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ENGINEERING DYNAMICS

Engineering Dynamics is a new treatment of kinematics and classical and
analytical dynamics based on Ginsberg’s popular Advanced Engineering Dy-
namics Second Edition. Like its predecessor, this book conveys physical and
analytical understanding of the basic principles of dynamics, but it is more
comprehensive and better addresses real-world complexities. Every section
has been rewritten, and many topics have been added or enhanced. Several
derivations are new, and others have been reworked to make them more ac-
cessible, general, and elegant. Many new examples are provided, and those
that were retained have been reworked. They all use a careful pedagogical
structure that mirrors the text presentation. Instructors will appreciate the
significant enhancement of the number and variety of homework exercises.
All of the text illustrations have been redrawn to enhance their clarity.

Jerry Ginsberg began his academic career at Purdue University in 1969, and
he was a Fulbright–Hays Advanced Research Fellow in 1975. He moved to
Georgia Tech in 1980, where he became the first holder of the Woodruff
Chair in Mechanical Systems in 1988. Professor Ginsberg has worked in a
broad range of areas in mechanical vibrations and acoustics, for which he
developed and applied specialized mathematical and computational solu-
tions that provide greater insight in comparison with standard numerical
techniques. Professor Ginsberg is the author of more than 150 technical
and archival papers and the highly regarded textbooks: Advanced Engineer-
ing Dynamics, Mechanical and Structural Vibrations, Statics, and Dynam-
ics (the last two with Joseph Genin), as well as two chapters in Nonlinear
Acoustics. He is a Fellow of the Acoustical Society of America and of the
American Society of Mechanical Engineers, and he has served as an asso-
ciate editor of the Journal of the Acoustical Society and of the ASME Jour-
nal of Vibration and Acoustics. He received the Georgia Tech Distinguished
Professor Award in 1994, the Archie Higdon Distinguished Educator Award
from ASEE in 1998, the Trent–Crede Medal from ASA in 2005, and the Per
Bruel Gold Medal from ASME in 2007. He has delivered a number of distin-
guished lectures, including the 2001 ASME Rayleigh Lecture and the 2003
Special Lecture for the Noise Control and Acoustics Division of ASME, as
well as keynote speeches at several meetings, including the Second Interna-
tional Congress on Dynamics, Vibrations, and Control in Beijing in 2006.
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Preface

It has been more than a decade since the second edition of Advanced Engineering Dy-
namics was published. Although I was pleased with that effort, my experience teaching
dynamics with that book as a companion has given me insights that I either did not have
or did not fully appreciate. I tried to satisfy multiple objectives as I wrote the present
book. I wished to convey both physical and analytical understanding of the fundamen-
tal principles, and to expose the beauty of the discipline as a tightly woven sequence of
concepts. I wanted to address the complexities of real-world engineering problems and
explore the implications of dynamics for other subjects, but to do so in a manner that is
accessible to those who come to it from a wide range of experiences. I wanted to provide
a self-contained resource from which the motivated reader could learn directly. At first,
I thought this book would just be a third edition of Advanced Engineering Dynamics,
but as I progressed, I realized that the expanded scope and the amount of material that
is either new or redone necessitated treating it as a new work.

The subject of dynamics is an interdisciplinary blend of physics, applied mathemat-
ics, computational methods, and basic logic. The least difficult aspect of the subject is
the basic physical laws, most of which are at least a century old. A primary element that
has moved the study of dynamics from natural philosophy to engineering is the devel-
opment of powerful tools for describing motion and for solving equations of motion.
Throughout my career I have operated under the premise that the world is complicated,
and that a good text should prepare the student to address these complications. One
of the methods I use here to meet this imperative is to provide examples that carefully
guide the reader from the inception of a solution to its conclusion. I have tried to select
examples that have most of the elements one might encounter in practice but are not
so intricate as to mask the tautological features of the solution. An important feature of
these examples is that the question of why a solution is assembled in a certain manner
is regarded to be as important as the actual steps. In many cases I have used the same
system to illustrate alternative approaches or different topics, which tends to give the
treatment of those systems some of the aspects of the case study approach.

Almost every section of the text has been rewritten relative to Advanced Engineer-
ing Dynamics, and yet it should be clearly recognizable as being a descendant of its
predecessor. New explanations for fundamental concepts have been introduced. Deriva-
tions have been reworked, sometimes to increase their generality and sometimes to en-
hance their elegance, but always to make them more accessible. Like the previous text,

ix
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x Preface

Chapter 1 develops the fundamental physical laws for a particle, but a section has been
added to help the reader use mathematical software as an analytical aid. The early pio-
neers, who provided us with most of the basic laws and concepts, were correctly consid-
ered to be natural philosophers because they provided a framework for understanding
how our world works. Partially as a recognition of their importance, I have expanded
the biographical section at the conclusion of Chapter 1. I have also tried to bring out this
philosophical perspective in the technical development.

Kinematics is the framework supporting the laws of dynamics. Being comfortable
with the former vastly aids one to address the various kinetics concepts. For this reason
a thorough treatment of the kinematics of particle and rigid-body motion is the focus
of the initial development. The development is broad without going into specialized
concepts that are primarily used in a confined topical area. The treatment in Chapter 2
of the kinematics of particle motion now derives the basic formulas for cylindrical and
spherical coordinates prior to the tensor-oriented derivation of the comparable formulas
for arbitrary orthogonal coordinate systems. This enables one to omit the more mathe-
matical derivation without sacrificing fundamental concepts. An item of particular note
is the expanded exploration in Chapter 3 of displacement of points relative to various
reference frames, which should clarify many of the problematic aspects of the descrip-
tion of relative motion. I have found that it significantly assists students who are not
practiced in visualizing spatial motion, and students in computer-aided design have told
me that it aided them greatly in that subject. More important, the treatment leads to a
derivation of the kinematics equations for relative motion that is simultaneously elegant
and intuitive—there should be no misunderstanding of the significance of the various
terms. Chapter 4 addresses the kinematics of systems that are subject to kinematical
constraints, with an emphasis on linkages and rolling. The modifications here relative
to the previous text are mostly incremental, but greater emphasis is now placed on the
parallelism of the analysis of displacement, velocity, and acceleration. The example of a
cardan joint should be enlightening in this regard.

The treatment of momentum-based concepts for rigid-body motion has now been
split into two chapters. Chapter 5 focuses on the fundamental concept of angular mo-
mentum and the implications of its variability. The treatment of inertia properties has
been expanded. The emphasis in this chapter is on making the angular momentum of a
rigid body a quantity that the reader understands on a fundamental physical level, rather
than merely being a quantity to be evaluated. These concepts are employed in Chapter
6 to implement the Newton–Euler equations for a single rigid body. The extension of
such a formulation to a system of rigid bodies has been expanded. The chapter closes
with a treatment of impulsive forces and their role in collisions, which is a topic that was
omitted from the previous text.

Prior to delving into the mathematical concepts associated with analytical mechan-
ics, the treatment in Chapter 7 begins by developing the principle of virtual work and
applying it to a rigid frame and the analogous dynamic linkage. Seeing how the principle
of dynamic virtual work, which has been incorrectly attributed to d’Alembert, can be
used directly to formulate equations of motion enables one to view the concepts of ana-
lytical mechanics from the Newton–Euler perspective. This approach provides a strong
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Preface xi

motivation for the theoretical developments that follow. A noteworthy aspect of Chap-
ter 7 is the expanded usage of the configuration space in conjunction with generalized
coordinates, so that all of the basic aspects of Lagrangian mechanics now receive a par-
allel treatment between the configuration and physical spaces. This is the area in which
my awareness has expanded most. It is also an area in which misconception is occasion-
ally encountered in the technical literature. For example, a recent journal article stated
that virtual displacement and virtual work are confusing concepts! A primary objective
of Chapter 7 is to make it unlikely that such statements will continue to be made. The
reader will find graphical descriptions of scleronomic, rheonomic, and nonholonomic
constraints that should enhance understanding of their unifying features, as well as their
differences. One of the desirable outcomes of the presentation should be a greater un-
derstanding of the fundamental philosophy underlying analytical mechanics, and of the
associated concepts pertaining to generalized coordinates, generalized velocities, and
virtual displacement.

Chapter 8 explores reasons why one might need to employ Lagrange’s equations
with constrained generalized coordinates, and then goes on to present solution methods
for the differential equations of such systems. The treatment has been expanded con-
siderably. Several numerical algorithms for solving such equations of motion consistent
with constraint equations are examined. The algorithms are worked through carefully,
and their relative merits are discussed. The objective here is to prepare the reader to
handle situations involving nonholonomic constraints, friction, and geometrical com-
plexity, all of which are at the forefront of contemporary research and practice. The
computed results for the example of unsteady rolling of a disk should be of interest to
all. I am not sure that the nature of this solution has been recognized previously.

Chapter 9 is a treatment of alternative formulations of equations of motion. Dis-
cussion of alternative analytical approaches to formulating equations of motion was re-
served for this chapter because I believe it is best to begin by providing a set of tools
that can be employed reliably, even though they may not be optimal for any one situ-
ation. The reader who has reached the later chapters will have the level of capability
required to appreciate the availability of alternatives. Much of the material in this chap-
ter did not appear in Advanced Engineering Dynamics. It begins with an introduction
to calculus of variations in conjunction with Hamilton’s principle to derive equations
of motion for continua. Usage of variational principles to formulate approximate solu-
tions of field equations was pioneered by Ritz, whom I hold in high esteem. Although
the topic is tangential to a course in rigid-body dynamics, everyone should recognize
that the study of vibratory systems is intimately dependent on classical mechanics. A
large part of this chapter is devoted to explorations of the Gibbs–Appell equations and
Kane’s equations. I have endeavored here to clarify the relationship between these for-
mulations and to give a balanced discussion of their relative merits. Writing Chapters 8
and 9 has increased my esteem for Lagrange’s contribution; the discussion explains why.

Chapter 10, which treats gyroscopic effects, has been updated. The discussion of
inertial guidance systems has been clarified and modernized. Although the latest guid-
ance technology is less reliant on these concepts, understanding them serves to enhance
mastery of dynamics. One of the developments in this chapter that anyone should find
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xii Preface

interesting is the analysis of the precession of the equinoxes, which appears as an exam-
ple in Chapter 10 based on the analysis of gravitational torque in Chapter 5.

This project has required more effort than any of my prior books. In part this comes
from treating this book as a new work, while simultaneously making sure it retains what
was good in the previous version. However, the most time-consuming aspect entailed the
selection of additional examples, as well as the modification of examples I used previ-
ously. Also, as an instructor, I realized that keeping a course and textbook fresh requires
a large number of homework exercises. The instructor who uses this text will find that
both the number and variety of homework exercises have been greatly increased.

As I look over the finished manuscript, I am quite satisfied. I believe that I have met
the goals that guided me throughout this project. I hope you agree.
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CHAPTER 1

Basic Considerations

Since ancient times many researchers have devoted themselves to predicting and ex-
plaining how bodies move under the action of forces. This is the scope of the subject of
dynamics, which consists of two phases: kinematics and kinetics. A kinematical analysis
entails a quantitative description of the motion of bodies without concern for what is
causing the motion. Sometimes that is all that is required, as would be the case if we
needed to ascertain the output motion of a gear system or linkage. More significantly,
a kinematical analysis will always be a key component of a kinetics study, which ana-
lyzes the interplay between forces and motion. Indeed, we will see that the kinematical
description provides the skeleton on which the laws of kinetics are applied.

A primary objective will be the development of procedures for applying kinematics
and kinetics principles in a logical and consistent manner, so that one may successfully
analyze systems that have novel features. Particular emphasis will be placed on three-
dimensional systems, some of which feature phenomena that are counterintuitive for
those whose experience is limited to systems that move in a plane. A related objective
is development of the capability to address realistic situations encountered in current
engineering practice.

The scope of this text is limited to situations that are accurately described by the
classical laws of physics. The only kinetics laws we will take to be axiomatic are those
of Newton, which are accurate whenever the object of interest is moving much more
slowly than the speed of light. Newton’s Laws pertain only to a particle. The derivation
of a variety of principles that extend these laws to bodies having significant dimensions
will be treated in depth. We will limit our attention to systems in which all bodies may be
considered to be particles or rigid bodies. The dynamics of flexible bodies, which is the
subject of vibrations, is founded on the kinematics and kinetics concepts we will estab-
lish. We shall begin by reviewing the fundamental aspects of Newton’s Laws. Although
the reader is likely to have already studied these concepts, the intent is to provide a
consistent foundation for later developments.

1.1 VECTOR OPERATIONS

1.1.1 Algebra and Computations

Almost every quantity of importance in dynamics is vectorial in nature. Such quantities
have a direction in which they are oriented, as well as a magnitude. The kinematical

1
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2 Basic Considerations

vectors of primary importance for our initial studies are position, velocity, and accelera-
tion, and the kinetics quantities are force and moment. Some quantities have magnitude
and direction, but are not vectors. One example, which will play a major role in Chap-
ter 3, is a finite rotation about an axis. An additional requirement for vector quantities is
that they add according to the parallelogram law. This entails a graphical representation
of vectors in which an arrow indicates the direction of the vector and the length of the
arrow is proportional to the magnitude of the vector. A graphical representation of the
summation operation is shown in Fig. 1.1(a), which shows that the addition of two vec-
tors Ā and B̄ may be constructed in either of two ways. Vectors Ā and B̄ may be placed
tail to tail, and then considered to form two sides of a parallelogram. Then Ā + B̄ is the
main diagonal, with the sense defined to be from the common tail to the opposite corner.
An alternative picture places the tail of B̄ at the head of Ā. The sum then extends from
the tail of Ā to the head of B̄.

A

B

B -B
B

A-B

A

-B

A-B
−

−
− −

−−−−

−
−

−A+B
−−

(a) (b)

Figure 1.1. Diagrammatical construction of the sum and dif-
ference of two vectors.

An important aspect of these constructions is that a sum is independent of the se-
quence in which the vectors are added. This is the commutative property, which is stated
as

Ā + B̄ = B̄ + Ā. (1.1.1)

A diagram showing the sum of three vectors leads to the associative property,(
Ā + B̄

)+ C̄ = Ā + (
B̄ + C̄

)
. (1.1.2)

Another important property comes from the observation that multiplying a vector by
a scalar number does not affect its direction, but the magnitude is multiplied by that
factor’s absolute value, that is, ∣∣γ Ā

∣∣ = |γ | ∣∣Ā∣∣ . (1.1.3)

A corollary of this property is that multiplying Ā + B̄ in Fig. 1.1(a) by a scalar changes
the length of the diagonal, which requires that the individual sides be scaled by the same
factor. Thus,

γ
(

Ā + B̄
) = γ Ā + γ B̄, (1.1.4)

which is the distributive property for vector addition.
If the γ factor in Eq. (1.1.3) is negative, γ Ā will be parallel to Ā, but in the oppo-

site sense. This observation leads to graphical rules for subtracting vectors. Multiplying
a vector by −1 only reverses the sense of the vector. Because Ā − B̄ ≡ A + (−B̄

)
, the

difference of two vectors may be constructed in one of three ways, as depicted graph-
ically in Fig. 1.1(b). The difference may be formed by placing Ā and −B̄ tail to tail,
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1.1 Vector Operations 3

which forms a parallelogram. Then Ā − B̄ extends from the common tail to the oppo-
site corner. A different rule leading to the same result comes from the observation that
the parallelogram in Fig. 1.1(b) is identical to the one in Fig. 1.11(a). Thus the difference
may be formed by placing Ā and B̄ tail to tail, so that Ā − B̄ extends from the tip of B̄
to the tip of Ā. The third construction forms Ā − B̄ by placing the tail of −B at the head
of Ā, in which case Ā − B̄ extends from the tail of Ā to the tip of −B̄. Regardless of
how one goes about forming the difference, it is wise to verify that forming B̄ + (

Ā − B̄
)

actually gives Ā.

We will occasionally employ a diagrammatic approach to vector operations for
derivations, but it is awkward and not easily implemented in mathematical software, es-
pecially for three-dimensional situations. Representation of vectorial quantities in com-
ponent form addresses these issues. Let xyz denote a set of orthogonal Cartesian coor-
dinates. Unit vectors ī, j̄, and k̄, whose magnitude is unity without dimensionality, are
defined to be parallel to the x, y, and z axes, respectively. To represent its components,
vector Ā in Fig. 1.2 has been situated with its tail at the origin of xyz.

x y

k

i jAxi

Ay j

Azk
−

A
−

−

−
Ax

Az

Ay

z

Figure 1.2. Unit vectors of a Cartesian coordinate system and the
construction of vector components.

The edges of the box in the figure are constructed from the three lines that are per-
pendicular to a coordinate plane and intersect the tip of Ā. The length of each line is the
component of the vector, denoted with the subscript of the associated axis. (The length
of a side would be the negative of the corresponding component’s value if that side pro-
jected onto the negative coordinate axis.) Figure 1.2 shows that a vector along each edge
of the box may be constructed by multiplying the component by the corresponding unit
vector; see Eq. (1.1.3). The three such vectors depicted in the figure are situated head to
tail, so their sum extends from the tail of the first, Axī, to the head of the third, Azk̄, but
that is the original vector Ā. Hence,

Ā = Axī + Ay j̄ + Azk̄. (1.1.5)

This is the component representation of a vector.
The utility of a component representation is that operations can be performed on

the individual components without recourse to diagrams. By the Pythagorean theorem
the magnitude of Ā is

∣∣Ā∣∣ = (
A2

x + A2
y + A2

z

)1/2
. (1.1.6)
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In many situations we need to construct a unit vector parallel to a vector. This is readily
obtained from the preceding equation as

Ā = ∣∣Ā∣∣ ēA ⇐⇒ ēA = Ā∣∣Ā∣∣ . (1.1.7)

The operations of adding or subtracting vectors are performed by operating on the indi-
vidual components in accord with the properties in Eqs. (1.1.2) and (1.1.4):

Ā ± B̄ = (
Axī + Ay j̄ + Azk̄

)± (
Bxī + By j̄ + Bzk̄

)
= (

Axī ± Bxī
)+ (

Ay j̄ ± By j̄
)+ (

Azk̄ ± Bzk̄
)
,

Ā ± B̄ = (Ax ± Bx) ī + (Ay ± By) j̄ + (Az ± Bz) k̄. (1.1.8)

There are two types of products of two vectors. The dot product is also known as the
scalar product because it is a scalar result. It is defined in terms of the angle φ between
the vectors when they are placed tail to tail, according to

Ā · B̄ ≡ ∣∣Ā∣∣ ∣∣B̄∣∣ cos φ. (1.1.9)

To avoid ambiguity, we limit the angle to 0 ≤ φ ≤ π. It is clear from this definition that
the order in which a product is taken does not affect the result, so a dot product is
commutative:

Ā · B̄ = B̄ · Ā. (1.1.10)

One of the reasons why a dot product is useful is described by Fig. 1.3, where
∣∣B̄∣∣ cos φ

is shown to be the projection of B̄ in the direction of Ā, in other words, the component
of B̄ in the direction of Ā. That figure also shows that

∣∣Ā∣∣ cos φ is the component of Ā
in the direction of B̄. Thus a dot product may be interpreted to be the magnitude of one
vector multiplied by the parallel component of the other vector. In the event where they
form an obtuse angle, π/2 < φ ≤ π, the dot product will be negative, meaning that the
component is in the opposite sense from the vector on which it is projected.

AB

−
−

φ
|A|cos φ

|B|cos φ
Figure 1.3. Dot product of two vectors, showing the component of each vector
parallel to the other.

A dot product can be proven to be distributive, which may be stated as(
α Ā + β B̄

) · C̄ = α Ā · C̄ + β B̄ · C̄. (1.1.11)

The significance of this property is that it enables us to evaluate a dot product directly
in terms of the components of each vector. This comes about from the fact that ī, j̄, and
k̄ are mutually orthogonal unit vectors, so that

ī · ī = j̄ · j̄ = k̄ · k̄ = 1,

ī · j̄ = j̄ · ī = j̄ · k̄ = k̄ · j̄ = k̄ · ī = ī · k̄ = 0.
(1.1.12)
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Combining these fundamental dot products with Eq. (1.1.11) leads to evaluation of a dot
product according to

Ā · B̄ = (
Axī + Ay j̄ + Azk̄

) · (Bxī + By j̄ + Bzk̄
)

= (
Axī

) · (Bxī
)+ (

Axī
) · (By j̄

)+ (
Axī

) · (Bzk̄
)

+ (
Ay j̄

) · (Bxī
)+ (

Ay j̄
) · (By j̄

)+ (
Ay j̄

) · (Bzk̄
)

+ (
Azk̄

) · (Bxī
)+ (

Azk̄
) · (By j̄

)+ (
Azk̄

) · (Bzk̄
)
,

Ā · B̄ = Ax Bx + Ay By + AzBz. (1.1.13)

A useful corollary of the preceding is that the length of a vector may be evaluated from
a dot product, ∣∣Ā∣∣ =

√
Ā · Ā. (1.1.14)

The cross product of two vectors is also known as the vector product, because it
is defined to be a vector in the direction perpendicular to the plane formed when the
vectors are brought tail to tail. The magnitude of a cross product is defined as∣∣Ā × B̄

∣∣ = ∣∣Ā∣∣ ∣∣B̄∣∣ sin φ, (1.1.15)

where φ is the angle between the vectors, as it is for the dot product. As shown in Fig. 1.4,∣∣B̄∣∣ sin φ is the magnitude of the component of B̄ perpendicular to Ā, and
∣∣Ā∣∣ sin φ is

the component of Ā perpendicular to B̄. Thus the magnitude of a cross product may be
interpreted as the magnitude of one vector multiplied by the perpendicular component
of the other vector. Figure 1.4 also shows that the sense of the cross-product direction
is determined by the right-hand rule, in which the vectors are brought tail to tail, and
the fingers of the right-hand curl from the first vector to the second, as indicated by
the curling arrow. The extended thumb then gives the orientation of the cross product,
which would be out of the plane depicted by Fig. 1.4.

A

B

φ
A sinφ

B sinθ⎥ ⎥

⎥ ⎥
−

−

Figure 1.4. Construction of the cross product of two vectors showing the com-
ponent of one vector perpendicular to the other. The curling arrow indicates the
sense in which the fingers of the right hand should curl to form Ā × B̄.

A cross product is not commutative because switching the sequence in which the
product is formed reverses the sense of the curling arrow in Fig. 1.4. Thus,

B̄ × Ā = −Ā × B̄. (1.1.16)

The cross product does have the associative and distributive properties:(
Ā × B̄

)× C̄ = Ā × (
B̄ × C̄

)
,(

α Ā + β B̄
)× C̄ = α Ā × C̄ + β B̄ × C̄.

(1.1.17)
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These properties lead to a rule for evaluating cross products in terms of vector compo-
nents. We require that xyz be a right-handed coordinate system, so the fact that the unit
vectors of the coordinate are mutually orthogonal gives

ī × ī = j̄ × j̄ = k̄ × k̄ = 0,

ī × j̄ = k̄, j̄ × k̄ = ī, k̄ × ī = j̄,

j̄ × ī = −k̄, k̄ × j̄ = −ī, ī × k̄ = − j̄ .

(1.1.18)

A mnemonic device for remembering these products is to consider positive alphabet-
ical order to proceed as ī to j̄ to k̄, then back to ī . Applying these cross products in
conjunction with the distributive law in Eqs. (1.1.17) leads to

Ā × B̄ = (
Axī + Ay j̄ + Azk̄

)× (
Bxī + By j̄ + Bzk̄

)
= (

Axī
)× (

By j̄
)+ (

Axī
)× (

Bzk̄
)+ (

Ay j̄
)× (

Bxī
)+ (

Ay j̄
)× (

Bzk̄
)

+ (
Azk̄

)× (
Bxī

)+ (
Azk̄

)× (
By j̄

)
= Ax Byk̄ − Ax Bz j̄ − Ay Bxk̄ + Ay Bzī + AzBx j̄ − AzByī,

Ā × B̄ = (Ay Bz − AzBy) ī + (AzBx − Ax Bz) j̄ + (Ax By − Ay Bx) k̄. (1.1.19)

Some individuals, rather than carrying out a cross product term by term, as in the pre-
ceding evaluation, use a mnemonic device based on a determinant, specifically,

Ā × B̄ =

∣∣∣∣∣∣∣∣
ī j̄ k̄

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

ī j̄ k̄

∣∣∣∣∣∣∣∣
. (1.1.20)

A common analytical approach we will encounter entails describing a vector in dif-
ferent ways and then equating the different descriptions. A component description of
vectors enables us to convert the vector equality to a set of scalar equations, based on
the fact that if two vectors are equal their like components must be equal. Thus,

Ā = B̄ ⇐⇒ Ax = Bx, Ay = By, and Az = Bz. (1.1.21)

Position vectors are the fundamental kinematical quantities. In Fig. 1.5 the position
vector extending from origin O to point P is labeled r̄P/O, which should be read as
the position vector to P from O, or equivalently, the position of P with respect to O.

Similarly, the position of point P with respect to point A is r̄P/A. The tail of r̄P/A is
situated at the head of r̄A/O, from which it follows that adding these vectors gives the
position of point P with respect to point O:

r̄P/O = r̄A/O + r̄P/A. (1.1.22)

This construction is fundamental to many operations in dynamics.
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x

y

A
z

O

P
r P/OrA/O

rP/A

Figure 1.5. Observation of a moving point P by observers at points O
and A.

The issue of how one carries out algebraic operations with vectors requires con-
sideration of mathematical software. Three-dimensional vectors may be represented as
matrices, which is the preferred data format for such popular programs as Matlab and
Mathcad. Both programs allow one to carry out all vector operations using matrix no-
tation. In Mathcad one proceeds by writing all vectors in matrix form and then carrying
out the operations as indicated. For example, if Ā = 1ī + 2 j̄ + 3k̄ and B̄ = 3ī − j̄ − 5k̄,

then the operation of constructing a unit vector parallel to Ā × B̄, then verifying that
this product is indeed perpendicular to Ā and B̄, could proceed as

A :=

⎧⎪⎪⎨
⎪⎪⎩

1

2

3

⎫⎪⎪⎬
⎪⎪⎭ , B :=

⎧⎪⎪⎨
⎪⎪⎩

3

−1

−5

⎫⎪⎪⎬
⎪⎪⎭ , C := A × B, e := C

|C| , A1 = A ∗ e, B1 = B ∗ e,

(1.1.23)

where := denotes Mathcad’s equality operator, which is obtained by pressing the colon
key, and the cross-product operator is obtained from the Ctrl-8 key combination. The
dot product in matrix notation is obtained from the product of a three-element row
matrix and a three-element column matrix, so one could evaluate the dot product in
Mathcad by writing AT ∗ B. An alternative is to simply multiply vectors to form a dot
product, as was just done, which returns a scalar value.

Matlab proceeds similarly. The cross product is implemented with the “cross” func-
tion; a dot product can be obtained from the “dot” function, or more simply as a standard
row–column product. Thus, the preceding example could be carried out in Matlab as

A=[1 2 3]; B=[3 -1 -5]; C=cross(A,B);

e=C/norm(C), A 1=A *e′; B 1=B*e′;

Note that the “norm” without other arguments is Matlab’s function for evaluating the
(Euclidean) length of a vector. If one wishes, the preceding operations could be carried
out with A and B defined to be three-element columns, for example, A = [1; 2; 3].
Other mathematical software programs have similar capabilities. Also, it is possi-
ble to implement these operations symbolically in some programs by use of matrix
notation.

Ultimately, how one carries out computations is a matter of personal choice. The
procedure used in this text generally will implement the operations term by term using
the associative and distributive properties. One reason for this choice is that the notation
is somewhat more compact. The second has to do with a common situation that will
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frequently arise, in which it will be necessary to combine vectors that are defined in
terms of components relative to different coordinate systems. It is awkward to indicate
which coordinate system a matrix is associated with, whereas the symbols used for unit
vectors display that information unambiguously.

EXAMPLE 1.1 Robotic arm ABC induces a tensile force of 5000 N in cable CD.

The orientation angles are θ = 25◦ for link AB, which lies in the horizontal plane,
and γ = 40◦ for rotation of arm BC. Pin B for this rotation is horizontal and per-
pendicular to arm AB, so AB and BC lie in a common vertical plane. Let F̄ denote
the force the cable exerts on the robotic arm. Determine (a) the component of F̄
parallel to link BC, (b) the moment of F̄ about end A, (c) the moment of F̄ about
the vertical z axis, and (d) the moment of F̄ about arm AB.

x

y

z

θ
γ

C
BA 2 m 1.5 m

3.5 m D

Example 1.1

SOLUTION This example reviews some basic evaluations of force properties, which
call for most of the standard vector operations. The cable is in tension, so it pulls
the robotic arm from point C to point D. We express this as F̄ = 5000ēD/C N, where
ēD/C is the notation we use for the unit vector to D from C. The first task is to
determine the coordinates of point C, which we can find by constructing position
vectors along arms AB and BC. We project point B onto the x and y axes to evaluate
r̄B/A. Similarly, we project point C onto the xy plane, and then project that point
onto the x and y axes. This gives

r̄B/A = 2
(
cos θ ī + sin θ j̄

) = 1.8126ī + 0.8452 j̄ m,

r̄C/B = 1.5 cos γ
(
cos θ ī + sin θ j̄

)+ 1.5 sin γ k̄ = 1.0414ī + 0.4856 j̄ + 0.9642k̄.

The desired position vector is the sum of these vectors:

r̄C/A = r̄B/A + r̄C/B = (1.8126 + 1.0414) ī + (0.8452 + 0.4856) j̄ + (0 + 0.9642) k̄

= 2.8540ī + 1.3309 j̄ + 0.9642k̄ m.

Because r̄C/A and r̄D/A = 3.5ī m are tail to tail, it follows that r̄D/C = r̄D/A − r̄C/A,

which leads to ēD/C according to

ēD/C = r̄D/A − r̄C/A∣∣r̄D/A − r̄C/A
∣∣ = 0.6460ī − 1.3309 j̄ − 0.9642k̄

(0.64602 + 1.33092 + 0.96422)1/2

= 0.3658ī − 0.7537 j̄ − 0.5460k̄.
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Thus the force applied to the arm is

F̄ = 5000ēD/C = 1829ī − 3768 j̄ − 2730k̄ N.

The component of F̄ parallel to arm BC may be obtained from a dot product
with the unit vector ēC/B, which is readily constructed from r̄C/B, whose value has
already been determined. Thus,

FBC = F̄ · ēC/B = F̄ · r̄C/B∣∣r̄C/B
∣∣ = F̄ · (0.6943ī + 0.3237 j̄ + 0.6428k̄

)
= (1829) (0.6943) + (−3768) (0.3237) + (−2730) (0.6428) = −1705 N.

�

Negative FBC indicates that the projection of F̄ onto line BC is opposite the sense
of ēC/B.

The moment of a force may be evaluated from a cross product with a position
vector from the reference point for the moment to the point where the force is ap-
plied. Hence,

M̄A = r̄C/A × F̄ = (
2.8540ī + 1.3309 j̄ + 0.9642k̄

)× (
1829ī − 3768 j̄ − 2730k̄

)
= (2.8540) (−3768) k̄ + (2.8540) (−2730)

(− j̄
)+ (1.3309) (1829)

(−k̄
)

+ (1.3309) (−2730) ī + (0.9642) (1829) j̄ + (0.9642) (−3768)
(−ī

)
= 9555 j̄ − 13189k̄ N-m.

�

The moment of a force about an axis may be determined by forming the moment
about any point on that axis, and then evaluating the component of that moment
in the direction of the axis. Thus the moment of F̄ about the z axis is merely the k̄
component of M̄A,

MAz = M̄A · k̄ = −13189 N-m. �

A negative value indicates that the sense of this moment is determined by align-
ing the extended thumb of the right hand in the −k̄ direction. The same reasoning
shows that the moment of F̄ about arm AB is obtained with a dot product involving
ēB/A,

MAB = M̄A · ēB/A = M̄A · r̄B/A∣∣r̄B/A
∣∣ = 4038 N-m. �

1.1.2 Vector Calculus—Velocity and Acceleration

The primary kinematical variables for our initial studies are position, velocity, and ac-
celeration. Velocity is defined to be the time derivative of position, and acceleration is
the time derivative of velocity, so we need to establish how to handle derivatives of vec-
tors. Because time derivatives are performed frequently, it is standard notation to use
an overdot to denote each such operation. Overbars are used here to indicate that a
quantity is a vector; the reader is encouraged to use the same notation.
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Most of the laws for calculus operations are the same as those for scalar variables.
Their adaptation requires that vector quantities be indicated unambiguously. In the fol-
lowing, Ā and B̄ are time-dependent vector functions, and α and β are scalar functions
of time.

Definition of a derivative:

dĀ
dt

≡
.

Ā ≡ lim
�t→0

Ā (t + �t) − Ā (t)
�t

= lim
�t→0

Ā (t) − Ā (t − �t)
�t

. (1.1.24)

Definite integration:

If
.

Ā = B̄, then B̄ (t) = B (t0) +
∫ t

t0
A (τ ) dτ . (1.1.25)

Derivative of a sum:
d
dt

(
Ā + B̄

) =
.

Ā +
.

B̄. (1.1.26)

Derivative of products:

d
dt

(
α Ā

) = α̇ Ā + α
.

Ā,

d
dt

(
Ā · B̄

) =
.

Ā · B̄ + Ā ·
.

B̄,

d
dt

(
Ā × B̄

) =
.

Ā × B̄ + Ā ×
.

B̄.

(1.1.27)

As an immediate consequence of these properties, all calculus operations may be
performed in terms of vector components. We consider here only situations in which
xyz is a fixed coordinate system, so that ī, j̄, and k̄ are constant vectors, which means
that dī/dt = d j̄/dt = dk̄/dt = 0. We then find that

dĀ
dt

= d
dt

(
Axī + Ay j̄ + Azk̄

) = Ȧxī + Ȧy j̄ + Ȧzk̄. (1.1.28)

A common situation that arises in many phases of our study of kinematics involves a
vector that depends on some parameter α, which in turn varies with time. Differentiation
of the vector with respect to time in this circumstance can be performed with the chain
rule:

dĀ
dt

= dĀ
dα

dα

dt
≡ α̇

dĀ
dα

. (1.1.29)

The chain rule may be extended by partial differentiation to situations in which the
vector depends on two or more time-dependent parameters, according to

dĀ
dt

= α̇
∂ Ā
∂α

+ β̇
∂ Ā
∂β

+ · · · . (1.1.30)

In the present notation, where r̄P/O denotes the position of point P with respect to
the origin O of a fixed coordinate system, then the velocity and acceleration of that point
are

v̄ ≡ .

r̄ P/O, ā ≡ .

v̄ = ..

r̄ P/O. (1.1.31)



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

1.1 Vector Operations 11

It should be noted that no subscripts have been used to denote the velocity and
acceleration vectors. If there is any ambiguity as to the point whose velocity is under
consideration, the notation will be v̄P and āP, but even then there is no need to indicate
in the velocity and acceleration what the origin is. This is so because different fixed
observers all see the same motion. This may be proved from Fig. 1.5, where r̄P/O is the
position seen by an observer at the origin, and r̄P/A is the position of point P as seen
by an observer at point A. Equation (1.1.22) describes r̄P/O as the sum of the other two
vectors. If point A is stationary, then r̄A/O is constant and dr̄A/O/dt = 0̄. It follows that

v̄P = d
dt

r̄P/O = d
dt

(r̄A/O + r̄P/A) = d
dt

r̄P/A, (1.1.32)

which shows that the velocity of a point is the derivative of the position vector to that
point from any fixed point. The same must be true for acceleration because it is the
derivative of the velocity.

In Chapter 3 we will treat situations in which the reference frame moves, in
which case we will be interested in the motion relative to that reference frame. Equa-
tion (1.1.32) defines the absolute velocity, whereas the velocity seen by a moving ob-
server is a relative velocity. The same terminology applies to the description of accel-
eration. If it is not specified otherwise, the words velocity and acceleration should be
understood to mean absolute quantities.

Our initial studies are limited to situations in which the moving body may be con-
sidered to be a particle. By definition, a particle occupies only a single point in space. As
time evolves, the particle will occupy a succession of positions. The locus of all positions
occupied by the point is its path. One can obtain a visual representation of a path by
illuminating the point and then taking a long-exposure photograph. Position, movement
along a path, and velocity are inherently important because we can readily sense them.
Acceleration is difficult for most individuals to observe without instrumentation. On the
other hand, if we are subjected to an acceleration, our sensory system gives us an in-
dication of its magnitude and direction primarily based on the internal forces that are
generated. The time derivative of ā, which is called the jerk, primarily occurs in consid-
erations of ride comfort for vehicles.

EXAMPLE 1.2 A radar station on the ground at origin O tracks airplane A by
measuring the distance r , the angle θ in the horizontal xy plane, and the angle
of elevation β. It is observed that these variables closely fit r(t) = 2000 + 100t m,
θ (t) = π/2 [1 − exp (−0.15t)] rad, and β = π/3 − 0.1

√
t rad, where t is measured

in seconds. (a) Determine the velocity of the airplane at t = 2 s according to a fi-
nite central difference approximation based on the change of the position vector r̄
during an interval of 1 ms. (b) Determine the velocity of the airplane at t = 2 s by
differentiating the xyz components of r̄ .
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yx

z

O

A
r

θ
β

Example 1.2

SOLUTION The analysis brings to the fore many of the basic vector operations, but
a more efficient evaluation of the velocity would use the spherical coordinate for-
mulation we will develop in the next chapter. Both specified solution procedures
require a description of the position vector. The projection of line OA onto the z
axis is the the length of the vertical dashed line. We obtain the x and y components
by projecting line OA onto the xy plane and then projecting that line onto the x and
y axes. The result is that

r̄ (t) = (r cos β cos θ) ī + (r cos β sin θ) j̄ + (r sin β) k̄. (1)

A central difference at t = 2 s covering a 1-ms interval is formed from t = 2 ±
0.0005 s, so the velocity in this approximation is

v̄ (t) ≈ r̄ (2 + 0.0005) − r̄ (2 − 0.0005)
0.001

= 1000[
(
1246.61294ī + 537.68542 j̄ + 1731.20494k̄

)
− (

1246.59391ī + 537.41916 j̄ + 1731.17425k̄
)
],

v̄ (t) = 19.0ī + 266.3 j̄ + 30.7k̄ m/s. (2) �

To differentiate the position analytically, we recognize that the representation
of r̄ in Eq. (1) gives it as a function of r(t), θ (t), and φ (t). Thus we employ the chain
rule, which gives

v̄ (t) = ṙ
∂ r̄
∂r

+ θ̇
∂ r̄
∂θ

+ β̇
∂ r̄
∂β

= ṙ
[
(cos β cos θ) ī + (cos β sin θ) j̄ + (sin β) k̄

]
+ θ̇

[− (r cos β sin θ) ī + (r cos β cos θ) j̄
]

+ β̇
[− (r sin β cos θ) ī − (r sin β sin θ) j̄ + (r cos β) k̄

]
.

(3)

At t = 2 s we have

r = 2200 m, ṙ = 100 m/s,

θ = 0.40712 rad, θ̇ = (π/2) (0.15) exp (−0.15t) = 0.17455 rad/s,

β = 0.90578 rad, β̇ = −0.05/
√

t = −0.03536 rad/s.
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Substitution of these values into Eq. (3) gives the same result as that of Eqs. (2). The
results of both analyses actually agree to within 4

(
10−7

)
% if intermediate results are

not truncated as the computations proceeded.
In other cases, the degree to which the two analyses would agree would de-

pend on the duration of the interval for the finite difference, as well as the nature of
the functions describing r, θ, and β. Interestingly, modern data acquisition systems
are digital, so the data taken by a radar station are sampled discrete values. Any
functions representing r(t), θ (t), and β (t) are likely in that situation to be approx-
imations based on curve-fitting procedures. In such situations, it would be incorrect
to decide that the finite difference approximation gives a less precise result than one
obtained by analytical differentiation.

1.2 NEWTONIAN MECHANICS

A fundamental aspect of any kinetics laws is the reference frame from which the motion
is observed. A reference frame will be depicted as a set of coordinate axes, such as xyz,
with an additional specification of the body to which the axes are attached. However, it is
important to realize that coordinate axes are also often used to represent the directions
for the component description of vectorial quantities. The two uses for a coordinate
system are not necessarily related. Indeed, we frequently describe a kinematical quantity
relative to a specified frame of reference in terms of its components along the coordinate
axes associated with a different frame of reference.

1.2.1 Newton’s Laws

The kinetics laws associated with Sir Isaac Newton are founded on the concept of an
absolute reference frame, which implies that somewhere in the universe there is an ob-
ject that is stationary. This concept is abandoned in relativity theory, but the notion of a
fixed reference frame introduces negligible errors for objects that move slowly in com-
parison with the speed of light. The corollary of this concept is the dilemma of what
object should be considered to be fixed. Once again, considering the Sun to be fixed
usually is sufficiently accurate. However, in most engineering situations it is preferable
to use the Earth as our reference frame. The primary effect of the Earth’s motion in
most cases is to modify the (in vacuo) free-fall acceleration g resulting from the gravi-
tational attraction between an object and the Earth. Other than that effect, it is usually
permissible to consider the Earth to be an absolute reference frame. (A more careful
treatment of the effects of the Earth’s motion will be part of our study in Chapter 3 of
motion relative to a moving reference frame.)

A remarkable feature of Newton’s Laws is that they address only objects that can
be modeled as a particle. Kinetics laws governing a body having finite dimensions were
derived from Newton’s Laws by considering a body to be a collection of particles. Thus
Newton’s Laws are fundamental to all aspects of our work. At the same time, we should
recognize that these are axiomatic to our studies, as they are based on experimental
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observation without analytical proof. Indeed, relativity theory can be shown to reduce
to Newton’s Laws for bodies that move very slowly.

Newton’s Laws have been translated in a variety of ways from their original state-
ment in the Principia (1687), which was in Latin. We use the following version:

first law: The velocity of a particle can only be changed by the application of a
force.

second law: The resultant force (that is, the sum of all forces) acting on a particle
is proportional to the acceleration of the particle. The factor of proportionality is
the mass.


 F̄ = mā. (1.2.1)

third law: All forces acting on a body result from an interaction with another
body, such that there is another force, called a reaction, applied to the other body.
The action–reaction pair consists of forces having the same magnitude, and acting
along the same line of action, but having opposite direction.

We realize that the First Law is included in the Second, but we retain it primarily because
it treats systems in static equilibrium without the need to discuss acceleration. A number
of individuals recognized this law prior to Newton. The Second Law is quite familiar, but
it must be emphasized that it is a vector relation. Hence it can be decomposed into as
many as three scalar laws, one for each component. The Third Law is very important to
the modeling of systems. The models that are created in a kinetics study are free-body
diagrams, in which the system is isolated from its surroundings. Careful application of
the Third Law will assist identification of the forces exerted on the body.

The conceptualization of the First and Second Laws can be traced back to Galileo.
Newton’s revolutionary idea was the recognition of the Third Law and its implications
for the first two. An interesting aspect of the Third Law is that it excludes the concept of
an inertial force, −mā, which is usually associated with d’Alembert, because there is no
corresponding reactive body. We will address the inertial force concept in Chapter 7.

It is also worth noting that the class of forces described by the Third Law is limited –
any force obeying this law is said to be a central force. An example of a noncentral force
arises from the interaction between moving electric charges. Such forces have their ori-
gin in relativistic effects. Strictly speaking, the study of classical mechanics is concerned
only with systems that fully satisfy all of Newton’s laws. However, many of the principles
and techniques are applicable either directly, or with comparatively minor modifications,
to relativistic systems.

The acceleration employed in Newton’s Second Law was stated to be observed from
the hypothetical fixed reference frame. However, the same acceleration can also be ob-
served from special moving reference frames. One may recognize this by returning to
Fig. 1.5, in which the observer at point A is allowed to move. Differentiating twice the
vector sum described by that figure gives

āP ≡ d2

dt2
r̄P/O = d2

dt2
r̄A/O + d2

dt2
r̄P/A. (1.2.2)
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If the observer at point A is to see āp, it must be that d2r̄A/O/dt2 = 0̄, which means that
dr̄A/O/dt is constant. However, dr̄A/O/dt is defined to be v̄A. Thus Newton’s Second
Law can be formulated in terms of the acceleration seen by an observer moving at a
constant velocity. However, there is a further restriction to this statement. If the coordi-
nate axes of the reference frame do not point in fixed directions, changes in velocity will
be associated with the variability of these directions, as well as changes in the velocity
components. An inertial reference frame is one that translates at a constant velocity. The
translation condition, by definition, means that the coordinate axes point in fixed direc-
tions, so that we may interpret velocity and acceleration in the same way as we do for a
fixed reference frame. The constant-velocity condition requires that both the magnitude
and direction of the moving observer’s velocity be constant, which we will soon see can
be true only if the observer follows a straight path. The fact that Newton’s Laws are valid
in any inertial reference frame is the principle of Galilean invariance, or the principle of
Newtonian relativity.

1.2.2 Systems of Units

Newton’s Second Law brings up the question of the units to be used for describing the
force and motion variables. Related to that consideration is dimensionality, which refers
to the basic measures that are used to form the quantity. In dynamics, the basic measures
are time T, length L, mass M, and force F. The law of dimensional homogeneity requires
that these four quantities be consistent with the Second Law. Thus

F = ML/T, (1.2.3)

which means that only three of the four basic measures are independent. Measures for
time and length are easily defined, so this leaves the question of whether mass or force
is the third independent quantity. Whichever unit is not taken as the basic measure is
obtained from Eq. (1.2.3). An absolute set of units is defined such that the unit of mass
is fundamental, whereas a gravitational set of units defines force to be the fundamental
unit. This latter set of units is said to be “gravitational” because of the relation among
the weight w, the mass m, and the free-fall acceleration g.

The only system of units to be employed in this text are SI (Standard International),
which is a metric MKS system with standardized prefixes for powers of 10 and standard
names for derived units. Newton’s law of gravitation states that the magnitude of the
attractive force exerted between the Earth and a body of mass∗ m is

F = GMem
r2

, (1.2.4)

∗ It is implicit to this development that the inertial mass in Newton’s Second Law is the same as the grav-
itational mass appearing in the law of gravitation. This fundamental assumption, which is known as the
principle of equivalence, actually is owed to Galileo, who tested the hypothesis with his experiments
on various pendulums. More refined experiments performed subsequently have continued to verify the
principle.
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where r is the distance between the centers of mass, G is the universal gravitational
constant, and Me is the mass of the Earth:

G = 6.6732(10−11) m3/kg-s2, Me = 5.976(1024) kg. (1.2.5)

The weight w of a body usually refers to gravity’s pull when a body is near the Earth’s
surface. If a body near the Earth’s surface falls freely in a vacuum, its acceleration is g,

which according to the Second Law is the ratio of w and m. In view of Eq. (1.2.4), it must
be that

g = GMe

r2
e

, (1.2.6)

where re = 6371 km is the radius of the Earth.
The relationship between g and the gravitational pull of the Earth is actually far

more complicated than Eq. (1.2.6). In fact, g depends on the location along the Earth’s
surface. One reason for such variation is the fact that the Earth is not perfectly homoge-
neous and spherical. In addition to these deviations of the gravitational force, the value
of g is influenced by the motion of the Earth, because g is an acceleration measured
relative to a noninertial reference frame. (This issue is explored in Section 3.6.) Conse-
quently it is not exactly correct to employ Eq. (1.2.6).

The mass of a particle is constant (assuming no relativistic effects), so an absolute
system of units is the same regardless of where they are measured. Prior to adoption of SI
as a standard set of absolute units, many individuals used a gravitational metric system,
in which grams or kilograms were used to specify the weight of a body. In SI units, where
mass is basic, any body should be described in terms of its mass in kilograms. Its weight
in newtons (1 N ≡ 1 kg × 1 m/s = 1 kg-m/s) is mg. If an accurate measurement of g
at the specific location on the Earth’s surface is not available, one may use an average
value

g = 9.807 m/s. (1.2.7)

The system now known as U.S. Customary is another gravitational system. Its basic
unit is force, measured in pounds (lb). The body whose weight is defined as a pound must
be at a specified location. If that body were to be moved to a different place, the gravi-
tational force acting on it, and hence the unit of force, might be changed. The ambiguity
as to a body’s weight is one source of confusion in U.S. Customary units. Another stems
from early usage of the pound as a mass unit. If one also employs a pound force unit,
such that 1 lbf is the weight of a 1-lbm body at the surface of the Earth, then application
of the law of dimensional homogeneity to F̄ = mā requires that acceleration be mea-
sured in multiples of g. This is an unnecessary complication that has been abandoned in
most scientific work.

Even when one recognizes that mass is a derived unit in the U.S. Customary units,
the mass unit is complicated by the fact that two length units, feet and inches, are in
common use. Practitioners working in U.S. Customary units use the standard values

g = 32.17 ft/s or g = 386.0 in./s. (1.2.8)
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Hence, computing the mass as m = w/g will give a value for m that depends on the
length unit in use. The slug is a standard name for the U.S. Customary mass unit, with

1 slug = 1 lb/(1ft/s2) = 1 lb-s2/ft. (1.2.9)

This mass unit is not applicable when inches is the length unit. To emphasize this matter,
it is preferable for anyone using U.S. Customary units to make it a standard practice to
give mass in terms of the basic units. For example, a mass might be listed as 5.2 lb-s2/ft, or
a moment of inertia might be 125 lb-s2-in. The SI system avoids all of these ambiguities.

1.2.3 Energy and Momentum

A basic application of the calculus of vectors in dynamics is the derivation of energy
and momentum principles, which are integrals of Newton’s Second Law. These integrals
represent standard relations between velocity parameters and the properties of the force
system. We derive these laws for particle motion here; the corresponding derivations for
a rigid body appear in Chapter 6.

Energy principles are useful when we know how the resultant force varies as a func-
tion of the particle’s position, in other words, when 
 F̄(r̄) is known. The displacement
of a point is intimately associated with energy principles. The definition of a displace-
ment is that it is the change in the position occupied by a point at two instants,

�r̄ = r̄(t + �t) − r̄(t). (1.2.10)

To obtain a differential displacement dr̄ , we let �t become an infinitesimal interval dt .
A dot product of Newton’s Second Law with a differential displacement of a particle
yields


 F̄(r̄) · dr̄ = mā · dr̄ . (1.2.11)

The definition of velocity indicates that dr̄ = v̄dt. Substitution of this and the definition
of ā into the preceding leads to


 F̄(r̄) · dr̄ = m
dv̄

dt
· v̄dt. (1.2.12)

A dot product is commutative, so (dv̄/dt) · v̄ ≡ v̄ · (dv̄/dt) , from which it follows that


 F̄(r̄) · dr̄ = m
1
2

[
d
dt

(v̄ · v̄)
]

dt ≡ d
[

1
2

m (v̄ · v̄)
]

. (1.2.13)

The right side is a perfect differential, whereas the left side is a function of only
the position because of the assumed dependence of the force resultant. Hence we may
integrate the differential relation between the two positions. The evaluation of the inte-
gral of the left side must account for the variation of the resultant force as the position
changes when the particle moves along its path; this is a called a path integral. We there-
fore find that ∫ 2

1
C 
 F̄(r̄) · dr̄ = 1

2
m (v̄2 · v̄2) − 1

2
m (v̄1 · v̄1) , (1.2.14)
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where “1” and “2” respectively denote the initial position and final position. The kinetic
energy of a particle is

T ≡ 1
2

m (v̄ · v̄) = 1
2

m |v̄|2 , (1.2.15)

and the path integral is the work done by the resultant force in moving the particle from
its initial to final position,

W1→2 ≡
∫ 2

1
C 
 F̄(r̄) · dr̄ . (1.2.16)

The subscript notation for W indicates that the work is done in going from the starting
position 1 to the final position 2 along the particles’s path. Correspondingly, Eq. (1.2.14)
may be written as

T2 = T1 + W1→2, (1.2.17)

which is the work–energy principle. It states that the increase in kinetic energy between
two positions equals the work that is done.

The operation of evaluating the work is depicted in Fig. 1.6. The angle between
the resultant force 
 F̄ and the infinitesimal displacement dr̄ is θ. It follows from the
definition of a dot product that the infinitesimal work done by 
 F̄ in this displacement
is dW = 
 F̄ · dr̄ = ∣∣
 F̄

∣∣ |dr̄ | cos θ. The figure indicates that the infinitesimal work is the
product of the differential distance the particle moves, |dr̄ |, and the component of the
resultant force in the direction of movement,

∣∣
 F̄
∣∣ cos θ, or equivalently, the product

of the magnitude of the resultant force,
∣∣
 F̄

∣∣ , and the projection of the displacement
in the direction of the force, |dr̄ | cos θ . Only in the simple case in which the force has a
constant component in the direction of the displacement does the work reduce to the
simple expression “force multiplied by distance displaced.” Otherwise the work must be
evaluated as a path integral, meaning that the value of 
 F̄ · dr̄ must be described as a
function of the position along the path. The evaluation of the work is a major part of
a formulation of the work–energy principle. We will find in Chapter 6 that this task is
alleviated by introducing the concept of potential energy.

Path

θ

ΣF
|ΣF |cos θ−

|dr |cos θ−

drr−

Particle

Figure 1.6. Work done by a resultant force 
 F̄ in displacement
dr̄ of a particle.

In contrast to the situation covered by the work–energy principle, which is based on
knowing how the resultant force depends on the particle’s position, momentum princi-
ples are intended to address situations in which the resultant force is known as a function
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of time. Two such principles may be derived from Newton’s Second Law. The linear
impulse–momentum principle is a direct integration of 
 F̄ = mā with respect to time.
Because ā = dv̄/dt, multiplying the Second Law by dt and integrating over an interval
t1 ≤ t ≤ t2 leads to ∫ t2

t1

 F̄ dt = m (v̄2 − v̄1) . (1.2.18)

The quantity mv̄ is the momentum of the particle, which we denote by the symbol P̄.
Thus we have

P̄ = mv̄, P̄2 = P̄1 +
∫ t2

t1

 F̄ dt. (1.2.19)

The time integral of the resultant force is the impulse. Thus we have derived the linear
impulse–momentum principle, where the word linear conveys the fact that the princi-
ple pertains to movement along a (possibly curved) line. Correspondingly, more precise
names for the terms appearing in Eqs. (1.2.19) are the linear impulse and linear momen-
tum.

This is a vector relation, so taking components in each of the coordinate directions
will lead to three scalar equations, although some might be trivial, as in planar motion.
There are few situations in which all forces acting on a body are known as functions
solely of time, which is required if the impulse is to be evaluated. However, it might
happen that the forces acting in a certain direction are known functions of time, in which
case the linear impulse–momentum law may be invoked solely for that component.

A primary utility of the linear impulse–momentum principle is to treat systems ex-
cited by impulsive forces, that is, forces that impart a very large acceleration to a body
over a very short time interval. We split the resultant force acting on a particle into two
parts: F̄imp is the resultant of the impulsive forces, and F̄ord represents ordinary forces
whose magnitude is not much larger than mg. The peak magnitude in the impulsive
force, Fmax = max

(
F̄imp

)
, must be much greater than the peak magnitude of the regular

forces in order for it to qualify as an impulsive force. Because one of the regular forces is
gravity, it follows that Fmax/m must be much larger than g if a force is to be considered
to be impulsive. The velocity at time t2, when the impulsive force ceases, is related by
the linear impulse–momentum principle to the velocity at t1, when the force first began
to act. Specifically,

mv̄2 = mv̄1 +
∫ t2

t1
F̄impdt +

∫ t2

t1
F̄orddt. (1.2.20)

Because the impulsive forces are much bigger than the ordinary forces, we may ignore
the impulse of the latter. Furthermore, in many situations, such as predicting the tra-
jectory of an object after a collision, we are not very interested in specific manner in
which the velocity changes between t1 and t2. This is especially true because of the
brevity of this time interval. Both observations lead to the idealized model of an im-
pulsive force, in which it is considered to act over a zero time interval, t2 = t1, but to
still have the same impulse Ḡ as the actual force. The implication of a finite impulse
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being obtained over a zero time interval is that the force is infinite. We represent such a
force as

F̄imp = Ḡδ (t − t1) , (1.2.21)

where δ (t − t1) is a Dirac delta function, which is defined by two basic properties:

δ (t − t1) = 0 if t �= t1,
∫ t2

t0
δ (t − t1) dt = 1 if t0 < t1 < t2. (1.2.22)

The consequences of using this model to analyze the motion of a particle is that (a) the
acceleration is infinite for one instant, (b) the velocity changes instantaneously, and (c)
the position changes continuously. (The latter feature follows from the facts that the ve-
locity is integrated to find the position and the velocity is finite.) As was mentioned, this
representation of an impulsive force is satisfactory for predicting the motion of the par-
ticle at any instant outside the brief interval when the impulsive force acts. At the same
time, the fact that the model considers an impulsive force to have an infinite magnitude
makes it inappropriate for any stress analysis task, such as designing a golf club.

In statics, we know that the resultant moment is as important as the resultant force.
Thus, let us investigate how the moment 
M̄O of the resultant force about origin O of
a fixed reference frame is related to the acceleration. Application of the Second Law to
the resultant moment leads to


M̄O = r̄P/O × 
 F̄ = r̄P/O × mā = r̄P/O × m
dv̄

dt
. (1.2.23)

We now bring the time derivative outside the cross product by compensating the equa-
tion with an appropriate term to maintain the identity, specifically,


M̄O = d
dt

(r̄P/O × mv̄) − dr̄P/O

dt
× mv̄. (1.2.24)

However, the last term vanishes because dr̄P/O/dt ≡ v̄ and the velocity is parallel to the
momentum mv̄. The remaining term on the right side of the equation is the time deriva-
tive of the moment about origin O of the linear momentum of the particle. We refer
to r̄P/O × mv̄ as the moment of momentum. The more common name for this quantity
is the angular momentum, which refers to the fact that a moment is associated with a
rotational tendency. We use the symbol H̄O to denote it. Thus,

H̄O = r̄P/O × mv̄, 
M̄O =
.

H̄O, (1.2.25)

which is the derivative form of the angular impulse–momentum principle. The integral
form is obtained by integration over an arbitrary interval t1 ≤ t ≤ t2, which leads to

(
H̄O
)

2 = (
H̄O
)

1 +
∫ t2

t1

M̄Odt. (1.2.26)

The time integral of the moment is called the angular impulse of the resultant force.
Situations in which the angular impulse–momentum principle is needed to study the

motion of a particle are few. As is the case for its linear analog, the angular momentum
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principle for a particle might be useful to treat an impulsive force. Also, when the mo-
ment of the resultant force about an axis is zero, the principle yields a conservation
principle. Specifically, if the unit vector parallel to this axis is ē, then


M̄O · ē = 0̄ ⇐⇒ H̄O · ē is constant. (1.2.27)

This conservation principle was recognized by Kepler for planetary motion, and it is a
key part of the analysis of orbits. For us, the primary utility of the angular momentum
principle lies in the application of the derivative form, Eq. (1.2.25), to a rigid body. We
will find in Chapter 5 that the angular momentum of a body is directly related to its
rotation.

1.3 BIOGRAPHICAL PERSPECTIVE

As we proceed through the various topics, the names of some early scientists and mathe-
maticians will be encountered in a variety of contexts. The magnitude of the contribu-
tion of these pioneers cannot be overstated. Indeed, it is a testimonial to their ingenuity
that we continue to use so much of their work. A view of the historical relationship
among these researchers can greatly enhance our insight. The following discussion is an
informal chronological survey of deceased individuals whose names are associated with
concepts we will discuss. The goal here is to provide a brief overview of their life and
their technical contributions. As in all scientific endeavors, many others made important
contributions leading to those concepts. One objective of this survey is to introduce the
notion that the laws of dynamics are a natural philosophy, as well as an engineering dis-
cipline. Another perspective to be gained from this survey is that some of these pioneers
were active in a broad range of subjects, whereas others were specialists, but all were
important to the advancement of dynamics. The reader is encouraged to examine the
references for this chapter to fully appreciate how the subject evolved.

Galileo Galilei
Born 15 February 1564 in Pisa, Italy; died 8 January 1642. Galileo’s family moved to
Florence when he was 10 years old. His father forced him to enroll in the University
of Pisa for a medical degree in 1581, but Galileo focused on mathematics and natu-
ral philosophy. He left the university without receiving a degree and began teaching
mathematics in Siena in 1585. He worked there on the concept of center of gravity and
unsuccessfully sought an appointment at the University of Bologna on the basis of that
work. Galileo was named the Chair of Mathematics at the University of Pisa in 1589.
He became a professor of mathematics at the University of Padua in 1590, where he was
elevated to the post of Chief Mathematician in 1610.

Galileo is popularly known for experiments on gravity at the leaning tower of Pisa,
but there is no conclusive evidence that those experiments actually occurred. From his
measurements of the motion of pendulums, which led him to propose the use of a pen-
dulum to provide the time base for a clock, he deduced that gravitational and inertial
masses are identical. He refuted Aristotle’s ancient statements by observing that the
state of motion can be altered only by the presence of other bodies and that there is
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no unique inertial reference frame. In astronomy, he developed the astronomical tele-
scope, and used it for many pioneering observations. His last eight years were spent
under house arrest for advocating the Copernican view of the solar system, which held
that the Sun, rather than the Earth, is the center of the solar system.

Sir Isaac Newton
Born 4 January 1643 in Lincolnshire, England; died 31 March 1727. Newton’s father was
wealthy, but illiterate, and Newton was raised by his grandparents. He entered Trinity
College of Cambridge University in 1661 with the intent of earning a law degree, but be-
came interested in mathematics and natural philosophy. He earned a bachelor’s degree
from Cambridge University in 1665, but his academic record there was not particularly
distinguished. He returned to Lincolnshire shortly after graduation because of an out-
break of plague. His brilliance emerged there when he developed the fundamentals of
calculus. Newton returned to Cambridge University in 1667, where he was named the
Lucasian Chair in 1669. He was elected to Parliament in 1689 and retired from research
in 1693. He became Warden of the Mint in 1896 and was knighted in 1705.

In addition to his contributions in developing calculus, Newton made important con-
tributions to the refraction and diffraction of light. For us, his most important work is
the monumental Philosophiae naturalis principia mathematica, which is usually referred
to as the Principia. In it, he brought together the basic laws of motion, the universal law
of gravitation, the study of projectile motion, and of celestial orbits. Equally important,
it introduced the world to the scientific method by tying together mathematical hypoth-
esis and experimental observation. The revolutionary nature of Newton’s contributions
causes many to regard him as one of the two most important figures in science, rivaled
only by Albert Einstein.

Leonhard Euler
Born 15 April 1707 in Basel, Switzerland; died 18 September 1783. Euler studied phi-
losophy at the University of Basel, from which he earned a masters’s degree in 1723.
While there he became interested in mathematics, but much of his expertise in this sub-
ject was the result of self-instruction. He received an appointment at the University of
St. Petersburg, Russia, at the age of 19, and served as a medical lieutenant in the Russian
Navy from 1727 to 1730. In that year he was named a professor at the University of
St. Petersburg, which enabled him to leave the navy. He was named the senior chair in
1733, but left to go to the University of Berlin in 1743 because of negative sentiment for
foreigners in Russia. He became the Director of Mathematics when the Berlin Academy
was created in 1744. Euler returned to St. Petersburg in 1763 because of disagreements
with Frederich the Great. A failed operation led to his total blindness in 1771, but much
of his technical contributions come from the subsequent period.

Euler was quite prolific, with more than 350 publications in such diverse areas as
the calculus of variations, functional analysis, number theory, ordinary differential equa-
tions, differential geometry, cartography, orbital motion and trajectories, fluid mechan-
ics, and solid mechanics. For the subject of dynamics, his primary contribution is the
derivation of principles governing the kinematics and kinetics of rigid bodies. Euler was
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the most prolific mathematician of his century. By developing new mathematical prin-
ciples in order to solve physically meaningful problems he fathered the discipline of
mechanics. Unlike Newton, who created new concepts, much of Euler’s work can be
recognized as evolving from the efforts of his contemporaries.

Jean Le Rond d’Alembert
Born 17 November 1717 in Paris, France; died 29 October 1783. D’Alembert was aban-
doned by his unmarried mother on the steps of the Church of St. Jean Le Rond, which
is the origin of his given name. He studied theology and mathematics at the Jansenist
College of Quatre Nations, from which he graduated as a lawyer in 1735. He continued
to study mathematics, with the result that he joined the Paris Académie des Sciences
in 1741, where he remained. He wrote most of the mathematical sections of the Ency-
clopédie, published in 1754, which is the year he was appointed to the French Académie.
D’Alembert’s interests eventually turned to literature, philosophy, and music theory.

D’Alembert made significant contributions to the study of partial differential equa-
tions and their application to solid and fluid mechanics, as well as to functional analysis.
Euler and d’Alembert initially held each other in high esteem, but the situation de-
teriorated in 1753. Nevertheless, many of Euler’s works descended from d’Alembert’s
concepts. A notable aspect is that d’Alembert was uncomfortable with Newton’s ap-
proach merging experiment and theory, with the result that the assumptions he made to
initiate an analysis were often erroneous. D’Alembert is associated with the notion of an
inertial force, −mā, which is a key concept for the development of analytical dynamics
principles. However, this attribution, and hence d’Alembert’s presence in this survey, is
questionable, which is an issue we will address in Chapter 7.

Joseph-Louis Lagrange
Born 25 January 1736 in Turin, Italy; died 10 April 1813. Lagrange initially studied clas-
sical Latin at the College of Turin, but turned to mathematics and physics in order to
pursue a financially sound career. Much of his knowledge in these subjects was the re-
sult of self-study, and his correspondences with Euler were very important for this ef-
fort. One consequence is that the works of Euler and Lagrange are intimately related.
Lagrange became a professor of mathematics at the Royal Artillery School in Turin in
1755. He was elected to the Berlin Academy in 1755 on the recommendation of Euler
and succeeded Euler as Director of Mathematics of that institution in 1766. Lagrange
joined the Paris Académie des Sciences in 1787. The following year saw the publica-
tion of his treatise Mécanique analytique, in which he used differential equations as the
framework for all of the primary developments in mechanics since Newton. Lagrange
became the first professor of analysis at the École Polytechnique in Paris in 1794. He
was named a Count of the Empire and awarded the Legion of Honor by Napoleon in
1808. Although Lagrange’s heritage is Italian, the French consider him to be one of
their own.

Lagrange’s major contributions were to the calculus of variations and its applica-
tions to mechanics, the theory of equations, probability theory, number theory, ordi-
nary differential equations, wave propagation, and celestial mechanics. His dynamical
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equations of motion will be an essential element of our study here. Overall, Lagrange
can be credited as being the individual who initiated the usage of applied mathematical
tools to study dynamical systems.

Gaspard Gustave de Coriolis
Born 21 May 1792 in Paris, France; died 19 September 1843. Coriolis’ family fled to
Nancy, France, shortly after his birth to escape punishment during the French Revo-
lution. He attended the École Polytechnique, then the École des Ponts et Chausées in
Paris. His first position was an appointment in 1816 as a tutor in mathematical analysis
at the École Polytechnique. In 1829 he became a professor of mechanics at the École
Centrale des Artes et Manufactures, then returned to the École Polytechnique in 1832,
where he became director of studies in 1838.

Coriolis’ contributions to dynamics are less significant than those of the other re-
searchers discussed here. His primary recognition stems from an explanation of the ac-
celeration observed from the perspective of a rotating reference frame. In addition, he
introduced the terms “work” and “energy” in their modern sense. He also contributed
to the study of collisions of bodies, hydraulics, and machine design.

Sir William Rowan Hamilton
Born 4 August 1805 in Dublin, Ireland; died 2 September 1865. Hamilton knew Latin,
Greek, and Hebrew by the age of five. He entered Trinity College in Dublin in 1823,
where he earned the ranking of “optime” in both science and classics, which was
unprecedented. At age 21, while still an undergraduate, he was named a professor
of astronomy, which was accompanied by the honorary title of Royal Astronomer of
Ireland. He wrote poetry, which he exchanged with his friend Wordsworth, who advised
Hamilton to remain a scientist. Hamilton remained at Trinity College for his whole ca-
reer. He was knighted in 1835 and, shortly before his death, became the first foreign
member of the U.S. National Academy of Sciences.

One of Hamilton’s specialties was the ray theory of optics, especially the phe-
nomenon of caustics. A primary contribution to dynamics was an alternative formulation
of equations of motion, which apparently grew out of an effort to apply ray theory to
dynamical systems. We also will encounter “Hamilton’s Principle,” which draws on con-
cepts from the calculus of variations to capture the Newtonian and Lagrangian forms
of the equations of motion. It has been invaluable for the development of finite ele-
ment analysis, yet can be extended to relativistic systems. Hamilton also developed the
algebra of quarternions, which has been employed in some areas of kinematics.

Edward John Routh
Born 20 January 1831 in Quebec, Canada; died 7 June 1907. Routh’s birth in Canada
was a consequence of his father being posted there by the English army. Routh went to
England in 1842 to enroll in University College, London, from which he earned a B.A.
in 1849 and an M.A. in 1853. The latter was accompanied by gold medals in mathemat-
ics and natural philosophy. He received a B.A. from Cambridge University in 1854, at
which time he was the Senior Wrangler in the Mathematics Tripos Exams. (The great
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physicist Maxwell came in second in that competition.) Routh was appointed to a lec-
tureship at Cambridge in 1855, which was the position he held for his whole career. He
became famous as a coach for the Tripos exams. For 22 years, starting in 1862, the Senior
Wrangler was coached by him. Over a 30-year period, Routh coached 700 students, of
whom 480 were named Wranglers out of a cohort of 900. Routh became a Fellow of the
Cambridge Philosophical Society in 1854, of the Royal Astronomical Society in 1866,
and of the Royal Society in 1872.

As a researcher, Routh contributed to geometry, astronomy, and wave propagation.
His primary contribution for us is analysis of the dynamical behavior of rigid bodies. As
part of that effort, he formulated general tools for analyzing dynamic stability, which
proved also to be very useful for fluid mechanics.

Josiah Williard Gibbs
Born 11 February 1839 in New Haven, Connecticut; died 28 April 1903. Gibbs initially
focused on mathematics and Latin when he entered Yale University, but switched to
engineering. He received Yale’s first doctorate in engineering in 1863. From 1866 to
1869 he studied in Europe, then became a professor of mathematical physics at Yale in
1871, where he remained.

In today’s vernacular, he was a “late bloomer,” in that his first published work
appeared in 1873 when he was 34. His major contributions were in thermodynamics
and statistical mechanics. He also worked on the electromagnetic theory of light. An
alternative formulation of equations of motion, which is the aspect of his efforts that
causes him to be included here, was part of his efforts to apply vector analysis to physi-
cal systems.

Paul Emile Appell
Born 27 September 1855 in Strasbourg, France; died 24 October 1930. Appell’s family
moved to Nancy, France, when he was 16 as a consequence of the German annexation
of Alsace. There he became a lifelong friend of Poincaré. He entered in 1873 the École
Normal Supérieure in Paris, and received a doctorate in mathematics in 1876. Appell
became the Chair of Mathematics at the University of Sorbonne in Paris in 1885. He
was ardently and actively patriotic for his whole life, as was manifested by his spying
activities for France during his frequent visits to his family in Alsace. He was elected
to the Académie des Sciences in 1892. He was dean of the Faculty of Science of the
University of Paris from 1903 to 1920, then served as its rector from 1920 to 1923.

Appell’s prolific research output emphasized the application of mathematical anal-
ysis to geometry and mechanics. His work tended to be refinements of existing concepts,
rather than new ones. The contribution that brings him to our attention is the develop-
ment of an alternative set of equations of motion, for which he shares attribution with
Gibbs.

Walther Ritz
Born 22 February 1878 in Sion, Switzerland; died 7 July 1909. Ritz entered the Federal
Polytechnic School in Zurich in 1897. His original intent was to study engineering, but he
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soon transferred to mathematics, where one of his classmates was Einstein. He moved to
Göttingen, Germany, where he did his thesis. Between 1901 and 1904 Ritz held positions
in Leiden, Bonn, and Paris. Despite tuberculosis, which caused him to return to Switzer-
land in 1907, he took on positions in Tübingen, Germany, in 1907, and Göttingen, in
1908. Ritz’s most productive period of research came in his last two years. His life span
of 31 years is the shortest of the great physicists and mathematicians through the early
20th century. The only remorse he expressed as he was dying was that he would no
longer be able to advance science.

Ritz’s contributions to spectroscopy were vital to the development of quantum the-
ory, and his work in the general theory of electrodynamics was important to the devel-
opment of relativity theory. To explain the vibrations of elastic plates, Ritz applied an
analytical technique based on Hamilton’s Principle that he developed in his thesis on
atomic spectra. This technique proved to be quite general, and now is widely used. It
provides the foundation for finite element analysis. Interestingly, the only reason Ritz
was interested in plate vibrations was the possibility of winning a mathematical compe-
tition. The rest of his research was in atomic physics.

Perhaps the most remarkable aspect of the foregoing survey is the time span over which
these pioneers lived. The basic principles were essentially finalized more than a century
ago. However, the subject of mechanics is mature from only a philosophical view. De-
velopments since then have transferred the works of our predecessors from the realm
of physics and mathematics to engineering, thereby converting their contributions from
fundamentally straightforward principles and concepts to sophisticated analytical tools
capable of describing complex systems. One objective of this text is to show how far
we have come, but expanding the versatility of the analytical tools and their level of
sophistication continues to be a research focus.
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HOMEWORK PROBLEMS

75o

3 m

4 m

2 m

A

BC

Exercise 1.1

EXERCISE 1.1 The rectangular plate is welded at cor-
ner A to the vertical shaft and braced by cable BC. The
tension in the cable is 5 kN. (a) Determine the compo-
nents parallel to the edges of the plate of the force the
cable applies to the plate. (b) Determine the moment
about corner A of the force applied by the cable. (c)
Determine the moment about the axis of the shaft of
the force applied by the cable.

EXERCISE 1.2 The study of the kinematics of rigid bodies in Chapter 3 will show that
the accelerations of two points in a rigid body are related by āB = āA + ᾱ × r̄B/A +
ω̄ × (ω̄ × r̄B/A) . At a certain instant r̄A/O = ī + j̄ + k̄ m, r̄B/O = 4ī + 2 j̄ − 3k̄ m, āA =
4ī − 5 j̄ + k̄ m/s2, ω̄ = 5ī − 3 j̄ + 2k̄ rad/s, ᾱ = −20ī + 10 j̄ − 40k̄ rad/s2. Evaluate āB by
carrying out the calculation manually, then verify the result using mathematical soft-
ware.

EXERCISE 1.3 The Gibbs–Appell function for a rigid body is related to the instantaneous
angular velocity ω̄ and angular acceleration ᾱ by

S = 1
2
ᾱ · ∂ H̄A

∂t
+ ᾱ · (ω̄ × H̄A

)
,

H̄A = (Ixxωx − Ixyωy − Ixzωz) ī + (Iyyωy − Ixyωx − Iyzωz) j̄

+ (Izzωz − Ixzωx − Iyzωy) k̄,

∂ H̄A

∂t
= (Ixxαx − Ixyαy − Ixzαz) ī + (Iyyαy − Ixyαx − Iyzαz) j̄

+ (Izzαz − Ixzαx − Iyzαy) k̄,
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where Ixx, Iyy, and Izz are the moments of inertia and Ixy, Iyz, and Ixz are products
of inertia. Consider a situation in which ω̄ = −50ī − 20k̄ rad/s, ᾱ = 1500ī − 500 j̄ +
1000k̄ rad/s2. The nonzero inertia values are Ixx = 500, Iyy = 800, Izz = 300, and Ixz =
−200 kg-m2. Evaluate S by carrying out the calculation manually, then verify the result
using mathematical software.

EXERCISE 1.4 Angular velocity ω̄ is a fundamental property of the motion of rigid bod-
ies. In the Eulerian angle description, see Chapter 3, ω̄ is the sum of three contributions
in directions defined by unit vectors ē1, ē2, and ē3 = k̄, such that ω̄ = c1ē1 + c2ē2 + c3k̄,

with ē2 defined to be perpendicular to the plane containing ē1 and k̄. Consider the situ-
ation in which the angular velocity is ω̄ = 70ī + 110 j̄ + 500k̄ rad/s and ē1 = −0.4913ī −
0.7651 j̄ − 0.4161k̄. Determine the corresponding values of c1, c2, and c3.

EXERCISE 1.5 The intersecting edges of a nonorthogonal parallelepiped are defined by
the position vectors r̄B/A = −20ī + 30 j̄ + 5k̄, r̄C/A = 8ī + 25 j̄ + 10k̄, r̄D/A = 4ī − 2 j̄ −
15k̄ mm. Determine the volume of this object.

x, X

Y
y

e1

F1

e2
F2

F

β

Exercise 1.6

EXERCISE 1.6 An affine coordinate system has unit vectors
that are not mutually orthogonal. The x and y axes in the
sketch constitute such a system for a planar situation. A vector
may be represented in terms of its contravariant components
relative to xy by constructing lines parallel to the respective
coordinate axes. Such a set of components are F1 and F2 for
the force vector in the sketch. The unit vectors parallel to the
x and y axes are ē1 and ē2. This force can also be represented
in term of its FX and FY components relative to the Carte-
sian XY coordinate system whose X axis is coincident with x. Given that FX = 500 N,
FY = 350 N, and β = 65◦, use vector algebra to determine F1 and F2.

EXERCISE 1.7 The mass flow rate per unit surface area is the product of the density and
velocity at a point in space, and the mass flux per unit area is the component of the mass
flow rate parallel to the unit vector ē that is normal to a surface. Consider a square sur-
face whose sides are 200 mm and whose normal is ē = 0.6 j̄ + 0.8k̄. The velocity every-
where on this surface is v̄ = 80 cos (5π t) ī − 20 cos (10π t) j̄ + 40 sin (10π t) k̄ m/s, where
t has units of seconds, and the density is 950 kg/m3. Determine how much mass flows
across the square in the interval 50 < t < 100 ms.

EXERCISE 1.8 Polar coordinates in the xy plane are defined by the radial distance R and
the polar angle θ measured from the x axis. The corresponding representation of posi-
tion is r̄P/O = Rcos θ ī + Rsin θ j̄ . Suppose that R = ρ + ε sin (αt) and θ = αt2/2. Deter-
mine the velocity of point P, then evaluate the components of this velocity parallel and
perpendicular to r̄P/O.

EXERCISE 1.9 Polar coordinates in the xy plane are defined by the radial distance R
and the polar angle θ measured from the x axis. The corresponding representation of
position is r̄P/O = Rcos θ ī + Rsin θ j̄ . Suppose that R and θ are arbitrary functions of
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time. Derive formulas for the velocity of point P in terms of xyz components, then
evaluate the components of this velocity parallel and perpendicular to r̄P/O.

L1

L2
θ1

θ2

x
F1

F2

Exercise 1.10

EXERCISE 1.10 The collar slides to the left as the inter-
connected bars swing in the vertical plane. The position
of the collar is x = 20 sin (50t) mm, and the angles are
θ1 = 0.2π cos (50t) , θ2 = 0.2π sin (50t − π/3) rad. De-
termine the velocity of the lower end by differentiating
its position in terms of horizontal and vertical compo-
nents.
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CHAPTER 2

Particle Kinematics

This chapter develops some basic techniques for describing the motion of a point and
therefore of a particle. The procedures we follow are driven not merely by how the
point’s motion is described, but also by the information we seek. Each formulation
is based on describing vector quantities with respect to a different set of unit vectors.
Which description is best suited to a particular situation depends on a variety of factors,
but a primary consideration is whether the associated quantities, such as the coordi-
nates, naturally fit the known aspects of the motion. Ultimately we will find that it might
be beneficial to combine a variety of descriptions.

The various kinematical description that we use fall into two general classes. The
one that might seem to be the most natural is extrinsic coordinates, which means that
the description is extrinsic to knowledge of the path followed by the point. A simple
case is rectangular Cartesian coordinates, for which the position is know in terms of dis-
tances measured along three mutually orthogonal straight lines representing reference
directions. A variety of other extrinsic coordinate systems are in use. However, we be-
gin by studying intrinsic coordinates, in which knowledge of the path is fundamental to
the description of the motion. For example, the unit vectors for intrinsic coordinates are
defined in terms of the properties of the path. For this reason, intrinsic coordinates are
more commonly referred to as path variables.

2.1 PATH VARIABLES

The idea that the motion of a point should be described in terms of the properties of
its path may seem to be counterintuitive, in that the nature of the motion defines the
path. However, this is precisely the way in which one thinks when using a road map in
conjunction with the speedometer and odometer of an automobile. Another name for
this type of description is tangent and normal components, because those are the primary
component directions, as we shall see.

We assume that the path is known. The fundamental variable for a specified path
is the arc length s along this curve, measured from some starting point to the point of
interest. As shown in Fig. 2.1, measurement of s requires definition of positive sense
along the path. Negative s means that the point has receded, rather than advanced,
along its path. It is quite obvious from Fig. 2.1 that the position r̄P/O is unambiguously
defined by the value of s. Furthermore, because s changes with time, the position is
an implicit function of time, r̄P/O = r̄ (s) and s = s (t). (Mathematically, the preceding

30
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rP/O = r(s)

Path

Starting point

s(t)
Figure 2.1. Position as a function of arc length.

should be understood to indicate that the position is a vector function of the arc length,
which in turn is a scalar function of time.) It follows that the derivation of formulas for
velocity and acceleration will involve the chain rule for differentiation.

By definition, velocity is the rate of change of the position vector. Differentiating
the implicit description of position leads to

v̄ = dr̄
dt

= dr̄
ds

ds
dt

= ṡ
dr̄
ds

. (2.1.1)

(In the present context only one point is under consideration, so subscripts can be omit-
ted from the notation.) The quantity dr̄/ds occurring in Eq. (2.1.1) is determined solely
by the nature of the dependence of the position vector on the path. Hence it is another
of the path variables.

By definition, acceleration is the rate of change of the velocity, so

ā = dv̄

dt
= s̈

dr̄
ds

+ ṡ
d
dt

(
dr̄
ds

)
. (2.1.2)

To differentiate the last term we recall that dr̄/ds depends solely on s, so we invoke the
chain rule to find

ā = dv̄

dt
= s̈

dr̄
ds

+ ṡ2
(

d2r̄
ds2

)
. (2.1.3)

The second derivative, d2r̄/ds2, is another property of the path.
In the simple case of a straight path we can let the origin O be the starting point of

the path without loss of generality. Let ē denote the constant orientation of the straight
path, so that r̄ = sē, and dr̄/ds = ē. Because ē is invariant in this case, d2r̄/ds2 = 0̄,

from which it follows that v̄ = ṡē and ā = s̈ē. Thus the velocity and acceleration are
oriented parallel to the straight path. The key point here is that acceleration will not be
parallel to the velocity for a smooth curvilinear path, unless ṡ = 0. Failure to recognize
this elementary fact is probably the most common mistake in the application of the path
variable approach to kinematics.

2.1.1 Tangent and Normal Components

To understand dr̄/ds for a curved path we consider Fig. 2.2, which shows the position
vector at two locations that are separated by a small arc length �s. The displacement �r̄
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r (s)
r (s + ∆s)

∆r et

∆s

z

y
x

s

Figure 2.2. Tangent vector.

is the change of the point’s position as it moves from position s to s + �s,

�r̄ = r̄(s + �s) − r̄(s). (2.1.4)

In the limit as �s → ds, the magnitude of �r̄ equals ds because a chord progressively
approaches the curve. For the same reason, the direction of �r̄ approaches tangency
to the curve, in the sense of increasing s. This tangent direction is described by the unit
tangent vector ēt . A unit vector has the dimensionless value 1 for magnitude, so

dr̄
ds

= lim
�s→0

�r̄
�s

= ēt . (2.1.5)

The tangent vector is one of three unit vectors used to describe vectorial quanti-
ties in terms of path variables. We encountered an aspect of the second unit vector in
Eq. (2.1.3), which featured d2r̄/ds2 ≡ dēt/ds. One basic property that is readily appar-
ent comes from the fact that ēt is a unit vector, so ēt · ēt = 1. Differentiation of this
relation leads to

ēt · dēt

ds
= 0. (2.1.6)

In other words, dēt/ds is always perpendicular to ēt . (Perpendicularity of a unit vector
and its derivative is a general property that will arise frequently.) We define the normal
direction, whose unit vector is denoted as ēn, to be parallel to to this derivative. Because
parallelism of two vectors corresponds to their proportionality, this definition may be
written as

ēn = ρ
dēt

ds
. (2.1.7)

Because ēn is a dimensionless unit vector, the factor of proportionality, ρ, may be found
from

ρ = 1∣∣∣∣dēt

ds

∣∣∣∣
. (2.1.8)

Dimensional consistency of Eq. (2.1.7) requires that ρ be a length parameter. It is the
radius of curvature.

There is a simple construction that explains Eq. (2.1.7) for a circular path having
radius R. In Fig. 2.3(a) tangent and normal vectors are placed at adjacent positions on
the circle. To construct the increment �ēt = ēt (s + �s) − ēt (s) , the tails of the two
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Figure 2.3. Relation between tangent and normal directions for
a circular path.

tangent vectors are brought into coincidence in Fig. 2.3(b), so that �ēt extends from the
head of ēt (s) to ēt (s + �s). The angle between �ēt and either tangent vector is π/2 −
�θ/2. Because the triangle formed by the two unit vectors is isosceles with unit length,
and �θ is small, the length of �ēt is essentially �θ. For a circular arc, the subtended
angle is �θ = �s/R, so |�ēt | ≈ �s/R. In the limit as �s → ds, the angle between �ēt

and either ēt approaches π/2. Multiplying the magnitude of dēt by the unit vector for
its direction gives dēt = (ds/R) ēn. Dividing this relation by ds leads to an equation that
exemplifies Eq. (2.1.7). In general, a quick way of visualizing the direction in which a
unit vector changes is to follow the tip of the unit vector as it moves when the parameter
θ changes.

In the case of an arbitrary path, ēt and ēn at any point along the curve form the
osculating plane. The generalization of the center of a circle is the center of curvature,
which is situated in the osculating plane at a distance ρ in the normal direction from the
corresponding point on the curve. In some situations, such as one in which it is necessary
to design a curve to meet a certain specification, the foregoing allows us to determine
this location according to

r̄ center = r̄ P/O (s) + ρēn. (2.1.9)

When we substitute Eqs. (2.1.5) and (2.1.7) into the basic formulas for velocity and
acceleration, we find that

v̄ = vēt , v = ṡ,

ā = v̇ēt + v2

ρ
ēn.

(2.1.10)

The scalar quantity v is the speed of the particle. These relations, which apply to all
paths, contain much information. The first of Eqs. (2.1.10) indicates that the speed is the
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magnitude of the velocity; the second equation states that it is the rate of increase of the
distance traveled along the path. In the example of the automobile, the speedometer
tells us the instantaneous speed of the vehicle. As noted, v is a scalar, and it is usually
considered to be a positive number in common parlance. However, when we use v an-
alytically, it can be either positive or negative. A negative value of v when s is positive
indicates that the point is returning to the starting point after traveling a certain positive
distance along the path. In contrast, a negative value of v when s is negative indicates
that the point is receding farther from the starting point. The rate of change of the speed
is readily obtained if v is known as a function of time, but in some situations, the speed
might be known as a function of position, v (s) , in which case the chain rule for differ-
entiation leads to

v̇ = dv

ds
ds
dt

= v
dv

ds
. (2.1.11)

The velocity and acceleration always lie in the osculating plane formed by ēt and ēn,
but that plane is constant only if the path is planar. Otherwise, the osculating plane twists
around as the point moves along its path. There is only a tangential velocity component,
whereas both acceleration components exist unless v is constant, or the path is straight,
in which case ρ is infinite. Recall that a vector is constant only if its magnitude and
direction are constant. The normal acceleration component is the consequence of the
changing direction of the velocity vector. This component is always oriented toward the
center of curvature because that is the direction in which the tip of the velocity vector
moves. The tangential acceleration results from changing the speed. Increasing v when
v is positive, or decreasing the magnitude of negative v, produces a positive tangential
acceleration.

The development thus far might seem to be paradoxical in light of Newton’s Second
Law, for we know that forces can act on a particle in three directions, but there are
only two acceleration components. However, buried in the path variable derivation is
the fact that there is another direction, perpendicular to the osculating plane. This is
the binormal direction, which is denoted as ēb. We can determine this direction in any
situation by a cross product of the tangent and normal unit vectors,

ēb = ēt × ēn. (2.1.12)

One of the uses of the binormal direction arises when we apply Newton’s Second Law
to a particle. Because two vectors can be equal only when their respective components
match, we find that


Ft ≡ 
 F̄ · ēt = mv̇,


Fn ≡ 
 F̄ · ēn = m
v2

ρ
,


Fb ≡ 
 F̄ · ēb = 0.

(2.1.13)
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The last of Eqs. (2.1.13) shows that there must be a force balance perpendicular to the
osculating plane. Also note that, according to the second equation, there must be a net
force pushing inward toward the center of curvature, because the changing direction of
acceleration is always directed toward that point.

Equations (2.1.13) form a set of equations of motion. Each type of kinematical de-
scription leads to a different form of these equations. In general, there are three classes
of problems involving equations of motion. In the simplest, all aspects of the motion are
specified, so that the forces required for the motion may be found algebraically after the
acceleration has been determined by use of the appropriate kinematical formulas. The
second class of problems occurs when all forces acting on a system are known. The equa-
tions of motion then represent differential equations, which may be solved by analytical
or numerical methods. The third class of problems is a mixture of the first two, in that
some forces are known and some aspects of the motion are specified.

In most situations in which path variables are useful there will be forces acting in
the normal and binormal directions whose role is to prevent the particle from moving
off the designated path. Both forces have unknown magnitudes that adjust to provide
the centripetal acceleration in the presence of the other forces. Such forces are some-
times referred to as reactions, but we usually will use the more descriptive term con-
straint forces. If v is specified, the tangential equation of motion may be solved for a
force causing the particle to move along the path. The more interesting condition is that
in which the tangential forces are known, in which case that equation of motion is an
ordinary differential equation. The tangential resultant force might depend on t, which
could characterize a force that we control. This resultant force might also depend on s,
which would be the case for a spring force, or it might depend on v, as in the case of any
frictional resistance. Thus 
Ft = f (t, s, v) in the most general situation. The tangential
equation of motion then is a second-order differential equation, ms̈ = f (t, s, ṡ) . This
equation is readily solved if f is linear in s and ṡ and the dependence on t is not too
complicated. Other situations might require numerical methods, such as Runge–Kutta
integration.

If f depends on only one variable, then we may obtain v and s by separating vari-
ables. Specifically, if the resultant force depends solely on t, we replace s̈ with dv/dt, so
that separating variables leads to

m dv = f (t) dt. (2.1.14)

A definite integration whose lower limits are the initial conditions yields the speed
as a function of time, v = g (t) . Because v = ds/dt, separating variables here gives
ds = g (t) dt, whose integration leads to s as a function of time. When the resultant
force depends solely on s, we use Eq. (2.1.11) to replace s̈. The separated form of the
tangential equation then is

mvdv = f (s) ds. (2.1.15)

The definite integral of this differential form can be solved for v as a function of s,
v = g (s) . Separation of variables by use of v = ds/dt = g (s) leads to ds/g (s) = dt,
which may be integrated to find the value of t for a specified s. The third case, in which
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Ft = f (v) , may also be addressed by use of Eq. (2.1.11). The separated form of the
equation of motion then is

m
vdv

f (v)
= ds. (2.1.16)

Definite integration of this expression gives s as a function of v, s = h (v) . Inversion
gives v = h−1 (s) , which is the same type of dependency as the one obtained when 
Ft =
f (s) , so determination of s as a function of t can proceed as discussed for that case.

EXAMPLE 2.1 At the instant when the 5-kg particle is at position A, it has a
velocity of 500 m/s directed from point A to point B and an acceleration of 10g di-
rected from point A to point O. Determine the corresponding rate of change of the
speed, the radius of curvature of the path, and the location of the center of curvature
of the path. Also determine the tangent, normal, and binormal components of the
resultant force acting on the particle.

B

O

A
z

y

x

4 m

4 
m

75°

60°
Example 2.1

SOLUTION This example demonstrates how one can extract path variable informa-
tion when the velocity and acceleration are known. The idea is to make the velocity
and acceleration fit the fundamental formulas for path variables. The given vectors
are

v̄ = 500ēB/A m/s, ā = 10(9.807)ēO/A m/s2.

