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Preface

It has been more than a decade since the second edition of Advanced Engineering Dy-
namics was published. Although I was pleased with that effort, my experience teaching
dynamics with that book as a companion has given me insights that I either did not have
or did not fully appreciate. I tried to satisfy multiple objectives as I wrote the present
book. I wished to convey both physical and analytical understanding of the fundamen-
tal principles, and to expose the beauty of the discipline as a tightly woven sequence of
concepts. I wanted to address the complexities of real-world engineering problems and
explore the implications of dynamics for other subjects, but to do so in a manner that is
accessible to those who come to it from a wide range of experiences. I wanted to provide
a self-contained resource from which the motivated reader could learn directly. At first,
I thought this book would just be a third edition of Advanced Engineering Dynamics,
but as I progressed, I realized that the expanded scope and the amount of material that
is either new or redone necessitated treating it as a new work.

The subject of dynamics is an interdisciplinary blend of physics, applied mathemat-
ics, computational methods, and basic logic. The least difficult aspect of the subject is
the basic physical laws, most of which are at least a century old. A primary element that
has moved the study of dynamics from natural philosophy to engineering is the devel-
opment of powerful tools for describing motion and for solving equations of motion.
Throughout my career I have operated under the premise that the world is complicated,
and that a good text should prepare the student to address these complications. One
of the methods I use here to meet this imperative is to provide examples that carefully
guide the reader from the inception of a solution to its conclusion. I have tried to select
examples that have most of the elements one might encounter in practice but are not
so intricate as to mask the tautological features of the solution. An important feature of
these examples is that the question of why a solution is assembled in a certain manner
is regarded to be as important as the actual steps. In many cases I have used the same
system to illustrate alternative approaches or different topics, which tends to give the
treatment of those systems some of the aspects of the case study approach.

Almost every section of the text has been rewritten relative to Advanced Engineer-
ing Dynamics, and yet it should be clearly recognizable as being a descendant of its
predecessor. New explanations for fundamental concepts have been introduced. Deriva-
tions have been reworked, sometimes to increase their generality and sometimes to en-
hance their elegance, but always to make them more accessible. Like the previous text,



X Preface

Chapter 1 develops the fundamental physical laws for a particle, but a section has been
added to help the reader use mathematical software as an analytical aid. The early pio-
neers, who provided us with most of the basic laws and concepts, were correctly consid-
ered to be natural philosophers because they provided a framework for understanding
how our world works. Partially as a recognition of their importance, I have expanded
the biographical section at the conclusion of Chapter 1. I have also tried to bring out this
philosophical perspective in the technical development.

Kinematics is the framework supporting the laws of dynamics. Being comfortable
with the former vastly aids one to address the various kinetics concepts. For this reason
a thorough treatment of the kinematics of particle and rigid-body motion is the focus
of the initial development. The development is broad without going into specialized
concepts that are primarily used in a confined topical area. The treatment in Chapter 2
of the kinematics of particle motion now derives the basic formulas for cylindrical and
spherical coordinates prior to the tensor-oriented derivation of the comparable formulas
for arbitrary orthogonal coordinate systems. This enables one to omit the more mathe-
matical derivation without sacrificing fundamental concepts. An item of particular note
is the expanded exploration in Chapter 3 of displacement of points relative to various
reference frames, which should clarify many of the problematic aspects of the descrip-
tion of relative motion. I have found that it significantly assists students who are not
practiced in visualizing spatial motion, and students in computer-aided design have told
me that it aided them greatly in that subject. More important, the treatment leads to a
derivation of the kinematics equations for relative motion that is simultaneously elegant
and intuitive—there should be no misunderstanding of the significance of the various
terms. Chapter 4 addresses the kinematics of systems that are subject to kinematical
constraints, with an emphasis on linkages and rolling. The modifications here relative
to the previous text are mostly incremental, but greater emphasis is now placed on the
parallelism of the analysis of displacement, velocity, and acceleration. The example of a
cardan joint should be enlightening in this regard.

The treatment of momentum-based concepts for rigid-body motion has now been
split into two chapters. Chapter 5 focuses on the fundamental concept of angular mo-
mentum and the implications of its variability. The treatment of inertia properties has
been expanded. The emphasis in this chapter is on making the angular momentum of a
rigid body a quantity that the reader understands on a fundamental physical level, rather
than merely being a quantity to be evaluated. These concepts are employed in Chapter
6 to implement the Newton—Euler equations for a single rigid body. The extension of
such a formulation to a system of rigid bodies has been expanded. The chapter closes
with a treatment of impulsive forces and their role in collisions, which is a topic that was
omitted from the previous text.

Prior to delving into the mathematical concepts associated with analytical mechan-
ics, the treatment in Chapter 7 begins by developing the principle of virtual work and
applying it to a rigid frame and the analogous dynamic linkage. Seeing how the principle
of dynamic virtual work, which has been incorrectly attributed to d’Alembert, can be
used directly to formulate equations of motion enables one to view the concepts of ana-
lytical mechanics from the Newton—Euler perspective. This approach provides a strong
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motivation for the theoretical developments that follow. A noteworthy aspect of Chap-
ter 7 is the expanded usage of the configuration space in conjunction with generalized
coordinates, so that all of the basic aspects of Lagrangian mechanics now receive a par-
allel treatment between the configuration and physical spaces. This is the area in which
my awareness has expanded most. It is also an area in which misconception is occasion-
ally encountered in the technical literature. For example, a recent journal article stated
that virtual displacement and virtual work are confusing concepts! A primary objective
of Chapter 7 is to make it unlikely that such statements will continue to be made. The
reader will find graphical descriptions of scleronomic, rheonomic, and nonholonomic
constraints that should enhance understanding of their unifying features, as well as their
differences. One of the desirable outcomes of the presentation should be a greater un-
derstanding of the fundamental philosophy underlying analytical mechanics, and of the
associated concepts pertaining to generalized coordinates, generalized velocities, and
virtual displacement.

Chapter 8 explores reasons why one might need to employ Lagrange’s equations
with constrained generalized coordinates, and then goes on to present solution methods
for the differential equations of such systems. The treatment has been expanded con-
siderably. Several numerical algorithms for solving such equations of motion consistent
with constraint equations are examined. The algorithms are worked through carefully,
and their relative merits are discussed. The objective here is to prepare the reader to
handle situations involving nonholonomic constraints, friction, and geometrical com-
plexity, all of which are at the forefront of contemporary research and practice. The
computed results for the example of unsteady rolling of a disk should be of interest to
all. I am not sure that the nature of this solution has been recognized previously.

Chapter 9 is a treatment of alternative formulations of equations of motion. Dis-
cussion of alternative analytical approaches to formulating equations of motion was re-
served for this chapter because I believe it is best to begin by providing a set of tools
that can be employed reliably, even though they may not be optimal for any one situ-
ation. The reader who has reached the later chapters will have the level of capability
required to appreciate the availability of alternatives. Much of the material in this chap-
ter did not appear in Advanced Engineering Dynamics. It begins with an introduction
to calculus of variations in conjunction with Hamilton’s principle to derive equations
of motion for continua. Usage of variational principles to formulate approximate solu-
tions of field equations was pioneered by Ritz, whom I hold in high esteem. Although
the topic is tangential to a course in rigid-body dynamics, everyone should recognize
that the study of vibratory systems is intimately dependent on classical mechanics. A
large part of this chapter is devoted to explorations of the Gibbs—Appell equations and
Kane’s equations. I have endeavored here to clarify the relationship between these for-
mulations and to give a balanced discussion of their relative merits. Writing Chapters 8
and 9 has increased my esteem for Lagrange’s contribution; the discussion explains why.

Chapter 10, which treats gyroscopic effects, has been updated. The discussion of
inertial guidance systems has been clarified and modernized. Although the latest guid-
ance technology is less reliant on these concepts, understanding them serves to enhance
mastery of dynamics. One of the developments in this chapter that anyone should find
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interesting is the analysis of the precession of the equinoxes, which appears as an exam-
ple in Chapter 10 based on the analysis of gravitational torque in Chapter 5.

This project has required more effort than any of my prior books. In part this comes
from treating this book as a new work, while simultaneously making sure it retains what
was good in the previous version. However, the most time-consuming aspect entailed the
selection of additional examples, as well as the modification of examples I used previ-
ously. Also, as an instructor, I realized that keeping a course and textbook fresh requires
a large number of homework exercises. The instructor who uses this text will find that
both the number and variety of homework exercises have been greatly increased.

As I'look over the finished manuscript, I am quite satisfied. I believe that I have met
the goals that guided me throughout this project. I hope you agree.
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CHAPTER 1

Basic Considerations

Since ancient times many researchers have devoted themselves to predicting and ex-
plaining how bodies move under the action of forces. This is the scope of the subject of
dynamics, which consists of two phases: kinematics and kinetics. A kinematical analysis
entails a quantitative description of the motion of bodies without concern for what is
causing the motion. Sometimes that is all that is required, as would be the case if we
needed to ascertain the output motion of a gear system or linkage. More significantly,
a kinematical analysis will always be a key component of a kinetics study, which ana-
lyzes the interplay between forces and motion. Indeed, we will see that the kinematical
description provides the skeleton on which the laws of kinetics are applied.

A primary objective will be the development of procedures for applying kinematics
and kinetics principles in a logical and consistent manner, so that one may successfully
analyze systems that have novel features. Particular emphasis will be placed on three-
dimensional systems, some of which feature phenomena that are counterintuitive for
those whose experience is limited to systems that move in a plane. A related objective
is development of the capability to address realistic situations encountered in current
engineering practice.

The scope of this text is limited to situations that are accurately described by the
classical laws of physics. The only kinetics laws we will take to be axiomatic are those
of Newton, which are accurate whenever the object of interest is moving much more
slowly than the speed of light. Newton’s Laws pertain only to a particle. The derivation
of a variety of principles that extend these laws to bodies having significant dimensions
will be treated in depth. We will limit our attention to systems in which all bodies may be
considered to be particles or rigid bodies. The dynamics of flexible bodies, which is the
subject of vibrations, is founded on the kinematics and kinetics concepts we will estab-
lish. We shall begin by reviewing the fundamental aspects of Newton’s Laws. Although
the reader is likely to have already studied these concepts, the intent is to provide a
consistent foundation for later developments.

1.1 VECTOR OPERATIONS

1.1.1 Algebra and Computations

Almost every quantity of importance in dynamics is vectorial in nature. Such quantities
have a direction in which they are oriented, as well as a magnitude. The kinematical

1



2 Basic Considerations

vectors of primary importance for our initial studies are position, velocity, and accelera-
tion, and the kinetics quantities are force and moment. Some quantities have magnitude
and direction, but are not vectors. One example, which will play a major role in Chap-
ter 3, is a finite rotation about an axis. An additional requirement for vector quantities is
that they add according to the parallelogram law. This entails a graphical representation
of vectors in which an arrow indicates the direction of the vector and the length of the
arrow is proportional to the magnitude of the vector. A graphical representation of the
summation operation is shown in Fig. 1.1(a), which shows that the addition of two vec-
tors A and B may be constructed in either of two ways. Vectors A and B may be placed
tail to tail, and then considered to form two sides of a parallelogram. Then A + B is the
main diagonal, with the sense defined to be from the common tail to the opposite corner.
An alternative picture places the tail of B at the head of A. The sum then extends from
the tail of A to the head of B.

Figure 1.1. Diagrammatical construction of the sum and dif-
ference of two vectors.

An important aspect of these constructions is that a sum is independent of the se-
quence in which the vectors are added. This is the commutative property, which is stated
as

A+B=B+ A. (1.1.1)
A diagram showing the sum of three vectors leads to the associative property,
(A+B)+C=A+(B+C). (1.1.2)

Another important property comes from the observation that multiplying a vector by
a scalar number does not affect its direction, but the magnitude is multiplied by that
factor’s absolute value, that is,

ly Al =yl|A]. (1.1.3)

A corollary of this property is that multiplying A + B in Fig. 1.1(a) by a scalar changes
the length of the diagonal, which requires that the individual sides be scaled by the same
factor. Thus,

y(A—i—B):yA—i—yB, (1.1.4)

which is the distributive property for vector addition.

If the y factor in Eq. (1.1.3) is negative, y A will be parallel to A, but in the oppo-
site sense. This observation leads to graphical rules for subtracting vectors. Multiplying
a vector by —1 only reverses the sense of the vector. Because A — B= A + (—B) , the
difference of two vectors may be constructed in one of three ways, as depicted graph-
ically in Fig. 1.1(b). The difference may be formed by placing A and — B tail to tail,
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which forms a parallelogram. Then A — B extends from the common tail to the oppo-
site corner. A different rule leading to the same result comes from the observation that
the parallelogram in Fig. 1.1(b) is identical to the one in Fig. 1.11(a). Thus the difference
may be formed by placing A and B tail to tail, so that A — B extends from the tip of B
to the tip of A. The third construction forms A — B by placing the tail of — B at the head
of A, in which case A — B extends from the tail of A to the tip of —B. Regardless of
how one goes about forming the difference, it is wise to verify that forming B + (A — B)
actually gives A.

We will occasionally employ a diagrammatic approach to vector operations for
derivations, but it is awkward and not easily implemented in mathematical software, es-
pecially for three-dimensional situations. Representation of vectorial quantities in com-
ponent form addresses these issues. Let xyz denote a set of orthogonal Cartesian coor-
dinates. Unit vectors i, j, and k, whose magnitude is unity without dimensionality, are
defined to be parallel to the x, y, and z axes, respectively. To represent its components,
vector A in Fig. 1.2 has been situated with its tail at the origin of xyz.

Figure 1.2. Unit vectors of a Cartesian coordinate system and the
\T construction of vector components.

LN
N

The edges of the box in the figure are constructed from the three lines that are per-
pendicular to a coordinate plane and intersect the tip of A. The length of each line is the
component of the vector, denoted with the subscript of the associated axis. (The length
of a side would be the negative of the corresponding component’s value if that side pro-
jected onto the negative coordinate axis.) Figure 1.2 shows that a vector along each edge
of the box may be constructed by multiplying the component by the corresponding unit
vector; see Eq. (1.1.3). The three such vectors depicted in the figure are situated head to
tail, so their sum extends from the tail of the first, A7, to the head of the third, A k, but
that is the original vector A. Hence,

A=Ad+ Ayj+ Ak (1.1.5)

This is the component representation of a vector.

The utility of a component representation is that operations can be performed on
the individual components without recourse to diagrams. By the Pythagorean theorem
the magnitude of A is

|A] = (A2 + A2+ 427, (1.1.6)
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In many situations we need to construct a unit vector parallel to a vector. This is readily
obtained from the preceding equation as

b

A=|Ales &= ea=—5. (1.1.7)

=

The operations of adding or subtracting vectors are performed by operating on the indi-
vidual components in accord with the properties in Egs. (1.1.2) and (1.1.4):

A+ B=(Ad+Ayj+ AK) £ (Bi + B,j + BR)
= (A % Bi) + (Ay] + ByJ) + (Ak + B.R).

A+ B=(A,+B)i+ (A, +B)j+(A.+ B)k. (1.1.8)

There are two types of products of two vectors. The dot product is also known as the
scalar product because it is a scalar result. It is defined in terms of the angle ¢ between
the vectors when they are placed tail to tail, according to

A - B=|A||B|cosé. (1.1.9)

To avoid ambiguity, we limit the angle to 0 < ¢ < &. It is clear from this definition that
the order in which a product is taken does not affect the result, so a dot product is
commutative:

A-B=B A (1.1.10)

One of the reasons why a dot product is useful is described by Fig. 1.3, where }B| cos ¢
is shown to be the projection of B in the direction of A, in other words, the component
of B in the direction of A. That figure also shows that | A| cos ¢ is the component of A
in the direction of B. Thus a dot product may be interpreted to be the magnitude of one
vector multiplied by the parallel component of the other vector. In the event where they
form an obtuse angle, 7/2 < ¢ < &, the dot product will be negative, meaning that the
component is in the opposite sense from the vector on which it is projected.

AT
1 Figure 1.3. Dot product of two vectors, showing the component of each vector
|Blcos ¢ parallel to the other.

A dot product can be proven to be distributive, which may be stated as
(@A+BB)-C=aA-C+pB-C. (1.1.11)

The significance of this property is that it enables us to evaluate a dot product directly
in terms of the components of each vector. This comes about from the fact that Z, j, and
k are mutually orthogonal unit vectors, so that

k=1,

—k-i=i-k=0.

~.
Pl

[i=j.j=

P j=ji=j k=k-

(1.1.12)

~.
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Combining these fundamental dot products with Eq. (1.1.11) leads to evaluation of a dot
product according to
A-B=(Ad+ Ayj+ Ak)- (B + Byj + B:k)
= (Aud) - (Bid) + (Asl) - (By]) + (Axd) - (B:k)
+(Ay)) - (Bid) + (Ay]) - (By]) + (Ay]) - (B:k)
+ (Azk) - (Bil) + (Azk) - (By]) + (A:k) - (B:k),

A-B=AB .+ A,B,+ A.B,. (1.1.13)

A useful corollary of the preceding is that the length of a vector may be evaluated from
a dot product,

A =VA- A (1.1.14)

The cross product of two vectors is also known as the vector product, because it
is defined to be a vector in the direction perpendicular to the plane formed when the
vectors are brought tail to tail. The magnitude of a cross product is defined as

| A x B| = | A||B|sing. (1.1.15)

where ¢ is the angle between the vectors, as it is for the dot product. As shown in Fig. 1.4,
| B|sing is the magnitude of the component of B perpendicular to A, and | A|sin¢ is
the component of A perpendicular to B. Thus the magnitude of a cross product may be
interpreted as the magnitude of one vector multiplied by the perpendicular component
of the other vector. Figure 1.4 also shows that the sense of the cross-product direction
is determined by the right-hand rule, in which the vectors are brought tail to tail, and
the fingers of the right-hand curl from the first vector to the second, as indicated by
the curling arrow. The extended thumb then gives the orientation of the cross product,
which would be out of the plane depicted by Fig. 1.4.

Figure 1.4. Construction of the cross product of two vectors showing the com-
ponent of one vector perpendicular to the other. The curling arrow indicates the
sense in which the fingers of the right hand should curl to form A x B.

\(,|Z|sin(])

A cross product is not commutative because switching the sequence in which the
product is formed reverses the sense of the curling arrow in Fig. 1.4. Thus,

Bx A=—-AxB. (1.1.16)
The cross product does have the associative and distributive properties:
(AxB)xC=Ax(BxC),

S (1.1.17)
(@A+BB)x C=aAxC+BBxC.
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These properties lead to a rule for evaluating cross products in terms of vector compo-
nents. We require that xyz be a right-handed coordinate system, so the fact that the unit
vectors of the coordinate are mutually orthogonal gives

]

k x

ixi=jx]j =0,
ixj=k, jxk=i, kxi=], (1.1.18)

_]'.

~.

jxi=—k, kxj=-i, ixk

A mnemonic device for remembering these products is to consider positive alphabet-
ical order to proceed as i to j to k, then back to i. Applying these cross products in
conjunction with the distributive law in Eqgs. (1.1.17) leads to

Ax B=(Aid+ Ayj+ A:k) x (Bii + By] + Bk)
= (Asi) x (By]) + (Asl) x (B:k) + (AyJ) x (Bil) + (Ay]) x (B:k)
+ (Azk) x (Bii) + (Azk) x (By])

= A Bk — AB.j — AyBk + AyBi + A.B,j — A.By,

Ax B=(A,B.— A.B,)i+(A.B. — AB.) [ + (A:B, — A,B,)k. (1.1.19)

Some individuals, rather than carrying out a cross product term by term, as in the pre-
ceding evaluation, use a mnemonic device based on a determinant, specifically,

i ]k A, A, A
AxB=|A, A, A.|=|B. B, B.|. (1.1.20)
B. B, B i ]k

A common analytical approach we will encounter entails describing a vector in dif-
ferent ways and then equating the different descriptions. A component description of
vectors enables us to convert the vector equality to a set of scalar equations, based on
the fact that if two vectors are equal their like components must be equal. Thus,

A=B < A,=B,, Ay=B, and A, = B.. (1.1.21)

Position vectors are the fundamental kinematical quantities. In Fig. 1.5 the position
vector extending from origin O to point P is labeled 7p;o, which should be read as
the position vector to P from O, or equivalently, the position of P with respect to O.
Similarly, the position of point P with respect to point A is 7p,4. The tail of 7p, 4 is
situated at the head of 74,0, from which it follows that adding these vectors gives the
position of point P with respect to point O:

Fpio=Faj0+Tp/a. (1.1.22)

This construction is fundamental to many operations in dynamics.
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z

and A.

The issue of how one carries out algebraic operations with vectors requires con-
sideration of mathematical software. Three-dimensional vectors may be represented as
matrices, which is the preferred data format for such popular programs as Matlab and
Mathcad. Both programs allow one to carry out all vector operations using matrix no-
tation. In Mathcad one proceeds by writing all vectors in matrix form and then carrying
out the operations as indicated. For example, if A = 17 +2j + 3k and B = 3i — j — 5k,
then the operation of constructing a unit vector parallel to A x B, then verifying that
this product is indeed perpendicular to A and B, could proceed as

1 3

C
A=1{2:, B={1-1;, C:=AxB, e::m, A1 =Axe, By =Bxe,
3 -5

(1.1.23)

where := denotes Mathcad’s equality operator, which is obtained by pressing the colon
key, and the cross-product operator is obtained from the Ctrl-8 key combination. The
dot product in matrix notation is obtained from the product of a three-element row
matrix and a three-element column matrix, so one could evaluate the dot product in
Mathcad by writing AT * B. An alternative is to simply multiply vectors to form a dot
product, as was just done, which returns a scalar value.

Matlab proceeds similarly. The cross product is implemented with the “cross” func-
tion; a dot product can be obtained from the “dot” function, or more simply as a standard
row—column product. Thus, the preceding example could be carried out in Matlab as

A=[1 2 3]; B=[3 -1 -5]; C=cross(A,B);
e=C/norm(C), A_1=A xe’; B_1=Bxe’;

Note that the “norm” without other arguments is Matlab’s function for evaluating the
(Euclidean) length of a vector. If one wishes, the preceding operations could be carried
out with A and B defined to be three-element columns, for example, A = [1; 2; 3].
Other mathematical software programs have similar capabilities. Also, it is possi-
ble to implement these operations symbolically in some programs by use of matrix
notation.

Ultimately, how one carries out computations is a matter of personal choice. The
procedure used in this text generally will implement the operations term by term using
the associative and distributive properties. One reason for this choice is that the notation
is somewhat more compact. The second has to do with a common situation that will
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frequently arise, in which it will be necessary to combine vectors that are defined in
terms of components relative to different coordinate systems. It is awkward to indicate
which coordinate system a matrix is associated with, whereas the symbols used for unit
vectors display that information unambiguously.

ETUTEER Robotic arm A BC induces a tensile force of 5000 N in cable CD.
The orientation angles are § = 25° for link A B, which lies in the horizontal plane,
and y = 40° for rotation of arm BC. Pin B for this rotation is horizontal and per-
pendicular to arm A B, so AB and BC lie in a common vertical plane. Let F denote
the force the cable exerts on the robotic arm. Determine (a) the component of F
parallel to link BC, (b) the moment of F about end A, (c) the moment of F about
the vertical z axis, and (d) the moment of F about arm AB.

Example 1.1

SOLUTION This example reviews some basic evaluations of force properties, which
call for most of the standard vector operations. The cable is in tension, so it pulls
the robotic arm from point C to point D. We express this as F = 5000¢p,¢ N, where
ep,c is the notation we use for the unit vector to D from C. The first task is to
determine the coordinates of point C, which we can find by constructing position
vectors along arms A B and BC. We project point B onto the x and y axes to evaluate
7/ 4. Similarly, we project point C onto the xy plane, and then project that point
onto the x and y axes. This gives
Fp/a =2 (cosOi +sinfj) = 1.8126i + 0.8452) m,
Feyp=1.5cosy (cosfi +sinfj) + 1.5sin yk = 1.04147 + 0.4856 + 0.9642k.
The desired position vector is the sum of these vectors:
Feja =Fgia+Fep = (1.8126 + 1.0414) i + (0.8452 + 0.4856) j + (0 + 0.9642) k
= 2.8540¢ + 1.3309; + 0.9642k m.

Because 7cj4 and 7p/a4 = 3.5 m are tail to tail, it follows that Fp/c =Tpja—Tcja,
which leads to &p,¢ according to

Foja—Fcia  0.64607 — 13309 — 0.9642k
[Foja —Feral  (0.64602 + 1.33092 + 0.96422)"/
= 0.36587 — 0.7537] — 0.5460k.

eép/c =
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Thus the force applied to the arm is
F =5000ep,c = 1829i — 3768 — 2730k N.

The component of F parallel to arm BC may be obtained from a dot product
with the unit vector éc,p, which is readily constructed from 7c,p, whose value has
already been determined. Thus,

= F - (0.6943 + 0.3237] + 0.6428k)

= (1829) (0.6943) + (—3768) (0.3237) + (—2730) (0.6428) = —1705 N.

Negative Fpc indicates that the projection of F onto line BC is opposite the sense
of ec/B-

The moment of a force may be evaluated from a cross product with a position
vector from the reference point for the moment to the point where the force is ap-
plied. Hence,

Ma = Feja x F = (2.85407 + 1.3309] + 0.9642k) x (18297 — 3768} — 2730k)
— (2.8540) (~3768) k + (2.8540) (—2730) (—J) + (1.3309) (1829) (—k)
+(1.3309) (—2730) 7 + (0.9642) (1829) | + (0.9642) (=3768) (—i)

= 95557 — 13189k N-m.

The moment of a force about an axis may be determined by forming the moment
about any point on that axis, and then evaluating the component of that moment
in the direction of the axis. Thus the moment of F about the z axis is merely the k
component of My,

My, = MA -k = —13189 N-m. <

A negative value indicates that the sense of this moment is determined by align-
ing the extended thumb of the right hand in the —k direction. The same reasoning
shows that the moment of F about arm A B is obtained with a dot product involving
€B/A,

/A

MABZMA~53/A=MA- = 4038 N-m. <

|75y

1.1.2 Vector Calculus—Velocity and Acceleration

The primary kinematical variables for our initial studies are position, velocity, and ac-
celeration. Velocity is defined to be the time derivative of position, and acceleration is
the time derivative of velocity, so we need to establish how to handle derivatives of vec-
tors. Because time derivatives are performed frequently, it is standard notation to use
an overdot to denote each such operation. Overbars are used here to indicate that a
quantity is a vector; the reader is encouraged to use the same notation.
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Most of the laws for calculus operations are the same as those for scalar variables.
Their adaptation requires that vector quantities be indicated unambiguously. In the fol-
lowing, A and B are time-dependent vector functions, and « and B are scalar functions
of time.

Definition of a derivative:

dA - A+ Ar)— At A(t)— A(t— At
A4 _ G i AFAN-AQ _ AO-AC=AD (1.1.24)
dt At—0 At At—0 At
Definite integration:
. t
It A = B, then B(1) = B(t) + / A(r)dr, (1.125)
fo
Derivative of a sum:
d — — _ —
o (A+B)= A+B. (1.1.26)
Derivative of products:
L wd)=aAtad
5 eA)=a aA,
d _ _ = _ _ _
E(A~B)=A-B+A-B, (1.1.27)

d — — - — — -
E(AXB)Z Ax B+ Ax B.

As an immediate consequence of these properties, all calculus operations may be
performed in terms of vector components. We consider here only situations in which
xyz is a fixed coordinate system, so that i, j, and k are constant vectors, which means
that di /dt = dj/dt = dk/dt = 0. We then find that

dA d - - ~ S ..
TR (Ad+ Ayj+ Ak)=Ad+ Ayj+ Ak (1.1.28)

A common situation that arises in many phases of our study of kinematics involves a
vector that depends on some parameter «, which in turn varies with time. Differentiation
of the vector with respect to time in this circumstance can be performed with the chain
rule:

dA _dAde  dA

At dadi ~ “da
The chain rule may be extended by partial differentiation to situations in which the
vector depends on two or more time-dependent parameters, according to
dA dA . 0A
el e .. 1.1.30
ar ~ Yae TPt (1.1.30)

In the present notation, where 7p,o denotes the position of point P with respect to
the origin O of a fixed coordinate system, then the velocity and acceleration of that point
are

(1.1.29)

(1.1.31)

(]
If
~|
v
S~
®
N}
If
(]
I
~i
v
~
Q
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It should be noted that no subscripts have been used to denote the velocity and
acceleration vectors. If there is any ambiguity as to the point whose velocity is under
consideration, the notation will be vp and ap, but even then there is no need to indicate
in the velocity and acceleration what the origin is. This is so because different fixed
observers all see the same motion. This may be proved from Fig. 1.5, where 7p,¢ is the
position seen by an observer at the origin, and 7p, 4 is the position of point P as seen
by an observer at point A. Equation (1.1.22) describes 7p;o as the sum of the other two
vectors. If point A is stationary, then 74,0 is constant and dr 4,0/dt = 0. It follows that

d d
Up = —7 = — (7 7 = —7 1.1.32
vp = Tr0= o (Fajo+7pra) 27 Pl ( )

which shows that the velocity of a point is the derivative of the position vector to that
point from any fixed point. The same must be true for acceleration because it is the
derivative of the velocity.

In Chapter 3 we will treat situations in which the reference frame moves, in
which case we will be interested in the motion relative to that reference frame. Equa-
tion (1.1.32) defines the absolute velocity, whereas the velocity seen by a moving ob-
server is a relative velocity. The same terminology applies to the description of accel-
eration. If it is not specified otherwise, the words velocity and acceleration should be
understood to mean absolute quantities.

Our initial studies are limited to situations in which the moving body may be con-
sidered to be a particle. By definition, a particle occupies only a single point in space. As
time evolves, the particle will occupy a succession of positions. The locus of all positions
occupied by the point is its path. One can obtain a visual representation of a path by
illuminating the point and then taking a long-exposure photograph. Position, movement
along a path, and velocity are inherently important because we can readily sense them.
Acceleration is difficult for most individuals to observe without instrumentation. On the
other hand, if we are subjected to an acceleration, our sensory system gives us an in-
dication of its magnitude and direction primarily based on the internal forces that are
generated. The time derivative of a, which is called the jerk, primarily occurs in consid-
erations of ride comfort for vehicles.

A radar station on the ground at origin O tracks airplane A by
measuring the distance r, the angle 0 in the horizontal xy plane, and the angle
of elevation g. It is observed that these variables closely fit 7(¢) = 2000 + 1007 m,
6 (t) =m/2[1 —exp(—0.15¢)] rad, and B = /3 — 0.1/ rad, where ¢ is measured
in seconds. (a) Determine the velocity of the airplane at t = 2 s according to a fi-
nite central difference approximation based on the change of the position vector 7
during an interval of 1 ms. (b) Determine the velocity of the airplane at z = 2 s by
differentiating the xyz components of 7.
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Example 1.2

SOLUTION The analysis brings to the fore many of the basic vector operations, but
a more efficient evaluation of the velocity would use the spherical coordinate for-
mulation we will develop in the next chapter. Both specified solution procedures
require a description of the position vector. The projection of line O A onto the z
axis is the the length of the vertical dashed line. We obtain the x and y components
by projecting line O A onto the xy plane and then projecting that line onto the x and
y axes. The result is that

7 (t) = (rcos Bcosd)i + (rcosBsind) j + (rsinp) k. (1)

A central difference at t =2 s covering a 1-ms interval is formed from ¢t =2 £
0.0005 s, so the velocity in this approximation is

__ F(2+0.0005) — 7 (2 — 0.0005)

- 0.001

= 1000[(1246.61294i + 537.68542 ] + 1731.20494k)

— (1246.59391/ + 537.41916 + 1731.17425k)],

v (1)

5 (1) = 19.0i + 266.3] + 30.7k mis. ) <

To differentiate the position analytically, we recognize that the representation
of 7 in Eq. (1) gives it as a function of r(¢), 0 (¢), and ¢ (¢). Thus we employ the chain
rule, which gives

50 r,af+éaf+ﬁaf
v(t)=r— — —
ar 90 ' " 3B

= i [(cos Bcos®)i + (cos Bsind) | + (sin B) k] 3)
+ 6 [— (r cos Bsin6)i + (r cos Bcosh) f]
+ B[—(rsinBcos@)i — (rsinBsind) j + (r cos B) k] .
Att =2 s we have
r = 2200 m, 7 = 100 m/s,
6 = 0.40712 rad, 6 = (7 /2) (0.15) exp (—0.15¢) = 0.17455 rad/s,
B = 0.90578 rad, B = —0.05/+/7 = —0.03536 rads.
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Substitution of these values into Eq. (3) gives the same result as that of Egs. (2). The
results of both analyses actually agree to within 4 (10~7) % if intermediate results are
not truncated as the computations proceeded.

In other cases, the degree to which the two analyses would agree would de-
pend on the duration of the interval for the finite difference, as well as the nature of
the functions describing 7, 6, and B. Interestingly, modern data acquisition systems
are digital, so the data taken by a radar station are sampled discrete values. Any
functions representing r(¢), 6 (¢), and B (¢) are likely in that situation to be approx-
imations based on curve-fitting procedures. In such situations, it would be incorrect
to decide that the finite difference approximation gives a less precise result than one
obtained by analytical differentiation.

1.2 NEWTONIAN MECHANICS

A fundamental aspect of any kinetics laws is the reference frame from which the motion
is observed. A reference frame will be depicted as a set of coordinate axes, such as xyz,
with an additional specification of the body to which the axes are attached. However, it is
important to realize that coordinate axes are also often used to represent the directions
for the component description of vectorial quantities. The two uses for a coordinate
system are not necessarily related. Indeed, we frequently describe a kinematical quantity
relative to a specified frame of reference in terms of its components along the coordinate
axes associated with a different frame of reference.

1.2.1 Newton’s Laws

The kinetics laws associated with Sir Isaac Newton are founded on the concept of an
absolute reference frame, which implies that somewhere in the universe there is an ob-
ject that is stationary. This concept is abandoned in relativity theory, but the notion of a
fixed reference frame introduces negligible errors for objects that move slowly in com-
parison with the speed of light. The corollary of this concept is the dilemma of what
object should be considered to be fixed. Once again, considering the Sun to be fixed
usually is sufficiently accurate. However, in most engineering situations it is preferable
to use the Earth as our reference frame. The primary effect of the Earth’s motion in
most cases is to modify the (in vacuo) free-fall acceleration g resulting from the gravi-
tational attraction between an object and the Earth. Other than that effect, it is usually
permissible to consider the Earth to be an absolute reference frame. (A more careful
treatment of the effects of the Earth’s motion will be part of our study in Chapter 3 of
motion relative to a moving reference frame.)

A remarkable feature of Newton’s Laws is that they address only objects that can
be modeled as a particle. Kinetics laws governing a body having finite dimensions were
derived from Newton’s Laws by considering a body to be a collection of particles. Thus
Newton’s Laws are fundamental to all aspects of our work. At the same time, we should
recognize that these are axiomatic to our studies, as they are based on experimental
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observation without analytical proof. Indeed, relativity theory can be shown to reduce
to Newton’s Laws for bodies that move very slowly.

Newton’s Laws have been translated in a variety of ways from their original state-
ment in the Principia (1687), which was in Latin. We use the following version:

FIRST LAW: The velocity of a particle can only be changed by the application of a
force.

SECOND LAW: The resultant force (that is, the sum of all forces) acting on a particle
is proportional to the acceleration of the particle. The factor of proportionality is
the mass.

> F = ma. (1.2.1)

THIRD LAW: All forces acting on a body result from an interaction with another
body, such that there is another force, called a reaction, applied to the other body.
The action-reaction pair consists of forces having the same magnitude, and acting
along the same line of action, but having opposite direction.

We realize that the First Law is included in the Second, but we retain it primarily because
it treats systems in static equilibrium without the need to discuss acceleration. A number
of individuals recognized this law prior to Newton. The Second Law is quite familiar, but
it must be emphasized that it is a vector relation. Hence it can be decomposed into as
many as three scalar laws, one for each component. The Third Law is very important to
the modeling of systems. The models that are created in a kinetics study are free-body
diagrams, in which the system is isolated from its surroundings. Careful application of
the Third Law will assist identification of the forces exerted on the body.

The conceptualization of the First and Second Laws can be traced back to Galileo.
Newton’s revolutionary idea was the recognition of the Third Law and its implications
for the first two. An interesting aspect of the Third Law is that it excludes the concept of
an inertial force, —ma, which is usually associated with d’Alembert, because there is no
corresponding reactive body. We will address the inertial force concept in Chapter 7.

It is also worth noting that the class of forces described by the Third Law is limited —
any force obeying this law is said to be a central force. An example of a noncentral force
arises from the interaction between moving electric charges. Such forces have their ori-
gin in relativistic effects. Strictly speaking, the study of classical mechanics is concerned
only with systems that fully satisfy all of Newton’s laws. However, many of the principles
and techniques are applicable either directly, or with comparatively minor modifications,
to relativistic systems.

The acceleration employed in Newton’s Second Law was stated to be observed from
the hypothetical fixed reference frame. However, the same acceleration can also be ob-
served from special moving reference frames. One may recognize this by returning to
Fig. 1.5, in which the observer at point A is allowed to move. Differentiating twice the
vector sum described by that figure gives

d? d? d?
ap = 7fp/0=—f,4/0—|-ﬁfp/,4. (122)
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If the observer at point A is to see a,, it must be that d*74,0/dt* = 0, which means that
dr4;0/dt is constant. However, dr 4,0/dt is defined to be v4. Thus Newton’s Second
Law can be formulated in terms of the acceleration seen by an observer moving at a
constant velocity. However, there is a further restriction to this statement. If the coordi-
nate axes of the reference frame do not point in fixed directions, changes in velocity will
be associated with the variability of these directions, as well as changes in the velocity
components. An inertial reference frame is one that translates at a constant velocity. The
translation condition, by definition, means that the coordinate axes point in fixed direc-
tions, so that we may interpret velocity and acceleration in the same way as we do for a
fixed reference frame. The constant-velocity condition requires that both the magnitude
and direction of the moving observer’s velocity be constant, which we will soon see can
be true only if the observer follows a straight path. The fact that Newton’s Laws are valid
in any inertial reference frame is the principle of Galilean invariance, or the principle of
Newtonian relativity.

1.2.2 Systems of Units

Newton’s Second Law brings up the question of the units to be used for describing the
force and motion variables. Related to that consideration is dimensionality, which refers
to the basic measures that are used to form the quantity. In dynamics, the basic measures
are time T, length L, mass M, and force F. The law of dimensional homogeneity requires
that these four quantities be consistent with the Second Law. Thus

F = ML/T, (12.3)

which means that only three of the four basic measures are independent. Measures for
time and length are easily defined, so this leaves the question of whether mass or force
is the third independent quantity. Whichever unit is not taken as the basic measure is
obtained from Eq. (1.2.3). An absolute set of units is defined such that the unit of mass
is fundamental, whereas a gravitational set of units defines force to be the fundamental
unit. This latter set of units is said to be “gravitational” because of the relation among
the weight w, the mass m, and the free-fall acceleration g.

The only system of units to be employed in this text are SI (Standard International),
which is a metric MKS system with standardized prefixes for powers of 10 and standard
names for derived units. Newton’s law of gravitation states that the magnitude of the
attractive force exerted between the Earth and a body of mass* m is

GM,m

F=="3

: (1.2.4)

* It is implicit to this development that the inertial mass in Newton’s Second Law is the same as the grav-
itational mass appearing in the law of gravitation. This fundamental assumption, which is known as the
principle of equivalence, actually is owed to Galileo, who tested the hypothesis with his experiments
on various pendulums. More refined experiments performed subsequently have continued to verify the
principle.
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where r is the distance between the centers of mass, G is the universal gravitational
constant, and M, is the mass of the Earth:

G = 6.6732(107"") m¥/kg-s>, M, = 5.976(10**) kg. (1.2.5)

The weight w of a body usually refers to gravity’s pull when a body is near the Earth’s
surface. If a body near the Earth’s surface falls freely in a vacuum, its acceleration is g,
which according to the Second Law is the ratio of w and m. In view of Eq. (1.2.4), it must
be that

, (1.2.6)

where r, = 6371 km is the radius of the Earth.

The relationship between g and the gravitational pull of the Earth is actually far
more complicated than Eq. (1.2.6). In fact, g depends on the location along the Earth’s
surface. One reason for such variation is the fact that the Earth is not perfectly homoge-
neous and spherical. In addition to these deviations of the gravitational force, the value
of g is influenced by the motion of the Earth, because g is an acceleration measured
relative to a noninertial reference frame. (This issue is explored in Section 3.6.) Conse-
quently it is not exactly correct to employ Eq. (1.2.6).

The mass of a particle is constant (assuming no relativistic effects), so an absolute
system of units is the same regardless of where they are measured. Prior to adoption of SI
as a standard set of absolute units, many individuals used a gravitational metric system,
in which grams or kilograms were used to specify the weight of a body. In SI units, where
mass is basic, any body should be described in terms of its mass in kilograms. Its weight
in newtons (1 N =1kg x 1 m/s = 1 kg-m/s) is mg. If an accurate measurement of g
at the specific location on the Earth’s surface is not available, one may use an average
value

g =9.807 m/s. (1.2.7)

The system now known as U.S. Customary is another gravitational system. Its basic
unit is force, measured in pounds (Ib). The body whose weight is defined as a pound must
be at a specified location. If that body were to be moved to a different place, the gravi-
tational force acting on it, and hence the unit of force, might be changed. The ambiguity
as to a body’s weight is one source of confusion in U.S. Customary units. Another stems
from early usage of the pound as a mass unit. If one also employs a pound force unit,
such that 1 1bf is the weight of a 1-Ibm body at the surface of the Earth, then application
of the law of dimensional homogeneity to F = ma requires that acceleration be mea-
sured in multiples of g. This is an unnecessary complication that has been abandoned in
most scientific work.

Even when one recognizes that mass is a derived unit in the U.S. Customary units,
the mass unit is complicated by the fact that two length units, feet and inches, are in
common use. Practitioners working in U.S. Customary units use the standard values

g =32171t/ls or g =386.0in./s. (1.2.8)
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Hence, computing the mass as m = w/g will give a value for m that depends on the
length unit in use. The s/ug is a standard name for the U.S. Customary mass unit, with

1 slug = 1 Ib/(1ft/s?) = 1 Ib-s>/ft. (1.2.9)

This mass unit is not applicable when inches is the length unit. To emphasize this matter,
it is preferable for anyone using U.S. Customary units to make it a standard practice to
give mass in terms of the basic units. For example, a mass might be listed as 5.2 1b-s?/ft, or
a moment of inertia might be 125 1b-s>-in. The SI system avoids all of these ambiguities.

1.2.3 Energy and Momentum

A Dbasic application of the calculus of vectors in dynamics is the derivation of energy
and momentum principles, which are integrals of Newton’s Second Law. These integrals
represent standard relations between velocity parameters and the properties of the force
system. We derive these laws for particle motion here; the corresponding derivations for
a rigid body appear in Chapter 6.

Energy principles are useful when we know how the resultant force varies as a func-
tion of the particle’s position, in other words, when X F(7) is known. The displacement
of a point is intimately associated with energy principles. The definition of a displace-
ment is that it is the change in the position occupied by a point at two instants,

AF = F(t + At) — 7 (). (1.2.10)

To obtain a differential displacement dr, we let At become an infinitesimal interval dt.
A dot product of Newton’s Second Law with a differential displacement of a particle
yields

S F(F)-dr =ma - dr. (1.2.11)

The definition of velocity indicates that di = vdt. Substitution of this and the definition
of a into the preceding leads to

SFE(F)-dr = mZ—j - odt. (1.2.12)
A dot product is commutative, so (dv/dt) - v = v - (dv/dt) , from which it follows that
SFE(F) - dF = ! d(‘ ) |dt =d ! (v-0) (1.2.13)
r)-dr =mz |~ (00 =d| m(v-0)]|. 2.

The right side is a perfect differential, whereas the left side is a function of only
the position because of the assumed dependence of the force resultant. Hence we may
integrate the differential relation between the two positions. The evaluation of the inte-
gral of the left side must account for the variation of the resultant force as the position
changes when the particle moves along its path; this is a called a path integral. We there-
fore find that

O N S
fEF(r) -dr = 7 (02-02) — 7 (01 -11), (12.14)
1



18 Basic Considerations

where “1” and “2” respectively denote the initial position and final position. The kinetic
energy of a particle is

m(v-7) = L |o)?, (1.2.15)

T
2

N =

and the path integral is the work done by the resultant force in moving the particle from
its initial to final position,

2
Wi, = fEF(f) -dF. (1.2.16)
1

The subscript notation for W indicates that the work is done in going from the starting
position 1 to the final position 2 along the particles’s path. Correspondingly, Eq. (1.2.14)
may be written as

T="T+ W, (1.2.17)

which is the work—energy principle. It states that the increase in kinetic energy between
two positions equals the work that is done.

The operation of evaluating the work is depicted in Fig. 1.6. The angle between
the resultant force X F and the infinitesimal displacement dF is 6. It follows from the
definition of a dot product that the infinitesimal work done by X F in this displacement
isdW=XF .dr = ]2 F | |dr| cos 6. The figure indicates that the infinitesimal work is the
product of the differential distance the particle moves, |d7|, and the component of the
resultant force in the direction of movement, |% F | cos @, or equivalently, the product
of the magnitude of the resultant force, | % F|, and the projection of the displacement
in the direction of the force, |d7| cos 6. Only in the simple case in which the force has a
constant component in the direction of the displacement does the work reduce to the
simple expression “force multiplied by distance displaced.” Otherwise the work must be
evaluated as a path integral, meaning that the value of X F - d7 must be described as a
function of the position along the path. The evaluation of the work is a major part of
a formulation of the work—energy principle. We will find in Chapter 6 that this task is
alleviated by introducing the concept of potential energy.

path  Particle
z/\§ /\TZ_cos 0
>F

Figure 1.6. Work done by a resultant force ©F in displacement

r J\\dr dF of a particle.
0
0 \
X y  ldrcos 6

In contrast to the situation covered by the work—energy principle, which is based on
knowing how the resultant force depends on the particle’s position, momentum princi-
ples are intended to address situations in which the resultant force is known as a function
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of time. Two such principles may be derived from Newton’s Second Law. The linear
impulse-momentum principle is a direct integration of ¥ F = ma with respect to time.
Because a = dv/dt, multiplying the Second Law by dt and integrating over an interval
H <t <tleadsto

15}
[ S>Fdt = m(ﬁz — 171) . (1218)
n

The quantity mv is the momentum of the particle, which we denote by the symbol P.
Thus we have

5]
P=mp. P=R +f S Fat. (12.19)

4

The time integral of the resultant force is the impulse. Thus we have derived the linear
impulse—-momentum principle, where the word linear conveys the fact that the princi-
ple pertains to movement along a (possibly curved) line. Correspondingly, more precise
names for the terms appearing in Eqs. (1.2.19) are the linear impulse and linear momen-
tum.

This is a vector relation, so taking components in each of the coordinate directions
will lead to three scalar equations, although some might be trivial, as in planar motion.
There are few situations in which all forces acting on a body are known as functions
solely of time, which is required if the impulse is to be evaluated. However, it might
happen that the forces acting in a certain direction are known functions of time, in which
case the linear impulse-momentum law may be invoked solely for that component.

A primary utility of the linear impulse-momentum principle is to treat systems ex-
cited by impulsive forces, that is, forces that impart a very large acceleration to a body
over a very short time interval. We split the resultant force acting on a particle into two
parts: Fimp is the resultant of the impulsive forces, and Fyq represents ordinary forces
whose magnitude is not much larger than mg. The peak magnitude in the impulsive
force, Fipax = max (Fimp) , must be much greater than the peak magnitude of the regular
forces in order for it to qualify as an impulsive force. Because one of the regular forces is
gravity, it follows that F;,.x/m must be much larger than g if a force is to be considered
to be impulsive. The velocity at time t;, when the impulsive force ceases, is related by
the linear impulse—-momentum principle to the velocity at #;, when the force first began
to act. Specifically,

I t
mvy = mvy + / 2 Fimpdt + / 2 Foradt. (1.2.20)
I n
Because the impulsive forces are much bigger than the ordinary forces, we may ignore
the impulse of the latter. Furthermore, in many situations, such as predicting the tra-
jectory of an object after a collision, we are not very interested in specific manner in
which the velocity changes between # and t,. This is especially true because of the
brevity of this time interval. Both observations lead to the idealized model of an im-
pulsive force, in which it is considered to act over a zero time interval, £, = #;, but to
still have the same impulse G as the actual force. The implication of a finite impulse
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being obtained over a zero time interval is that the force is infinite. We represent such a
force as

Fimp = G8 (1 — 1), (1.2.21)

where § (¢ — 1) is a Dirac delta function, which is defined by two basic properties:

t.
S(t—n)=0ift #n, /28(1 —n)dt=1ifty <t <t (1.2.22)
Iy

The consequences of using this model to analyze the motion of a particle is that (a) the
acceleration is infinite for one instant, (b) the velocity changes instantaneously, and (c)
the position changes continuously. (The latter feature follows from the facts that the ve-
locity is integrated to find the position and the velocity is finite.) As was mentioned, this
representation of an impulsive force is satisfactory for predicting the motion of the par-
ticle at any instant outside the brief interval when the impulsive force acts. At the same
time, the fact that the model considers an impulsive force to have an infinite magnitude
makes it inappropriate for any stress analysis task, such as designing a golf club.

In statics, we know that the resultant moment is as important as the resultant force.
Thus, let us investigate how the moment X My, of the resultant force about origin O of
a fixed reference frame is related to the acceleration. Application of the Second Law to
the resultant moment leads to

EMozfp/oxEF:fp/oxmﬁpr/oxm%. (1223)
We now bring the time derivative outside the cross product by compensating the equa-
tion with an appropriate term to maintain the identity, specifically,

-
"P/0 o . (1.2.24)

_ d
2M0= E(fp/o XWII_))—

However, the last term vanishes because dip,o/dt = v and the velocity is parallel to the
momentum mv. The remaining term on the right side of the equation is the time deriva-
tive of the moment about origin O of the linear momentum of the particle. We refer
to Fp;0 x mv as the moment of momentum. The more common name for this quantity
is the angular momentum, which refers to the fact that a moment is associated with a
rotational tendency. We use the symbol Fp to denote it. Thus,

Hp = Fpjo X muv, Mo = Ho, (1.2.25)

which is the derivative form of the angular impulse—-momentum principle. The integral
form is obtained by integration over an arbitrary interval #; < ¢ < t,, which leads to

[5)

(Ho), = (Ho), + / £ Mod. (12.26)
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The time integral of the moment is called the angular impulse of the resultant force.
Situations in which the angular impulse-momentum principle is needed to study the
motion of a particle are few. As is the case for its linear analog, the angular momentum
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principle for a particle might be useful to treat an impulsive force. Also, when the mo-
ment of the resultant force about an axis is zero, the principle yields a conservation
principle. Specifically, if the unit vector parallel to this axis is €, then

YMp-e=0 <= Hp-éis constant. (1.2.27)

This conservation principle was recognized by Kepler for planetary motion, and it is a
key part of the analysis of orbits. For us, the primary utility of the angular momentum
principle lies in the application of the derivative form, Eq. (1.2.25), to a rigid body. We
will find in Chapter 5 that the angular momentum of a body is directly related to its
rotation.

1.3 BIOGRAPHICAL PERSPECTIVE

As we proceed through the various topics, the names of some early scientists and mathe-
maticians will be encountered in a variety of contexts. The magnitude of the contribu-
tion of these pioneers cannot be overstated. Indeed, it is a testimonial to their ingenuity
that we continue to use so much of their work. A view of the historical relationship
among these researchers can greatly enhance our insight. The following discussion is an
informal chronological survey of deceased individuals whose names are associated with
concepts we will discuss. The goal here is to provide a brief overview of their life and
their technical contributions. As in all scientific endeavors, many others made important
contributions leading to those concepts. One objective of this survey is to introduce the
notion that the laws of dynamics are a natural philosophy, as well as an engineering dis-
cipline. Another perspective to be gained from this survey is that some of these pioneers
were active in a broad range of subjects, whereas others were specialists, but all were
important to the advancement of dynamics. The reader is encouraged to examine the
references for this chapter to fully appreciate how the subject evolved.

Galileo Galilei

Born 15 February 1564 in Pisa, Italy; died 8 January 1642. Galileo’s family moved to
Florence when he was 10 years old. His father forced him to enroll in the University
of Pisa for a medical degree in 1581, but Galileo focused on mathematics and natu-
ral philosophy. He left the university without receiving a degree and began teaching
mathematics in Siena in 1585. He worked there on the concept of center of gravity and
unsuccessfully sought an appointment at the University of Bologna on the basis of that
work. Galileo was named the Chair of Mathematics at the University of Pisa in 1589.
He became a professor of mathematics at the University of Padua in 1590, where he was
elevated to the post of Chief Mathematician in 1610.

Galileo is popularly known for experiments on gravity at the leaning tower of Pisa,
but there is no conclusive evidence that those experiments actually occurred. From his
measurements of the motion of pendulums, which led him to propose the use of a pen-
dulum to provide the time base for a clock, he deduced that gravitational and inertial
masses are identical. He refuted Aristotle’s ancient statements by observing that the
state of motion can be altered only by the presence of other bodies and that there is
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no unique inertial reference frame. In astronomy, he developed the astronomical tele-
scope, and used it for many pioneering observations. His last eight years were spent
under house arrest for advocating the Copernican view of the solar system, which held
that the Sun, rather than the Earth, is the center of the solar system.

Sir Isaac Newton

Born 4 January 1643 in Lincolnshire, England; died 31 March 1727. Newton’s father was
wealthy, but illiterate, and Newton was raised by his grandparents. He entered Trinity
College of Cambridge University in 1661 with the intent of earning a law degree, but be-
came interested in mathematics and natural philosophy. He earned a bachelor’s degree
from Cambridge University in 1665, but his academic record there was not particularly
distinguished. He returned to Lincolnshire shortly after graduation because of an out-
break of plague. His brilliance emerged there when he developed the fundamentals of
calculus. Newton returned to Cambridge University in 1667, where he was named the
Lucasian Chair in 1669. He was elected to Parliament in 1689 and retired from research
in 1693. He became Warden of the Mint in 1896 and was knighted in 1705.

In addition to his contributions in developing calculus, Newton made important con-
tributions to the refraction and diffraction of light. For us, his most important work is
the monumental Philosophiae naturalis principia mathematica, which is usually referred
to as the Principia. In it, he brought together the basic laws of motion, the universal law
of gravitation, the study of projectile motion, and of celestial orbits. Equally important,
it introduced the world to the scientific method by tying together mathematical hypoth-
esis and experimental observation. The revolutionary nature of Newton’s contributions
causes many to regard him as one of the two most important figures in science, rivaled
only by Albert Einstein.

Leonhard Euler

Born 15 April 1707 in Basel, Switzerland; died 18 September 1783. Euler studied phi-
losophy at the University of Basel, from which he earned a masters’s degree in 1723.
While there he became interested in mathematics, but much of his expertise in this sub-
ject was the result of self-instruction. He received an appointment at the University of
St. Petersburg, Russia, at the age of 19, and served as a medical lieutenant in the Russian
Navy from 1727 to 1730. In that year he was named a professor at the University of
St. Petersburg, which enabled him to leave the navy. He was named the senior chair in
1733, but left to go to the University of Berlin in 1743 because of negative sentiment for
foreigners in Russia. He became the Director of Mathematics when the Berlin Academy
was created in 1744. Euler returned to St. Petersburg in 1763 because of disagreements
with Frederich the Great. A failed operation led to his total blindness in 1771, but much
of his technical contributions come from the subsequent period.

Euler was quite prolific, with more than 350 publications in such diverse areas as
the calculus of variations, functional analysis, number theory, ordinary differential equa-
tions, differential geometry, cartography, orbital motion and trajectories, fluid mechan-
ics, and solid mechanics. For the subject of dynamics, his primary contribution is the
derivation of principles governing the kinematics and kinetics of rigid bodies. Euler was
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the most prolific mathematician of his century. By developing new mathematical prin-
ciples in order to solve physically meaningful problems he fathered the discipline of
mechanics. Unlike Newton, who created new concepts, much of Euler’s work can be
recognized as evolving from the efforts of his contemporaries.

Jean Le Rond d’Alembert
Born 17 November 1717 in Paris, France; died 29 October 1783. D’ Alembert was aban-
doned by his unmarried mother on the steps of the Church of St. Jean Le Rond, which
is the origin of his given name. He studied theology and mathematics at the Jansenist
College of Quatre Nations, from which he graduated as a lawyer in 1735. He continued
to study mathematics, with the result that he joined the Paris Académie des Sciences
in 1741, where he remained. He wrote most of the mathematical sections of the Ency-
clopédie, published in 1754, which is the year he was appointed to the French Académie.
D’Alembert’s interests eventually turned to literature, philosophy, and music theory.
D’Alembert made significant contributions to the study of partial differential equa-
tions and their application to solid and fluid mechanics, as well as to functional analysis.
Euler and d’Alembert initially held each other in high esteem, but the situation de-
teriorated in 1753. Nevertheless, many of Euler’s works descended from d’Alembert’s
concepts. A notable aspect is that d’Alembert was uncomfortable with Newton’s ap-
proach merging experiment and theory, with the result that the assumptions he made to
initiate an analysis were often erroneous. D’Alembert is associated with the notion of an
inertial force, —ma, which is a key concept for the development of analytical dynamics
principles. However, this attribution, and hence d’Alembert’s presence in this survey, is
questionable, which is an issue we will address in Chapter 7.

Joseph-Louis Lagrange
Born 25 January 1736 in Turin, Italy; died 10 April 1813. Lagrange initially studied clas-
sical Latin at the College of Turin, but turned to mathematics and physics in order to
pursue a financially sound career. Much of his knowledge in these subjects was the re-
sult of self-study, and his correspondences with Euler were very important for this ef-
fort. One consequence is that the works of Euler and Lagrange are intimately related.
Lagrange became a professor of mathematics at the Royal Artillery School in Turin in
1755. He was elected to the Berlin Academy in 1755 on the recommendation of Euler
and succeeded Euler as Director of Mathematics of that institution in 1766. Lagrange
joined the Paris Académie des Sciences in 1787. The following year saw the publica-
tion of his treatise Mécanique analytique, in which he used differential equations as the
framework for all of the primary developments in mechanics since Newton. Lagrange
became the first professor of analysis at the Ecole Polytechnique in Paris in 1794. He
was named a Count of the Empire and awarded the Legion of Honor by Napoleon in
1808. Although Lagrange’s heritage is Italian, the French consider him to be one of
their own.

Lagrange’s major contributions were to the calculus of variations and its applica-
tions to mechanics, the theory of equations, probability theory, number theory, ordi-
nary differential equations, wave propagation, and celestial mechanics. His dynamical
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equations of motion will be an essential element of our study here. Overall, Lagrange
can be credited as being the individual who initiated the usage of applied mathematical
tools to study dynamical systems.

Gaspard Gustave de Coriolis

Born 21 May 1792 in Paris, France; died 19 September 1843. Coriolis’ family fled to
Nancy, France, shortly after his birth to escape punishment during the French Revo-
lution. He attended the Ecole Polytechnique, then the Ecole des Ponts et Chausées in
Paris. His first position was an appointment in 1816 as a tutor in mathematical analysis
at the Ecole Polytechnique. In 1829 he became a professor of mechanics at the Ecole
Centrale des Artes et Manufactures, then returned to the Ecole Polytechnique in 1832,
where he became director of studies in 1838.

Coriolis’ contributions to dynamics are less significant than those of the other re-
searchers discussed here. His primary recognition stems from an explanation of the ac-
celeration observed from the perspective of a rotating reference frame. In addition, he
introduced the terms “work” and “energy” in their modern sense. He also contributed
to the study of collisions of bodies, hydraulics, and machine design.

Sir William Rowan Hamilton

Born 4 August 1805 in Dublin, Ireland; died 2 September 1865. Hamilton knew Latin,
Greek, and Hebrew by the age of five. He entered Trinity College in Dublin in 1823,
where he earned the ranking of “optime” in both science and classics, which was
unprecedented. At age 21, while still an undergraduate, he was named a professor
of astronomy, which was accompanied by the honorary title of Royal Astronomer of
Ireland. He wrote poetry, which he exchanged with his friend Wordsworth, who advised
Hamilton to remain a scientist. Hamilton remained at Trinity College for his whole ca-
reer. He was knighted in 1835 and, shortly before his death, became the first foreign
member of the U.S. National Academy of Sciences.

One of Hamilton’s specialties was the ray theory of optics, especially the phe-
nomenon of caustics. A primary contribution to dynamics was an alternative formulation
of equations of motion, which apparently grew out of an effort to apply ray theory to
dynamical systems. We also will encounter “Hamilton’s Principle,” which draws on con-
cepts from the calculus of variations to capture the Newtonian and Lagrangian forms
of the equations of motion. It has been invaluable for the development of finite ele-
ment analysis, yet can be extended to relativistic systems. Hamilton also developed the
algebra of quarternions, which has been employed in some areas of kinematics.

Edward John Routh

Born 20 January 1831 in Quebec, Canada; died 7 June 1907. Routh’s birth in Canada
was a consequence of his father being posted there by the English army. Routh went to
England in 1842 to enroll in University College, London, from which he earned a B.A.
in 1849 and an M.A. in 1853. The latter was accompanied by gold medals in mathemat-
ics and natural philosophy. He received a B.A. from Cambridge University in 1854, at
which time he was the Senior Wrangler in the Mathematics Tripos Exams. (The great
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physicist Maxwell came in second in that competition.) Routh was appointed to a lec-
tureship at Cambridge in 1855, which was the position he held for his whole career. He
became famous as a coach for the Tripos exams. For 22 years, starting in 1862, the Senior
Wrangler was coached by him. Over a 30-year period, Routh coached 700 students, of
whom 480 were named Wranglers out of a cohort of 900. Routh became a Fellow of the
Cambridge Philosophical Society in 1854, of the Royal Astronomical Society in 1866,
and of the Royal Society in 1872.

As aresearcher, Routh contributed to geometry, astronomy, and wave propagation.
His primary contribution for us is analysis of the dynamical behavior of rigid bodies. As
part of that effort, he formulated general tools for analyzing dynamic stability, which
proved also to be very useful for fluid mechanics.

Josiah Williard Gibbs

Born 11 February 1839 in New Haven, Connecticut; died 28 April 1903. Gibbs initially
focused on mathematics and Latin when he entered Yale University, but switched to
engineering. He received Yale’s first doctorate in engineering in 1863. From 1866 to
1869 he studied in Europe, then became a professor of mathematical physics at Yale in
1871, where he remained.

In today’s vernacular, he was a “late bloomer,” in that his first published work
appeared in 1873 when he was 34. His major contributions were in thermodynamics
and statistical mechanics. He also worked on the electromagnetic theory of light. An
alternative formulation of equations of motion, which is the aspect of his efforts that
causes him to be included here, was part of his efforts to apply vector analysis to physi-
cal systems.

Paul Emile Appell
Born 27 September 1855 in Strasbourg, France; died 24 October 1930. Appell’s family
moved to Nancy, France, when he was 16 as a consequence of the German annexation
of Alsace. There he became a lifelong friend of Poincaré. He entered in 1873 the Ecole
Normal Supérieure in Paris, and received a doctorate in mathematics in 1876. Appell
became the Chair of Mathematics at the University of Sorbonne in Paris in 1885. He
was ardently and actively patriotic for his whole life, as was manifested by his spying
activities for France during his frequent visits to his family in Alsace. He was elected
to the Académie des Sciences in 1892. He was dean of the Faculty of Science of the
University of Paris from 1903 to 1920, then served as its rector from 1920 to 1923.
Appell’s prolific research output emphasized the application of mathematical anal-
ysis to geometry and mechanics. His work tended to be refinements of existing concepts,
rather than new ones. The contribution that brings him to our attention is the develop-
ment of an alternative set of equations of motion, for which he shares attribution with
Gibbs.

Walther Ritz
Born 22 February 1878 in Sion, Switzerland; died 7 July 1909. Ritz entered the Federal
Polytechnic School in Zurich in 1897. His original intent was to study engineering, but he
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soon transferred to mathematics, where one of his classmates was Einstein. He moved to
Gottingen, Germany, where he did his thesis. Between 1901 and 1904 Ritz held positions
in Leiden, Bonn, and Paris. Despite tuberculosis, which caused him to return to Switzer-
land in 1907, he took on positions in Tiibingen, Germany, in 1907, and Géttingen, in
1908. Ritz’s most productive period of research came in his last two years. His life span
of 31 years is the shortest of the great physicists and mathematicians through the early
20th century. The only remorse he expressed as he was dying was that he would no
longer be able to advance science.

Ritz’s contributions to spectroscopy were vital to the development of quantum the-
ory, and his work in the general theory of electrodynamics was important to the devel-
opment of relativity theory. To explain the vibrations of elastic plates, Ritz applied an
analytical technique based on Hamilton’s Principle that he developed in his thesis on
atomic spectra. This technique proved to be quite general, and now is widely used. It
provides the foundation for finite element analysis. Interestingly, the only reason Ritz
was interested in plate vibrations was the possibility of winning a mathematical compe-
tition. The rest of his research was in atomic physics.

Perhaps the most remarkable aspect of the foregoing survey is the time span over which
these pioneers lived. The basic principles were essentially finalized more than a century
ago. However, the subject of mechanics is mature from only a philosophical view. De-
velopments since then have transferred the works of our predecessors from the realm
of physics and mathematics to engineering, thereby converting their contributions from
fundamentally straightforward principles and concepts to sophisticated analytical tools
capable of describing complex systems. One objective of this text is to show how far
we have come, but expanding the versatility of the analytical tools and their level of
sophistication continues to be a research focus.
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HOMEWORK PROBLEMS

EXERCISE 1.1 The rectangular plate is welded at cor-

ner A to the vertical shaft and braced by cable BC. The

tension in the cable is 5 kN. (a) Determine the compo- /ﬂ&

nents parallel to the edges of the plate of the force the C J//

cable applies to the plate. (b) Determine the moment |
|
|

about corner A of the force applied by the cable. (c)
Determine the moment about the axis of the shaft of 2m

the force applied by the cable. k/ 4m

Exercise 1.1

EXERCISE 1.2 The study of the kinematics of rigid bodies in Chapter 3 will show that
the accelerations of two points in a rigid body are related by ap =ds +a x /4 +
@ x (@ x Fp/a). At a certain instant F4,0 =i + j +km, Fgro =4 +2j — 3k m, a4 =
4 — 5]+ km/s?, @ =5i — 3] + 2k rad/s, @ = —20i + 10 — 40k rad/s>. Evaluate ap by
carrying out the calculation manually, then verify the result using mathematical soft-
ware.

EXERCISE 1.3 The Gibbs—Appell function for a rigid body is related to the instantaneous
angular velocity @ and angular acceleration @ by

1. 9AH
S:z&.a_tA_Fo‘l.(CDXHA),
Hy = (Lo — Lyoy — L)l + (Ijyo, — Lyo, — I,0;) |
+ (Izza)z — Lo — Iyza)y) ]2»
aH - -
8_tA = (Lo — Lyay — L) i + (Lyyoy — Lyay — Iyzay) |

+ (Izzaz — Lo, — ]yzay)kv
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where I, I,,, and I ; are the moments of inertia and I, I,;, and I,; are products
of inertia. Consider a situation in which @ = —50{ — 20k rad/s, @ = 1500{ — 500, +
1000k rad/s2. The nonzero inertia values are I, = 500, I,, =800, I; =300, and I,; =
—200 kg-m?. Evaluate S by carrying out the calculation manually, then verify the result
using mathematical software.

EXERCISE 1.4 Angular velocity @ is a fundamental property of the motion of rigid bod-
ies. In the Eulerian angle description, see Chapter 3, @ is the sum of three contributions
in directions defined by unit vectors &, &, and &; = k, such that @ = c¢1&; + c2&; + 3k,
with &, defined to be perpendicular to the plane containing &; and k. Consider the situ-
ation in which the angular velocity is @ = 70i + 110j + 500k rad/s and &; = —0.49137 —
0.7651j — 0.4161k. Determine the corresponding values of ¢y, ¢, and c3.

EXERCISE 1.5 The intersecting edges of a nonorthogonal parallelepiped are defined by
the position vectors 7 4 = —200 + 30] + 5k, Fcju =80 +25] + 10k, Fpja =4 — 2] —
15k mm. Determine the volume of this object.

EXERCISE 1.6 An affine coordinate system has unit vectors
that are not mutually orthogonal. The x and y axes in the
sketch constitute such a system for a planar situation. A vector
may be represented in terms of its contravariant components
relative to xy by constructing lines parallel to the respective
coordinate axes. Such a set of components are F! and F? for
the force vector in the sketch. The unit vectors parallel to the
x and y axes are €; and é,. This force can also be represented
in term of its Fy and Fy components relative to the Carte-
sian XY coordinate system whose X axis is coincident with x. Given that Fy = 500 N,
Fy =350 N, and 8 = 65°, use vector algebra to determine F' and F~.

Exercise 1.6

EXERCISE 1.7 The mass flow rate per unit surface area is the product of the density and
velocity at a point in space, and the mass flux per unit area is the component of the mass
flow rate parallel to the unit vector é that is normal to a surface. Consider a square sur-
face whose sides are 200 mm and whose normal is & = 0.6 + 0.8k. The velocity every-
where on this surface is = 80 cos (57¢)7 — 20 cos (107¢) j + 40sin (107¢) k m/s, where
t has units of seconds, and the density is 950 kg/m>. Determine how much mass flows
across the square in the interval 50 < ¢ < 100 ms.

EXERCISE 1.8 Polar coordinates in the xy plane are defined by the radial distance R and
the polar angle & measured from the x axis. The corresponding representation of posi-
tion is Fpyo = RcosOi + Rsin® j. Suppose that R = p + e sin (at) and 6 = at?/2. Deter-
mine the velocity of point P, then evaluate the components of this velocity parallel and
perpendicular to 7p, 0.

EXERCISE 1.9 Polar coordinates in the xy plane are defined by the radial distance R
and the polar angle 6 measured from the x axis. The corresponding representation of
position is 7p;o = Rcos6i + Rsinf j. Suppose that R and 6 are arbitrary functions of
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time. Derive formulas for the velocity of point P in terms of xyz components, then
evaluate the components of this velocity parallel and perpendicular to 7p; 0.

EXERCISE 1.10 The collar slides to the left as the inter- 1 R
connected bars swing in the vertical plane. The position =>—]

of the collar is x = 20sin (50¢) mm, and the angles are J Ly

01 = 0.27 cos (50¢t), 6, = 0.27 sin (50t — 7 /3) rad. De- 0, L,
termine the velocity of the lower end by differentiating A !
its position in terms of horizontal and vertical compo- 0,

nents. Exercise 1.10



CHAPTER 2

Particle Kinematics

This chapter develops some basic techniques for describing the motion of a point and
therefore of a particle. The procedures we follow are driven not merely by how the
point’s motion is described, but also by the information we seek. Each formulation
is based on describing vector quantities with respect to a different set of unit vectors.
Which description is best suited to a particular situation depends on a variety of factors,
but a primary consideration is whether the associated quantities, such as the coordi-
nates, naturally fit the known aspects of the motion. Ultimately we will find that it might
be beneficial to combine a variety of descriptions.

The various kinematical description that we use fall into two general classes. The
one that might seem to be the most natural is extrinsic coordinates, which means that
the description is extrinsic to knowledge of the path followed by the point. A simple
case is rectangular Cartesian coordinates, for which the position is know in terms of dis-
tances measured along three mutually orthogonal straight lines representing reference
directions. A variety of other extrinsic coordinate systems are in use. However, we be-
gin by studying intrinsic coordinates, in which knowledge of the path is fundamental to
the description of the motion. For example, the unit vectors for intrinsic coordinates are
defined in terms of the properties of the path. For this reason, intrinsic coordinates are
more commonly referred to as path variables.

2.1 PATH VARIABLES

The idea that the motion of a point should be described in terms of the properties of
its path may seem to be counterintuitive, in that the nature of the motion defines the
path. However, this is precisely the way in which one thinks when using a road map in
conjunction with the speedometer and odometer of an automobile. Another name for
this type of description is tangent and normal components, because those are the primary
component directions, as we shall see.

We assume that the path is known. The fundamental variable for a specified path
is the arc length s along this curve, measured from some starting point to the point of
interest. As shown in Fig. 2.1, measurement of s requires definition of positive sense
along the path. Negative s means that the point has receded, rather than advanced,
along its path. It is quite obvious from Fig. 2.1 that the position 7p,o is unambiguously
defined by the value of s. Furthermore, because s changes with time, the position is
an implicit function of time, Fp;0 =7 (s) and s = s (¢). (Mathematically, the preceding

30



2.1 Path Variables 31

Starting point

\(—\S( )

z

should be understood to indicate that the position is a vector function of the arc length,
which in turn is a scalar function of time.) It follows that the derivation of formulas for
velocity and acceleration will involve the chain rule for differentiation.
By definition, velocity is the rate of change of the position vector. Differentiating
the implicit description of position leads to
dr drds  dF

i=—=

(In the present context only one point is under consideration, so subscripts can be omit-
ted from the notation.) The quantity d7 /ds occurring in Eq. (2.1.1) is determined solely
by the nature of the dependence of the position vector on the path. Hence it is another
of the path variables.

By definition, acceleration is the rate of change of the velocity, so

_ dv dr . d [dr

To differentiate the last term we recall that d7/ds depends solely on s, so we invoke the
chain rule to find

dv  dif  , (d*F
S_dv_di o (T 2.1,
=yt (ds2> 213)

The second derivative, d*7/ds?, is another property of the path.

In the simple case of a straight path we can let the origin O be the starting point of
the path without loss of generality. Let & denote the constant orientation of the straight
path, so that 7 = se, and di /ds = é. Because ¢ is invariant in this case, d*7/ds*> = 0,
from which it follows that » = sé and a = sé. Thus the velocity and acceleration are
oriented parallel to the straight path. The key point here is that acceleration will not be
parallel to the velocity for a smooth curvilinear path, unless s = 0. Failure to recognize
this elementary fact is probably the most common mistake in the application of the path
variable approach to kinematics.

2.1.1 Tangent and Normal Components

To understand dr/ds for a curved path we consider Fig. 2.2, which shows the position
vector at two locations that are separated by a small arc length As. The displacement A7
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Figure 2.2. Tangent vector.

is the change of the point’s position as it moves from position s to s 4+ As,
A7 =F(s + As) — 7 (s). (2.1.4)

In the limit as As — ds, the magnitude of A7 equals ds because a chord progressively
approaches the curve. For the same reason, the direction of A7 approaches tangency
to the curve, in the sense of increasing s. This tangent direction is described by the unit
tangent vector é;. A unit vector has the dimensionless value 1 for magnitude, so

dr i AF

ds =AM as =% -
The tangent vector is one of three unit vectors used to describe vectorial quanti-
ties in terms of path variables. We encountered an aspect of the second unit vector in
Eq. (2.1.3), which featured d*7/ds> = dé,/ds. One basic property that is readily appar-
ent comes from the fact that ¢, is a unit vector, so ¢, - ¢, = 1. Differentiation of this

relation leads to
e - de. =0. (2.1.6)

ds

In other words, de, /ds is always perpendicular to ¢,. (Perpendicularity of a unit vector
and its derivative is a general property that will arise frequently.) We define the normal
direction, whose unit vector is denoted as é,,, to be parallel to to this derivative. Because
parallelism of two vectors corresponds to their proportionality, this definition may be

written as

e
&, = pd—es’. (2.1.7)

Because ¢, is a dimensionless unit vector, the factor of proportionality, p, may be found
from

1
p= AR (2.1.8)
ds

Dimensional consistency of Eq. (2.1.7) requires that p be a length parameter. It is the
radius of curvature.

There is a simple construction that explains Eq. (2.1.7) for a circular path having
radius R. In Fig. 2.3(a) tangent and normal vectors are placed at adjacent positions on
the circle. To construct the increment Aé, = &, (s + As) — ¢, (s), the tails of the two
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tangent vectors are brought into coincidence in Fig. 2.3(b), so that A¢, extends from the
head of & (s) to & (s + As). The angle between Aé; and either tangent vector is 7 /2 —
A6 /2. Because the triangle formed by the two unit vectors is isosceles with unit length,
and A6 is small, the length of A¢; is essentially A6. For a circular arc, the subtended
angle is A@ = As/R, so |Aé;| ~ As/R. In the limit as As — ds, the angle between A¢;
and either ¢, approaches 7 /2. Multiplying the magnitude of dé; by the unit vector for
its direction gives dé, = (ds/R) ,. Dividing this relation by ds leads to an equation that
exemplifies Eq. (2.1.7). In general, a quick way of visualizing the direction in which a
unit vector changes is to follow the tip of the unit vector as it moves when the parameter
0 changes.

In the case of an arbitrary path, ¢ and ¢, at any point along the curve form the
osculating plane. The generalization of the center of a circle is the center of curvature,
which is situated in the osculating plane at a distance p in the normal direction from the
corresponding point on the curve. In some situations, such as one in which it is necessary
to design a curve to meet a certain specification, the foregoing allows us to determine
this location according to

Feenter = fP/O (S) + ,06_;1. (219)

When we substitute Egs. (2.1.5) and (2.1.7) into the basic formulas for velocity and
acceleration, we find that

2 (2.1.10)

The scalar quantity v is the speed of the particle. These relations, which apply to all
paths, contain much information. The first of Egs. (2.1.10) indicates that the speed is the
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magnitude of the velocity; the second equation states that it is the rate of increase of the
distance traveled along the path. In the example of the automobile, the speedometer
tells us the instantaneous speed of the vehicle. As noted, v is a scalar, and it is usually
considered to be a positive number in common parlance. However, when we use v an-
alytically, it can be either positive or negative. A negative value of v when s is positive
indicates that the point is returning to the starting point after traveling a certain positive
distance along the path. In contrast, a negative value of v when s is negative indicates
that the point is receding farther from the starting point. The rate of change of the speed
is readily obtained if v is known as a function of time, but in some situations, the speed
might be known as a function of position, v (s), in which case the chain rule for differ-
entiation leads to

V= Z_:%ZU%' (2.1.11)

The velocity and acceleration always lie in the osculating plane formed by ¢, and ¢é,,,
but that plane is constant only if the path is planar. Otherwise, the osculating plane twists
around as the point moves along its path. There is only a tangential velocity component,
whereas both acceleration components exist unless v is constant, or the path is straight,
in which case p is infinite. Recall that a vector is constant only if its magnitude and
direction are constant. The normal acceleration component is the consequence of the
changing direction of the velocity vector. This component is always oriented toward the
center of curvature because that is the direction in which the tip of the velocity vector
moves. The tangential acceleration results from changing the speed. Increasing v when
v is positive, or decreasing the magnitude of negative v, produces a positive tangential
acceleration.

The development thus far might seem to be paradoxical in light of Newton’s Second
Law, for we know that forces can act on a particle in three directions, but there are
only two acceleration components. However, buried in the path variable derivation is
the fact that there is another direction, perpendicular to the osculating plane. This is
the binormal direction, which is denoted as é,. We can determine this direction in any
situation by a cross product of the tangent and normal unit vectors,

ey =& X ép. (2.1.12)

One of the uses of the binormal direction arises when we apply Newton’s Second Law
to a particle. Because two vectors can be equal only when their respective components
match, we find that

SF,=XF.é =mv,

SF, (2.1.13)

I
™M
ny]
s
Il
3
|

SE=XF.¢ =0.
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The last of Egs. (2.1.13) shows that there must be a force balance perpendicular to the
osculating plane. Also note that, according to the second equation, there must be a net
force pushing inward toward the center of curvature, because the changing direction of
acceleration is always directed toward that point.

Equations (2.1.13) form a set of equations of motion. Each type of kinematical de-
scription leads to a different form of these equations. In general, there are three classes
of problems involving equations of motion. In the simplest, all aspects of the motion are
specified, so that the forces required for the motion may be found algebraically after the
acceleration has been determined by use of the appropriate kinematical formulas. The
second class of problems occurs when all forces acting on a system are known. The equa-
tions of motion then represent differential equations, which may be solved by analytical
or numerical methods. The third class of problems is a mixture of the first two, in that
some forces are known and some aspects of the motion are specified.

In most situations in which path variables are useful there will be forces acting in
the normal and binormal directions whose role is to prevent the particle from moving
off the designated path. Both forces have unknown magnitudes that adjust to provide
the centripetal acceleration in the presence of the other forces. Such forces are some-
times referred to as reactions, but we usually will use the more descriptive term con-
straint forces. If v is specified, the tangential equation of motion may be solved for a
force causing the particle to move along the path. The more interesting condition is that
in which the tangential forces are known, in which case that equation of motion is an
ordinary differential equation. The tangential resultant force might depend on ¢, which
could characterize a force that we control. This resultant force might also depend on s,
which would be the case for a spring force, or it might depend on v, as in the case of any
frictional resistance. Thus £ F, = f (t, s, v) in the most general situation. The tangential
equation of motion then is a second-order differential equation, ms = f (¢, s, $). This
equation is readily solved if f is linear in s and § and the dependence on ¢ is not too
complicated. Other situations might require numerical methods, such as Runge—Kutta
integration.

If f depends on only one variable, then we may obtain v and s by separating vari-
ables. Specifically, if the resultant force depends solely on ¢, we replace § with dv/dt, so
that separating variables leads to

mdv = f(t)dt. (2.1.14)

A definite integration whose lower limits are the initial conditions yields the speed
as a function of time, v = g (¢). Because v = ds/dt, separating variables here gives
ds = g (t)dt, whose integration leads to s as a function of time. When the resultant
force depends solely on s, we use Eq. (2.1.11) to replace §. The separated form of the
tangential equation then is

mvdv = f(s)ds. (2.1.15)

The definite integral of this differential form can be solved for v as a function of s,
v =g (s). Separation of variables by use of v = ds/dt = g (s) leads to ds/g (s) = dt,
which may be integrated to find the value of ¢ for a specified s. The third case, in which
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Y F, = f(v), may also be addressed by use of Eq. (2.1.11). The separated form of the
equation of motion then is

vdv
m-—— =
f ()
Definite integration of this expression gives s as a function of v, s = & (v). Inversion

gives v = h~! (s), which is the same type of dependency as the one obtained when X F, =
f (s), so determination of s as a function of ¢ can proceed as discussed for that case.

ds. (2.1.16)

ETULTEXI At the instant when the 5-kg particle is at position A, it has a
velocity of 500 m/s directed from point A to point B and an acceleration of 10g di-
rected from point A to point O. Determine the corresponding rate of change of the
speed, the radius of curvature of the path, and the location of the center of curvature
of the path. Also determine the tangent, normal, and binormal components of the
resultant force acting on the particle.

Example 2.1

SOLUTION This example demonstrates how one can extract path variable informa-
tion when the velocity and acceleration are known. The idea is to make the velocity
and acceleration fit the fundamental formulas for path variables. The given vectors
are

o = 500¢p/ 4 m/s, a=10(9.807)é0, 4 m/s>.
The unit vectors are defined by the positions of the end points, according to
Faj0 = 4cos60°(cos 75° + sin 75° j) + 4 sin 60°k
= 0.5176 + 1.9319] + 3.464k m,

fB/O = 4l_,
Cpya = BA _ TBIOTTAIO 65087 036607 — 0.6563K,
754l |FB10 =T as0]
Goja = — A0 — _0.12947 — 0.48307 — 0.8660%.

[Fasol
In general, v = vé;, from which it follows that

e =épa =0.65981 —0.3660;] — 0.6563k.
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Then, because v is the tangential component of acceleration, we find
0 =a-& =98.07¢0,4 - €54 = 64.70 m/s”. <

We may evaluate the normal acceleration by forming the difference between a and
vé,, specifically,
02
—e, =a—ve = 98.076_0/,4 — 64.7053/,4
o
= —55.38i — 23.68] — 42.47k m/s’.
The values of p and ¢,, come from the magnitude and direction of the normal accel-
eration component,
2
Lo (55.38% +23.69% + 42.47%)1/2 = 73.70 m/s?,
I

U2

~ 7370
g, = =38 = 3;33] — 42Tk _ 075157 — 0.3213] — 0.5762F.

To locate the center of curvature C we recall Eq. (2.1.9):

= 3392 m, <

P

Fejo =Fajo+ pe, = —25491 —1088) — 1951k m. <

In general, if a problem involves forces we should draw a free-body diagram.
However, the forces in the present case are straightforward. The gravity force is
mg in the negative k direction. In addition, there is a force tangent to the path,
which changes the speed, and there may be normal and binormal components of
a contact force that prevent the particle from moving perpendicularly to the path.
Thus Newton’s Second Law is

2

TF=-509.807)k + F.é; + F.én + Fyep =5 (i)e', + v—e‘,,) :
P
Expressions for ¢, and ¢, have been found. We evaluate é;, from the cross product:
e, =¢, x &, =0.8734j — 0.4871k.

To find the force components we use a dot product of the resultant force and each
of the unit vectors,

Y F - & = —49.035(—0.6563) + F, = 5v,

2
SF &, = —49.035(—0.5763) + F, = 5,
0

X F e, =—49.035(-0.4871) + F, = 0,
from which we obtain

F,=2913, F,=3402, F,=-239N. <

37
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2.1.2 Parametric Description of Curves

If we encountered only circular paths, the development thus far would suffice. However,
many interesting motions occur along noncircular paths; indeed, the path might not even
lie in a plane. A particularly useful description specifies a path in parametric form. This
means that some algebraic variable, which we denote as «, is considered to cover a range
of values, and that the rectangular Cartesian coordinates, x, y, z, of a point on the path
are stated as functions of «. It is important to realize that & does not necessarily have
any physical significance. (A special case is that in which « is the time ¢. In that case
the formulation reduces to a straightforward Cartesian coordinate description, which is
treated in the next section.) The position vector may be written in component form,

F=x(a) + y(a)j + z(x)k, (2.1.17)

where x (), y(«), and z(«) are the stated parametric functions.
Because the position is indicated to be a function of «, evaluating &, according to
Eq. (2.1.5) requires the chain rule,

dar B do dr
ds  ds do

7’
N

where it is convenient to use a prime to denote differentiation with respect to the pa-
rameter «, so that

Fl=

=B (2.1.19)
(07

f T a3 /T,
_—= k, =
T Xt+y'j+z s p
The quantity s” seldom has physical significance. Its value must be such that ¢, is a unit
vector, || = 1, which yields

e - e 1. (2.1.20)

Consequently, we find that

v= = [ 4] (2.121)

In addition to enabling us to evaluate &, according to Eq. (2.1.18), integrating this ex-
pression enables us to determine the arc length to any position on the path in terms of
the parameter, according to

s@n= [ [er+07+ @] da 12)

where «y is the value at the starting position at which s = 0, and « p is the value at the
position of interest.
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The next step is to find ¢, and p. Equation (2.1.18) gives &, as a function of «, so
forming Eq. (2.1.7) requires differentiation by use of the chain rule, such that

de_z da de, P dét

= p—— = p— — = ——. 2.1.23
€n=p ds  Pdsda 5 da ( )
We find dé; /du by differentiating Eq. (2.1.18) with the result that
n Fs" —F's"). (2.1.24)
TG )
This may be simplified by using Eq. (2.1.21) to write
v B 1/2 ’7/.,7// _’7/'}7//
s =[] = ERT (2.1.25)
so that
&, = [ ') —F (7' r-")] , (2.1.26)

(s
This expression is close to what we seek, except that the radius of curvature remains
to be determined. For this, we impose the requirement that ¢, be a unit vector. Using a
dot product to form the magnitude of this expression leads to

=7 ,) [(‘” FE) 2@ FR Y R E Y] @12))

which simplifies to

p= ()’ . (2.1.28)

PRy ——

In turn, substitution of this expression into the preceding equation for &, leads to

S0 (NS m (A
&, = Ot N G . (2.1.29)

T

Equations (2.1.18), (2.1.21), (2.1.28), and (2.1.29) are readily evaluated when the
position function is specified in the form of Eq. (2.1.17). However, in some situations it
might be somewhat easier to forego applying these formulas, and instead use the basic
path variable formulas, Egs. (2.1.5) and (2.1.7) in conjunction with the requirement that
¢; and é,, be unit vectors.

