@bch_nm:CHAPTER 8

@bch_tt:Molecules

@bchto_ln:8.1@bchto_lnc:THE MOLECULAR BOND

@bchto_lu:Electric forces hold atoms together to form molecules

@bchto_ln:8.2@bchto_lnc:ELECTRON SHARING

@bchto_lu:The mechanism of the covalent bond

@bchto_ln:8.3@bchto_lnc:THE H<->2<-><+><f"MathematicalPi-One">1<f$>1<+> MOLECULAR ION

@bchto_lu:Bonding requires a symmetric wave function

@bchto_ln:8.4@bchto_lnc:THE HYDROGEN MOLECULE

@bchto_lu:The spins of the electrons must be antiparallel

@bchto_ln:8.5@bchto_lnc:COMPLEX MOLECULES

@bchto_lu:Their geometry depends on the wave functions of the outer electrons of their atoms

@bchto_ln:8.6@bchto_lnc:ROTATIONAL ENERGY LEVELS

@bchto_lu:Molecular rotational spectra are in the microwave region

@bchto_ln:8.7@bchto_lnc:VIBRATIONAL ENERGY LEVELS

@bchto_lu:A molecule may have many different modes of vibration

@bchto_ln:8.8@bchto_lnc:ELECTRONIC SPECTRA OF MOLECULES

@bchto_lu:How fluorescence and phosphorescence occur

@bchop_tx:Individual atoms are rare on the earth and in the lower part of its atmosphere. Only inert gas atoms occur by themselves. All other atoms are found joined together in small groups called molecules and in large groups as liquids and solids. Some molecules, liquids, and solids are composed entirely of atoms of the same element; others are composed of atoms of different elements.

@bchop_tx:What holds atoms together? This question, of fundamental importance to the chemist, is no less important to the physicist, whose quantum theory of the atom cannot be correct unless it provides a satisfactory answer. The ability of the quantum theory to explain chemical bonding with no special assumptions is further testimony to the power of this approach.

@bch_ha:8.1 THE MOLECULAR BOND

@bchnt_tx:Electric forces hold atoms together to form molecules

@bch_tx:A molecule is an electrically neutral group of atoms held together strongly enough to behave as a single particle.

@bch_tx:A molecule of a given kind always has a certain definite composition and structure. Hydrogen molecules, for instance, always consist of two hydrogen atoms each, and water molecules always consist of one oxygen atom and two hydrogen atoms each. If one of the atoms of a molecule is somehow removed or another atom becomes attached, the result is a molecule of a different kind with different properties.

@bch_tx:A molecule exists because its energy is less than that of the system of separate noninteracting atoms. If the interactions among a certain group of atoms reduce their total energy, a molecule can be formed. If the interactions increase their total energy, the atoms repel one another.

@bch_tx:Let us see what happens when two atoms are brought closer and closer together. Three extreme situations can occur:

@bch_lm:<B>1<B> <I>A covalent bond is formed.<I> One or more pairs of electrons are shared by the two atoms. As these electrons circulate between the atoms, they spend more time between the atoms than elsewhere, which produces an attractive force. An example is H<->2<->, the hydrogen molecule, whose electrons belong to both protons (Fig. 8.1). The attractive force the electrons exert on the protons is more than enough to counterbalance the direct repulsion between them. If the protons are too close together, however, their repulsion becomes dominant and the molecule is not stable.

@bch_lm:The balance between attractive and repulsive forces occurs at a separation of 7.42 <f"MathematicalPi-One">3<f$> 10<+><f"MathematicalPi-One">2<f$>11<+>m, where the total energy of the H<->2<-> molecule is <f"MathematicalPi-One">2<f$>4.5 eV. Hence 4.5 eV of work must be done to break a H<->2<-> molecule into two H atoms:

@bch_eq:$$

@bch_tx:By comparison, the binding energy of the hydrogen atom is 13.6 eV:
@bch_eq:$$

@bch_tx:Tis is an example of the general rule that it is easier to break up a molecule than to break up an atom.

@bch_lm:<B>2<B> <I>An ionic bond is formed.<I> One or more electrons from one atom may transfer to the other and the resulting positive and negative ions attract each other. An example is rock salt, NaCl, where the bond exists between Na<+><f"MathematicalPi-One">1<f$><+> and Cl<+><f"MathematicalPi-One">2<f$><+> ions and not between Na and Cl atoms (Fig. 8.2). Ionic bonds usually do not result in the formation of molecules. The crystals of rock salt are aggregates of sodium and chlorine ions which, although always arranged in a certain definite structure (Fig. 8.3), do not pair off into molecules consisting of one Na<+><f"MathematicalPi-One">1<f$><+> ion and one Cl<+><f"MathematicalPi-One">2<f$><+> ion. Rock salt crystals may have any size and shape. There are always equal numbers of Na<+><f"MathematicalPi-One">1<f$><+> and Cl<+><f"MathematicalPi-One">2<f$><+> ions in rock salt, so that the formula NaCl correctly represents its composition. Molten NaCl also consists of Na<+><f"MathematicalPi-One">1<f$><+> and Cl<+><f"MathematicalPi-One">2<f$><+> ions. However, these ions form molecules rather than crystals only in the gaseous state. Ionic bonding is further discussed in Chap. 10.

@bch_lm:In H<->2<-> the bond is purely covalent and in NaCl it is purely ionic. In many molecules an intermediate type of bond occurs in which the atoms share electrons to an unequal extent. An example is the HCl molecule, where the Cl atom attracts the shared electrons more strongly than the H atom. We can think of the ionic bond as an extreme case of the covalent bond.

@bch_lm:<B>3<B> <I>No bond is formed.<I> When the electron structures of two atoms overlap, they constitute a single system. According to the exclusion principle, no two electrons in such a system can exist in the same quantum state. If some of the interacting electrons are forced into higher energy states than they occupied in the separate atoms, the system may have more energy than before and be unstable. Even when the exclusion principle can be obeyed with no increase in energy, there will be an electric repulsive force between the various electrons. This is a much less significant factor than the exclusion principle in influencing bond formation, however.

@bch_ha:8.2 ELECTRON SHARING

@bchnt_tx:The mechanism of the covalent bond

@bch_tx:The simplest possible molecular system is H<->2<-><+><f"MathematicalPi-One">1<f$><+>, the hydrogen molecular ion, in which a single electron bonds two protons. Before we consider the bond in H<->2<-><+><f"MathematicalPi-One">1<f$><+> in detail, let us look in a general way into how it is possible for two protons to share an electron and why such sharing should lead to a lower total energy and hence to a stable system.

@bch_tx:In Chap. 5 the phenomenon of quantum-mechanical barrier penetration was examined. There we saw that a particle can <\#210>leak<\#211> out of a box even without enough energy to break through the wall because the particle's wave function extends beyond it. Only if the wall is infinitely strong is the wave function wholly inside the box.

@bch_tx:The electric field around a proton is in effect a box for an electron, and two nearby protons correspond to a pair of boxes with a wall between them (Fig. 8.4). No mechanism in classical physics permits the electron in a hydrogen atom to jump spontaneously to a neighboring proton more distant than its parent proton. In quantum physics, however, such a mechanism does exist. There is a certain probability that an electron trapped in one box will tunnel through the wall and get into the other box, and once there it has the same probability for tunneling back. This situation can be described by saying the electron is shared by the protons.

@bch_tx:To be sure, the likelihood that an electron will pass through the region of high potential energy<\#209>the <\#210>wall<\#211><\#209>between two protons depends strongly on how far apart the protons are. If the proton-proton distance is 0.1 nm, the electron may be regarded as going from one proton to the other about every 10<+><f"MathematicalPi-One">2<f$>15<+>s. We can legitimately consider such an electron as being shared by both. If the proton-proton distance is 1 nm, however, the electron shifts across an average of only about once per second, which is practically an infinite time on an atomic scale. Since the effective radius of the 1s wave function in hydrogen is 0.053 nm, we conclude that electron sharing can take place only between atoms whose wave functions overlap appreciably.

@bch_tx:Granting that two protons can share an electron, a simple argument shows why the energy of such a system could be less than that of a separate hydrogen atom and proton. According to the uncertainty principle, the smaller the region to which we restrict a particle, the greater must be its momentum and hence kinetic energy. An electron shared by two protons is less confined than one belonging to a single proton, which means that it has less kinetic energy. The total energy of the electron in H<->2<-><+><f"MathematicalPi-One">1<f$><+> is therefore less than that of the electron in H + H<+><f"MathematicalPi-One">1<f$><+>. Provided the magnitude of the proton-proton repulsion in H<->2<-><+><f"MathematicalPi-One">1<f$><+> is not too great, then, H<->2<-><+><f"MathematicalPi-One">1<f$><+> ought to be stable.