The unit vectors are defined by the positions of the end points, according to

r̄ A/O = 4 cos 60◦(cos 75◦ ī + sin 75◦ j̄) + 4 sin 60◦k̄

= 0.5176ī + 1.9319 j̄ + 3.464k̄ m,

r̄ B/O = 4ī,

ēB/A = r̄ B/A∣∣r̄ B/A
∣∣ = r̄ B/O − r̄ A/O∣∣r̄ B/O − r̄ A/O

∣∣ = 0.6598ī − 0.3660 j̄ − 0.6563k̄,

ēO/A = − r̄ A/O∣∣r̄ A/O
∣∣ = − 0.1294ī − 0.4830 j̄ − 0.8660k̄.

In general, v̄ = vēt , from which it follows that

ēt = ēB/A = 0.6598ī − 0.3660 j̄ − 0.6563k̄.
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Then, because v̇ is the tangential component of acceleration, we find

v̇ = ā · ēt = 98.07ēO/A · ēB/A = 64.70 m/s2. �

We may evaluate the normal acceleration by forming the difference between ā and
v̇ēt , specifically,

v2

ρ
ēn = ā − v̇ēt = 98.07ēO/A − 64.70ēB/A

= −55.38ī − 23.68 j̄ − 42.47k̄ m/s2.

The values of ρ and ēn come from the magnitude and direction of the normal accel-
eration component,

v2

ρ
= (55.382 + 23.692 + 42.472)1/2 = 73.70 m/s2,

ρ = v2

73.70
= 3392 m,

ēn = −55.38ī − 23.69 j̄ − 42.47k̄
73.70

= −0.7515ī − 0.3213 j̄ − 0.5762k̄.

�

To locate the center of curvature C we recall Eq. (2.1.9):

r̄C/O = r̄ A/O + ρēn = −2549ī − 1088 j̄ − 1951k̄ m. �

In general, if a problem involves forces we should draw a free-body diagram.
However, the forces in the present case are straightforward. The gravity force is
mg in the negative k̄ direction. In addition, there is a force tangent to the path,
which changes the speed, and there may be normal and binormal components of
a contact force that prevent the particle from moving perpendicularly to the path.
Thus Newton’s Second Law is


 F̄ = −5 (9.807) k̄ + Ft ēt + Fnēn + Fbēb = 5
(

v̇ēt + v2

ρ
ēn

)
.

Expressions for ēt and ēn have been found. We evaluate ēb from the cross product:

ēb = ēt × ēn = 0.8734 j̄ − 0.4871k̄.

To find the force components we use a dot product of the resultant force and each
of the unit vectors,


 F̄ · ēt = −49.035 (−0.6563) + Ft = 5v̇,


 F̄ · ēn = −49.035 (−0.5763) + Fn = 5
v2

ρ
,


 F̄ · ēb = −49.035 (−0.4871) + Fb = 0,

from which we obtain

Ft = 291.3, Fn = 340.2, Fb = −23.9 N. �
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2.1.2 Parametric Description of Curves

If we encountered only circular paths, the development thus far would suffice. However,
many interesting motions occur along noncircular paths; indeed, the path might not even
lie in a plane. A particularly useful description specifies a path in parametric form. This
means that some algebraic variable, which we denote as α, is considered to cover a range
of values, and that the rectangular Cartesian coordinates, x, y, z, of a point on the path
are stated as functions of α. It is important to realize that α does not necessarily have
any physical significance. (A special case is that in which α is the time t. In that case
the formulation reduces to a straightforward Cartesian coordinate description, which is
treated in the next section.) The position vector may be written in component form,

r̄ = x(α)ī + y(α) j̄ + z(α)k̄, (2.1.17)

where x (α) , y (α) , and z(α) are the stated parametric functions.
Because the position is indicated to be a function of α, evaluating ēt according to

Eq. (2.1.5) requires the chain rule,

ēt = dr̄
ds

= dα

ds
dr̄
dα

≡ r̄ ′

s ′ , (2.1.18)

where it is convenient to use a prime to denote differentiation with respect to the pa-
rameter α, so that

r̄ ′ ≡ dr̄
dα

= x′ ī + y ′ j̄ + z′k̄, s ′ ≡ ds
dα

. (2.1.19)

The quantity s ′ seldom has physical significance. Its value must be such that ēt is a unit
vector, |ēt | = 1, which yields

ēt · ēt = r̄ ′ · r̄ ′

(s ′)2 = 1. (2.1.20)

Consequently, we find that

s ′ = (r̄ ′ · r̄ ′)1/2 =
[
(x′)2 + (y ′)2 + (z′)2

]1/2
. (2.1.21)

In addition to enabling us to evaluate ēt according to Eq. (2.1.18), integrating this ex-
pression enables us to determine the arc length to any position on the path in terms of
the parameter, according to

s (αP) =
∫ αP

α0

[
(x′)2 + (y ′)2 + (z′)2

]1/2
dα, (2.1.22)

where α0 is the value at the starting position at which s = 0, and αP is the value at the
position of interest.
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The next step is to find ēn and ρ. Equation (2.1.18) gives ēt as a function of α, so
forming Eq. (2.1.7) requires differentiation by use of the chain rule, such that

ēn = ρ
dēt

ds
= ρ

dα

ds
dēt

dα
= ρ

s ′
dēt

dα
. (2.1.23)

We find dēt/dα by differentiating Eq. (2.1.18), with the result that

ēn = ρ

(s ′)3 (r̄ ′′s ′ − r̄ ′s ′′) . (2.1.24)

This may be simplified by using Eq. (2.1.21) to write

s ′′ =
[
(r̄ ′ · r̄ ′)1/2

]′
= r̄ ′ · r̄ ′′

(r̄ ′ · r̄ ′)1/2
= r̄ ′ · r̄ ′′

s ′ (2.1.25)

so that

ēn = ρ

(s ′)4

[
r̄ ′′ (s ′)2 − r̄ ′ (r̄ ′ · r̄ ′′)

]
. (2.1.26)

This expression is close to what we seek, except that the radius of curvature remains
to be determined. For this, we impose the requirement that ēn be a unit vector. Using a
dot product to form the magnitude of this expression leads to

1 = ρ2

(s ′)8

[
(r̄ ′′ · r̄ ′′) (s ′)4 − 2 (r̄ ′ · r̄ ′′)2 (s ′)2 + (r̄ ′ · r̄ ′) (r̄ ′ · r̄ ′′)2

]
, (2.1.27)

which simplifies to

ρ = (s ′)3[
(r̄ ′′ · r̄ ′′) (s ′)2 − (r̄ ′ · r̄ ′′)2

]1/2
. (2.1.28)

In turn, substitution of this expression into the preceding equation for ēn leads to

ēn = r̄ ′′ (s ′)2 − r̄ ′ (r̄ ′ · r̄ ′′)

(s ′)
[
(r̄ ′′ · r̄ ′′) (s ′)2 − (r̄ ′ · r̄ ′′)2

]1/2
. (2.1.29)

Equations (2.1.18), (2.1.21), (2.1.28), and (2.1.29) are readily evaluated when the
position function is specified in the form of Eq. (2.1.17). However, in some situations it
might be somewhat easier to forego applying these formulas, and instead use the basic
path variable formulas, Eqs. (2.1.5) and (2.1.7) in conjunction with the requirement that
ēt and ēn be unit vectors.

In the parametric formulation the path variable unit vectors are described in terms
of rectangular Cartesian coordinates. However, in some situations it might be sufficient
to describe these directions merely by sketching them relative to the path. This would
be especially true in cases in which the path is straight or circular. Overall, a key aspect
is that knowledge of the path followed by a point does not necessarily mean that path
variables are the appropriate formulation. Selection of an appropriate kinematical de-
scription requires recognition of how the point proceeds along the path. Path variables
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are likely to be useful if the path is specified and movement along the path is described
in terms of the arc length or speed. This is a central theme of our further studies.

EXAMPLE 2.2 A standard description of a planar curve defines y as a function of
x, that is, y = y(x), and z = 0. Derive expressions for the tangent and normal unit
vectors and the radius of curvature of the path.

SOLUTION This example is used to demonstrate the application of the general path
variable expressions, rather than merely substituting into the parametric equa-
tions. The formulas that result can be quite useful. To match the given functional
form to the standard parametric representation, we consider α = x, so that x′ = 1,
y ′ = dy/dx, and z′ = 0. It follows that r̄ ′ = ī + (dy/dx) j̄, which combined with the
requirement that |ēt | = 1 leads to

ēt = dr̄
ds

=

(
dr̄
dx

)
(

ds
dx

) =
ī + dy

dx
j̄

s ′ ,

s ′ ≡ ds
dx

=
∣∣∣∣ī + dy

dx
j̄

∣∣∣∣ =
[

1 +
(

dy
dx

)2
]1/2

.

(2.1.30)

Differentiation of ēt with respect to s by use of the chain rule gives

ēn = ρ
dēt

ds
= ρ

(
dēt

dx

)
s ′

= ρ

s ′

⎡
⎢⎢⎣

d2 y
dx2

j̄

s ′ +
(

ī + dy
dx

j̄
)

(−s ′′)

(s ′)2

⎤
⎥⎥⎦ .

From the second of Eqs. (2.1.30) we find that

s ′′ =
dy
dx

d2 y
dx2[

1 +
(

dy
dx

)2
]1/2

,

which reduces ēn to

ēn = ρ

(s ′)4

d2 y
dx2

(
−dy

dx
ī + j̄

)
.

Because ēn is a unit vector, it must be that

ēn · ēn = ρ2

(s ′)8

(
d2 y
dx2

)2
[

1 +
(

dy
dx

)2
]

= 1.
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In view of the fact that s ′ =
[
1 + (dy/dx)2

]1/2
, solving the preceding expression for

ρ gives

ρ =

[
1 +

(
dy
dx

)2
]3/2

∣∣∣∣d2 y
dx2

∣∣∣∣
, (2.1.31)

which is the same as the formula derived in a course on calculus. Back substitution
of ρ into the preceding expression for ēn leads to

ēn =
d2 y
dx2∣∣∣∣d2 y
dx2

∣∣∣∣
1
s ′

(
− dy

dx
ī + j̄

)
= sgn

(
d2 y
dx2

) − dy
dx

ī + j̄[
1 +

(
dy
dx

)2
]1/2

, (2.1.32)

where sgn( ) denotes the signum function, that is, the sign of the argument. It tells
us the sense in which the normal vector is perpendicular to the tangent vector. If
d2 y/dx2 is positive, which means that the slope increases with increasing x, then ēn

will have a positive ēy component.
Two simple checks are available. The first verifies that both ēt and ēn have unit

magnitudes, which may be done by comparing ēt · ēt and ēn · ēn to unity. The second
check verifies that the unit vectors are orthogonal, which can be verified by ascer-
taining that ēt · ēn = 0.

EXAMPLE 2.3 A particle follows the path defined by x = 0.2β cos (β) , y =
0.2β sin (β) , and z = 0.1β2, where each coordinate is measured in meters. The
speed depends on time t (in seconds) according to v = 20t m/s, and the particle was
at the origin when t = 0. Determine the velocity and acceleration of the particle
when t = 0.5 s. Also describe the path.

SOLUTION This problem is quite intricate. It will serve to illustrate the application
of most of the relevant relations and also to highlight the thought process needed to
implement these relations. We begin by observing that the path is specified in para-
metric form, with β as the parameter. Furthermore, the value of β for the position
of interest is not specified. To determine this value we need to follow an inverse pro-
cess, in which we use the given function v (t) to determine s at t = 0.5 s, then solve
the relation for s in terms of β to determine the corresponding value of the param-
eter. After that, the remainder of the work reduces to straightforward calculations.

The speed increases at a constant rate and s = 0 at t = 0, so we have

v = 20t =⇒ s = 10t2, v̇ = 20 .



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

42 Particle Kinematics

Setting t = 0.5 s shows that the values at the position of interest are

s = 2.5 m, v = 10 m/s, v̇ = 20 m/s2.

The derivatives of the coordinate functions are

x′ = 0.2 [cos (β) − β sin (β)] , x′′ = 0.2 [−2 sin (β) − β cos (β)] ,

y′ = 0.2 [sin (β) + β cos (β)] , y′′ = 0.2 [2 cos (β) − β sin (β)] ,

z′ = 0.2β, z′′ = 0.2.

The first derivatives are the components of r̄ ′, so

s ′ =
[
(x′)2 + (y′)2 + (z′)2

]1/2

= 0.2
(
2β2 + 1

)1/2
.

We find s as a function of β by integrating the preceding. Setting x = y = z = 0 for
the starting position reveals that β = 0 there, so that is the lower limit for a definite
integral. Thus,

s (β P) =
∫ β P

0
0.2

(
2β2 + 1

)1/2
dβ = 0.1β

(
2β2

P + 1
)1/2 + 0.05

√
2 sinh−1

(√
2β P

)
.

The root-finding function of our mathematical software can be used to find the value
of β P for which s = 2.5 m. To do so we need a starting value of β P, which we can
obtain by graphing s for a range of β P. From the graph, we see that a good starting
value is β P = 4. The root finder then yields β P = 4.026. (It should be mentioned that
if one encounters a situation for which it is not possible to integrate s ′dβ analytically,
numerical integration can be used to determine s at a set of β values.)

βP

0 1 2 3 4 5 6

s(
β P

)

0

1

2

3

4

5

Graph of arc length as a function of the param-
eter β.

The values of r̄ ′ and r̄ ′′ corresponding to this value of β P are

r̄ ′ = x′ ī + y ′ j̄ + z′k̄ = 0.4962ī − 0.6650 j̄ + 0.8052k̄,

r̄ ′′ = x′′ ī + y ′′ j̄ + z′′k̄ = 0.8197ī + 0.3995 j̄ + 0.20k̄,
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and s ′ (β P) = 1.1489. Substitution of these values into Eqs. (2.1.18), (2.1.29), and
(2.1.28) yields

ēt = 0.4292ī − 0.5751 j̄ + 0.6965k̄,

ēn = 0.7975ī + 0.6033 j̄ + 0.0068k̄,

ρ = 1.5226 m.

The basic kinematical formulas, Eqs. (2.1.10), correspondingly give

v̄ = 4.292ī − 5.751 j̄ + 6.965k̄ m/s,

ā = 60.96ī + 28.123 j̄ + 14.38k̄ m/s2.
�

The last task is to describe the path. We observe that x and y are respec-
tively proportional to cos (β) and sin (β) , and recall that

(
x2 + y2

)1/2 is the dis-
tance to the z axis. This suggests that we consider polar coordinates, with the po-
lar angle defined by tan θ = y/x = tan β, so we take θ = β. Thus the radial distance
R = (

x2 + y2
)1/2 = 0.2θ, which means that the projection of the path onto the xy

plane is a linearly increasing spiral. The axial distance becomes z = 0.1θ2 = 2.5R2,

which tells us that the distance along the z axis increases as the square of the per-
pendicular distance from the z axis. In other words, the path seems to be a rapidly
expanding helical-type path that wraps around the z axis.

2.1.3 Binormal Direction and Torsion of a Curve

The development thus far is adequate to determine the velocity and acceleration. How-
ever, additional study of the unit vectors will enhance our understanding of the prop-
erties of curves. Because ēt and ēn are situated in the osculating plane, the binormal
direction ēb was introduced to resolve an arbitrary vector, such as the resultant force
acting on a particle. This direction was defined by use of a cross product, ēb = ēt × ēn.
However, it also is possible to express ēb in terms of derivatives of the other path variable
unit vectors, which leads to an expression that parallels the definitions of ēt and ēn

The component of an arbitrary vector in a specific direction may be obtained from
a dot product with a unit vector in that direction. Multiplying each component by the
corresponding unit vector and adding the individual contributions then reproduces the
original vector. Applying this notion to the description of the derivative of ēn gives

dēn

ds
=
(

dēn

ds
· ēt

)
ēt +

(
dēn

ds
· ēn

)
ēn +

(
dēn

ds
· ēb

)
ēb. (2.1.33)

We obtain the tangential component in Eq. (2.1.33) from the orthogonality of the unit
vectors, which requires that ēn · ēt = 0, so that

dēn

ds
· ēt = − ēn · dēt

ds
= − ēn ·

(
1
ρ

ēn

)
= − 1

ρ
. (2.1.34)

Similarly, because ēn · ēn = 1, we find that

dēn

ds
· ēn = 0. (2.1.35)
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The binormal component in Eq. (2.1.33) is generally nonzero; its value is defined to
be the reciprocal of the path’s torsion τ :

dēn

ds
· ēb ≡ 1

τ
. (2.1.36)

The reciprocal is used here for consistency with Eq. (2.1.7), such that τ has the dimension
of length. Substitution of Eqs. (2.1.34)–(2.1.36) into Eq. (2.1.33) results in

dēn

ds
= − 1

ρ
ēt + 1

τ
ēb. (2.1.37)

The derivative of ēb may be obtained by a similar approach. The decomposition of
dēb/ds is

dēb

ds
=
(

dēb

ds
· ēt

)
ēt +

(
dēb

ds
· ēn

)
ēn +

(
dēb

ds
· ēb

)
ēb. (2.1.38)

The fact that ēt , ēn, and ēb are mutually orthogonal, in combination with Eqs. (2.1.7) and
(2.1.37), yields

ēb · ēt = 0 =⇒ dēb

ds
· ēt = − ēb · dēt

ds
= − ēb · 1

ρ
ēn = 0,

ēb · ēn = 0 =⇒ dēb

ds
· ēn = − ēb · dēn

ds
= −ēb ·

(
− 1

ρ
ēt + 1

τ
ēb

)
= − 1

τ
,

ēb · ēb = 0 =⇒ dēb

ds
· ēb = 0.

(2.1.39)

It follows that

dēb

ds
= − 1

τ
en. (2.1.40)

Because ēn is a unit vector, this relation provides an alternative to Eq. (2.1.36) for the
torsion:

1
τ

=
∣∣∣∣dēb

ds

∣∣∣∣ . (2.1.41)

Equations (2.1.7), (2.1.37), and (2.1.40) are Frenet’s formulas for a spatial curve.
The first one shows that a small advancement along the path primarily changes the tan-
gent vector in the normal direction. The osculating plane is formed from ēt and ēn. We
therefore may consider this plane to be the tangent plane that most closely fits the curve
at the position of interest. Equation (2.1.40) shows that small increments in s primar-
ily change the binormal vector in the direction of ēn. This is equivalent to a rotation of
the osculating plane about the tangent direction, which is the source of the terminology
“torsion.” The osculating plane is constant for a planar curve, which corresponds to an
infinite value of τ . The greater the degree to which a curve is twisted in space, the smaller
will be the value of τ . In a similar vein, ρ measures the amount by which the curve bends
in the osculating plane. A small value of ρ corresponds to a highly bent curve, and ρ is
infinite for a straight line.
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2.2 RECTANGULAR CARTESIAN COORDINATES

We now turn our attention to extrinsic coordinate systems, in which all properties are de-
fined independently of knowledge of the path. The simplest set of extrinsic coordinates
is rectangular Cartesian coordinates. These are associated with orthogonal xyz axes that
are right-handed by convention. Situations in which such coordinates might be suitable
are recognizable by the fact that vectors (position, velocity, force, etc.) are described
in terms of components with respect to fixed directions, such as left–right and up–down.
Figure 2.4 shows that the components of the position vector are merely the (x, y, z) coor-
dinates. This may be established by either of two alternatives. The position of the point
may be projected onto each of the three coordinate planes, after which each projection
point is itself projected onto the coordinate axes of that plane. The projection lines form
a box, for which the position vector r̄ is a main diagonal. The second construction drops
a perpendicular from the point onto each of the coordinate axes. The perpendiculars
form the diagonals of each face of the box formed in the first construction.

y
x

i
j

x

zk

y

r

z

Figure 2.4. Rectangular Cartesian coordinates.

Each coordinate may be a function of time, so the position is given by

r̄ P/O = x(t)ī + y(t) j̄ + z(t)k̄. (2.2.1)

Differentiating this expression is a simple matter because the unit vectors are constant.
Thus, the velocity is given by

v̄ = vxī + vy j̄ + vzk̄,

vx = ẋ, vy = ẏ, vz = ż,
(2.2.2)

from which it follows that the acceleration is

ā = axī + ay j̄ + azk̄,

ax = v̇x = ẍ, ay = v̇y = ÿ, az = v̇z = z̈.
(2.2.3)

A notable feature of these relations is that the motions in the x, y, and z are uncou-
pled inertially. Specifically, the acceleration in one direction does not contain the other
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coordinates. One way of regarding this result conceptually is to think of it as a super-
position of rectilinear (i.e., straight line) motions in each of the coordinate directions.
However, one should not infer from this observation that the motions in the three direc-
tions are independent. This becomes evident when we formulate Newton’s Second Law
in terms of components relative to the xyz axes:


Fx ≡ 
 F̄ · ī = mẍ,


Fy ≡ 
 F̄ · j̄ = mÿ,


Fz ≡ 
 F̄ · k̄ = mz̈.

(2.2.4)

The force components might be known as functions of time, but they also can depend
on the x, y, and/or z coordinates of the particle’s location, as well as the ẋ, ẏ, and/or ż
velocity components. Thus, if these dependencies are known, Eqs. (2.2.4) can represent
as many as three coupled ordinary differential equations whose solution is the position
coordinates of the particle as a function of time.

In fully uncoupled situations the resultant force components depend solely on the
corresponding position or velocity coordinate. For example, suppose ẍ = f (x, vx, t).
This constitutes a differential equation for x because vx = ẋ. The techniques for sep-
arating variables that were described in the context of path variables, specifically Eqs.
(2.1.14)–(2.1.16), are directly applicable here. If the force components couple motion in
different directions, an analytical solution might be obtainable if all terms depend lin-
early on the position coordinates and their time derivatives. Of course, if analytical tech-
niques do not seem promising, one can always solve the differential equations of motion
numerically. Numerical solution techniques are discussed in Sections 7.6 and 8.2.

Not surprisingly, the simplicity of Cartesian coordinate formulation limits its useful-
ness. Practical situations in which the motion is given in terms of fixed directions are not
abundant. The most common involves projectile motion near the Earth’s surface. In that
case the force of gravity is considered to act in the downward vertical direction, which
means that the acceleration is always downward. Even this case breaks down when one
wishes to treat the motion more accurately. For example, if it is desired to account for
air resistance, the resistance force is always opposite the velocity. Such a force is read-
ily described in path variables as −f ēt . The description of projectile motion in terms of
Cartesian coordinates also encounters difficulty when the motion covers a long range,
as is the case for ballistic missiles. Then the gravitational force is always directed toward
a fixed point, rather than having a fixed direction. A kinematical description using po-
lar coordinates, see the next section, is more suitable to this type of consideration. The
corresponding analysis is orbital motion.

EXAMPLE 2.4 A 10-mg dust particle is injected into an electrostatic precipitator
with an initial velocity of 20 m/s, as shown. The z axis is vertical and the attractive
force on the particle is 1.6 − 4y mN acting in the positive y direction, where y is
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measured in meters. Determine the location and velocity at which the dust par-
ticle will strike a collector plate that is situated in the vertical plane defined by
y = 400 mm.

y

z

x

20 m/s 400 mm

45°

20°

Example 2.4

SOLUTION In addition to showing how a decomposition of forces into a set of
components can lead to differential equations governing the movement of a par-
ticle, a primary intent of this example is to emphasize that constant acceleration
rates are the exceptional case. The forces acting on the particle are its weight
and the electrostatic force, both of which act in fixed directions. It is for this rea-
son that we employ Cartesian coordinates. Forming 
 F̄ = mā in units of newtons
gives

(1.6 − 4y)
(
10−3) j̄ − 10

(
10−6) (9.807)k̄ = 10

(
10−6) ā. (1)

We proceed to take components of this equation in the three coordinate di-
rections. We have an alternative here, depending on whether we consider ā to be
the first derivative of velocity or the second derivative of position. In the former
viewpoint we substitute ā = v̇xī + v̇y j̄ + v̇zk̄, which yields

v̇x = 0, v̇y = 160 − 400y, v̇z = −9.807. (2)

These are first-order differential equations for the velocity components. The ac-
celerations are constant in the first and third equations, so they may be integrated
directly. In the second equation the acceleration rate depends on the correspond-
ing distance, so we may solve this equation by changing s to y in Eq. (2.1.15). Note
that integrating the equations in this manner yields solutions for the rate variables.
Replacing each rate variable with its definition, that is, vx = ẋ, vy = ẏ, and vz = ż,
leads to another set of differential equations for the position coordinates.

The second of the aforementioned approaches entails writing ā = ẍī + ÿ j̄ + z̈k̄,

which leads to

ẍ = 0, ÿ = 160 − 400y, z̈ = −9.807. (3)

We now have three second-order differential equations of motion. Either approach
is suitable in this problem because analytical solutions are readily obtained. We
shall follow the latter one here because it directly yields the position coordinates
as functions of time. In other situations, the first-order approach might be easier to
implement.
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Equations (3) are linear and second order, with constant coefficients. We obtain
the initial conditions by setting r̄0 = 0̄ for launch at the origin, so the initial coor-
dinates are x0 = y0 = z0 = 0. Resolving the given initial velocity into components
along the coordinate axes gives

v̄0 = 20 cos 45◦(cos 20◦i − sin 20◦ j) + 20 sin 45◦k

= 13.289ī − 4.837 j̄ + 14.142k̄.
(4)

The components of this velocity are the scalar initial values: ẋ0 = 13.289 m/s, ẏ0 =
−4.837 ms/s, ż0 = 14.142 m/s at t = 0.

Integrating the first of Eqs. (3) twice gives

x = c1t + c2.

This expression must match the initial values x0 and ẋ0, which requires that c1 =
13.289, c2 = 0. Integrating the third of Eqs. (3) twice gives

z = −1
2

(9.807) t2 + c3t + c4.

We find the integration constants by matching this expression to the initial values z0

and ż0, which gives c3 = 14.142, c4 = 0. The second of Eqs. (3) is a standard differ-
ential equation, ÿ + 400y = 160, whose general solution is

y = c5 cos (20t) + c6 sin (20t) + 0.4.

Equating y and ẏ from this relation to the initial conditions at t = 0 yields c5 = −0.4,

c6 = −0.2418. Thus the Cartesian coordinates of the particle as functions of time are

x = 13.289t, y = −0.4 cos (20t) − 0.2418 sin (20t) + 0.4,

z = −4.9035t2 + 14.142t m.
(5)

Now that we have determined the response as a function of time, we may study
its properties. We find the instant t f when the particle hits the collector plate by
setting y = 0.4 for t > 0, which occurs when

−0.4 cos (20t f ) − 0.2418 sin (20t f ) = 0 =⇒ tan (20t f ) = −1.6543.

The smallest positive root corresponds to

20t f = tan−1 (−1.6543) = −1.0270 + π,

t f = 0.10573 s.

Evaluating the position components for that instant yields

x = 1.4050, y = 0.4, z = 1.4404 m. �

We obtain the final velocity components by differentiating Eqs. (5) and then evalu-
ating the results at t f . This gives

ẋ = 13.289, ẏ = 9.348, ż = 13.105 m/s. �
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EXAMPLE 2.5 A right circular cone is defined by x2 + y2 = 9z2, (x, y, and z
have units of millimeters). The vertical position of a block sliding along the inte-
rior of such a cone is observed to be z = 480 − 80t2, and x = y2/200. Also, y > 0
throughout the motion. Determine the velocity and acceleration of the block when
t = 2 s.

SOLUTION In addition to demonstrating the application of the basic Cartesian co-
ordinate formulas, this example shows how one can beneficially use implicit differ-
entiation. Because the intersection of two functions relating x, y, and z is a curve,
the functions for the conical surface and for x in terms of y specify the path of the
particle. In the present situation x = y2/200, which is a parabola whose axis of sym-
metry is x, describes the projection of the path onto the xy plane. The equation
for the cone then gives the z value corresponding to a specified x, y pair. We elect
to use Cartesian coordinates, rather than path variables, because the second of the
given relations prescribes the movement in terms of the distance along the z axis.
We could simplify the functional relationships by using the first and third equations
to relate y solely to z, but this is not done in order to demonstrate how one could
handle truly complicated functional relations.

The given position equations with x, y, and z in meters are

z = 0.480 − 0.080t2, x = 5y2, x2 + y2 = 9z2 m. (1)

Differentiation of these expressions yields relations governing ẋ, ẏ, and ż:

ż = −0.16t, ẋ = 10yẏ, xẋ + yẏ = 9zż. (2)

A second differentiation leads to

z̈ = −0.16, ẍ = 10(yÿ + ẏ2),

xẍ + ẋ2 + yÿ + ẏ2 = 9(zz̈ + ż2).
(3)

We may solve Eqs. (1) for x, y, and z at a specified t. Then Eqs. (2) become a set
of linear equations for the corresponding first derivatives, which may be written in
matrix form as ⎡

⎢⎢⎣
0 0 1

1 −10y 0

x y −9z

⎤
⎥⎥⎦
{

ẋ

ẏ ż

}
=

⎧⎪⎪⎨
⎪⎪⎩

−0.16t

0

0

⎫⎪⎪⎬
⎪⎪⎭ . (4)

After these equations are satisfied, Eqs. (3) become simultaneous linear equations
for the second derivatives, specifically,⎡

⎢⎢⎣
0 0 1

1 −10y 0

x y −9z

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

ẍ

ÿ

z̈

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

−0.16

10ẏ2

9ż2 − ẋ2 − ẏ2

⎫⎪⎪⎬
⎪⎪⎭ . (5)
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We begin by substituting the first and second of Eqs. (1) into the third equation,
which yields 25y4 + y2 = 9

(
0.08t2

)2. We retain the real root of this equation at t = 2
satisfying y > 0, and then evaluate the corresponding x,

x = 0.3903, y = 0.2794, z = 0.160 m. (6)

These values are substituted into Eqs. (4), whose solution at t = 2 is

ẋ = −0.9398, ẏ = −0.3364, ż = −0.32 m/s. (7)

Finally, we substitute Eqs. (6) and (7) into Eqs. (5), which yield

ẍ = −0.3917, ÿ = −0.5452, z̈ = −0.160 m/s2.

The derivatives are the respective components of the velocity and acceleration, so

v̄ = −0.9398ī − 0.3364 j̄ − 0.320k̄ m/s,

ā = −0.3917ī − 0.5452 j̄ − 0.160k̄ m/s2.
�

2.3 CURVILINEAR COORDINATES

Cartesian coordinates specify the location of a point by giving three numbers that are
distances along the coordinate axes. Curvilinear coordinates also use a triad of param-
eters to locate a point, but they generalize the description by allowing the unit vectors
associated with these parameters to be variable. Let α, β, and γ be the three parameters,
such that there is a unique transformation between the (α, β, γ ) values and the (x, y, z)
rectangular Cartesian coordinates. The general form of this transformation is

x = x(α, β, γ ), y = y(α, β, γ ), z = z(α, β, γ ). (2.3.1)

Occasionally, we need the inverse transformation, whose form would be

α = α(x, y, z), β = β(x, y, z), γ = γ (x, y, z). (2.3.2)

When two of the parameters (α, β, γ ) are held constant, and the third is given a
range of values, Eqs. (2.3.1) specify a curve in space in parametric form. When the con-
stant parameter pair is given an assortment of values, the result is a family of curves.
Repeating this procedure with each of the other pairs of parameters held constant pro-
duces two more families of curves. These families of curves form a spatial mesh. The
intersection of curves belonging to different families are orthogonal in the cases that we
shall treat, in which case (α, β, γ ) are said to be orthogonal curvilinear coordinates. The
name for each set of coordinates usually corresponds to one of the types of surfaces on
which one of the curvilinear coordinates is constant. We begin by studying cylindrical
and spherical coordinates as special cases prior to tackling an arbitrary set of coordi-
nates.
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2.3.1 Cylindrical and Polar Coordinates

The vast majority of situations we encounter are well described in terms of cylindrical
and spherical coordinates, both of which have meshes that consist of circles and straight
lines. In cylindrical coordinates, we select one of the Cartesian coordinate axes as a
reference. We then locate a point by perpendicularly projecting its position onto the
coordinate plane formed by the other two axes and onto the reference axis. Without loss
of generality, let z be the reference axis. The corresponding construction is illustrated
in Fig. 2.5. The distance from the point to the z axis is the transverse distance R, and
the distance from the point to the xy plane is the axial distance z. It still remains to
locate the plane formed by the axial and transverse lines, for which we use the angle
θ representing the rotation of the plane about the reference axis. Prior to the advent
of inertial navigation, global positioning employed a sextant, which used a telescope on
a swivel platform to locate the North Star. The angle the telescope was rotated about
its platform was called the azimuthal angle. That is the name we shall use for θ, but
some individuals prefer to call it the circumferential angle. To avoid ambiguity when it
is necessary to select a value of θ corresponding to a specified position we shall limit
the azimuthal angle range to −π < θ ≤ π. In Fig. 2.5, θ = 0 places the shaded plane at
the xz plane, and θ is measured counterclockwise looking down the z axis, but neither
convention is mandatory.

Constant
R and z

z

x

y
θ

R

z

Constant
R and θ

Constant
z and θ Figure 2.5. Definition of the cylindrical coordinates.

The values of (R, θ, z) are the cylindrical coordinates. By themselves, R and θ are
polar coordinates. They locate the point in the xy plane, whereas the value of z tells us
how far the point is from that plane. Geometrical constructions show the transformation
from (R, θ, z) to (x, y, z) to be

x = Rcos θ, y = Rsin θ, z = z. (2.3.3)

To construct the coordinate mesh, we observe that allowing R to change with θ and z
held constant moves the point along a radial line, perpendicular to the z axis, whereas
allowing z to change with R and θ held constant moves the point along a axial line,
parallel to the z axis. The third coordinate curve is a circle parallel to the xy plane that
is produced when θ changes with R and z is held constant. The curvilinear coordinate
mesh corresponds to various transverse lines (different fixed θ and z values), axial lines
(different fixed R and θ values), and azimuthal circles (different fixed R and z values).
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To define unit vectors for vector components, we observe that Cartesian coordinate
directions ī, j̄, and k̄ are the directions in which a point moves if two of the x, y, and
z values are held constant, and the other coordinate value is increased. We define the
curvilinear coordinate unit vectors in an analogous manner. We use ē with the appropri-
ate subscript to denote the unit vectors. Thus ēR is the direction in which a point moves
if R is increased with θ and z constant; this is the transverse direction, which is outward
along the transverse line from the z axis to the point. Increasing θ with R and z constant
moves the point tangentially along the azimuthal circle; this is the azimuthal direction ēθ .

Finally, increasing z with R and θ constant moves the point upward parallel to the z axis;
this is the axial direction ēz. The set of cylindrical coordinate unit vectors is depicted in
Fig. 2.6. Avoidance of sign errors requires that we remember that the sense of the unit
vectors is always defined according to the sense of increasing coordinate values. The unit
vectors we have defined form a right-handed set according to

ēR × ēθ = ēz. (2.3.4)

However, if one needs to compute cross products, the foregoing should not be assumed
because it is sometimes more convenient to define θ to be in a clockwise sense relative
to the axial direction, which would reverse the sense of ēθ . Also, although we selected z
to be the axial direction, it may be convenient in some situation to select a different axis.
This is the primary reason for using ēz rather than k̄. The unit vectors may be described
in terms of ī, j̄, k̄ components by projecting them onto the xy plane. Doing so yields

ēR = (cos θ) ī + (sin θ) j̄, ēθ = − (sin θ) ī + (cos θ) j̄, ēz = k̄. (2.3.5)

z

x

y
θ

R

z

eθ
ez

eR

Figure 2.6. Definition of the unit vectors for cylindrical coordinates.

Figure 2.6 shows the instantaneous position r̄ of a point. Decomposing this vector
into its components relative to the cylindrical coordinate unit vectors reveals that

r̄ = RēR + zēz. (2.3.6)

At first glance, this expression seems to be inconsistent with the fact that r̄ depends on θ.

However, the value of θ must be known in order to define the instantaneous orientation
of ēR. Differentiation of this expression to find the velocity leads to

v̄ = ṘēR + R
dēR

dt
+ żēz. (2.3.7)

Note that the radial unit vector is recognized as being a variable, because ēR depends
on θ, and θ may depend on time. Hence, evaluating the derivative of this unit vector
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requires the chain rule,

dēR

dt
= θ̇

dēR

dθ
(2.3.8)

We evaluate the preceding derivative by differentiating the first of Eqs. (2.3.5), which
gives

dēR

dθ
= − (sin θ) ī + (cos θ) j̄ = ēθ . (2.3.9)

We also will require the derivative of ēθ , which we obtain from the second of Eqs. (2.3.5):

dēθ

dθ
= − (cos θ) ī − (sin θ) j̄ = −ēR (2.3.10)

Both derivatives could have been obtained pictorially. Recall that the derivative of
a unit vector must be perpendicular to the vector. Figure 2.7(a) depicts the unit vectors
at two close positions, and Fig. 2.7(b) places the vectors tail to tail. The angle between
ēR (θ) and ēR (θ + �θ) , and between ēθ (θ) and ēθ (θ + �θ) , is �θ. The length of each
unit vector is unity, so when �θ is very small, the length of �ēR is approximately �θ.

The same is true for �ēθ . In the limit as �θ approaches dθ, the approximation becomes
exact. Furthermore, in this limit dēR is parallel to ēθ (θ) , so that dēR = dθ ēθ . In the
same limit, dēθ is parallel to −ēR (θ) , which leads to dēθ = −dθ ēR. Division of these
descriptions of dēR and dēθ by dθ leads to Eqs. (2.3.9) and (2.3.10).

R
θ

eR(θ)

eR(θ + ∆θ)

∆θ

x

y

eθ(θ + ∆θ)

eθ(θ)

(a)

∆θ∆θ

eR(θ)eθ(θ + ∆θ)

∆eR∆eθ

(b)

eθ(θ) eR (θ + ∆θ)

Figure 2.7. Differentiation of the radial and transverse unit vectors.

Substitution of Eqs. (2.3.9) and (2.3.8) into Eq. (2.3.7) gives the required expression
for velocity:

v̄ = ṘēR + Rθ̇ ēθ + żēz. (2.3.11)

The radial and axial velocity components have obvious meanings as rates of change of
the corresponding distances. The second term tells us that the azimuthal velocity results
from changing the azimuthal angle, with the effect growing in proportion to the radial
distance. The latter matches our everyday experience, in that we rotate our head slowly
when we track a faraway object moving at a high speed.

An expression for acceleration results from differentiating the velocity descrip-
tion. Let us start with the component representation of velocity v̄ = vRēr + vθ ēθ + vzēz.
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We have already obtained dēR/dt , and the chain rule in conjunction with Eq. (2.3.10)
gives dēθ /dt = −θ̇ eR, from which we find that

ā = (
v̇R − vθ θ̇

)
ēr + (

v̇θ + vRθ̇
)

ēθ + v̇zēz. (2.3.12)

This description explicitly describes the fact that acceleration results from variability of
the directions in which the velocity components are measured, as well as if the compo-
nents are not constant. This form is useful when the velocity components are known
as functions of time, but the more usual circumstance is that in which the cylindrical
coordinates are known. In that case we differentiate Eq. (2.3.11) directly, to obtain

ā = d
dt

[
ṘēR

]+ d
dt

[
Rθ̇ ēθ

]+ d
dt

[żēz]

= [
R̈ēR + Ṙθ̇ ēθ

]+ [
Ṙθ̇ ēθ + Rθ̈ ēθ − Rθ̇2ēR

]+ z̈ēz.

(2.3.13)

The brackets in the preceding equation enable us to track which terms originate from
the same velocity component. Both R̈ and z̈ are recognizable as acceleration rates in
the respective directions, whereas Rθ̈ is an azimuthal acceleration that arises because
an unsteady value of θ̇ will increase the transverse velocity component Rθ̇ . The fifth
term, −Rθ̇2ēR, results from the changing direction of ēθ ; it occurs even if the azimuthal
velocity Rθ̇ is constant. Although the second and third terms are both Ṙθ̇ ēθ , the brackets
indicate that they originate from different velocity components, and therefore represent
different effects. The term in the first bracket stems from the fact that, even if the radial
speed Ṙ were constant, the radial direction is not constant. In contrast, the term in the
second bracket is the rate at which the azimuthal speed, Rθ̇ , will change if R is not
constant. Together, the two identical terms constitute the Coriolis acceleration, after G.
Coriolis (1792–1843) who successfully explained the phenomenon. Grouping like terms
leads to the desired acceleration expression.

ā = (
R̈ − Rθ̇2

)
ēR + (

Rθ̈ + 2Ṙθ̇
)

ēθ + z̈ēz. (2.3.14)

The scalar form of Newton’s Second Law that we obtain by decomposing it into the
cylindrical coordinate directions is


FR ≡ 
 F̄ · ēR = m
(
R̈ − Rθ̇2

)
,


Fθ ≡ 
 F̄ · ēθ = m
(
Rθ̈ + 2Ṙθ̇

)
,


Fz ≡ 
 F̄ · ēz = mz̈.

(2.3.15)

In general, one can expect cylindrical coordinates to be useful if some aspect of the force
system or motion is best described in terms of a direction that perpendicularly intersects
a fixed line, or a fixed point in the case of planar motion. It is clear that in situations
in which it is desired to determine R and θ as functions of time resulting from applica-
tion of a known force resultant, the preceding equation constitute nonlinear differential
equations in which R and θ are strongly coupled.
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EXAMPLE 2.6 An observer at point A watches automobile P follow the circular
track. The angle between the diametral line to the observer and the radial line to the
automobile is a measured function of time, θ (t) . Derive expressions for the velocity
and acceleration in terms of the radius ρ of the track and θ.

θ
ρ

P

A Example 2.6

SOLUTION One of the primary purposes of this example, in addition to illustrating
the basic use of the formulas, is to emphasize that there is a variety of descriptions
that might be useful for motion along a circular path. We use polar coordinates here
because the motion is defined by an angle in a plane measured relative to a fixed
line. The polar coordinate variables and the associated unit vectors are defined in a
sketch, with the origin placed at point A, where the observer is.

θ
ρ

P

A

R

eθ

eR

B

Polar coordinates and unit vectors corresponding to origin A.

It is known from geometry that triangle ABP is a right triangle, with side AB as the
hypotenuse. Thus the transverse distance is given by

R = 2ρ cos θ.

This expression may be differentiated with respect to t, but in doing so we must
recognize that θ (t) is unspecified, so we cannot assume that θ̈ is zero. Thus,

Ṙ = (−2ρ sin θ) θ̇ , R̈ = (−2ρ cos θ) θ̇2 + (−2ρ sin θ) θ̈ .

We substitute these expressions into Eqs. (2.3.11) and (2.3.14) to find

v̄ = −2ρθ̇ sin θ ēR + 2ρθ̇ cos θ ēθ ,

ā = −2ρ
(
2θ̇2 cos θ + θ̈ sin θ

)
ēR + 2ρ

(
θ̈ cos θ − 2θ̇2 sin θ

)
ēθ .

�

There is no need to convert these results to ī and j̄ components because the sketch
of the polar coordinates fully describes the directions of these components.
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In closing, it is useful to observe that, if the observer following the automo-
bile were situated at the center of the track, then the polar coordinate unit vectors
would be as shown in the second sketch, with ēθ tangent to the circle in the sense of
increasing θ and ēR radially outward.

θ

ρ=R

P

A

eθ
eR

Polar coordinate unit vectors when the center A is the origin.

In comparison, the tangent direction could be either parallel to, or opposite, ēθ ,
depending on how the arc length s is measured, and ēn would be opposite ēR, toward
the center of curvature. Even though these alternative sets of directions are readily
related here, the question of whether path variables or polar coordinates is more
suitable depends on how movement along the path is defined. We use the former
if we have information regarding s or v, whereas the latter should be selected if we
have knowledge of R or θ or their derivatives as functions of time.

EXAMPLE 2.7 An airplane climbs at a constant speed v and constant climb angle
β. The airplane is being tracked by a radar station at point A on the ground. De-
termine the radial velocity Ṙ and the angular velocity θ̇ as functions of the tracking
angle θ .

β

θ
H

R

A

B

v

Horizontal

Example 2.7

SOLUTION One objective of this example is to emphasize once again that the type
of path is not the issue when one decides which kinematical description should be
employed. The situation here is very much like the one in the previous example,
in that movement along a given path is prescribed in terms of the rotation of a
line. We implement a trigonometric approach here, in which the rate variables are
obtained from differentiation of geometrical relations. (A simpler solution to this
problem may be found in Example 2.11, where the Cartesian and polar coordinate
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descriptions of velocity and acceleration are compared.) First, we construct the dis-
tance vt the airplane has traveled after passing point B above the radar station. This
forms one side of a triangle whose other sides are R and H. Then the law of sines
yields

R
sin (π/2 + β)

= vt
sin (π/2 − θ)

= H
sin (θ − β)

.

For the purpose of differentiation it is preferable to write these two relations as

Rsin (θ − β) = H sin (π/2 + β) ≡ H cos (β) ,

vt sin (θ − β) = H sin (π/2 − θ) ≡ H cos (θ) .
(1)

Differentiating each expression leads to

Ṙsin (θ − β) + Rθ̇ cos (θ − β) = 0,

v sin (θ − β) + vt θ̇ cos (θ − β) = −Hθ̇ sin (θ)

These are simultaneous equations for θ̇ and Ṙ, whose solutions are

θ̇ = − v sin (θ − β)
vt cos (θ − β) + H sin (θ)

,

Ṙ = Rv cos (θ − β)
vt cos (θ − β) + H sin (θ)

.

(2)

The problem statement requested expressions for Ṙ and θ̇ as functions of θ,

but the preceding equations also contain the variables R and t . We therefore solve
Eqs. (1) for R and vt,

R = H cos (β)
sin (θ − β)

,

vt = H cos (θ)
sin (θ − β)

,

and then substitute those results into Eqs. (2), which leads to

θ̇ = − v

H
sin (θ − β)

cos (θ) cot (θ − β) + sin (θ)
,

Ṙ = v
cos (β) cot (θ − β)

cos (θ) cot (θ − β) + sin (θ)
.

(3)

We may simplify these expressions by multiplying the numerator and denom-
inator of each by sin (θ − β) , and then using the trigonometric identity that
cos (θ) cos (θ − β) + sin (θ) sin (θ − β) ≡ cos [θ − (θ − β)] ≡ cos (β) , so that

θ̇ = − v

H
sin (θ − β)2

cos (β)
,

Ṙ = v cos (θ − β) .

�



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

58 Particle Kinematics

Although not requested, it is useful to contemplate following the present ap-
proach to determine R̈ and θ̈ . Clearly, differentiating the results for Ṙ and θ̇ would
be tedious. The remarkable aspect of the approach described in Section 2.4 is that it
will not require explicit differentiation of any term.

2.3.2 Spherical Coordinates

Spherical coordinates locate a point in terms of one length parameter and two angles.
The radial distance r, which is the length of the position vector from a fixed point to the
point of interest, is the hallmark of the formulation. The fixed point is taken to be the
origin of an xyz coordinate system, as depicted in Fig. 2.8. In an application the z axis
would be selected to coincide with a relevant fixed direction. The z axis and the moving
point form the meridional plane. The instantaneous orientation of that plane is measured
by the azimuthal angle θ, just as it was in cylindrical coordinates. The second angle
locating the point’s position is the polar angle φ. The triad (r, φ, θ) constitutes spherical
coordinates. To avoid ambiguity, we limit the azimuthal angle to −π < θ ≤ π and the
polar angle to 0 ≤ φ ≤ π. Note that motion in the xy plane corresponds to φ = π/2, in
which case (r, θ) constitute polar coordinates. Polar coordinates are also formed by r
and φ for motion in any meridional plane defined by constant θ.

A modified version of spherical coordinates occurs in geography. Within the spher-
ical Earth approximation, the radial distance from the center of the Earth to a point
on the surface is the radius Re ≈ 6370 m. The fixed reference direction is the north–
south polar axis. Position on the surface is specified by giving the longitude angle, which
is the rotation angle of the radial line about the polar axis measured from the prime
meridian at the Royal Observatory in Greenwich, England. The one difference is that,
rather than measuring the polar angle from the North Pole, we use the latitude, which
is measured from the equatorial plane. The latitude is the complement of the polar
angle.

y

θ

Constant φ and θ

Constant r and θ

Constant r and φ

x

φ
z

Equator

(Meridional line)r

Figure 2.8. Definition of the spherical coordinates.
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The transformation from (r, φ, θ) to (x, y, z) is found by dropping perpendiculars
from the point onto the xy plane and onto the z axis. The distances from the origin to
the projection points are r sin φ and r cos φ, respectively, from which it follows that

x = r sin φ cos θ, y = r sin φ sin θ, z = r cos φ. (2.3.16)

The spherical coordinate mesh consists of radial lines, formed by allowing r to change
with φ and θ constant, circles of radius r lying in a meridional, and circles of radius
r sin φ parallel to the xy plane formed when θ is varied with r and φ constant. Differ-
ent value combinations of the constant coordinate pairs associated with each type of
curve produces the families of curves. Curves belonging to different families intersect
perpendicularly.

The spherical coordinate unit vectors are formed by holding two of the three coor-
dinates constant while the value of the third is increased. The unit vectors are tangent
to the respective coordinate curves, as shown in Fig. 2.9. They are mutually orthogonal,
with their sense being such that

ēr × ēφ = ēθ . (2.3.17)

Note that the azimuthal angle is defined here to be positive according to the right-hand
rule relative to the axial direction, that is, counterclockwise looking down the z axis.
However, in some circumstances it might be convenient to define θ in the opposite sense.
In that case the sign of the preceding cross product would be reversed.

y

θx

φ
z

r
eθ

er

eφ Figure 2.9. Unit vectors for spherical coordinates.

Projecting their unit length onto the respective coordinate axes shows the Cartesian
components of the unit vectors to be

ēr = (sin φ cos θ) ī + (sin φ sin θ) j̄ + (cos φ) k̄,

ēφ = (cos φ cos θ) ī + (cos φ sin θ) j̄ − (sin φ) k̄,

ēθ = − (sin θ) ī + (cos θ) j̄ .

(2.3.18)

Verification of this representation may be found in the fact that it satisfies Eq. (2.3.17).
We see that the spherical coordinate unit vectors depend on both φ and θ. Derivation
of formulas for velocity and acceleration from the position will require chain rule differ-
entiation with respect to time, which in turn will require knowledge of the derivatives of
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the unit vectors with respect to both spherical angles. Differentiating Eqs. (2.3.18) leads
to

∂ ēr

∂φ
= (cos φ cos θ) ī + (cos φ sin θ) j̄ − (sin φ) k̄,

∂ ēφ

∂φ
= − (sin φ cos θ) ī − (sin φ sin θ) j̄ − (cos φ) k̄,

∂ ēθ

∂φ
= 0,

∂ ēr

∂θ
= − (sin φ sin θ) ī + (sin φ cos θ) j̄,

∂ ēφ

∂θ
= − (cos φ sin θ) ī + (cos φ cos θ) j̄,

∂ ēθ

∂θ
= − (cos θ) ī − (sin θ) j̄ .

(2.3.19)

We wish to use these derivatives to obtain formulas for velocity and acceleration that
depend on only the spherical coordinate variables. A comparison of the derivatives just
listed with Eqs. (2.3.18) shows that

∂ ēr

∂φ
= ēφ,

∂ ēφ

∂φ
= −ēr ,

∂ ēθ

∂φ
= 0,

∂ ēr

∂θ
= (sin φ) ēθ ,

∂ ēφ

∂θ
= (cos φ) ēθ ,

∂ ēθ

∂θ
= − (sin φ) ēr − (cos φ) ēφ.

(2.3.20)

One could alternatively derive these derivatives by constructing diagrams resembling
Fig. 2.7, but doing so would be a more complicated process requiring several views.

The position vector in spherical coordinates is aligned with the radial direction, so
that

r̄ = r ēr . (2.3.21)

The dependence of r̄ on φ and θ is implicit, because the values of these coordinates must
be known in order to locate ēr . The chain rule for differentiation gives

v̄ = dr̄
dt

= ṙ ēr + r
dēr

dt

= ṙ ēr + r
(

φ̇
∂ ēr

∂φ
+ θ̇

∂ ēr

∂θ

)
.

(2.3.22)

In view of Eqs. (2.3.20) this reduces to

v̄ = ṙ ēr + r φ̇ēφ + r θ̇ sin (φ) ēθ . (2.3.23)

Each of these terms is readily explained as a superposition. If φ and θ were constant,
there would be only a radial velocity component as a result of the changing radial dis-
tance. If r and θ were constant, a point would follow a meridional circle of radius r . The
rotation rate of the radial line is φ̇, giving a speed of r φ̇, and the unit vector tangent to
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this circle is ēφ. The third component can be recognized by holding r and φ constant, in
which case the point follows an azimuthal circle of radius r sin (φ) . The transverse line
rotates about the z axis at θ̇ , giving a speed r θ̇ sin (φ) , and ēθ is tangent to this circle.

The derivation of the formula for acceleration follows the same approach. For this,
the time derivatives need to recognize that the unit vectors depend on φ and θ. As was
done for cylindrical coordinates, brackets are used to track which acceleration terms
originate from the same velocity component. Thus,

ā = d
dt

[ṙ ēr ] + d
dt

[
r φ̇ēφ

]+ d
dt

[
r θ̇ sin (φ) ēθ

]

=
[

r̈ ēr + ṙ
dēr

dt

]
+
[

ṙ φ̇ēφ + r φ̈ēφ + r φ̇
dēφ

dt

]

+
[

ṙ θ̇ sin (φ) ēθ + r θ̈ sin (φ) ēθ + r θ̇ φ̇ cos (φ) ēθ + ṙ θ̇ sin (φ)
dēθ

dt

]

=
[

r̈ ēr + ṙ
(

φ̇
∂ ēr

∂φ
+ θ̇

∂ ēr

∂θ

)]
+
[

ṙ φ̇ēφ + r φ̈ēφ + r φ̇ēr

(
φ̇

∂ ēφ

∂φ
+ θ̇

∂ ēφ

∂θ

)]

+
[

ṙ θ̇ (sin φ) ēθ + r θ̈ sin (φ) ēθ + r θ̇ φ̇ cos (φ) ēθ + r θ̇ sin (φ)
(

φ̇
∂ ēθ

∂φ
+ θ̇

∂ ēθ

∂θ

)]
.

(2.3.24)
Substitution of Eqs. (2.3.20) leads to a profusion of terms:

ā = [
r̈ ēr + ṙ φ̇ēφ + ṙ θ̇ sin (φ) ēθ

]+ [
ṙ φ̇ēφ + r φ̈ēφ − r φ̇2ēr + r φ̇θ̇ cos (φ) ēθ

]
+ [ṙ θ̇ sin (φ) ēθ + r θ̈ sin (φ) ēθ + r φ̇θ̇ cos (φ) ēθ

− r θ̇2 sin (φ)2 ēr − r θ̇2 sin (φ) cos (φ) ēφ].

(2.3.25)

Although some terms are repeated, they originate from different effects. In general,
one of the repeated terms results from the increase in a velocity component when one
of the polar coordinates is increased, whereas the other results because acceleration
occurs when the direction of a velocity component changes, even if the value of the
component is constant. For example, the polar velocity is r φ̇ēφ. Changing the radial
distance increases this velocity component, leading to an acceleration term ṙ φ̇ēφ. At the
same time, the radial velocity is ṙ ēr . Changing φ moves the tip of ēr in the direction of
ēφ , so changing the direction of this velocity component also produces an acceleration
term ṙ φ̇ēφ. Like cylindrical coordinates, the name given to this pair of equal acceleration
terms, which lead to a factor of two in the formulas, is the Coriolis acceleration.

Other acceleration terms are either of two types. Some contain second derivatives
of a spherical coordinate, such as r φ̈. These arise when a rate variable increases. The
others contain a product of r and the square of an angular rate. These correspond to
centripetal acceleration effects. For example, moving along the polar circle of radius r
at polar rate φ̇ produces a centripetal acceleration r φ̇2. Such an acceleration is directed
inward toward the center of the circle, which is the negative radial direction. The latter
two effects can be recognized individually and then superposed.
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Collecting like components yields the formula we shall employ:

ā =
[
r̈ − r φ̇2 − r θ̇2 sin (φ)2

]
ēr + [

r φ̈ + 2ṙ φ̇ − r θ̇2 sin (φ) cos (φ)
]

ēφ

+ [
r θ̈ sin (φ) + 2ṙ θ̇ sin (φ) + 2r φ̇θ̇ cos (φ)

]
ēθ .

(2.3.26)

We obtain an equivalent form, which is useful when the velocity components are known,
by differentiating v̄ = vr ēr + vφ ēφ + vθ ēθ , with Eqs. (2.3.20) used to describe the deriva-
tives of the unit vectors. The result is

ā = v̇r ēr + vr

(
φ̇

∂ ēr

∂φ
+ θ̇

∂ ēr

∂θ

)
+ v̇φ ēφ + vφ

(
φ̇

∂ ēφ

∂φ
+ θ̇

∂ ēφ

∂θ

)

+ v̇θ ēθ + vθ

(
φ̇

∂ ēθ

∂φ
+ θ̇

∂ ēθ

∂θ

)

= [
v̇r − vφφ̇ − vθ θ̇ sin (φ)

]
ēr + [

v̇φ + vr φ̇ − vθ θ̇ cos (φ)
]

ēφ

+ [
v̇θ + vr θ̇ sin (φ) + vφθ̇ cos (φ)

]
ēθ .

(2.3.27)

One criterion for deciding to use spherical coordinates is that some aspect of the
motion or force system is best described in terms of a line from the moving point to a
designated fixed point. Scalar equations of motion featuring the spherical coordinates
r, φ, and θ are obtained from Newton’s Second Law when the force resultant is repre-
sented in terms of the spherical coordinate directions, specifically


Fr ≡ 
 F̄ · ēr = m
[
r̈ − r φ̇2 − r θ̇2 sin (φ)2

]
,


Fφ ≡ 
 F̄ · ēφ = m
[
r φ̈ + 2ṙ φ̇ − r θ̇2 sin (φ) cos (φ)

]
,


Fθ ≡ 
 F̄ · ēθ = m
[
r θ̈ sin (φ) + 2ṙ θ̇ sin (φ) + 2r φ̇θ̇ cos (φ)

]
.

(2.3.28)

When the force resultant is known, these are nonlinear differential equations for the
spherical coordinates in which all variables are strongly coupled.

EXAMPLE 2.8 The cable suspending a 400-g sphere is pulled in at a constant rate
of 6 m/s. At the instant when the cable is 3 m long the angle of inclination is φ = 30◦,
� = 4 rad/s, and φ̇ = 5 rad/s. Determine the values of φ̈ and �̇, and the tensile force
in the cable at this instant.

6 m/s

Ω
φ

Example 2.8
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SOLUTION This example illustrates the usage of spherical coordinates to formulate
Newton’s Second Law. It also will make it apparent that drawing a good free-body
diagram is a vital step when forces are to be analyzed. In this situation the cable
length is measured from a fixed point to the sphere, and the other position param-
eters are the angle from the fixed vertical axis and the rotation rate about that axis.
The former is the polar angle φ, and the latter corresponds to the azimuthal rotation
rate � = θ̇ . These are spherical coordinates centered at the top of the post, with all
motion parameters other than φ̈ and θ̈ given. Because it is required to evaluate a
force acting on the particle, we draw a free-body diagram that also depicts the unit
vectors of the spherical coordinate system we shall use.

φ
θ = ΩF

mg

r

eφ

eθ

er

.
Free-body diagram and spherical coordinates for the suspended sphere.

Each unit vector is defined to be positive in the sense of increasing values of the
corresponding coordinate. Note that, because θ̇ has been defined to be �, we have
ēr × ēφ = −ēθ , which is opposite the sign in Eq. (2.3.17). Also, the actual value of
θ is irrelevant because there is no special position in regard to rotation about the
vertical axis.

Because the cable is being pulled in at a constant rate, the instantaneous values
are r = 3 m, ṙ = −6 m/s, and r̈ = 0. Substitution of these values and φ = 30◦, φ̇ = 5
rad/s., and θ̇ = 4 rad/s into Eq. (2.3.26) gives

ā = −87ēr + (
3φ̈ − 80.78

)
ēφ + (

1.5θ̈ + 79.92
)

ēθ m/s2.

Newton’s Second Law relates forces and acceleration variables, so we expect that
it will yield the parameters we seek. We refer to the free-body diagram in order to
describe the force components. The cable tension F pulls the sphere in the nega-
tive radial direction, and the weight, 0.4g N, acts parallel to the polar axis, so the
spherical coordinate equations of motion, Eqs. (2.3.28), require that


 F̄ · ēr = −F + 0.4 (9.807) cos (φ) = mar = 0.4 (−87) ,


 F̄ · ēφ = −0.4 (9.807) sin (φ) = maφ = 0.4
(
3φ̈ − 80.78

)
,


 F̄ · ēθ = 0 = maθ = 0.4
(
1.5θ̈ + 79.92

)
.

The solution of these equations is

F = 38.72 N,

φ̈ = 25.29, θ̈ = −53.28 rad/s.
�
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2.3.3 Arbitrary Curvilinear Coordinates

Cylindrical and spherical coordinates are adequate for the majority of situations one
might encounter. However, generalizing the formulation to handle any set of orthogo-
nal curvilinear coordinates will vastly expand our capability. Doing so is also quite useful
for topics in many related areas, including stress analysis, wave propagation, fluid me-
chanics, and acoustics. In the following subsection we consider a triad of curvilinear co-
ordinates (α, β, γ ) that are related to the Cartesian coordinates (x, y, z) by an arbitrary
transformation in the form of Eqs. (2.3.1).

Coordinates and Unit Vectors
It is difficult to depict a three-dimensional situation, so Fig. 2.10 shows a two-
dimensional grid associated with various values of the curvilinear coordinates α and
β, with the third coordinate γ held constant. Each curve corresponds to constant values
of two of the coordinates. We use the coordinate that varies to name the curve. For ex-
ample, points on a specific α curve correspond to a range of α values with β and γ fixed.
Neighboring curves for each family in the figure are separated by values of α or β that
differ by an infinitesimal value. We shall consider only coordinate systems for which the
curves of different families intersect orthogonally. The distance between intersection
points on the grid is not the same as the value of the increment in that coordinate. The
ratio of the differential arc length along a coordinate curve between intersections, and
the increment in the coordinate corresponding to the intersections is the stretch ratio for
that coordinate, denoted hλ, with λ = α, β, or γ . The arc length along a λ coordinate
curve is denoted as sλ, so

dsλ = hλdλ, λ = α, β, or γ . (2.3.29)

The relationship between the curvilinear coordinate transformation, Eqs. (2.3.1), and
the stretch ratios will be established shortly.

Moving along any of the coordinate curves is very much like the situation in path
variables. At any point, there are three unit vectors ēλ tangent to the α, β, and γ curves
passing through that point. Recall that the tangent direction is defined by ēt = dr̄/ds.
We use Eq. (2.3.29) to describe the differential arc length. Incrementing one coordinate

(α,β,γ)

(α,β +dβ,γ)

(α+dα,β, γ)

hαdα
hβdβ

eαeβ

Constant α and γ 
(β line)

Constant β and γ 
(α line)

Figure 2.10. Two-dimensional curvilinear coordinate mesh.
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with the other two fixed is a process of partial differentiation, so the unit vectors may be
obtained from

ēλ = dr̄
dsλ

= 1
hλ

∂ r̄
∂λ

, λ = α, β, or γ . (2.3.30)

It is conventional to employ a right-handed coordinate system in order to avoid sign
errors in the evaluation of cross products. Consistency with this convention is obtained
by ordering (α, β, γ ) such that

ēα × ēβ = ēγ . (2.3.31)

Equations (2.3.1) define the components of r̄ with respect to xyz in terms of the
curvilinear coordinates,

r̄ = x (α, β, γ ) ī + y (α, β, γ ) j̄ + z(α, β, γ ) k̄. (2.3.32)

Differentiation of this expression with respect to a specific curvilinear coordinate λ is
straightforward because ī, j̄, and k̄ are constant, so that

∂ r̄
∂λ

=
(

∂

∂λ
x (α, β, γ )

)
ī +

(
∂

∂λ
x (α, β, γ )

)
j̄ +

(
∂

∂λ
x (α, β, γ )

)
k̄. (2.3.33)

Enforcement of the requirement that the unit vector defined by Eq. (2.3.30) actually
have unit magnitude then yields an expression for the stretch ratio hλ:

hλ =
∣∣∣∣ ∂ r̄
∂λ

∣∣∣∣ =
[(

∂

∂λ
x (α, β, γ )

)2

+
(

∂

∂λ
y (α, β, γ )

)2

+
(

∂

∂λ
z(α, β, γ )

)2
]1/2

.

(2.3.34)

Substitution of this expression and Eq. (2.3.33) into Eq. (2.3.30) gives the xyz compo-
nents of each of the curvilinear unit vectors in terms of the curvilinear coordinate values.
In other words, the result has the general form

ēλ = eλα (α, β, γ ) ī + eλβ (α, β, γ ) j̄ + eλγ (α, β, γ ) k̄. (2.3.35)

The derivation of the acceleration equation will require differentiation of the unit
vectors. There are two ways in which we may proceed. The first is an extension of the
manner in which we treated spherical coordinates. It is a direct differentiation proce-
dure. Let µ denote any of the curvilinear coordinates. Differentiation of Eq. (2.3.35)
with respect to µ gives

∂ ēλ

∂µ
=
[

∂

∂µ
eλα (α, β, γ )

]
ī +

[
∂

∂µ
eλβ (α, β, γ )

]
j̄

+
[

∂

∂µ
eλγ (α, β, γ )

]
k̄, λ, µ = α, β, γ . (2.3.36)

This expression describes the derivative in terms of ī, j̄, and k̄ components, but we seek
kinematical formulas that describe velocity and acceleration relative to the curvilinear
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coordinate directions. In other words, we wish to represent the preceding derivative in
the form of

∂ ēλ

∂µ
= �λµα ēα + �λµβ ēβ + �λµγ ēγ . (2.3.37)

The components in this expression may be found from a dot product with a specific
curvilinear unit vector, from which we find that

�λµν = ∂ ēλ

∂µ
· ēν, λ, µ, ν = α, β,or γ . (2.3.38)

Note that the result of implementing the preceding equation by use of Eqs. (2.3.35) and
(2.3.36) will be expressions for the �λµν coefficients in terms of the curvilinear coordinate
values. These coefficients are called Christoffel symbols. They play a prominent role in
tensor analysis, which is a key mathematical tool for fields as diverse as solid mechanics
and general relativity.

The shortcoming of Eq. (2.3.38) is that it does not shed any light on the fundamental
nature of curvilinear coordinates in terms of recognizable parameters. Such information
is obtained from the second derivation, which yields expressions in terms of stretch ra-
tios. Although the derivation that follows is more circuitous, the result usually will be
more efficient to evaluate, as we will see in an example.

We begin by observing that differentiation of a specified unit vector ēλ leads to dif-
ferent cases depending on whether µ and/or ν in Eq. (2.3.38) are the same as λ. All cases
in which the unit vectors ēλ and ēν are the same are covered by

ēλ · ēλ = 1 =⇒ ∂ ēλ

∂µ
· ēλ = �λµλ = 0. (2.3.39)

Cases not covered by Eq. (2.3.39) correspond to ν �= λ, that is, the component of the
derivative of a unit vector in the direction of a different unit vector. We may evaluate
these with the aid of a sequence of identities. It follows from the orthogonality of the
unit vectors that

ēλ · ēν = 0 =⇒ ∂ ēλ

∂µ
· ēν = �λµν = −∂ ēν

∂µ
· ēλ = −�νµλ, ν �= λ. (2.3.40)

The following relation originates from Eq. (2.3.30):

∂

∂µ
(hλēλ) = ∂

∂λ
(hµēµ) . (2.3.41)

Carrying out the derivatives leads to

∂hλ

∂µ
ēλ + hλ

∂ ēλ

∂µ
= ∂hµ

∂λ
ēµ + hµ

∂ ēµ

∂λ
. (2.3.42)

We may now consider the various �λµν when ν �= λ. Because each of the symbols
represents one of three possible coordinates, the only combinations fitting the restric-
tion that ν �= λ are µ = ν �= λ : �λµµ, µ = λ �= ν : �λλν, and µ �= ν �= λ. We begin by
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considering the first case. Such terms are obtained from the dot product of Eq. (2.3.42)
with ēµ. Because ēµ and ēλ are different, it follows that

hλ

∂ ēλ

∂µ
· ēµ = ∂hµ

∂λ
+ hµ

∂ ēµ

∂λ
· ēµ. (2.3.43)

We use Eq. (2.3.39) to simplify the preceding equation, with the result that

∂ ēλ

∂µ
· ēµ = �λµµ = 1

hλ

∂hµ

∂λ
, µ �= λ. (2.3.44)

We obtain an expression for �λλν = (∂ ēλ/∂λ) · ēν when ν �= λ by applying Eq. (2.3.40),
and then using Eq. (2.3.44) with λ changed to ν and µ changed to λ. This gives

�λλν = − 1
hν

∂hλ

∂ν
= −�νλλ, λ �= ν. (2.3.45)

The only remaining case is that for which λ, µ, and ν differ from each other. The
dot product of Eq. (2.3.42) with ēν in this case yields

1
hµ

∂ ēλ

∂µ
· ēν = 1

hλ

∂ ēµ

∂λ
· ēν, λ, µ, ν distinct. (2.3.46)

The next steps involve an alternative application of permutations of the properties in
Eqs. (2.3.40) and (2.3.46), with the labels interchanged appropriately, to the right-hand
side of Eq. (2.3.46). This gives

1
hµ

∂ ēλ

∂µ
· ēν = 1

hλ

(
−∂ ēν

∂λ
· ēµ

)
= − 1

hν

∂ ēλ

∂ν
· ēµ

= 1
hν

(
∂ ēµ

∂ν
· ēλ

)
= 1

hµ

∂ ēν

∂µ
· ēλ

= − 1
hµ

∂ ēλ

∂µ
· ēν .

(2.3.47)

The foregoing is a contradiction unless both terms vanish, so that

∂ ēλ

∂µ
· ēν = �λµν = 0, λ, µ, ν distinct. (2.3.48)

Equations (2.3.39), (2.3.44), and (2.3.48) are the properties we seek. They describe
the Christoffel symbols in terms of the stretch ratios and their derivatives. There are
nine combinations of λ and µ values, whose individual components are evaluated by
selecting the appropriate case from the identities. Only the results for λ = α are listed.
The others follow by permutation of the symbols.

∂ ēα

∂α
= − 1

hβ

∂hα

∂β
ēβ − 1

hγ

∂hα

∂γ
ēγ ,

∂ ēα

∂β
= 1

hα

∂hβ

∂α
ēβ,

∂ ēα

∂γ
= 1

hα

∂hγ

∂α
ēγ .

(2.3.49)
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EXAMPLE 2.9 The two-dimensional hyperbolic–elliptic coordinate system is de-
fined by

x = a cosh (α) sin (β) , y = a sinh (α) cos (β) ,

where a is a constant. Evaluate the unit vectors of this system in terms of compo-
nents relative to the x and y axes, then describe the derivatives of the unit vectors.

SOLUTION This example illustrates the application of the basic curvilinear formulas
to a coordinate system that is useful for some problems in acoustics, fluid mechanics,
and electrodynamics. The name of this set of coordinates stems from the fact that
lines of constant α are ellipses,

x2

a2 cosh (α)2 + y2

a2 sinh (α)2 = 1,

where 2a cosh (α) and 2a sinh (α) are the lengths of the major and minor diameters.
Also, lines of constant β are hyperbolas,

x2

a2 sin (β)2 − y2

a2 cos (β)2 = 1,

where x = ±y tan (β) are the asymptotes and x = ±a sin (β) are the intercepts on
the x axis.

To evaluate the stretch ratios and unit vectors we need the partial derivatives of
the position vectors:

∂ r̄
∂α

= ∂x
∂α

ī + ∂y
∂α

j̄ = a sinh (α) sin (β) ī + a cosh (α) cos (β) j̄,

∂ r̄
∂β

= ∂x
∂β

ī + ∂y
∂β

j̄ = a cosh (α) cos (β) ī − a sinh (α) sin (β) j̄ .

(1)

According to Eq. (2.3.34), the stretch ratios are the magnitudes of the preceding, so

hα =
∣∣∣∣ ∂ r̄
∂α

∣∣∣∣ = a
[
sinh (α)2 sin (β)2 + cosh (α)2 cos (β)2

]1/2

= a
[(

cosh (α)2 − 1
)

sin (β)2 + cosh (α)2 cos (β)2
]1/2

= ah,

hβ =
∣∣∣∣ ∂ r̄
∂β

∣∣∣∣ = ah,

(2)

where

h =
[
cosh (α)2 − sin (β)2

]1/2
. (3)

We find the corresponding unit vectors by substituting Eqs. (1) and (2) into
Eqs. (2.3.30):

ēα = 1
h

[
sinh (α) sin (β) ī + cosh (α) cos (β) j̄

]
,

ēβ = 1
h

[
cosh (α) cos (β) ī − sinh (α) sin (β) j̄

]
.

(4) �
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The orthogonality of the mesh is confirmed by these unit vectors, because they show
that ēα · ēβ = 0.

The derivatives of the unit vectors involve partial derivatives of the stretch ra-
tios, which we obtain by differentiating Eq. (3) to find

∂h
∂α

= cosh (α) sinh (α)(
cosh (α)2 − sin (β)2

)1/2
= cosh (α) sinh (α)

h
,

∂h
∂β

= − sin (β) cos (β)(
cosh (α)2 − sin (β)2

)1/2
= − sin (β) cos (β)

h
.

The corresponding expressions resulting from Eqs. (2.3.49), with ∂h/∂γ = 0 for a
two-dimensional situation, are

∂ ēα

∂α
= − 1

h
∂h
∂β

ēβ = sin (β) cos (β)
h2

ēβ,

∂ ēα

∂β
= 1

h
∂h
∂α

ēβ = cosh (α) sinh (α)
h2

ēβ,

∂ ēβ

∂α
= 1

h
∂h
∂β

ēα = − sin (β) cos (β)
h2

ēα,

∂ ēβ

∂β
= − 1

h
∂h
∂α

ēα = −cosh (α) sinh (α)
h2

ēα.

�

It is useful to compare this derivation to the steps that are entailed in direct
evaluation of the Christoffel symbols according to Eq. (2.3.38). The first step would
entail differentiation of each unit vector in Eqs. (4) with respect to α and β. This
would lead to four derivatives, each of whose form is somewhat lengthy because
of the presence of h, which is a function of α and β, in the denominator. Taking
a dot product of each derivative with ēα and ēβ in accord with Eq. (2.3.38) would
yield eight Christoffel symbols. It should be apparent that such a derivation is more
difficult to implement than the approach we pursued.

Kinematical Formulas
Our task in this subsection is to express the velocity and acceleration in terms of the
parameters of a curvilinear coordinate system. For this development we consider the
motion to be specified through the dependence of the curvilinear coordinates on time.
The velocity is the time derivative of the position vector, which, in turn, is a function
of the curvilinear coordinates (α, β, γ ). Hence we employ the chain rule, in conjunction
with the definition of the unit vectors in Eqs. (2.3.30), to differentiate r̄ :

v̄ = α̇
∂ r̄
∂α

+ β̇
∂ r̄
∂β

+ γ̇
∂ r̄
∂γ

= hαα̇ē + hββ̇ ēβ + hγ γ̇ ēγ . (2.3.50)
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This expression may be written in summation form as

v̄ = ∑
λ=α,β,γ

hλλ̇ēλ. (2.3.51)

We derive the acceleration by differentiating Eq. (2.3.51) with respect to time. Each
of the factors inside the preceding summation may vary with time, so

ā = ∑
λ=α,β,γ

hλλ̈ēλ + ∑
λ=α,β,γ

λ̇

(
dhλ

dt
ēλ + hλ

dēλ

dt

)
. (2.3.52)

We consider only the rates of change of the curvilinear coordinates λ̇ to depend explic-
itly on t , whereas the unit vectors ēλ and the stretch ratios hλ depend on t implicitly
through their dependence on the curvilinear coordinates. Application of the chain rule
for differentiation to the latter two sets of parameters then yields

ā = ∑
λ=α,β,γ

hλλ̈ēλ + ∑
λ=α,β,γ

∑
u=α,β,γ

λ̇µ̇

(
∂hλ

∂µ
ēλ + hλ

∂ ēλ

∂µ

)
. (2.3.53)

Explicit expressions for a specific set of curvilinear coordinates may be obtained from
the preceding equation by evaluating the stretch ratios and the derivatives of the unit
vectors according to Eqs. (2.3.34) and (2.3.49), respectively.

It is apparent that each acceleration component might consist of several terms in
the most general case. The situation for many common sets of curvilinear coordinates is
simplified by the fact that the stretch ratios and unit vectors usually do not depend on
all of the curvilinear coordinates. For example, in the case of spherical coordinates, all
of the unit vectors are independent of the radial distance r and the radial stretch ratio
hr = 1. In the most general case Eq. (2.3.53) gives 21 different terms: 3 from the single
summation and 9 from each term in the double summation corresponding to different
pairs of λ and µ. Because there are only three curvilinear coordinate directions, it is
clear that a variety of effects contributes to any acceleration component. Let us examine
each type of effect.

The terms in the single summation of Eq. (2.3.53), that is, hλλ̈ēλ, are intuitively ob-
vious. They express an acceleration tangent to each λ coordinate curve that arises when
λ̇ is not constant. To understand the terms in the double sum we categorize them as to
whether the indices for each sum are associated with the same curvilinear coordinate. If
µ = λ, three terms correspond to λ̇

2 (∂hλ/∂λ) ēλ. This is another acceleration effect tan-
gent to a λ coordinate curve; it arises because constant λ̇ will not lead to a constant rate
of movement along that curve if the stretch ratio hλ changes along the curve. The other
term corresponding to µ = λ is λ̇

2hλ (∂ ēλ/∂λ) . Because the derivative of a unit vector is
always perpendicular to the unit vector, this is an acceleration component perpendicular
to the λ coordinate curve that arises from the changing direction of the unit vector ēλ

as λ changes. Such a change is illustrated in Fig. 2.11 for the case in which λ = α. Fol-
lowing the α curve from the point associated with specific (α, β, γ ) values to an adjacent
point at which the coordinates are (α + dα, β, γ ) causes the tip of ēα to move perpen-
dicularly to the original ea . The fact that λ̇hλ is the corresponding velocity component
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eα

∂eα

(α,β,γ)

(α,β + dβ,γ)

(α+ dα,β,γ)
α lines

eα +
eα +

dβ

β lines

eβ

∂β
dα∂α

∂eα

Figure 2.11. Change of unit vector ēα along the α and
β coordinate curves.

suggests that this acceleration component is analogous to the centripetal acceleration in
path variables.

Let us now turn our attention to those terms in the double sum of Eq. (2.3.53)
that correspond to µ �= γ . There are three combinations fitting this description,
corresponding to (λ,µ) = (α, β) , (β, γ ) , or (α, γ ) in either the listed or reversed order.
Let us consider the combination (λ,µ) = (α, β) or (β, α). The first term in the double
sum leads to two terms: [(∂hα/∂β)ēα + (∂hβ/∂α)ēβ]α̇β̇. The first of the preceding terms
exists if β changes and the stretch ratio hα for the α curve depends on β. Similarly, the
second term exists if α changes and the stretch ratio hβ depends on α. Both are represen-
tative of acceleration components tangent to a generic coordinate curve γ that results
because the rate of movement along the curve, γ̇ hγ , changes as a consequence of the
nonconstancy of the stretch ratio. The second term in the double sum also leads to two
terms for (λ,µ) = (α, β) or (β, α) : [hα∂ ēα/∂β + hβ∂ ēβ/∂α] α̇β̇. These are acceleration
terms perpendicular to a λ coordinate curve (λ = α for the first term and λ = β for the
second) that occur when ēλ depends on another curvilinear coordinate that is not con-
stant in the motion. This is depicted in Fig. 2.11, where ēα changes as a point moves by
an infinitesimal amount along the β coordinate line. Correspondingly, the mesh point
coordinates change from (α, β, γ ) to (α, β + dβ, γ ) . The tip of ēα moves perpendicu-
larly to the original ēα direction, so the resulting acceleration effect is also perpendicular
to ēα .

Let us focus on two terms that were just listed: (∂hβ/∂α)ēβα̇β̇, which arose from the
first term of the double sum, and hα (∂ ēα/∂β) α̇β̇, which arose from the second term of
the double sum. According to Eqs. (2.3.49), the latter is the same as the former, which
would lead to a factor of two in the ultimate acceleration formula. This is the general
version of the Coriolis accelerations we encountered in the specific cases of cylindrical
and spherical coordinates. Hence we have proven that, in general, Coriolis acceleration
arises from two distinctly different effects associated with an interaction of motion along
more than one coordinate curve.

To close this section it is emphasized that only in the special case of Cartesian coor-
dinates does changing a single coordinate lead to velocity and acceleration solely in the
direction associated with that coordinate. In the most general case of curvilinear coordi-
nates, changing one coordinate can lead to acceleration tangentially to each coordinate
curve. Furthermore, in Cartesian coordinates, acceleration results solely from noncon-
stancy of ẋ, ẏ, or ż. In a curvilinear coordinate, there can be acceleration, even if α̇, β̇,

and γ̇ are constant.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

72 Particle Kinematics

EXAMPLE 2.10 Derive Eqs. (2.3.11) and (2.3.14) for velocity and acceleration in
terms of cylindrical coordinates by using stretch ratios.

SOLUTION The intent of applying the basic kinematical formulas for curvilinear co-
ordinates to a coordinate system that has been analyzed by a different technique
is to enhance one’s recognition of the significance of the basic parameters and op-
erations. The first step is to evaluate the unit vectors and stretch ratios. For the
coordinate transformation in Eq. (2.3.3), we have

r̄ = Rcos (θ) ī + Rsin (θ) j̄ + zk̄.

Then

hRēR = ∂ r̄
∂ R

= cos (θ) ī + sin (θ) j̄,

hθ ēθ = ∂ r̄
∂θ

= −Rsin (θ) ī + Rcos (θ) j̄,

hzēz = ∂ r̄
∂z

= k̄.

Setting the magnitude of each unit vector to unity yields the stretch ratios,

hR =
∣∣∣∣ ∂ r̄
∂ R

∣∣∣∣ = 1,

hθ =
∣∣∣∣ ∂ r̄
∂θ

∣∣∣∣ = R,

hz =
∣∣∣∣∂ r̄
∂z

∣∣∣∣ = 1,

which correspond to

ēR = cos (θ) ī + sin (θ) j̄,

ēθ = −Rsin (θ) ī + Rcos (θ) j̄,

ēz = k̄.

We refer to Eqs. (2.3.49) and its permutations to obtain the derivatives of the
unit vectors:

∂ ēR

∂ R
= − 1

hθ

∂hR

∂θ
ēθ − 1

hz

∂hR

∂z
ēz = 0,

∂ ēR

∂θ
= 1

hR

∂hθ

∂ R
ēθ = ēθ ,

∂ ēR

∂z
= 1

hR

∂hz

∂ R
ēz = 0,

∂ ēθ

∂θ
= − 1

hR

∂hθ

∂ R
ēR − 1

hz

∂hθ

∂z
ēz = −ēR,

∂ ēθ

∂ R
= 1

hθ

∂hR

∂θ
ēR = 0,

∂ ēθ

∂z
= 1

hθ

∂hz

∂θ
ēz = 0,
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∂ ēz

∂z
= − 1

hR

∂hz

∂ R
ēR − 1

hθ

∂hz

∂θ
ēθ = 0,

∂ ēz

∂ R
= 1

hz

∂hR

∂z
ēR = 0,

∂ ēz

∂θ
= 1

hz

∂hθ

∂z
ēθ .

We obtain an expression for the velocity by expanding Eq. (2.3.51) and substituting
the various terms. Thus,

v̄ = hRṘēR + hθ θ̇ ēθ + hzżēz

= ṘēR + Rθ̇ ēθ + żēz.
�

This is the same as Eq. (2.3.11). For acceleration, we expand Eq. (2.3.53) and omit
terms that contain derivatives of stretch ratios or unit vectors that we have found to
be zero. The remaining terms are

ā = hRR̈ēR + hθ θ̈ ēθ + hzz̈ēz

+ Ṙθ̇hR
∂ ēR

∂θ
+ θ̇ Ṙ

∂hθ

∂ R
eθ + θ̇2hθ

∂ ēθ

∂θ

= R̈ēR + Rθ̈ ēθ + z̈ēz + Ṙθ̇ ēθ + θ̇ Ṙēθ + θ̇2 R(−ēR) .

�

Collecting like components shows that this expression is the same as Eq. (2.3.14).

2.4 MIXED KINEMATICAL DESCRIPTIONS

Thus far there was little ambiguity as to which kinematical description, path variables,
Cartesian, or one of the curvilinear coordinate systems, we should use. Here we consider
situations in which no single description leads to an optimal solution. The key factor to
be considered in this regard is which description fits the aspects of the motion that are
known and which fits the parameters we seek. For example, suppose that the path of a
particle is known to be as shown in Fig. 2.12. If the rate of movement along that path is
specified in terms of the speed v, we would certainly want to employ a path variable de-
scription. Now further suppose that, with v known, it is desired to determine the rotation

eθ

θ

x R

z

s

y

z

eR

et

ez Path

Starting 
position Figure 2.12. Mixed usage of path variables and cylindrical coordi-

nates.
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rate θ̇ of the azimuthal plane defined in the figure. Because θ is one of the cylindrical co-
ordinates, it would seem wise to use that description. We could consider the kinematical
description that best matches the parameters of the actual system to be the “natural”
one, but sometimes no single formulation is entirely natural, although more than one
have elements that are suitable. It is almost axiomatic that if one of the kinematical de-
scriptions has some aspect that suits a problem, it should be employed. Thus, the task
that confronts us here is to simultaneously implement two different descriptions. A pre-
cursor to this task arose in Example 2.1, where the velocity and acceleration were given
in Cartesian coordinates and we needed to evaluate path variable parameters.

The general concept is to match the velocity and acceleration vectors obtained from
the relevant kinematical descriptions. This matching is implemented by resolving unit
vectors for one formulation into components relative to the unit vectors of the other
formulation. For this purpose it is assumed that the position is known, so that all geo-
metric quantities, including the angles between unit vectors, are known. For simplicity,
let us consider planar motion. Let ēα and ēβ be the orthogonal planar unit vectors for
one kinematical description (for example, ēα and ēβ are the tangent and normal direc-
tions), and let ēλ and ēµ be the orthogonal planar unit vectors for the other description.
These unit vectors have been depicted with their tails coinciding in Fig. 2.13 in order to
expedite resolving a unit vector into components.

eλ

eµ

eα

eβ

ψ
ψ

Figure 2.13. Relation between two sets of orthogonal unit vectors in a plane.

As shown in the figure, the orientation of one set of unit vectors relative to the
other is defined by the angle ψ . (The definition of this angle as that between ēα and ēλ is
arbitrary.) The components of ēλ and ēµ relative to ēα and ēβ are found from this figure
to be

ēλ = cos (ψ) ēα + sin (ψ) ēβ, ēµ = − sin (ψ) ēα + cos (ψ) ēβ. (2.4.1)

The velocity may be expressed in terms of components relative to either set of unit
vectors. Thus,

v̄ = vα ēα + vβ ēβ = vλēλ + vµēµ. (2.4.2)

It is implicit to the preceding equation that each velocity component would be expressed
in terms of the parameters associated with its unit vectors. For example, if ēα and ēβ

represented the tangent and normal unit vectors, respectively, then we would set vα = v

and vβ = 0.

Two vectors are equal if, and only if, their like components are equal. Thus
Eqs. (2.4.2) constitute two scalar equations, which can be obtained by matching their
components in two different coordinate directions. One approach for performing this
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operation is to substitute the unit vectors in Eqs. (2.4.1) into Eqs. (2.4.2), which yields

v̄ = vα ēα + vβ ēβ = vλēλ + vµēµ

= vλ [cos (ψ) ēα + sin (ψ) ēβ] + vβ [− sin (ψ) ēα + cos (ψ) ēβ]

= [vλ cos (ψ) − vβ sin (ψ)] ēα + [vλ sin (ψ) + vβ cos (ψ)] ēβ.

(2.4.3)

Like components were grouped as the last operation in the preceding equation. Doing
so assists equating like components on either side of the equality, with the result that

vα = vλ cos (ψ) − vβ sin (ψ) ,

vβ = vλ sin (ψ) + vβ cos (ψ) .
(2.4.4)

Each of the velocity components appearing in Eqs. (2.4.4) presumably has been repre-
sented in terms of the formula associated with its description. Furthermore, the position
parameters are assumed to be known. Thus we have derived two scalar equations relat-
ing rate variables in either kinematical description.

An alternative way to obtain a component in a certain direction is to use a dot prod-
uct. The dot product of the velocity in Eqs. (2.4.2) in the direction of two unit vectors
gives two scalar equations representing the equality of the alternative component de-
scriptions. The interesting aspect of this approach is that the selected unit vectors can
be any pair. If we evaluate v̄ · ēα and v̄ · ēβ, we obtain Eqs. (2.4.4). However, the unit
vectors can also belong to different descriptions. For example, we could evaluate v̄ · ēβ

and v̄ · ēλ, provided that ēβ and ēλ are not parallel in the position of interest. This would
give

v̄ · ēβ = vβ = vλēλ · ēβ + vµēµ · ēβ,

v̄ · ēλ = vλ = vα ēα · ēλ + vβ ēβ · ēλ.
(2.4.5)

The dot products are readily described by referring to Fig. 2.13, which leads to

vβ = vλ sin (ψ) + vµ cos (ψ) ,

vλ = vα cos (ψ) + vβ sin (ψ) .
(2.4.6)

In practice, the procedure leading to Eqs. (2.4.6) is slightly more versatile, whereas
following Eqs. (2.4.4) is somewhat less prone to computational errors. Either set repre-
sents two equations that may be used to solve for two unknown rate parameters. As an
illustration of this procedure, suppose that (α, β) represents path variables and (λ,µ)
represents polar coordinates. Substitution of the respective velocity components into
Eqs. (2.4.4) then yields

v = Ṙcos (ψ) − Rθ̇ sin (ψ) ,

0 = Ṙsin (ψ) + Rθ̇ cos (ψ) .
(2.4.7)

The values of the radial distance R and the angle of orientation ψ are known if the posi-
tion is specified. Thus Eqs. (2.4.7) represent two relations among the three rate variables,
v, Ṙ, and θ̇ .
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Equations derived by matching alternative velocity descriptions may be used in ei-
ther of two general situations. It might be that the velocity is already known in terms
of either the (α, β) or the (λ,µ) components. In that case, the equations provide the
conversion to the parameters associated with the other set of components. The more
interesting situation is that of a mixed description, that is, one in which the velocity is
only partially known in terms of either of the two descriptions. In that case, the matching
procedure provides the means to ascertain the velocity.

The same approach may be applied to treat acceleration. Specifically, the individual
formulas for acceleration may be matched by employing either the unit vector transfor-
mation in Eqs. (2.4.1) or by taking dot products in the two different directions. The result
will be two scalar equations for acceleration rate variables, such as v̇ or R̈. Solving those
equations requires that all velocity rate variables, such as v or Ṙ, be evaluated first be-
cause they occur in the acceleration components. In other words, the velocity relations
must be solved before accelerations can be addressed, which is not surprising because
acceleration is the derivative of velocity. The remarkable aspect of the approach is there
is no need to differentiate any quantity because the basic velocity and acceleration for-
mulas represent standard derivatives.

The discussion treated the case of planar motion, but the same procedure also ap-
plies to three-dimensional motion. The kinematical formulas in that case have three
components, so matching corresponding components will lead to three simultaneous
equations. The primary difficulty that arises in this extension is the evaluation of the
transformation of the unit vectors. The component representation in Eqs. (2.4.1) was
derived by visual projections of one set of unit vector onto the other directions. The
same procedure may be performed in a three-dimensional case if the geometry is not
too complicated. An alternative approach for determining the unit vector components
uses rotation transformation properties established in the next chapter.

EXAMPLE 2.11 Use the concept of a Mixed kinematical description to determine
Ṙ and θ̇ for the airplane in Example 2.7.