In the parametric formulation the path variable unit vectors are described in terms
of rectangular Cartesian coordinates. However, in some situations it might be sufficient
to describe these directions merely by sketching them relative to the path. This would
be especially true in cases in which the path is straight or circular. Overall, a key aspect
is that knowledge of the path followed by a point does not necessarily mean that path
variables are the appropriate formulation. Selection of an appropriate kinematical de-
scription requires recognition of how the point proceeds along the path. Path variables
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are likely to be useful if the path is specified and movement along the path is described
in terms of the arc length or speed. This is a central theme of our further studies.

A standard description of a planar curve defines y as a function of
x, thatis, y = y(x), and z = 0. Derive expressions for the tangent and normal unit
vectors and the radius of curvature of the path.

SOLUTION This example is used to demonstrate the application of the general path
variable expressions, rather than merely substituting into the parametric equa-
tions. The formulas that result can be quite useful. To match the given functional
form to the standard parametric representation, we consider o = x, so that x’ =1,
y’' =dy/dx, and 7 = 0. It follows that 7' = i + (dy/dx) j, which combined with the

requirement that |é;| = 1 leads to
dr d
_ ol y =
(dx) !
ds

SR T s’
i (2.1.30)
12
/_ds_,_ dyT_ dy2

Differentiation of ¢, with respect to s by use of the chain rule gives

From the second of Egs. (2.1.30) we find that
dy d*y
§ = dx dx?

@7

5o P &y —d—yi'+f
" (s)*dx? \ dx ’

Because ¢, is a unit vector, it must be that

2 2.\ 2 2
o 0 dy dy
=2 (E2) |1+ (Z2) | =1
o= o (dx2> [ +<dx>]

which reduces ¢,, to
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172
In view of the fact that s’ = [1 + (dy/dx)z] , solving the preceding expression for

32
e (2Y /
dx
d’y
dx?
which is the same as the formula derived in a course on calculus. Back substitution
of p into the preceding expression for ¢, leads to

p gives

p= , (2.1.31)

i) 1/ d &2 Dy

_ dx? a4 __y-— =\ _ _y dx

on = d’y S’( dxl+]) _Sgn<dx2) dy\? 12> (2.132)
o [”(a)]

where sgn( ) denotes the signum function, that is, the sign of the argument. It tells
us the sense in which the normal vector is perpendicular to the tangent vector. If
d?y/dx? is positive, which means that the slope increases with increasing x, then &,
will have a positive &, component.

Two simple checks are available. The first verifies that both é; and ¢,, have unit
magnitudes, which may be done by comparing &, - ¢; and ¢é,, - €, to unity. The second
check verifies that the unit vectors are orthogonal, which can be verified by ascer-
taining that ¢, - €, = 0.

ETULTEXN A particle follows the path defined by x = 0.28cos (), y =

0.28sin(B), and z=0.18%, where each coordinate is measured in meters. The
speed depends on time ¢ (in seconds) according to v = 20¢ m/s, and the particle was
at the origin when ¢t = 0. Determine the velocity and acceleration of the particle
when ¢ = 0.5 s. Also describe the path.

SOLUTION This problem is quite intricate. It will serve to illustrate the application
of most of the relevant relations and also to highlight the thought process needed to
implement these relations. We begin by observing that the path is specified in para-
metric form, with 8 as the parameter. Furthermore, the value of 8 for the position
of interest is not specified. To determine this value we need to follow an inverse pro-
cess, in which we use the given function v (¢) to determine s at t = 0.5 s, then solve
the relation for s in terms of B to determine the corresponding value of the param-
eter. After that, the remainder of the work reduces to straightforward calculations.
The speed increases at a constant rate and s = 0 at = 0, so we have

v=20f = s=10?, v =20.

M
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Setting ¢ = 0.5 s shows that the values at the position of interest are
s=25m, v=10m/s, »=20m/s".
The derivatives of the coordinate functions are
x'=02[cos(B) — Bsin(B)], x”"=02[-2sin(B)— Bcos(B)].

y'=02[sin(B) + pcos(B)], y"=02[2cos(p)— psin(B)],
7=028, Z'=02.

The first derivatives are the components of 7', so

1/2
s = [(x/)Z + (y/)2 + (Z/)2]
—02(282+1)"".
We find s as a function of 8 by integrating the preceding. Setting x = y = z = 0 for
the starting position reveals that 8 = 0 there, so that is the lower limit for a definite
integral. Thus,

Bp
s(Bp) = /O 02 (28% +1)"2dp =018 (283 +1)"" + 0.05v/2sinh ™" («/Eﬁp) :

The root-finding function of our mathematical software can be used to find the value
of B p for which s = 2.5 m. To do so we need a starting value of 8, which we can
obtain by graphing s for a range of . From the graph, we see that a good starting
value is 8 p = 4. The root finder then yields 8 p = 4.026. (It should be mentioned that
if one encounters a situation for which it is not possible to integrate s'd 8 analytically,
numerical integration can be used to determine s at a set of 8 values.)

B O

Graph of arc length as a function of the param-
eter B.

The values of 7’ and 7” corresponding to this value of 8 p are
Fl=x1+y'j+ 7k =0.4962i —0.6650] + 0.8052k,
F"=x"I+y"j+ 7'k =0.8197 +0.3995] + 0.20k,
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and s’ (B p) = 1.1489. Substitution of these values into Egs. (2.1.18), (2.1.29), and
(2.1.28) yields

e = 0.4292; — 0.5751 + 0.6965k,
€, = 0.7975i 4+ 0.6033 ] + 0.0068k,
p = 1.5226 m.
The basic kinematical formulas, Egs. (2.1.10), correspondingly give
U =4.292i —5.751j + 6.965k m/s,
a = 60.96i 4 28.1237 4 14.38k m/s’.

<

The last task is to describe the path. We observe that x and y are respec-
tively proportional to cos(B) and sin(B), and recall that (x> + yz)l/ ®is the dis-
tance to the z axis. This suggests that we consider polar coordinates, with the po-
lar angle defined by tan6 = y/x = tan 8, so we take & = B. Thus the radial distance
R=(x*+ yz)l/ ? — 0.2, which means that the projection of the path onto the xy
plane is a linearly increasing spiral. The axial distance becomes z = 0.16> = 2.5,
which tells us that the distance along the z axis increases as the square of the per-
pendicular distance from the z axis. In other words, the path seems to be a rapidly
expanding helical-type path that wraps around the z axis.

2.1.3 Binormal Direction and Torsion of a Curve

The development thus far is adequate to determine the velocity and acceleration. How-
ever, additional study of the unit vectors will enhance our understanding of the prop-
erties of curves. Because ¢, and ¢, are situated in the osculating plane, the binormal
direction &, was introduced to resolve an arbitrary vector, such as the resultant force
acting on a particle. This direction was defined by use of a cross product, &, = &, x é,.
However, it also is possible to express é;, in terms of derivatives of the other path variable
unit vectors, which leads to an expression that parallels the definitions of ¢, and ¢,

The component of an arbitrary vector in a specific direction may be obtained from
a dot product with a unit vector in that direction. Multiplying each component by the
corresponding unit vector and adding the individual contributions then reproduces the
original vector. Applying this notion to the description of the derivative of ¢, gives

dey, de, _\_  (de, _\ . den '\ .
s = (K . 61) e+ (% : En) én + (% : eb) €p- (2.1.33)

We obtain the tangential component in Eq. (2.1.33) from the orthogonality of the unit
vectors, which requires that ¢, - &, = 0, so that

de, de 1 1
d—:-é,:—én-d—;:—én~<;e"n> = (2.1.34)
Similarly, because ¢, - €, = 1, we find that
dey,
N -} (2.1.35)

ds
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The binormal component in Eq. (2.1.33) is generally nonzero; its value is defined to
be the reciprocal of the path’s forsion t:

de, . _1
ds "T T

The reciprocal is used here for consistency with Eq. (2.1.7), such that 7 has the dimension
of length. Substitution of Egs. (2.1.34)—(2.1.36) into Eq. (2.1.33) results in

(2.1.36)

de, 1 1
=——& + —6p. 2.1.37
ds pe[ + reb ( )

The derivative of €, may be obtained by a similar approach. The decomposition of

dey/ds is
dep dep, _\ _ dey, _\ _ de, _\ _
0 =2 — .2, ) e, —_— . 2.1.
I <ds e,) e + ( s e )e + ( s €b> €b (2.1.38)

The fact that ¢, ¢,, and ¢, are mutually orthogonal, in combination with Egs. (2.1.7) and
(2.1.37), yields

0 de, _ de; 1 0
€p- e = :>ds e = —2¢p ds b e, =0,
de de 1 1 1
ep-ey =0 = ﬁ “lp=—26p- o =€ <_—€_, + _e_b) - (2139)
ds ds 0 T T
de
ep-ep=0 = i e, =0
ds
It follows that
de, 1
e _ _Ze. (2.1.40)
ds T

Because ¢, is a unit vector, this relation provides an alternative to Eq. (2.1.36) for the
torsion:

dey
ds

1
T

. (2.1.41)

Equations (2.1.7), (2.1.37), and (2.1.40) are Frenet’s formulas for a spatial curve.
The first one shows that a small advancement along the path primarily changes the tan-
gent vector in the normal direction. The osculating plane is formed from é; and ¢,,. We
therefore may consider this plane to be the tangent plane that most closely fits the curve
at the position of interest. Equation (2.1.40) shows that small increments in s primar-
ily change the binormal vector in the direction of é,. This is equivalent to a rotation of
the osculating plane about the tangent direction, which is the source of the terminology
“torsion.” The osculating plane is constant for a planar curve, which corresponds to an
infinite value of t. The greater the degree to which a curve is twisted in space, the smaller
will be the value of 7. In a similar vein, p measures the amount by which the curve bends
in the osculating plane. A small value of p corresponds to a highly bent curve, and p is
infinite for a straight line.
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2.2 RECTANGULAR CARTESIAN COORDINATES

We now turn our attention to extrinsic coordinate systems, in which all properties are de-
fined independently of knowledge of the path. The simplest set of extrinsic coordinates
is rectangular Cartesian coordinates. These are associated with orthogonal xyz axes that
are right-handed by convention. Situations in which such coordinates might be suitable
are recognizable by the fact that vectors (position, velocity, force, etc.) are described
in terms of components with respect to fixed directions, such as left-right and up—down.
Figure 2.4 shows that the components of the position vector are merely the (x, y, z) coor-
dinates. This may be established by either of two alternatives. The position of the point
may be projected onto each of the three coordinate planes, after which each projection
point is itself projected onto the coordinate axes of that plane. The projection lines form
a box, for which the position vector 7 is a main diagonal. The second construction drops
a perpendicular from the point onto each of the coordinate axes. The perpendiculars
form the diagonals of each face of the box formed in the first construction.

Figure 2.4. Rectangular Cartesian coordinates.

Each coordinate may be a function of time, so the position is given by

Fpro=x(t)i + y(t)] + z(t)k. (2.2.1)

Differentiating this expression is a simple matter because the unit vectors are constant.
Thus, the velocity is given by

U=vd +v,] + vk,
o (2.2.2)
Uy =X, vy=Yy, V=12,
from which it follows that the acceleration is
a=ay+ayj+ak,
S (2.2.3)
ay=vy =X, ay,=v,=y, a,=v;,=12

A notable feature of these relations is that the motions in the x, y, and z are uncou-
pled inertially. Specifically, the acceleration in one direction does not contain the other
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coordinates. One way of regarding this result conceptually is to think of it as a super-
position of rectilinear (i.e., straight line) motions in each of the coordinate directions.
However, one should not infer from this observation that the motions in the three direc-
tions are independent. This becomes evident when we formulate Newton’s Second Law
in terms of components relative to the xyz axes:

™
i

YF, = | = mX,
TF,=3%F . j=mj, (2.2.4)

SF,=3%F -k =m:z

The force components might be known as functions of time, but they also can depend
on the x, y, and/or z coordinates of the particle’s location, as well as the x, y, and/or 2
velocity components. Thus, if these dependencies are known, Eqs. (2.2.4) can represent
as many as three coupled ordinary differential equations whose solution is the position
coordinates of the particle as a function of time.

In fully uncoupled situations the resultant force components depend solely on the
corresponding position or velocity coordinate. For example, suppose ¥ = f (x, vy, t).
This constitutes a differential equation for x because v, = x. The techniques for sep-
arating variables that were described in the context of path variables, specifically Eqgs.
(2.1.14)—(2.1.16), are directly applicable here. If the force components couple motion in
different directions, an analytical solution might be obtainable if all terms depend lin-
early on the position coordinates and their time derivatives. Of course, if analytical tech-
niques do not seem promising, one can always solve the differential equations of motion
numerically. Numerical solution techniques are discussed in Sections 7.6 and 8.2.

Not surprisingly, the simplicity of Cartesian coordinate formulation limits its useful-
ness. Practical situations in which the motion is given in terms of fixed directions are not
abundant. The most common involves projectile motion near the Earth’s surface. In that
case the force of gravity is considered to act in the downward vertical direction, which
means that the acceleration is always downward. Even this case breaks down when one
wishes to treat the motion more accurately. For example, if it is desired to account for
air resistance, the resistance force is always opposite the velocity. Such a force is read-
ily described in path variables as —f¢é;. The description of projectile motion in terms of
Cartesian coordinates also encounters difficulty when the motion covers a long range,
as is the case for ballistic missiles. Then the gravitational force is always directed toward
a fixed point, rather than having a fixed direction. A kinematical description using po-
lar coordinates, see the next section, is more suitable to this type of consideration. The
corresponding analysis is orbital motion.

A 10-mg dust particle is injected into an electrostatic precipitator
with an initial velocity of 20 m/s, as shown. The z axis is vertical and the attractive
force on the particle is 1.6 — 4y mN acting in the positive y direction, where y is
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measured in meters. Determine the location and velocity at which the dust par-
ticle will strike a collector plate that is situated in the vertical plane defined by
y = 400 mm.

Example 2.4

SOLUTION In addition to showing how a decomposition of forces into a set of
components can lead to differential equations governing the movement of a par-
ticle, a primary intent of this example is to emphasize that constant acceleration
rates are the exceptional case. The forces acting on the particle are its weight
and the electrostatic force, both of which act in fixed directions. It is for this rea-
son that we employ Cartesian coordinates. Forming ¥ F = ma in units of newtons
gives

(1.6 — 4y) (107%) 7 — 10 (107°) (9.807)k = 10 (10~°) a. 1)

We proceed to take components of this equation in the three coordinate di-
rections. We have an alternative here, depending on whether we consider a to be
the first derivative of velocity or the second derivative of position. In the former
viewpoint we substitute @ = vyi + v, ] + vk, which yields

0y =0, b, =160— 400y, i, = —9.807. )

These are first-order differential equations for the velocity components. The ac-
celerations are constant in the first and third equations, so they may be integrated
directly. In the second equation the acceleration rate depends on the correspond-
ing distance, so we may solve this equation by changing s to y in Eq. (2.1.15). Note
that integrating the equations in this manner yields solutions for the rate variables.
Replacing each rate variable with its definition, that is, v, = %, v, = y, and v, = 2,
leads to another set of differential equations for the position coordinates.

The second of the aforementioned approaches entails writing @ = ¥i + yj + zk,
which leads to

#=0, y=160—400y, z=—9.807. 3)

We now have three second-order differential equations of motion. Either approach
is suitable in this problem because analytical solutions are readily obtained. We
shall follow the latter one here because it directly yields the position coordinates
as functions of time. In other situations, the first-order approach might be easier to
implement.

47
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Equations (3) are linear and second order, with constant coefficients. We obtain
the initial conditions by setting 7o = 0 for launch at the origin, so the initial coor-
dinates are xp = yy = zp = 0. Resolving the given initial velocity into components

along the coordinate axes gives
vy = 20 cos 45°(cos 20°i — sin 20° ) + 20sin45°k @
4
= 13.289; — 4.837; + 14.142k.

The components of this velocity are the scalar initial values: Xy = 13.289 m/s, yo =
—4.837 ms/s, 7o = 14.142 m/s at t = 0.
Integrating the first of Egs. (3) twice gives

X = cit + ¢;.
This expression must match the initial values xy and Xo, which requires that ¢; =
13.289, ¢, = 0. Integrating the third of Egs. (3) twice gives
1
z=-3 (9.807) t* + c3t + c4.

We find the integration constants by matching this expression to the initial values z
and zy, which gives c3 = 14.142, ¢4 = 0. The second of Eqgs. (3) is a standard differ-
ential equation, y + 400y = 160, whose general solution is

y = ¢s5cos (20¢t) + ¢¢ sin (20¢) + 0.4.

Equating y and y from this relation to the initial conditions at ¢t = 0 yields ¢s = —0.4,
c6 = —0.2418. Thus the Cartesian coordinates of the particle as functions of time are
x =13.289, y = —0.4cos(20r) — 0.2418sin (20¢) + 0.4, )

7= —4.9035¢> + 14.142¢ m.

Now that we have determined the response as a function of time, we may study
its properties. We find the instant ¢y when the particle hits the collector plate by
setting y = 0.4 for ¢ > 0, which occurs when

—0.4 cos (20t7) — 0.2418sin (20ty) = 0 = tan (20t) = —1.6543.
The smallest positive root corresponds to
20t; = tan~! (—1.6543) = —1.0270 + =,
tr =0.10573s.
Evaluating the position components for that instant yields
x =1.4050, y=04, z=14404m. <

We obtain the final velocity components by differentiating Eqs. (5) and then evalu-
ating the results at ¢ . This gives

X =13.289, y=29.348, z=13.105m/s. <

Particle Kinematics
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ETUTEXE A right circular cone is defined by x? + y> = 922, (x, y, and z
have units of millimeters). The vertical position of a block sliding along the inte-
rior of such a cone is observed to be z = 480 — 80¢%, and x = y?/200. Also, y > 0
throughout the motion. Determine the velocity and acceleration of the block when
t=2s.

SOLUTION In addition to demonstrating the application of the basic Cartesian co-
ordinate formulas, this example shows how one can beneficially use implicit differ-
entiation. Because the intersection of two functions relating x, y, and z is a curve,
the functions for the conical surface and for x in terms of y specify the path of the
particle. In the present situation x = y?/200, which is a parabola whose axis of sym-
metry is x, describes the projection of the path onto the xy plane. The equation
for the cone then gives the z value corresponding to a specified x, y pair. We elect
to use Cartesian coordinates, rather than path variables, because the second of the
given relations prescribes the movement in terms of the distance along the z axis.
We could simplify the functional relationships by using the first and third equations
to relate y solely to z, but this is not done in order to demonstrate how one could
handle truly complicated functional relations.
The given position equations with x, y, and z in meters are

7=0.480 —0.080r>, x=5y>, x*+y*=9m. 1)
Differentiation of these expressions yields relations governing x, y, and z:
z=-0.16t, x=10yy, xx+yy=9zz (2)
A second differentiation leads to

7=-0.16, i =10(yy+ y?), G)
3
xi+ X2+ yy+ y* = 9zz + ).
We may solve Egs. (1) for x, y, and z at a specified ¢. Then Egs. (2) become a set
of linear equations for the corresponding first derivatives, which may be written in
matrix form as

0 0 1 —0.16¢
X
1 —-10y O = 0 . 4
Vi
X y —9z 0

After these equations are satisfied, Egs. (3) become simultaneous linear equations
for the second derivatives, specifically,

0 0 1 X —0.16
1 —-10y 0 yr= 10y? . (5)

x y  -9z] 1z 972 — #2 — y?

49



50 Particle Kinematics

We begin by substituting the first and second of Egs. (1) into the third equation,
which yields 25y* + y? = 9 (0.08t2)2. We retain the real root of this equation at t = 2
satisfying y > 0, and then evaluate the corresponding x,

x=0.3903, y=0.2794, z=0.160m. (6)
These values are substituted into Eqs. (4), whose solution at t = 2 is
x =-0.9398, y=-03364, z=-0.32m/s. (7)
Finally, we substitute Egs. (6) and (7) into Egs. (5), which yield
¥ =-03917, j=-0.5452, %= —0.160m/s*,
The derivatives are the respective components of the velocity and acceleration, so

v = —0.9398/ — 0.3364] — 0.320k m/s,
<
a = —0.3917f — 0.5452] — 0.160k m/s*.

2.3 CURVILINEAR COORDINATES

Cartesian coordinates specify the location of a point by giving three numbers that are
distances along the coordinate axes. Curvilinear coordinates also use a triad of param-
eters to locate a point, but they generalize the description by allowing the unit vectors
associated with these parameters to be variable. Let «, 8, and y be the three parameters,
such that there is a unique transformation between the («, 8, y) values and the (x, y, z)
rectangular Cartesian coordinates. The general form of this transformation is

x=x(a,B,v), y=ylpBy), z=zap ). (2.3.1)

Occasionally, we need the inverse transformation, whose form would be

a=a(x,y,2), B=Bx1y2, v=vky2). (2.32)

When two of the parameters («, 8, ) are held constant, and the third is given a
range of values, Egs. (2.3.1) specify a curve in space in parametric form. When the con-
stant parameter pair is given an assortment of values, the result is a family of curves.
Repeating this procedure with each of the other pairs of parameters held constant pro-
duces two more families of curves. These families of curves form a spatial mesh. The
intersection of curves belonging to different families are orthogonal in the cases that we
shall treat, in which case («, 8, y) are said to be orthogonal curvilinear coordinates. The
name for each set of coordinates usually corresponds to one of the types of surfaces on
which one of the curvilinear coordinates is constant. We begin by studying cylindrical
and spherical coordinates as special cases prior to tackling an arbitrary set of coordi-
nates.
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2.3.1 Cylindrical and Polar Coordinates

The vast majority of situations we encounter are well described in terms of cylindrical
and spherical coordinates, both of which have meshes that consist of circles and straight
lines. In cylindrical coordinates, we select one of the Cartesian coordinate axes as a
reference. We then locate a point by perpendicularly projecting its position onto the
coordinate plane formed by the other two axes and onto the reference axis. Without loss
of generality, let z be the reference axis. The corresponding construction is illustrated
in Fig. 2.5. The distance from the point to the z axis is the transverse distance R, and
the distance from the point to the xy plane is the axial distance z. It still remains to
locate the plane formed by the axial and transverse lines, for which we use the angle
0 representing the rotation of the plane about the reference axis. Prior to the advent
of inertial navigation, global positioning employed a sextant, which used a telescope on
a swivel platform to locate the North Star. The angle the telescope was rotated about
its platform was called the azimuthal angle. That is the name we shall use for 6, but
some individuals prefer to call it the circumferential angle. To avoid ambiguity when it
is necessary to select a value of 6 corresponding to a specified position we shall limit
the azimuthal angle range to —7 < 6 < &. In Fig. 2.5, 6 = 0 places the shaded plane at
the xz plane, and 6 is measured counterclockwise looking down the z axis, but neither
convention is mandatory.

Constant | Constant
Randz Rand ©
7
Constant Figure 2.5. Definition of the cylindrical coordinates.
zand ©
y

The values of (R, 0, z) are the cylindrical coordinates. By themselves, R and 0 are
polar coordinates. They locate the point in the xy plane, whereas the value of z tells us
how far the point is from that plane. Geometrical constructions show the transformation
from (R, 0, z) to (x, v, z) to be

x = Rcosf, y=Rsinf, z=z (2.3.3)

To construct the coordinate mesh, we observe that allowing R to change with 6 and z
held constant moves the point along a radial line, perpendicular to the z axis, whereas
allowing z to change with R and 6 held constant moves the point along a axial line,
parallel to the z axis. The third coordinate curve is a circle parallel to the xy plane that
is produced when 6 changes with R and z is held constant. The curvilinear coordinate
mesh corresponds to various transverse lines (different fixed 6 and z values), axial lines
(different fixed R and 6 values), and azimuthal circles (different fixed R and z values).
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To define unit vectors for vector components, we observe that Cartesian coordinate
directions i, j, and k are the directions in which a point moves if two of the x, y, and
z values are held constant, and the other coordinate value is increased. We define the
curvilinear coordinate unit vectors in an analogous manner. We use € with the appropri-
ate subscript to denote the unit vectors. Thus ég is the direction in which a point moves
if Ris increased with 6 and z constant; this is the transverse direction, which is outward
along the transverse line from the z axis to the point. Increasing # with R and z constant
moves the point tangentially along the azimuthal circle; this is the azimuthal direction é;.
Finally, increasing z with R and 6 constant moves the point upward parallel to the z axis;
this is the axial direction é;. The set of cylindrical coordinate unit vectors is depicted in
Fig. 2.6. Avoidance of sign errors requires that we remember that the sense of the unit
vectors is always defined according to the sense of increasing coordinate values. The unit
vectors we have defined form a right-handed set according to

Cr Xy = C.. (2.3.4)

However, if one needs to compute cross products, the foregoing should not be assumed
because it is sometimes more convenient to define 6 to be in a clockwise sense relative
to the axial direction, which would reverse the sense of &,. Also, although we selected z
to be the axial direction, it may be convenient in some situation to select a different axis.
This is the primary reason for using ¢, rather than k. The unit vectors may be described
in terms of 7, j, kK components by projecting them onto the xy plane. Doing so yields

er=(cosf)i+ (sinf)j, & = —(sin@)i+ (cosb)j, e,=k. (2.3.5)

Figure 2.6. Definition of the unit vectors for cylindrical coordinates.

Figure 2.6 shows the instantaneous position 7 of a point. Decomposing this vector
into its components relative to the cylindrical coordinate unit vectors reveals that

F = Rég+ zé.. (2.3.6)

At first glance, this expression seems to be inconsistent with the fact that 7 depends on 6.
However, the value of & must be known in order to define the instantaneous orientation
of ég. Differentiation of this expression to find the velocity leads to

o = Reg+ R—2 + ze.. (2.3.7)

Note that the radial unit vector is recognized as being a variable, because éx depends
on 0, and 0 may depend on time. Hence, evaluating the derivative of this unit vector
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requires the chain rule,

deg .deg

— =0— 238
dt do ( )
We evaluate the preceding derivative by differentiating the first of Egs. (2.3.5), which
gives

dér

20 = (sin®)i + (cos ) j = é. (2.3.9)
We also will require the derivative of €y, which we obtain from the second of Egs. (2.3.5):

de, - -

% — —(cos)i — (sin0) f = —éx (2.3.10)

Both derivatives could have been obtained pictorially. Recall that the derivative of
a unit vector must be perpendicular to the vector. Figure 2.7(a) depicts the unit vectors
at two close positions, and Fig. 2.7(b) places the vectors tail to tail. The angle between
ér(0) and eg (0 + Af), and between &, (9) and &, (6 + Af), is AH. The length of each
unit vector is unity, so when A6 is very small, the length of Aég is approximately A6.
The same is true for Aéy. In the limit as A9 approaches df, the approximation becomes
exact. Furthermore, in this limit déy is parallel to &, (6), so that dég = d6 é,. In the
same limit, déy is parallel to —éz (0), which leads to dé; = —d6 éx. Division of these
descriptions of dég and dé, by d6 leads to Egs. (2.3.9) and (2.3.10).

eo(0 + AB) er (8 + A9)

en(0 + AO) ¢(9)

eo(®) \\/( Ao, / \ N Ax

Y er(9)

A N eq(8 + AB) er(8)
AR
/ N A® Ao

(a) (b)

Figure 2.7. Differentiation of the radial and transverse unit vectors.

Substitution of Egs. (2.3.9) and (2.3.8) into Eq. (2.3.7) gives the required expression
for velocity:

0 = Reg + Riey + ze.. (2.3.11)

The radial and axial velocity components have obvious meanings as rates of change of
the corresponding distances. The second term tells us that the azimuthal velocity results
from changing the azimuthal angle, with the effect growing in proportion to the radial
distance. The latter matches our everyday experience, in that we rotate our head slowly
when we track a faraway object moving at a high speed.

An expression for acceleration results from differentiating the velocity descrip-
tion. Let us start with the component representation of velocity o = vgé, + vyéy + v.€;.
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We have already obtained dég/dt, and the chain rule in conjunction with Eq. (2.3.10)
gives déy/dt = —0 e, from which we find that

a=(vr—veb) & + (Vg + vrb) & + V.2;. (2.3.12)

This description explicitly describes the fact that acceleration results from variability of
the directions in which the velocity components are measured, as well as if the compo-
nents are not constant. This form is useful when the velocity components are known
as functions of time, but the more usual circumstance is that in which the cylindrical
coordinates are known. In that case we differentiate Eq. (2.3.11) directly, to obtain

od . d . d .
a=_ [Reg] + = [Réey] + = [ze]

= [Reg + ROéy| + [ROey + Riey — RO%eR] + ze..

(2.3.13)

The brackets in the preceding equation enable us to track which terms originate from
the same velocity component. Both R and 7 are recognizable as acceleration rates in
the respective directions, whereas RO is an azimuthal acceleration that arises because
an unsteady value of 6 will increase the transverse velocity component Rf. The fifth
term, — RA2ég, results from the changing direction of &; it occurs even if the azimuthal
velocity R4 is constant. Although the second and third terms are both Réy, the brackets
indicate that they originate from different velocity components, and therefore represent
different effects. The term in the first bracket stems from the fact that, even if the radial
speed R were constant, the radial direction is not constant. In contrast, the term in the
second bracket is the rate at which the azimuthal speed, Rd, will change if R is not
constant. Together, the two identical terms constitute the Coriolis acceleration, after G.
Coriolis (1792-1843) who successfully explained the phenomenon. Grouping like terms
leads to the desired acceleration expression.

a=(R— R6*)ér+ (RO +2Rf) ey + ze.. (2.3.14)

The scalar form of Newton’s Second Law that we obtain by decomposing it into the
cylindrical coordinate directions is

SFr=XF -ég=m(R— R6?),
YFy=XF & =m(R)+2R9), (2.3.15)
SF,=%F. e, =mz.

In general, one can expect cylindrical coordinates to be useful if some aspect of the force
system or motion is best described in terms of a direction that perpendicularly intersects
a fixed line, or a fixed point in the case of planar motion. It is clear that in situations
in which it is desired to determine R and 6 as functions of time resulting from applica-
tion of a known force resultant, the preceding equation constitute nonlinear differential
equations in which R and 6 are strongly coupled.
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An observer at point A watches automobile P follow the circular
track. The angle between the diametral line to the observer and the radial line to the
automobile is a measured function of time, 6 (¢) . Derive expressions for the velocity
and acceleration in terms of the radius p of the track and 6.

Example 2.6

SOLUTION One of the primary purposes of this example, in addition to illustrating
the basic use of the formulas, is to emphasize that there is a variety of descriptions
that might be useful for motion along a circular path. We use polar coordinates here
because the motion is defined by an angle in a plane measured relative to a fixed
line. The polar coordinate variables and the associated unit vectors are defined in a
sketch, with the origin placed at point A, where the observer is.

Polar coordinates and unit vectors corresponding to origin A.

It is known from geometry that triangle A BP is a right triangle, with side A B as the
hypotenuse. Thus the transverse distance is given by

R=2pcos6.

This expression may be differentiated with respect to ¢, but in doing so we must
recognize that 6 (¢) is unspecified, so we cannot assume that 6 is zero. Thus,

R=(-2psin0)d, R=(-2pcosh)b?+ (—2psinh)d.
We substitute these expressions into Eqgs. (2.3.11) and (2.3.14) to find
U = —2pfsinfeg + 2p6 cos héy,
a=—2p(20%cos6 +0sinb) g+ 2p (6 cos® — 20%sin6) &. B

There is no need to convert these results to i and j components because the sketch
of the polar coordinates fully describes the directions of these components.
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In closing, it is useful to observe that, if the observer following the automo-
bile were situated at the center of the track, then the polar coordinate unit vectors
would be as shown in the second sketch, with ¢, tangent to the circle in the sense of
increasing 6 and ég radially outward.

Polar coordinate unit vectors when the center A is the origin.

In comparison, the tangent direction could be either parallel to, or opposite, &,
depending on how the arc length s is measured, and é,, would be opposite ez, toward
the center of curvature. Even though these alternative sets of directions are readily
related here, the question of whether path variables or polar coordinates is more
suitable depends on how movement along the path is defined. We use the former
if we have information regarding s or v, whereas the latter should be selected if we
have knowledge of R or 0 or their derivatives as functions of time.

An airplane climbs at a constant speed v and constant climb angle
B. The airplane is being tracked by a radar station at point A on the ground. De-
termine the radial velocity R and the angular velocity 6 as functions of the tracking
angle 6.

= 7
7
T B ’/I/? Example 2.7
7
8
‘ y Horizontal

SOLUTION One objective of this example is to emphasize once again that the type
of path is not the issue when one decides which kinematical description should be
employed. The situation here is very much like the one in the previous example,
in that movement along a given path is prescribed in terms of the rotation of a
line. We implement a trigonometric approach here, in which the rate variables are
obtained from differentiation of geometrical relations. (A simpler solution to this

problem may be found in Example 2.11, where the Cartesian and polar coordinate

Particle Kinematics
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descriptions of velocity and acceleration are compared.) First, we construct the dis-
tance vt the airplane has traveled after passing point B above the radar station. This
forms one side of a triangle whose other sides are R and H. Then the law of sines
yields
R . vt . H
sin(7/2+B) sin(7/2—-6) sin(@—p)
For the purpose of differentiation it is preferable to write these two relations as

Rsin (6 — B) = Hsin(/2 4+ B) = Hcos(B),

(M
vtsin (0 — B) = Hsin(w/2 —0) = Hcos ().
Differentiating each expression leads to
Rsin(§ — B) + Récos(6 — B) =0,
vsin (6 — B) + vtf cos (6§ — B) = —HO sin (6)
These are simultaneous equations for § and R, whose solutions are
B vsin (6 — B)
~ wtcos(0 — B)+ Hsin(9)’ )
Rvcos (6 — B)

~ wvtcos (0 — B) + Hsin(9)'

The problem statement requested expressions for R and @ as functions of 6,
but the preceding equations also contain the variables R and ¢. We therefore solve
Egs. (1) for R and vt,

_ Hcos(B)
" sin( — B)’
Hcos (0)
vVl = ————,
sin (6 — B)
and then substitute those results into Egs. (2), which leads to
v sin (6 — B)
H cos (9)cot (0 — B) +sin(0)’

cos (B)cot (60 — B)

cos () cot (60 — B) +sin(9)’

We may simplify these expressions by multiplying the numerator and denom-
inator of each by sin(6 — 8), and then using the trigonometric identity that
cos (9)cos (6 — B) +sin(9)sin (0 — B) =cos [0 — (0 — B)] = cos (B), so that

6 =

(3)
R=v

_usin(@ — B)?

H cos(B) ’ g
R= vcos(® —B).
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Although not requested, it is useful to contemplate following the present ap-
proach to determine R and d. Clearly, differentiating the results for R and 6 would
be tedious. The remarkable aspect of the approach described in Section 2.4 is that it
will not require explicit differentiation of any term.

2.3.2 Spherical Coordinates

Spherical coordinates locate a point in terms of one length parameter and two angles.
The radial distance r, which is the length of the position vector from a fixed point to the
point of interest, is the hallmark of the formulation. The fixed point is taken to be the
origin of an xyz coordinate system, as depicted in Fig. 2.8. In an application the z axis
would be selected to coincide with a relevant fixed direction. The z axis and the moving
point form the meridional plane. The instantaneous orientation of that plane is measured
by the azimuthal angle 6, just as it was in cylindrical coordinates. The second angle
locating the point’s position is the polar angle ¢. The triad (r, ¢, ) constitutes spherical
coordinates. To avoid ambiguity, we limit the azimuthal angle to —7 < 6 < & and the
polar angle to 0 < ¢ < z. Note that motion in the xy plane corresponds to ¢ = 7 /2, in
which case (r, 0) constitute polar coordinates. Polar coordinates are also formed by r
and ¢ for motion in any meridional plane defined by constant 6.

A modified version of spherical coordinates occurs in geography. Within the spher-
ical Earth approximation, the radial distance from the center of the Earth to a point
on the surface is the radius R, ~ 6370 m. The fixed reference direction is the north—
south polar axis. Position on the surface is specified by giving the longitude angle, which
is the rotation angle of the radial line about the polar axis measured from the prime
meridian at the Royal Observatory in Greenwich, England. The one difference is that,
rather than measuring the polar angle from the North Pole, we use the latitude, which
is measured from the equatorial plane. The latitude is the complement of the polar
angle.

Seo —

Equator

~ -

Figure 2.8. Definition of the spherical coordinates.
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The transformation from (r, ¢, 6) to (x, y, z) is found by dropping perpendiculars
from the point onto the xy plane and onto the z axis. The distances from the origin to
the projection points are r sin ¢ and r cos ¢, respectively, from which it follows that

x=rsingcosf, y=rsingsind, z=rcose. (2.3.16)

The spherical coordinate mesh consists of radial lines, formed by allowing r to change
with ¢ and 0 constant, circles of radius r lying in a meridional, and circles of radius
r sin ¢ parallel to the xy plane formed when 6 is varied with r and ¢ constant. Differ-
ent value combinations of the constant coordinate pairs associated with each type of
curve produces the families of curves. Curves belonging to different families intersect
perpendicularly.

The spherical coordinate unit vectors are formed by holding two of the three coor-
dinates constant while the value of the third is increased. The unit vectors are tangent
to the respective coordinate curves, as shown in Fig. 2.9. They are mutually orthogonal,
with their sense being such that

é, X €_¢ = e_g. (2317)

Note that the azimuthal angle is defined here to be positive according to the right-hand
rule relative to the axial direction, that is, counterclockwise looking down the z axis.
However, in some circumstances it might be convenient to define 6 in the opposite sense.
In that case the sign of the preceding cross product would be reversed.

Figure 2.9. Unit vectors for spherical coordinates.

Projecting their unit length onto the respective coordinate axes shows the Cartesian
components of the unit vectors to be

e, = (singcosh)i+ (singsind) j + (cosp) k,
€y = (cos¢cosf)i + (cos¢psind) j — (sing)k, (2.3.18)
e = —(sin®)i + (cosb) j.

Verification of this representation may be found in the fact that it satisfies Eq. (2.3.17).
We see that the spherical coordinate unit vectors depend on both ¢ and 6. Derivation
of formulas for velocity and acceleration from the position will require chain rule differ-
entiation with respect to time, which in turn will require knowledge of the derivatives of
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the unit vectors with respect to both spherical angles. Differentiating Egs. (2.3.18) leads
to

BB_Z = (cospcos0)i + (cospsind) j — (sing) k,

ae - - _
ai; = —(singcosf)i — (singsinfd) j — (cosp) k,
0w _,

d¢
ae,
a0

(2.3.19)
= —(sin¢sin®) i + (sing cosd) j,

9e _ .
% = —(cos¢sinf)i + (cos¢ cosh) j,

dey
90
We wish to use these derivatives to obtain formulas for velocity and acceleration that

depend on only the spherical coordinate variables. A comparison of the derivatives just
listed with Egs. (2.3.18) shows that

= —(cosf)i — (sinb) j.

L 925

- e T a0
(2.3.20)
9e, . . 0é 3¢ o _
0 = (sing) ég, 28 = (cos¢)éy, 26 = —(sing) é, — (cos ) é.

One could alternatively derive these derivatives by constructing diagrams resembling
Fig. 2.7, but doing so would be a more complicated process requiring several views.

The position vector in spherical coordinates is aligned with the radial direction, so
that

F=re. (2.3.21)

The dependence of 7 on ¢ and 6 is implicit, because the values of these coordinates must
be known in order to locate é,. The chain rule for differentiation gives

_ o dr fe by de,
V= — = r
dt dt
s qgae_r N s, (2.3.22)
- EY) 260
In view of Egs. (2.3.20) this reduces to
U =ré +rpe, +rosin(p)ép. (2.3.23)

Each of these terms is readily explained as a superposition. If ¢ and 6 were constant,
there would be only a radial velocity component as a result of the changing radial dis-
tance. If r and 6 were constant, a point would follow a meridional circle of radius r. The
rotation rate of the radial line is ¢, giving a speed of r¢, and the unit vector tangent to
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this circle is é,. The third component can be recognized by holding  and ¢ constant, in
which case the point follows an azimuthal circle of radius r sin (¢) . The transverse line
rotates about the z axis at 6, giving a speed r6 sin (¢) , and & is tangent to this circle.

The derivation of the formula for acceleration follows the same approach. For this,
the time derivatives need to recognize that the unit vectors depend on ¢ and 6. As was
done for cylindrical coordinates, brackets are used to track which acceleration terms
originate from the same velocity component. Thus,

R O S R SRpP
a=_ [Fe,] + yn [rdey] + y [r0sin (¢) ]
e _de, i e ._de_¢
= r€r+rﬁ + r¢e¢+r¢e¢+r¢dt

+ [r’é sin (¢) & + rf sin () & +ré¢ cos (¢) & + 7 sin (¢) %]

T ,(.aé, 9.95,) <aﬁ gaﬁ)
—[rer+r ¢a¢+ 29 ]+[r¢e¢+r¢6¢+r¢er ¢a¢+ 20 }

. . . . . 0¢€, .08,
+ |:f9 (sing) ey +rosin(¢p) éy + ro¢ cos (¢) &y + 16 sin (¢) (qﬁai;; + 9%)] .
(2.3.24)
Substitution of Egs. (2.3.20) leads to a profusion of terms:

a = [Fé, +rdéy + rosin(p) ey | + [Fdey + rde, — r¢?e, +réo cos (¢) & |
+ [FOsin (@) &y + résin (¢) &5 + rpb cos (¢) &y (2.3.25)
— r6%sin (¢)” &, — ro%sin (¢) cos (¢) &].

Although some terms are repeated, they originate from different effects. In general,
one of the repeated terms results from the increase in a velocity component when one
of the polar coordinates is increased, whereas the other results because acceleration
occurs when the direction of a velocity component changes, even if the value of the
component is constant. For example, the polar velocity is r¢e,. Changing the radial
distance increases this velocity component, leading to an acceleration term 7¢é,. At the
same time, the radial velocity is 7¢,. Changing ¢ moves the tip of ¢, in the direction of
4, so changing the direction of this velocity component also produces an acceleration
term 7'¢é,. Like cylindrical coordinates, the name given to this pair of equal acceleration
terms, which lead to a factor of two in the formulas, is the Coriolis acceleration.

Other acceleration terms are either of two types. Some contain second derivatives
of a spherical coordinate, such as r¢. These arise when a rate variable increases. The
others contain a product of r and the square of an angular rate. These correspond to
centripetal acceleration effects. For example, moving along the polar circle of radius r
at polar rate ¢ produces a centripetal acceleration r¢?. Such an acceleration is directed
inward toward the center of the circle, which is the negative radial direction. The latter
two effects can be recognized individually and then superposed.
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Collecting like components yields the formula we shall employ:

a= [r —r¢? —ré?sin (¢)2] e + [rd +2i¢ — r6?sin (¢) cos (¢)] &4

+ [résin (¢) + 276 sin (¢) + 2rd6 cos (¢)] és.

(2.3.26)

We obtain an equivalent form, which is useful when the velocity components are known,
by differentiating o = v,é, + v,€4 + vy, With Egs. (2.3.20) used to describe the deriva-
tives of the unit vectors. The result is
oL .de,  .de, o .0ey  .0ey
a=vuve + v <¢£ + 9£> + Vpy + vy (qﬁ— +9—)
.06y .08 )

. 9 _ 59%
+U9€9+U9<¢8¢ + 50

= [0, — vy — veB sin ()] & + [Vp + vrd — veb cos (¢)] &y
+ [Ve + v, sin (¢) + vy cos (¢)] &.

(2.3.27)

One criterion for deciding to use spherical coordinates is that some aspect of the
motion or force system is best described in terms of a line from the moving point to a
designated fixed point. Scalar equations of motion featuring the spherical coordinates
r, ¢, and 0 are obtained from Newton’s Second Law when the force resultant is repre-
sented in terms of the spherical coordinate directions, specifically

SF=%F.¢ :m['r' —r¢? —rézsin(qﬁ)z] ,
SF,=3XF -é5=m(r¢ +2id — ro*sin(¢)cos(¢)], (2.3.28)
SFy = %F & =m[rdsin(¢)+ 270 sin (¢) + 2r$d cos (¢)] .

When the force resultant is known, these are nonlinear differential equations for the
spherical coordinates in which all variables are strongly coupled.

The cable suspending a 400-g sphere is pulled in at a constant rate
of 6 m/s. At the instant when the cable is 3 m long the angle of inclination is ¢ = 30°,
Q = 4rad/s, and ¢ = 5 rad/s. Determine the values of ¢ and €2, and the tensile force
in the cable at this instant.

Example 2.8
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SOLUTION This example illustrates the usage of spherical coordinates to formulate
Newton’s Second Law. It also will make it apparent that drawing a good free-body
diagram is a vital step when forces are to be analyzed. In this situation the cable
length is measured from a fixed point to the sphere, and the other position param-
eters are the angle from the fixed vertical axis and the rotation rate about that axis.
The former is the polar angle ¢, and the latter corresponds to the azimuthal rotation
rate Q = 6. These are spherical coordinates centered at the top of the post, with all
motion parameters other than ¢ and @ given. Because it is required to evaluate a
force acting on the particle, we draw a free-body diagram that also depicts the unit
vectors of the spherical coordinate system we shall use.

Free-body diagram and spherical coordinates for the suspended sphere.

Each unit vector is defined to be positive in the sense of increasing values of the
corresponding coordinate. Note that, because 6 has been defined to be Q, we have
e, X é; = —ey, which is opposite the sign in Eq. (2.3.17). Also, the actual value of
6 is irrelevant because there is no special position in regard to rotation about the
vertical axis.

Because the cable is being pulled in at a constant rate, the instantaneous values
arer = 3m, 7 = —6 m/s, and # = 0. Substitution of these values and ¢ = 30°, ¢ =5
rad/s., and 6 = 4 rad/s into Eq. (2.3.26) gives

a = —87¢, + (3¢ — 80.78) &4 + (1.50 + 79.92) & m/s’.

Newton’s Second Law relates forces and acceleration variables, so we expect that
it will yield the parameters we seek. We refer to the free-body diagram in order to
describe the force components. The cable tension F pulls the sphere in the nega-
tive radial direction, and the weight, 0.4g N, acts parallel to the polar axis, so the
spherical coordinate equations of motion, Egs. (2.3.28), require that

XF-¢é =—F+0.4(9.807) cos (¢p) = ma, = 0.4(-87),
TF &, =—0.4(9.807)sin (¢) = may = 0.4 (3¢ — 80.78),
SF - =0=mag =04 (1.50 +79.92).
The solution of these equations is
F =38.72 N,

¢ =25.29, 6 = —53.28 rad/s.
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2.3.3 Arbitrary Curvilinear Coordinates

Cylindrical and spherical coordinates are adequate for the majority of situations one
might encounter. However, generalizing the formulation to handle any set of orthogo-
nal curvilinear coordinates will vastly expand our capability. Doing so is also quite useful
for topics in many related areas, including stress analysis, wave propagation, fluid me-
chanics, and acoustics. In the following subsection we consider a triad of curvilinear co-
ordinates («, 8, y) that are related to the Cartesian coordinates (x, y, z) by an arbitrary
transformation in the form of Egs. (2.3.1).

Coordinates and Unit Vectors

It is difficult to depict a three-dimensional situation, so Fig. 2.10 shows a two-
dimensional grid associated with various values of the curvilinear coordinates o and
B, with the third coordinate y held constant. Each curve corresponds to constant values
of two of the coordinates. We use the coordinate that varies to name the curve. For ex-
ample, points on a specific « curve correspond to a range of o values with g and y fixed.
Neighboring curves for each family in the figure are separated by values of o or § that
differ by an infinitesimal value. We shall consider only coordinate systems for which the
curves of different families intersect orthogonally. The distance between intersection
points on the grid is not the same as the value of the increment in that coordinate. The
ratio of the differential arc length along a coordinate curve between intersections, and
the increment in the coordinate corresponding to the intersections is the stretch ratio for
that coordinate, denoted #;, with . = «, B, or y. The arc length along a A coordinate
curve is denoted as s;, SO

ds, = hydr, A =a, B ory. (2.3.29)

The relationship between the curvilinear coordinate transformation, Egs. (2.3.1), and
the stretch ratios will be established shortly.

Moving along any of the coordinate curves is very much like the situation in path
variables. At any point, there are three unit vectors é; tangent to the «, 8, and y curves
passing through that point. Recall that the tangent direction is defined by ¢, = dr/ds.
We use Eq. (2.3.29) to describe the differential arc length. Incrementing one coordinate

Constant o and y

(B line)

Constant 3 and vy
(o line)

(a,B+dB, ) —=>
(o+do, B,7)
thB

(CHNY

Figure 2.10. Two-dimensional curvilinear coordinate mesh.
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with the other two fixed is a process of partial differentiation, so the unit vectors may be
obtained from

dar 1 or

=& T —w Bl ory. 2.3.30
dS)L h)L A ¢ 'B ory ( )

é;

It is conventional to employ a right-handed coordinate system in order to avoid sign
errors in the evaluation of cross products. Consistency with this convention is obtained
by ordering (e, 8, y) such that

Cy X 85 =0, (2.3.31)

Equations (2.3.1) define the components of 7 with respect to xyz in terms of the
curvilinear coordinates,

F=x(a,B,y)i+y(eB,y)j+z(a B y)k. (2.3.32)

Differentiation of this expression with respect to a specific curvilinear coordinate A is
straightforward because i, j, and k are constant, so that

or

¥ (%x (@B, y)) Pt (%x (o, B, y)) i+ (%x (@. B, y)) B[ (233)

Enforcement of the requirement that the unit vector defined by Eq. (2.3.30) actually
have unit magnitude then yields an expression for the stretch ratio #;:

5 (D (2 1"
_ [(ﬁx(a’lg’y)) + (ﬁy(a,ﬁ,y)> + (aZ(a,ﬁ,V)> } :

(2.3.34)

or

x=a

Substitution of this expression and Eq. (2.3.33) into Eq. (2.3.30) gives the xyz compo-
nents of each of the curvilinear unit vectors in terms of the curvilinear coordinate values.
In other words, the result has the general form

€, = €y (Ol, IB’ 7/)1_+ €8 (O[, :39 J/) ]_Jf_ €y (Ol, IB’ )/)E (2335)

The derivation of the acceleration equation will require differentiation of the unit
vectors. There are two ways in which we may proceed. The first is an extension of the
manner in which we treated spherical coordinates. It is a direct differentiation proce-
dure. Let p denote any of the curvilinear coordinates. Differentiation of Eq. (2.3.35)
with respect to u gives

e 0 - d -
ai;j - [@ek(x (d, ﬂv V)i| [ + [@ekﬂ (a’ ﬁ’ y)i| ]
0 _
—I—I:@exy (a,ﬂ,y)i| k, Mu=aop,y. (2.3.36)

This expression describes the derivative in terms of Z, j, and k components, but we seek
kinematical formulas that describe velocity and acceleration relative to the curvilinear
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coordinate directions. In other words, we wish to represent the preceding derivative in
the form of

ae
8_;; = Ti0€o + Tiups 4 Doy €y (2.3.37)

The components in this expression may be found from a dot product with a specific
curvilinear unit vector, from which we find that

o
o = % &y, A v =a, BT Y. (2.3.38)
m

Note that the result of implementing the preceding equation by use of Eqs. (2.3.35) and
(2.3.36) will be expressions for the I'; ,, coefficients in terms of the curvilinear coordinate
values. These coefficients are called Christoffel symbols. They play a prominent role in
tensor analysis, which is a key mathematical tool for fields as diverse as solid mechanics
and general relativity.

The shortcoming of Eq. (2.3.38) is that it does not shed any light on the fundamental
nature of curvilinear coordinates in terms of recognizable parameters. Such information
is obtained from the second derivation, which yields expressions in terms of stretch ra-
tios. Although the derivation that follows is more circuitous, the result usually will be
more efficient to evaluate, as we will see in an example.

We begin by observing that differentiation of a specified unit vector ¢; leads to dif-
ferent cases depending on whether p and/or v in Eq. (2.3.38) are the same as A. All cases
in which the unit vectors ¢é; and é, are the same are covered by

e -6 =1= E;_Z'E_A:FMU\:O- (2339)

Cases not covered by Eq. (2.3.39) correspond to v # A, that is, the component of the
derivative of a unit vector in the direction of a different unit vector. We may evaluate
these with the aid of a sequence of identities. It follows from the orthogonality of the
unit vectors that
de,

o

o de, _
e -6,=0 = m@v:FAW:—

. €_A = —FU,,')L, v 75 A (2340)
The following relation originates from Eq. (2.3.30):
d _ 0 _
i (hey) = PY (huey) - (2.3.41)

Carrying out the derivatives leads to

oh ae. oh e
—'\e'x—i-hxﬁ— Lo 1 h u

_ % 2342
o TR ) (2.342)

We may now consider the various I';,,, when v # A. Because each of the symbols
represents one of three possible coordinates, the only combinations fitting the restric-
tion that v# X are u=v # A : [y, pn=Xx#v: 1, and pn # v # L. We begin by
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considering the first case. Such terms are obtained from the dot product of Eq. (2.3.42)
with ¢,,. Because €, and ¢, are different, it follows that
ae, oh,, ae,

h—-é,=—+h,— -¢,. 2.3.43
'\8/1 Cu 8)»+ T €u ( )

We use Eq. (2.3.39) to simplify the preceding equation, with the result that

e, 1 9h,
e, =0, = ——=, A 2.3.44
BM e/,l, A h)L Ix 1% # ( )
We obtain an expression for I';;, = (3¢, /91) - €, when v # A by applying Eq. (2.3.40),
and then using Eq. (2.3.44) with A changed to v and u changed to A. This gives
1 dh
FAA\) = ———)h = _kaka A # V. (2345)
h, ov
The only remaining case is that for which A, u, and v differ from each other. The
dot product of Eq. (2.3.42) with ¢, in this case yields

1og 193¢
hyap " hy 9A

-€,, A, u,v distinct. (2.3.46)
The next steps involve an alternative application of permutations of the properties in

Egs. (2.3.40) and (2.3.46), with the labels interchanged appropriately, to the right-hand
side of Eq. (2.3.46). This gives

1ae1€__1 3e've_ B 1336_
h, o " o ") hyov M

1 [ae, 1 de, _
=—([—=*.6)=— . 2.3.47
h, ( v ex) h, ou “ ( )
19 s
h, ou !

The foregoing is a contradiction unless both terms vanish, so that

(29_: <€, =T, =0, A, u, v distinct. (2.3.48)

Equations (2.3.39), (2.3.44), and (2.3.48) are the properties we seek. They describe

the Christoffel symbols in terms of the stretch ratios and their derivatives. There are

nine combinations of A and u values, whose individual components are evaluated by

selecting the appropriate case from the identities. Only the results for A = « are listed.
The others follow by permutation of the symbols.

9é, 1 dh, _ 1 9hy _

Ga = Ry 95y oy
¢, 1 0dhy_  de. 1 0h,

9 ha 0" By T he b

(2.3.49)
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The two-dimensional hyperbolic-elliptic coordinate system is de-
fined by

x =acosh(«a)sin(B), y=asinh(x)cos(p),

where a is a constant. Evaluate the unit vectors of this system in terms of compo-
nents relative to the x and y axes, then describe the derivatives of the unit vectors.

SOLUTION This example illustrates the application of the basic curvilinear formulas
to a coordinate system that is useful for some problems in acoustics, fluid mechanics,
and electrodynamics. The name of this set of coordinates stems from the fact that
lines of constant « are ellipses,

2 2

X Y

a?cosh (a)®>  a?sinh (@)’ B

where 2a cosh (o) and 2a sinh () are the lengths of the major and minor diameters.
Also, lines of constant 8 are hyperbolas,

i,

x> y

a?sin (B)*  a?cos(B)* B
where x = +ytan (B) are the asymptotes and x = +a sin (8) are the intercepts on
the x axis.

To evaluate the stretch ratios and unit vectors we need the partial derivatives of
the position vectors:

2

’

o _ 8—xi_+ a—yj_z asinh (o) sin (B) 7 + a cosh (a) cos (B) j,

do O do

or  dx-. dy - = = M
35 = @i + ﬁj = acosh (@) cos (B)i — asinh («)sin (B) j.

According to Eq. (2.3.34), the stretch ratios are the magnitudes of the preceding, so

he = '%' =a [sinh (a)’sin (B)” + cosh (@)’ cos (’3)2]1/2

=a [(cosh () — 1) sin (8)* + cosh («)? cos (,8)2]1/2 = ah, 2
hﬁ = g—l}; = (l/’l,

where

, 712
h= [cosh ()" —sin(B) ] . (3)
We find the corresponding unit vectors by substituting Eqs. (1) and (2) into
Egs. (2.3.30):

Gy = 1 [sinh (a) sin (B) i + cosh (&) cos (B) f].
h
(4) <

ep = % [cosh (a) cos (B) 7 — sinh (a) sin (B) ] .

Particle Kinematics
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The orthogonality of the mesh is confirmed by these unit vectors, because they show
that &, - & = 0.

The derivatives of the unit vectors involve partial derivatives of the stretch ra-
tios, which we obtain by differentiating Eq. (3) to find

oh _ cosh () sinh (&) _ cosh («) sinh (&)
da (cosh (@)? — sin (,3)2)1/ ’ L 7
oh _ —sin (B) cos (B) _ —sin (B) cos (B)

9p <cosh (a)* —sin (;3)2)1/2 .

The corresponding expressions resulting from Egs. (2.3.49), with 94/9y = 0 for a
two-dimensional situation, are

0e, 1 Bhe sin (B8) cos (B) _

9o hop’ h? c:
02, 1 ah cosh () sinh (&) _
B h P T m
deg 1 8h __sin(B)cos (/S) h
da  h Bﬂ h? Cor
deg _1 oh oh, _ _ cosh () sinh (a)
38 h da 2

It is useful to compare this derivation to the steps that are entailed in direct
evaluation of the Christoffel symbols according to Eq. (2.3.38). The first step would
entail differentiation of each unit vector in Egs. (4) with respect to « and B. This
would lead to four derivatives, each of whose form is somewhat lengthy because
of the presence of 4, which is a function of « and 8, in the denominator. Taking
a dot product of each derivative with ¢, and & in accord with Eq. (2.3.38) would
yield eight Christoffel symbols. It should be apparent that such a derivation is more
difficult to implement than the approach we pursued.

Kinematical Formulas

Our task in this subsection is to express the velocity and acceleration in terms of the
parameters of a curvilinear coordinate system. For this development we consider the
motion to be specified through the dependence of the curvilinear coordinates on time.
The velocity is the time derivative of the position vector, which, in turn, is a function
of the curvilinear coordinates («, 3, ). Hence we employ the chain rule, in conjunction
with the definition of the unit vectors in Egs. (2.3.30), to differentiate 7:

Br

or
— + ﬂ_ﬂ + V_ hoé 4 hgfeg + h,ye,. (2.3.50)

<
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This expression may be written in summation form as

= Y hié. (2.3.51)
r=a.By

We derive the acceleration by differentiating Eq. (2.3.51) with respect to time. Each
of the factors inside the preceding summation may vary with time, so
dh;, _ de‘x)

a= Z h,\}le',\ + Z )\ (—6)\ + h)t

2.3.52
r=a,B,y r=a.B.y dt dt ( )

We consider only the rates of change of the curvilinear coordinates A to depend explic-
itly on ¢, whereas the unit vectors €, and the stretch ratios 4, depend on ¢ implicitly
through their dependence on the curvilinear coordinates. Application of the chain rule
for differentiation to the latter two sets of parameters then yields

. . oh ae
ai= Y hie+ Y Y in (—'\e] + hk—A> . (2.3.53)
r=a,B.y r=a,B,y u=a,B,y 8/,L 8“

Explicit expressions for a specific set of curvilinear coordinates may be obtained from
the preceding equation by evaluating the stretch ratios and the derivatives of the unit
vectors according to Egs. (2.3.34) and (2.3.49), respectively.

It is apparent that each acceleration component might consist of several terms in
the most general case. The situation for many common sets of curvilinear coordinates is
simplified by the fact that the stretch ratios and unit vectors usually do not depend on
all of the curvilinear coordinates. For example, in the case of spherical coordinates, all
of the unit vectors are independent of the radial distance r and the radial stretch ratio
h, = 1. In the most general case Eq. (2.3.53) gives 21 different terms: 3 from the single
summation and 9 from each term in the double summation corresponding to different
pairs of A and u. Because there are only three curvilinear coordinate directions, it is
clear that a variety of effects contributes to any acceleration component. Let us examine
each type of effect.

The terms in the single summation of Eq. (2.3.53), that is, h;A¢;, are intuitively ob-
vious. They express an acceleration tangent to each A coordinate curve that arises when
X is not constant. To understand the terms in the double sum we categorize them as to
whether the indices for each sum are associated with the same curvilinear coordinate. If
u = A, three terms correspond to 32 (dh;./9)) é;,. This is another acceleration effect tan-
gent to a A coordinate curve; it arises because constant i will not lead to a constant rate
of movement along that curve if the stretch ratio /4, changes along the curve. The other
term corresponding to . = A is 3hy, (9€;/92) . Because the derivative of a unit vector is
always perpendicular to the unit vector, this is an acceleration component perpendicular
to the A coordinate curve that arises from the changing direction of the unit vector é;
as X changes. Such a change is illustrated in Fig. 2.11 for the case in which A = «. Fol-
lowing the « curve from the point associated with specific («, 8, y) values to an adjacent
point at which the coordinates are (« + d, B, y) causes the tip of ¢, to move perpen-
dicularly to the original e,. The fact that Ah; is the corresponding velocity component



2.3 Curvilinear Coordinates 71

(U»B + dBaY)/’/ Figure 2.11. Change of unit vector &, along the « and
‘ (o+ dot B 7) B coordinate curves.

o lines 7

(0,B,7)

B lines

suggests that this acceleration component is analogous to the centripetal acceleration in
path variables.

Let us now turn our attention to those terms in the double sum of Eq. (2.3.53)
that correspond to p # y. There are three combinations fitting this description,
corresponding to (&, u) = («, B), (B, v), or («, y) in either the listed or reversed order.
Let us consider the combination (&, u) = («, B) or (B, @). The first term in the double
sum leads to two terms: [(9h,/3B)éy + (3hg/da)ég]aB. The first of the preceding terms
exists if 8 changes and the stretch ratio A, for the o curve depends on S. Similarly, the
second term exists if o changes and the stretch ratio /g depends on «. Both are represen-
tative of acceleration components tangent to a generic coordinate curve y that results
because the rate of movement along the curve, yh,, changes as a consequence of the
nonconstancy of the stretch ratio. The second term in the double sum also leads to two
terms for (A, 1) = («, B) or (B, @) : [hy0¢,/0p + hgdép/da] @ B. These are acceleration
terms perpendicular to a A coordinate curve (A = « for the first term and A = 8 for the
second) that occur when ¢, depends on another curvilinear coordinate that is not con-
stant in the motion. This is depicted in Fig. 2.11, where é, changes as a point moves by
an infinitesimal amount along the B coordinate line. Correspondingly, the mesh point
coordinates change from («, 8, y) to (¢, 8 +dB, y). The tip of ¢, moves perpendicu-
larly to the original &, direction, so the resulting acceleration effect is also perpendicular
to é,.

Let us focus on two terms that were just listed: (dh4/da)egc B, which arose from the
first term of the double sum, and A, (d¢,/98) & B, which arose from the second term of
the double sum. According to Egs. (2.3.49), the latter is the same as the former, which
would lead to a factor of two in the ultimate acceleration formula. This is the general
version of the Coriolis accelerations we encountered in the specific cases of cylindrical
and spherical coordinates. Hence we have proven that, in general, Coriolis acceleration
arises from two distinctly different effects associated with an interaction of motion along
more than one coordinate curve.

To close this section it is emphasized that only in the special case of Cartesian coor-
dinates does changing a single coordinate lead to velocity and acceleration solely in the
direction associated with that coordinate. In the most general case of curvilinear coordi-
nates, changing one coordinate can lead to acceleration tangentially to each coordinate
curve. Furthermore, in Cartesian coordinates, acceleration results solely from noncon-
stancy of x, y, or z. In a curvilinear coordinate, there can be acceleration, even if &, B,
and y are constant.
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Derive Egs. (2.3.11) and (2.3.14) for velocity and acceleration in
terms of cylindrical coordinates by using stretch ratios.

SOLUTION The intent of applying the basic kinematical formulas for curvilinear co-
ordinates to a coordinate system that has been analyzed by a different technique
is to enhance one’s recognition of the significance of the basic parameters and op-
erations. The first step is to evaluate the unit vectors and stretch ratios. For the
coordinate transformation in Eq. (2.3.3), we have

7= Rcos(0)i + Rsin (0) J + zk.

Then
hntr = 2 = cos (8)7 +sin(6) f
= = = 1
RER R co Js
. or . - -
heéy = 5 —Rsin(0)i + Rcos(9) j,
) -
]’lzez = a—z = k.
Setting the magnitude of each unit vector to unity yields the stretch ratios,
or
hr=|—|=1,
R |oR
57
ho = || = R
30
or
h,=|—|=1,
7 oz

which correspond to
er = cos(0)i +sin(9) J,
¢ = —Rsin (0)i + Rcos () ],

e, = k.

We refer to Egs. (2.3.49) and its permutations to obtain the derivatives of the
unit vectors:

0eR _ 1 3hRe_ 1 8hRé —0

AR~ hy 90 0 h, 9, °
der 1 dhy_ _  der 1 dh,_
—_— = === = @, —_— = ——EZZO,
30 ~ hg OR 3z  hg R

0y _ _ Lohy  1ohy

90 hgroR X h a7 i R
des 1 dhg_ deg 1 dh, _
— = ———2er =0, —:——EZZO,
AR~ hy 90 3z hy 30
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de _ 10O, 10h,

9z hgroR % h, 90 ’
9¢, 1 dhg_ 9, 1 dhy _
9R  h, 9z X7 B0 T m ez "

We obtain an expression for the velocity by expanding Eq. (2.3.51) and substituting
the various terms. Thus,

U = hgReg + hybéy + h,ze,

<
= Rég + Rbéy + zé..
This is the same as Eq. (2.3.11). For acceleration, we expand Eq. (2.3.53) and omit
terms that contain derivatives of stretch ratios or unit vectors that we have found to
be zero. The remaining terms are
a =hgReg+ hybeéy + h.ze,
der _dhy déy

ROhr— + 6 R— 62h, — <
+ ROy T ORGRe Ty

= Rer+ Riéy + 3¢, + ROéy + 6 Rey + 62 R(—¢R).

Collecting like components shows that this expression is the same as Eq. (2.3.14).

2.4 MIXED KINEMATICAL DESCRIPTIONS

Thus far there was little ambiguity as to which kinematical description, path variables,
Cartesian, or one of the curvilinear coordinate systems, we should use. Here we consider
situations in which no single description leads to an optimal solution. The key factor to
be considered in this regard is which description fits the aspects of the motion that are
known and which fits the parameters we seek. For example, suppose that the path of a
particle is known to be as shown in Fig. 2.12. If the rate of movement along that path is
specified in terms of the speed v, we would certainly want to employ a path variable de-
scription. Now further suppose that, with v known, it is desired to determine the rotation

z
e
© Path
AN €
Starti ep
arting N

position />\ Figure 2.12. Mixed usage of path variables and cylindrical coordi-
— nates.
\‘_//s er

\\ Z
é\\\y
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rate 6 of the azimuthal plane defined in the figure. Because @ is one of the cylindrical co-
ordinates, it would seem wise to use that description. We could consider the kinematical
description that best matches the parameters of the actual system to be the “natural”
one, but sometimes no single formulation is entirely natural, although more than one
have elements that are suitable. It is almost axiomatic that if one of the kinematical de-
scriptions has some aspect that suits a problem, it should be employed. Thus, the task
that confronts us here is to simultaneously implement two different descriptions. A pre-
cursor to this task arose in Example 2.1, where the velocity and acceleration were given
in Cartesian coordinates and we needed to evaluate path variable parameters.

The general concept is to match the velocity and acceleration vectors obtained from
the relevant kinematical descriptions. This matching is implemented by resolving unit
vectors for one formulation into components relative to the unit vectors of the other
formulation. For this purpose it is assumed that the position is known, so that all geo-
metric quantities, including the angles between unit vectors, are known. For simplicity,
let us consider planar motion. Let &, and &3 be the orthogonal planar unit vectors for
one kinematical description (for example, €, and é are the tangent and normal direc-
tions), and let €, and €, be the orthogonal planar unit vectors for the other description.
These unit vectors have been depicted with their tails coinciding in Fig. 2.13 in order to
expedite resolving a unit vector into components.

B
e Figure 2.13. Relation between two sets of orthogonal unit vectors in a plane.

o

As shown in the figure, the orientation of one set of unit vectors relative to the
other is defined by the angle 1. (The definition of this angle as that between ¢, and ¢, is
arbitrary.) The components of €, and ¢, relative to &, and éz are found from this figure
to be

e, =cos(¥)e, +sin(y)ég, €, =—sin(y)e, + cos(¥)ég. (2.4.1)

The velocity may be expressed in terms of components relative to either set of unit
vectors. Thus,

V= vae_o, + vﬂéﬁ = v;\é)\ + vﬂéu. (242)

It is implicit to the preceding equation that each velocity component would be expressed
in terms of the parameters associated with its unit vectors. For example, if &, and ég
represented the tangent and normal unit vectors, respectively, then we would set v, = v
and vg = 0.

Two vectors are equal if, and only if, their like components are equal. Thus
Egs. (2.4.2) constitute two scalar equations, which can be obtained by matching their
components in two different coordinate directions. One approach for performing this
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operation is to substitute the unit vectors in Egs. (2.4.1) into Egs. (2.4.2), which yields
U =046y + Vgl = 0,8, + V.6,
= v, [cos (¥) ey + sin (V) ég] + vg [—sin (¥) &, + cos (¥) eg] (2.4.3)
= [vy cos (¥) — vgsin ()] &y + vy sin (¥) + vg cos (¥)] ép.

Like components were grouped as the last operation in the preceding equation. Doing
so assists equating like components on either side of the equality, with the result that

Vo = V5. €08 (Y) — vgsin (¥),

vg = v sin () + vgcos ().

(2.4.4)

Each of the velocity components appearing in Egs. (2.4.4) presumably has been repre-
sented in terms of the formula associated with its description. Furthermore, the position
parameters are assumed to be known. Thus we have derived two scalar equations relat-
ing rate variables in either kinematical description.

An alternative way to obtain a component in a certain direction is to use a dot prod-
uct. The dot product of the velocity in Egs. (2.4.2) in the direction of two unit vectors
gives two scalar equations representing the equality of the alternative component de-
scriptions. The interesting aspect of this approach is that the selected unit vectors can
be any pair. If we evaluate v - &, and v - &g, we obtain Eqs. (2.4.4). However, the unit
vectors can also belong to different descriptions. For example, we could evaluate o - &4
and v - ¢,, provided that éz and ¢, are not parallel in the position of interest. This would
give

D~Eﬁ=vﬂ=vké,\~é,3+vﬂéﬂ~éﬁ,

(2.4.5)
ﬁ~éA:v,\:vaéa-éA+v,géﬂ~éA.
The dot products are readily described by referring to Fig. 2.13, which leads to
vg = vy sin (¥) + v, cos (V)
8 (2.4.6)

vy = vy cos (V) + vgsin (V).

In practice, the procedure leading to Eqs. (2.4.6) is slightly more versatile, whereas
following Egs. (2.4.4) is somewhat less prone to computational errors. Either set repre-
sents two equations that may be used to solve for two unknown rate parameters. As an
illustration of this procedure, suppose that (¢, 8) represents path variables and (%, )
represents polar coordinates. Substitution of the respective velocity components into

Eqgs. (2.4.4) then yields
v = Rcos () — Rfsin(y),
. , (2.4.7)
0 = Rsin(y) + R6 cos (V).

The values of the radial distance R and the angle of orientation v are known if the posi-
tion is specified. Thus Egs. (2.4.7) represent two relations among the three rate variables,
v, R, and 6.
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Equations derived by matching alternative velocity descriptions may be used in ei-
ther of two general situations. It might be that the velocity is already known in terms
of either the («, 8) or the (A, ) components. In that case, the equations provide the
conversion to the parameters associated with the other set of components. The more
interesting situation is that of a mixed description, that is, one in which the velocity is
only partially known in terms of either of the two descriptions. In that case, the matching
procedure provides the means to ascertain the velocity.

The same approach may be applied to treat acceleration. Specifically, the individual
formulas for acceleration may be matched by employing either the unit vector transfor-
mation in Egs. (2.4.1) or by taking dot products in the two different directions. The result
will be two scalar equations for acceleration rate variables, such as v or R. Solving those
equations requires that all velocity rate variables, such as v or R, be evaluated first be-
cause they occur in the acceleration components. In other words, the velocity relations
must be solved before accelerations can be addressed, which is not surprising because
acceleration is the derivative of velocity. The remarkable aspect of the approach is there
is no need to differentiate any quantity because the basic velocity and acceleration for-
mulas represent standard derivatives.

The discussion treated the case of planar motion, but the same procedure also ap-
plies to three-dimensional motion. The kinematical formulas in that case have three
components, so matching corresponding components will lead to three simultaneous
equations. The primary difficulty that arises in this extension is the evaluation of the
transformation of the unit vectors. The component representation in Eqgs. (2.4.1) was
derived by visual projections of one set of unit vector onto the other directions. The
same procedure may be performed in a three-dimensional case if the geometry is not
too complicated. An alternative approach for determining the unit vector components
uses rotation transformation properties established in the next chapter.

Use the concept of a Mixed kinematical description to determine
R and 6 for the airplane in Example 2.7.

SOLUTION This example demonstrates that viewing a system from multiple kine-
matical perspectives often can greatly simplify the analysis. The path and speed of
the airplane are given, both of which are path variable parameters. We must deter-
mine the rates of change of polar coordinates. Thus we draw a sketch that depicts
the unit vectors for both formulations at an arbitrary 6.

90° + B Q/eR

\ —=0-f Example 2.11
R

Horizontal
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The velocity in terms of each set of unit vectors is
U =vé, = Reg+ Rb¢,.
The speed v is the given parameter, so we may obtain an equation for R by forming
U-er=10¢ -ég= R
From the sketch we see that the angle between &, and ér is 6 — B, so we find that
R=vcos(6 —B). <
To find an expression for 6, we have
U-6g =vé &) = RO.

We evaluate the dot product by observing that the angle between é; and ¢, is 6 —  +
7 /2. Also, it was requested in the problem statement that the results be expressed
in terms of the elevation angle 6, on which R depends. From the law of sines, we
have

R " p_yg B
sin(B+m/2) sin(0 — B) sin (0 — B)
Consequently, the equation for v - &, yields
1 v sin (6 — B)*
6== 0 — D=—e =L
vaos( B+m/2) H cos(B) <

There is no doubt that this solution is easier than the one in Example 2.7.

Arm A B rotates clockwise at the constant rate of 40 rad/s as it
pushes the slider along guide C D, which is described by y = x2/200 (x and y are in
millimeters). Determine the velocity and acceleration of the slider when it is at the
position x = 200 mm.

Example 2.12

SOLUTION This example is a further demonstration that the concept of joint kine-
matical descriptions can make challenging problems quite tractable. The planar mo-
tion is specified by a rotation rate, but the path is not described in terms of polar

77
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coordinates. Hence we follow an approach that employs path variables and polar
coordinates. We begin by evaluating the position parameters for both kinematical
descriptions. A sketch shows both sets of unit vectors at x = 200 mm, which cor-
responds to y = x?/200 = 200 mm. In this sketch the sense of €, has been selected
based on recognition that clockwise motion of bar A B will move the collar up and
to the right. In more complicated situations, in which we are uncertain of the ap-
propriate direction, we may guess the sense of &;. A wrong guess would lead to a
negative value for v. Also, we have depicted é, as the perpendicular to &; that points
toward the center of curvature.

y 0 ey
€R ‘x //<\B
Definiton of spherical coordinates and tangent and
\ normal directions for describing the motion of the
200 mm‘ \\\\ 40 rad/s : _ g
~ guided pin.
I KTt
o] |
200 mm 600 mm

The polar coordinates are found from a right triangle to be

R = (6002 +200?)"* = 632.5 mm = 0.6325 m,

200
0= tan_l (@) = 18.435°.

The slope of the guide bar at this location yields the angle of orientation of the
tangent vector:

_ dy _ y
_ 1 _ 1 _ o
B = tan <_x> = tan (—100) = 63.435°.

Matching like velocity components in each formulation is the next step. The
relevant velocity formulas are

v = Reg+ Roey = ve,.
For the sake of variety, we use the approach in which one set of unit vectors is
expressed in terms of components relative to the other set. Hence we write
e =—cos(0+pB)ér+sin(6 + B) ey,
e, =sin (0 + B)égr+cos (0 + B)éy.

Note that, although ¢, is not needed to analyze the velocity, it has been described in
anticipation of using it for acceleration. We substitute the expression for é; into the
velocity equation, and match like components:

v = Rég+ RO&y = v[—cos (0 + B)er+sin (0 + B) &] .,
U-rp=R=—vcos(0 +B), v-&=RI=vsin(d+B).
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The value of 6 is given to be 40 rad/s, and R, 0, and B have been evaluated, so the
preceding equations represent two equations for R and v. Their solutions are

v=2556m/s, R= —3.614ms.

Because we have evaluated all velocity parameters, we may now implement a
similar procedure for acceleration. The relevant formulas are

2

a = (R— R6%)ér + (RI +2RE)éy = ve; + Y.
19

Substitution of the earlier representations of é; and ¢, in terms of polar coordinates
converts these equations to

a = (R— R0*)er+ (RI +2R0)e,
=0 [—cos (8 + B)ér+sin (6 + B)é]
2
+%[sin(0+ﬂ)e‘R+COS(9+ﬁ)ée]~

The result of matching like acceleration components is
2

d-e‘RzR—R92=—vcos(9+,3)+v—sin(0+,3),
0

2
a-e‘g:R@"+2R9‘=vsin(9+ﬂ)+v—cos(9+/3).
1Y

We know that 6 is constant at 40 rad/s, so § = 0. We evaluated R, 6, and 8
from the given position information. The radius of curvature, being a property of
the path, also is a position parameter. We compute it from Eq. (2.1.31), which gives,

for x =200 mm,
N 3/2
[1 + (100) }

‘100

Substitution of all known quantities into the acceleration component equations
gives

p= =1118.0 mm = 1.1180 m.

2

) 25.56
ceg=R—1011.9 = —v (0.14142) +

a-e 11180(09899)
-6y = 2(—3.614) (40) = © (0.9899) 4 220 St (0.14142) .
S ‘ = v 1.1180

We solve the second equation for v, then use that solution to calculate R, which
yields

b = —375.5m/s>, R=1643.3 m/s’.
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The problem statement requested the velocity and acceleration, which may be ex-
pressed in terms of either path variable or polar coordinate components:
v=2556¢, m/s or v =-3.614¢ + 25.30¢y m/s,
a = —375.5¢, + 584.1¢, m/s*, or a = 631.4eg — 289.1¢, m/s’. -
There usually is more than one way in which one may attack a problem, and
sometimes the chosen path is not the most direct. This is the case here. The need to
use polar coordinates was clearly indicated, but that description was matched to path
variables primarily to give a full picture of the operations. The given information
described the path in Cartesian coordinates, and there was no mention of speed.
Thus it would have been more logical to match the polar and Cartesian coordinate
descriptions of the slider’s motion. Let us see how such a solution would evolve.
In units of meters the path is described by y = 5x>. We do not know a priori
how x or y depend on time, so the Cartesian coordinate descriptions of the slider’s
motion are

+yj = xi +10xx7,

<
I

x._
dv -
d_': = %7 410 (xi + %) J.
At the position of interest x = 0.2 m, and we earlier determined the corresponding
polar coordinates to be R = 0.6325 m, 6 = 18.435°. From the earlier sketch of the

unit vectors we know that
i = —cosfég+sinfe, = —0.9487¢x + 0.3162¢;,

INY}
Il

j =sinfég + cosheéy = 0.3162¢x + 0.9487¢;.
Equating the velocity descriptions leads to
v =% +10(0.2) xj = x (—0.9487¢g + 0.3162¢5) + 2% (0.3162¢g + 0.9487¢)
= Regr+ RIéy = Reg + (0.6325) (40) 5.
The algebraic equations obtained by matching like components are
v-eg=[-0.9487 +2(0.3162)] % = R,
v - ey = [0.3162 + 2 (0.9487)] x = 25.30,
from which we find that
X =11.429m/s, R= —3.6145m/s.

These values are required to evaluate the acceleration. Equating the Cartesian
description of acceleration written earlier to the polar coordinate expression gives
a=xi +10 (xx + i?) j
= i (—0.9487¢ g + 0.3162¢5) + 10 [(0.2) i+ (11.429)2] (0.3162¢ % + 0.9487¢5)

= (R— R6%)ég + (RI +2R0)é, = [R — (0.6325) (40)2] er + 2 (—3.6145) (40) &,
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from which we have
a-ég=[—09487 4+ 2(0.3162)] & + 10 (11.429) (0.3162) = R — (0.6325) (40)*,
- & =[0.3162+2(0.9487)] i + 10 (11.429)* (0.9487) = 2 (—3.6145) (40).
These equations give

¥ =—690.4m/s>, R=1643.3m/s’.

The values of R and R determined here are the same as those found previously,
so the expression for v and a in terms of polar coordinate components would
be unchanged. Using X and X to form the Cartesian coordinate representation
gives

U =11.4297 +22.86j m/s, a= —690.4i —74.71] m/s> <

This solution is more direct than the preceding one, but which approach will be more
direct might not be apparent a priori in other situations.
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HOMEWORK PROBLEMS

EXERCISE 2.1 A small block slides in the interior of a smooth
semicircular cylinder after being released from rest at the up-
per corner A. Because friction is negligible, the speed of the
block is given by v> = 2gh, where h is the vertical distance
the block has fallen. Determine the velocity and acceleration
of the block as a function of /4. Then sketch the acceleration
when h = R/2.

Exercise 2.1

EXERCISE 2.2 An automobile follows a circular road whose radius is 50 m. Let x and y
respectively denote the eastern and northern directions, with origin at the center of the
circle. Suppose the vehicle starts from rest at x = 50 m heading north, and its speed de-
pends on the distance s it travels according to v = 0.5s — 0.0025s2, where s is measured
in meters and v is in meters per second. It is known that the tires will begin to skid when
the total acceleration of the vehicle is 0.6g. Where will the automobile be and how fast
will it be going when it begins to skid? Describe the position in terms of the angle of the
radial line relative to the x axis.

EXERCISE 2.3 A locomotive follows a circular track of radius R such that its speed de-
pends on the distance it travels according to v = vy sin (7s/sg) , Where sy is the maximum
distance. (a) What value of s corresponds to the maximum tangential acceleration? (b)
What value of s corresponds to the maximum normal acceleration? (c) What value of
the radius of the track will lead to the maximum normal and tangential accelerations
being equal? (d) If the radius is the value in Part (c), at what value of s is the magnitude
of the acceleration a maximum?

EXERCISE 2.4 The collar slides over the stationary guide defined by
x = ky? in the vertical plane. The speed of the collar is the constant
value v. This motion is implemented by application of a force F of vari-
able magnitude parallel to the x axis. Derive expressions for the magni-
tude of F and of the reaction exerted by the guide as functions of the y
coordinate of the collar. Exercise 2.4

EXERCISE 2.5 An old 5000-kg truck is traveling down a 5° incline at 20 km/h when its
brakes and engine simultaneously fail. It is known that the air resistance is proportional
to the square of the truck’s speed and that the maximum speed the truck would obtain
if the incline were sufficiently long and the truck did not become unstable is 160 km/h.
Rolling resistance is negligible. Determine the truck’s speed after it has traveled 1 km
from the point of failure. How long does it take for the truck to arrive at this location?

EXERCISE 2.6 A particle follows a planar path defined by x = k&, y = 2k[1 — exp(€)],
such that its speed is v = B&, where k and $ are constants. Determine the velocity and
acceleration at &€ = 0.5.
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EXERCISE 2.7 An ellipse is defined by (x/a)® + (y/8)* = 1, z = 0. Derive expressions
for the tangent and normal unit vectors and the radius of curvature as functions of x.

EXERCISE 2.8 A helix is defined by x = ¢y, y = Lsin(ky), z = — Lcos(ky), where c,
L, and k are constants. Determine the path variable unit vectors, the radius of curvature,
and the torsion of this curve as functions of .

EXERCISE 2.9 A slider moves over a curved guide whose shape in the vertical plane
is given by x = B, y = p cosh . Starting from x = 0, the speed is observed to vary as
v = vo(1 — ks), where s is the distance traveled and k is a constant. Derive expressions
for the velocity and acceleration of the slider as functions of x.

EXERCISE 2.10 A particle moves along the paraboloid of revolution y = (x* + z%)/L,
such that x = Lsinh (k&), z = —Lcosh (k&), where & is a parameter and L and k are
constants. At the position where & = 1/k, its speed is 5 Lk and its speed is decreasing at
the rate 2Lk? . Determine the velocity and acceleration at this position.

EXERCISE 2.11 A particle slides along the hyperbolic paraboloidal surface z = xy/2
such that x = 6 cos (ku), y = —6sin (ku), where x, y, and in z are in meters and u is a
parameter. Determine the path variable unit vectors, the radius of curvature, and the
torsion of the path at the position where ku = 27 /3.

EXERCISE 2.12 A roller coaster track is laid out by giving the Cartesian coordinates of
its centerline, with x, y, and z respectively measured eastward, northward, and vertically
relative to a reference point on the ground. For the track of interest y = x?/100 and
z=20[cos (rx/50) 4+ 1], where x, y, and z are in units of meters and —50 < x < 50.
Determine and plot as functions of x the xyz components of the tangent, normal, and
binormal unit vectors, as well as the dependence on x of the radius of curvature and
torsion of the track.

EXERCISE 2.13 In Exercise 2.12 the speed of a car as it travels along the track is known
to be v = [2g (60 — z)]'/* m/s. Determine and graph as a function of x the corresponding
tangential and normal accelerations of a car.

EXERCISE 2.14 Derive expressions for the binormal unit vector and torsion when a
curve is described in parametric form by 7 («).

EXERCISE 2.15 The specification for laying out the transition from a straight to curved
segment of a train track stipulates that the radius of curvature must change gradually
from an infinite value according to p = pyso/s, where 0 < s < s¢ is arc length from the
beginning of the curve, after which the radius of curvature should be the constant value
po- Consider a high-speed train that moves at a constant speed of 240 km/h. At the
end of the curve, where s = sp = 1 km, the normal acceleration should be 0.5g. Let x
measure distance in the direction of the tangent to the track at x = 0, and let y be the
offset distance. Use computer software to determine how y must depend on x in order
to meet this specification. Also plot the acceleration of a car as a function of x. Hint:
Use a parametric description of the path with s as the parameter, so that s’ =1 and
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1/2

y = [1 — (x’)z] . Equating the expression for p in this representation to the specified
dependence of p will lead to a differential equation for x (s) that can be solved numeri-
cally.

