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Looking back, it may seem odd that two decades passed between the 1905 discovery of the particle properties of waves and the 1924 speculation that particles might show wave behavior. It is one thing, however, to suggest a revolutionary concept to explain otherwise mysterious data and quite another to suggest an equally revolutionary concept without a strong experimental mandate. The latter is just what Louis de Broglie did in 1924 when he proposed that moving objects have wave as well as particle characteristics. So different was the scientific climate at the time from that around the turn of the century that de Broglie’s ideas soon received respectful attention, whereas the earlier quantum theory of light of Planck and Einstein had been largely ignored despite its striking empirical support. The existence of de Broglie waves was experimentally demonstrated by 1927, and the duality principle they represent provided the starting point for Schrödinger’s successful development of quantum mechanics in the previous year.

3.1   DE BROGLIE WAVES

A moving body behaves in certain ways as though it has a wave nature

A photon of light of frequency n has the momentum


p55
since ln5c. The wavelength of a photon is therefore specified by its momentum according to the relation

Photon wavelength
l5
(3.1)

De Broglie suggested that Eq. (3.1) is a completely general one that applies to material particles as well as to photons. The momentum of a particle of mass m and velocity y is p5gmy, and its de Broglie wavelength is accordingly 

 
l5
(3.2)

The greater the particle’s momentum, the shorter its wavelength. In Eq. (3.2) g is the relativistic factor


g5
As in the case of em waves, the wave and particle aspects of moving bodies can never be observed at the same time. We therefore cannot ask which is the “correct” description. All that can be said is that in certain situations a moving body resembles a wave and in others it resembles a particle. Which set of properties is most conspicuous depends on how its de Broglie wavelength compares with its dimensions and the dimensions of whatever it interacts with.

Example  3.1
Find the de Broglie wavelengths of (a) a 46-g golf ball with a velocity of 30 m/s, and (b) an electron with a velocity of 107 m/s.

Solution

(a) Since y,c, we can let g 5 1. Hence


l5554.8310234 m

The wavelength of the golf ball is so small compared with its dimensions that we would not expect to find any wave aspects in its behavior.

(b) Again y ,c, so with m 5 9.110231 kg, we have


l5557.3310211 m

The dimensions of atoms are comparable with this figure—the radius of the hydrogen atom, for instance, is 5.3 3 10211 m. It is therefore not surprising that the wave character of moving electrons is the key to understanding atomic structure and behavior.

Example  3.2
Find the kinetic energy of a proton whose de Broglie wavelength is 1.000 fm 5 1.000 3 
10215 m, which is roughly the proton diameter.

Solution

A relativistic calculation is needed unless pc for the proton is much smaller than the proton rest energy of E00.938 GeV. To find out, we use Eq. (3.2) to determine pc:


pc5(gmy)c5551.2403109 eV


51.2410 GeV

Since pc.E0 a relativistic calculation is required. From Eq. (1.24) the total energy of the proton is


E5œE201pw2c2w5œ(0.938w GeV)2w1 (1.w2340 GweV)2w1.555 GeV

The corresponding kinetic energy is


KE 5 E 2 E0 5 (1.55520.938) GeV 5 0.617 GeV 5 617 MeV

De Broglie had no direct experimental evidence to support his conjecture. However, he was able to show that it accounted in a natural way for the energy quantization—the restriction to certain specific energy values—that Bohr had had to postulate in his 1913 model of the hydrogen atom. (This model is discussed in Chap. 4.) Within a few years Eq. (3.2) was verified by experiments involving the diffraction of electrons by crystals. Before we consider one of these experiments, let us look into the question of what kind of wave phenomenon is involved in the matter waves of de Broglie.

3.2   WAVES OF WHAT?

Waves of probability

In water waves, the quantity that varies periodically is the height of the water surface. In sound waves, it is pressure. In light waves, electric and magnetic fields vary. What is it that varies in the case of matter waves?

The quantity whose variations make up matter waves is called the wave function, symbol C (the Greek letter psi). The value of the wave function associated with a moving body at the particular point x, y, z in space at the time t is related to the likelihood of finding the body there at the time.

The wave function C itself, however, has no direct physical significance. There is a simple reason why C cannot by interpreted in terms of an experiment. The probability that something be in a certain place at a given time must lie between 0 (the object is definitely not there) and 1 (the object is definitely there). An intermediate probability, say 0.2, means that there is a 20% chance of finding the object. But the amplitude of a wave can be negative as well as positive, and a negative probability, say20.2, is meaningless. Hence C by itself cannot be an observable quantity.

This objection does not apply to uCu2, the square of the absolute value of the wave function, which is known as probability density:
The probability of experimentally finding the body described by the wave function C at the point x, y, z, at the time t is proportional to the value of uCu2 there at t.

A large value of uCu2 means the strong possibility of the body’s presence, while a small value of uCu2 means the slight possibility of its presence. As long as uCu2 is not actually 0 somewhere, however, there is a definite chance, however small, of detecting it there. This interpretation was first made by Max Born in 1926.

There is a big difference between the probability of an event and the event itself. Although we can speak of the wave function C that describes a particle as being spread out in space, this does not mean that the particle itself is thus spread out. When an experiment is performed to detect electrons, for instance, a whole electron is either found at a certain time and place or it is not; there is no such thing as a 20 percent of an electron. However, it is entirely possible for there to be a 20 percent chance that the electron be found at that time and place, and it is this likelihood that is specified by uCu2.

W. L. Bragg, the pioneer in x-ray diffraction, gave this loose but vivid interpretation: “The dividing line between the wave and particle nature of matter and radiation is the moment ‘now.’ As this moment steadily advances through time it coagulates a wavy future into a particle past. . . . Everything in the future is a wave, everything in the past is a particle.” If “the moment ‘now’ ” is understood to be the time a measurement is performed, this is a reasonable way to think about the situation. (The philosopher Søren Kierkegaard may have been anticipating this aspect of modern physics when he wrote, “Life can only be understood backwards, but it must be lived forwards.”)

Alternatively, if an experiment involves a great many identical objects all described by the same wave function C, the actual density (number per unit volume) of objects at x, y, z at the time t is proportional to the corresponding value of uCu2. It is instructive to compare the connection between C and the density of particles it describes with the connection discussed in Sec. 2.4 between the electric field E of an electromagnetic wave and the density N of photons associated with the wave.

While the wavelength of the de Broglie waves associated with a moving body is given by the simple formula l 5 hygmy, to find their amplitude C as a function of position and time is often difficult. How to calculate C is discussed in Chap. 5 and the ideas developed there are applied to the structure of the atom in Chap. 6. Until then we can assume that we know as much about C as each situation requires.

3.3   DESCRIBING A WAVE

A general formula for waves

How fast do de Broglie waves travel? Since we associate a de Broglie wave with a moving body, we expect that this wave has the same velocity as that of the body. Let us see if this is true.