SOLUTION This example demonstrates that viewing a system from multiple kine-
matical perspectives often can greatly simplify the analysis. The path and speed of
the airplane are given, both of which are path variable parameters. We must deter-
mine the rates of change of polar coordinates. Thus we draw a sketch that depicts
the unit vectors for both formulations at an arbitrary θ .

eR
et

eθ

90° + β
β

θ − β

θ
H

Horizontal

R

Example 2.11
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The velocity in terms of each set of unit vectors is

v̄ = vēt = ṘēR + Rθ̇ ēθ .

The speed v is the given parameter, so we may obtain an equation for Ṙ by forming

v̄ · ēR = vēt · ēR = Ṙ.

From the sketch we see that the angle between ēt and ēR is θ − β, so we find that

Ṙ = v cos (θ − β) . �

To find an expression for θ̇ , we have

v̄ · ēθ = vēt · ēθ = Rθ̇ .

We evaluate the dot product by observing that the angle between ēt and ēθ is θ − β +
π/2. Also, it was requested in the problem statement that the results be expressed
in terms of the elevation angle θ, on which R depends. From the law of sines, we
have

R
sin (β + π/2)

= H
sin (θ − β)

=⇒ R = H
cos (β)

sin (θ − β)
.

Consequently, the equation for v̄ · ēθ yields

θ̇ = 1
R

v cos (θ − β + π/2) = − v

H
sin (θ − β)2

cos (β)
. �

There is no doubt that this solution is easier than the one in Example 2.7.

EXAMPLE 2.12 Arm AB rotates clockwise at the constant rate of 40 rad/s as it
pushes the slider along guide CD, which is described by y = x2/200 (x and y are in
millimeters). Determine the velocity and acceleration of the slider when it is at the
position x = 200 mm.

C A

B

D

800 mm

x

y
40 rad/s

Example 2.12

SOLUTION This example is a further demonstration that the concept of joint kine-
matical descriptions can make challenging problems quite tractable. The planar mo-
tion is specified by a rotation rate, but the path is not described in terms of polar
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coordinates. Hence we follow an approach that employs path variables and polar
coordinates. We begin by evaluating the position parameters for both kinematical
descriptions. A sketch shows both sets of unit vectors at x = 200 mm, which cor-
responds to y = x2/200 = 200 mm. In this sketch the sense of ēt has been selected
based on recognition that clockwise motion of bar AB will move the collar up and
to the right. In more complicated situations, in which we are uncertain of the ap-
propriate direction, we may guess the sense of ēt . A wrong guess would lead to a
negative value for v. Also, we have depicted ēn as the perpendicular to ēt that points
toward the center of curvature.

eθ eten
eR

200 mm

200 mm

x

y

R
40 rad/sθ

θ

β

600 mm

A
O

Definiton of spherical coordinates and tangent and
normal directions for describing the motion of the
guided pin.

The polar coordinates are found from a right triangle to be

R = (
6002 + 2002

)1/2 = 632.5 mm = 0.6325 m,

θ = tan−1

(
200
600

)
= 18.435◦.

The slope of the guide bar at this location yields the angle of orientation of the
tangent vector:

β = tan−1
(

dy
dx

)
= tan−1

( y
100

)
= 63.435◦.

Matching like velocity components in each formulation is the next step. The
relevant velocity formulas are

v̄ = ṘēR + Rθ̇ ēθ = vēt .

For the sake of variety, we use the approach in which one set of unit vectors is
expressed in terms of components relative to the other set. Hence we write

ēt = − cos (θ + β) ēR + sin (θ + β) ēθ ,

ēn = sin (θ + β) ēR + cos (θ + β) ēθ .

Note that, although ēn is not needed to analyze the velocity, it has been described in
anticipation of using it for acceleration. We substitute the expression for ēt into the
velocity equation, and match like components:

v̄ = ṘēR + Rθ̇ ēθ = v [− cos (θ + β) ēR + sin (θ + β) ēθ ] ,

v̄ · ēR = Ṙ = −v cos (θ + β) , v̄ · ēθ = Rθ̇ = v sin (θ + β) .
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The value of θ̇ is given to be 40 rad/s, and R, θ , and β have been evaluated, so the
preceding equations represent two equations for Ṙ and v. Their solutions are

v = 25.56 m/s, Ṙ = −3.614 m/s.

Because we have evaluated all velocity parameters, we may now implement a
similar procedure for acceleration. The relevant formulas are

ā = (R̈ − Rθ̇2)ēR + (Rθ̈ + 2Ṙθ̇)ēθ = v̇ēt + v2

ρ
ēn.

Substitution of the earlier representations of ēt and ēn in terms of polar coordinates
converts these equations to

ā = (R̈ − Rθ̇2)ēR + (Rθ̈ + 2Ṙθ̇)ēθ

= v̇ [− cos (θ + β) ēR + sin (θ + β) ēθ ]

+ v2

ρ
[sin (θ + β) ēR + cos (θ + β) ēθ ] .

The result of matching like acceleration components is

ā · ēR = R̈ − Rθ̇2 = −v̇ cos (θ + β) + v2

ρ
sin (θ + β) ,

ā · ēθ = Rθ̈ + 2Ṙθ̇ = v̇ sin (θ + β) + v2

ρ
cos (θ + β) .

We know that θ̇ is constant at 40 rad/s, so θ̈ = 0. We evaluated R, θ , and β

from the given position information. The radius of curvature, being a property of
the path, also is a position parameter. We compute it from Eq. (2.1.31), which gives,
for x = 200 mm,

ρ =

[
1 +

( x
100

)2
]3/2

∣∣∣∣ 1
100

∣∣∣∣
= 1118.0 mm = 1.1180 m.

Substitution of all known quantities into the acceleration component equations
gives

ā · ēR = R̈ − 1011.9 = −v̇ (0.14142) + 25.562

1.1180
(0.9899) ,

ā · ēθ = 2 (−3.614) (40) = v̇ (0.9899) + 25.562

1.1180
(0.14142) .

We solve the second equation for v̇, then use that solution to calculate R̈, which
yields

v̇ = −375.5 m/s2, R̈ = 1643.3 m/s2.
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The problem statement requested the velocity and acceleration, which may be ex-
pressed in terms of either path variable or polar coordinate components:

v̄ = 25.56 ēt m/s or v̄ = −3.614ēR + 25.30ēθ m/s,

ā = −375.5ēt + 584.1ēn m/s2, or ā = 631.4ēR − 289.1ēθ m/s2.
�

There usually is more than one way in which one may attack a problem, and
sometimes the chosen path is not the most direct. This is the case here. The need to
use polar coordinates was clearly indicated, but that description was matched to path
variables primarily to give a full picture of the operations. The given information
described the path in Cartesian coordinates, and there was no mention of speed.
Thus it would have been more logical to match the polar and Cartesian coordinate
descriptions of the slider’s motion. Let us see how such a solution would evolve.

In units of meters the path is described by y = 5x2. We do not know a priori
how x or y depend on time, so the Cartesian coordinate descriptions of the slider’s
motion are

v̄ = ẋī + ẏ j̄ = ẋī + 10xẋ j̄,

ā = dv̄

dt
= ẍī + 10

(
xẍ + ẋ2

)
j̄ .

At the position of interest x = 0.2 m, and we earlier determined the corresponding
polar coordinates to be R = 0.6325 m, θ = 18.435◦. From the earlier sketch of the
unit vectors we know that

ī = − cos θ ēR + sin θ ēθ = −0.9487ēR + 0.3162ēθ ,

j̄ = sin θ ēR + cos θ ēθ = 0.3162ēR + 0.9487ēθ .

Equating the velocity descriptions leads to

v̄ = ẋī + 10 (0.2) ẋ j̄ = ẋ (−0.9487ēR + 0.3162ēθ ) + 2ẋ (0.3162ēR + 0.9487ēθ )

= ṘēR + Rθ̇ ēθ = ṘēR + (0.6325) (40) ēθ .

The algebraic equations obtained by matching like components are

v̄ · ēR = [−0.9487 + 2 (0.3162)] ẋ = Ṙ,

v̄ · ēθ = [0.3162 + 2 (0.9487)] ẋ = 25.30,

from which we find that

ẋ = 11.429 m/s, Ṙ = −3.6145 m/s.

These values are required to evaluate the acceleration. Equating the Cartesian
description of acceleration written earlier to the polar coordinate expression gives

ā = ẍī + 10
(
xẍ + ẋ2

)
j̄

= ẍ (−0.9487ēR + 0.3162ēθ ) + 10
[
(0.2) ẍ + (11.429)2

]
(0.3162ēR + 0.9487ēθ )

= (R̈ − Rθ̇2)ēR + (Rθ̈ + 2Ṙθ̇)ēθ =
[

R̈ − (0.6325) (40)2
]

ēR + 2 (−3.6145) (40) ēθ ,
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from which we have

ā · ēR = [−0.9487 + 2 (0.3162)] ẍ + 10 (11.429)2 (0.3162) = R̈ − (0.6325) (40)2
,

ā · ēθ = [0.3162 + 2 (0.9487)] ẍ + 10 (11.429)2 (0.9487) = 2 (−3.6145) (40) .

These equations give

ẍ = −690.4 m/s2, R̈ = 1643.3 m/s2.

The values of Ṙ and R̈ determined here are the same as those found previously,
so the expression for v̄ and ā in terms of polar coordinate components would
be unchanged. Using ẋ and ẍ to form the Cartesian coordinate representation
gives

v̄ = 11.429ī + 22.86 j̄ m/s, ā = −690.4ī − 74.71 j̄ m/s2 �

This solution is more direct than the preceding one, but which approach will be more
direct might not be apparent a priori in other situations.
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HOMEWORK PROBLEMS

R h
A

Exercise 2.1

EXERCISE 2.1 A small block slides in the interior of a smooth
semicircular cylinder after being released from rest at the up-
per corner A. Because friction is negligible, the speed of the
block is given by v2 = 2gh, where h is the vertical distance
the block has fallen. Determine the velocity and acceleration
of the block as a function of h. Then sketch the acceleration
when h = R/2.

EXERCISE 2.2 An automobile follows a circular road whose radius is 50 m. Let x and y
respectively denote the eastern and northern directions, with origin at the center of the
circle. Suppose the vehicle starts from rest at x = 50 m heading north, and its speed de-
pends on the distance s it travels according to v = 0.5s − 0.0025s2, where s is measured
in meters and v is in meters per second. It is known that the tires will begin to skid when
the total acceleration of the vehicle is 0.6g. Where will the automobile be and how fast
will it be going when it begins to skid? Describe the position in terms of the angle of the
radial line relative to the x axis.

EXERCISE 2.3 A locomotive follows a circular track of radius R such that its speed de-
pends on the distance it travels according to v = v0 sin (πs/s0) , where s0 is the maximum
distance. (a) What value of s corresponds to the maximum tangential acceleration? (b)
What value of s corresponds to the maximum normal acceleration? (c) What value of
the radius of the track will lead to the maximum normal and tangential accelerations
being equal? (d) If the radius is the value in Part (c), at what value of s is the magnitude
of the acceleration a maximum?

F

x

y

Exercise 2.4

EXERCISE 2.4 The collar slides over the stationary guide defined by
x = ky2 in the vertical plane. The speed of the collar is the constant
value v. This motion is implemented by application of a force F̄ of vari-
able magnitude parallel to the x axis. Derive expressions for the magni-
tude of F̄ and of the reaction exerted by the guide as functions of the y
coordinate of the collar.

EXERCISE 2.5 An old 5000-kg truck is traveling down a 5o incline at 20 km/h when its
brakes and engine simultaneously fail. It is known that the air resistance is proportional
to the square of the truck’s speed and that the maximum speed the truck would obtain
if the incline were sufficiently long and the truck did not become unstable is 160 km/h.
Rolling resistance is negligible. Determine the truck’s speed after it has traveled 1 km
from the point of failure. How long does it take for the truck to arrive at this location?

EXERCISE 2.6 A particle follows a planar path defined by x = kξ, y = 2k[1 − exp(ξ)],
such that its speed is v = βξ , where k and β are constants. Determine the velocity and
acceleration at ξ = 0.5.
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EXERCISE 2.7 An ellipse is defined by (x/α)2 + (y/β)2 = 1, z = 0. Derive expressions
for the tangent and normal unit vectors and the radius of curvature as functions of x.

EXERCISE 2.8 A helix is defined by x = cψ, y = Lsin(kψ), z = −Lcos(kψ), where c,
L, and k are constants. Determine the path variable unit vectors, the radius of curvature,
and the torsion of this curve as functions of ψ.

EXERCISE 2.9 A slider moves over a curved guide whose shape in the vertical plane
is given by x = βη, y = β cosh η. Starting from x = 0, the speed is observed to vary as
v = v0(1 − ks), where s is the distance traveled and k is a constant. Derive expressions
for the velocity and acceleration of the slider as functions of x.

EXERCISE 2.10 A particle moves along the paraboloid of revolution y = (x2 + z2)/L,
such that x = Lsinh (kξ), z = −Lcosh (kξ), where ξ is a parameter and L and k are
constants. At the position where ξ = 1/k, its speed is 5Lk and its speed is decreasing at
the rate 2Lk2 . Determine the velocity and acceleration at this position.

EXERCISE 2.11 A particle slides along the hyperbolic paraboloidal surface z = xy/2
such that x = 6 cos (ku), y = −6 sin (ku), where x, y, and in z are in meters and u is a
parameter. Determine the path variable unit vectors, the radius of curvature, and the
torsion of the path at the position where ku = 2π/3.

EXERCISE 2.12 A roller coaster track is laid out by giving the Cartesian coordinates of
its centerline, with x, y, and z respectively measured eastward, northward, and vertically
relative to a reference point on the ground. For the track of interest y = x2/100 and
z = 20 [cos (πx/50) + 1] , where x, y, and z are in units of meters and −50 < x < 50.
Determine and plot as functions of x the xyz components of the tangent, normal, and
binormal unit vectors, as well as the dependence on x of the radius of curvature and
torsion of the track.

EXERCISE 2.13 In Exercise 2.12 the speed of a car as it travels along the track is known
to be v = [2g (60 − z)]1/2 m/s. Determine and graph as a function of x the corresponding
tangential and normal accelerations of a car.

EXERCISE 2.14 Derive expressions for the binormal unit vector and torsion when a
curve is described in parametric form by r̄ (α).

EXERCISE 2.15 The specification for laying out the transition from a straight to curved
segment of a train track stipulates that the radius of curvature must change gradually
from an infinite value according to ρ = ρ0s0/s, where 0 < s < s0 is arc length from the
beginning of the curve, after which the radius of curvature should be the constant value
ρ0. Consider a high-speed train that moves at a constant speed of 240 km/h. At the
end of the curve, where s = s0 = 1 km, the normal acceleration should be 0.5g. Let x
measure distance in the direction of the tangent to the track at x = 0, and let y be the
offset distance. Use computer software to determine how y must depend on x in order
to meet this specification. Also plot the acceleration of a car as a function of x. Hint:
Use a parametric description of the path with s as the parameter, so that s ′ = 1 and
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y′ =
[
1 − (x′)2

]1/2
. Equating the expression for ρ in this representation to the specified

dependence of ρ will lead to a differential equation for x (s) that can be solved numeri-
cally.

EXERCISE 2.16 A particle moves along the surface z = (x2 − y2)/L such that x =
Lcos (βξ) , x = Lsin (βξ) , where β and L are constants and ξ is a parameter. Consider
the case in which ξ = t. Derive expressions for the velocity and acceleration.

EXERCISE 2.17 A particle slides along the hyperbolic paraboloidal surface z = xy/2b
such that x = − (b2 − y2

)1/2, y = b sin
(
kt2
)
, where h, b, and k are constants. Derive ex-

pressions for the velocity and acceleration as functions of elapsed time t.

θ
β

u

D H

Exercise 2.18

EXERCISE 2.18 A ball is thrown down an incline whose angle
of elevation is θ . The initial velocity is u at an angle of ele-
vation β. Derive an expression for the distance D measured
along the incline at which the ball will return to the incline.
Also determine the maximum height H, measured perpendic-
ularly to the incline, of the trajectory, and the corresponding
velocity of the ball at that position.

EXERCISE 2.19 A 200-g ball is thrown from the ground with the initial velocity v0 =
20 m/s at an angle of elevation β. In addition to its weight, there is a headwind that
generates a horizontal resistance of 0.5 N. (a) For the case in which β = 30o find the
horizontal distance at which the ball returns to the elevation from which it was thrown.
Also find the velocity of the ball at that location. (b) Find the value of β that maximizes
the range for a specified value of v0.

30 m/s
AB

C
P

x

y

30 m/s

Exercise 2.20

EXERCISE 2.20 Pin P, whose mass is 10 g, moves in the
horizontal plane within a groove defined by xy = 2, where
x and y are in meters. The motion is actuated by arm ABC,

which translates to the right at the constant speed of 30 m/s.
(a) Determine the velocity and acceleration of the collar
when x = 2 m. (b) Determine the forces exerted on the pin
by the groove and arm ABC when x = 2 m.

y

x
v0

F

mg

H/2 H/2

Exercise 2.21

EXERCISE 2.21 Gravity causes a steel ball of mass m that is situ-
ated between positive and negative magnetic plates to fall as it is
attracted toward one of the plates. The magnetic force acting on
the ball is horizontal with a magnitude that increases as the square
of the distance from the midplane between the plates. In the sketch
the xz plane coincides with this midplane, so this force is F = αx2

sgn(x) , where sgn(x) is the signum function. Suppose the ball is in-
jected at the right plate, x = H/2, y = 0, with an initial horizontal
velocity v0 to the left. Derive an expression for the minimum v for
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which the ball will hit the left plate. Where will the ball hit the right plate if v is half this
minimum value?

EXERCISE 2.22 For laminar flow at low Reynolds number, the air resistance on an object
is −cv̄, where c is a constant and v̄ is the velocity of the object. A sphere of mass m is
thrown from the ground with an initial speed v0 at an angle of elevation β in the (vertical)
xy plane. Derive algebraic expressions for the position and velocity of the sphere as a
function of time. Then use mathematical software to evaluate the distance the sphere
travels, i.e., the value of x > 0 at which y = 0, for the following sets of initial conditions:
(a) initial velocity is 60 m/s at 45o angle of elevation, (b) initial velocity is 60 m/s at 30o

angle of elevation. Compare the result in each case with what would be obtained if air
resistance were neglected. The mass of the sphere is m = 4.6 g, and the value of the
viscosity coefficient c is such that the maximum speed of the sphere in a vertical free fall
is 60 m/s. (This condition is called the terminal velocity.)

EXERCISE 2.23 Solve Exercise 2.22 in the situation in which there is a steady headwind
vh = 10 m/s blowing horizontally. The air resistance in that case is proportional to the
velocity of the sphere relative to the air, so that f̄ = −c

(
v̄ + vhī

)
.

x

y u

Exercise 2.24

EXERCISE 2.24 The diagram shows a small ball that is
pushed in the vertical plane along a hill whose elevation
is y = H sin (πx/L) . The motion is actuated by an angle
arm that translates horizontally at constant speed u. It may
be assumed that the ball remains in contact with the hill.
(a) Derive expressions for the velocity and acceleration of
the ball as functions of its horizontal distance x from the origin. (b) Determine the max-
imum speed v of the ball and the value(s) of x at which it occurs. (c) Determine the
maximum acceleration magnitude of the ball and the value(s) of x at which it occurs. (d)
What is the largest value of u for which the ball will remain in contact with the hill when
x = L/2? Friction is negligible, but gravity is not.

EXERCISE 2.25 For the system in Exercise 2.24 determine as a function of x the forces
exerted on the sphere by the arm and the hill.

EXERCISE 2.26 The current flowing through the coiled wire sets up a magnetic field B̄
that is essentially constant in magnitude and parallel to the axis of the coil, so B̄ = Bk̄.
The force acting on a charged particle moving through this field at velocity v̄ is given
by F = βv̄ × B̄, where β is a constant. Suppose such a particle is injected into this field
at the origin, with an arbitrary initial velocity. Derive an expression for the position
of this particle as a function of time, and identify the corresponding path. Gravity is
negligible.

EXERCISE 2.27 Use the formula for velocity in cylindrical coordinates to solve Exer-
cise 1.8.

EXERCISE 2.28 A ball rolls on the interior of a paraboloid of revolution given by
x2 + y2 = cz. The angle of rotation about the z axis is θ = γ sin (λt), and the elevation
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of the ball is z = βλ2t2, where β, γ , and λ are constants. Determine the velocity and
acceleration when t = 4π/3λ.

EXERCISE 2.29 In an Eulerian description of fluid flow, particle velocity components
are described as functions of the current position of a particle. The polar velocity
components of fluid particles in a certain flow are known to be vR = (A/R) cos θ,

vθ = (A/R) sin θ , where R, θ are the polar coordinates of the particle. Determine the
corresponding expressions for the acceleration.

ω

θ 400 mmθ

A

Exercise 2.30

EXERCISE 2.30 The device in the sketch rotates about
the vertical axis at ω = 1800 rev/min, and the angle locat-
ing the arms relative to the vertical is known to vary as
θ = (π/3) sin (120t) rad, where t is in units of seconds. De-
termine the velocity and the acceleration of sphere A as
a function of time. Then evaluate these expressions for the
instants when the elevation of the sphere is a maximum and
a minimum.

L
A

Bu
θ

Ω

Exercise 2.31

EXERCISE 2.31 The vertical shaft rotates at the constant rate
�, and the elevation of pin A is constant. End B of the bar
slides over the base table, which translates upward at the con-
stant speed u. Describe the velocity and acceleration of end B of
the bar in terms of u, �, L, and θ.

ω

θ

θ

u

L

L/2

Exercise 2.32

EXERCISE 2.32 The device in the sketch is a flyball gov-
ernor, which has been used to control the rotation rate
of an engine. The concept is that increasing the rotation
rate causes the spheres to move outward, thereby causing
the vertical rod to move downward, which may be sensed
magnetically. Consider a situation in which the angular
speed ω is unsteady and the vertical velocity of the rod, u,

is constant. Describe the acceleration of a ball in terms of
ω, ω̇, θ , and u.

60o

r

Exercise 2.33

EXERCISE 2.33 A small block whose mass is 400 g slides
inside a right circular cone whose axis is vertical. At a cer-
tain instant the block is at r = 200 m, with ṙ = −10 m/s and
r̈ = 0. The block’s rotation rate about the cone’s axis is ob-
served to be constant at 40 rad/s. Determine the compo-
nents of the force tangent and normal to the surface re-
quired to obtain this motion.
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θ

300 mm

300 mm

Exercise 2.34

EXERCISE 2.34 The cable, whose length is 300 mm, is fas-
tened to the 500-g block. Clockwise rotation of the arm at
a constant angular speed of 5 rad/s causes the block to slide
outward. The motion occurs in the vertical plane, and the
coefficient of sliding friction is 0.4. Determine the tensile
force in the cable and the force exerted by the block on the
walls of the groove when θ = 53.1301o.

EXERCISE 2.35 Derive the formulas for velocity and acceleration in spherical coordi-
nates by following the formulation using stretch ratios.

EXERCISE 2.36 Example 2.9 derived the unit vectors for hyperbolic–elliptic coordinates.
Derive the corresponding formulas for velocity and acceleration.

EXERCISE 2.37 Toroidal coordinates (ρ, θ, ψ) are useful in situations in which it is
desired to describe movement relative to a reference circle, which is the case for mag-
netohydrodynamic studies in the fusion reactor known as a tokamak. Let R be the
radius of this reference circle. Then the transformation to Cartesian coordinates is
x = (R + ρ cos ψ) cos θ , y = (R + ρ cos ψ) sin θ , z = ρ sin ψ. Derive expressions for the
unit vectors for this coordinate system and for the derivatives of the unit vectors with
respect to each toroidal coordinate. Then obtain the toroidal coordinate expressions for
velocity and acceleration.

ρ
ρ

R

φ

φx

y

z

θ

Exercise 2.37

z

R
53.13o

θ
.

Exercise 2.38

EXERCISE 2.38 A small block slides inside a cone whose
apex angle is β = 53.13o. Because angular momentum
about the vertical axis of the cone is conserved, the block
spins about the z axis such that R2θ̇ = 5 m2/s, and the ver-
tical motion is observed to be a constant acceleration given
by z = 0.99 − 3t2 m. For the instant when z = 0.24 m, de-
termine the velocity and acceleration of the block.

EXERCISE 2.39 The instantaneous velocity of a point is v̄ = 10ī − 4 j̄ + 6k̄ m/s, and the
acceleration is ā = −30ī − 25 j̄ + 15k̄ m/s2. Determine the corresponding speed, rate of
change of the speed, and the radius of curvature of the path.

EXERCISE 2.40 The elevation of the center of mass of an automobile following an ex-
tremely bumpy road is observed to be y = 0.1 sin (πx/3) , where x and y are the hori-
zontal and vertical coordinates in meters. At x = 1 m the vehicle’s speed is 20 m/s, and
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the speed at that position is decreasing at 5 m/s2. Determine the horizontal and vertical
components of the acceleration at that instant.

EXERCISE 2.41 Polar coordinates in the XY plane are defined by the radial distance
R and the polar angle θ measured from the x axis. Derive expressions for the ve-
locity and acceleration in terms of components relative to xyz by considering r̄ P/O =
Rcos θ ī + Rsin θ j̄ to be a parametric description of the path based on knowing R(θ)
and θ (t). Then obtain the polar coordinate representations of velocity and acceleration
by transforming the xyz representation.

EXERCISE 2.42 At a certain instant, the position, velocity, and acceleration of a point
are observed to be

r̄ = 2000ī − 1000 j̄ + 2000k̄ m, v̄ = 100ī + 150 j̄ + 200k̄ m/s, ā = 30 j̄ − 50k̄ m/s2.

Cylindrical coordinates for the system are (R, θ, z) with θ defined as the azimuthal angle
in the xy plane, measured relative to the x axis. (a) For this instant determine the speed,
the rate at which the speed is changing, and the direction of the normal vector pointing
toward the path’s center of curvature. (b) Determine the values of θ, θ̇ , and θ̈ at this
instant.

24000 km
v

θ=50o

Exercise 2.43

EXERCISE 2.43 A satellite is in an orbit about the
Earth. The magnitude of the acceleration of this body
is g(Re/R)2, where R is the distance from the body to
the center of the Earth, Re = 6370 km is the radius of
the Earth, and g = 9.807 m/s2. At the position shown, the
speed of the body is v = 27 000 km/h. (a) Determine the
rate of change of the speed and the radius of curvature of
the orbit at this position. (b) Determine Ṙ, R̈, θ̇ , and θ̈ at
this position.

EXERCISE 2.44 Observation of a small mass attached to the end of the flexible bar
reveals that the path of the particle is essentially an ellipse in the horizontal plane. The
Cartesian coordinates for this motion are measured as x = A sin (θ) , y = 2A cos (θ) ,

θ = ωt, where A and ω are constants. Determine the speed, the rate of change of the
speed, and the normal acceleration at the instants when ωt = 0, π/3, and π/2.

P

600 mm 400 mm

φ θ

Exercise 2.45

EXERCISE 2.45 Pin P slides inside the 400-
mm-radius groove at a constant rate of 8 m/s.
This motion is actuated by arm AB. Deter-
mine the rotation rate of this arm and the rate
of change of that rate when (a) θ = 90o, (b)
θ = 135o.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

Homework Problems 89

r

5 km

1 km
4 km

B

A

2 km

θ
λ

south

west

z

Exercises 2.46 and 2.47

EXERCISE 2.46 A radar station at the origin
measures the azimuth angle θ , the elevation
angle λ, and the radial distance r to a target.
At the instant when a high-performance air-
craft is at point B it has a velocity of 500 m/s
directed from point B to point A and an ac-
celeration of 8g directed upward. Determine
the values of ṙ , r̈ , λ́, λ̈, θ̇ , and θ̈ that are ob-
served at this location.

EXERCISE 2.47 A radar station at the origin measures the azimuth angle θ , the elevation
angle λ, and the radial distance r to a target, as shown in the sketch. At the instant when
an aircraft is at location B, it is observed that ṙ = −400 m/s, r̈ = 20 m/s2, λ̇ = 0.2 rad/s,
λ̈ = 0, θ ′ = −0.1 rad/s, and θ̈ = 0. Determine the corresponding speed, rate of change of
the speed, and normal acceleration at this instant.

EXERCISE 2.48 An airplane heading eastward is observed to be in a 20o climb at a speed
of 2400 km/h. At this instant its acceleration components are 2g eastward, 5g northward,
and 1.5g downward. Determine the rate of change of the speed, as well as the radius of
curvature and the location relative to the airplane of the center of curvature of the path.

EXERCISE 2.49 A particle follows a planar path such that the azimuthal dependence of
the radial distance from a fixed reference point is a known function R(θ) . It is observed
that θ̇ is constant. Derive expressions for the velocity and acceleration of the particle.
Then use those results to derive an expression for the radius of curvature of a path in
polar coordinates.

2πr 2πr
2r x

y

Exercise 2.50

EXERCISE 2.50 A wheel, whose radius is r ,
rolls without slipping. A point on the perime-
ter of the wheel follows a cycloidal path, de-
scribed in parametric form by x = r (ξ − sin ξ) ,

y = −r cos ξ . The parameter ξ is observed to
depend on time according to ξ = ct . Derive ex-
pressions for the speed and rate of change of the speed of this point as functions of ξ .
Also determine the radius of curvature of the cycloid as a function of ξ .

800 mm

1.2 m

25 m/s

Exercise 2.51

EXERCISE 2.51 A cable that passes through a hole at point A
is pulled inward at the constant rate of 25 m/s, thereby causing
the 0.2-kg collar to move along the circular guide bar. The sys-
tem is situated in the vertical plane. (a) Determine the speed
and the rate of change of the speed of the slider at the instant
shown in the sketch. (b) If the coefficient of sliding friction is
µ = 0.4, evaluate the corresponding tension in the cable.
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u

y=8x2
y

0.25 m

Exercise 2.52

EXERCISE 2.52 A collar slides along a guide bar that is
bent to the shape of a parabola, y = 8x2, where x and y
are measured in meters. The system lies in the horizontal
plane. The motion is actuated by pulling on a cable at-
tached to the collar and passing though a slot. The rate
at which the cable is pulled inward is a constant speed
u. (a) For the position x = 1/4 m determine the velocity
and acceleration of the collar in terms of u. (b) Determine the tensile force in the cable
at x = 1/4 m.

x

y

A

B

C

θ

ω

Exercise 2.53

EXERCISE 2.53 Collar C is pushed along the guide bar
defined by y = 2(1 − 0.25x2), where x and y have units
of meters. The angular speed of arm AB that actuates
the motion is the constant value ω = 20 rad/s, so θ = ωt .
Determine the forces exerted on the collar by arm AB
and the guide bar at x = 1 m. The mass of the collar is
2 kg, and gravitational effects are ignorable.

600 mm
R = 400 mm

A
B

D

C

E

90o

L

Exercise 2.54

EXERCISE 2.54 A hydraulic piston in arm AB
controls the arm’s length, thereby moving the
collar. Guide bar CDE is circular, and it lies in
the vertical plane. At the highest position D it
is known that L̇ = 10 m/s and L̈ = 0. Determine
the speed of the collar and the rate of change of
the speed at that location.
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CHAPTER 3

Relative Motion

When we ride in an automobile or airplane, the reference frame for our observations is
moving. If we wish to use such observations to formulate Newton’s Laws, we need to
convert them to an inertial reference frame. More fundamentally, the basic fact that the
points in a moving rigid body are stationary as viewed from that body is a vital aspect.
In this chapter we develop the ability to correlate observations of position, velocity, and
acceleration from fixed and moving reference frames.

3.1 COORDINATE TRANSFORMATIONS

It is standard terminology to refer to any quantity that is measured relative to a fixed
reference frame as absolute, whereas quantities measured with respect to any moving
reference frame are relative. Figure 3.1 depicts a general situation in which point P is
being observed from a moving reference frame xyz whose motion we presumably know,
whereas XYZ is a fixed reference frame. It is apparent from Fig. 3.1 that one can ar-
rive at the absolute position r̄P/O by proceeding first to the xyz origin along r̄O′/O, then
following the relative position r̄P/O′, so that

r̄P/O = r̄O′/O + r̄P/O′ . (3.1.1)

Despite the simple appearance of this relation, it embodies many of the issues that we
generally encounter. Both r̄P/O and r̄P/O′ describe position as seen from a specific ref-
erence frame. Each vector could be represented in terms of components relative to the
coordinate axes of its associated reference frame. However, if we are to evaluate the sum
by adding like components, rather than by a graphically based procedure, then the com-
ponents of each vector must be described with respect to a common set of unit vectors.
In other words, although a vector might describe the perspective of an observer on a
specific reference frame, that vector may be described in terms of components relative
to the axes of any reference frame.

As an aid to representing each of the vectors in Eq. (3.1.1), we introduce the x ′y′z′

reference frame in Fig. 3.1, whose origin always coincides with point O′, but whose axes
always remain parallel to the respective fixed axes of XYZ. Such a reference frame exe-
cutes a translational motion. The x ′y′z′ coordinates of point P are (x ′

P, y′
P, z′

P), and the

91
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x

y

z'z

X
Y

Z

O
O'

P

x'
y'

rP/O

rO'/O

rP/O'

Figure 3.1. Fixed and moving reference frames for observing the position of a point.

XYZ coordinates of point O′ are (XO′ , YO′ , ZO′) . The corresponding position vectors
therefore are

r̄O′/O = XO′ Ī + YO′ J̄ + ZO′ K̄, r̄P/O′ = x ′
Pī ′ + y′

P j̄ ′ + z′
Pk̄ ′

. (3.1.2)

Because of the parallelism of the Ī J̄ K̄ and ī ′ j̄ ′k̄ ′ directions, a component description of
Eq. (3.1.1) leads to

XP = XO′ + x ′
P, YP = YO′ + y′

P, Z = ZO′ + z′
P. (3.1.3)

This conversion between coordinates is referred to as a translation transformation.
This transformation is useful if we know the coordinates of point P relative to the

translating x ′y′z′ reference frame. However, the more likely circumstance is that we
would know the position coordinates (xP, yP, zP) relative to the rotating axes of the
xyz reference frame. Such would be the case when we describe position in terms of
forward/back, left/right, and up/down relative to the cabin of an airplane, or when we
locate a point in a piece of machinery by referring to the engineering drawings. This
complicates the task of adding r̄O′/O and r̄P/O′ , because the directions used to represent
the vectors are not parallel. Determining the x ′y′z′ coordinates of point P corresponding
to known xyz coordinates requires a rotation transformation.

3.1.1 Rotation Transformations

We consider a general situation in which a vector is described in terms of components
relative to the axes of two coordinate systems, xyz and x ′y′z′, that have a common ori-
gin. Figure 3.2 depicts the direction angles α, β, γ between the x ′ axis and each of the
xyz axes. An examination of Fig. 3.2 shows that the values of the direction angles should
be limited to the range 0 ≤ α, β, γ ≤ π to avoid ambiguity. The components of ī ′ are its
projections onto ī, j̄, and k̄, which are determined from the direction angles according
to

ī ′ = (
ī ′ · ī

)
ī + (

ī ′ · j̄
)

j̄ + (
ī ′ · k̄

)
k̄

= (cos α) ī + (cos β) j̄ + (cos γ ) k̄.
(3.1.4)
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x

y

z

x'

i

k

j

i'

γ

β

α

Figure 3.2. Direction angles α, β, and γ for a line.

This expression indicates that the cosines of the direction angles are more significant to
our analysis: They are the direction cosines. We obviously are equally interested in all
unit vectors, so we

Define �p′q to be the cosine of the angle between axis p′ and axis q, with p and q
representing x, y, or z.

Extending Eq. (3.1.4) to the other unit vectors then yields

ī ′ = �x ′xī + �x ′ y j̄ + �x ′zk̄,

j̄ ′ = �y ′xī + �y ′ y j̄ + �y ′zk̄,

k̄ ′ = �z′xī + �z′ y j̄ + �z′zk̄.

(3.1.5)

It is convenient to rewrite these equations in matrix form as

[
ī ′ j̄ ′ k̄ ′ ]T

= [R]
[

ī j̄ k̄
]T

, (3.1.6)

where

[R] =

⎡
⎢⎢⎣

�x ′x �x ′ y �x ′z

�y ′x �y ′ y �y ′z

�z′x �z′ y �z′z

⎤
⎥⎥⎦ . (3.1.7)

The matrix [R] is the rotation transformation. It is a generalization of the conversion
between coplanar pairs of unit vectors that we employed to discuss mixed kinematical
descriptions in Section 2.4.

Several important properties of [R] follow from the fact that ī , j̄ , and k̄ are an or-
thogonal set of unit vectors, as are ī ′, j̄ ′, and k̄ ′. Suppose that we were to follow parallel
steps to the preceding in order to establish the transformation [R′] describing the unit
vectors ī, j̄ , k̄ in terms of their components with respect to ī ′, j̄ ′, k̄ ′. By direct analogy
with Eqs. (3.1.6) and (3.1.7) we find that the inverse transformation [R′] is described by[

ī j̄ k̄
]T

= [R′]
[

ī ′ j̄ ′ k̄ ′ ]T
, (3.1.8)
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where the elements of [R′] are the corresponding direction cosines between ī , j̄ , or k̄
and ī ′, j̄ ′, or k̄ ′. For example, R′

1,2 = �xy ′ . Because �xy ′ ≡ �y ′z, it follows that R′
1,2 = R2,1.

More generally, the definition of the direction cosines leads to R′
m,n = Rn,m, so that

[R′] = [R]T.
A different description of [R′] results from solving Eq. (3.1.6) for ī , j̄ , k̄, which gives

[
ī j̄ k̄

]T = [R]−1
[
ī ′ j̄ ′ k̄ ′]T

. (3.1.9)

A comparison of Eqs. (3.1.8) and (3.1.9) shows that [R′] = [R]−1. Thus we find that

The transformation matrix [R′] converting ī ′, j̄ ′, and k̄ ′ to ī, j̄, and k̄ is the inverse
of the matrix [R] converting ī, j̄, and k̄ to ī ′, j̄ ′, and k̄ ′

. This inverse transformation
may be evaluated by taking the transpose of the original transformation,

[R′] = [R]−1 = [R]T
. (3.1.10)

Equation (3.1.7) defines the rows of [R] to be the direction cosines of one of the
primed unit vectors relative to the unprimed set. Similarly, the columns of [R] consist of
the direction cosines of an unprimed unit vector with respect to each of the primed set.
Let {i} , { j} , etc., denote columns holding the direction cosines of the associated unit
vector with respect to the other set of directions. Then we may write [R] in partition
form in either of two ways,

[R] =

⎡
⎢⎢⎢⎣
{
i ′}T

{
j ′}T

{
k ′}T

⎤
⎥⎥⎥⎦ =

[
{i} { j} {k}

]
. (3.1.11)

The rules for products of partitioned matrices indicate that the partitions behave like
single elements if the partitions are conformable (that is, consistently dimensioned). Ac-
cording to the first of Eqs. (3.1.11), it must be that

[R] [R]T =

⎡
⎢⎢⎢⎣
{
i ′}T

{
j ′}T

{
k ′}T

⎤
⎥⎥⎥⎦
[{

i ′} {
j ′} {

k ′} ]

=

⎡
⎢⎢⎢⎣
{
i ′}T {

i ′} {
i ′}T {

j ′} {
i ′}T {

k ′}
{

j ′}T {
i ′} {

j ′}T {
j ′} {

j ′}T {
k ′}

{
k ′}T {

i ′} {
k ′}T {

j ′} {
k ′}T {

k ′}

⎤
⎥⎥⎥⎦ = [U] ,

(3.1.12)

where [U] is the identity (unit) matrix. The final result stems from the fact that each
element of the product matrix is the matrix representation of a dot product, and the
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unprimed unit vectors are mutually orthogonal. A similar expression results if we use
the second form in Eq. (3.1.11) to form [R]T [R] , specifically

[R]T [R] =

⎡
⎢⎢⎣

{i}T {i} {i}T { j} {i}T {k}
{ j}T {i} { j}T { j} { j}T {k}
{k}T {i} {k}T { j} {k}T {k}

⎤
⎥⎥⎦ = [U] , (3.1.13)

where the final form is a consequence of the mutual orthogonality of the unprimed unit
vectors. Thus a matrix having the property that [R]−1 = [R]T is said to be orthonormal.

The fact that [R][R]T = [U] gives rise to a useful property. Recall from matrix al-
gebra that the determinant of a product of matrices is identical to the product of the
individual determinants. Furthermore, the determinant of [R] is identical to the deter-
minant of [R]T. Simultaneous satisfaction of both properties, in combination with the
requirement that both xyz and x ′y′z′ are right-handed coordinate systems,∗ leads to the
conclusion that

|[R]| = 1. (3.1.14)

One use of this property is to check computations.
Because a dot product is independent of the order in which the product is formed,

Eq. (3.1.12) consists of six independent elements, whose specific form is

�p′x�q ′x + �p′ y�q ′ y + �p′z�q ′z = δ pq, p, q = x, y, or z, (3.1.15)

where δ pq denotes the Kronecker delta; δ pq = 1 if p = q and δ pq = 0 otherwise. Because
there are six independent combinations of p and q in the preceding, it follows that there
are six equations relating the nine direction cosines. Consequently, there are only three
independent direction angles. However, the selection of which angles are independent
is not entirely arbitrary. For example, the values of α, β, and γ in Fig. 3.2 are not inde-
pendent because cos2 α + cos2 β + cos2 γ = 1. This restriction arises because these three
angles locate only one axis.

In Eqs. (3.1.6) the unit vectors of one coordinate system are described in terms of
the unit vectors of another. However, [R] also transforms the components of vectors.
To see this we consider an arbitrary vector Ā, which may be described in terms of its
components with respect to either set of unit vectors,

Ā = Ax ′ ī ′ + Ay ′ j̄ ′ + Az′ k̄ ′ = Axī + Ay j̄ + Azk̄. (3.1.16)

A matrix representation of this expression is

Ā =
[

ī ′ j̄ ′ k̄ ′ ]
⎧⎪⎪⎨
⎪⎪⎩

Ax ′

Ay ′

Az′

⎫⎪⎪⎬
⎪⎪⎭ =

[
ī j̄ k̄

]
⎧⎪⎪⎨
⎪⎪⎩

Ax

Ay

Az

⎫⎪⎪⎬
⎪⎪⎭ . (3.1.17)

∗ Equation (3.1.14) is also correct if both coordinate systems are left-handed, whereas
∣∣[R]

∣∣ = −1 if xyz
and x ′ y′z′ have different parities.
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To eliminate the primed unit vectors, we substitute Eq. (3.1.9) into the right side of
Eq. (3.1.17). To do so we must use the property that the transpose of a matrix product
is the reversed product of the transpose of each matrix. According to the orthonormal

property,
[
[R]−1

]T
= [R] , so we have

[
ī ′ j̄ ′ k̄ ′ ]

⎧⎪⎪⎨
⎪⎪⎩

Ax ′

Ay ′

Az′

⎫⎪⎪⎬
⎪⎪⎭ =

[
ī ′ j̄ ′ k̄ ′ ] [R]

⎧⎪⎪⎨
⎪⎪⎩

Ax

Ay

Az

⎫⎪⎪⎬
⎪⎪⎭ . (3.1.18)

This must be true for an arbitrary Ā, which permits us to cancel the row of unit vectors.
Thus,

⎧⎪⎪⎨
⎪⎪⎩

Ax ′

Ay ′

Az′

⎫⎪⎪⎬
⎪⎪⎭ = [R]

⎧⎪⎪⎨
⎪⎪⎩

Ax

Ay

Az

⎫⎪⎪⎬
⎪⎪⎭ . (3.1.19)

Kinematically, the position of a point with respect to the origin is of primary im-
portance, in which case the vector components are the Cartesian coordinates of the
point with respect to either the fixed XYZ or the moving xyz. In some situations we
wish to follow a certain point P on the body, as we would when we monitor the mo-
tion of a point in a piece of machinery. In that case the (xP, yP, zP) values with re-
spect to the body-fixed axes remain constant, and the (XP, YP, ZP) coordinates change.
In other situations it is necessary to determine how a point P that does not move
is seen from the perspective of the moving body. Then it is (XP, YP, ZP) that re-
main constant, and (xP, yP, zP) change. Either situation can be addressed once we
have determined the transformation matrix [R] that converts Ī J̄ K̄ components to ī j̄ k̄
components.

We have seen that knowledge of [R] enables us to fully characterize a vec-
tor in terms of alternative sets of components. The following example determines a
transformation directly from the orthonormal properties. Sometimes there are sim-
pler procedures for such a determination, which we will take up in the following
sections.

EXAMPLE 3.1 The positions of two points are known to be r̄A = −250ī + 400 j̄ −
500k̄ mm relative to the xyz coordinate system described in the sketch and r̄B =
400 Ī − 600 J̄ + 200K̄ mm relative to the XYZ coordinate system. Determine the
position coordinates of each point relative to the coordinate system not given, and
also determine the distance between the points.
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Y

Z

y

x

X

30°

20°

z

Example 3.1

SOLUTION This example illustrates most of the basic operations associated with ro-
tation transformations. According to the sketch the y axis lies in the XZ plane such
that

j̄ = cos 30◦ Ī + sin 30◦K̄.

The only other piece of information conveyed by the sketch is that the z axis is
depressed 20◦ below the XY plane. Thus the Z component of k̄ is − sin 20◦. Let θ

denote the angle between the Y axis and the projection of the z axis onto the XY
plane. Because k̄ has unit magnitude, the length of its projection onto this plane is
cos 20◦, from which it follows that

k̄ = cos 20◦ (sin θ Ī + cos θ J̄
)− sin 20◦K̄.

The angle θ is set by the condition that j̄ and k̄ are orthogonal, so that their dot
product is zero,

j̄ · k̄ = cos 30◦ cos 20◦ sin θ − sin 30◦ sin 20◦ = 0,

from which we find

θ = sin−1 (tan 30◦ tan 20◦) = 0.2117 rad = 12.131◦.

The preceding description of k̄ correspondingly gives

k̄ = 0.19747 Ī + 0.91871 J̄ − 0.34202k̄.

The fact that ī, j̄, and k̄ are a set of orthonormal unit vectors enables us to directly
determine ī from a cross product:

ī = j̄ × k̄ = −0.45936 Ī + 0.39493 J̄ + 0.79563K̄.

The rows of the transformation from XYZ to xyz are the components of the
unit vectors of xyz relative to XYZ, so we have found that

[R] =

⎡
⎢⎢⎣

−0.45936 0.39493 0.79563

0.86603 0 0.500

0.19747 0.91871 −0.34202

⎤
⎥⎥⎦ .
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We use [R]T to transform the xyz coordinates of point A, and [R] to transform the
XYZ coordinates of point B:⎧⎪⎪⎨

⎪⎪⎩
XA

YA

ZA

⎫⎪⎪⎬
⎪⎪⎭ = [R]T

⎧⎪⎪⎨
⎪⎪⎩

−250

400

−500

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

362.52

−558.09

172.10

⎫⎪⎪⎬
⎪⎪⎭ mm,

⎧⎪⎪⎨
⎪⎪⎩

xB

yB

zB

⎫⎪⎪⎬
⎪⎪⎭ = [R]

⎧⎪⎪⎨
⎪⎪⎩

400

−600

200

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

−261.58

446.41

−540.64

⎫⎪⎪⎬
⎪⎪⎭ mm.

�

The distance between the points is the magnitude of the position vector between
them, which may be constructed from r̄B/A = r̄B/O − r̄A/O. We calculate this differ-
ence by taking the difference of components with respect to the XYZ coordinate
system:

{
rB/A

} =

⎧⎪⎪⎨
⎪⎪⎩

XB − XA

YB − YA

ZB − ZA

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

37.48

−41.91

27.90

⎫⎪⎪⎬
⎪⎪⎭ .

The distance
∣∣r̄B/A

∣∣ may be determined from the matrix implementation of a dot
product, which gives

|r̄B/A|2 = [37.48 − 41.91 27.90]

⎧⎪⎪⎨
⎪⎪⎩

37.48

−41.91

27.90,

⎫⎪⎪⎬
⎪⎪⎭ ,

|r̄B/A| = 62.77 mm. �

This result should be the same as what would be obtained if we described r̄B/A in
terms of xyz components. Doing so would have given

{
r ′

B/A

}
=

⎧⎪⎪⎨
⎪⎪⎩

xB − xA

yB − yA

zB − zA

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

−11.58

46.41

−40.64

⎫⎪⎪⎬
⎪⎪⎭ ,

|r̄ ′
B/A|2 = [−11.58 46.41 − 40.64]

⎧⎪⎪⎨
⎪⎪⎩

−11.58

46.41

−40.64

⎫⎪⎪⎬
⎪⎪⎭ ,

|r̄ ′
B/A| = 62.77 mm. �
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3.1.2 Rotation Sequences

One use of a moving reference frame is to represent a rigid body in motion. A set of axes
xyz that are attached to the body is said to be body fixed. To follow the rotation of the
axes we designate XYZ as the orientation of the body-fixed axes prior to the initiation
of motion. Because a translation transformation accounts for the motion of the origin
of xyz, we temporarily consider the origins of XYZ and xyz to coincide. Our objective
here is to characterize the transformation from XYZ to the current orientation of xyz in
terms of rotations that the body undergoes. We do this by following successively more
complicated types of rotations.

Simple Rotations
In a simple rotation one of the body-fixed coordinate axes remains stationary. We may
picture such a rotation by looking down the stationary axis, because all points move in
the plane perpendicular to that axis. To avoid ambiguity, we use the right-hand rule to
define the positive sense of rotation. Specifically, one curls the fingers of the right hand in
the sense of the rotation. If the extended thumb of that hand points in the positive sense
of the rotation axis, then the rotation angle is positive. The three possibilities, involving
positive rotation about the x, y, or z axis, are depicted in Fig. 3.3. We use a subscript to
denote the axis for the simple rotation. Inspection of Fig. 3.3 gives the direction angles
of xyz relative to XYZ, which leads to

[Rx] =

⎡
⎢⎢⎣

1 0 0

0 cos θ x sin θ x

0 − sin θ x cos θ x

⎤
⎥⎥⎦ , [Ry] =

⎡
⎢⎢⎣

cos θ y 0 − sin θ y

0 1 0

sin θ y 0 cos θ y

⎤
⎥⎥⎦ ,

[Rz] =

⎡
⎢⎢⎣

cos θ z sin θ z 0

− sin θ z cos θ z 0

0 0 1

⎤
⎥⎥⎦ .

(3.1.20)

X, x'

y

z

θx

θx x
y, y'

z

x
y

z, z'

y'

z' z'

x'

θy

θy

θy

θz

θz

θz

x'

y'

θx

Figure 3.3. Simple rotations about each of the coordinate axes.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

100 Relative Motion

Note that a rotation that is opposite the sense of the right-hand rule corresponds
to a negative value of the respective angle in the preceding equations. This leads to an
interesting observation. Each transformation for the negative angle is the transpose of
the transformation of the positive angle, that is

[Rx (−θ x)] = [Rx (+θ x)]T
, [Ry (−θ y)] = [Ry (+θ y)]T

, [Rz (−θ z)] = [Rz (+θ z)]T
.

(3.1.21)

This demonstrates that the inverse transformation for a simple rotation merely corre-
sponds to the opposite rotation, which is a fact that is apparent from Fig. 3.3.

Body-Fixed Rotations
A spatial rotation is one in which a new orientation does not result from rotation about
a single coordinate axis. The first situation we treat is that in which the overall rota-
tion can be pictured as a sequence of simple rotations. The ultimate orientation of a
coordinate system that undergoes such a rotation clearly will depend on the orientation
of each of the simple rotation axes, and the amount of rotation about each axis. It is
less apparent that the final alignment of the coordinate axes also is dependent on the
sequence in which the individual rotations occur. Two situations commonly arise. The
simpler case to describe in words is a space-fixed rotation sequence, in which the simple
rotation axes have fixed orientations in space. The contrasting situation is a body-fixed
rotation sequence, in which each simple rotation is about one of the body-fixed axes
at the preceding step in the sequence. For example, a body-fixed sequence θ y, θ z, θ x

occurs first about the initial position of the y axis, then about the z axis in its new ori-
entation, then about the x axis in its orientation after the second rotation. Although a
body-fixed rotation is more difficult than a space-fixed rotation to describe in words, the
transformation for body-fixed rotations is easier to derive.

We begin by following a specific sequence of body-fixed rotations, after which we
generalize the result. The first rotation θ x occurs about the original orientation of the
x axis, and the second rotation θ z occurs about the position of the z axis after the first
rotation. In Fig. 3.4(a), the stationary XYZ system marks the initial orientation of xyz.

X, x1

Y

Z

θx

θx

θx

y1

z1

x1

y1

z1, z

θz
θz

θz

y

x

(a) (b)

Figure 3.4. Body-fixed rotations: (a) rotation by θ x about the original x axis, followed by (b) rotation by θ z

about the z axis resulting from the first rotation.
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We mark the orientation of xyz after the θ x rotation as x1 y1z1. The transformation de-
scribing the first rotation is given by

⎧⎪⎪⎨
⎪⎪⎩

Ax1

Ay1

Az1

⎫⎪⎪⎬
⎪⎪⎭ = [Rx]

⎧⎪⎪⎨
⎪⎪⎩

AX

AY

AZ

⎫⎪⎪⎬
⎪⎪⎭ , (3.1.22)

where we may readily construct [Rx] because it describes a simple rotation.
The result of the second rotation is depicted in Fig. 3.4(b). The θ z rotation moves xyz

from its intermediate orientation coincident with x1 y1z1 to its final orientation. Because
this corresponds to a single axis rotation about the z1 axis, we have

⎧⎪⎪⎨
⎪⎪⎩

Ax

Ay

Az

⎫⎪⎪⎬
⎪⎪⎭ = [Rz]

⎧⎪⎪⎨
⎪⎪⎩

Ax1

Ay1

Az1

⎫⎪⎪⎬
⎪⎪⎭ . (3.1.23)

Substitution of Eq. (3.1.22) into Eq. (3.1.23) leads to the overall transformation matrix
[R],

⎧⎪⎪⎨
⎪⎪⎩

Ax

Ay

Az

⎫⎪⎪⎬
⎪⎪⎭ = [R]

⎧⎪⎪⎨
⎪⎪⎩

AX

AY

AZ

⎫⎪⎪⎬
⎪⎪⎭ , [R] = [Rz] [Rx] . (3.1.24)

Additional rotations about any of the xyz axes will merely extend the preceding by
inserting additional premultiplication factors. Furthermore, we observe that the details
of the individual transformations were not used, so the result is valid for any sequence
of rotations, rather than being limited to simple rotations. We let [Ri ] denote the trans-
formation describing the ith rotation. This enables us to conclude that

If xyz is a coordinate system that undergoes a sequence of rotations about body-fixed
axes, and XYZ marks the initial orientation of xyz, then the transformation from
Ī J̄ K̄ components to the final ī j̄ k̄ components is obtained by premultiplying (from
right to left) the sequence of transformation matrices for the individual rotations. For
n rotations:

[R] = [Rn] · · · [R2] [R1] . (3.1.25)

It should be noted that although the preceding is valid for any type of body-fixed rota-
tion, in practice, we usually apply it to simple rotations, that is, rotations about the axes
of xyz. Doing so simplifies the description of the individual transformations.
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EXAMPLE 3.2 Consider the coordinate systems in Example 3.1. The final orien-
tation of xyz may be obtained from a set of body-fixed rotations, starting from an
initial orientation in which xyz coincides with XYZ. Describe the axis and angle for
each rotation.

SOLUTION In addition to illustrating some basic operations, this example demon-
strates the versatility provided by decomposing a transformation into a set of simple
rotations. Initially xyz coincides with XYZ. Because we fully know the final orien-
tation of the y axis, we begin by imparting a set of rotations that move this axis to
where it should be. One way of doing this is first to rotate xyz about the negative Z
axis by 90◦ in order to make the y axis align with the X axis. This leaves the z and
Z axes coincident and the x axis aligned oppositely from the Y axis. Thus the first
transformation is

[R1] =

⎡
⎢⎢⎣

0 −1 0

1 0 0

0 0 1

⎤
⎥⎥⎦ .

Next we rotate by 30◦ about the current x axis, which places the y axis where it
should be. This is a simple rotation transformation given by

[R2] =

⎡
⎢⎢⎣

1 0 0

0 cos 30◦ sin 30◦

0 − sin 30◦ cos 30◦

⎤
⎥⎥⎦ .

It is helpful to sketch the orientation of xyz after the second rotation.

Y

Z

y

x

X

30°

z

x, y, z after notation of −90◦ about the original z axis, followed by
rotation of 30◦ about the new x axis.

Any further rotation should keep the y axis in place, so we rotate xyz about its cur-
rent y axis. Because the amount of this rotation cannot be ascertained by inspection,
we let φ denote the angle. The associated simple rotation transformation is

[R3] =

⎡
⎢⎢⎣

cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ

⎤
⎥⎥⎦ .
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The transformation corresponding to these three body-fixed rotations is

[R] = [R3] [R2] [R1] =

⎡
⎢⎢⎣

0.5 sin φ − cos φ −0.8660 sin φ

0.8660 0 0.5

−0.5 cos φ − sin φ 0.8660 cos φ

⎤
⎥⎥⎦ .

The final orientation of the z axis is such that the angle between it and the
Z axis is 110◦, so that �zZ = cos 110◦. Equating this to the (3, 3) element of [R]
gives

cos φ = cos 110◦

0.8660
= −0.3949.

There are two roots of the preceding in the range −180◦ < φ ≤ 180◦. To select the
appropriate one we observe that the sketch accompanying Example 3.1 indicates
that the direction angles from the X and Y axes to the z axis are both acute, which
requires that both �zX and �zY be positive. Because these direction cosines are the
(3,1) and (3,2) elements of [R] , the desired root must be such that cos φ and sin φ

are both negative, so φ = −113.26◦ is the appropriate root. Evaluation of [R] corre-
sponding to this value of φ shows the result to be the same as [R] derived in Exam-
ple 3.1. Thus [R] may be obtained by a sequence of three body-fixed rotations: −90◦

about the z axis, followed by 30◦ about the x axis, concluding with −113.26◦ about
the y axis. �

Space-Fixed Rotations
The derivation of the transformation matrix for a sequence of space-fixed rotations fol-
lows a course that parallels the development in the previous section, in that we begin by
considering a specific pair of rotations and then generalize the result. The rotations now
occur about the axes of the stationary XYZ coordinate system. In the first rotation, θ X,

the x axis remains coincident with the X axis. In Fig. 3.5(a) x1 y1z1 marks the position
of xyz after the first rotation. Thus the transformation from Ī J̄ K̄ components to ī1 j̄1k̄1

components is described by the simple rotation transformation [RX] corresponding to
angle θ X about the X axis, so that

⎧⎪⎪⎨
⎪⎪⎩

Ax1

Ay1

Az1

⎫⎪⎪⎬
⎪⎪⎭ = [Rx]

⎧⎪⎪⎨
⎪⎪⎩

AX

AY

AZ

⎫⎪⎪⎬
⎪⎪⎭ . (3.1.26)

The second rotation, which consists of θ Z about the (fixed) Z axis, rotates x1 y1z1

to xyz. This movement is difficult to visualize because it does not occur about an axis
of either x1 y1z1 or xyz. As an aid to following the rotation, Fig. 3.5(a) shows construc-
tion lines Ay1 and Bz1, which are formed by dropping perpendiculars from the tips of
the respective axes to the Z axis. Coordinate system x2 y2z2 in Fig. 3.5(b) is defined to
coincide with XYZ prior to the second rotation. The Z and z2 axes remain coincident,
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X, x1

Y

Z

θx

θx

θx

y1

z1

Y

θz

θz

θz

x2, x

y2

Z, z2

y1

z1

X, x1

z
yA

B

A

B

(a) (b)

Figure 3.5. Space-fixed rotations: (a) θ x about the fixed X axis, followed by (b) θ z about the fixed Z
axis.

so ī2 j̄2k̄2 components are related to Ī J̄ k̄ components by the simple rotation transforma-
tion [RZ]:

⎧⎪⎪⎨
⎪⎪⎩

Ax2

Ay2

Az2

⎫⎪⎪⎬
⎪⎪⎭ = [Rz]

⎧⎪⎪⎨
⎪⎪⎩

Ax1

Ay1

Az1

⎫⎪⎪⎬
⎪⎪⎭ . (3.1.27)

Now comes the crucial observation: Because x1 y1z1 and x2 y2z2 undergo the sec-
ond rotation in unison, their relative orientation is invariant. Before this rotation xyz
coincided with x1 y1z1 and x2 y2z2 coincided with XYZ. Equation (3.1.26) gives the trans-
formation from XYZ to x1 y1z1, so it also describes the transformation from x2 y2z2 to
xyz: ⎧⎪⎪⎨

⎪⎪⎩
Ax

Ay

Az

⎫⎪⎪⎬
⎪⎪⎭ = [Rx]

⎧⎪⎪⎨
⎪⎪⎩

Ax2

Ay2

Az2

⎫⎪⎪⎬
⎪⎪⎭ . (3.1.28)

To eliminate the components relative to x2 y2z2, we substitute Eq. (3.1.27), with the result
that ⎧⎪⎪⎨

⎪⎪⎩
Ax

Ay

Az

⎫⎪⎪⎬
⎪⎪⎭ = [Rx] [Rz]

⎧⎪⎪⎨
⎪⎪⎩

AX

AY

AZ

⎫⎪⎪⎬
⎪⎪⎭ = [R]

⎧⎪⎪⎨
⎪⎪⎩

AX

AY

AZ

⎫⎪⎪⎬
⎪⎪⎭ . (3.1.29)

We now observe that we never specifically treated [RX] and [RZ] as simple rotations.
Furthermore, the pattern would repeat if we were to consider another space-fixed rota-
tion. Consequently, the preceding is generally valid, provided that we use [Rj ] to denote
the jth rotation about a space-fixed axis. We therefore conclude that

If xyz is a reference frame that undergoes a sequence of rotations about a set of axes
that are fixed in space, and xyz is initially coincident with XYZ, then the transfor-
mation from Ī J̄ K̄ components to ī j̄ k̄ components is obtained by postmultiplying
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(from left to right) the sequence of transformation matrices for the individual rota-
tions. For n rotations,

[R] = [R1][R2] · · · [Rn]. (3.1.30)

The similarity of Eqs. (3.1.25) and (3.1.30) is significant. We see that the result of a
sequence of body-fixed rotations leads to the same orientation as the reverse sequence
of space-fixed rotations, and vice versa. For example, the transformation in Eq. (3.1.29),
which was obtained by consideration of a pair of space-fixed rotations θ X followed by
θ Z, can be obtained alternatively by a pair of body-fixed rotations. The first such rotation
would be θ Z about the Z axis, and the second rotation would be θ X about the x axis in
its orientation following the first rotation. Both situations are depicted in Fig. 3.6. In this
sketch x1 y1z1 marks the position of xyz after the first rotation in each case. It can be
seen that, in both cases, the x axis is situated in the XY plane at an angle θ Z from the
X axis, the direction angle from the Z axis to the y axis is π/2 − θ X, and the direction
angle from the Z axis to the z axis is θ X. These properties lead to the conclusion that the
orientation of xyz relative to XYZ is the same for each rotation case.

X, x1

θZ

θZ θZ

θZ

θX

θX

θX

θX

X
YYx

y1
y

Zz
z

Z, z1z1

x1,  x

y1

y

(a) (b)

Figure 3.6. A pair of rotations about (a) space-fixed rotations θ X followed by θ Z , compared to (b) the
body-fixed rotations θ Z followed by θ X .

For a given sequence of simple rotations, the order of multiplication in which [R] is
formed from the individual matrices must be consistent with the type of rotation: pre-
multiplication for body-fixed rotations and postmultiplication for space-fixed rotations.
In a situation in which the overall rotation involves both types of rotations, we may fol-
low Eqs. (3.1.25) and (3.1.30) by premultiplying for the body-fixed rotations and post-
multiplying for the space-fixed rotations. For example, a sequence described by [R1] and
[R2] about body-fixed axes, followed by [R3] about a space-fixed axis, then [R4] about
a body-fixed axis would lead to [R] = [R4][R2][R1][R3]. A fundamental property of vec-
tors is that their sum is independent of the order of addition. Because the final rotation
transformation depends on the sequence in which the rotations occur, spatial rotations
cannot be represented as vectors.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

106 Relative Motion

EXAMPLE 3.3 An xyz coordinate system, which initially coincided with a station-
ary XYZ coordinate system, first undergoes a rotation θ1 = 65◦ about the Y axis,
followed by θ2 = −145◦ about the Z axis. Determine (a) the coordinates relative to
xyz in its final orientation of a stationary point at X = 2, Y = −4, Z = 3 m; (b) the
coordinates relative to XYZ of the point that remains at x = 2, y = −4, z = 3 m
throughout the motion.

SOLUTION In addition to illustrating the basic operations associated with space-fixed
rotations, this example serves to emphasize the difference between points that are
fixed in space and those that are stationary with respect to a moving reference frame.
The transformation matrix for this pair of space-fixed rotations is [R] = [R1] [R2] ,

where [R1] describes a simple rotation about the Y axis and [R2] is a simple rotation
about the Z axis. Thus

[R] =

⎡
⎢⎢⎣

cos 65◦ 0 − sin 65◦

0 1 0

sin 65◦ 0 cos 65◦

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cos (−145◦) sin (−145◦) 0

− sin (−145◦) cos (−145◦) 0

0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

−0.3462 −0.2424 −0.9063

0.5736 −0.8192 0

−0.7424 −0.5198 0.4226

⎤
⎥⎥⎦ .

For the first question, we know the position coordinates with respect to XYZ,

and [R] transforms from Ī J̄ K̄ components to ī j̄ k̄ components, so we apply the direct
transformation: ⎧⎪⎪⎨

⎪⎪⎩
xa

ya

za

⎫⎪⎪⎬
⎪⎪⎭ = [R]

⎧⎪⎪⎨
⎪⎪⎩

2

−3

4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

−2.442

4.424

1.862

⎫⎪⎪⎬
⎪⎪⎭ m. �

In the second situation the coordinates of the point with respect to the xyz coordi-
nate system are invariant, and we need to determine the XYZ coordinates. This is
the inverse of the transformation described by [R]. In accord with the orthonormal
property, we use [R]T to find⎧⎪⎪⎨

⎪⎪⎩
Xb

Yb

Zb

⎫⎪⎪⎬
⎪⎪⎭ = [R]T

⎧⎪⎪⎨
⎪⎪⎩

2

−3

4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

−5.214

1.232

−0.545

⎫⎪⎪⎬
⎪⎪⎭ m. �

Rotation About an Arbitrary Axis
We have seen that a sequence of simple rotations about various coordinate axes leads
to a general rotation transformation. The question now is this: What should one do if
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X

Y

Z

Z'

X '

Y'

φ Figure 3.7. Rotation by angle φ about line Z ′ that does not coincide with one
of the original coordinate axes.

there is a rotation about an axis that is not one of the coordinate axes? To address this
question we follow the approach we employed to analyze space-fixed rotations. Such a
situation appears in Fig. 3.7, where we have defined two fixed coordinate systems: XYZ,
which is the one of interest, and X′Y′ Z′, which is defined to have its Z′ axis align with
the rotation axis, but otherwise is arbitrary. The direction cosines �Z′ X, �Z′Y, and �Z′ Z

define the orientation of the Z′ axis.
The angle of rotation is φ. We denote as [R′] the transformation from XYZ compo-

nents to X′Y′ Z′ components. We seek to determine the transformation [R] from Ī J̄ K̄
components to ī j̄ k̄ components, where coordinate system xyz coincided with XYZ prior
to the rotation. To assist in that determination we define another coordinate system
x ′y′z′ that also undergoes the rotation, with the property that its axes coincided with
X′Y′ Z′ prior to the rotation. Because xyz and x ′y′z′ experience the same rotation, and
therefore maintain their relative orientation, [R′] also describes the relation between
these coordinate systems. Thus we have⎧⎪⎪⎨

⎪⎪⎩
AX′

AY′

AZ′

⎫⎪⎪⎬
⎪⎪⎭ = [R′]

⎧⎪⎪⎨
⎪⎪⎩

AX

AY

AZ

⎫⎪⎪⎬
⎪⎪⎭ ,

⎧⎪⎪⎨
⎪⎪⎩

Ax ′

Ay ′

Az′

⎫⎪⎪⎬
⎪⎪⎭ = [R′]

⎧⎪⎪⎨
⎪⎪⎩

Ax

Ay

Az

⎫⎪⎪⎬
⎪⎪⎭ . (3.1.31)

Let φ denote the angle of rotation about the Z′ axis. This is a simple rotation from
the perspective of X′Y′ Z′ and x ′y′z′, so⎧⎪⎪⎨

⎪⎪⎩
Ax ′

Ay ′

Az′

⎫⎪⎪⎬
⎪⎪⎭ = [Rφ]

⎧⎪⎪⎨
⎪⎪⎩

AX′

AY′

AZ′

⎫⎪⎪⎬
⎪⎪⎭ , [Rφ] =

⎡
⎢⎢⎣

cos φ sin φ 0

− sin φ cos φ 0

0 0 1

⎤
⎥⎥⎦ . (3.1.32)

Using Eqs. (3.1.31) to eliminate the primed components in the preceding equation leads
to

[R′]

⎧⎪⎪⎨
⎪⎪⎩

Ax

Ay

Az

⎫⎪⎪⎬
⎪⎪⎭ = [Rφ] [R′]

⎧⎪⎪⎨
⎪⎪⎩

AX

AY

AZ

⎫⎪⎪⎬
⎪⎪⎭ . (3.1.33)

The transformation from XYZ to xyz is readily obtained from the orthonormal property,
which leads to an interesting conceptual picture:

The transformation matrix corresponding to rotation of a coordinate system about an
arbitrary axis is equivalent to a sequence of body-fixed rotations. The first rotation,
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corresponding to [R′] , brings one of the coordinate system’s axes into coincidence
with the rotation axis. This is followed by a simple rotation [Rφ] about the designated
rotation axis, after which the inverse of the first rotation is executed, so that

⎧⎪⎪⎨
⎪⎪⎩

Ax

Ay

Az

⎫⎪⎪⎬
⎪⎪⎭ = [R]

⎧⎪⎪⎨
⎪⎪⎩

AX

AY

AZ

⎫⎪⎪⎬
⎪⎪⎭ , [R] = [R′]T [Rφ] [R′] . (3.1.34)

The converse of the preceding is Euler’s theorem, which states that any rotation is
equivalent to a single rotation about an axis. Let us consider the task of finding the angle
and axis of such a rotation given [R] . In the analysis leading to Eq. (3.1.34) we saw that
the Z′ axis has a constant orientation relative to xyz. Hence, the direction cosines of Z′

with respect to xyz after the rotation are the same as its direction cosines with respect
to XYZ. However, the direction cosines of any vector with respect to xyz and XYZ are
related by [R]. Consequently, we have⎧⎪⎪⎨

⎪⎪⎩
�Z′ X

�Z′Y

�Z′ Z

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

�Z′x

�Z′ y

�Z′z

⎫⎪⎪⎬
⎪⎪⎭ = [R]

⎧⎪⎪⎨
⎪⎪⎩

�Z′ X

�Z′Y

�Z′ Z

⎫⎪⎪⎬
⎪⎪⎭ . (3.1.35)

Thus we obtain a set of simultaneous equations for the direction cosines of K̄ ′:

[[R] − [U]]
{

K ′} = {0} ,
{

K ′} =

⎧⎪⎪⎨
⎪⎪⎩

�Z′ X

�Z′Y

�Z′ Z

⎫⎪⎪⎬
⎪⎪⎭ . (3.1.36)

There must be a nontrivial solution for the direction cosines, which will be true only
if
∣∣[R] − [U]

∣∣ = 0. In other words, [R] − [U] is rank deficient, which means that one or
more of the elements of

{
K ′} is arbitrary. We can solve Eqs. (3.1.36) for two direction

cosines in terms of the arbitrary one. Then all three values may be determined from the
fact that K̄ ′ is a unit vector, so that �2

Z′ X + �2
Z′Y + �2

Z′ Z = 1.

An alternative procedure for determining the direction cosines comes from solving
the matrix eigenvalue problem described by

[[R] − λ [U]] {ξ} = {0} , (3.1.37)

which gives nontrivial solutions if
∣∣[R] − λ [U]

∣∣ = 0. Because
∣∣[R] − [U]

∣∣ = 0, it follows
that one of the eigenvalues must be unity. The eigenvector corresponding to λ = 1 and
having a unit Euclidean norm will be

{
K ′} . In other words

[[R] − λ j [U]]
{
ξ j

} = {0} gives
{
ξ j

} = {
K ′} if λ j = 1 and

{
ξ j

}T {
ξ j

} = 1. (3.1.38)

Because [R] is a 3 × 3 matrix, there are three eigenvalues. However, only one axis re-
mains stationary in the rotation. This is manifested by the other two eigenvalues being
complex, and therefore irrelevant, although their magnitude is unity. The primary virtue
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of Eqs. (3.1.38) as compared with Eq. (3.1.36) is that the former are readily implemented
with mathematical software.

It still remains to determine the angle of rotation φ corresponding to [R] . A theorem
of matrix algebra leads to an equation that φ must satisfy. The relation between [R] and
[Rφ] given by Eq. (3.1.34) is an orthogonal similarity transformation. (We will encounter
this matter in greater detail in Chapter 5 when we discuss the inertia properties of rigid
bodies.) An important property of such a transformation is constancy of the trace of
the matrix, which is the sum of the diagonal terms. Thus tr[R] = tr[Rφ]. In view of the
definition of [Rφ], it follows that the angle of rotation must satisfy

1 + 2 cos φ = tr[R], (3.1.39)

which is a relation that was derived by Euler.
The difficulty with Eq. (3.1.39) is that it does not uniquely determine φ because

cos φ = cos (−φ) . This ambiguity in the sign of φ is associated with the fact that Eqs.
(3.1.38) are satisfied by −{K ′}, as well as by +{K ′}. Physically, the same transformation
will result from φ in the sense of K̄ ′ and −φ in the sense of −K̄ ′.

One way to determine φ involves first determining the transformation [R′] in
Eq. (3.1.34). The direction cosines

{
K ′} are taken to be known from Eqs. (3.1.36) or

(3.1.38). The orientation of the X′ and Y′ axes was unspecified in the development lead-
ing to Eq. (3.1.34). Let us impose the condition that the Y′ axis should lie in the XY
plane. This is the situation in Fig. 3.8, where ψ is the angle between the Y and Y′ axes
and θ is the angle between the Z and Z′ axes. It is evident from the figure that all pos-
sible orientations of the Y′ axis in the XY plane are covered by −π < ψ ≤ π, whereas
any Z′ axis is described by 0 ≤ θ < π.

X Y

Z, Z1

θ

θ

Z'

X1

ψ

ψ

Y1,Y'

X'

Figure 3.8. Sequence of rotations leading to a coordinate system whose
Z ′ axis coincides with an arbitrary rotation axis.

It is possible to construct [R′] in terms of ψ and θ by use of Fig. 3.8 to project Ī ′,
J̄ , and K̄ ′ onto the XYZ axes. Alternatively, one can consider [R′] to be the result of
a pair of body-fixed rotations: ψ about the Z′ axis, followed by θ about the Y′ axis.
(This viewpoint will be used in Chapter 4, where ψ and θ will be identified as two of the
Eulerian angles used to standardize the description of motion. The third Eulerian angle
will be φ.) Either construction leads to

[R′] =

⎡
⎢⎢⎣

cos ψ cos θ sin ψ cos θ − sin θ

− sin ψ cos ψ 0

cos ψ sin θ sin ψ sin θ cos θ

⎤
⎥⎥⎦ . (3.1.40)
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The last row consists of the direction cosines of the Z′ axis. Equating these to the corre-
sponding elements of

{
K ′} leads to

�Z′ Z = cos θ,

�Z′Y = sin ψ sin θ,

�Z′ X = cos ψ sin θ.

(3.1.41)

These relations may be solved for the values of θ and ψ. Only values 0 ≤ θ ≤ π are
meaningful, and the quadrant of ψ must be consistent with the last two relations.

Knowledge of ψ and θ allows us to fill in the missing elements of [R′] in Eq. (3.1.40).
The corresponding [Rφ] obtained by solving Eq. (3.1.34) with the aid of the orthonormal
property is

[Rφ] = [R′] [R] [R′]T
. (3.1.42)

Matching the result of this calculation to Eqs. (3.1.32) leads to values of cos φ and sin φ,

which together enable us to place φ in the proper quadrant.

EXAMPLE 3.4 Construct [R] corresponding to angles ψ = −30◦ and θ = 125◦ in
Fig. 3.8, with φ = −143.13◦ being the angle of rotation about the Z′ axis. Then test
the procedure for ascertaining the angle and axis of rotation by extracting the values
of φ, θ, and ψ from the resulting [R].

SOLUTION This example entails application of all the concepts associated with rota-
tion about an arbitrary axis. We begin by evaluating Eqs. (3.1.40) and (3.1.32) for
the given angles,

[R′] =

⎡
⎢⎢⎣

−0.4967 0.2868 −0.8192

0.5 0.866 0

0.7094 −0.4096 −0.5736

⎤
⎥⎥⎦ ,

[Rφ] =

⎡
⎢⎢⎣

−0.8 −0.6 0

0.6 −0.8 0

0 0 1

⎤
⎥⎥⎦ .

The overall transformation is found from Eq. (3.1.34) to be

[R] =

⎡
⎢⎢⎣

0.1059 −0.1789 −0.9782

−0.8671 −0.4980 −0.0028

−0.4867 0.8485 −0.2078

⎤
⎥⎥⎦ . �

We now wish to work backwards to determine the angles associated with this
transformation. We could determine

{
K ′} by solving Eqs. (3.1.38) with the aid of

Matlab’s eigen or Mathcad’s eigenvec function. Instead we shall follow Eqs. (3.1.36).
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We subtract the identity matrix from [R] and recognize that only two of the rows
are linearly independent because

∣∣[R] − [U]
∣∣ = 0. Using the first two rows leads to

[
0.1059 −0.1789 −0.9782

−0.8671 −0.4980 −0.0028

]⎧⎪⎪⎨
⎪⎪⎩

�Z′ X

�Z′Y

�Z′ Z

⎫⎪⎪⎬
⎪⎪⎭ =

{
0

0

}
.

We have two equations for three unknowns, so we take �Z′ Z to be arbitrary, and
solve for the other direction cosines:[

0.8941 −0.1789

−0.8671 −1.4980

]{
�Z′ X

�Z′Y

}
=
{

0.9782�Z′ Z

0.0028�Z′ Z

}
,

�Z′ X = −1.2368�Z′ Z, �Z′Y = 0.7141�Z′ Z.

We find �Z′ Z from the fact that K̄ ′ is a unit vector, so that

�2
Z′ X + �2

Z′Y + �2
Z′ Z = (

1.23682 + 0.71412 + 1
)
�2

Z′ Z = 1.

The sign of �Z′ Z is not defined by this relation. Because we require that 0 ≤ θ < π,

setting �Z′ Z = cos θ would lead to two alternative values for θ. Let us use the positive
root, so that θ will be acute, specifically,

�Z′ Z = 1

(1.23682 + 0.71412 + 1)1/2 = 0.5736 = cos θ,

θ = 55◦. �

The second and third of Eqs. (3.1.41) then lead to

�Z′Y = sin ψ sin θ = 0.4096, �Z′ X = cos ψ sin θ = −0.7094.

These relations place ψ in the second quadrant:

ψ = 150◦. �

Equation (3.1.40) indicates that the transformation [R′] corresponding to the
calculated ψ and θ is

[R′] =

⎡
⎢⎢⎣

−0.4967 0.2868 −0.8192

−0.5 −0.866 0

−0.7094 0.4096 0.5736

⎤
⎥⎥⎦ .
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We use Eq. (3.1.42) to find the value of [Rφ] corresponding to the preceding, and
match the result to the standard expression in Eqs. (3.1.32), which leads to

[Rφ] = [R′] [R] [R′]T =

⎡
⎢⎢⎣

−0.8 0.6 0

−0.6 −0.8 0

0 0 1

⎤
⎥⎥⎦ ,

=

⎡
⎢⎢⎣

cos φ sin φ 0

− sin φ cos φ 0,

0 0 1

⎤
⎥⎥⎦ ,

φ = 143.13◦. �

The values of ψ and θ are 180◦ greater than the given values, which means that the
identified Z′ axis is oriented oppositely from the rotation axis that was specified in
the problem statement. Correspondingly, the value of φ that was found is the nega-
tive of the specified value. In other words, we have identified the opposite rotation
about the opposing axis. This situation is a consequence of using a positive sign for
the square root leading to �Z′ Z.

3.2 DISPLACEMENT

The rotation transformation relates the components of a vector with respect to two coor-
dinate systems having different orientation. For many vectors, such as force or velocity,
only their direction angles relative to the reference directions are significant. This ob-
servation enabled us to develop the rotation transformation by depicting the coordinate
systems as having a common origin, with the tail of the vector situated at that origin.
The situation is different for position vectors. Figure 3.1 described the position of an ar-
bitrary point P as it is observed from two different reference frames. The position with
respect to the fixed reference frame is r̄P/O, whose components with respect to the sta-
tionary XYZ coordinate system can be designated as XP, YP, and ZP. The position with
respect to a moving reference frame is r̄P/O′ . Because the moving xyz coordinate system
provides the viewpoint for this vector, we use the associated coordinates xP, yP, and zP

to describe r̄P/O′ .

To implement Eq. (3.1.1) by adding like components, we need to describe all vectors
in terms of components relative to the same coordinate directions. We may use a rota-
tion transformation for this task by observing in Fig. 3.1 that x ′y′z′ is parallel to XYZ.

If the former coordinate system is to be useful, it must be that we know where its origin
is, which means that we know XO′, YO′, and ZO′ . To represent the components of r̄P/O′

with respect to XYZ, we use the rotation transformation [R] between x ′y′z′ and xyz.
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(rO'/O)f
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Figure 3.9. Displacement of a point as viewed from a
moving reference frame. Points (P)o and (P)f are the
original and final positions, respectively.

This lead to the general positional transformation, which is described by

[XP YP ZP]T = [XO′ YO′ ZO′]T + [R]T [xP yP zP]T
. (3.2.1)

Proper application of this relation requires that we be cognizant of the fact that [R] is
defined to give components relative to xyz, given x ′y′z′ components, and that x ′y′z′ is
parallel to XYZ. Obviously, when xyz coincides with x ′y′z′, so that [R] is the identity
matrix, the preceding reduces to the translational transformation, Eq. (3.1.3).

A key aspect of the description of motion is evaluation of the displacement of a
point, which is the position shift from an initial reference location to the current location,

�r̄P = (r̄P/O)f − (r̄P/O)o , (3.2.2)

where the subscripts “o” and “f” are shorthand for original and final. Note that the origin
O does not need to be indicated in the notation for �r̄P because the displacement vector
merely extends from the initial to the final position, for which the location of the origin
O is irrelevant.

The simplest evaluation of displacement is encountered when both positions are
known in terms of their coordinates relative to a stationary XYZ reference frame. In
that case, the displacement components are merely the difference of like coordinates. In
matrix form, we have

⎧⎪⎪⎨
⎪⎪⎩

�rPX

�rPY

�rPZ

⎫⎪⎪⎬
⎪⎪⎭ ≡

⎧⎪⎪⎨
⎪⎪⎩

�XP

�YP

�ZP

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

(XP)f

(YP)f

(ZP)f

⎫⎪⎪⎬
⎪⎪⎭−

⎧⎪⎪⎨
⎪⎪⎩

(XP)o

(YP)o

(ZP)o

⎫⎪⎪⎬
⎪⎪⎭ . (3.2.3)

The more usual case involves observation of some aspects of motion from a moving
reference frame. This would be the case if we were in an airplane observing the dis-
placement of another airplane. Consider the situation in Fig. 3.9, in which the position
of point P is described by a position vector from the origin of a coordinate system xyz
that executes a known motion. In this viewpoint, the original and final positions are each
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described by Eq. (3.2.1), with subscripts “o” and “f” used to designate the original and
final states. Taking the difference of these expressions yields the displacement:

⎧⎪⎪⎨
⎪⎪⎩

�rPX

�rPY

�rPZ

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

�rO′ X

�rO′Y

�rO′ Z

⎫⎪⎪⎬
⎪⎪⎭+ [R]T

f

⎧⎪⎪⎨
⎪⎪⎩

(xP)f

(yP)f

(zP)f

⎫⎪⎪⎬
⎪⎪⎭

− [R]T
o

⎧⎪⎪⎨
⎪⎪⎩

(xP)o

(yP)o

(zP)o

⎫⎪⎪⎬
⎪⎪⎭ .

(3.2.4)

The relative displacement (�r̄P)xyz is the displacement that an observer moving in
unison with xyz would see. Such an observer would consider the orientation of xyz to
be invariant, so only the change in the values of (xP, yP, zP) would be seen. Thus,

(�r̄P)xyz = [(xP)f − (xP)0] ī + [(yP)f − (yP)0] j̄ + [(zP)f − (zP)0] k̄. (3.2.5)

To emphasize the difference between (�r̄P)xyz and �r̄P, the latter is sometimes called an
absolute displacement. [Consistency of the notation suggests that the absolute displace-
ment should be denoted as (�r̄P)XYZ , but we shall not do so for brevity. Instead, the
absence of a subscript denoting a reference frame should be understood to mean that a
displacement, and later, a velocity or acceleration, is relative to the stationary reference
frame.] The matrix representation of Eq. (3.2.5) is

⎧⎪⎪⎨
⎪⎪⎩

(xP)f

(yP)f

(zP)f

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

(xP)o

(yP)o

(zP)o

⎫⎪⎪⎬
⎪⎪⎭+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(�r̄P)xyz · ī

(�r̄P)xyz · j̄

(�r̄ p)xyz · k̄

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (3.2.6)

Note that a dot product is used to denote which set of displacement components
are under consideration in order to avoid later confusion. Substitution of the preced-
ing equation into Eq. (3.2.4) leads to a useful expression for the Ī J̄ K̄ displacement
components:

⎧⎪⎪⎨
⎪⎪⎩

�r̄P · Ī

�r̄P · J̄

�r̄P · K̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

�r̄O′ · Ī

�r̄O′ · J̄

�r̄O′ · K̄

⎫⎪⎪⎬
⎪⎪⎭+ [R]T

f

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(�r̄P)xyz · ī

(�r̄P)xyz · j̄

(�r̄ p)xyz · k̄

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
[
[R]T

f − [R]T
o

]
⎧⎪⎪⎨
⎪⎪⎩

(xP)o

(yP)o

(zP)o

⎫⎪⎪⎬
⎪⎪⎭ .

(3.2.7)
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Equation (3.2.7) highlights that when motion is described in terms of a moving ref-
erence frame, three effects combine to give the displacement relative to a stationary
reference frame. If xyz were to translate, so that [R]f ≡ [R]o , and if the coordinates of
point P relative to xyz were constant, so that (�r̄P)xyz ≡ 0̄, then only the displacement
of the origin of xyz would matter. Thus (�r̄O′)XYZ is called the translational displace-
ment. If xyz translates, but the position of point P relative to xyz is not constant, then
the relative displacement is superposed onto the translational displacement. Finally, if
xyz rotates, so that [R] is no longer constant, then the last term, representing the rota-
tional displacement expressed in terms of Ī J̄ K̄ components, superposes onto the other
contributions. These three influences also will be encountered when we use a moving
reference frame to describe velocity.

There are many situations in which it is more desirable to use the moving reference
frame to describe vector components. For example, such a description corresponds to
the position of another airplane from a pilot’s perspective. Another general situation is
one in which displacement is used to define strain in order to perform a stress analy-
sis. Such a study is most relevant if viewed relative to favored directions defined with
respect to the body. Equation (3.2.7) describes displacement in terms of Ī J̄ K̄ compo-
nents. Multiplying that expression by [R]f converts it to components relative to the final
xyz orientation. We then use Eq. (3.2.6) to eliminate the original coordinates, with the
result that

⎧⎪⎪⎨
⎪⎪⎩

�r̄P · ī

�r̄P · j̄

�r̄P · k̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

�r̄O′ · ī

�r̄O′ · j̄

�r̄O′ · k̄

⎫⎪⎪⎬
⎪⎪⎭+ [R]f [R]T

o

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(�r̄P)xyz · ī

(�r̄P)xyz · j̄

(�r̄ p)xyz · k̄

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
[
[U] − [R]f [R]T

o

]
⎧⎪⎪⎨
⎪⎪⎩

(xP)f

(yP)f

(zP)f

⎫⎪⎪⎬
⎪⎪⎭ .

(3.2.8)

A common source of error in the application of Eqs. (3.2.7) and (3.2.8) is confusion
regarding the definition of [R] , which is that it converts Ī J̄ K̄ components to ī j̄ k̄ com-
ponents.

It is imperative to realize that this expression and Eq. (3.2.7) describe the same (ab-
solute) displacement. Equation (3.2.7) gives displacement components relative to the
axes of the fixed XYZ coordinate system in terms of the original coordinates of the
point. This description, which is referred to as a Lagrangian description, represents
the perspective of a fixed observer. In contrast, Eq. (3.2.8) is an Eulerian description
giving displacement components relative to the axes of the moving xyz coordinate sys-
tem in terms of the final coordinates. This is the perspective of an observer who moves
in unison with xyz. Which is most suitable depends on the situation to be analyzed. The
study of solid mechanics usually begins with an Lagrangian description, whereas fluid
mechanics analyses are usually most easily carried out with an Eulerian description.
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EXAMPLE 3.5 The sketch shows the initial position of a box, in which its edges
coincided with fixed reference frame XYZ. The box is rotated 30◦ about axis OA,
counterclockwise when viewed from O to A. Determine the displacement of point
B in terms of components relative to xyz, and relative to XYZ.

O

X

YZ
A

1.5 m

2 m

B

1 m
Example 3.5

SOLUTION This example consolidates many of the developments for rotation trans-
formations. To follow corner B as it moves, we attach the xyz coordinate system
to the box, such that the axes coincide with XYZ prior to rotation. Thus the initial
transformation is [R]o = [U] , and the initial coordinates of point B with respect to
xyz are ⎧⎪⎪⎨

⎪⎪⎩
(xB)o

(yB)o

(zB)o

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

1.5

2

1

⎫⎪⎪⎬
⎪⎪⎭ .

We need to establish [R]f , which transforms XYZ to xyz components in the final
position. The rotation takes place about an axis that does not coincide with either set
of axes, so we define an X′Y′ Z′ coordinate system whose Z′ axis coincides with the
diagonal OA. This system may be obtained by a simple rotation about the negative
X axis by θ X = tan−1(2/1). The corresponding transformation from Ī J̄ K̄ to Ī ′ J̄ ′K̄ ′

components is

[R′] =

⎡
⎢⎢⎣

1 0 0

0 cos θ X − sin θ X

0 sin θ X cos θ X

⎤
⎥⎥⎦ .

The specified rotation about the Z′ axis is φ = −30◦, so

[Rφ] =

⎡
⎢⎢⎣

cos 30◦ − sin 30◦ 0

sin 30◦ cos 30◦ 0

0 0 1

⎤
⎥⎥⎦ .
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From Eq. (3.1.34) we find that

[R]f = [R′]T [Rφ] [R′] =

⎡
⎢⎢⎣

0.8660 −0.2236 0.4472

0.2236 0.9732 0.0536

−0.4472 0.0536 0.8928

⎤
⎥⎥⎦ .

The origin O′ was placed at a fixed point, so there is no translational dis-
placement, �r̄O′ = 0̄. Point B is a part of the box, so it does not move relative to
xyz. Thus its coordinates relative to xyz are constant and its relative displacement
is (�r̄B)xyz = 0̄. We may directly employ either Eq. (3.2.7) or Eq. (3.2.8). Setting
[R]o = [U] in the latter shows that the displacement of point B in terms of xyz com-
ponents is ⎧⎪⎪⎨

⎪⎪⎩
�r̄B · ī

�r̄B · j̄

�r̄B · k̄

⎫⎪⎪⎬
⎪⎪⎭ = [[U] − [R]f]

⎧⎪⎪⎨
⎪⎪⎩

(xB)f

(yB)f

(zB)f

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0.2010

−0.3354

0.6708

⎫⎪⎪⎬
⎪⎪⎭ m. �

We could use Eq. (3.2.7) to find the XYZ displacement components, but here it is
simpler to use the rotation transformation [R]T

f to transform to XYZ components:⎧⎪⎪⎨
⎪⎪⎩

�r̄B · Ī

�r̄B · J̄

�r̄B · K̄

⎫⎪⎪⎬
⎪⎪⎭ = [R]T

f

⎧⎪⎪⎨
⎪⎪⎩

0.2010

−0.3354

0.6708

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0.5490

−0.2455

0.4911

⎫⎪⎪⎬
⎪⎪⎭ m. �

EXAMPLE 3.6 The robotic linkage is reconfigured by rotating arm AB by angle θ

about the vertical Z axis, and by angle β about its longitudinal axis. Link BC rotates
about the pin at junction B through angle γ . The pin is horizontal when β = 0. The
system is given a set of rotations consisting of θ = 50◦, β = 30◦, γ = 60◦. The length
Lof link BC changes from 0.5 m to 1.5 m in the course of this motion. Determine the
coordinates of end C with respect to the fixed XYZ coordinate after these rotations.