@bch_ha:8.3 THE H<->2<-><+><f"MathematicalPi-One">1<f$><+> MOLECULAR ION

@bchnt_tx:Bonding requires a symmetric wave function

@bch_tx:What we would like to know is the wave function <f"MathematicalPi-One">c<f$> of the electron in H<->2<-><+><f"MathematicalPi-One">1<f$><+>, since from <f"MathematicalPi-One">c<f$> we can calculate the energy of the system as a function of the separation <I>R<I> of the protons. If <I>E(R)<I> has a minimum, we will know that a bond can exist, and we can also determine the bond energy and the equilibrium spacing of the protons.

@bch_tx:Solving Schrodinger's equation for <f"MathematicalPi-One">c<f$> is a long and complicated procedure. An intuitive approach that brings out the physics of the situation is more appropriate here. Let us begin by trying to predict what $<f"MathematicalPi-One">c<f$> is when <I>R<I>, the distance between the protons, is large compared with <I>a<I><->0<->, the radius of the smallest Bohr orbit in the hydrogen atom. In this event <f"MathematicalPi-One">c<f$> near each proton must closely resemble the 1s wave function of the hydrogen atom, as pictured in Fig. 8.5. The 1s wave function around proton <I>a<I> is called <f"MathematicalPi-One">c<f$><-><I>a<I><-> and that around proton <I>b<I> is called <f"MathematicalPi-One">c<f$><-><I>b<I><->.

@bch_tx:We also know what <f"MathematicalPi-One">c<f$> looks like when <I>R<I> is O, that is, when the protons are imagined to be fused together. Here the situation is that of the He<+><f"MathematicalPi-One">1<f$><+> ion, since the electron is now near a single nucleus whose charge is <f"MathematicalPi-One">1<f$>2<I>e<I>. The 1<I>s<I> wave function of He<+><f"MathematicalPi-One">1<f$><+> has the same form as that of H but with a greater amplitude at the origin, as in Fig. 8.5<I>e<I>. Evidently <f"MathematicalPi-One">c<f$> is going to be something like the wave function sketched in Fig. 8.5<I>d<I> when <I>R<I> is comparable with <I>a<I><->0<->. There is an enhanced likelihood of finding the electron in the region between the protons, which corresponds to the sharing of the electron by the protons. Thus there is on the average an excess of negative charge between the protons, and this attracts the protons together. We have still to establish whether this attraction is strong enough to overcome the mutual repulsion of the protons.

@bch_tx:The combination of <f"MathematicalPi-One">c<f$><-><I>a<I><-> and <f"MathematicalPi-One">c<f$><-><I>b<I><-> in Fig. 8.5 is symmetric, since exchanging <I>a<I> and <I>b<I> does not affect <f"MathematicalPi-One">c<f$> (see Sec. 7.3). However, it is also conceivable that we could have an <I>antisymmetric<I> combination of <f"MathematicalPi-One">c<f$><-><I>a<I><-> and <f"MathematicalPi-One">c<f$><-><I>b<I><->, as in Fig. 8.6. Here there is a node between <I>a<I> and <I>b<I> where <f"MathematicalPi-One">c<f$> <f"MathematicalPi-One">5<f$> 0, which implies a reduced likelihood of finding the electron between the protons. Now there is on the average a deficiency of negative charge between the protons and in consequence a repulsive force. With only repulsive forces acting, bonding cannot occur.

@bch_tx:An interesting question concerns the behavior of the antisymmetric H<->2<-><+><f"MathematicalPi-One">1<f$><+> wave function <f"MathematicalPi-One">c<f$><-><I>A<I><-> as <I>R<I> $$ 0. Obviously <f"MathematicalPi-One">c<f$><-><I>A<I><-> does not become the 1<I>s<I> wave function of He<+><f"MathematicalPi-One">1<f$><+> when <I>R<I> <f"MathematicalPi-One">5<f$> 0. However, <f"MathematicalPi-One">1<f$><-><I>A<I><-> <I>does<I> approach the 2<I>p<I> wave function of He<+><f"MathematicalPi-One">1<f$><+> (Fig. 8.6<I>e<I>), which has a node at the origin. But the 2<I>p<I> state of He<+><f"MathematicalPi-One">1<f$><+> is an excited state whereas the 1<I>s<I> state is the ground state. Hence H<->2<-><+><f"MathematicalPi-One">1<f$><+> in the antisymmetric state ought to have more energy than when it is in the symmetric state, which agrees with our inference from the shapes of the wave functions <f"MathematicalPi-One">c<f$><-><I>A<I><-> and <f"MathematicalPi-One">c<f$><-><I>S<I><-> that in the former case there is a repulsive force and in the latter, an attractive one.

@bch_ha:System Energy

@bch_tx:A line of reasoning similar to the preceding one lets us estimate how the total energy of the H<->2<-><+><f"MathematicalPi-One">1<f$><+> system varies with <I>R<I>. We first consider the symmetric state. When <I>R<I> is large, the electron energy <I>E<->S<-><I> must be the <f"MathematicalPi-One">2<f$>13.6-eV energy of the hydrogen atom, while the electric potential energy <I>U<->p<-><I> of the protons,

@bch_eq:$$
(8.1)

@bch_tx:falls to 0 as <I>R<I> $$. (<I>U<->p<-><I> is a positive quantity, corresponding to a repulsive force.) When <I>R<I> $ 0, <I>U<->p<-><I> $$ as 1/<I>R<I>. At <I>R<I> <f"MathematicalPi-One">5<f$> 0, the electron energy must equal that of the He<+><f"MathematicalPi-One">1<f$><+> ion, which is <I>Z<I><+>2<+>, or 4 times, that of the H atom. (See Exercise 35 of Chap. 4; the same result is obtained from the quantum theory of one-electron atoms.) Hence <I>E<->S<-><I> <f"MathematicalPi-One">5<f$> <f"MathematicalPi-One">2<f$>54.4 eV when <I>R<I> <f"MathematicalPi-One">5<f$> 0.

@bch_tx:Both <I>E<->S<-><I> and <I>U<->p<-><I> are sketched in Fig. 8.7 as functions of <I>R<I>. The shape of the curve for <I>E<->S<-><I> can only be approximated without a detailed calculation, but we do have its value for both <I>R<I> <f"MathematicalPi-One">5<f$> 0 and <I>R<I> <f"MathematicalPi-One">5<f$> $ and, of course, <I>U<->p<-><I> obeys Eq. (8.1).

@bch_tx:The total energy <I>E<I><-><I>s<I><-><+>total<+> of the system is the sum of the electron energy <I>E<->S<-><I> and the potential energy <I>U<->p<-><I> of the protons. Evidently <I>E<->S<-><I><+>total<+> has a minimum, which corresponds to a stable molecular state. This result is confirmed by the experimental data on H<->2<-><+><f"MathematicalPi-One">1<f$><+> which indicate a bond energy of 2.65 eV and an equilibrium separation <I>R<I> of 0.106 nm. By <\#210>bond energy<\#211> is meant the energy needed to break H<->2<-><+><f"MathematicalPi-One">1<f$><+> into H <f"MathematicalPi-One">1<f$> H<+><f"MathematicalPi-One">1<f$><+>. The <I>total<I> energy of H<->2<-><+><f"MathematicalPi-One">1<f$><+> is the <f"MathematicalPi-One">2<f$>13.6 eV of the hydrogen atom plus the <f"MathematicalPi-One">2<f$>2.65-eV bond energy, or <f"MathematicalPi-One">2<f$>16.3 eV in all.

@bch_tx:In the case of the antisymmetric state, the analysis proceeds in the same way except that the electron energy <I>E<->A<-><I> when <I>R<I> <f"MathematicalPi-One">5<f$> 0 is that of the 2<I>p<I> state of He<+><f"MathematicalPi-One">1<f$><+>. This energy is proportional to <I>Z<I><+>2<+>/<I>n<I><+>2<+>. With <I>Z<I> <f"MathematicalPi-One">5<f$> 2 and <I>n<I> <f"MathematicalPi-One">5<f$> 2, <I>E<->A<-><I> is just equal to the <f"MathematicalPi-One">2<f$>13.6 eV of the ground-state hydrogen atom. Since <I>E<->A<-><I> $ 13.6 eV also as <I>R<I> $ $, we might think that the electron energy is constant, but actually there is a small dip at intermediate distances. However, the dip is not nearly enough to yield a minimum in the total energy curve for the antisymmetric state, as shown in Fig. 8.7, and so in this state no bond is formed.