If we call the de Broglie wave velocity yp, we can apply the usual formula


yp 5 nl

to find yp. The wavelength l is simply the de Broglie wavelength l 5 hygmy. To find the frequency, we equate the quantum expression E 5 hn with the relativistic formula for total energy E 5 gmc2 to obtain


hn 5 gmc2

n 5 

The de Broglie wave velocity is therefore


yp 5 nl 5 12 5 
(3.3)
Because the particle velocity y must be less than the velocity of light c, the de Broglie waves always travel faster than light! In order to understand this unexpected result, we must look into the distinction between phase velocity and group velocity. (Phase velocity is what we have been calling wave velocity.)

Let us begin by reviewing how waves are described mathematically. For simplicity we consider a string stretched along the x axis whose vibrations are in the y direction, as in Fig. 3.1, and are simple harmonic in character. If we choose t 5 0 when the displacement y of the string at x 5 0 is a maximum, its displacement at any future time t at the same place is given by the formula


y 5 A cos 2pnt(3.4)
where A is the amplitude of the vibrations (that is, their maximum displacement on either side of the x axis) and n their frequency.

Equation (3.4) tells us what the displacement of a single point on the string is as a function of time t. A complete description of wave motion in a stretched string, however, should tell us what y is at any point on the string at any time. What we want is a formula giving y as a function of both x and t.

To obtain such a formula, let us imagine that we shake the string at x 5 0 when 
t 5 0, so that a wave starts to travel down the string in the 1x direction (Fig. 3.2). This wave has some speed yp that depends on the properties of the string. The wave travels the distance x 5 ypt in the time t, so the time interval between the formation of the wave at x 5 0 and its arrival at the point x is xyyp. Hence the displacement y of the string at x at any time t is exactly the same as the value of y at x 5 0 at the earlier time t2xyyp. By simply replacing t in Eq. (3.4) with t2xyyp, then, we have the desired formula giving y in terms of both x and t:


y 5 A cos 2pn1t22
(3.5)

As a check, we note that Eq. (3.5) reduces to Eq. (3.4) at x 5 0.

Equation (3.5) may be rewritten


y 5 A cos 2p1nt 2 2
Since the wave speed yp is given by yp 5 nl we have


y 5 A cos 2p1nt 2 2
(3.6)

Equation (3.6) is often more convenient to use than Eq. (3.5).

Perhaps the most widely used description of a wave, however, is still another form of Eq. (3.5). The quantities angular frequency v and wave number k are defined by the formulas


v 5 2pn
(3.7)


k5 5 
(3.8)

The unit of v is the radian per second and that of k is the radian per meter. Angular frequency gets its name from uniform circular motion, where a particle that moves around a circle n times per second sweeps out 2pn rad/s. The wave number is equal to the number of radians corresponding to a wave train 1 m long, since there are 2p rad in one complete wave.

In terms of v and k, Eq. (3.5) becomes


y 5 A cos (vt 2 kx)
(3.9)
In three dimensions k becomes a vector k normal to the wave fronts and x is replaced by the radius vector r. The scalar product k?r is then used instead of kx in Eq. (3.9).

3.4   PHASE AND GROUP VELOCITIES

A group of waves need not have the same velocity as 
the waves themselves

The amplitude of the de Broglie waves that correspond to a moving body reflects the probability that it will be found at a particular place at a particular time. It is clear that de Broglie waves cannot be represented simply by a formula resembling Eq. (3.9), which describes an indefinite series of waves all with the same amplitude A. Instead, we expect the wave representation of a moving body to correspond to a wave packet, or wave group, like that shown in Fig. 3.3, whose waves have amplitudes upon which the likelihood of detecting the body depends.

A familiar example of how wave groups come into being is the case of beats. When two sound waves of the same amplitude but of slightly different frequencies are produced simultaneously, the sound we hear has a frequency equal to the average of the two original frequencies and its amplitude rises and falls periodically. The amplitude fluctuations occur as many times per second as the difference between the two original frequencies. If the original sounds have frequencies of, say, 440 and 442 Hz, we will hear a fluctuating sound of frequency 441 Hz with two loudness peaks, called beats, per second. The production of beats is illustrated in Fig. 3.4.

A way to mathematically describe a wave group, then, is in terms of a superposition of individual waves of different wavelengths whose interference with one another results in the variation in amplitude that defines the group shape. If the velocities of the waves are the same, the velocity with which the wave group travels is the common phase velocity. However, if the phase velocity varies with wavelength, the different individual waves do not proceed together. This situation is called dispersion. As a result the wave group has a velocity different from the phase velocities of the waves that make it up. This is the case with de Broglie waves.

It is not hard to find the velocity yg with which a wave group travels. Let us suppose that the wave group arises from the combination of two waves that have the same amplitude A but differ by an amount Dv in angular frequency and an amount Dk in wave number. We may represent the original waves by the formulas


y1 5 A cos (vt 2 kx)

y2 5 A cos [(v 1 Dv)t 2 (k 1 Dk)x]
The resultant displacement y at any time t and any position x is the sum of y1 and y2. With the help of the identity


cos a 1 cos b 5 2 cos }12}(a 1 b) cos }12}(a 2 b)
and the relation


cos(2u) 5 cos u

we find that


y 5 y1 1 y2

5 2A cos }12}[(2v 1 Dv)t 2 (2k 1 Dk)x] cos }12}(Dv t 2 Dk x)
Since Dv and Dk are small compared with v and k respectively,


2v 1 Dv2v


2k 1 Dk2k

and so

Beats
y 5 2A cos (vt 2 kx) cos 1t 2 x2
(3.10)

Equation (3.10) represents a wave of angular frequency v and wave number k that has superimposed upon it a modulation of angular frequency }12}Dv and of wave number }12} Dk.

The effect of the modulation is to produce successive wave groups, as in Fig. 3.4. The phase velocity yp is

Phase velocity
yp 5 
(3.11)

and the velocity yg of the wave groups is

Group velocity
yg 5 
(3.12)

When v and k have continuous spreads instead of the two values in the preceding discussion, the group velocity is instead given by

Group velocity
yg 5 
(3.13)

Depending on how phase velocity varies with wave number in a particular situation, the group velocity may be less or greater than the phase velocities of its member waves. If the phase velocity is the same for all wavelengths, as is true for light waves in empty space, the group and phase velocities are the same.

The angular frequency and wave number of the de Broglie waves associated with a body of mass m moving with the velocity y are


v 5 2pn5

5 
(3.14)

k 5  5 


5 
(3.15)

Both v and k are functions of the body’s velocity y.

The group velocity yg of the de Broglie waves associated with the body is


yg 5  5 

Now
 5 


 5 

and so the group velocity turns out to be


yg 5 y(3.16)

The de Broglie wave group associated with a moving body travels with the same velocity as the body.