EXERCISE 2.16 A particle moves along the surface z = (x> — y?)/L such that x =
Lcos(B&), x = Lsin(B&), where 8 and L are constants and & is a parameter. Consider
the case in which & = ¢. Derive expressions for the velocity and acceleration.

EXERCISE 2.17 A particle slides along the hyperbolic paraboloidal surface z = xy/2b
such that x = — (b — yz)l/z, y = bsin (kt?), where h, b, and k are constants. Derive ex-
pressions for the velocity and acceleration as functions of elapsed time ¢.

EXERCISE 2.18 A ball is thrown down an incline whose angle
of elevation is 6. The initial velocity is u at an angle of ele-
vation f. Derive an expression for the distance D measured
along the incline at which the ball will return to the incline.
Also determine the maximum height H, measured perpendic-
ularly to the incline, of the trajectory, and the corresponding Exercise 2.18
velocity of the ball at that position.

EXERCISE 2.19 A 200-g ball is thrown from the ground with the initial velocity vy =
20 m/s at an angle of elevation S. In addition to its weight, there is a headwind that
generates a horizontal resistance of 0.5 N. (a) For the case in which g = 30° find the
horizontal distance at which the ball returns to the elevation from which it was thrown.
Also find the velocity of the ball at that location. (b) Find the value of 8 that maximizes
the range for a specified value of vy.

EXERCISE 2.20 Pin P, whose mass is 10 g, moves in the
horizontal plane within a groove defined by xy = 2, where
x and y are in meters. The motion is actuated by arm A BC, —30 m/s
which translates to the right at the constant speed of 30 m/s.

(a) Determine the velocity and acceleration of the collar P
when x = 2 m. (b) Determine the forces exerted on the pin X
by the groove and arm A BC when x =2 m. B 7 —=30m/s

Exercise 2.20

EXERCISE 2.21 Gravity causes a steel ball of mass m that is situ-
ated between positive and negative magnetic plates to fall as it is
attracted toward one of the plates. The magnetic force acting on
the ball is horizontal with a magnitude that increases as the square
of the distance from the midplane between the plates. In the sketch
the xz plane coincides with this midplane, so this force is F = ax?
sgn(x), where sgn(x) is the signum function. Suppose the ball is in- H2 ' H/2
jected at the right plate, x = H/2, y = 0, with an initial horizontal
velocity vy to the left. Derive an expression for the minimum v for

Exercise 2.21
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which the ball will hit the left plate. Where will the ball hit the right plate if v is half this
minimum value?

EXERCISE 2.22 For laminar flow at low Reynolds number, the air resistance on an object
is —cv, where c is a constant and v is the velocity of the object. A sphere of mass m is
thrown from the ground with an initial speed v at an angle of elevation 8 in the (vertical)
xy plane. Derive algebraic expressions for the position and velocity of the sphere as a
function of time. Then use mathematical software to evaluate the distance the sphere
travels, i.e., the value of x > 0 at which y = 0, for the following sets of initial conditions:
(a) initial velocity is 60 m/s at 45° angle of elevation, (b) initial velocity is 60 m/s at 30°
angle of elevation. Compare the result in each case with what would be obtained if air
resistance were neglected. The mass of the sphere is m = 4.6 g, and the value of the
viscosity coefficient c is such that the maximum speed of the sphere in a vertical free fall
is 60 m/s. (This condition is called the terminal velocity.)

EXERCISE 2.23 Solve Exercise 2.22 in the situation in which there is a steady headwind
v, = 10 m/s blowing horizontally. The air resistance in that case is proportional to the
velocity of the sphere relative to the air, so that f = —c (o + val) .

EXERCISE 2.24 The diagram shows a small ball that is

pushed in the vertical plane along a hill whose elevation y
is y = Hsin(rx/L). The motion is actuated by an angle i
arm that translates horizontally at constant speed u. It may ._/_/'_?_\'
be assumed that the ball remains in contact with the hill.
(a) Derive expressions for the velocity and acceleration of
the ball as functions of its horizontal distance x from the origin. (b) Determine the max-
imum speed v of the ball and the value(s) of x at which it occurs. (c) Determine the
maximum acceleration magnitude of the ball and the value(s) of x at which it occurs. (d)
What is the largest value of u for which the ball will remain in contact with the hill when
x = L/27 Friction is negligible, but gravity is not.

Exercise 2.24

EXERCISE 2.25 For the system in Exercise 2.24 determine as a function of x the forces
exerted on the sphere by the arm and the hill.

EXERCISE 2.26 The current flowing through the coiled wire sets up a magnetic field B
that is essentially constant in magnitude and parallel to the axis of the coil, so B = Bk.
The force acting on a charged particle moving through this field at velocity v is given
by F = Bv x B, where B is a constant. Suppose such a particle is injected into this field
at the origin, with an arbitrary initial velocity. Derive an expression for the position
of this particle as a function of time, and identify the corresponding path. Gravity is
negligible.

EXERCISE 2.27 Use the formula for velocity in cylindrical coordinates to solve Exer-
cise 1.8.

EXERCISE 2.28 A ball rolls on the interior of a paraboloid of revolution given by
x? + y? = cz. The angle of rotation about the z axis is § = y sin (At), and the elevation
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of the ball is z = BA%t%, where B, y, and A are constants. Determine the velocity and
acceleration when ¢ = 47 /3A.

EXERCISE 2.29 In an Eulerian description of fluid flow, particle velocity components
are described as functions of the current position of a particle. The polar velocity
components of fluid particles in a certain flow are known to be vg = (A/R)cos®,
vg = (A/R)sinf, where R, 6 are the polar coordinates of the particle. Determine the
corresponding expressions for the acceleration.

EXERCISE 2.30 The device in the sketch rotates about n
the vertical axis at w = 1800 rev/min, and the angle locat-
ing the arms relative to the vertical is known to vary as

0 = (7 /3)sin (120¢) rad, where ¢ is in units of seconds. De- b Qo0 mm
termine the velocity and the acceleration of sphere A as nd \
a function of time. Then evaluate these expressions for the A O
instants when the elevation of the sphere is a maximum and 1

a minimum.

Exercise 2.30

EXERCISE 2.31 The vertical shaft rotates at the constant rate
Q, and the elevation of pin A is constant. End B of the bar
slides over the base table, which translates upward at the con-
stant speed u. Describe the velocity and acceleration of end B of
the bar in terms of u, 2, L, and 6.

EXERCISE 2.32 The device in the sketch is a flyball gov-
ernor, which has been used to control the rotation rate
of an engine. The concept is that increasing the rotation
rate causes the spheres to move outward, thereby causing
the vertical rod to move downward, which may be sensed
magnetically. Consider a situation in which the angular
speed w is unsteady and the vertical velocity of the rod, u,
is constant. Describe the acceleration of a ball in terms of
w, ®, 0, and u.

EXERCISE 2.33 A small block whose mass is 400 g slides

inside a right circular cone whose axis is vertical. At a cer- i
tain instant the block is at » = 200 m, with 7 = —10 m/s and 4 |
7 = 0. The block’s rotation rate about the cone’s axis is ob- "
served to be constant at 40 rad/s. Determine the compo-
nents of the force tangent and normal to the surface re-
quired to obtain this motion.

Exercise 2.33
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EXERCISE 2.34 The cable, whose length is 300 mm, is fas-
tened to the 500-g block. Clockwise rotation of the arm at
a constant angular speed of 5 rad/s causes the block to slide
outward. The motion occurs in the vertical plane, and the
coefficient of sliding friction is 0.4. Determine the tensile
force in the cable and the force exerted by the block on the
walls of the groove when 6 = 53.1301°. Exercise 2.34

EXERCISE 2.35 Derive the formulas for velocity and acceleration in spherical coordi-
nates by following the formulation using stretch ratios.

EXERCISE 2.36 Example 2.9 derived the unit vectors for hyperbolic—elliptic coordinates.
Derive the corresponding formulas for velocity and acceleration.

EXERCISE 2.37 Toroidal coordinates (p, 6, ) are useful in situations in which it is
desired to describe movement relative to a reference circle, which is the case for mag-
netohydrodynamic studies in the fusion reactor known as a tokamak. Let R be the
radius of this reference circle. Then the transformation to Cartesian coordinates is
x=(R+pcosy)cost, y=(R+ pcosy)sind, z= psiny. Derive expressions for the
unit vectors for this coordinate system and for the derivatives of the unit vectors with
respect to each toroidal coordinate. Then obtain the toroidal coordinate expressions for
velocity and acceleration.

Exercise 2.37

EXERCISE 2.38 A small block slides inside a cone whose

apex angle is B = 53.13°. Because angular momentum 53 130 |<—R_
about the vertical axis of the cone is conserved, the block
spins about the z axis such that R? = 5 m?/s, and the ver-
tical motion is observed to be a constant acceleration given
by z = 0.99 — 3t> m. For the instant when z = 0.24 m, de-
termine the velocity and acceleration of the block.

Exercise 2.38

EXERCISE 2.39 The instantaneous velocity of a point is o = 10i — 4/ + 6k m/s, and the
acceleration is @ = —30i — 25] + 15k m/s>. Determine the corresponding speed, rate of
change of the speed, and the radius of curvature of the path.

EXERCISE 2.40 The elevation of the center of mass of an automobile following an ex-
tremely bumpy road is observed to be y = 0.1sin (wx/3), where x and y are the hori-
zontal and vertical coordinates in meters. At x = 1 m the vehicle’s speed is 20 m/s, and
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the speed at that position is decreasing at 5 m/s?. Determine the horizontal and vertical
components of the acceleration at that instant.

EXERCISE 2.41 Polar coordinates in the XY plane are defined by the radial distance
R and the polar angle # measured from the x axis. Derive expressions for the ve-
locity and acceleration in terms of components relative to xyz by considering 7 p;o =
Rcos0i + Rsinfj to be a parametric description of the path based on knowing R ()
and 0 (7). Then obtain the polar coordinate representations of velocity and acceleration
by transforming the xyz representation.

EXERCISE 2.42 At a certain instant, the position, velocity, and acceleration of a point
are observed to be

7 = 20007 — 10007 + 2000k m, o = 1007 + 1507 + 200k m/s, a = 30 — 50k m/s’.

Cylindrical coordinates for the system are (R, 6, z) with 6 defined as the azimuthal angle
in the xy plane, measured relative to the x axis. (a) For this instant determine the speed,
the rate at which the speed is changing, and the direction of the normal vector pointing
toward the path’s center of curvature. (b) Determine the values of 6, 6, and § at this
instant.

EXERCISE 2.43 A satellite is in an orbit about the
Earth. The magnitude of the acceleration of this body
is g(R./R)?*, where R is the distance from the body to
the center of the Earth, R, = 6370 km is the radius of
the Earth, and g = 9.807 m/s”. At the position shown, the
speed of the body is v = 27000 km/h. (a) Determine the
rate of change of the speed and the radius of curvature of
the orbit at this position. (b) Determine R, R, 6, and § at Exercise 2.43
this position.

24000 km

EXERCISE 2.44 Observation of a small mass attached to the end of the flexible bar
reveals that the path of the particle is essentially an ellipse in the horizontal plane. The
Cartesian coordinates for this motion are measured as x = Asin(0), y =2Acos(0),
0 = wt, where A and w are constants. Determine the speed, the rate of change of the
speed, and the normal acceleration at the instants when wt = 0, /3, and 7 /2.

EXERCISE 2.45 Pin P slides inside the 400-
mm-radius groove at a constant rate of 8 m/s.
This motion is actuated by arm AB. Deter-
mine the rotation rate of this arm and the rate
of change of that rate when (a) 6 = 90°, (b)
6 = 135°.

Exercise 2.45
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EXERCISE 2.46 A radar station at the origin z
measures the azimuth angle 0, the elevation 0
angle A, and the radial distance r to a target. {in
At the instant when a high-performance air- 5 km—1--"" 4
craft is at point B it has a velocity of 500 m/s ’/ /,/"/ 1
directed from point B to point A and an ac- Bl -

. . . 4 km
celeration of 8g directed upward. Determine

the values of 7, 7, A, i, 6, and & that are ob-  west
served at this location.

south

Exercises 2.46 and 2.47

EXERCISE 2.47 A radar station at the origin measures the azimuth angle 6, the elevation
angle X, and the radial distance r to a target, as shown in the sketch. At the instant when
an aircraft is at location B, it is observed that 7 = —400 m/s, 7 = 20 m/s2, A = 0.2 rad/s,
A =0,60 = —0.1rad/s,and § = 0. Determine the corresponding speed, rate of change of
the speed, and normal acceleration at this instant.

EXERCISE 2.48 An airplane heading eastward is observed to be in a 20° climb at a speed
of 2400 km/h. At this instant its acceleration components are 2g eastward, 5¢g northward,
and 1.5g downward. Determine the rate of change of the speed, as well as the radius of
curvature and the location relative to the airplane of the center of curvature of the path.

EXERCISE 2.49 A particle follows a planar path such that the azimuthal dependence of
the radial distance from a fixed reference point is a known function R (). It is observed
that 6 is constant. Derive expressions for the velocity and acceleration of the particle.
Then use those results to derive an expression for the radius of curvature of a path in
polar coordinates.

EXERCISE 2.50 A wheel, whose radius is r,

rolls without slipping. A point on the perime- y
ter of the wheel follows a cycloidal path, de- A
scribed in parametric form by x = r (§ —sin§), 2r [(/—\V/—\Y/-x
y = —rcos&. The parameter & is observed to = 2nr == 2nr —
depend on time according to & = ct. Derive ex- Exercise 2.50
pressions for the speed and rate of change of the speed of this point as functions of &.
Also determine the radius of curvature of the cycloid as a function of &.

25 m/s

EXERCISE 2.51 A cable that passes through a hole at point A
is pulled inward at the constant rate of 25 m/s, thereby causing
the 0.2-kg collar to move along the circular guide bar. The sys-
tem is situated in the vertical plane. (a) Determine the speed
and the rate of change of the speed of the slider at the instant
shown in the sketch. (b) If the coefficient of sliding friction is
w = 0.4, evaluate the corresponding tension in the cable.

Exercise 2.51
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EXERCISE 2.52 A collar slides along a guide bar that is
bent to the shape of a parabola, y = 8x?, where x and y
are measured in meters. The system lies in the horizontal
plane. The motion is actuated by pulling on a cable at-
tached to the collar and passing though a slot. The rate
at which the cable is pulled inward is a constant speed
u. (a) For the position x = 1/4 m determine the velocity

Particle Kinematics

Exercise 2.52

and acceleration of the collar in terms of u. (b) Determine the tensile force in the cable

atx =1/4m.

EXERCISE 2.53 Collar C is pushed along the guide bar
defined by y = 2(1 — 0.25x?), where x and y have units
of meters. The angular speed of arm A B that actuates
the motion is the constant value w = 20 rad/s, so 8 = wt.
Determine the forces exerted on the collar by arm AB
and the guide bar at x = 1 m. The mass of the collar is
2 kg, and gravitational effects are ignorable.

EXERCISE 2.54 A hydraulic piston in arm AB
controls the arm’s length, thereby moving the
collar. Guide bar CDE is circular, and it lies in
the vertical plane. At the highest position D it
is known that L. = 10 m/s and L = 0. Determine
the speed of the collar and the rate of change of
the speed at that location.

Exercise 2.54



CHAPTER 3

Relative Motion

When we ride in an automobile or airplane, the reference frame for our observations is
moving. If we wish to use such observations to formulate Newton’s Laws, we need to
convert them to an inertial reference frame. More fundamentally, the basic fact that the
points in a moving rigid body are stationary as viewed from that body is a vital aspect.
In this chapter we develop the ability to correlate observations of position, velocity, and
acceleration from fixed and moving reference frames.

3.1 COORDINATE TRANSFORMATIONS

It is standard terminology to refer to any quantity that is measured relative to a fixed
reference frame as absolute, whereas quantities measured with respect to any moving
reference frame are relative. Figure 3.1 depicts a general situation in which point P is
being observed from a moving reference frame xyz whose motion we presumably know,
whereas XY Z is a fixed reference frame. It is apparent from Fig. 3.1 that one can ar-
rive at the absolute position 7p,o by proceeding first to the xyz origin along 7o/, 0, then
following the relative position 7p, o, so that

Fpio=Tojo+Tpjo. (3.1.1)

Despite the simple appearance of this relation, it embodies many of the issues that we
generally encounter. Both 7p,0 and 7p,o' describe position as seen from a specific ref-
erence frame. Each vector could be represented in terms of components relative to the
coordinate axes of its associated reference frame. However, if we are to evaluate the sum
by adding like components, rather than by a graphically based procedure, then the com-
ponents of each vector must be described with respect to a common set of unit vectors.
In other words, although a vector might describe the perspective of an observer on a
specific reference frame, that vector may be described in terms of components relative
to the axes of any reference frame.

As an aid to representing each of the vectors in Eq. (3.1.1), we introduce the x"y’z’
reference frame in Fig. 3.1, whose origin always coincides with point O’, but whose axes
always remain parallel to the respective fixed axes of XY Z. Such a reference frame exe-
cutes a translational motion. The x’y’z’ coordinates of point P are (x}, yp, Zp), and the

91
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Figure 3.1. Fixed and moving reference frames for observing the position of a point.

XY Z coordinates of point O’ are (X, Yo', Zo') . The corresponding position vectors
therefore are

Fojo=Xo I+ Yol + ZoK, Fpo=xpi' +ypj +2pk'. (3.12)

Because of the parallelism of the I/ K and i’ j’k’ directions, a component description of
Eq. (3.1.1) leads to

Xp=Xo + x},, Yp =Yoo + y};, Z=ZZo + Z}a. (3.1.3)

This conversion between coordinates is referred to as a translation transformation.

This transformation is useful if we know the coordinates of point P relative to the
translating x'y’z’ reference frame. However, the more likely circumstance is that we
would know the position coordinates (xp, yp, zp) relative to the rotating axes of the
xyz reference frame. Such would be the case when we describe position in terms of
forward/back, left/right, and up/down relative to the cabin of an airplane, or when we
locate a point in a piece of machinery by referring to the engineering drawings. This
complicates the task of adding 7,0 and 7p, o/, because the directions used to represent
the vectors are not parallel. Determining the x’y’z’ coordinates of point P corresponding
to known xyz coordinates requires a rotation transformation.

3.1.1 Rotation Transformations

We consider a general situation in which a vector is described in terms of components
relative to the axes of two coordinate systems, xyz and x’y’z’, that have a common ori-
gin. Figure 3.2 depicts the direction angles «, B, y between the x’ axis and each of the
xyz axes. An examination of Fig. 3.2 shows that the values of the direction angles should
be limited to the range 0 < @, 8, y < 7 to avoid ambiguity. The components of i’ are its
projections onto Z, j, and k, which are determined from the direction angles according
to

P (D) i+ ()i Rk

~ _ ~ (3.1.4)
= (cosa)i + (cos B) j + (cosy) k.
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Figure 3.2. Direction angles «, [3, and vy for a line.

This expression indicates that the cosines of the direction angles are more significant to
our analysis: They are the direction cosines. We obviously are equally interested in all
unit vectors, so we

Define €, to be the cosine of the angle between axis p’ and axis g, with p and q
representing x, y, or z.

Extending Eq. (3.1.4) to the other unit vectors then yields
=Lyl + Loy + Lok,
J =Lyd + Ly +Lyk, (3.1.5)
kK'= i+ ]+ 0,k

It is convenient to rewrite these equations in matrix form as

T T
[i" 7 1}’] :[R][Z j 1}] , (3.1.6)
where
Ex’x Zx/y Zx’z
[Rl=|tyx €, £y ]. (3.1.7)
Ez/x Ez’y Zz’z

The matrix [R] is the rotation transformation. 1t is a generalization of the conversion
between coplanar pairs of unit vectors that we employed to discuss mixed kinematical
descriptions in Section 2.4.

Several important properties of [R] follow from the fact that i, j, and k are an or-
thogonal set of unit vectors, as are i/, j’, and k". Suppose that we were to follow parallel
steps to the preceding in order to establish the transformation [R’] describing the unit
vectors i, j, k in terms of their components with respect to i/, j’, k'. By direct analogy
with Egs. (3.1.6) and (3.1.7) we find that the inverse transformation [ R'] is described by

[ 7 l}]Tz[R’][Z’ 7 ia]T, (3.1.8)
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where the elements of [R'] are the corresponding direction cosines between i, j, or k
andi’, j/, or k. For example, R{, = Lyy. Because £,y = £, it follows that R , = Ry ;.
More generally, the definition of the direction cosines leads to R, , = R, so that
[R]=[R]".

A different description of [ R'] results from solving Eq. (3.1.6) for i, j, k, which gives

+ 7 71T - A A T
[[ ] k] =[R] ! [l ik ] . (3.1.9)
A comparison of Egs. (3.1.8) and (3.1.9) shows that [R'] = [R]~!. Thus we find that

The transformation matrix [R'] convertingi', j', and k' to i, j, and k is the inverse
of the matrix [R] converting i, j, andk toi', j', and k'. This inverse transformation
may be evaluated by taking the transpose of the original transformation,

[R]1=[R""=[R]". (3.1.10)

Equation (3.1.7) defines the rows of [R] to be the direction cosines of one of the
primed unit vectors relative to the unprimed set. Similarly, the columns of [ R] consist of
the direction cosines of an unprimed unit vector with respect to each of the primed set.
Let {i}, {j}, etc., denote columns holding the direction cosines of the associated unit
vector with respect to the other set of directions. Then we may write [ R] in partition
form in either of two ways,

g
]1=| {7

=l ] (3.1.11)
(K}

T
T

The rules for products of partitioned matrices indicate that the partitions behave like
single elements if the partitions are conformable (that is, consistently dimensioned). Ac-
cording to the first of Egs. (3.1.11), it must be that

[RI[R]" =

. T (3.1.12)
VA R R

./ T /
(e =1l

’ T /
(K} {k7)
where [U] is the identity (unit) matrix. The final result stems from the fact that each
element of the product matrix is the matrix representation of a dot product, and the

k
k
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unprimed unit vectors are mutually orthogonal. A similar expression results if we use
the second form in Eq. (3.1.11) to form [R]" [R], specifically

AR I LR ) I AL T
[RI"[R = | (/TG ("G )Y k) | =[U], (3.1.13)
KT kT kT k)

where the final form is a consequence of the mutual orthogonality of the unprimed unit
vectors. Thus a matrix having the property that [R]~' = [R]" is said to be orthonormal.

The fact that [R][R]" = [U] gives rise to a useful property. Recall from matrix al-
gebra that the determinant of a product of matrices is identical to the product of the
individual determinants. Furthermore, the determinant of [ R] is identical to the deter-
minant of [R]". Simultaneous satisfaction of both properties, in combination with the
requirement that both xyz and x'y’z” are right-handed coordinate systems," leads to the
conclusion that

I[R]l = 1. (3.1.14)

One use of this property is to check computations.
Because a dot product is independent of the order in which the product is formed,
Eq. (3.1.12) consists of six independent elements, whose specific form is

Loxlyx +Lpylyy +Lp kg =28pg, P,g=X, Yy, OIZ, (3.1.15)

where §,, denotes the Kronecker delta; §,,;, = 1if p = g and §,,; = 0 otherwise. Because
there are six independent combinations of p and ¢ in the preceding, it follows that there
are six equations relating the nine direction cosines. Consequently, there are only three
independent direction angles. However, the selection of which angles are independent
is not entirely arbitrary. For example, the values of «, 8, and y in Fig. 3.2 are not inde-
pendent because cos® @ + cos? B + cos? y = 1. This restriction arises because these three
angles locate only one axis.

In Egs. (3.1.6) the unit vectors of one coordinate system are described in terms of
the unit vectors of another. However, [R] also transforms the components of vectors.
To see this we consider an arbitrary vector A, which may be described in terms of its
components with respect to either set of unit vectors,

A=A+ Ayj + Ak = Ad + Ayj + Ak (3.1.16)

A matrix representation of this expression is

Ay Ay
T T T T T T
A:[z’ H k] Ay =[1 j k] AL (3.1.17)
Ay A,
* Equation (3.1.14) is also correct if both coordinate systems are left-handed, whereas }[R]| =—1if xyz

and x’y’z" have different parities.
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To eliminate the primed unit vectors, we substitute Eq. (3.1.9) into the right side of
Eq. (3.1.17). To do so we must use the property that the transpose of a matrix product
is the reversed product of the transpose of each matrix. According to the orthonormal

property, [[R]_l]T = [R], so we have
Ay
[i/ i 75] Ay =[i_/ 7’ ia][R] AL (3.1.18)
A,

This must be true for an arbitrary A, which permits us to cancel the row of unit vectors.
Thus,

Ay

Ay
Ayt =[R{ A, }. (3.1.19)
A A

Z

Kinematically, the position of a point with respect to the origin is of primary im-
portance, in which case the vector components are the Cartesian coordinates of the
point with respect to either the fixed XYZ or the moving xyz. In some situations we
wish to follow a certain point P on the body, as we would when we monitor the mo-
tion of a point in a piece of machinery. In that case the (xp, yp, zp) values with re-
spect to the body-fixed axes remain constant, and the (Xp, Yp, Zp) coordinates change.
In other situations it is necessary to determine how a point P that does not move
is seen from the perspective of the moving body. Then it is (Xp, Yp, Zp) that re-
main constant, and (xp, yp, zp) change. Either situation can be addressed once we
have determined the transformation matrix [R] that converts IJ K components to i jk
components.

We have seen that knowledge of [R] enables us to fully characterize a vec-
tor in terms of alternative sets of components. The following example determines a
transformation directly from the orthonormal properties. Sometimes there are sim-
pler procedures for such a determination, which we will take up in the following
sections.

The positions of two points are known to be 74 = —2507 + 400j —
500k mm relative to the xyz coordinate system described in the sketch and 7z =
4007 — 600J + 200K mm relative to the XY Z coordinate system. Determine the
position coordinates of each point relative to the coordinate system not given, and
also determine the distance between the points.
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Example 3.1

SOLUTION This example illustrates most of the basic operations associated with ro-
tation transformations. According to the sketch the y axis lies in the XZ plane such
that

j =cos30°] +sin30°K.

The only other piece of information conveyed by the sketch is that the z axis is
depressed 20° below the XY plane. Thus the Z component of k is —sin20°. Let 0
denote the angle between the Y axis and the projection of the z axis onto the XY
plane. Because k has unit magnitude, the length of its projection onto this plane is
cos 20°, from which it follows that

k = cos20° (sin01 + cos0J) — sin20°K.

The angle 6 is set by the condition that j and k are orthogonal, so that their dot
product is zero,

j -k = cos30° cos 20° sin 6 — sin 30° sin 20° = 0,
from which we find
6 = sin~! (tan30° tan 20°) = 0.2117 rad = 12.131°.
The preceding description of k correspondingly gives
k =0.197471 + 0.91871J — 0.34202k.

The fact that 7, f, and k are a set of orthonormal unit vectors enables us to directly
determine i from a cross product:

i =] xk=-0.459361 + 0.39493J + 0.79563K.

The rows of the transformation from XYZ to xyz are the components of the
unit vectors of xyz relative to XY Z, so we have found that

—0.45936 0.39493  0.79563
[R]=| 0.86603 0 0.500
0.19747 091871 —0.34202
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We use [R]" to transform the xyz coordinates of point A, and [R] to transform the
XY Z coordinates of point B:

X4 —250 362.52
Ya t =[R]"{ 400 } ={ —558.09 } mm,
Z4 —500 172.10
Xp 400 —261.58 B
yg ¢ =[R]§ —600 ¢ = { 446.41 ; mm.
25 200 —540.64

The distance between the points is the magnitude of the position vector between
them, which may be constructed from 7z, 4 = 70 — F'4/0. We calculate this differ-
ence by taking the difference of components with respect to the XYZ coordinate
system:

X — Xa 37.48
{rB/A} = YB — YA = —41.91
Zp— Z4 27.90

The distance |fB/ A| may be determined from the matrix implementation of a dot
product, which gives

37.48
|Fp/al> = [37.48 —41.91 27.90]{ —41.91 ¢,
27.90,
|Fp/al = 62.77 mm. <

This result should be the same as what would be obtained if we described 7,4 in
terms of xyz components. Doing so would have given

Xg— X4 —11.58
{r;w} =L ys—yat =1 4641 },
ZB — 24 —40.64
—11.58
|;72;/A|2 =[-11.58 46.41 —40.64]3 46.41 ;,
—40.64

7,4l = 62.77 mm. <
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3.1.2 Rotation Sequences

One use of a moving reference frame is to represent a rigid body in motion. A set of axes
xyz that are attached to the body is said to be body fixed. To follow the rotation of the
axes we designate XY Z as the orientation of the body-fixed axes prior to the initiation
of motion. Because a translation transformation accounts for the motion of the origin
of xyz, we temporarily consider the origins of XY Z and xyz to coincide. Our objective
here is to characterize the transformation from XY Z to the current orientation of xyz in
terms of rotations that the body undergoes. We do this by following successively more
complicated types of rotations.

Simple Rotations

In a simple rotation one of the body-fixed coordinate axes remains stationary. We may
picture such a rotation by looking down the stationary axis, because all points move in
the plane perpendicular to that axis. To avoid ambiguity, we use the right-hand rule to
define the positive sense of rotation. Specifically, one curls the fingers of the right hand in
the sense of the rotation. If the extended thumb of that hand points in the positive sense
of the rotation axis, then the rotation angle is positive. The three possibilities, involving
positive rotation about the x, y, or z axis, are depicted in Fig. 3.3. We use a subscript to
denote the axis for the simple rotation. Inspection of Fig. 3.3 gives the direction angles
of xyz relative to XY Z, which leads to

1 0 0 cos¢, 0 —siné,
[Re]=]0 cosf, sinb, |, [R]= 0 1 0 ,
0 —sinf, cosb, sinf, 0 cosé,
(3.1.20)
cosf, sinf, O
[R]=| —sinf,; cosf, 0O
0 0 1

Figure 3.3. Simple rotations about each of the coordinate axes.
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Note that a rotation that is opposite the sense of the right-hand rule corresponds
to a negative value of the respective angle in the preceding equations. This leads to an
interesting observation. Each transformation for the negative angle is the transpose of
the transformation of the positive angle, that is

[Re (—0.)] = [Re (6], [Ry(=0,)] = [Ry (+0,)]". [R.(—0.)] = [R. (+0:)]".
(3.1.21)

This demonstrates that the inverse transformation for a simple rotation merely corre-
sponds to the opposite rotation, which is a fact that is apparent from Fig. 3.3.

Body-Fixed Rotations

A spatial rotation is one in which a new orientation does not result from rotation about
a single coordinate axis. The first situation we treat is that in which the overall rota-
tion can be pictured as a sequence of simple rotations. The ultimate orientation of a
coordinate system that undergoes such a rotation clearly will depend on the orientation
of each of the simple rotation axes, and the amount of rotation about each axis. It is
less apparent that the final alignment of the coordinate axes also is dependent on the
sequence in which the individual rotations occur. Two situations commonly arise. The
simpler case to describe in words is a space-fixed rotation sequence, in which the simple
rotation axes have fixed orientations in space. The contrasting situation is a body-fixed
rotation sequence, in which each simple rotation is about one of the body-fixed axes
at the preceding step in the sequence. For example, a body-fixed sequence 6,, 6., 6,
occurs first about the initial position of the y axis, then about the z axis in its new ori-
entation, then about the x axis in its orientation after the second rotation. Although a
body-fixed rotation is more difficult than a space-fixed rotation to describe in words, the
transformation for body-fixed rotations is easier to derive.

We begin by following a specific sequence of body-fixed rotations, after which we
generalize the result. The first rotation 6, occurs about the original orientation of the
x axis, and the second rotation 6, occurs about the position of the z axis after the first
rotation. In Fig. 3.4(a), the stationary XY Z system marks the initial orientation of xyz.

Z1, 2

(@ (b)

Figure 3.4. Body-fixed rotations: (a) rotation by 6, about the original x axis, followed by (b) rotation by 6,
about the z axis resulting from the first rotation.
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We mark the orientation of xyz after the 0, rotation as x; y;z;. The transformation de-
scribing the first rotation is given by

Ay Ax
Ayt =[R] Ay ¢, (3.1.22)
Ay Az

where we may readily construct [ R,] because it describes a simple rotation.

The result of the second rotation is depicted in Fig. 3.4(b). The 6, rotation moves xyz
from its intermediate orientation coincident with x; y; z; to its final orientation. Because
this corresponds to a single axis rotation about the z; axis, we have

Ay

A
Ayt =[R]{ A
A, A

X1

(3.1.23)

<
=

21

Substitution of Eq. (3.1.22) into Eq. (3.1.23) leads to the overall transformation matrix
[R],

Ay Ax
A, b =R Ay b, [RI=[RI[R]. (3.1.24)
A, Ay

Additional rotations about any of the xyz axes will merely extend the preceding by
inserting additional premultiplication factors. Furthermore, we observe that the details
of the individual transformations were not used, so the result is valid for any sequence
of rotations, rather than being limited to simple rotations. We let [ R;] denote the trans-
formation describing the ith rotation. This enables us to conclude that

If xyz is a coordinate system that undergoes a sequence of rotations about body-fixed
axes, and XY Z marks the initial orientation of xyz, then the transformation from
IJ K components to the final i jk components is obtained by premultiplying (from
right to left) the sequence of transformation matrices for the individual rotations. For
n rotations:

[R] = [Ri]- - [R][R]. (3.1.25)

It should be noted that although the preceding is valid for any type of body-fixed rota-
tion, in practice, we usually apply it to simple rotations, that is, rotations about the axes
of xyz. Doing so simplifies the description of the individual transformations.
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Consider the coordinate systems in Example 3.1. The final orien-
tation of xyz may be obtained from a set of body-fixed rotations, starting from an
initial orientation in which xyz coincides with XY Z. Describe the axis and angle for
each rotation.

SOLUTION In addition to illustrating some basic operations, this example demon-
strates the versatility provided by decomposing a transformation into a set of simple
rotations. Initially xyz coincides with XY Z. Because we fully know the final orien-
tation of the y axis, we begin by imparting a set of rotations that move this axis to
where it should be. One way of doing this is first to rotate xyz about the negative Z
axis by 90° in order to make the y axis align with the X axis. This leaves the z and
Z axes coincident and the x axis aligned oppositely from the Y axis. Thus the first
transformation is

0 -1 0
[Rl=|1 0 0
0 0 1

Next we rotate by 30° about the current x axis, which places the y axis where it
should be. This is a simple rotation transformation given by

1 0 0
[RR]=]0 cos30° sin30°
0 —sin30° cos30°

It is helpful to sketch the orientation of xyz after the second rotation.

X, Y,z after notation of —90° about the original z axis, followed by
rotation of 30° about the new x axis.

Any further rotation should keep the y axis in place, so we rotate xyz about its cur-
rent y axis. Because the amount of this rotation cannot be ascertained by inspection,
we let ¢ denote the angle. The associated simple rotation transformation is

cos¢p 0 —sing
[R:] = 0 1 0
sing 0 cos¢
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The transformation corresponding to these three body-fixed rotations is
0.5sin¢p —cos¢p —0.8660sin¢
[R] = [R][R][R] = 0.8660 0 0.5
—0.5cos¢p —sing 0.8660cos ¢

The final orientation of the z axis is such that the angle between it and the
Z axis is 110°, so that £,z = cos 110°. Equating this to the (3, 3) element of [R]
gives
cos 110°

- — —0.3949,
COS¢ = 38660 949

There are two roots of the preceding in the range —180° < ¢ < 180°. To select the
appropriate one we observe that the sketch accompanying Example 3.1 indicates
that the direction angles from the X and Y axes to the z axis are both acute, which
requires that both ¢,x and £,y be positive. Because these direction cosines are the
(3,1) and (3,2) elements of [R], the desired root must be such that cos ¢ and sin ¢
are both negative, so ¢ = —113.26° is the appropriate root. Evaluation of [ R] corre-
sponding to this value of ¢ shows the result to be the same as [ R] derived in Exam-
ple 3.1. Thus [ R] may be obtained by a sequence of three body-fixed rotations: —90°
about the z axis, followed by 30° about the x axis, concluding with —113.26° about
the y axis. <

Space-Fixed Rotations

The derivation of the transformation matrix for a sequence of space-fixed rotations fol-
lows a course that parallels the development in the previous section, in that we begin by
considering a specific pair of rotations and then generalize the result. The rotations now
occur about the axes of the stationary XY Z coordinate system. In the first rotation, 6 x,
the x axis remains coincident with the X axis. In Fig. 3.5(a) x;y;z1 marks the position
of xyz after the first rotation. Thus the transformation from IJ K components to i1 j1k;
components is described by the simple rotation transformation [ Rx] corresponding to

angle 0 x about the X axis, so that

Ay, Ax
Ayt =Ry Ay ¢ - (3.1.26)
AZl AZ

The second rotation, which consists of 6, about the (fixed) Z axis, rotates x; y; 21
to xyz. This movement is difficult to visualize because it does not occur about an axis
of either x1y;z; or xyz. As an aid to following the rotation, Fig. 3.5(a) shows construc-
tion lines Ay, and Bz, which are formed by dropping perpendiculars from the tips of
the respective axes to the Z axis. Coordinate system x;y,z; in Fig. 3.5(b) is defined to
coincide with XY Z prior to the second rotation. The Z and z, axes remain coincident,
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Z] Z, 22
(ON>B
Q-

y
4 '
X x1 X x T

() (b)

Figure 3.5. Space-fixed rotations: (a) 6x about the fixed X axis, followed by (b) 6, about the fixed Z
axis.

s0 i, jok, components are related to IJk components by the simple rotation transforma-
tion [Rz]:

A, Ay
A, t=[R]{ A, {. (3.1.27)
Az Ay

Now comes the crucial observation: Because x;y;z; and x;),z; undergo the sec-
ond rotation in unison, their relative orientation is invariant. Before this rotation xyz
coincided with x; y;z; and x, y,z, coincided with XY Z. Equation (3.1.26) gives the trans-
formation from XY Z to xjy;z1, so it also describes the transformation from x;y,7z, to
Xyz:

AX A)Cz
A, b =[R]{ A, }. (3.1.28)
Az Az

To eliminate the components relative to x; y»z,, we substitute Eq. (3.1.27), with the result
that

Ay Ax Ax
Ayt =[R][R]{ Ay } =[R]{ Ay }. (3.1.29)
Az AZ AZ

We now observe that we never specifically treated [ Ry] and [ R;] as simple rotations.
Furthermore, the pattern would repeat if we were to consider another space-fixed rota-
tion. Consequently, the preceding is generally valid, provided that we use [ R;] to denote
the jth rotation about a space-fixed axis. We therefore conclude that

If xyz is a reference frame that undergoes a sequence of rotations about a set of axes
that are fixed in space, and xyz is initially coincident with XY Z, then the transfor-
mation from IJK components to i jk components is obtained by postmultiplying
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(from left to right) the sequence of transformation matrices for the individual rota-
tions. For n rotations,

[R] = [Ri][R:] - - [Ra]. (3.1.30)

The similarity of Eqs. (3.1.25) and (3.1.30) is significant. We see that the result of a
sequence of body-fixed rotations leads to the same orientation as the reverse sequence
of space-fixed rotations, and vice versa. For example, the transformation in Eq. (3.1.29),
which was obtained by consideration of a pair of space-fixed rotations 6 x followed by
0 z, can be obtained alternatively by a pair of body-fixed rotations. The first such rotation
would be 0 7 about the Z axis, and the second rotation would be 6 x about the x axis in
its orientation following the first rotation. Both situations are depicted in Fig. 3.6. In this
sketch x;y;z; marks the position of xyz after the first rotation in each case. It can be
seen that, in both cases, the x axis is situated in the XY plane at an angle 6 7 from the
X axis, the direction angle from the Z axis to the y axis is 7 /2 — 0 x, and the direction
angle from the Z axis to the z axis is 6 y. These properties lead to the conclusion that the
orientation of xyz relative to XY Zis the same for each rotation case.

@) (b)

Figure 3.6. A pair of rotations about (a) space-fixed rotations 0x followed by 67, compared to (b) the
body-fixed rotations 67 followed by 6.

For a given sequence of simple rotations, the order of multiplication in which [R] is
formed from the individual matrices must be consistent with the type of rotation: pre-
multiplication for body-fixed rotations and postmultiplication for space-fixed rotations.
In a situation in which the overall rotation involves both types of rotations, we may fol-
low Egs. (3.1.25) and (3.1.30) by premultiplying for the body-fixed rotations and post-
multiplying for the space-fixed rotations. For example, a sequence described by [ R;] and
[R,] about body-fixed axes, followed by [ R;] about a space-fixed axis, then [ R4] about
a body-fixed axis would lead to [R] = [ R4][ R ][ R1][ R5]. A fundamental property of vec-
tors is that their sum is independent of the order of addition. Because the final rotation
transformation depends on the sequence in which the rotations occur, spatial rotations
cannot be represented as vectors.
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DN X An xyz coordinate system, which initially coincided with a station-
ary XY Z coordinate system, first undergoes a rotation 6; = 65° about the Y axis,

followed by 6, = —145° about the Z axis. Determine (a) the coordinates relative to
xyz in its final orientation of a stationary point at X =2, Y= —4, Z=3 m; (b) the
coordinates relative to XY Z of the point that remains at x =2, y=—4, z=3m

throughout the motion.

SOLUTION In addition to illustrating the basic operations associated with space-fixed
rotations, this example serves to emphasize the difference between points that are
fixed in space and those that are stationary with respect to a moving reference frame.
The transformation matrix for this pair of space-fixed rotations is [R] = [R] [ R],
where [ R;] describes a simple rotation about the Y axis and [ R;] is a simple rotation
about the Z axis. Thus

[cos65° 0 —sin65° cos (—145°) sin(—145°) 0
[R] = 0 1 0 —sin (—145°) cos(—145°) 0
| sin65° 0 cos65° 0 0 1
[[—0.3462 —0.2424 —0.9063

= 05736 —0.8192 0

| —0.7424 —0.5198 0.4226

For the first question, we know the position coordinates with respect to XY Z,
and [ R] transforms from /J K components to i jk components, so we apply the direct
transformation:

Xa 2 —2.442
vot =[R1{ -3}=1 4424 { m. <
Za 4 1.862

In the second situation the coordinates of the point with respect to the xyz coordi-
nate system are invariant, and we need to determine the XY Z coordinates. This is
the inverse of the transformation described by [R]. In accord with the orthonormal
property, we use [R]" to find

Xp 2 —5.214
Y, t =[R]"{-3}=1{ 1232 } m. 4
7 4 —0.545

Rotation About an Arbitrary Axis

We have seen that a sequence of simple rotations about various coordinate axes leads
to a general rotation transformation. The question now is this: What should one do if

Relative Motion
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Figure 3.7. Rotation by angle ¢ about line Z’ that does not coincide with one
of the original coordinate axes.

there is a rotation about an axis that is not one of the coordinate axes? To address this
question we follow the approach we employed to analyze space-fixed rotations. Such a
situation appears in Fig. 3.7, where we have defined two fixed coordinate systems: XY Z,
which is the one of interest, and XY’ Z’, which is defined to have its Z’ axis align with
the rotation axis, but otherwise is arbitrary. The direction cosines £z x, £y, and £z
define the orientation of the Z’ axis.

The angle of rotation is ¢. We denote as [ R'] the transformation from XY Z compo-
nents to X'Y’Z' components. We seek to determine the transformation [R] from IJ K
components to i jk components, where coordinate system xyz coincided with XY Z prior
to the rotation. To assist in that determination we define another coordinate system
x'y'z’ that also undergoes the rotation, with the property that its axes coincided with
X'Y'Z prior to the rotation. Because xyz and x'y’z’ experience the same rotation, and
therefore maintain their relative orientation, [R’] also describes the relation between
these coordinate systems. Thus we have

AX/ AX A)C' AX
avt=rpday b, ta borylat, (3.1.31)
Az Az Ay A;

Let ¢ denote the angle of rotation about the Z’ axis. This is a simple rotation from

13y 5!

the perspective of X'Y'Z and x'y’7/, so

Ay Ax cos¢p sing 0
Ay ¢t =[Rs]y Ay ¢, [Ry]=]| —sing cos¢ O |. (3.1.32)
Az’ AZ’ 0 0 1

Using Egs. (3.1.31) to eliminate the primed components in the preceding equation leads
to

A, Ax
[R]] A, t = [RI[R]] Ay |- (3.1.33)
A, Ay

The transformation from XY Zto xyzis readily obtained from the orthonormal property,
which leads to an interesting conceptual picture:

The transformation matrix corresponding to rotation of a coordinate system about an
arbitrary axis is equivalent to a sequence of body-fixed rotations. The first rotation,
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corresponding to [R'], brings one of the coordinate system’s axes into coincidence
with the rotation axis. This is followed by a simple rotation [ Ry] about the designated
rotation axis, after which the inverse of the first rotation is executed, so that

Ay Ax
Ayt =[R1§ Ay . [R=[RT'[R][R]. (3.1.34)
A, Ay

The converse of the preceding is Euler’s theorem, which states that any rotation is
equivalent to a single rotation about an axis. Let us consider the task of finding the angle
and axis of such a rotation given [ R]. In the analysis leading to Eq. (3.1.34) we saw that
the 7 axis has a constant orientation relative to xyz. Hence, the direction cosines of Z’
with respect to xyz after the rotation are the same as its direction cosines with respect
to XYZ. However, the direction cosines of any vector with respect to xyz and XY Z are
related by [ R]. Consequently, we have

Lz x Ly Lz x
Ly ¢ = ZZ’y = [R] Loy ¢ . (3135)
bz z Lz Lz z

Thus we obtain a set of simultaneous equations for the direction cosines of K':

Lz x
[[Rl - [UII{K'} =10}, {K'} =1 tzvy¢- (3.1.36)
Lz 7
There must be a nontrivial solution for the direction cosines, which will be true only
if |[R] — [U]| = 0. In other words, [R] — [U] is rank deficient, which means that one or
more of the elements of {K ’} is arbitrary. We can solve Egs. (3.1.36) for two direction
cosines in terms of the arbitrary one. Then all three values may be determined from the
fact that K’ is a unit vector, so that €%, + €%, + (%, , = 1.
An alternative procedure for determining the direction cosines comes from solving
the matrix eigenvalue problem described by

[[R] - »[U]]{&} = {0}, (3.1.37)

which gives nontrivial solutions if [[R] — A [U]| = 0. Because |[R] — [U]| = 0, it follows
that one of the eigenvalues must be unity. The eigenvector corresponding to A = 1 and
having a unit Euclidean norm will be {K'} . In other words

[[R] —2; (U {&;} = (0} gives {&;} = [K'} ifA; =1and {¢;}" {&;} =1. (3.138)

Because [R] is a 3 x 3 matrix, there are three eigenvalues. However, only one axis re-
mains stationary in the rotation. This is manifested by the other two eigenvalues being
complex, and therefore irrelevant, although their magnitude is unity. The primary virtue
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of Egs. (3.1.38) as compared with Eq. (3.1.36) is that the former are readily implemented
with mathematical software.

It still remains to determine the angle of rotation ¢ corresponding to [R] . A theorem
of matrix algebra leads to an equation that ¢ must satisfy. The relation between [ R] and
[Rs] given by Eq. (3.1.34) is an orthogonal similarity transformation. (We will encounter
this matter in greater detail in Chapter 5 when we discuss the inertia properties of rigid
bodies.) An important property of such a transformation is constancy of the trace of
the matrix, which is the sum of the diagonal terms. Thus tr[ R] = tr[ R;]. In view of the
definition of [ R, ], it follows that the angle of rotation must satisfy

1+2cos¢ =tr[R], (3.1.39)

which is a relation that was derived by Euler.

The difficulty with Eq. (3.1.39) is that it does not uniquely determine ¢ because
cos ¢ = cos (—¢) . This ambiguity in the sign of ¢ is associated with the fact that Egs.
(3.1.38) are satisfied by —{ K'}, as well as by +{ K'}. Physically, the same transformation
will result from ¢ in the sense of K’ and —¢ in the sense of — K.

One way to determine ¢ involves first determining the transformation [R'] in
Eq. (3.1.34). The direction cosines {K'} are taken to be known from Egs. (3.1.36) or
(3.1.38). The orientation of the X’ and Y’ axes was unspecified in the development lead-
ing to Eq. (3.1.34). Let us impose the condition that the Y’ axis should lie in the XY
plane. This is the situation in Fig. 3.8, where ¢ is the angle between the Y and Y’ axes
and 6 is the angle between the Z and Z’ axes. It is evident from the figure that all pos-
sible orientations of the Y’ axis in the XY plane are covered by —m < ¥ < &, whereas
any Z' axis is described by 0 < 6 < x.

Figure 3.8. Sequence of rotations leading to a coordinate system whose
Z' axis coincides with an arbitrary rotation axis.

It is possible to construct [R'] in terms of v and @ by use of Fig. 3.8 to project I,
J, and K’ onto the XY Z axes. Alternatively, one can consider [R'] to be the result of
a pair of body-fixed rotations: ¢ about the Z' axis, followed by 6 about the Y’ axis.
(This viewpoint will be used in Chapter 4, where  and 6 will be identified as two of the
Eulerian angles used to standardize the description of motion. The third Eulerian angle
will be ¢.) Either construction leads to

cosycosf sinycosf —sinb
[R]=| -—siny cos 0 . (3.1.40)

cosy sinf sinysing  cosf



110 Relative Motion

The last row consists of the direction cosines of the Z’ axis. Equating these to the corre-
sponding elements of { K’} leads to

Lz 7 =cos0,
Lzy = siny sinf, (3.1.41)
Lz x =cosysing.

These relations may be solved for the values of 6 and . Only values 0 <6 < x are
meaningful, and the quadrant of ¥ must be consistent with the last two relations.

Knowledge of ¥ and 6 allows us to fill in the missing elements of [ R'] in Eq. (3.1.40).
The corresponding [ R, ] obtained by solving Eq. (3.1.34) with the aid of the orthonormal
property is

[R,] = [R[RI[R]". (3.1.42)

Matching the result of this calculation to Egs. (3.1.32) leads to values of cos ¢ and sin ¢,
which together enable us to place ¢ in the proper quadrant.

Construct [R] corresponding to angles ¢ = —30° and 6 = 125° in
Fig. 3.8, with ¢ = —143.13° being the angle of rotation about the Z’ axis. Then test
the procedure for ascertaining the angle and axis of rotation by extracting the values
of ¢, 0, and ¢ from the resulting [ R].

SOLUTION This example entails application of all the concepts associated with rota-
tion about an arbitrary axis. We begin by evaluating Eqgs. (3.1.40) and (3.1.32) for
the given angles,

—0.4967 0.2868 —0.8192
[R] = 0.5 0.866 0 ]
0.7094  —0.4096 —0.5736

—08 -0.6 0
[Ry)=| 06 —08 0
0 0 1

The overall transformation is found from Eq. (3.1.34) to be
0.1059 —0.1789 —0.9782

[R]=| —0.8671 —0.4980 —0.0028 |. <
—0.4867 0.8485 —0.2078

We now wish to work backwards to determine the angles associated with this
transformation. We could determine {K'} by solving Egs. (3.1.38) with the aid of
Matlab’s eigen or Mathcad’s eigenvec function. Instead we shall follow Egs. (3.1.36).
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We subtract the identity matrix from [R] and recognize that only two of the rows
are linearly independent because |[R] — [U]| = 0. Using the first two rows leads to

!

7%
|: 0.1059 —0.1789 —0.9782:| [0}

—0.8671 —0.4980 —0.0028
Lzz

We have two equations for three unknowns, so we take £z, to be arbitrary, and
solve for the other direction cosines:

0.8941 —0.1789 Lyx 0.9782¢7 7
—0.8671 —1.4980 Ly B 0.0028¢ 7 7 ’
Lz x=—1.23680,,, L7y =0.71410, 4.
We find ¢z 7 from the fact that K’ is a unit vector, so that
o+ 0y + 65, = (123687 +0.7141° + 1) £3,, = 1.

The sign of £z 7 is not defined by this relation. Because we require that 0 <0 < =,
setting £ = cos § would lead to two alternative values for 6. Let us use the positive
root, so that 6 will be acute, specifically,

1
“ 7 (123682 + 0.71412 + 1)1

d

= 0.5736 = cosé,

0 = 55°. <
The second and third of Egs. (3.1.41) then lead to
Lzy =sinysing = 0.4096, £z x = cosy sind = —0.7094.
These relations place ¢ in the second quadrant:
¥ = 150°. <

Equation (3.1.40) indicates that the transformation [ R’] corresponding to the
calculated ¢ and 6 is

—0.4967 0.2868 —0.8192
[R]=| -05 —0866 0
—0.7094 0.4096 0.5736
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We use Eq. (3.1.42) to find the value of [Ry] corresponding to the preceding, and
match the result to the standard expression in Egs. (3.1.32), which leads to

08 06 0
[R;] =[R][R][R]"=| -06 —08 0|,
0 0 1

cos¢p sing O

=| —sin¢g cos¢ O, |,
0 0 1
¢ = 143.13°. <

The values of i and 6 are 180° greater than the given values, which means that the
identified Z’ axis is oriented oppositely from the rotation axis that was specified in
the problem statement. Correspondingly, the value of ¢ that was found is the nega-
tive of the specified value. In other words, we have identified the opposite rotation
about the opposing axis. This situation is a consequence of using a positive sign for
the square root leading to €z 7.

3.2 DISPLACEMENT

The rotation transformation relates the components of a vector with respect to two coor-
dinate systems having different orientation. For many vectors, such as force or velocity,
only their direction angles relative to the reference directions are significant. This ob-
servation enabled us to develop the rotation transformation by depicting the coordinate
systems as having a common origin, with the tail of the vector situated at that origin.
The situation is different for position vectors. Figure 3.1 described the position of an ar-
bitrary point P as it is observed from two different reference frames. The position with
respect to the fixed reference frame is 7p,o, whose components with respect to the sta-
tionary XY Z coordinate system can be designated as Xp, Yp, and Zp. The position with
respect to a moving reference frame is 7p, o . Because the moving xyz coordinate system
provides the viewpoint for this vector, we use the associated coordinates xp, yp, and zp
to describe 7p/or.

To implement Eq. (3.1.1) by adding like components, we need to describe all vectors
in terms of components relative to the same coordinate directions. We may use a rota-
tion transformation for this task by observing in Fig. 3.1 that x'y’z’ is parallel to XY Z.
If the former coordinate system is to be useful, it must be that we know where its origin
is, which means that we know Xo/, Yo, and Zo'. To represent the components of 7p, o/
with respect to XYZ, we use the rotation transformation [ R] between x’y’z’ and xyz.
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Figure 3.9. Displacement of a point as viewed from a
moving reference frame. Points (P), and (P); are the
original and final positions, respectively.

X

This lead to the general positional transformation, which is described by

(Xr Yr Zp|' =[Xo Yo Zo|" +[R]" [xpr yr zr]". (3.2.1)

Proper application of this relation requires that we be cognizant of the fact that [R] is
defined to give components relative to xyz, given x’y’z’ components, and that x’y’z’ is
parallel to XYZ. Obviously, when xyz coincides with x"y’z’, so that [ R] is the identity
matrix, the preceding reduces to the translational transformation, Eq. (3.1.3).

A key aspect of the description of motion is evaluation of the displacement of a
point, which is the position shift from an initial reference location to the current location,

Afp = (Fp/0); — (FP/0), » (3.22)

where the subscripts “0” and “f” are shorthand for original and final. Note that the origin
O does not need to be indicated in the notation for A7 p because the displacement vector
merely extends from the initial to the final position, for which the location of the origin
O is irrelevant.

The simplest evaluation of displacement is encountered when both positions are
known in terms of their coordinates relative to a stationary XY Z reference frame. In
that case, the displacement components are merely the difference of like coordinates. In
matrix form, we have

Arpx AXp (Xp); (XP),
Arpy ¢ = AYP = (Yp)f - (Yp)o . (323)
Arpyz AZp (Zp); (Zp),

The more usual case involves observation of some aspects of motion from a moving
reference frame. This would be the case if we were in an airplane observing the dis-
placement of another airplane. Consider the situation in Fig. 3.9, in which the position
of point P is described by a position vector from the origin of a coordinate system xyz
that executes a known motion. In this viewpoint, the original and final positions are each
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described by Eq. (3.2.1), with subscripts “o” and “f” used to designate the original and
final states. Taking the difference of these expressions yields the displacement:

Arpx Arox (xp)s
Arpy t =1 Aroy ¢ +[R]f { (vp)
Arpz Aroz (zp)s (3.2.4)
(xP)o
—[Rl; | )
(zp),

The relative displacement (AF p)xyZ is the displacement that an observer moving in
unison with xyz would see. Such an observer would consider the orientation of xyz to
be invariant, so only the change in the values of (xp, yp, zp) would be seen. Thus,

(AFp)yy. = [(xp)y = (xp)oli + [(yr)s = (vp)ol J + [(zp); — (zP)o] k. (3.2.3)

To emphasize the difference between (Arp),,, and AFp, the latter is sometimes called an
absolute displacement. [Consistency of the notation suggests that the absolute displace-
ment should be denoted as (A7p) vy, but we shall not do so for brevity. Instead, the
absence of a subscript denoting a reference frame should be understood to mean that a
displacement, and later, a velocity or acceleration, is relative to the stationary reference

frame.] The matrix representation of Eq. (3.2.5) is

(xp); (xP)o (Afp)xyz i
(yp) ¢ = (yP)o + (AfP)xyz ’ ]_ (3.2.6)
(ZP)f (ZP)O (Afp)xyz : ]_{

Note that a dot product is used to denote which set of displacement components
are under consideration in order to avoid later confusion. Substitution of the preced-
ing equation into Eq. (3.2.4) leads to a useful expression for the IJK displacement
components:

AFp - T Ao - T (Afp)xyz'i_
Afp-T t = AFo - T § +[RIF§ (AFp),,. - ]
AFp - K AFo - K (AFp),,, -k
Playz (3.2.7)
(xP)o

+ IR = [RIE] § (v

(ZP)()
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Equation (3.2.7) highlights that when motion is described in terms of a moving ref-
erence frame, three effects combine to give the displacement relative to a stationary
reference frame. If xyz were to translate, so that [R]; = [R],, and if the coordinates of
point P relative to xyz were constant, so that (A7 P)xyz = 0, then only the displacement
of the origin of xyz would matter. Thus (A7o) vy, is called the translational displace-
ment. If xyz translates, but the position of point P relative to xyz is not constant, then
the relative displacement is superposed onto the translational displacement. Finally, if
xyz rotates, so that [R] is no longer constant, then the last term, representing the rota-
tional displacement expressed in terms of J K components, superposes onto the other
contributions. These three influences also will be encountered when we use a moving
reference frame to describe velocity.

There are many situations in which it is more desirable to use the moving reference
frame to describe vector components. For example, such a description corresponds to
the position of another airplane from a pilot’s perspective. Another general situation is
one in which displacement is used to define strain in order to perform a stress analy-
sis. Such a study is most relevant if viewed relative to favored directions defined with
respect to the body. Equation (3.2.7) describes displacement in terms of IJ K compo-
nents. Multiplying that expression by [ R]; converts it to components relative to the final
xyz orientation. We then use Eq. (3.2.6) to eliminate the original coordinates, with the
result that

AFp-i N (A7p)gyz i
Afp-j t =1 AFo - j { +[R];[R]! (A7p)yy, - j
AFp -k Aok (A7), k (32.8)
(xp)
+[(U1 - [RK IR ] | (o)
(zp);

A common source of error in the application of Egs. (3.2.7) and (3.2.8) is confusion
regarding the definition of [R], which is that it converts /J K components to i jk com-
ponents.

It is imperative to realize that this expression and Eq. (3.2.7) describe the same (ab-
solute) displacement. Equation (3.2.7) gives displacement components relative to the
axes of the fixed XY Z coordinate system in terms of the original coordinates of the
point. This description, which is referred to as a Lagrangian description, represents
the perspective of a fixed observer. In contrast, Eq. (3.2.8) is an Eulerian description
giving displacement components relative to the axes of the moving xyz coordinate sys-
tem in terms of the final coordinates. This is the perspective of an observer who moves
in unison with xyz. Which is most suitable depends on the situation to be analyzed. The
study of solid mechanics usually begins with an Lagrangian description, whereas fluid
mechanics analyses are usually most easily carried out with an Eulerian description.
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The sketch shows the initial position of a box, in which its edges
coincided with fixed reference frame XY Z. The box is rotated 30° about axis OA,
counterclockwise when viewed from O to A. Determine the displacement of point
B in terms of components relative to xyz, and relative to XY Z.

/X

Example 3.5

Z Y
A

SOLUTION This example consolidates many of the developments for rotation trans-
formations. To follow corner B as it moves, we attach the xyz coordinate system
to the box, such that the axes coincide with XY Z prior to rotation. Thus the initial
transformation is [R], = [U], and the initial coordinates of point B with respect to
xyz are

(XB)O 1.5
(yB)o = 2
(ZB)o 1

We need to establish [R];, which transforms XY Z to xyz components in the final
position. The rotation takes place about an axis that does not coincide with either set
of axes, so we define an X'Y’ Z’ coordinate system whose Z’ axis coincides with the
diagonal O A. This system may be obtained by a simple rotation about the negative
X axis by @y = tan~'(2/1). The corresponding transformation from I/ K to I'J' K’
components is

1 0 0
[R]=|0 cosfy —sinfy
0 sinfyxy cosfy
The specified rotation about the Z’ axis is ¢ = —30°, so
cos30° —sin30° 0
[Rs] = | sin30° cos30° O
0 0 1
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From Eq. (3.1.34) we find that
0.8660 —0.2236 0.4472
[R]; = [R]"[Ry][R]=]| 02236 09732 0.0536
—0.4472  0.0536  0.8928

The origin O’ was placed at a fixed point, so there is no translational dis-
placement, A7y = 0. Point B is a part of the box, so it does not move relative to
xyz. Thus its coordinates relative to xyz are constant and its relative displacement

is (AFp),,, = 0. We may directly employ either Eq. (3.2.7) or Eq. (3.2.8). Setting
[R], = [U] in the latter shows that the displacement of point B in terms of xyz com-
ponents is

AFB 0 l_ (xB)f 0.2010

Afg-j ¢ =[[Ul—=[R]] 3 (ve); ¢ = § —0.3354 ¢ m. <

Arg-k (zB); 0.6708

We could use Eq. (3.2.7) to find the XY Z displacement components, but here it is
simpler to use the rotation transformation [R]fT to transform to XY Z components:

AFg- T 0.2010 0.5490
Afg-T } =[R]f { —0.3354 } = | —0.2455 } m. q
AFg- K 0.6708 0.4911

The robotic linkage is reconfigured by rotating arm A B by angle 6
about the vertical Z axis, and by angle 8 about its longitudinal axis. Link BC rotates
about the pin at junction B through angle y. The pin is horizontal when g = 0. The
system is given a set of rotations consisting of 6 = 50°, 8 = 30°, y = 60°. The length
Loflink BC changes from 0.5 m to 1.5 m in the course of this motion. Determine the
coordinates of end C with respect to the fixed XY Z coordinate after these rotations.

Example 3.6

SOLUTION This example serves to illustrate the versatility of the general procedure
for evaluating displacements, and the ease with which it may be extended. It should
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be noted that the sequence in which the rotations are applied is not specified. It will
become apparent in the course of the solution that such information is irrelevant for
this system. We define reference frames x; y; 71 fixed to arm A B, and x;, y»z; fixed to
arm BC, with the x axis for each aligned with the corresponding arm. The z; axis is
vertical when g = 0 and the y, axis is aligned with the pin at connection B, so that
all rotations occur about coordinate axes.

Body-fixed coordinate systems for the robotic link-
age.

The general approach is to use Eq. (3.2.7) to express the displacement of point
B in terms of the rotation of x;y;z; and then to describe the displacement of point
C in terms of the displacement of point B and the rotation of x,y,z,. We use IJ K
components to facilitate relating vector quantities for each body. Thus,

AFg- I INTRY | (ATB) g pyzy 1
Afg-J t =3 AFs-J t +[R]} (A7B)pyz - ]
AFp- K AFg- K (AFB)xlylzl -k
(xX18),
+[IRIF = [RIE] s ¢ -
(z18)o
AFc- T AFg- T (AFC) sy, 0
Afc-T ¢ =1 Afg-T ¢ +[R]f § (AFC),,. - ]
AFc- K AFg- K (AFC)y,y,e, K
(*20)
+[(RIF - [R5 ] | (G200,
(220)0

We derive the required rotation transformations as a sequence of simple rotations.
In the initial state, like axes were parallel, so

[Ri], = [R], = [U].
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For the transformation from XY Z to the final orientation of x; y; 71 we may consider
arm A B to rotate first about the Z axis by 6, followed by the 8 rotation about the
x1 axis, which corresponds to a sequence of body-fixed rotations. Alternatively, we
may consider the § rotation to occur about the X axis, followed by the 6 rotation
about the Z axis, which is a space-fixed sequence. Either way, we find that

1 0 0 cosf sinf 0
[Ri];=[Rs][Re]=|0 cosp sinp —sinf cosf 0
0 —sing cosp 0 0 1

When y = 0, like axes of x; y; 71 and x; y,z, are parallel. Thus the final orientation of
X2y22, may be considered to be attained by rotating it about the negative y, axis by
y relative to xy y; z1. This is a body-fixed rotation, so that

cosy 0 siny
[Re]; = [Ry][Ri]; = 0 1 0 [Ri;-

—siny 0 cosy

Next we describe the relative positions and displacements. Because point A is
stationary, A74 = 0. Also, because point B remains at 2 m along the x; axis through-
out the motion, (¥p/4), = 2i1 and (A;’B)X1 na = 0. In contrast, point C remains on
the x, axis, but its distance to the origin of x;y,7, increases from 0.5 m to 1.5 m,
so it displaces 1 m in the x, direction relative to x2y,2z2. Thus (7¢,p), = 0.5i, and
(AFC) s = 1i,. Substituting the given values of 6, 8, and y into the earlier ex-
pressions for A7 and A7 leads to

Arpg -1 —0.7144

AFg-J ¢ =1 15321 m,

AFp- K 0

Aic - T —0.2348

Afc-J =1 1.6891 m. <
Aic - K 1.1250

3.3 TIME DERIVATIVES

When we observe a movement over a reasonably long time interval, the change in po-
sition coordinates is measurable and the rotations about various axes are finite. Con-
sequently, there is substantial change in a system’s geometrical configuration. In con-
trast, the definition of velocity is that it is the ratio of the infinitesimal displacement to
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the infinitesimal time over which the displacement occurs. The change from finite to
infinitesimal quantities actually simplifies many aspects of a kinematical analysis, essen-
tially because the changing geometry will not be an issue.

We consider initial and final positions that are infinitesimally different and use
Eq. (3.2.8) to describe the associated displacement in terms of components relative to
the final orientation of xyz. The absolute displacements of the origin O’ and of the ob-
served point P are differential quantities, d7o and drp, and the relative displacement is
(drp),,, - The orientation of xyz relative to XYZ in the initial position is described by
[R], . which is considered to be known.

To obtain [ R]; we recall that any transformation matrix has only three independent
direction cosines and corresponding angles. This allows us to consider xyz to move from
its initial to final orientation by executing infinitesimal rotations about each of its axes,
db,, db,, db, in the listed sequence. Because this is a sequence of body-fixed rotations,
we have

[Rl = [R] [Ry] [R:] [R], - (3.3.1)

For a differential angle d6, we have cosdf = 1 and sindf = d6, so the simple rota-
tion transformations are

1 0 0 1 0 —do, 1 do. 0
[R]=|0 1 do,|. [R]=| 0 1 0 |.[R]=|-do. 1 0
0 —do, 1 g, 0 1 0 0 1
(33.2)

Evaluating the products in Eq. (3.3.1) yields
1 do,.+do,do, —do,+ d6.do,
[Rlj=| —db, 1—-db.do,do, db,+db.do, |[R],. (3.3.3)
de, —db, 1

The second-order differential quantities in the preceding equation are unimportant to
the evaluation of a derivative. Thus substituting Eq. (3.3.3) into Eq. (3.2.8) for the case
of differential displacements gives

drp -1 dio -1 1 o, —do, (dfp)xyz i
drp - ]_ ={ drop - ]_ + | —db, 1 do (dfP)xyz ’ ]_
drp -k dro -k doy —db, 1 (drp),. - k

(3.3.4)

+ d@z 0 —do, (yp)f
—do, do, 0 ]| ()

The second term on the right side also contains second-order differentials, which are
unimportant. Another simplification is that because all displacements and rotations are
infinitesimal, there is no significant difference between using the initial or final position
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coordinates in the last term. This allows us to denote the position of point P as7p;o =
xpl + ypf + zpk. Thus

dip -1 dio -1 (dFp)yy, -1
dip-j t =1 dio -]+ (dip),, -]
dip -k dro -k (drp),,, k

(3.3.3)
0 —do. do, 7 (xp

+ | do, 0 —db, vp
—df, db, 0 Zp

The important features of the preceding equation emerge when we recognize that it
is the matrix representation of a vector equation, specifically,

dip = dio + (dFp),,, +db X Fpjo, (3.3.6)

xyz

where
do =do.i+do,j+dok (3.3.7)

is the infinitesimal rotation vector. It is evident from Eq. (3.3.6) that the only significant
feature of an infinitesimal rotation is its vector sum, defined by Eq. (3.3.8). This would
seem to conflict with the earlier observation that rotations cannot be represented as vec-
tors, because the rotation transformation depends on the sequence in which rotations
occur. To understand the difference between finite and infinitesimal rotations, consider
altering the sequence in which the infinitesimal rotations were applied in Eq. (3.3.1),
for example by performing df,, followed by df y, then d6,. Regardless of the sequence,
only the second-order differentials in Eq. (3.3.3) would be different, and such terms are
dropped. Furthermore, the transformations for space-fixed and body-fixed axes differ
only by the sequence in which the individual rotation transformations are multiplied.
Consequently, the same transformation is obtained if a set of infinitesimal rotations are
imparted about body fixed or space fixed axes. Geometrically, the fact that an infinitesi-
mal displacement depends on neither the type of rotation, body fixed or space fixed, nor
the sequence of the rotations has a simple explanation: When rotations are infinitesimal,
the difference between the initial and final orientation of any rotation axis is negligible.

A corollary of the fact that infinitesimal rotation is a vector is that the additive prop-
erty applies, even if the individual rotations are not about coordinate axes. Specifically,
when there are several rotations df, about directions &, that are parallel to the respec-
tive rotation axes in the sense of the right-hand rule (curl the fingers of the right hand
about the axis in the sense of the rotation; the extended thumb gives the sense of the
vector), then

do =" do,e,. (3.3.8)

It should be noted that the overbar is placed above the entire symbol d6 denoting the
infinitesimal rotation in order to emphasize that there is no finite rotation vector from
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which the differential is formed. A principal advantage of Eq. (3.3.6) over Eq. (3.3.5)
is that the vector form is independent of how the vectors are described—one can use
whichever set of components is most suitable to the task of describing each quantity,
then transform each set of components as necessary to sum the terms.

The underlying reason for studying differential displacement is that velocity is v =
dr/dt. Thus dividing Eq. (3.3.6) by the time interval dr over which the displacement
occurs gives us an expression for velocity of point P:

vp = Vo + (DP)xyZ + w X fp/or, (339)

where @ is the angular velocity of xyz, which is defined as
do
dr’

To explain (vp),,, we recall the definition of relative displacement, Eq. (3.2.5), ac-
cording to which the components of (dr p)xyz are the infinitesimal increments of the xyz

coordinates of point P. Thus the components of (v p)xyz are the rates of change of those
coordinates, that is,

(3.3.10)

D)

(ﬁp)xyz = XPl_+ )’P]_ + ZP]_C (3311)

Because an observer on xyz would not see the coordinate axes’ orientation change, we
say that (v p)xyz is the velocity relative to xyz, or more simply, the relative velocity.

We will develop a consistent methodology for analyzing velocity and acceleration
with the aid of moving reference frames, but one basic relation still remains to be de-
rived. An alternative description of vp in terms of the velocity of the origin comes about
when we differentiate the description of position given by Eq. (3.1.1), which gives

d
vp = 1_)0/ + E (fp/o/) . (3312)
A comparison of this and Eq. (3.3.9) shows that
d
27 TP10) = (@0p)yy, +& X Tpy0- (3.3.13)

We arrive at an important generalization when we recall that Eq. (3.3.11) defines the i jk
components of (v p)xyz to be the rates of change of the xyz coordinates of point P, which
are, in turn, the i jk components of 7p;o .. Thus (o p)xyz is like a partial time derivative
of 7p;o' in which account is taken of the variability of the components of 7p,0o/, but the
orientation of the 7, j, k unit vectors is held constant. We shall generally use a partial
derivative to denote such an operation. Specifically, if A is any vector, then

_ - - _ 9A Lo oL
A= Ad+ AJ+ Ak = === Ad + A+ Ak, (3.3.14)

in which viewpoint, (ﬁp)xyz =9 (Fpjo') /0t. We refer to the result of differentiating the
components of a vector, without regard to the changing orientation of these compo-
nents, as a relative derivative. (Many other texts, including earlier versions of this one,
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denoted this operation as §/§¢. The § symbol is reserved here for operations that will be
encountered in Chapter 7 on analytical mechanics.) The analogy between 7p;o' and any
other vector allows us to conclude from Eq. (3.3.13) that

The time rate of change of any vector A described in terms of components relative to
reference frame xyz having angular velocity @ is

. 94 _
A=""tax A (3.3.15)

A less general case is that in which A is one of the unit vectors of xyz, which we denote

by the generic symbol e. Clearly, 9¢/d¢ = 0, so we find that

e=i, jiork = & =axé. (3.3.16)

We will invoke this relation frequently as part of the methodology for analyzing
angular acceleration. Figure 3.10(a) shows a typical unit vector é before and after an in-
finitesimal rotation. The axis of rotation is parallel to &@. The amount by which é changes
is the difference de between the final vector (&), and original vector (€),. This difference
is depicted in Fig. 3.10(b), where the tails of (&), and (¢), have been brought to the axis
represented by df. The sketch shows that only the portion of & that is perpendicular to
the rotation axis changes; call this component é,. The line in Fig. 3.10(b) representing
e, rotates through the angle |%| Hence the arc that represents de has a length |e, | d6,
and the direction of dé is perpendicular to both & and df. The magnitude of a cross prod-
uct is defined to be the product of the magnitude of one vector and the perpendicular
component of the other vector, and the direction of the product is perpendicular to the
individual vectors in the sense of the right-hand rule. It follows that the pictorial analysis
fully agrees with Eq. (3.3.16). The fact that the change of é is perpendicular to é is an-
other manifestation of the general property derived in the study of tangent and normal
components, as well as curvilinear coordinates.

(@) (b)

Figure 3.10. The change of a unit vector resulting from an infinitesimal rotation: (a) movement of the unit
vector, (b) construction of the difference between the new and original unit vectors.
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Consider the linkage in Example 3.6 when the final position spec-
ified there is the starting configuration, so that L, =1.5 m, 6, = 50°, 8, = 30°,
y, = 60°. From that position the following increments are applied: AL = 12 mm,
A6 =0.5°, A =—0.5°, Ay = —1°. Determine the associated displacement using
the exact matrix transformation technique, and compare it with the approximate
value obtained by considering the rotation to be infinitesimal.

SOLUTION An objective of this example is to demonstrate the simplifications en-
countered in the transition from finite displacement to velocity. To apply the de-
velopments in the previous example here, we recognize that the final configuration
obtained there is now the initial, so we have

1 0 0 cosf, sinf, 0
[Ri]l, =0 cosB, sinp, —sinf, cosf, O |,
0 —sinB, cosp, 0 0 1

cosy, 0 siny,
(R], = 0 1 0 [Ri], -

—siny, 0 cosy,

The transformations [R; |; and [ R,]; for the final location are obtained by replacing
the angles in the preceding by 6, + A6, B, + AB, and y, + Ay. Relative to x;y,25,
which is attached to arm BC, the position and displacement are (7¢/5), = 1.5/, and
(AFc),,y,,, = (AL) i». It still is true that 7 4 = 2i and AF4 = (ATB)y 0 = 0. Sub-
stitution of these terms into Eq. (3.2.7) to evaluate AFg, and then A7, leads to

Afg- I 13.42
Arg-J } =111.16 } mm,
Arp - K 0
B <
Arc -1 —-5.28
Aic-J } =1 49.08 } mm.
Arc - K 3.01

To perform the analysis based on the infinitesimal approximation we use Eq.
(3.3.6) to relate the displacements of points A, B, and C. The rotation angles from
the initial to final positions are small, but finite, so these relations are approxi-
mate. We let Af; and A6, denote small rotation vectors for the respective reference

frames. Because A7y = (AFp),,,,, = 0, we have

Arp %A_Q] X fB/A, Airc =~ Arp + (AFC)nyzZZ —i—A_@z X fC/B-
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Each small rotation vector is the vector sum of the scalar angles in the directions of
the respective axes. The rotation of x; y; 71 consists of Af about the Z axis, followed
by AB about the x; axis. (Because B is not zero, the z; axis is not vertical, so we
cannot say that A@ is about the z; axis.) The vector sum of these rotations is

AO1 = AOK + ABI;.

Because x; y» 2> rotates by  about the negative y, axis relative to x; y; z1, its rotation
vector is the sum of the rotation of x; y;z; and Ay in the direction of — j;:

AO, = AOK + ABi| — A)/]T2.

Note that the rotation angles must be expressed in units of radians.

To form the sums we need to express all quantities in terms of components rela-
tive to the same set of coordinate axes. We could use 1J K components for this with
the aid of rotation transformations. However, if we use i1 jik; components we can
find the required vectors by inspection. We refer back to the sketch of the coordi-
nate axes in Example 3.6. Because ki remains coincident with K in the 6 rotation,
K is situated in the y;z; plane, such that K = sin B, j; + cos B,k;. (Note that, be-
cause B changes little, we may use the initial geometrical arrangement to describe
components.) The y; and y, axes are parallel, so j = j;. Thus we find that

A6y = AB (sin B, J1 + cos Bok1) + ABi,
AGy = AB (sin B, Ji + cos Bok1) + ABiy — Ay Ji.

The positions and relative displacements were described earlier as 7/ 4 = 211,
Fc/g = 1.507, (A7C)yyp = (AL) i>. We convert the last two to i1 jik; components
by observing that the y rotation leaves i, in the x;z; plane, so that i, = cosy i1 +
sin y k1. The result of substitution of the various terms corresponding to the given
values of the angles and their increments into the earlier vector expressions for itz
and ¢ is

AFp = 0.01511; — 0.00873k; m,
AFc = 0.03434i; + 0.03212j; — 0.01470k; m.

The first evaluation of A7¢ gave the result in terms of components relative to XY Z.
There is little difference between the initial and the final orientation of xyz in the
present situation, so we may use either the initial or final [ R | to convert the preced-
ing approximate displacement to those components. Using the initial transformation
gives

AFc- T 0.03434 —4.86
Afc-T ¢ =[R]E3 003212 } =1 4891 } mm. 5
AFc- K —0.01470 3.33

These values are quite close to the previous; decreasing the values of A9, AB, Ay,
and A L would improve the agreement.
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An interesting aspect of the analysis based on the infinitesimal displacement
approximation is that the only place where a rotation transformation matrix was
required was to convert the displacement to the components found from the ex-
act transformation procedure. The steps we followed to carry out the approximate
analysis are like those by which we will analyze velocity and acceleration.

The Frenet formulas give the derivatives of the path variable unit
vectors with respect to the arc length s along an arbitrary curve. Because s = v, these
derivatives may be converted to time rates of change of the unit vectors. Further-
more, the orthonormal directions represented by these unit vectors form a moving
reference frame. Determine the angular velocity of the é,¢,¢é, reference frame in
terms of the path variable parameters.

SOLUTION It is useful to begin by recalling the Frenet formulas, which are

de, 1_ de, 1. 1._ dey 1_
—~=¢, —=—-= —ep, — = ——2,. 1
ds ,oe ds pet+teb ds re (1)

To convert these to time derivatives, we observe that, if € is a unit vector that de-
pends on the arc length s locating a point, and s = s(¢), then the chain rule gives

de dsde de
dar dtds  'ds
Hence, multiplying each of Egs. (1) by v gives
de, v _ de, v v dey v

=—€,, —— =——6é+-—-8e, — =——ép, 2
dt én dt ,oet + reb dt ren @)

Now let » = w,é, + w,é, + wpeép be the angular velocity of é,e,e,. Each unit vec-
tor has constant components relative to the reference frame, so Eq. (3.3.16) applies.
Thus,

de, _
— =@ X & = Wpey — Wyep,
dt t b€n n€b
de
— =@ X &y = —wpE + Wi, 3)
dt
deyp _ _ _
— = X & = wpe; — W@y.
dt b bEt t€n
Matching like components in Egs. (2) and (3) leads to
v v _ V. v
wop=—, w, =0, o,=- = w=—-e+ —ép. <
P T T p

We see from this result that a sharp bend in the curve (small p) causes a rapid ro-
tation about the binormal direction, which is perpendicular to the osculating plane.
Similarly, a sharp twist (small 7) causes a rapid rotation about the tangent direction.
There is no rotation about the normal direction because the curve locally lies in the
osculating plane.
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3.4 ANGULAR VELOCITY AND ACCELERATION

We have seen that analysis of velocity by using a moving reference frame requires the
current value of ®. A comparable analysis of acceleration requires knowledge of the
angular acceleration, which is defined to be the rate of change of the angular velocity.
The need to differentiate @ requires that we describe this quantity in general terms,
rather than merely ascertaining its instantaneous value.

3.4.1 Analytical Description

We always designate the angular velocity of the xyz reference frame as @. The way in
which we form this crucial quantity is a direct result of substituting Eq. (3.3.8), which
adds infinitesimal rotations about various axes, into the definition of @, Eq. (3.3.10).
This leads to the recognition that

An angular velocity @ is the sum of simple rotations described by angular velocities
wney,, where &, is a unit vector parallel to the respective rotation axis, in accord with
the right-hand rule,

®=) wnly. (3.4.1)

Note that there is no rule as to how the rotations are numbered, because sequence is
irrelevant to angular velocity.
The angular acceleration & of xyz is the rate of change of the angular velocity:

Qi
1

(3.4.2)

SE

Because Eq. (3.4.1) is a general description of @, it may be differentiated to obtain &.
This operation requires that we evaluate the rate of change of the unit vectors &,. We use
Eq. (3.3.16) for this purpose, but doing so requires a definition of the reference frame
associated with each é,. Specifically,

For each simple rotation, define an auxiliary moving reference frame x,,y,z,, such that
one of the axes of x, y,z, always coincides with that rotation axis. Hence, é, is either
in, jn, or ky. Let Q, denote the angular velocity of X, V,zn.

Note that these auxiliary reference frames are quite unrestricted, other than the require-
ment that one of their coordinate axes should always align with a simple rotation axis.
Any of them may actually be the xyz coordinate system, in which case the corresponding

2, = . In general, a single auxiliary reference frame may be associated with more than
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one simple rotation. Also, if an axis of rotation is stationary, we may let the correspond-
ing reference frame be XY Z, corresponding to Q,, = 0.

We apply the standard rules for derivatives to Eq. (3.4.1) According to Eq. (3.3.16),
the time derivative of the axis directions is de, /dt = @, x é,, so we find that

a= Wy + 2y X wpey) . 343
> ) (3.4.3)

n

An interesting aspect of this description of & is that the only derivatives we need to
determine explicitly are the @, values.

It is imperative to understand the meaning of the terms in Eq. (3.4.3). Two types
of contributions are associated with each simple rotation. An unsteady rotation rate,
w, # 0, gives rise to an angular acceleration @,é, that is parallel to the rotation axis. In
addition, even if all rotation rates are constant, there will be an angular acceleration term
if the orientation of any rotation axis is not constant, corresponding to 2, x w,é, # 0.
This type of angular acceleration is perpendicular to the rotation axis, as well as the
angular velocity of that axis. Planar motion consists of a single simple rotation about
an axis perpendicular to the plane. Because the orientation of this axis is constant, the
angular acceleration in planar motion does not feature any effect associated with non-
stationary rotation axes. This is one of the primary reasons why intuitive judgements
based on experiences with planar motion are often incorrect.

After the individual terms in Eqgs. (3.4.1) and (3.4.3) have been characterized, all
vector quantities should be expressed in terms of a common set of components. This is
necessary so that we may sum the terms by adding like components. The directions used
for this purpose constitute the global coordinate system. One could use the stationary
XY Z axes as the global system, but components relative to the xyz axes, whose angular
motion is described by @ and &, often are more meaningful. Another possibility is to use
one of the auxiliary reference frames x,y,z, to describe components. A primary reason
for the last choice is that expressing components relative to either XY Z or xyz might
require evaluation of a rotation transformation matrix, whereas it might be possible
to use visual inspection to construct the components relative to one of the auxiliary
coordinate systems. This is especially so because, after we align one axis of x,y,z, with
its associated rotation axis, we are free to align its other axes in a manner that expedites
the description of all vector components.

3.4.2 Procedure

Correct evaluation of @ and & for a moving xyz reference frame is of primary impor-
tance in several contexts. For that reason, it is appropriate to formalize the concepts and
developments thus far into a sequence of steps that will address most situations.

1. Examine the overall rotation of the body of interest, which is defined as refer-
ence frame xyz. Conceptually decompose it into a sequence of simple rotations w,,
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10.

n=1,2,..., where the units of w, are radians per second. (These simple rotations
are typically the rotation of one part of the system with respect to another part.)
For each rotation w,, define a reference frame x, y, z, such that one of its unit vectors
in, Jn» OT k,, always coincides with the corresponding rotation direction &,. Note that
these reference frames may be fixed, or else execute some or all of the rotations
associated with xyz, but they will never execute more rotations than xyz. Denote as
e, the unit vector that is aligned with the axis w,, rotation axis.

. Select a global coordinate system to be used for evaluating all vector components.

The orientation of this coordinate system should facilitate describing all rotation
directions &, based on the manner in which linear and angular dimensions of the
system are described. It usually is convenient to use as the global system one of the
set of reference frame axes already defined.

. Construct the angular velocity vector @ of xyz by vectorially adding the simple ro-

tation rates according to
w=wie +wrey+---. (3.4.4)

Vectorially add the simple rotation rates of each x,y,z, to construct the angular
velocity vector ©,,. The form of the superposition sum will be similar to Eq. (3.4.4).
Form the angular acceleration & of xyz by differentiating @ in Eq. (3.4.4). For this
differentiation, use the fact that ¢, is one of the unit vectors of x,y,z,, so that
de,/dt = Q, x &,. Thus this step gives

a = wie] + wq (Ql X él) + wrér + wy (Qz X éz) + - (345)

Express each unit vector &, in terms of its components relative to the global coordi-
nate system, in the form

n = Lxl + Luyf + nck (3.4.6)

where 7, j, and k are the unit vectors of whichever coordinate system was selected
as the global one.

Substitute the component descriptions of the unit vectors given by Eq. (3.4.6)
into the angular velocity of xyz described by Eq. (3.4.4), and collect like compo-
nents. This gives @ in terms of components with respect to the global coordinate
system.