Y

Z

A

2 m

L

B
θ

γ

X

C
β Example 3.6

SOLUTION This example serves to illustrate the versatility of the general procedure
for evaluating displacements, and the ease with which it may be extended. It should
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be noted that the sequence in which the rotations are applied is not specified. It will
become apparent in the course of the solution that such information is irrelevant for
this system. We define reference frames x1 y1z1 fixed to arm AB, and x2 y2z2 fixed to
arm BC, with the x axis for each aligned with the corresponding arm. The z1 axis is
vertical when β = 0 and the y2 axis is aligned with the pin at connection B, so that
all rotations occur about coordinate axes.

Y

Z

A 2 m L

θ

B

C

x1

γ
x2

β

X

θ
ββ

y2z2

γ

θ

y1

z1

Body-fixed coordinate systems for the robotic link-
age.

The general approach is to use Eq. (3.2.7) to express the displacement of point
B in terms of the rotation of x1 y1z1 and then to describe the displacement of point
C in terms of the displacement of point B and the rotation of x2 y2z2. We use Ī J̄ K̄
components to facilitate relating vector quantities for each body. Thus,

⎧⎪⎪⎨
⎪⎪⎩

�r̄B · Ī

�r̄B · J̄

�r̄B · K̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

�r̄A · Ī

�r̄A · J̄

�r̄A · K̄

⎫⎪⎪⎬
⎪⎪⎭+ [R1]T

f

⎧⎪⎪⎨
⎪⎪⎩

(�r̄B)x1 y1z1
· ī

(�r̄B)x1 y1z1
· j̄

(�r̄B)x1 y1z1
· k̄

⎫⎪⎪⎬
⎪⎪⎭

+
[
[R1]T

f − [R1]T
o

]
⎧⎪⎪⎨
⎪⎪⎩

(x1B)o

(y1B)o

(z1B)o

⎫⎪⎪⎬
⎪⎪⎭ ,

⎧⎪⎪⎨
⎪⎪⎩

�r̄C · Ī

�r̄C · J̄

�r̄C · K̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

�r̄B · Ī

�r̄B · J̄

�r̄B · K̄

⎫⎪⎪⎬
⎪⎪⎭+ [R2]T

f

⎧⎪⎪⎨
⎪⎪⎩

(�r̄C)x2 y2z2
· ī

(�r̄C)x2 y2z2
· j̄

(�r̄C)x2 y2z2
· k̄

⎫⎪⎪⎬
⎪⎪⎭

+
[
[R2]T

f − [R2]T
o

]
⎧⎪⎪⎨
⎪⎪⎩

(x2C)o

(y2C)o

(z2C)o

⎫⎪⎪⎬
⎪⎪⎭ .

We derive the required rotation transformations as a sequence of simple rotations.
In the initial state, like axes were parallel, so

[R1]o = [R2]o = [U] .
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For the transformation from XYZ to the final orientation of x1 y1z1 we may consider
arm AB to rotate first about the Z axis by θ, followed by the β rotation about the
x1 axis, which corresponds to a sequence of body-fixed rotations. Alternatively, we
may consider the β rotation to occur about the X axis, followed by the θ rotation
about the Z axis, which is a space-fixed sequence. Either way, we find that

[R1]f = [Rβ] [Rθ ] =

⎡
⎢⎢⎣

1 0 0

0 cos β sin β

0 − sin β cos β

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤
⎥⎥⎦ .

When γ = 0, like axes of x1 y1z1 and x2 y2z2 are parallel. Thus the final orientation of
x2 y2z2 may be considered to be attained by rotating it about the negative y2 axis by
γ relative to x1 y1z1. This is a body-fixed rotation, so that

[R2]f = [Rγ ] [R1]f =

⎡
⎢⎢⎣

cos γ 0 sin γ

0 1 0

− sin γ 0 cos γ

⎤
⎥⎥⎦ [R1]f .

Next we describe the relative positions and displacements. Because point A is
stationary, �r̄A = 0̄. Also, because point B remains at 2 m along the x1 axis through-
out the motion, (r̄B/A)o = 2ī1 and (�r̄B)x1 y1z1

= 0̄. In contrast, point C remains on
the x2 axis, but its distance to the origin of x2 y2z2 increases from 0.5 m to 1.5 m,
so it displaces 1 m in the x2 direction relative to x2 y2z2. Thus (r̄C/B)o = 0.5ī2 and
(�r̄C)x2 y2z2

= 1ī2. Substituting the given values of θ, β, and γ into the earlier ex-
pressions for �r̄B and �r̄C leads to

⎧⎪⎪⎨
⎪⎪⎩

�r̄B · Ī

�r̄B · J̄

�r̄B · K̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

−0.7144

1.5321

0

⎫⎪⎪⎬
⎪⎪⎭ m,

⎧⎪⎪⎨
⎪⎪⎩

�r̄C · Ī

�r̄C · J̄

�r̄C · K̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

−0.2348

1.6891

1.1250

⎫⎪⎪⎬
⎪⎪⎭ m. �

3.3 TIME DERIVATIVES

When we observe a movement over a reasonably long time interval, the change in po-
sition coordinates is measurable and the rotations about various axes are finite. Con-
sequently, there is substantial change in a system’s geometrical configuration. In con-
trast, the definition of velocity is that it is the ratio of the infinitesimal displacement to
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the infinitesimal time over which the displacement occurs. The change from finite to
infinitesimal quantities actually simplifies many aspects of a kinematical analysis, essen-
tially because the changing geometry will not be an issue.

We consider initial and final positions that are infinitesimally different and use
Eq. (3.2.8) to describe the associated displacement in terms of components relative to
the final orientation of xyz. The absolute displacements of the origin O′ and of the ob-
served point P are differential quantities, dr̄O′ and dr̄P, and the relative displacement is
(dr̄P)xyz . The orientation of xyz relative to XYZ in the initial position is described by
[R]o , which is considered to be known.

To obtain [R]f we recall that any transformation matrix has only three independent
direction cosines and corresponding angles. This allows us to consider xyz to move from
its initial to final orientation by executing infinitesimal rotations about each of its axes,
dθ x, dθ y, dθ z, in the listed sequence. Because this is a sequence of body-fixed rotations,
we have

[R]f = [Rz] [Ry] [Rx] [R]o . (3.3.1)

For a differential angle dθ, we have cos dθ = 1 and sin dθ = dθ, so the simple rota-
tion transformations are

[Rx] =

⎡
⎢⎢⎣

1 0 0

0 1 dθ x

0 −dθ x 1

⎤
⎥⎥⎦ , [Ry] =

⎡
⎢⎢⎣

1 0 −dθ y

0 1 0

dθ y 0 1

⎤
⎥⎥⎦ , [Rx] =

⎡
⎢⎢⎣

1 dθ z 0

−dθ z 1 0

0 0 1

⎤
⎥⎥⎦ .

(3.3.2)
Evaluating the products in Eq. (3.3.1) yields

[R]f =

⎡
⎢⎢⎣

1 dθ z + dθ ydθ x −dθ y + dθ zdθ x

−dθ z 1 − dθ zdθ ydθ x dθ x + dθ zdθ y

dθ y −dθ x 1

⎤
⎥⎥⎦ [R]o . (3.3.3)

The second-order differential quantities in the preceding equation are unimportant to
the evaluation of a derivative. Thus substituting Eq. (3.3.3) into Eq. (3.2.8) for the case
of differential displacements gives⎧⎪⎪⎨

⎪⎪⎩
dr̄P · ī

dr̄P · j̄

dr̄P · k̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

dr̄O′ · ī

dr̄O′ · j̄

dr̄O′ · k̄

⎫⎪⎪⎬
⎪⎪⎭+

⎡
⎢⎢⎣

1 dθ z −dθ y

−dθ z 1 dθ x

dθ y −dθ x 1

⎤
⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(dr̄P)xyz · ī

(dr̄P)xyz · j̄

(dr̄p)xyz · k̄

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎡
⎢⎢⎣

0 −dθ z dθ y

dθ z 0 −dθ x

−dθ y dθ x 0

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

(xP)f

(yP)f

(zP)f

⎫⎪⎪⎬
⎪⎪⎭ .

(3.3.4)

The second term on the right side also contains second-order differentials, which are
unimportant. Another simplification is that because all displacements and rotations are
infinitesimal, there is no significant difference between using the initial or final position
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coordinates in the last term. This allows us to denote the position of point P as r̄P/O′ =
xPī + yP j̄ + zPk̄. Thus⎧⎪⎪⎨

⎪⎪⎩
dr̄P · ī

dr̄P · j̄

dr̄P · k̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

dr̄O′ · ī

dr̄O′ · j̄

dr̄O′ · k̄

⎫⎪⎪⎬
⎪⎪⎭+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(dr̄P)xyz · ī

(dr̄P)xyz · j̄

(dr̄p)xyz · k̄

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎡
⎢⎢⎣

0 −dθ z dθ y

dθ z 0 −dθ x

−dθ y dθ x 0

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

xP

yP

zP

⎫⎪⎪⎬
⎪⎪⎭ .

(3.3.5)

The important features of the preceding equation emerge when we recognize that it
is the matrix representation of a vector equation, specifically,

dr̄P = dr̄O′ + (dr̄P)xyz + dθ × r̄P/O′ , (3.3.6)

where

dθ = dθ xī + dθ y j̄ + dθ zk̄ (3.3.7)

is the infinitesimal rotation vector. It is evident from Eq. (3.3.6) that the only significant
feature of an infinitesimal rotation is its vector sum, defined by Eq. (3.3.8). This would
seem to conflict with the earlier observation that rotations cannot be represented as vec-
tors, because the rotation transformation depends on the sequence in which rotations
occur. To understand the difference between finite and infinitesimal rotations, consider
altering the sequence in which the infinitesimal rotations were applied in Eq. (3.3.1),
for example by performing dθ z, followed by dθ y, then dθ x. Regardless of the sequence,
only the second-order differentials in Eq. (3.3.3) would be different, and such terms are
dropped. Furthermore, the transformations for space-fixed and body-fixed axes differ
only by the sequence in which the individual rotation transformations are multiplied.
Consequently, the same transformation is obtained if a set of infinitesimal rotations are
imparted about body fixed or space fixed axes. Geometrically, the fact that an infinitesi-
mal displacement depends on neither the type of rotation, body fixed or space fixed, nor
the sequence of the rotations has a simple explanation: When rotations are infinitesimal,
the difference between the initial and final orientation of any rotation axis is negligible.

A corollary of the fact that infinitesimal rotation is a vector is that the additive prop-
erty applies, even if the individual rotations are not about coordinate axes. Specifically,
when there are several rotations dθn about directions ēn that are parallel to the respec-
tive rotation axes in the sense of the right-hand rule (curl the fingers of the right hand
about the axis in the sense of the rotation; the extended thumb gives the sense of the
vector), then

dθ =
∑

n

dθnēn. (3.3.8)

It should be noted that the overbar is placed above the entire symbol dθ denoting the
infinitesimal rotation in order to emphasize that there is no finite rotation vector from
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which the differential is formed. A principal advantage of Eq. (3.3.6) over Eq. (3.3.5)
is that the vector form is independent of how the vectors are described—one can use
whichever set of components is most suitable to the task of describing each quantity,
then transform each set of components as necessary to sum the terms.

The underlying reason for studying differential displacement is that velocity is v̄ =
dr̄/dt. Thus dividing Eq. (3.3.6) by the time interval dt over which the displacement
occurs gives us an expression for velocity of point P:

v̄P = v̄O′ + (v̄P)xyz + ω̄ × r̄P/O′, (3.3.9)

where ω̄ is the angular velocity of xyz, which is defined as

ω̄ ≡ dθ

dt
. (3.3.10)

To explain (v̄P)xyz we recall the definition of relative displacement, Eq. (3.2.5), ac-
cording to which the components of (dr̄P)xyz are the infinitesimal increments of the xyz
coordinates of point P. Thus the components of (v̄P)xyz are the rates of change of those
coordinates, that is,

(v̄P)xyz = ẋPī + ẏP j̄ + żPk̄. (3.3.11)

Because an observer on xyz would not see the coordinate axes’ orientation change, we
say that (v̄P)xyz is the velocity relative to xyz, or more simply, the relative velocity.

We will develop a consistent methodology for analyzing velocity and acceleration
with the aid of moving reference frames, but one basic relation still remains to be de-
rived. An alternative description of v̄P in terms of the velocity of the origin comes about
when we differentiate the description of position given by Eq. (3.1.1), which gives

v̄P = v̄O′ + d
dt

(r̄P/O′) . (3.3.12)

A comparison of this and Eq. (3.3.9) shows that

d
dt

(r̄P/O′) = (v̄P)xyz + ω̄ × r̄P/O′ . (3.3.13)

We arrive at an important generalization when we recall that Eq. (3.3.11) defines the ī j̄ k̄
components of (v̄P)xyz to be the rates of change of the xyz coordinates of point P, which
are, in turn, the ī j̄ k̄ components of r̄P/O′ . Thus (v̄P)xyz is like a partial time derivative
of r̄P/O′ in which account is taken of the variability of the components of r̄P/O′, but the
orientation of the ī, j̄, k̄ unit vectors is held constant. We shall generally use a partial
derivative to denote such an operation. Specifically, if Ā is any vector, then

Ā = Axī + Ay j̄ + Azk̄ =⇒ ∂ Ā
∂t

≡ Ȧxī + Ȧy j̄ + Ȧzk̄, (3.3.14)

in which viewpoint, (v̄P)xyz = ∂ (r̄P/O′) /∂t. We refer to the result of differentiating the
components of a vector, without regard to the changing orientation of these compo-
nents, as a relative derivative. (Many other texts, including earlier versions of this one,
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denoted this operation as δ/δt. The δ symbol is reserved here for operations that will be
encountered in Chapter 7 on analytical mechanics.) The analogy between r̄P/O′ and any
other vector allows us to conclude from Eq. (3.3.13) that

The time rate of change of any vector Ā described in terms of components relative to
reference frame xyz having angular velocity ω̄ is

˙̄A = ∂ Ā
∂t

+ ω̄ × Ā. (3.3.15)

A less general case is that in which Ā is one of the unit vectors of xyz, which we denote
by the generic symbol ē. Clearly, ∂ ē/∂t = 0̄, so we find that

ē = ī, j̄, or k̄ =⇒ ·
ē = ω̄ × ē. (3.3.16)

We will invoke this relation frequently as part of the methodology for analyzing
angular acceleration. Figure 3.10(a) shows a typical unit vector ē before and after an in-
finitesimal rotation. The axis of rotation is parallel to ω̄. The amount by which ē changes
is the difference dē between the final vector (ē)f and original vector (ē)o. This difference
is depicted in Fig. 3.10(b), where the tails of (ē)f and (ē)o have been brought to the axis
represented by dθ . The sketch shows that only the portion of ē that is perpendicular to
the rotation axis changes; call this component ē⊥. The line in Fig. 3.10(b) representing
ē⊥ rotates through the angle

∣∣dθ
∣∣. Hence the arc that represents dē has a length |ē⊥| dθ ,

and the direction of dē is perpendicular to both ē and dθ . The magnitude of a cross prod-
uct is defined to be the product of the magnitude of one vector and the perpendicular
component of the other vector, and the direction of the product is perpendicular to the
individual vectors in the sense of the right-hand rule. It follows that the pictorial analysis
fully agrees with Eq. (3.3.16). The fact that the change of ē is perpendicular to ē is an-
other manifestation of the general property derived in the study of tangent and normal
components, as well as curvilinear coordinates.

(e)o
de

(e⊥)f

(e⊥)o

(e)o

(e)f

(e)f

|dθ|

dθ

|dθ|

X

Y

Z

R
ot

at
io

n 
ax

is

(a) (b)

Figure 3.10. The change of a unit vector resulting from an infinitesimal rotation: (a) movement of the unit
vector, (b) construction of the difference between the new and original unit vectors.
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EXAMPLE 3.7 Consider the linkage in Example 3.6 when the final position spec-
ified there is the starting configuration, so that Lo = 1.5 m, θo = 50◦, βo = 30◦,
γ o = 60◦. From that position the following increments are applied: �L = 12 mm,
�θ = 0.5◦, �β = −0.5◦, �γ = −1◦. Determine the associated displacement using
the exact matrix transformation technique, and compare it with the approximate
value obtained by considering the rotation to be infinitesimal.

SOLUTION An objective of this example is to demonstrate the simplifications en-
countered in the transition from finite displacement to velocity. To apply the de-
velopments in the previous example here, we recognize that the final configuration
obtained there is now the initial, so we have

[R1]o =

⎡
⎢⎢⎣

1 0 0

0 cos βo sin βo

0 − sin βo cos βo

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cos θo sin θo 0

− sin θo cos θo 0

0 0 1

⎤
⎥⎥⎦ ,

[R2]o =

⎡
⎢⎢⎣

cos γ o 0 sin γ o

0 1 0

− sin γ o 0 cos γ o

⎤
⎥⎥⎦ [R1]o .

The transformations [R1]f and [R2]f for the final location are obtained by replacing
the angles in the preceding by θo + �θ, βo + �β, and γ o + �γ . Relative to x2 y2z2,

which is attached to arm BC, the position and displacement are (r̄C/B)o = 1.5ī2 and
(�r̄C)x2 y2z2

= (�L) ī2. It still is true that r̄B/A = 2ī and �r̄A = (�r̄B)x1 y1z1
= 0̄. Sub-

stitution of these terms into Eq. (3.2.7) to evaluate �r̄B, and then �r̄C, leads to

⎧⎪⎪⎨
⎪⎪⎩

�r̄B · Ī

�r̄B · J̄

�r̄B · K̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

13.42

11.16

0

⎫⎪⎪⎬
⎪⎪⎭ mm,

⎧⎪⎪⎨
⎪⎪⎩

�r̄C · Ī

�r̄C · J̄

�r̄C · K̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

−5.28

49.08

3.01

⎫⎪⎪⎬
⎪⎪⎭ mm.

�

To perform the analysis based on the infinitesimal approximation we use Eq.
(3.3.6) to relate the displacements of points A, B, and C. The rotation angles from
the initial to final positions are small, but finite, so these relations are approxi-
mate. We let �θ1 and �θ2 denote small rotation vectors for the respective reference
frames. Because �r̄A = (�r̄B)x1 y1z1

= 0̄, we have

�r̄B ≈ �θ1 × r̄B/A, �r̄C ≈ �r̄B + (�r̄C)x2 y2z2
+ �θ2 × r̄C/B.
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Each small rotation vector is the vector sum of the scalar angles in the directions of
the respective axes. The rotation of x1 y1z1 consists of �θ about the Z axis, followed
by �β about the x1 axis. (Because β is not zero, the z1 axis is not vertical, so we
cannot say that �θ is about the z1 axis.) The vector sum of these rotations is

�θ1 = �θ K̄ + �β ī1.

Because x2 y2z2 rotates by β about the negative y2 axis relative to x1 y1z1, its rotation
vector is the sum of the rotation of x1 y1z1 and �γ in the direction of − j̄2:

�θ2 = �θ K̄ + �β ī1 − �γ j̄2.

Note that the rotation angles must be expressed in units of radians.
To form the sums we need to express all quantities in terms of components rela-

tive to the same set of coordinate axes. We could use Ī J̄ K̄ components for this with
the aid of rotation transformations. However, if we use ī1 j̄1k̄1 components we can
find the required vectors by inspection. We refer back to the sketch of the coordi-
nate axes in Example 3.6. Because k̄1 remains coincident with K̄ in the θ rotation,
K̄ is situated in the y1z1 plane, such that K̄ = sin βo j̄1 + cos βok̄1. (Note that, be-
cause β changes little, we may use the initial geometrical arrangement to describe
components.) The y1 and y2 axes are parallel, so j̄2 = j̄1. Thus we find that

�θ1 = �θ
(
sin βo j̄1 + cos βok̄1

)+ �β ī1,

�θ2 = �θ
(
sin βo j̄1 + cos βok̄1

)+ �β ī1 − �γ j̄1.

The positions and relative displacements were described earlier as r̄B/A = 2ī1,

r̄C/B = 1.5ī2, (�r̄C)x2 y2z2
= (�L) ī2. We convert the last two to ī1 j̄1k̄1 components

by observing that the γ rotation leaves ī2 in the x1z1 plane, so that ī2 = cos γ o ī1 +
sin γ ok̄1. The result of substitution of the various terms corresponding to the given
values of the angles and their increments into the earlier vector expressions for ūB

and ūC is

�r̄B = 0.01511 j̄1 − 0.00873k̄1 m,

�r̄C = 0.03434ī1 + 0.03212 j̄1 − 0.01470k̄1 m.

The first evaluation of �r̄C gave the result in terms of components relative to XYZ.

There is little difference between the initial and the final orientation of xyz in the
present situation, so we may use either the initial or final [R1] to convert the preced-
ing approximate displacement to those components. Using the initial transformation
gives ⎧⎪⎪⎨

⎪⎪⎩
�r̄C · Ī

�r̄C · J̄

�r̄C · K̄

⎫⎪⎪⎬
⎪⎪⎭ = [R1]T

o

⎧⎪⎪⎨
⎪⎪⎩

0.03434

0.03212

−0.01470

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

−4.86

48.91

3.33

⎫⎪⎪⎬
⎪⎪⎭ mm. �

These values are quite close to the previous; decreasing the values of �θ, �β, �γ ,

and �L would improve the agreement.
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An interesting aspect of the analysis based on the infinitesimal displacement
approximation is that the only place where a rotation transformation matrix was
required was to convert the displacement to the components found from the ex-
act transformation procedure. The steps we followed to carry out the approximate
analysis are like those by which we will analyze velocity and acceleration.

EXAMPLE 3.8 The Frenet formulas give the derivatives of the path variable unit
vectors with respect to the arc length s along an arbitrary curve. Because ṡ = v, these
derivatives may be converted to time rates of change of the unit vectors. Further-
more, the orthonormal directions represented by these unit vectors form a moving
reference frame. Determine the angular velocity of the ēt ēnēb reference frame in
terms of the path variable parameters.

SOLUTION It is useful to begin by recalling the Frenet formulas, which are

dēt

ds
= 1

ρ
ēn,

dēn

ds
= − 1

ρ
ēt + 1

τ
ēb,

dēb

ds
= − 1

τ
ēn. (1)

To convert these to time derivatives, we observe that, if ē is a unit vector that de-
pends on the arc length s locating a point, and s = s(t), then the chain rule gives

dē
dt

= ds
dt

dē
ds

= v
dē
ds

.

Hence, multiplying each of Eqs. (1) by v gives

dēt

dt
= v

ρ
ēn,

dēn

dt
= − v

ρ
ēt + v

τ
ēb,

dēb

dt
= −v

τ
en. (2)

Now let ω̄ = ωt ēt + ωnēn + ωbēb be the angular velocity of ēt ēnēb. Each unit vec-
tor has constant components relative to the reference frame, so Eq. (3.3.16) applies.
Thus,

dēt

dt
= ω̄ × ēt = ωbēn − ωnēb,

dēn

dt
= ω̄ × ēn = −ωbēt + ωt ēb,

dēb

dt
= ω̄ × ēb = ωbēt − ωt ēn.

(3)

Matching like components in Eqs. (2) and (3) leads to

ωb = v

ρ
, ωn = 0, ωt = v

τ
=⇒ ω̄ = v

τ
ēt + v

ρ
ēb. �

We see from this result that a sharp bend in the curve (small ρ) causes a rapid ro-
tation about the binormal direction, which is perpendicular to the osculating plane.
Similarly, a sharp twist (small τ ) causes a rapid rotation about the tangent direction.
There is no rotation about the normal direction because the curve locally lies in the
osculating plane.
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3.4 ANGULAR VELOCITY AND ACCELERATION

We have seen that analysis of velocity by using a moving reference frame requires the
current value of ω̄. A comparable analysis of acceleration requires knowledge of the
angular acceleration, which is defined to be the rate of change of the angular velocity.
The need to differentiate ω̄ requires that we describe this quantity in general terms,
rather than merely ascertaining its instantaneous value.

3.4.1 Analytical Description

We always designate the angular velocity of the xyz reference frame as ω̄. The way in
which we form this crucial quantity is a direct result of substituting Eq. (3.3.8), which
adds infinitesimal rotations about various axes, into the definition of ω̄, Eq. (3.3.10).
This leads to the recognition that

An angular velocity ω̄ is the sum of simple rotations described by angular velocities
ωnēn, where ēn is a unit vector parallel to the respective rotation axis, in accord with
the right-hand rule,

ω̄ =
∑

n

ωnēn. (3.4.1)

Note that there is no rule as to how the rotations are numbered, because sequence is
irrelevant to angular velocity.

The angular acceleration ᾱ of xyz is the rate of change of the angular velocity:

ᾱ ≡ dω̄

dt
. (3.4.2)

Because Eq. (3.4.1) is a general description of ω̄, it may be differentiated to obtain ᾱ.
This operation requires that we evaluate the rate of change of the unit vectors ēn. We use
Eq. (3.3.16) for this purpose, but doing so requires a definition of the reference frame
associated with each ēn. Specifically,

For each simple rotation, define an auxiliary moving reference frame xn ynzn, such that
one of the axes of xn ynzn always coincides with that rotation axis. Hence, ēn is either
īn, j̄n, or k̄n. Let �̄n denote the angular velocity of xn ynzn.

Note that these auxiliary reference frames are quite unrestricted, other than the require-
ment that one of their coordinate axes should always align with a simple rotation axis.
Any of them may actually be the xyz coordinate system, in which case the corresponding
�̄n ≡ ω̄. In general, a single auxiliary reference frame may be associated with more than
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one simple rotation. Also, if an axis of rotation is stationary, we may let the correspond-
ing reference frame be XYZ, corresponding to �̄n = 0̄.

We apply the standard rules for derivatives to Eq. (3.4.1) According to Eq. (3.3.16),
the time derivative of the axis directions is dēn/dt = �̄n × ēn, so we find that

ᾱ =
∑

n

(
ω̇nēn + �̄n × ωnēn

)
. (3.4.3)

An interesting aspect of this description of ᾱ is that the only derivatives we need to
determine explicitly are the ω̇n values.

It is imperative to understand the meaning of the terms in Eq. (3.4.3). Two types
of contributions are associated with each simple rotation. An unsteady rotation rate,
ω̇n �= 0, gives rise to an angular acceleration ω̇nēn that is parallel to the rotation axis. In
addition, even if all rotation rates are constant, there will be an angular acceleration term
if the orientation of any rotation axis is not constant, corresponding to �̄n × ωnēn �= 0̄.
This type of angular acceleration is perpendicular to the rotation axis, as well as the
angular velocity of that axis. Planar motion consists of a single simple rotation about
an axis perpendicular to the plane. Because the orientation of this axis is constant, the
angular acceleration in planar motion does not feature any effect associated with non-
stationary rotation axes. This is one of the primary reasons why intuitive judgements
based on experiences with planar motion are often incorrect.

After the individual terms in Eqs. (3.4.1) and (3.4.3) have been characterized, all
vector quantities should be expressed in terms of a common set of components. This is
necessary so that we may sum the terms by adding like components. The directions used
for this purpose constitute the global coordinate system. One could use the stationary
XYZ axes as the global system, but components relative to the xyz axes, whose angular
motion is described by ω̄ and ᾱ, often are more meaningful. Another possibility is to use
one of the auxiliary reference frames xn ynzn to describe components. A primary reason
for the last choice is that expressing components relative to either XYZ or xyz might
require evaluation of a rotation transformation matrix, whereas it might be possible
to use visual inspection to construct the components relative to one of the auxiliary
coordinate systems. This is especially so because, after we align one axis of xn ynzn with
its associated rotation axis, we are free to align its other axes in a manner that expedites
the description of all vector components.

3.4.2 Procedure

Correct evaluation of ω̄ and ᾱ for a moving xyz reference frame is of primary impor-
tance in several contexts. For that reason, it is appropriate to formalize the concepts and
developments thus far into a sequence of steps that will address most situations.

1. Examine the overall rotation of the body of interest, which is defined as refer-
ence frame xyz. Conceptually decompose it into a sequence of simple rotations ωn,
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n = 1, 2, . . . , where the units of ωn are radians per second. (These simple rotations
are typically the rotation of one part of the system with respect to another part.)

2. For each rotation ωn, define a reference frame xn ynzn such that one of its unit vectors
ī n, j̄n, or k̄n always coincides with the corresponding rotation direction ēn. Note that
these reference frames may be fixed, or else execute some or all of the rotations
associated with xyz, but they will never execute more rotations than xyz. Denote as
ēn the unit vector that is aligned with the axis ωn rotation axis.

3. Select a global coordinate system to be used for evaluating all vector components.
The orientation of this coordinate system should facilitate describing all rotation
directions ēn based on the manner in which linear and angular dimensions of the
system are described. It usually is convenient to use as the global system one of the
set of reference frame axes already defined.

4. Construct the angular velocity vector ω̄ of xyz by vectorially adding the simple ro-
tation rates according to

ω̄ = ω1ē1 + ω2ē2 + · · · . (3.4.4)

5. Vectorially add the simple rotation rates of each xn ynzn to construct the angular
velocity vector �̄n. The form of the superposition sum will be similar to Eq. (3.4.4).

6. Form the angular acceleration ᾱ of xyz by differentiating ω̄ in Eq. (3.4.4). For this
differentiation, use the fact that ēn is one of the unit vectors of xn ynzn, so that
dēn/dt = �̄n × ēn. Thus this step gives

ᾱ = ω̇1ē1 + ω1
(
�̄1 × ē1

)+ ω̇2ē2 + ω2
(
�̄2 × ē2

)+ · · · . (3.4.5)

7. Express each unit vector ēn in terms of its components relative to the global coordi-
nate system, in the form

ēn = �nxî + �nyĵ + �nzk̂ (3.4.6)

where î, ĵ , and k̂ are the unit vectors of whichever coordinate system was selected
as the global one.

8. Substitute the component descriptions of the unit vectors given by Eq. (3.4.6)
into the angular velocity of xyz described by Eq. (3.4.4), and collect like compo-
nents. This gives ω̄ in terms of components with respect to the global coordinate
system.

9. Substitute the component descriptions of the unit vectors given by Eq. (3.4.6) into
each angular velocity �̄n formed in Step 5, and collect like components. This gives
each �̄n in terms of components with respect to the global coordinate system.

10. Substitute the component descriptions of the unit vectors given by Eq. (3.4.6), and
of each �̄n obtained in Step 9, into the angular acceleration given by Eq. (3.4.5).
Collect like components. This gives ᾱ in terms of components with respect to the
global coordinate system.
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EXAMPLE 3.9 The disk rotates about shaft AB at 3600 rev/min as the system ro-
tates about the vertical axis at 20 rad/s. Determine the angular velocity and angular
acceleration of the disk.

60°

A

B

R

L

20 rad/s

3600 rev/min

Example 3.9

SOLUTION This straightforward example illustrates the procedural steps leading to
ω̄ and ᾱ. We attach xyz to the disk, so that ω̄ describes the angular velocity of that
body. There are two rotations: ω1 = 20 rad/s, with ē1 vertically upward by the right-
hand rule, and ω2 = 3600 (2π/60) rad/s with ē2 directed from center B to junction A.

To describe the first rotation we select the fixed XYZ as the first auxiliary reference
frame, with Z defined to be vertical, so that ē1 = K̄ and �̄1 = 0̄. Because there are
only two rotations, we may use xyz as x2 y2z2. Although xyz must be attached to
the disk, we are free to orient it in a manner that expedites description of the second
rotation axis. With this in mind, we observe that shaft AB has a constant orientation
relative to the disk, which enables us to align the z axis with this shaft. Then ē2 = k̄
and �̄2 = ω̄. We show the rotation direction vectors in a simple sketch as an aid to
the task of evaluating components.

60°

B

x

y

x (horizontal)^

ŷ
z, ẑ

ω1

A

Z

e1

ω2

e2

Coordinate systems for describing the angular
motion of the disk.

Several features of this sketch should be noted. First, the location of the origin
of each coordinate system is irrelevant to the task of evaluating the angular motion.
Second, the orientations of the fixed X and Y axes are unimportant from the view-
point of the disk, so these axes have been omitted from the sketch. Third, the only
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aspect of the orientation of xyz requiring specification is that the z axis coincide with
shaft AB. The sketch depicts an arbitrary instant, so the z axis is aligned with shaft
AB, but the x and y axes lie in neither the horizontal nor the vertical plane. The
arbitrariness of these axes will be useful for later developments.

For a global coordinate system we define x̂ ŷẑ to be attached to shaft AB such
that the ẑ axis is always aligned with the z axis, and the x̂ axis is the horizontal
diameter of the disk. This choice for the global system simultaneously facilitates
describing ē1 and ē2. The sketch also depicts the x̂ ŷẑ axes.

The general description of the angular velocity of xyz is

ω̄ = ω1ē1 + ω2ē2 = ω1 K̄ + ω2k̄. (1)

Because the first auxiliary reference frame is stationary, and the second one is xyz,
we have

�̄1 = 0̄, �̄2 = ω̄.

The rotation rates are constant, so the corresponding description of the angular ac-
celeration of xyz is

ᾱ = ω1�̄1 × K̄ + ω2�̄2 × k̄ = ω2ω̄ × k̄. (2)

We find the global components of the unit vectors by inspection of the sketch, which
leads to

K̄ = sin 60◦ĵ + cos 60◦k̂, k̄ = k̂. (3)

Substitution of these unit vectors into Eqs. (1) and (2) yields

ω̄ = 0.866ω1ĵ + (0.5ω1 + ω2) k̂,

ᾱ = ω2
[
0.866ω1ĵ + (0.5ω1 + ω2) k̂

]× k̂ = 0.866ω1ω2 î .

Evaluation of these expressions at the specified rotation rates gives

ω̄ = 17.32ĵ + 387.00k̂ rad/s,

ᾱ = 6530î rad/s2.
�

There is a ready explanation for the sense of the angular acceleration. The gen-
eral expression for ω̄ shows that it is the sum of two terms: ω1 K̄, which is constant,
and ω2k̄, which rotates about the vertical axis. The rate of change of a vector that is
due to its rotation is in the sense of the movement of the vector’s tip when its tail is
considered to be stationary. The tip of the z axis moves horizontally in the rotation
about the Z axis, so the angular acceleration is horizontal in the sense of positive î .
In general, considering whether the result for ᾱ makes sense is an excellent way to
check one’s work.
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EXAMPLE 3.10 The gyroscopic turn indicator consists of a flywheel that spins
about its axis of symmetry at the constant rate ω1 relative to the gimbal, as the
assembly rotates about the fixed horizontal shaft at the variable rate ω2. The angle
β locating the plane of the gimbal relative to the horizontal shaft is an arbitrary
function of time. Determine the angular acceleration of the flywheel at an arbitrary
instant.

β

h/2

h

ω1

ω2

Example 3.10

SOLUTION The angular motion is more complicated here than it was in the previous
example, so this analysis will provide a more complete picture of the procedure. Let
xyz be attached to the flywheel, so that its angular motion is identical to that of the
flywheel. We begin by identifying the constituent simple rotations and draw a sketch
depicting the rotation unit vectors and associated coordinate axes.

x3, x

y3

y

z

z3

X
β

β
ω2

ω1

e3

e2

e1

.
Coordinate systems for the turn indicator.

The ω2 rotation is about the fixed horizontal shaft. Correspondingly, we let
x2 y2z2 be the fixed reference frame XYZ defined such that ē2 = Ī. The ω1 rotation
is about the axis of the flywheel. This direction is fixed relative to the flywheel. We
therefore select x1 y1z1 as xyz, with the specification that the x axis coincides with
the flywheel’s axis of symmetry, so that ē1 = ī . The fact that β is variable means
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that there is a third rotation, β̇, about an axis that is always perpendicular to the
horizontal shaft. To describe it, we attach reference frame x3 y3z3 to the gimbal sup-
porting the flywheel, with the z3 axis defined such that ē3 = k̄3. In the sketch the
x3 axis has been aligned with the gimbal’s shaft, because doing so makes x3 y3z3 a
convenient global coordinate system. (In fact, because ē1 is parallel to the x3 axis,
this x3 y3z3 reference frame could also have been used to describe the ω1 rotation.)
To develop procedures suitable to later developments we observe that because xyz
rotates at ω1 relative to the gimbal, at the arbitrary instant depicted in the sketch
the y and z axes have rotated away from y3 and z3, respectively.

The angular velocity of the flywheel is the sum of the simple rotations, so

ω̄ = ω1ē1 + ω2ē2 + β̇ ē3 = ω1 ī + ω2 Ī + β̇k̄3.

The auxiliary reference frame for ē2 is XYZ, the frame for ē1 is xyz, and the frame
for ē3 is x3 y3z3, which executes the ω2 and β̇ rotations. Thus we have

�̄1 = ω̄, �̄2 = 0̄, �̄3 = ω2 Ī + β̇k̄3.

The only rotation rate that is specified to be constant is ω1, so the general description
of ᾱ corresponding to the preceding expression for ω̄ is

ᾱ = ω1
(
�̄1 × ī

)+ ω̇2 Ī + ω2
(
�̄2 × Ī

)+ β̈k̄3 + β̇
(
�̄3 × k̄3

)
= ω1ω̄ × ī + ω̇2 Ī + β̈k̄3 + β̇

(
ω2 Ī + β̇k̄3

)× k̄3.

We use geometrical projections to describe the global ī3 j̄3k̄3 components of the unit
vectors. This gives

ī = ī3, Ī = cos β ī3 − sin β j̄3.

Substitution of these representations into the expressions for ω̄ and ᾱ gives

ω̄ = (ω1 + ω2 cos β) ī3 − ω2 sin β j̄3 + β̇k̄3,

ᾱ = (
ω̇2 cos β − β̇ω2 sin β

)
ī3 + (−ω̇2 sin β + ω1β̇ − β̇ω2 cos β

)
j̄3

+ (
β̈ + ω1ω2 sin β

)
k̄3.

�

Each term in ᾱ can be explained physically. Unsteady values of ω2 and β̇ give
rise to angular accelerations that are parallel to the respective rotation axes. Terms
that are the products of two rotation rates, and therefore exist even if the rates
are constant, represent angular acceleration effects that are perpendicular to the
simple rotation axes. For example, the terms containing β̇ω2 are a consequence of
ē3 rotating at ω2ē2, which makes the tip of ē3 moves perpendicularly to the X axis in
the x̂3 ŷ3 plane. In contrast, ē1 rotates at β̇ ē3 and ω2ē2. The β̇ ē3 rotation makes the tip
of ē1 move in the ĵ3 direction, which is the direction of the ω1β̇ term in ᾱ. The term
ω1ω2 sin β in the k̂3 component of ᾱ arises because the ω2ē2 rotation makes the tip
of ē1 move in the k̂3 direction. The sin β coefficient in this term arises because only
the component of ē1 perpendicular to the Ī axis changes in this rotation.
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3.5 VELOCITY AND ACCELERATION ANALYSIS USING A MOVING
REFERENCE FRAME

This chapter began with the introduction of a moving reference frame as an aid to de-
scribing displacement. Specializing the relations to the case of infinitesimal movements
led us to Eq. (3.3.9) for velocity. Application of that formula required evaluation of
angular velocity, and we anticipated later developments by also considering angular ac-
celeration. We now return to the study of point motion by deriving a formula for the
acceleration of a point whose movement is observed from a moving reference frame.

Equation (3.3.9) provides a general description of velocity, so it may be differenti-
ated. The time derivative of the origin’s velocity v̄O′ is its acceleration āO′ . The relative
velocity (v̄P)xyz is defined by Eq. (3.3.11) in terms of components relative to the moving
reference frame. Equation (3.3.15) gives the derivative of a vector described in such a
manner, where the ∂/∂t operator defined in Eq. (3.3.14) denotes a time derivative that
ignores the fact that the direction of the unit vectors is not constant. Because the rel-
ative velocity components are the derivatives of the position coordinates, the relative
acceleration is given by

(āP)xyz ≡ ∂

∂t
(v̄P)xyz = ẍPī + ÿP j̄ + z̈Pk̄. (3.5.1)

Correspondingly, we find from Eq. (3.3.15) that

d
dt

(v̄P)xyz = (āP)xyz + ω̄ × (v̄P)xyz . (3.5.2)

Now consider the last term in Eq. (3.3.9). The time derivative of ω̄ is ᾱ, and Eq. (3.3.13)
gives the time derivative of r̄P/O′ . We therefore have

d
dt

(ω̄ × r̄P/O′) = ᾱ × r̄P/O′ + ω̄ ×
[
(v̄P)xyz + ω̄ × r̄P/O′

]
. (3.5.3)

We obtain the acceleration formula by adding Eqs. (3.5.2) and (3.5.3) to āO′ . For later
use the result is accompanied by the previously derived expression for velocity:

v̄P = v̄O′ + (v̄P)xyz + ω̄ × r̄P/O′,

āP = āO′ + (āP)xyz + ᾱ × r̄P/O′ + ω̄ × (ω̄ × r̄P/O′) + 2ω̄ × (v̄P)xyz .
(3.5.4)

With one exception, the terms in these expressions could have been anticipated as
a simple superposition of motion of the origin and motion relative to xyz. The velocity
term ω̄ × r̄P/O′ and the acceleration term ω̄ × (ω̄ × r̄P/O′) are described in Fig. 3.11. By
definition, ω̄ × r̄P/O′ is perpendicular to the plane formed by ω̄ and r̄P/O′, and its magni-
tude is |ω̄| r⊥, where r⊥ is the component of r̄P/O′ perpendicular to ω̄. Thus this term is
like the azimuthal velocity Rθ̇ that occurred in cylindrical coordinates. Furthermore, it
follows that the magnitude of ω̄ × (ω̄ × r̄P/O′) is |ω̄|2 r⊥ and that it is directed along the
perpendicular line from point P toward the rotation axis. Thus this term is a centripetal
acceleration, like the term Rθ̇2 in cylindrical coordinates. Another acceleration term as-
sociated with the rotational motion is ᾱ × r̄P/O′ . Although it appears to be analogous to
the velocity term ω̄ × r̄P/O′, in spatial motion the angular acceleration is nonzero and
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r⊥

rP/O'

ω

ω  ×  rP/O'

ω  × (ω  ×  rP/O')

P
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is

Figure 3.11. Construction of the centripetal acceleration of
a point.

not parallel to the angular velocity, even if all rotation rates are constant. As a result,
the direction of the corresponding acceleration term will generally not be perpendicular
to the plane formed by the rotation axis and r̄P/O′ .

The acceleration term 2ω̄ × (v̄P)xyz is not intuitively obvious, but it is readily ex-
plained. As might be guessed from the two factor, it is the Coriolis acceleration that
was encountered in the study of curvilinear coordinates, for example, 2Ṙθ̇ in cylindrical
coordinates. In fact, as we saw in the study of curvilinear coordinates, Coriolis accel-
eration actually arises from two distinct effects that have equal importance. Equation
(3.5.2) indicates that half the Coriolis acceleration stems from the fact that the compo-
nents of relative velocity have a variable orientation that is due to rotation of the xyz
axes. The other half appears in Eq. (3.5.3), where it is associated with the fact that the
transverse velocity ω̄ × r̄P/O′ is not constant if the coordinates of point P with respect to
xyz are not constant. Thus it is to some extent a misnomer to use a single name to refer
to 2ω̄ × (v̄P)xyz.

One aspect of the relative velocity (v̄P)xyz and relative acceleration (āP)xyz greatly
facilitates their evaluation. These terms may be visualized as the effects that would re-
main if the reference frame were held stationary. They were described in Eqs. (3.3.11)
and (3.5.1), respectively, in terms of a Cartesian coordinate description. However, other
kinematical descriptions, such as path variables or curvilinear coordinates, might be
more appropriate in some situations. If such an approach is employed, it is necessary
to convert those components to the global set of components used to represent all
vectors.

It is instructive to close this discussion by considering two special cases. The situa-
tion in which the xyz frame translates corresponds to ω̄ being identically zero. Hence, ᾱ

also is zero. The relative motion equations then reduce to

v̄P = v̄O′ + (v̄P)xyz ,

āP = āO′ + (āP)xyz .
(3.5.5)

The motion of the origin and of the point relative to the translating reference frame are
additive—there are no corrections for direction changes that are due to rotation. If xyz,
as well as XYZ, is fixed, so that v̄O′ = 0̄ and āO′ = 0̄, then the preceding relations show
that the velocity and acceleration are the same, regardless of which fixed reference frame
is selected. A more important observation arises when xyz is translating at a constant
velocity, so that āO′ = 0̄. (Note that this condition requires that the origin O′ follow a
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straight path.) The second of Eqs. (3.5.5) shows that āP = (āP)xyz in this case. A refer-
ence frame translating at constant velocity is said to be an inertial or Galilean reference
frame. The terminology arises from the fact that the absolute acceleration is observable
from the reference frame, so the frame may be employed to formulate Newton’s Laws.

The second special case arises when point P is fixed with respect to the moving
reference frame. Because the position coordinates then are constant, (v̄P)xyz and (āP)xyz

are both identically zero. This simplifies the velocity and acceleration relations to

v̄P = v̄O′ + ω̄ × r̄P/O′,

āP = āO′ + ᾱ × r̄P/O′ + ω̄ × (ω̄ × r̄P/O′) .
(3.5.6)

A primary reason for highlighting this situation is that it is descriptive of the motion of
a rigid body. If xyz is attached to the body, then the position vectors between points in
the body have constant components relative to the moving reference frame. Also, the
angular motion of the body and of xyz are synonymous in this case. The motion of rigid
bodies is the focus of the next chapter.

General equations (3.5.4) exemplify the notion that using a moving reference frame
allows us to decompose a complicated motion into a set of simpler kinematical analyses
associated with the individual terms in those equations. Application of these formulas
requires definition of xyz. If it is required that ω̄ and ᾱ of a body be determined, then xyz
should be attached to that body. Otherwise, xyz seldom is specified a priori. Its selection
affects the individual terms, although the ultimate results for velocity and acceleration
will be unaffected. Depending on how xyz is defined, some terms will be easier to de-
termine, whereas others will be more difficult. Some general criteria can be identified.
The choice of the body to which xyz is attached dictates which simple rotations combine
to form ω̄. Selecting xyz to execute many rotations complicates the analysis of ω̄ and
ᾱ. However, the methodology laid out in the previous section is reasonably robust, so
no selection is likely to be completely overwhelming. Furthermore, letting xyz execute
many of the rotations is likely to simplify analysis of the relative motion terms (v̄P)xyz

and (āP)xyz. Thus, a guideline for selecting the attachment of xyz is that it should execute
as many rotations as possible, provided that one can evaluate the corresponding ω̄ and
ᾱ. (Once again, the exception is that if ω̄ and ᾱ of a certain body must be determined,
then xyz must be attached to that body.)

The selection of the origin O′ affects the terms v̄O′ and āO′ , as well as r̄P/O′ in Eqs.
(3.2.4) and (3.2.7) for displacement. This selection is restricted by the requirement that
point O′ be one of the points of the body to which xyz is attached. Thus an optimal
approach is to select the body to which xyz is attached by considering the difficulty
entailed in describing ω̄ and ᾱ, simultaneously with considering whether some point in
the body follows a relatively simple path so that the description of v̄O′ and āO′ will be
manageable. (In complicated systems, evaluation of v̄O′ and āO′ might require a separate
analysis with a different moving reference frame.)

As we did for the analysis of ω̄ and ᾱ, we use a global coordinate system to rep-
resent the components of all vectors, so that the various terms may be combined. The
previous section stated a criterion that the orientation of these axes should be selected
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to facilitate representation of the unit vectors ēn for the rotations. Because other terms,
notably (v̄P)xyz and (āP)xyz , must now be represented in component form, it is best that
the global system be selected to facilitate describing all terms. This requires striking a
balance. For example, a certain selection might be ideal for describing the relative mo-
tion terms while simultaneously complicating the component description of the ē j rota-
tion directions. If necessary, one can always employ rotation transformation matrices to
describe the components of any troublesome vectors.

EXAMPLE 3.11 Bar BC is pinned to the T-bar, which is rotating about the vertical
axis at constant rate �. Angle θ is an arbitrary function of time. Determine the
velocity and acceleration of point C using the following alternative approaches: (a)
attach the xyz reference frame to the T-bar; (b) attach the xyz reference frame to
bar BC.

θ

Ω

A
B

C

L2

L1
Example 3.11

SOLUTION By employing two different approaches, this example provides insight
into the decisions one must make. In the first approach, attaching xyz to the T-
bar means that the sole rotation of xyz is � about the fixed vertical axis. Thus we
define the Z axis such that ē1 = K̄. Because � is specified to be constant, the general
descriptions of angular motion are

ω̄ = �ē1 = �K̄, �̄1 = 0̄, ᾱ = �̄1 × K̄ = 0̄.

Any point on the vertical axis of rotation is stationary. Selecting the origin O′

to be point A simplifies the description of r̄P/O′ and gives v̄O′ = āO′ = 0̄. We orient
xyz consistently with the way in which the configuration of the system is specified
and show our choice in a line sketch.

θ Ω
A, O'B

C
L2

L1

θ
.

eθ
eR

x, x^

e1

z, z ^

Z

Kinematical analysis with xyz as a reference frame that is at-
tached to the T-bar.
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To analyze the relative motion we visualize bringing xyz to rest by setting � = 0.

Bar BC would still move in the vertical plane as it pivots about pin B. Thus end
C moves in a circular path at angular speed θ̇ relative to xyz. Polar coordinates
having origin at point B are suitable for describing this relative motion, with the
radial distance R = L2 and θ being the polar angle. The associated unit vectors are
shown in the sketch. The corresponding descriptions of the relative velocity and
acceleration are

(v̄C)xyz = L2θ̇ ēθ , (āC)xyz = −L2θ̇
2ēR + L2θ̈ ēθ .

The axes of xyz are convenient directions for representing vectors, so we use
them as the global directions. (An alternative definition would align the x̂ axis with
bar BC, and place the ẑ axis in the vertical plane. This would simplify the description
of ēR and ēθ , but slightly complicate K̄.) The global descriptions of the unit vectors
are

K̄ = −k̄, ēR = cos θ ī − sin θ k̄, ēθ = − sin θ ī − cos θ k̄.

The corresponding relative position is

r̄C/O′ = (L1 + L2 cos θ) ī − L2 sin θ k̄.

We may now assemble the individual terms. For velocity we have

v̄C = (v̄C)xyz + ω̄ × r̄C/O′

= L2θ̇
(− sin θ ī − cos θ k̄

)+ (−�k̄
)× [

(L1 + L2 cos θ) ī − L2 sin θ k̄
]
,

v̄C = −L2θ̇ sin θ ī − (L1 + L2 cos θ) � j̄ − L2θ̇ cos θ k̄. �

A shortcut for the evaluation of ω̄ × (ω̄ × r̄C/O′) is to retain ω̄ × r̄C/O′ from the ve-
locity analysis. Thus we have

āC = (āC)xyz + ω̄ × (ω̄ × r̄C/O′) + 2ω̄ × (v̄C)xyz

= −L2θ̇
2
(
cos θ ī − sin θ k̄

)+ Lθ̈
(− sin θ ī − cos θ k̄

)+ (−�k̄
)

× [− (L1 + L2 cos θ) � j̄
]+ 2

(−�k̄
)× [

L2θ̇
(− sin θ ī − cos θ k̄

)]
= [−L2θ̇

2 cos θ − Lθ̈ sin θ − (L1 + L2 cos θ) �2
]

ī + 2L�θ̇ sin θ j̄

+ (
L2θ̇

2 sin θ − Lθ̈ cos θ
)

k̄.

�

Obviously, changing the selection of the moving reference frame should not
alter the result. To avoid confusion with the preceding analysis, let x ′y′z′ denote the
moving reference frame that is attached to bar BC. The angular velocity of this bar
is the sum of � about the vertical axis and θ̇ about an axis that is perpendicular to
the plane of the T-bar. Both simple rotations are shown in a new sketch.
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Ω
A,O'

B,O'

C
L2

L1θθ
.

e2 (out)

e1

z2

Z

x2

x'

z'

Kinematical analysis using x ′y ′z′ as a reference frame that is at-
tached to the swinging bar BC.

As was done in the previous analysis, fixed XYZ can be used to describe ē1. To
describe the θ̇ rotation we attach x2 y2z2 to the T-bar, with the y2 axis outward from
the plane of the sketch, so that ē2 = j̄2. The angular velocity �̄2 then consists solely
of the rotation about the vertical axis. Thus

ω̄ = �ē1 + θ̇ ē2 = �K̄ + θ̇ j̄2, �̄1 = 0̄, �̄2 = �K̄.

The angular acceleration corresponding to constant � and variable θ̇ is

ᾱ = θ̈ j̄2 + θ̇
(
�̄2 × j̄2

) = θ̈ j̄2 + θ̇�
(
K̄ × j̄2

)
.

The guideline for the selection of the origin O′ requires that it be a point in bar
BC, which is the body to which x ′y′z′ is attached. The only such point executing
a simple motion is end B, which follows a circular path in the horizontal plane at
constant angular speed �. We may describe this motion in cylindrical coordinates
whose axis is z2, with the x2 axis parallel to arm AB, which is the ēR direction. Then
the y2 axis is opposite to ēθ . Correspondingly, the motion of the origin is given by

v̄O′ = −L1� j̄2, āO′ = −L1�
2 ī2.

Because xyz has been defined to be attached to bar BC, point C remains fixed from
the viewpoint of this reference frame. Thus,

(v̄C)xyz = (āC)xyz = 0̄.

Orienting x ′y′z′ as depicted in the sketch facilitates the description of relative
position. We correspondingly find that

K̄ = sin θ ī ′ − cos θ k̄ ′
, j̄2 = j̄ ′, ī2 = cos θ ī ′ + sin θ k̄ ′

, r̄C/O′ = L2 ī ′.

The global descriptions of the angular motion variables are

ω̄ = �
(

sin θ ī ′ − cos θ k̄ ′)+ θ̇ j̄ ′,

ᾱ = θ̈ j̄ ′ + θ̇�
[(

sin θ ī ′ − cos θ k̄ ′)× j̄ ′
]

= θ̈ j̄ ′ + θ̇�
(

cos θ ī + sin θ k̄ ′)
.

The nonzero terms in the general velocity equation are

v̄C = v̄O′ + ω̄ × r̄C/O′

= −L1� j̄ ′ +
[
�
(

sin θ ī ′ − cos θ k̄ ′)+ θ̇ j̄ ′
]

× L2 ī ′

= − (L1 + L2 cos θ) � j̄ ′ − L2θ̇ k̄ ′
. �
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The nonzero terms in the general acceleration equation are

āC = āO′ + ᾱ × r̄C/O′ + ω̄ × (ω̄ × r̄C/O′)

= −L1�
2
(

cos θ ī ′ + sin θ k̄ ′)+
[
θ̈ j̄ ′ + θ̇�

(
cos θ ī + sin θ k̄ ′)]× L2 ī ′

+
[
�
(

sin θ ī ′ − cos θ k̄ ′)+ θ̇ j̄ ′
]

×
(
−L2� cos θ j̄ ′ − L2θ̇ k̄ ′)

= [− (L1 + L2 cos θ) �2 cos θ − L2θ̇
2
]

ī ′ + 2L2�θ̇ sin θ j̄ ′

+ [− (L1 + L2 cos θ) �2 sin θ − L2θ̈
]

k̄ ′
. �

Different global coordinate systems were used to represent each set of results,
so the components of v̄C and āC are not identical. One check that the vectors are
consistent lies in the fact that the y′ axis for the second analysis coincides with the ŷ
axis for the first. Correspondingly, we see that those velocity and acceleration com-
ponents match. Another way to verify that both sets of results represent the same
vectors is to apply the rotation transformation between x ′y′z′ and x̂ ŷẑ to transform
one set of components to the other. A third approach is to sketch the vector resul-
tant of similar terms. For example, the (L1 + L2 cos θ) �2 terms obtained in either
analysis represent a centripetal acceleration that is perpendicular to the vertical axis
directed from point B to point A.

EXAMPLE 3.12 The turntable rotates at angular speed ω1, and the disk rotates at
angular speed ω2 relative to the turntable. Both rates are constant. Determine the
velocity and acceleration of point C on the perimeter of the disk using (a) a moving
coordinate system that is attached to the turntable; (b) a moving coordinate system
that is attached to the disk.

R

θ

ω1

L

ω2

A

B
C

Example 3.12

SOLUTION As in the previous example, the intent here is to illustrate the decisions
and trade-offs involved in using various moving reference frames. In the first analy-
sis, we place the origin of xyz at the center of rotation of the turntable, point A.
The reference frame for the second analysis is x ′y′z′. We place its origin at the
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pivot point B, because this is the only point on the disk that follows a simple path.
The system is in planar motion, so we orient the z and z′ axes normal to the plane.
We use xyz as the global directions for both analyses to track the differences be-
tween the two solutions. The alignments depicted in the sketch are consistent with
the manner in which the system is described.

R

θ

L

A

C
B

ω2
x

y

y'

x'

ω1

Analysis of the motion of point C using coordinate systems xyz
attached to the turntable and x ′y ′z′ attached to the disk.

When xyz is attached to the turntable, it rotates at angular speed ω1 about the
z axis. This direction is constant, as is the rotation rate, so

ω̄ = ω1k̄, ᾱ = 0̄.

The origin is stationary, so v̄A = āA = 0̄. We could use polar coordinates to for-
mulate the relative velocity and acceleration, but we employ the relative motion
equations for this task as a way of emphasizing their utility. We visualize the motion
that would remain if the turntable were stationary. The disk would then solely ro-
tate at angular speed ω2 about point B, which would be stationary. Points B and C
have fixed positions when viewed from the disk, so we may employ Eqs. (3.5.6) with
the angular motion being that of the disk in the relative motion, ω̄rel = ω2

(−k̄
)
,

ᾱrel = ω̇2
(−k̄

) = 0̄. Correspondingly, we have

(v̄C)xyz = ω̄rel × r̄C/B, (āC)xyz = ω̄rel × (ω̄rel × r̄C/B) .

The nonzero terms in Eqs. (3.5.4) for the motion of point C are

v̄C = (v̄C)xyz + ω̄ × r̄C/A,

āC = (āC)xyz + ω̄ × (ω̄ × r̄C/A) + 2ω̄ × (v̄C)xyz .

The xyz coordinate axes serve as a convenient global system. Evaluation of the ve-
locity proceeds as follows:

(v̄C)xyz = (−ω2k̄
)× (

Rcos θ ī − Rsin θ j̄
) = ω2 R

(− sin θ ī − cos θ j̄
)
,

v̄C = ω2 R
(− sin θ ī − cos θ j̄

)+ (
ω1k̄

)× [
(L+ Rcos θ) ī − Rsin θ j̄

]
= (ω1 − ω2) Rsin θ ī + [(ω1 − ω2) Rcos θ + ω1L] j̄. �
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The corresponding evaluation of acceleration gives

(āC)xyz = (−ω2k̄
)× (−ω2 Rsin θ ī − ω2 Rcos θ j̄

) = ω2
2 R
(− cos θ ī + sin θ j̄

)
,

āc = ω2
2 R
(− cos θ ī + sin θ j̄

)+ ω1k̄ × [
ω1 Rsin θ ī + (ω1 Rcos θ + ω1L) j̄

]
+ 2ω1k̄ × ω2 R

(− sin θ ī − cos θ j̄
)

= [− (
ω2

1 + ω2
2

)
Rcos θ − ω2

1L+ 2ω1ω2 Rcos θ
]

ī

+ [(
ω2

1 + ω2
2

)
Rsin θ − 2ω1ω2 Rsin θ

]
j̄ . �

The second analysis uses x ′y′z′ attached to the disk as the moving reference
frame. A key aspect of this selection is recognizing that ω2 is measured relative to the
turntable, so the angular velocity of the disk is the vector sum of the two rotations,
ω̄ = (ω1 − ω2) k̄. The rotation rates are constant, as is k̄, so ᾱ = 0̄. Fixing reference
frame x ′y′z′ to the disk eliminates the relative velocity and relative acceleration,
(v̄C)x ′ y ′z′ = (āC)x ′ y ′z′ = 0̄. This is balanced by the need to evaluate the velocity and
acceleration of the origin B. We find these quantities by recognizing that points A
and B are two points in the turntable, so me may employ Eqs. (3.5.6), with ω1k̄ as
the rotational velocity of the turntable, and v̄A = āA = 0̄. Thus,

v̄B = ω1k̄ × r̄B/A, āB = ω1k̄ × (
ω1k̄ × r̄B/A

)
.

The nonzero terms in the relative motion equations (3.5.4) for point C are

v̄C = v̄B + ω̄ × r̄C/B, āC = āB + ω̄ × (ω̄ × r̄C/B) .

As mentioned earlier, we use xyz as the global coordinate system. Evaluation
of the relations for velocity yields

v̄B = ω1k̄ × Lī = ω1Lj̄,

v̄C = ω1Lj̄ + ω1k̄ × (
Rcos θ ī − Rsin θ j̄

)
= (ω1 − ω2) Rsin θ ī + [ω1L+ (ω1 − ω2) Rcos θ ] j̄ . �

Evaluation of the acceleration terms leads to

āB = ω1k̄ × (
ω1k̄ × Lī

) = −ω2
1Lī,

āC = −ω2
1Lī + (ω1 − ω2) k̄ × [

(ω1 − ω2) Rsin θ ī + (ω1 − ω2) Rcos θ j̄
]

=
[
−ω2

1L− (ω1 − ω2)2 Rcos θ
]

ī + (ω1 − ω2)2 Rsin θ j̄ . �

Because the global system is the same for both analyses, the resulting component
representations should be the same, as they are. Overall, the second analysis is
somewhat easier, but it requires recognizing that there are two contributions to the
angular velocity of the disk.
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EXAMPLE 3.13 Let ωx, ωy, and ωz denote the pitch, roll, and yaw rates, respec-
tively, of a ship about xyz axes that are attached to the ship with the orientations
shown. All of these rotation rates are variable quantities. The origin of xyz coincides
with the center of mass G of the ship. Consider an elevator car whose path perpen-
dicularly intersects the centerline at a distance L forward from the center of mass.
Let h(t) denote the height of the car above the centerline. The velocity and accelera-
tion of the center of mass at this instant are v̄G and āG. Determine the corresponding
velocity and acceleration of the car.

ωz
L

u

x

y

z

h

Elevator carωx

ωy

G

Example 3.13

SOLUTION This example brings to the fore an important feature of a body-fixed ref-
erence frame whose rotation about its own axes is known. We use xyz as the moving
reference frame, as well as the global coordinate system. The given rotations are
about body-fixed axes, so we have ē1 = ī, ē2 = j̄, ē2 = k̄ corresponding to the rates
ωx, ωy, and ωz, respectively. Thus, the angular velocity of the ship is

ω̄ = ωxī + ωy j̄ + ωzk̄.

Because the rotation directions are the unit vectors of xyz, their angular velocity is
ω̄, that is, �̄1 = �̄2 = �̄3 = ω̄. The general description of the angular acceleration
corresponding to variable rotation rates therefore is

ᾱ = ω̇xī + ωx
(
ω̄ × ī

)+ ω̇y j̄ + ωy
(
ω̄ × j̄

)+ ω̇zk̄ + ωz
(
ω̄ × k̄

)
= ω̇xī + ω̇y j̄ + ω̇zk̄ + ω̄ × (

ωxī
)+ ω̄ × (

ωy j̄
)+ ω̄ × (

ωzk̄
)

= ω̇xī + ω̇y j̄ + ω̇zk̄ + ω̄ × ω̄ = ω̇xī + ω̇y j̄ + ω̇zk̄.

This result for ᾱ indicates that the angular acceleration components are always the
time derivatives of the angular velocity components, provided that those compo-
nents are relative to body-fixed axes. This observation is a key aspect to the devel-
opment of kinetics principles in Chapter 5.

The elevator follows a straight path relative to the ship, so the relative motion is

r̄P/G = Lī + hk̄, (v̄P)xyz = ḣk̄ = uk̄, (āP)xyz = u̇k̄.
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We have described all the terms in Eqs. (3.5.4), so we find the velocity to be

v̄P = v̄G + (v̄P)xyz + ω̄ × r̄P/G

= v̄G + (ωyh − ωzL) ī − ωxh j̄ + (u + ωx L) k̄, �

and the acceleration is

āP = āG + (āP)xyz + ᾱ × r̄P/G + ω̄ × (ω̄ × r̄P/G) + 2ω̄ × (v̄P)xyz

= āG + u̇k̄ + (
ω̇xī + ω̇y j̄ + ω̇zk̄

)× (
Lj̄ + hk̄

)+ (
ωxī + ωy j̄ + ωzk̄

)
× [

(ωyh − ωzL) ī − ωxh j̄ + ωx Lk̄
]+ 2

(
ωxī + ωy j̄ + ωzk̄

)× uk̄

= āG + [ω̇yh − ω̇zL+ ωxωyL+ ωxωzh + 2ωyu] ī + [−ω̇xh + ωyωzh

− (
ω2

x + ω2
z

)
L− 2ωxu] j̄ + [

u̇ + ω̇x L− (
ω2

x + ω2
y

)
h + ωyωzL

]
k̄. �

Some of the terms in the acceleration were foreseeable. The acceleration of the
elevator relative to the ship is represented by the u̇ term, and the angular accelera-
tion effects are contained in the ω̇x, ω̇y, and ω̇z terms. In the same vein, the ω2

x, ω2
y,

and ω2
z terms represent centripetal accelerations about the respective axes associ-

ated with each rotation being the only one present. The terms that are not intuitive
are those containing products of rotation rates about different axes, as well as the
Coriolis acceleration terms.

EXAMPLE 3.14 The cooling fan consists of a shaft that rotates about the vertical
axis at angular speed � as the blades rotate around the shaft at angular rate φ̇, where
φ is the angle of rotation of one of the blades from the top-center position. Both
rotation rates are constant. Derive expressions for the velocity and acceleration of
the blade tip P in terms of components relative to the body-fixed xyz reference
system.

φ

LA

B

C

C

.

φ

R

P

Bx

View C-C

Ω
y

z

β
Example 3.14

SOLUTION This example synthesizes many of the concepts developed in this chap-
ter, including rotation transformations. The problem statement requires that xyz be
used as the global coordinate system. We also use it as the reference frame for the
relative motion, as a precursor for the kinetics principles in Chapter 5, which re-
quire the usage of body-fixed axes. The rotation of xyz is the sum of the rotation �
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about the vertical axis and the rotation φ̇ about shaft AB. To define the first rota-
tion, we attach reference frame x1 y1z1 to the vertical shaft, with the z1 axis vertically
upward. The only meaningful horizontal direction is the one that lies in the vertical
plane containing shaft AB, so we define the x1 axis to lie in that plane, to the right
for the given diagram. Then y1 is inward relative to the plane of the diagram. The x
axis always coincides with shaft AB, so we set ē2 = ī . Thus general descriptions of
the angular velocities of the reference frames are

ω̄ = �k̄1 + φ̇ ī, �̄1 = �k̄1, �̄2 = ω̄. (1)

The rotation rates are constant, so the angular acceleration of xyz is

ᾱ = �
(
�̄1 × k̄1

)+ φ̇
(
�̄2 × ī

) = φ̇
(
ω̄ × ī

)
. (2)

Several approaches for expressing k̄1 in terms of global xyz components are
available; we shall evaluate the rotation transformation from x1 y1z1 to xyz. The
transformation may be visualized as the result of a pair of body-fixed rotations.
The first is a rotation of π/2 − β about the y′ axis. This transforms x1 y1z1 to x ′y′z′,
where the x ′ axis is aligned with the x axis and the z′ axis is the upward reference
line in view C-C. A rotation by angle φ about the x ′ axis moves z′ into alignment
with the z axis without disturbing the x ′ axis. Thus the transformation is{

ī j̄ k̄
}T = [R]

{
ī1 j̄1 k̄1

}T
,

[R] = [Rx] [Ry] =

⎡
⎢⎢⎣

1 0 0

0 cos φ sin φ

0 − sin φ cos φ

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

cos
(π

2
− β

)
0 − sin

(π

2
− β

)
0 1 0

sin
(π

2
− β

)
0 cos

(π

2
− β

)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

sin β 0 − cos β

sin φ cos β cos φ sin φ sin β

cos φ cos β − sin φ cos φ sin β

⎤
⎥⎥⎦ .

The inverse transformation gives the unit vectors of x1 y1z1 in terms of the xyz unit
vectors, so the last row of [R]T

, which is the last column of [R] , gives the global
components of the rotation direction ē1 = k̄1,

k̄1 = − cos β ī + sin φ sin β j̄ + cos φ sin βk̄. (3)

This enables us to evaluate the global components of ω̄ and ᾱ:

ω̄ = (
φ̇ − � cos β

)
ī + � sin φ sin β j̄ + � cos φ sin βk̄, (4a)

ᾱ = [(
φ̇ − � cos β

)
ī + � sin φ sin β j̄ + � cos φ sin βk̄

]× ī

= �φ̇
(
cos φ sin β j̄ − sin φ sin βk̄

)
.

(4b)
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We may construct the velocity and acceleration of origin B by recognizing that
this point follows a circular path in the horizontal plane. However, using an alterna-
tive approach based on its being a point on shaft AB is more suitable to expressing
the results in terms of components relative to xyz. The angular velocity of shaft AB
is �̄1, which is constant, and point A is stationary, so we have

v̄B = �k̄1 × r̄B/A, āB = �k̄1 × (
�k̄1 × r̄B/A

)
.

The global components of k̄1 are given by Eq. (3), whose substitution into the pre-
ceding yields

v̄B = �
(− cos β ī + sin φ sin β j̄ + cos φ sin βk̄

)× Lī

= �L
(
cos φ sin β j̄ − sin φ sin βk̄

)
,

(5a)

āB = �
(− cos β ī + sin φ sin β j̄ + cos φ sin βk̄

)× �L
(
cos φ sin β j̄ − sin φ sin βk̄

)
= �2L

[
− (sin β)2 ī − sin φ sin β cos β j̄ − cos φ sin β cos βk̄

]
(5b)

Because xyz is attached to the propeller, there is no relative velocity or acceler-
ation. Hence v̄P and āP also are described by Eqs. (3.5.6), which indicate that

v̄P = v̄B + ω̄ × r̄P/B, āP = āB + ᾱ × r̄P/B + ω̄ × (ω̄ × r̄P/B) .

Substitution of the global descriptions in Eqs. (4) and (5) yields

v̄P = �L
(
cos φ sin β j̄ − sin φ sin βk̄

)+ [
(
φ̇ − � cos β

)
ī + � sin φ sin β j̄

+ � cos φ sin βk̄] × Rk̄

= �
[
Rsin φ sin β ī + (Lcos φ sin β + Rcos β) j̄ − Lsin φ sin βk̄

]
.

�

The corresponding evaluation of acceleration gives

āP = �2L
[
− (sin β)2 ī − sin φ sin β cos β j̄ − cos φ sin β cos βk̄

]
+ �φ̇

(
cos φ sin β j̄ − sin φ sin βk̄

)× Rk̄

+ [
(
φ̇ − � cos β

)
ī + � sin φ sin β j̄ + � cos φ sin βk̄]

×�R
(
sin φ sin β ī + cos β j̄

)
= �2

{− sin β (Lsin β + Rcos φ cos β) ī + sin φ sin β (−Lcos β + Rcos φ sin β) j̄

+
[
−Lcos φ sin β cos β − R(cos β)2 − R(sin φ)2 (sin β)2

]
k̄
}− φ̇2 Rk̄

+ 2�φ̇R
(
cos φ sin β ī + cos βk̄

)
. �

These results are displayed in groups of like coefficients of the rate variables to
highlight that the underlying physical phenomena are a superposition of effects. The
terms in v̄P that contain � and those in āP that contain �2 represent the motion that
would be present if φ were constant, giving φ̇ ≡ 0. In that case, point P would follow
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a circular path in the horizontal plane. Similarly, the terms in v̄P that contain φ̇ and
those in āP that contain φ̇2 correspond to a pure rotation about the x axis, in which
case point P would follow a circular path of radius R. The effect that has no obvious
description as a superposition is represented by the acceleration term that has the
factor 2�φ̇. The two factor identifies it as a Coriolis acceleration that exists only
if both rotation rates are nonzero. This physical Coriolis acceleration arises, even
though the Coriolis acceleration term 2ω̄ × (v̄P)xyz in relative acceleration equations
(3.5.4) was identically zero in our analysis.

3.6 OBSERVATIONS FROM A MOVING REFERENCE FRAME

Thus far, our concern has been with situations in which the motion of some point could
be more readily described in terms of a moving reference frame. However, sometimes
the absolute motion is known, and the relative motion must be evaluated. For example,
it might be necessary to ensure that one part of a machine merge with another part in
a smooth manner, as in the case of gears. The influence of the Earth’s motion on the
dynamic behavior of a system is an important situation in which aspects of the absolute
motion are known.

One approach is to interchange the absolute and relative reference frames, based
on the fact that the kinematical relationships do not actually require that one of the
reference frames be stationary. Thus in this viewpoint, if the angular velocity of xyz rel-
ative to XYZ is ω̄, then the angular velocity of XYZ as viewed from xyz is −ω̄. The
difficulty with this approach is that it is prone to errors, particularly in signs, because of
the need to change the observer’s viewpoint for the formulation. The more reliable ap-
proach, which does not require redefinition of the basic quantities, manipulates the ear-
lier relations.

The concept is quite straightforward. When the absolute velocity v̄P and the ab-
solute acceleration āP are known, Eqs. (3.5.4) may be solved for the relative motion
parameters. Specifically,

(v̄P)xyz = v̄P − v̄O′ − ω̄ × r̄P/O′,

(āP)xyz = āP − āO′ − ᾱ × r̄P/O′ − ω̄ × (ω̄ × r̄P/O′) − 2ω̄ × (v̄P)xyz .
(3.6.1)

If it is appropriate, the relative velocity may be removed from the acceleration relation
by substitution of the velocity relation. The result is

(āP)xyz = āP − āO′ − ᾱ × r̄P/O′ + ω̄ × (ω̄ × r̄P/O′) − 2ω̄ × (v̄P − v̄O′) .

The steps required for applying these relations are like those already established, be-
cause ω̄ and ᾱ still describe the rotation of xyz relative to a fixed reference frame.

These relations are particularly useful when the rotation of the Earth must be con-
sidered. Newton’s Second Law relates the forces acting on a particle to the acceleration
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relative to some hypothetical inertial reference frame. However, we commonly observe
the motion with Earth-based instruments. We use the relative motion relations to recon-
cile Newton’s Law with the motion we observe. Consider an observer at point O′ on the
Earth’s surface. A natural definition for the reference frame employed by this observer
is east–west and north–south for position along the surface and vertical for measure-
ments off the surface. Such a reference frame is depicted in Fig. 3.12, where the x axis is
northward and the y axis is westward. The observation point O′ in the figure is located
by the latitude angle λ measured from the equator and the longitude angle φ measured
from some reference location, such as the prime meridian (the longitude of the Royal
Observatory at Greenwich, England).

y (West)

x (North)

z (Vertical)

O

O'

South Pole

North Pole
ωe

λ

Equator

Meridional
line

Figure 3.12. The Earth as a reference frame.

For the present purposes, it is adequate to employ an approximate model of the
Earth. The Earth spins at one revolution about its polar axis in 23 h, 56 min, 4.06 s, which
converts to ωe = 2π rad/23.934 h = 7.292(10−5) rad/s. For comparison, the orbital rate
of rotation of the Earth about the Sun, ωO, is smaller by an approximate factor of 365,
because one such revolution requires a full year. To assess the relative importance of the
two, let us consider the associated centripetal acceleration. The maximum that is due to
the Earth’s rotation occurs at the equator, where the distance from the polar axis is the
Earth’s radius, Re = 6370 km. The centripetal acceleration at this location associated
with the Earth’s rotation is ω2

e Re ≈ 0.034 m/s2. The mean radius of the Earth’s orbit is
RO = 149.6(106) km, so the associated centripetal acceleration is ω2

O RO ≈ 0.0059 m/s2,

which is 17.5% of the acceleration that is due to the Earth’s spin, which is itself quite
feeble in comparison with the free-fall acceleration g. Furthermore, the centripetal ac-
celeration associated with the Earth’s orbital motion is essentially balanced by the effect
of the Sun’s gravitational attraction because that balance produces the orbit. For these
reasons, it is reasonable to consider the center of the Earth to be stationary and to ig-
nore the Sun’s gravitational attraction. If we also ignore the relatively minor wobble of
the polar axis, our model of the Earth reduces to a sphere that rotates about the (fixed)
polar axis at the constant rate ωe.
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Newton’s Second Law gives the acceleration of a particle relative to a fixed ref-
erence frame corresponding to the resultant force. We decompose this force into two
parts: F̄g represents the gravitational attraction of the Earth, and F̄a consists of all other
forces, including applied loads and reactions. The angular acceleration of the Earth in
our simple model is zero. Thus application of Eqs. (3.6.1) leads to a relation for the ac-
celeration relative to the Earth-based xyz reference frame corresponding to a specified
set of forces acting on a particle:

(āP)xyz = F̄a + F̄g

m
− āO′ − ω̄e × (ω̄e × r̄P/O′) − 2ω̄e × (v̄P)xyz . (3.6.2)

Now consider a particle in free fall near the Earth’s surface. Let point O′ be close to
the particle, so that r̄P/O′ ≈ 0̄. If air resistance is negligible, there are no applied forces,
F̄a ≈ 0̄. The definition of g is that it is the magnitude of the free-fall acceleration ob-
served from the Earth. Furthermore, we interpret the direction of the free-fall accelera-
tion as being vertically downward. Recall that the definition of the z axis in Fig. 3.12 was
that it is the upward vertical, which now means that the observed free-fall acceleration
is (āP)xyz = −gk̄. The magnitude of the actual gravitational force is given by the inverse
square law, and this force is directed oppositely to the radial line from the center of the
Earth to the particle. We use the position vector r̄O′/O to construct the radial unit vector,
so the gravitational force is described by

F̄g = GMem
r2

e

(
− r̄O′/O∣∣r̄O′/O

∣∣
)

= −GMem
r3

e
r̄O′/O. (3.6.3)

The origin O′ follows a circular path parallel to the equatorial plane. The radius
of this path is Re cos λ, and the rotation rate of a radial line is ωe. The corresponding
centripetal acceleration is āO′ = reω

2
e (cos λ) (− ē⊥) , where ē⊥ is the radial unit vector

perpendicular to the polar axis intersecting point O′. Unless the free fall occurs over
a long time, the velocity relative to the Earth is small, which makes it permissible to
neglect Coriolis acceleration effects. In this case Eq. (3.6.2) reduces to

gk̄ = GMe

r3
e

r̄O′/O − reω
2
e (cos λ) ē⊥. (3.6.4)

There are two primary aspects of interest in this relation. The centripetal acceler-
ation term is parallel to r̄O′/O only at the equator, λ = 0, and at the poles, λ = 0, π,

where it is zero. Hence, the vertical direction defined by k̄ does not generally intersect
the center of the Earth. However, it does lie in the meridional plane because that plane
contains both r̄O′/O and ē⊥. Equally significant is the effect of the centripetal accelera-
tion on the value of g that is obtained from measurements. This effect is largest at the
equator, where ē⊥ is parallel to r̄O′/O and cos λ = 1.

We may quantify both effects by resolving r̄O′/O and ē⊥ into components parallel
and perpendicular to k̄. Let the angle from k̄ to r̄O′/O be β, such that the angle from k̄
to the equatorial plane is λ + β. Because all vectors are situated in the same meridional
plane, this resolution is

r̄O′/O = re
(
cos βk̄ − sin β ī

)
, ē⊥ = cos (λ + β) k̄ − sin (λ + β) ī . (3.6.5)
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Substitution of these expressions into Eq. (3.6.4) followed by equating like components
leads to two equations for the values of g and λ:

g = GMe

r2
e

cos β − reω
2
e (cos λ) cos (λ + β) ,

0 = −GMe

r2
e

sin β + reω
2
e (cos λ) sin (λ + β) .

(3.6.6)

It is apparent that β is very small, so we may obtain the value of g by setting β = 0 in
the first of Eqs. (3.6.6):

g = GMe

r2
e

− reω
2
e (cos λ)2

. (3.6.7)

Thus we see that g decreases from the value associated with gravity at the poles to a
minimum that is reduced by reω

2
e = 0.034 m/s2 at the equator. The value g = 9.807 m/s2

represents a reasonable average value when the latitude is not specified. Smallness of
β allows us to approximate cos (λ + β) ≈ cos λ in the second of Eqs. (3.6.6). We also
approximate GMe/r2

e as g, which leads to

β = sin−1
(

reω
2
e sin (2λ)

2g

)
. (3.6.8)

The maximum deviation angle β occurs at a latitude of 45◦, where β = 0.099◦.
The definition of gk̄, Eq. (3.6.4), allows us to simplify Eq. (3.6.2) slightly. The cen-

tripetal acceleration term ω̄e × (ω̄e × r̄P/O′) may be neglected, unless the magnitude of
r̄P/O′ is a large fraction of the Earth’s radius. [In fact, if this acceleration term is signifi-
cant, we should not use Eq. (3.6.4).] Thus we have

(āP)xyz = F̄a

m
− gk̄ − 2ω̄e × (v̄P)xyz , (3.6.9)

which shows that the primary difference between the acceleration we observe from the
Earth and the absolute acceleration associated with Newton’s Second Law is the Coriolis
term. We use the Earth-based xyz coordinate system to describe the preceding. The
components of relative velocity and acceleration are respectively the first and second
time derivatives of the Cartesian coordinates (x, y, z). Because the angular velocity of
the Earth is parallel to the polar axis, and the deviation of the z axis from the line to the
center of the Earth is small, the angular velocity is essentially

ω̄e = ωe
(
cos λī + sin λk̄

)
. (3.6.10)

Correspondingly, Eq. (3.6.9) becomes

ẍ − (2ωe sin λ) ẏ = F̄a · ī
m

,

ÿ + (2ωe sin λ) ẋ − (2ωe cos λ) ż = F̄a · j
m

,

z̈ + (2ωe cos λ) ẏ = F̄a · k̄
m

− g.

(3.6.11)
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2ωzk (vP)xyz

ωz=ωe k

(vP)xyz

x (North)

y (East)

− − −

−−

Figure 3.13. Coriolis acceleration associated with motion in the hor-
izontal plane relative to the Earth.

These equations may be solved for the forces required to have a specified motion rel-
ative to the Earth. Alternatively, they may be regarded as a set of coupled differential
equations for the relative position in situations in which the forces are specified.

The fact that the Coriolis term is perpendicular to the velocity as seen by an observer
on the Earth leads to some interesting anomalies. In the Northern Hemisphere, the com-
ponent of ω̄e perpendicular to the Earth’s surface is outward. If a particle is constrained
to follow a horizontal path relative to the Earth in the Northern Hemisphere, the Cori-
olis term 2ω̄e × (v̄P)xyz is as shown in Fig. 3.13. It follows that a horizontal force pushing
to the left of the direction of motion is required if that direction is to be maintained.

A story that has been passed down from professor to student over the years, without
substantiation, states that a railroad line had two sets of north–south tracks along which
trains ran in only one direction. For the track along which trains ran northward, the inner
surface of the east rail was supposedly more shiny, because of the westward Coriolis
force it had to exert on the flange of the wheels. Correspondingly, the track for trains
running south was more shiny on the inner surface of the west rail. The veracity of this
statement is questionable, owing to the smallness of the force in comparison with other
effects, such as the wind and elevation changes.

If a transverse force is not present to maintain a particle in a straight path relative
to the Earth, as required by Eqs. (3.65), then the particle will deviate to the right. This
observation leads to a qualitative explanation of the swirling of a liquid that is drained
through the centered hole of a perfectly symmetrical cylindrical tank. As the fluid rushes
to the hole, the tendency in the Northern Hemisphere to deviate to the right along any
inward radial line induces a counterclockwise spiraling flow when viewed from above.
(The flow will be clockwise in the Southern Hemisphere.) The same phenomenon acts
on a much larger scale to set up the flow patterns in hurricanes and typhoons. Goldstein
(1980) offers an excellent discussion of these effects. Meteorological models used to
predict general weather patterns must account for the Coriolis acceleration effect.

EXAMPLE 3.15 Leah is standing stationary on a turntable rotating about the ver-
tical axis at the constant rate ω. A ball traveling in the radial direction has constant
speed v horizontally. It is timed to arrive at Leah’s position so that she may catch
it. Let xyz be Leah’s reference frame with the x axis radially outward, as shown.
Determine the horizontal components of position, velocity, and acceleration of the
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ball as seen by Leah as a function of time. Perform the analysis by (a) constructing
the relative position vector geometrically, (b) using the relative motion formulas.

ω

y v

r

x

z

Example 3.15

SOLUTION This problem illustrates the application of the basic relations, as well as
providing a further demonstration that there often is more than one way to perform
a kinematical analysis. For both analyses we let t = 0 be the instant when Leah
catches the ball, so t < 0 characterizes an arbitrary instant before the ball is caught.
Correspondingly, the angle locating her relative to the path of the ball is θ = ω(−t)
and the radial distance R to the ball from the center of the turntable is R = r +
v(−t).

The first analysis involves geometrically constructing the xyz components of the
ball’s position relative to the child, r̄B/A. Projecting the radial line from the center
of the turntable to the ball onto the x and y axes gives

r̄B/A = xī + y j̄ = (Rcos θ − r)ī + Rsin θ j̄

= [(r − vt) cos (ωt) − r ] ī − (r − vt) sin (ωt) j̄ .
�

We may find the path of the ball in the xy plane as seen by Leah by plotting the
x and y components at various t. Let τ = ωt be a nondimensional time parameter.
Then a nondimensional description of the relative path coordinates is

x
r

=
(

1 − v

rω
τ
)

cos τ − 1,
y
r

= −
(

1 − v

rω
τ
)

sin τ .

These expressions show that the relative path, scaled by r, depends solely on the
ratio v/rω. Plots for several values of this ratio for the interval −4π ≤ τ ≤ 0, corre-
sponding to two revolutions of the turntable, show that the path is an inward spiral.
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Path of the ball in the horizontal plane as seen by the child on the turntable
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By definition, we may obtain the relative velocity by differentiating the compo-
nents of the relative position:

(v̄B)xyz ≡ ∂

∂t
r̄B/A = − [v cos (ωt) − (r − vt)ω sin (ωt)] ī

+ [v sin (ωt) − (r − vt)ω cos (ωt)] j̄ .
�

Similarly, we may obtain the relative acceleration by differentiating the relative ve-
locity components:

(āB)xyz ≡ ∂

∂t
(v̄B)xyz = [

2vω sin (ωt) − (r − vt)ω2 cos (ωt)
]

ī

+ [
2vω cos (ωt) + (r − vt)ω2 sin (ωt)

]
j̄ .

�

The solution obtained with the moving reference formulation barely resembles
the operations in the previous solution. The position as seen by Leah is

r̄B/A = r̄B/O − r̄A/O.

We know that the ball is at distance R = r − vt in the fixed radial direction, which we
define to be the direction of the stationary X axis. Thus r̄B/O = (r − vt) Ī. The child
is at distance r in the radial direction along which the x axis is aligned, so r̄A/O = r ī .
We use these descriptions to form r̄B/A in terms of components relative to the xyz
axes, which is Leah’s viewpoint. This requires that we express r̄B/O in terms of ī j̄ k̄
components. A visual inspection shows that Ī = cos θ ī − sin θ j̄, which leads to

r̄B/A = (r − vt)
(
cos θ ī + sin θ j̄

)− r ī . �

Because θ = ω (−t) , this is the same description as that derived in the first analysis.
To analyze velocity and acceleration, we begin with the angular motion of the

xyz reference frame. This is a simple rotation about the vertical axis at constant rate,
so ω̄ = ωk̄, ᾱ = 0̄. The origin of xyz is point A, which follows a circular path rela-
tive to the fixed reference frame. Thus v̄A = rω j̄, āA = −rω2 ī . We also know that
the ball’s motion in the horizontal plane is a straight path at constant speed v, so
v̄B = −v Ī, āB = 0̄, where Ī was previously described in terms of ī j̄ k̄ components.
Substitution of these expressions into the first of Eqs. (3.6.1) yields the relative ve-
locity:

(v̄B)xyz = v̄B − v̄A − ω̄ × r̄B/A

= −v
(
cos θ ī + sin θ j̄

)− rω j̄ − ωk̄ × [
(r − vt)

(
cos θ ī + sin θ j̄

)− r ī
]
,

(v̄B)xyz = [−v cos θ + ω (r − vt) sin θ ] ī + [−v sin θ − ω (r − vt) cos θ ] j̄ . �
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Using this last expression to form the second of Eqs. (3.6.1) gives the relative accel-
eration:

(āB)xyz = āB − āA − ᾱ × r̄B/A − ω̄ × (ω̄ × r̄B/A) − 2ω̄ × (v̄B)xyz

= − (−rω2 ī
)− ωk̄ × {

ωk̄ × [
(r − vt)

(
cos θ ī + sin θ j̄

)− r ī
]}

− 2ωk̄ × {
[−v cos θ + ω (r − vt) sin θ ] ī + [−v sin θ − ω (r − vt) cos θ] j̄

}
,

(āB)xyz = [−ω2 (r − vt) cos θ − 2ωv sin θ
]

ī + [−ω2 (r − vt) sin θ + 2ωv cos θ
]

j̄ . �

Substitution of θ = −ωt into the second set of results would show that they are
identical to the results of the first analysis. We could employ either approach with
equal ease in this problem because the motion is planar. The relative motion for-
mulation becomes increasingly advantageous as the rotation of the reference frame
becomes more complicated.

EXAMPLE 3.16 When a small ball is suspended by a stiff cable from an ideal
swivel joint that permits three-dimensional motion, the system is called a spherical
pendulum. Suppose such a pendulum, whose cable length is �, is released from rest
relative to the Earth with the ball at a distance b � � north of the point below the
pivot. Analyze the effect of the Earth’s rotation on the motion. It may be assumed
that the angle between the suspending cable and the vertical is always very small.

SOLUTION In addition to demonstrating the solution of the coupled equations of
motion, Eqs. (3.6.11), this example explains an interesting phenomenon regarding
motion relative to the Earth. A free-body diagram of the ball shows the weight mg
and the tensile force F̄ exerted by the cable.

x (north)

y (west)

z (vertical)

F

mg

y x

-z

O'

B

� Example 3.16

In terms of the xyz coordinates sketch defined in the diagram, we have

F̄ = F
r̄O′/B∣∣r̄O′/B

∣∣ = F
(
− x

�
ī − y

�
j̄ + z

�
k̄
)

. (1)
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When the values of x and y are known, the value of z is given by

z = − (
�2 − x2 − y2)1/2

. (2)

Because � is constant, differentiating the preceding gives

ż = xẋ + yẏ

(�2 − x2 − y2)1/2
.

The specification that the angle with the vertical is small means that |x| � � and
|y| � �. Introducing this approximation above yields

ż ≈ xẋ + yẏ
�

, z̈ ≈ xẍ + ẋ2 + yÿ + ẏ2

�
≈ ẋ2 + ẏ2

�
. (3)

The preceding indicates that ż is much less than ẋ and ẏ. Furthermore, smallness of ż
means that the speed of the ball is essentially ẋ2 + ẏ2. This leads to the interpretation
of z̈ as the centripetal acceleration associated with motion in a circle of radius �.

The result of substituting the preceding descriptions of F̄ and z̈ into the general
equations of motion, Eqs. (3.6.11), is

ẍ − (2ωe sin λ) ẏ = − F
m�

x, (4)

ÿ + (2ωe sin λ) ẋ = − F
m�

y, (5)

ẋ2 + ẏ2

�
+ (2ωe cos λ) ẏ = F

m�

(
�2 − x2 − y2)1/2 − g, (6)

where the Coriolis acceleration term containing ż in Eq. (5) has been dropped be-
cause ż is small compared with ẋ and ẏ.