The phase velocity yp of de Broglie waves is, as we found earlier,


yp 5 (3.3)

This exceeds both the velocity of the body y and the velocity of light c, since y , c. However, yp has no physical significance because the motion of the wave group, not the motion of the individual waves that make up the group, corresponds to the motion of the body, and yg , c as it should be. The fact that yp . c for de Broglie waves therefore does not violate special relativity.

Example  3.3
An electron has a de Broglie wavelength of 2.00 pm 5 2.00 3 10212 m. Find its kinetic energy and the phase and group velocities of its de Broglie waves.

Solution

(a) The first step is to calculate pc for the electron, which is


pc 5  5 56.20 3 105 eV


5 620 keV

The rest energy of the electron is E0 5 511 keV, so


KE 5 E 2 E0 5 œE20(wpc)2w 2 E0 5 œ(511 kweV)2 1w (620 wkeV)2w 2 511 keV


5 803 keV 2511 keV 5 292 keV

(b) The electron velocity can be found from


E 5 

to be


y 5 c!1 2 ßß 5 c!1 2 1ßß22ß 5 0.771c
Hence the phase and group velocities are respectively


yp 5  5  5 1.30c

yg 5 y 5 0.771c
3.5   PARTICLE DIFFRACTION

An experiment that confirms the existence of de Broglie waves

A wave effect with no analog in the behavior of Newtonian particles is diffraction. In 1927 Clinton Davisson and Lester Germer in the United States and G. P. Thomson in England independently confirmed de Broglie’s hypothesis by demonstrating that electron beams are diffracted when they are scattered by the regular atomic arrays of crystals. (All three received Nobel Prizes for their work. J. J. Thomson, G. P.’s father, had earlier won a Nobel Prize for verifying the particle nature of the electron: the wave-particle duality seems to have been the family business.) We shall look at the experiment of Davisson and Germer because its interpretation is more direct.

Davisson and Germer were studying the scattering of electrons from a solid using an apparatus like that sketched in Fig. 3.6. The energy of the electrons in the primary beam, the angle at which they reach the target, and the position of the detector could all be varied. Classical physics predicts that the scattered electrons will emerge in all directions with only a moderate dependence of their intensity on scattering angle and even less on the energy of the primary electrons. Using a block of nickel as the target, Davisson and Germer verified these predictions.

In the midst of their work an accident occurred that allowed air to enter their apparatus and oxidize the metal surface. To reduce the oxide to pure nickel, the target was baked in a hot oven. After this treatment, the target was returned to the apparatus and the measurements resumed.

Now the results were very different. Instead of a continuous variation of scattered electron intensity with angle, distinct maxima and minima were observed whose positions depended upon the electron energy! Typical polar graphs of electron intensity after the accident are shown in Fig. 3.7. The method of plotting is such that the intensity at any angle is proportional to the distance of the curve at that angle from the point of scattering. If the intensity were the same at all scattering angles, the curves would be circles centered on the point of scattering.

Two questions come to mind immediately: What is the reason for this new effect? Why did it not appear until after the nickel target was baked?

De Broglie’s hypothesis suggested that electron waves were being diffracted by the target, much as x-rays are diffracted by planes of atoms in a crystal. This idea received support when it was realized that heating a block of nickel at high temperature causes the many small individual crystals of which it is normally composed to form into a single large crystal, all of whose atoms are arranged in a regular lattice.

Let us see whether we can verify that de Broglie waves are responsible for the findings of Davisson and Germer. In a particular case, a beam of 54-eV electrons was directed perpendicularly at the nickel target and a sharp maximum in the electron distribution occurred at an angle of 50° with the original beam. The angles of incidence and scattering relative to the family of Bragg planes shown in Fig. 3.8 are both 65°. The spacing of the planes in this family, which can be measured by x-ray diffraction, is 0.091 nm. The Bragg equation for maxima in the diffraction pattern is


n l 5 2d sin u(2.13)
Here d 5 0.091 nm and u 5 65°. For n 5 1 the de Broglie wavelength l of the diffracted electrons is


l 5 2d sin u 5 (2)(0.091 nm)(sin658) 5 0.165 nm
Now we use de Broglie’s formula l 5 hygmy to find the expected wavelength of the electrons. The electron kinetic energy of 54 eV is small compared with its rest energy mc2 of 0.51 MeV, so we can let g 5 1. Since


KE 5 }} my2
the electron momentum my is


my 5 œ2mKEw

5 œ(2)(9.1w 3 102w31 kg)(w54 eV)w(1.6 3w 10219w J/eV)w

5 4.0 3 10224 kg?m/s

The electron wavelength is therefore


l 5  5  5 1.66 3 10210 m 5 0.166 nm
which agrees well with the observed wavelength of 0.165 nm. The Davisson-Germer experiment thus directly verifies de Broglie’s hypothesis of the wave nature of moving bodies.

Analyzing the Davisson-Germer experiment is actually less straightforward than indicated above because the energy of an electron increases when it enters a crystal by an amount equal to the work function of the surface. Hence the electron speeds in the experiment were greater inside the crystal and the de Broglie wavelengths there shorter than the values outside. Another complication arises from interference between waves diffracted by different families of Bragg planes, which restricts the occurrence of maxima to certain combinations of electron energy and angle of incidence rather than merely to any combination that obeys the Bragg equation.

Electrons are not the only bodies whose wave behavior can be demonstrated. The diffraction of neutrons and of whole atoms when scattered by suitable crystals has been observed, and in fact neutron diffraction, like x-ray and electron diffraction, has been used for investigating crystal structures.

3.6   PARTICLE IN A BOX

Why the energy of a trapped particle is quantized

The wave nature of a moving particle leads to some remarkable consequences when the particle is restricted to a certain region of space instead of being able to move freely.

The simplest case is that of a particle that bounces back and forth between the walls of a box, as in Fig. 3.9. We shall assume that the walls of the box are infinitely hard, so the particle does not lose energy each time it strikes a wall, and that its velocity is sufficiently small so that we can ignore relativistic considerations. Simple as it is, this model situation requires fairly elaborate mathematics in order to be properly analyzed, as we shall learn in Chap. 5. However, even a relatively crude treatment can reveal the essential results.

From a wave point of view, a particle trapped in a box is like a standing wave in a string stretched between the box’s walls. In both cases the wave variable (transverse displacement for the string, wave function C for the moving particle) must be 0 at the walls, since the waves stop there. The possible de Broglie wavelengths of the particle in the box therefore are determined by the width L of the box, as in Fig. 3.10. The longest wavelength is specified by l 5 2L, the next by l 5 L, then l 5 2Ly3, and so forth. The general formula for the permitted wavelengths is


 ln 5     n 5 1, 2, 3, . . .(3.17)
Because my 5 hyl, the restrictions on de Broglie wavelength l imposed by the width of the box are equivalent to limits on the momentum of the particle and, in turn, to limits on its kinetic energy. The kinetic energy of a particle of momentum my is


KE 5 }12}my2 5  5 

The permitted wavelengths are ln 5 2Lyn, and so, because the particle has no potential energy in this model, the only energies it can have are


En 5     n 5 1, 2, 3, . . .(3.18)
Each permitted energy is called an energy level, and the integer n that specifies an energy level En is called its quantum number.
We can draw three general conclusions from Eq. (3.18). These conclusions apply to any particle confined to a certain region of space (even if the region does not have a well-defined boundary), for instance an atomic electron held captive by the attraction of the positively charged nucleus.

