:14 Page 368

368 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

CHAPTER 9 DATABASE DESIGN

Answers to Selected Review Questions
2. Both systems analysis and systems development constitute part of the Systems Development Life Cycle, or

SDLC. Systems analysis, the second phase of the SDLC, establishes the need for and the extent of an
information system by:

- Establishing end-user requirements.

- Evaluating the existing system.

- Developing a logical systems design.

Systems development, based on the detailed systems design found in the third phase of the SDLC, yields the
information system. The detailed system specifications are established during the systems design phase, in
which the designer completes the design of all required system processes.

4. DBLC is the acronym that is used to label the Database Life Cycle. The DBLC traces the history of a database
system from its inception to its obsolescence. Since the database constitutes the core of an information system,
the DBLC is concurrent to the SDLC. The DBLC is composed of six phases: initial study, design,
implementation and loading, testing and evaluation, operation, and maintenance and evolution.

6. The minimal data rule specifies that all of the data defined in the data model are required to fit present and
expected future data requirements. The rule may be phrased as All that is needed is there, and all
that is there is needed.

9. A good data dictionary provides a precise description of the characteristics of all of the entities and attributes
found within the database. The data dictionary thus makes it easy to check for the existence of synonyms and
homonyms, to check whether all attributes exist to support required reports, and to verify appropriate
relationship representations. The data dictionary’s contents are developed and used during the six DBLC
phases:

DATABASE INITIAL STUDY

The components of the basic data dictionary are developed as the entities and attributes are defined during
this phase.

DATABASE DESIGN

The contents of the data dictionary are used to verify the components of database design: entities, attributes,
and their relationships. The designer also uses the data dictionary to check the database design for homonyms
and synonyms and verifies that the entities and attributes will support all query and report requirements.

IMPLEMENTATION AND LOADING

The DBMS’s data dictionary helps to resolve any remaining inconsistencies in attribute definition.

TESTING AND EVALUATION

If problems develop during this phase, the contents of the data dictionary may be used to help restructure the
basic design components to make sure they support all required operations.

OPERATION

If the database design still yields (the almost inevitable) operational glitches, the data dictionary may be used as
a quality control device to ensure that operational modifications to the database do not conflict with existing
components.

MAINTENANCE AND EVOLUTION

As users face inevitable changes in information needs, the database may be modified to support those needs.
Entities, attributes, and relationships may need to be added, or relationships may need to be changed. If new
database components are fit into the design, their introduction may produce conflict with existing components.
The data dictionary turns out to be a very useful tool for checking whether a suggested change invites conflicts
within the database design and, if so, how those conflicts may be resolved.

41199_AppAns 1/4/2008 13:54:11 Page 369

369A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

Answers to Selected Problems
1. a. The sequence may vary slightly from one designer to the next depending on the selected design

methodology and even on personal preference. Yet in spite of such differences, it is possible to develop a
common design methodology to permit the development of a basic decision-making process and the
analysis required in designing an information system.

Whatever the design philosophy, a good designer uses a specific and ordered set of steps through which
the database design problem is approached. The steps are generally based on three phases: analysis,
design, and implementation. These phases yield the following activities:

ANALYSIS

1. Interview the shop manager.

2. Interview the mechanics.

3. Obtain a general description of company operations.

4. Create a description of each system process.

DESIGN

5. Create a conceptual model, using ER diagrams.

6. Draw a data flow diagram and system flowcharts.

7. Normalize the conceptual model.

IMPLEMENTATION

8. Create the file (table) structures.

9. Load the database.

10. Create the application programs.

11. Test the system.

That listing implies that within each of the three phases, the steps are completed in a specific order. For
example, it would seem reasonable that the interviews must be completed first in order to obtain a proper
description of the company operations. Similarly, a data flow diagram would precede the creation of the
E-R diagram. Nevertheless, the specific tasks and the order in which they are addressed may vary. Such
variations do not matter as long as the designer bases the selected procedures on an appropriate design
philosophy, such as top-down vs. bottom-up.

Given that discussion, Problem 1’s solution may be presented this way:

__7__ Normalize the conceptual model.

__3__ Obtain a general description of company operations.

__9__ Load the database.

__4__ Create a description of each system process.

_11__ Test the system.

__6__ Draw a data flow diagram and system flowcharts.

__5__ Create a conceptual model, using E-R diagrams.

_10__ Create the application programs.

__2__ Interview the mechanics.

__8__ Create the file (table) structures.

__1__ Interview the shop manager.

41199_AppAns 1/23/2008 13:42:13 Page 370

370 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

b. This question may be addressed in several ways. The following approach is suggested for developing a
system composed of four main modules: Inventory, Payroll, Work Order, and Customer.

The information system’s main modules are illustrated in Figure P9.1B.

The Inventory module includes the Parts and Purchasing submodules. The Payroll module handles all
employee and payroll information. The Work Order module keeps track of the car maintenance history and
all work orders for maintenance done on a car. The Customer module keeps track of the billing of the work
orders to the customers and of the payments received from those customers.

4. Tiny College is a medium-sized educational institution that uses many database-intensive operations, such as
student registration, academic administration, inventory management, and payroll. To create an information
system, first perform an initial database study to determine the objectives of the information system.

Next, study Tiny College’s operations and processes (flow of data) to identify the main problems, constraints,
and opportunities. With a precise definition of the main problems and constraints, the designer can make sure
that the design improves Tiny College’s operational efficiency. An improvement in operational efficiency is
likely to create opportunities for providing new services that will enhance Tiny College’s competitive position.

After the initial database study is done and the alternative solutions are presented, the end users ultimately
decide which one of the probable solutions is most appropriate for Tiny College. Keep in mind that the
development of a system this size may involve people from many different backgrounds. For example, the
designer will likely work with people who play a managerial role in communications and local area networks,
as well as with the �troops in the trenches,� such as programmers and system operators. The designer should,
therefore, expect a wide range of opinions concerning the proposed system’s features. The designer’s job is
to reconcile the many (and often conflicting) views of the �ideal� system.