There are three variables in Eqs. (4)–(6). Elimination of F from these equations
leads to a pair of ordinary differential equations governing x and y. We use Eq. (6)
for that purpose. To estimate the order of magnitude of the first term in Eq. (6) we
recall that ẋ2 + ẏ2 ≈ v2. Because the Coriolis effect is quite small, the motion should
be essentially like the result for a simple pendulum whose pivot is stationary, so we
may employ the principle of conservation of energy to estimate v2. Let the elevation
of the pivot be the datum, so the gravitational potential energy is mgz. At the lowest
position, z = −� and v = vmax, whereas at the highest position, z = zmax, and v = 0.

It follows that

1
2

mv2
max − mg� ≈ mgzmax. (7)

The value of zmax is related to the other coordinates by Eq. (2), to which we apply a
binomial series expansion to find

zmax = − (
�2 − x2

max − y2
max

)1/2 ≈ −� + x2
max + y2

max

2�
.
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Substitution of this expression into Eq. (7) gives

v2
max

�
≈ g

x2
max + y2

max

�2
.

Because x and y are stated to remain small compared with � throughout the
motion, it follows that v2/� is always small compared with g. Accordingly, we may
neglect the first term in Eq. (6). Furthermore, the Coriolis acceleration is a small
effect. Thus Eq. (6) indicates that the cable tension is well approximated as the
ball’s weight, F/m = g. This approximation reduces Eqs. (4) and (5) to

ẍ − 2pẏ + �2x = 0,

ÿ + 2pẋ + �2 y = 0,
(8)

where

� =
(g

�

)1/2
, p = ωe sin λ.

Evaluating the motion requires that we solve this pair of linear, coupled, ordi-
nary differential equations. We could use the method of characteristic exponents,
but an examination of the equations leads to a much briefer solution. We observe
that if the Coriolis effect were not present, p = 0, then the equations for x and y
would be uncoupled, and the fundamental solutions for both variables would be
combinations of sin (�t) and cos (�t). Furthermore, in either equation with p �= 0,
the order of the derivatives of y is one different from the order of the derivatives of
x. The combination of these two features suggests that both x and y vary sinusoidally
at some frequency µ, with a 90◦ phase difference between them. We therefore con-
sider a trial solution whose form is

x = A cos (µt + φ) , y = B sin (µt + φ) . (9)

We obtain relations for the amplitudes A and B, the frequency µ, and the phase
angle φ by substituting the trial forms into Eqs. (8), which leads to(

�2 − µ2
)

A − 2pµB = 0,

−2pµA + (
�2 − µ2

)
B = 0.

(10)

For A and B to be nonzero, the determinant of this pair of homogeneous equations
must vanish. This leads to a characteristic equation:(

�2 − µ2)2 − (2pµ)2 = 0 =⇒ �2 − µ2 = ±2pµ.

This pair of quadratic equations for µ has a total of four roots, but we need only the
positive values, which are

µ1 = (
�2 + p2)1/2 − p, µ2 = (

�2 + p2)1/2 + p. (11a)
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In view of the smallness of ωe, any conceivable value of � will lead to � � p, so the
characteristic roots are well approximated as

µ1 ≈ � − p, µ2 ≈ � + p. (11b)

There is a solution of Eqs. (10) for each characteristic root. Because the determi-
nant vanishes when µ = µ1 or µ = µ2, only one of those equations is independent.
This means that both equations will be satisfied if A is arbitrarily set to some value
A j , provided that we then obtain Bj by solving either of Eqs. (10). The second of
these equations gives

Bj = 2pµ j(
�2 − µ2

j

)A j .

Substitution of the respective values of µ j from Eqs. (11a) leads to B1 = A1 and
B2 = −A2. The corresponding general solution of the equations of motion therefore
is

x = A1 cos (µ1t + φ1) + A2 cos (µ2t + φ2) ,

y = A1 sin (µ1t + φ1) − A2 sin (µ2t + φ1) .
(12)

The coefficients A1, A2, φ1, and φ2 must satisfy initial conditions. It was given
in the problem statement that the ball was released from rest relative to xyz at a dis-
tance b to the north of the pivot. Thus the initial conditions are x = b, ẋ = y = ẏ = 0
at t = 0. We match these values to the result of evaluating the general solution, from
which we find that

A1 = b
µ2

µ1 + µ2
≈ b

2
, A2 = b

µ1

µ1 + µ2
≈ b

2
.

The general solution corresponding to the preceding when approximations (11b)
are used for the characteristic exponents is

x = b
2

{
cos [(� − p) t] + cos [(� + p) t]

}
,

y = b
2

{
sin [(� − p) t] − sin [(� + p) t]

}
.

(13)

Trigonometric identities simplify this to

x = b cos (pt) cos (�t) , y = −b sin (pt) cos (�t) . �

The nature of the path becomes obvious when we observe that sin (pt) and
cos (pt) vary much more slowly than cos (�t) because p � �. Hence we may con-
sider x and y to oscillate at frequency � with an amplitude that slowly oscillates at
frequency p. The preceding solution satisfies

y = −x tan(pt),

which is the equation of a straight line whose slope is −tan(pt), if we neglect the
variation in the value of pt . As shown in the diagram, the path seems to lie in a
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vertical plane that is situated at angle pt relative to the xz plane, measured clockwise
when viewed downward.

x (north)

y (west)

b b

pt

Swinging
motion

Plane of the
pendulum

z

The shaded plane shows the short-term swinging mo-
tion of the Foucault pendulum.

The vertical plane in which the cable lies therefore seems to an observer on the
Earth to rotate about the upward vertical axis at angular speed −p = −ωe sin λ.
This is exactly opposite the vertical component of the angular velocity of the
Earth.

It is interesting to consider the movement of the local plane of the Foucault
pendulum’s path from the perspective of an observer in outer space who is not ex-
periencing the Earth’s rotation. The angular velocity of this plane is the sum of the
Earth’s rotation ω̄e and the rotation −ωe sin λ about the −z axis seen by an Earth-
based observer. Because the latter cancels the vertical component of ω̄e, the angular
velocity that is seen from outer space at any instant is ωe cos λ about the x axis, which
points northward along the Earth’s surface.

The movement of the plane of a spherical pendulum relative to the Earth was
used in 1851 by the French physicist Jean Louis Foucault (1819–1869) to demon-
strate the Earth’s rotation. The most famous Foucault pendulum may be found in
the General Assembly building at United Nations headquarters in New York City.

In closing, we should note that the spherical pendulum for arbitrary, small initial
values of x, ẋ, ẏ, and ẏ would seem to follow an elliptical path in the xy plane. The
major and minor axes of the ellipse would rotate about the z axis relative to the
Earth at angular speed −ωe sin λ.
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HOMEWORK PROBLEMS
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Exercise 3.1

EXERCISE 3.1 The XYZ coordinate system
coincides with the edges of the box, the y axis
coincides with the main diagonal for the box,
and the x axis coincides with face ABCD.
Use the orthonormal properties to deter-
mine the transformation that converts vector
components relative to XYZ to components
relative to xyz. Then use this transformation
to determine the xyz coordinates of corner
C.

EXERCISE 3.2 Solve Exercise 3.1 by considering the transformation from XYZ to xyz to
be the result of a sequence of body-fixed rotations.

EXERCISE 3.3 At a certain instant gyrosensors on an airplane report that it is heading 40o

west of north, climbing at 20o and that its wings are banked at an angle of 10o clockwise
as viewed looking forward. At this instant, the aircraft’s accelerometers indicate that the
center of mass has acceleration components relative to the aircraft of 2g downward and
0.5g forward. What are the acceleration components in terms of north–south, east–west,
and vertical?
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Exercise 3.4

EXERCISE 3.4 The corners of triangular plate ABC
are situated along the axes of coordinate system XYZ
as shown. Another coordinate system, whose origin is
at corner A, is defined such that ī = ēB/A and k̄ is per-
pendicular to plane ABC with a positive component
in the direction of J̄ . Determine the rotation transfor-
mation from XYZ to xyz. Then determine the coordi-
nates of the origin O with respect to xyz. Hint: Define
a coordinate system parallel to XYZ with its origin at
point A.

A
B

C
D

E 50 mm

30 mm

80 mm

y

x

z

Exercise 3.5

EXERCISE 3.5 The xyz coordinate system is at-
tached to the box, and XYZ is a parallel stationary
coordinate system. The box undergoes a pair of ro-
tations: First, θ1 = 65◦ about the y axis, followed
by θ2 = −145◦ about the z axis. For this rotation
determine (a) the coordinates relative to xyz in its
final orientation of the stationary point that was at
the location of point E prior to the rotations, (b)
the coordinates relative to XYZ of corner E of the
box after both rotations.

EXERCISE 3.6 Solve Exercise 3.5 if the rotations are θ1 = 65◦ about the Y axis, followed
by θ2 = −145◦ about the Z axis.

vertical

pin

X

Y

Z
β

γ

δ

y

x

z

Exercise 3.7

EXERCISE 3.7 The sketch shows an electric fan
that may rotate about three axes. In this sketch
XYZ constitute a set of fixed axes, and xyz are at-
tached to the fan blades. The rotations are defined
as follows. When the rotation angle β about the
fixed vertical Z axis is zero, the pin’s axis aligns
with the fixed horizontal Y axis. When the rota-
tion angle γ about the pin is zero, the shaft about
which the fan blades spin is horizontal. When the
spin angle δ is zero, the x axis is aligned with the
axis of the pin. Consider a sequence of rotations
in which γ occurs first, followed by β, then δ.

Describe the transformation matrix [R] for which[
ī j̄ k̄

]T = [R]
[
Ī J̄ K̄

]T as a set of simple rotation transformations about specific axes.
Then identify an alternative sequence in which the rotations β, γ , δ may be executed
and still arrive at the same final orientation of xyz relative to XYZ.
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Exercise 3.8

EXERCISE 3.8 Motor A in the sketch can be ro-
tated through angle θ1 about the vertical shaft, as
well as through angle θ2 about shaft OA. The rota-
tion of the flywheel relative to the motor housing is
θ3. In this diagram xyz is attached to the flywheel,
and x ′y′z′ is attached to shaft OA, such that the y′

axis always coincides OA and the z′ axis is always
vertical. (a) What is the transformation by which
vector components defined with respect to x ′y′z′

may be expressed in terms of xyz components?
(b) One may obtain the rotated position of xyz with respect to x ′y′z′ by rotating first
by θ2, and then by θ3, or else by applying θ3, followed by θ2. Prove that the transforma-
tion in Part (a) is independent of the sequence in which these rotations are performed.
(c) Consider point B, which is located on the z axis at the perimeter of the flywheel. The
flywheel’s radius is ρ. Use the transformation in Part (a) to describe the displacement of
this point relative to x ′y′z′. (You may express this result in terms of any convenient set
of coordinate directions, but state what your choice is.)

A

100 mm

500 mm

BC

50°

20°

X

Y

Z

θ

Exercise 3.9

EXERCISE 3.9 Rod ABC is such that segment
BC is perpendicular to segment AB. The brackets
align segment AB at 20o from the vertical Z axis,
as shown. The rod rotates by angle θ about axis
AB, which is defined such that segment BC is sit-
uated in the vertical plane formed by segment AB
and the Z axis when when θ = 0. Determine and
graph the angle between the centerline of segment
BC and the X axis as a function of θ.

Exercise 3.10

EXERCISE 3.10 The three-axis gyroscope consists
of an outer gimbal that may rotate by angle ψ

about the AB axis relative to a fixed reference
frame XYZ and an inner gimbal that may rotate by
angle θ about the CD axis relative to the outer gim-
bal. The spin of the flywheel relative to the inner
gimbal is the angle φ. (These are, respectively, the
Eulerian angles of precession, nutation, and spin,
which will be discussed in Chapter 4.) When these
angles are zero, the body-fixed xyz system coin-
cides with the respective axes of XYZ. There are six possible sequences in which the
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rotations may take place. Prove that the transformation from XYZ to xyz components
depends on only the values of these angles, but not the sequence in which the rotations
occur.

200 mm

A
B

C

X

Y

300 mm

100 mm

Z

E

Exercises 3.11 and 3.12

EXERCISE 3.11 Starting from the position shown, the
box is rotated by 40◦ about face diagonal AB, clock-
wise as viewed from corner B toward corner A. De-
termine the coordinates of corner C relative to the
fixed reference frame after this rotation.

EXERCISE 3.12 Starting from the position shown, the
box is rotated by angle θ about main diagonal AC,
counterclockwise as viewed from corner C toward
corner A. The angle between the fixed Y axis and
the unit vector ēE/A after the rotation is 110◦. Deter-
mine θ .

65°

X

Y

A
B

C

60°

30°

Exercise 3.13

EXERCISE 3.13 The bent rod is given a pair of rotations, first
by 60◦ about line AB, and then 30◦ about line AC, with the
sense of each rotation as shown in the sketch. Let xyz be a
coordinate system fixed to the rod that initially aligned with
the fixed XYZ system shown. Determine the transformation
by which vector components with respect to XYZ may be
converted to components with respect to xyz.

EXERCISE 3.14 Consider the rotation of the bent rod in Exercise 3.13. Determine the
orientation of the axis and the angle of rotation of the single rotation that would be
equivalent to the pair of rotations specified there.

EXERCISE 3.15 It is desired to impart to the box in Exercise 3.5 a rotation about a single
axis that is equivalent to the rotations specified there. Determine the orientation of that
axis and the angle of rotation about that axis.

L

x

y

z

H

θ

A
B

C

D

ψ

φ

Exercises 3.16 and 3.17

EXERCISE 3.16 Collar A is welded to the vertical shaft,
so θ is constant. The rectangular plate is welded to this
shaft, and xyz is a coordinate system that is attached to
the plate. Splines prevent shaft BC from rotating rela-
tive to the collar, so φ = 0, in which case the yz plane
is always situated in the vertical plane. The system is ro-
tated by ψ = 75o about the vertical axis; the value of θ is
30o. Determine the rotation transformation from relating
components relative to the initial and final xyz coordinate
system. From this result determine the angle between the
initial and final orientations of the y axis.

EXERCISE 3.17 Collar A is welded to the vertical shaft, so θ is constant. The rectangular
plate is welded to this shaft, and xyz is a coordinate system that is attached to the plate.
Shaft BC may rotate relative to the collar by angle φ, with φ = 0 when the yz plane
coincides with the vertical plane, as depicted in the sketch. Starting from the illustrated
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position the system is rotated by ψ = 75o about the vertical axis, and φ = 115o, with
θ = 30o. Determine the rotation transformation from relating components relative to
the initial and final xyz coordinate system. From this result determine the angle between
the initial and final orientations of the y axis.

A

B

C
β

γ
θ

L

120 mm

Exercise 3.18

EXERCISE 3.18 A hydraulic cylinder allows
the length of arm AB to vary, and servomo-
tors control the rotation angles θ about the
vertical, β about pin A, and γ about axis
AB, with γ = 0 corresponding to bar BC be-
ing situated in the vertical plane as shown.
In the initial position L = 250 mm, θ = 0,

β = 90◦, and γ = 0. In the final position, θ =
β = 120◦, γ = −90◦, and L = 500 mm. De-
termine the corresponding displacement of
end C.

EXERCISE 3.19 Solve Exercise 3.18 for the case the initial state is such that L = 250 mm,
θ = 0, β = 30◦, and γ = 50◦. The final position is as specified there.

50°

400 mm

X

Y

400 mm
200 mm

A

B

C

D

θ φ

Exercise 3.20

EXERCISE 3.20 Bar ABC rotates through an-
gle θ about the fixed X axis, and collar C en-
ables bar CD to rotate by angle φ about seg-
ment BC of bar ABC. When θ = φ = 0, both
bars are situated in the XY plane. Determine
the displacement of end D from this refer-
ence position to one where φ = −70◦ and
θ = 120◦.

C A

B

w

θ φ ψ

R = 80mm
Z

Exercise 3.21

EXERCISE 3.21 Flexure of a cantilevered
shaft supporting a rotating flywheel causes
the center C of the flywheel to undergo trans-
verse displacement w, and the centerline of
the flywheel to rotate relative to the bearing
axis, which is marked as Z in the diagram.
The rotation of the plane formed by the bear-
ing axis and center C is ψ, and the flywheel’s centerline lies in this rotated plane. The
disk is welded to the shaft, so the angle θ between this centerline and the bearing
axis is the flexural angle by which the tangent to the shaft rotates because of deforma-
tion. Torsional deformation of the shaft is described by the rotation φ of diametral line
ACB; when φ = 0, this line lies in the plane containing the flywheel’s centerline and the
bearing axis. In the initial position w = ψ = θ = φ = 0, whereas w = 50 mm, ψ = 460◦,
θ = 10◦, and φ = 8◦ in the final position. Determine the corresponding displacement of
points A and B on the perimeter of the flywheel.
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Exercise 3.22

EXERCISE 3.22 The disk centered at point B is an
optical mirror that is positioned by servo-controlled
arms. Angle θ1 is the rotation about the stationary
horizontal shaft, θ2 is the rotation of the motor hous-
ing about shaft OA, and θ3 is the rotation of the fly-
wheel relative to the motor housing. When θ1 = θ2 =
θ3 = 0 shaft OA is horizontal, shaft AB is vertical,
and the line from center B to point C on the perime-
ter of the flywheel is parallel to the shaft for the θ1

rotation. In the position of interest the angles are
θ1 = 75◦, θ2 = −120◦, and θ3 = 210◦. Determine the
displacement of point C relative to its location when
θ1 = θ2 = θ3 = 0. The length dimensions are H = 300
mm, L = 500 mm, R = 100 mm.

EXERCISE 3.23 In Exercise 3.16 collar A, which is welded to the vertical shaft, allows
shaft BC to slide rotate relative to it, so the distance L and rotation angle φ are not
constant. The rectangular plate is welded to this shaft, and it is situated in the verti-
cal plane when φ = 0. In the initial state L = 3H and ψ = φ = 0. In the final position
ψ = 60◦, φ = −75◦, and L = 5H. Determine the displacement of corner D in terms of
components relative to the final orientation of the body-fixed xyz coordinate system.

EXERCISE 3.24 In Exercise 3.18 the rates are L̇ = 5 m/s, θ̇ = 40 rad/s, β̇ = 0 rad/s, and
γ̇ = 10 rad/s. At t = 0 it is known that L = 200 mm, θ = 0, β = 75◦, and γ = −30◦.
Determine the displacement of end C in the interval from t = 0 to t = 10 ms. Compare
that result with the approximate value obtained by considering the angular velocity to
be constant over the interval.

EXERCISE 3.25 Consider the linkage in Exercise 3.20 when the initial position corre-
sponds to θ = 30◦ and φ = 50◦, and θ = 28◦ and φ = 47◦ in the final position. Compare
the displacement of end D obtained by considering these rotations to be infinitesimal
with the result obtained from an analysis based on rotation transformations.

EXERCISE 3.26 The bladed disk of a gas turbine in an aircraft is spinning at the constant
rate of 30 000 rev/min while the aircraft travels at 1200 km/h in a 2-km radius turn to the
left. Determine the angular velocity and angular acceleration of the disk.

ω1

ω2

R

A B
L

C

S
y

z

Exercise 3.27

EXERCISE 3.27 The rotation rates ω1 of the bracket sup-
porting the spinning disk are constant. The spin rate of
the disk is increasing linearly with elapsed time, so that
ω2 = ξ t. (a) Describe the angular velocity of the disk in
terms of a superposition of simple rotations. (b) Solely
from an examination of the description in Part (a), pre-
dict the direction(s) in which the angular acceleration of
the disk will be situated relative to the xyz axes defined
in the sketch, which rotates in unison with the support
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bracket. Briefly explain your answer. (c) Describe the angular velocity and angular ac-
celeration of the disk in terms of components relative to xyz coordinate system.

Az

B

C

40°

ω2
x

yω1

Exercise 3.28

EXERCISE 3.28 The entire system rotates about the vertical axis
at constant angular speed ω1, and the rotation rate ω2 of the ro-
tor relative to bar BC also is constant. (a) Describe the angular
velocity of the rotor in terms of a superposition of simple rota-
tions. (b) Solely from an examination of the description in Part
(a), predict the direction(s) in which the angular acceleration of
the rotor will be situated relative to the xyz axes defined in the
sketch. Briefly explain your answer. (c) Describe the angular ve-
locity and angular acceleration of the rotor in terms of compo-
nents relative to xyz.

EXERCISE 3.29 The flywheel of the gyroscope in Exercise 3.10 rotates about its own axis
at φ̇ = 50 000 rev/min, and the outer gimbal is rotating about the horizontal axis at ψ̇ =
20 rad/s, with ψ̈ = −100 rad/s2. Determine the angular velocity and angular acceleration
of the flywheel if the orientation of the inner gimbal relative to the outer one is constant
at (a) θ = 90◦, (b) θ = 60◦.

EXERCISE 3.30 The flywheel of the gyroscope in Exercise 3.10 rotates about its own
axis at φ̇ = 50 000 rev/min, and the outer gimbal is rotating about the horizontal axis
at ψ̇ = 20 rad/s, with ψ̈ = −100 rad/s2. At the instant when the angle θ locating the
inner gimbal relative to the outer one is θ = 75◦, it is changing at θ̇ = −2 rad/s, θ̈ = 50
rad/s2. Determine the angular velocity and angular acceleration of the flywheel at this
instant.

EXERCISE 3.31 The orientation angles θ, β, and γ in Exercise 3.18 each change at a con-
stant rate. At the instant of interest, β = 90◦ and γ = 0. Determine the angular velocity
and angular acceleration of arm BC at this instant in terms of components relative to a
coordinate system that is attached to the vertical shaft.

EXERCISE 3.32 The orientation angles θ, β, and γ in Exercise 3.18 each change at a
constant rate. At the instant of interest, β = 60◦ and γ = 30◦. Determine the angular ve-
locity and angular acceleration of arm BC at this instant in terms of components relative
to a coordinate system that is attached to this arm with k̄ = ēC/B.

R

u
θ

Ω

y

x

Exercise 3.33

EXERCISE 3.33 The collar moves at the constant speed u
relative to the guide bar, which rotates in the horizontal
plane at the constant rate �. Derive expressions for the ve-
locity and acceleration of the collar as functions of the an-
gle θ, locating where the collar is situated along its guide.
Describe the results in terms of components relative to the
xyz coordinate system appearing in the sketch.
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Exercise 3.34

EXERCISE 3.34 A servomotor maintains the angle of bar BC
relative to bar AB at φ = 2θ , where θ is the angle of inclination
of bar AB. Determine the acceleration of end C corresponding
to arbitrary values of θ, θ̇ , and θ̈ .

s

h

Ω

Exercise 3.35

EXERCISE 3.35 A speed governor consists of a block of mass
m that slides within a smooth groove in a turntable that rotates
about its center point O at angular speed �. The identical oppos-
ing springs, whose stiffness is k, are precompressed. Consequently
the springs maintain their contact with the block regardless of the
displacement s. The system lies in the horizontal plane. Derive
an expression for the normal force exerted by the groove wall on
the block and the differential equation governing s as a function of
time in the case where � is an arbitrary function of time. Then determine the natural fre-
quency of vibratory motion of the block within the groove for the case in which � is con-
stant, and explain how that result can be used to monitor when � exceeds a critical value.

Exercise 3.36

EXERCISE 3.36 The disk rotates at ω2 about its axis, and the ro-
tation rate of the forked shaft is ω1. Both rates are constant. It
is desired to determine the velocity and acceleration of point
P in the perimeter of the disk, which is oriented on the ra-
dial line that has rotated by θ relative to the upward vertical.
Perform this analysis using a reference frame attached to the
forked shaft; then compare that analysis with one that uses a
reference frame attached to the disk. Describe the results in
terms of components relative to the xyz axes in the sketch.
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x

y

B

W
H

A

Exercise 3.37

EXERCISE 3.37 The angle θ describing the
rotation of a reconnaissance satellite’s solar
panels about the body-fixed x axis is an ar-
bitrary function of time. The satellite spins
about the z axis at the constant rate �. De-
rive expressions for the absolute velocity and
acceleration of point B relative to the origin
of xyz.

EXERCISE 3.38 The disk spins about its axis CD at 1200 rev/min as the system rotates
about the vertical axis at 20 rev/min. Both rates are constant. It is desired to determine
the velocity and acceleration of point E, which is the lowest point on the perimeter of
the disk, in the situation in which β is constant at 60◦. (a) Carry out the analysis by using
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a moving reference frame attached to gimbal BCD. (b) Carry out the analysis by using
a moving reference frame attached to the disk.

L

20 rev/min

1200 rev/min

B

A

E
D

C

Lβ

R
Exercises 3.38 and 3.39

EXERCISE 3.39 The disk spins about its axis CD at 1200 rev/min as the system rotates
about the vertical axis at 20 rev/min. Both rates are constant. The angle of elevation of
the arm supporting the disk is such that β̇ = 10 rad/s and β̈ = −500 rad/s2 when β =
36.87◦. Determine the velocity and acceleration of point E, which is the lowest point on
the perimeter of the disk.

A B

Cu

R

θ

Ω

Exercise 3.40

EXERCISE 3.40 Collar C slides relative to the curved
rod at a constant speed u. The rotation rate about
bearing axis AB is constant at �. Determine the ac-
celeration of the collar in terms of the angle θ lo-
cating the collar. Also derive expressions for the dy-
namic forces exerted on the collar by the rod and the
tangential force required to hold u constant. Gravity
may be assumed to be unimportant.

EXERCISE 3.41 The following questions pertain to the application of the relative motion
formulas:

v̄B = v̄O′ + (v̄B)xyz + ω̄ × r̄B/O′,

āB = āO′ + (āB)xyz + ᾱ × r̄B/O′ + ω̄ × (ω̄ × r̄B/O′) + 2ω̄ × (v̄B)xyz .
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Exercise 3.41

In each question, xyz in these formulas is
equated to one of the coordinate systems in the
diagram, and you are to describe one of the cor-
responding relative motion terms. Each answer
should be expressed in component form relative
to any of the three coordinate systems, but a
different coordinate system may be used to de-
scribe each answer. (a) If xyz = x ′′′y′′′z′′′, what
is ω̄? (b) If xyz = x ′′y′′z′′, what is ᾱ? (c) If xyz =
x ′′′y′′′z′′′, what is ᾱ? (d) If xyz = x ′′y′′z′′, what is
(v̄B)xyz? (e) If xyz = x ′′y′′z′′, what is (āB)xyz? (f)
If xyz = x ′′′y′′′z′′′, what is v̄O′? (g) If xyz = x ′y′z′, what is r̄B/O′?
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EXERCISE 3.42 The rotation rates of the bars in Exercise 3.20 are constant at θ̇ = 20
rad/s, φ̇ = 30 rad/s. For the instant when θ = 120◦ and φ = 50◦, determine the velocity
and acceleration of end D of the bar.

EXERCISE 3.43 Use the concepts of relative motion to derive the formulas for velocity
and acceleration of a point in terms of a set of spherical coordinates.

Exercise 3.44

EXERCISE 3.44 The sketch defines an orthogo-
nal curvilinear coordinate system ρ, θ, φ known
as toroidal coordinates. The radius R is a constant
parameter on which these coordinates are based.
Use the concepts of relative motion to derive the
corresponding formulas for velocity and acceler-
ation of point P in terms of the unit vectors of
this coordinate system.

d d

eten

eb

xy

z
β

β

O

Exercise 3.45

EXERCISE 3.45 The track of a roller coaster is described
in terms of a reference centerline that is defined in para-
metric form by a function r̄ (s) locating points along it,
with s being the arc length from the start. In turn this de-
fines a set of path variable unit vectors ēt , ēn, ēb at each
point. These unit vectors depend on the location, so they
define a moving reference frame x ′y′z′. As shown in the
diagram, the track is laid out by defining a line that is ro-
tated by angle β, which can depend on s, about ēt . This
line is used to situate the tracks at a fixed distance d on
either side of the reference centerline. Thus coordinate
system xyz is a moving reference frame whose x axis is ēt and whose y axis indicates
the orientation of an axle of a car as it moves along the track, with ω̄xyz = ω̄x ′ y ′z′ + β̇ ē.
(a) Suppose a car moves along the track at a speed v that depends on s. Based on the
approximation that the longitudinal axis of the car is parallel to ēt , derive an expression
for the angular velocity and angular acceleration of the car in terms of the radius of cur-
vature ρ (s) and torsion τ (s) of the path. (b) Consider a point at distance h above the
axle, r̄P/O = h j̄ . Determine the velocity and acceleration of such a point corresponding
to the expressions derived in Part (a). Hint: Use the Frenet formulas and the fact that
ds/dt ≡ v to describe the rate of change of the path variable unit vectors, then equate
these derivatives to the general property that dē/dt = ω̄ × ē.

R

Ω

θ
β

Exercise 3.46

EXERCISE 3.46 The blades of a centrifugal flow pump
are attached to the central hub such that their tangent
at their outer radius is at angle β relative to the ra-
dial line at that location. The radius of curvature of
the blades at the tip is ρ. Suppose water flows out-
ward along a blade at a constant relative speed u and
the rotation rate � is constant. Determine the veloc-
ity and acceleration of a water particle immediately



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

Homework Problems 169

before it flows off a blade. Also determine the exit angle θ at which the water is directed
as it leaves the blade.

s

Ω

θ

Exercise 3.47

EXERCISE 3.47 A pellet of mass m moves through the smooth
barrel. At the instant before the pellet emerges, its speed rel-
ative to the barrel is u. At that instant, the magnitude of the
propulsive force F , which acts parallel to the barrel, is a factor
of 50 times greater than the weight of the pellet. The barrel
rotates about the vertical axis at angular speed � as the angle
of elevation of the barrel is increased at the rate θ̇ . Both rates
are constant. Derive expressions for the acceleration term u̇
and the force the pellet exerts on the walls of the barrel at this instant.

2 m

6 m

θ
θ

vrel . ω1

vC

Exercise 3.48

EXERCISE 3.48 While the tank is moving forward
at a constant speed vc = 30 km/h, the turret is ro-
tating at the constant rate ω1 = 0.3 rad/s and the
barrel is being raised at the constant rate θ̇ = 0.5
rad/s. At a certain instant the barrel is facing for-
ward and θ = 15◦. At this instant a shell whose
mass is 80 kg is about to emerge from the barrel
with a muzzle velocity vrel = 5500 km/h that has
reached a maximum because the internal propulsive pressure within the barrel has been
dissipated. Determine the force exerted by the shell on the wall of barrel at this instant.

φ
θ L

H

Ω

Exercise 3.49

EXERCISE 3.49 A shipping container is suspended
from a crane by an inextensible cable. The crane ro-
tates in the vertical plane at the constant angular
speed �. It may be assumed that the cable remains
taut, so its orientation is describable in terms of the
angle θ locating the vertical plane in which it is situ-
ated relative to the plane of the crane and the angle
of elevation φ from a vertical line. Based on a model
of the container as a small particle, derive differential
equations of motion in which the only unknowns are θ and φ.

θ

A

B

C

Ω

ξ

Exercise 3.50

EXERCISE 3.50 The vertical shaft rotates at the constant rate
�. Collar C is attached to this shaft by a fork-and-clevis, so the
angle of inclination θ of bar AB is an unknown time function.
The bar is free to slide through the collar, so the distance ξ

from the pivot point to end B is an arbitrary function of t.
Derive expressions for the velocity and acceleration of point
B in terms of ξ, θ , and their derivatives, as well as �.
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θ
θ

β

.

Ω
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B

P

Exercise 3.51

EXERCISE 3.51 The disk, whose radius is R, spins
about axis AB relative to the bent shaft. The angle of
rotation of a radial line to point P on the perimeter of
the disk about this axis is θ, so θ̇ is the spin rate. This
angle is defined such that line OP is situated in the
plane containing the bearing axis and axis AB when
θ = 0. The whole assembly precesses at angular speed
� about the bearing axis, with the disk’s center situ-
ated on the bearing axis. Derive expressions for the velocity and acceleration of point P
on the perimeter of the disk. Describe the results in terms of components relative to an
xyz system that is attached to the disk, with ī aligned from the disk’s center to point P.

L

L

L
20°

φ
.

Ω
A

B

C

Exercise 3.52

EXERCISE 3.52 Bent shaft ABC is welded to the
vertical shaft, which rotates at constant speed
�. The angle of rotation of the square plate
about axis BC is φ, which is an arbitrary func-
tion of time. The configuration depicted in the
sketch, in which the plate is situated in the ver-
tical plane, corresponds to φ = 0. The xyz coor-
dinate system is attached to the plate. (a) Derive
expressions for the angular velocity and angular
acceleration of the plate, valid for arbitrary φ,
in terms of components with respect to xyz. (b) Derive expressions for the velocity and
acceleration of the center of the plate in terms of xyz components.

EXERCISE 3.53 Instantaneous parameters for the robotic linkage in Example 3.6 are
θ = 40◦, θ̇ = 5 rad/s, θ̈ = −200 rad/s2, β = 0, β̇ = −3 rad/s, β̈ = 0, γ = 20◦, γ̇ = 10 rad/s,
γ̈ = 0, and L is constant at 0.8 m. Determine the velocity and acceleration of end C at
this instant.

EXERCISE 3.54 Instantaneous parameters for the robotic linkage in Example 3.6 are
θ = 70◦, θ̇ = 5 rad/s, θ̈ = −200 rad/s2, β = −60◦, β̇ = 4 rad/s, β̈ = 40 rad/s2, γ = 20◦,
γ̇ = 10 rad/s, γ̈ = 0, L = 0.8 m, L̇ = 20 m/s, L̈ = 100 m/s2. Determine the velocity and
acceleration of end C at this instant.

A

θ2 θ1

B

32 mm

62 mm

Exercise 3.55

EXERCISE 3.55 The larger gear rotates at half
the angular speed of the smaller gear, which
is rotating clockwise at a constant rate of 4800
rev/min. Points A and B are corners of gear
teeth that will mesh. At a certain instant θ1 =
85◦ and θ2 = 42◦. For this instant determine
the velocity and acceleration of corner B with
respect to corner A as seen from a reference
frame that is attached to the smaller gear.
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r φ
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B
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Exercise 3.56

EXERCISE 3.56 Airplane A travels eastward at
constant speed vB = 560 km/h, while airplane A
executes a constant-radius turn, ρ = 3.2 km, in
the horizontal plane at constant speed vA = 1440
km/h. At t = 0 the angle θ locating airplane A
was zero, and sA at that instant was 5.2 km. Radar
equipment on aircraft A can measure the separa-
tion distance r and the angle φ relative to the air-
craft’s longitudinal axis, as well as the rates of change of these parameters. Derive ex-
pressions for r, ṙ , φ, and φ̇. Graph these parameters as functions of time.

EXERCISE 3.57 At a certain instant the absolute velocity and acceleration of an aircraft’s
center of mass in terms of a body-fixed coordinate system are v̄ = 900ī km/h, ā = 5 j̄
m/s2, where ī is the longitudinal forward direction and k̄ is the direction perceived to be
upward. The longitudinal axis is pitched upward at 10◦ from horizontal. The airplane has
rolled to 25◦ in order to execute a left turn and the roll rate at this instant is 2 rad/s about
the positive x axis. The corresponding yaw rate is 0.5 rad/s about the positive z axis, and
both the roll and yaw rates are constant. At this instant an attendant drops a beverage
container from a height of 800 mm above a passenger. Determine the acceleration of
the container as seen by the passenger at the instant of release.

β

ω2

ω1 Z

X

vB

O

C

B

Exercises 3.58 and 3.59

EXERCISE 3.58 A test chamber for astronauts
rotates about its centerline at constant angular
speed ω1 as the entire assembly rotates about
the bearing axis at angular speed ω2, which
also is constant. An astronaut is seated securely
in the chamber at center point O, which is
collinear with both axes of rotation. At a cer-
tain instant a ball that was thrown toward the
astronaut is at position B, which is at distance
X along the fixed rotation axis. Its speed at this instant is vB, and v̇B = 0. Derive ex-
pressions for the velocity and acceleration of the ball as seen by the astronaut at this
instant.

EXERCISE 3.59 A test chamber for astronauts rotates about its centerline at constant
angular speed ω1 as the entire assembly rotates about the bearing axis at angular speed
ω2, which also is constant. An astronaut is seated securely in the chamber at center point
O, which is collinear with both axes of rotation. Ball C falls freely after being released
at t = 0 from height H, so the vertical distance from the observer to the ball is Z =
H − gt2/2. At t = 0 the plane containing the two rotation axes is horizontal. Determine
as a function of elapsed time t the velocity and acceleration of the ball as seen by the
astronaut.

EXERCISE 3.60 A small disk slides with negligible friction on a horizontal sheet of ice.
The initial velocity of the disk was u in the southerly direction. Determine the distance
and sense of the east–west shift s in the position after the disk has traveled distance d
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southward. How would this result have changed if the initial velocity was northward or
eastward?

EXERCISE 3.61 A ball is thrown vertically from the ground at speed v. Assuming that
air resistance is negligible and that the distance the ball travels is sufficiently small to
consider the gravitational force to be mg downward, derive an expression for the shift
that is due to the Coriolis effect in the position where it returns to the ground. Evaluate
the result for v = 4000 m/s at a latitude of 45◦.

EXERCISE 3.62 An object falls in a vacuum after being released at a distance H above
the surface of the Earth. The line extending from the center of the Earth to this object is
at latitude λ, and point O′ on the Earth’s surface is concurrent with this line. Determine
the location (east–west and north–south relative to point O′) at which the object strikes
the ground in each of the following cases: (a) The object is initially at rest relative to
the Earth, (b) the object was initially at rest relative to a reference frame that translates
with the center of the Earth but does not execute the Earth’s spinning rotation. For the
sake of simplicity, the gravitational attraction may be considered to be constant at mg.
Explain the difference between the results in cases (a) and (b).

y x

kx
ky

ky

kx

Ω

Exercise 3.63

EXERCISE 3.63 A small disk of mass m is attached to a horizon-
tal turntable by two pairs of opposing springs having stiffnesses
kx and ky that are unstretched length when the block coincides
with the axis of the turntable. The (x, y) coordinates of the block
relative to the turntable are much less than the radius of the
turntable, which means that the force exerted by each spring on
the disk may be taken to be kxx or ky y opposite the direction of
the respective displacement. Derive differential equations for x and y for the case in
which the turntable’s rotation rate � is an arbitrary function of time. Then solve those
equations for the case in which � is constant. The initial state for this solution is one in
which the block is released from rest relative to the turntable at x = b, y = 0. Discuss
how this system is analogous to the Foucault pendulum.
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CHAPTER 4

Kinematics of Constrained Rigid Bodies

The concept of a rigid body is an artificial one, in that all materials deform when forces
are applied to them. Nevertheless, this artifice is very useful when we are concerned with
an object whose shape changes little in the course of its motion. In addition, it often is
convenient to decompose the motion of a flexible body into rigid-body and deforma-
tional contributions.

Most engineering systems feature bodies that are interconnected. Each body must move
consistently with the restrictions imposed on it by the other bodies. We refer to these
restrictions as constraints. Constraint conditions are the kinematical manifestations of
the reaction forces. Indeed, a synonym for reactions is constraint forces. A keystone of
analytical dynamics, whose treatment begins in Chapter 7, is the duality of constraint
forces and constraint conditions, which enable us to describe one if we know the other.
However, in a kinematics analysis one is not concerned with the forces required to attain
a specified state of motion.

4.1 GENERAL EQUATIONS

When an object is modeled as a rigid body, the distance separating any pair of points
in that object is considered to be invariant. This approximation is quite useful because
it leads to greatly simplified kinematical and kinetic analyses. Because the distance be-
tween points cannot change, any set of coordinate axes xyz that is scribed in the body
will maintain its orientation relative to the body. Such a coordinate system forms a body-
fixed reference frame. The orientation of xyz relative to the body and the location of its
origin are arbitrary. A typical situation is depicted in Fig. 4.1, where points O′, A, and
B are arbitrarily selected points in the body.

A corollary of the rigidity of the body is that no point in the body can displace
relative to xyz, so (xA, yA, zA) are both the initial and final xyz coordinates of point A
and there is no displacement relative to xyz, (�r̄A)xyz = 0̄. Correspondingly, Eq. (3.2.7)
shows that the Ī J̄ K̄ displacement components of points A are related to those of point
O′ by ⎧⎪⎪⎨

⎪⎪⎩
�r̄A · Ī

�r̄A · J̄

�r̄A · K̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

�r̄O′ · Ī

�r̄O′ · J̄

�r̄O′ · K̄

⎫⎪⎪⎬
⎪⎪⎭+

[
[R]T

f − [R]T
o

]
⎧⎪⎪⎨
⎪⎪⎩

xA

yA

zA

⎫⎪⎪⎬
⎪⎪⎭ , (4.1.1)

173
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O'
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O
Y

Z

X

z
x

y
Figure 4.1. Relating the motion of three points in a rigid body.

where [R]o and [R]f are the rotation transformations of xyz with respect to XYZ in the
original and final locations, respectively. The fact that points in the body cannot move
relative to the body-fixed reference frame also simplifies the velocity and acceleration
relations. Because (v̄A)xyz = 0̄ and (āA)xyz = 0̄, we have

v̄A = v̄O′ + ω̄ × r̄A/O′,

āA = āO′ + ᾱ × r̄A/O′ + ω̄ × (ω̄ × r̄A/O′) .
(4.1.2)

Although we placed the origin of xyz at point O′, there is nothing special about the
choice of points. Thus, relations like Eqs. (4.1.1) and (4.1.2) exist, relating the motion
of any pair of points. However, all such relations are not independent. In the case of
displacement we observe by analogy to Eq. (4.1.1) that the displacement of point B is
related to that of point O′ by⎧⎪⎪⎨

⎪⎪⎩
�r̄B · Ī

�r̄B · J̄

�r̄B · K̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

�r̄O′ · Ī

�r̄O′ · J̄

�r̄O′ · K̄

⎫⎪⎪⎬
⎪⎪⎭+

[
[R]T

f − [R]T
o

]
⎧⎪⎪⎨
⎪⎪⎩

xB

yB

zB

⎫⎪⎪⎬
⎪⎪⎭ . (4.1.3)

On the other hand, we could use an x ′y′z′ coordinate system that is parallel to xyz with
origin at point A. Because r̄B/A = r̄B/O − r̄A/O, the coordinates of the points are related
by a translation transformation, such that

x ′
B = xB − xA, y′

B = yB − yA, z′
B = zB − zA. (4.1.4)

Because x ′y′z′ is specified to always be parallel to xyz, [R]f and [R]o also are the trans-
formations from Ī J̄ K̄ to ī ′ j̄ ′k̄ ′ components. Thus the analog to Eq. (4.1.1) relating the
displacements of points A and B is⎧⎪⎪⎨

⎪⎪⎩
�r̄B · Ī

�r̄B · J̄

�r̄B · K̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

�r̄A · Ī

�r̄A · J̄

�r̄A · K̄

⎫⎪⎪⎬
⎪⎪⎭+

[
[R]T

f − [R]T
o

]
⎧⎪⎪⎨
⎪⎪⎩

xB − xA

yB − yA

zB − zA

⎫⎪⎪⎬
⎪⎪⎭ . (4.1.5)

The significant aspect of this relation is that it is the same as the result of subtract-
ing Eq. (4.1.1) from Eq. (4.1.3). Thus we deduce that the displacements of three points
in a rigid body are related by two independent equations. We would arrive at a simi-
lar conclusion if we were to follow similar steps to relate the velocity or acceleration
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of points O′, A, and B by using Eqs. (4.1.2). For example, for velocity we would
have

v̄A = v̄O′ + ω̄ × r̄A/O′ ,

v̄B = v̄O′ + ω̄ × r̄B/O′,

v̄B = v̄A + ω̄ × r̄B/A.

(4.1.6)

Because r̄B/A = r̄B/O′ − r̄A/O′ , the third of the preceding equations is the same as the dif-
ference between the second and first equations. If we consider relating additional points,
we come to the realization that only one additional equation for displacement, velocity,
or acceleration exists for each point added. This leads us to a general conclusion:

Given a set of n points in a rigid body, there are n − 1 independent equations re-
lating their displacement, velocity, or acceleration. We may obtain these equations
by selecting one point as the reference for the description of the other n − 1 points.
Let A designate the reference point and P denote any of the other points. Then the
displacement components relative to the fixed reference frame are related by

⎧⎪⎪⎨
⎪⎪⎩

�r̄P · Ī

�r̄P · J̄

�r̄P · K̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

�r̄A · Ī

�r̄A · J̄

�r̄A · K̄

⎫⎪⎪⎬
⎪⎪⎭+

[
[R]T

f − [R]T
o

]
⎧⎪⎪⎨
⎪⎪⎩

xP − xA

yP − yA

zP − zA

⎫⎪⎪⎬
⎪⎪⎭ . (4.1.7)

The velocities of these points are related by

v̄P = v̄A + ω̄ × r̄P/A, (4.1.8)

and the accelerations are related by

āP = āA + ᾱ × r̄P/A + ω̄ × (ω̄ × r̄P/A) . (4.1.9)

It is important to realize that the preceding expressions for displacement, velocity,
and acceleration, being vectorial in nature, each represent three scalar equations associ-
ated with the respective components. It follows that if one relates the motion of n points
in a body, 3 (n − 1) scalar equations will result. Such equations will be solved in the fol-
lowing sections to perform kinematical analyses of the motion of systems of rigid bodies.

Equations (4.1.7)–(4.1.9) show that the velocity and the acceleration of any point in
a rigid body are the superposition of the movement of an arbitrarily selected reference
point A and a rotational motion about point A. These observations are manifestations
of Chasle’s theorem:

The general motion of a rigid body is a superposition of a translation and a pure
rotation. In the translation, all points follow the movement of an arbitrary point A
in the body, and the orientation of any line scribed in the body remains constant. In
the rotation the selected point A is at rest.

As a consequence of the arbitrariness of the point selected for the translation,
changing the reference point changes the translational part of the motion, except for
the case of pure translational motion. This means that the only global property of a rigid
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body’s motion is its rotation, as described by the current orientation of a set of xyz axes
scribed in it, its angular velocity, and its angular acceleration. Various methods for locat-
ing a point by means of intrinsic and extrinsic coordinates were discussed in Chapter 2.
The next section presents a standardized way for describing orientation.

A basic tool in the analysis of velocity for a body in planar motion is the instant
center method. In essence, this technique is based on considering a body in general
motion (translation plus rotation) to be rotating about a rest point, which is called the
instantaneous center of zero velocity, or more briefly, the instant center. If there is a point
C in a body for which v̄C = 0̄ at some instant, then Eq. (4.1.8) indicates that v̄P = ω̄ ×
r̄P/C. This means that point C must be along a line perpendicular to w̄ and intersecting
point P. If the direction of the velocity of two points in a body is known at some instant,
the instant center, if it exists, will be at the intersection of the two perpendiculars that
are constructed according to this specification. (In the case of a translating body, the
perpendiculars to the velocity of all points will be parallel, which leads to r̄P/C being
infinite. This is consistent with ω being zero.)

The instant center for planar motion leads to a simplified visualization of the veloc-
ity of points. Each point’s velocity is like what would be obtained if the point were fol-
lowing a circular path whose radius is the perpendicular distance to the axis of rotation
intersecting the instant center. However, the usefulness of the instant center concept is
quite narrow. The condition that v̄P = ω̄ × r̄P/C for all points in a body requires that the
velocity of all points be perpendicular to ω̄, which is not true for general spatial motion.
In addition, the instant center concept is not valid for acceleration analysis because the
instant center will have an acceleration unless the body is in pure rotation. Also, ᾱ is
not parallel to ω̄ in a spatial motion. Thus, for the purpose of analyzing acceleration, we
cannot visualize points as following a circular path about a stationary center. For these
reasons we shall not invoke instant center concept as an analytical tool, but it might be
useful for explaining some feature.

Chasle’s theorem could be used to represent the velocity as the superposition of a
translation that follows a special point C and a pure rotation about point C at angular
speed ω̄. Point C has the property that its velocity is parallel to ω̄. This is a screw motion,
whose terminology stems from an analogy with the movement of a screw with a right-
handed thread, which is to advance in the direction of the outstretched thumb of the
right hand when the fingers of that hand are curled in the sense that the screw turns.
We shall not pursue such a representation because it does little to improve our ability to
perform a kinematical analysis. However, some people do find it to be a useful way to
visualize spatial motion.

EXAMPLE 4.1 Observation of the motion of the block reveals that at a certain
instant the velocity of corner B is parallel to the diagonal BE. At this instant com-
ponents relative to the body-fixed xyz coordinate system of the velocities of the
other corners are believed to be (vA)y = 10, (vC)y = 20, (vD)z = 10, (vE)x = 5 m/s.
Determine whether these values are possible, and if so, evaluate the velocity of
corner F .
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Example 4.1

SOLUTION In addition to illustrating application of the basic equation relating the
velocity of points in a rigid body, the objective here is to emphasize that Chasle’s
theorem is embedded in any motion. It is given that v̄B = vBēE/B, v̄A · j̄ = 10,
v̄C · j̄ = 20, v̄D · k̄ = 10, and v̄E · ī = 5 m/s. There are four independent equations
in the form of Eq. (4.1.8) relating the five corner points. Decomposing each into
components would yield 12 scalar equations. The associated unknown scalar quan-
tities are the speed of point B, the two unspecified components of the velocities of
points A, C, D, and E, and the three components of ω̄, which are a set of 12 values.
This reasoning suggests that the number of equations and unknowns will match in
the contemplated analysis, so we proceed.

We select point B as the reference point for the translational motion, because
the only unknown aspect of its velocity is the speed, that is,

v̄B = vBēE/B = vB
1.5ī + 2 j̄ − 1k̄

(1.52 + 22 + 12)1/2
= vB

(
0.5571ī + 0.7428 j̄ − 0.3714k̄

)
.

The angular velocity is unknown, so we let ω̄ = ωxī + ωy j̄ + ωzk̄. The velocity equa-
tions relating point B to the other points are

v̄A = v̄B + ω̄ × r̄A/B, r̄A/B = −1k̄,

v̄C = v̄B + ω̄ × r̄C/B, r̄C/B = 2 j̄,

v̄D = v̄B + ω̄ × r̄D/B, r̄D/B = 2 j̄ − 1k̄,

v̄E = v̄B + ω̄ × r̄E/B, r̄E/B = 1.5ī + 2 j̄ − 1k̄.

Rather than forming the full set of scalar equations resulting from matching like
components in each of the preceding vector equations, focusing on those velocity
components that are specified lessens the number of equations to be solved. Thus
we have

v̄A · j̄ = 10 = 0.7428vB + ωx (1) ,

v̄C · j̄ = 20 = 0.7428vB,

v̄D · k̄ = 10 = −0.3714vB + ωx (2) ,

v̄E · ī = 5 = 0.5571vB − ωy (1) . − ωz (2) .
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Although these are four equations for the four unknown parameters, the equa-
tions are not solvable. The first three equations contain only two unknowns: ωx and
vB. If we solve the second equation for vB, the value of ωx obtained from the first
equation differs from the value obtained from the third equation. This means that
the motion is overconstrained. In the exceptional situation in which the velocity com-
ponents v̄A · j̄, v̄C · j̄, and v̄D · k̄ are selected such that there is a consistent solution
for ωx and vB, we would still be unable to solve the problem because the fourth
equation would be the sole relation for the two remaining unknowns: ωy and ωz. �

4.2 EULERIAN ANGLES

Three independent direction angles define the orientation of a set of xyz axes. Because
there are a total of nine direction angles locating xyz with respect to an absolute ref-
erence frame XYZ, an independent set of angles may be selected in a variety of ways.
Eulerian angles treat this matter as a specific sequence of rotations.

Let us follow the intermediate orientations of a moving reference frame as it is ro-
tated away from its initial alignment with XYZ. The first rotation, called the precession,
is about the fixed Z axis. The angle of rotation in the precession is denoted ψ , as de-
picted in Fig. 4.2. The orientation of the moving reference frame after it has undergone
only the precession is denoted as x ′y′z′. The transformation from Ī J̄ K̄ components to
ī ′ j̄ ′k̄ ′ components is that of a single axis rotation about the Z (or z′) axis, specifically⎧⎪⎪⎨

⎪⎪⎩
Ax ′

Ay ′

Az′

⎫⎪⎪⎬
⎪⎪⎭ = [Rψ ]

⎧⎪⎪⎨
⎪⎪⎩

AX

AY

AZ

⎫⎪⎪⎬
⎪⎪⎭ , (4.2.1)

where

[Rψ ] =

⎡
⎢⎢⎣

cos ψ sin ψ 0

− sin ψ cos ψ 0

0 0 1

⎤
⎥⎥⎦ . (4.2.2)
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Figure 4.2. Definition of the Eulerian angles.
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The second rotation is the nutation, and the nutation angle is θ . It is defined to be
about an axis that is perpendicular to the precession axis. We label the nutation axis as
y′. The orientation of the moving reference frame after the nutation is denoted x ′′y′′z′′

in Fig. 4.2. The second transformation, from ī ′ j̄ ′k̄ ′ components to ī ′′ j̄ ′′k̄ ′′ components,
is that of a simple rotation about the y′ (or y′′) axis, so⎧⎪⎪⎨

⎪⎪⎩
Ax”

Ay”

Az”

⎫⎪⎪⎬
⎪⎪⎭ = [Rθ ]

⎧⎪⎪⎨
⎪⎪⎩

Ax ′

Ay ′

Az′

⎫⎪⎪⎬
⎪⎪⎭ , (4.2.3)

where

[Rθ ] =

⎡
⎢⎢⎣

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎤
⎥⎥⎦ . (4.2.4)

The last rotation is the spin φ, which moves the reference frame from x ′′y′′z′′ to its
final orientation xyz. It is executed about the z′′ (or z) axis, so this is a simple rotation
transformation from ī ′′ j̄ ′′k̄ ′′ components to ī j̄ k̄ components given by⎧⎪⎪⎨

⎪⎪⎩
Ax

Ay

Az

⎫⎪⎪⎬
⎪⎪⎭ = [Rφ]

⎧⎪⎪⎨
⎪⎪⎩

Ax”

Ay”

Az”

⎫⎪⎪⎬
⎪⎪⎭ , (4.2.5)

where

[Rφ] =

⎡
⎢⎢⎣

cos φ sin φ 0

− sin φ cos φ 0

0 0 1

⎤
⎥⎥⎦ . (4.2.6)

The sequence of rotations, precession, nutation, then spin, constitute a set of body-
fixed rotations. Consequently, we can use the transformation properties of such a se-
quence to relate any two sets of unit vectors. For example, the overall transformation
from Ī J̄ K̄ components to ī j̄ k̄ components is obtained by postmultiplication, according
to ⎧⎪⎪⎨

⎪⎪⎩
Ax

Ay

Az

⎫⎪⎪⎬
⎪⎪⎭ = [R]

⎧⎪⎪⎨
⎪⎪⎩

AX

AY

AZ

⎫⎪⎪⎬
⎪⎪⎭ , [R] = [Rφ] [Rθ ] [Rψ ] . (4.2.7)

The angular velocity and angular acceleration are readily expressed by adding the
precession, nutation, and spin rates about the respective axes. The precession is about
the Z axis, so the first rotation rate is ψ̇, the direction is ē1 = K̄, and the angular velocity
of XYZ is �̄1 = 0̄. The nutation occurs about the y′ axis. (The term line of nodes is
sometimes used to refer to the y′ axis because points on this axis do not move in the
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nutation.) The nutation rate is θ̇ , the direction is ē2 = j̄ ′ ≡ j̄ ′′, and the angular velocity
of x ′y′z′ is �̄2 = ψ̇ K̄. Finally, the spin rate is φ̇ about the z′′ axis, so the third rotation
direction is ē3 = k̄ ′′

, and the angular velocity of x ′′y′′z′′ is �̄3 = ψ̇ K̄ + θ̇ j̄ ′′. The angular
velocity of xyz is the vector sum of the individual rotation rates, so

ω̄ = ψ̇ K̄ + θ̇ j̄ ′′ + φ̇k̄ ′′
. (4.2.8)

The general expression for angular acceleration obtained by using each angular velocity
�̄ j to differentiate the corresponding rotation direction ē j is

ᾱ = ψ̈ K̄ + θ̈ j̄ ′′ + θ̇
(
�̄2 × j̄ ′′)+ φ̈k̄ ′′ + φ̇

(
�̄3 × k̄ ′′)

= ψ̈ K̄ + θ̈ j̄ ′′ + ψ̇ θ̇
(
K̄ × j̄ ′′)+ φ̈k̄ ′′ + ψ̇φ̇

(
K̄ × k̄ ′′)+ θ̇ φ̇

(
j̄ ′′ × k̄ ′′)

.

(4.2.9)

To use these expressions in computations, they must be transformed to a common
set of components. Many situations involve bodies that have an axisymmetric shape,
with the z axis defined to be the axis of symmetry. In such cases there is no special orien-
tation of the x and y axes relative to the body, so using x ′′y′′z′′ as the global coordinate
system will yield a description of vector quantities from the viewpoint of the body that
is generally descriptive. Inspection of Fig. 4.2 shows that K̄ lies in the x ′′z′′ plane, such
that

K̄ = − sin θ ī ′′ + cos θk ′′. (4.2.10)

We thereby find that

When the angular velocity ω̄ and angular acceleration ᾱ of reference frame xyz are
described in terms of the Eulerian angles of precession ψ , nutation θ , and spin φ,

then

ω̄ = −ψ̇ sin θ ī ′′ + θ̇ j̄ ′′ + (
ψ̇ cos θ + φ̇

)
k̄ ′′

,

ᾱ = (−ψ̈ sin θ − ψ̇ θ̇ cos θ + θ̇ φ̇
)

ī ′′ + (
θ̈ + ψ̇φ̇ sin θ

)
j̄ ′′

+ (
ψ̈ cos θ + φ̈ − ψ̇ θ̇ sin θ

)
k̄ ′′

,

(4.2.11)

where x ′′y′′z′′ is a reference frame that executes only the precession and nutation. If
appropriate, the preceding expressions may be transformed to ī j̄ k̄ components by
applying Eq. (4.2.5). This operation yields

ω̄ = (−ψ̇ sin θ cos φ + θ̇ sin φ
)

ī + (
ψ̇ sin θ sin φ + θ̇ cos φ

)
j̄ + (

ψ̇ cos θ + φ̇
)

k̄,

ᾱ = (−ψ̈ sin θ cos φ + θ̈ sin φ − ψ̇ θ̇ cos θ cos φ + ψ̇φ̇ sin θ sin φ + θ̇ φ̇ cos φ
)

ī

+ (
ψ̈ sin θ sin φ + θ̈ cos φ + ψ̇ θ̇ cos θ sin φ + ψ̇φ̇ sin θ cos φ − θ̇ φ̇ sin φ

)
j̄

+ (
ψ̈ cos θ + φ̈ − ψ̇ θ̇ sin θ

)
k̄.

(4.2.12)
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Utilization of Eulerian angles requires recognition of the appropriate axes of rota-
tion. This involves identifying a fixed axis of rotation as the precession axis. Then the nu-
tation axis precesses orthogonally to the precession axis. Finally, the spin axis precesses
and nutates while it remains perpendicular to the nutation axis. In many cases, the nuta-
tion or spin rates may be zero, in which case either of the respective angles is constant.
This results in a degree of arbitrariness in the selection of the axes. Indeed, a simple
rotation can be considered to be solely precession, nutation, or spin, as one wishes.

From one perspective it is sufficient to rely on Eqs. (4.2.12) because they reduce
to Eqs. (4.2.11) when φ = 0, which corresponds to xyz being coincident with x ′′y′′z′′.
On the other hand, the raw expressions in Eqs. (4.2.8) and (4.2.9) are readily adapted
to a variety of situations. This is especially true if the axes are labeled differently from
the convention used here. For example, some texts define the x ′ axis to be the line of
nodes for nutation. Also, a different definition of the Eulerian angles often is used by
aerodynamicists. (This is the topic of Exercise 4.6.) Another consideration is that the
Eulerian angle formulas may not be directly applicable. For example, the representa-
tion addresses a motion featuring no more than three rotations, so one set of Eulerian
angles cannot describe a situation that features more than three rotations. Such situ-
ations could be treated by defining multiple sets of transformations. Another case in
which the Eulerian angle formulation is inadequate by itself arises when a motion con-
sists of three rotations in which no two rotation axes are orthogonal. No line of nodes is
evident in that case. This is another situation that can be treated with more than one set
of Eulerian angles.

EXAMPLE 4.2 A free gyroscope consists of a flywheel that rotates relative to the
inner gimbal at the constant angular speed of 8000 rev/min, and the rotation of the
inner gimbal relative to the outer gimbal is γ = 0.2 sin(100π t) rad. The rotation
of the outer gimbal is β = 0.5 sin(50π t) rad. Use the Eulerian angle formulas to
determine the angular velocity and angular acceleration of the flywheel at t = 4
ms. Express the results in terms of components relative to the body-fixed xyz and
space-fixed XYZ reference frames, where the x axis was directed from bearing D to
bearing C at t = 0.

β
γ

X

Y

Z

A

B

C

D

E

F

8000 rev/min

x

y

z

Example 4.2
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SOLUTION This example explains how one can apply the Eulerian angle formulas
when none of the rotations are explicitly stated to be those parameters. The primary
task in applying the formulas is identification of the precession, nutation, and spin.
The angle β is the rotation about a fixed axis, so it is the precession. Thus we set ψ =
β = 0.5 sin(50π t) in the formulas. By definition, the nutation axis is perpendicular to
the precession axis. This matches the characteristic of line CD for the γ rotation, so
we identify ēC/D as the line of nodes, and set θ = γ = 0.2 sin(100π t) in the formulas.
The 8000 rev/min rotation occurs in the direction of ēF/E, which is perpendicular to
the line of nodes, so it fits the spinning rotation. Furthermore, it is specified that the
x axis was aligned with ēc/D at t = 0, so we set φ = 8000 (2π/60) t rad. The Eulerian
angles and their derivatives at t = 0.004 are

ψ = 0.2939 rad, ψ̇ = 63.54 rad/s, ψ̈ = −7 252 rad/s2,

θ = 0.19021 rad, θ̇ = 19.416 rad/s, θ̈ = −18 773 rad/s2,

φ = 3.351 rad, φ̇ = 837.8 rad/s, φ̈ = 0.

(1)

To avoid confusing the xyz coordinate system in the definition of Eulerian an-
gles with the coordinate system defined here, let us use a subscript f to denote the
unit vectors in the formulas, Eqs. (4.2.12). Then the result of substituting the values
in Eqs. (1) into those formulas is

ω̄ = 7.71ī f − 21.49 j̄ f + 900.15k̄ f rad/s,

ᾱ = −14256ī f + 11934 j̄ f − 7354k̄ f rad/s2.
(2)

The rotation transformation [R] in Eq. (4.2.7) relates vector components in the
body-fixed system to the standard fixed reference frame Xf Yf Zf . For the angles
in Eqs. (1), this transformation is[

ī f j̄ f k̄ f
]T = [R]

[
Ī f J̄ f K̄ f

]T
,

[R] =

⎡
⎢⎢⎣

−0.85909 −0.47723 0.18494

0.47876 −0.87707 −0.03931

0.18096 0.05477 0.98196

⎤
⎥⎥⎦ .

We use the inverse transformation to obtain the fixed coordinate system compo-
nents of ω̄ and ᾱ, as follows:

{ω} f = [R]T

⎧⎪⎪⎨
⎪⎪⎩

7.71

−21.49

900.15

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

145.98

64.47

886.19

⎫⎪⎪⎬
⎪⎪⎭ ,

{α} f = [R]T

⎧⎪⎪⎨
⎪⎪⎩

−14256

11934

−7354

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

16 630

−4 066

−10 327

⎫⎪⎪⎬
⎪⎪⎭ .

(3)
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It still remains to identify the components corresponding to the coordinate sys-
tems that were defined in the problem statement. Toward that end we observe that
the spin occurs about the y axis, so it must be that k̄ f = j̄ . We also observe that the x
axis aligned with ēC/D at t = 0, which is the line of nodes. In the Eulerian definition
the yf axis lines up with the line of nodes when φ = 0, which matches the alignment
of the x axis here. Thus we set j̄ f = ī . Then, because j̄ f × k̄ f ≡ ī × j̄ , it must be that
ī f = k̄. Substitution of these equivalencies into Eqs. (2) yields

ω̄ = −21.49ī + 900.2 j̄ + 7.71k̄ rad/s,

ᾱ = 11934ī − 7354 j̄ − 14256k̄ rad/s2.
(4) �

In regard to the fixed coordinate components, we observe in the present situ-
ation that j̄ = J̄ and ī = Ī when all of the Eulerian angles are zero. Hence it must
be that the fixed unit vectors are permuted in the same way as the moving unit vec-
tors. In other words, K̄ f = J̄ , J̄ f = Ī, and Ī f = K̄. Selecting the elements in Eqs.
(3) accordingly then leads to

ω̄ = 64.47 Ī + 886.19 J̄ + 145.98K rad/s,

ᾱ = −4 066 Ī − 10 327 J̄ + 16 630K̄ rad/s2.
�

As an aside, it should be mentioned that if one is confronted in practice with the
situation posed here, an approach based on returning to the basic formulation might
be easier, and less prone to error, than one that relies on formulaic subsitutions.

4.3 INTERCONNECTIONS AND LINKAGES

According to Eq. (4.1.7), the displacement of any point in a rigid body from a known
initial state can be evaluated if the displacement of a reference point and the rotation
transformation in the final state are known. Point displacement is a three-component
vector, and a rotation transformation is defined completely by three angles, such as the
Eulerian angles. Thus a rigid body in free motion has six degrees of freedom.

Most bodies are restricted in their movement because they are connected to ad-
joining bodies. These connections give rise to kinematical constraint equations, which
are mathematical statements of conditions that are imposed on the motion of a point
or on the angular motion of a body. Such equations are relations between kinematical
variables that must be satisfied under any circumstance, regardless of the nature of the
forces that actuate the motion. The kinematical constraints are imposed by constraint
forces (and couples), which are more commonly known as reactions. The role of con-
straint forces and their relation to the kinematical conditions they impose will be treated
in the chapters on kinetics.

A simple, though common, constraint condition arises when a body is permitted to
execute only a planar motion. By definition, planar motion means that all points in the
body move in parallel planes, which can only happen if the angular velocity is always
perpendicular to these planes. Let the XY plane of the fixed reference frame and the
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xy plane of the body fixed reference frame be coincident planes of motion. Points that
differ only in their z coordinate execute the same motion in this case, so they may be
considered to be situated in the xy plane. Hence the kinematical equations for planar
motion are

ω̄ = ωk̄ = ωK̄, ᾱ = ω̇k̄ = ω̇K̄,

rP/A = xī + y j̄ = XĪ + YJ̄ ,

v̄P = v̄A + ω̄ × r̄P/A,

āP = āA + ᾱ × r̄P/A − ω2r̄P/A,

(4.3.1)

where point P is an arbitrary point in the body and point A is any convenient refer-
ence point in the same body. Note that the preceding centripetal acceleration term is
simplified from ω̄ × (ω̄ × r̄P/A) to −ω2r̄P/A by an identity that is valid only when r̄P/A is
perpendicular to ω̄. These relations are depicted in Fig. 4.3.

rP/A
vA

vA
vP

ωk×rP/A

−ω2rP/A

ω ω,ω

ωk × rP/A

aA

aP

aA
A

PP

A

−

−

−

−

.

.

−−

−

−

−−

− −

Figure 4.3. Relation of the velocity and acceleration of two points in a rigid body undergoing planar motion.

The restriction to planar motion contains an implicit assumption that the connec-
tions to other bodies permit rotation only about an axis perpendicular to the plane. An
analysis of spatial motion requires explicit consideration of the constraint conditions
arising from connections. These may be identified by characterizing the nature of the
connection using the fundamental concepts developed thus far. For example, the ball-
and-socket joint connecting bodies 1 and 2 in Fig. 4.4 allows each body to rotate freely
about its center point B, so it does not impose a constraint on the orientation of either

1 2
B Figure 4.4. Ball-and-socket joint.
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body. However, the center B of the ball is common to both bodies, so the bodies must
move in unison at this junction. This means that the displacement, velocity, and acceler-
ation of point B on each body must match, so that

(�r̄B)1 = (�r̄B)2 , (v̄B)1 = (v̄B)2 , (āB)1 = (āB)2 (4.3.2)

The case of a pin connection between bodies, depicted in Fig. 4.5, has some elements
in common with a ball-and-socket joint. In the figure, x1 y1z1 and x2 y2z2 represent refer-
ence frames attached to each of the joined bodies, with their shared z axis aligned along
the axis of the pin. We define each x axis to align with a convenient reference line in the
respective body, such as the centerline for a bar. The direction of the pin’s axis may be
evaluated from a cross product:

ēpin = k̄1 = k̄2 = ī1 × ī2∣∣ī1 × ī2
∣∣ (4.3.3)

As is true of the ball-and-socket joint, both bodies have the same motion at their
point of commonality. Consequently, Eqs. (4.3.2) must be satisfied. However, the pin
also introduces a constraint on rotation. The only rotation of body 2 relative to body 1
permitted by the pin connection is a spin about the z1 or z2 axis. We denote the spin
angle as φ, with φ = 0 defined as the configuration in which x1 y1z1 and x2 y2z2 coincide.
A simple rotation transformation about the z axis gives ī2 j̄2k̄2 components in terms of
ī1 j̄1k̄1 components:⎧⎪⎪⎨

⎪⎪⎩
Ax2

Ay2

Az2

⎫⎪⎪⎬
⎪⎪⎭ = [Rφ]

⎧⎪⎪⎨
⎪⎪⎩

Ax1

Ay1

Az1

⎫⎪⎪⎬
⎪⎪⎭ , [Rφ] =

⎡
⎢⎢⎣

cos φ sin φ 0

− sin φ cos φ 0

0 0 1.

⎤
⎥⎥⎦ (4.3.4)

The constraints introduced by a pin connection on the angular velocity and angular ac-
celeration may be expressed in vector form. Because x2 y2z2 spins at φ̇ about the k̄1 = k̄2

axis, the respective angular velocities are related by

ω̄2 = ω̄1 + φ̇k̄1. (4.3.5)

The angular velocity of x1 y1z1 is ω̄1, so the time derivative of the preceding is

ᾱ2 = ᾱ1 + φ̈k̄1 + φ̇
(
ω̄1 × k̄1

)
. (4.3.6)

x1

z1, z2 y1

x2

y21

2

B

φ

Figure 4.5. Pin connection.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

186 Kinematics of Constrained Rigid Bodies

Equations (4.3.4)–(4.3.6) are constraint equations on the angular motion that must
be satisfied in addition to Eqs. (4.3.2) for the connecting points. Each of these relations
may be transformed to any convenient global set of components. It is interesting to ob-
serve that, if a system is arranged such that all pin connections are parallel, then the
rotational constraint equations lead to the conclusion that the z axis of each pin is in-
variant. In other words, using pins aligned perpendicular to a fixed plane will lead to
planar motion of a system in that plane.

Another common method for connecting bodies consists of a collar that slides over
a bar, as depicted in Fig. 4.6. (This connection is also known as a slider.) Similar to the
treatment of a ball-and-socket joint, point C in the figure denotes the center of the ball.
For most purposes, the distance to the adjacent point B on the centerline of bar 1 is small
relative to the overall dimensions of a system. We take this distance to be zero for the
sake of simplicity. (The modifications required to account for the finiteness of this dis-
tance are the topic of Exercise 4.7.) The collar is free to slide over bar 1. We characterize
the constraint condition in this case by attaching reference frame x1 y1z1 to bar 1, with the
x1 axis aligned with the centerline of that bar. With respect to this reference frame, the
collar can move along only the x1 axis. We let u denote the amount of this relative dis-
placement, so (�r̄C)x1 y1z1

= uī1, and approximate r̄C/B to be zero. Taking point O′ in
Eq. (3.2.8) to be point B in the present situation leads to the conclusion that the collar’s
displacement in terms of components relative to the axes of x1 y1z1 is given by⎧⎪⎪⎨

⎪⎪⎩
�r̄C · ī

�r̄C · j̄

�r̄C · k̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

�r̄B · ī

�r̄B · j̄

�r̄B · k̄

⎫⎪⎪⎬
⎪⎪⎭+

⎧⎪⎪⎨
⎪⎪⎩

u

0

0

⎫⎪⎪⎬
⎪⎪⎭ .

Alternatively, the general description in Eq. (3.2.7) may be used to describe the absolute
displacement, which leads to⎧⎪⎪⎨

⎪⎪⎩
�r̄C · Ī

�r̄C · J̄

�r̄C · K̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

�r̄B · Ī

�r̄B · J̄

�r̄B · K̄

⎫⎪⎪⎬
⎪⎪⎭+ [R]T

f

⎧⎪⎪⎨
⎪⎪⎩

u

0

0

⎫⎪⎪⎬
⎪⎪⎭ ,

where [R] describes the orientation of x1 y1z1. The velocity of point C relative to x1 y1z1

is u̇k̄1, so we have

v̄C = v̄B + u̇ī1, āC = āB + üī1 + 2ω̄1 × u̇ī1, (4.3.7)

where the sign of u and its derivatives gives the sense of the sliding motion.

2
C

B x1

z1
y1

1
u

Figure 4.6. Collar with a ball-and-socket joint.
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It should be noted that the analyses of the collar’s displacement, velocity, and ac-
celeration assumed that bar 1 is straight. If this bar were curved, it would be necessary
to augment the relative acceleration with the centripetal acceleration term

(
u̇2/ρ

)
ēn,

where ρ is the radius of curvature of bar 1 at point B and ēn is the normal direction
(pointing toward the center of curvature) for the segment at point B.

The collar in Fig. 4.6 introduces no angular motion restrictions because bar 2 is con-
nected to the collar by a ball-and-socket joint. However, a common connection method
is a pin, Fig. 4.7(a), or a fork-and-clevis joint, Fig. 4.7(b). If the cross section of bar 1 is
not circular, interference prevents the collar from spinning about that bar. In that case
the constraints on angular motion are the same as Eqs. (4.3.4)–(4.3.6) for a pin connec-
tion. However, if the cross section of bar 1 is circular, then bar 1 acts as a pin that permits
rotation about its axis. We treat the angular motion constraints for this connection by
attaching x2 y2z2 to bar 2; the z2 axis is chosen to align with the axis of the pin connecting
bar 2 and the collar, and the x2 axis coincides with a convenient reference line of bar 2.

x1

z1

y1

x2

y2

z2

x2

y2

z2

y1

z1

x1
θ

ψ

θ

ψ

(a) (b)

Figure 4.7. Collar connections that impose rotational constraints: (a) collar with a pin connection, (b) collar
with a fork-and-clevis joint.

Let ψ denote the angle by which the collar rotates relative to bar 1 about the x1

axis, and let θ be the rotation of bar 2 about the pin relative to the collar. (As implied by
their labels, ψ represents precession of bar 2 relative to bar 1, and θ represents a relative
spin.) Define these angles such that ψ = θ = 0 corresponds to x1 y1z1 and x2 y2z2 being
parallel. These are a pair of body-fixed rotations, so the rotation transformation from
ī1 j̄1k̄1 to ī2 j̄2k̄2 is given by

⎧⎪⎪⎨
⎪⎪⎩

Ax2

Ay2”

Az2

⎫⎪⎪⎬
⎪⎪⎭ = [Rθ ] [Rψ ]

⎧⎪⎪⎨
⎪⎪⎩

Ax1

Ay1

Az1

⎫⎪⎪⎬
⎪⎪⎭ , (4.3.8)

where [Rψ ] and [Rθ ] are simple rotation transformations for ψ about the x1 axis and by
θ about the z2 axis, respectively. The rotation rates of bar 2 relative to bar 1 are ψ̇ about
the x1 axis, and by θ̇ about the z2 axis, so

ω̄2 = ω̄1 + ψ̇ ī1 + θ̇ k̄2. (4.3.9)
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Using the angular velocities of each reference frame to describe the time derivative of
the respective unit vectors leads to

ᾱ2 = ᾱ1 + ψ̈ ī1 + ψ̇
(
ω̄1 × ī1

)+ θ̈ k̄2 + θ̇
(
ω̄2 × k̄2

)
. (4.3.10)

Equations (4.3.7)–(4.3.10) constitute the constraint equations for a collar sliding over
bar 1 whose cross section is circular. As always, these conditions may be represented in
terms of any convenient global coordinate system.

It should be obvious from the discussion thus far that the connections need to be
examined in detail to identify all constraints on the motion. If all of the permutations
and novel features of various types of connections were to be tabulated, it would not aid
our understanding. It is preferable to consider each connection on a case-by-case basis,
and then to employ the type of reasoning developed thus far to identify the constraint
equations.

As noted at the outset, it follows from Chasle’s theorem that a rigid body in free mo-
tion has six degrees of freedom. If a system is composed of N bodies, its movement could
be described by as many as 6N kinematical variables. However, the constraint equations
for the appropriate types of connection and the fact that some connections are part of
the same body reduce the number of free variables. The overall approach is to use the
rotational constraints, if any exist, to characterize the angular motion of the body, simul-
taneously with employing kinematical equations (4.1.7)–(4.1.9) to relate the motion of
constrained points in a body. When such relations are broken down into components,
one obtains simultaneous equations for the kinematical variables describing the motion
of each body.

If the motion of the system is fully constrained, then this system of equations will be
solvable such that, for each body, the linear motion of a point and the angular motion
may be evaluated. The system is only partially constrained if the number of kinemati-
cal variables exceeds the number of kinematical equations. The simultaneous equations
may then be solved for a set of excess variables in terms of the other. The excess vari-
ables in this case depend on the nature of the force system, so their evaluation requires a
kinetics study. The number of excess kinematical variables is the system’s number of de-
grees of freedom. Another possibility is that the kinematical equations are not solvable.
In that case, there are too many constraints on the motion of the system. This means
that no motion is possible – such a system is rigid.

In principle, it is possible to analyze the constrained motion of a system in terms
of its displacements and angles of rotation. However, the occurrence of these angles as
sines and cosines in component descriptions and in rotation transformations, as well as
the complicated nature of the spatial geometry in many situations, combine to make it
quite difficult to formulate and solve the associated kinematical equations. Furthermore,
we will see in our later studies, beginning in Chapter 7, that some motion constraints
restrict velocity, without any associated positional restrictions. For both reasons, our ef-
forts here focus on the kinematical analysis of velocity and acceleration when the system
is at a given position. In Chapter 8 we will see that such an analysis can be used to obtain
differential equations whose solution will be the position variables as a function of time.
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Figure 4.8. Spatial motion of a bar subject to constraints.

To demonstrate these matters, consider bar AB in Fig. 4.8, which is constrained by
collars that follow noncoplanar guide bars CD and EF . The connection at collar A is a
ball-and-socket joint, whereas the one at collar B is a pin. Because points A and B are
part of the same rigid body, their velocities are related by

v̄A = v̄B + ω̄ × r̄A/B. (4.3.11)

We next address the constraint conditions associated with the connections. Because the
guide bars are fixed, velocity constraint equations (4.3.7) state that

v̄A = vAēE/F , v̄B = vBēD/C, (4.3.12)

where positive values of vA and vB indicate that the respective velocities are taken to
be downward and to the right. (If the actual sense of each motion is contrary to the
assumed one, then the associated rate will be negative.) Let us for the moment ignore
the constraint on the rotation of bar AB that is introduced by the pin on collar B. Then
the angular velocity of the bar is an unknown ω̄AB having three components. Equation
(4.3.11) reduces to three scalar equations, one for each component, and there are five
unknowns: vA, vB, and the three components of ω̄AB. (It is assumed that we have worked
out whatever geometrical relations are required to describe distances and angles, so
there are no unknown positional parameters.)

To further characterize the system, we need to account for the rotational constraint
on ω̄AB imposed by having a pin at collar B, which is described by Eq. (4.3.9). (This
assumes that guide bar CD has a round cross section.) The guide bar is fixed, so it serves
as the precession axis for rotation ψ , which equivalently is the angle by which plane
ABC has rotated away from vertical. Thus the precession direction is k̄1 ≡ ēC/D, based
on the sense with which ψ is depicted in Fig. 4.8. In addition, the angle θ between bar
AB and guide bar CD is equivalent to the angle of rotation about the axis of the pin,
which is assumed to be perpendicular to the plane containing AB and CD. We represent
this direction with a cross product, with the sequence of terms based on the right-hand
rule for when θ increases:

j̄2 = ēC/D × r̄A/B∣∣ēC/D × r̄A/B
∣∣ . (4.3.13)

When we use Eq. (4.3.9) to describe the angular velocity of bar AB, we find that

ω̄AB = ψ̇ ēC/D + θ̇
ēC/D × r̄A/B∣∣ēC/D × r̄A/B

∣∣ . (4.3.14)
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This reduces the number of unknown scalars in ω̄AB from three to two, thereby
reducing the number of unknowns in the system to four: vA, vB, ψ̇, and θ̇ . Two possibili-
ties arise now. In a fully constrained situation, the overall motion will be defined through
some kinematical input, such as a specification of vB, which removes the corresponding
velocity parameter from the list of unknowns. In contrast, if the motion is induced by a
given set of forces, so that none of the four kinematical parameters are specified, then
the system is partially constrained. In that case, the three scalar equations obtained from
Eq. (4.3.11) can be used to describe three of the unknowns in terms of the fourth. The
system then has one degree of freedom, and kinetics principles would relate the remain-
ing unknown to the force system.

A different condition of partial constraint is obtained when bar AB is connected
to both collars by ball-and-socket joints, because Eq. (4.3.14) then does not apply. The
lack of constraint in such a case is associated with the ability of bar AB to spin about
its own axis. Such a rotation does not affect the motion of either collar. The kinematical
equations therefore can be solved for a relation between vA and vB, although there
will be no unique solution for ω̄AB. If it is desired that the number of equations and
unknowns match, one could consider the spin of bar AB about its own axis to be zero,
in which case one may invoke Eq. (4.3.14).

Other conditions are possible. Suppose that bar AB was connected to both collars
by pins. That would introduce another constraint on ω̄AB having similar form to that
of Eq. (4.3.14). It would not be possible to satisfy simultaneously both angular motion
constraints, which would mean that the system is rigid. (The exception to this condition
occurs if both guide bars are coplanar and the pins are perpendicular to that plane, in
which case motion in that plane is possible.)

Thus far the discussion has only addressed the analysis of velocities. The treatment
of acceleration follows a parallel development with the same logic as that by which the
velocity was analyzed. It is essential to recognize that the velocities must be analyzed
before accelerations can be addressed. One reason for this is that the angular veloci-
ties occur in the acceleration relation between two points in a body, Eq. (4.1.9). Also,
angular accelerations in spatial motion contain terms that are the products of rotation
rates. A third place where velocity parameters arise in an acceleration analysis is the
characterization of the acceleration of a collar sliding along a curved bar, as was noted
following Eqs. (4.3.7).

An area of special interest in kinematics is concerned with linkages, in which bars
are interconnected sequentially in order to convert an input motion to a different output
motion. From the standpoint of our general approach to rigid-body motion, the treat-
ment of linkages presents no special problems. The constrained points in the system are
the ends of the linkage, the connection points, and any point whose motion is specified.
The velocity analysis is performed by using Eq. (4.1.8) to relate different connection
points on each link. The linear velocity constraint equation appropriate to each connec-
tion is introduced into these relations between the velocity of points. Simultaneously,
the angular velocity constraint equation associated with each connection is used to char-
acterize the angular velocity of each link. In the special case of a robot, it is likely that the
rotations about some or all of pins are controlled by servomotors, which remove these
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rotations from the list of unknowns. After the velocity analysis has been completed, one
may carry out an acceleration analysis by following the same logic using the analogous
acceleration equations. In comparison with the system in Fig. 4.8, the primary complica-
tion encountered in analyzing linkages is that the description of the position vectors and
vector components is likely to be more difficult.

EXAMPLE 4.3 Collar B is pinned to arm AB as it slides over a circular guide bar.
The guide bar translates to the left such that the distance from pivot A to the center
C is an arbitrary function of time u (t). Derive expressions for the angular velocity
and angular acceleration of arm AB in terms of u.

u

R A

B
C

D

L

Example 4.3

SOLUTION Although we have focused on three-dimensional motion, this example
demonstrates that the procedures work equally well for planar problems. We begin
with a sketch depicting the global XYZ coordinate system and the basic features of
the geometrical configuration.

u

R

A

B

C
D

et

en
θ

β

u
.

u.

Y

X

L

Coordinate systems and unit vectors for the planar linkage

The law of cosines gives expressions for the angles locating collar B:

θ = cos−1
(

u2 + R2 − L2

2uR

)
, β = cos−1

(
u2 + L2 − R2

2uL

)
(1)

These relations are valid at any instant so we could differentiate them to obtain
relations for θ̇ and β̇, and then θ̈ and β̈. Such a procedure exemplifies a procedure
for analyzing linkages based on describing the position of constrained points at an
arbitrary instant and then differentiating such expressions. The geometrical com-
plexity of many linkages often makes such an approach too difficult to implement.

Our general approach does not require differentiation of position vectors, be-
cause it recognizes that the kinematical relations for velocity and acceleration
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represent standard derivatives of position. Guide bar CD forms a translating ref-
erence frame for the collar’s motion whose translational velocity is u̇ to the left. The
vectors ēt and ēn in the sketch are the path variable unit vectors for the motion of
the collar relative to this reference frame, and we let vrel denote the speed of this
relative motion. We also know that the collar is pinned to bar AB. These two views
of the velocity of the collar must match, so that

v̄B = v̄CD + vrelēt = ω̄AB × r̄B/A.

Resolving the vectors into global components relative to XYZ leads to

v̄B = u̇Ī + vrel
(
sin θ Ī − cos θ J̄

) = (−β̇ K̄
)× L

(
cos β Ī − sin β J̄

)
. (2)

We match like components:

v̄B · Ī = u̇ + vrel sin θ = −β̇Lsin β,

v̄B · J̄ = − vrel cos θ = −β̇Lcos β.

The solution of these component equations is

β̇ = − u̇ cos θ

L(sin β cos θ + cos β sin θ)
≡ − u̇

L
cos θ

sin (β + θ)
,

vrel = −u̇
cos β

sin (β + θ)
.

(3)

Solution of Eqs. (1) gives the values of β and θ as functions of u, so the first of
Eqs. (3) gives the angular velocity of bar AB as an implicit function of u and u̇.

The analysis of acceleration follows the same logical outline. We match the ac-
celeration of the collar from the viewpoint of the translating bar CD to the accel-
eration based on the collar being attached to rotating bar AB. The translational
acceleration is üĪ, and the collar follows a circular path of radius R relative to bar
CD, so we have

āB = üĪ + v̇relēt + v2
rel

R
ēn = ᾱAB × r̄B/A − ω2

ABr̄B/A.

We resolve all vectors into Ī and J̄ components:

āB = üĪ + v̇rel
(
sin θ Ī − cos θ J̄

)+ v2
rel

R

(
cos θ Ī + sin θ J̄

)
= (−β̈ K̄

)× L
(
cos β Ī − sin β J̄

)− β̇2L
(
cos β Ī − sin β J̄

)
.

(4) �

The component form of this relation is

āB · Ī = ü + v̇rel sin θ + v2
rel

R
cos θ = −β̈Lsin β − β̇2Lcos β,

āB · J̄ = − v̇rel cos θ + v2
rel

R
sin θ = −β̈Lcos β + β̇2Lsin β.

(5)
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We eliminate v̇rel from these equations, which gives

ü cos θ + v2
rel

R
= −β̈L(sin β cos θ + cos β sin θ) − β̇2L(cos β cos θ − sin β sin θ) .

The identities for the sine and cosine of the sum of two angles simplify this to

β̈ = − ü
L

cos θ

sin (β + θ)
− β̇2 cot (β + θ) − v2

rel

RLsin (β + θ)
.

Equations (3) give the values of vrel and β̇, so the preceding becomes

β̈ = − ü
L

cos θ

sin (β + θ)
− u̇2

L2

(cos θ)2 cos (β + θ)

[sin (β + θ)]3 − u̇2

RL
(cos β)2

[sin (β + θ)]3 . �

Once again, because Eqs. (1) give β and θ as functions of u, this result describes the
angular acceleration of bar AB as an implicit function of u, u̇, and ü.

Before we leave this example, it is useful to observe that the primary complica-
tion for the preceding analysis was the need to carry out algebraic and trigonometric
manipulations. The analysis would have been much simpler if a specific value of u
had been specified, because numerical values would have occurred instead.

EXAMPLE 4.4 Arm AB is turned by a motor at a constant rate of 1800 rev/min.
Cap B connects this bar to bar BC with a fork-and-clevis joint, and the cap is free
to rotate about the AB axis. The connection between bar BC and collar C is a ball-
and-socket joint. Determine the velocity and acceleration of collar C and the angu-
lar velocity and angular acceleration of bar BC when the system is in the position
shown.

A

ωAB

750 m
m

B

C

30°

400 mm

300 mm

Example 4.4

SOLUTION This example applies the general procedures to a system that is some-
times referred to as a four-bar linkage: rotating arm AB, connecting rod BC, slider
C, and the fixed guide bar for the slider. The process is readily extended to multi-
ple links. The global coordinate system we use has a vertical Z axis, and Y is aligned
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with the rotation axis of arm AB, with J̄ pointing rightward. We begin by expressing
the constraints on the motion of the connection points. Point A is stationary, collar
C follows a straight path parallel to the X axis at an unknown speed vC, and cap B
is attached to both arm AB and connecting rod CD. Thus we have

v̄B = ω̄AB × r̄B/A = vC Ī + ω̄BC × r̄B/C,

āB = ᾱAB × r̄B/A + ω̄AB × (ω̄AB × r̄B/A)

= v̇C Ī + ᾱBC × r̄B/C + ω̄BC × (ω̄BC × r̄B/C) .

(1)

The position vectors at the instant depicted in the diagram are

r̄B/A = 0.3
(− sin 30◦ Ī + cos 30◦K̄

) = −0.15 Ī + 0.2598K̄ m,

r̄B/C = −
[
0.752 − 0.42 − (0.3 cos 30◦)2

]1/2
Ī − 0.4 J̄ + 0.3 cos 30◦K̄

= −0.5788 Ī − 0.4 J̄ + 0.2598K̄ m.

(2)

Next, we describe the constraints on angular motion. It is given that

ω̄AB = 1800
(

2π

60

) (− J̄
)

rad/s, ᾱAB = 0̄. (3)

Cap C rotates at an unknown rate ψ̇ about axis AB relative to arm AB. Relative to
the cap, the fork-and-clevis joint allows bar BC only to rotate at an unknown rate θ̇

about the axis of that joint’s pin. Thus we have

ω̄cap = ω̄AB + ψ̇ ēB/A, ω̄BC = ω̄cap + θ̇ ēpin = ω̄AB + ψ̇ ēB/A + θ̇ ēpin. (4)

To describe the angular acceleration we observe that ēB/A rotates at ω̄AB while ēpin

rotates at ω̄cap. Because ᾱAB = 0̄, we have

ᾱBC = ψ̈ ēB/A + ψ̇ (ω̄AB × ēB/A) + θ̈ ēpin + θ̇
(
ω̄cap × ēpin

)
. (5)

We obtain ēB/A from r̄B/A and evaluate ēpin as the normal to the plane formed by
r̄B/A and r̄B/C, where both position vectors are given by Eqs. (2). Thus,

ēB/A = r̄B/A∣∣r̄B/A
∣∣ = −0.5 Ī + 0.866K̄,

ēpin = r̄B/A × r̄B/C∣∣r̄B/A × r̄B/C
∣∣ = 0.6347 Ī − 0.6804 J̄ + 0.3664K̄.

(6)

Now that we have characterized the constraint conditions, we proceed to ana-
lyze the velocities. This will yield the unknown rotation rates, which we will need to
know in order to evaluate the angular acceleration. The first of Eqs. (1) gives

v̄B = (−60π J̄
)× (−0.15 Ī + 0.2598K̄

)
= vC Ī + [−60π J̄ + ψ̇

(−0.5 Ī + 0.866K̄
)+ θ̇(0.6347 Ī − 0.6804 J̄

+ 0.3664K̄)] × (−0.5788 Ī − 0.4 J̄ + 0.2598K̄
)
.
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The component equations obtained from this vector equation are

v̄B · Ī = −48.97 = vC + 0.3464ψ̇ − 0.0302θ̇ − 48.97,

v̄B · J̄ = 0 = −0.3713ψ̇ − 0.3770θ̇ ,

v̄B · K̄ = −28.27 = 0.200ψ̇ − 0.6477θ̇ − 109.10.