1 A trapped particle cannot have an arbitrary energy, as a free particle can. The fact of its confinement leads to restrictions on its wave function that allow the particle to have only certain specific energies and no others. Exactly what these energies are depends on the mass of the particle and on the details of how it is trapped.

2 A trapped particle cannot have zero energy. Since the de Broglie wavelength of the particle is l 5 hymy, a speed of y 5 0 means an infinite wavelength. But there is no way to reconcile an infinite wavelength with a trapped particle, so such a particle must have at least some kinetic energy. The exclusion of E 5 0 for a trapped particle, like the limitation of E to a set of discrete values, is a result with no counterpart in classical physics, where all non-negative energies, including zero, are allowed.

3 Because Planck’s constant is so small—only 6.63 3 10234 J? s—quantization of energy is conspicuous only when m and L are also small. This is why we are not aware of energy quantization in our own experience. Two examples will make this clear.

Example  3.4
An electron is in a box 0.10 nm across, which is the order of magnitude of atomic dimensions. Find its permitted energies.

Solution

Here m 5 9.1 3 10231 kg and L 5 0.10 nm 5 1.0 3 10210 m, so that the permitted electron energies are


En 5  5 6.0 3 10218n2 J


5 38n2 eV

The minimum energy the electron can have is 38 eV, corresponding to n 5 1. The sequence of energy levels continues with E2 5 152 eV, E3 5 342 eV, E4 5 608 eV, and so on (Fig. 3.11). If such a box existed, the quantization of a trapped electron’s energy would be a prominent feature of the system. (And indeed energy quantization is prominent in the case of an atomic electron.)

Example  3.5
A 10-g marble is in a box 10 cm across. Find its permitted energies.

Solution

With m 5 10 g 5 1.0 3 1022 kg and L 5 10 cm1.0 3 1021 m,


En 5 


5 5.5 3 10264n2 J

The minimum energy the marble can have is 5.5 3 10264 J, corresponding to n 5 1. A marble with this kinetic energy has a speed of only 3.3 3 10231 m/s and therefore cannot be experimentally distinguished from a stationary marble. A reasonable speed a marble might have is, say, }13} m/s—which corresponds to the energy level of quantum number n 5 1030! The permissible energy levels are so very close together, then, that there is no way to determine whether the marble can take on only those energies predicted by Eq. (3.18) or any energy whatever. Hence in the domain of everyday experience, quantum effects are imperceptible, which accounts for the success of Newtonian mechanics in this domain.

3.7   UNCERTAINTY PRINCIPLE 1
We cannot know the future because we cannot know the present

To regard a moving particle as a wave group implies that there are fundamental limits to the accuracy with which we can measure such “particle” properties as position and momentum.

To make clear what is involved, let us look at the wave group of Fig. 3.3. The particle that corresponds to this wave group may be located anywhere within the group at a given time. Of course, the probability density uCu2 is a maximum in the middle of the group, so it is most likely to be found there. Nevertheless, we may still find the particle anywhere that uCu2 is not actually 0.

The narrower its wave group, the more precisely a particle’s position can be specified (Fig. 3.12a). However, the wavelength of the waves in a narrow packet is not well defined; there are not enough waves to measure l accurately. This means that since 
l 5 hygmy, the particle’s momentum gmy is not a precise quantity. If we make a series of momentum measurements, we will find a broad range of values.

On the other hand, a wide wave group, such as that in Fig. 3.12b, has a clearly defined wavelength. The momentum that corresponds to this wavelength is therefore a precise quantity, and a series of measurements will give a narrow range of values. But where is the particle located? The width of the group is now too great for us to be able to say exactly where the particle is at a given time.

Thus we have the uncertainty principle:
It is impossible to know both the exact position and exact momentum of an object at the same time.

This principle, which was discovered by Werner Heisenberg in 1927, is one of the most significant of physical laws.

A formal analysis supports the above conclusion and enables us to put it on a quantitative basis. The simplest example of the formation of wave groups is that given in Sec. 3.4, where two wave trains slightly different in angular frequency v and wave number k were superposed to yield the series of groups shown in Fig. 3.4. A moving body corresponds to a single wave group, not a series of them, but a single wave group can also be thought of in terms of the superposition of trains of harmonic waves. However, an infinite number of wave trains with different frequencies, wave numbers, and amplitudes is required for an isolated group of arbitrary shape, as in Fig. 3.13.

At a certain time t, the wave group C(x) can be represented by the Fourier integral

C(x) 5 E`0 g(k) cos kx dk(3.19)
where the function g(k) describes how the amplitudes of the waves that contribute to C(x) vary with wave number k. This function is called the Fourier transform of C(x), and it specifies the wave group just as completely as C(x) does. Figure 3.14 contains graphs of the Fourier transforms of a pulse and of a wave group. For comparison, the Fourier transform of an infinite train of harmonic waves is also included. There is only a single wave number in this case, of course.

Strictly speaking, the wave numbers needed to represent a wave group extend from k 5 0 to k 5 `, but for a group whose length Dx is finite, the waves whose amplitudes g(k) are appreciable have wave numbers that lie within a finite interval Dk. As Fig. 3.14 indicates, the narrower the group, the broader the range of wave numbers needed to describe it, and vice versa.

The relationship between the distance Dx and the wave-number spread Dk depends upon the shape of the wave group and upon how Dx and Dk are defined. The minimum value of the product Dx Dk occurs when the envelope of the group has the familiar bell shape of a Gaussian function. In this case the Fourier transform happens to be a Gaussian function also. If Dx and Dk are taken as the standard deviations of the respective functions C(x) and g(k), then this minimum value is Dx Dk 5 }12}. Because wave groups in general do not have Gaussian forms, it is more realistic to express the relationship between Dx and Dk as


Dx Dk $ }12}(3.20)

The de Broglie wavelength of a particle of momentum p is l5hyp and the corresponding wave number is


k 5  5 

In terms of wave number the particle’s momentum is therefore


p 5 

Hence an uncertainty Dk in the wave number of the de Broglie waves associated with the particle results in an uncertainty Dp in the particle’s momentum according to the formula


Dp 5 

Since Dx Dk $ }12}, Dk $ 1y(2Dx) and


 Dx Dp$ (3.21)
This equation states that the product of the uncertainty Dx in the position of an object at some instant and the uncertainty Dp in its momentum component in the x direction at the same instant is equal to or greater than hy4p.