Once a proposed solution has been agreed upon, the designer(s) may determine the proposed system’s scope
and boundaries. The design phase can then begin. As the design phase begins, keep in mind that Tiny
College’s information system is likely to be used by many users (20 to 40 minimum) who are located on distant
sites around campus. Therefore, the designer must consider a range of communication issues involving the use
of technologies such as local area networks. Those technologies must be considered as the database designer(s)
begin to develop the structure of the database to be implemented.

FIGURE
P9.1B

The ABC Company’s IS Main Modules

41199_AppAns 1/23/2008 13:43:40 Page 371

371A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

The remaining development work conforms to the SDLC and the DBLC phases. Special attention must be given
to the system design’s implementation and testing to ensure that all of the system modules interface properly.

Finally, the designer(s) must provide all of the appropriate system documentation and make sure that all
appropriate system maintenance procedures (periodic backups, security checks, and so on) are in place to
ensure the system’s proper operation.

Keep in mind that two very important issues in a university-wide system are end-user training and support.
Therefore, the system designer(s) must make sure that all end users know the system and know how it is to be
used to enjoy its benefits. In other words, make sure that end-user support programs are in place when the
system becomes operational.

CHAPTER 10 TRANSACTION MANAGEMENT AND CONCURRENCY CONTROL

Answers to Selected Review Questions
1. A transaction is a logical unit of work that must be entirely completed or aborted; no intermediate states are

accepted. In other words, a transaction, which is composed of several database requests, is treated by the
DBMS as a unit of work in which all transaction steps must be fully completed if the transaction is to be
accepted by the DBMS.

Acceptance of an incomplete transaction will yield an inconsistent database state. To avoid such a state, the
DBMS ensures that all of a transaction’s database operations are completed before they are committed to the
database. For example, a credit sale requires a minimum of three database operations:

1. An invoice is created for the sold product.

2. The product’s inventory quantity on hand is reduced.

3. The customer accounts payable balance is increased by the amount listed on the invoice.

If only Parts 1 and 2 are completed, the database will be left in an inconsistent state. Unless all three parts (1,
2, and 3) are completed, the entire sales transaction is canceled.

3. The database is designed to verify the syntactic accuracy of the database commands given by the user to be
executed by the DBMS. The DBMS will check that the database exists, that the referenced attributes exist in
the selected tables, that the attribute data types are correct, and so on. Unfortunately, the DBMS is not
designed to guarantee that the syntactically correct transaction accurately represents the real-world event.

For example, if the end user sells 10 units of product 100179 (crystal vases), the DBMS cannot detect errors
such as the operator entering 10 units of product 100197 (crystal glasses). The DBMS will execute the
transaction, and the database will end up in a technically consistent state but in a real-world inconsistent
state because the wrong product was updated.

4. A transaction log is a special DBMS table that contains a description of all database transactions executed by the
DBMS. The database transaction log plays a crucial role in maintaining database concurrency control and integrity.

The information stored in the log is used by the DBMS to recover the database after a transaction is aborted
or after a system failure. The transaction log is usually stored in a different hard disk or in a different media
(tape) to prevent the failure caused by a media error.

8. Concurrency control is the activity of coordinating the simultaneous execution of transactions in a multipro-
cessing or multiuser database management system. The objective of concurrency control is to ensure the
serializability of transactions in a multiuser database management system. (The DBMS’s scheduler is in charge
of maintaining concurrency control.)

Because it helps to guarantee data integrity and consistency in a database system, concurrency control is one
of the most critical activities performed by a DBMS. If concurrency control is not maintained, three serious
problems may be caused by concurrent transaction execution: lost updates, uncommitted data, and inconsistent
retrievals.

41199_AppAns 1/4/2008 14:2:23 Page 372

372 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

Answers to Selected Problems
2. The three main concurrency control problems are triggered by lost updates, uncommitted data, and

inconsistent retrievals. Those control problems are discussed in detail in Section 10.2, Concurrency Control.
Note particularly Section 10.2.1, Lost Updates, Section 10.2.2, Uncommitted Data, and Section 10.2.3,
Inconsistent Retrievals.

6. a. The May 11, 2008 credit purchase transaction is as follows:

BEGIN TRANSACTION

INSERT INTO INVOICE
VALUES (10983, '10010', '11-May-2008', 118.80, '30', 'OPEN');

INSERT INTO LINE
VALUES (10983, 1, '11QER/31', 1, 110.00);

UPDATE PRODUCT
SET P_QTYOH = P_QTYOH – 1
WHERE P_CODE = '11QER/31';

UPDATE CUSTOMER
SET CUS_DATELSTPUR = '11-May-2008', CUS_BALANCE = CUS_BALANCE +118.80
WHERE CUS_CODE = '10010';

COMMIT;

b. The June 3, 2008 payment of $100 is shown next. Note that the customer balance must be updated.

BEGIN TRANSACTION

INSERT INTO PAYMENTS
VALUES (3428, '03-Jun-2008', '10010', 100.00, 'CASH', 'None');

UPDATE CUSTOMER;
SET CUS_DATELSTPMT = '03-Jun-2008', CUS_BALANCE = CUS_BALANCE –100.00
WHERE CUS_CODE = '10010';

COMMIT;

CHAPTER 11 DATABASE PERFORMANCE TUNING AND QUERY OPTIMIZATION

Answers to Selected Review Questions
1. SQL performance tuning describes a process—on the client side—that will generate a SQL query to return the

correct answer in the least amount of time, using the minimum amount of resources at the server end.

3. Most performance-tuning activities focus on minimizing the number of I/O operations because the I/O
operations are much slower than reading data from the data cache.

6. For tables, typical measurements include the number of rows, the number of disk blocks used, row length, the
number of columns in each row, the number of distinct values in each column, the maximum value in each
column, the minimum value in each column, and the columns that have indexes.