@bch_ha:8.4 THE HYDROGEN MOLECULE

@bchnt_tx:The spins of the electrons must be antiparallel

@bch_tx:The H<->2<-> molecule has two electrons instead of the single electron of H<->2<-><+><f"MathematicalPi-One">1<f$><+>. According to the exclusion principle, both electrons can share the same <B>orbital<B> (that is, be described by the same wave function <f"MathematicalPi-One">c<f$><-><I>nlm<I><-><-><I>l<I><->) provided their spins are antiparallel.

@bch_tx:With two electrons to contribute to the bond, H<->2<-> ought to be more stable than H<->2<-><+><f"MathematicalPi-One">1<f$><+><\#209>at first glance, twice as stable, with a bond energy of 5.3 eV compared with 2.65 eV for H<->2<-><+><f"MathematicalPi-One">1<f$><+>. However, the H<->2<-> orbitals are not quite the same as those of H<->2<-><+><f"MathematicalPi-One">1<f$><+> because of the electric repulsion between the two electrons in H<->2<->, a factor absent in the case of H<->2<-><+><f"MathematicalPi-One">1<f$><+>. This repulsion weakens the bond in H<->2<->, so that the actual energy is 4.5 eV instead of 5.3 eV. For the same reason, the bond length in H<->2<-> is 0.074 nm, which is somewhat larger than the use of unmodified H<->2<-><+><f"MathematicalPi-One">1<f$><+> wave functions would indicate. The general conclusion in the case of H<->2<-><+><f"MathematicalPi-One">1<f$><+> that the symmetric wave function <f"MathematicalPi-One">c<f$><-><I>S<I><-> leads to a bound state and the antisymmetric wave function <f"MathematicalPi-One">c<f$><-><I>A<I><-> to an unbound one remains valid for H<->2<->.

@bch_tx:In Sec. 7.3 the exclusion principle was formulated in terms of the symmetry and antisymmetry of wave functions, and it was concluded that systems of electrons are always described by antisymmetric wave functions (that is, by wave functions that reverse sign upon the exchange of any pair of electrons). However, the bound state in H<->2<-> corresponds to both electrons being described by a symmetrical wave function <f"MathematicalPi-One">c<f$><-><I>S<I><->, which seems to contradict the above conclusion.

@bch_tx:A closer look shows that there is really no contradiction. The <I>complete<I> wave function <f"MathematicalPi-One">C<f$>(1, 2) of a system of two electrons is the product of a spatial wave function <f"MathematicalPi-One">c<f$>(1, 2) which describes the coordinates of the electrons and a spin function <I>s<I>(1, 2) which describes the orientations of their spins. The exclusion principle requires that the complete wave function

@bch_eq:$$

@bch_tx:be antisymmetric to an exchange of both coordinates and spins, not <f"MathematicalPi-One">c<f$>(1, 2) by itself. An antisymmetric complete wave function <f"MathematicalPi-One">C<f$><-><I>S<I><-> can result from the combination of a symmetric coordinate wave function <f"MathematicalPi-One">c<f$><-><I>S<-><I> and an antisymmetric spin function s<->A<-> or from the combination of an antisymmetric coordinate wave function <f"MathematicalPi-One">c<f$><-><I>A<-><I> and a symmetric spin function s<->S<->. That is, only

@bch_eq:$$

@bch_tx:are acceptable.

@bch_tx:If the spins of the two electrons are parallel, their spin function is symmetric since it does not change sign when the electrons are exchanged. Hence the coordinate wave function <f"MathematicalPi-One">c<f$> for two electrons whose spins are parallel must be antisymmetric:

@bch_eqct:Spins parallel

@bch_eq:$$

@bch_tx:On the other hand, if the spins of the two electrons are antiparallel, their spin function is antisymmetric since it reverses sign when the electrons are exchanged. Hence the coordinate wave function <f"MathematicalPi-One">c<f$> for two electrons whose spins are antiparallel must be symmetric:

@bch_eqct:Spins antiparallel

@bch_eq:$$

@bch_tx:Schrodinger's equation for the H<->2<-> molecule has no exact solution. In fact, only for H<->2<-><+><f"MathematicalPi-One">1<f$><+> is an exact solution possible, and all other molecular systems must be treated approximately. The results of a detailed analysis of the H<->2<-> molecule are shown in Fig. 8.8 for the case when the electrons have their spins parallel and the case when their spins are antiparallel. The difference between the two curves is due to the exclusion principle, which leads to a dominating repulsion when the spins are parallel.

@bch_ha:8.5 COMPLEX MOLECULES

@bchnt_tx:Their geometry depends on the wave functions of the outer electrons of their atoms

@bch_tx:Covalent bonding in molecules other than H<->2<->, diatomic as well as polyatomic, is usually a more complicated story. It would be yet more complicated but for the fact that any alteration in the electronic structure of an atom due to the proximity of another atom is confined to its outermost, or <B>valence,<B> electron shell. There are two reasons for this:

@bch_ln:<B>1<B> The inner electrons are much more tightly bound and hence less responsive to external influences, partly because they are closer to their parent nucleus and partly because they are shielded from the nuclear charge by fewer intervening electrons.

@bch_ln:<B>2<B> The repulsive interatomic forces in a molecule become predominant while the inner shells of its atoms are still relatively far apart.

@bch_tx:The idea that only the valence electrons are involved in chemical bonding is supported by x-ray spectra that arise from transitions to inner-shell electron states. These spectra are virtually independent of how the atoms are combined in molecules or solids.

@bch_tx:We have seen that two H atoms can combine to form an H<->2<-> molecule; and, indeed, hydrogen molecules in nature always consist of two H atoms. The exclusion principle is what prevents molecules such as He<->2<-> and H<->3<-> from existing, while permitting such other molecules as H<->2<->O to be stable.

@bch_tx:Every He atom in its ground state has a 1<I>s<I> electron of each spin. If it is to join with another He atom by exchanging electrons, each atom will have two electrons with the same spin for part of the time. That is, one atom will have both electron spins up ($) and the other will have both spins down ($). The exclusion principle, of course, prohibits two I<I>s<I> electrons in an atom from having the same spins, which is manifested in a repulsion between He atoms. Hence the He<->2<-> molecule cannot exist.

@bch_tx:A similar argument holds in the case of H<->3<->. An H<->2<-> molecule contains two 1<I>s<I> electrons whose spins are antiparallel ($). Should another H atom approach whose electron spin is, say, up, the resulting molecule would have two spins parallel ($), and this is impossible if all three electrons are to be in 1<I>s<I> states. Hence the existing H<->2<-> molecule repels the additional H atom. The exclusion-principle argument does not apply if one of the three electrons in H<->3<-> is in an excited state. All such states are of higher energy than the 1<I>s<I> state, however, and the resulting configuration therefore has more energy than H<->2<-> <f"MathematicalPi-One">1<f$> H and so will decay rapidly to H<->2<-> <f"MathematicalPi-One">1<f$> H.

@bch_hb:Molecular Bonds

@bch_tx:The interaction between two atoms that gives rise to a covalent bond between them may involve probability-density distributions for the participating electrons that are different from those of Fig. 6.12 for atoms alone in space. Figure 8.9 shows the configurations of the <I>s<I> and <I>p<I> atomic orbitals important in bond formation. What are drawn are boundary surfaces of constant $$ that outline the regions within which the probability of finding the electron has some definite value, say 90 or 95 percent. The diagrams thus show $ in each case; Fig. 6.11 gives the corresponding radial probabilities. The sign of the wave function <f"MathematicalPi-One">c<f$> is indicated in each lobe of the orbitals.