If we arrange matters so that Dx is small, corresponding to a narrow wave group, then Dp will be large. If we reduce Dp in some way, a broad wave group is inevitable and Dx will be large.

These uncertainties are due not to inadequate apparatus but to the imprecise character in nature of the quantities involved. Any instrumental or statistical uncertainties that arise during a measurement only increase the product Dx Dp. Since we cannot know exactly both where a particle is right now and what its momentum is, we cannot say anything definite about where it will be in the future or how fast it will be moving then. We cannot know the future for sure because we cannot know the present for sure. But our ignorance is not total: we can still say that the particle is more likely to be in one place than another and that its momentum is more likely to have a certain value than another.

H-Bar

The quantity hy2p appears often in modern physics because it turns out to be the 
basic unit of angular momentum. It is therefore customary to abbreviate hy2p by the symbol " (“h-bar”):


" 5  5 1.054 3 10234 Js
In the remainder of this book " is used in place of hy2p. In terms of ", the uncertainty principle becomes


 Dx Dp $ (3.22)
Example  3.6
A measurement establishes the position of a proton with an accuracy of1.0010211 m. Find the uncertainty in the proton’s position 1.00 s later. Assume y, c.

Solution

Let us call the uncertainty in the proton’s position Dx0 at the time t 5 0. The uncertainty in its momentum at this time is therefore, from Eq. (3.22),


Dp $ 

Since y,c, the momentum uncertainty is Dp 5 D(my) 5 m Dy and the uncertainty in the proton’s velocity is


Dy 5  $ 

The distance x the proton covers in the time t cannot be known more accurately than


Dx 5 t Dy $ 

Hence Dx is inversely proportional to Dx0: the more we know about the proton’s position at 
t 5 0, the less we know about its later position at t . 0. The value of Dx at t 5 1.00 s is


Dx $ 



$ 3.15 3 103 m

This is 3.15 km—nearly 2 mi! What has happened is that the original wave group has spread out to a much wider one (Fig. 3.16). This occurred because the phase velocities of the component waves vary with wave number and a large range of wave numbers must have been present to produce the narrow original wave group. See Fig. 3.14.

3.8   UNCERTAINTY PRINCIPLE II

A particle approach gives the same result

The uncertainty principle can be arrived at from the point of view of the particle properties of waves as well as from the point of view of the wave properties of particles.

We might want to measure the position and momentum of an object at a certain moment. To do so, we must touch it with something that will carry the required information back to us. That is, we must poke it with a stick, shine light on it, or perform some similar act. The measurement process itself thus requires that the object be interfered with in some way. If we consider such interferences in detail, we are led to the same uncertainty principle as before even without taking into account the wave nature of moving bodies.

Suppose we look at an electron using light of wavelength l, as in Fig. 3.17. Each photon of this light has the momentum hyl. When one of these photons bounces off the electron (which must happen if we are to “see” the electron), the electron’s original momentum will be changed. The exact amount of the change Dp cannot be predicted, but it will be of the same order of magnitude as the photon momentum hyl. Hence


Dp(3.23)
The longer the wavelength of the observing photon, the smaller the uncertainty in the electron’s momentum.

Because light is a wave phenomenon as well as a particle phenomenon, we cannot expect to determine the electron’s location with perfect accuracy regardless of the instrument used. A reasonable estimate of the minimum uncertainty in the measurement might be one photon wavelength, so that


Dx $ l(3.24)
The shorter the wavelength, the smaller the uncertainty in location. However, if we use light of short wavelength to increase the accuracy of the position measurement, there will be a corresponding decrease in the accuracy of the momentum measurement because the higher photon momentum will disturb the electron’s motion to a greater extent. Light of long wavelength will give a more accurate momentum but a less accurate position.

Combining Eqs. (3.23) and (3.24) gives


Dx Dp $ h(3.25)

This result is consistent with Eq. (3.22), Dx Dp $ y2.

Arguments like the preceding one, although superficially attractive, must be 
approached with caution. The argument above implies that the electron can possess a definite position and momentum at any instant and that it is the measurement process that introduces the indeterminacy in Dx Dp. On the contrary, this indeterminacy is inherent in the nature of a moving body. The justification for the many “derivations” of this kind is first, they show it is impossible to imagine a way around the uncertainty principle; and second, they present a view of the principle that can be appreciated in a more familiar context than that of wave groups.

3.9   APPLYING THE UNCERTAINTY PRINCIPLE

A useful tool, not just a negative statement

Planck’s constant h is so small that the limitations imposed by the uncertainty principle are significant only in the realm of the atom. On such a scale, however, this principle is of great help in understanding many phenomena. It is worth keeping in mind that the lower limit of y2 for Dx Dp is rarely attained. More usually Dx Dp $ , or even (as we just saw) Dx Dp $ h.

Example  3.7
A typical atomic nucleus is about 5.0 3 10215 m in radius. Use the uncertainty principle to place a lower limit on the energy an electron must have if it is to be part of a nucleus.

Solution

Letting Dx 5 5.0 3 1025 m we have


Dp $  $  $ 1.1 3 10220 kg?m/s

If this is the uncertainty in a nuclear electron’s momentum, the momentum p itself must be at least comparable in magnitude. An electron with such a momentum has a kinetic energy KE many times greater than its rest energy mc2. From Eq. (1.24) we see that we can let KE 5 pc here to a sufficient degree of accuracy. Therefore


KE 5 pc $ (1.1 3 10220 kg?m/s)(3.0 3 108 m/s) $ 3.3 3 10212 J

Since 1 eV 5 1.6 3 10219 J, the kinetic energy of an electron must exceed 20 MeV if it is to be inside a nucleus. Experiments show that the electrons emitted by certain unstable nuclei never have more than a small fraction of this energy, from which we conclude that nuclei cannot contain electrons. The electron an unstable nucleus may emit comes into being at the moment the nucleus decays (see Secs. 11.3 and 12.5).

Example  3.8
A hydrogen atom is 5.3 3 10211 m in radius. Use the uncertainty principle to estimate the minimum energy an electron can have in this atom.

Solution

Here we find that with Dx 5 5.3 3 10211 m.


Dp $  $ 9.9 3 10225 kg?m/s

An electron whose momentum is of this order of magnitude behaves like a classical particle, and its kinetic energy is


KE 5  $  $ 5.4 3 10219 J

which is 3.4 eV. The kinetic energy of an electron in the lowest energy level of a hydrogen atom is actually 13.6 eV.