For indexes, typical measurements include the number and name of columns in the index key, the number of
key values in the index, the number of distinct key values in the index key, and a histogram of key values in
an index.

For resources, typical measurements include the logical and physical disk block size, the location and size of
data files, and the number of extends per data file.

41199_AppAns 1/23/2008 13:50:21 Page 373

373A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

8. The three phases are:

1. Parsing. The DBMS parses the SQL query and chooses the most efficient access/execution plan.

2. Execution. The DBMS executes the SQL query, using the chosen execution plan.

3. Fetching. The DBMS fetches the data and sends the result set back to the client.

Parsing involves breaking the query into smaller units and transforming the original SQL query into a slightly
different version of the original SQL code—but one that is “fully equivalent” and more efficient. Fully
equivalent means that the optimized query results are always the same as the original query. More efficient
means that the optimized query will almost always execute faster than the original query. (Note that the
expression almost always is used because many factors affect the performance of a database. Those factors
include the network, the client’s computer resources, and even other queries running concurrently in the same
database.)

After the parsing and execution phases are completed, all rows that match the specified condition(s) have been
retrieved, sorted, grouped, and/or (if required) aggregated. During the fetching phase, the rows of the resulting
query result set are returned to the client. During this phase, the DBMS may use temporary table space to store
temporary data.

9. Indexing every column in every table will tax the DBMS too much in terms of index-maintenance processing,
especially if the table has many attributes; has many rows; and/or requires many inserts, updates, and/or
deletes.

One measure used to determine the need for an index is the data sparsity of the column to be indexed. Data
sparsity refers to the number of different values a column could possibly have. For example, a STU_SEX
column in a STUDENT table can have only two possible values, “M” or “F”; therefore, that column is said to
have low sparsity. In contrast, a STU_DOB column that stores the student date of birth can have many different
date values; therefore, that column is said to have high sparsity. Knowing the sparsity helps you decide whether
the use of an index is appropriate. For example, when you perform a search in a column with low sparsity,
you are likely to read a high percentage of the table rows anyway; therefore, index processing may be
unnecessary work.

14. First, create independent data files for the system, indexes, and user data table spaces. Put the data files on
separate disks or RAID volumes. Doing so ensures that index operations will not conflict with end-user data or
data dictionary table access operations.

Second, put high-usage end-user tables in their own table spaces. When this is done, the database minimizes
conflicts with other tables and maximizes storage utilization.

Third, evaluate the creation of indexes based on the access patterns. Identify common search criteria and
isolate the most frequently used columns in search conditions. Create indexes on high-usage columns with high
sparsity.

Fourth, evaluate the usage of aggregate queries in your database. Identify columns used in aggregate functions
and determine whether the creation of indexes on those columns will improve response time.

Finally, identify columns used in ORDER BY statements and make sure there are indexes on those columns.

Answers to Selected Problems
2. You should create an index in EMP_AREACODE and a composite index on EMP_LNAME, EMP_FNAME. In

the following solution, the two indexes are named EMP_NDX1 and EMP_NDX2, respectively. The required
SQL commands are:

CREATE INDEX EMP_NDX1 ON EMPLOYEE(EMP_AREACODE);
CREATE INDEX EMP_NDX2 ON EMPLOYEE(EMP_LNAME, EMP_FNAME);

41199_AppAns 12/9/2007 13:48:32 Page 374

374 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

3. The solution is shown in Table P11.3.

As you examine Table P11.3, note that in Plan A, the DBMS uses a full table scan of EMPLOYEE. The SORT
operation is done to order the output by employee last name and first name. In Plan B, the DBMS uses an
Index Scan Range of the EMP_NDX1 index to get the EMPLOYEE RowIDs. After the EMPLOYEE RowIDs
have been retrieved, the DBMS uses them to get the EMPLOYEE rows. Next, the DBMS selects only those
rows with SEX = 'F'. Finally, the DBMS sorts the result set by employee last name and first name.

7. The DBMS will use the rule-based optimization.

10. Yes, you should create an index because the column P_PRICE has high sparsity and the column is likely to be
used in many different SQL queries as part of a conditional expression.

14. ANALYZE TABLE LINE COMPUTE STATISTICS;

17. You should create an index on the V_STATE column in the VENDOR table. This new index will help in the
execution of the query because the conditional operation uses the V_STATE column in the conditional criteria.
In addition, you should create an index on V_NAME because it is used in the ORDER BY clause. The
commands to create the indexes are:

CREATE INDEX VEND_NDX1 ON VENDOR(V_STATE);
CREATE INDEX VEND_NDX2 ON VENDOR(V_NAME);

Note the use of the index names VEND_NDX1 and VEND_NDX2, respectively.

21. You write your query, using the FIRST_ROWS hint to minimize the time it takes to return the first set of rows
to the application. The query would be:

SELECT /*+ FIRST_ROWS */ * FROM PRODUCT WHERE P_QOH <= P_MIN;

26. In this case, the only index that you should create is the index on the V_CODE column. Assuming that such
an index is called PROD_NDX1, you could use an optimizer hint as shown:

SELECT /*+ INDEX(PROD_NDX1) */ P_CODE, P_DESCRIPT, P_QOH, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE = '21344'
ORDER BY P_CODE;

TABLE
P11.3

Comparing Access Plans and I/O Costs

PLAN STEP OPERATION I/O
OPERATIONS

I/O
COST

RESULTING
SET ROWS

TOTAL I/O
COST

A A1

Full table scan EMPLOYEE
Select only rows with
EMP_SEX='F' and
EMP_AREACODE='615'

8,000 8,000 190 8,000

A A2 SORT Operation 190 190 190 8,190

B B1 Index Scan Range of
EMP_NDX1 370 370 370 370

B B2 Table Access by RowID
EMPLOYEE 370 370 370 740

B B3 Select only rows with
EMP_SEX='F' 370 370 190 930

B B4 SORT Operation 190 190 190 1,120

41199_AppAns 1/23/2008 13:57:34 Page 375

375A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

31. The query will benefit from having an index on CUS_AREACODE and an index on CUS_CODE. Because
CUS_CODE is a foreign key on invoice, it’s likely that an index already exists. In any case, the query uses the
CUS_AREACODE in an equality comparison; therefore, an index on this column is highly recommended. The
command to create this index would be:

CREATE INDEX CUS_NDX1 ON CUSTOMER(CUS_AREACODE);

CHAPTER 12 DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

Answers to Selected Review Questions
3. See table below.