. Substitute the component descriptions of the unit vectors given by Eq. (3.4.6) into

each angular velocity €, formed in Step 5, and collect like components. This gives
each , in terms of components with respect to the global coordinate system.
Substitute the component descriptions of the unit vectors given by Eq. (3.4.6), and
of each €, obtained in Step 9, into the angular acceleration given by Eq. (3.4.5).
Collect like components. This gives @ in terms of components with respect to the
global coordinate system.
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The disk rotates about shaft A B at 3600 rev/min as the system ro-
tates about the vertical axis at 20 rad/s. Determine the angular velocity and angular
acceleration of the disk.

<ﬂ> 20 rad/s

3600 rev/min

Example 3.9

SOLUTION This straightforward example illustrates the procedural steps leading to
@ and a. We attach xyz to the disk, so that @ describes the angular velocity of that
body. There are two rotations: w; = 20 rad/s, with é; vertically upward by the right-
hand rule, and w, = 3600 (277 /60) rad/s with &, directed from center B to junction A.
To describe the first rotation we select the fixed XY Z as the first auxiliary reference
frame, with Z defined to be vertical, so that & = K and €; = 0. Because there are
only two rotations, we may use xyz as xp)»2;. Although xyz must be attached to
the disk, we are free to orient it in a manner that expedites description of the second
rotation axis. With this in mind, we observe that shaft A B has a constant orientation
relative to the disk, which enables us to align the z axis with this shaft. Then &, = k
and Q, = @. We show the rotation direction vectors in a simple sketch as an aid to
the task of evaluating components.

Coordinate systems for describing the angular
motion of the disk.

% (horizontal)

Several features of this sketch should be noted. First, the location of the origin
of each coordinate system is irrelevant to the task of evaluating the angular motion.
Second, the orientations of the fixed X and Y axes are unimportant from the view-
point of the disk, so these axes have been omitted from the sketch. Third, the only
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aspect of the orientation of xyz requiring specification is that the z axis coincide with
shaft A B. The sketch depicts an arbitrary instant, so the z axis is aligned with shaft
AB, but the x and y axes lie in neither the horizontal nor the vertical plane. The
arbitrariness of these axes will be useful for later developments.

For a global coordinate system we define X $Z to be attached to shaft A B such
that the Z axis is always aligned with the z axis, and the % axis is the horizontal
diameter of the disk. This choice for the global system simultaneously facilitates

describing €; and é,. The sketch also depicts the £ yZ axes.
The general description of the angular velocity of xyz is

= wi1é1 + wrer, = 0)1K + a)zl_(. (1)

Because the first auxiliary reference frame is stationary, and the second one is xyz,
we have

Q=0 H=a.

The rotation rates are constant, so the corresponding description of the angular ac-
celeration of xyz is

A= X K+ x k =wd x k. (2)

We find the global components of the unit vectors by inspection of the sketch, which
leads to

K =sin60°] 4 cos60°k, k =k. 3)
Substitution of these unit vectors into Egs. (1) and (2) yields

@ = 0.866w1 j + (0.5w1 + o) k,
a = w [0.866a)1j + (0.5w1 + @) IAC] x k = 0.8660)16022.

Evaluation of these expressions at the specified rotation rates gives

@ = 17.32] + 387.00k rad/s,
@ = 65307 rad/s’.

There is a ready explanation for the sense of the angular acceleration. The gen-
eral expression for @ shows that it is the sum of two terms: w; K, which is constant,
and w,k, which rotates about the vertical axis. The rate of change of a vector that is
due to its rotation is in the sense of the movement of the vector’s tip when its tail is
considered to be stationary. The tip of the z axis moves horizontally in the rotation
about the Z axis, so the angular acceleration is horizontal in the sense of positive i.
In general, considering whether the result for @ makes sense is an excellent way to
check one’s work.
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The gyroscopic turn indicator consists of a flywheel that spins
about its axis of symmetry at the constant rate w; relative to the gimbal, as the
assembly rotates about the fixed horizontal shaft at the variable rate w,. The angle
B locating the plane of the gimbal relative to the horizontal shaft is an arbitrary
function of time. Determine the angular acceleration of the flywheel at an arbitrary
instant.

Example 3.10

SOLUTION The angular motion is more complicated here than it was in the previous
example, so this analysis will provide a more complete picture of the procedure. Let
xyz be attached to the flywheel, so that its angular motion is identical to that of the
flywheel. We begin by identifying the constituent simple rotations and draw a sketch
depicting the rotation unit vectors and associated coordinate axes.

Z3

The w, rotation is about the fixed horizontal shaft. Correspondingly, we let
X2y>22 be the fixed reference frame XY Z defined such that & = I. The w; rotation
is about the axis of the flywheel. This direction is fixed relative to the flywheel. We
therefore select x;y;z; as xyz, with the specification that the x axis coincides with
the flywheel’s axis of symmetry, so that &, = i. The fact that 8 is variable means
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that there is a third rotation, §, about an axis that is always perpendicular to the
horizontal shaft. To describe it, we attach reference frame x3ys;z3 to the gimbal sup-
porting the flywheel, with the z3 axis defined such that &; = k3. In the sketch the
x3 axis has been aligned with the gimbal’s shaft, because doing so makes x3y3z3 a
convenient global coordinate system. (In fact, because ¢é; is parallel to the x3 axis,
this x3y3z3 reference frame could also have been used to describe the w; rotation.)
To develop procedures suitable to later developments we observe that because xyz
rotates at w; relative to the gimbal, at the arbitrary instant depicted in the sketch
the y and z axes have rotated away from y; and z3, respectively.
The angular velocity of the flywheel is the sum of the simple rotations, so

® = w181 + w8, + Be3 = w1l + wr I + Bks.

The auxiliary reference frame for &, is XY Z, the frame for e; is xyz, and the frame
for &; is x3y323, which executes the w; and g rotations. Thus we have

Q] = o, 5_22 = (_), Qg, = a)zl_ + ﬂl_{3
The only rotation rate that is specified to be constant is wy, so the general description
of & corresponding to the preceding expression for @ is

o :a)l(Ql XD+@2I+W2(§_22 X I_)+ﬁ]_€3+ﬂ(§23 Xl_€3)
= w1 X l_-l-a)zi—‘r ,37(3 +ﬂ (a)zi—f- ,37(3) X ]_63.
We use geometrical projections to describe the global i3 j3k3 components of the unit
vectors. This gives

i =13, I=cospiz—sinpjs.
Substitution of these representations into the expressions for @ and & gives
@ = (w1 + wy cos B) i3 — wy sin B3 + Bks,
@ = (@ cos B — BawysinB) i3 + (—aysin B + w1 f — Pws cos B) J3 <4

+ (B + wiwy sin B) k.

Each term in & can be explained physically. Unsteady values of w, and B give
rise to angular accelerations that are parallel to the respective rotation axes. Terms
that are the products of two rotation rates, and therefore exist even if the rates
are constant, represent angular acceleration effects that are perpendicular to the
simple rotation axes. For example, the terms containing fw, are a consequence of
;3 rotating at w,&,, which makes the tip of &3 moves perpendicularly to the X axis in
the %393 plane. In contrast, &, rotates at f&; and w,&,. The fé&; rotation makes the tip
of ¢y move in the fq direction, which is the direction of the w8 term in &@. The term
wiw; sin B in the k3 component of & arises because the w,é, rotation makes the tip
of &, move in the k3 direction. The sin B coefficient in this term arises because only
the component of &; perpendicular to the I axis changes in this rotation.
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3.5 VELOCITY AND ACCELERATION ANALYSIS USING A MOVING
REFERENCE FRAME

This chapter began with the introduction of a moving reference frame as an aid to de-
scribing displacement. Specializing the relations to the case of infinitesimal movements
led us to Eq. (3.3.9) for velocity. Application of that formula required evaluation of
angular velocity, and we anticipated later developments by also considering angular ac-
celeration. We now return to the study of point motion by deriving a formula for the
acceleration of a point whose movement is observed from a moving reference frame.

Equation (3.3.9) provides a general description of velocity, so it may be differenti-
ated. The time derivative of the origin’s velocity v is its acceleration ao-. The relative
velocity (9p),,, is defined by Eq. (3.3.11) in terms of components relative to the moving
reference frame. Equation (3.3.15) gives the derivative of a vector described in such a
manner, where the 9/9¢ operator defined in Eq. (3.3.14) denotes a time derivative that
ignores the fact that the direction of the unit vectors is not constant. Because the rel-
ative velocity components are the derivatives of the position coordinates, the relative
acceleration is given by

8 - .. - .. 7.
@r),y, = o (VP)yy, = Xpi + Jrj + Zpk. (3.5.1)
Correspondingly, we find from Eq. (3.3.15) that
d _ _ o
o (0P)yyz = (@P) yy + @ X (Vp)y, - (3.5.2)

Now consider the last term in Eq. (3.3.9). The time derivative of @ is @, and Eq. (3.3.13)
gives the time derivative of 7p,o-. We therefore have

d
E (o x fp/o/) = XTpo +wX [(EP)xyz + o x fp/o/] . (353)

We obtain the acceleration formula by adding Egs. (3.5.2) and (3.5.3) to ao-. For later
use the result is accompanied by the previously derived expression for velocity:

vp =100 + (Up)yy, +® X Fpjo,
e (3.5.4)

ap=daop + (c_lp)xyz—i-& X Fpjo+ @ X (5) X V_P/Of)—i-z&) X (l_)P)xyz'

With one exception, the terms in these expressions could have been anticipated as
a simple superposition of motion of the origin and motion relative to xyz. The velocity
term @ x 7p;o- and the acceleration term @ x (& x 7p;o') are described in Fig. 3.11. By
definition, @ x 7p;o’ is perpendicular to the plane formed by @ and 7p, o/, and its magni-
tude is |@| 7, where r is the component of 7p,o perpendicular to @. Thus this term is
like the azimuthal velocity Rf that occurred in cylindrical coordinates. Furthermore, it
follows that the magnitude of @ x (@ x 7p/o) is |@|?r, and that it is directed along the
perpendicular line from point P toward the rotation axis. Thus this term is a centripetal
acceleration, like the term R6? in cylindrical coordinates. Another acceleration term as-
sociated with the rotational motion is & x 7p,or. Although it appears to be analogous to
the velocity term @ x 7p,;o', in spatial motion the angular acceleration is nonzero and
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Figure 3.11. Construction of the centripetal acceleration of
a point.

not parallel to the angular velocity, even if all rotation rates are constant. As a result,
the direction of the corresponding acceleration term will generally not be perpendicular
to the plane formed by the rotation axis and 7p, o'

The acceleration term 2& x (vp),,, is not intuitively obvious, but it is readily ex-
plained. As might be guessed from the two factor, it is the Coriolis acceleration that
was encountered in the study of curvilinear coordinates, for example, 2 R6 in cylindrical
coordinates. In fact, as we saw in the study of curvilinear coordinates, Coriolis accel-
eration actually arises from two distinct effects that have equal importance. Equation
(3.5.2) indicates that half the Coriolis acceleration stems from the fact that the compo-
nents of relative velocity have a variable orientation that is due to rotation of the xyz
axes. The other half appears in Eq. (3.5.3), where it is associated with the fact that the
transverse velocity @ x 7p,or is not constant if the coordinates of point P with respect to
xyz are not constant. Thus it is to some extent a misnomer to use a single name to refer
t0 20 X (Vp),y,-

One aspect of the relative velocity (vp),,, and relative acceleration (ap),,, greatly
facilitates their evaluation. These terms may be visualized as the effects that would re-
main if the reference frame were held stationary. They were described in Egs. (3.3.11)
and (3.5.1), respectively, in terms of a Cartesian coordinate description. However, other
kinematical descriptions, such as path variables or curvilinear coordinates, might be
more appropriate in some situations. If such an approach is employed, it is necessary
to convert those components to the global set of components used to represent all
vectors.

It is instructive to close this discussion by considering two special cases. The situa-
tion in which the xyz frame translates corresponds to @ being identically zero. Hence, &
also is zero. The relative motion equations then reduce to

00 = B0+ (31)s. (55
C_IP = aO’ + (C_zP)xyz .

The motion of the origin and of the point relative to the translating reference frame are
additive—there are no corrections for direction changes that are due to rotation. If xyz,
as well as XY Z, is fixed, so that o = 0 and @o = 0, then the preceding relations show
that the velocity and acceleration are the same, regardless of which fixed reference frame
is selected. A more important observation arises when xyz is translating at a constant
velocity, so that @o = 0. (Note that this condition requires that the origin O’ follow a
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straight path.) The second of Egs. (3.5.5) shows that ap = (@p),,, in this case. A refer-
ence frame translating at constant velocity is said to be an inertial or Galilean reference
frame. The terminology arises from the fact that the absolute acceleration is observable
from the reference frame, so the frame may be employed to formulate Newton’s Laws.

The second special case arises when point P is fixed with respect to the moving
reference frame. Because the position coordinates then are constant, (vp),,, and (ap)

are both identically zero. This simplifies the velocity and acceleration relations to

xyz

Up=Vo +&XFpjo,
(3.5.6)
ap=aop +a& xXrpjo +w X (5) X fp/or).

A primary reason for highlighting this situation is that it is descriptive of the motion of
a rigid body. If xyz is attached to the body, then the position vectors between points in
the body have constant components relative to the moving reference frame. Also, the
angular motion of the body and of xyz are synonymous in this case. The motion of rigid
bodies is the focus of the next chapter.

General equations (3.5.4) exemplify the notion that using a moving reference frame
allows us to decompose a complicated motion into a set of simpler kinematical analyses
associated with the individual terms in those equations. Application of these formulas
requires definition of xyz. If it is required that & and & of a body be determined, then xyz
should be attached to that body. Otherwise, xyz seldom is specified a priori. Its selection
affects the individual terms, although the ultimate results for velocity and acceleration
will be unaffected. Depending on how xyz is defined, some terms will be easier to de-
termine, whereas others will be more difficult. Some general criteria can be identified.
The choice of the body to which xyz is attached dictates which simple rotations combine
to form @. Selecting xyz to execute many rotations complicates the analysis of & and
a. However, the methodology laid out in the previous section is reasonably robust, so
no selection is likely to be completely overwhelming. Furthermore, letting xyz execute
many of the rotations is likely to simplify analysis of the relative motion terms (vp),,,
and (ap),,,- Thus, a guideline for selecting the attachment of xyz is that it should execute
as many rotations as possible, provided that one can evaluate the corresponding @ and
@. (Once again, the exception is that if @ and @ of a certain body must be determined,
then xyz must be attached to that body.)

The selection of the origin O” affects the terms v and d@or, as well as 7p,o in Egs.
(3.2.4) and (3.2.7) for displacement. This selection is restricted by the requirement that
point O’ be one of the points of the body to which xyz is attached. Thus an optimal
approach is to select the body to which xyz is attached by considering the difficulty
entailed in describing & and &, simultaneously with considering whether some point in
the body follows a relatively simple path so that the description of vy and ao will be
manageable. (In complicated systems, evaluation of v and @ might require a separate
analysis with a different moving reference frame.)

As we did for the analysis of @ and &, we use a global coordinate system to rep-
resent the components of all vectors, so that the various terms may be combined. The
previous section stated a criterion that the orientation of these axes should be selected
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to facilitate representation of the unit vectors ¢, for the rotations. Because other terms,
notably (v P)xyz and (a P)xyz , must now be represented in component form, it is best that
the global system be selected to facilitate describing all terms. This requires striking a
balance. For example, a certain selection might be ideal for describing the relative mo-
tion terms while simultaneously complicating the component description of the é; rota-
tion directions. If necessary, one can always employ rotation transformation matrices to
describe the components of any troublesome vectors.

Bar BC'is pinned to the T-bar, which is rotating about the vertical
axis at constant rate Q. Angle 6 is an arbitrary function of time. Determine the
velocity and acceleration of point C using the following alternative approaches: (a)
attach the xyz reference frame to the T-bar; (b) attach the xyz reference frame to
bar BC.

Example 3.11

L

C

SOLUTION By employing two different approaches, this example provides insight
into the decisions one must make. In the first approach, attaching xyz to the T-
bar means that the sole rotation of xyz is 2 about the fixed vertical axis. Thus we
define the Z axis such that &, = K. Because Q is specified to be constant, the general
descriptions of angular motion are

@:Qélzgk, le(), &:lelzz().

Any point on the vertical axis of rotation is stationary. Selecting the origin O’
to be point A simplifies the description of 7p/o and gives to' = o = 0. We orient
xyz consistently with the way in which the configuration of the system is specified
and show our choice in a line sketch.
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|A, O Kinematical analysis with xyz as a reference frame that is at-

Q(F tached to the T-bar.
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To analyze the relative motion we visualize bringing xyz to rest by setting Q = 0.
Bar BC would still move in the vertical plane as it pivots about pin B. Thus end
C moves in a circular path at angular speed 6 relative to xyz. Polar coordinates
having origin at point B are suitable for describing this relative motion, with the
radial distance R = L, and 0 being the polar angle. The associated unit vectors are
shown in the sketch. The corresponding descriptions of the relative velocity and
acceleration are

The axes of xyz are convenient directions for representing vectors, so we use
them as the global directions. (An alternative definition would align the % axis with
bar BC, and place the Z axis in the vertical plane. This would simplify the description
of éx and &, but slightly complicate K.) The global descriptions of the unit vectors
are

K=—k, égr=cosfi—sinbk, &, = —sinfi — cosbk.
The corresponding relative position is
Fejor = (L1 + Ly cos@) i — L, sin6k.
We may now assemble the individual terms. For velocity we have
e = (0¢)yy, + @ X Fcjor
= L6 (—sin0i — cos0k) + (—Qk) x [(Ly + Lrcos0)i — Lysin0k],
vc = —1,0sin0i — (L; + Ly cos6) Qj — L6 cosbk. <

A shortcut for the evaluation of @ x (@ X 7c/0) is to retain @ x Fc;o from the ve-
locity analysis. Thus we have

ac = (dc)xyz + w X (d) X fc/or) + 20 X (vc)xyz
= —L,6° (cos 0 — sinOk) + LA (—sin6i — cos Ok) + (—Qk)
x [= (Li + Ly cos0) Qf] + 2 (—2k) x [Lr0 (—sin6i — cos k)| <

[—L26%cos® — LOsin® — (Ly + Ly cos0) Q%] +2LQ6 sin6 |
+ (L26%sin6 — Li cos 0) k.

Obviously, changing the selection of the moving reference frame should not
alter the result. To avoid confusion with the preceding analysis, let x"y’z’ denote the
moving reference frame that is attached to bar BC. The angular velocity of this bar
is the sum of Q about the vertical axis and ¢ about an axis that is perpendicular to
the plane of the T-bar. Both simple rotations are shown in a new sketch.
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% L A4,0"  Kinematical analysis using x'y’z’ as a reference frame that is at-
0 6 ! Q(‘) tached to the swinging bar BC.
1L,
2
7
x' 7

As was done in the previous analysis, fixed XY Z can be used to describe ¢;. To
describe the 6 rotation we attach x;y,7, to the T-bar, with the y, axis outward from
the plane of the sketch, so that &, = j,. The angular velocity 2, then consists solely
of the rotation about the vertical axis. Thus

5)=Qé1+9§2=9k+9f2, Q]:(_), Q, = QK.
The angular acceleration corresponding to constant 2 and variable 6 is
5[:9]_2+9(S_22 X ]_2)29]_2+9§2(KX ]_2)

The guideline for the selection of the origin O’ requires that it be a point in bar
BC, which is the body to which x'y’z’ is attached. The only such point executing
a simple motion is end B, which follows a circular path in the horizontal plane at
constant angular speed ©2. We may describe this motion in cylindrical coordinates

whose axis is zp, with the x; axis parallel to arm A B, which is the ey direction. Then
the y, axis is opposite to é;. Correspondingly, the motion of the origin is given by

o = —112 ]Tz, ao = —LlﬁleZ.

Because xyz has been defined to be attached to bar BC, point C remains fixed from
the viewpoint of this reference frame. Thus,

(ﬁc)xyz = (Elc)xyz = 0

Orienting x'y’z" as depicted in the sketch facilitates the description of relative
position. We correspondingly find that

K =sin6i’ —cosOk’, jo=7j', ip=cosfi +sinbk’, Fcjo = Lai'.
The global descriptions of the angular motion variables are

o=Q (sin@f/ — cos 9/2/) +47,

a=0j +60Q [(sin@i_’ — cos 91}/) X ]_/] =0j +6Q (cos@i_+ sin@l_c/> :
The nonzero terms in the general velocity equation are
Uc = Vo +w XTcjor
=—-LQj + [SZ (sin@f’ — cos Gl_c/) +6 ]_/] x Lpi’
=— (L1 + Lrcos0) Q] — L0k’ <
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The nonzero terms in the general acceleration equation are
dc=ao +a xrcjo+ & x (& X Fcjo)
=-—L,Q? (cos@i_’ + sinel_c/) + [9' j+6Q (cos 0i + sin@l_c’)] x Lpi’
+ [Q (sin 0i' — cos 91}/) +6 ]_’] X <_LQQ cosfj — Lzél_c/>
= [ (L1 + Ly cos0) Q*cos — L,0%]1' + 21,6 sinf ]’
+ [~ (L + Ly cos0) @*sin6 — LA k. <

Different global coordinate systems were used to represent each set of results,
so the components of ¥¢ and ac are not identical. One check that the vectors are
consistent lies in the fact that the y’ axis for the second analysis coincides with the
axis for the first. Correspondingly, we see that those velocity and acceleration com-
ponents match. Another way to verify that both sets of results represent the same
vectors is to apply the rotation transformation between x’y’z” and £ yZ to transform
one set of components to the other. A third approach is to sketch the vector resul-
tant of similar terms. For example, the (L; 4+ L, cos#) Q> terms obtained in either
analysis represent a centripetal acceleration that is perpendicular to the vertical axis
directed from point B to point A.

The turntable rotates at angular speed w1, and the disk rotates at
angular speed w, relative to the turntable. Both rates are constant. Determine the
velocity and acceleration of point C on the perimeter of the disk using (a) a moving
coordinate system that is attached to the turntable; (b) a moving coordinate system
that is attached to the disk.

Example 3.12

SOLUTION As in the previous example, the intent here is to illustrate the decisions
and trade-offs involved in using various moving reference frames. In the first analy-
sis, we place the origin of xyz at the center of rotation of the turntable, point A.
The reference frame for the second analysis is x’y’z’. We place its origin at the
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pivot point B, because this is the only point on the disk that follows a simple path.
The system is in planar motion, so we orient the z and z’ axes normal to the plane.
We use xyz as the global directions for both analyses to track the differences be-
tween the two solutions. The alignments depicted in the sketch are consistent with
the manner in which the system is described.

Analysis of the motion of point C using coordinate systems xyz
attached to the turntable and x’y’z" attached to the disk.

When xyz is attached to the turntable, it rotates at angular speed w; about the
z axis. This direction is constant, as is the rotation rate, so

&=wk, a=0.
The origin is stationary, so 94 = d4 = 0. We could use polar coordinates to for-
mulate the relative velocity and acceleration, but we employ the relative motion
equations for this task as a way of emphasizing their utility. We visualize the motion
that would remain if the turntable were stationary. The disk would then solely ro-
tate at angular speed w, about point B, which would be stationary. Points B and C
have fixed positions when viewed from the disk, so we may employ Egs. (3.5.6) with
the angular motion being that of the disk in the relative motion, @r = w; (—k),
@rel = @, (—k) = 0. Correspondingly, we have
(VC)yy, = @rel X Feyp,  (AC)yy, = @rel X (Orel X FcyB) -
The nonzero terms in Egs. (3.5.4) for the motion of point C are
Uc = (UC)yy, + @ X Fcya,
ac = (C_Zc)xyz + o X (D XTFcja)+ 20 % (l_)c)xyz .

The xyz coordinate axes serve as a convenient global system. Evaluation of the ve-
locity proceeds as follows:

(UC)yy: = (—w2k) x (Rcos0i — Rsinf]) = wrR(—sinfi — cosbj),
Uc = wyR(—sinfi —cos0j) + (w1k) x [(L+ Rcos@)i — Rsin6 ]

= (w1 — ) Rsin6i + [(w; — w3) Rcos® + w1 L] j. <
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The corresponding evaluation of acceleration gives

(ac),y, = (—w2k) x (—w2RsinOi — w; Rcos0]) = w3 R (—cosOi +sinbj),
dc = w3 R(—cosOi +sin6j) + wik x [wy Rsinbi + (w1 Rcosd + w L) J]
+ 2wik x @y R(—sin i — cos 6 f)
= [~ (] + ®3) Rcosf — wi L+ 2w wy Rcos 0]

+ [(@} + ®3) Rsin® — 201w, Rsinb] j. <

The second analysis uses x'y’z’ attached to the disk as the moving reference
frame. A key aspect of this selection is recognizing that w, is measured relative to the
turntable, so the angular velocity of the disk is the vector sum of the two rotations,
@ = (w1 — w7) k. The rotation rates are constant, as is k, so @ = 0. Fixing reference
frame x’'y’z’ to the disk eliminates the relative velocity and relative acceleration,
(00) 1y = (@C)yryy = 0. This is balanced by the need to evaluate the velocity and
acceleration of the origin B. We find these quantities by recognizing that points A
and B are two points in the turntable, so me may employ Egs. (3.5.6), with wk as
the rotational velocity of the turntable, and o4 = @4 = 0. Thus,

l_)B:a)ll_CXfB/A, ﬁB:a)ll_CX(a)ll_CXfB/A).
The nonzero terms in the relative motion equations (3.5.4) for point C are
Uc =Vp+® X FcyB, &CZL_IB-I—(I)X(&)Xfc/B).

As mentioned earlier, we use xyz as the global coordinate system. Evaluation
of the relations for velocity yields

ip = wik x Li = w1Lj,
Uc = w1 Lj 4+ w1k x (Rcos0i — Rsin6 )
= (w1 — ) RsinOi + [w1 L+ (w1 — w2) Rcosh] j. <
Evaluation of the acceleration terms leads to
ap = wk x (01k x Li) = —w?Li,
dc = —wt i + (w1 — 02) k x [(w1 — w2) Rsin 601 + (w1 — wz) Reos 6]

= [—w%L— (w1 — @2)* Rcos 9] I+ (w1 — w2)* Rsiné]. <

Because the global system is the same for both analyses, the resulting component
representations should be the same, as they are. Overall, the second analysis is
somewhat easier, but it requires recognizing that there are two contributions to the
angular velocity of the disk.
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Let oy, w,, and o, denote the pitch, roll, and yaw rates, respec-
tively, of a ship about xyz axes that are attached to the ship with the orientations
shown. All of these rotation rates are variable quantities. The origin of xyz coincides
with the center of mass G of the ship. Consider an elevator car whose path perpen-
dicularly intersects the centerline at a distance L forward from the center of mass.
Let /(1) denote the height of the car above the centerline. The velocity and accelera-
tion of the center of mass at this instant are v and a¢. Determine the corresponding
velocity and acceleration of the car.

Example 3.13

SOLUTION This example brings to the fore an important feature of a body-fixed ref-
erence frame whose rotation about its own axes is known. We use xyz as the moving
reference frame, as well as the global coordinate system. The given rotations are
about body-fixed axes, so we have &, =i, & = j, & = k corresponding to the rates
wy, wy, and w,, respectively. Thus, the angular velocity of the ship is

® = wyl + a)y]T + w.k.

Because the rotation directions are the unit vectors of xyz, their angular velocity is
@, that is, Q1 = Q) = Q3 = ®. The general description of the angular acceleration
corresponding to variable rotation rates therefore is

a@=dxl + oy (®x1)+ay]+owy,(®x ])+dk+w,(®xk)
=dnl +@y] + @k + @ x (0:0) + @ x (wy]) + @ x (wk)
=0nl + @y + @k + @ x @ = dni +ay] + ok
This result for & indicates that the angular acceleration components are always the
time derivatives of the angular velocity components, provided that those compo-
nents are relative to body-fixed axes. This observation is a key aspect to the devel-

opment of kinetics principles in Chapter 5.
The elevator follows a straight path relative to the ship, so the relative motion is

fP/G =Li =+ hl_c, (ﬁp)xyz = hk = MI_C, ((’_lp)xyz = uk.
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We have described all the terms in Egs. (3.5.4), so we find the velocity to be

1_)p=1_)G+(1_)p)xyz+67) X Tp/G

=06+ (wyh — 0, L) — wchj + (u+ o L)k, <
and the acceleration is
dp=aG+ (@p)yy, +@ X Fp/G+ & X (& X Fp/G) + 20 X (Up),,
= ag + itk + (@l + @y] + d:k) x (L] + hk) + (i + oy ] + k)
x [(wyh — w L) i — wxhj + oy Lk] + 2 (wx + oy ] + w k) x uk
= aG + [wyh — & L+ 0,0y L+ w0k + 20yu]i + [~ah + oyo:h
—(wi+w§)L—2a)xu]f—i—[u+d)xL—(a)i—i—a)i)h—i—a)ysz]l_c. <

Some of the terms in the acceleration were foreseeable. The acceleration of the
elevator relative to the ship is represented by the & term, and the angular accelera-
tion effects are contained in the @,, @,, and @, terms. In the same vein, the a)}%, wi,
and w% terms represent centripetal accelerations about the respective axes associ-
ated with each rotation being the only one present. The terms that are not intuitive
are those containing products of rotation rates about different axes, as well as the

Coriolis acceleration terms.

The cooling fan consists of a shaft that rotates about the vertical
axis at angular speed Q2 as the blades rotate around the shaft at angular rate ¢, where
¢ is the angle of rotation of one of the blades from the top-center position. Both
rotation rates are constant. Derive expressions for the velocity and acceleration of
the blade tip P in terms of components relative to the body-fixed xyz reference
system.

Example 3.14

SOLUTION This example synthesizes many of the concepts developed in this chap-
ter, including rotation transformations. The problem statement requires that xyz be
used as the global coordinate system. We also use it as the reference frame for the
relative motion, as a precursor for the kinetics principles in Chapter 5, which re-
quire the usage of body-fixed axes. The rotation of xyz is the sum of the rotation
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about the vertical axis and the rotation ¢ about shaft AB. To define the first rota-
tion, we attach reference frame xj y; z; to the vertical shaft, with the z; axis vertically
upward. The only meaningful horizontal direction is the one that lies in the vertical
plane containing shaft A B, so we define the x; axis to lie in that plane, to the right
for the given diagram. Then y; is inward relative to the plane of the diagram. The x
axis always coincides with shaft A B, so we set & = i. Thus general descriptions of
the angular velocities of the reference frames are

CZ)=Q]_€1+¢ZT, Q= Qky, 0= (1)
The rotation rates are constant, so the angular acceleration of xyz is
&:Q(QlX]_Cl)—i-d)(QzXZ):d)(d)XZ) (2)

Several approaches for expressing ki in terms of global xyz components are
available; we shall evaluate the rotation transformation from x;y;z; to xyz. The
transformation may be visualized as the result of a pair of body-fixed rotations.
The first is a rotation of 7 /2 — 8 about the y’ axis. This transforms x; y;z; to x'y’z/,
where the x’ axis is aligned with the x axis and the z’ axis is the upward reference
line in view C-C. A rotation by angle ¢ about the x’ axis moves z’ into alignment

with the z axis without disturbing the x’ axis. Thus the transformation is
- - T T - - T T
i J Kk =[R{a 1 Kk} .

1 0 0 cos(%—ﬂ) 0 —sin(%—ﬂ)

[R]=[R][R]=|0 cos¢ sing 0 1 0
0 —si (2 T
L sing cos¢ sin (2 /3) 0 cos (2 ,B)
sin 8 0 —cos

= | singpcosB cos¢ sin¢sinpf

| cos¢pcosB  —sing cos¢sin B

The inverse transformation gives the unit vectors of x; y;z; in terms of the xyz unit
vectors, so the last row of [R]", which is the last column of [R], gives the global
components of the rotation direction &; = k1,

ki1 = —cos Bi + sin ¢ sin 8] + cos ¢ sin Bk. (3)
This enables us to evaluate the global components of @ and &:
@ = (¢ — Qcos )i + Qsin¢sin B] + Qcos ¢ sin Bk, (4a)
@ =[(¢d—SQcosB)i+ QsingsinBj+ Qcossin k]| x I

. } _ (4b)
= Q¢ (cos ¢ sin B — sin ¢ sin Bk) .
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We may construct the velocity and acceleration of origin B by recognizing that
this point follows a circular path in the horizontal plane. However, using an alterna-
tive approach based on its being a point on shaft A B is more suitable to expressing
the results in terms of components relative to xyz. The angular velocity of shaft AB
is ©1, which is constant, and point A is stationary, so we have

EBzﬂkleB/A, ﬁngl_clx(Ql_qxfB/A).

The global components of k; are given by Eq. (3), whose substitution into the pre-
ceding yields

Up = Q(—cos Bi +sin¢sin B + cos ¢ sin Bk) x Li

. _ (5a)
= QL (cos¢sin B — sin¢sin pk),

ap = Q(—cospi+singsinBj+ cos¢sin k) x QL (cos ¢ sin B — sin ¢ sin Bk)
=Q°L [— (sin B)* 7 — sin ¢ sin B cos B — cos ¢ sin B cos /37(] (5b)
Because xyz is attached to the propeller, there is no relative velocity or acceler-
ation. Hence vp and ap also are described by Egs. (3.5.6), which indicate that
Up=0g+®XFpp, dp=adp+axFpp+dx(@XFpnp).
Substitution of the global descriptions in Egs. (4) and (5) yields
vp = QL(cos¢sinB] —singsin Bk) + [(¢ — Qcos )i + Qsingsin B
+ Qcos ¢ sin Bk] x Rk <
= Q[Rsin¢sin i + (Lcos@sinf + Rcos ) j — Lsin ¢ sin Bk] .
The corresponding evaluation of acceleration gives
ap= QzL[— (sin B)* 7 — sin ¢ sin B cos B] — cos ¢ sin f cos ,37(]
+ Q¢ (cos ¢ sin Bj — sin ¢ sin Bk) x Rk
+ [(¢ — Q2cos B) i + Qsin¢psin B + Q cos ¢ sin Bk]
x QR (sin¢ sin Bi + cos B )
= Q?{—sin B (Lsin B+ Rcos¢cos B)i + sin¢gsin B (—Lcos B + Rcospsin B) |
+ [—Lcos¢ sin B cos B — R(cos B)* — R(sin ¢)? (sin ﬂ)z] k} — ¢* Rk
+ 2Q¢ R (cos ¢ sin i + cos Bk) . <

These results are displayed in groups of like coefficients of the rate variables to
highlight that the underlying physical phenomena are a superposition of effects. The
terms in ¥ p that contain  and those in @p that contain Q? represent the motion that
would be present if ¢ were constant, giving ¢ = 0. In that case, point P would follow
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a circular path in the horizontal plane. Similarly, the terms in » that contain ¢ and
those in @p that contain ¢ correspond to a pure rotation about the x axis, in which
case point P would follow a circular path of radius R. The effect that has no obvious
description as a superposition is represented by the acceleration term that has the
factor 2Q¢. The two factor identifies it as a Coriolis acceleration that exists only
if both rotation rates are nonzero. This physical Coriolis acceleration arises, even
though the Coriolis acceleration term 2» x (vp),,. in relative acceleration equations
(3.5.4) was identically zero in our analysis.

xyz

3.6 OBSERVATIONS FROM A MOVING REFERENCE FRAME

Thus far, our concern has been with situations in which the motion of some point could
be more readily described in terms of a moving reference frame. However, sometimes
the absolute motion is known, and the relative motion must be evaluated. For example,
it might be necessary to ensure that one part of a machine merge with another part in
a smooth manner, as in the case of gears. The influence of the Earth’s motion on the
dynamic behavior of a system is an important situation in which aspects of the absolute
motion are known.

One approach is to interchange the absolute and relative reference frames, based
on the fact that the kinematical relationships do not actually require that one of the
reference frames be stationary. Thus in this viewpoint, if the angular velocity of xyz rel-
ative to XYZ is @, then the angular velocity of XY Z as viewed from xyz is —®. The
difficulty with this approach is that it is prone to errors, particularly in signs, because of
the need to change the observer’s viewpoint for the formulation. The more reliable ap-
proach, which does not require redefinition of the basic quantities, manipulates the ear-
lier relations.

The concept is quite straightforward. When the absolute velocity vp and the ab-
solute acceleration ap are known, Eqgs. (3.5.4) may be solved for the relative motion
parameters. Specifically,

(0p)yy, = Vp — Vo — @ X Fpj0r,
e (3.6.1)
([lP)xyz =ap—dop —a X fp/or — @ X (5) X fp/or) — 2 x (EP)xyz'

If it is appropriate, the relative velocity may be removed from the acceleration relation
by substitution of the velocity relation. The result is

(L_lp)xyzzc_lp—ﬁor—& X Fpjor + @ X (@Xfp/o/)—zcbx (l_)P—ﬁof).

The steps required for applying these relations are like those already established, be-

cause @ and & still describe the rotation of xyz relative to a fixed reference frame.
These relations are particularly useful when the rotation of the Earth must be con-

sidered. Newton’s Second Law relates the forces acting on a particle to the acceleration
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relative to some hypothetical inertial reference frame. However, we commonly observe
the motion with Earth-based instruments. We use the relative motion relations to recon-
cile Newton’s Law with the motion we observe. Consider an observer at point O on the
Earth’s surface. A natural definition for the reference frame employed by this observer
is east-west and north-south for position along the surface and vertical for measure-
ments off the surface. Such a reference frame is depicted in Fig. 3.12, where the x axis is
northward and the y axis is westward. The observation point O’ in the figure is located
by the latitude angle A measured from the equator and the longitude angle ¢ measured
from some reference location, such as the prime meridian (the longitude of the Royal
Observatory at Greenwich, England).

North Pole

i x (North)

z (Vertical)

Figure 3.12. The Earth as a reference frame.

Meridional
line

South Pole

For the present purposes, it is adequate to employ an approximate model of the
Earth. The Earth spins at one revolution about its polar axis in 23 h, 56 min, 4.06 s, which
converts to @, = 27 rad/23.934 h = 7.292(1073) rad/s. For comparison, the orbital rate
of rotation of the Earth about the Sun, wg, is smaller by an approximate factor of 365,
because one such revolution requires a full year. To assess the relative importance of the
two, let us consider the associated centripetal acceleration. The maximum that is due to
the Earth’s rotation occurs at the equator, where the distance from the polar axis is the
Earth’s radius, R, = 6370 km. The centripetal acceleration at this location associated
with the Earth’s rotation is w? R, &~ 0.034 m/s>. The mean radius of the Earth’s orbit is
Ro = 149.6(10°) km, so the associated centripetal acceleration is % Ro ~ 0.0059 m/s?,
which is 17.5% of the acceleration that is due to the Earth’s spin, which is itself quite
feeble in comparison with the free-fall acceleration g. Furthermore, the centripetal ac-
celeration associated with the Earth’s orbital motion is essentially balanced by the effect
of the Sun’s gravitational attraction because that balance produces the orbit. For these
reasons, it is reasonable to consider the center of the Earth to be stationary and to ig-
nore the Sun’s gravitational attraction. If we also ignore the relatively minor wobble of
the polar axis, our model of the Earth reduces to a sphere that rotates about the (fixed)
polar axis at the constant rate w,.
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Newton’s Second Law gives the acceleration of a particle relative to a fixed ref-
erence frame corresponding to the resultant force. We decompose this force into two
parts: F, represents the gravitational attraction of the Earth, and F, consists of all other
forces, including applied loads and reactions. The angular acceleration of the Earth in
our simple model is zero. Thus application of Egs. (3.6.1) leads to a relation for the ac-
celeration relative to the Earth-based xyz reference frame corresponding to a specified
set of forces acting on a particle:
it by o — a0 x (@0 x Fryor) — 200 x (ip) (3.62)

(('_ZP)xyz = xyz*

Now consider a particle in free fall near the Earth’s surface. Let point O’ be close to
the particle, so that 7p;o & 0. If air resistance is negligible, there are no applied forces,
F, ~ 0. The definition of g is that it is the magnitude of the free-fall acceleration ob-
served from the Earth. Furthermore, we interpret the direction of the free-fall accelera-
tion as being vertically downward. Recall that the definition of the z axis in Fig. 3.12 was
that it is the upward vertical, which now means that the observed free-fall acceleration
is (@p)y,, = —gk. The magnitude of the actual gravitational force is given by the inverse
square law, and this force is directed oppositely to the radial line from the center of the
Earth to the particle. We use the position vector 7o, to construct the radial unit vector,
so the gravitational force is described by
Fg _ G]Zem < rojo ) _ G]r‘geme’/O~ (363)

e

e

- [Forj0|

The origin O’ follows a circular path parallel to the equatorial plane. The radius
of this path is R, cos X, and the rotation rate of a radial line is w,. The corresponding
centripetal acceleration is do = r.w? (cosA) (—&,), where &, is the radial unit vector
perpendicular to the polar axis intersecting point O’. Unless the free fall occurs over
a long time, the velocity relative to the Earth is small, which makes it permissible to
neglect Coriolis acceleration effects. In this case Eq. (3.6.2) reduces to

GM,

3
re

gk = Foryo — rew? (cosA) e, . (3.6.4)

There are two primary aspects of interest in this relation. The centripetal acceler-
ation term is parallel to 7o/;0 only at the equator, A = 0, and at the poles, A =0, =,
where it is zero. Hence, the vertical direction defined by k does not generally intersect
the center of the Earth. However, it does lie in the meridional plane because that plane
contains both 7o/,0 and é, . Equally significant is the effect of the centripetal accelera-
tion on the value of g that is obtained from measurements. This effect is largest at the
equator, where &, is parallel to 7o/,0 and cosA = 1.

We may quantify both effects by resolving 7o/;0 and &, into components parallel
and perpendicular to k. Let the angle from & to 7o//0 be B, such that the angle from k
to the equatorial plane is A + 8. Because all vectors are situated in the same meridional
plane, this resolution is

Foyo =re(cos Bk —sinpi), &, =cos(rh+ B)k —sin(h+ B)i. (3.6.5)
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Substitution of these expressions into Eq. (3.6.4) followed by equating like components
leads to two equations for the values of g and A:

e

GM,
g =—5—cosp —r.w; (cosr)cos(r+B),
.
¢ (3.6.6)

GM, . 5 )
0=-— P sin B + rew; (cosA)sin (A + B) .

It is apparent that j is very small, so we may obtain the value of g by setting 8 =0 in
the first of Egs. (3.6.6):

GM,
g=—5 —rew} (coshr)’. (3.6.7)
p

e

Thus we see that g decreases from the value associated with gravity at the poles to a
minimum that is reduced by r.»? = 0.034 m/s” at the equator. The value g = 9.807 m/s’
represents a reasonable average value when the latitude is not specified. Smallness of
B allows us to approximate cos (A + ) ~ cos A in the second of Egs. (3.6.6). We also
approximate GM,/r? as g, which leads to

2 .
B =sin~! <%> . (3.6.8)

The maximum deviation angle § occurs at a latitude of 45°, where g = 0.099°.

The definition of gk, Eq. (3.6.4), allows us to simplify Eq. (3.6.2) slightly. The cen-
tripetal acceleration term @, x (&. X 7p;o’) may be neglected, unless the magnitude of
Fpso is a large fraction of the Earth’s radius. [In fact, if this acceleration term is signifi-
cant, we should not use Eq. (3.6.4).] Thus we have

_ F, -
(ap)xyz = E - gk - 26‘)8 X (UP)xyz s (369)

which shows that the primary difference between the acceleration we observe from the
Earth and the absolute acceleration associated with Newton’s Second Law is the Coriolis
term. We use the Earth-based xyz coordinate system to describe the preceding. The
components of relative velocity and acceleration are respectively the first and second
time derivatives of the Cartesian coordinates (x, y, z). Because the angular velocity of
the Earth is parallel to the polar axis, and the deviation of the z axis from the line to the
center of the Earth is small, the angular velocity is essentially

@e = w, (COS AL + sin Ak) . (3.6.10)

Correspondingly, Eq. (3.6.9) becomes

. Fei
¥ — Qw,sind) y = (rln ,
V+ Qwesind) x — (2w, cosA) z = ot (3.6.11)
f+ Qwecosh) y = — —g.
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x (North)
20)Zk X (EP)xyz (17P)sz
Figure 3.13. Coriolis acceleration associated with motion in the hor-
izontal plane relative to the Earth.
y (East)
0, =0k

These equations may be solved for the forces required to have a specified motion rel-
ative to the Earth. Alternatively, they may be regarded as a set of coupled differential
equations for the relative position in situations in which the forces are specified.

The fact that the Coriolis term is perpendicular to the velocity as seen by an observer
on the Earth leads to some interesting anomalies. In the Northern Hemisphere, the com-
ponent of @, perpendicular to the Earth’s surface is outward. If a particle is constrained
to follow a horizontal path relative to the Earth in the Northern Hemisphere, the Cori-
olis term 2@, x (vp),,, is as shown in Fig. 3.13. It follows that a horizontal force pushing
to the left of the direction of motion is required if that direction is to be maintained.

A story that has been passed down from professor to student over the years, without
substantiation, states that a railroad line had two sets of north-south tracks along which
trains ran in only one direction. For the track along which trains ran northward, the inner
surface of the east rail was supposedly more shiny, because of the westward Coriolis
force it had to exert on the flange of the wheels. Correspondingly, the track for trains
running south was more shiny on the inner surface of the west rail. The veracity of this
statement is questionable, owing to the smallness of the force in comparison with other
effects, such as the wind and elevation changes.

If a transverse force is not present to maintain a particle in a straight path relative
to the Earth, as required by Egs. (3.65), then the particle will deviate to the right. This
observation leads to a qualitative explanation of the swirling of a liquid that is drained
through the centered hole of a perfectly symmetrical cylindrical tank. As the fluid rushes
to the hole, the tendency in the Northern Hemisphere to deviate to the right along any
inward radial line induces a counterclockwise spiraling flow when viewed from above.
(The flow will be clockwise in the Southern Hemisphere.) The same phenomenon acts
on a much larger scale to set up the flow patterns in hurricanes and typhoons. Goldstein
(1980) offers an excellent discussion of these effects. Meteorological models used to
predict general weather patterns must account for the Coriolis acceleration effect.

Leah is standing stationary on a turntable rotating about the ver-
tical axis at the constant rate w. A ball traveling in the radial direction has constant
speed v horizontally. It is timed to arrive at Leah’s position so that she may catch
it. Let xyz be Leah’s reference frame with the x axis radially outward, as shown.
Determine the horizontal components of position, velocity, and acceleration of the
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ball as seen by Leah as a function of time. Perform the analysis by (a) constructing
the relative position vector geometrically, (b) using the relative motion formulas.

Example 3.15

SOLUTION This problem illustrates the application of the basic relations, as well as
providing a further demonstration that there often is more than one way to perform
a kinematical analysis. For both analyses we let t = 0 be the instant when Leah
catches the ball, so ¢ < 0 characterizes an arbitrary instant before the ball is caught.
Correspondingly, the angle locating her relative to the path of the ball is 6 = w(—t)
and the radial distance R to the ball from the center of the turntable is R=r +
v(—t).

The first analysis involves geometrically constructing the xyz components of the
ball’s position relative to the child, 7/ 4. Projecting the radial line from the center
of the turntable to the ball onto the x and y axes gives

Fgja=xi+yj=(Rcosf —r)i + Rsinj
<
= [(r —vt)cos (wt) —r]i — (r — vt)sin (wt) j.
We may find the path of the ball in the xy plane as seen by Leah by plotting the
x and y components at various ¢. Let 7 = wt be a nondimensional time parameter.
Then a nondimensional description of the relative path coordinates is
* = (1 — L‘C)COS‘C -1, Y = — (1 — 1r)sinr.

r rw r rw
These expressions show that the relative path, scaled by r, depends solely on the
ratio v/rw. Plots for several values of this ratio for the interval —4n < t <0, corre-
sponding to two revolutions of the turntable, show that the path is an inward spiral.

vrm=0.1 vro=1 vrom =10

2F f f al f f f 100 f f
10+ - 50+ 1
0+ + 0+ +

yir 0f }

-50 T T
27 T -lot - -100+ +

1 1 1 1 1 1 1 1

-4. -2. 0 2. -10. 0. 10.  20. -100 0. 100
x/r

Path of the ball in the horizontal plane as seen by the child on the turntable
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By definition, we may obtain the relative velocity by differentiating the compo-
nents of the relative position:

(0B)xy: = —Fp/a = —[vcos (wt) — (r — vt)wsin (ot)]i

Ll

+ [vsin (wt) — (r — vt)wcos (wt)] j.

Similarly, we may obtain the relative acceleration by differentiating the relative ve-
locity components:

(@B)xy; = %(l_)g)xyz = [2vwsin (wt) — (r — vt)w?* cos (wt)] 1

+ [2vw cos (wt) + (r — vi)w? sin (o1)] j.

The solution obtained with the moving reference formulation barely resembles
the operations in the previous solution. The position as seen by Leah is

rp/a=Tpo—Taj0-

We know that the ball is at distance R = r — vt in the fixed radial direction, which we
define to be the direction of the stationary X axis. Thus 75,0 = (r — vt) I. The child
is at distance r in the radial direction along which the x axis is aligned, so 74,0 = ri.
We use these descriptions to form 75,4 in terms of components relative to the xyz
axes, which is Leah’s viewpoint. This requires that we express 7,/ in terms of i jk
components. A visual inspection shows that [ = cos i — sin 6 j, which leads to

Fpia = (r —vt)(cosOi +sin6j) —ri. <

Because 6 = w (—t), this is the same description as that derived in the first analysis.

To analyze velocity and acceleration, we begin with the angular motion of the
xyzreference frame. This is a simple rotation about the vertical axis at constant rate,
so @ = wk, @ = 0. The origin of xyz is point A, which follows a circular path rela-
tive to the fixed reference frame. Thus 14 = rwj, a4 = —rw’i. We also know that
the ball’s motion in the horizontal plane is a straight path at constant speed v, so
vp = —vl, ag = 0, where I was previously described in terms of i jk components.
Substitution of these expressions into the first of Egs. (3.6.1) yields the relative ve-
locity:

(0B)yy, = VB — Va4 — @ X Tp/a
= —v (cosbi +sinf ) —roj — wk x [(r — vt) (cosbi +sin6j) —ri],

(UB) ), = [-v 086 + w (r — vt)sin6]i + [~vsinb — w (r — vt)cosb] j. <



154 Relative Motion

Using this last expression to form the second of Eqs. (3.6.1) gives the relative accel-
eration:

({’_lB)xyz =ap—04— & XTga—@X(®XTFpa)—20 X (ﬁB)xyz
= — (—ro*l) — wk x {wk x [(r — vt) (cos 07 +sin6 ) — ri]}
— 2wk x {[-vcosf + o (r — vt)sinf]i + [—vsind — w (r — vt)cosd] j},
(@B),,. = [~ (r — vt)cos — 2wvsin0]i + [—w’ (r — vt)sinf + 2wvcosf] j. <

Substitution of § = —wt into the second set of results would show that they are
identical to the results of the first analysis. We could employ either approach with
equal ease in this problem because the motion is planar. The relative motion for-
mulation becomes increasingly advantageous as the rotation of the reference frame
becomes more complicated.

ETULTEREN  When a small ball is suspended by a stiff cable from an ideal
swivel joint that permits three-dimensional motion, the system is called a spherical
pendulum. Suppose such a pendulum, whose cable length is ¢, is released from rest
relative to the Earth with the ball at a distance b « ¢ north of the point below the
pivot. Analyze the effect of the Earth’s rotation on the motion. It may be assumed
that the angle between the suspending cable and the vertical is always very small.

SOLUTION In addition to demonstrating the solution of the coupled equations of
motion, Egs. (3.6.11), this example explains an interesting phenomenon regarding
motion relative to the Earth. A free-body diagram of the ball shows the weight mg
and the tensile force F exerted by the cable.

z(vertical)

/

0]
‘\\x’\ y (west)

*iL)Z\

| 7
x(north) |\ p! Example 3.16
| 54
\Z

|
¥a
\\

B
mg

——"C

In terms of the xyz coordinates sketch defined in the diagram, we have

= ToB _ X Y. Zg
F_FE;H F(Zz ﬂ+g@‘ 1)
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When the values of x and y are known, the value of z is given by
z=—(2—-x*—y?)"2. )
Because ¢ is constant, differentiating the preceding gives

xXx 4+ yy
172"
(- 52— )7

The specification that the angle with the vertical is small means that |x| <« ¢ and
|y| « £. Introducing this approximation above yields

wax+yy Z,Nxx'+x2+yy+y2 i+

¢ £ 12 ®)

The preceding indicates that zis much less than x and y. Furthermore, smallness of Z
means that the speed of the ball is essentially £ + y2. This leads to the interpretation
of 7 as the centripetal acceleration associated with motion in a circle of radius £.
The result of substituting the preceding descriptions of F' and 7 into the general
equations of motion, Egs. (3.6.11), is

f
X — Qwesind) y = ——x, 4)
me
V + (2w, sin 1) X F (5)
x=—-—y,
y We mﬂy

X% 4y
¢

1/2

+ 2w cos L) y = £ (2 =x*—y?) g (6)
m{

where the Coriolis acceleration term containing z in Eq. (5) has been dropped be-

cause 2 is small compared with x and y.

There are three variables in Egs. (4)—(6). Elimination of F from these equations
leads to a pair of ordinary differential equations governing x and y. We use Eq. (6)
for that purpose. To estimate the order of magnitude of the first term in Eq. (6) we
recall that ¥?> + y? ~ v?. Because the Coriolis effect is quite small, the motion should
be essentially like the result for a simple pendulum whose pivot is stationary, so we
may employ the principle of conservation of energy to estimate v?. Let the elevation
of the pivot be the datum, so the gravitational potential energy is mgz. At the lowest
position, z = —¢ and v = vpax, Whereas at the highest position, z = zZmax, and v = 0.
It follows that

2
Emvmax

— mgl X mgZmax- (7)

The value of zn,y is related to the other coordinates by Eq. (2), to which we apply a
binomial series expansion to find

2 2]
1/2 X5+
<max = — (z2 - xrznax - yrznax) ~—L+ MTM'
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Substitution of this expression into Eq. (7) gives

2 2 2
Umax ~ gxmax + Ymax
£ 2

Because x and y are stated to remain small compared with ¢ throughout the
motion, it follows that v?/¢ is always small compared with g. Accordingly, we may
neglect the first term in Eq. (6). Furthermore, the Coriolis acceleration is a small
effect. Thus Eq. (6) indicates that the cable tension is well approximated as the
ball’s weight, F//m = g. This approximation reduces Egs. (4) and (5) to

¥—2py+Q2x =0,

AP (8)
V4+2px + Qy =0,
where
1/2 )
Q= (%) , D= w.SInA.

Evaluating the motion requires that we solve this pair of linear, coupled, ordi-
nary differential equations. We could use the method of characteristic exponents,
but an examination of the equations leads to a much briefer solution. We observe
that if the Coriolis effect were not present, p = 0, then the equations for x and y
would be uncoupled, and the fundamental solutions for both variables would be
combinations of sin (2¢) and cos (2¢). Furthermore, in either equation with p # 0,
the order of the derivatives of y is one different from the order of the derivatives of
x. The combination of these two features suggests that both x and y vary sinusoidally
at some frequency p, with a 90° phase difference between them. We therefore con-
sider a trial solution whose form is

x = Acos(ut+¢), y=Bsin(ut+¢). 9)

We obtain relations for the amplitudes A and B, the frequency w, and the phase
angle ¢ by substituting the trial forms into Egs. (8), which leads to
(Qz — ;1,2) A-2puB=0,
(10)
—2puA+ (Qz — ,uz) B=0.

For A and B to be nonzero, the determinant of this pair of homogeneous equations
must vanish. This leads to a characteristic equation:

2
(@2 —u?) = @2pu)’ =0 = Q> —u? =+2pu.

This pair of quadratic equations for i has a total of four roots, but we need only the
positive values, which are

= (24" = p =@+ p) +p. (11a)
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In view of the smallness of w,, any conceivable value of ¢ will lead to €2 > p, so the
characteristic roots are well approximated as

my X QL—=p, Py =Q+p. (11b)

There is a solution of Egs. (10) for each characteristic root. Because the determi-
nant vanishes when i = p; or u = u,, only one of those equations is independent.
This means that both equations will be satisfied if A is arbitrarily set to some value
A, provided that we then obtain B; by solving either of Egs. (10). The second of
these equations gives

200 ;
B = __SPH; A
i o2
Kj
Substitution of the respective values of x; from Egs. (11a) leads to B; = A; and
B, = — A,. The corresponding general solution of the equations of motion therefore

is
x = Ajcos(uit + ¢q) + Az cos (uyt + ¢,),

y = Aisin(uif +¢1) — Azsin(uof + ¢1).

The coefficients A1, A,, ¢, and ¢, must satisfy initial conditions. It was given
in the problem statement that the ball was released from rest relative to xyz at a dis-
tance b to the north of the pivot. Thus the initial conditionsarex = b, x =y = y =0
att = 0. We match these values to the result of evaluating the general solution, from
which we find that

(12)

b b
Ay=b—L2 ~2 Ay=p—t1x
pit+py 2 mitupy 2
The general solution corresponding to the preceding when approximations (11b)

are used for the characteristic exponents is

X = g {cos[(Q — p)t] +cos[(2+ p) 1]},

. (13)
Y= = {sin[(2 — p)1] —sin[(2 + p)1]}.
Trigonometric identities simplify this to
x =bcos(pt)cos(Q2), y= —bsin(pt)cos (). <

The nature of the path becomes obvious when we observe that sin (pt) and
cos (pt) vary much more slowly than cos (2¢) because p « Q. Hence we may con-
sider x and y to oscillate at frequency 2 with an amplitude that slowly oscillates at
frequency p. The preceding solution satisfies

y = —x tan(pt),

which is the equation of a straight line whose slope is —tan(pt), if we neglect the
variation in the value of pt. As shown in the diagram, the path seems to lie in a
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vertical plane that is situated at angle pt relative to the xz plane, measured clockwise
when viewed downward.

v (west) The shaded plane shows the short-term swinging mo-
tion of the Foucault pendulum.

x (north)
Plane of the ..
pendulum Swinging
motion

The vertical plane in which the cable lies therefore seems to an observer on the
Earth to rotate about the upward vertical axis at angular speed —p = —w, sin .
This is exactly opposite the vertical component of the angular velocity of the
Earth.

It is interesting to consider the movement of the local plane of the Foucault
pendulum’s path from the perspective of an observer in outer space who is not ex-
periencing the Earth’s rotation. The angular velocity of this plane is the sum of the
Earth’s rotation @, and the rotation —w, sin > about the —z axis seen by an Earth-
based observer. Because the latter cancels the vertical component of @,, the angular
velocity that is seen from outer space at any instant is w, cos A about the x axis, which
points northward along the Earth’s surface.

The movement of the plane of a spherical pendulum relative to the Earth was
used in 1851 by the French physicist Jean Louis Foucault (1819-1869) to demon-
strate the Earth’s rotation. The most famous Foucault pendulum may be found in
the General Assembly building at United Nations headquarters in New York City.

In closing, we should note that the spherical pendulum for arbitrary, small initial
values of x, x, y, and y would seem to follow an elliptical path in the xy plane. The
major and minor axes of the ellipse would rotate about the z axis relative to the
Earth at angular speed —w, sin A.
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HOMEWORK PROBLEMS

EXERCISE 3.1 The XYZ coordinate system
coincides with the edges of the box, the y axis
coincides with the main diagonal for the box, x
and the x axis coincides with face ABCD.
Use the orthonormal properties to deter-
mine the transformation that converts vector
components relative to XY Z to components
relative to xyz. Then use this transformation y
to determine the xyz coordinates of corner l& 0.6 m $| D —Y
C.

Exercise 3.1

EXERCISE 3.2 Solve Exercise 3.1 by considering the transformation from XY Zto xyz to
be the result of a sequence of body-fixed rotations.

EXERCISE 3.3 At a certain instant gyrosensors on an airplane report that it is heading 40°
west of north, climbing at 20° and that its wings are banked at an angle of 10° clockwise
as viewed looking forward. At this instant, the aircraft’s accelerometers indicate that the
center of mass has acceleration components relative to the aircraft of 2g downward and
0.5g forward. What are the acceleration components in terms of north—south, east-west,
and vertical?
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EXERCISE 3.4 The corners of triangular plate ABC

Relative Motion

are situated along the axes of coordinate system XY Z

as shown. Another coordinate system, whose origin is
at corner A, is defined such that/ = ég,4 and k is per-
pendicular to plane A BC with a positive component
in the direction of J. Determine the rotation transfor-
mation from XY Zto xyz. Then determine the coordi-
nates of the origin O with respect to xyz. Hint: Define
a coordinate system parallel to XY Z with its origin at

point A.

EXERCISE 3.5 The xyz coordinate system is at-
tached to the box, and XY Zis a parallel stationary
coordinate system. The box undergoes a pair of ro-
tations: First, 67 = 65° about the y axis, followed
by 6, = —145° about the z axis. For this rotation
determine (a) the coordinates relative to xyz in its
final orientation of the stationary point that was at
the location of point E prior to the rotations, (b)
the coordinates relative to XY Z of corner E of the
box after both rotations.

C A X
V4 50 mm

Exercise 3.4

/

z

50 mm
x V

Exercise 3.5

EXERCISE 3.6 Solve Exercise 3.5 if the rotations are 8; = 65° about the Y axis, followed

by 6, = —145° about the Z axis.

EXERCISE 3.7 The sketch shows an electric fan
that may rotate about three axes. In this sketch
XY Z constitute a set of fixed axes, and xyz are at-
tached to the fan blades. The rotations are defined
as follows. When the rotation angle g about the
fixed vertical Z axis is zero, the pin’s axis aligns
with the fixed horizontal Y axis. When the rota-
tion angle y about the pin is zero, the shaft about
which the fan blades spin is horizontal. When the
spin angle § is zero, the x axis is aligned with the
axis of the pin. Consider a sequence of rotations
in which y occurs first, followed by g, then 8.
Describe the transformation matrix [ R] for which

Exercise 3.7

[i ] l_c]T =[RI[I ] K]T as a set of simple rotation transformations about specific axes.
Then identify an alternative sequence in which the rotations 8, y, § may be executed

and still arrive at the same final orientation of xyz relative to XY Z.
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EXERCISE 3.8 Motor A in the sketch can be ro-
tated through angle 6; about the vertical shaft, as
well as through angle 6, about shaft O A. The rota-
tion of the flywheel relative to the motor housing is
03. In this diagram xyz is attached to the flywheel,
and x'y’7’ is attached to shaft O A, such that the y’
axis always coincides O A and the 7’ axis is always
vertical. (a) What is the transformation by which

vector components defined with respect to x’y’z’

i Exercise 3.8
may be expressed in terms of xyz components?

(b) One may obtain the rotated position of xyz with respect to x’y’z’ by rotating first
by 6,, and then by 63, or else by applying 03, followed by 0,. Prove that the transforma-
tion in Part (a) is independent of the sequence in which these rotations are performed.
(c) Consider point B, which is located on the z axis at the perimeter of the flywheel. The
flywheel’s radius is p. Use the transformation in Part (a) to describe the displacement of
this point relative to x’y’z’. (You may express this result in terms of any convenient set
of coordinate directions, but state what your choice is.)

EXERCISE 3.9 Rod ABC is such that segment

BC is perpendicular to segment A B. The brackets

align segment A B at 20° from the vertical Z axis,

as shown. The rod rotates by angle 6§ about axis

AB, which is defined such that segment BC is sit-

uated in the vertical plane formed by segment AB

and the Z axis when when 6 = 0. Determine and

graph the angle between the centerline of segment X
BC and the X axis as a function of 6.

Exercise 3.9

EXERCISE 3.10 The three-axis gyroscope consists
of an outer gimbal that may rotate by angle ¥
about the AB axis relative to a fixed reference
frame XY Z and an inner gimbal that may rotate by
angle 0 about the C D axis relative to the outer gim-
bal. The spin of the flywheel relative to the inner
gimbal is the angle ¢. (These are, respectively, the
Eulerian angles of precession, nutation, and spin,
which will be discussed in Chapter 4.) When these Exercise 3.10
angles are zero, the body-fixed xyz system coin-

cides with the respective axes of XYZ. There are six possible sequences in which the
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rotations may take place. Prove that the transformation from XY Z to xyz components
depends on only the values of these angles, but not the sequence in which the rotations
occur.

EXERCISE 3.11 Starting from the position shown, the
box is rotated by 40° about face diagonal A B, clock- /X

wise as viewed from corner B toward corner A. De- 200 mm B
termine the coordinates of corner C relative to the 4 -
fixed reference frame after this rotation.

EXERCISE 3.12 Starting from the position shown, the E

box is rotated by angle 6 about main diagonal AC, | 300 mm
counterclockwise as viewed from corner C toward
corner A. The angle between the fixed Y axis and Exercises 3.11 and 3.12
the unit vector ég, 4 after the rotation is 110°. Deter-

mine 6.

EXERCISE 3.13 The bent rod is given a pair of rotations, first
by 60° about line A B, and then 30° about line AC, with the
sense of each rotation as shown in the sketch. Let xyz be a
coordinate system fixed to the rod that initially aligned with
the fixed XY Z system shown. Determine the transformation
by which vector components with respect to XY Z may be
converted to components with respect to xyz.

Exercise 3.13

EXERCISE 3.14 Consider the rotation of the bent rod in Exercise 3.13. Determine the
orientation of the axis and the angle of rotation of the single rotation that would be
equivalent to the pair of rotations specified there.

EXERCISE 3.15 It is desired to impart to the box in Exercise 3.5 a rotation about a single
axis that is equivalent to the rotations specified there. Determine the orientation of that
axis and the angle of rotation about that axis.

EXERCISE 3.16 Collar A is welded to the vertical shaft,

so 6 is constant. The rectangular plate is welded to this \j
shaft, and xyz is a coordinate system that is attached to \(e/‘;‘ﬁ)

the plate. Splines prevent shaft BC from rotating rela-

tive to the collar, so ¢ =0, in which case the yz plane B y
is always situated in the vertical plane. The system is ro- ¢ '\ 4 /D
tated by ¢ = 75° about the vertical axis; the value of 0 is T

30°. Determine the rotation transformation from relating >/ \/?‘1
components relative to the initial and final xyz coordinate x C
system. From this result determine the angle between the Exercises 3.16 and 3.17

initial and final orientations of the y axis.

EXERCISE 3.17 Collar A is welded to the vertical shaft, so 0 is constant. The rectangular
plate is welded to this shaft, and xyz is a coordinate system that is attached to the plate.
Shaft BC may rotate relative to the collar by angle ¢, with ¢ = 0 when the yz plane
coincides with the vertical plane, as depicted in the sketch. Starting from the illustrated
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position the system is rotated by i = 75° about the vertical axis, and ¢ = 115°, with
6 = 30°. Determine the rotation transformation from relating components relative to
the initial and final xyz coordinate system. From this result determine the angle between
the initial and final orientations of the y axis.

EXERCISE 3.18 A hydraulic cylinder allows
the length of arm A B to vary, and servomo-
tors control the rotation angles 6 about the
vertical, B about pin A, and y about axis
AB, with y = 0 corresponding to bar BC be-
ing situated in the vertical plane as shown.
In the initial position L =250 mm, 6 =0,
B =90°, and y = 0. In the final position, 6 =
B =120°, y = —90°, and L = 500 mm. De-
termine the corresponding displacement of
end C. Exercise 3.18

EXERCISE 3.19 Solve Exercise 3.18 for the case the initial state is such that L = 250 mm,
6 =0, g =30° and y = 50°. The final position is as specified there.

EXERCISE 3.20 Bar A BC rotates through an-
gle 6 about the fixed X axis, and collar C en-
ables bar CD to rotate by angle ¢ about seg-
ment BC of bar ABC. When 6 = ¢ = 0, both
bars are situated in the XY plane. Determine
the displacement of end D from this refer-
ence position to one where ¢ = —70° and
0 = 120°.

EXERCISE 3.21 Flexure of a cantilevered
shaft supporting a rotating flywheel causes
the center C of the flywheel to undergo trans-
verse displacement w, and the centerline of L—— X S :€
the flywheel to rotate relative to the bearing R =80mm

axis, which is marked as Z in the diagram.
The rotation of the plane formed by the bear-
ing axis and center C is ¥, and the flywheel’s centerline lies in this rotated plane. The
disk is welded to the shaft, so the angle 6 between this centerline and the bearing
axis is the flexural angle by which the tangent to the shaft rotates because of deforma-
tion. Torsional deformation of the shaft is described by the rotation ¢ of diametral line
ACB; when ¢ = 0, this line lies in the plane containing the flywheel’s centerline and the
bearing axis. In the initial position w = = 0 = ¢ = 0, whereas w = 50 mm, ¥ = 460°,
6 = 10°, and ¢ = 8° in the final position. Determine the corresponding displacement of
points A and B on the perimeter of the flywheel.

Exercise 3.21



164 Relative Motion

EXERCISE 3.22 The disk centered at point B is an
optical mirror that is positioned by servo-controlled
arms. Angle 6, is the rotation about the stationary
horizontal shaft, 6, is the rotation of the motor hous-
ing about shaft O A, and 03 is the rotation of the fly-
wheel relative to the motor housing. When 6 = 6, =
03 = 0 shaft OA is horizontal, shaft AB is vertical,
and the line from center B to point C on the perime-
ter of the flywheel is parallel to the shaft for the 6,
rotation. In the position of interest the angles are
01 =75°, 6, = —120°, and 03 = 210°. Determine the
displacement of point C relative to its location when
01 = 60, = 63 = 0. The length dimensions are H = 300 Exercise 3.22
mm, L = 500 mm, R = 100 mm.

EXERCISE 3.23 In Exercise 3.16 collar A, which is welded to the vertical shaft, allows
shaft BC to slide rotate relative to it, so the distance L and rotation angle ¢ are not
constant. The rectangular plate is welded to this shaft, and it is situated in the verti-
cal plane when ¢ = 0. In the initial state L =3H and ¢ = ¢ = 0. In the final position
Y =60°, ¢ = —75° and L =5H. Determine the displacement of corner D in terms of
components relative to the final orientation of the body-fixed xyz coordinate system.

EXERCISE 3.24 In Exercise 3.18 the rates are L. = 5 m/s, § = 40 rad/s, § = 0 rad/s, and
y =10 rad/s. At t =0 it is known that L =200 mm, 6§ =0, g8 =75°, and y = —30°.
Determine the displacement of end C in the interval from ¢ = 0 to t = 10 ms. Compare
that result with the approximate value obtained by considering the angular velocity to
be constant over the interval.

EXERCISE 3.25 Consider the linkage in Exercise 3.20 when the initial position corre-
sponds to 8 = 30° and ¢ = 50°, and 6 = 28° and ¢ = 47° in the final position. Compare
the displacement of end D obtained by considering these rotations to be infinitesimal
with the result obtained from an analysis based on rotation transformations.

EXERCISE 3.26 The bladed disk of a gas turbine in an aircraft is spinning at the constant
rate of 30 000 rev/min while the aircraft travels at 1200 km/h in a 2-km radius turn to the
left. Determine the angular velocity and angular acceleration of the disk.

EXERCISE 3.27 The rotation rates w; of the bracket sup-
porting the spinning disk are constant. The spin rate of
the disk is increasing linearly with elapsed time, so that -
w, = &t. (a) Describe the angular velocity of the disk in
terms of a superposition of simple rotations. (b) Solely
from an examination of the description in Part (a), pre-
dict the direction(s) in which the angular acceleration of
the disk will be situated relative to the xyz axes defined
in the sketch, which rotates in unison with the support

-

l
1

1.0
!

Exercise 3.27
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bracket. Briefly explain your answer. (c) Describe the angular velocity and angular ac-
celeration of the disk in terms of components relative to xyz coordinate system.

EXERCISE 3.28 The entire system rotates about the vertical axis
at constant angular speed w;, and the rotation rate w; of the ro-
tor relative to bar BC also is constant. (a) Describe the angular
velocity of the rotor in terms of a superposition of simple rota-
tions. (b) Solely from an examination of the description in Part
(a), predict the direction(s) in which the angular acceleration of
the rotor will be situated relative to the xyz axes defined in the
sketch. Briefly explain your answer. (c) Describe the angular ve-
locity and angular acceleration of the rotor in terms of compo-
nents relative to xyz. Exercise 3.28

EXERCISE 3.29 The flywheel of the gyroscope in Exercise 3.10 rotates about its own axis
at ¢ = 50000 rev/min, and the outer gimbal is rotating about the horizontal axis at iy =
20 rad/s, with ¥y = —100 rad/s*>. Determine the angular velocity and angular acceleration
of the flywheel if the orientation of the inner gimbal relative to the outer one is constant
at (a) 0 =90°, (b) 6 = 60°.

EXERCISE 3.30 The flywheel of the gyroscope in Exercise 3.10 rotates about its own
axis at ¢ = 50000 rev/min, and the outer gimbal is rotating about the horizontal axis
at ¢y = 20 rad/s, with ¢ = —100 rad/s>. At the instant when the angle 6 locating the
inner gimbal relative to the outer one is & = 75°, it is changing at § = —2 rad/s, § = 50
rad/s’>. Determine the angular velocity and angular acceleration of the flywheel at this
instant.

EXERCISE 3.31 The orientation angles 6, g, and y in Exercise 3.18 each change at a con-
stant rate. At the instant of interest, 8 = 90° and y = 0. Determine the angular velocity
and angular acceleration of arm BC at this instant in terms of components relative to a
coordinate system that is attached to the vertical shaft.

EXERCISE 3.32 The orientation angles 6, 8, and y in Exercise 3.18 each change at a
constant rate. At the instant of interest, § = 60° and y = 30°. Determine the angular ve-
locity and angular acceleration of arm BC at this instant in terms of components relative
to a coordinate system that is attached to this arm with k = éc;p.

EXERCISE 3.33 The collar moves at the constant speed u y
relative to the guide bar, which rotates in the horizontal
plane at the constant rate Q. Derive expressions for the ve- N 0~/
locity and acceleration of the collar as functions of the an- \é\/ /p
gle 6, locating where the collar is situated along its guide. \\\\\\\\ /
Describe the results in terms of components relative to the 7
xyz coordinate system appearing in the sketch.

/

X

Exercise 3.33
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EXERCISE 3.34 A servomotor maintains the angle of bar BC
relative to bar AB at ¢ = 20, where 6 is the angle of inclination
of bar AB. Determine the acceleration of end C corresponding
to arbitrary values of 4, 6, and 4.

EXERCISE 3.35 A speed governor consists of a block of mass
m that slides within a smooth groove in a turntable that rotates
about its center point O at angular speed 2. The identical oppos-
ing springs, whose stiffness is k, are precompressed. Consequently
the springs maintain their contact with the block regardless of the
displacement s. The system lies in the horizontal plane. Derive
an expression for the normal force exerted by the groove wall on
the block and the differential equation governing s as a function of
time in the case where € is an arbitrary function of time. Then determine the natural fre-
quency of vibratory motion of the block within the groove for the case in which € is con-
stant, and explain how that result can be used to monitor when 2 exceeds a critical value.

Exercise 3.35

EXERCISE 3.36 The disk rotates at w, about its axis, and the ro-
tation rate of the forked shaft is ;. Both rates are constant. It
is desired to determine the velocity and acceleration of point
P in the perimeter of the disk, which is oriented on the ra-
dial line that has rotated by 6 relative to the upward vertical.
Perform this analysis using a reference frame attached to the
forked shaft; then compare that analysis with one that uses a
reference frame attached to the disk. Describe the results in
terms of components relative to the xyz axes in the sketch.

EXERCISE 3.37 The angle 6 describing the
rotation of a reconnaissance satellite’s solar
panels about the body-fixed x axis is an ar-
bitrary function of time. The satellite spins
about the z axis at the constant rate Q. De-
rive expressions for the absolute velocity and
acceleration of point B relative to the origin
of xyz.

Exercise 3.37

EXERCISE 3.38 The disk spins about its axis C D at 1200 rev/min as the system rotates
about the vertical axis at 20 rev/min. Both rates are constant. It is desired to determine
the velocity and acceleration of point E, which is the lowest point on the perimeter of
the disk, in the situation in which g is constant at 60°. (a) Carry out the analysis by using
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a moving reference frame attached to gimbal BC D. (b) Carry out the analysis by using
a moving reference frame attached to the disk.

20 rev/min

Exercises 3.38 and 3.39

EXERCISE 3.39 The disk spins about its axis C D at 1200 rev/min as the system rotates
about the vertical axis at 20 rev/min. Both rates are constant. The angle of elevation of
the arm supporting the disk is such that g = 10 rad/s and f = —500 rad/s> when g =
36.87°. Determine the velocity and acceleration of point E, which is the lowest point on
the perimeter of the disk.

EXERCISE 3.40 Collar C slides relative to the curved

rod at a constant speed u. The rotation rate about |_| A QN BI_I
bearing axis A B is constant at Q. Determine the ac-
celeration of the collar in terms of the angle 6 lo-
cating the collar. Also derive expressions for the dy-
namic forces exerted on the collar by the rod and the
tangential force required to hold u constant. Gravity
may be assumed to be unimportant. Exercise 3.40

EXERCISE 3.41 The following questions pertain to the application of the relative motion
formulas:

U = V0 + (VB)yy, + @ X g0,
ap=aop + (aB)xyz +a xFgo + o x (5) X fB/O’) + 2 x (EB)xyz'

In each question, xyz in these formulas is
equated to one of the coordinate systems in the
diagram, and you are to describe one of the cor-
responding relative motion terms. Each answer
should be expressed in component form relative
to any of the three coordinate systems, but a
different coordinate system may be used to de-

"1

scribe each answer. (a) If xyz = x"y"z"”, what

113,11 1

is@? (b) If xyz = x"y"z", whatisa? (c) If xyz =
x"y"7"”, whatisa@? (d) If xyz = x"y"z", whatis
(EB)xyZ? (e) If xyz = x//y//z/,7 What is (c_lB)xyZ? (f) Exercise 3.41

I 1

If xyz=x""y"z"”, whatis 1o? (g) If xyz = x"y’z’, whatis Fg,0?
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EXERCISE 3.42 The rotation rates of the bars in Exercise 3.20 are constant at 6§ = 20
rad/s, ¢ = 30 rad/s. For the instant when 6 = 120° and ¢ = 50°, determine the velocity
and acceleration of end D of the bar.

EXERCISE 3.43 Use the concepts of relative motion to derive the formulas for velocity
and acceleration of a point in terms of a set of spherical coordinates.

EXERCISE 3.44 The sketch defines an orthogo-

nal curvilinear coordinate system p, 6, ¢ known

as toroidal coordinates. The radius Ris a constant
parameter on which these coordinates are based.

Use the concepts of relative motion to derive the X
corresponding formulas for velocity and acceler-

ation of point P in terms of the unit vectors of

this coordinate system.

EXERCISE 3.45 The track of a roller coaster is described
in terms of a reference centerline that is defined in para-
metric form by a function 7 (s) locating points along it,
with s being the arc length from the start. In turn this de-
fines a set of path variable unit vectors ¢é,, é,, é, at each
point. These unit vectors depend on the location, so they
define a moving reference frame x’y’z’. As shown in the
diagram, the track is laid out by defining a line that is ro-
tated by angle B, which can depend on s, about ¢&,. This
line is used to situate the tracks at a fixed distance d on Exercise 3.45
either side of the reference centerline. Thus coordinate

system xyz is a moving reference frame whose x axis is &, and whose y axis indicates
the orientation of an axle of a car as it moves along the track, with @,,; = @y, + Be.
(a) Suppose a car moves along the track at a speed v that depends on s. Based on the
approximation that the longitudinal axis of the car is parallel to ¢;, derive an expression
for the angular velocity and angular acceleration of the car in terms of the radius of cur-
vature p (s) and torsion t (s) of the path. (b) Consider a point at distance 4 above the
axle, 7po = hj. Determine the velocity and acceleration of such a point corresponding
to the expressions derived in Part (a). Hint: Use the Frenet formulas and the fact that
ds/dt = v to describe the rate of change of the path variable unit vectors, then equate
these derivatives to the general property that de/dt = & x é.

EXERCISE 3.46 The blades of a centrifugal flow pump

are attached to the central hub such that their tangent

at their outer radius is at angle 8 relative to the ra- Q_ﬁ Q
dial line at that location. The radius of curvature of e_““f’* =
the blades at the tip is p. Suppose water flows out-
ward along a blade at a constant relative speed u and
the rotation rate 2 is constant. Determine the veloc-

ity and acceleration of a water particle immediately Exercise 3.46
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before it flows off a blade. Also determine the exit angle 0 at which the water is directed

as it leaves the blade.

EXERCISE 3.47 A pellet of mass m moves through the smooth
barrel. At the instant before the pellet emerges, its speed rel-
ative to the barrel is u. At that instant, the magnitude of the
propulsive force F, which acts parallel to the barrel, is a factor
of 50 times greater than the weight of the pellet. The barrel
rotates about the vertical axis at angular speed 2 as the angle
of elevation of the barrel is increased at the rate 6. Both rates
are constant. Derive expressions for the acceleration term

LI>a

Exercise 3.47

and the force the pellet exerts on the walls of the barrel at this instant.

EXERCISE 3.48 While the tank is moving forward
at a constant speed v, = 30 km/h, the turret is ro-
tating at the constant rate w; = 0.3 rad/s and the
barrel is being raised at the constant rate § = 0.5
rad/s. At a certain instant the barrel is facing for-
ward and 0 = 15°. At this instant a shell whose
mass is 80 kg is about to emerge from the barrel
with a muzzle velocity v = 5500 km/h that has

Exercise 3.48

reached a maximum because the internal propulsive pressure within the barrel has been
dissipated. Determine the force exerted by the shell on the wall of barrel at this instant.

EXERCISE 3.49 A shipping container is suspended
from a crane by an inextensible cable. The crane ro-
tates in the vertical plane at the constant angular
speed Q. It may be assumed that the cable remains
taut, so its orientation is describable in terms of the
angle 6 locating the vertical plane in which it is situ-
ated relative to the plane of the crane and the angle
of elevation ¢ from a vertical line. Based on a model
of the container as a small particle, derive differential
equations of motion in which the only unknowns are 6 and ¢.

EXERCISE 3.50 The vertical shaft rotates at the constant rate
Q. Collar C is attached to this shaft by a fork-and-clevis, so the
angle of inclination 6 of bar A B is an unknown time function.
The bar is free to slide through the collar, so the distance &
from the pivot point to end B is an arbitrary function of .
Derive expressions for the velocity and acceleration of point
Bin terms of &, 6, and their derivatives, as well as Q.

Exercise 3.49

Exercise 3.50
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EXERCISE 3.51 The disk, whose radius is R, spins
about axis A B relative to the bent shaft. The angle of
rotation of a radial line to point P on the perimeter of
the disk about this axis is 6, so 6 is the spin rate. This
angle is defined such that line OP is situated in the
plane containing the bearing axis and axis A B when
6 = 0. The whole assembly precesses at angular speed
2 about the bearing axis, with the disk’s center situ-
ated on the bearing axis. Derive expressions for the velocity and acceleration of point P
on the perimeter of the disk. Describe the results in terms of components relative to an
xyz system that is attached to the disk, with 7 aligned from the disk’s center to point P.

Exercise 3.51

EXERCISE 3.52 Bent shaft A BC is welded to the
vertical shaft, which rotates at constant speed
Q. The angle of rotation of the square plate
about axis BC is ¢, which is an arbitrary func-
tion of time. The configuration depicted in the
sketch, in which the plate is situated in the ver-
tical plane, corresponds to ¢ = 0. The xyz coor-
dinate system is attached to the plate. (a) Derive
expressions for the angular velocity and angular
acceleration of the plate, valid for arbitrary ¢,
in terms of components with respect to xyz. (b) Derive expressions for the velocity and
acceleration of the center of the plate in terms of xyz components.

Exercise 3.52

EXERCISE 3.53 Instantaneous parameters for the robotic linkage in Example 3.6 are
6 =40°,6 = Srad/s,d = —200rad/s®>, B =0, f = —3rad/s, f =0, y =20°, y = 10rad/s,
y =0, and L is constant at 0.8 m. Determine the velocity and acceleration of end C at
this instant.

EXERCISE 3.54 Instantaneous parameters for the robotic linkage in Example 3.6 are
0 =70°, 6 =5 rad/s, § = —200 rad/s?>, B = —60°, f = 4 rad/s, B = 40 rad/s?, y = 20°,
y =10rad/s, y =0, L=0.8 m, L =20 m/s, I. = 100 m/s*>. Determine the velocity and
acceleration of end C at this instant.

EXERCISE 3.55 The larger gear rotates at half
the angular speed of the smaller gear, which
is rotating clockwise at a constant rate of 4800
rev/min. Points A and B are corners of gear
teeth that will mesh. At a certain instant 6 =
85° and 0, = 42°. For this instant determine
the velocity and acceleration of corner B with
respect to corner A as seen from a reference Exercise 3.55
frame that is attached to the smaller gear.
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EXERCISE 3.56 Airplane A travels eastward at i Sy

constant speed vg = 560 km/h, while airplane A A vy ‘fj\p
executes a constant-radius turn, p = 3.2 km, in S y l\ﬁ y
the horizontal plane at constant speed v4 = 1440 A Z\ v x”‘\ezT
km/h. At ¢ =0 the angle 0 locating airplane A \\l&\/

was zero, and s 4 at that instant was 5.2 km. Radar B N

equipment on aircraft A can measure the separa-
tion distance r and the angle ¢ relative to the air-
craft’s longitudinal axis, as well as the rates of change of these parameters. Derive ex-
pressions for r, 7, ¢, and o. Graph these parameters as functions of time.

Exercise 3.56

EXERCISE 3.57 At a certain instant the absolute velocity and acceleration of an aircraft’s
center of mass in terms of a body-fixed coordinate system are v = 900i km/h, a = 5;
m/s?, where i is the longitudinal forward direction and k is the direction perceived to be
upward. The longitudinal axis is pitched upward at 10° from horizontal. The airplane has
rolled to 25° in order to execute a left turn and the roll rate at this instant is 2 rad/s about
the positive x axis. The corresponding yaw rate is 0.5 rad/s about the positive z axis, and
both the roll and yaw rates are constant. At this instant an attendant drops a beverage
container from a height of 800 mm above a passenger. Determine the acceleration of
the container as seen by the passenger at the instant of release.

EXERCISE 3.58 A test chamber for astronauts
rotates about its centerline at constant angular
speed w; as the entire assembly rotates about
the bearing axis at angular speed w,, which
also is constant. An astronaut is seated securely
in the chamber at center point O, which is
collinear with both axes of rotation. At a cer-
tain instant a ball that was thrown toward the
astronaut is at position B, which is at distance
X along the fixed rotation axis. Its speed at this instant is vp, and vg = 0. Derive ex-
pressions for the velocity and acceleration of the ball as seen by the astronaut at this
instant.

Exercises 3.58 and 3.59

EXERCISE 3.59 A test chamber for astronauts rotates about its centerline at constant
angular speed w; as the entire assembly rotates about the bearing axis at angular speed
wy, which also is constant. An astronaut is seated securely in the chamber at center point
O, which is collinear with both axes of rotation. Ball C falls freely after being released
at t =0 from height H, so the vertical distance from the observer to the ball is Z =
H — gt?/2. Att = 0 the plane containing the two rotation axes is horizontal. Determine
as a function of elapsed time ¢ the velocity and acceleration of the ball as seen by the
astronaut.

EXERCISE 3.60 A small disk slides with negligible friction on a horizontal sheet of ice.
The initial velocity of the disk was u in the southerly direction. Determine the distance
and sense of the east—west shift s in the position after the disk has traveled distance d
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southward. How would this result have changed if the initial velocity was northward or
eastward?