@bch_tx:In Fig. 8.9 the <I>s<I> and <I>p<->z<-><I> orbitals are the same as the hydrogen-atom wave functions for <I>s<I> and <I>p<I> (<I>ml<I> <f"MathematicalPi-One">5<f$> 0) states. The <I>p<->x<-><I> and <I>p<->y<-><I> orbitals are linear combinations of the <I>p<I> (<I>ml<I><f"MathematicalPi-One">5<f$><f"MathematicalPi-One">1<f$>1) and <I>p<I> (<I>ml<I><f"MathematicalPi-One">5<f$><f"MathematicalPi-One">2<f$>1) orbitals, where

@bch_eq:$$(8.2)

@bch_tx:The $ factors are needed to normalize the wave functions. Because the energies of the <I>ml<I> <f"MathematicalPi-One">5<f$> <f"MathematicalPi-One">1<f$>1 and <I>ml<I> <f"MathematicalPi-One">5<f$> <f"MathematicalPi-One">2<f$>1 orbitals are the same, the superpositions of the wave functions in Eq. (8.2) are also solutions of Schrodinger's equation (see Sec. 5.4).

@bch_tx:When two atoms come together, their orbitals overlap. If the result is an increased $ between them, the combined orbitals constitute a bonding molecular orbital. In Sec. 8.4 we saw how the 1<I>s<I> orbitals of two hydrogen atoms could join to form the bonding orbital $. Molecular bonds are classified by Greek letters according to their angular momenta <I>L<I> about the bond axis, which is taken to be the <I>z<I> axis: $ (the Greek equivalent of <I>s<I>) corresponds to <I>L<I> <f"MathematicalPi-One">5<f$> 0, <f"MathematicalPi-One">p<f$> (the Greek equivalent of <I>p<I>) corresponds to <I>L<I> <f"MathematicalPi-One">5<f$> $, and so on in alphabetic order.

@bch_tx:Figure 8.10 shows the formation of <f"MathematicalPi-One">p<f$> and <f"MathematicalPi-One">s<f$> bonding molecular orbitals from <I>s<I> and <I>p<I> atomic orbitals. Evidently <f"MathematicalPi-One">c<f$> for H<->2<-> is an <I>ss<f"MathematicalPi-One">s<f$><I> bond. Since the lobes of <I>p<->z<-><I> orbitals are on the bond axis, they form <f"MathematicalPi-One">p<f$> molecular orbitals; the <I>p<->x<-><I> and <I>p<->y<-><I> orbitals usually form $ molecular orbitals.

@bch_tx:The atomic orbitals that combine to form a molecular orbital may be different in the two atoms. An example is the water molecule H<->2<->O. Although one 2<I>p<I> orbital in <I>O<I> is fully occupied by two electrons, the other two 2<I>p<I> orbitals are only singly occupied and so can join with the 1<I>s<I> orbitals of two H atoms to form <I>sp$<I> bonding orbitals (Fig. 8.11). The mutual repulsion between the H nuclei (which are protons) widens the angles between the bond axes from 90<f"MathematicalPi-One">8<f$> to the observed 104.5<f"MathematicalPi-One">8<f$>.

@bch_hb:Hybrid Orbitals

@bch_tx:The straightforward way in which the shape of the H<->2<->O molecule is explained fails in the case of methane, CH<->4<->. A carbon atom has two electrons in its 2<I>s<I> orbital and one electron in each of two 2<I>p<I> orbitals. Thus we would expect the hydride of carbon to be CH<->2<->, with two <I>sp$<I> bonding orbitals and a bond angle of a little over 90$. The 2<I>s<I> electrons should not participate in the bonding at all. Yet CH<->4<-> exists and is perfectly symmetrical in structure with tetrahedral molecules whose C<\#209>H bonds are exactly equivalent to one another.

@bch_tx:The problem of CH<->4<-> (and those of many other molecules) was solved by Linus Pauling in 1928. He proposed that linear combinations of <I>both<I> the 2<I>s<I> and 2<I>p<I> atomic orbitals of C contribute to <I>each<I> molecular orbital in CH<->4<->. The 2<I>s<I> and 2<I>p<I> wave functions are both solutions of the same Schrodinger's equation if the corresponding energies are the same, which is not true in the isolated C atom. However, in an actual CH<->4<-> molecule the electric field experienced by the outer C electrons is affected by the nearby H nuclei, and the energy difference between 2<I>s<I> and 2<I>p<I> states then can disappear. <B>Hybrid orbitals<B> that consist of mixtures of <I>s<I> and <I>p<I> orbitals occur when the bonding energies they produce are greater than those which pure orbitals would produce. In CH<->4<-> the four hybrid orbitals are mixtures of one 2<I>s<I> and three 2<I>p<I> orbitals, and accordingly are called <I>sp<I><+>3<+> hybrids (Fig. 8.12). The wave functions of these hybrid orbitals are

@bch_eq:$$

@bch_eq:$$

@bch_tx:Figure 8.13 shows the resulting structure of the CH<->4<-> molecule.

@bch_tx:Two other types of hybrid orbital in addition to <I>sp<I><+>3<+> can occur in carbon atoms. In <I>sp<I><+>2<+> hybridization, one outer electron is in a pure <I>p<I> orbital and the other three are in hybrid orbitals that are 1\2<I>S<I> and 1\2<I>P<I> in character. In <I>sp<I> hybridization, two outer electrons are in pure <I>p<I> orbitals and the other two are in hybrid orbitals that are 1\2<I>S<I> and 1\2<I>S<I> in character.

@bch_tx:Ethylene, C<->2<->H<->4<->, is an example of <I>sp<I><+>2<+> hybridization in which the two C atoms are joined by two bonds, one a <f"MathematicalPi-One">s<f$> bond and one a <f"MathematicalPi-One">p<f$> bond (Fig. 8.14). The conventional structural formula of ethylene shows these two bonds:

@bch_tx:Ethylene

@bch_eq:$$

@bch_tx:The electrons in the <f"MathematicalPi-One">p<f$> bond are <\#210>exposed<\#211> outside the molecule, so ethylene and similar compounds are much more reactive chemically than compounds whose molecules have only <f"MathematicalPi-One">s<f$> bonds between their C atoms.

@bch_tx:In benzene, C<->6<->H<->6<->, the six C atoms are arranged in a flat hexagonal ring, as in Fig. 8.15, with three <I>sp<I><+>2<+> orbitals per C atom forming <f"MathematicalPi-One">s<f$> bonds with each other and with the H atoms. This leaves each C atom with one 2<I>p<I> orbital. The total of six 2<I>p<I> orbitals in the molecule combine into bonding <f"MathematicalPi-One">p<f$> orbitals that are continuous above and below the plane of the ring. The six electrons involved belong to the molecule as a whole and not to any particular pair of atoms; these electrons are <B>delocalized<B>. An appropriate structural formula for benzene is therefore

@bch_eq:$$

@bch_ha:8.6 ROTATIONAL ENERGY LEVELS

@bchnt_tx:Molecular rotational spectra are in the microwave region

@bch_tx:Molecular energy states arise from the rotation of a molecule as a whole, from the vibrations of its atoms relative to one another, and from changes in its electronic configuration:

@bch_ln:<B>1<B> <I>Rotational states<I> are separated by quite small energy intervals (10<+><f"MathematicalPi-One">2<f$>3<+> eV is typical). The spectra that arise from transitions between these states are in the microwave region with wavelengths of 0.1 mm to 1 cm. The absorption by water molecules of rotational energy from microwaves underlies the operation of microwave ovens.

@bch_ln:<B>2<B> <I>Vibrational states<I> are separated by somewhat larger energy intervals (0.1 eV is typical). Vibrational spectra are in the infrared region with wavelengths of 1 <f"MathematicalPi-One">m<f$>m to 0.1 mm.

@bch_ln:<B>3<B> <I>Molecular electronic states<I> have the highest energies, with typical separations between the energy levels of outer electrons of several eV. The corresponding spectra are in the visible and ultraviolet regions.

@bch_tx:A detailed picture of a particular molecule can often be obtained from its spectrum, including bond lengths, force constants, and bond angles. For simplicity the treatment here will cover only diatomic molecules, but the main ideas apply to more complicated ones as well.

@bch_tx:The lowest energy levels of a diatomic molecule arise from rotation about its center of mass. We may picture such a molecule as consisting of atoms of masses <I>m<I><->1<-> and <I>m<I><->2<-> a distance <I>R<I> apart, as in Fig. 8.16. The moment of intertia of this molecule about an axis passing through its center of mass and perpendicular to a line joining the atoms is

@bch_eq:$$
(8.3)

@bch_tx:where <I>r<I><->1<-> and <I>r<I><->2<-> are the distances of atoms 1 and 2, respectively, from the center of mass. From the definition of center of mass,

@bch_eq:$$
(8.4)

@bch_tx:Hence the moment of inertia may be written

@bch_eqct:Moment of inertia
@bch_eq:$$
(8.5)

@bch_tx:Here

@bch_eqct:Reduced mass
@bch_eq:$$
(8.6)

@bch_tx:is the <B>reduced mass<B> of the molecule. Equation (8.5) states that the rotation of a diatomic molecule is equivalent to the rotation of a single particle of mass <I>m'<I> about an axis located a distance <I>R<I> away.