4. See table below.

5. In distributed processing, a database’s logical processing is shared among two or more physically independent
sites that are connected through a network. For example, the data input/output (I/O), data selection, and data
validation might be performed on one computer, and a report based on that data might be created on another
computer.

DISTRIBUTED DBMS ADVANTAGES AND DISADVANTAGES

ADVANTAGES DISADVANTAGES
• Data are located near the “greatest demand” site.

The data in a distributed database system are dis-
persed to match business requirements.

• Faster data access. End users often work with only
a locally stored subset of the company's data.

• Faster data processing. A distributed database sys-
tem spreads out the system's workload by process-
ing data at several sites.

• Growth facilitation. New sites can be added to the
network without affecting the operations of other
sites.

• Improved communications. Because local sites are
smaller and located closer to customers, local
sites foster better communications among depart-
ments and between customers and company
staff.

• Reduced operating costs. It is more cost-effective
to add workstations to a network than to update
a mainframe system. Development work is done
more cheaply and more quickly on low-cost PCs
than on mainframes.

• User-friendly interface. PCs and workstations are
usually equipped with an easy-to-use graphical
user interface (GUI). The GUI simplifies use and
training for end users.

• Less danger of a single-point failure. When one of
the computers fails, the workload is picked up by
other workstations. Data are also distributed at
multiple sites.

• Processor independence. The end user is able to
access any available copy of the data, and an end
user's request is processed by any processor at the
data location.

• Complexity of management and control. Applica-
tions must recognize data location, and they must
be able to stitch together data from different
sites. Database administrators must have the abil-
ity to coordinate database activities to prevent
database degradation due to data anomalies.
Transaction management, concurrency control,
security, backup, recovery, query optimization,
and access path selection must all be addressed
and resolved.

• Security. The probability of security lapses
increases when data are located at multiple sites.
The responsibility of data management will be
shared by different people at several sites.

• Lack of standards. There are no standard commu-
nication protocols at the database level. (Although
TCP/IP is the de facto standard at the network
level, there is no standard at the application
level.) For example, different database vendors
employ different—and often incompatible—
techniques to manage the distribution of data and
processing in a DDBMS environment.

• Increased storage requirements. Multiple copies of
data are required at different sites, thus requiring
additional disk storage space.

• Increased training cost. Training costs are gener-
ally higher in a distributed model than they are in
a centralized model, sometimes even to the
extent of offsetting operational and hardware
savings.

41199_AppAns 1/10/2008 11:20:20 Page 376

376 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

A distributed database, on the other hand, stores a logically related database over two or more physically
independent sites. The sites are connected via a computer network. In contrast, the distributed processing
system uses only a single-site database but shares the processing chores among several sites. In a distributed
database system, a database is composed of several parts known as database fragments. The database
fragments are located at different sites and can be replicated among various sites.

Distributed processing does not necessarily require a distributed database, but a distributed database
requires distributed processing.

10. A database transaction is formed by one or more database requests. Each database request is the equivalent
of a single SQL statement. The basic difference between a local transaction and a distributed transaction is that
a distributed transaction can update or request data from several remote sites on a network. In a DDBMS, a
database request and a database transaction can be of two types: remote or distributed.

A remote request accesses data located at a single remote database processor (or DP) site. In other words, a
SQL statement (or request) can reference data at only one remote DP site. Figure 12.10 illustrates a remote
request.

A remote transaction, composed of several requests, accesses data at only a single remote DP site.
Figure 12.11 illustrates a remote transaction.

In Figure 12.11, both tables are located at a remote DP (site B) and that the complete transaction can reference
only one remote DP. Each SQL statement (or request) can reference only one (the same) remote DP at a time,
the entire transaction can reference only one remote DP, and it is executed at only one remote DP.

A distributed transaction allows a transaction to reference several different local or remote DP sites. Although
each single request can reference only one local or remote DP site, the complete transaction can reference
multiple DP sites because each request can reference a different site. Figure 12.12 illustrates a distributed
transaction.

A distributed request allows data to be referenced from several different DP sites. Since each request can access
data from more than one DP site, a transaction can access several DP sites. The ability to execute a distributed
request requires fully distributed database processing in order to:

- Partition a database table into several fragments.

- Reference one or more of those fragments with only one request. In other words, fragmentation
transparency must exist.

The location and partition of the data should be transparent to the end user. Figure 12.13 illustrates a
distributed request.

In Figure 12.13, the transaction uses a single SELECT statement to reference two tables, CUSTOMER and
INVOICE. The two tables are located at two different remote DP sites, B and C.

The distributed request feature also allows a single request to reference a physically partitioned table. For
example, suppose that a CUSTOMER table is divided into two fragments, C1 and C2, located at sites B and
C, respectively. The end user wants to obtain a list of all customers whose balance exceeds $250. Figure 12.14
illustrates this distributed request.

Note that full fragmentation support is provided only by a DDBMS that supports distributed requests.

12. The objective of query optimization functions is to minimize the total costs associated with the execution of a
database request. The costs associated with a request are a function of the:

- Access time (I/O) cost involved in accessing the physical data stored on disk.

- Communication cost associated with the transmission of data among nodes in distributed database systems.

- CPU time cost.