EXERCISE 3.61 A ball is thrown vertically from the ground at speed v. Assuming that
air resistance is negligible and that the distance the ball travels is sufficiently small to
consider the gravitational force to be mg downward, derive an expression for the shift
that is due to the Coriolis effect in the position where it returns to the ground. Evaluate
the result for v = 4000 m/s at a latitude of 45°.

EXERCISE 3.62 An object falls in a vacuum after being released at a distance H above
the surface of the Earth. The line extending from the center of the Earth to this object is
at latitude A, and point O’ on the Earth’s surface is concurrent with this line. Determine
the location (east—west and north—south relative to point O’) at which the object strikes
the ground in each of the following cases: (a) The object is initially at rest relative to
the Earth, (b) the object was initially at rest relative to a reference frame that translates
with the center of the Earth but does not execute the Earth’s spinning rotation. For the
sake of simplicity, the gravitational attraction may be considered to be constant at mg.
Explain the difference between the results in cases (a) and (b).

EXERCISE 3.63 A small disk of mass m is attached to a horizon-
tal turntable by two pairs of opposing springs having stiffnesses
k, and k, that are unstretched length when the block coincides
with the axis of the turntable. The (x, y) coordinates of the block
relative to the turntable are much less than the radius of the
turntable, which means that the force exerted by each spring on
the disk may be taken to be k,x or k,y opposite the direction of
the respective displacement. Derive differential equations for x and y for the case in
which the turntable’s rotation rate €2 is an arbitrary function of time. Then solve those
equations for the case in which Q is constant. The initial state for this solution is one in
which the block is released from rest relative to the turntable at x = b, y = 0. Discuss
how this system is analogous to the Foucault pendulum.

Exercise 3.63



CHAPTER 4

Kinematics of Constrained Rigid Bodies

The concept of a rigid body is an artificial one, in that all materials deform when forces
are applied to them. Nevertheless, this artifice is very useful when we are concerned with
an object whose shape changes little in the course of its motion. In addition, it often is
convenient to decompose the motion of a flexible body into rigid-body and deforma-
tional contributions.

Most engineering systems feature bodies that are interconnected. Each body must move
consistently with the restrictions imposed on it by the other bodies. We refer to these
restrictions as constraints. Constraint conditions are the kinematical manifestations of
the reaction forces. Indeed, a synonym for reactions is constraint forces. A keystone of
analytical dynamics, whose treatment begins in Chapter 7, is the duality of constraint
forces and constraint conditions, which enable us to describe one if we know the other.
However, in a kinematics analysis one is not concerned with the forces required to attain
a specified state of motion.

4.1 GENERAL EQUATIONS

When an object is modeled as a rigid body, the distance separating any pair of points
in that object is considered to be invariant. This approximation is quite useful because
it leads to greatly simplified kinematical and kinetic analyses. Because the distance be-
tween points cannot change, any set of coordinate axes xyz that is scribed in the body
will maintain its orientation relative to the body. Such a coordinate system forms a body-
fixed reference frame. The orientation of xyz relative to the body and the location of its
origin are arbitrary. A typical situation is depicted in Fig. 4.1, where points O’, A, and
B are arbitrarily selected points in the body.

A corollary of the rigidity of the body is that no point in the body can displace
relative to xyz, so (x4, ya, z4) are both the initial and final xyz coordinates of point A
and there is no displacement relative to xyz, (Afa),,, = 0. Correspondingly, Eq. (3.2.7)
shows that the /J K displacement components of points A are related to those of point
O' by

AFg - T Ao - T XA

- 7 - I3 T T
Arq-d p =1 Aro T Y+ [[RIF =[RS va ¢ (4.1.1)
ATy - K Afor - 4 ZA
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Figure 4.1. Relating the motion of three points in a rigid body.

where [R], and [R]; are the rotation transformations of xyz with respect to XY Z in the
original and final locations, respectively. The fact that points in the body cannot move
relative to the body-fixed reference frame also simplifies the velocity and acceleration
=0and (a4),., =0, we have

relations. Because (74)

xyz Xyz

Vg =Vo +®XTa/0,
(4.1.2)
apa=do +a xXra0 +oXx (v x fA/or).

Although we placed the origin of xyz at point O’, there is nothing special about the
choice of points. Thus, relations like Egs. (4.1.1) and (4.1.2) exist, relating the motion
of any pair of points. However, all such relations are not independent. In the case of
displacement we observe by analogy to Eq. (4.1.1) that the displacement of point B is
related to that of point O’ by

Arg- 1 Arg - T XB

- i3 - I3 T T
Afg-T S =1 Afp T 4+ [[R]f - [R]O] Ve § . (4.13)
AFB . I_{ Af@/ . I_{ ZB

On the other hand, we could use an x"y’z’ coordinate system that is parallel to xyz with
origin at point A. Because 73/4 = /0 — 4,0, the coordinates of the points are related
by a translation transformation, such that

Xp=Xp—XaA, Yp=YB— YA, Zg=2B—ZA- (4.1.4)

Because x'y’z’ is specified to always be parallel to xyz, [R]; and [R], also are the trans-
formations from IJK to i’j'’k’ components. Thus the analog to Eq. (4.1.1) relating the
displacements of points A and B is

Arg- 1 AfA'I_ Xp—Xa
Arg-J =3 Ara T+ [[RIF=[RIG] ve—va |- (4.1.5)
AfB-I_( AfA-K ZB— ZA

The significant aspect of this relation is that it is the same as the result of subtract-
ing Eq. (4.1.1) from Eq. (4.1.3). Thus we deduce that the displacements of three points
in a rigid body are related by two independent equations. We would arrive at a simi-
lar conclusion if we were to follow similar steps to relate the velocity or acceleration
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of points O’, A, and B by using Egs. (4.1.2). For example, for velocity we would
have

VA=V + O XTa/0,

Up=1Vo + & X Fpjo, (4.1.6)
Up=1044® X Fp/a.

Because g4 = /o — 4,0, the third of the preceding equations is the same as the dif-

ference between the second and first equations. If we consider relating additional points,

we come to the realization that only one additional equation for displacement, velocity,
or acceleration exists for each point added. This leads us to a general conclusion:

Given a set of n points in a rigid body, there are n — 1 independent equations re-
lating their displacement, velocity, or acceleration. We may obtain these equations
by selecting one point as the reference for the description of the other n — 1 points.
Let A designate the reference point and P denote any of the other points. Then the
displacement components relative to the fixed reference frame are related by

Arp -1 AFg -1 Xp— X4
Arp- Tt =1 Ara T L+ IR = [RIG]{ yr—ya t- (4.1.7)
AFp- K AFg- K Zp — 24
The velocities of these points are related by
Up =104 +@® X Fp/a, (4.1.8)
and the accelerations are related by
Ap=04+a XTpja+dX(®XFpa). (4.1.9)

It is important to realize that the preceding expressions for displacement, velocity,
and acceleration, being vectorial in nature, each represent three scalar equations associ-
ated with the respective components. It follows that if one relates the motion of n points
in a body, 3 (n — 1) scalar equations will result. Such equations will be solved in the fol-
lowing sections to perform kinematical analyses of the motion of systems of rigid bodies.

Equations (4.1.7)—(4.1.9) show that the velocity and the acceleration of any point in
a rigid body are the superposition of the movement of an arbitrarily selected reference
point A and a rotational motion about point A. These observations are manifestations
of Chasle’s theorem:

The general motion of a rigid body is a superposition of a translation and a pure
rotation. In the translation, all points follow the movement of an arbitrary point A
in the body, and the orientation of any line scribed in the body remains constant. In
the rotation the selected point A is at rest.

As a consequence of the arbitrariness of the point selected for the translation,
changing the reference point changes the translational part of the motion, except for
the case of pure translational motion. This means that the only global property of a rigid
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body’s motion is its rotation, as described by the current orientation of a set of xyz axes
scribed in it, its angular velocity, and its angular acceleration. Various methods for locat-
ing a point by means of intrinsic and extrinsic coordinates were discussed in Chapter 2.
The next section presents a standardized way for describing orientation.

A basic tool in the analysis of velocity for a body in planar motion is the instant
center method. In essence, this technique is based on considering a body in general
motion (translation plus rotation) to be rotating about a rest point, which is called the
instantaneous center of zero velocity, or more briefly, the instant center. If there is a point
C in a body for which #¢ = 0 at some instant, then Eq. (4.1.8) indicates that op = @ x
7p;c. This means that point C must be along a line perpendicular to w and intersecting
point P. If the direction of the velocity of two points in a body is known at some instant,
the instant center, if it exists, will be at the intersection of the two perpendiculars that
are constructed according to this specification. (In the case of a translating body, the
perpendiculars to the velocity of all points will be parallel, which leads to 7p,c being
infinite. This is consistent with w being zero.)

The instant center for planar motion leads to a simplified visualization of the veloc-
ity of points. Each point’s velocity is like what would be obtained if the point were fol-
lowing a circular path whose radius is the perpendicular distance to the axis of rotation
intersecting the instant center. However, the usefulness of the instant center concept is
quite narrow. The condition that vp = @ x 7p,c for all points in a body requires that the
velocity of all points be perpendicular to @, which is not true for general spatial motion.
In addition, the instant center concept is not valid for acceleration analysis because the
instant center will have an acceleration unless the body is in pure rotation. Also, & is
not parallel to @ in a spatial motion. Thus, for the purpose of analyzing acceleration, we
cannot visualize points as following a circular path about a stationary center. For these
reasons we shall not invoke instant center concept as an analytical tool, but it might be
useful for explaining some feature.

Chasle’s theorem could be used to represent the velocity as the superposition of a
translation that follows a special point C and a pure rotation about point C at angular
speed @. Point C has the property that its velocity is parallel to &. This is a screw motion,
whose terminology stems from an analogy with the movement of a screw with a right-
handed thread, which is to advance in the direction of the outstretched thumb of the
right hand when the fingers of that hand are curled in the sense that the screw turns.
We shall not pursue such a representation because it does little to improve our ability to
perform a kinematical analysis. However, some people do find it to be a useful way to
visualize spatial motion.

ETULTEEI Observation of the motion of the block reveals that at a certain
instant the velocity of corner B is parallel to the diagonal BE. At this instant com-
ponents relative to the body-fixed xyz coordinate system of the velocities of the
other corners are believed to be (v4), = 10, (v¢)y = 20, (vp), = 10, (vg)x =5 m/s.
Determine whether these values are possible, and if so, evaluate the velocity of
corner F.
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G
Example 4.1

SOLUTION In addition to illustrating application of the basic equation relating the
velocity of points in a rigid body, the objective here is to emphasize that Chasle’s
theorem is embedded in any motion. It is given that Uz = vgég/p, U4 - j =10,
vc-] =20, vp-k =10, and og-i =5 m/s. There are four independent equations
in the form of Eq. (4.1.8) relating the five corner points. Decomposing each into
components would yield 12 scalar equations. The associated unknown scalar quan-
tities are the speed of point B, the two unspecified components of the velocities of
points A, C, D, and E, and the three components of @, which are a set of 12 values.
This reasoning suggests that the number of equations and unknowns will match in
the contemplated analysis, so we proceed.

We select point B as the reference point for the translational motion, because
the only unknown aspect of its velocity is the speed, that is,

151 +2f — 1k
B
(152422 +12)"2

The angular velocity is unknown, so we let ® = w,/ + w,j + w k. The velocity equa-
tions relating point B to the other points are

Up = Ug€p/p =" = vg (0.5571lT + 0.7428]T = 0.3714/_{) .

Vg =0+ ®XxFa, Tap=—lk,

Uc =Up+ @ X Fcyp, Fep =27,

Up=70p+&XFpp, Fpp=2j—1k,

Vg =Ug+®XTgp, TpB= 1524‘2]_—1]_(
Rather than forming the full set of scalar equations resulting from matching like
components in each of the preceding vector equations, focusing on those velocity
components that are specified lessens the number of equations to be solved. Thus
we have

va-]=10=0.7428vp + w, (1),

vc - j =20 = 0.7428vp,

ip-k =10 = —0.3714v5 + w, (2),
_E o Z =5= 055711)3 — Wy (1) — wZ(Z).
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Although these are four equations for the four unknown parameters, the equa-
tions are not solvable. The first three equations contain only two unknowns: o, and
vp. If we solve the second equation for vp, the value of w, obtained from the first
equation differs from the value obtained from the third equation. This means that
the motion is overconstrained. In the exceptional situation in which the velocity com-
ponents o4 - , Uc - j, and vp - k are selected such that there is a consistent solution
for w, and vp, we would still be unable to solve the problem because the fourth
equation would be the sole relation for the two remaining unknowns: w, and w,. <

4.2 EULERIAN ANGLES

Three independent direction angles define the orientation of a set of xyz axes. Because
there are a total of nine direction angles locating xyz with respect to an absolute ref-
erence frame XY Z, an independent set of angles may be selected in a variety of ways.
Eulerian angles treat this matter as a specific sequence of rotations.

Let us follow the intermediate orientations of a moving reference frame as it is ro-
tated away from its initial alignment with XY Z. The first rotation, called the precession,
is about the fixed Z axis. The angle of rotation in the precession is denoted ¥, as de-
picted in Fig. 4.2. The orientation of the moving reference frame after it has undergone
only the precession is denoted as x'y’z’. The transformation from 7J K components to
i'j'k" components is that of a single axis rotation about the Z (or z’) axis, specifically

Ay Ax
Ay ¢ =[Ry] | Ay - (4.2.1)
A Az

where

cosyy siny 0
[Ry]=| —siny cosy O . (4.2.2)
0 0 1

Figure 4.2. Definition of the Eulerian angles.
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The second rotation is the nutation, and the nutation angle is 6. It is defined to be
about an axis that is perpendicular to the precession axis. We label the nutation axis as
y’. The orientation of the moving reference frame after the nutation is denoted x”y”z”
in Fig. 4.2. The second transformation, from i’ j’k" components to i” j”k” components,

is that of a simple rotation about the y’ (or y”) axis, so

Ay Ay
Ay ¢t =[R]{ Ay ¢ (4.2.3)
Ay Ay
where
cos# 0 —sind
[Ry] = 0 1 0 . (4.2.4)

sin@ 0 cos@

13,1 S

The last rotation is the spin ¢, which moves the reference frame from x”y”z” to its
final orientation xyz. It is executed about the z” (or z) axis, so this is a simple rotation
transformation from 7" j”k" components to 7 jk components given by

Ax Ax”
Ayt =[Rs]{ Ay ¢, (4.2.5)
Az Az”

where
cos¢p sing O

[Ry] = | —sing cos¢ O |. (4.2.6)
0 0 1

The sequence of rotations, precession, nutation, then spin, constitute a set of body-
fixed rotations. Consequently, we can use the transformation properties of such a se-
quence to relate any two sets of unit vectors. For example, the overall transformation

from /J K components to i jk components is obtained by postmultiplication, according
to

Ay Ax
Ay ¢ =[RI{ Ay ¢+ [Rl=[Ry][Rs][Ry]. (4.2.7)
A, Ay

The angular velocity and angular acceleration are readily expressed by adding the
precession, nutation, and spin rates about the respective axes. The precession is about
the Z axis, so the first rotation rate is v, the direction is &, = K, and the angular velocity
of XYZ is @ = 0. The nutation occurs about the y’ axis. (The term line of nodes is
sometimes used to refer to the y’ axis because points on this axis do not move in the
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nutation.) The nutation rate is 6, the direction is & = j' = j”, and the angular velocity
of x'y'z is @, = ¥ K. Finally, the spin rate is ¢ about the z” axis, so the third rotation
direction is &; = k”, and the angular velocity of x”y”z" is Q3 = ¥ K + 6 j”. The angular
velocity of xyz is the vector sum of the individual rotation rates, so

o=yK+0j +¢k". (4.2.8)

The general expression for angular acceleration obtained by using each angular velocity
Q; to differentiate the corresponding rotation direction é; is

G=UK+0]"+0(Qx ")+ k" +6 (93 x k)
(4.2.9)

=GR +07 490 (K x J") + k" + ¥ (K x k) +é¢ (]-.,, x k) .

To use these expressions in computations, they must be transformed to a common
set of components. Many situations involve bodies that have an axisymmetric shape,
with the z axis defined to be the axis of symmetry. In such cases there is no special orien-
tation of the x and y axes relative to the body, so using x”y”z” as the global coordinate
system will yield a description of vector quantities from the viewpoint of the body that
is generally descriptive. Inspection of Fig. 4.2 shows that K lies in the x”z” plane, such

that
K = —sin6i” + cos0k”. (4.2.10)
We thereby find that

When the angular velocity @ and angular acceleration @ of reference frame xyz are
described in terms of the Eulerian angles of precession ¥, nutation 6, and spin ¢,
then

&= —ysingi” +6j" + (Y cosd +¢) k",
@ = (—ysing —ybcosd +6¢)i" + (0 + ysind) j” (4.2.11)
+ (Y cost + ¢ — yising) k",

where x”y”z" is a reference frame that executes only the precession and nutation. If
appropriate, the preceding expressions may be transformed to i jk components by
applying Eq. (4.2.5). This operation yields

@ = (—ysindcosp +0sing)i + (¥ sindsing + 6 cos ) j + (¥ cos6 + @) k,

a@ = (—ysinfcos¢ +6sing — 6 cosd cos$ + Yrdsin O sing + 6 cos ¢) i
+ (¥ sin@sing + 6 cos ¢ + Y6 cos O sinp + Yrdsin 6 cosp — O sin ) j
+ (Y cos6 + ¢ — Y6 sin6) k.

(4.2.12)



4.2 Eulerian Angles 181

Utilization of Eulerian angles requires recognition of the appropriate axes of rota-
tion. This involves identifying a fixed axis of rotation as the precession axis. Then the nu-
tation axis precesses orthogonally to the precession axis. Finally, the spin axis precesses
and nutates while it remains perpendicular to the nutation axis. In many cases, the nuta-
tion or spin rates may be zero, in which case either of the respective angles is constant.
This results in a degree of arbitrariness in the selection of the axes. Indeed, a simple
rotation can be considered to be solely precession, nutation, or spin, as one wishes.

From one perspective it is sufficient to rely on Egs. (4.2.12) because they reduce
to Egs. (4.2.11) when ¢ = 0, which corresponds to xyz being coincident with x”y”z".
On the other hand, the raw expressions in Egs. (4.2.8) and (4.2.9) are readily adapted
to a variety of situations. This is especially true if the axes are labeled differently from
the convention used here. For example, some texts define the x’ axis to be the line of
nodes for nutation. Also, a different definition of the Eulerian angles often is used by
aerodynamicists. (This is the topic of Exercise 4.6.) Another consideration is that the
Eulerian angle formulas may not be directly applicable. For example, the representa-
tion addresses a motion featuring no more than three rotations, so one set of Eulerian
angles cannot describe a situation that features more than three rotations. Such situ-
ations could be treated by defining multiple sets of transformations. Another case in
which the Eulerian angle formulation is inadequate by itself arises when a motion con-
sists of three rotations in which no two rotation axes are orthogonal. No line of nodes is
evident in that case. This is another situation that can be treated with more than one set
of Eulerian angles.

ETULTEEN A free gyroscope consists of a flywheel that rotates relative to the
inner gimbal at the constant angular speed of 8000 rev/min, and the rotation of the
inner gimbal relative to the outer gimbal is y = 0.2sin(100xr¢) rad. The rotation
of the outer gimbal is B = 0.5sin(50x¢) rad. Use the Eulerian angle formulas to
determine the angular velocity and angular acceleration of the flywheel at t = 4
ms. Express the results in terms of components relative to the body-fixed xyz and
space-fixed XY Z reference frames, where the x axis was directed from bearing D to
bearing C att = 0.

8000 rev/min A

Example 4.2
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SOLUTION This example explains how one can apply the Eulerian angle formulas
when none of the rotations are explicitly stated to be those parameters. The primary
task in applying the formulas is identification of the precession, nutation, and spin.
The angle g is the rotation about a fixed axis, so it is the precession. Thus we set ¢ =
B = 0.5sin(507¢) in the formulas. By definition, the nutation axis is perpendicular to
the precession axis. This matches the characteristic of line C D for the y rotation, so
we identify éc,p as the line of nodes, and set = y = 0.2sin(1007x¢) in the formulas.
The 8000 rev/min rotation occurs in the direction of ¢, g, which is perpendicular to
the line of nodes, so it fits the spinning rotation. Furthermore, it is specified that the
x axis was aligned with e./p att = 0, so we set ¢ = 8000 (27 /60) ¢ rad. The Eulerian
angles and their derivatives at ¢ = 0.004 are

v = 0.2939 rad, ¥ = 63.54 rad/s, ¥ = —7 252 rad/s’,
6 =0.19021 rad, 6 = 19.416 rad/s, & = —18 773 rad/s?, (1)
¢ =3.351rad, ¢ =837.8rad/s, ¢ = 0.

To avoid confusing the xyz coordinate system in the definition of Eulerian an-
gles with the coordinate system defined here, let us use a subscript f to denote the
unit vectors in the formulas, Egs. (4.2.12). Then the result of substituting the values
in Egs. (1) into those formulas is

@ ="7.71iy —21.49]¢ + 900.15k ; radss, )
2
@ = —14256i s + 11934 — 7354k ¢ rad/s’.

The rotation transformation [R] in Eq. (4.2.7) relates vector components in the
body-fixed system to the standard fixed reference frame X;Y;Z;. For the angles
in Egs. (1), this transformation is

[ir Jr k' =IRI[I; J; Kf]',
—0.85909 —0.47723 0.18494
[Rl=| 047876 —0.87707 —0.03931
0.18096  0.05477  0.98196

We use the inverse transformation to obtain the fixed coordinate system compo-
nents of @ and &, as follows:

771 145.98
{w}f=[R]"{ —21.49 =1 64.47 ¢,
900.15 886.19
3)
—14256 16 630
{a};=[R]"{ 11934 } =1 —4066

—7354 —10 327
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It still remains to identify the components corresponding to the coordinate sys-
tems that were defined in the problem statement. Toward that end we observe that
the spin occurs about the y axis, so it must be that k ; = j. We also observe that the x
axis aligned with éc,p at t = 0, which is the line of nodes. In the Eulerian definition
the y axis lines up with the line of nodes when ¢ = 0, which matches the alignment
of the x axis here. Thus we set j; = i. Then, because j; x ks =i x j, it must be that
iy = k. Substitution of these equivalencies into Egs. (2) yields

@ = —21.49 +900.2] + 7.71k rad’s,
o S OF
a = 11934i — 7354 — 14256k rad/s".

In regard to the fixed coordinate components, we observe in the present situ-
ation that j = J and i = I when all of the Eulerian angles are zero. Hence it must
be that the fixed unit vectors are permuted in the same way as the moving unit vec-
tors. In other words, Ky = J, J; = I, and I; = K. Selecting the elements in Egs.
(3) accordingly then leads to

@ = 64.471 + 886.19J + 145.98K rad/s,
<
@ = —4 0661 —10327J 4 16 630K rad/s”.
As an aside, it should be mentioned that if one is confronted in practice with the
situation posed here, an approach based on returning to the basic formulation might
be easier, and less prone to error, than one that relies on formulaic subsitutions.

4.3 INTERCONNECTIONS AND LINKAGES

According to Eq. (4.1.7), the displacement of any point in a rigid body from a known
initial state can be evaluated if the displacement of a reference point and the rotation
transformation in the final state are known. Point displacement is a three-component
vector, and a rotation transformation is defined completely by three angles, such as the
Eulerian angles. Thus a rigid body in free motion has six degrees of freedom.

Most bodies are restricted in their movement because they are connected to ad-
joining bodies. These connections give rise to kinematical constraint equations, which
are mathematical statements of conditions that are imposed on the motion of a point
or on the angular motion of a body. Such equations are relations between kinematical
variables that must be satisfied under any circumstance, regardless of the nature of the
forces that actuate the motion. The kinematical constraints are imposed by constraint
forces (and couples), which are more commonly known as reactions. The role of con-
straint forces and their relation to the kinematical conditions they impose will be treated
in the chapters on kinetics.

A simple, though common, constraint condition arises when a body is permitted to
execute only a planar motion. By definition, planar motion means that all points in the
body move in parallel planes, which can only happen if the angular velocity is always
perpendicular to these planes. Let the XY plane of the fixed reference frame and the
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xy plane of the body fixed reference frame be coincident planes of motion. Points that
differ only in their z coordinate execute the same motion in this case, so they may be
considered to be situated in the xy plane. Hence the kinematical equations for planar
motion are

o =wk =wK, a=wvk=ok,
VP/A:XlT-i-y]T:XI_—f‘YJ_,
(4.3.1)

Up=0U4+®XTp/a,

~

dp=aa+axFpa— &*Fpa,
where point P is an arbitrary point in the body and point A is any convenient refer-
ence point in the same body. Note that the preceding centripetal acceleration term is
simplified from @ % (& x 7p;4) to —w*F p/4 by an identity that is valid only when 7p, 4 is
perpendicular to @. These relations are depicted in Fig. 4.3.

Figure 4.3. Relation of the velocity and acceleration of two points in a rigid body undergoing planar motion.

The restriction to planar motion contains an implicit assumption that the connec-
tions to other bodies permit rotation only about an axis perpendicular to the plane. An
analysis of spatial motion requires explicit consideration of the constraint conditions
arising from connections. These may be identified by characterizing the nature of the
connection using the fundamental concepts developed thus far. For example, the ball-
and-socket joint connecting bodies 1 and 2 in Fig. 4.4 allows each body to rotate freely
about its center point B, so it does not impose a constraint on the orientation of either

Figure 4.4. Ball-and-socket joint.
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body. However, the center B of the ball is common to both bodies, so the bodies must
move in unison at this junction. This means that the displacement, velocity, and acceler-
ation of point B on each body must match, so that

(AFB), = (AFB),, (vB), = (UB),, (aB), = (ap), (4.3.2)

The case of a pin connection between bodies, depicted in Fig. 4.5, has some elements
in common with a ball-and-socket joint. In the figure, x; y;z1 and x,y,z, represent refer-
ence frames attached to each of the joined bodies, with their shared z axis aligned along
the axis of the pin. We define each x axis to align with a convenient reference line in the
respective body, such as the centerline for a bar. The direction of the pin’s axis may be
evaluated from a cross product:

171 Xsz

pin = 7(1 = 7(2 = (433)

|ZT1 X 22|

As is true of the ball-and-socket joint, both bodies have the same motion at their
point of commonality. Consequently, Eqs. (4.3.2) must be satisfied. However, the pin
also introduces a constraint on rotation. The only rotation of body 2 relative to body 1
permitted by the pin connection is a spin about the z; or z, axis. We denote the spin
angle as ¢, with ¢ = 0 defined as the configuration in which x; y;z; and x,y,2, coincide.
A simple rotation transformation about the z axis gives Z2f27<2 components in terms of
i1 jik1 components:

Ay, Ay cos¢p sing 0
Ay, t =[R] 1Ay ¢ [Ry]=| —sing cos¢ O (4.3.4)
Az A 0 0 1

The constraints introduced by a pin connection on the angular velocity and angular ac-
celeration may be expressed in vector form. Because x; y,z, spins at ¢ about the k; = k,
axis, the respective angular velocities are related by

Wy = w1 + ¢E1 (4.3.5)
The angular velocity of x1y;z; is @1, so the time derivative of the preceding is

Ay = A ~|—(§]_<1 ~|—(]S (@1 X 7(1) (436)

Y2

X1 B

2 Figure 4.5. Pin connection.

X2
Z1, 2y 20!
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Equations (4.3.4)—(4.3.6) are constraint equations on the angular motion that must
be satisfied in addition to Egs. (4.3.2) for the connecting points. Each of these relations
may be transformed to any convenient global set of components. It is interesting to ob-
serve that, if a system is arranged such that all pin connections are parallel, then the
rotational constraint equations lead to the conclusion that the z axis of each pin is in-
variant. In other words, using pins aligned perpendicular to a fixed plane will lead to
planar motion of a system in that plane.

Another common method for connecting bodies consists of a collar that slides over
a bar, as depicted in Fig. 4.6. (This connection is also known as a slider.) Similar to the
treatment of a ball-and-socket joint, point C in the figure denotes the center of the ball.
For most purposes, the distance to the adjacent point B on the centerline of bar 1 is small
relative to the overall dimensions of a system. We take this distance to be zero for the
sake of simplicity. (The modifications required to account for the finiteness of this dis-
tance are the topic of Exercise 4.7.) The collar is free to slide over bar 1. We characterize
the constraint condition in this case by attaching reference frame x; y; z; to bar 1, with the
x; axis aligned with the centerline of that bar. With respect to this reference frame, the
collar can move along only the x; axis. We let # denote the amount of this relative dis-
placement, so (Afc),,,,, = uiy, and approximate F¢,p to be zero. Taking point O’ in
Eq. (3.2.8) to be point B in the present situation leads to the conclusion that the collar’s
displacement in terms of components relative to the axes of x1y;z; is given by

AFc -1 AFg -1 u
Afc-jt=3AFg-J¢+10
AFc -k Aig -k 0

Alternatively, the general description in Eq. (3.2.7) may be used to describe the absolute
displacement, which leads to

Arc -1 Arg- T u
Afc-J =14 Afg-J ¢ +[RIf {0},
Afc-l_{ AFB-I_{ 0

where [ R] describes the orientation of x1y;z;. The velocity of point C relative to xjy; 21
is itk, so we have

ﬁczl_)B—FL'tl_.l, [lc:ﬁ3+ilzl + 201 Xl;tlTl, (437)

where the sign of u and its derivatives gives the sense of the sliding motion.

Figure 4.6. Collar with a ball-and-socket joint.
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It should be noted that the analyses of the collar’s displacement, velocity, and ac-
celeration assumed that bar 1 is straight. If this bar were curved, it would be necessary
to augment the relative acceleration with the centripetal acceleration term (L't2 / p) e,
where p is the radius of curvature of bar 1 at point B and ¢, is the normal direction
(pointing toward the center of curvature) for the segment at point B.

The collar in Fig. 4.6 introduces no angular motion restrictions because bar 2 is con-
nected to the collar by a ball-and-socket joint. However, a common connection method
is a pin, Fig. 4.7(a), or a fork-and-clevis joint, Fig. 4.7(b). If the cross section of bar 1 is
not circular, interference prevents the collar from spinning about that bar. In that case
the constraints on angular motion are the same as Eqgs. (4.3.4)—(4.3.6) for a pin connec-
tion. However, if the cross section of bar 1 is circular, then bar 1 acts as a pin that permits
rotation about its axis. We treat the angular motion constraints for this connection by
attaching x, y, 7, to bar 2; the z, axis is chosen to align with the axis of the pin connecting
bar 2 and the collar, and the x; axis coincides with a convenient reference line of bar 2.

Figure 4.7. Collar connections that impose rotational constraints: (a) collar with a pin connection, (b) collar
with a fork-and-clevis joint.

Let v denote the angle by which the collar rotates relative to bar 1 about the x;
axis, and let 0 be the rotation of bar 2 about the pin relative to the collar. (As implied by
their labels, ¥ represents precession of bar 2 relative to bar 1, and 0 represents a relative
spin.) Define these angles such that ¥ = 6 = 0 corresponds to x;y;z; and x; ),z being
parallel. These are a pair of body-fixed rotations, so the rotation transformation from
l_'1 ]Tll_cl to l_.2]_.21_€2 is given by

A, Ay,
Ayt =[Ro][Ry] 1 Ay, ¢ (43.8)
Az Az

where [R,] and [Ry] are simple rotation transformations for ¥ about the x; axis and by
6 about the z, axis, respectively. The rotation rates of bar 2 relative to bar 1 are ¥ about
the x; axis, and by é about the z, axis, so

wy) = w1 + Wl_l + 6ks. (4.3.9)
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Using the angular velocities of each reference frame to describe the time derivative of
the respective unit vectors leads to

a) = aq + '(ﬁzl + 1,0 ((,7)1 X l_l) + 97(2 + 0 (67)2 X ]_62) . (4310)

Equations (4.3.7)-(4.3.10) constitute the constraint equations for a collar sliding over
bar 1 whose cross section is circular. As always, these conditions may be represented in
terms of any convenient global coordinate system.

It should be obvious from the discussion thus far that the connections need to be
examined in detail to identify all constraints on the motion. If all of the permutations
and novel features of various types of connections were to be tabulated, it would not aid
our understanding. It is preferable to consider each connection on a case-by-case basis,
and then to employ the type of reasoning developed thus far to identify the constraint
equations.

Asnoted at the outset, it follows from Chasle’s theorem that a rigid body in free mo-
tion has six degrees of freedom. If a system is composed of N bodies, its movement could
be described by as many as 6 N kinematical variables. However, the constraint equations
for the appropriate types of connection and the fact that some connections are part of
the same body reduce the number of free variables. The overall approach is to use the
rotational constraints, if any exist, to characterize the angular motion of the body, simul-
taneously with employing kinematical equations (4.1.7)—(4.1.9) to relate the motion of
constrained points in a body. When such relations are broken down into components,
one obtains simultaneous equations for the kinematical variables describing the motion
of each body.

If the motion of the system is fully constrained, then this system of equations will be
solvable such that, for each body, the linear motion of a point and the angular motion
may be evaluated. The system is only partially constrained if the number of kinemati-
cal variables exceeds the number of kinematical equations. The simultaneous equations
may then be solved for a set of excess variables in terms of the other. The excess vari-
ables in this case depend on the nature of the force system, so their evaluation requires a
kinetics study. The number of excess kinematical variables is the system’s number of de-
grees of freedom. Another possibility is that the kinematical equations are not solvable.
In that case, there are too many constraints on the motion of the system. This means
that no motion is possible — such a system is rigid.

In principle, it is possible to analyze the constrained motion of a system in terms
of its displacements and angles of rotation. However, the occurrence of these angles as
sines and cosines in component descriptions and in rotation transformations, as well as
the complicated nature of the spatial geometry in many situations, combine to make it
quite difficult to formulate and solve the associated kinematical equations. Furthermore,
we will see in our later studies, beginning in Chapter 7, that some motion constraints
restrict velocity, without any associated positional restrictions. For both reasons, our ef-
forts here focus on the kinematical analysis of velocity and acceleration when the system
is at a given position. In Chapter 8 we will see that such an analysis can be used to obtain
differential equations whose solution will be the position variables as a function of time.
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Figure 4.8. Spatial motion of a bar subject to constraints.

To demonstrate these matters, consider bar A B in Fig. 4.8, which is constrained by
collars that follow noncoplanar guide bars C D and EF. The connection at collar A is a
ball-and-socket joint, whereas the one at collar B is a pin. Because points A and B are
part of the same rigid body, their velocities are related by

17,4:173+5)Xf,4/3. (4311)

We next address the constraint conditions associated with the connections. Because the
guide bars are fixed, velocity constraint equations (4.3.7) state that

VA = VA€E/p, Up = Vgep/C, (4.3.12)

where positive values of v, and vp indicate that the respective velocities are taken to
be downward and to the right. (If the actual sense of each motion is contrary to the
assumed one, then the associated rate will be negative.) Let us for the moment ignore
the constraint on the rotation of bar A B that is introduced by the pin on collar B. Then
the angular velocity of the bar is an unknown @ 4 g having three components. Equation
(4.3.11) reduces to three scalar equations, one for each component, and there are five
unknowns: v 4, vg, and the three components of @ 4 5. (It is assumed that we have worked
out whatever geometrical relations are required to describe distances and angles, so
there are no unknown positional parameters.)

To further characterize the system, we need to account for the rotational constraint
on @,4p imposed by having a pin at collar B, which is described by Eq. (4.3.9). (This
assumes that guide bar C D has a round cross section.) The guide bar is fixed, so it serves
as the precession axis for rotation v, which equivalently is the angle by which plane
ABC has rotated away from vertical. Thus the precession direction is k1 = éc,/p, based
on the sense with which v is depicted in Fig. 4.8. In addition, the angle # between bar
AB and guide bar CD is equivalent to the angle of rotation about the axis of the pin,
which is assumed to be perpendicular to the plane containing A B and C D. We represent
this direction with a cross product, with the sequence of terms based on the right-hand
rule for when 6 increases:

7= c/pXTa/B (43.13)

2= 7= — .
‘€C/D xXr A/B|
When we use Eq. (4.3.9) to describe the angular velocity of bar A B, we find that

. éC/D X fA/B

®ap=Véc/p+0 (4.3.14)

\ec/p x Fasp|’



190 Kinematics of Constrained Rigid Bodies

This reduces the number of unknown scalars in @ 4p from three to two, thereby
reducing the number of unknowns in the system to four: v4, vg, ¥, and 6. Two possibili-
ties arise now. In a fully constrained situation, the overall motion will be defined through
some kinematical input, such as a specification of vp, which removes the corresponding
velocity parameter from the list of unknowns. In contrast, if the motion is induced by a
given set of forces, so that none of the four kinematical parameters are specified, then
the system is partially constrained. In that case, the three scalar equations obtained from
Eq. (4.3.11) can be used to describe three of the unknowns in terms of the fourth. The
system then has one degree of freedom, and kinetics principles would relate the remain-
ing unknown to the force system.

A different condition of partial constraint is obtained when bar A B is connected
to both collars by ball-and-socket joints, because Eq. (4.3.14) then does not apply. The
lack of constraint in such a case is associated with the ability of bar A B to spin about
its own axis. Such a rotation does not affect the motion of either collar. The kinematical
equations therefore can be solved for a relation between v4 and vg, although there
will be no unique solution for @4p. If it is desired that the number of equations and
unknowns match, one could consider the spin of bar A B about its own axis to be zero,
in which case one may invoke Eq. (4.3.14).

Other conditions are possible. Suppose that bar A B was connected to both collars
by pins. That would introduce another constraint on ® 4 having similar form to that
of Eq. (4.3.14). It would not be possible to satisfy simultaneously both angular motion
constraints, which would mean that the system is rigid. (The exception to this condition
occurs if both guide bars are coplanar and the pins are perpendicular to that plane, in
which case motion in that plane is possible.)

Thus far the discussion has only addressed the analysis of velocities. The treatment
of acceleration follows a parallel development with the same logic as that by which the
velocity was analyzed. It is essential to recognize that the velocities must be analyzed
before accelerations can be addressed. One reason for this is that the angular veloci-
ties occur in the acceleration relation between two points in a body, Eq. (4.1.9). Also,
angular accelerations in spatial motion contain terms that are the products of rotation
rates. A third place where velocity parameters arise in an acceleration analysis is the
characterization of the acceleration of a collar sliding along a curved bar, as was noted
following Egs. (4.3.7).

An area of special interest in kinematics is concerned with linkages, in which bars
are interconnected sequentially in order to convert an input motion to a different output
motion. From the standpoint of our general approach to rigid-body motion, the treat-
ment of linkages presents no special problems. The constrained points in the system are
the ends of the linkage, the connection points, and any point whose motion is specified.
The velocity analysis is performed by using Eq. (4.1.8) to relate different connection
points on each link. The linear velocity constraint equation appropriate to each connec-
tion is introduced into these relations between the velocity of points. Simultaneously,
the angular velocity constraint equation associated with each connection is used to char-
acterize the angular velocity of each link. In the special case of a robot, it is likely that the
rotations about some or all of pins are controlled by servomotors, which remove these
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rotations from the list of unknowns. After the velocity analysis has been completed, one
may carry out an acceleration analysis by following the same logic using the analogous
acceleration equations. In comparison with the system in Fig. 4.8, the primary complica-
tion encountered in analyzing linkages is that the description of the position vectors and
vector components is likely to be more difficult.

Collar Bis pinned to arm A B as it slides over a circular guide bar.
The guide bar translates to the left such that the distance from pivot A to the center
C is an arbitrary function of time u (¢). Derive expressions for the angular velocity
and angular acceleration of arm A B in terms of u.

Example 4.3

SOLUTION Although we have focused on three-dimensional motion, this example
demonstrates that the procedures work equally well for planar problems. We begin
with a sketch depicting the global XY Z coordinate system and the basic features of
the geometrical configuration.

Y

Coordinate systems and unit vectors for the planar linkage

The law of cosines gives expressions for the angles locating collar B:

2 2 2 2 2 2
6 = cos™! (%) , B=cos! <#) (1)
These relations are valid at any instant so we could differentiate them to obtain
relations for 6 and B, and then é and B. Such a procedure exemplifies a procedure
for analyzing linkages based on describing the position of constrained points at an
arbitrary instant and then differentiating such expressions. The geometrical com-
plexity of many linkages often makes such an approach too difficult to implement.
Our general approach does not require differentiation of position vectors, be-
cause it recognizes that the kinematical relations for velocity and acceleration
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represent standard derivatives of position. Guide bar CD forms a translating ref-
erence frame for the collar’s motion whose translational velocity is i to the left. The
vectors &, and &, in the sketch are the path variable unit vectors for the motion of
the collar relative to this reference frame, and we let v, denote the speed of this
relative motion. We also know that the collar is pinned to bar A B. These two views
of the velocity of the collar must match, so that

Up = UCp + Vrel€; = @AB X FB/A.
Resolving the vectors into global components relative to XY Z leads to
Up = tt] + vrel (SinO1 — cos0J) = (—BK) x L(cos BI —sinBJ). (2)
We match like components:

B+ I =114 v sind = —p Lsin g,

<

B-J =— v cosh = —BLcos B.

<

The solution of these component equations is

. 1 cosb _u cost
’BZ_L(sinﬂcose—i—cos/BsinQ):_Zsin(ﬂ—i-(?)’
. cosp ®)
el = TSN (B + 0)

Solution of Eqgs. (1) gives the values of 8 and 6 as functions of u, so the first of
Eqgs. (3) gives the angular velocity of bar A B as an implicit function of u and .

The analysis of acceleration follows the same logical outline. We match the ac-
celeration of the collar from the viewpoint of the translating bar CD to the accel-
eration based on the collar being attached to rotating bar AB. The translational
acceleration is i1, and the collar follows a circular path of radius R relative to bar
CD, so we have

- I— 9 - v?el— = 7 2 =
ag = il + V18 + ?en =QAB XTB/A — WyBIB/A-

We resolve all vectors into I and J components:

2
ap =il + Ve (sin01 — cos6J) + ULISI (cosOI +sin6J)

(4) <
= (—BK) x L(cos I —sinBJ) — B>L(cos BI —sin BJ).
The component form of this relation is
2
ap- I =il + O sinf + vr—lglcose = —BLsin g — f%Lcos B,
©)

2
dg-J = — U cOSH + %sin@ = —fBLcosp + B*LsingB.
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We eliminate v from these equations, which gives

U2

iicosf + ;Rel = —B L(sin B cosf + cos Bsinf) — 2L (cos B cosf — sin Bsin0) .

The identities for the sine and cosine of the sum of two angles simplify this to
2

= ii  cosf £ cot (B + ) Vrel
~ Lsin(8+06) RLsin (B +6)
Equations (3) give the values of v, and B, so the preceding becomes
G- it cos® i’ (cos 6)* cos (B + 6) i@ (cos B)?
Lsin(B+6) [? [sin(B+06)] RL[sin (B +0)]’

Once again, because Egs. (1) give 8 and 6 as functions of u, this result describes the
angular acceleration of bar A B as an implicit function of u, &, and ii.

Before we leave this example, it is useful to observe that the primary complica-
tion for the preceding analysis was the need to carry out algebraic and trigonometric
manipulations. The analysis would have been much simpler if a specific value of u
had been specified, because numerical values would have occurred instead.

Arm AB is turned by a motor at a constant rate of 1800 rev/min.
Cap B connects this bar to bar BC with a fork-and-clevis joint, and the cap is free
to rotate about the A B axis. The connection between bar BC and collar C is a ball-
and-socket joint. Determine the velocity and acceleration of collar C and the angu-
lar velocity and angular acceleration of bar BC when the system is in the position
shown.

30°

Example 4.4

SOLUTION This example applies the general procedures to a system that is some-
times referred to as a four-bar linkage: rotating arm A B, connecting rod BC, slider
C, and the fixed guide bar for the slider. The process is readily extended to multi-
ple links. The global coordinate system we use has a vertical Z axis, and Y is aligned
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with the rotation axis of arm A B, with J pointing rightward. We begin by expressing
the constraints on the motion of the connection points. Point A is stationary, collar
C follows a straight path parallel to the X axis at an unknown speed v¢, and cap B
is attached to both arm A B and connecting rod C D. Thus we have

B=®AB X Tpja=vcl+wpcxT7p0c,

<

Sl

B=QABXTp/A+®ap X (@A XTB/A) (1)
= vcl + @pc x Fpc + @pc x (@pc X Fpc) -
The position vectors at the instant depicted in the diagram are
7pia =03 (— sin 30°7 + cos 30°I_<) = —0.15] + 0.2598K m,
e = — [0.752 —0.42 — (0.3 cos 300)2]1/2 I1—047 +03cos30°K  (2)
= —0.57881 — 0.4J + 0.2598K m.

Next, we describe the constraints on angular motion. It is given that

WA = 1800 (26_7(;> (—J_) rad/s, dAB = (_) (3)

Cap C rotates at an unknown rate v about axis A B relative to arm A B. Relative to
the cap, the fork-and-clevis joint allows bar BC only to rotate at an unknown rate
about the axis of that joint’s pin. Thus we have

Dcap = DB + Vep/a, DBC = Dcap + O8pin = DB + Yep/a + O&pin. 4)

To describe the angular acceleration we observe that &g, 4 Totates at @ 4 g while ép;,
rotates at cap. Because a 45 = (), we have

apc =vVepa+ Y (@ap x €p/a) + 0epin + 0 (Dcap X &pin) - &)

We obtain ép,4 from 7p,/4 and evaluate e, as the normal to the plane formed by
7p/4 and Fp/c, where both position vectors are given by Eqs. (2). Thus,

e = =2 = 0.5 +0.866K,
(6)

/A XTp/c

€pin = = 0.63471 — 0.6804J + 0.3664K.

|fB/A X fB/C|

Now that we have characterized the constraint conditions, we proceed to ana-
lyze the velocities. This will yield the unknown rotation rates, which we will need to
know in order to evaluate the angular acceleration. The first of Egs. (1) gives

g = (—607J) x (—0.15I + 0.2598K)
= vl + [—607 ] + v (—0.51 + 0.866K) + 6(0.63471 — 0.6804]
+0.3664K)] x (—0.57881 — 0.4] + 0.2598K) .
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The component equations obtained from this vector equation are
vp- I = —48.97 = ve + 0.3464y — 0.03026 — 48.97,
vp-J =0=—0.3713y — 0.37706,
vp- K = —28.27 = 0.200y — 0.64776 — 109.10.
The solution of this set of linear equations is
ve = —36.28 m/s, Y = 96.46 rad/s, 6 = —95.01 rad/s. (7)<
The corresponding angular velocity obtained from the second of Egs. (4) is

@pc = — 108.531 — 123.86J + 48.72K rad/s. (8)

We may now proceed to analyze the acceleration. We begin by using the pa-
rameters obtained thus far to form & gc. From the value of ¥ we know that

Dcap = @ap +96.45¢5, 4 = —48.231 — 188.50J + 83.53K.

We substitute into Eq. (5) this expression, the unit vectors in Egs. (6), and the results
for ¥y and 4, which gives

apc = I/.f.éB/A +96.45 (wap X éB/A) + éépin —95.01 (@cap X épin)
= (~0.507 +0.6347¢ — 14582) T + (~0.6804§ — 6716)] )
+(0.86609 + 0.36646 — 23575) K rad/s?.

Substitution of Egs. (8) and (9), as well as the position vectors in Egs. (2), into the
second of Egs. (1) governing the acceleration of cap B gives

ap = (—60mJ) x [(—607T) x (—0.15] + 0.2598K)]

= vl + [(—0.509 + 0.63470 — 14582) I + (—.68040 — 6716).J
+ (0.86607 + 0.36640 — 23575) K] x (—0.57881 — 0.4J + 0.2598K)
+ (— 108.531 — 123.86.J + 48.72K) x [(— 108.53] — 123.86J
+48.72K) x (—0.57881 — 0.4J + 0.2598K)].

The corresponding component equations are
ap- I =15330 = ic + 0.3464¢, — 0.03020 — 7673,
ag-J =0=—-0.3713y — 0.37706 + 13747, (10)
ap- K =-9231 = 0.200y — 0.64774 + 373.6,

whose solution is

ve = 7813 m/s, ¥ = 16722 rad/s®, 6 = 19994 rad/s’. <
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The angular acceleration corresponding to these acceleration rates is
@pc = (—10.2537 +20.3197 — 1.77K) (10°) rad/s’. <

In closing, it should be noted that the operations we performed are readily im-
plemented in mathematical software.

The cardan joint depicted in the sketch is used to connect shafts
that intersect, but are not collinear. The angle between the shafts is 8, and the re-
spective rotation rates are ¢; and ¢,. The cross-link O A BC D connecting the shafts
is able to rotate about axis CD relative to shaft 1, and about axis A B relative to
shaft 2. In effect, each shaft is terminated by a fork-and-clevis joint, with the cross-
link being the clevis for both forks. Derive an expression for the rotation rate ¢, in
terms of the instantaneous values of ¢, and ¢;. Also determine the corresponding
angular velocity of the cross-link.

Example 4.5

SOLUTION The analysis of this seemingly simple device actually will bring to the fore
many of the concepts in both this chapter and the previous one. Thus this example
will give a broader perspective of the procedures for characterizing the kinematics
of connections. There are a variety of approaches for establishing the relation be-
tween ¢, and ¢;. The first is quite direct. It is founded on the fact that arm A B is
perpendicular to arm CD, so that ég/4 - €p/c = 0.

The X; axes depicted in the sketch are aligned with the respective shafts, and
both Z; axes are perpendicular to the plane containing the shafts. At an arbitrary
instant ép,c lies in the Y] Z; plane at angle ¢; below the Y; axis, and ép/ 4 is in the
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Y, 7, plane at angle ¢, from the 7, axis. Thus,
épjc = cospJ1 —sing Ky, epja =sing,Jo + cos ¢, K. (1)

Because both coordinate systems share the same Z axis it must be that Y, lies in the
X1Y1 plane so that

J, =sin Bl +cosBJ.
It follows that
€p/a = sing, (sin I + cos BJ1) + cos ¢, K;. )
Setting the dot product of the unit vectors to zero yields
€p/A - €p/c = Sin ¢, cos B cos ¢y — cos ¢, sing; = 0,

which may be rewritten as

tan ¢
cosp

©)

tan ¢, =

Because this is a general relation between the angles, it may be differentiated with
respect to time to obtain a relation between the rotation rates. Thus

. 1 . 1
” (cos¢y)” ” cos B (cos ¢;)”

To remove the dependence on ¢,, we employ Eq. (3) in conjunction with the identity
that (cos ¢,)* =1/ [1 + (tan ¢2)2] . The result is

—é cos B
~ 7 (singy)’ + (cos Beos )

b2 4) <

This derivation does not examine the nature of the constraints imposed on the
rotation of the cross-link, and therefore does not address the angular velocity of the
cross-link. To determine that quantity we pursue an alternative analysis, which also
will lead to Egs. (3) and (4). If we consider the cross-link to be connected to the
first shaft, we would say that the cross-link rotates through angle ¢; together with
that shaft about the negative X; axis, and it also rotates relative to that shaft about
ép,c by an unknown angle 0. The ¢, rotation is a precession (rotation about a fixed
axis), whereas 6 is a nutation, with ép,¢ being the line of nodes. Similarly, from the
perspective of shaft 2, ¢, is the precession about the negative X, axis, and unknown
angle 6 is the nutation about the line of nodes defined by ép, 4.

Because the legs of the cross-link are orthogonal, we may consider them to
represent a rotating coordinate system. Let ép,c = j and ég 4 = k. The alterna-
tive viewpoints enables us to derive two rotation transformations from components
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relative to the fixed directions to i jk components. For shaft 1 we have a pair of
body-fixed rotations —¢, about the Xj axis, followed by 0, about the y axis, so that

~.|

fcosd; O —sinb, 1 0 0 L
i 0 1 0 0 cos¢, —sing, Ji
k | sinf; 0 cos6b 0 sing, cosg, K
] (5)
[[cosf; —sinfising; —sinb;cosp, L
= 0 Cos ¢, — sin ¢, Ji
| sinf;  cos@sin ¢, cos 61 cos ¢, K

From the perspective of shaft 2, the body-fixed rotations are —¢, about the X; axis,
followed by 6, about the z axis, so

i [ cosf, sinf, O 1 0 0 b
jt=|—sinf, cosh, 0|0 cosp, —sing, b
k L 0 0 1 0 sing, cos¢, K,
[ cosf sinfcos¢p, —sinb,sing, L ©
= | —sinf, cosf,cos¢p, —cosb,sing, b
L 0 sin ¢, Ccos ¢, K,

Because the Z; and 7, axes coincide, the rotation transformation between the fixed
coordinate systems is

b cosp —sinf 0 L
J, t =|sinp cosp 0 Ji . (7)
K, 0 0 1 K

Substituting this transformation into Eq. (6) leads to a transformation from

I J1 K; components to i jk components. Matching it to Eq. (5) requires that

cosfy sinfycos¢p, —sinb,sing, cosp —sinpB 0
—sinf,; cosf,cos¢p, —cosb;sing, sinf cosB O
0 sin ¢, COS ¢y 0 0 1
cosf; —sinfysing; —sinéjcosd,
= 0 cos ¢y —sin ¢,
sinf;  cosfsin g, cos 61 cos ¢
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Although there are nine elements to match in the preceding equation, the orthonor-
mal property leads to six identities, so only three elements are independent. The
simplest equations come from the last row, specifically

(3,1): sing,sinB = sin6y,
(3,2): sing,cos B = cosf; sin ¢y, (8)
(3,3): cos¢, = cosbcose.

These are three equations for 01, 6;, and ¢, in terms of ¢;. The ratio of the second
to the third gives

tan ¢, cos f = tan ¢, (3)

which is the same as the relation obtained in the first derivation.

The analysis leading to this relation was less direct than the procedure by which
it was derived in the first analysis. However, pursuing it enables us to recognize
how the cross-link rotates. In fact, once we have evaluated ¢, corresponding to a
specified value of ¢, the first two of Egs. (8) can be solved for 6; and 6,.

Just as there are two viewpoints for the orientation of the cross-link, the angular
velocity can be formulated from alternative perspectives. For shaft 1 the precession
rate is —¢; about the Xj axis and the nutation rate is §; in the direction of & D/C> SO
the angular velocity of the cross-link is

o=—¢15 +01ep)c. )

For shaft 2 the precession rate is —¢, about the X, axis and the nutation rate is 6,
in the direction &g, 4. This leads to a description of the angular velocity as

@ =—¢o b+ 028p)4. (10)

Matching Eqs. (9) and (10) leads to three scalar component equations for the
values of 61, 6,, and ¢, in terms of ¢;. The most direct set of equations for further
manipulation is obtained by taking components in the mutually orthogonal direc-
tions ép/c, €p/4, and ep,c x €p; 4. Because ép,c is perpendicular to the Xj axis and
g, 4 is perpendicular to the X; axis, we have

@-epjc=01=—¢2b - epc,
@-epa=—¢11-epa =05, (11)
@ (epjc x epja) = —1 1 - (epjc x €pra) = —po b - (€pjc X €p/4).

To evaluate these terms we express the unit vectors in I;J; K; components.
Equations (1) and (2) describe ép,c and ép, 4, and the first row of the rotation trans-
formation in Eq. (7) shows that I is

L =cosBI; —sin BJ;.
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The result of substitution of these representations of the unit vectors into Eqs. (11)
is
61 = — ¢ cos B cos ¢y,
—p1sing, sin B = 6,
— 1 (cos ¢y cos ¢, + sin ¢ sin ¢, cos )
— 2 [cos B (cos ¢y cos ¢, + sin ¢, sin ¢, cos B)
— sin B (— sin ¢, sin ¢, sin B)]
= —¢, (cos B cos ¢y cos ¢, + sin ¢, sing,) .

Dividing the last of these equations by cos ¢; cos ¢, gives

(12)

¢> (cos B + tan ¢, tan ¢,) = ¢, (1 + tan ¢, tan ¢, cos B) .

We can eliminate the dependence on ¢, by using Eq. (3’). Further manipulation by
use of tan ¢, = sin ¢,/ cos ¢; shows that this relation for ¢, is identical to Eq. (4).
Once the value of ¢, has been determined, the first of Egs. (12) gives the corre-
sponding value of 6. Substitution of that result and Egs. (1) into Eq. (9) gives

ey (cos B)* cos ¢,
(sin ¢1)* + (cos B cos ¢;)*

It is interesting to observe that the maximum value of ¢, is ¢/ cos B at ¢, =0
and 7, whereas the minimum value of ¢, is ¢ cos 8 at ¢, = 0 and 37 /2. This os-
cillation relative to the input speed ¢; makes the cardan joint by itself unsuitable
as a constant-velocity joint. In conventional front-engine, rear-wheel-drive automo-

[0}

(cos ¢y Jy —sin¢1l_<1)i| : <

biles, two cardan joints are employed in the drive train in opposition. The reciprocal
arrangement produces a final speed that matches the input.

4.4 ROLLING

When two bodies contact each other, one kinematical condition is that they not pen-
etrate each other. In rolling motion, the contacting surfaces have no corners, so the
surfaces share an identifiable tangential contact plane. Figure 4.9 shows two surfaces
in contact, as viewed edgewise along their plane of contact. The z axis in the figure is

Figure 4.9. Equal-arc-length rule for rolling without slip-
ping.
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defined to be normal to the plane of contact. Because the surface of each body is impen-
etrable, the velocity components normal to the contact plane must match. Let C1 and
C2 be contacting points on each body. Then

ve1 -k =100 - k. (4.4.1)

The special case of rolling without slipping imposes an additional constraint associ-
ated with the condition that the contacting surfaces have no relative motion parallel to
the contact plane. One way of characterizing this condition is to consider arc lengths on
the perimeter of each body. In Fig. 4.9 points Bl and B2 were the points of contact at
an earlier instant. The absence of slipping means that the arc length s; along the perime-
ter of body 1 between points Bl and C1 is the same as the arc length s, along body 2
between points B2 and C2.

We restrict our attention to situations in which the rolling bodies are circular, be-
cause the round shape makes it substantially simpler to perform a kinematical analy-
sis. For example, arc lengths are measured along circles or flat surfaces. Describing the
arc-length constraint imposed by the absence of slippage leads to a description of the
position of points in the rolling bodies. The most common application of this approach
is a wheel rolling along the ground. The path followed by a point on the circumference
of the wheel is a cycloid. The geometrical parameters needed to characterize this path
are depicted in Fig. 4.10.

Y

1) Figure 4.10. Rolling of a wheel on a flat surface.

- X
A"B\R
B

Point A on the cylinder contacted the ground initially, at which position the center
of the wheel was at the origin O of the fixed XY Zreference frame. Point B is the current
contact point, so the horizontal distance x from point O to the center of the wheel equals
the arc length along the ground between the initial and the current contact points. When
there is no slippage, the arc length between points A and B on the wheel is the same as
x, which gives a relation for the angle by which the wheel rotates:

x = Ro. (4.4.2)

Thus the position of point A is described in parametric form as a function of 6 according
to

Fajo=XI+YJ], X=R(0—sinf), Y=—Rcoso, (4.43)

which is the parametric description of a cycloid depicted in Fig. 4.11.
In addition to enabling us to describe the path followed by a point on the perime-
ter of the wheel, the circular shape makes it easy to describe the motion of the wheel’s
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Figure 4.11. Cycloidal path followed by a point on the perimeter of a wheel rolling without slipping over a
flat surface.

center. Such knowledge may be used to obtain expressions for the velocity and acceler-
ation of a point on the wheel’s perimeter. The center point in Fig. 4.10 follows a straight
path, and x is the distance traveled. Thus the speed of the center is v = x = Rf. We use
this expression to eliminate the angular velocity when we take the time derivative of
Eqgs. (4.4.3), which leads to expressions for the velocity and acceleration of an arbitrary
point on the perimeter of a wheel:

g =v(l —cosh)i +vsinbj,

2 ) 2 B (4.4.4)
s = |:i1(1 —cosf) + ﬁsin91| i+ (vsine + §c0s9> j-

An aspect of the velocity and acceleration of particular relevance to further develop-
ments arises at 6 = 0, at which position 74 = 0 and a4 = (v>/R)j. In other words, a point
on the perimeter of a wheel comes to rest when it comes in contact with the ground, and
its acceleration is upward at that instant. This corresponds to the cusp in the cycloidal
path.

One difficulty with a formulation in terms of arc lengths is that it becomes increas-
ingly difficult to use as the complexity of the motion increases. This is particularly true
for spatial motion. We therefore develop an alternative method in which constraint con-
ditions on velocity and acceleration are formulated. Consider the limiting situation in
which the points of contact Bi and Ci in Fig. 4.9 correspond to instants that are very
close. The points of contact on each body then seem to have the same displacement
along the contact plane. Dividing this displacement by the small time interval shows that
the tangential velocity components must be the same. Because the contact condition be-
tween the bodies requires that the normal velocity components are equal, it must be that

The velocities of contacting points of bodies that roll over each other without slip-
ping must match in all directions. The constraint condition is

Uc1 = V¢ for no slipping. (4.4.5)

Acceleration is more complicated because the contacting points on each body come
together and then separate. This means that they have different accelerations in the
normal direction. A common misconception arises from the case of the rolling wheel
in Fig. 4.10, as well as other planar situations. As was noted after Eqgs. (4.4.4), the ac-
celeration of a point on the perimeter of a wheel in planar motion is upward when the
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Figure 4.12. Acceleration of contact points on two spheres that have
no relative slip as they rotate about fixed axes.

point comes in contact with the ground. This is often incorrectly interpreted to mean
that, in all situations of rolling without slipping, the contact points may accelerate rela-
tive to each other only perpendicularly to the contact plane. This cannot be assumed
to be true in spatial motion, as may be recognized by considering a simple case. In
Fig. 4.12, two spheres rotate at constant rates w; and w, about fixed parallel axes, such
that there is no slipping between the contacting points A and B. The plane of contact is
xy. Points on each sphere follow circular paths in the horizontal plane whose radii are
p1 =rid/(r1 +rp) and p, = rod/ (r1 + r2) . The tangent direction of the paths followed
by points A and B at the contact location are (&), = (¢;) 5 = —J, so the no-slip veloc-
ity condition that v4 = v is satisfied if w,/w; = ry/r,. For constant rotation rate, each
point’s acceleration is solely centripetal, being a4 = p,w? and ag = p,o3 in the horizon-
tal directions displayed in the figure. It is apparent that a4 - i # ap - i, so the acceleration
components parallel to the xy plane do not match. This demonstrates that contact points
on rolling bodies can have different accelerations parallel to the contact plane, as well
as perpendicularly to it.

The lack of a direct constraint condition for the acceleration presents a dilemma. We
remedy it by recalling that we have limited our attention to rolling bodies that are round
in some sense. For such bodies the distance from the center to the point of contact on
each rolling body is constant. This constancy leads to a velocity constraint condition that
may be differentiated, thereby yielding to the additional kinematical conditions required
for analyzing acceleration. In effect, in addition to considering kinematical conditions at
the points of contact, we consider the center point to be subject to a kinematical constraint
that must be identified.

To explore this idea, consider the planar situation of a planetary gear rolling over a
sun gear. In Fig. 4.13, w; is the angular speed of the sun gear, v 4 is the speed of the center
of the planetary gear, and w; is the angular speed of that gear. Because the distance from
the center A of the planetary gear to the point of contact C is constant, point A follows a
circular path of radius r; + r. Thus, for the xyz coordinate system depicted in the figure,
the velocity and acceleration of point A are described according to path variables as

2
vy -

(4.4.6)

DA =val, Gg =04l —
r+nr
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(OTEEN
/' /
Planetary
gear X Figure 4.13. Rolling without slipping of a planetary gear over a fixed inner
gear.
Sun
gear
/
In addition, for planar motion we know that @; = —wk and @, = —w,k. Because there

is no slipping at point C, the velocity constraint requires that o¢c = w,r»i be the same for
both gears. Using this to construct the velocity of center A gives

VA = VUc + @ XfA/CZ(a)zl’2+a)1r1)lT. (4.4.7)

The descriptions of v4 in Egs. (4.4.6) and (4.4.7) agree in direction. Matching the speeds
in these two equations leads to

V4 = waly + wiry. (4.4.8)

To obtain a kinematical constraint on acceleration, we recognize that the round shape of
the gears and the fact that the path followed by point A is circular make the preceding
relation valid at any instant. Consequently, we may differentiate it with respect to time.
Doing so yields

VA = ofy + 0111 (4.4.9)

Equations (4.4.8) and (4.4.9) are constraint equations relating the three rate vari-
ables. This enables us to describe the velocity and acceleration of the center point A,
as well as the angular velocity and angular acceleration of the planetary gear, in terms
of the two rate variables we choose to retain. From such knowledge we can determine
the velocity and acceleration of any other point on the planetary gear in terms of those
variables.

The same approach may be extended directly to cases of spatial motion. A relative
simple situation is that of steady precession of a disk that rolls along the ground, as
depicted by the side view in Fig. 4.14. The inclination angle 8 is constant, as is the

Figure 4.14. Steady precession of a rolling disk.
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precession rate . In this case the center point follows a circular path of radius p, so the
velocity and acceleration of the center of the disk are

54 =pU], da=py? (— cos Bi’ + sin ﬁl_c/) , (4.4.10)

where x’y’7’ is a coordinate system that precesses with its origin at the center of the disk.
The angular velocity and acceleration of the disk are given by

@ =ye +¢e, = (Ysinp — )i’ + v cos Bk,
a=¢(@xé&)=—ydcospj

The preceding assumes that ¢ is constant, which is something we will verify. This

(4.4.11)

rate is not yet known, but we have not imposed the condition that there is no slippage at
the contact point C. Because iic = 0, the velocity of the center of the disk is @ x 74c.
Equating this to the expression for ¥ 4 corresponding to circular motion leads to

ba=pyj =dx Rk' = (ysinp—¢) Rj. (4.4.12)

Matching the j’ components yields
¢ = (sm B R) V. (4.4.13)

Because B and p are constant, this expression shows that ¢ is proportional to 1, which
confirms our assumption that ¢ is zero. Substitution of ¢ into Egs. (4.4.11) gives

o= (%f/ + cos /37(') . a=—1y? (sinﬂ - %) cosBj. (4.4.14)

Equations (4.4.10) and (4.4.14) show that knowledge of the Eulerian angles is suffi-
cient to characterize the motion of the center, as well as the angular motion, of a rolling
disk in the steady precession case. The same is true for unsteady motion, in which the
spin rate is not proportional to the precession rate. The analysis is more difficult, but it
still uses the basic concept that the center is a constrained point whose velocity may be
described in a general manner by relating it to the contact point on the disk. Figure 4.15
depicts a disk that is rolling without slipping over a flat surface in a wobbly manner.
We use Eulerian angles to represent the orientation of the disk, with precession angle
Y measured about the upward vertical ¢; and nutation # measured from the vertical to
the center line of the disk. The line of nodes is the y’ axis, which is defined to be the

Figure 4.15. Unsteady rolling without slipping of a disk on a flat
surface.




206 Kinematics of Constrained Rigid Bodies

horizontal diameter of the disk. Body-fixed xyz axes execute a spin ¢ about the z’ axis
relative to x'y’z’.

The importance of the round shape in this case is that, if all other quantities are
held fixed, the motion of the system will not be altered by changing ¢. As a consequence
of this invariance, a description of the velocity of the center of disk in terms of 7'j'k’
components, with the Eulerian angles represented algebraically, will be valid at any in-
stant. Such a representation may be differentiated to analyze acceleration. In terms of

the Eulerian angles the angular velocities Q' of x'y’z’ and @ of xyz are
Q =ve +0] =—ysinbi’ + 6] + 4 cosOk’,
o , o _, (4.4.15)
&o=Q +¢k' =—ysin0i’ +6] + (¢ + ¥ cosb) k.

At point C, where the disk comes in contact with the ground, the no-slip condition
requires that o = 0. Thus the velocity of the center A must be

<

A=®xFac=—R(d+ycosd)j + RIK'. (4.4.16)

This is a general relation for ¥4 in terms of of the Eulerian angles. It therefore may be
differentiated to determine a 4. The relative derivative concept described by Eq. (3.3.15)
is appropriate to this task. Equation (4.4.16) gives the i’ j'k’ components of 74, and the
first of Egs. (4.4.15) is the angular velocity of x'y’z’. We thereby find that

as= 1 [~R(G -+ cos0) '+ RIK] +0 x [~R(6+ ¥ cos) ] + RE]

= R[6% + (¢ + v cos0) v cos0]i' + R[— ¢ — v cosf + 2yidsing] jo  (4417)
+R[6 + (¢ + ¥ cosO) yrsinf] k.
The angular acceleration is found by differentiating the second of Eqgs. (4.2.11):
a=(—ysind —ycosd +0¢)i' + (6 +ysing) j’

. . _ (4.4.18)
+ (Y cos® + ¢ — ysino) k.

Equations (4.4.15)—(4.4.18) describe the motion of the center point and the angular mo-
tion of the rolling disk in terms of the Eulerian angles. The velocity and acceleration of
any other point in the disk may be determined through the kinematical formulas relating
points in a rigid body.

Although Eqs. (4.4.16) and (4.4.17) contain a variety of effects, one is readily iden-
tifiable. The vertical unit vector in Fig. 4.15 is & = —sin6i + cos 0k . Correspondingly,
we find that the components of 14 and a4 perpendicular to the contact plane are

048 = Rocos, -2 = R(6cosd —67sino). (4.4.19)

We now observe from Fig. 4.15 that the elevation of point A above the ground is
h = Rsin6. Successive differentiation of 4 shows that h = o 4 -6 and h=a 4-€. In
other words, the procedure we followed implicitly recognized a fundamental geometric
property stemming from the fact that the distance from the contact point to the center
is always R.

Although the roundness of the disk played a less obvious role in this motion, it was
crucial. If the disk were elliptical, it would have been necessary to describe the velocity
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of the center point as a function of the spin angle and the properties of the ellipse.
Differentiating such a representation would have been substantially more difficult than
the corresponding tasks in the case of a circular disk.

Piston A has constant velocity v to the right. The wheel, which
is connected to the piston by connecting rod A B, rolls without slipping over the
ground. Determine the velocity and acceleration of the center of the wheel for the
position shown in the sketch.

Example 4.6

SOLUTION This example is intended to reinforce our ability to analyze a planar link-
age while simultaneously accounting for the special features of a rolling body. It is
imperative to realize that, even though the input speed v is constant, none of the
other acceleration parameters can be assumed to be zero because the geometrical
configuration changes when connecting pin B moves. Also, we could analyze this
system when pin B is at an arbitrary position, but doing so would merely complicate
the geometrical description of position variables without modifying the basic oper-
ations.

For a global coordinate system, let the x axis be horizontal to the right and the
y axis be vertically upward. The angular velocity of each body is perpendicular to
the plane, with unknown rates, so we have

CDAB = a)ABl_c, d)w = a)wl_c.
We next account for the fact that both points A and C follow straight paths, so that
V4 = Vi, C_ZAI(_), U = vcl, dc = Vci. (1)

Because there is no slippage between the wheel and the stationary ground, relating
the velocity of center C to that of the contact point yields

Ve = vclT = a)wl_c X R]_ = vc = — Rw,,. (2)
This relation is true at any instant, so differentiating it with respect to ¢ gives
Ve = —Rwy,. (3)

From this juncture, the analysis proceeds like that for any other planar linkage.
We describe the velocity of the connecting pin B in terms of the parameters for bar
A B and for the wheel. Thus,

l_)BZI_)A—l—a)ABl_CXfB/A=l_)c—|-(z)w]_€XfB/C. (4)
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The instantaneous positions are
Fsja= 3R+ Rj, Fgc=—Ri. (5)
Substitution of Egs. (1), (2), and (5) into Egs. (4) results in
b5 = vi + wapk x (ﬁRz + Rf) = — Rwyi + wuk x (—Ri). (6)
Matching like components yields two simultaneous equations for w4p and w,, in
terms of v,
Up-i =v— Rosp = —Rw,,
ip-j = v3Rwap = —Ro,,
from which we find that the instantaneous rotation rates are
wap = 0.3660%, Wy = —0.63401%. (7)
The corresponding velocity of center C is
vc = —Rw,i = 0.6340vi. <

Now that the velocity has been fully analyzed, we may proceed to acceleration.
We begin by writing the acceleration analogs to Egs. (4):

dp=as+ wapk x rp/a— w%qng/A ®
= dc + wyk % FB/c — wifg/c.

From Egs. (1) and (3), we know that @4 = 0 and a¢c = — Ra,i. The current rotation

rates are given by Egs. (7), and Egs. (5) give the instantaneous position vectors.

Substitution of these values into the preceding results in
_ . = & - V2 = <
ap = wapk X (\/§Rz + R]) — <0.3660§) («/§Rl + R])
o T o 5 — v 2 _
= —Royi + buk x (—Ri) — (<0.6340)" (—Ri).

The simultaneous equations obtained from matching like components of ap are

s v? v2

ap-i =—Rwsp— 0.2321E = —Ri,, + 0.40195,
- U2
dg-j=~3Riap— 0.1340— = —Rapy.
The angular acceleration rates obtained from these equations are
U2 U2
AR = —0.1830ﬁ, Wy = OASlOﬁ'

The corresponding acceleration of center C is

= U2_
ac = —Royi = —0.4510§i. <
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Rack CD pivots about pin D such that the angle of elevation 6 is
a known function of time. Rack B translates to the right in order to keep gear A in
contact with rack C D. Determine the required velocity v, the corresponding angular
velocity of gear A, and the velocity of the gear’s center. Express all results in terms
of the instantaneous values of 6 and 6.

Example 4.7

SOLUTION This example concerns a situation in which contacting surfaces involved
in rolling have a normal velocity component, so its analysis will generalize our un-
derstanding of rolling in planar motion. Our approach treats the system as a linkage,
in which some of the constrained points are subject to the no-slip condition. The
sketch shows the global xyz coordinate system we shall use, as well as the geometri-
cal parameters we will need to describe position vectors.

Global coordinate system and geometrical parameters for
analyzing the rolling motion of the gear.

The constrained points are the center A, which follows a straight horizontal path,
point B, at which there can be no slipping between gear A and the horizontal rack,
point E, at which there can be no slipping between gear A and rack C D, and point
C, which is stationary. We set v4 = —v al, v =0, and equate the velocities of point
E obtained by considering it to be a point on rack C D, or on gear A. Thus,

EEZQ./_CXFE/CZ—UAZT—FQ)AI_CXF_E/A. (1)

Matching the velocity descriptions of contact point B based on considering it to be
a point in the rack or in the gear gives

Up = —vi = —val + wak X Fp/a. (2)

The length L from the pivot is related to the angle 6 by

L = Rcot <§> , (3)
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so that
0 - - - - -
7r/c = Reot <§> (cos6i +sin6j), Fga= R(—sinbi+cosbj), Fga=—Rj.
Substitution of these position vectors into Egs. (1) and (2) gives

. 6 _ _ _ _ _
g = RO cot <§) (—sinfi +cos6j) = —val + waR(—cosOi —sinbj),

(4)
Vg = —vi = l')AlT + wARf.
Matching like components in each of these equations leads to
Up-i=—v=—v4+wyR,
- - 1 0 .
Vg -1 = — RO cot 3 sinf = —v4 — wy Rcoso,
. . 0 .
Vg - ] = RO cot <§) cosf = —w4 Rsin6.
The solution of these equations is
6 cot o cotf 6 cosf
wp = — — = =,
A 2 (1 —cosb)
a)AR . 1
A% R - 5
oA cos 6 (1 —cos0) (5) <
1 (14 cos®)
=—wsR|—+1)=RO—.
v @A <0059 * ) (1 —cosH)

An interesting aspect of the result for v4 is that it could have been obtained
much more simply by a different approach. A geometrical analysis shows that L
also is the distance from pivot C to the point of contact B. Because this point is
always directly below the center A, we have 74/c = Li + Rj. Differentiating this
vector, with L given by Eq. (3), leads to

ba=li=2eio g (6)
de 2 (sin (6/2))*
Because 2 (sin (6/2))> = 1 — cos 6, this result is the same as the second of Egs. (5).
Clearly the second approach represents a more direct route for analyzing v 4, but it
gives neither the angular velocity of gear A nor the velocity of rack B.

Suppose it had been requested to determine the accelerations of rack B and
center A and the angular acceleration of the gear. As a consequence of the circular
geometry, the derived expressions for w4, v4, and v are valid at any 6. Thus expres-
sions for @ 4, v 4, and ¥ can be obtained by direct differentiation. For example,

cos 6 _921[ cos 6 :|
(1 —cos®) 30 | (1 —cos6)
. cos o " .2 sin @
~ (L —cosd) (1 —cos6)*

Wy = —
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The disk rotates freely about its shaft, as the shaft rotates about
the vertical axis at the constant rate 2. There is no slippage at the point where the
disk contacts the inner wall of the stationary cylindrical tank. Determine the angular
velocity and angular acceleration of the disk, and the acceleration of the point on
the disk that is in contact with the cylinder.

Example 4.8

SOLUTION A key objective of this example of rolling in spatial motion is to clarify
some misconceptions that individuals have as a result of using intuition, rather than
the formal analytical concepts. We begin by treating this system like any other in
which it is necessary to evaluate the angular velocity and angular acceleration. Thus
we draw a sketch of the system as a side view that shows both rotation axes in true
view. Reference frame xyz is fixed to the disk, so only its z axis lies in the plane of
the sketch at all instants, whereas the x;y,7, is attached to the shaft so both the x;
and z; axes are always situated in the vertical plane. We define the Z axis of the fixed
reference frame to coincide with the axis for the 2 rotation. The unknown spin rate
is denoted as ¢, consistent with the notation for Eulerian angles.

Coordinate systems for analyzing the spatial rolling motion of the disk

A general expression for the angular velocity of the disk is
o= Qe+ de,, e =—K, & =k,.
Because XY Zis fixed and x; y, 7, rotates about the vertical axis, we have

Ql =(_), Qz = Qe;.
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It will turn out that there is a constant ratio between Q and ¢, which means that ¢
will be zero because €2 is constant. However, that might not be true in other situa-
tions, so we carry out the analysis of angular acceleration allowing for the possibility
that ¢ # 0. Thus differentiating & leads to

&:dﬁé2+¢5(§22xé2).

The axes of x, y,z; form a convenient global coordinate system, so that &, = sin i, —
cos Bk,. Correspondingly, we find that
@ = Qsin Biz + (¢ — Qcos B) k»,
Qy = Qsin Bi, — Qcos pka,
o= —Q¢3 SiIl,BITZ aln ¢)]_€2

At this juncture, we have not addressed the constraint imposed by the no-
slip condition at the wall, which requires that the instantaneous velocity at the
contact point C be zero. The center point B follows a horizontal circular path
of radius Lsin 8, and it is moving inward relative to the plane of the sketch, so

vp = —LQsin B . The kinematical relation between the velocities of these points
based on both belonging to the disk then requires that

Up=—LQsinBj = x Fpc/ = [QsinBir + (¢ — Qcos B) k2| x (—Riz) .
The only nonzero component of the preceding is
Up- o =—LQsinB =—R(¢— Qcosp),
from which we find that
. L .
¢ = <7Qsm,8+cosﬂ> Q.

Because the analysis has been carried out for an arbitrary instant, this relation is
generally valid. It shows that ¢ is proportional to €2, so we have ¢ = 0, as was antic-
ipated earlier. Substitution of the spin rate into the general expressions for ® and &
yields

— . = L = _ 7] L . 2 . =
® = Qsin B 12—1—1—ka , a=-—9 I_Q(Slnﬁ) +sin B cos B | 2. <
A key aspect of the rotation is the fact that both ¢ and Q are responsible for

the rotation about the z axis. Failure to recognize the contribution of 2 leads to a
common error for novices, who state that as a result of the no-slip condition the
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speed of point Bis ¢ R. As we have seen, the angular velocity component about the
z axis actually is ¢ — cos B, which led to vz = (¢ — Qcos B) R.

Now that we have described the angular motion we can proceed to evaluate the
acceleration of the contact point. We do this by relating ac to the acceleration of a
reference point in the disk, for which the center B is convenient. Because this point
follows a horizontal circular path, we have

ap = (Lsin B) Q%¢, = (Lsin B) Q* (— cos fi — sin k) .

[An alternative to using path variables to describe ap is to recognize that point B is
also a point on the shaft, whose angular velocity is the constant ; and whose point
A is stationary, so that ag = € x (Q1 x Fp/4).] With ap, @, and & established, we
evaluate

ac =ap+a Xrg/p+ @ X (@ x fC/B)
L - _
= Q2 |:I_? (sin B)* + sin B cosﬁ] (= Liz + Rk>).

An interesting interpretation of these results follows from the observation that
Fcra = Riy + Lk,. The expressions we have derived indicate that @ is parallel to
7cya and ac is perpendicular to 7c,4. Both features would have been apparent if
we had slightly altered our analysis based on the observation that point A is always
at distance L along the disk’s centerline. Consequently, we can consider point A
to belong to the disk, which allows us to use point A as the reference point for
describing the motion of the contact point. Because point A is stationary, we could
have written

c=0=& xFcja, dc=axFcja+d x (& X Fcya)-
The first equation establishes the parallelism of @ and 7c;4, and it simplifies the
second equation to dc = @ X Fc/4, from which it follows that dc - 7¢cj4 = 0.

This leads to a visual model for the motion of the disk. Regardless of the angles
of rotation about the Z and z axes, the line connecting points A and C is always
situated at a constant angle from the vertical. The sketch shows that this angle is
B + tan~'(R/L). Thus the locus of this line is a cone. Because it represents the view
of line AC from the perspective of a fixed observer, it is called the space cone. On the
other hand, from the perspective of an observer on the disk, who considers xyz to be
stationary, the angle from the x axis to line AC is always tan~! (L/R) . However, line
AC may be situated arbitrarily relative to the xz plane. Thus the locus of line AC
relative to an observer on xyz is the body cone. The last sketch depicts both cones.
The motion of the disk is equivalent to the body cone rolling without slipping over
the space cone. The instantaneous axis of rotation is the line of contact between the
cones. The acceleration of any point on the body cone that is on this line of contact
is normal to the rotation axis. The concept of space and body cones is particularly
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useful for the treatment of the rotation of bodies in free flight, which is a topic in
Chapter 10.

C

/ Body and space cones for the disk that rolls without slip-
ping over the interior of the cylinder.

tan” {(R/L)

A disk rolls without slipping on the XY plane. At the instant
shown, the horizontal diameter AC B is parallel to the X axis. Also, at this instant,
the horizontal components of the velocity of the center C are known to be 5 m/s in
the X direction and 3 m/s in the Y direction, and the Y component of the velocity of
point B is 6 m/s. Determine the precession, nutation, and spin rates for the Eulerian
angles in Fig. 4.15.

Example 4.9

SOLUTION We begin with a sketch that is like Fig. 4.15, except that the nutation
angle exceeds /2 because the disk is tilted to the right. The y’ axis coincides with
the horizontal diameter A B, which is the line of nodes. Because an increase of 0 is
defined to correspond to rotation about the positive y’ axis, we have j' = —I at the
given instant.
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6 —90°=20°
; v

Eulerian angles and coordinate systems for analyzing arbitrary
rolling motion of a disk

The axes and angle defined here match those in Fig. 4.15, so we may directly employ
the description of @ in Egs. (4.2.12). We set 6 = 110° for the instant of interest,
which yields

= —0.9397yi" + 6] + (¢ — 0.34209)k .

There is no slipping at the contact point D, so ip = 0. When we refer the veloc-
ities of points B and C to this point, we find that

ic = @ x (—0.08{") = —0.08(¢ — 0.3420¢) j" + 0.086k,
vp = x (—0.08]" +0.08;")
— —0.08(¢ — 0.3420y) (' + j') + 0.08 (6 — 0.9397¢/) k.

These velocities must match the given components. The fact that j' = —1I at this
instant substantially expedites the evaluation of dot products, which we find to be

be- I =5 =—0.08(¢ — 0.34209) (7' - T) + 0.086 (1%’ : I) — 0.08(¢p — 0.34204),

vc-J =3

—0.08(¢ — 0.34209) (j' - J) + 0.086 (l‘c’ : J‘) — 0.086 cos 20°,
0p-J =6=—0.08(¢ —0.34209) (i' - J + j' - J) +0.08 (6 —0.9397v) k" - J
= —0.08(¢ — 0.3420¢/) (—sin20°) + 0.08 (6 — 0.9397+/) cos 20°.
The solution of these simultaneous equations is

Y = —18.260, 6 =39.907 ¢ = 56.255 rad/s. <
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HOMEWORK PROBLEMS

EXERCISE 4.1 A gyropendulum consists of a flywheel that rotates
at constant angular speed w; relative to shaft BC. This shaft is
pinned to the vertical shaft, which rotates at constant angular
speed w;. The angle 8 measuring the inclination of shaft BC is an
arbitrary function of time. Use the Eulerian angle formulas for
angular velocity and angular acceleration to derive expressions
for the velocity and acceleration of point D, which coincides with
the horizontal diameter at the instant of interest.

Exercise 4.1

EXERCISE 4.2 Consider a body whose orientation is described by Eulerian angles. De-
rive the transformation from space-fixed to body-fixed axes for a sequence beginning
with precession ¢ = 20°, followed by nutation § = —60°, then spin ¢ = 140°. Is it possi-
ble to obtain the same transformation with a different sequence beginning with nutation
0’, followed by spin ¢’, then precession v'? If so, determine the values of 8', ¢, and ¥'.

EXERCISE 4.3 A rigid disk is welded to the end of a
flexible shaft that rotates about bearing A. The bend-
ing deformation of the shaft is such that its center-
line forms a curve in a plane that always contains the
bearing’s axis. The rotation of this plane about the
bearing’s axis is the precession . The tangent to this
curve at end B is the axis of symmetry of the disk, and

Exercise 4.3
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the angle between the bearing’s axis and the disk’s axis is the nutation angle 6. Torsional
deformation of the shaft produces a spin ¢ about the disk’s axis. Let xyz be a set of axes
attached to the disk, and let x’y’z" be a set of axes that undergo only the precessional
motion. The 7z’ axis is coincident with the bearing axis, and the curved centerline of the
shaft is always situated in the x’z’ plane. It is observed that at some instant 6 = 10°,
¢ = —5°, and the angular velocity of the disk is w = 17" — 20" + 48k’ rad/s. Determine
the corresponding precession, nutation, and spin rates. Then express the angular velocity
in terms of components relative to xyz.

EXERCISE 4.4 Measurements of the rotational motion of an orbiting satellite indi-
cate that, at a certain instant, the angular velocity with respect to body-fixed coor-
dinate system xyz is @ = 19.24i 4+ 6.68] + 303.21k rad/s. The laws for free rotation
of a body, developed in Chapter 10, indicate that k is the spin axis and the preces-
sion axis is K = —0.3830f — 0.6634] + 0.6428k. Determine v/, 6, 6, ¢, and ¢ at this
instant.

EXERCISE 4.5 Measurements of the rotational motion of an orbiting satellite indi-
cate that, at a certain instant, the angular velocity with respect to body-fixed coordi-
nate system xyz is @ = —34.64/ + 10j — 820k rad/s and the angular acceleration is @ =
—7800i — 28713 — 346k rad/s>. The laws for free rotation of a body, developed in Chap-
ter 10, indicate that k is the spin axis and the precession axis is K = —0.8660i + 0.50k.
Determine v, ¥, 6, 6, 4, ¢, ¢, and ¢ at this instant.