@bch_tx:The angular momentum <B>L<B> of the molecule has the magnitude

@bch_eq:$$
(8.7)

@bch_tx:where <f"MathematicalPi-One">v<f$> is its angular velocity. Angular momentum is always quantized in nature, as we know. If we denote the <B>rotational quantum number<B> by <I>J<I>, we have here

@bch_eqct:ngular momentum
@bch_eq:$$
(8.8)

@bch_tx:The energy of a rotating molecule is 1\2<I>I<I><f"MathematicalPi-One">v<f$><+>2<+>, and so its energy levels are specified by

@bch_eq:$$

@bch_eqct:otational energy levels
@bch_eq:$$
(8.9)

@bchea_nm:Example 8.1

@bchea_tx:The carbon monoxide (CO) molecule has a bond length <I>R<I> of 0.113 nm and the masses of the <+>12<+>C and <+>16<+>O atoms are respectively 1.99 <f"MathematicalPi-One">3<f$> 10<+><f"MathematicalPi-One">2<f$>26<+> kg and 2.66 <f"MathematicalPi-One">3<f$> 10<+><f"MathematicalPi-One">2<f$>26<+> kg. Find (<I>a<I>) the energy and (<I>b<I>) the angular velocity of the CO molecule when it is in its lowest rotational state.

@beasa_tt:Solution

@beasa_tx:(<I>a<I>) The reduced mass <I>m'<I> of the CO molecule is

@beasa_eq:$$

@beasa_tx:and its moment of inertia <I>I<I> is

@beasa_eq:$$

@beasa_tx:The lowest rotational energy level corresponds to <I>J<I> <f"MathematicalPi-One">5<f$> 1, and for this level in CO

@beasa_eq:$$

@beasa_tx:This is not a lot of energy, and at room temperature, when <I>KT<I> <f"MathematicalPi-Two">P<f$> 2.6 <f"MathematicalPi-One">3<f$> 10<+><f"MathematicalPi-One">2<f$>2<+> eV, nearly all the molecules in a sample of CO are in excited rotational states.

@beasa_tx:(<I>b<I>) The angular velocity of the CO molecule when <I>J<I> <f"MathematicalPi-One">5<f$> l is

@beasa_eq:$$

@bch_hb:Rotational Spectra

@bch_tx:Rotational spectra arise from transitions between rotational energy states. Only molecules that have electric dipole moments can absorb or emit electromagnetic photons in such transitions. For this reason nonpolar diatomic molecules such as H<->2<-> and symmetric polyatomic molecules such as CO<->2<-> (O<f"MathematicalPi-One">5<f$>C<f"MathematicalPi-One">5<f$>O) and CH<->4<-> (Fig. 8.13) do not exhibit rotational spectra. Transitions between rotational states in molecules like H<->2<->, CO<->2<->, and CH<->4<-> can take place during collisions, however.

@bch_tx:Even in molecules with permanent dipole moments, not all transitions between rotational states involve radiation. As in the case of atomic spectra, certain selection rules summarize the conditions for a radiative transition between rotational states to be possible. For a rigid diatomic molecule the selection rule for rotational transitions is

@bch_eqct:Selection rule
@bch_eq:$$
(8.10)

@bch_tx:In practice, rotational spectra are always obtained in absorption, so that each transition that is found involves a change from some initial state of quantum number <I>J<I> to the next higher state of quantum number <I>J<I> <f"MathematicalPi-One">1<f$> l. In the case of rigid molecule, the frequency of the absorbed photon is

@bch_eq:$$

@bch_eqct:Rotational spectra
@bch_eq:$$
(8.11)

@bch_tx:where <I>l<I> is the moment of inertia for end-over-end rotations. The spectrum of a rigid molecule therefore consists of equally spaced lines, as in Fig. 8.17. The frequency of each line can be measured, and the transition it corresponds to can often be found from the sequence of lines. From these data the moment of inertia of the molecule can be calculated. Alternatively, the frequencies of any two successive lines may be used to determine <I>I<I> if the lowest-frequency lines in a particular spectral sequence are not recorded.

@bchea_nm:Example 8.2

@bchea_tx:In CO the <I>J<I> <f"MathematicalPi-One">5<f$> 0 $ <f"MathematicalPi-One">5<f$> 1 absorption line occurs at a frequency of 1.15 <f"MathematicalPi-One">3<f$> 10<+>11<+> Hz. What is the bond length of the CO molecule?

@beasa_tt:Solution

@bchea_tx:First we find the moment of inertia of this molecule from Eq. (8.11):

@beasa_eq:$$

@beasa_tx:In Example 8.1 we saw that the reduced mass of the CO molecule is <I>m'<I> <f"MathematicalPi-One">5<f$> 1.14 <f"MathematicalPi-One">3<f$> 10<<f"MathematicalPi-One">2<f$>>-26<-> kg.

@beasa_eq:$$

@beasa_tx:This is the way in which the bond length for CO quoted earlier was determined.

@bch_tx:8.7 VIBRATIONAL ENERGY LEVELS

@bchnt_tx:A molecule may have many different modes of vibration

@bch_tx:When sufficiently excited, a molecule can vibrate as well as rotate. Figure 8.18 shows how the potential energy of a, diatomic molecule varies with the internuclear distance <I>R<I>. Near the minimum of this curve, which corresponds to the normal configuration of the molecule, the shape of the curve is very nearly a parabola. In this region, then,

@bch_eqct:Parabolic approximation
@bch_eq:$$
(8.12)

@bch_tx:where <I>R<I><->0<-> is the equilibrium separation of the atoms.

@bch_tx:The interatomic force that gives to this potential energy is given by differentiating <I>U<I>:

@bch_eq:$$
(8.13)

@bch_tx:The force is just the restoring force that a stretched or compressed spring exerts<\#209>a Hooke's law force<\#209>and, as with a spring, a molecule suitably excited can undergo simple harmonic oscillations.

@bch_tx:Classically, the frequency of a vibrating body of mass <I>m<I> connected to a spring of force constant <I>k<I> is

@bch_eq:$$
(8.14)

@bch_tx:What we have in the case of a diatomic molecule is the somewhat different situation of two bodies of masses <I>m<I><->l<-> and <I>m<I><->2<-> joined by a spring, as in Fig. 8.19. In the absence of external forces the linear momentum of the system remains constant, and the oscillations of the bodies therefore cannot effect the motion of their center of mass. For this reason <I>m<I><->l<-> and <I>m<I><->2<-> vibrate back and forth relative to their center of mass in opposite directions, and both reach the extremes of their respective motions at the same times. The frequency of oscillation of such a two-body oscillator is given by Eq. (8.14) with the reduced mass <I>m'<I> of Eq. (8.6) substituted for <I>m<I>:

@bch_eqct:Two-body oscillator

@bch_eq:$$
(8.15)

@bch_tx:When the harmonic-oscillator problem is solved quantum mechanically (see Sec. 5.11), the energy of the oscillator turns out to be restricted to the values

@bch_eqct:Harmonic oscillator
@bch_eq:$$
(8.16)

@bch_tx:where <B><f"MathematicalPi-One">y<f$><B>, the <B>vibrational quantum number,<B> may have the values

@bch_eqct:Vibrational quantum number
@bch_eq:$$

@bch_tx:The lowest vibrational state (<I>v<I> <f"MathematicalPi-One">5<f$> 0) has the zero-point energy 1\2<I>hv<I><->0<->, not the classical value of 0. This result is in accord with the uncertainty principle, because if the oscillating particle were stationary, the uncertainty in its position would be <f"MathematicalPi-One">D<f$><I>x<I> <f"MathematicalPi-One">5<f$> 0 and its momentum uncertainty would then have to be infinite<\#209>and a particle with <I>E<I> <f"MathematicalPi-One">5<f$> O cannot have an infinitely uncertain momentum. In view of Eq. (8.15) the vibrational energy levels of a diatomic molecule are specified by

@bch_eqct:Vibrational energy levels
@bch_eq:$$
(8.17)

@bch_tx:The higher vibrational states of a molecule do not obey Eq. (8.16) because the parabolic approximation to its potential-energy curve becomes less and less valid with increasing energy. As a result, the spacing between adjacent energy levels of high <I>v<I> is less than the spacing between adjacent levels of low <I>v,<I> which is shown in Fig. 8.20. This diagram also shows the fine structure in the vibrational levels caused by the simultaneous excitation of rotational levels.