It is difficult to separate communication and processing costs. Query-optimization algorithms use different
parameters, and the algorithms assign different weight to each parameter. For example, some algorithms
minimize total time; others minimize the communication time; and still others do not factor in the CPU time,

41199_AppAns 1/23/2008 13:58:35 Page 377

377A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

considering it insignificant relative to the other costs. Query optimization must provide distribution and replica
transparency in distributed database systems.

Answers to Selected Problems
1. The key to each answer is in the number of different data processors that are accessed by each request/

transaction. Students should first identify how many different DP sites are to be accessed by the transaction/
request. Students should recall that a distributed request is necessary only if a single SQL statement is to access
more than one DP site.

Use the following summary:

Based on that summary, the questions are answered easily.

At Site C:

a. SELECT *
FROM CUSTOMER;

This SQL sequence represents a remote request.

b. SELECT *
FROM INVOICE
WHERE INV_TOTAL > 1000;

This SQL sequence represents a remote request.

c. SELECT *
FROM PRODUCT
WHERE PROD_QOH < 10;

This SQL sequence represents a distributed request. Note that the distributed request is required when a single request
must access two DP sites. The PRODUCT table is composed of two fragments, PRO_A and PROD_B, which are
located in sites A and B, respectively.

Given the answers to problems 1a, 1b, and 1c, you should be able to handle the remaining problems.

CHAPTER 13 BUSINESS INTELLIGENCE AND DATA WAREHOUSES

Answers to Selected Review Questions
3. Decision support systems (DSS) are based on computerized tools that are used to enhance managerial decision

making. Because complex data and the proper analysis of that data are crucial to strategic and tactical decision
making, the DSS are essential to the well-being and survival of businesses that must compete in a global
marketplace.

NUMBER OF DPS
Operation 1 > 1
Request Remote Distributed
Transaction Remote Distributed

41199_AppAns 1/23/2008 14:0:29 Page 378

378 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

5. The most relevant differences between operational and decision support data are:

- Time span.

- Granularity.

- Dimensionality.

A complete list of differences is provided in Section 13.4.1, Operational Data vs. Decision Support Data. The
differences are summarized in Table 13.2.

8. There are four primary ways to evaluate a DBMS that is tailored to provide fast answers to complex queries.

- The database schema supported by the DBMS.

- The availability and sophistication of data extraction and loading tools.

- The end-user analytical interface.

- The database size requirements.

Establish the requirements based on the size of the database, the data sources, the necessary data
transformations, and the end-user query requirements. Determine what type of database is needed, that is, a
multidimensional or a relational database using the star schema. Other valid evaluation criteria include the cost
of acquisition and available upgrades (if any), training, technical and development support, performance, ease
of use, and maintenance.

11. OLAP systems are based on client/server technology. They consist of these main modules:

- OLAP Graphical User Interface (GUI).

- OLAP Analytical Processing Logic.

- OLAP Data Processing Logic.

The location of each module is a function of different client/server architectures. How and where the modules
are placed depends on hardware, software, and professional judgment. Any placement decision has its
advantages and disadvantages. However, the following constraints must be met:

- The OLAP GUI is always placed in the end user’s computer. The reason it is placed at the client side is
simple: the client side is the main point of contact between the end user and the system. Specifically, it
provides the interface through which the end user queries the data warehouse’s contents.

- The OLAP Analytical Processing Logic (APL) module can be place in the client (for speed) or in the server
(for better administration and better throughput). The APL performs the complex transformations required
for business data analysis, such as multiple dimensions, aggregation, and period comparison.

- The OLAP Data Processing Logic (DPL) maps the data analysis requests to the proper data objects in the
data warehouse; therefore, it is usually placed at the server level.

14. The star schema is a data modeling technique that is used to map multidimensional decision support data into
a relational database. The reason for the star schema’s development is that existing relational modeling
techniques, ER and normalization, did not yield a database structure that served the advanced data analysis
requirements well. Star schemas yield an easily implemented model for multidimensional data analysis while still
preserving the relational structures on which the operational database is built.

The basic star schema has four components: facts, dimensions, attributes, and attribute hierarchies. The star
schemas represent aggregated data for specific business activities. For example, the aggregation may involve
total sales by selected time periods, by products, and by stores. Aggregated totals can be total product units and
total sales values by products.

17. Relational On-Line Analytical Processing (ROLAP) provides OLAP functionality for relational databases.
ROLAP’s popularity is based on the fact that it uses familiar relational query tools to store and analyze
multidimensional data. Because ROLAP is based on familiar relational technologies, it represents a natural
extension to organizations that already use relational database management systems.

41199_AppAns 1/4/2008 15:23:24 Page 379

379A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

21. The following four techniques are commonly used to optimize data warehouse design:

- Normalization of dimensional tables achieves semantic simplicity and facilitates end-user navigation
through the dimensions. For example, if the location dimension table contains transitive dependencies
between region, state, and city, those relationships can be revised to the third normal form (3NF). When
the dimension tables are normalized, the data filtering operations related to the dimensions are simplified.

- The speed of query operations can be increased by creating and maintaining multiple fact tables related
to each level of aggregation. For example, region, state, and city may be used in the location dimension.
Those aggregate tables are precomputed at the data loading phase rather than at run time. The purpose
of this technique is to save processor cycles at run time, thereby speeding up data analysis. An end-user
query tool optimized for decision analysis will then access the summarized fact tables properly instead of
computing the values by accessing a �lower level of detail� fact table.

- Denormalizing fact tables improves data access performance and saves data storage space. Saving storage
space is becoming less of a factor: Data storage costs are on a steeply declining path, decreasing almost
daily. DBMS limitations that restrict database and table size limits, record size limits, and the maximum
number of records in a single table are far more critical than raw storage space costs.