EXERCISE 4.6 An alternative set of Eulerian angles is often employed to describe the
rotation of aircraft and spacecraft. Let xyz be a reference frame that is attached to the
vehicle, with the x axis aligned with the longitudinal axis of the vehicle and z aligned in
a meaningful orthogonal direction, such as the direction of the aerodynamic lift for an
aircraft. The fixed XY Z reference frame is defined such that its axes coincide with the
orientation of the respective axes of xyz when the vehicle is in its nominal operational
condition. The yaw angle i takes place about the Z axis, followed by the pitch angle 6
about the new y axis, followed by the roll angle ¢ about the final x axis. (a) Derive the
rotation transformation that converts I.J K components to i jk components. (b) Describe
the angular velocity and angular acceleration of the airplane in terms of body-fixed i jk
components.

EXERCISE 4.7 Let the distance between points B and C in Fig. 4.6 be A, and let the y;
axis coincide with the line connecting these points. Let ¢ denote the angle that the collar
rotates relative to bar 1. Describe the constraint equations relating the displacements,
velocities, and accelerations of points B and C.

EXERCISE 4.8 Pin B slides through groove CD in a plate that translates upward at
speed v. The groove forms the parabolic curve y = 300 — x?>/400, where x and y have
units of millimeters. In the position shown, bar A B is rotating clockwise at 40 rad/s,
and that rate is decreasing at 160 rad/s’>. Determine the corresponding values of v
and v.
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| D 400 mm Exercise 4.8

EXERCISE 4.9 A collar slides in the horizontal
plane over a curved rod defined in polar coor-
dinates by R = 0.1sin (26) m. The motion is ac-
tuated by the translating arm, which contains a
groove that pushes a pin in the collar. The speed
of the arm is constant at 20 m/s. Determine the
velocity and acceleration of the collar in the po-
sition where 6 = 1 rad.

Exercise 4.9
EXERCISE 4.10 Bar AB rotates at the constant rate w,
which causes collar B to slide along curved bar CD. For
the instant depicted in the diagram, determine the an-
gular velocity and angular acceleration of bar CD and
velocity and acceleration of the collar.

1.75R—=]

EXERCISE 4.11 The cubic box slides along the wall and
floor. The motion of the box is fully specified if the angle
0 is determined as a function of time. Derive expressions
for the velocity and acceleration of corners A and B and
of the central point G in terms of 6, 6, and 4.

Exercise 4.11
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EXERCISE 4.12 Collar C slides over bar AB.

When the system is in the position shown, slider 180 mm
A is moving downward at 600 mm/s and its _C)I

speed is decreasing at 15 m/s>. Determine the D 7 . *
corresponding angular velocity and angular ac- B g ;3687 12w0 mm

celeration of each bar.

5
120 mm

Exercise 4.12

EXERCISE 4.13 The rotation rate 6 of crank AB is con-
stant. Determine the angular velocity and angular accel-
eration of bar BC and the velocity and acceleration of
end C when 6 = 60° and when 6 = 120.

EXERCISE 4.14 The slotted disk rotates at a constant
angular speed w,4. Determine the angular velocity
and angular acceleration of connecting rod BC in
the illustrated position.

Exercise 4.14

EXERCISE 4.15 Holes bored through block E maintain
the angle between bars AB and CD at 45°. At the in-
stant when bar CD is in the upright position shown,
bar AB is rotating counterclockwise at 10 rad/s and
that rate is decreasing at 50 rad/s?. For this instant de-
termine the velocity and acceleration of the point on
block E at which the centerlines of the bars intersect.

EXERCISE 4.16 Bar A B rotates clockwise at the con-
stant angular speed w;. Determine the angular veloc-
ity and angular acceleration of the other bars when the
linkage is at the position shown in the sketch.

Exercise 4.16
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EXERCISE 4.17 Starting from s4 = 0 at t = 0, collar A is
given a constant upward acceleration v 4. The rotation rate
2 about the vertical axis is constant. Derive expressions for
the angular velocity and acceleration of connecting rod A B
as functions of the elapsed time ¢. Also derive expressions
for the time dependence of the velocity and acceleration of
collar B. Describe all results in terms of components rela-
tive to a coordinate system that rotates in unison with the
T-bar.

EXERCISE 4.18 Collar A is pushed downward at speed v, while
the entire system precesses about the vertical axis at constant
angular speed 2. Determine the velocity of collar B and of the

midpoint of bar A B at the instant depicted in the sketch.

EXERCISE 4.19 Collar A is pushed downward at speed v, while
the entire system precesses about the vertical axis at angular
speed Q. Determine the velocity and acceleration of collar B and
of the midpoint of bar A B at the instant depicted in the sketch.

EXERCISE 4.20 Bar BC is pinned to the T-bar, which rotates
at constant rate Q about the vertical axis. The bottom of this
bar contacts the platform, which translates upward at con-
stant speed v. Determine the angular velocity and angular
acceleration of bar BC as functions of the angle of elevation
6 and the value of Q2 and &.

L,
/ 1
QC’H

S4

wu

Exercise 4.17

Exercises 4.18 and 4.19

EXERCISE 4.21 Bead C slides relative to the curved guide bar AB,
which rotates about the vertical axis at the constant rate Q2. The move-
ment of the slider is actuated by arm D E, which pushes the collar out-
ward from the vertical axis at a constant rate v. Determine the velocity

and acceleration of the slider as a function of 6.

=S

Exe

If |t

_ B L 4
7, |>Q 3
Exercise 4.20

rcise 4.21
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EXERCISE 4.22 The spin rate ¥ of sphere C
is constant, as is the precession rate ¢ and the
speed v of collar A. Derive expressions for
the angular velocity and angular acceleration of
the sphere as functions of 6, v, v/, and ¢.

Exercise 4.22

EXERCISE 4.23 Crankshaft ABC rotates
at the constant rate of 900 rev/min. The
connecting rod CD is pinned to cap C,
which is free to rotate about axis BC. The
connection at collar D is a ball-and-socket
joint. For the instant depicted in the sketch,
determine the velocity and acceleration of

900 rev/min
4m

collar D, and the corresponding angular ve-

3m\;|<\1m\)|3

Exercise 4.23

locity and angular acceleration of the con-
necting rod.

EXERCISE 4.24 Collar A is connected to bar AB by
a ball-and-socket joint, whereas the connection be-
tween collar B and bar AB is a fork-and-clevis. The
speed of collar B is v =30 m/s and v = —500 m/s?
at the position shown. (a) Determine the velocity of
slider A and the value of 8 at this position, where g is
the angle between bar A B and the horizontal guide.
(b) Determine the acceleration of slider A and the
value of f at this position.

Exercise 4.24

EXERCISE 4.25 The axes of bearings A and
D lie in the same horizontal plane, and in-
tersect orthogonally. Connections B and C
are ball-and-socket joints, and bars A B and
CD are welded to collars A and D, respec-
tively. Bar A B rotates at the constant rate of
200 rev/min. Determine the velocity and ac-
celeration of joint C at the instant shown. 100 mm 80 mm

Exercise 4.25
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EXERCISE 4.26 Bar CD is connected to collar D by
a clevis joint, and all other connections are ball-and-
socket joints. Collar A moves toward point C at con-
stant speed v. Determine the angular velocity of both
bars at the instant depicted in the sketch in the case
in which bar A B has a circular cross section. Then re-
peat the analysis for the case in which the cross sec-
tion of bar A B is square and there is a close sliding
fit between collar D and this bar.

EXERCISE 4.27 Bar DE is attached to collar £ by a
ball-and-socket joint, and its connection to collar D is
a fork-and-clevis joint. The cross section of crankshaft
ABC is circular, so collar D may rotate about axis BC
relative to the crankshaft. The crankshaft rotates at
constant angular speed 2, so specification of the po-
sition of all parts of the linkage at a specified instant
requires knowledge of the distance s locating collar
D. Derive expressions for the angular velocity of bar
DE and the speed of collar E in terms of s and § for
the instant at which Q¢ = /3. The horizontal distance
H=03L.

EXERCISE 4.28 A cylinder of radius r rolls without slipping
inside a semicylindrical cavity. Point P is collinear with the
vertical centerline when the vertical angle 6 locating the
cylinder’s center C is zero. Derive expressions for the ve-
locity and acceleration of point P in terms of 6, 6, and 6.

EXERCISE 4.29 A disk rolls without slipping over the exterior
of alarge drum. The rotation rate Q2 of the drum is constant. In
the position shown the center of the disk has a speed v, which
is increasing at the rate . Derive expressions for the velocity
and acceleration of point P, which is situated at an arbitrary
angle S relative to the line of centers.

3
200 mm

Exercise 4.26

Exercise 4.27

Exercise 4.28

Exercise 4.29
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EXERCISE 4.30 The angular velocities of the inner and
outer gears are counterclockwise at the constant values w;
and w», respectively. Determine the velocity and accelera-
tion of point C on the perimeter of the planetary gear as a
function of the angle 6 locating the instantaneous position
of point C relative to the radial line.

Exercise 4.30
EXERCISE 4.31 The collar has a constant speed v to the
right, and the rack is stationary. Determine the angular
velocity and angular acceleration of the gear at the instant
depicted in the sketch.

EXERCISE 4.32 The wheel rolls without slipping over the
ground as the collar slides at constant speed u over the
curved guide bar. Determine the velocity and accelera-
tion of the center of the wheel in terms of u when the
linkage is in the position shown.

EXERCISE 4.33 Movement of the actuating rod A B at
constant speed v pushes the connecting pin through

the groove in the wheel, thereby causing the wheel to
roll over the ground. Determine the angular velocity

and angular acceleration of the gear as a function of
6 if there is no slippage in the rolling motion.

EXERCISE 4.34 Rack CD, which meshes with gear A, is ac-
tuated by moving collar D upward at the constant speed vp.
Rack B, over which gear A rolls, is stationary. Derive expres-
sions for the velocity and acceleration of the center of gear A
as functions of the current values of s and 6.

Exercise 4.34
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EXERCISE 4.35 The body cone rolls without slipping over Body cone
the stationary space cone. It is observed that the axis of
the body cone requires 200 ms to complete one revolution.
Determine the angular velocity and angular acceleration of
the body cone.

Space cone

Exercise 4.35

i‘\E

Exercise 4.36

EXERCISE 4.36 A sphere of radius R rolls without slip- R
ping in the interior of a cone such that R also is the |
distance from the axis of the cone to the center of the
sphere. The speed of the center of the sphere is the con-
stant value v. The rotation of the sphere is observed to
consist of a precession about a vertical axis and a spin
about an axis parallel to the cone generator. Derive ex-
pressions for the angular velocity and angular accelera-
tion of the sphere in terms of v, R, and the apex angle 6.

EXERCISE 4.37 The sphere rolls without slipping over the interior wall
of a hollow cylinder that rotates about its axis at €2;. The angular speed
of the vertical shaft driving the sphere is €2;. Both rotation rates are
constant. Determine the angular velocity and angular acceleration of
the sphere.

||

EXERCISE 4.38 The sketch shows the cross section
of a cone whose axis is vertical and whose vertex
angle is 28. This cone rotates about its axis at the
constant angular speed 2. The sphere spins freely
at angular speed ¢ about the shaft that intersects
its center. This shaft precesses about the vertical
axis at the variable angular speed v/, so i # 0. (a)
Determine the ratio ¢/ Q for which there is no slip- Exercise 4.38
page between the sphere and the cone. (b) Deter-

mine the angular velocity and angular acceleration

of the sphere when there is no slippage.
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EXERCISE 4.39 Gear A spins relative to its shaft,
which rotates at variable rate €21 about the hor-
izontal axis. Gear B rotates at the variable rate
;. Determine the angular velocity and angular
acceleration of gear A.

Exercise 4.39

EXERCISE 4.40 The sketch shows a reduction gear assembly that converts an input an-
gular speed €21 to an output speed 2,. Gear A is welded to the stationary housing, gears
B and C are welded to their respective shafts, and spider arm D rotates about the hori-
zontal axis at a different angular speed. Gears E and F are a single planetary body that
spins about its axis of symmetry relative to the angled arm of the spider. (a) Derive an
expression for the gear ratio €2,/ in terms of the length dimensions and the angle 8.
(b) Derive expressions for the angular velocity and angular acceleration of planetary
gear EF. Hint: The intersection O of the axis of the planetary gear and of the drive shaft
is stationary.

L~ A

A
\/

<

—

iﬂ

C

Exercise 4.40

EXERCISE 4.41 The cylindrical drum rotates about

the vertical axis at the constant rate €, and the con- R
.
ical floor of the tank rotates at the constant rate 2. B
In the situation of interest the radial line to the cen- o
ter of the sphere also rotates at 2;. There is no slip- %F) 1
page between either the interior wall of the tank or : -
the spinning conical floor in the rolling motion. De-

. . . Q)
termine the angular velocity and acceleration of the
sphere. U

Exercise 4.41
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EXERCISE 4.42 The diagram shows the cross sec-
tion of a differential gear of radius R that spins
relative to the bent shaft at angular speed w;.
The rotation rate of this shaft about the vertical
axis is wp. The cylindrical drum rotates at con-
stant angular speed 2; about the vertical axis,
and the base gear rates at constant angular speed
Q,. The differential gear rotates without slip-
ping relative to both the base and the cylinder.
(a) Derive expressions for w; and w, correspond-
ing to specified values of Q; and ;. (b) Deter-
mine the angular velocity and angular accelera-
tion of the differential gear.

EXERCISE 4.43 The system in the sketch is analo-
gous to a roulette wheel, in that a sphere of radius
Rrolls without slipping over the interior of a hemi-
spherical shell of radius b that rotates about the
vertical axis at constant rate Q2. The polar and az-
imuth angles locating the center of the sphere are ¢
and 6, defined with respect to the fixed XY Z coor-
dinate system. Both angles are arbitrary functions
of time. Derive expressions for the angular veloc-
ity and angular acceleration of the sphere in terms
of ¢, 6, and their derivatives.

EXERCISE 4.44 The disk rolls without slipping over
the horizontal XY plane. At the instant when g =
36.87°, the X and Y components of the velocity of
point B on the horizontal diameter of the disk are
8 m/s and —4 m/s, respectively, and the correspond-
ing velocity components of center A at this instant
are 4 m/s and 2 m/s. Determine the precession angle
¥ between the horizontal diameter BAC and the X
axis, and also evaluate the precession, nutation, and
spin rates.

differential
gear

|I>a,

LJ

Exercise 4.42

Exercise 4.43

Exercises 4.44 and 4.45

EXERCISE 4.45 The disk is rolling without slipping over the horizontal XY plane. At the
instant when the angle of inclination is g = 30°, the disk is observed to be spinning at

¢ = Srad/s. At this instant, the speed of points B and C on its horizontal diameter are 1
and 2 m/s, respectively. Determine the corresponding precession and nutation rates.
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EXERCISE 4.46 Shaft BC is pinned to the T-bar, which

rotates at the constant angular speed w;. Wheel C ro- B 2R:| —
tates freely relative to shaft BC. The platform over % 2 A
which wheel C rolls is raised at the constant speed u, R M( 7
causing angle S to decrease. The wheel does not slip C f
relative to the platform in the direction transverse to ; ::I B
the diagram, but slipping in the radial direction is ob- —

served to occur. Derive expressions for the angular ve- Exercise 4.46

locity and the angular acceleration of the wheel.



CHAPTER 5

Inertial Effects for a Rigid Body

Chasle’s theorem states that the general motion of a rigid body can be represented as a
superposition of a translation following any point in a body and a pure rotation about
that point. The kinematics tools we have developed provide the capability to describe
these motions in terms of a few parameters. In this chapter we begin to characterize the
relationship between forces acting on a rigid body and kinematical parameters for that
body. The resultant of a set of forces may be regarded intuitively as the net tendency of
the force system to push a body, so one should expect it to be related to the translational
effect. Similarly, it is reasonable to expect that the resultant moment of a set of forces
represents the rotational influence. We shall confirm and quantify these expectations.

From a philosophical perspective, the shift from statics, in which one equilibrates
forces, to kinetics, in which the forces must match an inertial effect, is rather drastic.
For a particle, Newton’s Second and Third Laws are readily understood in this regard.
However, the corresponding shift for the rotational effect will lead to effects associated
with the angular momentum of a rigid body that sometimes are counterintuitive. This is
especially true for those who try to examine spatial motion from a planar motion view-
point. This chapter focuses on the determination and evaluation of angular momentum.
In the course of the development we derive basic laws governing the relationship be-
tween a body’s motion and the forces that act on the body. The development will be
the extension to rigid bodies of Newton’s Laws for particles, following concepts asso-
ciated with Euler. Hence we refer to the resulting kinetics principles as the Newton—
Euler equations of motion. The application of those principles will be addressed in
Chapter 6.

5.1 LINEAR AND ANGULAR MOMENTUM

We begin by considering an arbitrary system of particles, which can represent anything
from a region within a fluid to a deformable solid body. After we derive some general
principles, we will specialize them to the particular case of a rigid body. Because we are
cognizant of the type of information required by Chasle’s theorem, our focus in all cases
will be on using some point A in the system as a reference for the motion. Identification
of criteria for selecting this point is one of the issues to be addressed. The fundamental
axioms for the development are Newton’s Second Law, which governs the motion of
each particle in the system, and the Third Law, which tells us how each particle interacts
with its surroundings.

228
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#jO/Fj
\ Fk
Jik Figure 5.1. External and internal f ti two-particle syst
] f\ igure Xternal and Internal Torces acting on a two-particle system.

5.1.1 System of Particles

Figure 5.1 shows a system of two particles, numbered j and k. Two types of forces are
described there. Both F ; and F are external forces, that is, the forces exerted on the
respective particles by anything other than those particles that constitute the system of
interest. Both f; x and fi,; are the interaction forces, where the first subscript denotes the
particle to which the force is applied and the second subscript indicates which particle
exerted the force. According to Newton’s Third Law, a pair of interaction forces such as
these are equal in magnitude and oppositely directed:

fe.i=— Fix- (5.1.1)

Furthermore, the Third Law states that the interaction forces are collinear, meaning
that they have the same line of action. The significance of this feature becomes apparent
when we consider the moment exerted by each interaction force about origin A, that
is,7j/a x fjxandFr 4 x fi, j. Because the forces act along a common line, the perpen-
dicular distance from point A to their line of action is identical. In combination with
Eq. (5.1.1), we conclude that the moment these forces exert about the origin are equal
in magnitude, but directed oppositely:

Frja X fej=—TFjja % fik. (5.12)

Now let us consider Newton’s Second Law for each particle. The resultant force
acting on each is the sum of the external and internal contributions, so

Fi+ fix=mjaj, Fr+ foj=may. (5.13)

Our interest here is the role of the force system on the ensemble of particles. To find the
resultant of all forces, which we denote as ¥ F, we add the preceding equations. In view
of Eq. (5.1.1), the internal forces cancel in this sum, so we have

ZF:F,-—i—szmjd,'—i—mkdk. (5.1.4)

A similar result arises when we consider the total moment ¥ M4 exerted by all forces
about origin A. We use the position vector from the origin to each particle to evaluate
this moment, and use Egs. (5.1.3) to characterize the forces. This leads to

My =Tja X (F/'—‘r f_‘j,k)-i-fk/A X (Fk+ ]Fk,/’) =TjaXmjdj+Tra X Mdg.
(5.1.5)



230 Inertial Effects for a Rigid Body

Equation (5.1.2) simplifies this to
EMA =Tja X F]' +Frja X Fk =TjaXmjaj+Tra X Mdg. (5.1.6)

This shows that only the external forces contribute to the resultant force and to the
resultant moment about point A.

If we were to add a third particle to the system addressed thus far, there would
be additional internal forces exerted between this particle and each of particles in the
original system. Each additional pair of interaction forces would give no net contribution
to the resultant force and the moment about point A. Thus the extension of the system
from two particles to an arbitrary collection of particles does not alter the fact that only
the external forces contribute to the resultant force and to the resultant moment about point
A. To quantify this fact we let N denote the number of particles contained in the system
and number the particles consecutively from j =1 to j = N. The forms analogous to
Eqgs. (5.1.4) and (5.1.6) are

m;aj,

Mz N Mz

N
Z
= (5.1.7)

N
=Z;",/A><F (Fjja x mjaj).
j=1
We now turn our attention to the inertial effects described by the right-hand side
of the preceding equations. For the resultant force we replace the acceleration with the
second derivative of position. Because the mass of each particle is constant, we may form
the sum before differentiating, specifically,

N N 2 (N
ZF = Z ]dtz rijo = e Zmﬁj/o . (5.1.8)
=1 =1 et

The term in parentheses is the first moment of mass. To understand it consider a set
of particles near the surface of the Earth, with gravity acting in the negative Z direction,
as depicted in Fig. 5.2. The gravitational attraction force on all particles may be replaced
with a single resultant F' acting parallel to the individual forces. The magnitude of this
result is the sum of the individual forces,

-
Il
—_

N
F= Mgystem&, Msystem = ij~ (519)
j=1
The point through which the resultant force acts is the center of mass, which is denoted
as point G. To locate the X and Y coordinates of this point we equate the total moment
of the gravitational forces acting on all particles to the moment of the resultant. After
cancellation of a common g factor, the moments about the Y and X axes reduce to

N N
MysemXe = Y m; X, Mygem¥o = Y _m;Yj. (5.1.10)
j=1 j=1



5.1 Linear and Angular Momentum 231

mg

Figure 5.2. Resultant of a the gravity forces acting on a set of particles close to the Earth.

These are first moments of mass with respect to the X and Y coordinates. A similar form
featuring Z coordinates would result if gravity were to act parallel to the X or Y axes. In
view of the fact that 75,0 = XoI + YoJ + ZgK, the vector form of the first moment of
mass is

N N
Msystem? G/O = ij ()(]I_ + Y]]_ + Z}'K) = ijf_,'/o. (5.1.11)
j=1 j=1

Substitution of this relation into Eq. (5.1.8) leads to

_ g2
F = e (msyslem?G/O) . (5.1.12)

The system’s mass is constant, so the preceding reduces to

2 F = mysemic. (5.1.13)

From this expression, we recognize that, although he posed the Second Law for a
particle, Newton actually captured the behavior of the center of mass of any system of
particles. If the particles move independently, it is one of many equations of motion
for the various particles. The primary value of this relation lies in its application to the
collection of particles forming a rigid body, in which case it addresses the portion of
Chasle’s theorem that requires description of the motion of one point in a body.

There are several formulations of the kinetic moment equation; they differ by the
reference point that is selected. We now specify that the reference point for the kine-
matical description of velocity and acceleration should be the same as the point A about
which we evaluate the moment sum. At this juncture, the collection of particles can
move without kinematical constraints, so there is no overall rotational motion to con-
sider. Thus we define the reference point A to be the origin of a translating reference
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frame xyz. For shorthand we designate the relative velocity and acceleration of point P
with respect to the moving origin A as vp,4 and ap, 4, respectively, where
Vpja = (Vp/a),,, =Up—Da,
a (5.1.14)
apja = (Apsa),,, =ap—aa.
The second of Egs. (5.1.7) describes the moment exerted by all forces acting on the
system. In that relation we use the preceding to relate the acceleration of each particle
to the acceleration of point A, which leads to

N
EMA=Z?j/Axmj(EzA +adja). (5.1.15)
j=1
The sum may be broken into two parts. The first contains a 4 as a common factor. When
it is taken out of the summation, what remains is the first moment of mass relative to
origin A. In view of Eq. (5.1.11), the expression becomes

N
EMA:msyslem?G/A X{'_lA_’_Z[?]'/A ijc_lj/A]. (5.1.16)
j=1
To convert the remaining sum to a more useful form, we make the time derivative
entailed in acceleration explicit, and then invoke the rule for differentiating a cross
product:
u d
XMy = Msystem? G/A X A4 + ;rj/A X ij (Uj/A)
(5.1.17)
N
_ _ _ d _ _ d _ _
= Misystem? G/A X 04 + 2; [E (Fjja xmjvja) — o (Fjra) x mjvj/A] .
]:
By definition, d (7j/4) /dt = v, 4, so the last term vanishes. Taking the remaining time
derivative outside the sum then gives

_ d _
XMy = Mgystem? G/ A X A + EHA’ (5118)

where H) is the angular momentum of the system about point A:

N
HA=Z(?j/Axm]-t7]-/A). (5119)
j=1

Note that m;v;, 4 is the (linear) momentum of particle i relative to the translating xyz
reference frame whose origin is point A. Hence a more descriptive name for Hy is mo-
ment of momentum relative to point A. In the special case where point A is stationary,
these equations reduce to the sum of the angular impulse-momentum equations for each
particle relative to an inertial reference point, as described by Egs. (1.2.25).

Equations (5.1.13) and (5.1.18) can be considered to govern respectively the average
translation and rotation of any system of particles. The details of the interaction forces
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affect how each particle in the system moves relative to these averages. For example, if
our concern were with the effects of deformation of an elastic body, the internal forces
would be stress resultants, and we would need to characterize how those quantities are
related to the positions of the various particles. In the case of a rigid body, the kinemat-
ical condition of rigidity, which led to Chasle’s theorem, is such that knowledge of the
“average” motions is all that is required.

5.1.2 Rigid Body—Basic Equations

In the absence of deformation, the center of mass has a stationary position relative to a
body. Thus, application of the extended version of Newton’s Second Law, Eq. (5.1.13),
governs the acceleration of a point in that body. Integrating this equation would enable
us to determine the velocity and position of a point in the body, which is the first part of
the information required according to Chasle’s theorem.

Up to now, point A could be any that we wish. Now we require that point A have
a fixed position relative to the body. The difference between the velocities of any two
points in a rigid body is solely due to the body’s angular velocity @, so this restriction
enables us to assert that

Ijj/AI&)X)_’]'/A. (5120)

Correspondingly, the angular momentum becomes

N
Hy=3 mj[Fjax(@x7j4)]. (5.1.21)
j=1

It is important to observe at this juncture that the mass and position of each particle
relative to a body-fixed reference frame are constant for a specified rigid body. It fol-
lows that, after the preceding terms are summed over all particles, the resulting H, will
depend solely on the angular velocity @ of the body. Because Eq. (5.1.18) features the
rate of change of Hy, this equation will lead to an equation governing the rotation of the
body. From this perspective, the fact that Eq. (5.1.18) also contains a4 is a complication,
because the analysis of rotational motion requires simultaneous consideration of point
motion. We avoid this complication in our initial studies by foregoing the freedom we
have in a statics study to select a point for summing moments in favor of a restricted
choice having the virtue of simplifying the kinetics terms. We refer to such points as “al-
lowable” for forming the moment equation, which indicates that the simplified version
of the moment equation is applicable. At the closure of the next chapter, we will reassert
our freedom to sum moments about any point.

There are three possibilities for selecting point A such that the term 7,4 x a4 cou-
pling the translational and rotational effects in Eq. (5.1.18) will vanish:

1. Select point A to be the center of mass G, so that Fg 4 = 0. The center of mass is
always an allowable point. This is the point we shall use whenever the body of interest
executes a general motion or a translation.
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2. Select point A such that a4 = 0. By definition, a body in pure rotation has some point
that is stationary. Thus the pivot point for a pure rotation is always an allowable point.

3. Select point A to be the point that is accelerating directly toward or away from the
center of mass, in which case a4 is parallel to 7,4, so that /4 x a4 = 0. This is a
highly specialized case, so we will not employ such a point to formulate the equations
governing rotation.

Formulation of the force equation of motion requires that we identify the center
of mass. Thus, selecting the center of mass as the focal point for the moment equation
would lead to a general procedure. However, there is an important reason why the sec-
ond selection is preferable for pure rotation. Preventing the pivot point from moving re-
quires that reaction forces be exerted at that point. For example, a ball-and-socket joint
exerts an arbitrary reaction force having three components. By definition, reactions are
not known in advance, so summing moments about the pivot avoids the occurrence of
these unknowns in the rotational equations of motion.

In contrast to the first two possibilities, there seldom is any point in a body that
is accelerating directly toward or away from the center of mass. Even if there were,
locating it would be difficult. One exception occurs in planar motion, when a disk rolls
without slipping over a stationary surface. The contact point’s acceleration in that case
is normal to the contact plane, and therefore directed toward the center of the disk.
Thus the contact point would fit the allowability specification, but only if the wheel were
balanced, so that the center of mass and geometric centroid coincide. Furthermore, if
we wish to study the effect of slippage, the contact point would no longer be acceptable.

Translational motion is interesting because it is sometimes mistaken for a static sit-
uation. Because @ = 0 for pure translation, Eq. (5.1.21) indicates that A4 = 0. Thus the
moment equation for a translating body reduces to ¥ M, = Mystem? G/A X d 4. If point
A is not selected to be the center of mass, the resultant moment vanishes only if a4 = 0.
However, all points in a translating body experience the same acceleration. Hence the
condition @4 = 0 here corresponds to rectilinear translation at a constant speed. A body
executing such a motion represents an inertial reference frame, so the laws of statics ap-
ply. If points in a translating body do not move along a straight path, or their speed is not
constant, then the center of mass is the only allowable point for formulating the simplified
moment equation of motion.

When point A is allowable, the moment equation reduces to

_ d -

Sy = 2 A, 51.22
AT A ( )

This form is analogous to the equation for the motion of the center of mass. To recognize
this we differentiate the first moment of mass, Eq. (5.1.11), which shows that the total
linear momentum of any system is

N N

_ d d

P= E m;v; = E E (mjr"]-/o) = E (msystemf'c/o) = Mystem VG- (5.1.23)
j=1 j=1
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Thus Eq. (5.1.13) is equivalent to

SF=—P. (5.1.24)

S

In other words, the linear or angular effect of the external force system equals the rate
of change of the corresponding type of momentum for the body. Thus, the equations of
motion described by this chapter are said to be momentum based. An alternative energy-
based procedure for formulating equations of motion will be addressed in Chapter 7.

5.1.3 Kinetic Energy

In addition to being the fundamental kinetic quantity for our studies in the later chap-
ters, kinetic energy appears in work—energy principles that are sometimes a useful ad-
junct to the momentum-based equations of motion. Also, kinetic energy will play a
prominent role for one aspect of the evaluation of inertia properties of a rigid body. We
begin by describing the kinetic energy of a system of independently moving particles.

Because kinetic energy is a scalar, we obtain the total energy 7T of the system by
adding the values for each particle:

N
r=3%
j=1

Let B denote an arbitrary reference point to which the velocity of all particles is referred,
so that ; = 0p + ¥;,p. The corresponding form for the system’s kinetic energy is

m]‘ﬁj~17j. (5125)

N =

N
1 o o
T=3) 5M; (05 +Vj/8) - (U5 + Ujy5)
j=1

N
j=1

We factor out of each sum terms that are independent of the particle number, which
yields

(5.1.26)

m; (Vg - Vp+20p-Vj/p+ /B Vj/B)-

N =

N N
1 d 1
T= EmsystemDB -Ug+ Up- ;l E (mjl_’j/B) + E ]_El mjﬁj/B . l_)j/B. (5127)

We recognize the first sum as the time derivative of the first moment of mass relative to
point B. In view of Eq. (5.1.11), we find that

1 o o
T= EmsystemvB * UB + MsystemVB * VG/B +

N =

N
ijl_)j/B'ﬁj/B- (5128)
j=1

One viewpoint of this expression is that the kinetic energy of any system of particles
is associated with three effects: translation of all particles following the reference point
(the first term above), motion of the particles relative to the reference point (the third
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term), and a coupling of the motions of the reference point and of the center of mass
relative to the reference point.

Our interest is the kinetic energy of a rigid body. We restrict point B to be stationary
relative to the body, so that the relative velocity of any material pointis v;,5 = & X 7 j/p.
The kinetic energy correspondingly becomes

N
1 1
T = EmﬁB -vpg+mig- (@ % 7G/B) + 5 ij (v x ’_’j/B) (@ x fj/B)- (5.1.29)
j=1
The sum may be written in a more recognizable form by use of an identity for the scalar
triple product:

(@axb)-c=a-(bxc). (5.1.30)
We employ this identity witha = @, b =F /5, and ¢ = & x 7,5, which yields
N
1 o 1 R L
T= SMis - Up +mip- (& X Fg/B) + 5 Zm,a» [Fi/p x (@ x7jB)]. (5.1.31)
j=1
Because @ is an overall property of the motion, it may be factored out of the sum. The

terms that remain are recognizable from Eq. (5.1.21) as the angular momentum relative
to point B, so that

1 1 _
T= §m173~173+m173~(6)x?g/3)+§@~HB. (5132)

To simplify this expression we restrict point B to fit either of the first two criteria for
an allowable point, that is, the center of mass or the pivot point for a body in pure ro-
tation. Either choice cancels the second term. (Other choices for point B would achieve
the same simplification, such as selecting it to be the instant center for a general planar
motion, but there is little need to consider them.) Thus the alternatives we employ to
evaluate the kinetic energy of a rigid body are

1 _
T = Emﬁc - UG + Ed) - Hg: any type of motion,
(5.1.33)

T= 56) - Ho: pure rotation about point O.

The fact that there are two ways to describe the kinetic energy of a body in pure
rotation leads to a relation whereby the angular momentum may be transferred between
points. Suppose we were to hold some point P in a body stationary, in which case the
velocity of the center of mass would be @ x 7,/ p. The alternative descriptions of the
kinetic energy in that case would require that

_ 1 1. -
T= d)-Hp:Em(&)XFG/p)~(rI)><FG/p)+—cT)~H(;. (5.1.34)

1
2 2
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A rearrangement of terms based on Eq. (5.1.30) leads to

1 _ 1 1 _
T = 55) Hp = zmcb . [7G/P x (o x 7G/P)] + 55) - Hg. (5.1.35)
This relation must be true for any angular velocity, so the factor of @ in the dot product
on either side of the equality sign must match. It is useful for later work to use 7 p,g =

—7 Gy p, from which it follows that
Hp = HG +mrp;G % (v x fp/G) . (5.1.36)

There seldom is need to transfer angular momentum between points. However,
Eq. (5.1.36) will soon prove to be useful for our exploration of inertial properties.

Identical small spheres having mass m are welded to the ends of
a rigid bar that spins about the axis of the motor at angular speed w;. The motor is
mounted on the horizontal turntable, which rotates at angular speed w,. Determine
the angular momentum of this pair of particles about point C where the connecting
bar is welded to the motor’s shaft. Then use the angular momentum to characterize
the force system exerted on the connecting bar at point C, as well as the kinetic
energy of these spheres. Express the result in terms of the angle 6 from the bar’s
centerline to vertical.

Example 5.1

SOLUTION The intent of this problem is to provide visualizations that will lessen
the abstract nature of the development thus far, and also bring to the fore aspects
that distinguish the kinetics of spatial motion from the simpler case of planar mo-
tion. Both spheres, being small, are treated as particles. They are fastened to the
massless rigid body formed by the connecting bar and the motor’s shaft. Point O
is also a point in this body, and 7 = 0. Thus point O is an allowable point for the
moment equation. The center of mass G of the pair of particles is halfway between
them, which is the attachment point of the bar to the motor’s shaft. This is always
an allowable point.
The angular velocity of the bar/shaft system is

= w11 + wyeés.

To describe the unit vector for each rotation, we let x’'y’z’ be a coordinate system
attached to the turntable with its origin O at the center of the turntable. The 7’ axis
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is vertical and the x’ axis is aligned with the shaft, such that &, = —i’ and &, = k’.
The angular velocity of the connecting bar is then given by

w = —a)li_' + a)zk/. (1)

To evaluate the angular momentum with respect to point C, we form the posi-
tion vector to each sphere. In terms of components relative to x’y’z’, these are

Fi/c = Rsin6j’ + RcosOk’ = —Fyc. (2)
Equation (5.1.21) for this two-particle system is
He =2my [F1/c x (@ x F1/c)] -
The result of substituting Egs. (1) and (2) into this expression is
He = —2mRwii’ — 2mRw; (sin0) (cos 0) J' + 2mR2w;, (sin0)* k. (3) <

The first feature to note is that some components of Hc are not constant, even
though @ has constant components relative to x"y’z’. Furthermore, the orientations
of both i" and j’ are variable. This feature typifies the fundamental fact that, even
though the rotation rates in spatial motion might be constant, the angular momen-
tum will not be a constant vector. Moments are required to change the angular mo-
mentum, regardless of whether the change of the angular momentum is a result of
components having a variable direction or magnitude. It follows that the shaft must
exert a moment on the connecting bar in order to produce the specified motion.

To evaluate the force system that the motor’s shaft must apply, we consider a
rigid body consisting of the two spheres and the connecting bar. If the rotation rates
are sufficiently high, the gravitational forces will be negligible, in which case the
only significant forces acting on this body are exerted by the motor’s shaft. Point C
is the body’s center of mass, and this point follows a circular path of radius L, so the
resultant force exerted by the shaft is found from Eq. (5.1.13) to be

Fshaft = mbody[_lC =2m (—L(,()%l_/) . (4) <

Similar reasoning indicates that the only significant moment acting on the two-
sphere rigid body is a couple exerted by the shaft. According to Eq. (5.1.22), this
couple must equal the rate at which Hc changes. To differentiate the components of
the angular momentum in Eq. (3) we observe that § = w;, whereas the derivatives
of the unit vectors follow from the fact that the angular velocity of x; y;z; is w,k’, so
that

_ dHc

ad - _
Mahage = — = d)1£ [—2mR2w2 (sin @) (cosB) j' + 2mR2w, (sin 6)* k/]

—2mRw; (02k' x 1') — 2mRPw, (sin ) (cos 0) (wrk’ x ')
+2mRw; (sin6)” (wok’ x k') .
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Carrying out these operations yields

Minaty = 2mR2w3 sin 0 cos 0i — 4m R2ww;, (cos )’ j' 6)
<
+dmR*wiw, (sin ) (cos ) k'.
The kinetic energy of the two-particle rigid body may be evaluated from
Eq. (5.1.33). Point C is the center of mass, and we already have @ and Hc. The
speed of the center of mass is Lw; , so we find that

1 1 i L
T = 5 (Zm) (La)z)2 =+ 5 (—a)ll'/ + a)zk’) - He
(6) <

= mR? +me3 [ 12 + R (sinf)’ .

It is not necessary to introduce angular momentum to derive these results. In-
stead, we can consider each sphere individually. We use point C as the reference for
the kinematical analysis. Because 71,c = —F1,¢, the velocities are

U1 =Vc+®dXTFyc

= —Rw, sin @i’ + (w1 RcosO + Lwy) j' — wy Rsin Ok,
) = e+ ® X Fayc

= Rw;sinfi’ + (—w1 Rcos O + Lan) j' + w; Rsin 0k’

The result of using these expressions to evaluate the kinetic energy according to
%mz‘n -1 + %mﬁz - v, would be identical to Eq. (6).

To examine the force system exerted by the shaft we describe each sphere’s
acceleration relative to point C, according to

ay =dac+ayc, G =ac+ayc,

ayyc = —lyc=0a xFyc+ox(®x7Fyc). @)
The angular velocity is given in Eq. (1), and the angular acceleration is
a=—o (k' xi')=-wi0]',
which leads to
aic = —2Rw10, cos0i’ — R (0] + »3) sinf ]’ — of Rcos Ok’ (8)

We use these expressions to form the force and moment sums for the system con-
sisting of the two spheres and the connecting bar. Specifically, we apply X F,, = ma,
to each particle and use Egs. (7) to describe each acceleration. Because the force
exerted by the connecting bar on each sphere is internal to this system, the result is

S F = Foan = mia, + mad, = 2mac.

This is the same as the force described by Eq. (4).
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The forces exerted by the connecting bar also disappear from a moment sum
for the system. Application of Egs. (7) in conjunction with 75,c = —71,¢ leads to

Y Mc = Mshate = T1/c X My + Fojc X Mady = miyyc X dy/c + Mmryc X y)c.

The sketch shows the acceleration of each sphere relative to point C, which when
multiplied by m become the forces that contribute to the moment sum. Inspection
of this diagram shows that for each particle the sum of the z’ component and the
portion of the y’ component that is due to w; is a vector that acts from each sphere
toward point C. It follows that these forces do not contribute to the moment sum.
Consequently, the moment exerted by the shaft is formed from two couples. The
x" components form a couple that is (2m Rwjw; cos 0) (2R) acting perpendicular to
the connecting bar. The unit vector for this couple is —cos ]’ + sin6k’. The other
couple, which is formed from the remaining portion of the y’ components of relative
acceleration, is (mRw3 sin@) (2R cos ) . This couple acts about the x’ axis. The sum
of these couples is the same as Eq. (5).

z
| R0 cos® _ 4o®
m > ! RS
| , A 2 2 .
! -y )J/R(wl + ) )sin©
| ’// —— Q
O,i<f _2Rw;m)c0s B o

A%

2R 0,c0s O

R(®; + @ )sin 0

2 2
Re’\o Rwj cosO

Position and acceleration components of each sphere relative to point C at which the connecting rod
is joined to the motor’s shaft

This discussion explains in fundamental terms why moments are required to
sustain a spatial motion in which all rotation rates are constant. Because particles
have acceleration components that do not lie in a common plane, the forces required
to accelerate these particles exert moments about several axes. For the system of
two interconnected spheres the analysis using angular momentum was merely an
alternative approach, but it will be the only viable one for bodies whose size is not
negligible.

Inertial Effects for a Rigid Body

5.2 INERTIA PROPERTIES

It is inconceivable to evaluat

e the angular momentum of a rigid body by adding the

contribution of each of its atomic particles. Our approach is to model the rigid body
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as a continuous distribution of mass, which will permit us to apply the principles of
calculus. The result will be an expression for the angular momentum that features a set
of numbers characterizing the manner in which mass is distributed in the body.

5.2.1 Moments and Products of Inertia

In a continuum model of a rigid body the particles are differential elements of mass dm
having infinitesimal dimensions. These elements fill the region occupied by the body. In
this viewpoint, any summation over the particles forming the body becomes an integral
over the body’s domain. In Fig. 5.3, xyz is a global coordinate system whose origin A is
an allowable point for the moment equation of motion.

Figure 5.3. Differential element of mass dm relative to a body-fixed xyz
reference frame.

In terms of components relative to xyz the position vector 7;, 4 and angular velocity
w are

Fija=Xxi+yj+zk, @=wid+w,]+wk. (5.2.1)

We substitute these expressions into Eq. (5.1.21) for the angular momentum and convert
the summation to an integral. This transforms the general relation to

, =/// (7 + 9] + 2K) x [(0x] + 0y] + 0:k) x (T + y] + R)]dm.  (52.2)

The result of evaluating the cross products is an integrand that consists of i, j, and
k components. Each component may be integrated individually. Furthermore, the ro-
tation rates are overall properties of the motion, rather than functions of the position
within the body. Consequently, w,, w,, and w, may be factored out of each integral. The
result is

Hy = (Iywy — Lywy — L0;) lT"_‘ (Iywy = Lywg — Iyoz) (5.2.3)
+ (Izza)z — sza)x - Izywy) k’

where

Ixx=///(y2+zz)dm, Iyy=///(x2+zz)dm, Izz=///(x2+y2)dm,
Ixyzlyx=///xydm, Ixz=lzx=///xzdm, IyZ=IZy=/// yzdm.

(5.2.4)
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The terms 1,, (repeated subscripts) are moments of inertia about the three coordi-
nate axes, and the terms /,, (nonrepeated subscripts) are products of inertia. The vector
description of H,4 may be written alternatively in matrix form as

{Ha} = [I]{o}, (5.2.5)

where {H,} and {0} are formed from the components of H4 and @, respectively, and [/]
is the inertia matrix:

Ixx _Ixy _Ixz
=|~Lx L, —I.|. (5.2.6)
_sz _Izy Izz

The matrix representation will be seen to be quite useful in conjunction with mathemat-
ical software. The inertia matrix, combined with the mass and the location of the center
of mass, fully characterizes the inertia properties of a rigid body.*

The moments of inertia are properties encountered in planar motion. The similarity
of any /,, to the parameter for planar motion may be realized by looking down the p
axis. Such a view for I_. is shown in Fig. 5.4. The distance R = (x> + y?)/? is the perpen-
dicular distance from the z axis to the mass element dm. Thus I, is the sum for all mass
elements of the R? values weighted by dm.

Figure 5.4. Contribution of an element of mass to the moment of inertia
about the z axis.

A common way to prescribe a moment of inertia is to give its radius of gyration,

p = (’Lp)m. (527)

m

Consider a thin ring whose mass is situated on a circle of radius « ,, with p being the axis
perpendicular to the plane of the ring and intersecting the center. The distance from
this axis to any mass element is k , so the integral of R*dm reduces to K% multiplied by
the integral of the mass, in other words, /,, = m/cf,. Thus a radius of gyration describes a
circular ring whose mass is the same as the body of interest and whose moment of inertia
about its axis of symmetry p is identical to I, for the body. Because I, is the sum of
the R?dm values, the radius of gyration cannot exceed the largest distance from axis p to

* The definitions of products of inertia in Egs. (5.2.4) are opposite in sign to those used by some individuals.
The present definitions are based on indicating quadrants in which mass is dominant. The alternative
definition gives an inertia matrix whose off-diagonal elements equal the products of inertia.
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Figure 5.5. The significance of a product of inertia as a measure
x  of deviation from symmetry.

a mass point in the body. This knowledge can be quite useful when one wishes to make
an order-of-magnitude estimate of the moments of inertia of a given body.

In contrast to the moments of inertia, which depend on how far mass is situated
from each coordinate axis, the products of inertia describe the degree to which mass is
distributed symmetrically relative to the three coordinate planes. Figure 5.5 shows the
cross section of a body at an arbitrary value of z. The dotted region is the mirror image
of the cross section, which one obtains by flipping it about the y axis. The shaded area
is the union of the cross section and its mirror image. Two mass elements on either
side of the yz plane are depicted in Fig. 5.5. The x coordinate for the left element is the
negative of the x coordinate for the right element, whereas their y and z coordinates
are the same. If the density is the same for both elements, then they have the same mass
dm. In that case the values of xy dm and xzdm for the left element are the negative of
the corresponding values for the right element, so their combined contributions to Iy,
and I, are zero. It follows that the total contribution to I, and I, of all mass elements
situated in the shaded region of Fig. 5.5 is zero. The unshaded portions of the cross
section have no mirror image on the other side of the yz plane. The sign marking each
such region indicates whether the product xy is positive or negative within that region.
The situation in the figure is one in which the unbalanced regions correspond mostly to
positive xy. Thus, if the density is constant over the cross section, the net contribution of
this cross section to /., would be positive. Similar reasoning applies for /;. One should
note, however, that the actual values of I, and I, for this body cannot be judged solely
from the figure, because they depend on the combined contribution of all cross sections.

From the preceding considerations, we conclude that a positive value of /,, indicates
that the mass of the body is predominantly situated in either or both of the quadrants
where the p and g coordinates have the same sign, whereas negative /,, means that
mass is predominant in the quadrants where p and ¢ have opposite sign. We obtain
an important corollary of the discussion by considering a situation in which the shaded
region in Fig. 5.5 is the actual cross section and the density at the mirror image points is
the same. In that case the contributions to /,, and Iy of this cross section will vanish. If
the same is true for all cross sections, then the body is symmetric with respect to the yz
plane, and I, = 0 and /,; = 0. Similar conclusions would result if we were to consider
symmetry with respect to the xz or xy plane. The fact that the z axis is normal to the
plane of symmetry for the situation in the figure leads to this generalization:

If two coordinate axes form a plane of symmetry for a body, then all products of
inertia involving the coordinate normal to that plane are zero.
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A further corollary is

If at least two of the three coordinate planes are planes of symmetry for a body, then
all products of inertia are zero.

The condition of perpendicular planes of symmetry is attained for any body of revo-
lution if the axis of symmetry coincides with a coordinate axis. Whenever the coordinate
axes correspond to vanishing values of all products of inertia, they are said to be prin-
cipal axes. We will soon see that it is possible to identify principal axes for any body,
regardless of it symmetry properties.

D IN-JC¥- I Fvaluate the inertia properties of the pair of particles in Exam-
ple 5.1 relative to the x"y’z’ coordinate system defined there. Then use those prop-
erties to determine Hj.

SOLUTION This example uses a simple system to illustrate the significance of the
inertia properties. It also provides some insight that will be useful to later devel-
opments concerning the rate of change of Hu. The two particles and their massless
connecting rod form the rigid body of interest here. Each particle may be considered
to be an element of mass. Correspondingly, the integral reduces to a single term for
each particle. The 7z’ axis in Example 5.1 was defined to be vertical, and the x’ axis
is aligned with the motor’s rotation axis. The position of the particles in terms of
components relative to x"y’z" was found previously to be

F1y0 = Li' + Rsin6j' + Rcos0k’, F2y0 = Li' — Rsinfj' — Rcos6k’.

Because the components are the respective values of x’, y’, and z’ for each particle,
Egs. (5.2.4) for the present situation reduce to

o = m (3 + 3) +m (3 + B) =2m R,

Ly =m (x} + 22) + m (22 + ) = 2mL? + 2mR? (cos0)’,
Ly =m(x{+y?) +m (x5 + y3) = 2mL* + 2mR* (sin 0)*,
Loy = Iyy = mxyy1 + mxyy, =0,

Ly = Iy =mx1z1 + mxzzp =0,

Iy = Ly = myiz1 + my,z = 2mR*sin 0 cos = m R’ sin (20)..

The products of inertia indicate that there is a balanced mass distribution relative to
the x'y" and x'z’ quadrants, and the mass is situated in the two quadrants where y'z’
are positive whenever sin (20) is positive, thatis,0 <6 <7 /2and 7 < 6 < 3.

To evaluate H, we recall from the previous example that the angular velocity
of the assembly of the two particles and the connecting rod is the sum of the rotation
rates w, about the vertical and w; of the motor. We previously found that

o= —Cl)llT/ + a)zlz/.
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The components are w, = —wi, oy =0, w; = w;. Correspondingly, Eq. (5.2.3)
gives

Ay = [2mB (—w1) — 0(0) — 0(w2)] 7'
+ {[ZmL2 +2mR? (cos 9)2] (0) = 0(—w1) — (2mR?sin 6 cos ) (a)z)} j
+ {[ZmL2 +2mR? (sin 9)2] (w2) — 0 — (2mR*sin @ cos 6)) (0)} k'

The preceding exemplifies a general observation that many terms in the standard
formula for angular momentum usually vanish because either a product of inertia
or a component of @ is zero. The present result reduces to

Hy = —2mR*wii’ — 2mR*w, sin6 cos ' + 2m [L2 + R’ (sin 9)2] wrk’. <

This is the same as the expression we derived in Example 5.1 by actually evaluating
moments of the relative momenta.

Derive the inertia matrix of the quarter-sphere about the xyz
axes; then use that result to obtain the inertia matrix for a quarter-spherical shell
whose skin thickness is d <« a. Express each result in terms of the mass m of that
body.

—

Example 5.3

SOLUTION Although we usually use other techniques to evaluate the inertia matrix,
integration is a basic tool. This example illustrates some procedures that were used
to derive the properties tabulated in the Appendix. Spherical coordinates with an
origin at the center are ideal here because the quarter-sphere’s surfaces correspond
to constant values of one of these coordinates. Any coordinate axis may be em-
ployed as the reference for the polar angle ¢; we select the y axis, so the azimuthal
angle 6 is measured in the xz plane relative to the x axis. The coordinate transfor-
mation is

y=rcos¢, x =rsin¢cosf, z=rsin¢gsinb.

The body occupies the domain 0 <r <a,0<¢ <x/2,0 <6 <, and a differen-
tial element of mass is dm = p (dr) (rd¢) (rd6 sin¢) . The body is symmetric with
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respect to the yz plane, so the two products of inertia containing x as the subscript
are zero:

Ly =1I.=0. <

Also, the symmetry of the quarter-sphere is such that mass is situated in the same
manner relative to the y and z axes, so I; = I,,. Thus it is necessary to compute
only I, I,,, and I.

The integral definitions, Egs. (5.2.4), give

a pm/2 pw
Ly = [ / / (> + 2%) pr’sing do d¢ dr
oJo Jo

a pm/2 pw
=p / / / [(r cos @) + (r sin ¢ sin 9)2] r’sing do de dr,
oJo Jo
a /2
= / / [(r sin ¢ cos 0)* + (r sin ¢ sin 9)2] pr?sin¢ do d¢ dr,
o Jo

a pm/2 pw
I.= [ / / [(r sin ¢ cos 6)% + (r cos ¢)2] pr’sing do d¢ dr,
oJo Jo

a pm/2 pw
I, = [ / / yzpr?sin ¢ dé de dr
0oJo Jo

a pm/2 pw
=p / f / (cos ¢) (sin ¢ sin ) r*sin ¢ db de dr.
0oJo Jo

The results are

2r s 2
—pa’, I,,=-—pa’.

;574 T s

To express the inertia properties in terms of the mass 7, the density is expressed as
the ratio of the mass to the volume of a quarter-sphere:

M = yy — Izz =

m m 3m
p:—:—:

V 1 [4nd’ 7a’’
4\ 3

We substitute for p in each of the inertia properties and recall from Eq. (5.2.6)
that the off-diagonal terms of the inertia matrix are the negative of the products of
inertia. The result is

1 0 0
2
[I]=§ma 0 1 -1/ |. <
0 —1/n 1

A shell is a body whose mass is concentrated at its surface. There are two
procedures for obtaining the inertia properties of the quarter-spherical shell. The
general one specializes the differential element of mass. Let o be the mass per
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unit surface area. A differential element of surface area in spherical coordinates is

= (ad¢) (a sing df). The surface is defined by 0 < ¢ <7/2, 0 <6 <m. We
modify the integrals for the quarter-sphere, with » = a for points on the surface and
dm = odS, which leads to

/2 = 2
Ly = / / (a cos ¢)* + (asin ¢ sin 9)2] oca’sing do dp = gnaa“,
o Jot

/2 _ 2
= / / (asin ¢ cos§)* + (a sin ¢ sin 9)2] ca’sing df dp = gnaa“,
o Jolt

/2 > 2
I, = / / (asin¢ cos ) + (acos ¢)2] ca’sing df dp = gnaa“,

/2
Iy :/ / (acos¢)(asingsinf)oa’sing df dp = =

The surface area of a sphere is 4a?, so the mass per unit surface area is related to
the mass of the quarter-spherical shell by

. Mghell

o " 2).
— (4ma
4

Substitution of this expression into the inertia values leads to
1 0 0
[1]= mshena 0 1 —1/7 |. 4

0 —-1/= 1

An alternative is to derive the properties of the shell from those of the full
body. We may obtain the shell by removing from the quarter-sphere a concentric
quarter-sphere whose radius is a — /&, where /4 is the thickness of the shell. Because
the origins of xyz for both the original and removed bodies coincide, the inertia
properties of the shell are the difference of the values for the two full bodies. We
form the differences by using the original forms, which featured the density, so that

2 2 2
Ly =1Ly = I, = —npa® — —np (a — h) —571,0 (5a4h + - )

15
2 2
54 a’ — p( —hy’ ——p(5a4h+ ).

Higher powers of 4 are omitted because the definition of a shell is that its thickness

1, =

is very small compared with the overall dimensions. The density is the ratio of the
shell’s mass to its volume:
_ Mghell _ Mghell _ Mghell

2 1|:47ra3 _4n(a—h)3i| Cm(ath+--)
4

3 3
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Substitution of this description of p into the last set of expressions for the inertia
properties would yield the same results as those obtained by integration.

A first-order correction for the mass distribution of the Earth is
to take it to be an oblate spheroid with the polar axis as the axis of symmetry. A
consequence of this deviation from sphericity, combined with the tilt of the polar
axis relative to the Earth’s orbital plane about the Sun, and the Moon’s orbital plane
about the Earth, is that the forces exerted by those bodies do not exactly act at the
Earth’s center. The task here is to characterize the gravitational attraction of the
Sun and the Moon as force—couple systems acting at the Earth’s center.

SOLUTION This example will lead to a different perspective to the meaning of “cen-
ter of mass,” as well as recognition that the inertia properties can occur in contexts
other than evaluation of angular momentum. The usage of the first moment of mass
to locate the point at which the resultant gravitational force acts originates from con-
sidering the force of gravity to be constant. The analysis we carry out here, in which
the inverse square law is used to describe the force exerted by the Sun on each of
particle of the Earth’s mass, is required to explain some features of the Earth’s ro-
tation. In particular, the result will be a crucial piece of our analysis in Chapter 10
of precession of the equinoxes, which is manifested by variability in the dates when
the seasons change.

We begin by recalling the inverse square law for gravitational force exerted by
a large spherical body on a particle:

_ Gmgm

where m and m; are the masses of the particle and the attracting body, r is the
distance from the particle to the center of the other body, é, is the unit vector from
the particle to the center of the attracting body, and G is the universal gravitational
constant. The Earth’s diameter is much smaller than the distance to either the Sun
or the Moon, so the Earth appears to be a dot when viewed from either body,
especially the Sun. If we were to set r equal to the distance R between the respective
centers and take e, to be constant at eg, which is the unit vector from the center
of the Earth to the center of the other body, we would obtain the conventional
representation of the effect of gravity, in which the Earth’s center of gravity, at
which the gravitational attraction acts, coincides with its center of mass, which is
essentially the center of the Earth.

We perform the analysis for the case of the interaction between the Earth and the
Sun, then consider what modifications are required to describe the role of the Moon.
Let xyz be a coordinate system whose origin is at the center of the Earth such that
the z axis is the polar axis; this axis is inclined by angle 0 relative to the normal to
the Earth’s orbital plane. The y axis is defined to coincide with the diametral line
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at the Earth’s equator that lies in the orbital plane. To describe how the Earth is
oriented relative to the Sun define x'y’z’ whose origin also is at the Earth’s center.
The 7’ axis is defined to be normal to the Earth’s orbital plane, and x’ is aligned with
the unit vector from the center of the Earth to the center of the Sun, so that ez = i’.

Coordinate system for describing the graviational force exerted
by the Sun on the Earth

This arrangement is depicted in the sketch. The transformation between these co-
ordinates systems is

[x y 2" = [RI[x" y 21",
cosf 0 —sin6 cos 8 sing 0
[RlI=10 1 0 —sinfB cospB O |,
sinf 0 cos6 0 0 1

where B is the angle between the y and y’ axes. The first row of [R]T consists of the
direction cosines of the x’ axis with respect to xyz, which enables us to describe the
direction of the Sun’s center in terms of xyz components,
er = Kx/xi_"' ﬁx’y]T + K)c/zlga
where the direction cosines are
Lyy =cosfcosp, Lyy=—sinp, L, =sinbcosp.

The near parallelism of the lines from all particles to the Sun’s center assists us
in describing the distance and direction of the line from a particle of the Earth to
the Sun. In the second sketch, which shows the plane containing a mass particle P,
the center O of the Earth, and the center O’ of the Sun, r is the distance from the
center of the Sun to the particle and e, is the direction to point O’.

P/0" €]

p \Earth  Gravitational force exerted by the Sun on a particle of the

/ Earth
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It is evident that
Re= RER—f'P/o, (1)

so the distance is

12 _ 1/2

r=(re,-re,)"> = (R +¥pjo-Frjo—2RFpj0 - 2R)

Because |F p/or
gives

is much smaller than R, a binomial series expansion of the preceding

}’%R—f'p/0~éR. (2)

In turn, substituting this expression into Eq. (1) yields

- _ Rer—Tpi0 _ R - _Tpo
4 r R—fp/o'éR k (3)
Fpio-€r\ _ o)
A1+ ———)eg— ——.
(142255 en- T

Equation (2) is used to express the distance in the inverse square law for the
gravitational force d F acting on a differential element of mass situated at point P,
and Eq. (3) gives the direction of that force. Application of a binomial series expan-
sion then leads to

af = Gmdm
(R—T7pjo0-€R)
Gmgdm Fpio-€Rr Fpio-€r\ . Tpo
~ 1+2 14+ = = 4
R < TR TR )RR @
1 Fp/o-€r_  Tp/o
~ Gmsdm<R rR+3 = R — 7

We obtain the resultant force by integrating the contribution associated with
each mass element. For this integration, we observe that the only quantity in Eq. (3)
that depends on the position of the mass element is 7 p,o. The integral of 7 p,odm is
identically zero because it is the first moment of mass and point O is the center of
mass. Thus the resultant force is

o ff e,

where m1, is the Earth’s total mass. The preceding expression is the same as the force

derived from an approximation that considers the gravitational field to be constant
across the Earth.

The equivalent couple must have the same moment as the resultant moment of
the gravitational forces about point O, so we set

= [[[ 10 ar.
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Using the approximation of d F in Eq. (4) leads to
_ 1 r -e r
M = Gmsffffp/ox <EER+3 P/ZB RéR— Zf)dm

Gmy
- ///rP/OX€Rdm+3 R3 // (Fpjo x &r) (Fp/0 - €r) dm.

The first integral vanishes because ey is independent of the position of the mass

element, so the integral is proportional to the first moment of mass relative to the
center of mass. Therefore the gravitational couple is described by

V/ Gms // (eR rp/o) (rp/o X ER) dm. (6)

M =
To understand this 1ntegral we represent the position vector in terms of the
position coordinates of the mass element, 7 po = xi + yj + zk. The corresponding
representation of the integrand is

(€r-Fp1o) (Fpjo X €r) = (LxxX + Lyryy + Lye22) [(bxrzy — Lory2) P+ -+ -],

where only the x component is listed because the others can be obtained by permut-
ing the symbols. Carrying out the product shows that the integrand contains various
quadratic products of the point coordinates, so the integral may be expressed in
terms of the moments and products of inertia. The result is simplified if xyz are
principal axes because the terms in the integrand that contain mixed products, xy,
xz, or yz, vanish in the integration. The nonzero terms are

(@r-7p/0) (Fpjo x €R) = Lyyly; ()’2 — 22)174‘ Crxlys (Zz - xz) j
+ Lorclury (X = Y )k + -

Substitution of this representation of the integrand into Eq. (6) leads to

M =35 [zxyz”/// x> +y?—x*—2)dmi
+£x/x£x/z/// (P +Z-x*—y)dmj
+£x/x£x’y /f/ (-XZ +Z2 - y2 - ZZ) dm Ei|

Gm - - _
=3—= [lerylorz (Lr — L) I+ Lol (Dex — L) [+ Loy (Iyy — L) K]

R’
™)
Equations (5) and (7) are valid for the gravitational force—couple system ex-
erted on any large body when xyz are principal axes. Axisymmetry of the present
approximation of the Earth’s shape further simplifies the couple expression because
I, = I,,. When we use Eq. (4) for F to describe the coefficient of the bracketed
term and recognize that ¢, is the direction cosine between the radial line to the
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Sun and the polar axis, we find that

_ _ F(l,—1 _ _
F=rep, m=3"Ua"1) o by,
m.R

(7)<

Gmgm,
R
These expressions indicate that the moment acts about an axis that is perpen-
dicular to the plane formed by the radial line to the Sun and the polar axis. To get a
sense of the scale of M, consider a pair of forces F and — F whose couple moment

Fh equals ]1\71 | . The corresponding separation distance is
_ . (Izz — IXX)
m,R
The ratio of a moment of inertia to the mass is the square of the corresponding
radius of gyration, «, and k. Because both &z and k are unit vectors, it must be that

€R = Zx’)clT + Kx’y]T + Kx’zk'

F =

h (er - k) |er x k| .

3 % — 3]

= ®)
The Earth is nearly spherical, so «, ~ «,. Furthermore, both radii of gyration are
smaller than the radius R, of the Earth, so |2 — k2| < R?, which leads to the con-
clusion that i/ R, < R./R.

A significant aspect of the derivation is that it is readily adapted to treat
the role of the Moon. Obviously, R must be interpreted as the distance between
the centers of the Earth and the Moon, and m, must be changed to the mass of the
Moon. We also must define x"y’z’ to lie in the Moon’s orbital plane relative to the
Earth. An interesting aspect of the fact that the Moon is much smaller but much
closer than the Sun is that their relative significance for the gravitational moment
is opposite their significance for the attractive force. Their respective masses are
my = 1.98892 (10*°) kg and mmeon = 7.348 (10°?) kg, whereas the average orbital
distances are R, = 1.4960 (10"') m and Ryoon = 3.844 (10%) m. Thus, the relative
magnitudes are

h <

F; ny

Fmoon mmoon < RS >2 — 0.560/0’

RlTlOOl’l

| Minoon | _ Mmoon ( Ry )3 — 218%.
| M | m Rinoon

In other words, a first-order analysis of the movement of the Earth’s center of mass
is well justified in neglecting the role of the Moon, but understanding the rotational
motion of the Earth requires that the effect of both bodies be considered. Although
both moments are relatively small, they are ever present. This leads to precession of
the tilted Earth’s polar axis that has a period of many millennia, as well as a wobble
of the polar axis, as we will see in Chapter 10. [The variability of the gravitational
attraction of the moon also is a large part of the cause of oceanic tides. The text by
Sverdrup et al. (2005) is a good entry to this topic.]
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5.2.2 Transformations

Several resources, including the Appendix, tabulate the inertia properties of homoge-
neous bodies having common shapes. The formulas appearing in the Appendix were
obtained by carrying out the integrals in Egs. (5.2.4). The inertia properties of shapes
could be evaluated from the integral definitions, but it often is easier to consider a body
to be a composite of tabulated shapes. Integrals over different domains are additive.
This makes it possible to decompose the moments and products of inertia of a compos-
ite shape into contributions of the constituents, that is,

Iey = (Iey); + (Iey), + -+, §,n=2x, y,orz (5.2.8)

The same decomposition applies to the mass and first moment of mass, from which we
can locate the center of mass G of the composite shape:

m=m+my+---
(5.2.9)
még=m () +mx(§g)y+--+, §=x, y, orz.

Although these relations for the properties of the composite shape appear to be
straightforward, one aspect substantially complicates the task. In particular, applying
Eq. (5.2.8) requires that the inertia properties of the constituent bodies all be relative
to the desired xyz coordinate system. All inertia properties in the Appendix are for
centroidal axes, whereas the constituent parts of most composite shapes seldom have
coincident centroids. It also is possible that the orientation of coordinate systems for the
basic shapes will be different. A rotation transformation of the inertial properties will
allow us to bring the coordinate axes for each shape into parallel alignment with the
coordinate system of interest. Then the parallel axis transformation of inertia properties
will allow us to bring the origin of the coordinate system for each shape into coincidence
with the desired origin. Only after such transformations are evaluated may the individual
inertia properties be combined according to Eq. (5.2.8).

Composite shapes are not the only reason for studying transformations of the iner-
tia properties. If a body is in pure rotation about a noncentroidal point, it is desirable
to sum moments about the pivot point. This would require knowing the inertia prop-
erties for a set of axes whose origin is at the pivot, rather than the center of mass. A
situation requiring a rotation transformation might arise if the coordinate system we use
is selected to facilitate description of the components of @, without considering which
coordinate system is used to describe the tabulated inertia properties.

Parallel Axis Transformation

There are several ways in which we may transfer the inertia properties between points.
The approach we will use is based on Eq. (5.1.36). In Fig. 5.6 xyz are a set of centroidal
coordinate axes for which the inertia properties are known, and x’y’z’ is a parallel co-
ordinate system having origin B for which we wish to determine the properties. The
distances xp, yp, and zp are the coordinates of origin B with respect to the centroidal
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Figure 5.6. Parallel coordinate axes for transforming inertia proper-
ties.

coordinate system. Writing the position of origin B with respect to xyz is one way to
ensure that the signs of these coordinates are correctly identified:

FB/G = Xpl + yB] + z8k. (5.2.10)

We use this expression together with a component representation of @ to evaluate
7B/G x (& x 7 /i), which changes Eq. (5.1.36) to

Hg = Hg +m|[(y; + 23) ox — Xpypw, — Xpzpw.| i

+m[(x} + 23) 0y — Xypox — YpZBW,] ]
+m [(x% + Y%}) w; — XBIpWyx — szBwy] k.

Let the inertia properties with respect to the parallel coordinate systems xyz and x'y’z
be [Is] and [ ], respectively. Then the preceding may be written as

(vb+25)  —xbys —XBZB
[Isl{w} = [l {w} +m | —xpys (x3+2z3) —yszs |{o}. (5.2.11)
—XBZB —ypzp (X3 + y3)

This relation must apply for any {w} , so the factor of {w} on each side of the equality
must match. The result is the parallel axis transformation of inertia properties:

(Vi +25)  —xpys —XBZB
[Is] =[I] + m —XBYB (x% + Z%) —YBZB . (5.2.12)
—XBZp —yszs (X% +y3)

Matching like elements in this relation leads to the scalar form of this parallel axis
transformation. The diagonal terms transform moments of inertia,

Ix’x’ = Iyxy +m (y% + Z%) S
Lyy = Ly +m (x + 23) . (5.2.13)
I, = zz+m(x%g+y%),
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whereas products of inertia transform according to

Iy = I,x = Iy, + mxpys,
Ix/z/ = sz = Iy; + mxpzZp, (5.2.14)

Iy/z/ =1z = Iyz ~|—myBZB.

Equations (5.2.13) add a positive quantity to the centroidal values, which means
that the moments of inertia for centroidal axes are smaller than those about any parallel
noncentroidal axes. Also, it is not necessary to actually implement the transformation to
obtain any product of inertia that can be recognized as being zero because of symmetry.

It is imperative to remember that the preceding transformations apply only if xyz
are centroidal axes, which is the condition under which Eq. (5.1.36) is valid. Otherwise,
additional terms featuring first moments of mass would arise. Another common error
is failure to remember that xp, yp, and zp are the coordinates of the origin B of the
noncentroidal coordinate system. One can avoid the latter error by locating this point
vectorially, as in Eq. (5.2.10). Also, if it is desired to transform between two parallel non-
centroidal coordinate systems, one can convert from the set of known inertia properties
to centroidal values by solving the aforementioned equations, and then transfer from
the latter values to the coordinate system for which the properties are desired.

An interesting interpretation of the parallel axis transformation results from
considering the case of a single particle. The particle model considers a body’s dimen-
sions to be negligible, so that the centroidal inertia properties vanish, [/] = [0]. The
moments of inertia for noncentroidal axes are then simply the particle’s mass multi-
plied by the square of its distance from the respective coordinate axes, and the products
of inertia are the mass multiplied by the products of the respective coordinates of the
noncentroidal coordinate system. Thus the general parallel axis theorems indicate that
transferring from centroidal to noncentroidal axes increments the inertia properties as
though all of the body’s mass were situated at its center of mass.

ETULTEE Locate the center of mass of the trapezoidal parallelepiped. Then
determine the moments and products of inertia corresponding to centroidal coordi-
nate system xyz whose axes are parallel to XY Z defined in the sketch.

Example 5.5
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SOLUTION This is an illustration of the procedures for evaluating the inertia prop-
erties of a body that is a composite of basic shapes. The decomposition we use is
a rectangular parallelepiped and a rectangular prism, both of whose properties are
described in the Appendix. We begin with a sketch that shows the location of the
center of mass for each constituent shape.

Z
0.75 m >|0.5 m
T Parallel centroidal coordinate systems for the indi-
! vidual shapes
1.2m Gl o
v [ m@ G2 0.4m

Olel.s msl< 1.5 m=] A

The first moment of mass is used to locate the center of mass. We may perform
this calculation in one step by writing the positions of the respective centers of mass
vectorially. The masses are

m =p((1.5)2)1.2), mpy = p% (1.5)(2)(1.2), m=my +my =5.4p.
Relative to XY Z the centers of mass are located at
Faryo=0.751 +1J + 0.6k, Fcy0=21+1J + 0.4k m.
The corresponding moment of mass is

mrG o = mrgijo + mMra o,

5.4p7 G0 = 3.6p (0.751_ +1J + 0.6l€) +1.8p (27+ 1J + 0.4K) ,
from which we find that
rGo= 116671 + 1J 4+ 0.5333K m. <

Obviously we could have identified the Y coordinate of the center of mass by sym-
metry.

Let xyz be the coordinate system that is parallel to XY Z with origin at point G.
The xz plane cuts the body in half, so it is a plane of symmetry. Because y is the axis
perpendicular to this plane, we have

Ly =1I,,=0. q

Thus we need to evaluate each moment of inertia, as well as .
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For each basic shape let x; y; z; denote the centroidal axis that is aligned parallel
to XY Z. For body 1 we find from the Appendix that

1

(Las )y = 7M1 (22 +1.2%) = 1.6320p,
1

(Iuy)y = 73 (15 +1.2%) = 1.1070p,

1
(Iyz )y = Eml (1-52 + 22) = 1.8750p,

(Ixm )1 = 0

The coordinates of point G with respect to x; y; z; are the components of the position
of the relative position vector,

PG =F60 —Fei0 = 0.41671 — 0.0667K.
The parallel axis transformation for shape 1 therefore is
(Leo)y = (L )1 + 1 (=0.0667) = 1.6480p,
(Ly), = (L), +mi [(0.4167)2 + (—0.0667)2] — 1.7481p,
(I..), = (I,,); + my (0.4167)* = 2.500p,
(Iio)y = (Lyz,); + my (0.4167) (—0.0667) = —0.100p.

For shape 2 care must be taken to properly permute the axis labels from those
depicted in the Appendix. The centroidal inertia properties of shape 2 are thereby
found to be

(Lox,), = %mz [3(22) +2(1.2)] = 0.7440p,
(Ly,y,), = 11—81712 (1.5% +1.2%) = 0.3690p,
1
(In2), = g [3(2%) +2(1.5%)] = 0.8250p,

1
Ul = —35™ (1.5) (1.2) = —0.0900p.

The position vector for point G relative to the centroid of shape 2 is
FGG2 =TFG/0 — Foyo = —0.83331 + 0.1333K.
The corresponding parallel axis transformation is
(Lix)y = (L), + m (0.1333)° = 0.7760p,
(Ly), = (L)), + 1 [(—0.8333)2 + (0.1333)2] — 1.6510p,
(I.)y = (L5, ), + ma (—0.8333)% = 2.0750p,
(Iie)y = (L, ), + myp (—0.8333) (0.1333) = —0.2900p.
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Now that the inertia properties of each shape are known with respect to xyz
their contributions may be added. Thus,

Ly = (Lix)y + (L), = 2.4240p,
Ly = (Iy); + (&yy), = 3.3990p,

L, = (I;;), + (I;), = 4.5750p,

Lz = (Iip); + (Iz), = —0.3900p.

Rotational Transformation

Our concern here is with a situation in which we know [/] relative to xyz, and we wish
to determine [/’] corresponding to coordinate system x’y’z’ whose origin coincides with
the origin of xyz. From the rotation transformation we have

{0} = [R]{w}, (5.2.15)

where {w} and {o'} consist of the components of the respective vectors.

The derivation of the parallel axis transformations was based on a property of
the kinetic energy. Similarly, the rotational transformation will employ the rotational
contribution to the kinetic energy of a body. Energy is a scalar quantity, so formulating
it in terms of angular velocity components with respect to either coordinate system must
yield the same result.

Either of Egs. (5.1.33) indicates that the kinetic energy associated with rotation
about point A is

1. ~
Tiot = 7@ Hy. (5.2.16)
The components of the angular momentum £, of a rigid body relative to the designated
point are described in matrix form in Eq. (5.2.5), which leads to

1
Tiow = 5 @) [1]{}. (5.2.17)

The same value of T;,; should result if the angular velocity and the inertia properties

are referred to the x’y’z’ axes, so

1

Lo = 3 {0} [1'{e'). (5.2.18)

Equation (5.2.15) allows us to replace the x'y’z’ components of @ in the preceding with
those relative to xyz, with the result that

o = 5 (ol TR (1] [R] (). (5.2.19)
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The value of T;,; obtained from this equation must match the result of Eq. (5.2.17),
regardless of what the angular velocity actually is. The only way this equivalence can be
attained is if the inner product matches [/], that is,

[1]=[RI"[I'][R]. (5.2.20)

In the scenario of interest we presumably know [/]. To solve for [I'] we recall the or-
thonormal property, [R][R]" = [R]" [R] = [U]. Thus we find that

[1'] = [RII][R]". (5221)

Any quantity transforming in the manner described by this relation is said to be
a tensor of the second rank. In this viewpoint, vectors, whose components transform
according to Eq. (5.2.15), are tensors of the first rank. Note that transforming a vec-
tor involves premultiplication by the matrix [ R] that transforms from the known to un-
known components. Transformation of a second-rank tensor involves premultiplication
by [R] and postmultiplication by [R]" . In the case of the symmetric second-rank ten-
sors like the inertia properties, such a transformation preserves the symmetry of the
tensor.

The transformation in Eq. (5.2.21) may be decomposed into individual inertia val-
ues. Toward that end we recall Eq. (3.1.11), which expresses [ R] as a sequence of row
partitions consisting of the direction cosines of an axis of x'y’z’ relative to xyz, according
to

{ex’}T
[R] = | {e,}" |- (52.22)

{ez’}T

T
The rows of [R] are denoted as {eg} ,€' =x', y',or 7/, because each column vector
consists of the components of a unit vector & relative to xyz, that is,

{es/}T = I:ES/X Zé/y EE’Z:I . (5223)

The utility of the partitioned form of [R] is that it enables us to condense the
operations, because each partition may be treated as a single element. The columns
of [R]" are rows of [R], so

(R =[lec) {ev} fei}]. (5.2.24)
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Thus, substituting the partitioned form of [R] into the rotation transformation,
Eq. (5.2.21), leads to

[ feu}" ]
7= | fe )" [ (0 tec) {ev) {e}]
{ex}"

e

= fe,)" [[1]{@/} (1] {ey ) [1]{4}] (52.25)
| fe)"
e [ Her} tee)T [T {ey ) fen)T [1]{el)

= | {ey} [leed {en} [11{e} fer}' [1{el)
L te )Tl te) [T {ey ) teod T[] {el}

The diagonal elements of the product are the moments of inertia, whereas the off-
diagonal terms are the negative of the products of inertia. Thus we find that

T
Leg = {eg} [1]{ec}
T
Iy = = {ex} ] {en}
The purpose of deriving these relations is to understand how a specific inertia property

is altered by a rotation. In most situations we would need all of the transformed inertia
properties. In that case it is much simpler to evaluate Eq. (5.2.21) directly.

, €. n'=x,y orz, E#n. (5.2.26)

The 5-kg homogeneous box rotates through angle 6 about the Y
axis of the stationary XY Z coordinate system. Edge A B coincides with the Z axis
when 6 = 0. Determine the moments and products of inertia with respect to XYZ
as functions of 6.

——

g Tt

f—_~

IE 7 Example 5.6
BI\Z 1 —

Z

SOLUTION This problem has the obvious purpose of illustrating the transformation
of inertia properties, but the results also help us understand some general aspects. In
the second drawing x’y’z’ is a body-fixed coordinate system having origin A whose
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axes are aligned with the edges of the box. It is parallel to the centroidal system of a
rectangular parallelepiped described in the Appendix.

X, 7

Coordinate systems used to derive the rotation transforma-
tion

The coordinates of corner A relative to the parallel centroidal coordinate system
are the components of the relative position vector,

Fajg=—075"—1j" —0.5k" m.

Applying the parallel axis transformation to the tabulated properties gives

12 (5) (22 +12) +5 [(—1)2 + (—0.5)2] — 83333,

Ix’x’ == 1_

Iy = é (5) (1.2 +12) + 5 [(—0.75)2 n (—0.5)2] = 5.4167,

L= 11—2 (5) (152 +22) + 5[ (<075 + (=1’ | = 10.4167,
Loy = Iyw = 0+ 5(=0.75) (~1) = 3.7500,
Loy = Ly = 0+5(=0.75) (<0.5) = 1.8750,
Iy = Ly =04 5(=1) (—0.5) = 2.5 kg-m*.

The rotation transformation from x’y’z’ to XYZ is a simple rotation by g =
tan~! (1.5/2) = 36.87° about the negative 7’ axis:

X x’ 08 —-0.6 0
yli=r1!y!, [R]=]06 08 o0
Z 7 0 0 1

Let us define the body-fixed coordinate system xyz such that it coincides with XY Z
when 6 = 0. Thus, transforming the inertia matrix from x’y’z’ to XYZ gives the
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constant properties relative to xyz. We designate this as [/y—y] . Using the preceding
rotation matrix gives

8.3333  —3.7500 —1.8750
[l—o] = [R] | =3.7500 5.4167 —25 |[R]"
~1.8750 —2.5  10.4167
10.8833  0.3500 0
=] 03500 2.8667 —3.1250
0 —3.1250 10.4167

Another rotation transformation is needed to find the properties relative to
space-fixed XY Z axes when 6 is not zero. Because xyz rotates about the Y axis
relative to XY Z, the transformation from XY Zto xyzis

X X cos® 0 —sind
yi=[R]{Y;. [RI=] 0 1 0
z V4 sinf 0 cos@

The transformation from xyz to XY Zis described by [Ry]" , so the inertia matrix for
the XY Z axes is given by

[1] = [R]" [o=o] [Re].

The diagonal elements are the moments of inertia relative to XY Z, and the off-
diagonal elements are the negative of the products of inertia:

Ixx = 0.4667 (cos 0)* + 10.4167, I, = 0.4667 (sin6)* + 10.4167,
Iyy = 2.8667,
Ixy = Iyx = —0.3500 cos 6 + 3.1250sin 6, <
Ixz = Izx = 0.4667 (sinH) (cos 6),
Iyz = Izy = 0.35005in 6 + 3.1250 cos .

The moment of inertia about the Y axis does not depend on 6 because the dis-
tance from this axis to each mass point is unaffected by the rotation. Both /xx and
177 are periodic in Af = 7, but they vary little as # changes, essentially because the
dimensions of the box in both directions transverse to the Y axis are comparable.
The products of inertia Iyy and Iyz are periodic in A6 = 2z, whereas [y is peri-
odic in A9 = z. The periodic nature of the inertia properties stems from the fact
that a rotation by A6 = w changes the sign of the X and Z coordinates of each mass
element, whereas the Y coordinate remains constant. An important observation is
that there are values of 6 for which each product of inertia vanishes, but the angle is
different for each term.
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5.2.3 Inertia Ellipsoid

Equation (5.2.17) for the rotational kinetic energy and Eq. (5.2.26) for the moment of
inertia about an arbitrary axis have similar forms. We exploit that similarity here to
develop a pictorial representation of the dependence of moments of inertia on the ori-
entation of the associated axis. In the present context the construction is primarily of
qualitative interest, but it will be quite useful in Chapter 10 for a detailed study of the
rotation of a body in free motion.

Suppose a body is made to rotate at angular speed w about a specified axis p’ = x/,
y’, or 7 whose direction is €, The matrix representation of the angular velocity is

{0} =w{ey}, (5.2.27)

where {ep/} contains the components of one of the unit vectors of x"y’z’ relative to xyz.
The construction we seek considers a situation in which the angular speed is adjusted
such that, regardless of how the rotation axis is oriented relative to body-fixed coor-
dinates xyz, the rotational kinetic energy is always T, = 1/2. Let p denote a vector
extending from the origin of xyz to a point whose coordinates are the components of
this special @. In matrix notation we have

172

(y=Ixy d =pfep}. p=(2+y+2)". (5.2.28)
Let [1] denote the inertia matrix relative to xyz. Setting T;o, = 1/2 in Eq. (5.2.17) shows
that these coordinates satisfy

[x y z][][x y z]" =1. (5.2.29)
Expansion of this product yields
Lx® + Lyy? + 1,22 — 2Lyxy — 2Lxz — 21, yz = 1. (5.2.30)

This is the equation for an ellipsoidal surface whose centroid coincides with the origin
of the xyz set of axes. This surface is called the ellipsoid of inertia.

One interpretation of the ellipsoid of inertia is associated with its construction, that
is, it is the locus of points for which an angular velocity equal to the vector from the
origin to any point gives T;ot = 1/2. A more useful interpretation is obtained by using
Eq. (5.2.28) to eliminate the position coordinates in Eq. (5.2.29). In view of the first of
Eqgs. (5.2.26), this operation yields

p? ey ) N {ep) = 021y = 1. (52.31)

Thus the distance p from the origin to a point on the ellipsoid of inertia is the reciprocal
of the square root of the moment of inertia about the axis intersecting the origin and
that point. In other words, the distance is inversely proportional to the radius of gyration
about that axis.

If we know [/], we can construct the inertia ellipsoid according to Eq. (5.2.30), as
depicted in Fig. 5.7. The major, minor, and intermediate axes of this ellipsoid of inertia,
along which the distance from the origin is an extreme value, are mutually orthogonal.
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Figure 5.7. A typical ellipsoid of inertia, whose major, in-
termediate, and minor axes align with &4, &5, and &3, re-
spectively.

However, they do not necessarily coincide with the xyz axes. In the figure £,£,&5 is a
coordinate system whose axes coincide respectively with the major, intermediate, and
minor axes of the ellipsoid of inertia. The canonical equation for an ellipsoidal surface
relative to such a coordinate system is

LET + bEs + BEs =1, (5.2.32)

where I} < I, < I; when & aligns with the major axis and &5 align with the minor axis.
The semidiameters of the ellipsoid are 1//I1, 1/+/5,and 1//F, respectively, as shown
in the figure. Equation (5.2.32) is like Eq. (5.2.30), except that there are no terms asso-
ciated with products of inertia. It follows that /;, I, and I3 are the principal moments of
inertia and the £,£,&5 coordinate system is a set of principal axes.

This discussion proves that, for a specified origin, there always is a set of principal
axes. We could contemplate locating these axes by evaluating [/] for nonprincipal axes
and then constructing the inertia ellipsoid. The principal axes would then be located by
graphically identifying the major, intermediate, and minor axes. However, such a pro-
cedure would be imprecise, as well as challenging to implement. The following example
shows how mathematical analysis of the inertia ellipsoid can locate the principal axes in
a two-dimensional situation.

In the sketch xyz and x'y’z’ are centroidal coordinate systems for
the right triangular plate, with the former aligned parallel to the parallel edges and
the latter rotated about the z axis through angle 6. The mass of the plate is 400 kg.
Because the plate is bisected by the x'y’ plane, 1., = I, = 0. There are values of
0 for which 1., = 0, thereby making x’y’z’ principal axes for the plate. Determine
0 and the corresponding principal moments of inertia by using a rotation transfor-
mation. Then perform the same evaluation by using the properties of the inertia
ellipsoid.
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Example 5.7

SOLUTION The primary intent here is to lessen the abstract nature of the ellipsoid
of inertia by seeing its features for an actual body. We may find the inertia proper-
ties relative to xyz by letting the length a of the right triangular prism in the Ap-
pendix approach zero. The z and x axes are swapped with the corresponding axes in
the tabulation, but the y axis here is reversed from the sense described there. This
means that we should interchange the subscripts of the inertia properties to match
the present definitions and also set I, and /,; equal to the negative of the tabulated
expressions. Thus we have

1 1
3¢ (400) (2) (3.67) = 288, I, = =2 (400) (2) (2.4?) = 128,

Ixx =
I, =L, + I,, =416 kg-mz,
1
Ly = +3¢ (400) (3.6) (2.4) = 96, Iz = Iz =0.

It is worth noting /,, was evaluated as the sum of the other moments of inertia. This
is identically true for any thin flat slab when the origin of xyz lies in the plane of the
slab and the z axis is normal to that plane.