@bch_hb:Vibrational Spectra

@bch_tx:The selection rule for transitions between vibrational states is

@bch_eqct:Selection rule
@bch_eq:$$
(8.18)

@bch_tx:in the harmonic-oscillator approximation. This rule is easy to understand. An oscillating dipole whose frequency is <I>v<I><->0<-> can absorb or emit only electromagnetic radiation of the same frequency and all quanta of frequency <I>v<I><->0<-> have the energy <I>hv<I><->0<->. The oscillating dipole accordingly can only absorb <f"MathematicalPi-One">D<f$><I>E<I> <f"MathematicalPi-One">5<f$> <I>hv<I><->0<-> at a time, in which case its energy increases from (<I>v<I> <f"MathematicalPi-One">1<f$> 1\2)<I>hv<I><->0<-> to (<I>v<I> <f"MathematicalPi-One">1<f$> 1\2 <f"MathematicalPi-One">1<f$> l)<I>hv<I><->0<->. It can also emit only <f"MathematicalPi-One">D<f$><I>E<I> <f"MathematicalPi-One">5<f$> <I>hv<I><->0<-> at a time, in which case its energy decreases from (<I>V<I> <f"MathematicalPi-One">1<f$> 1\2)<I>hv<I><->0<-> to (<I>v<I> <f"MathematicalPi-One">1<f$> 1\2 <f"MathematicalPi-One">2<f$> 1)<I>hv<I><->0<->. Hence the selection rule <f"MathematicalPi-One">D<f$><I>v<I> <f"MathematicalPi-One">5<f$> <f"MathematicalPi-One">6<f$>l.

@bchea_nm:Example 8.3

@bchea_tx:When CO is dissolved in liquid carbon tetrachloride, infrared radiation of frequency 6.42 <f"MathematicalPi-One">3<f$> 10<+>13<+> Hz is absorbed. Carbon tetrachloride by itself is transparent at this frequency, so the absorption must be due to the <I>CO.<B> (<I>a<I>) What is the force constant of the bond in the CO molecule? (<I>b<I>) What is the spacing between its vibrational energy levels?

@beasa_tt:Solution

@beasa_tx:(<I>a<I>) As we know, the reduced mass of the CO molecule is <I>m'<I> <f"MathematicalPi-One">5<f$> 1.14 <f"MathematicalPi-One">3<f$> 10<+><f"MathematicalPi-One">2<f$>26<+> kg. From Eq. (8.15), <I>v<I><->0<-> <f"MathematicalPi-One">5<f$> should be (1/2<f"MathematicalPi-One">p<f$>) (i.e.$) $, the force constant is

@beasa_eq:$$

@beasa_tx:This is about 10 lb/in.

@beasa_tx:(<I>b<I>) The separation <f"MathematicalPi-One">D<f$><I>E<I> between the vibrational levels in CO is

@beasa_eq:$$

@beasa_tx:This is considerably more than the spacing between its rotational energy levels. Because <f"MathematicalPi-One">D<f$><I>E<I>$ <I>kT<I> for vibrational states in a sample at room temperature, most of the molecules in such a sample exist in the <I>v<I> <f"MathematicalPi-One">5<f$> 0 state with only their zero-point energies. This situation is very different from that characteristic of rotational states, where the much smaller energies mean that the majority of the molecules in a room-temperature sample are excited to higher states.

@bch_hb:Vibration-Rotation Spectra

@bch_tx:Pure vibrational spectra are observed only in liquids where interactions between adjacent molecules inhibit rotation. Because the excitation energies involved in molecular rotation are much smaller than those involved in vibration, the freely moving molecules in a gas or vapor nearly always are rotating, regardless of their vibrational state. The spectra of such molecules do not show isolated lines corresponding to each vibrational transition, but instead a large number of closely spaced lines due to transitions between the various rotational states of one vibrational level and the rotational states of the other. In spectra obtained using a spectrometer with inadequate resolution, the lines appear as a broad streak called a vibration-rotation band.

@bch_tx:A complex molecule may have many different modes of vibration. Some of these modes involve the entire molecule (Figs. 8.21 and 8.22), but others, (<\#210>local modes<\#211>) involve only groups of atoms whose vibrations occur more or less independently of the rest of the molecule. Thus the <\#209>OH group has a characteristic vibrational frequency of 1.1 <f"MathematicalPi-One">3<f$> 10<+>14<+> Hz and the <\#209>NH<->2<-> group has a frequency of 1.0 <f"MathematicalPi-One">3<f$> 10<+>14<+> Hz.

@bch_tx:The characteristic vibrational frequency of a carbon-carbon group depends upon the number of bonds between the C atoms: the $ group vibrates at about 3.3 <f"MathematicalPi-One">3<f$> 10<+>13<+> Hz, the $ group vibrate at about 5.0 <f"MathematicalPi-One">3<f$> 10<+>13<+> Hz, and the $ group vibrates at about 6.7 <f"MathematicalPi-One">3<f$> 10<+>13<+> Hz. (As we would expect, the more carbon-carbon bonds, the larger the force constant <I>k<I> and the higher the frequency.) In each case the frequency does not depend strongly on the particular molecule or the location in the molecule of the group, which makes vibrational spectra a valuable tool in determining molecular structures.

@bch_tx:An example is thioacetic acid, whose structure might conceivably be either CH<->3<->CO<\#209>SH or CH<->3<->CS<\#209>OH. The infrared absorption spectrum of thioacetic acid contains lines at frequencies equal to the vibrational frequencies of the $ and <\#209>SH groups, but no lines corresponding to the $ or <\#209>OH groups. The first alternative is evidently the correct one.

@bch_ha:8.8 <B>ELECTRONIC SPECTRA OF MOLECULES

@bchnt_tx:How fluorescence and phosphorescence occur

@bch_tx:The energies of rotation and vibration in a molecule are due to the motion of its atomic nuclei, which contain virtually all the molecule's mass. The molecule's electrons also can be excited to higher energy levels than those corresponding to its ground state. However, the spacing of these levels is much greater than the spacing of rotational or vibrational levels.

@bch_tx:Electronic transitions involve radiation in the visible or ultraviolet parts of the spectrum. Each transition appears as a series of closely spaced lines, called a band, due to the presence of different rotational and vibrational states in each electronic state (Fig. 8.23). All molecules exhibit electronic spectra, since a dipole moment change always accompanies a change in the electronic configuration of a molecule. Therefore homonuclear molecules, such as H<->2<-> and N<->2<->, which have neither rotational nor vibrational spectra because they lack permanent dipole moments, nevertheless have electronic spectra whose rotational and vibrational fine structures enable moments of intertia and bond force constants to be found.

@bch_tx:Electronic excitation in a polyatomic molecule often leads to a change in the molecule's shape, which can be determined from the rotational fine structure in its band spectrum. The origin of such changes lies in the different characters of the wave functions of electrons in different states, which lead to correspondingly different bond geometries. For example, the molecule beryllium hydride, BeH<->2<->, is linear (H<\#209>Be<\#209>H) in one state and bent (H<\#209>$e) in another.

@bch_hb:Fluorescence

@bch_tx:A molecule in an excited electronic state can lose energy and return to its ground state in various ways. The molecule may, of course, simply emit a photon of the same frequency as that of the photon it absorbed, thereby returning to the ground state in a single step. Another possibility is <B>fluorescence.<B> Here the molecule gives up some of its vibrational energy in collisions with other molecules, so that the downward radiative transition originates from a lower vibrational level in the upper electronic state (Fig. 8.24). Fluorescent radiation is therefore of lower frequency than that of the absorbed radiation.

@bch_tx:Fluorescence excited by ultraviolet light has many applications, for instance to help identify minerals and biochemical compounds. Fabric <\#210>brighteners<\#211> that are sometimes added to detergents absorb ultraviolet radiation in daylight and then fluoresce blue light. In a <B>fluorescent lamp,<B> a mixture of mercury vapor and an inert gas such as argon inside a glass tube gives off ultraviolet radiation when an electric current is passed through it. The inside of the tube is coated with a fluorescent material called a phosphor that emits visible light when excited by the ultraviolet radiation. The process is much more efficient than using a current to heat a filament to incandescence, as in ordinary light bulbs.