Denormalization improves performance by storing in one single record what normally would take many
records in different tables. For example, to compute the total sales for all products in all regions, you may have
to access the region sales aggregates and summarize all of the records in that table. If there are 300,000
product sales records, you wind up summarizing at least 300,000 rows. Although such summaries may not be
a very taxing operation for a DBMS initially, a comparison of 10 or 20 years’ worth of sales is likely to start
bogging down the system. In those cases, it will be useful to have special aggregate tables, which are
denormalized. For example a YEAR_TOTAL table may contain the following fields:

YEAR_ID, MONTH_1, MONTH_2 ... MONTH12, YEAR_TOTAL

That denormalized YEAR_TOTAL table structure works well to become the basis for year-to-year comparisons
at the month level, the quarter level, or the year level. But keep in mind that design criteria such as frequency
of use and performance requirements are evaluated against the possible overload placed on the DBMS to
manage the denormalized relations.

- Table partitioning and replication are particularly important when a DSS is implemented in widely
dispersed geographic areas. Partitioning splits a table into subsets of rows or columns. Those subsets can
then be placed in or near the client computer to improve data access times. Replication makes a copy of
a table and places it in a different location for the same reasons.

Answers to Selected Problems
1. Before Problem 1 can be solved, you must create the time and semester dimensions. Looking at the data in

the USELOG table, you should be able to figure out that the data belong to the Fall 2007 and Spring 2008
semesters. So the semester dimension must contain entries for at least those two semesters. The time
dimension can be defined in several different ways. Regardless of what time dimension representation is
selected, it is clear that the date and time entries in the USELOG must be transformed to meet the TIME and
SEMESTER codes. For data analysis purposes, use the TIME and SEMESTER dimension table configurations
shown in Tables P13.1A and P13.1B.

41199_AppAns 12/9/2007 13:53:32 Page 380

380 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

TABLE
P13.1A TIME Dimension Table Structure

TIME_ID TIME_DESCRIPTION BEGIN_TIME END_TIME
1 Morning 6:01AM 12:00PM
2 Afternoon 12:01PM 6:00PM
3 Night 6:01PM 6:00AM

TABLE
P13.1B SEMESTER Dimension Table Structure

SEMESTER_ID SEMESTER_DESCRIPTION BEGIN_DATE END_DATE
FA00 Fall 2007 15-Aug-2007 18-Dec-2007
SP01 Spring 2008 08-Jan-2008 15-May-2008

The USELOG table contains only the date and time of the access, not the semester or time IDs. You must
create the TIME and SEMESTER dimension tables and assign the proper TIME_ID and SEMESTER_ID keys
to match the USELOG’s time and date. You should also create the MAJOR dimension table, using the data
already stored in the STUDENT table. Using Microsoft Access, the Make New Table query type was used to
produce the MAJOR table. The Make New Table query lets you create a new table, MAJOR, using query
output. In this case, the query must select all unique major codes and descriptions. The same technique can be
used to create the student classification dimension table.

To produce the solution, use the queries listed in Table P13.1C.

TABLE
P13.1C Queries in the PW-P1sol.MDB Database

QUERY NAME QUERY DESCRIPTION
Update DATE format in USELOG The DATE field in USELOG was originally provided as a

character field. This query converted the date text to a
date field that can be used for date comparisons.

Update STUDENT_ID format in STUDENT This query changes the STUDENT_ID format to make it
compatible with the format used in USELOG.

Update STUDENT_ID format in USELOG This query changes the STUDENT_ID format to make it
compatible with the format used in STUDENT.

Append TEST records from USELOG and STUDENT This query creates a temporary storage table (TEST) used
to make some data transformations previous the cre-
ation of the fact table. The TEST table contains the fields
that will be used in the USEFACT table, in addition to
other fields used for data transformation purposes.

Update TIME_ID and SEMESTER_ID in TEST Before the USEFACT table is created, the dates and time
must be transformed to match the SEMESTER_ID and
TIME_ID keys used in the SEMESTER and TIME dimen-
sion tables. This query does that.

Count STUDENTS sort by Fact Keys: SEM, MAJOR,
CLASS, TIME

This query does data aggregation over the data in TEST
table. This query table will be used to create the new
USEFACT table.

Populate USEFACT This query uses the results of the previous query to
populate the USEFACT table.

Compares usage by Semesters by Times This query is used to generate Report1.
Shows .usage by Time, Major, and Classification This query is used to generate Report2.
Shows usage by Major and Semester This query is used to generate Report3.

After completing the preliminary work, you can produce the problem solutions for a-d.

41199_AppAns 1/23/2008 14:1:45 Page 381

381A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

a. The main facts are the total number of students by time, the major, the semester, and the student
classification.

b. The possible dimensions are semester, major, classification, and time. Each of those dimensions provides
an additional perspective to the “total number of students” fact table.

c. Figure P13.1 shows the MS Access relational diagram that illustrates the star schema, the relationships, the
table names, and the attribute names used in the solution.

d. Given the information contained in Figure P13.1, the dimension attributes are easily defined as follows:

Semester dimension: semester_id, semester_description, begin_date, and end_date

Major dimension: major_code and major_name

Class dimension: class_id and class_description

Time dimension: time_id, time_description, begin_time, and end_time

2. The SQL code follows:

SELECT CUS_CODE, P_CODE, SUM(SALE_UNITS*SALE_PRICE) AS TOTSALES
FROM DWDAYSALESFACT NATURAL JOIN DWCUSTOMER
GROUP BY ROLLUP (CUS_CODE, P_CODE)
ORDER BY CUS_CODE, P_CODE;

8. The SQL code follows:

SELECT TM_MONTH, P_CATEGORY, SUM(SALE_UNITS*SALE_PRICE)
AS TOTSALES

FROM DWDAYSALESFACT NATURAL JOIN DWPRODUCT
NATURAL JOIN DWTIME

GROUP BY ROLLUP (TM_MONTH, P_CATEGORY)
ORDER BY TM_MONTH, P_CATEGORY;