Energy and Time

Another form of the uncertainty principle concerns energy and time. We might wish to measure the energy E emitted during the time interval Dt in an atomic process. If the energy is in the form of em waves, the limited time available restricts the accuracy with which we can determine the frequency n of the waves. Let us assume that the minimum uncertainty in the number of waves we count in a wave group is one wave. Since the frequency of the waves under study is equal to the number of them we count divided by the time interval, the uncertainty Dn in our frequency measurement is


Dn $ 

The corresponding energy uncertainty is


DE 5 h Dn

and so


DE$    or    DE Dt $ h

A more precise calculation based on the nature of wave groups changes this result to


DE Dt $ (3.26)

Equation (3.26) states that the product of the uncertainty DE in an energy measurement and the uncertainty Dt in the time at which the measurement is made is equal to or greater than y2. This result can be derived in other ways as well and is a general one not limited to em waves.

Example  3.9
An “excited” atom gives up its excess energy by emitting a photon of characteristic frequency, as described in Chap. 4. The average period that elapses between the excitation of an atom and the time it radiates is 1.0 3 1028 s. Find the inherent uncertainty in the frequency of the 
photon.

Solution

The photon energy is uncertain by the amount


DE $  $  $ 5.3 3 10227 J

The corresponding uncertainty in the frequency of light is


Dn 5  $ 8 3 106 Hz

This is the irreducible limit to the accuracy with which we can determine the frequency of the radiation emitted by an atom. As a result, the radiation from a group of excited atoms does not appear with the precise frequency n. For a photon whose frequency is, say, 5.0 3 1014 Hz, 
Dnyn 5 1.6 3 1028. In practice, other phenomena such as the doppler effect contribute more than this to the broadening of spectral lines.><#><
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p><Louis de Broglie (1892–1987), although coming from a French family long identified with diplomacy and the military and initially a student of history, eventually followed his older brother Maurice in a career in physics. His doctoral thesis in 1924 contained the proposal that moving bodies have wave properties that complement their particle properties: these “seemingly incompatible conceptions can each represent an aspect of the truth. . . . They may serve in turn to represent the facts without ever entering into direct conflict.” Part of de Broglie’s inspiration came from Bohr’s theory of the hydrogen atom, in which the electron is supposed to follow only certain orbits around the nucleus. “This fact suggested to me the idea that electrons . . . could not be considered simply as particles but that periodicity must be assigned to them also.” Two years later Erwin Schrödinger used the concept of de Broglie waves to develop a general theory that he and others applied to explain a wide variety of atomic phenomena. The existence of de Broglie waves was confirmed in diffraction experiments with electron beams in 1927, and in 1929 de Broglie received the Nobel Prize.><#
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#><Max Born (1882–1970) grew up in Breslau, then a German city but today part of Poland, and received a doctorate in applied mathematics at Göttingen in 1907. Soon afterward he decided to concentrate on physics, and was back in Göttingen in 1909 as a lecturer. There he worked on various aspects of the theory of crystal lattices, his “central interest” to which he often returned in later years. In 1915, at Planck’s recommendation, Born became professor of physics in Berlin where, among his other activities, he played piano to Einstein’s violin. After army service in World War I and a period at Frankfurt University, Born was again in Göttingen, now as professor of physics. There a remarkable center of theoretical physics developed under his leadership: Heisenberg and Pauli were among his assistants and Fermi, Dirac, Wigner, and Goeppert were among those who worked with him, just to name future Nobel Prize winners. In those days, Born wrote, “There was complete freedom of teaching and learning in German universities, with no class examinations, and no control of students. The University just offered lectures and the student had to decide for himself which he wished to attend.”

Born was a pioneer in going from “the bright realm of classical physics into the still dark and unexplored underworld of the new quantum mechanics;” he was the first to use the latter term. From Born came the basic concept that the wave function C of a particle is related to the probability of finding it. He began with an idea of Einstein, who “sought to make the duality of particles (light quanta or photons) and waves comprehensible by interpreting the square of the optical wave amplitude as probability density for the occurrence of photons. This idea could at once be extended to the C-function: uCu2 must represent the probability density for electrons (or other particles). To assert this was easy; but how was it to be proved? For this purpose atomic scattering processes suggested themselves.” Born’s development of the quantum theory of atomic scattering (collisions of atoms with various particles) not only verified his “new way of thinking about the phenomena of nature” but also founded an important branch of theoretical physics.

Born left Germany in 1933 at the start of the Nazi period, like so many other scientists. He became a British subject and was associated with Cambridge and then Edinburg universities until he retired in 1953. Finding the Scottish climate harsh and wishing to contribute to the democratization of postwar Germany, Born spent the rest of his life in Bad Pyrmont, a town near Göttingen. His textbooks on modern physics and on optics were standard works on these subjects for many years.><
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Chapter Three><Electron Microscopes

The wave nature of moving electrons is the basis of the electron microscope, the first of which was built in 1932. The resolving power of any optical instrument, which is limited by diffraction, is proportional to the wavelength of whatever is used to illuminate the specimen. In the case of a good microscope that uses visible light, the maximum useful magnification is about 5003; higher magnifications give larger images but do not reveal any more detail. Fast electrons, however, have wavelengths very much shorter than those of visible light and are easily controlled by electric and magnetic fields because of their charge. X-rays also have short wavelengths, but it is not (yet?) possible to focus them adequately.

In an electron microscope, current-carrying coils produce magnetic fields that act as lenses to focus an electron beam on a specimen and then produce an enlarged image on a fluorescent screen or photographic plate (Fig. 3.5). To prevent the beam from being scattered and thereby blurring the image, a thin specimen is used and the entire system is evacuated.


The technology of magnetic “lenses” does not permit the full theoretical resolution of electron waves to be realized in practice. For instance, 100-keV electrons have wavelengths of 0.0037 nm, but the actual resolution they can provide in an electron microscope may be only about 0.1 nm. However, this is still a great improvement on the200-nm resolution of an optical microscope, and magnifications of over 1,000,0003 have been achieved with electron microscopes.
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Chapter Three><Neutron diffraction by a quartz crystal. The peaks represent directions in which constructive interference occurred. (Courtesy Frank J. Rotella and Arthur J. Schultz, Argonne National Laboratory)><
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#><Figure 3.13 An isolated wave group is the result of superposing an infinite number of waves with different wavelengths. The narrower the wave group, the greater the range of wavelengths involved. A narrow de Broglie wave group thus means a well-defined position (Dx smaller) but a poorly defined  wavelength and a large uncertainty Dp in the momentum of the particle the group represents. A wide wave group means a more precise momentum but a less precise position.><#
Chapter Three><Gaussian Function

When a set of measurements is made of some quantity x in which the experimental errors are random, the result is often a Gaussian distribution whose form is the bell-shaped curve shown in Fig. 3.15. The standard deviation s of the measurements is a measure of the spread of x values about the mean of x0, where s equals the square root of the average of the squared deviations from x0. If N measurements were made,


s5!ß^N i51(x1ß2x0)ß2ß
The width of a Gaussian curve at half its maximum value is 2.35s.