The rotation transformation from xyz to x'y’z’ is

cosf® sinf O
[R]=| —sinf cos6 O
0 0 1

We wish to determine all inertia properties with respect to x'y’z’, so we implement
the full rotation transformation:

288 —96 0
[IN1=[R]| -9 128 0 |[[R]"
0 0 416
288 (c6) + 128 (s6)* — 192s6ch 96 — 192 (ch)* — 160s6ch 0

= 96 — 192 (cf)* — 160s6cH 288 (s0)” + 128 (cH)* +192s6c6 0 |,
0 0 416
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where sf and cf are abbreviations for sinf and cosf. We find the value of 6 that
makes /., vanish by applying the identities for the sine and cosine of 26 to the (1,2)
element of [/'], which leads to

— 96 cos (20) — 80sin (20) = 0 = 6 = 64.903°, —25.097°. <

These two possible angles differ by 90°, so they merely correspond to alternate la-
beling of the x’ and y” axes. The principal moments of inertia for § = 64.903° are

Loy =1 =83.04, I, =bh=33296, L,=1I=46kgm’ <

Solution of this problem by use of the ellipsoid of inertia barely resembles the
preceding operations. Because we know that z is a principal axis, we focus on the
xy plane by writing the defining equation, Eq. (5.2.30), for the case in which z = 0,
which gives

288x% + 128y — 192xy = 1.

This is an ellipse. The multivalued nature of the value of y as a function of x makes
it convenient to use polar coordinates. By definition, the distance from the origin to
a point on the ellipsoid of inertia is p, so we define

X =pcos¢, y=psing.
The equation for the xy ellipse then becomes
0* [288 (cos ¢)* + 128 (sin ¢p)* — 192 (sin ) (cos ¢)] = .

We obtain the graph of this ellipse by solving the preceding equation for the value
of p corresponding to numerous values of ¢ covering a 27 range.

Intersection of the triangular plates’s inertia ellipsoid with the xy plane

The major and minor diameters depicted in this graph could be located by sev-
eral methods, each of which is based on the same property. In general, p has an
extreme value at the principal axes. Hence the major and minor diameters corre-
spond to points at which p has a maximum or minimum value. We could locate both
lines by visually searching for the points on the ellipse that are farthest and closest
to the origin. Another procedure is to search through a table of values of ¢ and p
for the points where p is largest and smallest. Both procedures have limited pre-
cision. A mathematical approach is to use calculus to locate values of ¢ for which
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dp/d¢ = 0. To expedite such an evaluation we introduce the identities for cos (2¢)
and sin (2¢) into the equation for the xy ellipse, which gives

0% (208 + 80 cos2¢ — 96sin2¢) = 1.

Implicit differentiation of this equation with respect to ¢ yields
d
2p£ (208 + 80 cos 2¢ — 96 sin 2¢))

+ p? (—160sin2¢ — 192 cos 2¢) = 0.

Setting dp/d¢ =0 shows that the principal axes correspond to 160sin2¢ +
192 cos2¢p = 0, which is the same as the condition identified from the rotation trans-
formation. Thus the values of ¢, and the corresponding p, are

¢ = 64.903° => p, = 0.109740,
¢ = —25.097° = p, = 0.054803.

<

The principal moments of inertia are the reciprocals of the squares of the extreme
values of p, so

1 83.04, L = 1 33096 kg-m?. <
Pi P
These are the same principal values as those found earlier.

The key aspect to bear in mind is that both procedures, explicitly setting the off-
diagonal elements of [I'] to zero and geometrically analyzing the inertia ellipsoid,
were expedited by the fact that z was known to be a principal axis. Consequently,
only a single angle needed to be evaluated. Either approach would be substantially
more difficult to implement if multiple direction angles needed to be found. Also
worth noting is the fact that the orientation of the principal axes has no simple geo-
metrical explanation, unlike the case for symmetrical bodies.

I =

5.2.4 Principal Axes

Identification of principal axes from the properties of the inertia ellipsoid is unwieldy in a
general situation where none of the axes of the original coordinate system are principal.
Here we establish a mathematical procedure that achieves the same goal in a straight-
forward manner. We seek to determine a rotation transformation [ R] that converts the
inertia matrix [/] associated with nonprincipal axes xyz to a diagonal matrix [/']. Let
I < I, < Iz denote the principal moments of inertia corresponding to axes whose unit
vectors are respectively e, é;, and e;. Equation (5.2.22) describes a rotation transfor-
mation as a column of partitions that consist of the components of unit vectors. In terms
of the principal directions, that description is

{e1}T
[R] = | {e2}" |. (5.2.33)

{es}T
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When we replace [/'] and the arbitrary unit vectors in the first line of Eq. (5.2.25) with
the quantities for principal axes, we find that

L 0 0 {en}"
0 L 0|=]|{e)T [I][{e1} {es) {eg}]. (5.2.34)
0 0 &k (e3)T

Our task now is to determine the unit vector components and principal moments of
inertia that satisfy the preceding relation when [ /] is given. The first step is to premultiply
by [R]" and apply the orthonormal property. This gives

L 0 0
[len fe) te}][ 0 b 0| =[[te) (e} fes)]. (5.235)
0 0 &K

The multiplication property for partitioned matrices simplifies this to

[Hien) ble) Bilest]=[l1te) [Me) [es)]. (5.2.36)

Like columns on either side of this equation must match, from which it follows that each
principal direction and its associated moment of inertia are solutions of

Lifej} =[11{e;}, j=1.2.3. (5.2.37)
In other words, I; are the eigenvalues A and {e;} are the eigenvectors {e} satisfying
[[1] — A [U]]{e} = {0}, (5.2.38)

where [U] is the identity matrix.

This is called a standard eigenvalue problem. Routines for solving such problems
are contained in most mathematical software. Only the concepts are highlighted here.
Equation (5.2.38) represents three simultaneous equations for the components of {e},
which are the direction cosines between a principal axis and the axes associated with
inertia matrix [/]. These equations are homogeneous. Consequently, the only solution
is the trivial one, {e} = {0}, unless the coefficient matrix [/] — A [U] cannot be inverted.
Hence nontrivial solutions for {e} require that X satisfy the characteristic equation cor-
responding to vanishing of the determinant of the coefficients:

1] = »[U]| = 0. (5.2.39)

Evaluation of this determinant with A as an algebraic parameter leads to a cubic equa-
tion. The eigenvalues, which are the three roots of the characteristic equation, are the
principal moments of inertia, A = I, b, L.

Once the eigenvalues are known, we may proceed to determine the eigenvectors,
which will be the principal directions. The fact that the determinant of [/] — /; [U] van-
ishes means that its rank has been reduced, so that the elements of an eigenvector {e; }
cannot be determined uniquely from Eq. (5.2.38). In the standard situation the princi-
pal moments of inertia are distinct values. In that case the rank of [/] — I; [U] is two,
so that one of the three simultaneous equations represented by Eq. (5.2.38) is a linear
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combination of the others. Because of this loss of an independent equation, any nonzero
component of {e;} may be chosen arbitrarily. The other components may then be found
in terms of the arbitrary one by solving the independent equations.

The eigenvectors satisfying Eq. (5.2.38) have an arbitrary element, but that is so
because consideration has not been given to the definition of {e j} as the components of
a unit vector oriented parallel to the jth principal axis. The condition that such a vector
has a unit magnitude is written in matrix form as

{ej} {e;} =1. (5.2.40)

Enforcement of this condition yields the additional equation required to evaluate
uniquely {e;}. Note that the solution of the preceding leads to an ambiguity in sign. Even
though any eigenvector multiplied by —1 is still an eigenvector, assembling the three
eigenvectors to form [ R] might lead to a left-handed system, identifiable by the fact that
|[R]| = —1. Such a condition is readily corrected by multiplying one of the eigenvectors
by —1.

The eigenvectors {e;} form an orthogonal set. To prove this property, consider
Eq. (5.2.37) for two different principal values, j = m and j = n. Premultiplying each
equation by the transpose of the other eigenvector leads to

{en}T [1] {em} = Im {en}T {em} s
{em}T [I] {en} = In {em}T {en} .

The quantities that are equated are scalars, so we may transpose the products without

(5.2.41)

altering the result. Because [/] is symmetric, performing this operation on the second of
the preceding equations gives

{en}T [I] {em) = 1, {en}T {em]) - (5242)

If the moments of inertia are distinct values, I, # I, subtracting this equation from the
first of Eqgs. (5.2.41) leads to the conclusion that

e} e} =0 if I, # I, (5.2.43)

This is the matrix form of the dot product é, - &, = 0, which proves the orthogonality of
the unit vectors. It then follows from Eq. (5.2.42) that

{e) [ {em) =0 if 1, # I, (5.2.44)

According to the second of Egs. (5.2.26), the left-hand side of this relation is the negative
of the product of inertia associated with axes é,, and é,. Hence the preceding merely
proves that the directions derived by solving the eigenvalue problem will be principal
axes.

Both Egs. (5.2.43) and (5.2.44) exclude the case in which the moments of inertia
about axes é,, and ¢, are equal. In general, the rank of [/] — L, [U] is reduced by the
number of times the eigenvalue A = [, occurs as a root of the characteristic equation.
Thus, if I,, = I, and the third eigenvalue is different from 1, then [I] — I, [U] has
a rank of one. This means that [[/] — 1, [U]]{e} = {0} consists of one independent
equation for {e}, so that {e} has two arbitrary elements. It follows that, in addition
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to requiring that {e} represent a unit vector, Eq. (5.2.40), another condition must be
identified.

The method in which to proceed when this ambiguity arises becomes apparent when
we consider a body of revolution. Any coordinate system having an axis that coincides
with the axis of symmetry will be principal, and the moments of inertia about the axes
perpendicular to the axis of symmetry will be the same. This suggests that, when two
principal moments of inertia are equal, the ratio of two arbitrary elements in the first
eigenvector can be set to any convenient value. (For example, we might wish that the
first eigenvector have no component parallel to the z axis, in which case we would equate
the third element of {e,,} to zero.) The principal direction described by {e,} should be
orthogonal to the direction described by {e,,}, so we require that

e}  {en) =0 if m #n. (5.2.45)

This, in combination with Eq. (5.2.40), gives two conditions required to determine
uniquely the second eigenvector.

The greater degree of arbitrariness associated with identical principal moments of
inertia arises because the corresponding principal directions are not unique. The case in
which all three principal values are identical merely means that any set of axes are prin-
cipal. There is then no need to solve an eigenvalue problem. This feature is exemplified
by a homogeneous sphere or cube when the origin is placed at the centroid.

The ellipsoid of inertia provides an interesting geometrical interpretation of the
eigenvalue problem, which was derived from the mathematical properties of the rota-
tion transformation of inertia properties. We saw in the previous section that principal
axes correspond to locations on the inertia ellipsoid at which the distance to the cen-
ter is a local extremum. At such locations the normal to the ellipsoid’s surface will be
parallel to the line to the origin. The vector from the origin to a point on the surface is
p = xi + yj + zk. If a surface is described in functional form as f (x, y, z) = C, a con-
stant, then the gradient of f is normal to the surface.

Thus the condition that p is parallel to the surface normal when it is aligned with a
principal axis is described by

p=xi+yj+zk=0oVf, (5.2.46)

where o is a factor of proportionality. Equation (5.2.30) is the function for the ellipsoid.
The gradient of this function is

szz(lxxx_lxy_lxz){+2(1 y—IxX—IZ)]T
Y T o (5.2.47)
+ 2Lz — Leox — 1y y) k.

We substitute this expression into Eq. (5.2.46), and match like components, which leads
to

x =20 (Lyx — Lyyy — 1,:2),
y =20 (yyy — Lyx — 1,;2), (5.2.48)

z7=20 (IZZZ - Ixzx - Iyzy)'
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The matrix form of this set of simultaneous equations is

[I[x y 2" = % [xy 7. (5.2.49)

This is equivalent to the eigenvalue problem described by Eq. (5.2.37) when o = 1/24;.

Determine the principal moments of inertia and associated rota-
tion transformation for the triangular plate in Example 5.7 by solving an eigenvalue
problem.

SOLUTION This example demonstrates the formal mathematical eigensolution. In
Example 5.7 the inertia matrix of the triangular plate relative to centroidal axes
matching those in the Appendix was found to be

288 —96 0
[[]=]-96 128 0 | kg-m’.
0 0 416

The corresponding eigenvalue problem for principal axes is

(288 — 1)  —96 0
96  (128—x) 0 |{e}={0}.
0 0 416 — 2

The characteristic equation is
|[Z] — A[U]| = (416 — 1) [(288 — 1) (128 — 1) — 96?]
= (416 — 1) (A* — 4161 +27648) = 0.

One eigenvalue makes the first factor vanish, whereas the other two roots are solu-
tions of the quadratic equation we obtain by setting the second factor to zero. These
values are

A =1 =83.036, A =15 =332964, r3 =1 =416 kg-mz. <

Note that the eigenvalues have been sequenced from smallest to largest.
We denote the elements of eigenvector {e} corresponding to /; as e,;. Thus the
first eigenvector must satisfy

€11 204.964 —96 0 €11 0
[[1] — )\.l [U]] €21 = —-96 44.964 0 €21 = 0
€31 0 0 332.964 é31 0

This eigenvalue is a single root of the characteristic equation, so one row of the coef-
ficient matrix is a linear combination of the others. The third row clearly is different



272 Inertial Effects for a Rigid Body

from the other two, so we discard the second row. Thus we need to find the solution
of

204.964611 — 96621 = 0,
332.964e3 = 0.

The last of the preceding equations requires that e3; = 0, which means that it cannot
be considered arbitrary. The first equation defines the ratio of ep; to e;1, so we have

e — 2.1350811, €31 — 0.
The condition that {e} represent a unit vector requires that
er, + e = (1+2.1350%) ef, = 1.

We select the positive root, so that the first principal axis will have a component in
the positive x direction. This leads to

el = 04242, €1 —= 09056, €31 — 0.

The evaluation of the second principal direction follows similar steps. We have

€12 —44.964 -96 0 €12 0
11— 2 [Ullyen ¢ =| —-96 —204964 0 en ¢ =10
€32 0 0 83.036 €32 0

Once again, we discard the second equation as the one that is not independent,
which leads to

—44.964e1, — 96ey, =0
= ep = —0.4684¢1,, exn = 0.
83.036e3, =0

Making this eigenvector represent a unit vector gives

e = 09056, €y — —04242, e3) — 0.

The situation for the third eigenvector is slightly different. In this case, we have

@3 —128 -9 0 €13 0
[[I]=23[U]]§ exs ¢ =| =96 —128 O e =10
ée33 0 0 0 e33 0

The first two rows of the coefficient matrix are independent of each other, and the
third coefficient in each is zero, so the associated equations require that ej3 = ey3 =
0, but place no conditions on e33. The last row of the coefficient matrix represents
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a trivial equation, so any value of e33 will constitute an eigenvector. For it to rep-
resent a unit vector it must be that |es3| = 1. If e33 = +1 and the first two rows of
[R] are the values we have determined, then |[R]| = —1. Multiplying an eigenvector
by —1, which corresponds to reversing the associated unit vector, does not alter the
fact that it is an eigensolution. Thus we set e33 = —1. According to Eq. (5.2.33), the
eigenvectors are the rows of the transformation matrix, so we have found that

04242 0.9056 0
[R]=| 09056 —04242 0 |. 5
0 0 -1

A comparison of this result with the one found in Example 5.7 shows that the second
and third principle directions are reversed.

DN K-I In the sketch, xyz are centroidal axes of the 60-kg homogeneous
orthogonal tetrahedron. Determine the principal moments of inertia and the rota-
tion transformation for the principal axes whose origin also is the centroid.

600 mm

Ly
200 mm x >

\/400 mm

Example 5.9

SOLUTION This example addresses how mathematical software can be used to eval-
uate the principal inertia properties.! For the dimensions of the given body with
m = 60 kg, we find from the Appendix that

1.170  0.060 0.090
[1] =] 0.060 0.900 0.180 | kg-m>.
0.090 0.180 0.450

Most mathematical software packages have functions or subroutines that can solve
the standard eigenvalue problem [[/] — A [U]] {e} = {0} . In Matlab, one obtains the
desired result by writing [e_vecs, I_princ] = eigs(I); where I is the preced-
ing 3 x 3 array, I_princ is a 3 x 3 diagonal array whose elements are the principal

 One should check the behavior of their software version. In particular, the manner in which eigenvec-
tors are normalized is somewhat arbitrary. The results presented here were obtained from Matlab 7.1
and Mathcad 13.1.
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moments of inertia, and e_vecs is a 3 x 3 array whose jth column is the eigenvector
corresponding to I_princ(j,j). The Matlab result is

I_princ(1,1) =1.2059 [_princ(2,2) =0.9327 [_princ(3,3) = 0.3814,
—0.9395 —0.3322 —0.0836
e_vecs = | —0.2908 0.9023 —0.3181
—0.1811 0.2746  0.9444

The algorithm employed by Matlab returns e_vecs as an orthonormal transforma-
tion, that is, [e_vecs] [e_vecs]" = [U], but the principal values are not sequenced
from smallest to largest, as we prefer. We therefore swap the first and third prin-
cipal moments of inertia, and correspondingly swap the first and third columns of
[e-vecs]. However, swapping a pair of columns of a 3 x 3 matrix reverses the sign
of its determinant, which brings to the fore the question of whether the transfor-
mation initially computed by Matlab was right-handed. The raw output previously
listed has a determinant of —1, so the result of swapping columns one and three
yields the correct result. After these steps, the transformation matrix [ R] is readily
obtained by recalling that the individual eigenvectors constituting the columns of
[e_vecs] are the rows of [R], so that [R] = [e_vecs]" . After these adjustments, the
results obtained from Matlab are

I, =0.3814, I, = 0.9327, I; = 1.2059 kg-mz, <

—0.0836 —0.3181 0.9444
[R]=| —0.3322 0.9023 0.2746 | . <
—0.9395 —0.2908 —0.1811

An excellent check for any solution, whether it is obtained by solving the charac-
teristic equation or from computer software, is to verify that [R][/][R]" yields a
diagonal array whose nonzero elements are the principal moments of inertia in the
correct sequence.

Mathcad uses two functions to solve the eigenvalue problem corresponding to a
specified 3 x 3 array /. The principal moments of inertia are computed by Iprinc:=
eigenvals(I); and the eigenvectors are obtained from ep;in.:= eigenvecs(I);
where Ii,. is a three-element column vector of principal moments of inertia, and
€princ i@ 3 X 3 array whose columns are the eigenvectors sequenced to match Ippipc.
The result is

1.2059 0.9395 03322 —0.0836
{Iprine} = 4 0.9327 ¢, [ eprinc] = | 02908 —0.9023 —0.3181

0.3814 0.1811 —0.2746  0.9444

The eigenvectors returned by Mathcad’s algorithm, like Matlab’s, have the or-
thonormal property. Mathcad, like Matlab, does not address the handedness of the
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transformation, and it does not necessarily sequence the principal moments of in-
ertia from smallest to largest. The preceding values are like the raw output from
Matlab, except that the first two columns of [eprinc] are multiplied by —1 relative to
their Matlab correspondences, o |[eprinc|| = —1. Because the principal moments of
inertia are reversed from the desired order, as they were in Matlab, we swap the first
and third values of { Iyinc} and swap the first and third columns of [€princ | . This leads
to |[€prmc]| = +1, asrequired. The result is that the principal moments of inertia are
the same as those obtained from Matlab, whereas the last two rows of [ R] obtained
from Mathcad are the negative of the Matlab values.

5.3 RATE OF CHANGE OF ANGULAR MOMENTUM

The angular momentum of a rigid body is used in several contexts. Our focus here is
its usage to form Eq. (5.1.22), which describes the effect of the resultant moment. The
angular momentum was shown in Eq. (5.2.3) to be describable in terms of the body’s
angular velocity and inertia properties. Evaluation of the inertia matrix was discussed in
detail in the preceding section, and the techniques for evaluating angular velocity should
be familiar by now. We now turn to the task of taking the time derivative of the angular
momentum.

A careful reading of the development thus far will reveal that we have not fully
defined how the xyz reference frame rotates. To use the simplified moment equation,
we stipulated that point A for the moment sum shall be an allowable point. We then
placed the origin of the xyz coordinate system, which was used to describe the position
of each mass element, at point A. These conditions do not address how xyz rotates. We
remove this ambiguity by imposing a restriction that expedites differentiating Hy.

In the context of kinematics, xyz has played the role of a global coordinate system.
We use it to describe the body’s distribution of mass, as well as its angular velocity com-
ponents. If xyz has an arbitrary angular velocity €2, then the derivatives of its unit vectors
are di/dt = Q x i, etc. Further, because the body’s angular velocity differs from €, the
orientation of the body relative to xyz is not constant, so that the inertia properties are
not constant. Consequently, every term in Eq. (5.2.3) might change with time. The time
derivative of that equation therefore is

dH A d \ - d [ _ W, — w i
_[ _t (Ixxa)x — Ixya)y — xzwz) 1+ dt yy@y yxWx vz z) J
d d (5.3.1)

d -
+ |:E (Iz0; — Ly, — Izya)y)] k+Qx Hy.

Clearly, it would be preferable if the inertia properties were constant. This condi-
tion is achieved if the body’s orientation relative to xyz is invariant. For this reason we
introduce the requirement that

xyx should be a body-fixed coordinate system.




276 Inertial Effects for a Rigid Body

In addition to simplifying evaluation of the derivatives in Eq. (5.3.1), such a requirement
sets Q@ = @, so the only angular velocity we need to evaluate is that of the body. A third
simplification that results is more subtle. Differentiating the components of H in accord
with Eq. (5.3.1) results in the occurrence of terms containing @., @y, and @;, which
suggests that we need to describe the components of @ as functions of time. In contrast,
the procedures we established for evaluating angular acceleration did not require such a
description. When & is described in terms of components relative to coordinate system
xyz that rotates at Q, its time derivative is given by

6;—6:=2—(;)+S_2x[uz(cbxi_+d)y]7+cbzlz)+f_2x@. (5.3.2)

a=

By deciding to attach xyz to the body, we always have Q = @, in which case the partial
and total derivatives of @ are identical, so that

o

5 = o, =w,, p=x,Y,z ifxyzisbody fixed. (5.3.3)

a=
In other words, the angular acceleration components are the rates of change of the an-
gular velocity components when those components are relative to body-fixed axes.

The overall consequence of requiring that xyz be body fixed is that differentiation
of H, becomes reasonably straightforward. We apply the partial derivative technique
in Eq. (3.3.15) to the angular momentum. In that equation @ was the angular velocity of
the reference frame. It now also is the angular velocity of the body, so we have

dH _
Hy = 8—;‘ +@& x Hy. (5.3.4)

The components of d/1,/dt are the derivatives of the respective components of Hy,
which are indicated by Eq. (5.2.3) to consist of products of inertia coefficients and @
components. The former are constant, and derivatives of the latter are described by
Eq. (5.3.3). Thus,

dH : j
8_;‘ = (Loxtty = Lyory = L) T+ (Lyyory — Loy — Iza) (5.3.5)

+ (I, — Loy — Lyay) k.

It is evident that evaluation of d H,/dt requires prior determination of [/] for the body
and analysis of ® and & for the body’s motion. These quantities are substituted into
Eq. (5.2.3) for H, and the preceding equation for d H,/dt, which are then assembled
to form Eq. (5.3.4). The matrix representation of H, in Eq. (5.2.5) leads to a compact
representation of the full expression:

{Ha} = [11{a} + {0} ® (] {o}). (5.3.6)

where ® denotes the matrix implementation of a cross product.
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If xyz are principal axes, there are fewer terms to compute in Hy and 9 H,/d¢. This
simplifies the vector form of the various quantities, with the result that

Hy = [Lcox — (Iyy — Lz) oyo )i + [Lyyoty = (Lz — L) oxw:] | (5.3.7)

+ [Izzaz - (Ixx - Iyy) wxwy] k.
This standard form is known as Euler’s equations. Their simpler appearance makes it
quite attractive to select xyz as principal axes. However, it is important to realize that the
orientation of these axes affects the ease with which @ and @ are determined. Also, as we
have seen, principal axes have no special orientation relative to a nonsymmetrical body,
in which case their identification requires additional mathematical operations. This leads
to the recognition that

It is best to select the xyz reference frame based
on its suitability for describing [/], @, and &.

If our choice for xyz happens to correspond to principal axes, then we may use
Eq. (5.3.7).

Many mechanical systems feature axisymmetric bodies that spin about their axis of
symmetry. Any coordinate system having an axis that coincides with the axis of symme-
try represents a principal set of axes. In Fig. 5.8 xyz is attached to axisymmetric body 1
such that its z axis coincides with the axis of symmetry. The spinning rotation ¢ occurs
about the z axis relative to body 2, whose angular velocity is an arbitrary quantity .
Thus the angular velocity of body 1, and of xyz, is

® = Q+ dk. (5.3.8)

In the figure x"y’z’ is introduced as a reference frame that is attached to body 2 such that
its z’ axis also coincides with the axis of symmetry of body 1. This leaves x" and y” axes
unspecified, so we may orient those axes to facilitate description of . For example, we
might choose to let the y’ axis coincide with the line of nodes for nutation in an Eulerian
angle formulation.

There are two ways in which we may use x’y’z’ to formulate the problem. In the first
we observe that, at any instant, there is a body-fixed coordinate system that is parallel
to x'y’z’. This is evident from the fact that the reference line used to measure ¢ may be
defined arbitrarily. Thus, in this special circumstance, using x’y’z" as a global coordinate

Figure 5.8. Reference frames for describing the rotation of ax-
isymmetric body 1 relative to arbitrarily rotating body 2.
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system leads to a description of vectors that is valid at any instant. In other words we
may consider x'y’z’ to be the body-fixed xyz coordinate system that is situated at ¢ = 0
at the instant of interest. This leads to a general procedure for axisymmetric bodies:

To evaluate d Hy/dt for a body spinning about its axis of the symmetry, we may
define the body-fixed xyz reference frame such that one axis coincides with the
axis of symmetry. Then an expression for d H,/dt that is valid at any instant will
be derived, regardless of how the other axes of xyz are aligned. Thus the other
axes should be aligned instantaneously to expedite the component description of @
and &.

The invariance of the inertia properties with respect to angle ¢ has led some to em-
ploy an alternative formulation of d F1, /dt based on truly using x’y’z’ as a global coordi-
nate system. Evaluating d 4 /dt in this approach requires that we return to Eq. (5.2.3).
We form @ according to Eq. (5.3.8). Because the 7’ axis always coincides with the axis of
symmetry of body 2, it must be that x"y’z’ constitute principal axes regardless of ¢. Thus
the angular momentum of body 1 is

Hy = L Qoi’ + 1,,Qy '+ L (Q + ¢) k. (5.3.9)

Because the components in this expression are relative to x"y’z’, the unit vector deriva-
tives are described by € x é’. Thus the total and partial derivatives are related by

. 9H, . .
HAza_tA+QXHA~ (5.3.10)

Differentiation of the component representation of H4 given by Eq. (5.3.9) leads to

= Lol + 1@y [+ L (@0 + §) K. (5.3.11)

As we did previously, we observe that, because ., 2y, and @ are the angular veloc-
ities of a reference frame relative to its own axes, their derivatives are the components
of the angular acceleration of x'y’z’, that is,

a'= Qi+ Qyj + Qk
The result of assembling these expressions is
HA = [Ixxa; - (Iyy - Izz) Qy’ (Qz’ + ¢)]l_+ I:I,vya;ﬂ - (Izz - Ixx) Qx/ (Qz/ + ¢)] ]_
+ [ Lz () + @) — (Lex — 1y) wx oy | k.
(5.3.12)
These are sometimes referred to as the modified Euler equations. The primary advantage
of this approach lies in the fact that it makes the role of the spinning motion apparent.
Countering it is the fact that the procedure is not generally applicable and therefore

prone to misapplication. In contrast, the fundamental methodology is valid regardless
of the inertia properties.
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In relatively simple circumstances featuring axisymmetric bodies, yet another
method may be available to evaluate d H,/dt. It is mostly employed to explain phe-
nomena qualitatively, but sometimes it is suitable for quantitative analysis. Suppose we
evaluate the angular momentum according to Eq. (5.2.3) by using a body-fixed xyz ref-
erence frame. That description should be representative of an arbitrary position of the
body. Depending on the motion it might be that an alternative global coordinate system
X9z executing fewer rotations than xyz is equally suitable for describing the components
of Hyu. Then, either by graphical projections or through a rotation transformation, we
can write

Hy = (Ha); 2 + (Ha); & + (Ha); 2. (5.3.13)

We consider each component individually. If we are following a pictorial approach, we
evaluate the derivative of each component as the sum of a term parallel to the unit
vector that is due to the change of its magnitude plus the change perpendicular to the

unit vector resulting from its rotation at the angular velocity & of % yZ. Mathematically,
this is equivalent to writing

Hi= Y [(HA)pé,3 +(Ha)pd x éﬁ] . (5.3.14)
p=%.9.2

This representation might not seem to be easier than any of the other approaches
developed thus far, but that depends on the characteristics of the system and the choice
for a global coordinate system. To explore this, consider the situation in Fig. 5.9, in which
a disk sander spinning at w; must be rotated at angular speed w;, about the handle, which

is transverse to the disk’s centerline.

Figure 5.9. Disk sander illustrating the evaluation of the rate of
change of angular momentum of a spinning axismmetric body.

Our focus is on the angular momentum of the rotating disk about its center of mass
G. Let z denote the body-fixed axis for w; and z’ be a parallel axis for a reference frame
attached to the motor housing. The x’ axis is aligned with the handle, so it is the axis
about which w, occurs. We make use of the simplification afforded by axisymmetry by
defining the body-fixed centroidal x axis at the instant of interest to be parallel to x'.
Because xyz are principal axes, the angular momentum at any instant is correspondingly
indicated by Eq. (5.2.3) to be

I:IG = Iza)zlr—i- 11(1)1/2, (5315)

where [; and I, are respectively the centroidal moments of inertia of the disk about its
centerline and any transverse axis. This expression is generally valid. It follows that we



280 Inertial Effects for a Rigid Body

may replace the unit vectors in Eq. (5.3.15) with those of x’y’z’, so at any instant the two
components of angular momentum are as depicted in Fig. 5.9

We know that i’ is stationary, whereas k' rotates at w,i’. Furthermore, the values of
the moments of inertia and rotation rates are constant. Thus, in the figure the i’ compo-
nent of Hg is constant, and the sole variability of the k¢’ component of Hg is the changing
direction of k’. We can visualize that the tip of Ijw1k’ moves in the — ' direction, so we
can anticipate that d Hg/dt will be oriented in that direction. This is confirmed by the
fact that the only variable in Eq. (5.3.15) is k', whose derivative is wyi’ x k’. Thus we
have

I:IA = —Iza)la)zj/.

The moment equation of motion requires that a couple equal to d Hg/dt be applied to
the rotor. This must ultimately be applied by the operator to the sander’s handle. Thus
a moment perpendicular to both rotation axes is required to sustain the motion, which
is not what an inexperienced operator would anticipate.

The right triangular plate is welded along its hypotenuse to a shaft
that rotates at the variable rate Q. Determine d Hg/dt for the plate. For the special
case in which € is constant, predict which way the dynamic reactions generated at
the bearings will be oriented.

Example 5.10

SOLUTION One purpose of this example is to emphasize that bodies rotating about
a fixed axis sometimes cannot be fully described by a planar formulation. Also, the
simplicity of this system will enable us to assess fully the analytical results from a
qualitative viewpoint. The axes of the body-fixed xyz coordinate system depicted in
the sketch match those described in the Appendix for a right triangular prism whose
width is zero.

Angular momentum components of the spinning plate rel-
ative to the body-fixed coordinate system defined in the
Appendix.
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The tabulation gives

1 1 . 1
L, = Embz, oy = Emb2 (sing)*, I, = Emb2 (cos9)?,

1 .
oy = dle = My = M =0, Mg = Iy = —%mb2 sin @ cos 6.
Itis given that € is not constant, so the angular velocity and angular acceleration
are parallel to the shaft. We resolve both quantities into components with respect to
Xyz, SO

@ =Qesp=(cos0] —sinok),
a=Qep=SQ(cos6j—sinbk).

Substitution of the inertia values and the components of @ and @ into Egs. (5.2.3)
and (5.3.5) leads to

_ 1 _ _
Hs = %meQ sin@ cos (sinf j — cos k),

d H, 1 . - _
a_tG = %mbzﬁ sin® cos 6 (sin 6 — cos k) .
Correspondingly, Eq. (5.3.4) yields

o 1 =
Hg = %mbzﬂz siné cos 6 [— (cos0)* + (sin 9)2] [

1 . - _
—l—%mbzﬂ sin@ cos 6 (sin6 j — cos k),
which is identically
o 1 - - _
Hg = 7—2mb2 sin 20 [—Q? cos 207 + Q (sinf ] — cos k)] . <

It is evident from this result that the forces acting on the plate must exert a moment
about point G to sustain the rotation, even if €2 is constant. The only exception is
6 = /4, in which case d Hg/dt = 0if Q = 0.

To understand this result, the Hg vector appears in the sketch defining xyz.
The preceding expression for Hg indicates that its direction cosines are sin@
and — cos 0 with respect to the y and z axes, respectively. This leads to the observa-
tion that at any instant the angle between Hg and the shaft is 7 /2 — 26, as shown
in the sketch. Rotation of the system changes the direction of g, but the angle
between Hg and the shaft remains constant. Thus the rotation of Hg changes only
the component of Hg perpendicular to the shaft, (Hg), = |Hg} sin(w/2—20) =
(1/36) mb*Q sin 6 cos 6 cos (26). The rotation causes the tip of this vector component
to move into the plane of the sketch, which is the —i direction, and the magnitude
of the rate of change is Q (Hg), , which matches the i component in the derived
expression. The j and k components in that expression are proportional to 2. An
increase in the value of Q increases the length of Hg in the sketch, which is mani-
fested as terms in d Hg/dt that are parallel to Hg, which are the j and k components
of the result.
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The fact that the portion of d Hg/dt that is independent of  vanishes when
0 = m /4 is readily explained. In that case a centroidal coordinate system having one
axis, say y’, parallel to the shaft symmetrically bisects the plate, so it represents
principal axes. Using these principal axes to form the angular momentum shows
that Hg reduces to 1,/,,Qj’. Thus in this case, H is always oriented parallel to the
axis of rotation, whose orientation is constant.

When Q is constant our analysis indicates that d Hg/dt is in the negative i di-
rection, which is inward in the perspective of the sketch depicting Hg. Thus the
external forces acting on the system must exert a net moment that is clockwise
relative to the sketch. Such a moment is provided by the bearings, which exert
forces situated in the plane of the diagram. Their total moment about point G must
equal d Hg/dt. In addition, when € is constant, the center-of-mass acceleration is
directed toward the shaft. The sum of the bearing forces must equal mdags, which
also is situated in the plane of the sketch. From these observations we conclude
that the bearing forces required to sustain a constant Q2 act perpendicularly to the
shaft in the plane of the plate. Both |d Hg/dt| and |ma,| are proportional to €2,
which means that these bearing forces will increase as the square of the rotation
rate. We say that these are the dynamic reactions because they are generated to
support the rotation. In contrast the static reactions counter the gravity force. They
act in the fixed vertical direction. The direction of the dynamic reactions rotates at
2, so the components of the dynamic reactions in the fixed horizontal and verti-
cal directions vary sinusoidally as cos (€2¢) and sin(2t) . Thus we see that the sys-
tem supporting the bearings will experience fluctuating forces having an amplitude
that increases as Q2. Such forces could induce strong vibration in the supporting
system.

ETULTEREN The square plate is pinned at corner A to the vertical shaft, which
rotates at the constant angular speed 2. The angle 6 is an arbitrary function of time.
Determine d H, /dt for the plate as a function of 6.

Example 5.11
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SOLUTION The rotation in this example occurs about two axes, so this solution will
give a more complete picture of the general procedures. Nevertheless, the motion
is sufficiently simple that we will be able to understand the physical meaning of the
result. To form Hy, the origin of xyz must coincide with point A. We align the x
axis with edge A D and the y axis with edge A B, which are parallel to the centroidal
axes described in the Appendix. The inertia properties obtained from the parallel
axis theorems are

1 2
Ixx = Iyy = §mL2, IZZ = gmLz,
1 2
Ly=gmL? Lg=1;=0.

The Q rotation occurs about the fixed vertical axis, which we designate as K.
The 6 rotation occurs about the pin, whose axis is perpendicular to the plate; this is
the body-fixed z axis. The general expressions for the angular velocity of xyz and of
the reference frames for the rotation directions are

o=Qe +0e, =K, =0 &=k Q=a
The angular acceleration corresponding to constant £ and variable & are
a=0e+0(@xe).
It is convenient to let y = /4 4 6, so that
@ = Q (sinyi +cosyj)+ 0k,
a = Q0 (cosyi —sinyj) + bk.
Equation (5.2.3) for the present rotation gives

Hy = (Lo — Lyw)) i + (Iyo, — Lyyoy) |+ Lok
=ml?|Q ! sin ! cosy |i+Q ! cos ! siny ) j + ZQE
= 3 14 2 14 3 14 4 V] 3 )
and the corresponding expression for the body-fixed derivative of Hy is
ol - - _
a—;‘ = (Loxtx — Lyaty) T + (Lyary — Lver) J + Lack
=ml?| Qb ! cosy + ! siny )i+ Q6 ! sin ! cosy | j+ 2912
= 3 14 4 14 3 14 4 V)] 3 .
The rate at which angular momentum changes is correspondingly found to be

o oH _
HAZ—A—‘,-Q)XHA

. (2 1 - . 2 1
=mlI?Q0 <§ cosy + zsin y) i +mI*Q0 (—3 siny — 5 cos y) j

+ mlI? [%0 + %Qz ((cos ¥)? — (sin y)2>i| k.
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The result was requested as a function of #, which we can recover by setting y =
/4 + 0 in the trigonometric terms. The identities for the sine and cosine of a sum
lead to

V2

2 . - 2 . -
Hy = EmUQ@ (7cos@ —sin@)i + %mLZQG (—7cos@ —sinf) j

2. 1 _
+ml? [39 - ZQZ sin 29] k.

To understand this result it is useful to eliminate y in the preceding expression
for H,. Doing so yields

_ 2 - 2 - 2 .
Hy = %mLZQ (cos® +7sinf)i + g—;mLzQ (cos6 —7sin0) j + gmLZQk.

We may separately examine the manner in which © and @ cause H, to change. Let
us designate the portion of Hy, that lies in the plane of the plate as H = (Hya), i +
(Ha), j. When 6 = 0 the components of Hj have equal magnitude. In that case H
is along the diagonal to corner C, which is aligned with vertical rotation axis. When
6 > 0, we see that (Ha), > (Ha),, which means that the angle from the y axis to

Hj exceeds 7 /4. In fact, this angle, which is given by

B tan |:(HA)xi| — tan-! (cos@ + 7sin9>

(Ha), cosf — 7sinf

can be shown to be greater than y = /4 + 6, so the angle from the y axis to H| ex-
ceeds the angle to the Q rotation vector. Thus Hj is situated as shown in the second
sketch.

A
= \
z/
(H4)x 3 Y Angular momentum components parallel and perpendicular to
the plane of the square plate.

|

Hji

|

X : Q
(HA)y

Rotation about the vertical axis causes the tip of H to move in the negative k di-
rection. This portion combines with the term .. corresponding to the changing
magnitude of H, - k to produce the kK component of d H, /dt.

This is not the sole effect of the Q rotation on H,4. The sketch shows Hy - k =
I.0. Rotation about the vertical axis at © causes the tip to this vector to move in
the horizontal direction, parallel to the plane of the plate. This is one of the effects
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producing the 7 and j components of d F, /dt. The other source of these components
is the fact that changing 6 changes (Hx), and (Ha), .

The fact that two rotations are present in this system makes it more difficult
than in the previous example to visualize the reasons why the angular momentum
changes. As system complexity increases, we will come to rely on the analytical re-
sult, and only occasionally seek a physical explanation for some particularly inter-
esting aspect.
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HOMEWORK PROBLEMS

EXERCISE 5.1 Spheres A and B are welded to a connecting bar of negligible mass that is
mounted obliquely on a shaft that rotates at the constant rate 2. The mass of the shaft
also is negligible, so the center of mass O of this sys-

tem is situated on the shaft. Thus the system is stat- Q

ically balanced. Evaluate the angular momentum of () 0 B
the two spheres about the center of mass when the h~
connecting bar is horizontal and when the shaft has

rotated by 1° from that position. The difference be- Exercise 5.1
tween the value of the angular momentum at these two positions is approximately d Hp.
Evaluate that difference, and from that result deduce the sense of the moment the bear-
ing forces must exert to sustain a constant rotation rate.

A —"h

EXERCISE 5.2 The bar is pinned to the vertical shaft, whose
rate of rotation is 2. The mass distribution of the barisrep- g
resented by three small spheres having mass 71/3 shown in Q
the sketch. Consider the situation in which the bar is falling
at & = 2Q at the instant when 6 = 53.13°. Determine and

sketch the angular velocity and angular momentum of the | A4

bar relative to pin A. Then use these quantities to evaluate L6

the kinetic energy of the bar and verify that this result is the L

same as that obtained by adding the kinetic energy of each Exercise 5.2

sphere.

EXERCISE 5.3 Use integration to determine the inertia properties of the truncated par-
allelepiped in Example 5.5 relative to the XY Z system defined there.

EXERCISE 5.4 Derive the centroidal location and centroidal inertia properties of a ho-
mogeneous prism, as tabulated in the Appendix.

EXERCISE 5.5 Use integration to determine the inertia properties of the semicone ap-
pearing in the Appendix.

EXERCISE 5.6 The body in the sketch is a truncated cone.
Use integration to determine its inertia properties relative
to the xyz coordinate system in the sketch.

Exercise 5.6
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EXERCISE 5.7 A constant thickness shell is a
body whose dimension measured perpendicular to its
curved surface is an invariant value that is a small
fraction of the other dimensions. Consider a semicon-
ical shell whose thickness is 4. The origin of xyz is
placed at the apex and the z axis is aligned with the
cone’s axis. (a) Use cylindrical coordinates to evalu-
ate the inertia properties. (b) Use spherical coordi-
nates to evaluate the inertia properties.

287

Exercise 5.7

EXERCISE 5.8 Use integration to determine the inertia properties of a spheroid tabu-

lated in the Appendix.

EXERCISE 5.9 The thin wire is bent to a parabolic shape such
that its centerline is defined by the generic equation y = kx?.

tion has a 20-mm diameter. Use numerical integration to de-

The wire is steel, p = 7800 kg/m3, and its circular cross sec- 2 m%|

termine its mass, the location of its center of mass, and its

1.5m

moments and products of inertia relative to the xyz coordi-
X

nate system in the sketch.

Exercise 5.9

EXERCISE 5.10 A cylinder is sliced in half along its di-

agonal. Determine the location of the center of mass
and the inertia properties relative to a coordinate sys-
tem whose z axis coincides with the axis of the cylinder

and whose origin is situated at the circular end.

EXERCISE 5.11 The semicircular cutout in the
steel cylinder is filled with lead. Determine the
centroidal location and the inertia properties of
this body with respect to the centroidal coordi-
nate system whose axes are parallel to the xyz
system shown.

Exercise 5.10

100 mm

Exercise 5.11
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EXERCISE 5.12 Use the inertia properties of
an orthogonal tetrahedron given in the Ap-
pendix to determine the location of the center
of mass and inertia properties of the tetrahe-
dron relative to the xyz coordinate specified in
the sketch.

Exercise 5.12

EXERCISE 5.13 The x axis forms a diagonal inter-
secting the centroid of the homogeneous cylinder. I\z R
Determine the inertia properties of the cylinder with -

respect to xyz.
; /1Y
477
IA
y

Exercise 5.13
EXERCISE 5.14 A rotor in the shape of a disk is
welded obliquely to a shaft, such that its cen-
terline does not coincide with the axis of the
shaft. The mass of the shaft is 5 kg, and the ro-
tor’s mass is 20 kg. Determine the location of
the center of mass of this assembly, then eval-
uate the centroidal moments and products of
inertia for a coordinate system whose x axis
coincides with the axis of the shaft.

Exercise 5.14

EXERCISE 5.15 The mass per unit length of the wire
frame is the constant value o. Determine its inertia

properties relative to the xyz coordinate system in
the sketch.

Exercise 5.15
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EXERCISE 5.16 The origin of the xyz coordinate
system coincides with the centroid of the upper
face of the box. The mass of the box is 10 kg.
Graph I, I,,, and I, as functions of #. Also
determine the values of 6 for which |/y,| has its
maximum and minimum values.

Exercise 5.16

EXERCISE 5.17 Two metal plates are welded to
the aluminum cylinder as shown in the sketch.
Each plate has a mass of 20 kg, and the mass of
the cylinder is 200 kg. Determine the location of
the center of mass and the moments and prod-
ucts of inertia of this body relative to the xyz
coordinate system shown in the sketch.

EXERCISE 5.18 The x axis lies in the plane of
the 500-g plate, and the y axis is elevated at 25°
above the diagonal. Determine the inertia ma-
trix of the plate relative to the xyz coordinate
system in the sketch.

EXERCISE 5.19 The mass of the plate is 500 g. De-
termine the principal moments of inertia relative Exercises 5.18 and 5.19
to a coordinate system whose origin coincides

with the origin of xyz depicted in the sketch.

EXERCISE 5.20 A rigid body consists of five z
small spheres of mass m mounted at the corners
of a lightweight wire frame in the shape of an or-
thogonal pyramid. Determine the principal mo-
ments of inertia and the direction angle between
each principal axis and the xyz coordinate axes.

400 mm

y
400 mm
xm

Exercise 5.20

EXERCISE 5.21 The y axis is normal to the inclined face of the 400-kg homogeneous
prism. Consider the situation in which the x axis coincides with diagonal AC. Determine
the inertia matrix of the prism relative to this coordinate system.
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EXERCISE 5.22 The y axis is normal to the in-

clined face of the 400-kg homogeneous prism. X l\ 3m
Is there any value of the angle 6 for which the \ ~ C
product of inertia I, = 0? If so, what is the an- 4
gle and what is the corresponding inertia ma- ‘ 1.2m
trix? / \J

z B 1.5m

Exercises 5.21, 5.22, and 5.23

EXERCISE 5.23 The prism’s mass is 400 kg. Determine the principal moments of inertia
with respect to a coordinate system whose origin is coincident with the origin of xyz in
the sketch. Also determine the rotation transformation for the principal axes relative to
coordinate axes aligned with the orthogonal edges.

EXERCISE 5.24 Consider the tetrahedron in Exercise 5.12. Determine the principal mo-
ment of inertia for the origin specified there. Also determine the direction angle of the
principal axes relative the given xyz coordinate system.

EXERCISE 5.25 In the case of a flat plate having an arbitrary shape, any coordinate sys-
tem whose xy plane coincides with the midplane is a plane of symmetry, so that /., and
I, are identically zero. In such situations the principal axes are obtained by a rotation
transformation by angle 6 about the z axis, which one can evaluate by considering only
the inertia properties with respect to the xy plane. A Mohr’s circle construction, typi-
cally encountered in stress analysis, may be used to perform such an evaluation. Derive
expressions for I,,/, I, and I, corresponding to arbitrary values of I, I,,, and I,,.
Show that if the points (/,y/, Iy+,) and (I, —I,+,) are plotted relative to orthogonal
axes, the distance between these points is constant, regardless of 6. From this, prove that
the points lie on a circle. Then explain the significance of the angle from the abscissa to
the line connecting the plotted points. Also explain how the principal moments of inertia
may be evaluated from the properties of the circle.

EXERCISE 5.26 Thin bar ACB is welded to a shaft that

rotates at the constant angular speed €2, so the angle 0 =
between the bar and the shaft is constant. (a) Derive ex- D
pressions for the angular momentum Hc and the kinetic | L L2
energy of the bar. Draw a sketch of Hc. (b) Based on an A / B
. . S L/I3_ A
analysis of the manner in which H in Part (a) rotates, TC
derive an expression for d He/dt. (¢) Use Eq. (5.3.4) to A -
evaluate d Hc/dt, and compare it with the result of Part cdl> L2
(b). E I
ol —1

Exercise 5.26
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EXERCISE 5.27 Two identical disks having
radius R and mass m are welded together by
a rigid bar. The ends of the connecting bar
are welded at diametrically opposite points
on the perimeter of each wheel. The mass
of the rod also is m. The disks roll without
slipping at constant speed v. Derive an ex-
pression for the angular momentum of this Exercise 5.27
assembly about its center of mass as a func-

tion of the angle 6 for the rolling. Depict this quantity in a sketch for 6 = 0 and 6 = 90°,
and describe the corresponding friction and normal forces that are required to maintain

the steady rolling. Hint: Use a body-fixed coordinate system whose y axis aligns with the
disks’ center line, and whose z axis is perpendicular to the bar.

EXERCISE 5.28 The 24-kg block is welded to a shaft that rotates about bearings A and
B at a constant rate w. The shaft is collinear with the diagonal to a face of the block.
Determine the inertia properties of the block relative to the xyz coordinate system in
the sketch, whose x axis coincides with the shaft and whose z axis is normal to the face
of the block. Also determine the inertia properties for a set of principal axes sharing the
same origin as xyz. Then evaluate the angular momentum about the origin of xyz and
the kinetic energy of the block by using each set of inertia properties.

Exercise 5.28

EXERCISE 5.29 A 200-g rectangular plate is mounted diagonally on a shaft whose mass
is negligible. The system has an unsteady rotation rate . Determine the force—couple
system acting at bearing B that is equivalent to the external forces that must be applied
to attain such a motion. What portion of that couple represents the torque required to
change Q?

Exercise 5.29
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EXERCISE 5.30 The sketch shows a steel plate whose thick- y
ness perpendicular to the plane of the diagram is very

small. The mass per unit surface area of this plate is o. A ==
The plate rotates about axis A B at constant angular speed N
w. (a) Determine the mass and the location of the center AN
of mass of this plate. (b) Determine I, Iy, and I, for L 0 x
the xyz coordinate system shown in the sketch. (c) Deter- N
mine Hp and d Hp/dt for the plate about origin O on the 7 N\

axis of rotation. Draw a sketch Hp and explain the sense Ib’l B

of d Hp/dt by considering how Hp rotates. (d) Predict the Exercise 5.30
direction of the dynamic reactions exerted by bearings at

ends A and B.

EXERCISE 5.31 The right triangular plate is welded to the
shaft, which rotates at constant speed w. Determine T
the force—couple acting at bearing A that is equivalent to y é
the force system the bearings must exert to sustain this
motion. b b b

Exercise 5.31

EXERCISE 5.32 The gyroscopic turn indicator consists of a 1-kg flywheel whose principal
radii of gyration are «, = 50 mm, «, = «, = 35 mm, where the x axis is the flywheel’s
axis of symmetry. The center of mass of the flywheel coincides with the intersection of
axes AB and CD. The flywheel spins relative to the gimbal at the constant rate Q; =
50000 rev/min, while the whole system rotates about the vertical axis at €2, = 1.2 rad/s.
The pivot angle B is constant. Determine the force—couple system acting on the flywheel
at its center that is equivalent to the actual forces acting on it, assuming that only the
mass of the flywheel is significant. What portion of this couple represents the torque M
that must be applied to shaft CD?

Exercise 5.32
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EXERCISE 5.33 The radar antenna tracks air-
plane P by rotating about the vertical axis at
s while the elevation angle 6 is adjusted. As-
suming that the body-fixed xyz axes are prin-
cipal, what is the force—couple system acting e
at the stationary pivot O that must be applied 0 EA‘:‘T(/
to overcome the inertial resistance when v

and 6 are arbitrary time functions?

Exercise 5.33

EXERCISE 5.34 The rotation rates of the ship
with respect to the body-fixed centroidal xyx
coordinate system in the sketch are the pitch
wy, roll wy, and yaw w.. Consider the case in
which these rates simultaneously attain their
maximum magnitudes, with w, = 0.5 rad’s,

o, = —1.1rad/s, w, = 0.2 rad/s. The acceler-
ations of the center of mass at this instant Exercise 5.34
area, = 5m/s?, a, = —12m/s?, a, = 15 m/s?.

The mass of the ship is 40 (10°) kg, and the radii of gyration are k, = 90 m, k, = 10 m,
k=15 m; it may be assumed that xyz are principal axes. Determine the force—couple
system acting at the origin of xyz that is equivalent to the forces exerted on the ship by
the ocean.

EXERCISE 5.35 A very thin circular disk rolls without slipping relative to the ground
such that its plane is oriented vertically throughout the motion. Consider the situation
in which the center C of the disk follows a circular path of radius p. Determine Hc
and d Hc/dt. From those results explain why the condition that the plane of the disk be
vertical can be satisfied only if the center follows a straight path, unless forces other than
gravity and the contact force are exerted on the disk.

EXERCISE 5.36 The device shown is a
wobble plate, in which the precession rate
w1 of shaft AB and the spin rate w; of the

disk relative to the shaft are constant. The 4 n
mass of the shaft is negligible. Let 1 de- \J
note the ratio of the angular speeds, such ®©

that wy = Aw;. (a) In terms of w; and A,
derive expressions for the angular veloc-
ity, angular momentum Hc relative to the
center of the disk, and d Hc/dt. (b) Eval-
uate the results in Part (a) for the case in which A = 3, and draw a sketch depicting
these quantities. Determine the magnitude of each and the angle between each quantity
and the bearing axis A B. (¢) Determine whether there is any value of A for which no

Exercise 5.36
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dynamic reactions are generated at bearings A and B. Explain your answer in terms of
the properties of Hc.

EXERCISE 5.37 Arm ABC rotates about the vertical axis ®;
at constant rate w1, and the disk rotates relative to the arm (C
01
A

at constant rate w,. The mass of the disk is »2, and its cen- E’ g
troidal moments of inertia are I, = 0.5m R* about its center- |
—1B

line and L = 0.25m R’ about a diameter. (a) Draw one or
more sketches depicting the angular momentum FH¢ of the
disk about its center. (b) Based on the sketch(es) in Part Exercise 5.37
(a) and the manner in which the system rotates, evaluate

dHc/dt. (c) Compare the result in Part (b) with what is ob-

tained by evaluating d Hc /9t + @ x Hc.

EXERCISE 5.38 The topic of rotation of a body in 7
free motion is treated extensively in Chapter 10.
Some key aspects of that study are described in the 0

\V .
. o . Hg Qj; z
sketch, which shows a body that is axisymmetric X { X
about the body-fixed z axis. The moment of inertia
of the body about this axis is /;, and the moment
of inertia about any axis intersecting the center of
—

mass and perpendicular to z is L. The body is in
free flight and air resistance is negligible, so the Exercise 5.38
only force acting on the body is its weight. Because

this force acts at the center of mass G, ¥ Mg = d Hg/dt = 0, so the angular momentum
Hg is constant. Let the fixed Z axis denote the constant direction of Hg. Eulerian angles
are used to describe the rotation of the body, with precession angle i being defined as
the rotation about the fixed Z axis and the spin angle ¢ being the rotation about the z
axis of symmetry. The nutation angle 6 is the angle between these two axes, as shown in
the sketch. (a) Describe the angular velocity of the body in terms of ¥, 6, and ¢. Use this
description of @ to derive an expression for Hg. (b) Derive a component description for
Hg based on the fact that Hg is parallel to the Z axis. Match this description to the ex-
pression for Hg in Part (a). Show that the two descriptions are consistent only if the nu-
tation angle is constant, that is, & = 0. (c) From the fact that § = 0, it follows that at any
instant the angular velocity @ must lie in the xz plane, so that ® = wsin i + w cos Bk,
where g is the angle between @ and the z axis, and the x axis lies in the plane formed
by Z and z. Compare the descriptions of @ and Hg in terms of » and 8 with the cor-
responding expressions in terms of v, 6, and ¢. From that comparison, derive the
expression

I
tan § = — tan@.
b

(d) Derive an expression for v/ in terms of ¢ and 6.



Homework Problems

EXERCISE 5.39 The disk is mounted obliquely
on its hub, which spins at angular speed 2
about the horizontal arm AB of the T-bar.
Consequently, the disk’s center line forms a
constant angle 6 relative to arm A B. This ro-
tation rate is ¢, with ¢ = 0 corresponding to
the instant depicted in the sketch, where the
disk’s axis is situated in the vertical plane. Both
this rotation rate and the precession rate 2 are
constant. The disk’s mass is m, whereas the
hub and both shafts have negligible mass. De-
rive an expression for the force—couple system
exerted on the disk by hub B when ¢ = 0.
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Exercise 5.39

EXERCISE 5.40 Determine the force—couple systems in Exercise 5.39 as a function of

the rotation angle ¢.



CHAPTER 6

Newton-Euler Equations of Motion

The previous chapter focused on describing and understanding the variability of angu-
lar momentum. We now apply those concepts to relate the motion of a system to the
forces driving that motion. The formulation is based on the linear and angular momen-
tum principles of Newton and Euler. These principles govern the motion of a single rigid
body, but practical applications feature many bodies. In such situations, individual equa-
tions of motion may be written for each body. If one pursues such an analysis, careful
attention must be given to accounting for the forces exerted between bodies, so the con-
struction of free-body diagrams will play a prominent role in this chapter’s development.
As a supplement to this approach, a following section develops a momentum-based con-
cept for systems of rigid bodies that sometimes can lead to the desired solution without
considering all of the interaction forces. Ultimately, the energy-based concepts associ-
ated with Lagrange, whose development is taken up in the next chapter, provide a more
robust alternative approach. However, they are mathematical in nature and afford little
physical insight. For this reason, particular attention is given here to providing physical
explanations for the results derived from the Newton—Euler formulation of equations of
motion.

6.1 FUNDAMENTAL EQUATIONS

6.1.1 Basic Considerations

The basic laws governing each rigid body in a system are Eq. (5.1.13) for the resultant
force and Eq. (5.1.22) for the resultant moment, which are repeated here as a single
reference:

It cannot be emphasized too much that this moment equation should be applied only
when point A is either

1. the center of mass of the body, or
2. afixed point in a body that is in a state of pure rotation.
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From a philosophical viewpoint, each expresses a dynamic equilibrium, in which ei-
ther the forcing or the inertial effect can be considered to be the causative agent. For ex-
ample, in some situations we might consider the resultant moment to change the angular
momentum of the body, whereas in others it might be better to consider that changing
the linear momentum requires application of the required moment. The same is true for
angular momentum. The key to understanding is recognizing that one must accompany
the other. A conceptual picture reinforcing this perspective is provided in Fig. 6.1, where
the inertial effects are depicted as a force—couple system acting at the center of mass G.
The equations of motion state that this combination is equivalent to the actual force
system acting on the body. One side of the figure cannot exist without the other.

F4 Fl

F3

Figure 6.1. The force system acting on a body and its equivalent inertial effect.

Some individuals use a diagram such as Fig. 6.1 as the basis for a slightly modified set
of equations of motion based on summing moments about an arbitrary point. Because
the forces and inertial effects in Fig. 6.1 have equivalent effect, the moment of each
about the selected point must be equal, which leads to

_ dH
EMB = d_l‘G + fG/B X mdg. (612)

This equation of motion is reminiscent of the general principle in Eq. (5.1.18), except
that the kinematical reference point is the center of mass, rather than the point for the
moment sum. The formulation is like the treatment of a static system, for which one
can select the point for a moment sum to avoid the occurrence of some unknown reac-
tions in the moment equation. From a practical standpoint, the simplification of possibly
eliminating an unknown variable is balanced by the need to include a linear accelera-
tion in the moment equation. This increases the chance for error, especially in regard
to signs. An analysis following this approach is seldom necessary for a single rigid body.
However, we will see later in this chapter that it can be quite useful for some systems
containing several interconnected bodies.

Both the force and moment equations of motion are vector relations, whose formu-
lation requires definition of an xyz coordinate system for components. For the moment
equation this coordinate system will always be attached to the body. The basic relations
for Hy4 and its relative derivative were found to be
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Hy = (Lo — Lywy, — Lew,)i + (Iyo, — Lyor — I,,0;) |
+ (Izzwz — Lo, — Izywy) ]_C,
9 H, ) B (6.1.3)
a5 = (Lexax — Ioyory — Lo )i 4 (Lyyory — Tyeory — Iyzaz)
+ (Izz‘xz — A0y — zyay) k.

In some situations it might be easier to analyze the acceleration of the center of mass
or the resultant force components with respect to a global coordinate system % yZ that is
not attached to the body. Such a coordinate system can be used for formulate the force
equations. To emphasize this aspect, the components of force and moment are indicated

explicitly as dot products in the following equations:

(6.1.4)

Matrix notation offers a compact scheme for performing calculations, and several
symbolic mathematics software packages are well attuned to such notation. The angu-
lar momentum was written in this form in Eq. (5.2.5). The corresponding forms of the
equations of motion are

XF-1 (ag-i)
EFf =m ((,_lG-f) B
SF .k (L_IGJ%)
L (6.1.5)
XMy i oy Wy Wy
EMa-j =l ayt+1o @17 o ;
SMy -k o, w; w;

where ® denotes the cross-product operator. The moment equations simplify consid-
erably when xyz are principal axes. The result is Euler’s equations of motion, which
explicitly display the role of the angular velocity and angular acceleration components:

EMA ~lT= Ixxocx —
SMy-j= Iyay — (I; — Iy) oo,
EMa -k = 720z — (IXX -

(Iyy - Izz) Wywz,
(6.1.6)

I,)) wywy.
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One can use the repetitive pattern of Euler’s equations to remember the individual com-
ponents by a mnemonic algorithm based on permutations of the alphabetical order. Eu-
ler’s equations are particularly useful when it is only necessary to address the moment
exerted about one axis.

A basic aspect of the force and moment components is their dual interpretation.
One way of evaluating them is to form the resultant as the vector sum of the contribution
of each force acting on the body. Alternatively, we may sum the contribution of each
force to a specific force or moment component. The latter is very useful for the moment
components, which are the moments each force exerts about each of the xyz coordinate
axes.

The previous section made it evident that a spatial rotation will require that Hy
change, even if the all rates of rotation are constant, as a consequence of changing the
orientation of H,. The moment equation merely requires that the force system apply a
moment that balances the rate at which the angular momentum changes. The moment
required to balance the portion of d H4 /dt that features products of rotation rates, and
therefore is present even if the rotation rates are constant, is often referred to as the
gyroscopic moment.

Various questions may be investigated with the equations of motion. In the simplest
case, the motion of a rigid body is fully specified. This permits complete evaluation of the
right side of the translational and rotational equations. The forcing effects, which appear
on the left side of the equations, originate from known excitations, as well as reactions.
The latter are particularly important to characterize. A free-body diagram, in which
the body is isolated from its surroundings, is essential to the correct description of the
reactions. As an aid in drawing a free-body diagram, recall that reactions are the physical
manifestations of kinematical constraints. Thus, if a support prevents a point in the body
from moving in a certain direction, then at that point there must be a reaction force
exerted on the body in that direction. Similarly, a kinematical constraint on rotation
about an axis is imposed by a reaction couple exerted about that axis. The reactions are
not known in advance—they are unknown values that will appear in some or all of the
equations of motion.

In real applications the system usually contains multiple interconnected bodies. Be-
cause the translational and rotational equations of motion describe a single isolated
body, it is necessary in such cases to isolate each body whose mass is significant. Care
must be taken in the respective free-body diagrams to account for Newton’s Third Law
in the depiction of the connective forces exerted between bodies. There are only six
scalar equations of motion for each body contained in a system (three force and three
moment components). The unknowns appearing in these equations might be kinemati-
cal parameters or parameters describing the forces. Some equations might be trivial as
a consequence of the basic nature of the system. For example, planar motion, which is
treated in the next section, reduces to two force equations and one moment equation per
body. In any event, a system composed of N bodies can have no more than 6 N compo-
nent equations of motion. It is possible for the number of unknown reactions to exceed
the number of available equations, yet for the equations to have a consistent solution
for the motion variables. Assuming that this condition does not result from erroneous
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omission of some characteristic of the supports, it represents a condition of redundant
constraint. That is the dynamic analog of the condition of static indeterminacy, whose
resolution requires consideration of deformation effects.

In some situations, analysis of a system’s motion entails determination of a few un-
known constant parameters, such as an angle of orientation or a rotation rate. This is
the case, for example, if it is necessary to determine the conditions for a steady pre-
cession. The equations of motion in this case are algebraic. The more difficult situation
arises when the nature of the motion is not fully known in advance. The orientation of
each body may then be described in terms of Eulerian angles (precession, nutation, and
spin), and the position of the center of mass of each body may be described by any of
the formulations used to describe point motion. In addition to these kinematical vari-
ables, parameters describing any reactions will appear in the equations of motion. The
reaction parameters enter into the equations of motion algebraically through the force
and moment sums. Hence their elimination involves a process of simultaneous solution
of algebraic equations. (This, of course assumes that a condition of redundant constraint
does not exist.) Algebraic elimination of the force parameters will lead to a set of differ-
ential equations of motion for the kinematical variables. We saw that d H, /dt generally
features products of rotation rates, and the description of the motion of a point in terms
of curvilinear coordinates or moving reference frames also contains products of rate
variables. As a result, the equations of rotational motion will be coupled second-order
differential equations. Analytical solutions of such equations are available in limited sit-
uations, such as when the equations are linear in the dependent variables. Numerical
techniques are always available as an alternative. Procedures for numerically solving
differential equations of motion are discussed in Chapters 7 and 8.

6.1.2 Procedural Steps

Although a specific system may have distinctive features, many aspects of the formula-
tion of its equations of motion are generic. The following list assembles the operations
into a standard procedure that we shall follow in the examples that follow.

1. Draw a free-body diagram describing each body whose mass is significant. To be
sure that all constraint forces are properly described, remember that, if the motion
of a point is restricted in a certain direction, then an unknown force acts in that
direction to impose the condition. Similarly, if the rotation of a body about a certain
axis is restricted, then there must be an unknown reaction couple about that axis.

2. Choose a point, designated here as A, for summing moments for the isolated body.
This point should be the center of mass when the body is translating or in general
motion. For the case of pure rotation, use the fixed point in order that the reaction
forces holding that point stationary not occur in the moment equation of motion.

3. Attach xyz to the body with origin at point A. The first consideration in selecting the
orientation of xyz is minimizing computations of inertia properties. Thus, if possible,
orient xyz parallel to the axes used in the Appendix to describe the inertia proper-
ties. If this does not lead to a full specification of the coordinate axes, as would be
the case for an axisymmetric body, then finalize the definition by considering the
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axes of rotation and the manner in which the geometry of the system is described.
Show the coordinate axes of xyz in the free-body diagram.

4. Write down, in equation form, all given information that does not appear in the
free-body diagram. List all quantities to be determined in the solution.

5. Follow the standard kinematical procedure to describe @ and & of the body in terms
of components relative to xyz. Be sure to satisfy any auxiliary kinematical conditions
that are known, such as that certain points have known motions, or that there is no
slipping at some location.

6. Evaluate the inertia properties of the body with respect to xyz.

7. Compute the moment about point A exerted by all forces appearing in the free-body
diagram. Equate this moment to d H4/dt. This may be done as a vector equation
with Egs. (6.1.1) and (6.1.3), but the matrix form in Eqgs. (6.1.5) might be preferred
for numerical problems. Also, if it can be recognized that only the moment about a
specific axis x, y, or zis needed, and xyz are principal axes, then the corresponding
component of Euler’s equations, Egs. (6.1.6), offers a shortcut.

8. Examine whether the moment equation(s) obtained from the preceding step are
sufficient to solve the problem. If additional equations are required, form the force
equation of motion. In that event describe the center-of-mass acceleration ag in
terms of the basic kinematical parameters. The components of a; may be described
in terms of components with respect to any convenient coordinate system x'y'z,
although xyz often will be sufficient for this purpose. Equate like components of
> F and mag.

9. Count the number of scalar equations J and number of unknowns N. If J > N,
something such as a kinematical relation has been assumed incorrectly, or else a re-
action might have been omitted from the free-body diagram. If / < N, some infor-
mation that was given might not have been used, or else some kinematical condition
imposed on the body, such as rolling without slipping, might not have been satisfied.

The cylinder, whose mass is m, is welded to the shaft such that its
center is situated on the axis of rotation. Application of a constant torque I" att = 0
causes the rotation rate Q to increase from zero. Derive expressions for Q2 and the
reactions at bearings A and B as functions of the elapsed time.

Example 6.1

SOLUTION This example reinforces our recognition that a planar analysis might not
suffice, even though the motion is a simple rotation. Examination of the solution
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will lead us to a general discussion of the topic of dynamic imbalance. The forces of
interest are the reactions the bearings apply to the shaft. These are represented in
the free-body diagram as components transverse to the shaft at both bearings and a
thrust component parallel to the shaft at bearing A. We may consider the shaft and
the cylinder to constitute a single body because they are welded together. Doing so
makes the forces exerted between them internal to the system. We ignore the weight
because it is a static force. It is balanced by a static force acting in the (stationary)
vertical direction at each bearing that superposes on the dynamic reactions we shall
evaluate.

Free-body diagram of the rigid body consisting of the
cylinder and the shaft.

The cylinder executes a simple rotation, so any point along shaft A B would be
an allowable point for summing moments. We use the center of mass G. We align the
xyz axes with the centerline of the cylinder in accord with the Appendix, and exploit
the axisymmetry to define the y axis to be perpendicular to the plane formed by the
shaft and the centerline. We also define an x’y’z’ coordinate system aligned with the
shaft and with its y axis coincident with the y axis to facilitate describing the bearing
forces and the rotation.

The angular velocity is parallel to the shaft, and the direction of this rotation is
constant, so

o=Qk, a=Qk, (6.1.7)

Qi

which when resolved into xyz components become
@ = (sinfi +cos0k), @ = (sin6i + cosok). (6.1.8)

We know from symmetry that xyz are principal axes, and the tabulated inertia prop-
erties are

1 1 1
Ly=1Ly=m (ZRZ + Ehz) o L= mR (6.1.9)

We may employ Euler’s equations because xyz are principal axes. To form the
moment resultants the applied couple I' must be resolved into components. The mo-
ment of the bearing forces may be computed vectorially. For example, for bearing
A the moment is 7 4,6 X (Ax/i_/ + Az/l_c/> . Alternatively the moment sums can be
computed as moments about the coordinate axes. Thus the bearing forces A, and
B, exert moments about only the y axis, for which the lever arms are L/2, whereas
Ay and By have lever arms of (L/2)sin 6 about the z axis and (L/2) cos 6 about the
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x axis. Applying the right-hand rule to ascertain the sign of each moment yields

_ L
XMy -i =Tsinf + (—Ay + By) > cos6 = L oy
1 1 .
=m (ZRZ + Eh2> Qsinb,
_ - IL,
XMy - J = (Ax’ - Bx’) E = - (Izz - ]xx)wxwz

1 1
=m <_ZR2 + ﬁhz) Q?sin6 cosé,

_ L
XMy -k=Tcost + (A, — By) Esin@ = Lo
IR
=m ER €2 coso.

The unknowns in these three equations are the four transverse bearing forces
and Q. The force equation of motion provides the additional equations required for
determining these parameters and the thrust bearing force. The center of mass is on
the axis of rotation, so @ = 0. In terms of components relative to x'y’z, the force
resultants are

SF.-i= Ay + B =0,
XF-j=Ay+ B, =0,
>F.-kK=A,=0.

The solution of these equations is

. 12r
Q = ]
m [6RQ + (2 —3R) (sin@)z]

A, = —B., = m—Qz (h* — 3R?) sin 20

* * 24 L ’ <

me )
Ay =—-B, =— 2l (h* — 3R%)sin 29,
Au =0,

The torque is constant, so it follows that €2 is constant. Because Q = 0 initially, inte-
grating €2 leads to a rotation rate that increases proportionally to elapsed time:

12Tt
Q= <

m [6R2 + (h2 - 3R?) (sin9)2] '

Substitution of these results into the expressions for the bearing forces shows that
A, and By increase as 1%, whereas A, and By are independent of the elapsed time.
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Each of these results may be readily explained by following the manner in which
the angular momentum Hg changes. Such an examination would show that the ro-
tation moves the head of Hg in the —y’ direction, which requires a couple about
the negative y’ axis. Such a moment is generated by the bearing forces A, and By,
which depend solely on the current rotation rate. The bearing forces rotate at €2,
which means that the forces the shaft exerts in the bearing are experienced by the
foundation as rotating forces. Such forces cause vibration in the foundation because
their components relative to a fixed reference frame oscillate in magnitude. This
is a condition of dynamic imbalance. The other transverse bearing forces, A, and
By, are proportional to Q. They are associated with the changing magnitude of Hg
and remain constant as long as 2 does not change. They too rotate at Q relative to
a fixed reference frame, and therefore also produce oscillations in the foundation,
although their value usually is small compared with that of the dynamic imbalance
forces.

The nature of the forces would be more apparent if we had formulated the
equations of motion by using x’y’z" as the body-fixed reference frame. This would
have required the rotation transformation to evaluate [/'] . We may generalize such
an analysis. Consider an arbitrary body that executes a pure rotation at angular
speed Q2 about a shaft as the result of a torque I'. The center of mass is situated at
an arbitrary distance from this rotation axis. Let x'y'z’ be a body-fixed coordinate
system whose 7z’ axis coincides with the shaft, and let [/'] be the corresponding in-
ertia matrix. In this case the angular motion is @ = Qk’, @ = Qk’. Because x'y'7 is
not necessarily principal, we use Egs. (6.1.3) to form Hg and its relative derivative,
which gives

HG = —Ix’Z’QlT/ — Iy’z’Qj/ TP Iz’z’Q]_C/v
dHg/3t = — Loy Q' — 1,y Q2 + Ly QK.

We refer to the free-body diagram to sum forces and moments relative to x'y’z’. The
equations of motion, Egs. (6.1.1), then require that

(Ay + Bv)U'+ (Ay + By) j' + A k' = mag,
L. IL -
(_Ay/ + By’) Ei + (Ax’ - Bx’) E]/ + Fk/
= (—LozQ+ Ly Q)i+ (— Ly — Loy P) J' + L QK.

A dynamically balanced system is one in which any rotation can occur without gen-
erating dynamic reactions at either bearing, Ay, = Ay = Ay = By = By = 0. The
preceding equations of motion indicate that such a condition requires that ag =0
and Iyy = I, = 0. In other words, dynamic balancing requires that the center of
mass be situated on the rotation axis and that the rotation axis be a principal axis of
inertia. In contrast, the condition of static balance merely requires the former.

This general observation is manifested by the specific results for the skewly
mounted cylinder of the present system. When 6 = 0 the z axis coincides with the
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rotation axis, whereas & = 90° corresponds to alignment of x and the rotation axis.
Both x and z are principal axes, and the results confirm that the bearing forces are
zero in both cases. We also see that the forces are zero for any 6 if # = v/3R. In
that case I,, = I,, = I;, so that the cylinder is inertially equivalent to a sphere, for
which all centroidal axes are principal. In any other case, bearing forces are required
to sustain the motion, even though the center of mass coincides with the shaft.

A servomotor maintains a constant value of the spin rate ¢ at
which the disk rotates relative to the pivoted shaft A B. The precession rate < is
held constant by a torque M(¢) applied to the vertical shaft. Derive the differential
equation governing the unsteady nutation angle 6, and also derive an expression
for M as a function of . Then determine all possible states of steady precession, in
which 6 is constant, and evaluate the stability of each state.

Example 6.2

SOLUTION This system is truly in spatial motion, so the analysis will bring to the fore
some of the issues that one might typically encounter. In addition, it will address
the characterization of connections in terms of the kinematical restrictions they im-
pose and the constraint forces they exert. The only body having significant inertia
is the disk, but the fork-and-clevis joint at point A must be considered because we
know how it constrains motion. We assume that the shaft’s mass is negligible, which
enables us to consider it and the disk to be a single rigid body. (Without this assump-
tion we would need to consider each body individually, and account for the forces
exerted between them at bearing B.)

Point A is at a constant distance from the disk along the disk’s centerline, which
means that the disk is in pure rotation about this point. Consequently we choose
point A as the origin of the body-fixed xyz coordinate system. We align the x axis
with the centerline to employ directly the tabulated inertia properties of a disk.
The axisymmetry of the disk gives us some freedom to define the body-fixed xyz
system in a manner that suits the kinematical features. Thus we align the y axis at
the instant of interest horizontally to facilitate describing the 6 rotation. To describe
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@ and the reactions at point A we also define x'y’z’ to precess at Q with 7’ vertical
and x’ situated in the vertical plane formed by the x and 7’ axes.

'
z

Q>

zZ
A /
e ncPpM
i
7

A

»ny'
x'

Free-body diagram of the spinning disk and its shaft.

0

X

Joint A prevents movement of the shaft, so we show the corresponding force
reactions as components parallel to x'y’z’. Also, this connection allows shaft AB
to rotate only about the y’ axis relative to the vertical shaft. Thus the free-body
diagram depicts couple reactions about the x" and 7’ axes, but not about the y axis.
The vertical component is the torque M applied to the vertical shaft to sustain €.
The free-body diagram also includes the weight of the disk, whose role is not static
because its moment is not constant in magnitude and direction. The angular velocity
and the angular acceleration of the disk are described by

®=—¢i +Qk' — 0], @& =Qk,
a=—¢(@xi)—0j—6(& x7]).

At the instant in the free-body diagram j' = j and k' = — cos0i + sin 6k, so the
angular motion is

&= (—¢—Qcosb)i —6j+Qsinbk, @ =—Qcosbi+ Qsinbk, n
1
a=0Qsin0i + (—0 — ¢Qsind) j + (—pf + 6Q cos ) k.

We use the Appendix and the parallel axis theorems to find the inertia properties of
the disk relative to xyz, which are principal:

_ 15 Y
Lu=3mR, Ly =l.=m(R+1).

Inspection of the free-body diagram reveals that the force equations of motion
will contain the reaction forces at the pin, which are of no interest here. Thus we
focus on the moment equation. Euler’s equations are applicable because xyz are
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principal axes. We refer to the free-body diagram to determine the moment sums,
which leads to

My i =—McosO + Mysind = La, — (1, — I;) oyo,,
1 .
= <—mR2) 0Qsin o,
2
My - j=mg(Lsing) = Lya, — (I; — L) oy,
1 .
= (ZR2 + L2> (=6 — ¢Qsing),
1w 12 ; -
-m ZR — I*) (—¢ — Qcos0) (Qsinb),
My -k = Msin + My cos® = Lo, — (L — L)) ooy
1 P
=m (ZR2 + L2> (—¢6 + 62 cos )

1 . .
— <Z R — L2) (—¢ — Qcoso) (—0).
The sole unknown in the second equation is 6, so it yields the desired differ-
ential equation, and the first and third equations combine to give an expression
for M:

1 ) 1 .
(ZR2 + L2> 6 — <L2 - ZRZ) Q?sin @ cos @ + <§R2¢sz +gL) sin@ =0,
1 1 @<
M= —EmRzéé sinf +2 (L2 — ZR2> 62 sin O cos 6.

It is interesting to note that couples acting about both the x” and 7’ axes are required
for sustaining the precession and spin rates.

To find the possible steady precession states we take 6 to be constant in the
differential equation, which leads to two possibilities:

1 4
sind =0 or (L2 — ZR2> Q% cosh = §R2¢Q +gL. (3)

The diagram describing the system indicates that the construction of the fork-and-
clevis joint makes 6 = & impossible, but we allow for it in order to get a full picture
of the behavior. Thus there are three possible constant nutation angles:

4)<

2R*Q + 4g L
01=0, 6,=m, 93=COS_1|: 982 + 48 ]

Q2 (412 — R?)

The nutated state represented by 03 arises for only a range of parameters. The anal-
ysis is most easily carried out if € is considered to be fixed, whereas ¢ is adjustable.
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Let us consider L > R/2. Then the condition that |cos (63)| < 1 is satisfied when

¢min = ¢ = ¢max,

gL 417 - R . gL
—2 RO —Q R s ¢max ==

. A2 — R (5)
¢min = RO + Q R 0

Note that L > R/2 leads to ¢mi, being negative, whereas ¢max can be either positive
or negative.

Nutation angles 6, and 0, correspond to the precession and spin rates both be-
ing about vertical axes, so the angular momentum H, also is vertical, and there-
fore constant. The gravity force acting on the disk intersects joint A in this case,
so there is no moment about the y axis to be balanced by dH4/dt. In the third
state, H4 lies in the xz plane, which means that it precesses at Q about the ver-
tical axis. The moment of gravity about the pin of joint A balances the rate at
which H, is changed by this rotation. The value of 5 ranges from zero at ¢may to 7
at émin'

Although the three roots for constant ¢ are mathematically possible, determin-
ing whether they will actually occur requires consideration of the stability of the
steady precession. This involves investigating whether the steady motion will change
drastically if it is disturbed. For our purpose we limit consideration to a small dis-
turbance that changes one of the constant 6,, solutions by a small amount A. The
smallness restriction enables us to simplify sin 6 and cos 6 with a Taylor series:

0=6,+A = sinf ~sinb, + Acosf,, cosd ~cosd, — Asinb,.

We set § = A in the differential equation (2) and substitute the preceding expres-
sions, which leads to

1 .. 1
(ZR2 + L2> A — <L2 - ZR2> Q? (sinf, + A cosf,)(cosf, — Asiné,)

1 .
+ (5 R$Q + gL) (sinf, + Acosé,) = 0.

This equation is further simplified by the fact that A is very small, so quadratic terms
in A may be dropped. Furthermore, the terms that do not contain A correspond to
the steady precession solution, so they cancel. Thus we are led to

1 , 1 1 _gx
(ZRZ e L2> A+ [— (L2 — ZRZ) Q2 cos (26,,) + (§R2¢SZ i gL> cos en] A =0.
(6)
The preceding is the equation for a one-degree-of-freedom undamped linear

oscillator, so the stability condition is governed by the sign of the coefficient of A,
which is

K (0,9, ¢)=— <L2 — %R2> Q2 cos (20,,) + (% R¢Q + gL) cosb,. (7)
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Positive K corresponds to an oscillatory A, which means that 6 always remains close
to the steady value, whereas negative K corresponds to an exponentially increasing
A, which indicates that the precession will diverge from the steady value. For 6 =
01 = 0, we have
. 5 L _o\ep . 1 5.
K0.2,¢)=-(1- 1R )9 +§R2¢>Q+gL.

When we consider K (0, 2, ) to be a function of ¢ for fixed ©, we see that the
condition K (0, 2, ¢) > 0 is satisfied when ¢ > ¢ax. The steady-state precession at
0 = 6, = 7 leads to

. 1 5
K(r,Q,¢)=— <L2 - ZRZ) Q* — ER2q>sz -gL.
Stability of this steady nutation, corresponding to K (7, 2, ¢) > 0, occurs when ¢ <
Gmin. Analysis of the case in which @ = 03 is slightly more complicated. The identity
cos (203) = 2 (cos 63)> — 1 gives
. 1 1 ,.
K (05, 9,4) = <L2 — ZR2> Q? [1 —2(cos 93)2] o <§R2¢§2 T gL) cos 03.

Rather than using the last of Egs. (3) to replace 63 in this expression, let us use it to
eliminate ¢. The result is

K (05, 9.¢) = (L2 — %R2> Q% (sin63)” .

The value of K (63, 2, ¢) is positive whenever 65 is real, which means that this state
is stable if it exists.

An overview of the results gives a clearer picture. We find that, if ¢ > @max,
then the vertically suspended state, & = 0, is the only stable steady precession. If the
spin rate falls below ¢y, but exceeds @min, then the only stable steady precession
is one in which the shaft is tilted at 5. Further decrease of ¢ below ¢, makes the
inverted position 6, = 7 the only stable steady precession. Proper interpretation
of this result requires that one recall that ¢, is negative, so the condition that
¢ < Gmin corresponds to a large spin rate in the sense of the positive x axis. <

The system in this example is referred to as a spinning top, because it effectively
is identical to the toy that spins with its apex in contact with the ground. This system
has been widely studied as a way of explaining many of the physical principles of
spatial kinetics. Further exploration of the behavior of a spinning top may be found
in Chapter 10.

The vertical force F causes the vertical bar to translate upward at
a speed v that is a specified function of time, and the whole system precesses about
the vertical axis at the constant speed €2 as a result of the action of the torque M.
Derive the equation of motion for the nutation angle 6, as well as an expression for
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the value of F required to attain this motion. It may be assumed that the mass of
the vertical shaft is negligible.

\7 Example 6.3
M
Fl—>=9

SOLUTION This exercise, which requires the simultaneous application of the linear
and angular equations of motion, highlights the need to pick the moment reference
point appropriately. We begin with a free-body diagram. Because the vertical shaft
is massless, it effectively is in static equilibrium. The bearing can resist neither the
vertical force F nor the torque M, so these are transmitted to the bar, as shown in
the diagram. The couple M; acts horizontally perpendicular to the pin, and F; and
F; are horizontal forces that the pin can exert on the bar.

M, 12* F> (out)

Z
1
d.) é Free-body diagram of the swinging bar.
M
|F 0
]
a5 mg >

X

It is tempting to the novice to place the origin of the body-fixed xyz coordinate
system at pin A, because doing so eliminates the pin forces from the moment equa-
tion. However, this point is not allowable for using the moment equation of motion
in Egs. (6.1.1) because it is accelerating upward at v. We therefore must place the
origin at the center of mass G. The orientation of xyz shown in the free-body dia-
gram allows us to find the inertia properties of the bar directly from the Appendix,
with I, = 0, I, = I, = (1/12) mL? based on considering the bar to be slender.

The angular velocity is the sum of the precession and the rotation 6, which ac-
tually is a nutation. The precession direction é; is constant, whereas the nutation
direction &, precesses at €2, so that

®=Qe +60e, a=~0e+0(Qe xe).
The rotation directions are
e, = —cosfi +sinfk, & =—],
which leads to

®=—Qcoshi —0j+ QsinOk, @ = QOsinbi — 0] + Q6 cos Ok.
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Because we cannot eliminate the pin forces from the moment equation, we need the
additional relations provided by the force equation of motion, which requires that
we describe the acceleration of the center of mass. Pin A is in rectilinear motion, so
we have

a(;:l')él-l—(inG/A—i-@X(G)XF_G/A)
IL, L. ]- . _
= — [v cosf + 592 (sin@)® + 592:| i+ LQ6coshj
L. L. _
+ vsm9+§6—52 Esmecose k.

The Euler equations of motion are applicable because xyz are principal axes.
This is an aid because the y axis is the only axis about which neither M nor M;
exerts a moments. Consequently, only the Euler equation for moment about the y
axis is relevant. We add the moment of each pin force about the respective axes, and
substitute that sum, along with the inertia properties and components of ® and &,
into Eqgs. (6.1.6). Because we have approximated I, as being zero, we have

_ L . L
M- j = FE sin6 + Flf cos 6

1 .
= lyay — Lyo,0, = ﬁmL2 (=6 + Q*sin6 cos b)) .

We are not interested in the value of F,, which means that we can omit the force
equation of motion in the j direction. The useful force equations are

o L L.
LF.-i=—Fcos+ F sin@—i—mgcos@=—m[z’;cos@—i—EQZ(Sin9)2+502],

_ IL L
YF -k =Fsin6 + Fycosf —mgsind =m [1’) sin6 + 59 — 925 sin 6 cosé‘j| .
These equations give the force values corresponding to a specified motion:

. Ly . /Lo
F=m v+g+5981n9+59 cosé |, <

L. L . L
FF=m [59 cosf — 592 sinf® — QZE sin@] .

Substitution of these expressions into the moment equation gives a differential
equation governing the rotation:

Ly ZﬁzsinOCOSO +
3 3

This equation resembles the one for a pendulum, with the effective gravitational
acceleration being g + v. The term containing Q> represents the influence of the
centripetal acceleration associated with precession. Similarly, the result for F shows
that it must overcome the effective gravitational acceleration and the vertical

v+ g

sing = 0. <
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components of the transverse and centripetal accelerations of the center of mass
that are due to the unsteady value of 6.

It is evident that solving this problem would have been much easier if we were
able to form the moment relative to the pin. In Section 6.3 we will see how to
do so.