FIGURE
P13.1

Microsoft Access relational diagram

41199_AppAns 1/23/2008 14:7:51 Page 382

382 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

11. The SQL code follows:

SELECT TM_MONTH, P_CATEGORY, P_CODE, COUNT(*) AS NUMPROD,
SUM(SALE_UNITS*SALE_PRICE) AS TOTSALES

FROM DWDAYSALESFACT NATURAL JOIN DWTIME
NATURAL JOIN DWPRODUCT

GROUP BY ROLLUP (TM_MONTH, P_CATEGORY, P_CODE)
ORDER BY TM_MONTH, P_CATEGORY, P_CODE;

CHAPTER 14 DATABASE CONNECTIVITY AND WEB DEVELOPMENT

Answers to Selected Review Questions
1. Database connectivity refers to the mechanisms through which application programs connect and communi-

cate with data repositories. The database connectivity software is also known as database middleware because
it represents a piece of software that interfaces between the application program and the database. The data
repository is also known as the data source because it represents the data management application (that is, an
Oracle RDBMS, a SQL Server DBMS, or an IBM DBMS) that will be used to store the data generated by the
application program. Ideally, a data source or data repository could be located anywhere and hold any type of
data. For example, the data source could be a relational database, a hierarchical database, a spreadsheet, or
a text data file. The following interfaces are used to achieve database connectivity: native SQL connectivity
(vendor provided), Microsoft’s Open Database Connectivity (ODBC), Data Access Objects (DAO) and Remote
Data Objects (RDO), Microsoft’s Object Linking and Embedding - Databases (OLE-DB) and Microsoft’s ActiveX
Data Objects (ADO.NET)

3. DAO uses the MS Jet data engine to access file-based relational databases such as MS Access, MS FoxPro, and
Dbase. In contrast, RDO allows access to relational database servers such as SQL Server, DB2, and Oracle.
RDO uses DAO and ODBC to access remote database server data.

6. Although ODBC, DAO, and RDO were widely used, they did not provide support for nonrelational data. To
answer the need for nonrelational data access and to simplify data connectivity, Microsoft developed Object
Linking and Embedding for Database (OLE-DB). Based on Microsoft’s Component Object Model (COM),
OLE-DB, a database middleware, was developed to add object-oriented functionality for access to relational and
nonrelational data. OLE-DB was the first part of Microsoft’s strategy to provide a unified object-oriented
framework for the development of next-generation applications.

9. ADO.NET is the data access component of Microsoft’s .NET application development framework. Microsoft’s
.NET framework is a component-based platform used to develop distributed, heterogeneous, interoperable
applications aimed at manipulating any type of data over any network under any operating system and
programming language. ADO.Net introduced two new features critical for the development of distributed
applications: DataSets and XML support.

- A DataSet is a disconnected memory-resident representation of the database.

- ADO.NET stores all of its internal data in XML format.

15. A script is a series of instructions executed in interpreter mode. The script is a plain text file that is not compiled
like COBOL, C++, or Java. Scripts are normally used in Web application development environments.

41199_AppAns 1/4/2008 15:30:17 Page 383

383A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

Answers to Selected Problems
1. To perform this task, using the Ch02_InsureCo.mdb database, complete the following steps if you are using

Excel 2003 :

- From Excel, select Data, Import External Data, and New Database Query options to retrieve data
from an ODBC data source.

- Select the MS Access Database* option and click OK.

- Select the Database file location and click OK.

- Select the table and columns to use in the query (select all columns) and click Next.

- On the Query Wizard—Filter Data click Next.

- On the Query Wizard—Sort Order click Next.

- Select Return Data to Microsoft Office Excel.

- Position the cursor where you want the data to be placed on your spreadsheet and click OK.

If you are using Excel 2007, use these steps:

- Click Data.

- Select Get External Data from Access.

- Select the database file location and click Open.

- Select the table to use and click OK.

- Select how you want to view these data in the work book and where you want to place such data.

The solution is shown in Figure P14.1.

4. To create the Data Source Name (DSN), follow these steps:

- Using Windows XP, open the Control Panel, open Administrative Tools, and open Data Sources
(ODBC).

- Click the System DSN tab, click Add, select the Microsoft Access Drive (*.mdb) driver, and click
Finish.

FIGURE
P14.1

Solution to Problem 1—Retrieve All AGENTs

41199_AppAns 1/23/2008 14:11:14 Page 384

384 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

- On the ODBC Microsoft Access Setup window, enter the Ch02_SaleCo on the Data Source
Name field.

- Under Database, click the Select button, browse to the location of the MS Access file, and click OK twice.

- The new system DSN now appears in the list of system data sources.

The solution is shown in Figure P14.4.

FIGURE
P14.4

Creating the Ch02_SaleCo System DSN

41199_AppAns 1/4/2008 15:33:37 Page 385

385A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

8. The solutions are shown in Figures P14.8A and P14.8B.

The solutions to the remaining problems follow the same format as Problem 8. However, Problem 11 requires
you to do some research about the information that goes in the transcript data. Use your creativity and
analytical skills to research and create a simple XML file containing the data that are customary on your
university transcript.

FIGURE
P14.8A

Customer DTD Solution

41199_AppAns 1/4/2008 15:33:50 Page 386

386 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

CHAPTER 15 DATABASE ADMINISTRATION

Answers to Selected Review Questions
2. This question is answered in Section 15.1, Data as a Corporate Asset. The interactions are illustrated in

Figure 15.1.

The end user’s role is important throughout the process. The end user must analyze data to produce the
information that is later used in decision making. Most business decisions create additional data that will be used
to monitor and evaluate the company situation. Thus, data will or should be recycled to produce feedback about
an action’s effectiveness and efficiency.

3. The first step would be to emphasize the importance of data as a company asset, which should be managed
like any other asset. Top-level managers must understand this crucial point and be willing to commit company
resources to manage data as an organizational asset.

FIGURE
P14.8B

Customer XML Solution

41199_AppAns 12/9/2007 14:6:32 Page 387

387A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

The next step is to identify and define the need for and role of the DBMS in the organization. Review
Section 15.2, The Need for and Role of a Database in an Organization, and apply the concepts discussed there
to any organization. (For example, if you are interested in real estate sales organizations, apply the concepts
to that organization.) Managers and end users must understand how the DBMS can enhance and support the
work of the organization at all levels (top management, middle management, and operational).