@bch_hb:Phosphorescence

@bch_tx:In molecular spectra, radiative transitions between electronic states of different total spin are prohibited. Figure 8.25 shows a situation in which the molecule in its singlet (total spin quantum number <B>S<B> <f"MathematicalPi-One">5<f$> 0) ground state absorbs a photon and is raised to a singlet excited state. In collisions the molecule can undergo radiationless transitions to a lower vibrational level that may happen to have about the same energy as one of the levels in the triplet (<B>S<B> <f"MathematicalPi-One">5<f$> 1) excited state. There is then a certain probability for a shift to the triplet state to occur. Further collisions in the triplet state bring the molecule's energy below that of the crossover point, so that it is now trapped in the triplet state and ultimately reaches the <I>v<I> <f"MathematicalPi-One">5<f$> 0 level.

@bch_tx:A radiative transition from a triplet to a singlet state is <\#210>forbidden<\#211> by the selection rules, which really means not that it is impossible but that it has only a small likelihood of occurring. Such transitions accordingly have long half-lives, and the resulting <B>phosphorescent radiation<B> may be emitted minutes or even hours after the initial absorption.

@bchex_tt:EXERCISES<+>*<+>

@bchex_quaf:We are wiser than we know. <\#209>Ralph Waldo Emerson

@bchex_ha:8.3 The H<->2<-><+>+<+> Molecular Ion

@bchex_ha:8.4 The Hydrogen Molecule

@bchex_ln:<B>1.<B> The energy needed to detach the electron from a hydrogen atom is 13.6 eV, but the energy needed to detach an electron from a hydrogen molecule is 15.7 eV. Why do you think the latter energy is greater?

@bchex_ln:<B>2.<B> The protons in the H<->2<-><+><f"MathematicalPi-One">1<f$><+> molecular ion are 0.106 nm apart, and the binding energy of H<->2<-><+><f"MathematicalPi-One">1<f$><+> is 2.65 eV. What negative charge must be placed halfway between two protons this distance apart to give the same binding energy?

@bchex_ln:<B>3.<B> At what temperature would the average kinetic energy of the molecules in a hydrogen sample be equal to their binding energy?

@bchex_ha:<B>8.6 Rotational Energy Levels

@bchex_ln:<B>4.<B> Microwave communication systems operate over long distances in the atmosphere. The same is true for radar, which locates objects such as ships and aircraft by means of microwave pulses they reflect. Molecular rotational spectra are in the microwave region. Can you think of the reason why atmospheric gases do not absorb microwaves to any great extent?

@bchex_ln:<B>5.<B> When a molecule rotates, inertia causes its bonds to stretch. (This is why the earth bulges at the equator.) What effects does this stretching have on the rotational spectrum of the molecule?

@bchex_ln:<B>6.<B> Find the frequencies of the <I>J<I> <f"MathematicalPi-One">5<f$> 1 $ <I>J<I> <f"MathematicalPi-One">5<f$> 2 and <I>J<I> <f"MathematicalPi-One">5<f$> 2 $ <I>J<I> <f"MathematicalPi-One">5<f$> 3 rotational absorption lines in NO, whose molecules have the moment of inertia 1.65 <f"MathematicalPi-One">3<f$> 10<+><f"MathematicalPi-One">2<f$>46<+> kg $ m<+>2<+>.

@bchex_ln:<B>7.<B> The <I>J<I> <f"MathematicalPi-One">5<f$> 0 $ <I>J<I> <f"MathematicalPi-One">5<f$> 1 rotational absorption line occurs at 1.153 <f"MathematicalPi-One">3<f$> 10<+>11<+> Hz in <+>12<+>C<+>16<+>O and at 1.102 <f"MathematicalPi-One">3<f$> 10<+>11<+> Hz in <+>?<+>C<+>16<+>O. Find the mass number of the unknown carbon isotope.

@bchex_ln:<B>8.<B> Calculate the energies of the four lowest non-zero rotational energy states of the H<->2<-> and D<->2<-> molecules, where D represents the deuterium atom <+>2<+><->1<->H.

@bchex_ln:<B>9.<B> The rotational spectrum of HCl contains the following wavelengths:

@bchex_eq:12.03 <f"MathematicalPi-One">3<f$> 10<+><f"MathematicalPi-One">2<f$>5<+> m

@bchex_eq:9.60 <f"MathematicalPi-One">3<f$> 10<+><f"MathematicalPi-One">2<f$>5<+> m

@bchex_eq:8.04 <f"MathematicalPi-One">3<f$> 10<+><f"MathematicalPi-One">2<f$>5<+> m

@bchex_eq:6.89 <f"MathematicalPi-One">3<f$> 10<+><f"MathematicalPi-One">2<f$>5<+> m

@bchex_eq:6.04 <f"MathematicalPi-One">3<f$> 10<+><f"MathematicalPi-One">1<f$>5<+> m

<+>*<+>Atomic masses are given in the Appendix.

@bchex_fn:If the isotopes involved are <+>1<+>H and <+>35<+>Cl, find the distance between the hydrogen and chlorine nuclei in an HCl molecule.

@bchex_ln:<B>10.<B> The lines of the rotational spectrum of HBr are 5.10 <f"MathematicalPi-One">3<f$> 10<+>11<+> Hz apart in frequency. Find the internuclear distance in HBr. (<I>Note:<I> Since the Br atom is about 80 times more massive than the proton, the reduced mass of an HBr molecule can be taken as just the <+>1<+>H mass.)

@bchex_ln:<B>11.<B> A <+>200<+>Hg<+>35<+>Cl molecule emits a 4.4-cm photon when it undergoes a rotational transition from <I>J<I> <f"MathematicalPi-One">5<f$> 1 to <I>J<I> <f"MathematicalPi-One">5<f$> 0. Find the interatomic distance in this molecule.

@bchex_ln:<B>12.<B> The lowest frequency in the rotational absorption spectrum of <+>1<+>H<+>19<+>F is 1.25 <f"MathematicalPi-One">3<f$> 10<+>12<+> Hz. Find the bond length in this molecule.

@bchex_ln:<B>13.<B> In Sec. 4.6 it was shown that, for large quantum numbers, the frequency of the radiation from a hydrogen atom that drops from an initial state of quantum number <I>n<I> to a final state of quantum number <I>n<I> <f"MathematicalPi-One">2<f$> 1 is equal to the classical frequency of revolution of an electron in the <I>n<I>th Bohr orbit. This is an example of Bohr's correspondence principle. Show that a similar correspondence holds for a diatomic molecule rotating about its center of mass.

@bchex_ln:<B>14.<B> Calculate the classical frequency of rotation of a rigid body whose energy is given by Eq. (8.9) for states of <I>J<I> <f"MathematicalPi-One">5<f$> <I>J<I> and <I>J<I> <f"MathematicalPi-One">5<f$> <I>J<I> + 1, and show that the frequency of the spectral line associated with a transition between these states is intermediate between the rotational frequencies of the states.

@bchex_ha:8.7 Vibrational Energy Levels

@bchex_ln:<B>15.<B> The hydrogen isotope deuterium has an atomic mass approximately twice that of ordinary hydrogen. Does H<->2<-> or HD have the greater zero-point energy? How does this affect the binding energies of the two molecules?

@bchex_ln:<B>16.<B> Can a molecule have zero vibrational energy? Zero rotational energy?

@bchex_ln:<B>17.<B> The force constant of the <+>1<+>H<+>19<+>F molecule is approximately 966 N/m. (<I>a<I>) Find the frequency of vibration of the molecule. (<I>b<I>) The bond length in <+>1<+>H<+>19<+>F is approximately 0.92 nm. Plot the potential energy of this molecule versus internuclear distance in the vicinity of 0.92 nm and show the vibrational energy levels as in Fig. 8.20.

@bchex_ln:<B>18.<B> Assume that the H<->2<-> molecule behaves exactly like a harmonic oscillator with a force constant of 573 N/m. (<I>a<I>) Find the energy (in eV) of its ground and first excited vibrational states. (<I>b<I>) Find the vibrational quantum number that approximately corresponds to its 4.5-eV dissociation energy.

@bchex_ln:<B>19.<B> The lowest vibrational states of the <+>23<+>Na<+>35<+>Cl molecule are 0.063 eV apart. Find the approximate force constant of this molecule.

@bchex_ln:<B>20.<B> Find the amplitude of the ground-state vibrations of the CO molecule. What percentage of the bond length is this? Assume the molecule vibrates like a harmonic oscillator.