The Gaussian function f(x) that describes the above curve is given by


f(x)5e2(x2x0)2y2s2
where f(x) is the probability that the value x be found in a particular measurement. Gaussian functions occur elsewhere in physics and mathematics as well. (Gabriel Lippmann had this to say about the Gaussian function: “Experimentalists think that it is a mathematical theorem while mathematicians believe it to be an experimental fact.”)

The probability that a measurement lie inside a certain range of x values, say between x1 and x2, is given by the area of the f(x) curve between these limits. This area is the integral


Px1x2 Ex2x1 f(x) dx
An interesting questions is what fraction of a series of measurements has values within a standard deviation of the mean value x0. In this case x1x02s and x2 5 x0 1 s, and

Px0 5Ex01sx02s f(x) dx50.683

Hence 68.3 percent of the measurements fall in this interval, which is shaded in Fig. 3.15. A similar calculation shows that 95.4 percent of the measurements fall within two standard deviations of the mean value.
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2p><Werner Heisenberg (1901–1976) was born in Duisberg, Germany, and studied theoretical physics at Munich, where he also became an enthusiastic skier and mountaineer. At Göttingen in 1924 as an assistant to Max Born, Heisenberg became uneasy about mechanical models of the atom: “Any picture of the atom that our imagination is able to invent is for that very reason defective,” he later remarked. Instead he conceived an abstract approach using matrix algebra. In 1925, together with Born and Pascual Jordan, Heisenberg developed this approach into a consistent theory of quantum mechanics, but it was so difficult to understand and apply that it had very little impact on physics at the time. Schrödinger’s wave formulation of quantum mechanics the following year was much more successful; Schrödinger and others soon showed that the wave and matrix versions of quantum mechanics were mathematically equivalent.

In 1927, working at Bohr’s institute in Copenhagen, Heisenberg developed a suggestion by Wolfgang Pauli into the uncertainty principle. Heisenberg initially felt that this principle was a consequence of the disturbances inevitably produced by any measuring process. Bohr, on the other hand, thought that the basic cause of the uncertainties was the wave-particle duality, so that they were built into the natural world rather than solely the result of measurement. After much argument Heisenberg came around to Bohr’s view. (Einstein, always skeptical about quantum mechanics, said after a lecture by Heisenberg on the uncertainty principle: “Marvelous, what ideas the young people have these days. But I don’t believe a word of it.”) Heisenberg received the Nobel Prize in 1932.

Heisenberg was one of the very few distinguished scientists to remain in Germany during the Nazi period. In World War II he led research there on atomic weapons, but little progress had been made by the war’s end. Exactly why remains unclear, although there is no evidence that Heisenberg, as he later claimed, had moral qualms about creating such weapons and more or less deliberately dragged his feet. Heisenberg recognized early that “an explosive of unimaginable consequences” could be developed, and he and his group should have been able to have gotten farther than they did. In fact, alarmed by the news that Heisenberg was working on an atomic bomb, the U.S. government sent the former Boston Red Sox catcher Moe Berg to shoot Heisenberg during a lecture in neutral Switzerland in 1944. Berg, sitting in the second row, found himself uncertain from Heisenberg’s remarks about how advanced the German program was, and kept his gun in his pocket.><
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It is only the first step that takes the effort. —Marquise du Deffand 
3.1 De Broglie Waves


1.
A photon and a particle have the same wavelength. Can anything be said about how their linear momenta compare? About how the photon’s energy compares with the particle’s total energy? About how the photon’s energy compares with the particle’s kinetic energy?


2.
Find the de Broglie wavelength of (a) an electron whose speed is 1.0 3 108 m/s, and (b) an electron whose speed is 2.0 108 m/s.

3.
Find the de Broglie wavelength of a 1.0-mg grain of sand blown by the wind at a speed of 20 m/s.


4.
Find the de Broglie wavelength of the 40-keV electrons used in a certain electron microscope.


5.
By what percentage will a nonrelativistic calculation of the de Broglie wavelength of a 100-keV electron be in error?


6.
Find the de Broglie wavelength of a 1.00-MeV proton. Is a relativistic calculation needed?


7.
The atomic spacing in rock salt, NaCl, is 0.282 nm. Find the kinetic energy (in eV) of a neutron with a de Broglie wavelength of 0.282 nm. Is a relativistic calculation needed? Such neutrons can be used to study crystal structure.


8.
Find the kinetic energy of an electron whose de Broglie wavelength is the same as that of a 100-keV x-ray.


9.
Green light has a wavelength of about 550 nm. Through what potential difference must an electron be accelerated to have this wavelength?


10.
Show that the de Broglie wavelength of a particle of mass m and kinetic energy KE is given by

l 5 


11.
Show that if the total energy of a moving particle greatly exceeds its rest energy, its de Broglie wavelength is nearly the same as the wavelength of a photon with the same total energy.


12.
(a) Derive a relativistically correct formula that gives the 
de Broglie wavelength of a charged particle in terms of the potential difference V through which it has been accelerated. (b) What is the nonrelativistic approximation of this formula, valid for eV, mc2?

3.4 Phase and Group Velocities


13.
An electron and a proton have the same velocity. Compare the wavelengths and the phase and group velocities of their 
de Broglie waves.


14.
An electron and a proton have the same kinetic energy. Compare the wavelengths and the phase and group velocities of their de Broglie waves.


15.
Verify the statement in the text that, if the phase velocity is the same for all wavelengths of a certain wave phenomenon (that is, there is no dispersion), the group and phase velocities are the same.


16.
The phase velocity of ripples on a liquid surface is œ2pSylwrw, where S is the surface tension and r the density of the liquid. Find the group velocity of the ripples.


17.
The phase velocity of ocean waves is œgly2pw, where g is the acceleration of gravity. Find the group velocity of ocean waves.


18.
Find the phase and group velocities of the de Broglie waves of an electron whose speed is 0.900c.


19.
Find the phase and group velocities of the de Broglie waves of an electron whose kinetic energy is 500 keV.


20.
Show that the group velocity of a wave is given by yg 5 
dnyd(1yl).


21.
(a) Show that the phase velocity of the de Broglie waves of a particle of mass m and de Broglie wavelength l is given by

yp 5 c!  1ßß22ß


(b) Compare the phase and group velocities of an electron whose de Broglie wavelength is exactly 1 3 10213 m.


22.
In his original paper, de Broglie suggested that E 5 hn and 
p 5 hyl, which hold for electromagnetic waves, are also valid for moving particles. Use these relationships to show that the group velocity yg of a de Broglie wave group is given by dEydp, and with the help of Eq. (1.24), verify that yg 5 y for a particle of velocity y.

3.5 Particle Diffraction


23.
What effect on the scattering angle in the Davisson-Germer experiment does increasing the electron energy have?


24.
A beam of neutrons that emerges from a nuclear reactor contains neutrons with a variety of energies. To obtain neutrons with an energy of 0.050 eV, the beam is passed through a crystal whose atomic planes are 0.20 nm apart. At what angles relative to the original beam will the desired neutrons be diffracted?