Finally, illustrate and explain the impact of a DBMS introduction into an organization. Refer to Section 15.3,
Introduction of a Database: Special Considerations, to accomplish that task. Note particularly the technical,
managerial, and cultural aspects of the process.

6. Security means protecting data against accidental or intentional use by unauthorized users. Privacy deals with
the rights of people and organizations to determine who accesses the data and when, where, and how the data
are to be used.

The two concepts are closely related. In a shared system, individual users must ensure that the data are
protected from unauthorized use by other individuals. Also, the individual user must have the right to determine
what, when, where, and how other users use the data. The DBMS must provide the tools that allow for flexible
management of the data security and access rights in a company database.

8. See Section 15.3, Introduction of a Database: Special Considerations. Students may hold a discussion about
the special considerations (managerial, technical, and cultural) that should be considered when a new DBMS
is introduced in an organization. For example, the discussion may focus on the following questions:

- What retraining is required for the new system?

• Who needs to be retrained?

• What type and extent of retraining is needed?

- Is it reasonable to expect some resistance to change:

• From the computer services department administrator(s)?

• From assistants?

• From technical support personnel?

• From other departmental end users?

- How might the resistance be manifested?

- How can you deal with such resistance?

11. See Section 15.5, The Database Environment’s Human Component, particularly Section 15.5.2, The DBA’s
Technical Role. Then tie that discussion to the increasing use of Web applications.

The DBA’s function may be one of the most dynamic functions of any organization. New technological
developments constantly change the DBA’s role. For example, note how each of the following has an effect
on the DBA’s function:

- Development of the DDBMS.

- Development of the OODBMS.

- Increased use of LANs.

- Rapid integration of intranet and extranet applications and their effects on database design, implementa-
tion, and management. (Security issues become especially important.)

15. See Section 15.5, The Database Environment’s Human Component, especially Table 15.2.

20. See Section 15.5.1, The DBA’s Managerial Role.

25. See Section 15.5.2, The DBA’s Technical Role. Database performance tuning is part of the maintenance
activities. As the database system enters into operation, the database starts to grow. Resources initially assigned
to the application are sufficient for the initial loading of the database. As the system grows, the database
becomes bigger, and the DBMS requires additional resources to satisfy the demands on the larger database.
Database performance will decrease as the database grows and more users access it.

41199_AppAns 1/30/2008 8:24:39 Page 388

388 A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

28. See Section 15.6.2, Security Vulnerabilities. See also Table 15.4 for a sample security vulnerability and related
measures.

35. See Section 15.9.4, Creating Tablespaces and Datafiles. Here is a summary.

- A tablespace is a logical storage space.

- Tablespaces are primarily used to logically group related data.

- Tablespace data are physically stored in one or more datafiles.

37. See Section 15.9.4, Creating Tablespaces and Datafiles. Here is a summary.

- A database is composed of one or more tablespaces. Therefore, there is a 1:M relationship between the
database and its tablespaces.

- Tablespace data are physically stored in one or more datafiles. Therefore, there is a 1:M relationship
between tablespaces and datafiles.

- A datafile physically stores the database data.

- Each datafile is associated with one and only one tablespace. (But each datafile can reside in a different
directory on the same hard disk—or even on different disks.)

In contrast to the datafile, a file system’s file is created to store data about a single entity, and the programmer
can directly access the file. But file access requires the end user to know the structure of the data that are stored
in the file.

While a database is stored as a file, the file is created by the DBMS, rather than by the end user. Because the
DBMS handles all file operations, the end user does not know—nor does the end user need to know—the
database’s file structure. When the DBA creates a database—or, more accurately, uses the Oracle Storage
Manager to let Oracle create a database—Oracle automatically creates the necessary tablespaces and datafiles.

The basic database components have been summarized logically in Figure P15.37.

FIGURE
P15.37

The logical tablespace and datafile components of an Oracle database

41199_AppAns 1/24/2008 14:26:1 Page 389

389A N S W E R S T O S E L E C T E D Q U E S T I O N S A N D P R O B L E M S

Please visit our online companion Web site at oc.course.com/mis/dbs8/ for additional
resources such as useful Web Links, Video Tutorials, Practice Quizzes, Glossary of Key Terms,
and additional Appendices. In order to access the site you will need to enter the pass code
provided below.

1423902017_IBC.indd 21423902017_IBC.indd 2 11/2/07 9:15:44 AM11/2/07 9:15:44 AM

	1423902017_lores.pdf
	1423902017_cvr_8th.pdf
	1423902017_FrontEnd.pdf
	1423902017_IFC.pdf
	C6545_FM_CTP.4c.pdf
	C6545_01_CTP.4c.pdf
	C6545_02_CTP.4c.pdf
	C6545_03_CTP.4c.pdf
	C6545_04_CTP.4c.pdf
	C6545_05_CTP.4c.pdf
	C6545_06_CTP.4c.pdf
	C6545_07_CTP.4c.pdf
	C6545_08_CTP.4c.pdf
	C6545_09_CTP.4c.pdf
	C6545_10_CTP.4c.pdf
	C6545_11_CTP.4c.pdf
	C6545_12_CTP.4c.pdf
	C6545_13_CTP.4c.pdf
	C6545_14_CTP.4c.pdf
	C6545_15_CTP.4c.pdf
	C6747_AppA.pdf
	C6747_AppB.pdf
	C6747_AppC.pdf
	C6747_AppD.pdf
	C6747_AppE.pdf
	C6747_AppF.pdf
	C6747_AppG.pdf
	C6747_AppH.pdf
	C6747_AppI.pdf
	C6747_AppJ.pdf
	C6747_AppK.pdf
	C6747_AppL.pdf
	1423902017_IBC.pdf