The solution of this set of linear equations is

vC = −36.28 m/s, ψ̇ = 96.46 rad/s, θ̇ = −95.01 rad/s. (7) �

The corresponding angular velocity obtained from the second of Eqs. (4) is

ω̄BC = − 108.53 Ī − 123.86 J̄ + 48.72K̄ rad/s. (8)

We may now proceed to analyze the acceleration. We begin by using the pa-
rameters obtained thus far to form ᾱBC. From the value of ψ̇ we know that

ω̄cap = ω̄AB + 96.45ēB/A = −48.23 Ī − 188.50 J̄ + 83.53K̄.

We substitute into Eq. (5) this expression, the unit vectors in Eqs. (6), and the results
for ψ̇ and θ̇ , which gives

ᾱBC = ψ̈ ēB/A + 96.45 (ω̄AB × ēB/A) + θ̈ ēpin − 95.01
(
ω̄cap × ēpin

)
= (−0.50ψ̈ + 0.6347θ̈ − 14582

)
Ī + (−0.6804θ̈ − 6716) J̄

+ (
0.8660ψ̈ + 0.3664θ̈ − 23575

)
K̄ rad/s2.

(9)

Substitution of Eqs. (8) and (9), as well as the position vectors in Eqs. (2), into the
second of Eqs. (1) governing the acceleration of cap B gives

āB = (−60π J̄
)× [(−60π J̄

)× (−0.15 Ī + 0.2598K̄
)]

= v̇C Ī + [
(−0.50ψ̈ + 0.6347θ̈ − 14582

)
Ī + (−.6804θ̈ − 6716) J̄

+ (
0.8660ψ̈ + 0.3664θ̈ − 23575

)
K̄] × (−0.5788 Ī − 0.4 J̄ + 0.2598K̄

)
+ (− 108.53 Ī − 123.86 J̄ + 48.72K̄

)× [(− 108.53 Ī − 123.86 J̄

+ 48.72K̄) × (−0.5788 Ī − 0.4 J̄ + 0.2598K̄
)
].

The corresponding component equations are

āB · Ī = 5330 = v̇C + 0.3464ψ̈ − 0.0302θ̈ − 7673,

āB · J̄ = 0 = −0.3713ψ̈ − 0.3770θ̈ + 13747,

āB · K̄ = −9231 = 0.200ψ̈ − 0.6477θ̈ + 373.6,

(10)

whose solution is

v̇C = 7813 m/s, ψ̈ = 16722 rad/s2, θ̈ = 19994 rad/s2. �



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

196 Kinematics of Constrained Rigid Bodies

The angular acceleration corresponding to these acceleration rates is

ᾱBC = (−10.253 Ī + 20.319 J̄ − 1.77K̄
) (

103) rad/s2. �

In closing, it should be noted that the operations we performed are readily im-
plemented in mathematical software.

EXAMPLE 4.5 The cardan joint depicted in the sketch is used to connect shafts
that intersect, but are not collinear. The angle between the shafts is β, and the re-
spective rotation rates are φ̇1 and φ̇2. The cross-link OABCD connecting the shafts
is able to rotate about axis CD relative to shaft 1, and about axis AB relative to
shaft 2. In effect, each shaft is terminated by a fork-and-clevis joint, with the cross-
link being the clevis for both forks. Derive an expression for the rotation rate φ̇2 in
terms of the instantaneous values of φ1 and φ̇1. Also determine the corresponding
angular velocity of the cross-link.

φ1

φ2

X

Z1,Z2

Y1

X2 β

O

A

B

C

D

φ2

.

φ1
.

1

Example 4.5

SOLUTION The analysis of this seemingly simple device actually will bring to the fore
many of the concepts in both this chapter and the previous one. Thus this example
will give a broader perspective of the procedures for characterizing the kinematics
of connections. There are a variety of approaches for establishing the relation be-
tween φ2 and φ1. The first is quite direct. It is founded on the fact that arm AB is
perpendicular to arm CD, so that ēB/A · ēD/C = 0.

The Xj axes depicted in the sketch are aligned with the respective shafts, and
both Zj axes are perpendicular to the plane containing the shafts. At an arbitrary
instant ēD/C lies in the Y1 Z1 plane at angle φ1 below the Y1 axis, and ēB/A is in the
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Y2 Z2 plane at angle φ2 from the Z2 axis. Thus,

ēD/C = cos φ1 J̄1 − sin φ1 K̄1, ēB/A = sin φ2 J̄2 + cos φ2 K̄2. (1)

Because both coordinate systems share the same Z axis it must be that Y2 lies in the
X1Y1 plane so that

J̄2 = sin β Ī + cos β J̄ .

It follows that

ēB/A = sin φ2

(
sin β Ī1 + cos β J̄1

)+ cos φ2 K̄1. (2)

Setting the dot product of the unit vectors to zero yields

ēB/A · ēD/C = sin φ2 cos β cos φ1 − cos φ2 sin φ1 = 0,

which may be rewritten as

tan φ2 = tan φ1

cos β
. (3)

Because this is a general relation between the angles, it may be differentiated with
respect to time to obtain a relation between the rotation rates. Thus

φ̇2
1

(cos φ2)2 = φ̇1
1

cos β (cos φ1)2 .

To remove the dependence on φ2, we employ Eq. (3) in conjunction with the identity

that (cos φ2)2 = 1/
[
1 + (tan φ2)2

]
. The result is

φ̇2 = φ̇1
cos β

(sin φ1)2 + (cos β cos φ1)2 . (4) �

This derivation does not examine the nature of the constraints imposed on the
rotation of the cross-link, and therefore does not address the angular velocity of the
cross-link. To determine that quantity we pursue an alternative analysis, which also
will lead to Eqs. (3) and (4). If we consider the cross-link to be connected to the
first shaft, we would say that the cross-link rotates through angle φ1 together with
that shaft about the negative X1 axis, and it also rotates relative to that shaft about
ēD/C by an unknown angle θ1. The φ1 rotation is a precession (rotation about a fixed
axis), whereas θ2 is a nutation, with ēD/C being the line of nodes. Similarly, from the
perspective of shaft 2, φ2 is the precession about the negative X2 axis, and unknown
angle θ2 is the nutation about the line of nodes defined by ēB/A.

Because the legs of the cross-link are orthogonal, we may consider them to
represent a rotating coordinate system. Let ēD/C = j̄ and ēB/A = k̄. The alterna-
tive viewpoints enables us to derive two rotation transformations from components
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relative to the fixed directions to ī j̄ k̄ components. For shaft 1 we have a pair of
body-fixed rotations −φ1 about the X1 axis, followed by θ1 about the y axis, so that

⎧⎪⎪⎨
⎪⎪⎩

ī

j̄

k̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

cos θ1 0 − sin θ1

0 1 0

sin θ1 0 cos θ1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0

0 cos φ1 − sin φ1

0 sin φ1 cos φ1

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

Ī1

J̄1

K̄1

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

cos θ1 − sin θ1 sin φ1 − sin θ1 cos φ1

0 cos φ1 − sin φ1

sin θ1 cos θ1 sin φ1 cos θ1 cos φ1

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

Ī1

J̄1

K̄1

⎫⎪⎪⎬
⎪⎪⎭ .

(5)

From the perspective of shaft 2, the body-fixed rotations are −φ2 about the X2 axis,
followed by θ2 about the z axis, so

⎧⎪⎪⎨
⎪⎪⎩

ī

j̄

k̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

cos θ2 sin θ2 0

− sin θ2 cos θ2 0

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0

0 cos φ2 − sin φ2

0 sin φ2 cos φ2

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

Ī2

J̄2

K̄2

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

cos θ2 sin θ2 cos φ2 − sin θ2 sin φ2

− sin θ2 cos θ2 cos φ2 − cos θ2 sin φ2

0 sin φ2 cos φ2

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

Ī2

J̄2

K̄2

⎫⎪⎪⎬
⎪⎪⎭ .

(6)

Because the Z1 and Z2 axes coincide, the rotation transformation between the fixed
coordinate systems is

⎧⎪⎪⎨
⎪⎪⎩

Ī2

J̄2

K̄2

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

cos β − sin β 0

sin β cos β 0

0 0 1

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

Ī1

J̄1

K̄1

⎫⎪⎪⎬
⎪⎪⎭ . (7)

Substituting this transformation into Eq. (6) leads to a transformation from
Ī1 J̄1 K̄1 components to ī j̄ k̄ components. Matching it to Eq. (5) requires that⎡

⎢⎢⎣
cos θ2 sin θ2 cos φ2 − sin θ2 sin φ2

− sin θ2 cos θ2 cos φ2 − cos θ2 sin φ2

0 sin φ2 cos φ2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cos β − sin β 0

sin β cos β 0

0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

cos θ1 − sin θ1 sin φ1 − sin θ1 cos φ1

0 cos φ1 − sin φ1

sin θ1 cos θ1 sin φ1 cos θ1 cos φ1

⎤
⎥⎥⎦ .
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Although there are nine elements to match in the preceding equation, the orthonor-
mal property leads to six identities, so only three elements are independent. The
simplest equations come from the last row, specifically

(3, 1) : sin φ2 sin β = sin θ1,

(3, 2) : sin φ2 cos β = cos θ1 sin φ1,

(3, 3) : cos φ2 = cos θ1 cos φ1.

(8)

These are three equations for θ1, θ2, and φ2 in terms of φ1. The ratio of the second
to the third gives

tan φ2 cos β = tan φ1, (3′)

which is the same as the relation obtained in the first derivation.
The analysis leading to this relation was less direct than the procedure by which

it was derived in the first analysis. However, pursuing it enables us to recognize
how the cross-link rotates. In fact, once we have evaluated φ2 corresponding to a
specified value of φ1, the first two of Eqs. (8) can be solved for θ1 and θ2.

Just as there are two viewpoints for the orientation of the cross-link, the angular
velocity can be formulated from alternative perspectives. For shaft 1 the precession
rate is −φ̇1 about the X1 axis and the nutation rate is θ̇1 in the direction of ēD/C, so
the angular velocity of the cross-link is

ω̄ = − φ̇1 Ī1 + θ̇1ēD/C. (9)

For shaft 2 the precession rate is −φ̇2 about the X2 axis and the nutation rate is θ2

in the direction ēB/A. This leads to a description of the angular velocity as

ω̄ = −φ̇2 Ī2 + θ̇2ēB/A. (10)

Matching Eqs. (9) and (10) leads to three scalar component equations for the
values of θ̇1, θ̇2, and φ̇2 in terms of φ̇1. The most direct set of equations for further
manipulation is obtained by taking components in the mutually orthogonal direc-
tions ēD/C, ēB/A, and ēD/C × ēB/A. Because ēD/C is perpendicular to the X1 axis and
ēB/A is perpendicular to the X2 axis, we have

ω̄ · ēD/C = θ̇1 = −φ̇2 Ī2 · ēD/C,

ω̄ · ēB/A = −φ̇1 Ī1 · ēB/A = θ̇2,

ω̄ · (ēD/C × ēB/A) = −φ̇1 Ī1 · (ēD/C × ēB/A) = −φ̇2 Ī2 · (ēD/C × ēB/A) .

(11)

To evaluate these terms we express the unit vectors in Ī1 J̄1 K̄1 components.
Equations (1) and (2) describe ēD/C and ēB/A, and the first row of the rotation trans-
formation in Eq. (7) shows that Ī2 is

Ī2 = cos β Ī1 − sin β J̄1.
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The result of substitution of these representations of the unit vectors into Eqs. (11)
is

θ̇1 = − φ̇2 cos β cos φ1,

−φ̇1 sin φ2 sin β = θ̇2,

− φ̇1 (cos φ1 cos φ2 + sin φ1 sin φ2 cos β)

= − φ̇2 [cos β (cos φ1 cos φ2 + sin φ1 sin φ2 cos β)

− sin β (− sin φ1 sin φ2 sin β)]

≡ −φ̇2 (cos β cos φ1 cos φ2 + sin φ1 sin φ2) .

(12)

Dividing the last of these equations by cos φ1 cos φ2 gives

φ̇2 (cos β + tan φ1 tan φ2) = φ̇1 (1 + tan φ1 tan φ2 cos β) .

We can eliminate the dependence on φ2 by using Eq. (3′). Further manipulation by
use of tan φ1 ≡ sin φ1/ cos φ1 shows that this relation for φ̇2 is identical to Eq. (4).
Once the value of φ̇2 has been determined, the first of Eqs. (12) gives the corre-
sponding value of θ̇1. Substitution of that result and Eqs. (1) into Eq. (9) gives

ω̄ = −φ̇1

[
Ī1 + (cos β)2 cos φ1

(sin φ1)2 + (cos β cos φ1)2

(
cos φ1 J̄1 − sin φ1 K̄1

)]
. �

It is interesting to observe that the maximum value of φ̇2 is φ̇1/ cos β at φ1 = 0
and π, whereas the minimum value of φ̇2 is φ̇1 cos β at φ2 = 0 and 3π/2. This os-
cillation relative to the input speed φ̇1 makes the cardan joint by itself unsuitable
as a constant-velocity joint. In conventional front-engine, rear-wheel-drive automo-
biles, two cardan joints are employed in the drive train in opposition. The reciprocal
arrangement produces a final speed that matches the input.

4.4 ROLLING

When two bodies contact each other, one kinematical condition is that they not pen-
etrate each other. In rolling motion, the contacting surfaces have no corners, so the
surfaces share an identifiable tangential contact plane. Figure 4.9 shows two surfaces
in contact, as viewed edgewise along their plane of contact. The z axis in the figure is

C1
C2

B2

B1

x

z

1

2

s2

s1
Figure 4.9. Equal-arc-length rule for rolling without slip-
ping.
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defined to be normal to the plane of contact. Because the surface of each body is impen-
etrable, the velocity components normal to the contact plane must match. Let C1 and
C2 be contacting points on each body. Then

v̄C1 · k̄ = v̄C2 · k̄. (4.4.1)

The special case of rolling without slipping imposes an additional constraint associ-
ated with the condition that the contacting surfaces have no relative motion parallel to
the contact plane. One way of characterizing this condition is to consider arc lengths on
the perimeter of each body. In Fig. 4.9 points B1 and B2 were the points of contact at
an earlier instant. The absence of slipping means that the arc length s1 along the perime-
ter of body 1 between points B1 and C1 is the same as the arc length s2 along body 2
between points B2 and C2.

We restrict our attention to situations in which the rolling bodies are circular, be-
cause the round shape makes it substantially simpler to perform a kinematical analy-
sis. For example, arc lengths are measured along circles or flat surfaces. Describing the
arc-length constraint imposed by the absence of slippage leads to a description of the
position of points in the rolling bodies. The most common application of this approach
is a wheel rolling along the ground. The path followed by a point on the circumference
of the wheel is a cycloid. The geometrical parameters needed to characterize this path
are depicted in Fig. 4.10.

RθA

B

x

O

Y

X
Figure 4.10. Rolling of a wheel on a flat surface.

Point A on the cylinder contacted the ground initially, at which position the center
of the wheel was at the origin O of the fixed XYZ reference frame. Point B is the current
contact point, so the horizontal distance x from point O to the center of the wheel equals
the arc length along the ground between the initial and the current contact points. When
there is no slippage, the arc length between points A and B on the wheel is the same as
x, which gives a relation for the angle by which the wheel rotates:

x = Rθ. (4.4.2)

Thus the position of point A is described in parametric form as a function of θ according
to

r̄A/O = XĪ + YJ̄ , X = R(θ − sin θ) , Y = −Rcos θ, (4.4.3)

which is the parametric description of a cycloid depicted in Fig. 4.11.
In addition to enabling us to describe the path followed by a point on the perime-

ter of the wheel, the circular shape makes it easy to describe the motion of the wheel’s
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R

-R

0

2πR 3πR

θ = π θ=3π

4πR

θ =2πθ=0

X

Y

πR

Figure 4.11. Cycloidal path followed by a point on the perimeter of a wheel rolling without slipping over a
flat surface.

center. Such knowledge may be used to obtain expressions for the velocity and acceler-
ation of a point on the wheel’s perimeter. The center point in Fig. 4.10 follows a straight
path, and x is the distance traveled. Thus the speed of the center is v = ẋ = Rθ̇ . We use
this expression to eliminate the angular velocity when we take the time derivative of
Eqs. (4.4.3), which leads to expressions for the velocity and acceleration of an arbitrary
point on the perimeter of a wheel:

v̄A = v(1 − cos θ)ī + v sin θ j̄,

āA =
[
v̇(1 − cos θ) + v2

R
sin θ

]
ī +

(
v̇ sin θ + v2

R
cos θ

)
j̄ .

(4.4.4)

An aspect of the velocity and acceleration of particular relevance to further develop-
ments arises at θ = 0, at which position v̄A = 0̄ and āA = (v2/R) j̄ . In other words, a point
on the perimeter of a wheel comes to rest when it comes in contact with the ground, and
its acceleration is upward at that instant. This corresponds to the cusp in the cycloidal
path.

One difficulty with a formulation in terms of arc lengths is that it becomes increas-
ingly difficult to use as the complexity of the motion increases. This is particularly true
for spatial motion. We therefore develop an alternative method in which constraint con-
ditions on velocity and acceleration are formulated. Consider the limiting situation in
which the points of contact Bi and Ci in Fig. 4.9 correspond to instants that are very
close. The points of contact on each body then seem to have the same displacement
along the contact plane. Dividing this displacement by the small time interval shows that
the tangential velocity components must be the same. Because the contact condition be-
tween the bodies requires that the normal velocity components are equal, it must be that

The velocities of contacting points of bodies that roll over each other without slip-
ping must match in all directions. The constraint condition is

v̄C1 = v̄C2 for no slipping. (4.4.5)

Acceleration is more complicated because the contacting points on each body come
together and then separate. This means that they have different accelerations in the
normal direction. A common misconception arises from the case of the rolling wheel
in Fig. 4.10, as well as other planar situations. As was noted after Eqs. (4.4.4), the ac-
celeration of a point on the perimeter of a wheel in planar motion is upward when the
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ω1 ω2
d

B

A

aA

aB

z
x

r1

r2

Figure 4.12. Acceleration of contact points on two spheres that have
no relative slip as they rotate about fixed axes.

point comes in contact with the ground. This is often incorrectly interpreted to mean
that, in all situations of rolling without slipping, the contact points may accelerate rela-
tive to each other only perpendicularly to the contact plane. This cannot be assumed
to be true in spatial motion, as may be recognized by considering a simple case. In
Fig. 4.12, two spheres rotate at constant rates ω1 and ω2 about fixed parallel axes, such
that there is no slipping between the contacting points A and B. The plane of contact is
xy. Points on each sphere follow circular paths in the horizontal plane whose radii are
ρ1 = r1d/ (r1 + r2) and ρ2 = r2d/ (r1 + r2) . The tangent direction of the paths followed
by points A and B at the contact location are (ēt )A = (ēt )B = − j̄, so the no-slip veloc-
ity condition that v̄A = v̄B is satisfied if ω2/ω1 = r1/r2. For constant rotation rate, each
point’s acceleration is solely centripetal, being aA = ρ1ω

2
1 and aB = ρ2ω

2
2 in the horizon-

tal directions displayed in the figure. It is apparent that āA · ī �= āB · ī , so the acceleration
components parallel to the xy plane do not match. This demonstrates that contact points
on rolling bodies can have different accelerations parallel to the contact plane, as well
as perpendicularly to it.

The lack of a direct constraint condition for the acceleration presents a dilemma. We
remedy it by recalling that we have limited our attention to rolling bodies that are round
in some sense. For such bodies the distance from the center to the point of contact on
each rolling body is constant. This constancy leads to a velocity constraint condition that
may be differentiated, thereby yielding to the additional kinematical conditions required
for analyzing acceleration. In effect, in addition to considering kinematical conditions at
the points of contact, we consider the center point to be subject to a kinematical constraint
that must be identified.

To explore this idea, consider the planar situation of a planetary gear rolling over a
sun gear. In Fig. 4.13, ω2 is the angular speed of the sun gear, vA is the speed of the center
of the planetary gear, and ω1 is the angular speed of that gear. Because the distance from
the center A of the planetary gear to the point of contact C is constant, point A follows a
circular path of radius r1 + r2. Thus, for the xyz coordinate system depicted in the figure,
the velocity and acceleration of point A are described according to path variables as

v̄A = vAī, āA = v̇Aī − v2
A

r1 + r2
j̄ (4.4.6)
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r2

x

y

C

AvA

ω1

r1

ω2
Sun
gear

Planetary
gear Figure 4.13. Rolling without slipping of a planetary gear over a fixed inner

gear.

In addition, for planar motion we know that ω̄1 = −ω1k̄ and ω̄2 = −ω2k̄. Because there
is no slipping at point C, the velocity constraint requires that v̄C = ω2r2 ī be the same for
both gears. Using this to construct the velocity of center A gives

v̄A = v̄C + ω̄1 × r̄A/C = (ω2r2 + ω1r1) ī . (4.4.7)

The descriptions of v̄A in Eqs. (4.4.6) and (4.4.7) agree in direction. Matching the speeds
in these two equations leads to

vA = ω2r2 + ω1r1. (4.4.8)

To obtain a kinematical constraint on acceleration, we recognize that the round shape of
the gears and the fact that the path followed by point A is circular make the preceding
relation valid at any instant. Consequently, we may differentiate it with respect to time.
Doing so yields

v̇A = ω̇2r2 + ω̇1r1. (4.4.9)

Equations (4.4.8) and (4.4.9) are constraint equations relating the three rate vari-
ables. This enables us to describe the velocity and acceleration of the center point A,
as well as the angular velocity and angular acceleration of the planetary gear, in terms
of the two rate variables we choose to retain. From such knowledge we can determine
the velocity and acceleration of any other point on the planetary gear in terms of those
variables.

The same approach may be extended directly to cases of spatial motion. A relative
simple situation is that of steady precession of a disk that rolls along the ground, as
depicted by the side view in Fig. 4.14. The inclination angle β is constant, as is the

A

C

e1

Re2

x'

z'

ψ φ

β

ρ

Figure 4.14. Steady precession of a rolling disk.
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precession rate ψ̇. In this case the center point follows a circular path of radius ρ, so the
velocity and acceleration of the center of the disk are

v̄A = ρψ̇ j̄ ′, āA = ρψ̇2
(
− cos β ī ′ + sin βk̄ ′)

, (4.4.10)

where x ′y′z′ is a coordinate system that precesses with its origin at the center of the disk.
The angular velocity and acceleration of the disk are given by

ω̄ = ψ̇ ē1 + φ̇ē2 = (
ψ̇ sin β − φ̇

)
ī ′ + ψ̇ cos βk̄ ′

,

ᾱ = φ̇ (ω̄ × ē2) = −ψ̇φ̇ cos β j̄ ′.
(4.4.11)

The preceding assumes that φ̇ is constant, which is something we will verify. This
rate is not yet known, but we have not imposed the condition that there is no slippage at
the contact point C. Because v̄C = 0̄, the velocity of the center of the disk is ω̄ × r̄A/C.

Equating this to the expression for v̄A corresponding to circular motion leads to

v̄A = ρψ̇ j̄ ′ = ω̄ × Rk̄ ′ = (
ψ̇ sin β − φ̇

)
Rj̄ ′. (4.4.12)

Matching the j̄ ′ components yields

φ̇ =
(

sin β − ρ

R

)
ψ̇. (4.4.13)

Because β and ρ are constant, this expression shows that φ̇ is proportional to ψ̇, which
confirms our assumption that φ̈ is zero. Substitution of φ̇ into Eqs. (4.4.11) gives

ω̄ = ψ̇
( ρ

R
ī ′ + cos βk̄ ′)

, ᾱ = −ψ̇2
(

sin β − ρ

R

)
cos β j̄ ′. (4.4.14)

Equations (4.4.10) and (4.4.14) show that knowledge of the Eulerian angles is suffi-
cient to characterize the motion of the center, as well as the angular motion, of a rolling
disk in the steady precession case. The same is true for unsteady motion, in which the
spin rate is not proportional to the precession rate. The analysis is more difficult, but it
still uses the basic concept that the center is a constrained point whose velocity may be
described in a general manner by relating it to the contact point on the disk. Figure 4.15
depicts a disk that is rolling without slipping over a flat surface in a wobbly manner.
We use Eulerian angles to represent the orientation of the disk, with precession angle
ψ measured about the upward vertical ē1 and nutation θ measured from the vertical to
the center line of the disk. The line of nodes is the y′ axis, which is defined to be the

e1

θ

φ

ψ
θ

h

z', z

y'

x'

.

.

.
R

C

A

Figure 4.15. Unsteady rolling without slipping of a disk on a flat
surface.
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horizontal diameter of the disk. Body-fixed xyz axes execute a spin φ about the z′ axis
relative to x ′y′z′.

The importance of the round shape in this case is that, if all other quantities are
held fixed, the motion of the system will not be altered by changing φ. As a consequence
of this invariance, a description of the velocity of the center of disk in terms of ī ′ j̄ ′k̄ ′

components, with the Eulerian angles represented algebraically, will be valid at any in-
stant. Such a representation may be differentiated to analyze acceleration. In terms of
the Eulerian angles the angular velocities �̄′ of x ′y′z′ and ω̄ of xyz are

�̄′ = ψ̇ ē1 + θ̇ j̄ ′ = −ψ̇ sin θ ī ′ + θ̇ j̄ ′ + ψ̇ cos θ k̄ ′
,

ω̄ = �̄′ + φ̇k̄ ′ = −ψ̇ sin θ ī ′ + θ̇ j̄ ′ + (
φ̇ + ψ̇ cos θ

)
k̄ ′

.
(4.4.15)

At point C, where the disk comes in contact with the ground, the no-slip condition
requires that v̄C = 0̄. Thus the velocity of the center A must be

v̄A = ω̄ × r̄A/C = −R
(
φ̇ + ψ̇ cos θ

)
j̄ ′ + Rθ̇ k̄ ′

. (4.4.16)

This is a general relation for v̄A in terms of of the Eulerian angles. It therefore may be
differentiated to determine āA. The relative derivative concept described by Eq. (3.3.15)
is appropriate to this task. Equation (4.4.16) gives the ī ′ j̄ ′k̄ ′ components of v̄A, and the
first of Eqs. (4.4.15) is the angular velocity of x ′y′z′. We thereby find that

āA = ∂

∂t

[
−R

(
φ̇ + ψ̇ cos θ

)
j̄ ′ + Rθ̇ k̄ ′]+ �̄′ ×

[
−R

(
φ̇ + ψ̇ cos θ

)
j̄ ′ + Rθ̇ k̄ ′]

= R
[
θ̇2 + (

φ̇ + ψ̇ cos θ
)
ψ̇ cos θ

]
ī ′ + R

[− φ̈ − ψ̈ cos θ + 2ψ̇ θ̇ sin θ
]

j̄ ′

+R
[
θ̈ + (

φ̇ + ψ̇ cos θ
)
ψ̇ sin θ

]
k̄ ′

.

(4.4.17)

The angular acceleration is found by differentiating the second of Eqs. (4.2.11):

ᾱ = (−ψ̈ sin θ − ψ̇ θ̇ cos θ + θ̇ φ̇
)

ī ′ + (
θ̈ + ψ̇φ̇ sin θ

)
j̄ ′

+ (
ψ̈ cos θ + φ̈ − ψ̇ θ̇ sin θ

)
k̄ ′

.
(4.4.18)

Equations (4.4.15)–(4.4.18) describe the motion of the center point and the angular mo-
tion of the rolling disk in terms of the Eulerian angles. The velocity and acceleration of
any other point in the disk may be determined through the kinematical formulas relating
points in a rigid body.

Although Eqs. (4.4.16) and (4.4.17) contain a variety of effects, one is readily iden-
tifiable. The vertical unit vector in Fig. 4.15 is ē1 = − sin θ ī + cos θ k̄ ′

. Correspondingly,
we find that the components of v̄A and āA perpendicular to the contact plane are

v̄A · ē1 = Rθ̇ cos θ, āA · ē1 = R
(
θ̈ cos θ − θ̇2 sin θ

)
. (4.4.19)

We now observe from Fig. 4.15 that the elevation of point A above the ground is
h = Rsin θ. Successive differentiation of h shows that ḣ ≡ v̄A · ē1 and ḧ ≡ āA · ē1. In
other words, the procedure we followed implicitly recognized a fundamental geometric
property stemming from the fact that the distance from the contact point to the center
is always R.

Although the roundness of the disk played a less obvious role in this motion, it was
crucial. If the disk were elliptical, it would have been necessary to describe the velocity
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of the center point as a function of the spin angle and the properties of the ellipse.
Differentiating such a representation would have been substantially more difficult than
the corresponding tasks in the case of a circular disk.

EXAMPLE 4.6 Piston A has constant velocity v to the right. The wheel, which
is connected to the piston by connecting rod AB, rolls without slipping over the
ground. Determine the velocity and acceleration of the center of the wheel for the
position shown in the sketch.

A

B
2R R

v

C
Example 4.6

SOLUTION This example is intended to reinforce our ability to analyze a planar link-
age while simultaneously accounting for the special features of a rolling body. It is
imperative to realize that, even though the input speed v is constant, none of the
other acceleration parameters can be assumed to be zero because the geometrical
configuration changes when connecting pin B moves. Also, we could analyze this
system when pin B is at an arbitrary position, but doing so would merely complicate
the geometrical description of position variables without modifying the basic oper-
ations.

For a global coordinate system, let the x axis be horizontal to the right and the
y axis be vertically upward. The angular velocity of each body is perpendicular to
the plane, with unknown rates, so we have

ω̄AB = ωABk̄, ω̄w = ωwk̄.

We next account for the fact that both points A and C follow straight paths, so that

v̄A = vī, āA = 0̄, v̄C = vCī, āC = v̇Cī . (1)

Because there is no slippage between the wheel and the stationary ground, relating
the velocity of center C to that of the contact point yields

v̄C = vCī = ωwk̄ × Rj̄ =⇒ vC = −Rωw. (2)

This relation is true at any instant, so differentiating it with respect to t gives

v̇C = −Rω̇w. (3)

From this juncture, the analysis proceeds like that for any other planar linkage.
We describe the velocity of the connecting pin B in terms of the parameters for bar
AB and for the wheel. Thus,

v̄B = v̄A + ωABk̄ × r̄B/A = v̄C + ωwk̄ × r̄B/C. (4)
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The instantaneous positions are

r̄B/A =
√

3Rī + Rj̄, r̄B/C = −Rī . (5)

Substitution of Eqs. (1), (2), and (5) into Eqs. (4) results in

v̄B = vī + ωABk̄ ×
(√

3Rī + Rj̄
)

= −Rωw ī + ωwk̄ × (−Rī
)
. (6)

Matching like components yields two simultaneous equations for ωAB and ωw in
terms of v,

v̄B · ī = v − RωAB = −Rωw,

v̄B · j̄ = √
3RωAB = −Rωw,

from which we find that the instantaneous rotation rates are

ωAB = 0.3660
v

R
, ωw = −0.6340

v

R
. (7)

The corresponding velocity of center C is

v̄C = −Rωw ī = 0.6340vī . �

Now that the velocity has been fully analyzed, we may proceed to acceleration.
We begin by writing the acceleration analogs to Eqs. (4):

āB = āA + ω̇ABk̄ × r̄B/A − ω2
ABr̄B/A

= āC + ω̇wk̄ × r̄B/C − ω2
wr̄B/C.

(8)

From Eqs. (1) and (3), we know that āA = 0̄ and āC = −Rω̇w ī . The current rotation
rates are given by Eqs. (7), and Eqs. (5) give the instantaneous position vectors.
Substitution of these values into the preceding results in

āB = ω̇ABk̄ ×
(√

3Rī + Rj̄
)

−
(

0.3660
v

R

)2 (√
3Rī + Rj̄

)

= −Rω̇w ī + ω̇wk̄ × (−Rī
)−

(
−0.6340

v

R

)2 (−Rī
)
.

The simultaneous equations obtained from matching like components of āB are

āB · ī = −Rω̇AB − 0.2321
v2

R
= −Rω̇w + 0.4019

v2

R
,

āB · j̄ = √
3Rω̇AB − 0.1340

v2

R
= −Rω̇w.

The angular acceleration rates obtained from these equations are

ω̇AB = −0.1830
v2

R2
, ω̇w = 0.4510

v2

R2
.

The corresponding acceleration of center C is

āC = −Rω̇w ī = −0.4510
v2

R
ī . �
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EXAMPLE 4.7 Rack CD pivots about pin D such that the angle of elevation θ is
a known function of time. Rack B translates to the right in order to keep gear A in
contact with rack CD. Determine the required velocity v, the corresponding angular
velocity of gear A, and the velocity of the gear’s center. Express all results in terms
of the instantaneous values of θ and θ̇ .

R
A

B

C

D
θ

Example 4.7

SOLUTION This example concerns a situation in which contacting surfaces involved
in rolling have a normal velocity component, so its analysis will generalize our un-
derstanding of rolling in planar motion. Our approach treats the system as a linkage,
in which some of the constrained points are subject to the no-slip condition. The
sketch shows the global xyz coordinate system we shall use, as well as the geometri-
cal parameters we will need to describe position vectors.

v θ/2
θ/2

R

R

LA

B

E

Cθ
.x

vA

yωA

Global coordinate system and geometrical parameters for
analyzing the rolling motion of the gear.

The constrained points are the center A, which follows a straight horizontal path,
point B, at which there can be no slipping between gear A and the horizontal rack,
point E, at which there can be no slipping between gear A and rack CD, and point
C, which is stationary. We set v̄A = −vAī, v̄C = 0̄, and equate the velocities of point
E obtained by considering it to be a point on rack CD, or on gear A. Thus,

v̄E = θ̇ k̄ × r̄E/C = −vAī + ωAk̄ × r̄E/A. (1)

Matching the velocity descriptions of contact point B based on considering it to be
a point in the rack or in the gear gives

v̄B = −vī = −vAī + ωAk̄ × r̄B/A. (2)

The length L from the pivot is related to the angle θ by

L = Rcot
(

θ

2

)
, (3)
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so that

r̄E/C = Rcot
(

θ

2

) (
cos θ ī + sin θ j̄

)
, r̄E/A = R

(− sin θ ī + cos θ j̄
)
, r̄B/A = −Rj̄ .

Substitution of these position vectors into Eqs. (1) and (2) gives

v̄E = Rθ̇ cot
(

θ

2

) (− sin θ ī + cos θ j̄
) = −vAī + ωA R

(− cos θ ī − sin θ j̄
)
,

v̄B = −vī = v̇Aī + ωA Rī .

(4)

Matching like components in each of these equations leads to

v̄B · ī = −v = −vA + ωA R,

v̄E · ī = −Rθ̇ cot
(

θ

2

)
sin θ = −vA − ωA Rcos θ,

v̄E · j̄ = Rθ̇ cot
(

θ

2

)
cos θ = −ωA Rsin θ.

The solution of these equations is

ωA = −θ̇ cot
(

θ

2

)
cot θ ≡ −θ̇

cos θ

(1 − cos θ)
,

vA = −ωA R
cos θ

= Rθ̇
1

(1 − cos θ)
,

v = −ωA R
(

1
cos θ

+ 1
)

= Rθ̇
(1 + cos θ)
(1 − cos θ)

.

(5) �

An interesting aspect of the result for vA is that it could have been obtained
much more simply by a different approach. A geometrical analysis shows that L
also is the distance from pivot C to the point of contact B. Because this point is
always directly below the center A, we have r̄A/C = Lī + Rj̄ . Differentiating this
vector, with L given by Eq. (3), leads to

v̄A = L̇ī = dL
dθ

θ̇ ī = −Rθ̇
1

2 (sin (θ/2))2 . (6)

Because 2 (sin (θ/2))2 ≡ 1 − cos θ, this result is the same as the second of Eqs. (5).
Clearly the second approach represents a more direct route for analyzing v̄A, but it
gives neither the angular velocity of gear A nor the velocity of rack B.

Suppose it had been requested to determine the accelerations of rack B and
center A and the angular acceleration of the gear. As a consequence of the circular
geometry, the derived expressions for ωA, vA, and v are valid at any θ. Thus expres-
sions for ω̇A, v̇A, and v̇ can be obtained by direct differentiation. For example,

ω̇A = −θ̈
cos θ

(1 − cos θ)
− θ̇2 d

∂θ

[
cos θ

(1 − cos θ)

]

= −θ̈
cos θ

(1 − cos θ)
+ θ̇

2 sin θ

(1 − cos θ)2 .
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EXAMPLE 4.8 The disk rotates freely about its shaft, as the shaft rotates about
the vertical axis at the constant rate �. There is no slippage at the point where the
disk contacts the inner wall of the stationary cylindrical tank. Determine the angular
velocity and angular acceleration of the disk, and the acceleration of the point on
the disk that is in contact with the cylinder.

βL

Ω

R

Example 4.8

SOLUTION A key objective of this example of rolling in spatial motion is to clarify
some misconceptions that individuals have as a result of using intuition, rather than
the formal analytical concepts. We begin by treating this system like any other in
which it is necessary to evaluate the angular velocity and angular acceleration. Thus
we draw a sketch of the system as a side view that shows both rotation axes in true
view. Reference frame xyz is fixed to the disk, so only its z axis lies in the plane of
the sketch at all instants, whereas the x2 y2z2 is attached to the shaft so both the x2

and z2 axes are always situated in the vertical plane. We define the Z axis of the fixed
reference frame to coincide with the axis for the � rotation. The unknown spin rate
is denoted as φ̇, consistent with the notation for Eulerian angles.

x2

z2, z

Z

Ω

β
L

R

A
C

B

φ
.

Coordinate systems for analyzing the spatial rolling motion of the disk

A general expression for the angular velocity of the disk is

ω̄ = �ē1 + φ̇ē2, ē1 = −K̄, ē2 = k̄2.

Because XYZ is fixed and x2 y2z2 rotates about the vertical axis, we have

�̄1 = 0̄, �̄2 = �ē1.
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It will turn out that there is a constant ratio between � and φ̇, which means that φ̈

will be zero because � is constant. However, that might not be true in other situa-
tions, so we carry out the analysis of angular acceleration allowing for the possibility
that φ̈ �= 0. Thus differentiating ω̄ leads to

ᾱ = φ̈ē2 + φ̇
(
�̄2 × ē2

)
.

The axes of x2 y2z2 form a convenient global coordinate system, so that ē1 = sin β ī2 −
cos βk̄2. Correspondingly, we find that

ω̄ = � sin β ī2 + (
φ̇ − � cos β

)
k̄2,

�̄2 = � sin β ī2 − � cos βk̄2,

ᾱ = −�φ̇ sin β j̄2 + φ̈k̄2.

At this juncture, we have not addressed the constraint imposed by the no-
slip condition at the wall, which requires that the instantaneous velocity at the
contact point C be zero. The center point B follows a horizontal circular path
of radius Lsin β, and it is moving inward relative to the plane of the sketch, so
v̄B = −L� sin β j̄2. The kinematical relation between the velocities of these points
based on both belonging to the disk then requires that

v̄B = −L� sin β j̄2 = ω̄ × r̄B/C/ = [
� sin β ī2 + (

φ̇ − � cos β
)

k̄2
]× (−Rī2

)
.

The only nonzero component of the preceding is

v̄B · j̄2 = −L� sin β = −R
(
φ̇ − � cos β

)
,

from which we find that

φ̇ =
(

L
R

sin β + cos β

)
�.

Because the analysis has been carried out for an arbitrary instant, this relation is
generally valid. It shows that φ̇ is proportional to �, so we have φ̈ = 0, as was antic-
ipated earlier. Substitution of the spin rate into the general expressions for ω̄ and ᾱ

yields

ω̄ = � sin β

(
ī2 + L

R
k̄2

)
, ᾱ = −�2

[
L
R

(sin β)2 + sin β cos β

]
j̄2. �

A key aspect of the rotation is the fact that both φ̇ and � are responsible for
the rotation about the z axis. Failure to recognize the contribution of � leads to a
common error for novices, who state that as a result of the no-slip condition the
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speed of point B is φ̇R. As we have seen, the angular velocity component about the
z axis actually is φ̇ − � cos β, which led to vB = (

φ̇ − � cos β
)

R.

Now that we have described the angular motion we can proceed to evaluate the
acceleration of the contact point. We do this by relating āC to the acceleration of a
reference point in the disk, for which the center B is convenient. Because this point
follows a horizontal circular path, we have

āB = (Lsin β) �2ēn = (Lsin β) �2 (− cos β ī2 − sin βk̄2
)
.

[An alternative to using path variables to describe āB is to recognize that point B is
also a point on the shaft, whose angular velocity is the constant �̄1 and whose point
A is stationary, so that āB = �̄1 × (

�̄1 × r̄B/A
)
.] With āB, ω̄, and ᾱ established, we

evaluate

āC = āB + ᾱ × r̄C/B + ω̄ × (ω̄ × r̄C/B)

= �2

[
L
R

(sin β)2 + sin β cos β

] (− Lī2 + Rk̄2
)
.

�

An interesting interpretation of these results follows from the observation that
r̄C/A = Rī2 + Lk̄2. The expressions we have derived indicate that ω̄ is parallel to
r̄C/A and āC is perpendicular to r̄C/A. Both features would have been apparent if
we had slightly altered our analysis based on the observation that point A is always
at distance L along the disk’s centerline. Consequently, we can consider point A
to belong to the disk, which allows us to use point A as the reference point for
describing the motion of the contact point. Because point A is stationary, we could
have written

v̄C = 0̄ = ω̄ × r̄C/A, āC = ᾱ × r̄C/A + ω̄ × (ω̄ × r̄C/A) .

The first equation establishes the parallelism of ω̄ and r̄C/A, and it simplifies the
second equation to āC = ᾱ × r̄C/A, from which it follows that āC · r̄C/A = 0.

This leads to a visual model for the motion of the disk. Regardless of the angles
of rotation about the Z and z axes, the line connecting points A and C is always
situated at a constant angle from the vertical. The sketch shows that this angle is
β + tan−1(R/L). Thus the locus of this line is a cone. Because it represents the view
of line AC from the perspective of a fixed observer, it is called the space cone. On the
other hand, from the perspective of an observer on the disk, who considers xyz to be
stationary, the angle from the x axis to line AC is always tan−1 (L/R) . However, line
AC may be situated arbitrarily relative to the xz plane. Thus the locus of line AC
relative to an observer on xyz is the body cone. The last sketch depicts both cones.
The motion of the disk is equivalent to the body cone rolling without slipping over
the space cone. The instantaneous axis of rotation is the line of contact between the
cones. The acceleration of any point on the body cone that is on this line of contact
is normal to the rotation axis. The concept of space and body cones is particularly
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useful for the treatment of the rotation of bodies in free flight, which is a topic in
Chapter 10.

A

B

C

L

R

β

tan-1(R/L)

body
cone

space
cone

Body and space cones for the disk that rolls without slip-
ping over the interior of the cylinder.

EXAMPLE 4.9 A disk rolls without slipping on the XY plane. At the instant
shown, the horizontal diameter ACB is parallel to the X axis. Also, at this instant,
the horizontal components of the velocity of the center C are known to be 5 m/s in
the X direction and 3 m/s in the Y direction, and the Y component of the velocity of
point B is 6 m/s. Determine the precession, nutation, and spin rates for the Eulerian
angles in Fig. 4.15.

20°

A

B

Z

X
Y

C

80 mm Example 4.9

SOLUTION We begin with a sketch that is like Fig. 4.15, except that the nutation
angle exceeds π/2 because the disk is tilted to the right. The y′ axis coincides with
the horizontal diameter AB, which is the line of nodes. Because an increase of θ is
defined to correspond to rotation about the positive y′ axis, we have j̄ ′ = − Ī at the
given instant.
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θ − 90° = 20°

A

B

Z

X
Y

C

ψ
.

z, z'

y'

x' x

y

φ
.
θ

φ

D

φ

.
Eulerian angles and coordinate systems for analyzing arbitrary
rolling motion of a disk

The axes and angle defined here match those in Fig. 4.15, so we may directly employ
the description of ω̄ in Eqs. (4.2.12). We set θ = 110◦ for the instant of interest,
which yields

ω̄ = −0.9397ψ̇ ī ′ + θ̇ j̄ ′ + (φ̇ − 0.3420ψ̇)k̄ ′
.

There is no slipping at the contact point D, so v̄D = 0̄. When we refer the veloc-
ities of points B and C to this point, we find that

v̄C = ω̄ × (−0.08ī ′) = −0.08(φ̇ − 0.3420ψ̇) j̄ ′ + 0.08θ̇ k̄ ′
,

v̄B = ω̄ × (−0.08ī ′ + 0.08 j̄ ′)
= −0.08(φ̇ − 0.3420ψ̇)

(
ī ′ + j̄ ′)+ 0.08

(
θ̇ − 0.9397ψ̇

)
k̄ ′

.

These velocities must match the given components. The fact that j̄ ′ = − Ī at this
instant substantially expedites the evaluation of dot products, which we find to be

v̄C · Ī = 5 = −0.08(φ̇ − 0.3420ψ̇)
(

j̄ ′ · Ī
)+ 0.08θ̇

(
k̄ ′ · Ī

)
= 0.08(φ̇ − 0.3420ψ̇),

v̄C · J̄ = 3 = −0.08(φ̇ − 0.3420ψ̇)
(

j̄ ′ · J̄
)+ 0.08θ̇

(
k̄ ′ · J̄

)
= 0.08θ̇ cos 20◦,

v̄B · J̄ = 6 = −0.08(φ̇ − 0.3420ψ̇)
(
ī ′ · J̄ + j̄ ′ · J̄

)+ 0.08
(
θ̇ − 0.9397ψ̇

)
k̄ ′ · J̄

= −0.08(φ̇ − 0.3420ψ̇) (− sin 20◦) + 0.08
(
θ̇ − 0.9397ψ̇

)
cos 20◦.

The solution of these simultaneous equations is

ψ̇ = −18.260, θ̇ = 39.907 φ̇ = 56.255 rad/s. �
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HOMEWORK PROBLEMS

C

D

R

L B

β

ω2
ω1

Exercise 4.1

EXERCISE 4.1 A gyropendulum consists of a flywheel that rotates
at constant angular speed ω1 relative to shaft BC. This shaft is
pinned to the vertical shaft, which rotates at constant angular
speed ω2. The angle β measuring the inclination of shaft BC is an
arbitrary function of time. Use the Eulerian angle formulas for
angular velocity and angular acceleration to derive expressions
for the velocity and acceleration of point D, which coincides with
the horizontal diameter at the instant of interest.

EXERCISE 4.2 Consider a body whose orientation is described by Eulerian angles. De-
rive the transformation from space-fixed to body-fixed axes for a sequence beginning
with precession ψ = 20◦, followed by nutation θ = −60◦, then spin φ = 140◦. Is it possi-
ble to obtain the same transformation with a different sequence beginning with nutation
θ ′, followed by spin φ ′, then precession ψ ′? If so, determine the values of θ ′, φ ′, and ψ ′.

θψ

φ z

z'

x
x'

Exercise 4.3

EXERCISE 4.3 A rigid disk is welded to the end of a
flexible shaft that rotates about bearing A. The bend-
ing deformation of the shaft is such that its center-
line forms a curve in a plane that always contains the
bearing’s axis. The rotation of this plane about the
bearing’s axis is the precession ψ . The tangent to this
curve at end B is the axis of symmetry of the disk, and
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the angle between the bearing’s axis and the disk’s axis is the nutation angle θ . Torsional
deformation of the shaft produces a spin φ about the disk’s axis. Let xyz be a set of axes
attached to the disk, and let x ′y′z′ be a set of axes that undergo only the precessional
motion. The z′ axis is coincident with the bearing axis, and the curved centerline of the
shaft is always situated in the x ′z′ plane. It is observed that at some instant θ = 10◦,
φ = −5◦, and the angular velocity of the disk is ω = 17ī ′ − 20 j̄ ′ + 48k̄ ′ rad/s. Determine
the corresponding precession, nutation, and spin rates. Then express the angular velocity
in terms of components relative to xyz.

EXERCISE 4.4 Measurements of the rotational motion of an orbiting satellite indi-
cate that, at a certain instant, the angular velocity with respect to body-fixed coor-
dinate system xyz is ω̄ = 19.24ī + 6.68 j̄ + 303.21k̄ rad/s. The laws for free rotation
of a body, developed in Chapter 10, indicate that k̄ is the spin axis and the preces-
sion axis is K̄ = −0.3830ī − 0.6634 j̄ + 0.6428k̄. Determine ψ̇, θ, θ̇ , φ, and φ̇ at this
instant.

EXERCISE 4.5 Measurements of the rotational motion of an orbiting satellite indi-
cate that, at a certain instant, the angular velocity with respect to body-fixed coordi-
nate system xyz is ω̄ = −34.64ī + 10 j̄ − 820k̄ rad/s and the angular acceleration is ᾱ =
−7800ī − 28713 j̄ − 346k̄ rad/s2. The laws for free rotation of a body, developed in Chap-
ter 10, indicate that k̄ is the spin axis and the precession axis is K̄ = −0.8660ī + 0.50k̄.

Determine ψ̇, ψ̈, θ, θ̇ , θ̈ , φ, φ̇, and φ̈ at this instant.

EXERCISE 4.6 An alternative set of Eulerian angles is often employed to describe the
rotation of aircraft and spacecraft. Let xyz be a reference frame that is attached to the
vehicle, with the x axis aligned with the longitudinal axis of the vehicle and z aligned in
a meaningful orthogonal direction, such as the direction of the aerodynamic lift for an
aircraft. The fixed XYZ reference frame is defined such that its axes coincide with the
orientation of the respective axes of xyz when the vehicle is in its nominal operational
condition. The yaw angle ψ takes place about the Z axis, followed by the pitch angle θ

about the new y axis, followed by the roll angle φ about the final x axis. (a) Derive the
rotation transformation that converts Ī J̄ K̄ components to ī j̄ k̄ components. (b) Describe
the angular velocity and angular acceleration of the airplane in terms of body-fixed ī j̄ k̄
components.

EXERCISE 4.7 Let the distance between points B and C in Fig. 4.6 be h, and let the y1

axis coincide with the line connecting these points. Let ψ denote the angle that the collar
rotates relative to bar 1. Describe the constraint equations relating the displacements,
velocities, and accelerations of points B and C.

EXERCISE 4.8 Pin B slides through groove CD in a plate that translates upward at
speed v. The groove forms the parabolic curve y = 300 − x2/400, where x and y have
units of millimeters. In the position shown, bar AB is rotating clockwise at 40 rad/s,
and that rate is decreasing at 160 rad/s2. Determine the corresponding values of v

and v̇.
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400 mm

400 mm
200 mm

150 mm

x

y

A

B

C

ωAB

D

v

Exercise 4.8

Rθ

20 m/s

75°

X

Y

Exercise 4.9

EXERCISE 4.9 A collar slides in the horizontal
plane over a curved rod defined in polar coor-
dinates by R = 0.1 sin (2θ) m. The motion is ac-
tuated by the translating arm, which contains a
groove that pushes a pin in the collar. The speed
of the arm is constant at 20 m/s. Determine the
velocity and acceleration of the collar in the po-
sition where θ = 1 rad.

ωR

1.75R

C

B

D

A

Exercise 4.10

EXERCISE 4.10 Bar AB rotates at the constant rate ω,

which causes collar B to slide along curved bar CD. For
the instant depicted in the diagram, determine the an-
gular velocity and angular acceleration of bar CD and
velocity and acceleration of the collar.

b

45°

θ

G
A

B

Exercise 4.11

EXERCISE 4.11 The cubic box slides along the wall and
floor. The motion of the box is fully specified if the angle
θ is determined as a function of time. Derive expressions
for the velocity and acceleration of corners A and B and
of the central point G in terms of θ, θ̇ , and θ̈ .
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A

36.87°

120 mm

120 mmB

C

D

180 mm

Exercise 4.12

EXERCISE 4.12 Collar C slides over bar AB.
When the system is in the position shown, slider
A is moving downward at 600 mm/s and its
speed is decreasing at 15 m/s2. Determine the
corresponding angular velocity and angular ac-
celeration of each bar.

A

B

D

2LC

θ
θ

. L

Exercise 4.13

EXERCISE 4.13 The rotation rate θ̇ of crank AB is con-
stant. Determine the angular velocity and angular accel-
eration of bar BC and the velocity and acceleration of
end C when θ = 60◦ and when θ = 120.

C

B

A

L

20°
0.8L

Exercise 4.14

EXERCISE 4.14 The slotted disk rotates at a constant
angular speed ωA. Determine the angular velocity
and angular acceleration of connecting rod BC in
the illustrated position.

L

45°

C

D

E

B

A

Exercise 4.15

EXERCISE 4.15 Holes bored through block E maintain
the angle between bars AB and CD at 45◦. At the in-
stant when bar CD is in the upright position shown,
bar AB is rotating counterclockwise at 10 rad/s and
that rate is decreasing at 50 rad/s2. For this instant de-
termine the velocity and acceleration of the point on
block E at which the centerlines of the bars intersect.

A

B

C

D

L

L

L

60°
60°30°

Exercise 4.16

EXERCISE 4.16 Bar AB rotates clockwise at the con-
stant angular speed ω1. Determine the angular veloc-
ity and angular acceleration of the other bars when the
linkage is at the position shown in the sketch.
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sA

A

B

Ω
L

Exercise 4.17

EXERCISE 4.17 Starting from sA = 0 at t = 0, collar A is
given a constant upward acceleration v̇A. The rotation rate
� about the vertical axis is constant. Derive expressions for
the angular velocity and acceleration of connecting rod AB
as functions of the elapsed time t. Also derive expressions
for the time dependence of the velocity and acceleration of
collar B. Describe all results in terms of components rela-
tive to a coordinate system that rotates in unison with the
T-bar.

B

A

v

Ω

L

L

60°

Exercises 4.18 and 4.19

EXERCISE 4.18 Collar A is pushed downward at speed v, while
the entire system precesses about the vertical axis at constant
angular speed �. Determine the velocity of collar B and of the
midpoint of bar AB at the instant depicted in the sketch.

EXERCISE 4.19 Collar A is pushed downward at speed v, while
the entire system precesses about the vertical axis at angular
speed �. Determine the velocity and acceleration of collar B and
of the midpoint of bar AB at the instant depicted in the sketch.

θ Ω
AB

C
L2

L1

v

Exercise 4.20

EXERCISE 4.20 Bar BC is pinned to the T-bar, which rotates
at constant rate � about the vertical axis. The bottom of this
bar contacts the platform, which translates upward at con-
stant speed v. Determine the angular velocity and angular
acceleration of bar BC as functions of the angle of elevation
θ and the value of � and ξ .

v

Ω

θ

A

B

D

E

R

Exercise 4.21

EXERCISE 4.21 Bead C slides relative to the curved guide bar AB,
which rotates about the vertical axis at the constant rate �. The move-
ment of the slider is actuated by arm DE, which pushes the collar out-
ward from the vertical axis at a constant rate v. Determine the velocity
and acceleration of the slider as a function of θ .
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A

B

D

θ

53.13°

L
L

R

C
φ

v

ψ

.

.

Exercise 4.22

EXERCISE 4.22 The spin rate ψ̇ of sphere C
is constant, as is the precession rate φ̇ and the
speed v of collar A. Derive expressions for
the angular velocity and angular acceleration of
the sphere as functions of θ, v, ψ̇, and φ̇.

A

C

B

D

1 m
3 m

0.5 m 4 m
900 rev/min

Exercise 4.23

EXERCISE 4.23 Crankshaft ABC rotates
at the constant rate of 900 rev/min. The
connecting rod CD is pinned to cap C,

which is free to rotate about axis BC. The
connection at collar D is a ball-and-socket
joint. For the instant depicted in the sketch,
determine the velocity and acceleration of
collar D, and the corresponding angular ve-
locity and angular acceleration of the con-
necting rod.

B
2 m

3 m

3 m

A

β

v

75°

Exercise 4.24

EXERCISE 4.24 Collar A is connected to bar AB by
a ball-and-socket joint, whereas the connection be-
tween collar B and bar AB is a fork-and-clevis. The
speed of collar B is v = 30 m/s and v̇ = −500 m/s2

at the position shown. (a) Determine the velocity of
slider A and the value of β̇ at this position, where β is
the angle between bar AB and the horizontal guide.
(b) Determine the acceleration of slider A and the
value of β̈ at this position.

°

Exercise 4.25

EXERCISE 4.25 The axes of bearings A and
D lie in the same horizontal plane, and in-
tersect orthogonally. Connections B and C
are ball-and-socket joints, and bars AB and
CD are welded to collars A and D, respec-
tively. Bar AB rotates at the constant rate of
200 rev/min. Determine the velocity and ac-
celeration of joint C at the instant shown.
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300 mm

400 mm 400 mm

200 mm

B

A

CD

v

Exercise 4.26

EXERCISE 4.26 Bar CD is connected to collar D by
a clevis joint, and all other connections are ball-and-
socket joints. Collar A moves toward point C at con-
stant speed v. Determine the angular velocity of both
bars at the instant depicted in the sketch in the case
in which bar AB has a circular cross section. Then re-
peat the analysis for the case in which the cross sec-
tion of bar AB is square and there is a close sliding
fit between collar D and this bar.

L

s A

B

C

D

E

Ωt

Ω

H

Exercise 4.27

EXERCISE 4.27 Bar DE is attached to collar E by a
ball-and-socket joint, and its connection to collar D is
a fork-and-clevis joint. The cross section of crankshaft
ABC is circular, so collar D may rotate about axis BC
relative to the crankshaft. The crankshaft rotates at
constant angular speed �, so specification of the po-
sition of all parts of the linkage at a specified instant
requires knowledge of the distance s locating collar
D. Derive expressions for the angular velocity of bar
DE and the speed of collar E in terms of s and ṡ for
the instant at which �t = π/3. The horizontal distance
H = 0.3L.

εφ

θ

rR

P

C

Exercise 4.28

EXERCISE 4.28 A cylinder of radius r rolls without slipping
inside a semicylindrical cavity. Point P is collinear with the
vertical centerline when the vertical angle θ locating the
cylinder’s center C is zero. Derive expressions for the ve-
locity and acceleration of point P in terms of θ, θ̇ , and θ̈ .

Ω

r
β

R

P
C

v

Exercise 4.29

EXERCISE 4.29 A disk rolls without slipping over the exterior
of a large drum. The rotation rate � of the drum is constant. In
the position shown the center of the disk has a speed v, which
is increasing at the rate v̇. Derive expressions for the velocity
and acceleration of point P, which is situated at an arbitrary
angle β relative to the line of centers.
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θ

r1

r2

ω1

ω2
A B

C

Exercise 4.30

EXERCISE 4.30 The angular velocities of the inner and
outer gears are counterclockwise at the constant values ω1

and ω2, respectively. Determine the velocity and accelera-
tion of point C on the perimeter of the planetary gear as a
function of the angle θ locating the instantaneous position
of point C relative to the radial line.

0.5R

1.5R

2.5R

Exercise 4.31

EXERCISE 4.31 The collar has a constant speed v to the
right, and the rack is stationary. Determine the angular
velocity and angular acceleration of the gear at the instant
depicted in the sketch.

0.5R

3R
50°

R

u

Exercise 4.32

EXERCISE 4.32 The wheel rolls without slipping over the
ground as the collar slides at constant speed u over the
curved guide bar. Determine the velocity and accelera-
tion of the center of the wheel in terms of u when the
linkage is in the position shown.

θ

v

R

A B h

Exercise 4.33

EXERCISE 4.33 Movement of the actuating rod AB at
constant speed v pushes the connecting pin through
the groove in the wheel, thereby causing the wheel to
roll over the ground. Determine the angular velocity
and angular acceleration of the gear as a function of
θ if there is no slippage in the rolling motion.

R

s

θ

vD

AC

D

B

Exercise 4.34

EXERCISE 4.34 Rack CD, which meshes with gear A, is ac-
tuated by moving collar D upward at the constant speed vD.
Rack B, over which gear A rolls, is stationary. Derive expres-
sions for the velocity and acceleration of the center of gear A
as functions of the current values of s and θ.
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36

12

Body cone

Space cone

°

°

Exercise 4.35

EXERCISE 4.35 The body cone rolls without slipping over
the stationary space cone. It is observed that the axis of
the body cone requires 200 ms to complete one revolution.
Determine the angular velocity and angular acceleration of
the body cone.

β
R

R

Exercise 4.36

EXERCISE 4.36 A sphere of radius R rolls without slip-
ping in the interior of a cone such that R also is the
distance from the axis of the cone to the center of the
sphere. The speed of the center of the sphere is the con-
stant value v. The rotation of the sphere is observed to
consist of a precession about a vertical axis and a spin
about an axis parallel to the cone generator. Derive ex-
pressions for the angular velocity and angular accelera-
tion of the sphere in terms of v, R, and the apex angle θ .

θ

Ω2

Ω1

R

b

Exercise 4.37

EXERCISE 4.37 The sphere rolls without slipping over the interior wall
of a hollow cylinder that rotates about its axis at �2. The angular speed
of the vertical shaft driving the sphere is �1. Both rotation rates are
constant. Determine the angular velocity and angular acceleration of
the sphere.

Ω
ββ

ψ φ
L

R

Exercise 4.38

EXERCISE 4.38 The sketch shows the cross section
of a cone whose axis is vertical and whose vertex
angle is 2β. This cone rotates about its axis at the
constant angular speed �. The sphere spins freely
at angular speed φ̇ about the shaft that intersects
its center. This shaft precesses about the vertical
axis at the variable angular speed ψ̇, so ψ̈ �= 0. (a)
Determine the ratio φ̇/� for which there is no slip-
page between the sphere and the cone. (b) Deter-
mine the angular velocity and angular acceleration
of the sphere when there is no slippage.
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β

γ

L

Ω1 Ω2

A

B

Exercise 4.39

EXERCISE 4.39 Gear A spins relative to its shaft,
which rotates at variable rate �1 about the hor-
izontal axis. Gear B rotates at the variable rate
�2. Determine the angular velocity and angular
acceleration of gear A.

EXERCISE 4.40 The sketch shows a reduction gear assembly that converts an input an-
gular speed �1 to an output speed �2. Gear A is welded to the stationary housing, gears
B and C are welded to their respective shafts, and spider arm D rotates about the hori-
zontal axis at a different angular speed. Gears E and F are a single planetary body that
spins about its axis of symmetry relative to the angled arm of the spider. (a) Derive an
expression for the gear ratio �2/�1 in terms of the length dimensions and the angle β.

(b) Derive expressions for the angular velocity and angular acceleration of planetary
gear EF. Hint: The intersection O of the axis of the planetary gear and of the drive shaft
is stationary.

C

β

A

O

d1
r1

d2

r2

B

D

D'

Housing

E

E' Ω1
Ω2

F

E
F

Exercise 4.40

Ω2

Ω1

Rr
β

Exercise 4.41

EXERCISE 4.41 The cylindrical drum rotates about
the vertical axis at the constant rate �2, and the con-
ical floor of the tank rotates at the constant rate �1.

In the situation of interest the radial line to the cen-
ter of the sphere also rotates at �1. There is no slip-
page between either the interior wall of the tank or
the spinning conical floor in the rolling motion. De-
termine the angular velocity and acceleration of the
sphere.
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ω2

ω1

θ

L

Ω2

Ω1

differential
gear

R

Exercise 4.42

EXERCISE 4.42 The diagram shows the cross sec-
tion of a differential gear of radius R that spins
relative to the bent shaft at angular speed ω2.
The rotation rate of this shaft about the vertical
axis is ω1. The cylindrical drum rotates at con-
stant angular speed �1 about the vertical axis,
and the base gear rates at constant angular speed
�2. The differential gear rotates without slip-
ping relative to both the base and the cylinder.
(a) Derive expressions for ω1 and ω2 correspond-
ing to specified values of �1 and �2. (b) Deter-
mine the angular velocity and angular accelera-
tion of the differential gear.

φ

θ

Ω
b

X

Y

Z

Exercise 4.43

EXERCISE 4.43 The system in the sketch is analo-
gous to a roulette wheel, in that a sphere of radius
R rolls without slipping over the interior of a hemi-
spherical shell of radius b that rotates about the
vertical axis at constant rate �. The polar and az-
imuth angles locating the center of the sphere are φ

and θ , defined with respect to the fixed XYZ coor-
dinate system. Both angles are arbitrary functions
of time. Derive expressions for the angular veloc-
ity and angular acceleration of the sphere in terms
of φ, θ, and their derivatives.

β

φ

ψ

ψ

β

.

.

.
C

A

100 mm

X

Y

Z
B

Exercises 4.44 and 4.45

EXERCISE 4.44 The disk rolls without slipping over
the horizontal XY plane. At the instant when β =
36.87◦, the X and Y components of the velocity of
point B on the horizontal diameter of the disk are
8 m/s and −4 m/s, respectively, and the correspond-
ing velocity components of center A at this instant
are 4 m/s and 2 m/s. Determine the precession angle
ψ between the horizontal diameter BAC and the X
axis, and also evaluate the precession, nutation, and
spin rates.

EXERCISE 4.45 The disk is rolling without slipping over the horizontal XY plane. At the
instant when the angle of inclination is β = 30◦, the disk is observed to be spinning at
φ̇ = 5 rad/s. At this instant, the speed of points B and C on its horizontal diameter are 1
and 2 m/s, respectively. Determine the corresponding precession and nutation rates.
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M
β

A
B

C

2R

2R
R F

Exercise 4.46

EXERCISE 4.46 Shaft BC is pinned to the T-bar, which
rotates at the constant angular speed ω1. Wheel C ro-
tates freely relative to shaft BC. The platform over
which wheel C rolls is raised at the constant speed u,
causing angle β to decrease. The wheel does not slip
relative to the platform in the direction transverse to
the diagram, but slipping in the radial direction is ob-
served to occur. Derive expressions for the angular ve-
locity and the angular acceleration of the wheel.
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CHAPTER 5

Inertial Effects for a Rigid Body

Chasle’s theorem states that the general motion of a rigid body can be represented as a
superposition of a translation following any point in a body and a pure rotation about
that point. The kinematics tools we have developed provide the capability to describe
these motions in terms of a few parameters. In this chapter we begin to characterize the
relationship between forces acting on a rigid body and kinematical parameters for that
body. The resultant of a set of forces may be regarded intuitively as the net tendency of
the force system to push a body, so one should expect it to be related to the translational
effect. Similarly, it is reasonable to expect that the resultant moment of a set of forces
represents the rotational influence. We shall confirm and quantify these expectations.

From a philosophical perspective, the shift from statics, in which one equilibrates
forces, to kinetics, in which the forces must match an inertial effect, is rather drastic.
For a particle, Newton’s Second and Third Laws are readily understood in this regard.
However, the corresponding shift for the rotational effect will lead to effects associated
with the angular momentum of a rigid body that sometimes are counterintuitive. This is
especially true for those who try to examine spatial motion from a planar motion view-
point. This chapter focuses on the determination and evaluation of angular momentum.
In the course of the development we derive basic laws governing the relationship be-
tween a body’s motion and the forces that act on the body. The development will be
the extension to rigid bodies of Newton’s Laws for particles, following concepts asso-
ciated with Euler. Hence we refer to the resulting kinetics principles as the Newton–
Euler equations of motion. The application of those principles will be addressed in
Chapter 6.

5.1 LINEAR AND ANGULAR MOMENTUM

We begin by considering an arbitrary system of particles, which can represent anything
from a region within a fluid to a deformable solid body. After we derive some general
principles, we will specialize them to the particular case of a rigid body. Because we are
cognizant of the type of information required by Chasle’s theorem, our focus in all cases
will be on using some point A in the system as a reference for the motion. Identification
of criteria for selecting this point is one of the issues to be addressed. The fundamental
axioms for the development are Newton’s Second Law, which governs the motion of
each particle in the system, and the Third Law, which tells us how each particle interacts
with its surroundings.

228
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A

#j

#k

rk/A

rj/A

fj,k
fk,j

Fj

Fk

Figure 5.1. External and internal forces acting on a two-particle system.

5.1.1 System of Particles

Figure 5.1 shows a system of two particles, numbered j and k. Two types of forces are
described there. Both F̄ j and F̄k are external forces, that is, the forces exerted on the
respective particles by anything other than those particles that constitute the system of
interest. Both f̄ j,k and f̄k, j are the interaction forces, where the first subscript denotes the
particle to which the force is applied and the second subscript indicates which particle
exerted the force. According to Newton’s Third Law, a pair of interaction forces such as
these are equal in magnitude and oppositely directed:

f̄k, j = − f̄ j,k. (5.1.1)

Furthermore, the Third Law states that the interaction forces are collinear, meaning
that they have the same line of action. The significance of this feature becomes apparent
when we consider the moment exerted by each interaction force about origin A, that
is, r̄ j/A × f̄ j,k and r̄ k/A × f̄k, j . Because the forces act along a common line, the perpen-
dicular distance from point A to their line of action is identical. In combination with
Eq. (5.1.1), we conclude that the moment these forces exert about the origin are equal
in magnitude, but directed oppositely:

r̄ k/A × f̄k, j = − r̄ j/A × f̄ j,k. (5.1.2)

Now let us consider Newton’s Second Law for each particle. The resultant force
acting on each is the sum of the external and internal contributions, so

F̄ j + f̄ j,k = mj ā j , F̄k + f̄k, j = mkāk. (5.1.3)

Our interest here is the role of the force system on the ensemble of particles. To find the
resultant of all forces, which we denote as 
 F̄, we add the preceding equations. In view
of Eq. (5.1.1), the internal forces cancel in this sum, so we have


 F̄ = F̄ j + F̄k = mj ā j + mkāk. (5.1.4)

A similar result arises when we consider the total moment 
M̄A exerted by all forces
about origin A. We use the position vector from the origin to each particle to evaluate
this moment, and use Eqs. (5.1.3) to characterize the forces. This leads to


M̄A = r̄ j/A × (
F̄ j + f̄ j,k

)+ r̄ k/A × (
F̄k + f̄k, j

) = r̄ j/A × mj ā j + r̄ k/A × mkāk.

(5.1.5)
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Equation (5.1.2) simplifies this to


M̄A = r̄ j/A × F̄ j + r̄ k/A × F̄k = r̄ j/A × mj ā j + r̄ k/A × mkāk. (5.1.6)

This shows that only the external forces contribute to the resultant force and to the
resultant moment about point A.

If we were to add a third particle to the system addressed thus far, there would
be additional internal forces exerted between this particle and each of particles in the
original system. Each additional pair of interaction forces would give no net contribution
to the resultant force and the moment about point A. Thus the extension of the system
from two particles to an arbitrary collection of particles does not alter the fact that only
the external forces contribute to the resultant force and to the resultant moment about point
A. To quantify this fact we let N denote the number of particles contained in the system
and number the particles consecutively from j = 1 to j = N. The forms analogous to
Eqs. (5.1.4) and (5.1.6) are


 F̄ =
N∑

j=1

F̄ j =
N∑

j=1

mj ā j ,


M̄A =
N∑

j=1

r̄ j/A × F̄ j =
N∑

j=1

(r̄ j/A × mj ā j ) .

(5.1.7)

We now turn our attention to the inertial effects described by the right-hand side
of the preceding equations. For the resultant force we replace the acceleration with the
second derivative of position. Because the mass of each particle is constant, we may form
the sum before differentiating, specifically,


 F̄ =
N∑

j=1

F̄ j =
N∑

j=1

mj
d2

dt2
r̄ i/O = d2

dt2

⎛
⎝ N∑

j=1

mjr̄ j/O

⎞
⎠ . (5.1.8)

The term in parentheses is the first moment of mass. To understand it consider a set
of particles near the surface of the Earth, with gravity acting in the negative Z direction,
as depicted in Fig. 5.2. The gravitational attraction force on all particles may be replaced
with a single resultant F̄ acting parallel to the individual forces. The magnitude of this
result is the sum of the individual forces,

F = msystemg, msystem =
N∑

j=1

mj . (5.1.9)

The point through which the resultant force acts is the center of mass, which is denoted
as point G. To locate the X and Y coordinates of this point we equate the total moment
of the gravitational forces acting on all particles to the moment of the resultant. After
cancellation of a common g factor, the moments about the Y and X axes reduce to

msystem XG =
N∑

j=1

mj Xj , msystemYG =
N∑

j=1

mj Yj . (5.1.10)
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F

YG

XG

m3g
G

Figure 5.2. Resultant of a the gravity forces acting on a set of particles close to the Earth.

These are first moments of mass with respect to the X and Y coordinates. A similar form
featuring Z coordinates would result if gravity were to act parallel to the X or Y axes. In
view of the fact that r̄ G/O = XGĪ + YG J̄ + ZGK̄, the vector form of the first moment of
mass is

msystemr̄ G/O =
N∑

j=1

mj
(
Xj Ī + Yj J̄ + Zj K̄

) =
N∑

j=1

mjr̄ j/O. (5.1.11)

Substitution of this relation into Eq. (5.1.8) leads to


 F̄ = d2

dt2

(
msystemr̄ G/O

)
. (5.1.12)

The system’s mass is constant, so the preceding reduces to


 F̄ = msystemāG. (5.1.13)

From this expression, we recognize that, although he posed the Second Law for a
particle, Newton actually captured the behavior of the center of mass of any system of
particles. If the particles move independently, it is one of many equations of motion
for the various particles. The primary value of this relation lies in its application to the
collection of particles forming a rigid body, in which case it addresses the portion of
Chasle’s theorem that requires description of the motion of one point in a body.

There are several formulations of the kinetic moment equation; they differ by the
reference point that is selected. We now specify that the reference point for the kine-
matical description of velocity and acceleration should be the same as the point A about
which we evaluate the moment sum. At this juncture, the collection of particles can
move without kinematical constraints, so there is no overall rotational motion to con-
sider. Thus we define the reference point A to be the origin of a translating reference
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frame xyz. For shorthand we designate the relative velocity and acceleration of point P
with respect to the moving origin A as v̄P/A and āP/A, respectively, where

v̄P/A = (v̄P/A)xyz = v̄P − v̄A,

āP/A = (āP/A)xyz = āP − āA.
(5.1.14)

The second of Eqs. (5.1.7) describes the moment exerted by all forces acting on the
system. In that relation we use the preceding to relate the acceleration of each particle
to the acceleration of point A, which leads to


M̄A =
N∑

j=1

r̄ j/A × mj (āA + ā j/A) . (5.1.15)

The sum may be broken into two parts. The first contains āA as a common factor. When
it is taken out of the summation, what remains is the first moment of mass relative to
origin A. In view of Eq. (5.1.11), the expression becomes


M̄A = msystemr̄ G/A × āA +
N∑

j=1

[r̄ j/A × mj ā j/A] . (5.1.16)

To convert the remaining sum to a more useful form, we make the time derivative
entailed in acceleration explicit, and then invoke the rule for differentiating a cross
product:


M̄A = msystemr̄ G/A × āA +
N∑

j=1

r̄ j/A × mj
d
dt

(v̄ j/A)

≡ msystemr̄ G/A × āA +
N∑

j=1

[
d
dt

(r̄ j/A × mj v̄ j/A) − d
dt

(r̄ j/A) × mj v̄ j/A

]
.

(5.1.17)

By definition, d (r̄ j/A) /dt = v̄ j/A, so the last term vanishes. Taking the remaining time
derivative outside the sum then gives


M̄A = msystemr̄ G/A × āA + d
dt

H̄A, (5.1.18)

where H̄A is the angular momentum of the system about point A:

H̄A =
N∑

j=1

(r̄ j/A × mj v̄ j/A) . (5.1.19)

Note that mj v̄ j/A is the (linear) momentum of particle i relative to the translating xyz
reference frame whose origin is point A. Hence a more descriptive name for H̄A is mo-
ment of momentum relative to point A. In the special case where point A is stationary,
these equations reduce to the sum of the angular impulse–momentum equations for each
particle relative to an inertial reference point, as described by Eqs. (1.2.25).

Equations (5.1.13) and (5.1.18) can be considered to govern respectively the average
translation and rotation of any system of particles. The details of the interaction forces



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

5.1 Linear and Angular Momentum 233

affect how each particle in the system moves relative to these averages. For example, if
our concern were with the effects of deformation of an elastic body, the internal forces
would be stress resultants, and we would need to characterize how those quantities are
related to the positions of the various particles. In the case of a rigid body, the kinemat-
ical condition of rigidity, which led to Chasle’s theorem, is such that knowledge of the
“average” motions is all that is required.

5.1.2 Rigid Body—Basic Equations

In the absence of deformation, the center of mass has a stationary position relative to a
body. Thus, application of the extended version of Newton’s Second Law, Eq. (5.1.13),
governs the acceleration of a point in that body. Integrating this equation would enable
us to determine the velocity and position of a point in the body, which is the first part of
the information required according to Chasle’s theorem.

Up to now, point A could be any that we wish. Now we require that point A have
a fixed position relative to the body. The difference between the velocities of any two
points in a rigid body is solely due to the body’s angular velocity ω̄, so this restriction
enables us to assert that

v̄ j/A = ω̄ × r̄ j/A. (5.1.20)

Correspondingly, the angular momentum becomes

H̄A =
N∑

j=1

mj [r̄ j/A × (ω̄ × r̄ j/A)] . (5.1.21)

It is important to observe at this juncture that the mass and position of each particle
relative to a body-fixed reference frame are constant for a specified rigid body. It fol-
lows that, after the preceding terms are summed over all particles, the resulting H̄A will
depend solely on the angular velocity ω̄ of the body. Because Eq. (5.1.18) features the
rate of change of H̄A, this equation will lead to an equation governing the rotation of the
body. From this perspective, the fact that Eq. (5.1.18) also contains āA is a complication,
because the analysis of rotational motion requires simultaneous consideration of point
motion. We avoid this complication in our initial studies by foregoing the freedom we
have in a statics study to select a point for summing moments in favor of a restricted
choice having the virtue of simplifying the kinetics terms. We refer to such points as “al-
lowable” for forming the moment equation, which indicates that the simplified version
of the moment equation is applicable. At the closure of the next chapter, we will reassert
our freedom to sum moments about any point.

There are three possibilities for selecting point A such that the term r̄ G/A × āA cou-
pling the translational and rotational effects in Eq. (5.1.18) will vanish:

1. Select point A to be the center of mass G, so that r̄ G/A ≡ 0̄. The center of mass is
always an allowable point. This is the point we shall use whenever the body of interest
executes a general motion or a translation.
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2. Select point A such that āA = 0̄. By definition, a body in pure rotation has some point
that is stationary. Thus the pivot point for a pure rotation is always an allowable point.

3. Select point A to be the point that is accelerating directly toward or away from the
center of mass, in which case āA is parallel to r̄ G/A, so that r̄ G/A × āA = 0̄. This is a
highly specialized case, so we will not employ such a point to formulate the equations
governing rotation.

Formulation of the force equation of motion requires that we identify the center
of mass. Thus, selecting the center of mass as the focal point for the moment equation
would lead to a general procedure. However, there is an important reason why the sec-
ond selection is preferable for pure rotation. Preventing the pivot point from moving re-
quires that reaction forces be exerted at that point. For example, a ball-and-socket joint
exerts an arbitrary reaction force having three components. By definition, reactions are
not known in advance, so summing moments about the pivot avoids the occurrence of
these unknowns in the rotational equations of motion.

In contrast to the first two possibilities, there seldom is any point in a body that
is accelerating directly toward or away from the center of mass. Even if there were,
locating it would be difficult. One exception occurs in planar motion, when a disk rolls
without slipping over a stationary surface. The contact point’s acceleration in that case
is normal to the contact plane, and therefore directed toward the center of the disk.
Thus the contact point would fit the allowability specification, but only if the wheel were
balanced, so that the center of mass and geometric centroid coincide. Furthermore, if
we wish to study the effect of slippage, the contact point would no longer be acceptable.

Translational motion is interesting because it is sometimes mistaken for a static sit-
uation. Because ω̄ ≡ 0̄ for pure translation, Eq. (5.1.21) indicates that H̄A ≡ 0̄. Thus the
moment equation for a translating body reduces to 
M̄A = msystemr̄ G/A × āA. If point
A is not selected to be the center of mass, the resultant moment vanishes only if āA = 0̄.

However, all points in a translating body experience the same acceleration. Hence the
condition āA = 0̄ here corresponds to rectilinear translation at a constant speed. A body
executing such a motion represents an inertial reference frame, so the laws of statics ap-
ply. If points in a translating body do not move along a straight path, or their speed is not
constant, then the center of mass is the only allowable point for formulating the simplified
moment equation of motion.

When point A is allowable, the moment equation reduces to


M̄A = d
dt

H̄A. (5.1.22)

This form is analogous to the equation for the motion of the center of mass. To recognize
this we differentiate the first moment of mass, Eq. (5.1.11), which shows that the total
linear momentum of any system is

P̄ =
N∑

j=1

mj v̄ j =
N∑

j=1

d
dt

(mjr̄ j/O) = d
dt

(
msystemr̄ G/O

) = msystemv̄G. (5.1.23)
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Thus Eq. (5.1.13) is equivalent to


 F̄ = d
dt

P̄. (5.1.24)

In other words, the linear or angular effect of the external force system equals the rate
of change of the corresponding type of momentum for the body. Thus, the equations of
motion described by this chapter are said to be momentum based. An alternative energy-
based procedure for formulating equations of motion will be addressed in Chapter 7.

5.1.3 Kinetic Energy

In addition to being the fundamental kinetic quantity for our studies in the later chap-
ters, kinetic energy appears in work–energy principles that are sometimes a useful ad-
junct to the momentum-based equations of motion. Also, kinetic energy will play a
prominent role for one aspect of the evaluation of inertia properties of a rigid body. We
begin by describing the kinetic energy of a system of independently moving particles.

Because kinetic energy is a scalar, we obtain the total energy T of the system by
adding the values for each particle:

T =
N∑

j=1

1
2

mj v̄ j · v̄ j . (5.1.25)

Let B denote an arbitrary reference point to which the velocity of all particles is referred,
so that v̄ j = v̄B + v̄ j/B. The corresponding form for the system’s kinetic energy is

T =
N∑

j=1

1
2

mj (v̄B + v̄ j/B) · (v̄B + v̄ j/B)

=
N∑

j=1

1
2

mj (v̄B · v̄B + 2v̄B · v̄ j/B + v̄ j/B · v̄ j/B) .

(5.1.26)

We factor out of each sum terms that are independent of the particle number, which
yields

T = 1
2

msystemv̄B · v̄B + v̄B ·
N∑

j=1

d
dt

(mjr̄ j/B) + 1
2

N∑
j=1

mj v̄ j/B · v̄ j/B. (5.1.27)

We recognize the first sum as the time derivative of the first moment of mass relative to
point B. In view of Eq. (5.1.11), we find that

T = 1
2

msystemv̄B · v̄B + msystemv̄B · v̄G/B + 1
2

N∑
j=1

mj v̄ j/B · v̄ j/B. (5.1.28)

One viewpoint of this expression is that the kinetic energy of any system of particles
is associated with three effects: translation of all particles following the reference point
(the first term above), motion of the particles relative to the reference point (the third
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term), and a coupling of the motions of the reference point and of the center of mass
relative to the reference point.

Our interest is the kinetic energy of a rigid body. We restrict point B to be stationary
relative to the body, so that the relative velocity of any material point is v̄ j/B = ω̄ × r̄ j/B.

The kinetic energy correspondingly becomes

T = 1
2

mv̄B · v̄B + mv̄B · (ω̄ × r̄ G/B) + 1
2

N∑
j=1

mj (ω̄ × r̄ j/B) · (ω̄ × r̄ j/B) . (5.1.29)

The sum may be written in a more recognizable form by use of an identity for the scalar
triple product:

(
ā × b̄

) · c̄ ≡ ā · (b̄ × c̄
)
. (5.1.30)

We employ this identity with ā = ω̄, b̄ = r̄ j/B, and c̄ = ω̄ × r̄ j/B, which yields

T = 1
2

mv̄B · v̄B + mv̄B · (ω̄ × r̄ G/B) + 1
2

N∑
j=1

mj ω̄ · [r̄ j/B × (ω̄ × r̄ j/B)] . (5.1.31)

Because ω̄ is an overall property of the motion, it may be factored out of the sum. The
terms that remain are recognizable from Eq. (5.1.21) as the angular momentum relative
to point B, so that

T = 1
2

mv̄B · v̄B + mv̄B · (ω̄ × r̄ G/B) + 1
2
ω̄ · H̄B. (5.1.32)

To simplify this expression we restrict point B to fit either of the first two criteria for
an allowable point, that is, the center of mass or the pivot point for a body in pure ro-
tation. Either choice cancels the second term. (Other choices for point B would achieve
the same simplification, such as selecting it to be the instant center for a general planar
motion, but there is little need to consider them.) Thus the alternatives we employ to
evaluate the kinetic energy of a rigid body are

T = 1
2

mv̄G · v̄G + 1
2
ω̄ · H̄G: any type of motion,

T = 1
2
ω̄ · H̄O: pure rotation about point O.

(5.1.33)

The fact that there are two ways to describe the kinetic energy of a body in pure
rotation leads to a relation whereby the angular momentum may be transferred between
points. Suppose we were to hold some point P in a body stationary, in which case the
velocity of the center of mass would be ω̄ × r̄ G/P. The alternative descriptions of the
kinetic energy in that case would require that

T = 1
2
ω̄ · H̄P = 1

2
m (ω̄ × r̄ G/P) · (ω̄ × r̄ G/P) + 1

2
ω̄ · H̄G. (5.1.34)
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A rearrangement of terms based on Eq. (5.1.30) leads to

T = 1
2
ω̄ · H̄P = 1

2
mω̄ · [r̄ G/P × (ω̄ × r̄ G/P)] + 1

2
ω̄ · H̄G. (5.1.35)

This relation must be true for any angular velocity, so the factor of ω̄ in the dot product
on either side of the equality sign must match. It is useful for later work to use r̄ P/G =
−r̄ G/P, from which it follows that

H̄P = H̄G + mr̄ P/G × (ω̄ × r̄ P/G) . (5.1.36)

There seldom is need to transfer angular momentum between points. However,
Eq. (5.1.36) will soon prove to be useful for our exploration of inertial properties.

EXAMPLE 5.1 Identical small spheres having mass m are welded to the ends of
a rigid bar that spins about the axis of the motor at angular speed ω1. The motor is
mounted on the horizontal turntable, which rotates at angular speed ω2. Determine
the angular momentum of this pair of particles about point C where the connecting
bar is welded to the motor’s shaft. Then use the angular momentum to characterize
the force system exerted on the connecting bar at point C, as well as the kinetic
energy of these spheres. Express the result in terms of the angle θ from the bar’s
centerline to vertical.

R

R

L

ω1

ω2

θ

m

m

O
Example 5.1

SOLUTION The intent of this problem is to provide visualizations that will lessen
the abstract nature of the development thus far, and also bring to the fore aspects
that distinguish the kinetics of spatial motion from the simpler case of planar mo-
tion. Both spheres, being small, are treated as particles. They are fastened to the
massless rigid body formed by the connecting bar and the motor’s shaft. Point O
is also a point in this body, and v̄O ≡ 0̄. Thus point O is an allowable point for the
moment equation. The center of mass G of the pair of particles is halfway between
them, which is the attachment point of the bar to the motor’s shaft. This is always
an allowable point.

The angular velocity of the bar/shaft system is

ω̄ = ω1ē1 + ω2ē2.

To describe the unit vector for each rotation, we let x ′y′z′ be a coordinate system
attached to the turntable with its origin O at the center of the turntable. The z′ axis
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is vertical and the x ′ axis is aligned with the shaft, such that ē1 = −ī ′ and ē2 = k̄ ′.
The angular velocity of the connecting bar is then given by

ω̄ = −ω1 ī ′ + ω2k̄ ′. (1)

To evaluate the angular momentum with respect to point C, we form the posi-
tion vector to each sphere. In terms of components relative to x ′y′z′, these are

r̄1/C = Rsin θ j̄ ′ + Rcos θ k̄ ′ = − r̄2/C. (2)

Equation (5.1.21) for this two-particle system is

H̄C = 2m1 [r̄1/C × (ω̄ × r̄1/C)] .

The result of substituting Eqs. (1) and (2) into this expression is

H̄C = −2mR2ω1 ī ′ − 2mR2ω2 (sin θ) (cos θ) j̄ ′ + 2mR2ω2 (sin θ)2 k̄ ′. (3) �

The first feature to note is that some components of H̄C are not constant, even
though ω̄ has constant components relative to x ′y′z′. Furthermore, the orientations
of both ī ′ and j̄ ′ are variable. This feature typifies the fundamental fact that, even
though the rotation rates in spatial motion might be constant, the angular momen-
tum will not be a constant vector. Moments are required to change the angular mo-
mentum, regardless of whether the change of the angular momentum is a result of
components having a variable direction or magnitude. It follows that the shaft must
exert a moment on the connecting bar in order to produce the specified motion.

To evaluate the force system that the motor’s shaft must apply, we consider a
rigid body consisting of the two spheres and the connecting bar. If the rotation rates
are sufficiently high, the gravitational forces will be negligible, in which case the
only significant forces acting on this body are exerted by the motor’s shaft. Point C
is the body’s center of mass, and this point follows a circular path of radius L, so the
resultant force exerted by the shaft is found from Eq. (5.1.13) to be

F̄ shaft = mbodyāC = 2m
(−Lω2

2 ī ′) . (4) �

Similar reasoning indicates that the only significant moment acting on the two-
sphere rigid body is a couple exerted by the shaft. According to Eq. (5.1.22), this
couple must equal the rate at which H̄C changes. To differentiate the components of
the angular momentum in Eq. (3) we observe that θ̇ = ω1, whereas the derivatives
of the unit vectors follow from the fact that the angular velocity of x1 y1z1 is ω2k̄ ′, so
that

M̄shaft = dH̄C

dt
= ω̇1

∂

∂θ

[
−2mR2ω2 (sin θ) (cos θ) j̄ ′ + 2mR2ω2 (sin θ)2 k̄ ′

]
− 2mR2ω1

(
ω2k̄ ′ × ī ′)− 2mR2ω2 (sin θ) (cos θ)

(
ω2k̄ ′ × j̄ ′)

+ 2mR2ω2 (sin θ)2 (
ω2k̄ ′ × k̄ ′) .
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Carrying out these operations yields

M̄shaft = 2mR2ω2
2 sin θ cos θ ī − 4mR2ω1ω2 (cos θ)2 j̄ ′

+ 4mR2ω1ω2 (sin θ) (cos θ) k̄ ′.
(5) �

The kinetic energy of the two-particle rigid body may be evaluated from
Eq. (5.1.33). Point C is the center of mass, and we already have ω̄ and H̄C. The
speed of the center of mass is Lω2 , so we find that

T = 1
2

(2m) (Lω2)2 + 1
2

(−ω1 ī ′ + ω2k̄ ′) · H̄C

= mR2ω2
1 + mω2

2

[
L2 + R2 (sin θ)2

]
.

(6) �

It is not necessary to introduce angular momentum to derive these results. In-
stead, we can consider each sphere individually. We use point C as the reference for
the kinematical analysis. Because r̄1/C = −r̄1/C, the velocities are

v̄1 = v̄C + ω̄ × r̄1/C

= −Rω2 sin θ ī ′ + (ω1 Rcos θ + Lω2) j̄ ′ − ω1 Rsin θ k̄ ′,

v̄2 = v̄C + ω̄ × r̄2/C

= Rω2 sin θ ī ′ + (−ω1 Rcos θ + Lω2) j̄ ′ + ω1 Rsin θ k̄ ′.

The result of using these expressions to evaluate the kinetic energy according to
1
2 mv̄1 · v̄1 + 1

2 mv̄2 · v̄2 would be identical to Eq. (6).
To examine the force system exerted by the shaft we describe each sphere’s

acceleration relative to point C, according to

ā1 = āC + ā1/C, ā2 = āC + ā2/C,

ā1/C = −ā2/C = ᾱ × r̄1/C + ω̄ × (ω̄ × r̄1/C) .
(7)

The angular velocity is given in Eq. (1), and the angular acceleration is

ᾱ = −ω1
(
ω2k̄ ′ × ī ′) = −ω1ω2 j̄ ′,

which leads to

ā1/C = −2Rω1ω2 cos θ ī ′ − R
(
ω2

1 + ω2
2

)
sin θ j̄ ′ − ω2

1 Rcos θ k̄ ′. (8)

We use these expressions to form the force and moment sums for the system con-
sisting of the two spheres and the connecting bar. Specifically, we apply 
 F̄n = mān

to each particle and use Eqs. (7) to describe each acceleration. Because the force
exerted by the connecting bar on each sphere is internal to this system, the result is


 F̄ = F̄ shaft = m1ā1 + m2ā2 = 2māC.