@bchex_ln:<B>21.<B> The bond between the hydrogen and chlorine atoms in a <+>1<+>H<+>35<+>Cl molecule has a force constant of 516 N/m. Is it likely that an HCl molecule will be vibrating in its first excited vibrational state at room temperature?

@bchex_ln:<B>22.<B> The observed molar specific heat of hydrogen gas at constant volume is plotted in Fig. 8.26 versus absolute temperature. (The temperature scale is logarithmic.) Since each degree of freedom (that is, each mode of energy possession) in a gas molecule contributes <f"MathematicalPi-Two">p<f$>1 kcal/kmol $ K to the specific heat of the gas, this curve is interpreted as indicating that only translational motion, with three degrees of freedom, is possible for hydrogen molecules at very low temperatures. At higher temperatures the specific heat rises to <f"MathematicalPi-Two">p<f$>5 kcal/kmol $ K, indicating that two more degrees of freedom are available, and at still higher temperatures the specific heat is <f"MathematicalPi-Two">p<f$>7 kcal/kmol $ K, indicating two further degrees of freedom. The additional pairs of degrees of freedom represent respectively rotation, which can take place about two independent axes perpendicular to the axis of symmetry of the H<->2<-> molecule, and vibration, in which the two degrees of freedom correspond to the kinetic and potential modes of energy possession by the molecule. (<I>a<I>) Verify this interpretation of Fig. 8.26 by calculating the temperatures at which <I>KT<I> is equal to the minimum rotational energy and to the minimum vibrational energy an H<->2<-> molecule can have. Assume that the force constant of the bond in H<->2<-> is 573 N/m and that the H atoms are 7.42 <f"MathematicalPi-One">3<f$> 10<+><f"MathematicalPi-One">2<f$>11<+> m apart. (At these temperatures, approximately half the molecules are rotating or vibrating, respectively, though in each case some are in higher states than <I>J<I> <f"MathematicalPi-One">5<f$> 1 or <I>v<I> <f"MathematicalPi-One">5<f$> 1.) (<I>b<I>) To justify considering only two degrees of rotational freedom in the H<->2<-> molecule, calculate the temperature at which <I>kT<I> is equal to the minimum nonzero rotational energy an H<->2<-> molecule can have for rotation about its axis of symmetry. (<I>c<I>) How many vibrations does an H<->2<-> molecule with <I>J<I> <f"MathematicalPi-One">5<f$> 1 and <I>v<I> <f"MathematicalPi-One">5<f$> 1 make per rotation?

@bchfa_tt:Rotations About the Bond Axis

@bchfa_tx:we have been considenng rotation bout an axis perpendenar to the bond axts of a diatomic moleoule as in Fig 8.16<\#209>end over end rotations What about rorations about the axis of symmetry self?

@bchfa_tx:Such rotation can be neglected because he mass of an atoms is located almost entirely in nucleus, whose radius is onaly <f"MathematicalPi-Two">p<f$>10 of the radius of atome use The man contribution to the of a diatomic metecule about Its bond axis therefore comes form its electrons which are concentrated in a reglon whose radius about the axis is roughly half the bond enght <I>R<I>but whose total mass is only about 1000 of the total molecular mass Since the allowed rotational energy levels are proportional to 1/1, rotation about the symmelry axis must involve energles 10<+>4<+> times the E valuse for end-over-end roations Hence energies of at least several Would be involvedMany rotation about the symmelry axis of a molecule bond energtes are also of this order magnitude so the molecale would be likely to dissociate in anvironment in which such a rotation could be excued.

@bchfa_tt:Tunable Dye Lasers

@bchfa_tx:The existence of bands of extremely closely spaced lines in molecular specurg underlies the operation of the tunable dye laser such a laser uses an organic dye whese molecules are pumped to excifed states by light from anther laser, The day then lluoresces In a bond emission bond light of the desered Wavelength <f"MathematicalPi-One">l<f$> can be selected for laser amplification with the half of a pair of facing mirrors, one of them partly transparent. the separation of the mirrors is set to an integral multipele of <f"MathematicalPi-One">l<f$>/2. as in the case of the larsers discased in sec-9, the trapped laser light forms an optical standig wave that emerges through the partly transparent mirror. a dye laser of this can be tuned to a precision of better then one prat in a million by adjusting the spasig of the mirrors.

@bchba_tt:Linus Pauling @bchba_tx:(1901<\#208>1994), a native of Oregon, received his Ph.D. from the California Institute of Technology and remained there for his entire scientific career except for a period in the middle 1920s when he was in Germany to study the new quantum mechanics. A pioneer in the application of quantum theory to chemistry, he provided many of the key insights that permitted the details of chemical bonding to be understood. His <I>The Nature of the Chemical Bond<I> has been one of the most influential books in the history of science. Pauling also did important work in molecular biology, in particular protein structure: with the help of x-ray diffraction, he discovered the helical and pleated sheet forms that protein molecules can have. It was Pauling who realized that sickle cell anemia is a <\#210>molecular disease<\#211> due to hemoglobin with one wrong amino acid resulting from a genetic fault. He received the Nobel Prize in chemistry in 1954.

@bchba_tx:In 1923 Pauling met Ava Helen Miller in a chemistry class, and she married him despite his admission that <\#210>If I had to choose between you and science, I'm not sure that I would choose you.<\#211> She introduced him to the world outside the laboratory, and he became more and more politically active in his later years. Pauling fought to stop the atmospheric testing of nuclear weapons with its attendant radioactive fallout, a crusade that did not endear him to Caltech or to the FBI, whose file on him grew to 2500 pages. Elsewhere his ideas were better received in the forms of a nuclear test ban treaty and the Nobel Peace Prize. Pauling championed large daily doses of vitamin C as an aid to good health, an idea rejected at first by the medical establishment but eventually shown to have much in its favor. He died at ninety-three of cancer, certain that vitamin C had prolonged his life.

@bchba_tt:<B>Dorothy Crowfoot Hodgkin<B> @bchba_tx:(1910<\#208>1994) was fascinated at the age of ten by the growth of crystals in alum and copper sulfate solutions as their solvent water evaporated. This fascination with crystals never left her. She studied chemistry at Oxford University despite the difficulties women students of science had to face in those days, and as an undergraduate had mastered x-ray crystallography well enough to have a research paper published. In this technique a narrow beam of x-rays is directed at a crystal from various angles and the resulting interference patterns are analyzed to yield the arrangement of the atoms in the crystal. Dorothy Crowfoot (as she then was) went on to Cambridge University to work with J. D. Bernal, who had just begun to use x-rays to investigate biological molecules. Under the right conditions many such molecules form crystals from whose structurs the structures of the molecules themselves can be inferred. In particular, the structures of protein molecules are important because they are closely related to their biological functions. She and Bernal were the first to map the arrangement of the atoms in a protein, the digestive enzyme pepsin.

@bchba_tx:After two intense years at Cambridge, Dorothy Crowfoot returned to Oxford where she married Thomas Hodgkin and had three children while continuing active research. Her most notable work was on penicillin (then the most complex molecule to be successfully analyzed), vitamin B<->12<->, and insulin (it took thirty-five years of on-and-off effort to finish the job). She was a pioneer in using computers to interpret x-ray data, an arduous task for all but the simplest molecules. For all her achievements and their recognition in the scientific world, Hodgkin was for many years shabbily treated at Oxford: poor laboratory facilities, the lowest possible official status, half the pay of her male colleagues with continual worries about making ends meet until outside support (much of it from the Rockefeller Foundation of the United States) became available. She received the Nobel Prize in chemistry in 1964, the third woman to do so.

@bchba_tt:Gerhard Herzberg @bchba_tx:(1904<\#208>1999) was born in Hamburg, Germany, and received his doctorate from the Technical University of Darmstadt in 1928. The rise to power of the Nazis led Herzberg to leave Germany in 1935 for Canada, where he joined the University of Saskatchewan. From 1945 to 1948 he was at Yerkes Observatory in Wisconsin, and after that he directed the Division of Pure Physics of Canada's National Research Council in Ottawa until he retired in 1969. Herzberg was a pioneer in using spectra to determine molecular structures, and also did important work in analyzing the spectra of stars, interstellar gas, comets, and planetary atmospheres. His books under the general title <I>Molecular Spectra and Molecular Structure<I> are classics in the field. He received the Nobel Prize in chemistry in 1971.

*****end****