25.
In Sec. 3.5 it was mentioned that the energy of an electron en-tering a crystal increases, which reduces its de Broglie wavelength. Consider a beam of 54-eV electrons directed at a nickel target. The potential energy of an electron that enters the target changes by 26 eV. (a) Compare the electron speeds outside and inside the target. (b) Compare the respective de Broglie wavelengths.


26.
A beam of 50-keV electrons is directed at a crystal and diffracted electrons are found at an angle of 508 relative to the original beam. What is the spacing of the atomic planes of the crystal? A relativistic calculation is needed for l.

3.6 Particle in a Box


27.
Obtain an expression for the energy levels (in MeV) of a neutron confined to a one-dimensional box 1.00 3 10214 m wide. What is the neutron’s minimum energy? (The diameter of an atomic nucleus is of this order of magnitude.)


28.
The lowest energy possible for a certain particle trapped in a certain box is 1.00 eV. (a) What are the next two higher energies the particle can have? (b) If the particle is an electron, how wide is the box?


29.
A proton in a one-dimensional box has an energy of 400 keV in its first excited state. How wide is the box?

3.7 Uncertainty Principle I

3.8 Uncertainty Principle II

3.9 Applying the Uncertainty Principle


30.
Discuss the prohibition of E 5 0 for a particle trapped in a box L wide in terms of the uncertainty principle. How does the minimum momentum of such a particle compare with the momentum uncertainty required by the uncertainty principle if we take Dx 5 L?

31.
The atoms in a solid possess a certain minimum zero-point energy even at 0 K, while no such restriction holds for the molecules in an ideal gas. Use the uncertainty principle to explain these statements.


32.
Compare the uncertainties in the velocities of an electron and a proton confined in a 1.00-nm box.


33.
The position and momentum of a 1.00-keV electron are simultaneously determined. If its position is located to within 0.100 nm, what is the percentage of uncertainty in its momentum?


34.
(a) How much time is needed to measure the kinetic energy of an electron whose speed is 10.0 m/s with an uncertainty of no more than 0.100 percent? How far will the electron have traveled in this period of time? (b) Make the same calculations for a 1.00-g insect whose speed is the same. What do these sets of figures indicate?


35.
How accurately can the position of a proton with y, c be determined without giving it more than 1.00 keV of kinetic energy?


36.
(a) Find the magnitude of the momentum of a particle in a box in its nth state. (b) The minimum change in the particle’s momentum that a measurement can cause corresponds to a change of 61 in the quantum number n. If Dx 5 L, show that Dp Dx "y2.


37.
A marine radar operating at a frequency of 9400 MHz emits groups of electromagnetic waves 0.0800 ms in duration. The time needed for the reflections of these groups to return indicates the distance to a target. (a) Find the length of each group and the number of waves it contains. (b) What is the approximate minimum bandwidth (that is, spread of frequencies) the radar receiver must be able to process?


38.
An unstable elementary particle called the eta meson has a rest mass of 549 MeV/c2 and a mean lifetime of 7.00 3 10219 s. What is the uncertainty in its rest mass?


39.
The frequency of oscillation of a harmonic oscillator of mass m and spring constant C is n5 œCymwy2p. The energy of the oscillator is E 5 p2y2m 1 Cx2y2, where p is its momentum when its displacement from the equilibrium position is x. In classical physics the minimum energy of the oscillator is 
Emin 5 0. Use the uncertainty principle to find an expression for E in terms of x only and show that the minimum energy is actually Emin 5 hny2 by setting dEydx 5 0 and solving for Emin.


40.
(a) Verify that the uncertainty principle can be expressed in the form DL Du $ "y2, where DL is the uncertainty in the angular momentum of a particle and Du is the uncertainty in its angular position. (Hint: Consider a particle of mass m moving in a circle of radius r at the speed y, for which L 5 myr.) (b) At what uncertainty in L will the angular position of a particle become completely indeterminate?

In a scanning electron microscope, an electron beam that scans a specimen causes secondary electrons to be ejected in numbers that vary with the angle of the surface. A suitable data display suggests the three-dimensional form of the specimen. The high resolution of this image of a red spider mite on a leaf is a consequence of the wave nature of moving electrons.

Figure 3.1 (a) The appearance of a wave in a stretched string at a certain time. (b) How the displacement of a point on the string varies with time.

Figure 3.2 Wave propagation.

Figure 3.3 A wave group.

Figure 3.4 Beats are produced by the superposition of two waves with different frequencies.

Figure 3.5 Because the wave- lengths of the fast electrons in an electron microscope are shorter than those of the light waves in an optical microscope, the electron microscope can produce sharp images at higher magnifications. The electron beam in an electron microscope is focused by magnetic fields.

Electron micrograph showing bacteriophage viruses in an Escherichia coli bacterium. The bacterium is approximately 1 mm across.

An electron microscope.

Figure 3.6 The Davisson-Germer experiment.

Figure 3.7 Results of the Davisson-Germer experiment, showing how the number of scattered electrons varied with the angle between the incoming beam and the crystal surface. The Bragg planes of atoms in the crystal were not parallel to the crystal surface, so the angles of incidence and scattering relative to one family of these planes were both 65° (see Fig. 3.8).

Figure 3.8 The diffraction of the de Broglie waves by the target is responsible for the results of Davisson and Germer.

Figure 3.9 A particle confined to a box of width L. The particle is assumed to move back and forth along a straight line between the walls of the box.

Figure 3.10 Wave functions of a particle trapped in a box L wide.

Figure 3.11 Energy levels of an electron confined to a box 0.1 nm wide.

Figure 3.12 (a) A narrow de Broglie wave group. The position of the particle can be precisely determined, but the wavelength (and hence the particle's momentum) cannot be established because there are not enough waves to measure accurately. (b) A wide wave group. Now the wavelength can be precisely determined but not the position of the particle.

Figure 3.14 The wave functions and Fourier transforms for (a) a pulse, (b) a wave group, (c) a wave train, and (d) a Gaussian distribution. A brief disturbance needs a broader range of frequencies to describe it than a disturbance of greater duration. The Fourier transform of a Gaussian function is also a Gaussian function.

Figure 3.15 A Gaussian distribution. The probability of finding a value of x is given by the Gaussian function f(x). The mean value of x is x0, and the total width of the curve at half its maximum value is 2.35s, where s is the standard deviation of the distribution. The total probability of finding a value of x within a standard deviation of x0 is equal to the shaded area and is 68.3 percent.

Figure 3.16 The wave packet that corresponds to a moving packet is a composite of many individual waves, as in Fig. 3.13. The phase velocities of the individual waves vary with their wave lengths. As a result, as the particle moves, the wave packet spreads out in space. The narrower the original wavepacket—that is, the more precisely we know its position at that time—the more it spreads out because it is made up of a greater span of waves with different phase velocities.

Figure 3.17 An electron cannot be observed without changing its momentum.><
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