This is the same as the force described by Eq. (4).
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The forces exerted by the connecting bar also disappear from a moment sum
for the system. Application of Eqs. (7) in conjunction with r̄2/C = −r̄1/C leads to


M̄C = M̄shaft = r̄1/C × m1ā1 + r̄2/C × m2ā2 = mr̄1/C × ā1/C + mr̄2/C × ā2/C.

The sketch shows the acceleration of each sphere relative to point C, which when
multiplied by m become the forces that contribute to the moment sum. Inspection
of this diagram shows that for each particle the sum of the z′ component and the
portion of the y′ component that is due to ω1 is a vector that acts from each sphere
toward point C. It follows that these forces do not contribute to the moment sum.
Consequently, the moment exerted by the shaft is formed from two couples. The
x ′ components form a couple that is (2mRω1ω2 cos θ) (2R) acting perpendicular to
the connecting bar. The unit vector for this couple is − cos θ j̄ ′ + sin θ k̄ ′. The other
couple, which is formed from the remaining portion of the y′ components of relative
acceleration, is

(
mRω2

2 sin θ
)

(2Rcos θ) . This couple acts about the x ′ axis. The sum
of these couples is the same as Eq. (5).

ω1

ω2

O

R sinθ

R cosθ

R sinθ

R(ω1 + ω2 )sin θ

Rω1 cos θ

2Rω1ω2cos θ

2Rω1ω2cos θ

R cosθ

C
x'

y'

z'

2

2

Rω1 cos θ2

2

R(ω1 + ω2 )sin θ2 2

Position and acceleration components of each sphere relative to point C at which the connecting rod
is joined to the motor’s shaft

This discussion explains in fundamental terms why moments are required to
sustain a spatial motion in which all rotation rates are constant. Because particles
have acceleration components that do not lie in a common plane, the forces required
to accelerate these particles exert moments about several axes. For the system of
two interconnected spheres the analysis using angular momentum was merely an
alternative approach, but it will be the only viable one for bodies whose size is not
negligible.

5.2 INERTIA PROPERTIES

It is inconceivable to evaluate the angular momentum of a rigid body by adding the
contribution of each of its atomic particles. Our approach is to model the rigid body
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as a continuous distribution of mass, which will permit us to apply the principles of
calculus. The result will be an expression for the angular momentum that features a set
of numbers characterizing the manner in which mass is distributed in the body.

5.2.1 Moments and Products of Inertia

In a continuum model of a rigid body the particles are differential elements of mass dm
having infinitesimal dimensions. These elements fill the region occupied by the body. In
this viewpoint, any summation over the particles forming the body becomes an integral
over the body’s domain. In Fig. 5.3, xyz is a global coordinate system whose origin A is
an allowable point for the moment equation of motion.

x

y
z

dm

A

ri/A Figure 5.3. Differential element of mass d m relative to a body-fixed xyz
reference frame.

In terms of components relative to xyz the position vector r̄ i/A and angular velocity
ω̄ are

r̄ i/A = xī + y j̄ + zk̄, ω̄ = ωxī + ωy j̄ + ωzk̄. (5.2.1)

We substitute these expressions into Eq. (5.1.21) for the angular momentum and convert
the summation to an integral. This transforms the general relation to

H̄A =
∫∫∫ (

xī + y j̄ + zk̄
)× [(

ωxī + ωy j̄ + ωzk̄
)× (

xī + y j̄ + zk̄
)]

dm. (5.2.2)

The result of evaluating the cross products is an integrand that consists of ī, j̄, and
k̄ components. Each component may be integrated individually. Furthermore, the ro-
tation rates are overall properties of the motion, rather than functions of the position
within the body. Consequently, ωx, ωy, and ωz may be factored out of each integral. The
result is

H̄A = (Ixxωx − Ixyωy − Ixzωz) ī + (Iyyωy − Iyxωx − Iyzωz) j̄

+ (Izzωz − Izxωx − Izyωy) k̄,
(5.2.3)

where

Ixx =
∫∫∫ (

y2 + z2
)

dm, Iyy =
∫∫∫ (

x2 + z2
)

dm, Izz =
∫∫∫ (

x2 + y2
)

dm,

Ixy = Iyx =
∫∫∫

xydm, Ixz = Izx =
∫∫∫

xzdm, Iyz = Izy =
∫∫∫

yzdm.

(5.2.4)
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The terms Ipp (repeated subscripts) are moments of inertia about the three coordi-
nate axes, and the terms Ipq (nonrepeated subscripts) are products of inertia. The vector
description of H̄A may be written alternatively in matrix form as

{HA} = [I] {ω} , (5.2.5)

where {HA} and {ω} are formed from the components of H̄A and ω̄, respectively, and [I]
is the inertia matrix:

[I] =

⎡
⎢⎢⎣

Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

⎤
⎥⎥⎦ . (5.2.6)

The matrix representation will be seen to be quite useful in conjunction with mathemat-
ical software. The inertia matrix, combined with the mass and the location of the center
of mass, fully characterizes the inertia properties of a rigid body.∗

The moments of inertia are properties encountered in planar motion. The similarity
of any Ipp to the parameter for planar motion may be realized by looking down the p
axis. Such a view for Izz is shown in Fig. 5.4. The distance R = (x2 + y2)1/2 is the perpen-
dicular distance from the z axis to the mass element dm. Thus Izz is the sum for all mass
elements of the R2 values weighted by dm.

x

y
x

y

R
Figure 5.4. Contribution of an element of mass to the moment of inertia
about the z axis.

A common way to prescribe a moment of inertia is to give its radius of gyration,

κ p =
(

Ipp

m

)1/2

. (5.2.7)

Consider a thin ring whose mass is situated on a circle of radius κ p, with p being the axis
perpendicular to the plane of the ring and intersecting the center. The distance from
this axis to any mass element is κ p, so the integral of R2dm reduces to κ2

p multiplied by
the integral of the mass, in other words, Ipp = mκ2

p. Thus a radius of gyration describes a
circular ring whose mass is the same as the body of interest and whose moment of inertia
about its axis of symmetry p is identical to Ipp for the body. Because Ipp is the sum of
the R2dm values, the radius of gyration cannot exceed the largest distance from axis p to

∗ The definitions of products of inertia in Eqs. (5.2.4) are opposite in sign to those used by some individuals.
The present definitions are based on indicating quadrants in which mass is dominant. The alternative
definition gives an inertia matrix whose off-diagonal elements equal the products of inertia.
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y

-x x

y
x

y

Figure 5.5. The significance of a product of inertia as a measure
of deviation from symmetry.

a mass point in the body. This knowledge can be quite useful when one wishes to make
an order-of-magnitude estimate of the moments of inertia of a given body.

In contrast to the moments of inertia, which depend on how far mass is situated
from each coordinate axis, the products of inertia describe the degree to which mass is
distributed symmetrically relative to the three coordinate planes. Figure 5.5 shows the
cross section of a body at an arbitrary value of z. The dotted region is the mirror image
of the cross section, which one obtains by flipping it about the y axis. The shaded area
is the union of the cross section and its mirror image. Two mass elements on either
side of the yz plane are depicted in Fig. 5.5. The x coordinate for the left element is the
negative of the x coordinate for the right element, whereas their y and z coordinates
are the same. If the density is the same for both elements, then they have the same mass
dm. In that case the values of xy dm and xzdm for the left element are the negative of
the corresponding values for the right element, so their combined contributions to Ixy

and Ixz are zero. It follows that the total contribution to Ixy and Ixz of all mass elements
situated in the shaded region of Fig. 5.5 is zero. The unshaded portions of the cross
section have no mirror image on the other side of the yz plane. The sign marking each
such region indicates whether the product xy is positive or negative within that region.
The situation in the figure is one in which the unbalanced regions correspond mostly to
positive xy. Thus, if the density is constant over the cross section, the net contribution of
this cross section to Ixy would be positive. Similar reasoning applies for Ixz. One should
note, however, that the actual values of Ixy and Ixz for this body cannot be judged solely
from the figure, because they depend on the combined contribution of all cross sections.

From the preceding considerations, we conclude that a positive value of Ipq indicates
that the mass of the body is predominantly situated in either or both of the quadrants
where the p and q coordinates have the same sign, whereas negative Ipq means that
mass is predominant in the quadrants where p and q have opposite sign. We obtain
an important corollary of the discussion by considering a situation in which the shaded
region in Fig. 5.5 is the actual cross section and the density at the mirror image points is
the same. In that case the contributions to Ixy and Ixz of this cross section will vanish. If
the same is true for all cross sections, then the body is symmetric with respect to the yz
plane, and Ixy = 0 and Ixz = 0. Similar conclusions would result if we were to consider
symmetry with respect to the xz or xy plane. The fact that the z axis is normal to the
plane of symmetry for the situation in the figure leads to this generalization:

If two coordinate axes form a plane of symmetry for a body, then all products of
inertia involving the coordinate normal to that plane are zero.
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A further corollary is

If at least two of the three coordinate planes are planes of symmetry for a body, then
all products of inertia are zero.

The condition of perpendicular planes of symmetry is attained for any body of revo-
lution if the axis of symmetry coincides with a coordinate axis. Whenever the coordinate
axes correspond to vanishing values of all products of inertia, they are said to be prin-
cipal axes. We will soon see that it is possible to identify principal axes for any body,
regardless of it symmetry properties.

EXAMPLE 5.2 Evaluate the inertia properties of the pair of particles in Exam-
ple 5.1 relative to the x ′y′z′ coordinate system defined there. Then use those prop-
erties to determine H̄A.

SOLUTION This example uses a simple system to illustrate the significance of the
inertia properties. It also provides some insight that will be useful to later devel-
opments concerning the rate of change of H̄A. The two particles and their massless
connecting rod form the rigid body of interest here. Each particle may be considered
to be an element of mass. Correspondingly, the integral reduces to a single term for
each particle. The z′ axis in Example 5.1 was defined to be vertical, and the x ′ axis
is aligned with the motor’s rotation axis. The position of the particles in terms of
components relative to x ′y′z′ was found previously to be

r̄1/O = Lī ′ + Rsin θ j̄ ′ + Rcos θ k̄ ′, r̄2/O = Lī ′ − Rsin θ j̄ ′ − Rcos θ k̄ ′.

Because the components are the respective values of x ′, y′, and z′ for each particle,
Eqs. (5.2.4) for the present situation reduce to

Ix ′x ′ = m
(
y2

1 + z2
1

)+ m
(
y2

2 + z2
2

) = 2mR2,

Iy ′ y ′ = m
(
x2

1 + z2
1

)+ m
(
x2

2 + z2
2

) = 2mL2 + 2mR2 (cos θ)2
,

Iz′z′ = m
(
x2

1 + y2
1

)+ m
(
x2

2 + y2
2

) = 2mL2 + 2mR2 (sin θ)2
,

Ix ′ y ′ = Iy ′x ′ = mx1 y1 + mx2 y2 = 0,

Ix ′z′ = Iz′x ′ = mx1z1 + mx2z2 = 0,

Iy ′z′ = Iz′ y ′ = my1z1 + my2z2 = 2mR2 sin θ cos θ = mR2 sin (2θ) .

�

The products of inertia indicate that there is a balanced mass distribution relative to
the x ′y′ and x ′z′ quadrants, and the mass is situated in the two quadrants where y′z′

are positive whenever sin (2θ) is positive, that is, 0 < θ < π/2 and π < θ < 3π .
To evaluate H̄A we recall from the previous example that the angular velocity

of the assembly of the two particles and the connecting rod is the sum of the rotation
rates ω2 about the vertical and ω1 of the motor. We previously found that

ω̄ = −ω1 ī ′ + ω2k̄ ′.
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The components are ωx ′ = −ω1, ωy ′ = 0, ωz′ = ω2. Correspondingly, Eq. (5.2.3)
gives

H̄A = [
2mR2 (−ω1) − 0 (0) − 0 (ω2)

]
ī ′

+
{[

2mL2 + 2mR2 (cos θ)2
]

(0) − 0 (−ω1) − (
2mR2 sin θ cos θ

)
(ω2)

}
j̄ ′

+
{[

2mL2 + 2mR2 (sin θ)2
]

(ω2) − 0 − (
2mR2 sin θ cos θ

)
(0)
}

k̄ ′.

The preceding exemplifies a general observation that many terms in the standard
formula for angular momentum usually vanish because either a product of inertia
or a component of ω̄ is zero. The present result reduces to

H̄A = −2mR2ω1 ī ′ − 2mR2ω2 sin θ cos θ j̄ ′ + 2m
[

L2 + R2 (sin θ)2
]
ω2k̄ ′. �

This is the same as the expression we derived in Example 5.1 by actually evaluating
moments of the relative momenta.

EXAMPLE 5.3 Derive the inertia matrix of the quarter-sphere about the xyz
axes; then use that result to obtain the inertia matrix for a quarter-spherical shell
whose skin thickness is d � a. Express each result in terms of the mass m of that
body.

x

y

z
a

Example 5.3

SOLUTION Although we usually use other techniques to evaluate the inertia matrix,
integration is a basic tool. This example illustrates some procedures that were used
to derive the properties tabulated in the Appendix. Spherical coordinates with an
origin at the center are ideal here because the quarter-sphere’s surfaces correspond
to constant values of one of these coordinates. Any coordinate axis may be em-
ployed as the reference for the polar angle φ; we select the y axis, so the azimuthal
angle θ is measured in the xz plane relative to the x axis. The coordinate transfor-
mation is

y = r cos φ, x = r sin φ cos θ, z = r sin φ sin θ.

The body occupies the domain 0 ≤ r ≤ a, 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ π, and a differen-
tial element of mass is dm = ρ (dr) (rdφ) (rdθ sin φ) . The body is symmetric with
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respect to the yz plane, so the two products of inertia containing x as the subscript
are zero:

Ixy = Ixz = 0. �

Also, the symmetry of the quarter-sphere is such that mass is situated in the same
manner relative to the y and z axes, so Izz = Iyy. Thus it is necessary to compute
only Ixx, Iyy, and Iyz.

The integral definitions, Eqs. (5.2.4), give

Ixx =
∫ a

0

∫ π/2

0

∫ π

0

(
y2 + z2

)
ρr2 sin φ dθ dφ dr

= ρ

∫ a

0

∫ π/2

0

∫ π

0

[
(r cos φ)2 + (r sin φ sin θ)2

]
r2 sin φ dθ dφ dr,

Iyy =
∫ a

0

∫ π/2

0

[
(r sin φ cos θ)2 + (r sin φ sin θ)2

]
ρr2 sin φ dθ dφ dr,

Izz =
∫ a

0

∫ π/2

0

∫ π

0

[
(r sin φ cos θ)2 + (r cos φ)2

]
ρr2 sin φ dθ dφ dr,

Iyz =
∫ a

0

∫ π/2

0

∫ π

0
yzρr2 sin φ dθ dφ dr

= ρ

∫ a

0

∫ π/2

0

∫ π

0
(cos φ) (sin φ sin θ) r4 sin φ dθ dφ dr.

The results are

Ixx = Iyy = Izz = 2π

15
ρa5, Iyz = 2

15
ρa5.

To express the inertia properties in terms of the mass m, the density is expressed as
the ratio of the mass to the volume of a quarter-sphere:

ρ = m
V

= m

1
4

(
4πa3

3

) = 3m
πa3

.

We substitute for ρ in each of the inertia properties and recall from Eq. (5.2.6)
that the off-diagonal terms of the inertia matrix are the negative of the products of
inertia. The result is

[I] = 2
5

ma2

⎡
⎢⎢⎣

1 0 0

0 1 −1/π

0 −1/π 1

⎤
⎥⎥⎦ . �

A shell is a body whose mass is concentrated at its surface. There are two
procedures for obtaining the inertia properties of the quarter-spherical shell. The
general one specializes the differential element of mass. Let σ be the mass per
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unit surface area. A differential element of surface area in spherical coordinates is
dS = (a dφ) (a sin φ dθ) . The surface is defined by 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ π. We
modify the integrals for the quarter-sphere, with r = a for points on the surface and
dm = σdS, which leads to

Ixx =
∫ π/2

0

∫ π

0

[
(a cos φ)2 + (a sin φ sin θ)2

]
σa2 sin φ dθ dφ = 2

3
πσa4,

Iyy =
∫ π/2

0

∫ π

0

[
(a sin φ cos θ)2 + (a sin φ sin θ)2

]
σa2 sin φ dθ dφ = 2

3
πσa4,

Izz =
∫ π/2

0

∫ π

0

[
(a sin φ cos θ)2 + (a cos φ)2

]
σa2 sin φ dθ dφ = 2

3
πσa4,

Iyz =
∫ π/2

0

∫ π

0
(a cos φ) (a sin φ sin θ) σa3 sin φ dθ dφ = 2

3
σa4.

The surface area of a sphere is 4πa2, so the mass per unit surface area is related to
the mass of the quarter-spherical shell by

σ = mshell

1
4

(4πa2)
.

Substitution of this expression into the inertia values leads to

[I] = 2
3

mshella2

⎡
⎢⎢⎣

1 0 0

0 1 −1/π

0 −1/π 1

⎤
⎥⎥⎦ . �

An alternative is to derive the properties of the shell from those of the full
body. We may obtain the shell by removing from the quarter-sphere a concentric
quarter-sphere whose radius is a − h, where h is the thickness of the shell. Because
the origins of xyz for both the original and removed bodies coincide, the inertia
properties of the shell are the difference of the values for the two full bodies. We
form the differences by using the original forms, which featured the density, so that

Ixx = Iyy = Izz = 2
15

πρa5 − 2
15

πρ (a − h)5 = 2
15

πρ
(
5a4h + · · · ) ,

Iyz = 2
15

ρa5 − 2
15

ρ (a − h)5 = 2
15

ρ
(
5a4h + · · · ) .

Higher powers of h are omitted because the definition of a shell is that its thickness
is very small compared with the overall dimensions. The density is the ratio of the
shell’s mass to its volume:

ρ = mshell

V
= mshell

1
4

[
4πa3

3
− 4π (a − h)3

3

] = mshell

π (a2h + · · · )
.
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Substitution of this description of ρ into the last set of expressions for the inertia
properties would yield the same results as those obtained by integration.

EXAMPLE 5.4 A first-order correction for the mass distribution of the Earth is
to take it to be an oblate spheroid with the polar axis as the axis of symmetry. A
consequence of this deviation from sphericity, combined with the tilt of the polar
axis relative to the Earth’s orbital plane about the Sun, and the Moon’s orbital plane
about the Earth, is that the forces exerted by those bodies do not exactly act at the
Earth’s center. The task here is to characterize the gravitational attraction of the
Sun and the Moon as force–couple systems acting at the Earth’s center.

SOLUTION This example will lead to a different perspective to the meaning of “cen-
ter of mass,” as well as recognition that the inertia properties can occur in contexts
other than evaluation of angular momentum. The usage of the first moment of mass
to locate the point at which the resultant gravitational force acts originates from con-
sidering the force of gravity to be constant. The analysis we carry out here, in which
the inverse square law is used to describe the force exerted by the Sun on each of
particle of the Earth’s mass, is required to explain some features of the Earth’s ro-
tation. In particular, the result will be a crucial piece of our analysis in Chapter 10
of precession of the equinoxes, which is manifested by variability in the dates when
the seasons change.

We begin by recalling the inverse square law for gravitational force exerted by
a large spherical body on a particle:

F̄ = Gmsm
r2

ēr ,

where m and ms are the masses of the particle and the attracting body, r is the
distance from the particle to the center of the other body, ēr is the unit vector from
the particle to the center of the attracting body, and G is the universal gravitational
constant. The Earth’s diameter is much smaller than the distance to either the Sun
or the Moon, so the Earth appears to be a dot when viewed from either body,
especially the Sun. If we were to set r equal to the distance R between the respective
centers and take ēr to be constant at ēR, which is the unit vector from the center
of the Earth to the center of the other body, we would obtain the conventional
representation of the effect of gravity, in which the Earth’s center of gravity, at
which the gravitational attraction acts, coincides with its center of mass, which is
essentially the center of the Earth.

We perform the analysis for the case of the interaction between the Earth and the
Sun, then consider what modifications are required to describe the role of the Moon.
Let xyz be a coordinate system whose origin is at the center of the Earth such that
the z axis is the polar axis; this axis is inclined by angle θ relative to the normal to
the Earth’s orbital plane. The y axis is defined to coincide with the diametral line
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at the Earth’s equator that lies in the orbital plane. To describe how the Earth is
oriented relative to the Sun define x ′y′z′ whose origin also is at the Earth’s center.
The z′ axis is defined to be normal to the Earth’s orbital plane, and x ′ is aligned with
the unit vector from the center of the Earth to the center of the Sun, so that ēR = ī ′.

z
z'

x'

x

y'
y

Sun

Earth

eR

β
θ

Coordinate system for describing the graviational force exerted
by the Sun on the Earth

This arrangement is depicted in the sketch. The transformation between these co-
ordinates systems is

[x y z]T = [R] [x ′ y′ z′]T
,

[R] =

⎡
⎢⎢⎣

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cos β sin β 0

− sin β cos β 0

0 0 1

⎤
⎥⎥⎦ ,

where β is the angle between the y and y′ axes. The first row of [R]T consists of the
direction cosines of the x ′ axis with respect to xyz, which enables us to describe the
direction of the Sun’s center in terms of xyz components,

ēR = �x ′xī + �x ′ y j̄ + �x ′zk̄,

where the direction cosines are

�x ′x = cos θ cos β, �x ′ y = − sin β, �x ′z = sin θ cos β.

The near parallelism of the lines from all particles to the Sun’s center assists us
in describing the distance and direction of the line from a particle of the Earth to
the Sun. In the second sketch, which shows the plane containing a mass particle P,
the center O of the Earth, and the center O′ of the Sun, r is the distance from the
center of the Sun to the particle and ēr is the direction to point O′.

Earth

O'
O

r

R

rP/O ⋅eR
_ _

eR

er
P Gravitational force exerted by the Sun on a particle of the

Earth
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It is evident that

r ēr = RēR − r̄ P/O, (1)

so the distance is

r ≡ (r ēr · r ēr )1/2 = (
R2 + r̄ P/O · r̄ P/O − 2Rr̄ P/O · ēR

)1/2
.

Because
∣∣r̄ P/O′

∣∣ is much smaller than R, a binomial series expansion of the preceding
gives

r ≈ R − r̄ P/O · ēR. (2)

In turn, substituting this expression into Eq. (1) yields

ēr = RēR − r̄ P/O

r
≈ R

R − r̄P/O · ēR
ēR − r̄ P/O

R

≈
(

1 + r̄ P/O · ēR

R

)
ēR − r̄ P/O

R
.

(3)

Equation (2) is used to express the distance in the inverse square law for the
gravitational force dF̄ acting on a differential element of mass situated at point P,
and Eq. (3) gives the direction of that force. Application of a binomial series expan-
sion then leads to

dF̄ = Gmsdm

(R − r̄ P/O · ēR)2 ēr

≈ Gmsdm
R2

(
1 + 2

r̄ P/O · ēR

R

)[(
1 + r̄ P/O · ēR

R

)
ēR − r̄ P/O

R

]

≈ Gmsdm
(

1
R2

ēR + 3
r̄ P/O · ēR

R3
ēR − r̄ P/O

R3

)
.

(4)

We obtain the resultant force by integrating the contribution associated with
each mass element. For this integration, we observe that the only quantity in Eq. (3)
that depends on the position of the mass element is r̄ P/O. The integral of r̄ P/Odm is
identically zero because it is the first moment of mass and point O is the center of
mass. Thus the resultant force is

F̄ =
∫∫∫

dF̄ =
∫∫∫

Gmsdm
R2

ēR = Gmsme

R2
ēR, (5)

where me is the Earth’s total mass. The preceding expression is the same as the force
derived from an approximation that considers the gravitational field to be constant
across the Earth.

The equivalent couple must have the same moment as the resultant moment of
the gravitational forces about point O, so we set

M̄ =
∫∫∫

r̄ P/O × dF̄ .
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Using the approximation of dF̄ in Eq. (4) leads to

M̄ = Gms

∫∫∫
r̄ P/O ×

(
1
R2

ēR + 3
r̄ P/O · ēR

R3
ēR − r̄ P/O

R3

)
dm

≈ Gms

R2

∫∫∫
r̄ P/O × ēRdm + 3

Gms

R3

∫∫∫
(r̄ P/O × ēR) (r̄ P/O · ēR) dm.

The first integral vanishes because ēR is independent of the position of the mass
element, so the integral is proportional to the first moment of mass relative to the
center of mass. Therefore the gravitational couple is described by

M̄ = 3
Gms

R3

∫∫∫
(ēR · r̄ P/O) (r̄ P/O × ēR) dm. (6)

To understand this integral we represent the position vector in terms of the
position coordinates of the mass element, r̄ P/O = xī + y j̄ + zk̄. The corresponding
representation of the integrand is

(ēR · r̄ P/O) (r̄ P/O × ēR) = (�x ′xx + �x ′ y y + �x ′zz)
[
(�x ′zy − �x ′ yz) ī + · · ·] ,

where only the x component is listed because the others can be obtained by permut-
ing the symbols. Carrying out the product shows that the integrand contains various
quadratic products of the point coordinates, so the integral may be expressed in
terms of the moments and products of inertia. The result is simplified if xyz are
principal axes because the terms in the integrand that contain mixed products, xy,

xz, or yz, vanish in the integration. The nonzero terms are

(ēR · r̄ P/O) (r̄ P/O × ēR) = �x ′ y�x ′z
(
y2 − z2) ī + �x ′x�x ′z

(
z2 − x2) j̄

+ �x ′x�x ′ y
(
x2 − y2) k̄ + · · ·.

Substitution of this representation of the integrand into Eq. (6) leads to

M = 3
Gms

R3

[
�x ′ y�x ′z

∫∫∫ (
x2 + y2 − x2 − z2

)
dm ī

+ �x ′x�x ′z

∫∫∫ (
y2 + z2 − x2 − y2

)
dm j̄

+ �x ′x�x ′ y

∫∫∫ (
x2 + z2 − y2 − z2

)
dm k̄

]

= 3
Gms

R3

[
�x ′ y�x ′z (Izz − Iyy) ī + �x ′x�x ′z (Ixx − Izz) j̄ + �x ′x�x ′ y (Iyy − Ixx) k̄

]
.

(7)
Equations (5) and (7) are valid for the gravitational force–couple system ex-

erted on any large body when xyz are principal axes. Axisymmetry of the present
approximation of the Earth’s shape further simplifies the couple expression because
Ixx = Iyy. When we use Eq. (4) for F̄ to describe the coefficient of the bracketed
term and recognize that �x ′z is the direction cosine between the radial line to the
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Sun and the polar axis, we find that

F̄ = FēR, M̄ = 3
F (Izz − Ixx)

me R

(
ēR · k̄

) (
ēR × k̄

)
,

F = Gmsme

R2
, ēR = �x ′xī + �x ′ y j̄ + �x ′zk̄.

(7) �

These expressions indicate that the moment acts about an axis that is perpen-
dicular to the plane formed by the radial line to the Sun and the polar axis. To get a
sense of the scale of M̄, consider a pair of forces F̄ and −F̄ whose couple moment
Fh equals

∣∣M̄∣∣ . The corresponding separation distance is

h = 3 (Izz − Ixx)
me R

(
ēR · k̄

) ∣∣ēR × k̄
∣∣ .

The ratio of a moment of inertia to the mass is the square of the corresponding
radius of gyration, κz and κx. Because both ēR and k̄ are unit vectors, it must be that

h <
3
∣∣κ2

z − κ2
x

∣∣
R

. (8)

The Earth is nearly spherical, so κx ≈ κz. Furthermore, both radii of gyration are
smaller than the radius Re of the Earth, so

∣∣κ2
z − κ2

x

∣∣ � R2
e , which leads to the con-

clusion that h/Re � Re/R.

A significant aspect of the derivation is that it is readily adapted to treat
the role of the Moon. Obviously, R must be interpreted as the distance between
the centers of the Earth and the Moon, and ms must be changed to the mass of the
Moon. We also must define x ′y′z′ to lie in the Moon’s orbital plane relative to the
Earth. An interesting aspect of the fact that the Moon is much smaller but much
closer than the Sun is that their relative significance for the gravitational moment
is opposite their significance for the attractive force. Their respective masses are
ms = 1.98892

(
1030

)
kg and mmoon = 7.348

(
1022

)
kg, whereas the average orbital

distances are Rs = 1.4960
(
1011

)
m and Rmoon = 3.844

(
108

)
m. Thus, the relative

magnitudes are

Fmoon

Fs
= mmoon

ms

(
Rs

Rmoon

)2

= 0.56%,

|Mmoon|
|Ms | = mmoon

ms

(
Rs

Rmoon

)3

= 218%.

In other words, a first-order analysis of the movement of the Earth’s center of mass
is well justified in neglecting the role of the Moon, but understanding the rotational
motion of the Earth requires that the effect of both bodies be considered. Although
both moments are relatively small, they are ever present. This leads to precession of
the tilted Earth’s polar axis that has a period of many millennia, as well as a wobble
of the polar axis, as we will see in Chapter 10. [The variability of the gravitational
attraction of the moon also is a large part of the cause of oceanic tides. The text by
Sverdrup et al. (2005) is a good entry to this topic.]



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

5.2 Inertia Properties 253

5.2.2 Transformations

Several resources, including the Appendix, tabulate the inertia properties of homoge-
neous bodies having common shapes. The formulas appearing in the Appendix were
obtained by carrying out the integrals in Eqs. (5.2.4). The inertia properties of shapes
could be evaluated from the integral definitions, but it often is easier to consider a body
to be a composite of tabulated shapes. Integrals over different domains are additive.
This makes it possible to decompose the moments and products of inertia of a compos-
ite shape into contributions of the constituents, that is,

Iξη = (Iξη)1 + (Iξη)2 + · · ·, ξ , η = x, y, or z. (5.2.8)

The same decomposition applies to the mass and first moment of mass, from which we
can locate the center of mass G of the composite shape:

m = m1 + m2 + · · ·,
mξG = m1 (ξG)1 + m2 (ξG)2 + · · ·, ξ = x, y, or z.

(5.2.9)

Although these relations for the properties of the composite shape appear to be
straightforward, one aspect substantially complicates the task. In particular, applying
Eq. (5.2.8) requires that the inertia properties of the constituent bodies all be relative
to the desired xyz coordinate system. All inertia properties in the Appendix are for
centroidal axes, whereas the constituent parts of most composite shapes seldom have
coincident centroids. It also is possible that the orientation of coordinate systems for the
basic shapes will be different. A rotation transformation of the inertial properties will
allow us to bring the coordinate axes for each shape into parallel alignment with the
coordinate system of interest. Then the parallel axis transformation of inertia properties
will allow us to bring the origin of the coordinate system for each shape into coincidence
with the desired origin. Only after such transformations are evaluated may the individual
inertia properties be combined according to Eq. (5.2.8).

Composite shapes are not the only reason for studying transformations of the iner-
tia properties. If a body is in pure rotation about a noncentroidal point, it is desirable
to sum moments about the pivot point. This would require knowing the inertia prop-
erties for a set of axes whose origin is at the pivot, rather than the center of mass. A
situation requiring a rotation transformation might arise if the coordinate system we use
is selected to facilitate description of the components of ω̄, without considering which
coordinate system is used to describe the tabulated inertia properties.

Parallel Axis Transformation
There are several ways in which we may transfer the inertia properties between points.
The approach we will use is based on Eq. (5.1.36). In Fig. 5.6 xyz are a set of centroidal
coordinate axes for which the inertia properties are known, and x ′y′z′ is a parallel co-
ordinate system having origin B for which we wish to determine the properties. The
distances xB, yB, and zB are the coordinates of origin B with respect to the centroidal
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x y

z

x'

y'

z'

xByB

zB
G

B Figure 5.6. Parallel coordinate axes for transforming inertia proper-
ties.

coordinate system. Writing the position of origin B with respect to xyz is one way to
ensure that the signs of these coordinates are correctly identified:

r̄ B/G = xBī + yB j̄ + zBk̄. (5.2.10)

We use this expression together with a component representation of ω̄ to evaluate
r̄ B/G × (ω̄ × r̄ B/G) , which changes Eq. (5.1.36) to

H̄B = H̄G + m
[(

y2
B + z2

B

)
ωx − xByBωy − xBzBωz

]
ī

+ m
[(

x2
B + z2

B

)
ωy − xByBωx − yBzBωz

]
j̄

+ m
[(

x2
B + y2

B

)
ωz − xBzBωx − yBzBωy

]
k̄.

Let the inertia properties with respect to the parallel coordinate systems xyz and x ′y′z
be [IG] and [IB] , respectively. Then the preceding may be written as

[IB] {ω} = [IG] {ω} + m

⎡
⎢⎢⎣
(
y2

B + z2
B

) −xByB −xBzB

−xByB
(
x2

B + z2
B

) −yBzB

−xBzB −yBzB
(
x2

B + y2
B

)

⎤
⎥⎥⎦ {ω} . (5.2.11)

This relation must apply for any {ω} , so the factor of {ω} on each side of the equality
must match. The result is the parallel axis transformation of inertia properties:

[IB] = [IG] + m

⎡
⎢⎢⎣
(
y2

B + z2
B

) −xByB −xBzB

−xByB
(
x2

B + z2
B

) −yBzB

−xBzB −yBzB
(
x2

B + y2
B

)

⎤
⎥⎥⎦ . (5.2.12)

Matching like elements in this relation leads to the scalar form of this parallel axis
transformation. The diagonal terms transform moments of inertia,

Ix ′x ′ = Ixx + m
(
y2

B + z2
B

)
,

Iy ′ y ′ = Iyy + m
(
x2

B + z2
B

)
,

Iz′z′ = Izz + m
(
x2

B + y2
B

)
,

(5.2.13)
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whereas products of inertia transform according to

Ix ′ y ′ = Iyx = Ixy + mxByB,

Ix ′z′ = Izx = Ixz + mxBzB,

Iy ′z′ = Izy = Iyz + myBzB.

(5.2.14)

Equations (5.2.13) add a positive quantity to the centroidal values, which means
that the moments of inertia for centroidal axes are smaller than those about any parallel
noncentroidal axes. Also, it is not necessary to actually implement the transformation to
obtain any product of inertia that can be recognized as being zero because of symmetry.

It is imperative to remember that the preceding transformations apply only if xyz
are centroidal axes, which is the condition under which Eq. (5.1.36) is valid. Otherwise,
additional terms featuring first moments of mass would arise. Another common error
is failure to remember that xB, yB, and zB are the coordinates of the origin B of the
noncentroidal coordinate system. One can avoid the latter error by locating this point
vectorially, as in Eq. (5.2.10). Also, if it is desired to transform between two parallel non-
centroidal coordinate systems, one can convert from the set of known inertia properties
to centroidal values by solving the aforementioned equations, and then transfer from
the latter values to the coordinate system for which the properties are desired.

An interesting interpretation of the parallel axis transformation results from
considering the case of a single particle. The particle model considers a body’s dimen-
sions to be negligible, so that the centroidal inertia properties vanish, [I] = [0]. The
moments of inertia for noncentroidal axes are then simply the particle’s mass multi-
plied by the square of its distance from the respective coordinate axes, and the products
of inertia are the mass multiplied by the products of the respective coordinates of the
noncentroidal coordinate system. Thus the general parallel axis theorems indicate that
transferring from centroidal to noncentroidal axes increments the inertia properties as
though all of the body’s mass were situated at its center of mass.

EXAMPLE 5.5 Locate the center of mass of the trapezoidal parallelepiped. Then
determine the moments and products of inertia corresponding to centroidal coordi-
nate system xyz whose axes are parallel to XYZ defined in the sketch.

1.5 m
1.5 m

2 m

1.2 m

X

Z

Example 5.5
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SOLUTION This is an illustration of the procedures for evaluating the inertia prop-
erties of a body that is a composite of basic shapes. The decomposition we use is
a rectangular parallelepiped and a rectangular prism, both of whose properties are
described in the Appendix. We begin with a sketch that shows the location of the
center of mass for each constituent shape.

1.5 m1.5 m

1.2 m

X

Z

0.5 m0.75 m

0.6 m 0.4 m

G1

G2
O

Parallel centroidal coordinate systems for the indi-
vidual shapes

The first moment of mass is used to locate the center of mass. We may perform
this calculation in one step by writing the positions of the respective centers of mass
vectorially. The masses are

m1 = ρ (1.5) (2) (1.2) , m2 = ρ
1
2

(1.5) (2) (1.2) , m = m1 + m2 = 5.4ρ.

Relative to XYZ the centers of mass are located at

r̄ G1/O = 0.75 Ī + 1 J̄ + 0.6k̄, r̄ G2/O = 2 Ī + 1 J̄ + 0.4k̄ m.

The corresponding moment of mass is

mr̄ G/O = m1r̄ G1/O + m2r̄ G2/O,

5.4ρr̄ G/O = 3.6ρ
(
0.75 Ī + 1 J̄ + 0.6k̄

)+ 1.8ρ
(
2 Ī + 1 J̄ + 0.4K̄

)
,

from which we find that

r̄ G/O = 1.1667 Ī + 1 J̄ + 0.5333K̄ m. �

Obviously we could have identified the Y coordinate of the center of mass by sym-
metry.

Let xyz be the coordinate system that is parallel to XYZ with origin at point G.

The xz plane cuts the body in half, so it is a plane of symmetry. Because y is the axis
perpendicular to this plane, we have

Ixy = Iyz = 0. �

Thus we need to evaluate each moment of inertia, as well as Ixz.
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For each basic shape let xj yj zj denote the centroidal axis that is aligned parallel
to XYZ. For body 1 we find from the Appendix that

(Ix1x1 )1 = 1
12

m1
(
22 + 1.22

) = 1.6320ρ,

(Iy1 y1 )1 = 1
12

m1
(
1.52 + 1.22

) = 1.1070ρ,

(Iz1z1 )1 = 1
12

m1
(
1.52 + 22

) = 1.8750ρ,

(Ix1z1 )1 = 0.

The coordinates of point G with respect to x1 y1z1 are the components of the position
of the relative position vector,

r̄ G/G1 = r̄ G/O − r̄ G1/O = 0.4167 Ī − 0.0667K̄.

The parallel axis transformation for shape 1 therefore is

(Ixx)1 = (Ix1x1 )1 + m1 (−0.0667)2 = 1.6480ρ,

(Iyy)1 = (Iy1 y1 )1 + m1

[
(0.4167)2 + (−0.0667)2

]
= 1.7481ρ,

(Izz)1 = (Iz1z1 )1 + m1 (0.4167)2 = 2.500ρ,

(Ixz)1 = (Ix1z1 )1 + m1 (0.4167) (−0.0667) = −0.100ρ.

For shape 2 care must be taken to properly permute the axis labels from those
depicted in the Appendix. The centroidal inertia properties of shape 2 are thereby
found to be

(Ix2x2 )2 = 1
36

m2
[
3
(
22
)+ 2

(
1.22

)] = 0.7440ρ,

(Iy2 y2 )2 = 1
18

m2
(
1.52 + 1.22

) = 0.3690ρ,

(Iz2z2)2 = 1
36

m2
[
3
(
22
)+ 2

(
1.52

)] = 0.8250ρ,

(Ix2z2 )1 = − 1
36

m2 (1.5) (1.2) = −0.0900ρ.

The position vector for point G relative to the centroid of shape 2 is

r̄ G/G2 = r̄ G/O − r̄ G2/O = −0.8333 Ī + 0.1333K̄.

The corresponding parallel axis transformation is

(Ixx)2 = (Ix2x2 )2 + m2 (0.1333)2 = 0.7760ρ,

(Iyy)2 = (Iy2 y2 )2 + m2

[
(−0.8333)2 + (0.1333)2

]
= 1.6510ρ,

(Izz)2 = (Iz1z1 )2 + m2 (−0.8333)2 = 2.0750ρ,

(Ixz)2 = (Ix2z2 )2 + m2 (−0.8333) (0.1333) = −0.2900ρ.
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Now that the inertia properties of each shape are known with respect to xyz
their contributions may be added. Thus,

Ixx = (Ixx)1 + (Ixx)2 = 2.4240ρ,

Iyy = (Iyy)1 + (Iyy)2 = 3.3990ρ,

Izz = (Izz)1 + (Izz)2 = 4.5750ρ,

Ixz = (Ixz)1 + (Ixz)2 = −0.3900ρ.

�

Rotational Transformation
Our concern here is with a situation in which we know [I] relative to xyz, and we wish
to determine [I ′] corresponding to coordinate system x ′y′z′ whose origin coincides with
the origin of xyz. From the rotation transformation we have

{
ω ′} = [R] {ω} , (5.2.15)

where {ω} and
{
ω ′} consist of the components of the respective vectors.

The derivation of the parallel axis transformations was based on a property of
the kinetic energy. Similarly, the rotational transformation will employ the rotational
contribution to the kinetic energy of a body. Energy is a scalar quantity, so formulating
it in terms of angular velocity components with respect to either coordinate system must
yield the same result.

Either of Eqs. (5.1.33) indicates that the kinetic energy associated with rotation
about point A is

Trot = 1
2
ω̄ · H̄A. (5.2.16)

The components of the angular momentum H̄A of a rigid body relative to the designated
point are described in matrix form in Eq. (5.2.5), which leads to

Trot = 1
2

{ω}T [I] {ω} . (5.2.17)

The same value of Trot should result if the angular velocity and the inertia properties
are referred to the x ′y′z′ axes, so

Trot = 1
2

{
ω ′}T [I ′]

{
ω ′} . (5.2.18)

Equation (5.2.15) allows us to replace the x ′y′z′ components of ω̄ in the preceding with
those relative to xyz, with the result that

Trot = 1
2

{ω}T [R]T [I ′] [R] {ω} . (5.2.19)
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The value of Trot obtained from this equation must match the result of Eq. (5.2.17),
regardless of what the angular velocity actually is. The only way this equivalence can be
attained is if the inner product matches [I] , that is,

[I] = [R]T [I ′] [R] . (5.2.20)

In the scenario of interest we presumably know [I] . To solve for [I ′] we recall the or-
thonormal property, [R] [R]T = [R]T [R] = [U] . Thus we find that

[I ′] = [R] [I] [R]T
. (5.2.21)

Any quantity transforming in the manner described by this relation is said to be
a tensor of the second rank. In this viewpoint, vectors, whose components transform
according to Eq. (5.2.15), are tensors of the first rank. Note that transforming a vec-
tor involves premultiplication by the matrix [R] that transforms from the known to un-
known components. Transformation of a second-rank tensor involves premultiplication
by [R] and postmultiplication by [R]T

. In the case of the symmetric second-rank ten-
sors like the inertia properties, such a transformation preserves the symmetry of the
tensor.

The transformation in Eq. (5.2.21) may be decomposed into individual inertia val-
ues. Toward that end we recall Eq. (3.1.11), which expresses [R] as a sequence of row
partitions consisting of the direction cosines of an axis of x ′y′z′ relative to xyz, according
to

[R] =

⎡
⎢⎢⎢⎣

{ex ′ }T

{
ey ′
}T

{ez′ }T

⎤
⎥⎥⎥⎦ . (5.2.22)

The rows of [R] are denoted as
{
eξ ′
}T, ξ ′ = x ′, y′, or z′, because each column vector

consists of the components of a unit vector ēξ ′ relative to xyz, that is,

{
eξ ′
}T =

[
�ξ ′x �ξ ′ y �ξ ′z

]
. (5.2.23)

The utility of the partitioned form of [R] is that it enables us to condense the
operations, because each partition may be treated as a single element. The columns
of [R]T are rows of [R] , so

[R]T =
[
{ex ′ } {

ey ′
} {

e ′
z

} ]
. (5.2.24)
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Thus, substituting the partitioned form of [R] into the rotation transformation,
Eq. (5.2.21), leads to

[I ′] =

⎡
⎢⎢⎢⎣

{ex ′ }T

{
ey ′
}T

{ez′ }T

⎤
⎥⎥⎥⎦ [I]

[
{ex ′ } {

ey ′
} {

e ′
z

} ]

=

⎡
⎢⎢⎢⎣

{ex ′ }T

{
ey ′
}T

{ez′ }T

⎤
⎥⎥⎥⎦
[

[I] {ex ′ } [I]
{
ey ′
}

[I]
{
e ′

z

} ]

=

⎡
⎢⎢⎢⎣

{ex ′ }T [I] {ex ′ } {ex ′ }T [I]
{
ey ′
} {ex ′ }T [I]

{
e ′

z

}
{
ey ′
}T [I] {ex ′ } {

ey ′
}T [I]

{
e ′

y

} {
ey ′
}T [I]

{
e ′

z

}
{ez′ }T [I]

{
e ′

x

} {ez′ }T [I]
{
ey ′
} {ez′ }T [I]

{
e ′

z

}

⎤
⎥⎥⎥⎦ .

(5.2.25)

The diagonal elements of the product are the moments of inertia, whereas the off-
diagonal terms are the negative of the products of inertia. Thus we find that

Iξ ′ξ ′ = {
eξ ′
}T [I]

{
eξ ′
}

Iξ ′η ′ = − {
eξ ′
}T [I]

{
eη ′
}
⎫⎬
⎭ , ξ ′, η ′ = x, y, or z, ξ �= η. (5.2.26)

The purpose of deriving these relations is to understand how a specific inertia property
is altered by a rotation. In most situations we would need all of the transformed inertia
properties. In that case it is much simpler to evaluate Eq. (5.2.21) directly.

EXAMPLE 5.6 The 5-kg homogeneous box rotates through angle θ about the Y
axis of the stationary XYZ coordinate system. Edge AB coincides with the Z axis
when θ = 0. Determine the moments and products of inertia with respect to XYZ
as functions of θ.

1.5 m

1 m

2 m

A

Y

Z

B C

D

E

F

θ

Example 5.6

SOLUTION This problem has the obvious purpose of illustrating the transformation
of inertia properties, but the results also help us understand some general aspects. In
the second drawing x ′y′z′ is a body-fixed coordinate system having origin A whose
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axes are aligned with the edges of the box. It is parallel to the centroidal system of a
rectangular parallelepiped described in the Appendix.

A

Z, z'

E Y

y'
β

x'

θ

X

Coordinate systems used to derive the rotation transforma-
tion

The coordinates of corner A relative to the parallel centroidal coordinate system
are the components of the relative position vector,

r̄ A/G = −0.75ī ′ − 1 j̄ ′ − 0.5k̄ ′ m.

Applying the parallel axis transformation to the tabulated properties gives

Ix ′x ′ = 1
12

(5)
(
22 + 12

)+ 5
[
(−1)2 + (−0.5)2

]
= 8.3333,

Iy ′ y ′ = 1
12

(5)
(
1.52 + 12

)+ 5
[
(−0.75)2 + (−0.5)2

]
= 5.4167,

Iz′z′ = 1
12

(5)
(
1.52 + 22

)+ 5
[
(−0.75)2 + (−1)2

]
= 10.4167,

Ix ′ y ′ = Iy ′x ′ = 0 + 5 (−0.75) (−1) = 3.7500,

Ix ′z′ = Iz′x ′ = 0 + 5 (−0.75) (−0.5) = 1.8750,

Iy ′z′ = Iz′ y ′ = 0 + 5 (−1) (−0.5) = 2.5 kg-m2.

The rotation transformation from x ′y′z′ to XYZ is a simple rotation by β =
tan−1 (1.5/2) = 36.87◦ about the negative z′ axis:

⎧⎪⎪⎨
⎪⎪⎩

X

Y

Z

⎫⎪⎪⎬
⎪⎪⎭ = [R1]

⎧⎪⎪⎨
⎪⎪⎩

x ′

y′

z′

⎫⎪⎪⎬
⎪⎪⎭ , [R1] =

⎡
⎢⎢⎣

0.8 −0.6 0

0.6 0.8 0

0 0 1

⎤
⎥⎥⎦ .

Let us define the body-fixed coordinate system xyz such that it coincides with XYZ
when θ = 0. Thus, transforming the inertia matrix from x ′y′z′ to XYZ gives the
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constant properties relative to xyz. We designate this as [Iθ=0] . Using the preceding
rotation matrix gives

[Iθ=0] = [R1]

⎡
⎢⎢⎣

8.3333 −3.7500 −1.8750

−3.7500 5.4167 −2.5

−1.8750 −2.5 10.4167

⎤
⎥⎥⎦ [R1]T

=

⎡
⎢⎢⎣

10.8833 0.3500 0

0.3500 2.8667 −3.1250

0 −3.1250 10.4167

⎤
⎥⎥⎦ .

Another rotation transformation is needed to find the properties relative to
space-fixed XYZ axes when θ is not zero. Because xyz rotates about the Y axis
relative to XYZ, the transformation from XYZ to xyz is⎧⎪⎪⎨

⎪⎪⎩
x

y

z

⎫⎪⎪⎬
⎪⎪⎭ = [R2]

⎧⎪⎪⎨
⎪⎪⎩

X

Y

Z

⎫⎪⎪⎬
⎪⎪⎭ , [R2] =

⎡
⎢⎢⎣

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎤
⎥⎥⎦ .

The transformation from xyz to XYZ is described by [R2]T
, so the inertia matrix for

the XYZ axes is given by

[I] = [R2]T [Iθ=0] [R2] .

The diagonal elements are the moments of inertia relative to XYZ, and the off-
diagonal elements are the negative of the products of inertia:

IXX = 0.4667 (cos θ)2 + 10.4167, IZZ = 0.4667 (sin θ)2 + 10.4167,

IYY = 2.8667,

IXY = IYX = −0.3500 cos θ + 3.1250 sin θ,

IXZ = IZX = 0.4667 (sin θ) (cos θ) ,

IYZ = IZY = 0.3500 sin θ + 3.1250 cos θ.

�

The moment of inertia about the Y axis does not depend on θ because the dis-
tance from this axis to each mass point is unaffected by the rotation. Both IXX and
IZZ are periodic in �θ = π, but they vary little as θ changes, essentially because the
dimensions of the box in both directions transverse to the Y axis are comparable.
The products of inertia IXY and IYZ are periodic in �θ = 2π, whereas IXZ is peri-
odic in �θ = π. The periodic nature of the inertia properties stems from the fact
that a rotation by �θ = π changes the sign of the X and Z coordinates of each mass
element, whereas the Y coordinate remains constant. An important observation is
that there are values of θ for which each product of inertia vanishes, but the angle is
different for each term.
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5.2.3 Inertia Ellipsoid

Equation (5.2.17) for the rotational kinetic energy and Eq. (5.2.26) for the moment of
inertia about an arbitrary axis have similar forms. We exploit that similarity here to
develop a pictorial representation of the dependence of moments of inertia on the ori-
entation of the associated axis. In the present context the construction is primarily of
qualitative interest, but it will be quite useful in Chapter 10 for a detailed study of the
rotation of a body in free motion.

Suppose a body is made to rotate at angular speed ω about a specified axis p′ = x ′,
y′, or z′ whose direction is ēp′ .The matrix representation of the angular velocity is

{ω} = ω
{
ep′
}
, (5.2.27)

where
{
ep′
}

contains the components of one of the unit vectors of x ′y′z′ relative to xyz.
The construction we seek considers a situation in which the angular speed is adjusted
such that, regardless of how the rotation axis is oriented relative to body-fixed coor-
dinates xyz, the rotational kinetic energy is always Trot = 1/2. Let ρ̄ denote a vector
extending from the origin of xyz to a point whose coordinates are the components of
this special ω̄. In matrix notation we have

{ρ} = [x y z]T = ρ
{
ep′
}
, ρ = (

x2 + y2 + z2)1/2
. (5.2.28)

Let [I] denote the inertia matrix relative to xyz. Setting Trot = 1/2 in Eq. (5.2.17) shows
that these coordinates satisfy

[x y z] [I] [x y z]T = 1. (5.2.29)

Expansion of this product yields

Ixxx2 + Iyy y2 + Izzz2 − 2Ixyxy − 2Ixzxz − 2Iyzyz = 1. (5.2.30)

This is the equation for an ellipsoidal surface whose centroid coincides with the origin
of the xyz set of axes. This surface is called the ellipsoid of inertia.

One interpretation of the ellipsoid of inertia is associated with its construction, that
is, it is the locus of points for which an angular velocity equal to the vector from the
origin to any point gives Trot = 1/2. A more useful interpretation is obtained by using
Eq. (5.2.28) to eliminate the position coordinates in Eq. (5.2.29). In view of the first of
Eqs. (5.2.26), this operation yields

ρ2 {ep′
}T [I]

{
ep′
} = ρ2 Ip′ p′ = 1. (5.2.31)

Thus the distance ρ from the origin to a point on the ellipsoid of inertia is the reciprocal
of the square root of the moment of inertia about the axis intersecting the origin and
that point. In other words, the distance is inversely proportional to the radius of gyration
about that axis.

If we know [I] , we can construct the inertia ellipsoid according to Eq. (5.2.30), as
depicted in Fig. 5.7. The major, minor, and intermediate axes of this ellipsoid of inertia,
along which the distance from the origin is an extreme value, are mutually orthogonal.
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1/√I3

1/√I2

1/√I1

ξ1

ξ2

ξ3
x

y

z

_

_

_

Figure 5.7. A typical ellipsoid of inertia, whose major, in-
termediate, and minor axes align with ξ1, ξ2, and ξ3, re-
spectively.

However, they do not necessarily coincide with the xyz axes. In the figure ξ 1ξ 2ξ 3 is a
coordinate system whose axes coincide respectively with the major, intermediate, and
minor axes of the ellipsoid of inertia. The canonical equation for an ellipsoidal surface
relative to such a coordinate system is

I1ξ
2
1 + I2ξ

2
2 + I3ξ

2
3 = 1, (5.2.32)

where I1 ≤ I2 ≤ I3 when ξ 1 aligns with the major axis and ξ 3 align with the minor axis.
The semidiameters of the ellipsoid are 1/

√
I1, 1/

√
I2,and 1/

√
I3, respectively, as shown

in the figure. Equation (5.2.32) is like Eq. (5.2.30), except that there are no terms asso-
ciated with products of inertia. It follows that I1, I2, and I3 are the principal moments of
inertia and the ξ 1ξ 2ξ 3 coordinate system is a set of principal axes.

This discussion proves that, for a specified origin, there always is a set of principal
axes. We could contemplate locating these axes by evaluating [I] for nonprincipal axes
and then constructing the inertia ellipsoid. The principal axes would then be located by
graphically identifying the major, intermediate, and minor axes. However, such a pro-
cedure would be imprecise, as well as challenging to implement. The following example
shows how mathematical analysis of the inertia ellipsoid can locate the principal axes in
a two-dimensional situation.

EXAMPLE 5.7 In the sketch xyz and x ′y′z′ are centroidal coordinate systems for
the right triangular plate, with the former aligned parallel to the parallel edges and
the latter rotated about the z axis through angle θ. The mass of the plate is 400 kg.
Because the plate is bisected by the x ′y′ plane, Ix ′z′ = Iy ′z′ = 0. There are values of
θ for which Ix ′ y ′ = 0, thereby making x ′y′z′ principal axes for the plate. Determine
θ and the corresponding principal moments of inertia by using a rotation transfor-
mation. Then perform the same evaluation by using the properties of the inertia
ellipsoid.
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x
x'

y

y'

z, z'

2.4 m

1.2 m

0.8 m

1.6 mθ

θ
Example 5.7

SOLUTION The primary intent here is to lessen the abstract nature of the ellipsoid
of inertia by seeing its features for an actual body. We may find the inertia proper-
ties relative to xyz by letting the length a of the right triangular prism in the Ap-
pendix approach zero. The z and x axes are swapped with the corresponding axes in
the tabulation, but the y axis here is reversed from the sense described there. This
means that we should interchange the subscripts of the inertia properties to match
the present definitions and also set Ixy and Iyz equal to the negative of the tabulated
expressions. Thus we have

Ixx = 1
36

(400) (2)
(
3.62

) = 288, Iyy = 1
36

(400) (2)
(
2.42

) = 128,

Izz = Ixx + Iyy = 416 kg-m2,

Ixy = + 1
36

(400) (3.6) (2.4) = 96, Iyz = Ixz = 0.

It is worth noting Izz was evaluated as the sum of the other moments of inertia. This
is identically true for any thin flat slab when the origin of xyz lies in the plane of the
slab and the z axis is normal to that plane.

The rotation transformation from xyz to x ′y′z′ is

[R] =

⎡
⎢⎢⎣

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤
⎥⎥⎦ .

We wish to determine all inertia properties with respect to x ′y′z′, so we implement
the full rotation transformation:

[I ′] = [R]

⎡
⎢⎢⎣

288 −96 0

−96 128 0

0 0 416

⎤
⎥⎥⎦ [R]T

=

⎡
⎢⎢⎣

288 (cθ)2 + 128 (sθ)2 − 192sθcθ 96 − 192 (cθ)2 − 160sθcθ 0

96 − 192 (cθ)2 − 160sθcθ 288 (sθ)2 + 128 (cθ)2 + 192sθcθ 0

0 0 416

⎤
⎥⎥⎦ ,
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where sθ and cθ are abbreviations for sin θ and cos θ. We find the value of θ that
makes Ix ′ y ′ vanish by applying the identities for the sine and cosine of 2θ to the (1,2)
element of [I ′] , which leads to

− 96 cos (2θ) − 80 sin (2θ) = 0 =⇒ θ = 64.903◦, −25.097◦. �

These two possible angles differ by 90◦, so they merely correspond to alternate la-
beling of the x ′ and y′ axes. The principal moments of inertia for θ = 64.903◦ are

Ix ′x ′ = I1 = 83.04, Iy ′ y ′ = I2 = 332.96, Iz′z′ = I3 = 416 kg-m2. �

Solution of this problem by use of the ellipsoid of inertia barely resembles the
preceding operations. Because we know that z is a principal axis, we focus on the
xy plane by writing the defining equation, Eq. (5.2.30), for the case in which z = 0,

which gives

288x2 + 128y2 − 192xy = 1.

This is an ellipse. The multivalued nature of the value of y as a function of x makes
it convenient to use polar coordinates. By definition, the distance from the origin to
a point on the ellipsoid of inertia is ρ, so we define

x = ρ cos φ, y = ρ sin φ.

The equation for the xy ellipse then becomes

ρ2
[
288 (cos φ)2 + 128 (sin φ)2 − 192 (sin φ) (cos φ)

]
= 1.

We obtain the graph of this ellipse by solving the preceding equation for the value
of ρ corresponding to numerous values of φ covering a 2π range.

x

y

φ
ρ

Intersection of the triangular plates’s inertia ellipsoid with the xy plane

The major and minor diameters depicted in this graph could be located by sev-
eral methods, each of which is based on the same property. In general, ρ has an
extreme value at the principal axes. Hence the major and minor diameters corre-
spond to points at which ρ has a maximum or minimum value. We could locate both
lines by visually searching for the points on the ellipse that are farthest and closest
to the origin. Another procedure is to search through a table of values of φ and ρ

for the points where ρ is largest and smallest. Both procedures have limited pre-
cision. A mathematical approach is to use calculus to locate values of φ for which
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dρ/dφ = 0. To expedite such an evaluation we introduce the identities for cos (2φ)
and sin (2φ) into the equation for the xy ellipse, which gives

ρ2 (208 + 80 cos 2φ − 96 sin 2φ) = 1.

Implicit differentiation of this equation with respect to φ yields

2ρ
dρ

dφ
(208 + 80 cos 2φ − 96 sin 2φ)

+ ρ2 (−160 sin 2φ − 192 cos 2φ) = 0.

Setting dρ/dφ = 0 shows that the principal axes correspond to 160 sin 2φ +
192 cos 2φ = 0, which is the same as the condition identified from the rotation trans-
formation. Thus the values of φ, and the corresponding ρ, are

φ = 64.903◦ =⇒ ρ1 = 0.109740,

φ = −25.097◦ =⇒ ρ2 = 0.054803.
�

The principal moments of inertia are the reciprocals of the squares of the extreme
values of ρ, so

I1 = 1

ρ2
1

= 83.04, I2 = 1

ρ2
2

= 332.96 kg-m2. �

These are the same principal values as those found earlier.
The key aspect to bear in mind is that both procedures, explicitly setting the off-

diagonal elements of [I ′] to zero and geometrically analyzing the inertia ellipsoid,
were expedited by the fact that z was known to be a principal axis. Consequently,
only a single angle needed to be evaluated. Either approach would be substantially
more difficult to implement if multiple direction angles needed to be found. Also
worth noting is the fact that the orientation of the principal axes has no simple geo-
metrical explanation, unlike the case for symmetrical bodies.

5.2.4 Principal Axes

Identification of principal axes from the properties of the inertia ellipsoid is unwieldy in a
general situation where none of the axes of the original coordinate system are principal.
Here we establish a mathematical procedure that achieves the same goal in a straight-
forward manner. We seek to determine a rotation transformation [R] that converts the
inertia matrix [I] associated with nonprincipal axes xyz to a diagonal matrix [I ′] . Let
I1 ≤ I2 ≤ I3 denote the principal moments of inertia corresponding to axes whose unit
vectors are respectively ē1, ē2, and ē3. Equation (5.2.22) describes a rotation transfor-
mation as a column of partitions that consist of the components of unit vectors. In terms
of the principal directions, that description is

[R] =

⎡
⎢⎢⎣

{e1}T

{e2}T

{e3}T

⎤
⎥⎥⎦ . (5.2.33)
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When we replace [I ′] and the arbitrary unit vectors in the first line of Eq. (5.2.25) with
the quantities for principal axes, we find that⎡

⎢⎢⎣
I1 0 0

0 I2 0

0 0 I3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

{e1}T

{e2}T

{e3}T

⎤
⎥⎥⎦ [I]

[
{e1} {e2} {e3}

]
. (5.2.34)

Our task now is to determine the unit vector components and principal moments of
inertia that satisfy the preceding relation when [I] is given. The first step is to premultiply
by [R]T and apply the orthonormal property. This gives

[
{e1} {e2} {e3}

]
⎡
⎢⎢⎣

I1 0 0

0 I2 0

0 0 I3

⎤
⎥⎥⎦ = [I]

[
{e1} {e2} {e3}

]
. (5.2.35)

The multiplication property for partitioned matrices simplifies this to[
I1 {e1} I2 {e2} I3 {e3}

]
=
[

[I] {e1} [I] {e2} [I] {e3}
]
. (5.2.36)

Like columns on either side of this equation must match, from which it follows that each
principal direction and its associated moment of inertia are solutions of

Ij
{
e j
} = [I]

{
e j
}
, j = 1, 2, 3. (5.2.37)

In other words, Ij are the eigenvalues λ and
{
e j
}

are the eigenvectors {e} satisfying

[[I] − λ [U]] {e} = {0} , (5.2.38)

where [U] is the identity matrix.
This is called a standard eigenvalue problem. Routines for solving such problems

are contained in most mathematical software. Only the concepts are highlighted here.
Equation (5.2.38) represents three simultaneous equations for the components of {e},
which are the direction cosines between a principal axis and the axes associated with
inertia matrix [I]. These equations are homogeneous. Consequently, the only solution
is the trivial one, {e} = {0}, unless the coefficient matrix [I] − λ [U] cannot be inverted.
Hence nontrivial solutions for {e} require that λ satisfy the characteristic equation cor-
responding to vanishing of the determinant of the coefficients:∣∣[I] − λ [U]

∣∣ = 0. (5.2.39)

Evaluation of this determinant with λ as an algebraic parameter leads to a cubic equa-
tion. The eigenvalues, which are the three roots of the characteristic equation, are the
principal moments of inertia, λ = I1, I2, I3.

Once the eigenvalues are known, we may proceed to determine the eigenvectors,
which will be the principal directions. The fact that the determinant of [I] − Ij [U] van-
ishes means that its rank has been reduced, so that the elements of an eigenvector

{
e j
}

cannot be determined uniquely from Eq. (5.2.38). In the standard situation the princi-
pal moments of inertia are distinct values. In that case the rank of [I] − Ij [U] is two,
so that one of the three simultaneous equations represented by Eq. (5.2.38) is a linear
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combination of the others. Because of this loss of an independent equation, any nonzero
component of {e j } may be chosen arbitrarily. The other components may then be found
in terms of the arbitrary one by solving the independent equations.

The eigenvectors satisfying Eq. (5.2.38) have an arbitrary element, but that is so
because consideration has not been given to the definition of

{
e j
}

as the components of
a unit vector oriented parallel to the jth principal axis. The condition that such a vector
has a unit magnitude is written in matrix form as{

e j
}T {

e j
} = 1. (5.2.40)

Enforcement of this condition yields the additional equation required to evaluate
uniquely {e j }. Note that the solution of the preceding leads to an ambiguity in sign. Even
though any eigenvector multiplied by −1 is still an eigenvector, assembling the three
eigenvectors to form [R] might lead to a left-handed system, identifiable by the fact that∣∣[R]

∣∣ = −1. Such a condition is readily corrected by multiplying one of the eigenvectors
by −1.

The eigenvectors {e j } form an orthogonal set. To prove this property, consider
Eq. (5.2.37) for two different principal values, j = m and j = n. Premultiplying each
equation by the transpose of the other eigenvector leads to

{en}T [I] {em} = Im {en}T {em} ,

{em}T [I] {en} = In {em}T {en} .
(5.2.41)

The quantities that are equated are scalars, so we may transpose the products without
altering the result. Because [I] is symmetric, performing this operation on the second of
the preceding equations gives

{en}T [I] {em} = In {en}T {em} . (5.2.42)

If the moments of inertia are distinct values, In �= Im, subtracting this equation from the
first of Eqs. (5.2.41) leads to the conclusion that

{en}T {em} = 0 if Im �= In. (5.2.43)

This is the matrix form of the dot product ēn · ēn = 0, which proves the orthogonality of
the unit vectors. It then follows from Eq. (5.2.42) that

{en}T [I] {em} = 0 if Im �= In. (5.2.44)

According to the second of Eqs. (5.2.26), the left-hand side of this relation is the negative
of the product of inertia associated with axes ēm and ēn. Hence the preceding merely
proves that the directions derived by solving the eigenvalue problem will be principal
axes.

Both Eqs. (5.2.43) and (5.2.44) exclude the case in which the moments of inertia
about axes ēm and ēn are equal. In general, the rank of [I] − Im [U] is reduced by the
number of times the eigenvalue λ = Im occurs as a root of the characteristic equation.
Thus, if Im = In and the third eigenvalue is different from Im, then [I] − Im [U] has
a rank of one. This means that [[I] − Im [U]] {e} = {0} consists of one independent
equation for {e} , so that {e} has two arbitrary elements. It follows that, in addition
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to requiring that {e} represent a unit vector, Eq. (5.2.40), another condition must be
identified.

The method in which to proceed when this ambiguity arises becomes apparent when
we consider a body of revolution. Any coordinate system having an axis that coincides
with the axis of symmetry will be principal, and the moments of inertia about the axes
perpendicular to the axis of symmetry will be the same. This suggests that, when two
principal moments of inertia are equal, the ratio of two arbitrary elements in the first
eigenvector can be set to any convenient value. (For example, we might wish that the
first eigenvector have no component parallel to the z axis, in which case we would equate
the third element of {em} to zero.) The principal direction described by {en} should be
orthogonal to the direction described by {em} , so we require that

{en}T {em} = 0 if m �= n. (5.2.45)

This, in combination with Eq. (5.2.40), gives two conditions required to determine
uniquely the second eigenvector.

The greater degree of arbitrariness associated with identical principal moments of
inertia arises because the corresponding principal directions are not unique. The case in
which all three principal values are identical merely means that any set of axes are prin-
cipal. There is then no need to solve an eigenvalue problem. This feature is exemplified
by a homogeneous sphere or cube when the origin is placed at the centroid.

The ellipsoid of inertia provides an interesting geometrical interpretation of the
eigenvalue problem, which was derived from the mathematical properties of the rota-
tion transformation of inertia properties. We saw in the previous section that principal
axes correspond to locations on the inertia ellipsoid at which the distance to the cen-
ter is a local extremum. At such locations the normal to the ellipsoid’s surface will be
parallel to the line to the origin. The vector from the origin to a point on the surface is
ρ̄ = xī + y j̄ + zk̄. If a surface is described in functional form as f (x, y, z) = C, a con-
stant, then the gradient of f is normal to the surface.

Thus the condition that ρ̄ is parallel to the surface normal when it is aligned with a
principal axis is described by

ρ̄ = xī + y j̄ + zk̄ = σ∇ f, (5.2.46)

where σ is a factor of proportionality. Equation (5.2.30) is the function for the ellipsoid.
The gradient of this function is

∇ f = 2 (Ixxx − Ixy y − Ixzz) ī + 2 (Iyy y − Ixyx − Iyzz) j̄

+ 2 (Izzz − Ixzx − Iyzy) k̄.
(5.2.47)

We substitute this expression into Eq. (5.2.46), and match like components, which leads
to

x = 2σ (Ixxx − Ixy y − Ixzz) ,

y = 2σ (Iyy y − Ixyx − Iyzz) ,

z = 2σ (Izzz − Ixzx − Iyzy) .

(5.2.48)
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The matrix form of this set of simultaneous equations is

[I] [x y z]T = 1
2σ

[x y z]T
. (5.2.49)

This is equivalent to the eigenvalue problem described by Eq. (5.2.37) when σ = 1/2λ j .

EXAMPLE 5.8 Determine the principal moments of inertia and associated rota-
tion transformation for the triangular plate in Example 5.7 by solving an eigenvalue
problem.

SOLUTION This example demonstrates the formal mathematical eigensolution. In
Example 5.7 the inertia matrix of the triangular plate relative to centroidal axes
matching those in the Appendix was found to be

[I] =

⎡
⎢⎢⎣

288 −96 0

−96 128 0

0 0 416

⎤
⎥⎥⎦ kg-m2.

The corresponding eigenvalue problem for principal axes is⎡
⎢⎢⎣

(288 − λ) −96 0

−96 (128 − λ) 0

0 0 416 − λ

⎤
⎥⎥⎦ {e} = {0} .

The characteristic equation is∣∣[I] − λ [U]
∣∣ = (416 − λ)

[
(288 − λ) (128 − λ) − 962

]
= (416 − λ)

(
λ2 − 416λ + 27648

) = 0.

One eigenvalue makes the first factor vanish, whereas the other two roots are solu-
tions of the quadratic equation we obtain by setting the second factor to zero. These
values are

λ1 = I1 = 83.036, λ2 = I2 = 332.964, λ3 = I3 = 416 kg-m2. �

Note that the eigenvalues have been sequenced from smallest to largest.
We denote the elements of eigenvector {e} corresponding to Ij as enj . Thus the

first eigenvector must satisfy

[[I] − λ1 [U]]

⎧⎪⎪⎨
⎪⎪⎩

e11

e21

e31

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

204.964 −96 0

−96 44.964 0

0 0 332.964

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

e11

e21

e31

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0

0

0

⎫⎪⎪⎬
⎪⎪⎭ .

This eigenvalue is a single root of the characteristic equation, so one row of the coef-
ficient matrix is a linear combination of the others. The third row clearly is different
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from the other two, so we discard the second row. Thus we need to find the solution
of

204.964e11 − 96e21 = 0,

332.964e31 = 0.

The last of the preceding equations requires that e31 = 0, which means that it cannot
be considered arbitrary. The first equation defines the ratio of e21 to e11, so we have

e21 = 2.1350e11, e31 = 0.

The condition that {e} represent a unit vector requires that

e2
11 + e2

21 = (
1 + 2.13502) e2

11 = 1.

We select the positive root, so that the first principal axis will have a component in
the positive x direction. This leads to

e11 = 0.4242, e21 = 0.9056, e31 = 0.

The evaluation of the second principal direction follows similar steps. We have

[[I] − λ2 [U]]

⎧⎪⎪⎨
⎪⎪⎩

e12

e22

e32

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

−44.964 −96 0

−96 −204.964 0

0 0 83.036

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

e12

e22

e32

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0

0

0

⎫⎪⎪⎬
⎪⎪⎭ .

Once again, we discard the second equation as the one that is not independent,
which leads to

−44.964e12 − 96e22 = 0

83.036e32 = 0
=⇒ e22 = −0.4684e12, e32 = 0.

Making this eigenvector represent a unit vector gives

e12 = 0.9056, e22 = −0.4242, e32 = 0.

The situation for the third eigenvector is slightly different. In this case, we have

[[I] − λ3 [U]]

⎧⎪⎪⎨
⎪⎪⎩

e13

e23

e33

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

−128 −96 0

−96 −128 0

0 0 0

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

e13

e23

e33

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0

0

0

⎫⎪⎪⎬
⎪⎪⎭ .

The first two rows of the coefficient matrix are independent of each other, and the
third coefficient in each is zero, so the associated equations require that e13 = e23 =
0, but place no conditions on e33. The last row of the coefficient matrix represents
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a trivial equation, so any value of e33 will constitute an eigenvector. For it to rep-
resent a unit vector it must be that |e33| = 1. If e33 = +1 and the first two rows of
[R] are the values we have determined, then

∣∣[R]
∣∣ = −1. Multiplying an eigenvector

by −1, which corresponds to reversing the associated unit vector, does not alter the
fact that it is an eigensolution. Thus we set e33 = −1. According to Eq. (5.2.33), the
eigenvectors are the rows of the transformation matrix, so we have found that

[R] =

⎡
⎢⎢⎣

0.4242 0.9056 0

0.9056 −0.4242 0

0 0 −1

⎤
⎥⎥⎦ . �

A comparison of this result with the one found in Example 5.7 shows that the second
and third principle directions are reversed.

EXAMPLE 5.9 In the sketch, xyz are centroidal axes of the 60-kg homogeneous
orthogonal tetrahedron. Determine the principal moments of inertia and the rota-
tion transformation for the principal axes whose origin also is the centroid.

400 mm

600 mm

x

y

z

200 mm

Example 5.9

SOLUTION This example addresses how mathematical software can be used to eval-
uate the principal inertia properties.† For the dimensions of the given body with
m = 60 kg, we find from the Appendix that

[I] =

⎡
⎢⎢⎣

1.170 0.060 0.090

0.060 0.900 0.180

0.090 0.180 0.450

⎤
⎥⎥⎦ kg-m2.

Most mathematical software packages have functions or subroutines that can solve
the standard eigenvalue problem [[I] − λ [U]] {e} = {0} . In Matlab, one obtains the
desired result by writing [e vecs, I princ] = eigs(I); where I is the preced-
ing 3 × 3 array, I princ is a 3 × 3 diagonal array whose elements are the principal

† One should check the behavior of their software version. In particular, the manner in which eigenvec-
tors are normalized is somewhat arbitrary. The results presented here were obtained from Matlab 7.1
and Mathcad 13.1.
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moments of inertia, and e vecs is a 3 × 3 array whose jth column is the eigenvector
corresponding to I princ(j,j). The Matlab result is

I princ(1, 1) = 1.2059 I princ(2, 2) = 0.9327 I princ(3, 3) = 0.3814,

e vecs =

⎡
⎢⎢⎣

−0.9395 −0.3322 −0.0836

−0.2908 0.9023 −0.3181

−0.1811 0.2746 0.9444

⎤
⎥⎥⎦ .

The algorithm employed by Matlab returns e vecs as an orthonormal transforma-
tion, that is, [e vecs] [e vecs]T = [U] , but the principal values are not sequenced
from smallest to largest, as we prefer. We therefore swap the first and third prin-
cipal moments of inertia, and correspondingly swap the first and third columns of
[e vecs]. However, swapping a pair of columns of a 3 × 3 matrix reverses the sign
of its determinant, which brings to the fore the question of whether the transfor-
mation initially computed by Matlab was right-handed. The raw output previously
listed has a determinant of −1, so the result of swapping columns one and three
yields the correct result. After these steps, the transformation matrix [R] is readily
obtained by recalling that the individual eigenvectors constituting the columns of
[e vecs] are the rows of [R] , so that [R] = [e vecs]T

. After these adjustments, the
results obtained from Matlab are

I1 = 0.3814, I2 = 0.9327, I3 = 1.2059 kg-m2, �

[R] =

⎡
⎢⎢⎣

−0.0836 −0.3181 0.9444

−0.3322 0.9023 0.2746

−0.9395 −0.2908 −0.1811

⎤
⎥⎥⎦ . �

An excellent check for any solution, whether it is obtained by solving the charac-
teristic equation or from computer software, is to verify that [R] [I] [R]T yields a
diagonal array whose nonzero elements are the principal moments of inertia in the
correct sequence.

Mathcad uses two functions to solve the eigenvalue problem corresponding to a
specified 3 × 3 array I. The principal moments of inertia are computed by Iprinc:=

eigenvals(I); and the eigenvectors are obtained from eprinc:= eigenvecs(I);

where Iprinc is a three-element column vector of principal moments of inertia, and
eprinc is a 3 × 3 array whose columns are the eigenvectors sequenced to match Iprinc.
The result is

{
Iprinc

} =

⎧⎪⎪⎨
⎪⎪⎩

1.2059

0.9327

0.3814

⎫⎪⎪⎬
⎪⎪⎭ ,

[
eprinc

] =

⎡
⎢⎢⎣

0.9395 0.3322 −0.0836

0.2908 −0.9023 −0.3181

0.1811 −0.2746 0.9444

⎤
⎥⎥⎦ .

The eigenvectors returned by Mathcad’s algorithm, like Matlab’s, have the or-
thonormal property. Mathcad, like Matlab, does not address the handedness of the
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transformation, and it does not necessarily sequence the principal moments of in-
ertia from smallest to largest. The preceding values are like the raw output from
Matlab, except that the first two columns of

[
eprinc

]
are multiplied by −1 relative to

their Matlab correspondences, so
∣∣[eprinc

]∣∣ = −1. Because the principal moments of
inertia are reversed from the desired order, as they were in Matlab, we swap the first
and third values of

{
Iprinc

}
and swap the first and third columns of

[
eprinc

]
. This leads

to
∣∣[eprinc

]∣∣ = +1, as required. The result is that the principal moments of inertia are
the same as those obtained from Matlab, whereas the last two rows of [R] obtained
from Mathcad are the negative of the Matlab values.

5.3 RATE OF CHANGE OF ANGULAR MOMENTUM

The angular momentum of a rigid body is used in several contexts. Our focus here is
its usage to form Eq. (5.1.22), which describes the effect of the resultant moment. The
angular momentum was shown in Eq. (5.2.3) to be describable in terms of the body’s
angular velocity and inertia properties. Evaluation of the inertia matrix was discussed in
detail in the preceding section, and the techniques for evaluating angular velocity should
be familiar by now. We now turn to the task of taking the time derivative of the angular
momentum.

A careful reading of the development thus far will reveal that we have not fully
defined how the xyz reference frame rotates. To use the simplified moment equation,
we stipulated that point A for the moment sum shall be an allowable point. We then
placed the origin of the xyz coordinate system, which was used to describe the position
of each mass element, at point A. These conditions do not address how xyz rotates. We
remove this ambiguity by imposing a restriction that expedites differentiating H̄A.

In the context of kinematics, xyz has played the role of a global coordinate system.
We use it to describe the body’s distribution of mass, as well as its angular velocity com-
ponents. If xyz has an arbitrary angular velocity �̄, then the derivatives of its unit vectors
are dī/dt = �̄ × ī, etc. Further, because the body’s angular velocity differs from �̄, the
orientation of the body relative to xyz is not constant, so that the inertia properties are
not constant. Consequently, every term in Eq. (5.2.3) might change with time. The time
derivative of that equation therefore is

dH̄A

dt
=
[

d
dt

(Ixxωx − Ixyωy − Ixzωz)
]

ī +
[

d
dt

(Iyyωy − Iyxωx − Iyzωz)
]

j̄

+
[

d
dt

(Izzωz − Izxωx − Izyωy)
]

k̄ + �̄ × H̄A.

(5.3.1)

Clearly, it would be preferable if the inertia properties were constant. This condi-
tion is achieved if the body’s orientation relative to xyz is invariant. For this reason we
introduce the requirement that

xyx should be a body-fixed coordinate system.
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In addition to simplifying evaluation of the derivatives in Eq. (5.3.1), such a requirement
sets �̄ = ω̄, so the only angular velocity we need to evaluate is that of the body. A third
simplification that results is more subtle. Differentiating the components of H̄A in accord
with Eq. (5.3.1) results in the occurrence of terms containing ω̇x, ω̇y, and ω̇z, which
suggests that we need to describe the components of ω̄ as functions of time. In contrast,
the procedures we established for evaluating angular acceleration did not require such a
description. When ω̄ is described in terms of components relative to coordinate system
xyz that rotates at �̄, its time derivative is given by

ᾱ = dω̄

dt
= ∂ω̄

∂t
+ �̄ × ω̄ ≡ (

ω̇xī + ω̇y j̄ + ω̇zk̄
)+ �̄ × ω̄. (5.3.2)

By deciding to attach xyz to the body, we always have �̄ = ω̄, in which case the partial
and total derivatives of ω̄ are identical, so that

ᾱ = ∂ω̄

∂t
=⇒ α p = ω̇p, p = x, y, z if xyz is body fixed. (5.3.3)

In other words, the angular acceleration components are the rates of change of the an-
gular velocity components when those components are relative to body-fixed axes.

The overall consequence of requiring that xyz be body fixed is that differentiation
of H̄A becomes reasonably straightforward. We apply the partial derivative technique
in Eq. (3.3.15) to the angular momentum. In that equation ω̄ was the angular velocity of
the reference frame. It now also is the angular velocity of the body, so we have

.

H̄A = ∂ H̄A

∂t
+ ω̄ × H̄A. (5.3.4)

The components of ∂ H̄A/∂t are the derivatives of the respective components of H̄A,

which are indicated by Eq. (5.2.3) to consist of products of inertia coefficients and ω̄

components. The former are constant, and derivatives of the latter are described by
Eq. (5.3.3). Thus,

∂ H̄A

∂t
= (Ixxαx − Ixyαy − Ixzαz) ī + (Iyyαy − Iyxαx − Iyzαz) j̄

+ (Izzαz − Izxαx − Izyαy) k̄.

(5.3.5)

It is evident that evaluation of dH̄A/dt requires prior determination of [I] for the body
and analysis of ω̄ and ᾱ for the body’s motion. These quantities are substituted into
Eq. (5.2.3) for H̄A and the preceding equation for ∂ H̄A/∂t, which are then assembled
to form Eq. (5.3.4). The matrix representation of H̄A in Eq. (5.2.5) leads to a compact
representation of the full expression:

{
ḢA
} = [I] {α} + {ω} ⊗ ([I] {ω}) , (5.3.6)

where ⊗ denotes the matrix implementation of a cross product.
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If xyz are principal axes, there are fewer terms to compute in H̄A and ∂ H̄A/∂t. This
simplifies the vector form of the various quantities, with the result that

.

H̄A = [Ixxαx − (Iyy − Izz) ωyωz] ī + [Iyyαy − (Izz − Ixx) ωxωz] j̄

+ [Izzαz − (Ixx − Iyy) ωxωy] k̄.

(5.3.7)

This standard form is known as Euler’s equations. Their simpler appearance makes it
quite attractive to select xyz as principal axes. However, it is important to realize that the
orientation of these axes affects the ease with which ω̄ and ᾱ are determined. Also, as we
have seen, principal axes have no special orientation relative to a nonsymmetrical body,
in which case their identification requires additional mathematical operations. This leads
to the recognition that

It is best to select the xyz reference frame based
on its suitability for describing [I] , ω̄, and ᾱ.

If our choice for xyz happens to correspond to principal axes, then we may use
Eq. (5.3.7).

Many mechanical systems feature axisymmetric bodies that spin about their axis of
symmetry. Any coordinate system having an axis that coincides with the axis of symme-
try represents a principal set of axes. In Fig. 5.8 xyz is attached to axisymmetric body 1
such that its z axis coincides with the axis of symmetry. The spinning rotation φ̇ occurs
about the z axis relative to body 2, whose angular velocity is an arbitrary quantity �̄.

Thus the angular velocity of body 1, and of xyz, is

ω̄ = �̄ + φ̇k̄. (5.3.8)

In the figure x ′y′z′ is introduced as a reference frame that is attached to body 2 such that
its z′ axis also coincides with the axis of symmetry of body 1. This leaves x ′ and y′ axes
unspecified, so we may orient those axes to facilitate description of �̄. For example, we
might choose to let the y′ axis coincide with the line of nodes for nutation in an Eulerian
angle formulation.

There are two ways in which we may use x ′y′z′ to formulate the problem. In the first
we observe that, at any instant, there is a body-fixed coordinate system that is parallel
to x ′y′z′. This is evident from the fact that the reference line used to measure φ may be
defined arbitrarily. Thus, in this special circumstance, using x ′y′z′ as a global coordinate

z, z'
x

y

x'

y'

φ
.

φ

φ
A
1

2
Figure 5.8. Reference frames for describing the rotation of ax-
isymmetric body 1 relative to arbitrarily rotating body 2.
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system leads to a description of vectors that is valid at any instant. In other words we
may consider x ′y′z′ to be the body-fixed xyz coordinate system that is situated at φ = 0
at the instant of interest. This leads to a general procedure for axisymmetric bodies:

To evaluate dH̄A/dt for a body spinning about its axis of the symmetry, we may
define the body-fixed xyz reference frame such that one axis coincides with the
axis of symmetry. Then an expression for dH̄A/dt that is valid at any instant will
be derived, regardless of how the other axes of xyz are aligned. Thus the other
axes should be aligned instantaneously to expedite the component description of ω̄

and ᾱ.

The invariance of the inertia properties with respect to angle φ has led some to em-
ploy an alternative formulation of dH̄A/dt based on truly using x ′y′z′ as a global coordi-
nate system. Evaluating dH̄A/dt in this approach requires that we return to Eq. (5.2.3).
We form ω̄ according to Eq. (5.3.8). Because the z′ axis always coincides with the axis of
symmetry of body 2, it must be that x ′y′z′ constitute principal axes regardless of φ. Thus
the angular momentum of body 1 is

H̄A = Ixx�x ′ ī ′ + Iyy�y ′ j̄ ′ + Izz
(
�z′ + φ̇

)
k̄ ′. (5.3.9)

Because the components in this expression are relative to x ′y′z′, the unit vector deriva-
tives are described by �̄ × ē ′. Thus the total and partial derivatives are related by

.

H̄A = ∂ H̄A

∂t
+ �̄ × H̄A. (5.3.10)

Differentiation of the component representation of H̄A given by Eq. (5.3.9) leads to

∂ H̄A

∂t
= Ixx�̇x ′ ī ′ + Iyy�̇y ′ j̄ ′ + Izz

(
�̇z′ + φ̈

)
k̄ ′. (5.3.11)

As we did previously, we observe that, because �x ′ , �y ′ , and �z′ are the angular veloc-
ities of a reference frame relative to its own axes, their derivatives are the components
of the angular acceleration of x ′y′z′, that is,

ᾱ ′ = �̇x ′ ī ′ + �̇y ′ j̄ ′ + �̇z′ k̄ ′.

The result of assembling these expressions is
.

H̄A = [
Ixxα

′
x − (Iyy − Izz) �y ′

(
�z′ + φ̇

)]
ī +

[
Iyyα

′
y ′ − (Izz − Ixx) �x ′

(
�z′ + φ̇

)]
j̄

+ [
Izz
(
α ′

z′ + φ̈
)− (Ixx − Iyy) ωx ′ωy ′

]
k̄.

(5.3.12)
These are sometimes referred to as the modified Euler equations. The primary advantage
of this approach lies in the fact that it makes the role of the spinning motion apparent.
Countering it is the fact that the procedure is not generally applicable and therefore
prone to misapplication. In contrast, the fundamental methodology is valid regardless
of the inertia properties.
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In relatively simple circumstances featuring axisymmetric bodies, yet another
method may be available to evaluate dH̄A/dt. It is mostly employed to explain phe-
nomena qualitatively, but sometimes it is suitable for quantitative analysis. Suppose we
evaluate the angular momentum according to Eq. (5.2.3) by using a body-fixed xyz ref-
erence frame. That description should be representative of an arbitrary position of the
body. Depending on the motion it might be that an alternative global coordinate system
x̂ ŷẑ executing fewer rotations than xyz is equally suitable for describing the components
of H̄A. Then, either by graphical projections or through a rotation transformation, we
can write

H̄A = (HA)x̂ ēx̂ + (HA)ŷ ēŷ + (HA)ẑ ēẑ. (5.3.13)

We consider each component individually. If we are following a pictorial approach, we
evaluate the derivative of each component as the sum of a term parallel to the unit
vector that is due to the change of its magnitude plus the change perpendicular to the
unit vector resulting from its rotation at the angular velocity ω̂ of x̂ ŷẑ. Mathematically,
this is equivalent to writing

.

H̄A =
∑

p̂=x̂,ŷ,ẑ

[(
ḢA
)

p ē p̂ + (HA) p̂ ω̂ × ē p̂

]
. (5.3.14)

This representation might not seem to be easier than any of the other approaches
developed thus far, but that depends on the characteristics of the system and the choice
for a global coordinate system. To explore this, consider the situation in Fig. 5.9, in which
a disk sander spinning at ω1 must be rotated at angular speed ω2 about the handle, which
is transverse to the disk’s centerline.

z

y'

y

ω2

ω1

z'

x'

x

G

(HG)z' = I1ω1

(HG)x' = I2ω2

Figure 5.9. Disk sander illustrating the evaluation of the rate of
change of angular momentum of a spinning axismmetric body.

Our focus is on the angular momentum of the rotating disk about its center of mass
G. Let z denote the body-fixed axis for ω1 and z′ be a parallel axis for a reference frame
attached to the motor housing. The x ′ axis is aligned with the handle, so it is the axis
about which ω2 occurs. We make use of the simplification afforded by axisymmetry by
defining the body-fixed centroidal x axis at the instant of interest to be parallel to x ′.
Because xyz are principal axes, the angular momentum at any instant is correspondingly
indicated by Eq. (5.2.3) to be

H̄G = I2ω2 ī + I1ω1k̄, (5.3.15)

where I1 and I2 are respectively the centroidal moments of inertia of the disk about its
centerline and any transverse axis. This expression is generally valid. It follows that we
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may replace the unit vectors in Eq. (5.3.15) with those of x ′y′z′, so at any instant the two
components of angular momentum are as depicted in Fig. 5.9

We know that ī ′ is stationary, whereas k̄ ′ rotates at ω2 ī ′. Furthermore, the values of
the moments of inertia and rotation rates are constant. Thus, in the figure the ī ′ compo-
nent of H̄G is constant, and the sole variability of the k̄ ′ component of H̄G is the changing
direction of k̄ ′. We can visualize that the tip of I1ω1k̄ ′ moves in the − j̄ ′ direction, so we
can anticipate that dH̄G/dt will be oriented in that direction. This is confirmed by the
fact that the only variable in Eq. (5.3.15) is k̄ ′, whose derivative is ω2 ī ′ × k̄ ′. Thus we
have

.

H̄A = −I2ω1ω2 j̄ ′.

The moment equation of motion requires that a couple equal to dH̄G/dt be applied to
the rotor. This must ultimately be applied by the operator to the sander’s handle. Thus
a moment perpendicular to both rotation axes is required to sustain the motion, which
is not what an inexperienced operator would anticipate.

EXAMPLE 5.10 The right triangular plate is welded along its hypotenuse to a shaft
that rotates at the variable rate �. Determine dH̄G/dt for the plate. For the special
case in which � is constant, predict which way the dynamic reactions generated at
the bearings will be oriented.

Ω

b

θA

B

Example 5.10

SOLUTION One purpose of this example is to emphasize that bodies rotating about
a fixed axis sometimes cannot be fully described by a planar formulation. Also, the
simplicity of this system will enable us to assess fully the analytical results from a
qualitative viewpoint. The axes of the body-fixed xyz coordinate system depicted in
the sketch match those described in the Appendix for a right triangular prism whose
width is zero.

y z

HG

θ
θ

|HG| sinθ
_

|HG| cos θ
_

G
eA/B

Angular momentum components of the spinning plate rel-
ative to the body-fixed coordinate system defined in the
Appendix.
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The tabulation gives

Ixx = 1
18

mb2, Iyy = 1
18

mb2 (sin θ)2
, Izz = 1

18
mb2 (cos θ)2

,

Ixy = Iyx = Ixz = Izx = 0, Iyz = Izy = − 1
36

mb2 sin θ cos θ.