A thin homogeneous disk of mass m rolls without slipping on a
horizontal plane such that its center has a constant speed v as it follows a circular
path of radius p. The angle of elevation of the disk’s axis is a constant value 6. Derive
an expression relating v to the value of 6.

Example 6.4

SOLUTION The problem of a rolling disk has classical interest. Here we explore the
special case of steady precession as an illustration of the full set of Newton—Euler
equations of motion. The kinematics of this type of motion was discussed in Sec-
tion 4.4. That development is an important aspect of the present analysis.

In addition to the gravitational force, there are reactions at the contact between
the disk and the ground. They are depicted in the free-body diagram as the normal
force N and two frictional force components lying in the horizontal plane: F, toward
the vertical axis about which the disk rotates and F; opposite the velocity of point
G. The former represents the force required to make the center of mass follow a
circular path, whereas the latter force anticipates that friction opposes the sliding
tendency of the contact point. The normal force N prevents the contact point from
penetrating the ground.

; Free-body diagram of the rolling disk.
| v

b
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We place the origin of the body-fixed coordinate system xyz at the center G,
which is valid regardless of how the disk moves. (The intersection of the center-
line of the disk with the vertical axis for the precession also is an allowable point
for the moment equation, because it is a stationary point whose position relative
to the disk is fixed. However, there is no advantage to using this point.) We exploit
the axisymmetry of the disk by defining the body-fixed x and y axes to lie in the
plane of the disk, with the y axis at the instant of interest aligned horizontal, in the
sense of the velocity of point G. The precession v is the only rotation of the x'y’z’
coordinate system depicted in the free-body diagram. This coordinate system expe-
dites description of @, as well as the acceleration of the center of mass.

The rotation of the disk consists of a precession v about the vertical axis and
a spin ¢ about the z axis. The angular velocity of the disk is a superposition of the
rotations about the two axes,

o=yl +dk, & =i

All rotation rates are constant in steady precession, so the corresponding angular
acceleration is

G=1 (@ x7)+¢(@xk) = (7 xk).
At the instant depicted in the free-body diagram,
i’ = cos @i — sin Ok,
which leads to instantaneous expressions for the angular motion of the disk,
@ =1 cosOi + (¢ —ysind)k, a=—ydcosoj.

The velocity of the center is v}, and the rotation rates are related to the speed v
by the no-slip condition at the contact point C, which requires that ¢ = 0. Points C
and G belong to the disk, so we have

vG:v] :pl/};:(;}fo/CzR((ﬁ—l/fSlng);,

from which we find that

Correspondingly, the angular motion expressions become
_ v - V- v2 (1 1 . -
®=—cosbi + =k, a =—— | —=+ —sin6 | cosbj.
P R p \R p

The xyz axes are principal, with
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For the sake of variety, we shall formulate d 4 /dt from the basic relations, rather
than invoke Euler’s equations. Combining the inertia properties with the angular
rotation variables leads to
_ 1v N
H; =mR* | == cosi + ——k |,
“ (4p 2R )
9 H, 1 v /11, -
T~ _CmR=— (= + —sin6 ) cos6].
at 4 o \R »p
The reaction forces applied by the ground are unknown, so there the moment
equations of motion will not be sufficient to determine all the unknown quantities.
We also need the force equation of motion. We know that point G follows a circular
path at constant speed v, and the 7' axis points toward the center of curvature. Thus

the acceleration of the center of mass is

v2

ag = —K.
P
The corresponding Eqs. (6.1.1) are

v2

»F =m—Kk,
P

_ 1 LR R . .
YMg=—-mv-— 2+ —sinf | cosbj.
4 p P

We form the components of the force sums relative to the x’y’z’ axes, and the mo-
ments of the forces at the ground about the axes of xyz. Equating each to the corre-
sponding inertial term yields

SMg-i=0,
_ . 1 R R .
YMg-j=F,(Rcosf) — N(Rsinf) = —7m > 2+ ;sme cos 6,

SM-k=FR=0.

We solve the force equations for N and F,, and substitute those expressions into
¥ Mg - j. The result is
2 1 R R
m?- (Rcos ) — mg (Rsinf) = ——mv*— <2 P = Sin@) cos 0,
P 4 o P
which reduces to
W 4gp* tan 6 . <
6p + Rsinf

There is a simple explanation for this steady motion. The gravitational force and
normal reaction form a couple about the horizontal diameter of the disk because the
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disk is tilted. The frictional reaction required to impart the centripetal acceleration
to the center of mass also exerts a moment about this line. The net moment must
be matched by a change in the angular momentum. This effect is achieved by the
precession, which alters the true direction of the angular momentum, even though
its components relative to the xyz axes are constant.

It will be noted that f; was found to be zero. This is comparable to planar rolling
of a disk on level ground. The moment equation of motion in that case indicates that
the friction force is zero unless another force exerts a moment about the center of
mass, which leads to the anomaly that a disk rolling freely should never slow. This is
the fault of the rigid-body model for contacting surfaces. The rolling friction model
[see, for example, Ginsberg and Genin (1984)] addresses this anomaly. It would lead
to the correct conclusion that a steady precessional motion of the rolling disk is not
possible.

An experiment in aerodynamics features a square plate that is
free to spin at rate ¢ about axis A B of the bent shaft, while the precession rate
about the horizontal shaft is held constant by application of a torque I" about the
shaft. The angles are defined such that ¢ = ¢ = 0 when the plate coincides with the
vertical plane. This system is situated in a wind tunnel whose flow is horizontal. The
resultant of the aerodynamic pressure is a known force F(¢) acting at the center
of pressure P and always normal to the plane of the plate. Derive the differential
equation of motion for ¢. Include the effect of gravity in the derivation.

Example 6.5

SOLUTION This example addresses situations in which a nonaxisymmetric body ex-
ecutes a spatial rotation. Aligning the body-fixed coordinate system to match the
tabulated inertia properties fully specifies each axis, so we are not free to align the
axes to simplify the kinematical analysis. Rather, we need to use rotation transfor-
mations.

To construct the free-body diagram we recognize that the bent shaft applies
a distributed force to the plate along edge A B. The resultant of this is arbitrary,
except that it cannot exert a torque about that edge because the plate rotates freely.
Thus we represent the reaction exerted by the shaft on the plate as a force—couple
system at corner A, in which the couple has no component parallel to edge A B. In
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addition to the aerodynamic force, the free-body diagram shows the gravity force
acting vertically downward.

N

ertical

>
| 4y

T

X M, Free-body diagram of the plate showing the supporting forces

as a force—couple system at point A.

z
Z

In the free-body diagram the origin of body-fixed xyz coordinate system is
placed at bearing A. This point has a fixed position relative to the plate, and it is
stationary, which means that the plate executes a pure rotation about point A. The
axes of xyz are aligned with the edges of the plate in order to use the tabulated in-
ertia properties. The x'y’z coordinate systems depicted in the free-body diagram is
introduced to aid in the description of the gravity force and the angular motion. The
sole rotation it undergoes is the precession about the horizontal x’ axis. We define
¥ = 0 to correspond to the 7’ axis being vertical.

The transformation from x’'y’z’ to xyz may be pictured as a pair of body-fixed
rotations: 6 about the y’ axis, followed by —¢ about the x axis. The associated simple
rotation transformations are

(cos® 0 —sinf

[Ro]= |0 10 :

| sinf 0 cos6

1 0 0
[Ry]=10 cos¢p —sing |,
L0 sing cos¢

so the transformation of the unit vectors is

oL _ AT
[ 7 K= j K],
cos 6 0 —sin6
[R] =[Ry][R] = | —singsin® cos¢p —singcosd

cos ¢ sin 6 sing cos ¢ cosf
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We may now form the angular velocity and angular acceleration. Adding the
precessional motion about the horizontal x’ axis and the spin about the x axis leads
to

o =—yi — Pi.

The precession rate is specified to be constant and it is about a fixed axis, so the
angular acceleration of the plate is

a=—¢i —¢(dx1i).

We need the components of @ and & relative to xyz, and we need to express i in
terms of its xyz components. The transformation from x’y’z’ to xyz is described by
[R] . so we extract the components of i’ from the first row of [R]" , with the result
that

i’ = cosfi —sin¢sinfj + cos ¢ sin Ok,
which leads to
&= (—vYcos® — )i+ ysingsindj — 1 cos¢sinbk,
@' = —yr cosOi +  singsinfj — ¥ cos ¢ sin Ok,
@ = —@i + ¢y cos psinf ] + ¢y sin ¢ sin Ok.
We find the inertia properties for the square plate by setting to zero the dimen-

sion along the y edge of the rectangular parallelepiped in the Appendix, and then
invoking the parallel axis transformation. The result is

1 2 1
Ixx = gmﬁz, Iyy =m<§€2+£b+b2> 5 Izz =m<§ﬁz+£b+b2> 5
1, 1
Ly=1,=0, L,=m (Zﬁ + E“’) .

We combine these properties and the components of @ and & to form d H, /dt. For
this we must use the the full equations (6.1.3) because some products of inertia are
nonzero. Thus the angular momentum is

Hy = (Liywy — L)1 + Lyoy ] + (Lo, — Lywy) k
=[x (—V¥ cos0 — @) — I, (—y cospsin) ] + I,y singsinf j

+[L: (—v cos ¢ sin ) — L. (—y cos 6 — §)] k,

OH - . _
8_tA = (ULalels: = Tt ) AF o 7 Ak Uity = Join i
= [Lx (—¢) — L (¢¥ sing sin6)] i + Iy cos ¢ sin6 j

+ [ L (¢ sin g sin6) — I, (—¢)] k.
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The algebraic operations required to form dH,/dt according to the second of
Eqgs. (6.1.1) are somewhat tedious, but symbolic mathematical software lessens the
difficulty. The result is

H, = {—Ixngs i [(Iyy — I;)sin ¢ cos ¢ (sin ¢)* + I, sin ¢ sin 6 cos 9] ¢2}Z
+{[(1ex = 1) cos g sin6 cos 6 + Lz ((cos6)” = (cos ¢)” (sin6)”) |
+ [(Lx + Iy — L) cos ¢ sin @ + 21, cos 0] yrp — xz&} j
+ {Ixzézs + [(Ixx — I,,)sin¢sin @ cos @ — I, sin ¢ cos ¢ (sine)2] 2

+ [(Lex — Ly + I;) sin g sin 0] w¢} k.

We now are ready to form the equations of motion. We seek an equation of
motion for ¢ that does not contain unknown reactions. The force equations of mo-
tion will contain A,, Ay, and A_, so we will gain nothing by actually forming those
equations. We also can see that the unknown couple reactions M, and M, would
appear in the equations governing the moment sums about the y and z axes. In con-
trast, none of the reactions exert a moment about the x axis, so we focus solely on
that term. Two forces exert a moment about that axis: the aerodynamic force F,
whose lever arm about the x axis is d, and gravity, which acts in the (fixed) vertical
direction. Rather than trying to visualize the moment of gravity about the x axis, we
proceed formally by using a cross product. The angle between the vertical and the
7 axis is ¥, so

mg = mg (sin Vj — cos I/f]_(/) :

The position of the center of mass is readily described in terms of components rela-

tive to xyz:
L - L
r_G/A: (§+b>1_§ o

To evaluate the cross product of these vectors, both need to be described in terms of

components relative to the same coordinate system. We select xyz for this purpose,

because those are the axes for the moment sums. The transformation from x’'y’z’ to

xyzis described by [R], so we have
0 sin 6 cos Y
{mg} =mg[R]{ —siny ¢ = mg { cos¢siny + sin ¢ cos b cos

cos ¥ Sin ¢ sin ¥ — cos ¢ cos 0 cos Y
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The gravitational moment is 7,4 x mg. We require only the x component of this
moment. We add that result to the moment of F about the x axis and equate that
result to the x component of d F, /dt obtained previously. This gives

_ _ V4 S _
SMy-i= —Fd—i—mgz (cospsinyr +singpcosOcosy) = Hy - i

= I+ [(Iyy — I.;)sin¢ cos ¢ (sin@)> + I, sin ¢ sin 6 cos 9] Y2

Substituting the values of the inertia properties yields
1(} 1cos<1>sin9+ 1+1b cos 6 | (sin ¢ sin 0) 4>
3 3 4  2¢
Fd

+ % (cos ¢ sin ¥ + sin ¢ cos @ cos ¥ ) = —

It was stated that 1 is constant, so we may set ¥ = ¢. The value of # presum-
ably is known, so the preceding is the differential equation of motion governing ¢.
It is nonlinear, and its coefficients depend on time as a consequence of the known
variation of vr. The solution of this differential equation satisfying specified initial
conditions could be obtained numerically if all parameter values were provided.
The case in which the shaft is straight, & = 0, provides a check for this expression.
The equation of motion then reduces to ¢/3 + (g/2¢)sing = Fd/me. This is the
equation of a pendulum subjected to an external moment, which is what the system
reduces to when 6 = 0, because precession of the shaft becomes irrelevant.

6.2 PLANAR MOTION

In planar motion there is a single axis of rotation, whose direction is the normal to the
plane. To the extent that it is a special case of arbitrary spatial motion, there is no rea-
son to consider planar motion separately. However, many systems are limited to planar
motion, and the simple nature of this type of motion affords a good opportunity to delve
into some interesting effects, such as friction.

To derive the equations of planar motion from the general set, we define xyz to be a
body-fixed coordinate system whose origin is an allowable point for summing moments,
with the further specification that the z axis be perpendicular to the plane of motion.
To describe the motion of the center of mass we define a convenient coordinate system
x'y'z whose 7’ axis also is perpendicular to the plane of motion. The angular motion and
the acceleration of the center of mass correspondingly are

w = (,()]_C, a = a)/_c, ﬁG = an,i_, + a/Gy;/' (621)
For a body having arbitrary inertia properties the angular momentum is

H; = -0l — I ;0] + Lok (6.2.2)
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The corresponding equations of motion are

YF-i'=magy, XF-j =magy, ETF-k =0,
) -A . l_ = — xzd)+ Iyza)z, EMA . } = — yzd) + Ixza)2, (623)
My -k =10

The three force equations and the equation governing the moment about the z axis
are the same as those developed in elementary dynamics courses. If the z axis is not
principal, that is, if /,; # 0 or I,; # 0, then the remaining moment equations describe
the resultant moments about axes lying in the plane required to constrain the body
from rotating about those axes. We could have anticipated the need for these moment
resultants by considering Eq. (6.2.2), which shows that the angular momentum is not
parallel to @, and therefore not constant, if the z axis is not principal. The portion of
the moments about the x and y axes that are proportional to w? are gyroscopic mo-
ments that are the consequence of unsymmetrical distributions of mass relative to the xy
plane.

For situations concerning dynamic imbalance of rotating machinery, such as the
system treated in Example 6.1, consideration of these restraining moments is vital to
the analysis. However, the force equations and the moment equation about the z axis
are independent of the the values of I,; and I,;. Thus the same motion in the xy plane
will occur regardless of how the body’s mass is distributed in the z direction. For this
reason most planar motion analyses implicitly assume that the distribution is such that
the body is symmetric relative to the xy plane. Then the orientations of the x and y axes
are irrelevant to the moment equation. This leaves us free to let these axes be parallel
to the x’ and y’ axes, whose orientations are selected to expedite the description of ag
and the force components. Thus the equations of planar motion reduce to

SF-i'=mage, XF-j =magy,

(6.2.4)

m
SMy k= L.

It follows that a system in planar motion is governed by three scalar equations of motion
for each body in the system.

The rectangular plate, whose mass is m, serves as a fire door. In
case of an emergency, the cable holding the plate is severed and the door swings
down under the restraint of the rigid links that suspend the plate from the ceiling.
Derive a differential equation of motion governing the angle of inclination 6 of the
links. Also derive expressions for the forces exerted by the links on the plate. The
mass of each link is negligible.
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Example 6.6

SOLUTION This plate undergoes a translational motion because the links remain
parallel for any 6. Thus it might seem that the system is unremarkable, but the so-
lution will serve to emphasize the fundamental changes relative to statics concepts
that are required to analyze any system in motion. In the free-body diagram of the
plate, the links are considered to exert tensile forces. This is a consequence of ne-
glecting the mass of the links, which makes them two-force members. Note that the
forces on the left and right are taken to be different because the arrangement is not
symmetrical when 6 is nonzero.

X

| \FA

6 FB »
~
A v B Free-body diagram of the translating fire door.
X
h . eR

G
b

In general, all points in a translating rigid body have the same acceleration.
Hence the acceleration of the center of mass matches that of either point where a
link is attached. The latter follow circular paths centered at the respective upper
pivot, so we have

dg=as =ap=—Lb%gr+ Lbe,.

Because the box translates, we must sum moments about the center of mass. As
shown in the free-body diagram, we align the x and y axes with the polar directions
for ag, so that

dg=a,=ap= L6%] + LA
The angular momentum in translation is identically zero, so moments of inertia need
not be computed. The corresponding equations of motion are

SF.i=-mgsinf =mlL4b,
F.j=F4+ Fg—mgcost = mlLg?,

_ b h b h
Y Mg -k = Fgcosf (§> + Fpsin6 <§> — F4cosf <§> + F4sin6 (§> =0.
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The solution of these equations is

. g .
0+ = 6 =0,
aF Lsm

1 h .
FA=§<1+Etan9> (mg cos 6 + mL6?), 4

1 h .
Fg = 5 <1 — Etan@) (mg cos6 + mL6?).
Note that the differential equation for 6 is identical to that for a simple pendulum
formed by attaching a particle to the end of a cable of length L.

A cable drum, which is shown in cross section, consists of a cylin-
der having radius R, that is capped at both ends by circular plates whose radius is
Ri. A cable is wrapped around the cylinder and then pulled out horizontally by a
force F, as shown. The system was at rest when the force was applied. The mass of
the wrapped wire and the drum is m, the mass of the unwrapped segment of cable
is negligible, and the centroidal radius of gyration is «. The static and kinetic coeffi-
cients of friction between the end plates and the ground are u, and u, respectively.
(a) Determine the acceleration of the center of the drum assuming that the end
plates roll without slipping. (b) Determine the maximum magnitude of F for which
slipping will not occur. (c) Determine the angular acceleration and the acceleration
of the center of the drum when the magnitude of F exceeds the value obtained in
Part (b).

Example 6.7

SOLUTION Along the way to the solution of this problem, which highlights the var-
1ous aspects of the Coulomb friction model, we arrive at a result that demonstrates
once again that intuition based on experience with static systems cannot be trusted.
A free-body diagram shows F and the weight, as well as normal forces 2N and
friction forces 2 f exerted between the two end plates and the ground. The rela-
tionship between N and f is governed by Coulomb’s laws, which we will address
separately. Here the friction force f is depicted as acting to the left, based on the
assumption that it opposes the action of F, but we will be able to verify that as-
sumption. We select the center of mass as the reference point for summing moments
because the drum is in general motion. The axes of the body-fixed xyz coordinate
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system are defined to be horizontal and vertical, which matches the direction of the
motion.

y

-—4-X Free-body diagram of the cylinder with rigid end caps.

12N

We know that the drum is in planar motion and that the center follows a hori-
zontal path. Thus, regardless of the slipping condition, we know that

& =ok, ag="ui. (1)

Note that we have selected the sense of positive v and w to match the direction of
the respective axis, but any other selection is acceptable if it is implemented con-
sistently. In the special case where the drum rolls without slipping, the rotation will
occur about the negative z axis, with

v = —w Ry for no slippage. (2)

The centroidal moment of inertia corresponding to the given radius of gyration
is I, = mk?. The equations of motion are

SF-i=F—-2f=mp,
SF.-j=2N-mg=0, 3)
EMA-]_CZFRz—Zle = mito.

There are four unknowns, f, N, v, and o, in these three equations. In general, the
only available relations between force and kinematical variables in a kinetics prob-
lem are the equations of motion, so the additional equation required for solving Egs.
(3) must relate f and N or v and @. This is where the question of slippage enters.
It is given that the drum starts from rest, so initially the drum rolls without slip-
ping. This means that Eq. (2) applies. The contacting surfaces then are described
by Coulomb’s law for static friction, because the surfaces do not move relative to
each other. Thus we know a priori only that the magnitude of f is less than p, N
times. The actual magnitude and sense of f are dictated by the laws of motion. In
effect, the friction force is a constraint force—it prevents the relative movement of
the contacting surfaces.
When Egq. (2) is substituted into Egs. (3), the result is
o FR (R~ R) 1(R1R2+K2>F

4) <

mR+x2) T2\ Rt
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The signs of v and f are both positive, so the sense initially assumed for both quan-
tities is correct. This means that the drum rolls to the right and rotates clockwise.
Kinematically, this implies that the cable gets wound around the drum, even though
F seems to act to pull it off the drum. The explanation of this behavior lies in the
result for v. We know that F (R, — Ry) is the moment of F about the contact point,
and m (R} + «?) is the moment of inertia about an axis parallel to z intersecting the
contact point. Replacing v with —@ R; shows that the motion is a consequence of
angular acceleration caused by F exerting a moment about the contact point. (Re-
call that the contact point is an allowable point when there is no slipping, provided
that the wheel is balanced.) The maximum magnitude of F that can be sustained
corresponds to impending slippage, at which | f| = u, N. From the force equation of
motion in the y direction we have N = %mg, so the second of Egs. (4) correspond-
ingly gives

R12+K2

Foax = =———— um
max RlRZ —}—KZMS

g. <

When slipping occurs because |F| > Fpay, the friction force is governed by the
kinetic portion of Coulomb’s friction law, which states that | f| = 1; N in opposition
to the relative sliding motion. We know this sense from the solution of the no-slip
case, which indicated that f acts to the left. Thus we substitute f = u; N = u,mg
into Egs. (3). Note that, when slippage occurs, the friction force no longer acts to
constrain the sliding, so there is no kinematical relation between w and v. The solu-
tion of Egs. (3) now is

F . FR gk

V= — — kg, ©O=—> >
m mi K

<

The positive sign for @ indicates that the rotation is counterclockwise. Thus the
drum will accelerate to the right and the cable will unwrap when F is sufficiently
large to cause slippage.

The homogeneous box, whose mass is m, is placed horizontally
on the semicylindrical surface, such that contact is below the centroid G. Assuming
that the box does not slip, derive the differential equation of motion governing the
angle ¢ by which the box rotates away from horizontal.

L

h -G

S

Example 6.8
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SOLUTION The center of the wheel in the previous problem followed a straight path,
whereas the motion of the center of the box had no obvious feature. Thus this ex-
ample will give a more complete description of the analysis of bodies that roll. The
free-body diagram of the bar must show the bar at an arbitrary angle of elevation ¢.
The friction and normal forces act at the contact point C. In the absence of slippage,
the distance along the bottom from point C to the centerline of the box must equal
the arc length R¢ along the circle from the contact point to the top from the center.
Note that neither the magnitude nor sense of the friction force is known, because
it acts as a constraint force that prevents relative motion of the contacting surfaces.
The only allowable point for summing moments is the center of mass, and it makes
sense from a kinematical viewpoint to orient the x and y axes consistently with the
local plane of contact with the cylindrical surface.

Free-body diagram of the box showing the contact forces that prevent
slippage.

The position of the box clearly is specified by the value of ¢. (In the terminology
of the analytical dynamics concepts of the following chapters, ¢ is a generalized
coordinate.) We must express the acceleration of point G in terms of ¢ consistent
with the no-slip condition. The rate of rotation is ¢, and we know that point C has
zero velocity, so the velocity of point G is given by

UG =o XFgic, @ = k.
For the arbitrary position described by the free-body diagram, we have
- 1 -
FG/c = Rpi + Ehl’
which gives
1 . .
UG = —zhdﬂ + Ropopj. (1)
Because this expression describes an arbitrary position, it may differentiated. The
unit vectors are not constant, so we use the partial differential technique for relative

motion. This gives

_ 317G+_ _
= —+d X7
6= ©

—§h¢i + R(¢* +¢9) j + ok x <—§h¢i + R¢¢j) ()

—— (3hd+ Ro? )+ (R + Rob— 547 5.
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The Appendix gives the centroidal moment of inertia. The corresponding equa-
tions of motion are

LF-i=f—mgsing = mag, = —m (%hiﬁ—i— quqﬁz),

EF~]_'=N—mgcos¢=maGy=m<Rq52+R¢<b'—%hqﬁz), (3)

_ h 1 .
IMg-k=f <§> — N(Rp) = L.iv = o (b* + 1?) .
There are three unknowns, ¢, N, and f, in these three equations, so we may pro-

ceed to their solution. To obtain the desired differential equation we eliminate the
reactions. The force equations give

1 . . . .1
f=m <gsin¢ - 5hé + R¢¢2> ., N=m <gcos¢ + R§* + R — §h¢2> Y
which, when substituted into the moment equations, yield

h p 2.0 = - gh .
[?+E+R¢:|¢+R2¢¢ =7s1n¢>—gR¢>cosq>. ) <

If the initial values of ¢ and ¢ are specified, this differential equation could be
solved for ¢ as a function of t. We would use numerical techniques to obtain the
solution, because an analytical solution would be difficult. When one performs a
numerical analysis it is useful to have test solutions to verify the analysis. We may
derive one such solution by considering ¢ to be small, which enables us to linearize
Eq. (5). We introduce the approximations cos ¢ ~ 1, sin¢ ~ ¢, and drop any terms
that have quadratic or higher powers of ¢. The resulting equation for small rotations

is
h b\ . h
<?+ﬁ>¢+g<R—§>¢=0. (6)

When & < 2R, the response obtained from this equation is sinusoidal, corre-
sponding to oscillations about a stable static equilibrium position. The results ob-
tained from solving Eq. (6) should then be a good approximation of those for
Eq. (5). In contrast, when /& > 2R, the solution of the linearized equation of mo-
tion is exponential, corresponding to continuous movement away from an unstable
static equilibrium position. The solutions of Egs. (5) and (6) then will be consistent
only in the early phase of the response, when ¢ is small.

The transition from stability to instability has a simple explanation. In the case
where the bar is slender, & < 2R, the center of mass rises as ¢ increases. Thus ¢ = 0
is a position of minimum potential energy. In contrast, when 4 > 2R, the center of
mass descends with movement away from the equilibrium position, which means
that ¢ = 0 corresponds to maximum potential energy. Note that the stability tran-
sition is independent of the value of the length b, whose only effect is its influence
on the effective moment of inertia of the bar, which is the coefficient of the angular
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acceleration term in the equation of motion. Thus, when the equilibrium position is
stable, the value of b solely affects the frequency of the stable oscillation.

The derivation of Eq. (5) assumed that the box does not slip over the cylinder,
but that might not be true. At every instant at which the differential equation has
been solved, the no-slip condition should be verified. This requires that, in addition
to knowing the instantaneous value of ¢, we would need to determine ¢, either
analytically or by finite differences. The corresponding ¢ may be found from Eq. (5),
which then allows us to evaluate f and N according to Egs. (4). Coulomb’s friction
laws state that the maximum friction force that can be developed between surfaces
that rub against each other is u, N. It follows that, if the computed value of | f] is less
than p, N, then the solution is acceptable. Conversely, if | f| exceeds N, slippage
will occur. In addition, one should monitor the value of |N|. Negative N indicates
that the surface must pull on the box, which is not possible. When the criteria for no-
slip or positive contact fail to be met, the problem must be reformulated. In the case
of slippage, kinematical equations (1) and (2) are no longer valid, but the friction
force is known. Occurrence of a negative N would indicate that the box has left the
surface, in which case it would be in free motion.

The slender bar moves in the horizontal plane under the constraint
of collars A and B. The horizontal force F acting on collar A is such that the velocity
of this collar is observed to be a constant value v to the right. The mass of bar A B is
m, and the collars have negligible mass. The coefficient of sliding friction between
each collar and its guide bar is . Derive an expression for the value of F as a
function of the angle of elevation 6 and the other parameters of the system.

Example 6.9

SOLUTION This example highlights some of the issues entailed in applying the
Newton-Euler equations of motion to analyze linkages, without introducing
the complications associated with multibody systems. Properly accounting for the
friction forces is another aspect to be covered. The condition that the collars follow
the guide bars is enforced by the normal constraint forces N4 and Np. The friction
forces f4 and fp oppose the movement of the collars relative to the respective
guide bars, as shown in the free-body diagram. The sense in which the free-body
diagram depicts the friction forces is set by the condition that these forces act in
opposition to the movement of each collar. However, either normal force might
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act in the opposite sense from the one that appears in the diagram, depending on
which direction either end would move if there were no normal force. We will deal
with this complication when we solve the equations of motion. The applied force F
also acts as a constraint force because it imposes the kinematical condition that end
A has a constant velocity. Gravity has been omitted from the free-body diagram,
which implies that the system lays in the horizontal plane or that the applied force
F is large compared to mg.

B
Ji 5 y

X Free-body diagram of the sliding bar.

Bar A Bis in general motion, so we place the origin of xyz at the center of mass.
It will be necessary to relate the motions of ends A and B. Doing so is assisted by
aligning the axes such that at the instant described by the equations of motion the
axes are horizontal and vertical.

Itis apparent that knowledge of the value of the elevation angle 0 fully specifies
the position of the bar. Furthermore, 6 is the rotation rate of the bar, which means
that we need to establish the kinematical relationship between & and the given speed
v. As we saw in Chapter 4, we could obtain this relationship by differentiating al-
gebraic expressions derived from trigonometry. Instead, to convey a picture of how
multibody linkages could be treated, we pursue a kinematical analysis relating the
velocity and acceleration of constrained points. The velocity of end A is stated to
be constant v to the right, so end B must move downward parallel to its guide bar.
Because 4 is the rotation rate about the z axis, we have

va=vi, vp=vg(cospi —sinpj), o=—bk,
as=0, ag=vp(cospi—sinpj), a=—0k.
We relate the velocities of both ends, using 6 to describe the relative position.

This gives

Up=17V4+® XTFpga,

vp (cos Bi —sinBj) = vi + (—6k) x (—Lcos6i + Lsin6j).
The scalar equations we obtain by matching like components are

vp-1=vpcosp =v+6Lsinf, vg-]=—vpsinf =6Lcosh.

Elimination of v from these equations and use of a trigonometric identity lead to
vsin

= TG0 &
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We now apply the analogous analysis to acceleration,
dp=0d4+aXFpa— 0 Fpa,
Vg (cos Bi —sin Bj) = (—0k) x (—Lcos0i + Lsin6j) — 6% (—Lcos6i + Lsin6 ).
Matching like components gives
ap-i =vpgcospf =6 Lsinb + 6% Lcosb,
dp-] = —vpgsinf =6Lcosh —H2Lsinb.

Elimination of v leads to

_ sin(B —6) _ _(3)2 (sin B)*sin (B — 6) @)
cos (B —0) L cos(B—0)
Note that we could have obtained the same expression directly by differentiating
Eq. (1) with respect to time.
Equations (1) and (2) allow us to describe the acceleration of the center of mass
in terms of v and 6. Relating this point to the constrained point A gives

ac=ap+a Xrg/a — @ X 7G/A
L, . . 7 - L. P s =
== (6sin6 + 6%cos )i + > (6 cos® — 62sino) j.
Substitution of Egs. (1) and (2) and a trigonometric identity eventually lead to
v?  (sin B)*
ac=———""——
2Lcos(B — 0)°
[The preceding expression indicates that ag is parallel to the left guide bar. This
is a consequence of a general property of rigid-body motion. If G is the mid-
point between points A and B, describing dag in terms of a4 and ap leads to
ac = % (asa+agp).]
We now are ready to form the equations of motion. The centroidal moment of
inertia of the bar is (1/12) mI?, so we have

(cos Bi —sin Bj). (3)

o2
F — fa+ Npsin — fgcos B =m(ag-I) = %(Cs:ls(ﬂl;—fc;s)f’

_m_vz(sinﬁ)2 sin B
2L cos(B—06)"

0

i

x

SMy-k= Ny <§cos9) — fa <§Sin9> — [Ngcos (B —9)]15

. L ! v\2 (sin B)*sin (B — 6)
~[fasin (B = 0)] 5 = L (6) = —=m* () oo

(4)
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These three equations of motion contain five unknown variables: F, N4, Np,
fa, and fp. The required additional equations relate the sliding friction and normal
forces at each collar. Coulomb’s law asserts that, when two surfaces slide over each
other, then | f| = 11, | N|. The free-body diagram properly showed the sense of each
friction force, but it was noted that either normal force might actually be in the op-
posite sense from the one that was used to construct the diagram. Equations (4) may
be employed if either normal force is reversed, provided that N4 or Np is replaced
with its negative value. In other words, we may obtain a set of equations that are
valid in all cases by defining N4 and Np to be positive values, and replacing N4 with
o0 AN, and Ng with o g Np in Egs. (4), witho 4 = 1 and 0 5 = £1. Correspondingly,
Eqgs. (4) may be written as

F
[H(oa.08)] 1 Na =mTUZ{K},
Np
1 — (opsinB — ucosp)
[H(ca,08)]= 0 oA (0 gcos B + wsin B) ,
sin(0) o4cos(0)—psin(0) —opcos(B—0)— pusin(B—0)
Z%[as cosp —05sinf —sin(B —6)/6]".

)

A corrollary of this modification is that solutions of Egs. (5) are meaningful only

if N4 and Np are both positive. Thus we select an angle of inclination in the range
0 < 6 < B and solve Egs. (5) for each permutation of 0 4, =1 or —1 and o =1
or —1. We discard the solution for a set of signs if either N4 or Np is found to
be negative. This leads to the possiblity of multiple solutions, which is a common
occurrence in nonlinear systems. However, the normal forces found for g = 75° and
w = 0.25, which are depicted nondimensionally in the first set of graphs, indicate

that 0 4 = o0 5 = —1 is the only valid case over the entire range of 6.
20 - - - 600 . . .

o 10} = 1 « 400} .
= =
§ 0 ] § 200l Ga=tlop=-1 |
Z‘E ZPQ

-10} o,=1,05=-1 . 0Ok R

\G =1,05=1 ’Eo =%l,05=+1
-20 R S 200l 4 P
0 20 40 60 0 20 40 60
0 (deg) 0 (deg)

Values of the normal forces N4 and N as functions of & when g = 75°, 1, = 0.25, for each permutation
of their sign factors
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The concluding graph shows F and the reaction forces as functions of the
nondimensional time vt/ L. This parameter is related to 6 by the law of sines. If
we take ¢t = 0 to correspond to § = B, then we have

vt L
sin(B—0) sinp’

One reason for the rising value of F as ¢ increases (decreasing 6) is the presence of
cos (B — 6)* in the denominators of both ¢ and 6.

1000
100
1 N, L/mv?
10 / FL/mv? =
1 :
0.1 ]
0.01 =Ny L/mv?
0.001 . . ]
0 0.2 0.4 0.6 0.8 1
vt/L

Forces as functions of nondimensional elapsed time correspondingto o4 =og = —1; B =75°, uy =
0.25

6.3 NEWTON-EULER EQUATIONS FOR A SYSTEM

The reduction from an arbitrary collection of particles to a rigid body had important
benefits, in that doing so reduced enormously the number of kinematical variables, si-
multaneously with enabling us to ignore the interaction forces exerted between the par-
ticles. Both gains result from the recognition that the particles forming a rigid body are
mutually constrained. In the same manner, it sometimes is useful to consider interacting
rigid bodies as a unified system. The concepts we develop here consider several bod-
ies to act in unison. Doing so lessens the need to consider the forces associated with
the interaction of these bodies. However, in doing so, fewer equations of motion will
be available. Thus the concepts that follow should be considered to supplement, rather
than replace, the basic Newton—Euler equations for each body in a system.

To assemble a system from its constituent rigid bodies, consider the pair of bodies
in Fig. 6.2, which are loaded by a set of external forces that are not labeled. In addition,
Body 2 exerts force fi, and couple M; ; on Body 1 as a result of their interaction, which
can be the result of their being connected or as a consequence of field effects such as
gravity. The influence of Body 1 on Body 2 consists of force f, 1 and couple M, ;. These

Figure 6.2. Forces acting on a pair of interconnected rigid
bodies.




332 Newton-Euler Equations of Motion

dHGl dHGZ
dt dt
Figure 6.3. Inertial force-couple systems equivalent to the
forces acting on a pair of interacting rigid bodies.
interaction effects are governed by Newton’s Third Law, which means that 51 = — fj 5,
M1 = —M,,, and f>1 and fi, share the same line of action.

The method by which we combine these two bodies into a system appeared in
Fig. 6.1, which depicted the force system acting on a rigid body as being equivalent in
its effect to a dynamic mag applied at the center of mass and a dynamic couple d Hg/dt.
Figure 6.3 applies the same representation to each body considered in the previous fig-
ure. The forces and couples acting on each body in Figs. 6.2 and 6.3 are equivalent, so
their combined effect must also be equivalent. It follows that their sum, which represents
the resultant force acting on the system, is the same, and their moment about any point
B also is the same. The same conclusion would be reached if the system were composed
of N bodies, so the Newton—Euler equations for the system are

N
EF = Zm]dc;],
=1
N ! N (6.3.1)
_ d Hg; _
EMBZ d[] YGj/B X M;jag;j
j=1 j=1

These equations of motion share with Eq. (6.1.2) the cumbersome feature of having
the center-of-mass accelerations appear in the moment equations. For a single body,
which was the scope of Eq. (6.1.2), there was no advantage to such an approach. The
same is not true here because of an aspect of the resultant force and moment of the
actual force system. As was noted, the forces and couples exerted between any pair of
rigid bodies satisfies Newton’s Third Law. The contributions of each pair to the force
and moment sums cancel, so we may ignore any forces or couples that are internal to
the system when we formulate the resultants in Egs. (6.3.1). Another useful aspect of
these equations lies in the arbitrariness of point B. The main consideration in selecting
the point for a moment sum in the static case is the ability to avoid the appearance
of unknown forces (usually reactions) in the moment equilibrium equations. We have
developed here a comparable ability for dynamic systems.

To see the possible advantage in the system viewpoint consider two interacting
rigid bodies in spatial motion. Describing the motion of each rigid body in isolation
from the other yields a total of 12 scalar Newton—Euler equations: three force compo-
nent equations and three moment component equations for each body. These equations
contain the forces and/or couples exerted between each body as unknown reactions,
so the solution of the equations must determine, or at least eliminate, those reactions.
Considering the two bodies as a single system, so that the interaction forces exerted
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between them become internal to the system, leads to three scalar force equations and
three scalar moment equations that do not contain these forces.

The systems viewpoint does not necessarily lead to a solvable set of equations, be-
cause that question depends on the number of external reaction forces and kinematical
variables that arise. In the event that Egs. (6.3.1) are not sufficient to find the desired
variables, the equations may be supplemented by Newton-Euler equations of motion
for any of the rigid bodies. However, it is important to recognize that Egs. (6.3.1) are
essentially the same as the result of summing the equations of motion for each isolated
body, so they do not contain any new information. If there are N bodies in a system,
then there are no more than 6 N independent scalar Newton—Euler equations of motion.
Up to six of these may be obtained from Egs. (6.3.1).

The ability to consider a set of moving parts as a system enables us to qualitatively
explain how a bicyclist can maintain balance and maneuver without falling. To avoid
going into details that would obscure the discussion, we employ a simplified model of
the steering configuration. Our model, which is shown in top view in Fig. 6.4, considers
the axis of the steering fork to be perpendicular to the longitudinal axis and to intersect
vertically the axis of the front wheel. Under perfect conditions, to follow a straight path
the bicycle would be oriented vertically, with the rider’s center of mass situated directly
over the line connecting the centers of the wheels. The angular momenta of the forward
and rear wheels, A '+ and H,, are horizontal in this case, as shown. If it were not for rolling
resistance, this motion could be sustained without any effort on the rider’s part.

Figure 6.4. Balancing of a bicycle as seen in a top view.

Q: Steering

M : Overturning correction

moment

Such ideal conditions cannot be maintained. For example, the rider might lean over
or a gust of wind might arise. Such a disturbance, in combination with the reaction of
the wheels, creates an overturning moment M that acts about the longitudinal axis. (The
situation in the figure corresponds to the rider leaning to the left.) This moment must
be matched by a corresponding change in the angular momentum. If the rider makes
no adjustments and remains stationary relative to the bike, the result will be an angu-
lar acceleration in the direction of M. In other words, the bike would fall over. Instead,
the rider turns the handlebars, which causes the steering fork to rotate at some angular
speed Q. This rotation causes the tip of Hy to move in the sense of @ x Hy. The conse-
quence of d Hy/dt equaling M is that the sense of € induces a turn to the side in which
the bike is tending to lean (left in the case of the figure).

If the rider wishes to return to the direction initially set, then this correctional
maneuver must be reversed. The rider turns the steering wheel in the opposite sense,
thereby reversing the sense of d H/dt. Thus, in the scenario of Fig. 6.4, after compensat-
ing for M, the rider would turn the handlebars clockwise as viewed from above, thereby
generating a d Hy/dt effect that is oriented forward. To generate a force system whose
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resultant moment about the longitudinal axis matches this rate of change of the angu-
lar momentum, the rider simultaneously leans to the right, thereby shifting the center
mass to the other side. Thus riding in a straight line is actually a sequence of correc-
tive steering maneuvers and shifts of the center of mass. In essence, the bicyclist is both
the actuator and controller of a feedback control system. This feature is most evident
in children who have just begun to ride a bicycle. For a very experienced bicyclist, the
corrective maneuvers are barely perceptible. Also, if the rider’s hands are not placed on
the handlebars, then the steering wheel turns of its own accord in the manner required
to change the angular momentum at a rate that matches the unbalanced moment. In any
event the ability to steer is essential to maintaining one’s balance.

When a rider wishes to execute a steady turn the handlebars are not returned after
their initial rotation, so the bicycle is leaning to the side in which the turn is being ex-
ecuted. This situation is essentially as described by Example 6.4, except that it is now
convenient to use a reference frame whose origin is the center of mass of the whole bi-
cycle, with the y axis intersecting the center of both wheels. There is a normal force and
a friction force acting on each wheel, the resultant of the latter being what is required
to make the center of mass of the bicycle follow a circular path at speed v. The angular
momenta of both wheels no longer are oriented in fixed directions, because the bicycle
is rotating about the vertical axis at v/p, where p is the radius of the circular path. For a
left turn in Fig. 6.4, both d Hy/dt and d H, /dt will be rearward. Regardless of the direc-
tion of the turn, we know that d Hy/dt + d H, /dt must equal the overturning moment of
the friction, gravity, and normal forces about the longitudinal axis.

A performer riding a unicycle exploits these same phenomena to maintain left-right
balance. Thus falling to the left is controlled by twisting the wheel left, and vice versa.
Forward-rear balance requires a different control strategy. This relies on the fact that a
falling stick can be kept at a constant angle of tilt if it is given the correct translational
acceleration in the horizontal direction. Thus the unicyclist compensates for a tendency
to fall forward or back by accelerating in the direction of that tendency. Obviously riding
a unicyle is substantially more difficult than riding a bicycle.

This discussion of a bicycle simplifies much, and it also ignores some important ef-
fects. For example, if the bicycle begins to tip over, the angular momentum of each wheel
will change in the vertical direction. The matching moment is generated at the front and
rear wheels in the form of transverse friction forces that form a vertical couple. These
forces influence the handling and stability of the bicycle. Nevertheless, the discussion
does give a reasonable picture.

An automobile moving at a constant speed v follows a circular
path of radius p. The track (distance between a pair of wheels) is w and the wheel-
base (distance from front to rear axle) is £. The mass of the automobile is 7, and the
center of mass is on the midplane, at distance b behind the front axle and height 4
above the ground. Each wheel has radius R, mass m,,, moment of inertia J about its
axle, and coefficient of static friction u. Determine the maximum speed v that may
be sustained by the vehicle without skidding or tipping over.
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SOLUTION This example explores an interesting effect of the inertia of a wheel as
a way of illustrating the analysis of an assembly of bodies. The system consists of
the vehicle chassis and the four wheels. The xyz coordinate system is defined in the
free-body diagram to have its origin at the center of mass of the chassis, with the
x axis forward. Acting at each wheel is the normal force N] which is assumed to
be collinear with the weight of the wheel acting at its center of mass of the wheel.
Each wheel also has a friction force f;, which is depicted in the free-body diagram
as acting to the left relative to the forward direction, as they would for a left turn.

Free-body diagram of an automobile executing a turn
to the left.

It is reasonable to neglect rolling resistance, so each friction force should be
shown as acting perpendicular to the plane of the wheel. However, this introduces
a complication regarding the front wheels, because they must be rotated to execute
the turn, so the friction forces at the front and rear wheels are not parallel. One
consequence is that there is a net component of the friction force in the longitudinal
x direction, which means that a friction force representing traction must be applied
to maintain a constant speed. To simplify the analysis all friction forces are shown
in the diagram as though the front wheels were not steering, so that they act in the
transverse y direction.

Another simplification we employ is to consider all centers of mass to be fol-
lowing circles whose normal direction are i. For the wheels on the left side, which
are closer to the center of curvature, the radius of the circle is p — w/2, whereas the
radius for wheels on the right side is p + w/2. Thus the center-of-mass accelerations
are approximated as

aco = pQ°j, ac1 =ac = (p = %) Qj, g =adcs= (,0 + %) %7, (1)

where Q = v/p is the rotation rate about the vertical axis. The angular momentum
of the chassis is due to 2, and it is constant. The rotation rate of a wheel about
its axle is v/ R, so the angular momentum of a wheel has two components: J (v/R)
about its axle, which is parallel to the y axis, and a constant component in the vertical
direction that is due to . The horizontal component rotates at , so the rates of
change of the angular momenta are

I;_IG()Z(_), ngZQX (]%j):—]gz%l_ (2)
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We sum moments about the chassis’ center of mass. In view of Egs. (1) and (2)
and the fact that each ma vector is in the y direction, Egs. (6.3.1) become

N
EF = ij'c_l(;j = (m +4mw),092;,
j=1
1 dHg;
: dt
j=0

xmy, (aG1 + aGy) + [— (€ — b)i — (h — R) k] x my, (ac1 + ac2)

> Mg =

4
_ — ,0.— = =
+;0rcj/3xmjacj :—4]92§z+[bl —(h— R)k] 3)

= [—4]92% +4(h— R) pm, 522] i+ (2b—¢) pm,Q%k.

The simplified construction of the friction force enables us to evaluate the moments
by inspection, so matching like components in Egs. (1) and (2) leads to

>F-i=0,
SE-j=(fi+ h+ f+ fi) =(m+4m,) o2, (4)
SF-k=N+ N+ N+ N, —mg — 4m,g =0, 3)

_ L w
EMg~l:(N1—N2+N3—N4)5+(f1+ﬁ+f3+f4)h

= Q2 [—JB +4(h—R) ,omw] , ©
R

EMG . } = (—N1 - N+ 2mwg)b + (N3 + Ny — 2mwg) (E = b) =0, (7)

EM-k=(fi+ )b~ (fs+ fi) (¢ —b) = (2b— ) pm, k. (8)

There are more unknown forces than the number of available equations of mo-
tion. It is possible to solve Egs. (4) and (8) for the combinations f; + f; and f; + fi,
and simultaneous solution of Egs. (5) and (7) leads to a solution for N; + N, and
N3+ Ny. Doing so shows that

{—b
N+ N = <Tm+2mw> g,

b
N;+ Ny = (Zn”l“l‘zmw) 8,

{—b 2(2b—¢ 2
f1+ f2: [T (m+4mw)+(T)mw} %7

2 _ 2
(2b Z)mw] v°
¢ p

)

ft fim | on e dm) -

J 2
(Ni = No+ Ny — Ni) = = | == — hm — 4Rm,, | =
2 R P
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We recover the static normal forces from these equations by setting v = 0. It is rea-
sonable to assume that the dynamic effect is such that N, and N5 on the left side of
the automobile decrease by the same amount A relative to their values, whereas N,
and N, increase by that same amount. Hence we set

e—b t-b
N = (—m+Mw)g_A N, = <_m+mw>g+Av

2¢ 2¢
. > (10)
N; = <ﬂm+mw>g— A, Ny= <ﬂm+mw>g+A.
The last of Egs. (9) then yields
4R?
A=J—i—hRm—i— My o (11)

2w Rp

Even though we cannot determine the individual friction forces, we have suf-
ficient information to identify the critical conditions. In the skidding limit, each
wheel has attained its maximum possible friction force, so we analyze it by setting
fi = uN;. From the first and third of Egs. (9) we find that

o (E_b)m+2mw£ 12 1/2
”S‘“d_[(z-b)(m+4mw)+2(2b—z)mw (rog) - =

The same calculation made with the second and fourth of Egs. (9) yields

bm + meﬁ L& ( )1/2 4
Uskid = .
4= hm+ dmy) —22b— O m, | P8

Note that fi + f, and f;3 + fi both increase monotonically with increasing v,
whereas the corresponding normal force sums are independent of speed. Thus the
first value of vgiq is the maximum speed for which the front wheels will not skid,
and the second value is the maximum speed for which the rear wheels do not skid.
Safe operation requires that we remain below the lower speed. In the special case in
which the center of mass is midway, b = £/2, both speeds reduce to (1pg)"/?. The
same result is obtained in the limiting case in which each wheels’s mass vanishes.
Thus we deduce that the primary factors influencing whether the wheels will skid
are the coefficient of static friction and the radius of curvature of the turn.

The condition in which the vehicle is about to tip over occurs if the normal
force at both inner wheels is zero, Ny = N; = 0, but the vehicle is still horizontal.
In a strict sense, Egs. (9) do not apply in this case because Egs. (10) indicate that
if b > £/2 then the value of A for which N; = 0 gives N; < 0, which is not possible.
Similarly, if b < £/2, zero N; corresponds to negative Ns;. Rather than reanalyze
the basic equations, we argue that any condition where a wheel loses contact with
the ground is dangerous. In that case we take A to be the smaller of the values for
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which N, or N; vanishes, then substitute that value into Eq. (11) to determine the
corresponding value of the speed. The result is

min (b, € — by m + 2¢m,, 1% [ wRpg \ "/
Vtip = 0
up J + hRm + 4R?m,, ;

<

In the limiting case in which the mass of the wheels is negligible, setting m,, = J =0
in the preceding equation gives

min (b, £ — b)1? (wpg\ "/
A h)

Our analysis indicated that the speed at which the automobile will begin to skid
is not strongly dependent on the vehicle’s inertial properties, but that is not the case
for tipping over. One is more likely to recover control of a vehicle that has begun
to skid than one that is about to tip over, so we wish that vy, > viq. Because any
value of J decreases vyp, it is desirable to minimize the mass of the wheels. In the
limit as m and J vanish, we find that this design criterion on the speed is satisfied if

w L

— > — .

A~ min(b, ¢ —b)"
This is consistent with our intuition that an automibile will be less likely to tip over
than a truck or SUV having the same track w.

6.4 MOMENTUM AND ENERGY PRINCIPLES

The force and moment equations discussed thus far govern the linear and angular accel-
eration of a body. Momentum and energy principles, which represent standard integrals
of these equations, may be used to relate the linear and angular velocity of the body
at successive instants or locations. Because these principles are derived directly from
the Newton—Euler equations of motion, these integral relations should be considered to
supplement, rather than replace, the basic acceleration equations. Furthermore, evalu-
ation of the associated impulse and work quantities often requires knowledge of some
aspects of a body’s motion, in which case these principles cannot be used to predict the
motion. One place where momentum principles are particularly useful is understanding
the manner in which any projectile rotates, which is the focus of Section 10.1.

6.4.1 Impulse-Momentum Principles

Equations (5.1.22) and (5.1.24) are the time derivative forms of impulse-momentum
relations. Definite integration of each between any two instants #; and £, leads to

Pz = Pl —i—j;iz EFdl‘,

6.4.1
(HA)z = (HA)1 + ftiz S Madt. ( :
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These relations state that the final value of a body’s linear or angular momentum exceeds
the initial value by the corresponding type of impulse, which is defined to be the time
integral of the resultant force or moment. The linear momentum of a rigid body is mig
and the angular momentum is described by Egs. (6.1.3).

Both momentum principles are vector equations, so they each yield three scalar
equations obtained from equating like components. If the impulses can be evaluated,
then the scalar equations fully define the corresponding change in the linear or angular
velocities. The difficulty lies in that evaluation. The resultant force and moment acting
on a body are seldom known in advance because the reactions are unknown. Further-
more, it is not sufficient to know the force or moment in terms of components relative
to the body because the corresponding unit vectors are not constant. Evaluating the
impulse integrals in that case would require knowledge of the orientation of the unit
vectors, and of the components, as functions of time. Such information usually is not
available, because it depends on the bodily motion being studied.

Momentum-impulse relations are particularly useful when impulsive forces act on
a body. Examples of such forces are the those generated by an impact, such as between
a golf club and a ball, and explosions. Impulsive forces are defined to impart very large
accelerations to a body over a very short time interval. The notion of an impulsive force
is that it is sufficiently large that the influence of nonimpulsive forces, such as those asso-
ciated with gravity and springs, may be ignored during the brief interval of the impulse.
(Note in this regard that reactions can act impulsively, because they must be as large
as necessary to impose the associated motion constraint.) A corollary of the brevity of
the time interval is that the system’s position cannot change much because the veloc-
ity is finite. These observations lead to a simplified model of the action of impulsive
forces, which is quite useful if we are interested in the macroscopic aspects of a sys-
tem’s motion. We represent the linear and angular impulses by the average values of the
resultant force and moment, and take the velocity to change instantly from time ¢, to
time to+ , while the position is unaltered. Let t; < ¢ < f; + At denote the interval in which
the impulsive forces act, and let a subscript “imp” denote average values of the resultant
force and moment of the impulsive forces. The simplified model of impulsive action then
states that

P(t=1")=P(t=17)+(SF),, At

i)y =H 7))+ (EMy), At (6.4.2)

imp

b
—_
~
I

A(t=
Frio(t=4")=rpol(t=1),

where point P referred to in the last relation is any point in the body. It is obvious that
these relations should be used judiciously. For example, the corollary of taking the ve-
locity to change instantaneously is that the corresponding acceleration is infinite. Thus
the simplified model is of no use if one wishes to study the details of the impulsive pro-
cess, such as what stresses are generated by the collision of bodies. The role of impulse
forces in accounting for collisions between bodies is treated in Subsection 6.4.3.
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The extension of impulse-momentum principles to systems of bodies is readily
obtained from Egs. (6.3.1). We seek time integrals of those relations in which the fi-
nal result requires knowledge of motion parameters at only the initial and final instants.
Toward that end we operate on the last term in the angular momentum equation by re-
ferring the acceleration of each body’s center of mass to the motion of point B. Because
the summation of m ;7 ;g for each body is the first moment of mass, which defines the
system’s center of mass G, this operation leads to

N
Y FGis X mjdGi = ) miFgyp X ap+ Y _FGip X midcj s
= = = 6.4.3
N (64.3)
= msystemfG/B X ap+ Zij/B X m;acj,p-
j=1
The next step mirrors the derivation of the angular momentum principle for a particle,
in which the acceleration term in the summation is converted to a velocity-dependent
term by taking the time derivative of the cross product. Because d/dt (Fgj 8) = Vgj/B,
the result is
N N
d
ZrG//B X mjaG] = msysteer/B X ap+ Z (rG]/B X m/UG]/B) (644)
j=1 j=1
Thus an alternative form of the second equation of Egs. (6.3.1) governing the mo-
ment acting on a system is

N

dH, d
Z G] + Msystem G/B X dp + Z o (FGj/B x mjvgj/p) - (6.4.5)
j=1 j=1

We seek a form of this relation in which the momentum terms are time derivatives. We
therefore require that the point B about which we sum moments be an inertial point, for
which ag = 0, or else the system’s center of mass, in which case 7. G/B = 0. In either case
the right side is an exact derivative, whose integration yields the principle of angular
impulse and momentum for a system. Integration of the first of Eqs. (6.3.1) yields the
corresponding linear impulse-momentum principle, so we have found that

N N 1%
S (g, = 3 m (i), + / s Fdr.
j=1 j=1 n

N N
Z (Hgj), + Z (FGj/ x mjvgj ), (6.4.6)
j=1 j=1

N N b
ZZ(HGj)1+Z(ij/B ijl_)Gj/B)1+/ > Mpdt.
j=1 j=1 B

Proper application of this principle requires that one be cognizant that the moment
equation is valid only if the reference point B is either stationary, in which case the
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term vgj,p is the absolute velocity, that is, ¥g;, 8 = Ug;, or else it must be the center of
mass for the entire system, which corresponds to vg;, 3 = vg; — V5. One simplification
arises if it should happen that the center of mass is stationary relative to a body. In that
case Ugj/p = @; X Fgj/B, but 7gj;p = —¥ p/cj, so that

Haj + i/ x mjigi/s = Hoj +m;Ts/6j x (5] X 7/6)) (6.4.7)
= FIBj if point B is stationary relative to body j, o

where the final form follows from Eq. (5.1.36).

A primary aspect of the system momentum principles is associated with their vec-
torial nature. Although we might not have a complete idea of the time dependence of
all forces acting on a body, it might be that the component of the resultant force in a
specific fixed direction éf is known as a function of time. Similarly, we might know the
resultant moment about a fixed axis in direction €, intersecting an allowable point for
the moment equation. The component of the corresponding type of impulse may be
evaluated and equated to the momentum change in each direction. The most common
situation fitting this specification is that in which an impulse component vanishes. In that
case, the associated component of Egs. (6.4.6) becomes a conservation principle, stating
that a system’s linear momentum in a certain direction, or angular momentum about a
certain axis, is constant.

A 10-kg square plate suspended by ball-and-socket joint A is at
rest when it is struck by a hammer. The impulsive force F generated by the hammer
is normal to the surface of the plate, and its average value during the 4-ms interval
that it acts is 5000 N. Determine the angular velocity of the plate at the instant
following the impact and the average reaction at the support.

Example 6.11

SOLUTION This straightforward example once again highlights the fact that the be-
havior of bodies in spatial motion is often counterintuitive. We ignore the weight
of the plate, which is much smaller than the average applied force. In contrast, the
reaction exerted by the ball-and-socket joint, which consists of forces acting in each
of the coordinate directions, is impulsive, because it must be as large as necessary
to prevent movement of point A. The plate pivots about the stationary point A
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where the ball-and-socket joint is located, so we place the origin of the body-fixed
xyz coordinate system there and align the axes with the edges of the plate.

Ax

Free-body diagram showing only the impulsive forces that act on
the square plate.

We know that @; = 0, but have no idea what angular velocity results from the
action of F. If we knew @, we could find g kinematically according to

[0)) =a)xi_+ a)yf—i-a)zl%, (ﬁg)z = XfG/A.
We set 74 = 0.18/ — 0.06 m, which leads to
(96), = 0.060w,i + 0.18w,j + (—0.06w, — 0.18w,) k.

The inertia properties relative to xyz are obtained from the Appendix and the par-
allel axis theorems. The coordinates of point A relative to centroidal axes parallel
to xyz are (—0.18, 0.06, 0) m, which leads to

I, =0.144kg-m?, I, =0.432kg-m?, I, =0.576 kg-m?,
I, = —0.108 kg-m*, I, = I,, = 0.
The final angular momentum about pivot A corresponding to these properties
is
(Ha), = (0.1440, 4 0.108w,) i + (0.4320, 4 0.108w,) j + 0.576w_k.

The initial angular momentum is zero, so the final angular momentum must equal
the moment impulse. The sole impulsive force exerting a moment about point A is
F. The moment impulse is the average moment of this force multiplied by the 4-ms
interval or, equivalently, the moment of the linear impulse of F during this interval.
Thus,

(Ha), = Frja x Fay (A1) = (0360 4 0.12]) x (5000k) (0.004).
Matching like components in the two descriptions of (FIA)Z gives
(Ha), - = (0.1440, + 0.108w,) = 2.4,
(Hap), - ] = (0.4320y 4 0.108wy) = —7.2,
(Ha), -k =0.5760; = 0.
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We solve these equations for the rotation rates, from which we obtain
@y = 35.90i — 25.64] rad/s. <

The next step is to form the linear impulse-momentum principle in order to
determine the reaction. The velocity of the center of mass corresponding to @, is

(56)2 = wy X fG/A = 24627( m/s.

The initial linear momentum was zero, so the final momentum must equal the im-
pulse of all forces:

m(Ug), = [A«i + Ayj + (A + F)k] Ar.
The solution of these equations is
A, =A,=0, A,=1153N. <

These are average values over the 4-ms interval. The maximum values exceed these.

It might surprise you that the reaction is in the same sense as the impulsive
force F. This result indicates that, if the ball-and-socket joint were not present, the
plate would rotate about its mass center because of the moment of the force, such
that point A moves in the negative z direction. It is possible to locate a curve on
the plate representing the locus of points at which the force can be applied without
generating a dynamic reaction at the joint. Any such point is sometimes referred to
as a center of percussion.

6.4.2 Work-Energy Principles

We begin the derivation of work—energy principles for rigid bodies by considering an
isolated rigid body as a collection of particles. Equation (1.2.14) states the principle for
a single particle. We use it to describe particle number j in a system of N particles. As
we did previously, we denote each force acting on this particle as fj i if it is exerted
by any other particle k within the body, while F; represents the resultant of all forces
exerted on particle j by bodies not included in the system. The resultant force acting on
the particle is the sum of F; and all of the fj . The work done by this resultant is the
integral of the resultant’s component in the direction of the displacement, multiplied by
the differential displacement. The work—energy principle for this particle states that this
work increases the kinetic energy:

N
1 2 1 y 2 - _ _
M (vi)2:§m7 (vj)1+7§1 ij,k—i- Fi | -dr;. (6.4.8)
k=1
kst
This relation describes an arbitrary particle within a system, but we are interested
in the specific case in which the particles constitute a rigid body. We recall Chasle’s
theorem, and select any convenient point B as the reference point for the motion. The



344 Newton-Euler Equations of Motion

differential displacement dr; is the result of the displacement of point B and the in-
finitesimal rotation df about point B, see Eq. (3.3.6), so that

dijdr_B—i—%ij/B. (649)

We know from the Newton—Euler equations of motion that the forces internal to a rigid
body do not directly affect its motion, so the same must be true of any energy princi-
ple. Thus let us focus on the term in Eq. (6.4.8) that contains these force. The identity
for the scalar triple product, @ - (b x &) = (¢ x @) - b, in conjunction with the preceding
representation of d;, leads to

N
> Fk-diy = Zf]k drB+Zr,/B x fix - do. (6.4.10)
k;j k#] k#]

Note that 7j/5 x fj« is the moment of f;; about point B. Thus the right side of this
expression replaces the work done by internal forces acting on particle j with the work
done by an equivalent force—couple system acting at point B.

Now consider the combination of all particles obtained by adding Eq. (6.4.10) for
j=1,2,..., N. The first term on the right side will add all of the internal forces at point
B, and the second term will add all moments. Specifically,

N N N N N N
ZZ ZZ cdig+ | DY iy x fia|-de. (64.11)

—_

For every occurrence of a specific j in the first sum and a specific k in the second, there
is a matching occurrence in the opposite sequence. According to Newton’s Third Law,
fix and fi ; are equal in magnitude, opposite in sense, and collinear. The consequence
of these properties was seen in Eqs. (5.1.7) to be that the internal forces have a zero re-
sultant, and they exert no net moment about any point. Thus the preceding sum reduces
to zero.

It follows that adding work—energy equation (6.4.8) for each particle of the rigid
body will result in cancellation of the contribution of all internal forces. Because ém vf
is the kinetic energy of one particle of the rigid body, and kinetic energy is a scalar,
adding the work—energy equation for each particle in a rigid body leads to the work—
energy equation for a rigid body,

L =T + Wi, (6.4.12)

where 71 and T; are the kinetic energy of the rigid body at any two instants and W;_,; is
the work done by all forces acting on the body as it moves from its position at #; to its
position at #,:

N 2
Wi, = ng F; - dr;. (6.4.13)
j=17 1
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Recall that the kinetic energy of a rigid body corresponding to specified v and @ is

—_
—_

—mv% + =& - Hg : any motion
T= . (6.4.14)
~@ - Hp : pure rotation about point O

— N
)

\S}

Evaluation of the work according to Eq. (6.4.13) requires that we describe function-
ally how each external force depends on the position of the point at which it is applied.
This can be quite cumbersome for two reasons: There might be many points to consider,
and some or all of the points might follow intricate paths. An alternative is to shift the
forces from the point at which they are applied to any convenient point B in the body.
When Eq. (6.4.9) is used to relate the displacement of a force’s point of application to
the displacement of the reference point, the work done by force Fj in a differential dis-
placement di; becomes

Fj-dr_j=F/'de+F/'(%Xf]‘/B)EF/-de—f-(fj/BXFj)~%, (6415)

where the final form stems from the identity for the scalar triple product. Because
7i/p x Fj is the moment of F; about point B and both di 3 and d6 are independent of
which force is under consideration, adding the work done by each force, as required by
Eq. (6.4.13), will lead to two terms containing the resultant force and resultant moment
about point B, specifically,

2 2
1 1

This expression could have been anticipated from Chasle’s theorem. It shows that the
total work is the sum of the work done by the resultant of the external forces in moving
an arbitrary point B and the work done by the moment of the external forces in the
rotation about that point.

Another alternative to direct evaluation of the work done by a force arises when a
force is conservative. The term “conservative” is a corollary of the property that such a
force does no net work when the point at which it is applied follows an arbitrary closed
path. Consequently, whatever work it does in going from position 1 to position 2 on a
closed path is the negative of the work it will do to return to position 1, so that work is
not lost. This property is expressed by

Wi, =W, (6.4.17)
This must be true for any closed path containing the specified positions 7/} and 7, of the

point of application. Furthermore, it must be true for any pair of points 7/, and 7/, on
a specific path. These conditions can only be satisfied if the work is determined by the
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change in the value of a function of position. This function, termed the potential energy,
is defined such that

Wins = V(i) = V(R) = Vi — V. (6.4.18)

Strictly speaking, all requirements would be met if the opposite sign was used to define
V (7). The definition we use enables us to interpret the work done by a conservative
force as the amount by which its potential energy is depleted or, equivalently, as the
ability of a force to do work.

One method by which we may determine whether a specific force is conservative,
and if so, determine the corresponding form of the potential energy, is to evaluate the
work the force does when the point at which it is applied follows an arbitrary path. If it
is found that the work depends solely on the initial and final position coordinates of its
point of application, then V () and V (7;) are merely V (7) at either location. Clearly,
forces imparted with a specified time history are not conservative because the work
they do will depend explicitly on the time interval. In the same vein, velocity-dependent
forces such as friction are not conservative.

This approach is readily implemented in the case of gravity close to the Earth’s
surface. Because the force acts in a constant direction, we use Cartesian coordinates to
represent the force and the position, which leads to

F=-mgK, di =dXI+dYj+dZK. (6.4.19)
The work done by this force is

2 Z
Wiso = ?g (-mgK) - (dXI +dYj+dZK) = — mgdZ =mgZ —mg7,.

1 Z
(6.4.20)
Matching this to Eq. (6.4.18) leads to

‘/grav =mgZ, (6421)

which usually is applied by taking Z to be the height of the center of mass above some
arbitrarily selected reference elevation known as the datum.

When we are concerned with a gravity force exerted by a body other than the Earth,
or the motion is known to result in large changes in the distance to the center of the
Earth, we need to apply the universal law of gravitation, which states that

_ GMm _

F= ——5 e (6.4.22)
where r is the distance to the center of mass of the interacting body and é, is the unit vec-
tor oriented from the attracting body to the body to which F is applied. For the Earth,
one can use GM = 5.990(10*) m?/s?. For the determination of V (#) we may consider
the attracting body to be stationary, so that ¢, is the radial unit vector for spherical
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coordinates. Correspondingly, the differential displacement is dr = vdt = dre, +
rd¢e,~+(r sing) dfey, so the work is given by

2/ GmM
Wis, = % (— }Z ér> -(drée, +rdpey + rdo sin gey)
1

(6.4.23)
/’2 GmM GmM n GmM

s—dr =
n I r r

The terms on the right side are the same function of r evaluated at each position, so the
potential energy is given by

GmM
Vgrav = - = . (6424)
r

Springs are important as actual devices, as well as models for elastic bodies. If we
take one end of the spring to be stationary, the force F applied to the moving point is
oriented along the radial line toward the fixed end. In the model of a spring that behaves
linearly, the magnitude of the force is kA, where k is the spring stiffness and A is the
elongation. The latter is defined as the difference between the current length ¢ of the
spring and the undeformed length ¢:

A=1t—1t (6.4.25)

Spherical coordinates centered at the fixed end are suitable for describing the orienta-
tion of F. Thenr = ¢ and dr = d¢ = dA, so that

F = —kAe,, di =dAe, + tdpes + (Lsingp)doeg,

2
Wi =7§ —kAE,) - (dAe, + Ldpes + €do sin pe
2= ( ) ( 0 o) (6.4.26)
A2k dn = Liaz— Liaz
Al 27 22

Comparison of the latter expression with Eq. (6.4.18) shows that the potential energy of
a spring is

1
Vipr = 5k A2, (6.4.27)

At any position, A is the elongation of the spring referenced to the unstretched length
of the spring, as described, by Eq. (6.4.25). Failure to properly describe A is a common
error in the evaluation of a spring’s potential energy.

An alternative approach for examining the conservative nature of a force employs
vector calculus. Consider two positions that differ by an infinitesimal amount, so that
7, =71 + dr. The infinitesimal work dW done by a conservative force in such a dis-
placement is given by

AW = V(7)) = V (7, + dF) = —dV. (6.4.28)
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Let us use Cartesian coordinates to define the position, so that V is a considered to be
a known function of the XY Z coordinates of the point where the force is applied. The
chain rule for differentiation yields

A% 1% 1%
aw=-Lax-""ay-Laz (6.4.29)

0X Y 07
In Cartesian coordinates an infinitesimal displacement is dF = dXI +dY| + dZK, so
the preceding equation is the scalar form of dW = —VV - dr. However, the work done

by any force in an infinitesimal displacement is dW = F - d7. Either form is equally cor-
rect if F is conservative, so it must be that a conservative force is the negative of the
gradient of its potential-energy function:

Foons = —VV. (6.4.30)

This leads to a simple way of checking that a force is conservative. The curl of the gra-
dient is identically zero, so it must be that

if V x F =0, then F is conservative. (6.4.31)

If some forces are not conservative, we may use Eq. (6.4.18) to account for the con-
servative effects, whereas the work done by the nonconservative forces, which we denote
as W/ ,, is found according to either Eq. (6.4.13) or Eq. (6.4.16). Thus,

Wi, =V =V, + VVlniz (6.4.32)

Substitution of this expression into the basic work—energy equation yields

L+ Va=T+Vi+We, (6.4.33)

The quantity 7'+ V is called the mechanical energy. In any motion in which the non-
conservative forces do no work, there is conservation of energy, meaning that 7+ V' is
constant throughout the motion.

The development thus far is sufficient for the purpose of analyzing specific systems.
However, we may garner a different perspective for the role of energy by deriving an-
other energy principle. The motion of the center of mass is governed by Newton’s Sec-
ond Law. The derivation in Chapter 1 of the work—energy principle for a particle is
equally valid when applied to the center of mass, so it must be that

1, T, SR

3m (ve), = zm (vg), + %1 T F - drg. (6.4.34)
This equation has a simple explanation when we recall Chasle’s theorem to consider the
body’s motion to be a superposition of a translation following the center of mass and a
rotation about the center of mass. As indicated by Eq. (6.4.14), %msz is the translational
kinetic energy. Thus Eq. (6.4.34) states that the work done by the resultant force to move
the center of mass of a rigid body increases the translational kinetic energy.

An interesting aspect of Eq. (6.4.34) is that the work term on the right side also ap-
pears in the alternative description of work given by Eq. (6.4.16). In view of Egs. (6.4.14)
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and (6.4.16), taking the difference between the work—energy principle of Eq. (6.4.12) and
Eq. (6.4.34) leaves

1_ ~ 1_ _ 2

sz . (HG)2 = 56()1 : (HG)l + %1 X Mg - db. (6435)
This relation shows that the work done by the resultant moment about the center of
mass has the effect of increasing the rotational kinetic energy. Thus replacing the actual
forces by an equivalent force—couple system acting at the center of mass leads to an
uncoupling of effects, with the resultant force increasing the translational kinetic energy
and the resultant moment increasing the rotational kinetic energy.

It might seem that Eqs. (6.4.34) and (6.4.35) provide an alternative to the work—
energy principle stated by Eq. (6.4.33). However, this seldom is true, because of a subtle
aspect of constraint forces. We will see in the next chapter that such forces often do
no work. However, if we transfer a constraint force from its actual point of application
to the center of mass, this force will contribute to the work terms in both Egs. (6.4.34)
and (6.4.35). Constraint forces are not known in advance, so neither the translational
nor rotational work-energy equation would be useful by themselves for evaluating the
motion.

Constraint forces of particular concern are those associated with connections be-
tween moving bodies. It sometimes is possible to avoid the occurrence of such forces by
considering the assembly of bodies to form a system. The mechanical energies T and V,
and the work done by forces, are scalars, so the addition of Eq. (6.4.33) for each body in
a system yields the same form for the assembly:

(E)total + (‘/Z)total = (Ti)total + (M)total + (WlniZ)total . (6436)

The value of this principle is that some forces exerted between the bodies will do
no work when bodies are considered as a system, even though they do work when each
body is considered individually. To see how this might be, consider the planar situation
in Fig. 6.5, where two bodies are connected by pins to massless link A B. Because the link
has no mass, it effectively is in static equilibrium, which means that it can sustain only
axial force F. The forces exerted to each body are equal and opposite. The differential
amount of work done by these forces when both bodies move is

dW=(FéB/A)'dl’_B—i-(—FéB/A)'de. (6.4.37)

If the connecting link is considered to be a rigid bar, then the length L is taken to be
constant. In that case the displacements are related by df g = dii s +d6 45 x 7p/a. The
work is zero because the rotational part of the displacement is perpendicular to ép; 4.

Figure 6.5. Forces exerted by a massless rigid connecting link.
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If the link is regarded as an elastic spring, the length L is treated as a variable. The
displacements in this case are related by diip = di 4 +dLép 4 + o 45 x 7B/4, and the
work is dW = FdL. The axial force F in a spring is known to be kA, where A is the
change in the value of L. Thus we may compute the work done by an elastic connect-
ing force. (It would be simpler to merely account for the work of the spring in terms of
its potential energy.) The problematic case occurs when the length L is a variable that
is controlled, as in the case of a servo-actuated hydraulic cylinder. The force F in this
case is not known. Rather, it is a constraint force whose role is to change L in the pre-
scribed manner. Considering both bodies to form a system will not enable us to avoid
considering the unknown connective force in this situation.

The work—energy principle relates velocity parameters at two different positions. If
we differentiate this expression with respect to time we obtain the power balance law,

T+V=pr, (6.4.38)

where P represents the power input to the body by the nonconservative forces. This is
equivalent to the first law of thermodynamics for a rigid body, for it states that the rate
of increase of the body’s mechanical energy equals the rate at which power is provided
to the body. By definition, power is the rate at which work is done, so the work done
by a force in an infinitesimal displacement d7 during an interval d¢ can be computed as
either F - dr or Pdt. It follows from Eq. (6.4.16) that

N 2
P“C:Z ';C-ﬁjzzFHC-aBJr%lE]\ZgC.@. (6.4.39)
j=1

Some individuals use the power balance law to obtain a differential equation of motion
corresponding to known energy expressions for a system, but we will see in the next
chapter that there is a better way of achieving that end.

As is true for momentum principles, the work—energy principles have inherent
limitations. Most profound of these is the necessity to evaluate the work done by non-
conservative forces. Equation (6.4.16), which replaces any external force by an equiva-
lent force—couple system acting at an arbitrary point, is an aid. Obviously, the motion of
such a point must be known in order to evaluate the path integrals. It is equally impor-
tant to know how the resultant force varies as the position of the selected point changes
and how the moment depends on the angle of orientation. Also, as noted previously,
the work—energy principle is not likely to be useful if any force acting on the body is a
specified function of time or is velocity dependent. Even if it might seem that the work
could be evaluated, doing so might be quite complicated.

Another reason why we cannot rely on momentum and energy principles comes
from the fact that there usually are many position variables to evaluate. For example,
we can locate the position of a rigid body with three position coordinates for its center
of mass and three Eulerian angles. In general, the number of momentum and energy
equations not containing unknown reactions will be fewer than the number of unknown
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position and rate variables. The important thing to remember is that momentum and
energy principles are derived as standard integrals of the Newton—Euler equations of
motion. Thus any information we obtain from these first integrals could be obtained by
solving the differential equations of motion. Although it might be more difficult to solve
such equations, formulation and solution of the equations of motion is often the only
useful approach.

A disk is rolling without slipping in an unsteady manner, such
that the angle 6 at which the plane of the coin is inclined is not constant. Prove that
the work done by the friction and normal forces is zero.

SOLUTION The main objective here is to demonstrate how one can evaluate work
when a force acts at a point whose motion is uncertain. Also, the result that the
friction force does no work if the body rolls without slipping has important implica-
tions for our later studies. We draw a free-body diagram of the disk in which xyz is
a centroidal body-fixed reference frame whose y axis at the instant in the diagram is
the horizontal diameter of the disk. The contact force exerted by the ground is de-
composed into three components: N is the normal force, f; is the tangential friction
force, which is parallel to the y axis, and f; is the friction force transverse to the y

axis.

Free-body diagram of the disk rolling in an unsteady precession.

At first glance, the fact that the velocity of the contact point C is zero might
seem to make it obvious that the contact forces do no work. Such thinking is based
on the belief that, because ¢ = 0, the contact force acts at a stationary point, so it
cannot do work. The difficulty with such reasoning is that the contact point is at rest
for only an instant. After even an infinitesimal rotation, a different point is in contact
with the ground, so one cannot assert with certainty that the forces act at a single
point that does not move. We therefore transfer the forces at the contact point to
the center G, whose motion is easier to understand. The normal and friction forces
at point C are equivalent to a force F and couple Mg at point G, where F is the
resultant force and Mg is the resultant moment about point G :

F=N+fi+fi, Mg=rcigx(N+ fi+ f,)=FcjcxF.
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In an infinitesimal time interval d¢, point G displaces by v dt and the disk ro-
tates by @ dt. The work done by the equivalent force—couple system in this infinites-
imal movement is

dW = F - (bgdt) + Mg - (@dt) = [F - b6 + (Fcj6 x F) - @] dt.

If there is slippage at the contact point, then v and @ are kinematically unrelated,
which leads to a nonzero value for dW. The absence of slippage requires that v =
o % Fgyc. Correspondingly, we have

dW:[F~(cDXfG/c)+(fC/GX F)&)]dl‘

We apply the identity a - (b x ¢) = (¢ x a) - b to the first term inside the brackets,
which gives

dW:[(fG/CX F)~Cb+(fC/Gx F)d)]thO,

where the result is a consequence of the fact that 7g,c = —i¢/c. The present anal-
ysis is completely general, other than considering the ground to be stationary. In-
tuitively, it makes sense that no work is done when there is no relative slippage
between contacting surfaces, because we associate rubbing with heat generation,
which depletes the mechanical energy.

ETUIYXREN The sphere, whose mass is m, spins relative to shaft A B at the con-
stant rate n = 10 rad/s. This shaft is attached to the vertical shaft AC by fork-and-
clevis joint A. The vertical shaft rotates freely, with no torque applied to its rotation
axis. The mass of bar AB is m/2, and the other parameters are R = 150 mm and
L = 400 mm. Initially, 6 is held constant at 90° by a cable, and the precession rate is
Q =5 rad/s. Determine the maximum and minimum values of 6 in the motion

following breakage of the cable and the corresponding precession rates. Then
determine the values of 6 and Q at the instant when @ is the average of these
extreme angles.

Example 6.13
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SOLUTION We see here that momentum and energy principles can be used simulta-
neously, thereby enabling us to analyze an intricate motion. We consider the sphere
and shaft A B to form a system, because the forces exerted between them do no net

work. We include the massless vertical shaft in this system to utilize our knowledge
of how bearing C acts.

Free-body diagram of the sphere and its supporting shafts.

The free-body diagram of this system shows that bearing C exerts an arbitrary
force and couple, except that the couple has no component about the vertical axis.
This force—couple system does no work, and gravity is conservative. Therefore me-
chanical energy is conserved throughout the motion. We also observe that none of
the forces or couples depicted in the free-body diagram exert no moment about the
7 axis, which means that the system’s angular momentum about the 7' axis also is
conserved.

Both the sphere and shaft AB are in pure rotation about stationary point A,
so the xyz coordinate system shown in the the free-body diagram, whose z axis co-
incides with A B, will be convenient for describing the angular momentum of both
bodies. We also define another reference frame x'y’z’ that solely precesses about its
7 axis.

Point A is on the 7’ axis, and it is the pivot point for the pure rotation of both the
shaft and the sphere. We develop an expression for 1, of each body under arbitrary
conditions in order to address all aspects of the problem. The inertia properties in
the Appendix and the parallel axis theorems indicate that

2 2
(L), = SmR = 0009m = L. (L), = (Iy), = 5mR +mL? = 0.169m = b

1 /m
(Ixx)AB = (Iyy)AB = 3 (5) L2 = 0.02667m = 13. (1)
The angular velocity of the sphere is these bodies is sum of the precession rate Q2
and the nutation rate 6:
s =Qk' +60] —nk = —Qsin6i +6] + (QLcosh — )k,

osp=Qk +60] =—Qsin6i + 6] + Qcos k.
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The corresponding angular momenta and kinetic energies corresponding to pure
rotation are

(FIA)S = —5LQsinbi + L]+ I (Lcosb — n) k,
(Ha) = —BR2sin6i + 67,

1 _ 1 3 2
(7), = E&)S o (HA)s =3 [12822 (sin 9)2 + L6% + I (Qcos 6 — n)z] , 2)

1 _ 1 . ‘
(1) a5 = 508" (a) 4 = 5 [ P (5in6)° + 162

Because no resultant moment about the 7’ axis acts on the system, the angular
momentum about this axis is conserved. Point A lies on this axis, so we assert that

[(HA)S + (HA)AB]Z K= [(HA)s + (HA)AB]l K.
In terms of xyz components we have k' = —sin 67 + cos 6k, which in combination
with Eqgs. (2) gives
[(H4), + (Ha) 5] - k' = (b + B)Q(sin0)” + I (2 cos — ) cos .

We take instant #; to be the initial condition, at which it is given that ; = 5 rad/s,
61 = 90°, and 6; = 0. The value of 7 is specified and the inertia properties are listed
in Egs. (1). Thus, conservation of angular momentum about the vertical shaft re-
quires that

(L+ L) 2 (sin@z)2 + 1, (22 cos 0, — 1) cos B, = 0.9783m. (3)

This is one relation between €, and 0, that must be satisfied. Another is ob-
tained from conservation of energy. The only force acting on the system of rigid
bodies that does work is gravity. We take the elevation of point A to be the datum,
so that

IL,
V =mg(—Lcos0) + "E (= cosh).
2 2
Correspondingly, conservation of energy requires that

L+Vv,=T1H+W,

[(12 + 13) Q% (sin92)2 + (12 + 13) 9% + 1 (Qz cos 6, — r])z:l

N =

(4)
—1.25mg Lcos 6, = 2.896m.
Thus we have two conservation principles relating ©2 and 6 at any instant #,.

The value of 6, is a maximum or minimum when 6, = 0. To determine the
corresponding values of 6, and ,, we observe that Eq. (3) may be solved for 2, as
a function of 6,:
0.9783m + I1ncos 6,

(12 + 13) (sin 92)2 + I cos (@2)2 .

Q(0) = )
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When this expression is substituted into Eq. (4), the result is an equation that con-
tains only 6,. To determine the roots of this equation, let E (65, 6, ;) denote the
left side of Eq. (4). Thus we seek the roots of a function F (6,) defined symbolically
by

1
F(02) = — E(62,0, 2 (62)) — 2.8%.

A plot of this function would show that it is positive at 6, = 0 and 6, = 7 and is
negative slightly below 0, = /2. Thus there are two roots. Numerical software
readily yields these values if we use 6, = 7 /4 and 6, = 7 /2 as the initial guesses.
The results, and the corresponding values of €2 at each position, are

(02)min = 36.288°, Q5 ((02)mmin) = 14.128 rad/s,
(ez)max = 9007 QZ ((92)max) = Srad/s.

The fact that the system does not rise higher than the angle at which it was released
is not surprising. When the cable is severed, the system falls. As it does so, the value
of Q2 must increase to conserve angular momentum, because the mass is situated
closer to the vertical axis. The inertia of this descent carries the bar past the value
of 6 at which a steady precession is possible. At the minimum 6, the gyroscopic
rotational effects cause the system to swing upward, slowing Q2. When the system
reaches its initial elevation, it has the value of Q with which it was released. Because
the mechanical energy is conserved, and both 6 and 2 match the conditions when
the system was released, it must be that 6 also matches the initial value.

The second part seeks the values of €, and 6, corresponding when 6, =
0.5[(02)nin + (02)max = 63.14°. To find Q, we substitute this value of 0 into Eq. (3)
to find

Q, =6.467 rad/s at 6, = 63.14°. <

Substitution of this value into Eq. (4) converts it to a single equation for 6,, whose
solution is

6, = +4.0807 rad/s at 6, = 63.14°. <

The alternative sign, which results from the fact that 6, is obtained by taking a
square root, indicates that the magnitude of the nutation rate does not depend on
whether the sphere is rising or falling. This is another consequence of the conserva-
tive nature of this system.

The orbiting satellite is spinning about its z axis at 3 rad/s, and
its velocity is 8 km/s parallel to that axis. The mass of the satellite is 5000 kg,
and its inertia properties relative to its center of mass C are I, = 32000, I,, =
40000, I, = 3600, I, = I, = I,, = 0 kg-m?. A 2-kg meteorite, whose velocity is
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—9i +12j km/s, impacts the satellite at point A in the yz plane and then is em-
bedded in the satellite’s wall. The embedding process is completed in an interval
of 400 ms. Determine the velocity of the satellite’s center of mass and its angular
velocity immediately after the collision. Also determine the average impact force
exerted by the meteorite and how much energy is dissipated in the collision. (The
deposition of energy is one of the damage mechanisms.)

Example 6.14

LI
Meteorite

SOLUTION This example explores how to treat impulsive forces by use of systems
concepts. The only force that is significant during the impact is the interaction force
between the meteorite and the satellite, which is very large because the embedding
process is very short and there is a large velocity difference at the point of impact.
Both bodies move freely, so the interaction force F is the only force to consider.
The body-fixed reference frame is already defined, so there is no need to draw a
free-body diagram.

The external force and moment resultants vanish for this system. Consequently
both linear and angular momentum are conserved. There is no fixed point in this
situation, so we formulate the angular momentum with respect to the center of mass
of both bodies, which we designate as point G. The meteorite’s small size makes
it permissible to consider it to be a particle, so its angular momentum relative to
its own center of mass may be ignored. The linear momentum part of Egs. (6.4.6)
therefore requires that

M (V¢ )y + M (Vm)y = ms (V) + M (Um)y 5 (1)
whereas the angular momentum equation gives

(Hc), + (Fc/6), x ms (5¢/G)y + (FinyG)y X Mm (ImyG), @

= (FIC)1 + ("_C/G)l X Ny (EC/G)l + (fm/G)l X My (ﬁm/G)l .
The positions and velocities relative to the center of mass are governed by the
first moment of mass. Using the satellite’s center and the meteorite’s location as

alternative reference points for this evaluation leads to

My _

———TmC

(ms + my,) "
N

 (my +my,)

(ms + M) Fo/c = MpFmyc = Fejg = 