It is given that � is not constant, so the angular velocity and angular acceleration
are parallel to the shaft. We resolve both quantities into components with respect to
xyz, so

ω̄ = �ēA/B = �
(
cos θ j̄ − sin θ k̄

)
,

ᾱ = �̇ēA/B = �̇
(
cos θ j̄ − sin θ k̄

)
.

Substitution of the inertia values and the components of ω̄ and ᾱ into Eqs. (5.2.3)
and (5.3.5) leads to

H̄G = 1
36

mb2� sin θ cos θ
(
sin θ j̄ − cos θ k̄

)
,

∂ H̄G

∂t
= 1

36
mb2�̇ sin θ cos θ

(
sin θ j̄ − cos θ k̄

)
.

Correspondingly, Eq. (5.3.4) yields
.

H̄G = 1
36

mb2�2 sin θ cos θ
[
− (cos θ)2 + (sin θ)2

]
ī

+ 1
36

mb2�̇ sin θ cos θ
(
sin θ j̄ − cos θ k̄

)
,

which is identically
.

H̄G = 1
72

mb2 sin 2θ
[−�2 cos 2θ ī + �̇

(
sin θ j̄ − cos θ k̄

)]
. �

It is evident from this result that the forces acting on the plate must exert a moment
about point G to sustain the rotation, even if � is constant. The only exception is
θ = π/4, in which case dH̄G/dt = 0̄ if �̇ = 0.

To understand this result, the H̄G vector appears in the sketch defining xyz.
The preceding expression for H̄G indicates that its direction cosines are sin θ

and − cos θ with respect to the y and z axes, respectively. This leads to the observa-
tion that at any instant the angle between H̄G and the shaft is π/2 − 2θ, as shown
in the sketch. Rotation of the system changes the direction of H̄G, but the angle
between H̄G and the shaft remains constant. Thus the rotation of H̄G changes only
the component of H̄G perpendicular to the shaft, (HG)⊥ = ∣∣H̄G

∣∣ sin (π/2 − 2θ) =
(1/36) mb2� sin θ cos θ cos (2θ). The rotation causes the tip of this vector component
to move into the plane of the sketch, which is the −ī direction, and the magnitude
of the rate of change is � (HG)⊥ , which matches the ī component in the derived
expression. The j̄ and k̄ components in that expression are proportional to �̇. An
increase in the value of � increases the length of H̄G in the sketch, which is mani-
fested as terms in dH̄G/dt that are parallel to H̄G, which are the j̄ and k̄ components
of the result.
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The fact that the portion of dH̄G/dt that is independent of �̇ vanishes when
θ = π/4 is readily explained. In that case a centroidal coordinate system having one
axis, say y′, parallel to the shaft symmetrically bisects the plate, so it represents
principal axes. Using these principal axes to form the angular momentum shows
that H̄G reduces to Iy ′ y ′� j̄ ′. Thus in this case, H̄G is always oriented parallel to the
axis of rotation, whose orientation is constant.

When � is constant our analysis indicates that dH̄G/dt is in the negative ī di-
rection, which is inward in the perspective of the sketch depicting H̄G. Thus the
external forces acting on the system must exert a net moment that is clockwise
relative to the sketch. Such a moment is provided by the bearings, which exert
forces situated in the plane of the diagram. Their total moment about point G must
equal dH̄G/dt. In addition, when � is constant, the center-of-mass acceleration is
directed toward the shaft. The sum of the bearing forces must equal māG, which
also is situated in the plane of the sketch. From these observations we conclude
that the bearing forces required to sustain a constant � act perpendicularly to the
shaft in the plane of the plate. Both

∣∣dH̄G/dt
∣∣ and

∣∣māg
∣∣ are proportional to �2,

which means that these bearing forces will increase as the square of the rotation
rate. We say that these are the dynamic reactions because they are generated to
support the rotation. In contrast the static reactions counter the gravity force. They
act in the fixed vertical direction. The direction of the dynamic reactions rotates at
�, so the components of the dynamic reactions in the fixed horizontal and verti-
cal directions vary sinusoidally as cos (�t) and sin(�t) . Thus we see that the sys-
tem supporting the bearings will experience fluctuating forces having an amplitude
that increases as �2. Such forces could induce strong vibration in the supporting
system.

EXAMPLE 5.11 The square plate is pinned at corner A to the vertical shaft, which
rotates at the constant angular speed �. The angle θ is an arbitrary function of time.
Determine dH̄A/dt for the plate as a function of θ .

θ

L
L

Ω

A

B

C

D

Example 5.11
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SOLUTION The rotation in this example occurs about two axes, so this solution will
give a more complete picture of the general procedures. Nevertheless, the motion
is sufficiently simple that we will be able to understand the physical meaning of the
result. To form H̄A, the origin of xyz must coincide with point A. We align the x
axis with edge AD and the y axis with edge AB, which are parallel to the centroidal
axes described in the Appendix. The inertia properties obtained from the parallel
axis theorems are

Ixx = Iyy = 1
3

mL2, Izz = 2
3

mL2,

Ixy = 1
4

mL2, Ixz = Iyz = 0.

The � rotation occurs about the fixed vertical axis, which we designate as K̄.

The θ rotation occurs about the pin, whose axis is perpendicular to the plate; this is
the body-fixed z axis. The general expressions for the angular velocity of xyz and of
the reference frames for the rotation directions are

ω̄ = �ē1 + θ̇ ē2, ē1 = K̄, �̄1 = 0̄, ē2 = k̄, �̄2 = ω̄.

The angular acceleration corresponding to constant � and variable θ̇ are

ᾱ = θ̈ ē2 + θ̇ (ω̄ × ē2) .

It is convenient to let γ = π/4 + θ , so that

ω̄ = �
(
sin γ ī + cos γ j̄

)+ θ̇ k̄,

ᾱ = �θ̇
(
cos γ ī − sin γ j̄

)+ θ̈ k̄.

Equation (5.2.3) for the present rotation gives

H̄A = (Ixxωx − Ixyωy) ī + (Iyyωy − Iyxωx) j̄ + Izzωxk̄

= mL2

[
�

(
1
3

sin γ − 1
4

cos γ

)
ī + �

(
1
3

cos γ − 1
4

sin γ

)
j̄ + 2

3
θ̇ k̄
]

,

and the corresponding expression for the body-fixed derivative of H̄A is

∂ H̄A

∂t
= (Ixxαx − Ixyαy) ī + (Iyyαy − Iyxαx) j̄ + Izzαxk̄

= mL2

[
�θ̇

(
1
3

cos γ + 1
4

sin γ

)
ī + �θ̇

(
−1

3
sin γ − 1

4
cos γ

)
j̄ + 2

3
θ̈ k̄
]

.

The rate at which angular momentum changes is correspondingly found to be
.

H̄A = ∂ H̄A

∂t
+ ω̄ × H̄A

= mL2�θ̇

(
2
3

cos γ + 1
2

sin γ

)
ī + mL2�θ̇

(
−2

3
sin γ − 1

2
cos γ

)
j̄

+ mL2

[
2
3
θ̈ + 1

4
�2
(

(cos γ )2 − (sin γ )2
)]

k̄.
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The result was requested as a function of θ, which we can recover by setting γ =
π/4 + θ in the trigonometric terms. The identities for the sine and cosine of a sum
lead to

.

H̄A =
√

2
12

mL2�θ̇ (7 cos θ − sin θ) ī +
√

2
12

mL2�θ̇ (−7 cos θ − sin θ) j̄

+ mL2

[
2
3
θ̈ − 1

4
�2 sin 2θ

]
k̄.

�

To understand this result it is useful to eliminate γ in the preceding expression
for H̄A. Doing so yields

H̄A =
√

2
24

mL2� (cos θ + 7 sin θ) ī +
√

2
24

mL2� (cos θ − 7 sin θ) j̄ + 2
3

mL2θ̇ k̄.

We may separately examine the manner in which � and θ̇ cause H̄A to change. Let
us designate the portion of H̄A that lies in the plane of the plate as H̄‖ = (HA)x ī +
(HA)y j̄ . When θ = 0 the components of H̄‖ have equal magnitude. In that case H̄‖
is along the diagonal to corner C, which is aligned with vertical rotation axis. When
θ > 0, we see that (HA)x > (HA)y , which means that the angle from the y axis to
H̄‖ exceeds π/4. In fact, this angle, which is given by

β = tan−1

[
(HA)x

(HA)y

]
= tan−1

(
cos θ + 7 sin θ

cos θ − 7 sin θ

)
,

can be shown to be greater than γ = π/4 + θ, so the angle from the y axis to H̄‖ ex-
ceeds the angle to the � rotation vector. Thus H̄‖ is situated as shown in the second
sketch.

θ

A

π/4
β

(HA)y

x

y

Ω
H||

Izzθ
.

(HA)x

z

Angular momentum components parallel and perpendicular to
the plane of the square plate.

Rotation about the vertical axis causes the tip of H̄‖ to move in the negative k̄ di-
rection. This portion combines with the term Izzθ̈ corresponding to the changing
magnitude of H̄A · k̄ to produce the k̄ component of dH̄A/dt.

This is not the sole effect of the � rotation on H̄A. The sketch shows H̄A · k̄ =
Izzθ̇ . Rotation about the vertical axis at � causes the tip to this vector to move in
the horizontal direction, parallel to the plane of the plate. This is one of the effects
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producing the ī and j̄ components of dH̄A/dt. The other source of these components
is the fact that changing θ changes (HA)x and (HA)y .

The fact that two rotations are present in this system makes it more difficult
than in the previous example to visualize the reasons why the angular momentum
changes. As system complexity increases, we will come to rely on the analytical re-
sult, and only occasionally seek a physical explanation for some particularly inter-
esting aspect.

SELECTED REFERENCES

Arnold, R. N., and Maunder, M., Gyrodynamics and Its Engineering Applications, Aca-
demic, New York (1961).

Beer. F. P., Johnston, E. R., Jr., Clausen, W. E., and Staab, G. H., Vector Mechanics for
Engineers, 7th ed., McGraw-Hill, New York (2004).

Boas, M. L., Mathematical Methods in the Physical Sciences, 3rd ed., Wiley, New York
(2006).

D’Souza, A. F., and Garg, V. K., Advanced Dynamics, Prentice-Hall, Englewood Cliffs,
New Jersey (1985).

Ginsberg, J. H., and Genin, J., Dynamics, 2nd ed., Wiley, New York (1984).
Goldstein, H., Classical Mechanics, 2nd ed., Addison-Wesley, Reading, Massachusetts

(1980).
Goodman, L. E., and Warner, W. H., Dynamics, Dover, New York (2001).
Greenwood, D. T., Principles of Dynamics, Prentice-Hall, Englewood Cliffs, New Jersey

(1965).
Greiner, W., Classical Mechanics: Systems of Particles and Hamiltonian Dynamics,

Springer-Verlag, New York (2003).
Haug, E. J., Intermediate Dynamics, Prentice-Hall, Englewood Cliffs, New Jersey (1992).
Hibbeler, R. C., Engineering Mechanics—Combined, 10th ed., Prentice-Hall, Engle-

wood Cliffs, New Jersey (2003).
Josephs, H., and Huston, R. L., Dynamics of Mechanical Systems, CRC Press, Boca

Raton, Florida (2002).
Marion, J. B., Classical Dynamics of Particles and Systems, Academic, New York (1960).
Meirovitch, L., Methods of Analytical Dynamics, McGraw-Hill, New York (1970).
Muvdi, B. B., Al-Khafaji, A. W., and McNabb, J. W., Statics for Engineers, Springer-

Verlag, New York (1997).
Protter, M. H., and Morrey, C. B., Jr., Intermediate Calculus, Springer-Verlag, New York

(1985).
Schaub, H., and Junkins, J. L., Analytical Mechanics of Space Systems, American Insti-

tute of Aeronautics and Astronautics, Reston, Virginia (2003).
Shames, I. H., Engineering Mechanics. Dynamics, 4th ed., Prentice-Hall, Upper Saddle

River, New Jersey (1997).
Sverdrup, K. A., Duxbury, A. B., and Duxbury, A. C., An Introduction to the World’s

Oceans, 8th ed., McGraw-Hill, New York (2005).



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

286 Inertial Effects for a Rigid Body

Synge, J. L., and Griffith, B. A., Principles of Mechanics, 3rd ed., McGraw-Hill, New
York (1959).

Thomson, W. T., Introduction to Space Dynamics, Dover, New York (1986).

HOMEWORK PROBLEMS

EXERCISE 5.1 Spheres A and B are welded to a connecting bar of negligible mass that is
mounted obliquely on a shaft that rotates at the constant rate �. The mass of the shaft

Ω

h
h

θ O

A

B

Exercise 5.1

also is negligible, so the center of mass O of this sys-
tem is situated on the shaft. Thus the system is stat-
ically balanced. Evaluate the angular momentum of
the two spheres about the center of mass when the
connecting bar is horizontal and when the shaft has
rotated by 1◦ from that position. The difference be-
tween the value of the angular momentum at these two positions is approximately dH̄O.

Evaluate that difference, and from that result deduce the sense of the moment the bear-
ing forces must exert to sustain a constant rotation rate.

θ

A

B

L/3

L/3

L/6

Ω

Exercise 5.2

EXERCISE 5.2 The bar is pinned to the vertical shaft, whose
rate of rotation is �. The mass distribution of the bar is rep-
resented by three small spheres having mass m/3 shown in
the sketch. Consider the situation in which the bar is falling
at θ̇ = 2� at the instant when θ = 53.13◦. Determine and
sketch the angular velocity and angular momentum of the
bar relative to pin A. Then use these quantities to evaluate
the kinetic energy of the bar and verify that this result is the
same as that obtained by adding the kinetic energy of each
sphere.

EXERCISE 5.3 Use integration to determine the inertia properties of the truncated par-
allelepiped in Example 5.5 relative to the XYZ system defined there.

EXERCISE 5.4 Derive the centroidal location and centroidal inertia properties of a ho-
mogeneous prism, as tabulated in the Appendix.

EXERCISE 5.5 Use integration to determine the inertia properties of the semicone ap-
pearing in the Appendix.

L
x

y

z

R R/2

Exercise 5.6

EXERCISE 5.6 The body in the sketch is a truncated cone.
Use integration to determine its inertia properties relative
to the xyz coordinate system in the sketch.
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L h

R

z

x

y

Exercise 5.7

EXERCISE 5.7 A constant thickness shell is a
body whose dimension measured perpendicular to its
curved surface is an invariant value that is a small
fraction of the other dimensions. Consider a semicon-
ical shell whose thickness is h. The origin of xyz is
placed at the apex and the z axis is aligned with the
cone’s axis. (a) Use cylindrical coordinates to evalu-
ate the inertia properties. (b) Use spherical coordi-
nates to evaluate the inertia properties.

EXERCISE 5.8 Use integration to determine the inertia properties of a spheroid tabu-
lated in the Appendix.

x

y

1.5m

2 m

Exercise 5.9

EXERCISE 5.9 The thin wire is bent to a parabolic shape such
that its centerline is defined by the generic equation y = kx2.

The wire is steel, ρ = 7800 kg/m3, and its circular cross sec-
tion has a 20-mm diameter. Use numerical integration to de-
termine its mass, the location of its center of mass, and its
moments and products of inertia relative to the xyz coordi-
nate system in the sketch.

L

R

x

y

z

Exercise 5.10

EXERCISE 5.10 A cylinder is sliced in half along its di-
agonal. Determine the location of the center of mass
and the inertia properties relative to a coordinate sys-
tem whose z axis coincides with the axis of the cylinder
and whose origin is situated at the circular end.

100 mm

200 mm

400 mm
x

y

z

Exercise 5.11

EXERCISE 5.11 The semicircular cutout in the
steel cylinder is filled with lead. Determine the
centroidal location and the inertia properties of
this body with respect to the centroidal coordi-
nate system whose axes are parallel to the xyz
system shown.
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x

y

z

2 m

1.5 m

1 m

2.5m

Exercise 5.12

EXERCISE 5.12 Use the inertia properties of
an orthogonal tetrahedron given in the Ap-
pendix to determine the location of the center
of mass and inertia properties of the tetrahe-
dron relative to the xyz coordinate specified in
the sketch.

x

y

z

R

2R

Exercise 5.13

EXERCISE 5.13 The x axis forms a diagonal inter-
secting the centroid of the homogeneous cylinder.
Determine the inertia properties of the cylinder with
respect to xyz.

240 mm
120 mm

10 mm

10 mm
360 mm

30°

Exercise 5.14

EXERCISE 5.14 A rotor in the shape of a disk is
welded obliquely to a shaft, such that its cen-
terline does not coincide with the axis of the
shaft. The mass of the shaft is 5 kg, and the ro-
tor’s mass is 20 kg. Determine the location of
the center of mass of this assembly, then eval-
uate the centroidal moments and products of
inertia for a coordinate system whose x axis
coincides with the axis of the shaft.

R
R

x

z

y

Exercise 5.15

EXERCISE 5.15 The mass per unit length of the wire
frame is the constant value σ . Determine its inertia
properties relative to the xyz coordinate system in
the sketch.
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θ

20 mm

80 mm
40 mm

x

y

z

Exercise 5.16

EXERCISE 5.16 The origin of the xyz coordinate
system coincides with the centroid of the upper
face of the box. The mass of the box is 10 kg.
Graph Ixx, Iyy, and Ixy as functions of θ. Also
determine the values of θ for which

∣∣Ixy
∣∣ has its

maximum and minimum values.

4 m

1 m

2 m

z

x

Exercise 5.17

EXERCISE 5.17 Two metal plates are welded to
the aluminum cylinder as shown in the sketch.
Each plate has a mass of 20 kg, and the mass of
the cylinder is 200 kg. Determine the location of
the center of mass and the moments and prod-
ucts of inertia of this body relative to the xyz
coordinate system shown in the sketch.

25°

x

y

z

50 mm

20 mm

Exercises 5.18 and 5.19

EXERCISE 5.18 The x axis lies in the plane of
the 500-g plate, and the y axis is elevated at 25◦

above the diagonal. Determine the inertia ma-
trix of the plate relative to the xyz coordinate
system in the sketch.

EXERCISE 5.19 The mass of the plate is 500 g. De-
termine the principal moments of inertia relative
to a coordinate system whose origin coincides
with the origin of xyz depicted in the sketch.

x

y

z

400 mm

400 mm
400 mm

Exercise 5.20

EXERCISE 5.20 A rigid body consists of five
small spheres of mass m mounted at the corners
of a lightweight wire frame in the shape of an or-
thogonal pyramid. Determine the principal mo-
ments of inertia and the direction angle between
each principal axis and the xyz coordinate axes.

EXERCISE 5.21 The y axis is normal to the inclined face of the 400-kg homogeneous
prism. Consider the situation in which the x axis coincides with diagonal AC. Determine
the inertia matrix of the prism relative to this coordinate system.
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3 m

1.2 m

1.5 m

x

y

z

θA

B

C

Exercises 5.21, 5.22, and 5.23

EXERCISE 5.22 The y axis is normal to the in-
clined face of the 400-kg homogeneous prism.
Is there any value of the angle θ for which the
product of inertia Ixz = 0? If so, what is the an-
gle and what is the corresponding inertia ma-
trix?

EXERCISE 5.23 The prism’s mass is 400 kg. Determine the principal moments of inertia
with respect to a coordinate system whose origin is coincident with the origin of xyz in
the sketch. Also determine the rotation transformation for the principal axes relative to
coordinate axes aligned with the orthogonal edges.

EXERCISE 5.24 Consider the tetrahedron in Exercise 5.12. Determine the principal mo-
ment of inertia for the origin specified there. Also determine the direction angle of the
principal axes relative the given xyz coordinate system.

EXERCISE 5.25 In the case of a flat plate having an arbitrary shape, any coordinate sys-
tem whose xy plane coincides with the midplane is a plane of symmetry, so that Ixz and
Iyz are identically zero. In such situations the principal axes are obtained by a rotation
transformation by angle θ about the z axis, which one can evaluate by considering only
the inertia properties with respect to the xy plane. A Mohr’s circle construction, typi-
cally encountered in stress analysis, may be used to perform such an evaluation. Derive
expressions for Ix ′x ′ , Iy ′ y ′ , and Ix ′ y ′ corresponding to arbitrary values of Ixx, Iyy, and Ixy.

Show that if the points (Ix ′x ′ , Ix ′ y ′) and (Iy ′ y ′ ,−Ix ′ y ′) are plotted relative to orthogonal
axes, the distance between these points is constant, regardless of θ. From this, prove that
the points lie on a circle. Then explain the significance of the angle from the abscissa to
the line connecting the plotted points. Also explain how the principal moments of inertia
may be evaluated from the properties of the circle.

L/2

L/3

L

L/2
A

B

C

 
 

D

E

Exercise 5.26

EXERCISE 5.26 Thin bar ACB is welded to a shaft that
rotates at the constant angular speed �, so the angle θ

between the bar and the shaft is constant. (a) Derive ex-
pressions for the angular momentum H̄C and the kinetic
energy of the bar. Draw a sketch of H̄C. (b) Based on an
analysis of the manner in which H̄C in Part (a) rotates,
derive an expression for dH̄C/dt. (c) Use Eq. (5.3.4) to
evaluate dH̄C/dt, and compare it with the result of Part
(b).
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D

θ
θ

Exercise 5.27

EXERCISE 5.27 Two identical disks having
radius R and mass m are welded together by
a rigid bar. The ends of the connecting bar
are welded at diametrically opposite points
on the perimeter of each wheel. The mass
of the rod also is m. The disks roll without
slipping at constant speed v. Derive an ex-
pression for the angular momentum of this
assembly about its center of mass as a func-
tion of the angle θ for the rolling. Depict this quantity in a sketch for θ = 0 and θ = 90o,

and describe the corresponding friction and normal forces that are required to maintain
the steady rolling. Hint: Use a body-fixed coordinate system whose y axis aligns with the
disks’ center line, and whose z axis is perpendicular to the bar.

EXERCISE 5.28 The 24-kg block is welded to a shaft that rotates about bearings A and
B at a constant rate ω. The shaft is collinear with the diagonal to a face of the block.
Determine the inertia properties of the block relative to the xyz coordinate system in
the sketch, whose x axis coincides with the shaft and whose z axis is normal to the face
of the block. Also determine the inertia properties for a set of principal axes sharing the
same origin as xyz. Then evaluate the angular momentum about the origin of xyz and
the kinetic energy of the block by using each set of inertia properties.

400 mm
400 mmA

B

150 mm

100 mm

300 mm

ωx

y

z

Exercise 5.28

EXERCISE 5.29 A 200-g rectangular plate is mounted diagonally on a shaft whose mass
is negligible. The system has an unsteady rotation rate �. Determine the force–couple
system acting at bearing B that is equivalent to the external forces that must be applied
to attain such a motion. What portion of that couple represents the torque required to
change �?

100 mm
100 mm

90 mm60 mm

A
B

3 kN-m

Exercise 5.29
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L

L

L/2A

B

O x

y

Exercise 5.30

EXERCISE 5.30 The sketch shows a steel plate whose thick-
ness perpendicular to the plane of the diagram is very
small. The mass per unit surface area of this plate is σ .

The plate rotates about axis AB at constant angular speed
ω. (a) Determine the mass and the location of the center
of mass of this plate. (b) Determine Ixx, Iyy, and Ixy for
the xyz coordinate system shown in the sketch. (c) Deter-
mine H̄O and dH̄O/dt for the plate about origin O on the
axis of rotation. Draw a sketch H̄O and explain the sense
of dH̄O/dt by considering how H̄O rotates. (d) Predict the
direction of the dynamic reactions exerted by bearings at
ends A and B.

BA
a

bbb

ω

Exercise 5.31

EXERCISE 5.31 The right triangular plate is welded to the
shaft, which rotates at constant speed ω. Determine
the force–couple acting at bearing A that is equivalent to
the force system the bearings must exert to sustain this
motion.

EXERCISE 5.32 The gyroscopic turn indicator consists of a 1-kg flywheel whose principal
radii of gyration are κx = 50 mm, κ y = κz = 35 mm, where the x axis is the flywheel’s
axis of symmetry. The center of mass of the flywheel coincides with the intersection of
axes AB and CD. The flywheel spins relative to the gimbal at the constant rate �1 =
50 000 rev/min, while the whole system rotates about the vertical axis at �2 = 1.2 rad/s.
The pivot angle β is constant. Determine the force–couple system acting on the flywheel
at its center that is equivalent to the actual forces acting on it, assuming that only the
mass of the flywheel is significant. What portion of this couple represents the torque M
that must be applied to shaft CD?

D

A

M

B

C β

Ω1

Ω2

L
Exercise 5.32
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x
y

ψ
.θ

O

P

Exercise 5.33

EXERCISE 5.33 The radar antenna tracks air-
plane P by rotating about the vertical axis at
ψ̇ while the elevation angle θ is adjusted. As-
suming that the body-fixed xyz axes are prin-
cipal, what is the force–couple system acting
at the stationary pivot O that must be applied
to overcome the inertial resistance when ψ

and θ are arbitrary time functions?

x

y

z

ωx

ωz

ωy

Exercise 5.34

EXERCISE 5.34 The rotation rates of the ship
with respect to the body-fixed centroidal xyx
coordinate system in the sketch are the pitch
ωx, roll ωy, and yaw ωz. Consider the case in
which these rates simultaneously attain their
maximum magnitudes, with ωx = 0.5 rad/s,
ωy = −1.1 rad/s, ωz = 0.2 rad/s. The acceler-
ations of the center of mass at this instant
are ax = 5 m/s2, ay = −12 m/s2, az = 15 m/s2.

The mass of the ship is 40
(
106

)
kg, and the radii of gyration are κx = 90 m, κ y = 10 m,

κz = 15 m; it may be assumed that xyz are principal axes. Determine the force–couple
system acting at the origin of xyz that is equivalent to the forces exerted on the ship by
the ocean.

EXERCISE 5.35 A very thin circular disk rolls without slipping relative to the ground
such that its plane is oriented vertically throughout the motion. Consider the situation
in which the center C of the disk follows a circular path of radius ρ. Determine H̄C

and dH̄C/dt. From those results explain why the condition that the plane of the disk be
vertical can be satisfied only if the center follows a straight path, unless forces other than
gravity and the contact force are exerted on the disk.

ω1

ω2

36.87°

2R2R

R

A

C

B

Exercise 5.36

EXERCISE 5.36 The device shown is a
wobble plate, in which the precession rate
ω1 of shaft AB and the spin rate ω2 of the
disk relative to the shaft are constant. The
mass of the shaft is negligible. Let λ de-
note the ratio of the angular speeds, such
that ω2 = λω1. (a) In terms of ω1 and λ,
derive expressions for the angular veloc-
ity, angular momentum HC relative to the
center of the disk, and dH̄C/dt. (b) Eval-
uate the results in Part (a) for the case in which λ = 3, and draw a sketch depicting
these quantities. Determine the magnitude of each and the angle between each quantity
and the bearing axis AB. (c) Determine whether there is any value of λ for which no
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dynamic reactions are generated at bearings A and B. Explain your answer in terms of
the properties of HC.

ω1

ω2

R

A B
L

C

S

Exercise 5.37

EXERCISE 5.37 Arm ABC rotates about the vertical axis
at constant rate ω1, and the disk rotates relative to the arm
at constant rate ω2. The mass of the disk is m, and its cen-
troidal moments of inertia are I1 = 0.5mR2 about its center-
line and I2 = 0.25mR2 about a diameter. (a) Draw one or
more sketches depicting the angular momentum H̄C of the
disk about its center. (b) Based on the sketch(es) in Part
(a) and the manner in which the system rotates, evaluate
dH̄C/dt. (c) Compare the result in Part (b) with what is ob-
tained by evaluating ∂ H̄C/∂t + ω̄ × H̄C.

HG

mg

θ
ψ

φ
..

Z

z
x

G

Exercise 5.38

EXERCISE 5.38 The topic of rotation of a body in
free motion is treated extensively in Chapter 10.
Some key aspects of that study are described in the
sketch, which shows a body that is axisymmetric
about the body-fixed z axis. The moment of inertia
of the body about this axis is I1, and the moment
of inertia about any axis intersecting the center of
mass and perpendicular to z is I2. The body is in
free flight and air resistance is negligible, so the
only force acting on the body is its weight. Because
this force acts at the center of mass G, 
M̄G = dH̄G/dt ≡ 0̄, so the angular momentum
H̄G is constant. Let the fixed Z axis denote the constant direction of H̄G. Eulerian angles
are used to describe the rotation of the body, with precession angle ψ being defined as
the rotation about the fixed Z axis and the spin angle φ being the rotation about the z
axis of symmetry. The nutation angle θ is the angle between these two axes, as shown in
the sketch. (a) Describe the angular velocity of the body in terms of ψ, θ, and φ. Use this
description of ω̄ to derive an expression for H̄G. (b) Derive a component description for
H̄G based on the fact that H̄G is parallel to the Z axis. Match this description to the ex-
pression for H̄G in Part (a). Show that the two descriptions are consistent only if the nu-
tation angle is constant, that is, θ̇ = 0. (c) From the fact that θ̇ = 0, it follows that at any
instant the angular velocity ω̄ must lie in the xz plane, so that ω̄ = ω sin β ī + ω cos β k̄,

where β is the angle between ω̄ and the z axis, and the x axis lies in the plane formed
by Z and z. Compare the descriptions of ω̄ and H̄G in terms of ω and β with the cor-
responding expressions in terms of ψ, θ, and φ. From that comparison, derive the
expression

tan β = I1

I2
tan θ.

(d) Derive an expression for ψ̇ in terms of φ̇ and θ .
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Ωθ

3R

R

AB

φ
.

Exercise 5.39

EXERCISE 5.39 The disk is mounted obliquely
on its hub, which spins at angular speed �

about the horizontal arm AB of the T-bar.
Consequently, the disk’s center line forms a
constant angle θ relative to arm AB. This ro-
tation rate is φ̇, with φ = 0 corresponding to
the instant depicted in the sketch, where the
disk’s axis is situated in the vertical plane. Both
this rotation rate and the precession rate � are
constant. The disk’s mass is m, whereas the
hub and both shafts have negligible mass. De-
rive an expression for the force–couple system
exerted on the disk by hub B when φ = 0.

EXERCISE 5.40 Determine the force–couple systems in Exercise 5.39 as a function of
the rotation angle φ.
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CHAPTER 6

Newton–Euler Equations of Motion

The previous chapter focused on describing and understanding the variability of angu-
lar momentum. We now apply those concepts to relate the motion of a system to the
forces driving that motion. The formulation is based on the linear and angular momen-
tum principles of Newton and Euler. These principles govern the motion of a single rigid
body, but practical applications feature many bodies. In such situations, individual equa-
tions of motion may be written for each body. If one pursues such an analysis, careful
attention must be given to accounting for the forces exerted between bodies, so the con-
struction of free-body diagrams will play a prominent role in this chapter’s development.
As a supplement to this approach, a following section develops a momentum-based con-
cept for systems of rigid bodies that sometimes can lead to the desired solution without
considering all of the interaction forces. Ultimately, the energy-based concepts associ-
ated with Lagrange, whose development is taken up in the next chapter, provide a more
robust alternative approach. However, they are mathematical in nature and afford little
physical insight. For this reason, particular attention is given here to providing physical
explanations for the results derived from the Newton–Euler formulation of equations of
motion.

6.1 FUNDAMENTAL EQUATIONS

6.1.1 Basic Considerations

The basic laws governing each rigid body in a system are Eq. (5.1.13) for the resultant
force and Eq. (5.1.22) for the resultant moment, which are repeated here as a single
reference:


 F̄ = māG,


M̄A = ∂ H̄A

∂t
+ ω̄ × H̄A.

(6.1.1)

It cannot be emphasized too much that this moment equation should be applied only
when point A is either

1. the center of mass of the body, or
2. a fixed point in a body that is in a state of pure rotation.

296
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From a philosophical viewpoint, each expresses a dynamic equilibrium, in which ei-
ther the forcing or the inertial effect can be considered to be the causative agent. For ex-
ample, in some situations we might consider the resultant moment to change the angular
momentum of the body, whereas in others it might be better to consider that changing
the linear momentum requires application of the required moment. The same is true for
angular momentum. The key to understanding is recognizing that one must accompany
the other. A conceptual picture reinforcing this perspective is provided in Fig. 6.1, where
the inertial effects are depicted as a force–couple system acting at the center of mass G.

The equations of motion state that this combination is equivalent to the actual force
system acting on the body. One side of the figure cannot exist without the other.

equivalent

F1

F2

F3

F4

−

maG

HG

.

−G

Figure 6.1. The force system acting on a body and its equivalent inertial effect.

Some individuals use a diagram such as Fig. 6.1 as the basis for a slightly modified set
of equations of motion based on summing moments about an arbitrary point. Because
the forces and inertial effects in Fig. 6.1 have equivalent effect, the moment of each
about the selected point must be equal, which leads to


M̄B = dH̄G

dt
+ r̄ G/B × māG. (6.1.2)

This equation of motion is reminiscent of the general principle in Eq. (5.1.18), except
that the kinematical reference point is the center of mass, rather than the point for the
moment sum. The formulation is like the treatment of a static system, for which one
can select the point for a moment sum to avoid the occurrence of some unknown reac-
tions in the moment equation. From a practical standpoint, the simplification of possibly
eliminating an unknown variable is balanced by the need to include a linear accelera-
tion in the moment equation. This increases the chance for error, especially in regard
to signs. An analysis following this approach is seldom necessary for a single rigid body.
However, we will see later in this chapter that it can be quite useful for some systems
containing several interconnected bodies.

Both the force and moment equations of motion are vector relations, whose formu-
lation requires definition of an xyz coordinate system for components. For the moment
equation this coordinate system will always be attached to the body. The basic relations
for H̄A and its relative derivative were found to be
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H̄A = (Ixxωx − Ixyωy − Ixzωz) ī + (Iyyωy − Iyxωx − Iyzωz) j̄

+ (Izzωz − Izxωx − Izyωy) k̄,

∂ H̄A

∂t
= (Ixxαx − Ixyαy − Ixzαz) ī + (Iyyαy − Iyxαx − Iyzαz) j̄

+ (Izzαz − Izxαx − Izyαy) k̄.

(6.1.3)

In some situations it might be easier to analyze the acceleration of the center of mass
or the resultant force components with respect to a global coordinate system x̂ ŷẑ that is
not attached to the body. Such a coordinate system can be used for formulate the force
equations. To emphasize this aspect, the components of force and moment are indicated
explicitly as dot products in the following equations:


 F̄ · î = m
(
āG · î

)
, 
 F̄ · ĵ = m (āG · ĵ) ,


 F̄ · k̂ = m
(
āG · k̂

)
,


M̄A · ī =
(

∂ H̄A

∂t
+ ω̄ × H̄A

)
· ī, 
M̄A · j̄ =

(
∂ H̄A

∂t
+ ω̄ × H̄A

)
· j̄,


M̄A · k̄ =
(

∂ H̄A

∂t
+ ω̄ × H̄A

)
· k̄.

(6.1.4)

Matrix notation offers a compact scheme for performing calculations, and several
symbolic mathematics software packages are well attuned to such notation. The angu-
lar momentum was written in this form in Eq. (5.2.5). The corresponding forms of the
equations of motion are

⎧⎪⎪⎨
⎪⎪⎩


 F̄ · î


 F̄ · ĵ


 F̄ · k̂

⎫⎪⎪⎬
⎪⎪⎭ = m

⎧⎪⎪⎨
⎪⎪⎩

(
āG · î

)
(āG · ĵ)(
āG · k̂

)

⎫⎪⎪⎬
⎪⎪⎭ ,

⎧⎪⎪⎨
⎪⎪⎩


M̄A · ī


M̄A · j̄


M̄A · k̄

⎫⎪⎪⎬
⎪⎪⎭ = [I]

⎧⎪⎪⎨
⎪⎪⎩

αz

αy

αz

⎫⎪⎪⎬
⎪⎪⎭+

⎧⎪⎪⎨
⎪⎪⎩

ωx

ωy

ωz

⎫⎪⎪⎬
⎪⎪⎭⊗

⎧⎪⎪⎨
⎪⎪⎩[I]

⎧⎪⎪⎨
⎪⎪⎩

ωx

ωy

ωz

⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎬
⎪⎪⎭ ,

(6.1.5)

where ⊗ denotes the cross-product operator. The moment equations simplify consid-
erably when xyz are principal axes. The result is Euler’s equations of motion, which
explicitly display the role of the angular velocity and angular acceleration components:


M̄A · ī = Ixxαx − (Iyy − Izz) ωyωz,


M̄A · j̄ = Iyyαy − (Izz − Ixx) ωxωz,


M̄A · k̄ = Izzαz − (Ixx − Iyy) ωxωy.

(6.1.6)
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One can use the repetitive pattern of Euler’s equations to remember the individual com-
ponents by a mnemonic algorithm based on permutations of the alphabetical order. Eu-
ler’s equations are particularly useful when it is only necessary to address the moment
exerted about one axis.

A basic aspect of the force and moment components is their dual interpretation.
One way of evaluating them is to form the resultant as the vector sum of the contribution
of each force acting on the body. Alternatively, we may sum the contribution of each
force to a specific force or moment component. The latter is very useful for the moment
components, which are the moments each force exerts about each of the xyz coordinate
axes.

The previous section made it evident that a spatial rotation will require that H̄A

change, even if the all rates of rotation are constant, as a consequence of changing the
orientation of H̄A. The moment equation merely requires that the force system apply a
moment that balances the rate at which the angular momentum changes. The moment
required to balance the portion of dH̄A/dt that features products of rotation rates, and
therefore is present even if the rotation rates are constant, is often referred to as the
gyroscopic moment.

Various questions may be investigated with the equations of motion. In the simplest
case, the motion of a rigid body is fully specified. This permits complete evaluation of the
right side of the translational and rotational equations. The forcing effects, which appear
on the left side of the equations, originate from known excitations, as well as reactions.
The latter are particularly important to characterize. A free-body diagram, in which
the body is isolated from its surroundings, is essential to the correct description of the
reactions. As an aid in drawing a free-body diagram, recall that reactions are the physical
manifestations of kinematical constraints. Thus, if a support prevents a point in the body
from moving in a certain direction, then at that point there must be a reaction force
exerted on the body in that direction. Similarly, a kinematical constraint on rotation
about an axis is imposed by a reaction couple exerted about that axis. The reactions are
not known in advance—they are unknown values that will appear in some or all of the
equations of motion.

In real applications the system usually contains multiple interconnected bodies. Be-
cause the translational and rotational equations of motion describe a single isolated
body, it is necessary in such cases to isolate each body whose mass is significant. Care
must be taken in the respective free-body diagrams to account for Newton’s Third Law
in the depiction of the connective forces exerted between bodies. There are only six
scalar equations of motion for each body contained in a system (three force and three
moment components). The unknowns appearing in these equations might be kinemati-
cal parameters or parameters describing the forces. Some equations might be trivial as
a consequence of the basic nature of the system. For example, planar motion, which is
treated in the next section, reduces to two force equations and one moment equation per
body. In any event, a system composed of N bodies can have no more than 6N compo-
nent equations of motion. It is possible for the number of unknown reactions to exceed
the number of available equations, yet for the equations to have a consistent solution
for the motion variables. Assuming that this condition does not result from erroneous
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omission of some characteristic of the supports, it represents a condition of redundant
constraint. That is the dynamic analog of the condition of static indeterminacy, whose
resolution requires consideration of deformation effects.

In some situations, analysis of a system’s motion entails determination of a few un-
known constant parameters, such as an angle of orientation or a rotation rate. This is
the case, for example, if it is necessary to determine the conditions for a steady pre-
cession. The equations of motion in this case are algebraic. The more difficult situation
arises when the nature of the motion is not fully known in advance. The orientation of
each body may then be described in terms of Eulerian angles (precession, nutation, and
spin), and the position of the center of mass of each body may be described by any of
the formulations used to describe point motion. In addition to these kinematical vari-
ables, parameters describing any reactions will appear in the equations of motion. The
reaction parameters enter into the equations of motion algebraically through the force
and moment sums. Hence their elimination involves a process of simultaneous solution
of algebraic equations. (This, of course assumes that a condition of redundant constraint
does not exist.) Algebraic elimination of the force parameters will lead to a set of differ-
ential equations of motion for the kinematical variables. We saw that dH̄A/dt generally
features products of rotation rates, and the description of the motion of a point in terms
of curvilinear coordinates or moving reference frames also contains products of rate
variables. As a result, the equations of rotational motion will be coupled second-order
differential equations. Analytical solutions of such equations are available in limited sit-
uations, such as when the equations are linear in the dependent variables. Numerical
techniques are always available as an alternative. Procedures for numerically solving
differential equations of motion are discussed in Chapters 7 and 8.

6.1.2 Procedural Steps

Although a specific system may have distinctive features, many aspects of the formula-
tion of its equations of motion are generic. The following list assembles the operations
into a standard procedure that we shall follow in the examples that follow.

1. Draw a free-body diagram describing each body whose mass is significant. To be
sure that all constraint forces are properly described, remember that, if the motion
of a point is restricted in a certain direction, then an unknown force acts in that
direction to impose the condition. Similarly, if the rotation of a body about a certain
axis is restricted, then there must be an unknown reaction couple about that axis.

2. Choose a point, designated here as A, for summing moments for the isolated body.
This point should be the center of mass when the body is translating or in general
motion. For the case of pure rotation, use the fixed point in order that the reaction
forces holding that point stationary not occur in the moment equation of motion.

3. Attach xyz to the body with origin at point A. The first consideration in selecting the
orientation of xyz is minimizing computations of inertia properties. Thus, if possible,
orient xyz parallel to the axes used in the Appendix to describe the inertia proper-
ties. If this does not lead to a full specification of the coordinate axes, as would be
the case for an axisymmetric body, then finalize the definition by considering the
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axes of rotation and the manner in which the geometry of the system is described.
Show the coordinate axes of xyz in the free-body diagram.

4. Write down, in equation form, all given information that does not appear in the
free-body diagram. List all quantities to be determined in the solution.

5. Follow the standard kinematical procedure to describe ω̄ and ᾱ of the body in terms
of components relative to xyz. Be sure to satisfy any auxiliary kinematical conditions
that are known, such as that certain points have known motions, or that there is no
slipping at some location.

6. Evaluate the inertia properties of the body with respect to xyz.
7. Compute the moment about point A exerted by all forces appearing in the free-body

diagram. Equate this moment to dH̄A/dt. This may be done as a vector equation
with Eqs. (6.1.1) and (6.1.3), but the matrix form in Eqs. (6.1.5) might be preferred
for numerical problems. Also, if it can be recognized that only the moment about a
specific axis x, y, or z is needed, and xyz are principal axes, then the corresponding
component of Euler’s equations, Eqs. (6.1.6), offers a shortcut.

8. Examine whether the moment equation(s) obtained from the preceding step are
sufficient to solve the problem. If additional equations are required, form the force
equation of motion. In that event describe the center-of-mass acceleration āG in
terms of the basic kinematical parameters. The components of āG may be described
in terms of components with respect to any convenient coordinate system x′y′z′,
although xyz often will be sufficient for this purpose. Equate like components of

 F̄ and māG.

9. Count the number of scalar equations J and number of unknowns N. If J > N,

something such as a kinematical relation has been assumed incorrectly, or else a re-
action might have been omitted from the free-body diagram. If J < N, some infor-
mation that was given might not have been used, or else some kinematical condition
imposed on the body, such as rolling without slipping, might not have been satisfied.

EXAMPLE 6.1 The cylinder, whose mass is m, is welded to the shaft such that its
center is situated on the axis of rotation. Application of a constant torque � at t = 0
causes the rotation rate � to increase from zero. Derive expressions for � and the
reactions at bearings A and B as functions of the elapsed time.

A

Ω

Γ

B

R

L/2

L/2

h

θ
Example 6.1

SOLUTION This example reinforces our recognition that a planar analysis might not
suffice, even though the motion is a simple rotation. Examination of the solution
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will lead us to a general discussion of the topic of dynamic imbalance. The forces of
interest are the reactions the bearings apply to the shaft. These are represented in
the free-body diagram as components transverse to the shaft at both bearings and a
thrust component parallel to the shaft at bearing A. We may consider the shaft and
the cylinder to constitute a single body because they are welded together. Doing so
makes the forces exerted between them internal to the system. We ignore the weight
because it is a static force. It is balanced by a static force acting in the (stationary)
vertical direction at each bearing that superposes on the dynamic reactions we shall
evaluate.

Ω

Γz

x x'
y,y'

z'
Ay'

Ax'

Az'

By'

Bx'
G

Free-body diagram of the rigid body consisting of the
cylinder and the shaft.

The cylinder executes a simple rotation, so any point along shaft AB would be
an allowable point for summing moments. We use the center of mass G. We align the
xyz axes with the centerline of the cylinder in accord with the Appendix, and exploit
the axisymmetry to define the y axis to be perpendicular to the plane formed by the
shaft and the centerline. We also define an x′y′z′ coordinate system aligned with the
shaft and with its y′ axis coincident with the y axis to facilitate describing the bearing
forces and the rotation.

The angular velocity is parallel to the shaft, and the direction of this rotation is
constant, so

ω̄ = �k̄′
, ᾱ = �̇k̄′

, (6.1.7)

which when resolved into xyz components become

ω̄ = �
(
sin θ ī + cos θ k̄

)
, ᾱ = �̇

(
sin θ ī + cos θ k̄

)
. (6.1.8)

We know from symmetry that xyz are principal axes, and the tabulated inertia prop-
erties are

Ixx = Iyy = m
(

1
4

R2 + 1
12

h2
)

, Izz = 1
2

mR2. (6.1.9)

We may employ Euler’s equations because xyz are principal axes. To form the
moment resultants the applied couple � must be resolved into components. The mo-
ment of the bearing forces may be computed vectorially. For example, for bearing

A the moment is r̄ A/G ×
(

Ax′ ī ′ + Az′ k̄′)
. Alternatively the moment sums can be

computed as moments about the coordinate axes. Thus the bearing forces Ax′ and
Bx′ exert moments about only the y axis, for which the lever arms are L/2, whereas
Ay′ and By′ have lever arms of (L/2) sin θ about the z axis and (L/2) cos θ about the
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x axis. Applying the right-hand rule to ascertain the sign of each moment yields


M̄A · ī = � sin θ + (−Ay′ + By′)
L
2

cos θ = Ixxαx

= m
(

1
4

R2 + 1
12

h2

)
�̇ sin θ,


M̄A · j̄ = (Ax′ − Bx′)
L
2

= − (Izz − Ixx) ωxωz

= m
(

−1
4

R2 + 1
12

h2

)
�2 sin θ cos θ,


M̄A · k̄ = � cos θ + (Ay′ − By′)
L
2

sin θ = Izzαx

= m
(

1
2

R2

)
�̇ cos θ.

The unknowns in these three equations are the four transverse bearing forces
and �. The force equation of motion provides the additional equations required for
determining these parameters and the thrust bearing force. The center of mass is on
the axis of rotation, so āG = 0̄. In terms of components relative to x′y′z′, the force
resultants are


 F̄ · ī ′ = Ax′ + Bx′ = 0,


 F̄ · j̄ ′ = Ay′ + By′ = 0,


 F̄ · k̄′ = Az′ = 0.

The solution of these equations is

�̇ = 12�

m
[
6R2 + (h2 − 3R2) (sin θ)2

] ,

Ax′ = −Bx′ = m�2

24L

(
h2 − 3R2

)
sin 2θ,

Ay′ = −By′ = − m�̇

24L

(
h2 − 3R2

)
sin 2θ,

Az′ = 0.

�

The torque is constant, so it follows that �̇ is constant. Because � = 0 initially, inte-
grating �̇ leads to a rotation rate that increases proportionally to elapsed time:

� = 12�t

m
[
6R2 + (h2 − 3R2) (sin θ)2

] . �

Substitution of these results into the expressions for the bearing forces shows that
Ax′ and Bx′ increase as t2, whereas Ay′ and By′ are independent of the elapsed time.
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Each of these results may be readily explained by following the manner in which
the angular momentum H̄G changes. Such an examination would show that the ro-
tation moves the head of H̄G in the −y′ direction, which requires a couple about
the negative y′ axis. Such a moment is generated by the bearing forces Ax′ and Bx′ ,
which depend solely on the current rotation rate. The bearing forces rotate at �,

which means that the forces the shaft exerts in the bearing are experienced by the
foundation as rotating forces. Such forces cause vibration in the foundation because
their components relative to a fixed reference frame oscillate in magnitude. This
is a condition of dynamic imbalance. The other transverse bearing forces, Ay′ and
By′ , are proportional to �̇. They are associated with the changing magnitude of H̄G

and remain constant as long as �̇ does not change. They too rotate at � relative to
a fixed reference frame, and therefore also produce oscillations in the foundation,
although their value usually is small compared with that of the dynamic imbalance
forces.

The nature of the forces would be more apparent if we had formulated the
equations of motion by using x′y′z′ as the body-fixed reference frame. This would
have required the rotation transformation to evaluate [I ′] . We may generalize such
an analysis. Consider an arbitrary body that executes a pure rotation at angular
speed � about a shaft as the result of a torque �. The center of mass is situated at
an arbitrary distance from this rotation axis. Let x′y′z′ be a body-fixed coordinate
system whose z′ axis coincides with the shaft, and let [I ′] be the corresponding in-
ertia matrix. In this case the angular motion is ω̄ = �k̄′

, ᾱ = �̇k̄′
. Because x′y′z′ is

not necessarily principal, we use Eqs. (6.1.3) to form H̄G and its relative derivative,
which gives

H̄G = −Ix′z′�ī ′ − Iy′z′� j̄ ′ + Iz′z′�k̄′
,

∂ H̄G/∂t = −Ix′z′�̇ī ′ − Iy′z′�̇ j̄ ′ + Iz′z′�̇k̄′
.

We refer to the free-body diagram to sum forces and moments relative to x′y′z′. The
equations of motion, Eqs. (6.1.1), then require that

(Ax′ + Bx′) ī ′ + (Ay′ + By′) j̄ ′ + Az′ k̄′ = māG,

(−Ay′ + By′)
L
2

ī + (Ax′ − Bx′)
L
2

j̄ ′ + �k̄′

= (−Ix′z′�̇ + Iy′z′�2
)

ī ′ + (−Iy′z′�̇ − Ix′z′�2
)

j̄ ′ + Iz′z′�̇k̄′
.

A dynamically balanced system is one in which any rotation can occur without gen-
erating dynamic reactions at either bearing, Ax′ = Ay′ = Az′ = Bx′ = By′ = 0. The
preceding equations of motion indicate that such a condition requires that āG = 0
and Ix′z′ = Iy′z′ = 0. In other words, dynamic balancing requires that the center of
mass be situated on the rotation axis and that the rotation axis be a principal axis of
inertia. In contrast, the condition of static balance merely requires the former.

This general observation is manifested by the specific results for the skewly
mounted cylinder of the present system. When θ = 0 the z axis coincides with the
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rotation axis, whereas θ = 90◦ corresponds to alignment of x and the rotation axis.
Both x and z are principal axes, and the results confirm that the bearing forces are
zero in both cases. We also see that the forces are zero for any θ if h = √

3R. In
that case Ixx = Iyy = Izz, so that the cylinder is inertially equivalent to a sphere, for
which all centroidal axes are principal. In any other case, bearing forces are required
to sustain the motion, even though the center of mass coincides with the shaft.

EXAMPLE 6.2 A servomotor maintains a constant value of the spin rate φ̇ at
which the disk rotates relative to the pivoted shaft AB. The precession rate � is
held constant by a torque M(t) applied to the vertical shaft. Derive the differential
equation governing the unsteady nutation angle θ, and also derive an expression
for M as a function of θ . Then determine all possible states of steady precession, in
which θ is constant, and evaluate the stability of each state.

A

B

R

Ω

φ
.

θ

L

Example 6.2

SOLUTION This system is truly in spatial motion, so the analysis will bring to the fore
some of the issues that one might typically encounter. In addition, it will address
the characterization of connections in terms of the kinematical restrictions they im-
pose and the constraint forces they exert. The only body having significant inertia
is the disk, but the fork-and-clevis joint at point A must be considered because we
know how it constrains motion. We assume that the shaft’s mass is negligible, which
enables us to consider it and the disk to be a single rigid body. (Without this assump-
tion we would need to consider each body individually, and account for the forces
exerted between them at bearing B.)

Point A is at a constant distance from the disk along the disk’s centerline, which
means that the disk is in pure rotation about this point. Consequently we choose
point A as the origin of the body-fixed xyz coordinate system. We align the x axis
with the centerline to employ directly the tabulated inertia properties of a disk.
The axisymmetry of the disk gives us some freedom to define the body-fixed xyz
system in a manner that suits the kinematical features. Thus we align the y axis at
the instant of interest horizontally to facilitate describing the θ rotation. To describe



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

306 Newton–Euler Equations of Motion

ω̄ and the reactions at point A we also define x′y′z′ to precess at � with z′ vertical
and x′ situated in the vertical plane formed by the x and z′ axes.

Ω

φ
.

θ

Ax'

Az'

Ay'

M

Mx' x'

y, y'

z'

x

z

mg

Free-body diagram of the spinning disk and its shaft.

Joint A prevents movement of the shaft, so we show the corresponding force
reactions as components parallel to x′y′z′. Also, this connection allows shaft AB
to rotate only about the y′ axis relative to the vertical shaft. Thus the free-body
diagram depicts couple reactions about the x′ and z′ axes, but not about the y′ axis.
The vertical component is the torque M applied to the vertical shaft to sustain �.

The free-body diagram also includes the weight of the disk, whose role is not static
because its moment is not constant in magnitude and direction. The angular velocity
and the angular acceleration of the disk are described by

ω̄ = −φ̇ ī + �k̄′ − θ̇ j̄ ′, ω̄′ = �k̄′
,

ᾱ = −φ̇
(
ω̄ × ī

)− θ̈ j̄ ′ − θ̇
(
ω̄′ × j̄ ′) .

At the instant in the free-body diagram j̄ ′ = j̄ and k̄′ = − cos θ ī + sin θ k̄, so the
angular motion is

ω̄ = (−φ̇ − � cos θ
)

ī − θ̇ j̄ + � sin θ k̄, ω̄′ = −� cos θ ī + � sin θ k̄,

ᾱ = θ̇� sin θ ī + (−θ̈ − φ̇� sin θ
)

j̄ + (−φ́θ̇ + θ̇� cos θ
)

k̄.
(1)

We use the Appendix and the parallel axis theorems to find the inertia properties of
the disk relative to xyz, which are principal:

Ixx = 1
2

mR2, Iyy = Izz = m
(

1
4

R2 + L2
)

.

Inspection of the free-body diagram reveals that the force equations of motion
will contain the reaction forces at the pin, which are of no interest here. Thus we
focus on the moment equation. Euler’s equations are applicable because xyz are
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principal axes. We refer to the free-body diagram to determine the moment sums,
which leads to


M̄A · ī = −M cos θ + Mx′ sin θ = Ixxαx − (Iyy − Izz) ωyωz,

=
(

1
2

mR2

)
θ̇� sin θ,


M̄A · j̄ = mg (Lsin θ) = Iyyαy − (Izz − Ixx) ωxωz

=
(

1
4

R2 + L2

) (−θ̈ − φ̇� sin θ
)
,

−m
(

1
4

R2 − L2

) (− φ̇ − � cos θ
)

(� sin θ) ,


M̄A · k̄ = M sin θ + Mx′ cos θ = Izzαz − (Ixx − Iyy) ωxωy

= m
(

1
4

R2 + L2

) (−φ́θ̇ + θ̇� cos θ
)

−
(

1
4

R2 − L2

) (−φ̇ − � cos θ
) (−θ̇

)
.

The sole unknown in the second equation is θ, so it yields the desired differ-
ential equation, and the first and third equations combine to give an expression
for M:(

1
4

R2 + L2

)
θ̈ −

(
L2 − 1

4
R2

)
�2 sin θ cos θ +

(
1
2

R2φ̇� + gL
)

sin θ = 0,

M = −1
2

mR2φ́θ̇ sin θ + 2
(

L2 − 1
4

R2

)
θ̇� sin θ cos θ.

(2)�

It is interesting to note that couples acting about both the x′ and z′ axes are required
for sustaining the precession and spin rates.

To find the possible steady precession states we take θ to be constant in the
differential equation, which leads to two possibilities:

sin θ = 0 or
(

L2 − 1
4

R2
)

�2 cos θ = 1
2

R2φ̇� + gL. (3)

The diagram describing the system indicates that the construction of the fork-and-
clevis joint makes θ = π impossible, but we allow for it in order to get a full picture
of the behavior. Thus there are three possible constant nutation angles:

θ1 = 0, θ2 = π, θ3 = cos−1
[

2R2φ̇� + 4gL
�2 (4L2 − R2)

]
. (4)�

The nutated state represented by θ3 arises for only a range of parameters. The anal-
ysis is most easily carried out if � is considered to be fixed, whereas φ̇ is adjustable.
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Let us consider L > R/2. Then the condition that
∣∣cos (θ3)

∣∣ ≤ 1 is satisfied when

φ̇min ≤ φ̇ ≤ φ̇max,

φ̇min = −2
gL

R2�
− �

4L2 − R2

2R2
, φ̇max = −2

gL
R2�

+ �
4L2 − R2

2R2
.

(5)

Note that L > R/2 leads to φ̇min being negative, whereas φ̇max can be either positive
or negative.

Nutation angles θ1 and θ2 correspond to the precession and spin rates both be-
ing about vertical axes, so the angular momentum H̄A also is vertical, and there-
fore constant. The gravity force acting on the disk intersects joint A in this case,
so there is no moment about the y axis to be balanced by dH̄A/dt . In the third
state, H̄A lies in the xz plane, which means that it precesses at � about the ver-
tical axis. The moment of gravity about the pin of joint A balances the rate at
which H̄A is changed by this rotation. The value of θ3 ranges from zero at φ̇max to π

at φ́min.
Although the three roots for constant θ are mathematically possible, determin-

ing whether they will actually occur requires consideration of the stability of the
steady precession. This involves investigating whether the steady motion will change
drastically if it is disturbed. For our purpose we limit consideration to a small dis-
turbance that changes one of the constant θn solutions by a small amount �. The
smallness restriction enables us to simplify sin θ and cos θ with a Taylor series:

θ = θn + � =⇒ sin θ ≈ sin θn + � cos θn, cos θ ≈ cos θn − � sin θn.

We set θ̈ = �̈ in the differential equation (2) and substitute the preceding expres-
sions, which leads to(

1
4

R2 + L2

)
�̈ −

(
L2 − 1

4
R2

)
�2 (sin θn + � cos θn) (cos θn − � sin θn)

+
(

1
2

R2φ̇� + gL
)

(sin θn + � cos θn) = 0.

This equation is further simplified by the fact that � is very small, so quadratic terms
in � may be dropped. Furthermore, the terms that do not contain � correspond to
the steady precession solution, so they cancel. Thus we are led to(

1
4

R2 + L2
)

�̈ +
[
−
(

L2 − 1
4

R2
)

�2 cos (2θn) +
(

1
2

R2φ̇� + gL
)

cos θn

]
� = 0.

(6)

The preceding is the equation for a one-degree-of-freedom undamped linear
oscillator, so the stability condition is governed by the sign of the coefficient of �,

which is

K
(
θn,�, φ̇

) = −
(

L2 − 1
4

R2
)

�2 cos (2θn) +
(

1
2

R2φ̇� + gL
)

cos θn. (7)
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Positive K corresponds to an oscillatory �, which means that θ always remains close
to the steady value, whereas negative K corresponds to an exponentially increasing
�, which indicates that the precession will diverge from the steady value. For θ =
θ1 = 0, we have

K
(
0,�, φ̇

) = −
(

L2 − 1
4

R2
)

�2 + 1
2

R2φ̇� + gL.

When we consider K
(
0,�, φ̇

)
to be a function of φ̇ for fixed �, we see that the

condition K
(
0,�, φ̇

)
> 0 is satisfied when φ̇ > φ̇max. The steady-state precession at

θ = θ2 = π leads to

K
(
π,�, φ̇

) = −
(

L2 − 1
4

R2
)

�2 − 1
2

R2φ̇� − gL.

Stability of this steady nutation, corresponding to K
(
π,�, φ̇

)
> 0, occurs when φ̇ <

φ̇min. Analysis of the case in which θ = θ3 is slightly more complicated. The identity
cos (2θ3) ≡ 2 (cos θ3)2 − 1 gives

K
(
θ3,�, φ̇

) =
(

L2 − 1
4

R2
)

�2
[
1 − 2 (cos θ3)2

]
+
(

1
2

R2φ̇� + gL
)

cos θ3.

Rather than using the last of Eqs. (3) to replace θ3 in this expression, let us use it to
eliminate φ̇. The result is

K
(
θ3,�, φ̇

) =
(

L2 − 1
4

R2
)

�2 (sin θ3)2
.

The value of K
(
θ3,�, φ̇

)
is positive whenever θ3 is real, which means that this state

is stable if it exists.
An overview of the results gives a clearer picture. We find that, if φ̇ > φ̇max,

then the vertically suspended state, θ = 0, is the only stable steady precession. If the
spin rate falls below φ̇max, but exceeds φ̇min, then the only stable steady precession
is one in which the shaft is tilted at θ3. Further decrease of φ̇ below φ̇min makes the
inverted position θ2 = π the only stable steady precession. Proper interpretation
of this result requires that one recall that φ̇min is negative, so the condition that
φ̇ < φ̇min corresponds to a large spin rate in the sense of the positive x axis. �

The system in this example is referred to as a spinning top, because it effectively
is identical to the toy that spins with its apex in contact with the ground. This system
has been widely studied as a way of explaining many of the physical principles of
spatial kinetics. Further exploration of the behavior of a spinning top may be found
in Chapter 10.

EXAMPLE 6.3 The vertical force F causes the vertical bar to translate upward at
a speed v that is a specified function of time, and the whole system precesses about
the vertical axis at the constant speed � as a result of the action of the torque M.

Derive the equation of motion for the nutation angle θ, as well as an expression for
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the value of F required to attain this motion. It may be assumed that the mass of
the vertical shaft is negligible.

Ω

B

A
L

M

F θ

Example 6.3

SOLUTION This exercise, which requires the simultaneous application of the linear
and angular equations of motion, highlights the need to pick the moment reference
point appropriately. We begin with a free-body diagram. Because the vertical shaft
is massless, it effectively is in static equilibrium. The bearing can resist neither the
vertical force F nor the torque M, so these are transmitted to the bar, as shown in
the diagram. The couple M1 acts horizontally perpendicular to the pin, and F1 and
F2 are horizontal forces that the pin can exert on the bar.

Ω

GM F

F1

F2  (out)M1 v

θ
mg

x

z

Free-body diagram of the swinging bar.

It is tempting to the novice to place the origin of the body-fixed xyz coordinate
system at pin A, because doing so eliminates the pin forces from the moment equa-
tion. However, this point is not allowable for using the moment equation of motion
in Eqs. (6.1.1) because it is accelerating upward at v̇. We therefore must place the
origin at the center of mass G. The orientation of xyz shown in the free-body dia-
gram allows us to find the inertia properties of the bar directly from the Appendix,
with Ixx = 0, Iyy = Izz = (1/12) mL2 based on considering the bar to be slender.

The angular velocity is the sum of the precession and the rotation θ, which ac-
tually is a nutation. The precession direction ē1 is constant, whereas the nutation
direction ē2 precesses at �, so that

ω̄ = �ē1 + θ̇ ē2, ᾱ = θ̈ ē2 + θ̇ (�ē1 × ē2) .

The rotation directions are

ē1 = − cos θ ī + sin θ k̄, ē2 = − j̄,

which leads to

ω̄ = −� cos θ ī − θ̇ j̄ + � sin θ k̄, ᾱ = �θ̇ sin θ ī − θ̈ j̄ + �θ̇ cos θ k̄.
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Because we cannot eliminate the pin forces from the moment equation, we need the
additional relations provided by the force equation of motion, which requires that
we describe the acceleration of the center of mass. Pin A is in rectilinear motion, so
we have

āG = v̇ē1 + ᾱ × r̄ G/A + ω̄ × (ω̄ × r̄ G/A)

= −
[
v̇ cos θ + L

2
�2 (sin θ)2 + L

2
θ̇2

]
ī + L�θ̇ cos θ j̄

+
[
v̇ sin θ + L

2
θ̈ − �2 L

2
sin θ cos θ

]
k̄.

The Euler equations of motion are applicable because xyz are principal axes.
This is an aid because the y axis is the only axis about which neither M nor M1

exerts a moments. Consequently, only the Euler equation for moment about the y
axis is relevant. We add the moment of each pin force about the respective axes, and
substitute that sum, along with the inertia properties and components of ω̄ and ᾱ,

into Eqs. (6.1.6). Because we have approximated Ixx as being zero, we have


M̄ · j̄ = F
L
2

sin θ + F1
L
2

cos θ

= Iyyαy − Izzωxωz = 1
12

mL2
(−θ̈ + �2 sin θ cos θ

)
.

We are not interested in the value of F2, which means that we can omit the force
equation of motion in the j̄ direction. The useful force equations are


 F̄ · ī = −F cos θ + F1 sin θ + mg cos θ = −m
[
v̇ cos θ + L

2
�2 (sin θ)2 + L

2
θ̇2

]
,


 F̄ · k̄ = F sin θ + F1 cos θ − mg sin θ = m
[
v̇ sin θ + L

2
θ̈ − �2 L

2
sin θ cos θ

]
.

These equations give the force values corresponding to a specified motion:

F = m
[
v̇ + g + L

2
θ̈ sin θ + L

2
θ̇2 cos θ

]
, �

F1 = m
[

L
2

θ̈ cos θ − L
2

θ̇2 sin θ − �2 L
2

sin θ

]
.

Substitution of these expressions into the moment equation gives a differential
equation governing the rotation:

1
3
θ̈ − 2

3
�2 sin θ cos θ + v̇ + g

L
sin θ = 0. �

This equation resembles the one for a pendulum, with the effective gravitational
acceleration being g + v̇. The term containing �2 represents the influence of the
centripetal acceleration associated with precession. Similarly, the result for F shows
that it must overcome the effective gravitational acceleration and the vertical
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components of the transverse and centripetal accelerations of the center of mass
that are due to the unsteady value of θ.

It is evident that solving this problem would have been much easier if we were
able to form the moment relative to the pin. In Section 6.3 we will see how to
do so.

EXAMPLE 6.4 A thin homogeneous disk of mass m rolls without slipping on a
horizontal plane such that its center has a constant speed v as it follows a circular
path of radius ρ. The angle of elevation of the disk’s axis is a constant value θ . Derive
an expression relating v to the value of θ .

θ
ρ

R

v

Example 6.4

SOLUTION The problem of a rolling disk has classical interest. Here we explore the
special case of steady precession as an illustration of the full set of Newton–Euler
equations of motion. The kinematics of this type of motion was discussed in Sec-
tion 4.4. That development is an important aspect of the present analysis.

In addition to the gravitational force, there are reactions at the contact between
the disk and the ground. They are depicted in the free-body diagram as the normal
force N and two frictional force components lying in the horizontal plane: Fn toward
the vertical axis about which the disk rotates and Ft opposite the velocity of point
G. The former represents the force required to make the center of mass follow a
circular path, whereas the latter force anticipates that friction opposes the sliding
tendency of the contact point. The normal force N prevents the contact point from
penetrating the ground.

θ

v

φ
.

ψ
.

mg

N

FnFt z

x

y', y

z'

x'

ρ

'

Free-body diagram of the rolling disk.
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We place the origin of the body-fixed coordinate system xyz at the center G,
which is valid regardless of how the disk moves. (The intersection of the center-
line of the disk with the vertical axis for the precession also is an allowable point
for the moment equation, because it is a stationary point whose position relative
to the disk is fixed. However, there is no advantage to using this point.) We exploit
the axisymmetry of the disk by defining the body-fixed x and y axes to lie in the
plane of the disk, with the y axis at the instant of interest aligned horizontal, in the
sense of the velocity of point G. The precession ψ̇ is the only rotation of the x′y′z′

coordinate system depicted in the free-body diagram. This coordinate system expe-
dites description of ω̄, as well as the acceleration of the center of mass.

The rotation of the disk consists of a precession ψ̇ about the vertical axis and
a spin φ̇ about the z axis. The angular velocity of the disk is a superposition of the
rotations about the two axes,

ω̄ = ψ̇ ī ′ + φ̇k̄, ω̄′ = ψ̇ ī ′.

All rotation rates are constant in steady precession, so the corresponding angular
acceleration is

ᾱ = ψ̇
(
ω̄′ × ī ′)+ φ̇

(
ω̄ × k̄

) = ψ̇φ̇
(
ī ′ × k̄

)
.

At the instant depicted in the free-body diagram,

ī ′ = cos θ ī − sin θ k̄,

which leads to instantaneous expressions for the angular motion of the disk,

ω̄ = ψ̇ cos θ ī + (
φ̇ − ψ̇ sin θ

)
k̄, ᾱ = −ψ̇φ̇ cos θ j̄ .

The velocity of the center is v j̄, and the rotation rates are related to the speed v

by the no-slip condition at the contact point C, which requires that v̄C = 0. Points C
and G belong to the disk, so we have

v̄G = v j̄ = ρψ̇ j̄ = ω̄ × r̄ G/C = R
(
φ̇ − ψ̇ sin θ

)
j̄,

from which we find that

ψ̇ = v

ρ
, φ̇ = v

R
+ v

ρ
sin θ.

Correspondingly, the angular motion expressions become

ω̄ = v

ρ
cos θ ī + v

R
k̄, ᾱ = −v2

ρ

(
1
R

+ 1
ρ

sin θ

)
cos θ j̄ .

The xyz axes are principal, with

Ixx = Iyy = 1
4

mR2, Izz = 1
2

mR2.
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For the sake of variety, we shall formulate dH̄A/dt from the basic relations, rather
than invoke Euler’s equations. Combining the inertia properties with the angular
rotation variables leads to

H̄G = mR2

(
1
4

v

ρ
cos θ ī + 1

2
v

R
k̄
)

,

∂ H̄G

∂t
= −1

4
mR2 v2

ρ

(
1
R

+ 1
ρ

sin θ

)
cos θ j̄ .

The reaction forces applied by the ground are unknown, so there the moment
equations of motion will not be sufficient to determine all the unknown quantities.
We also need the force equation of motion. We know that point G follows a circular
path at constant speed v, and the z′ axis points toward the center of curvature. Thus
the acceleration of the center of mass is

āG = v2

ρ
k̄′

.

The corresponding Eqs. (6.1.1) are


 F̄ = m
v2

ρ
k̄′

,


M̄G = −1
4

mv2 R
ρ

(
2 + R

ρ
sin θ

)
cos θ j̄ .

We form the components of the force sums relative to the x′y′z′ axes, and the mo-
ments of the forces at the ground about the axes of xyz. Equating each to the corre-
sponding inertial term yields


 F̄ · ī ′ = N − mg = 0, 
 F̄ · j̄ ′ = Ft = 0, 
 F̄ · k̄′ = Fn = m
v2

ρ
,


M̄G · ī ≡ 0,


M̄G · j̄ = Fn (Rcos θ) − N (Rsin θ) = −1
4

mv2 R
ρ

(
2 + R

ρ
sin θ

)
cos θ,


M̄G · k̄ = Ft R = 0.

We solve the force equations for N and Fn, and substitute those expressions into

M̄G · j̄ . The result is

m
v2

ρ
(Rcos θ) − mg (Rsin θ) = −1

4
mv2 R

ρ

(
2 + R

ρ
sin θ

)
cos θ,

which reduces to

v2 = 4gρ2 tan θ

6ρ + Rsin θ
. �

There is a simple explanation for this steady motion. The gravitational force and
normal reaction form a couple about the horizontal diameter of the disk because the
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disk is tilted. The frictional reaction required to impart the centripetal acceleration
to the center of mass also exerts a moment about this line. The net moment must
be matched by a change in the angular momentum. This effect is achieved by the
precession, which alters the true direction of the angular momentum, even though
its components relative to the xyz axes are constant.

It will be noted that ft was found to be zero. This is comparable to planar rolling
of a disk on level ground. The moment equation of motion in that case indicates that
the friction force is zero unless another force exerts a moment about the center of
mass, which leads to the anomaly that a disk rolling freely should never slow. This is
the fault of the rigid-body model for contacting surfaces. The rolling friction model
[see, for example, Ginsberg and Genin (1984)] addresses this anomaly. It would lead
to the correct conclusion that a steady precessional motion of the rolling disk is not
possible.

EXAMPLE 6.5 An experiment in aerodynamics features a square plate that is
free to spin at rate φ̇ about axis AB of the bent shaft, while the precession rate ψ̇

about the horizontal shaft is held constant by application of a torque � about the
shaft. The angles are defined such that ψ = φ = 0 when the plate coincides with the
vertical plane. This system is situated in a wind tunnel whose flow is horizontal. The
resultant of the aerodynamic pressure is a known force F(t) acting at the center
of pressure P and always normal to the plane of the plate. Derive the differential
equation of motion for φ. Include the effect of gravity in the derivation.

B

A

φ
.

ψ
.

b

F

d
P

θ

c

Example 6.5

SOLUTION This example addresses situations in which a nonaxisymmetric body ex-
ecutes a spatial rotation. Aligning the body-fixed coordinate system to match the
tabulated inertia properties fully specifies each axis, so we are not free to align the
axes to simplify the kinematical analysis. Rather, we need to use rotation transfor-
mations.

To construct the free-body diagram we recognize that the bent shaft applies
a distributed force to the plate along edge AB. The resultant of this is arbitrary,
except that it cannot exert a torque about that edge because the plate rotates freely.
Thus we represent the reaction exerted by the shaft on the plate as a force–couple
system at corner A, in which the couple has no component parallel to edge AB. In
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addition to the aerodynamic force, the free-body diagram shows the gravity force
acting vertically downward.

B Az

φ
.

ψ.

F
P

ψ

mg
G

My

Mz

Ay

Ax

θ MZ
Free-body diagram of the plate showing the supporting forces
as a force–couple system at point A.

In the free-body diagram the origin of body-fixed xyz coordinate system is
placed at bearing A. This point has a fixed position relative to the plate, and it is
stationary, which means that the plate executes a pure rotation about point A. The
axes of xyz are aligned with the edges of the plate in order to use the tabulated in-
ertia properties. The x′y′z′ coordinate systems depicted in the free-body diagram is
introduced to aid in the description of the gravity force and the angular motion. The
sole rotation it undergoes is the precession about the horizontal x′ axis. We define
ψ = 0 to correspond to the z′ axis being vertical.

The transformation from x′y′z′ to xyz may be pictured as a pair of body-fixed
rotations: θ about the y′ axis, followed by −φ about the x axis. The associated simple
rotation transformations are

[Rθ ] =

⎡
⎢⎢⎣

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎤
⎥⎥⎦ ,

[Rφ] =

⎡
⎢⎢⎣

1 0 0

0 cos φ − sin φ

0 sin φ cos φ

⎤
⎥⎥⎦ ,

so the transformation of the unit vectors is

[
ī j̄ k̄

]T = [R]
[
ī ′ j̄ ′ k̄′]T

,

[R] = [Rφ] [Rθ ] =

⎡
⎢⎢⎣

cos θ 0 − sin θ

− sin φ sin θ cos φ − sin φ cos θ

cos φ sin θ sin φ cos φ cos θ

⎤
⎥⎥⎦ .
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We may now form the angular velocity and angular acceleration. Adding the
precessional motion about the horizontal x′ axis and the spin about the x axis leads
to

ω̄ = −ψ̇ ī ′ − φ̇ ī .

The precession rate is specified to be constant and it is about a fixed axis, so the
angular acceleration of the plate is

ᾱ = −φ̈ ī − φ̇
(
ω̄ × ī

)
.

We need the components of ω̄ and ᾱ relative to xyz, and we need to express ī in
terms of its xyz components. The transformation from x′y′z′ to xyz is described by
[R] , so we extract the components of ī ′ from the first row of [R]T

, with the result
that

ī ′ = cos θ ī − sin φ sin θ j̄ + cos φ sin θ k̄,

which leads to

ω̄ = (−ψ̇ cos θ − φ̇
)

ī + ψ̇ sin φ sin θ j̄ − ψ̇ cos φ sin θ k̄,

ω̄′ = −ψ̇ cos θ ī + ψ̇ sin φ sin θ j̄ − ψ̇ cos φ sin θ k̄,

ᾱ = −φ̈ ī + φ̇ψ̇ cos φ sin θ j̄ + φ̇ψ̇ sin φ sin θ k̄.

We find the inertia properties for the square plate by setting to zero the dimen-
sion along the y edge of the rectangular parallelepiped in the Appendix, and then
invoking the parallel axis transformation. The result is

Ixx = 1
3

m�2, Iyy = m
(

2
3
�2 + �b + b2

)
, Izz = m

(
1
3
�2 + �b + b2

)
,

Ixy = Iyz = 0, Ixz = m
(

1
4
�2 + 1

2
�b
)

.

We combine these properties and the components of ω̄ and ᾱ to form dH̄A/dt. For
this we must use the the full equations (6.1.3) because some products of inertia are
nonzero. Thus the angular momentum is

H̄A = (Ixxωx − Ixzωz) ī + Iyyωy j̄ + (Izzωz − Izxωx) k̄

= [
Ixx
(−ψ̇ cos θ − φ̇

)− Ixz
(−ψ̇ cos φ sin θ

)]
ī + Iyyψ̇ sin φ sin θ j̄

+ [
Izz
(−ψ̇ cos φ sin θ

)− Ixz
(−ψ̇ cos θ − φ̇

)]
k̄,

∂ H̄A

∂t
= (Ixxαx − Ixzαz) ī + Iyyαy j̄ + (Izzαz − Izxαx) k̄

= [
Ixx
(−φ̈

)− Ixz
(
φ̇ψ̇ sin φ sin θ

)]
ī + Iyyφ̇ψ̇ cos φ sin θ j̄

+ [
Izz
(
φ̇ψ̇ sin φ sin θ

)− Ixz
(−φ̈

)]
k̄.
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The algebraic operations required to form dH̄A/dt according to the second of
Eqs. (6.1.1) are somewhat tedious, but symbolic mathematical software lessens the
difficulty. The result is

.

H̄A =
{
−Ixxφ̈ +

[
(Iyy − Izz) sin φ cos φ (sin φ)2 + Ixz sin φ sin θ cos θ

]
ψ̇2
}

ī

+
{[

(Ixx − Iyy) cos φ sin θ cos θ + Ixz

(
(cos θ)2 − (cos φ)2 (sin θ)2

)]
ψ2

+ [(Ixx + Iyy − Izz) cos φ sin θ + 2Ixz cos θ] ψφ̇ − Ixzφ̇
2
}

j̄

+
{

Ixzφ̈ +
[
(Ixx − Iyy) sin φ sin θ cos θ − Ixz sin φ cos φ (sin θ)2

]
ψ2

+ [(Ixx − Iyy + Izz) sin φ sin θ] ψφ̇
}

k̄.

We now are ready to form the equations of motion. We seek an equation of
motion for φ that does not contain unknown reactions. The force equations of mo-
tion will contain Ax, Ay, and Az, so we will gain nothing by actually forming those
equations. We also can see that the unknown couple reactions My and Mz would
appear in the equations governing the moment sums about the y and z axes. In con-
trast, none of the reactions exert a moment about the x axis, so we focus solely on
that term. Two forces exert a moment about that axis: the aerodynamic force F,

whose lever arm about the x axis is d, and gravity, which acts in the (fixed) vertical
direction. Rather than trying to visualize the moment of gravity about the x axis, we
proceed formally by using a cross product. The angle between the vertical and the
z′ axis is ψ, so

mḡ = mg
(

sin ψ j̄ ′ − cos ψ k̄′)
.

The position of the center of mass is readily described in terms of components rela-
tive to xyz:

r̄ G/A =
(

�

2
+ b

)
ī − �

2
k̄.

To evaluate the cross product of these vectors, both need to be described in terms of
components relative to the same coordinate system. We select xyz for this purpose,
because those are the axes for the moment sums. The transformation from x′y′z′ to
xyz is described by [R] , so we have

{mg} = mg [R]

⎧⎪⎪⎨
⎪⎪⎩

0

− sin ψ

cos ψ

⎫⎪⎪⎬
⎪⎪⎭ = mg

⎧⎪⎪⎨
⎪⎪⎩

sin θ cos ψ

cos φ sin ψ + sin φ cos θ cos ψ

sin φ sin ψ − cos φ cos θ cos ψ

⎫⎪⎪⎬
⎪⎪⎭ .
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The gravitational moment is r̄ G/A × mḡ. We require only the x component of this
moment. We add that result to the moment of F̄ about the x axis and equate that
result to the x component of dH̄A/dt obtained previously. This gives


M̄A · ī = −Fd + mg
�

2
(cos φ sin ψ + sin φ cos θ cos ψ) =

.

H̄A · ī

= −Ixxφ̈ +
[
(Iyy − Izz) sin φ cos φ (sin θ)2 + Ixz sin φ sin θ cos θ

]
ψ̇2.

Substituting the values of the inertia properties yields

1
3
φ̈ −

[
1
3

cos φ sin θ +
(

1
4

+ 1
2

b
�

)
cos θ

]
(sin φ sin θ) ψ̇2

+ g
2�

(cos φ sin ψ + sin φ cos θ cos ψ) = Fd
m�

.

�

It was stated that ψ̇ is constant, so we may set ψ = ψ̇ t. The value of θ presum-
ably is known, so the preceding is the differential equation of motion governing φ.
It is nonlinear, and its coefficients depend on time as a consequence of the known
variation of ψ. The solution of this differential equation satisfying specified initial
conditions could be obtained numerically if all parameter values were provided.
The case in which the shaft is straight, θ = 0, provides a check for this expression.
The equation of motion then reduces to φ̈/3 + (g/2�) sin φ = Fd/m�. This is the
equation of a pendulum subjected to an external moment, which is what the system
reduces to when θ = 0, because precession of the shaft becomes irrelevant.

6.2 PLANAR MOTION

In planar motion there is a single axis of rotation, whose direction is the normal to the
plane. To the extent that it is a special case of arbitrary spatial motion, there is no rea-
son to consider planar motion separately. However, many systems are limited to planar
motion, and the simple nature of this type of motion affords a good opportunity to delve
into some interesting effects, such as friction.

To derive the equations of planar motion from the general set, we define xyz to be a
body-fixed coordinate system whose origin is an allowable point for summing moments,
with the further specification that the z axis be perpendicular to the plane of motion.
To describe the motion of the center of mass we define a convenient coordinate system
x′y′z′ whose z′ axis also is perpendicular to the plane of motion. The angular motion and
the acceleration of the center of mass correspondingly are

ω̄ = ωk̄, ᾱ = ω̇k̄, āG = aGx′ ī ′ + a′
Gy j̄ ′. (6.2.1)

For a body having arbitrary inertia properties the angular momentum is

H̄G = −Ixzωī − Iyzω j̄ + Izzωk̄. (6.2.2)
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The corresponding equations of motion are


 F̄ · ī ′ = maGx′ , 
 F̄ · j̄ ′ = maGy′ , 
 F̄ · k̄′ = 0,


M̄A · ī = −Ixzω̇ + Iyzω
2, 
M̄A · j̄ = −Iyzω̇ + Ixzω

2,


M̄A · k̄ = Izzω̇.

(6.2.3)

The three force equations and the equation governing the moment about the z axis
are the same as those developed in elementary dynamics courses. If the z axis is not
principal, that is, if Ixz �= 0 or Iyz �= 0, then the remaining moment equations describe
the resultant moments about axes lying in the plane required to constrain the body
from rotating about those axes. We could have anticipated the need for these moment
resultants by considering Eq. (6.2.2), which shows that the angular momentum is not
parallel to ω̄, and therefore not constant, if the z axis is not principal. The portion of
the moments about the x and y axes that are proportional to ω2 are gyroscopic mo-
ments that are the consequence of unsymmetrical distributions of mass relative to the xy
plane.

For situations concerning dynamic imbalance of rotating machinery, such as the
system treated in Example 6.1, consideration of these restraining moments is vital to
the analysis. However, the force equations and the moment equation about the z axis
are independent of the the values of Ixz and Iyz. Thus the same motion in the xy plane
will occur regardless of how the body’s mass is distributed in the z direction. For this
reason most planar motion analyses implicitly assume that the distribution is such that
the body is symmetric relative to the xy plane. Then the orientations of the x and y axes
are irrelevant to the moment equation. This leaves us free to let these axes be parallel
to the x′ and y′ axes, whose orientations are selected to expedite the description of āG

and the force components. Thus the equations of planar motion reduce to


 F̄ · ī ′ = maGx, 
 F̄ · j̄ ′ = maGy,


M̄A · k̄ = Izzω̇.
(6.2.4)

It follows that a system in planar motion is governed by three scalar equations of motion
for each body in the system.

EXAMPLE 6.6 The rectangular plate, whose mass is m, serves as a fire door. In
case of an emergency, the cable holding the plate is severed and the door swings
down under the restraint of the rigid links that suspend the plate from the ceiling.
Derive a differential equation of motion governing the angle of inclination θ of the
links. Also derive expressions for the forces exerted by the links on the plate. The
mass of each link is negligible.
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L
θ

A B
b

h

Example 6.6

SOLUTION This plate undergoes a translational motion because the links remain
parallel for any θ. Thus it might seem that the system is unremarkable, but the so-
lution will serve to emphasize the fundamental changes relative to statics concepts
that are required to analyze any system in motion. In the free-body diagram of the
plate, the links are considered to exert tensile forces. This is a consequence of ne-
glecting the mass of the links, which makes them two-force members. Note that the
forces on the left and right are taken to be different because the arrangement is not
symmetrical when θ is nonzero.

L

θ
A B

FA FB

G
x

y

eθ

eR

mg

b

h

Free-body diagram of the translating fire door.

In general, all points in a translating rigid body have the same acceleration.
Hence the acceleration of the center of mass matches that of either point where a
link is attached. The latter follow circular paths centered at the respective upper
pivot, so we have

āG = āA = āB = −Lθ̇2ēR + Lθ̈ ēθ .

Because the box translates, we must sum moments about the center of mass. As
shown in the free-body diagram, we align the x and y axes with the polar directions
for āG, so that

āG = āA = āB = Lθ̇2 j̄ + Lθ̈ ī .

The angular momentum in translation is identically zero, so moments of inertia need
not be computed. The corresponding equations of motion are


 F̄ · ī = −mg sin θ = mLθ̈ ,


 F̄ · j̄ = FA + FB − mg cos θ = mLθ̇2,


M̄G · k̄ = FB cos θ

(
b
2

)
+ FB sin θ

(
h
2

)
− FA cos θ

(
b
2

)
+ FA sin θ

(
h
2

)
= 0.
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The solution of these equations is

θ̈ + g
L

sin θ = 0,

FA = 1
2

(
1 + h

b
tan θ

) (
mg cos θ + mLθ̇2

)
,

FB = 1
2

(
1 − h

b
tan θ

) (
mg cos θ + mLθ̇2

)
.

�

Note that the differential equation for θ is identical to that for a simple pendulum
formed by attaching a particle to the end of a cable of length L.

EXAMPLE 6.7 A cable drum, which is shown in cross section, consists of a cylin-
der having radius R2 that is capped at both ends by circular plates whose radius is
R1. A cable is wrapped around the cylinder and then pulled out horizontally by a
force F̄, as shown. The system was at rest when the force was applied. The mass of
the wrapped wire and the drum is m, the mass of the unwrapped segment of cable
is negligible, and the centroidal radius of gyration is κ. The static and kinetic coeffi-
cients of friction between the end plates and the ground are µs and µk, respectively.
(a) Determine the acceleration of the center of the drum assuming that the end
plates roll without slipping. (b) Determine the maximum magnitude of F̄ for which
slipping will not occur. (c) Determine the angular acceleration and the acceleration
of the center of the drum when the magnitude of F̄ exceeds the value obtained in
Part (b).

R1
R2

F

Example 6.7

SOLUTION Along the way to the solution of this problem, which highlights the var-
ious aspects of the Coulomb friction model, we arrive at a result that demonstrates
once again that intuition based on experience with static systems cannot be trusted.
A free-body diagram shows F̄ and the weight, as well as normal forces 2N̄ and
friction forces 2 f̄ exerted between the two end plates and the ground. The rela-
tionship between N̄ and f̄ is governed by Coulomb’s laws, which we will address
separately. Here the friction force f̄ is depicted as acting to the left, based on the
assumption that it opposes the action of F̄, but we will be able to verify that as-
sumption. We select the center of mass as the reference point for summing moments
because the drum is in general motion. The axes of the body-fixed xyz coordinate
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system are defined to be horizontal and vertical, which matches the direction of the
motion.

F
2f

mg

2N

x

y

Free-body diagram of the cylinder with rigid end caps.

We know that the drum is in planar motion and that the center follows a hori-
zontal path. Thus, regardless of the slipping condition, we know that

ᾱ = ω̇k̄, āG = v̇ī . (1)

Note that we have selected the sense of positive v and ω to match the direction of
the respective axis, but any other selection is acceptable if it is implemented con-
sistently. In the special case where the drum rolls without slipping, the rotation will
occur about the negative z axis, with

v = −ωR1 for no slippage. (2)

The centroidal moment of inertia corresponding to the given radius of gyration
is Izz = mκ2. The equations of motion are


 F̄ · ī = F − 2 f = mv̇,


 F̄ · j̄ = 2N − mg = 0,


M̄A · k̄ = F R2 − 2 f R1 = mκ2ω̇.

(3)

There are four unknowns, f, N, v̇, and ω̇, in these three equations. In general, the
only available relations between force and kinematical variables in a kinetics prob-
lem are the equations of motion, so the additional equation required for solving Eqs.
(3) must relate f and N or v̇ and ω̇. This is where the question of slippage enters.
It is given that the drum starts from rest, so initially the drum rolls without slip-
ping. This means that Eq. (2) applies. The contacting surfaces then are described
by Coulomb’s law for static friction, because the surfaces do not move relative to
each other. Thus we know a priori only that the magnitude of f̄ is less than µs N
times. The actual magnitude and sense of f̄ are dictated by the laws of motion. In
effect, the friction force is a constraint force—it prevents the relative movement of
the contacting surfaces.

When Eq. (2) is substituted into Eqs. (3), the result is

v̇ = F R1 (R1 − R2)

m
(
R2

1 + κ2
) , f = 1

2

(
R1 R2 + κ2

R2
1 + κ2

)
F. (4) �
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The signs of v̇ and f are both positive, so the sense initially assumed for both quan-
tities is correct. This means that the drum rolls to the right and rotates clockwise.
Kinematically, this implies that the cable gets wound around the drum, even though
F̄ seems to act to pull it off the drum. The explanation of this behavior lies in the
result for v̇. We know that F (R1 − R2) is the moment of F̄ about the contact point,
and m

(
R2

1 + κ2
)

is the moment of inertia about an axis parallel to z intersecting the
contact point. Replacing v̇ with −ω̇R1 shows that the motion is a consequence of
angular acceleration caused by F̄ exerting a moment about the contact point. (Re-
call that the contact point is an allowable point when there is no slipping, provided
that the wheel is balanced.) The maximum magnitude of F̄ that can be sustained
corresponds to impending slippage, at which

∣∣ f̄
∣∣ = µs N. From the force equation of

motion in the y direction we have N = 1
2 mg, so the second of Eqs. (4) correspond-

ingly gives

Fmax = R2
1 + κ2

R1 R2 + κ2
µsmg. �

When slipping occurs because
∣∣F̄∣∣ > Fmax, the friction force is governed by the

kinetic portion of Coulomb’s friction law, which states that
∣∣ f̄
∣∣ = µk N in opposition

to the relative sliding motion. We know this sense from the solution of the no-slip
case, which indicated that f̄ acts to the left. Thus we substitute f = µk N = µkmg
into Eqs. (3). Note that, when slippage occurs, the friction force no longer acts to
constrain the sliding, so there is no kinematical relation between ω and v. The solu-
tion of Eqs. (3) now is

v̇ = F
m

− µkg, ω̇ = F R2

mκ2
− µkgR1

κ2
. �

The positive sign for ω̇ indicates that the rotation is counterclockwise. Thus the
drum will accelerate to the right and the cable will unwrap when F is sufficiently
large to cause slippage.

EXAMPLE 6.8 The homogeneous box, whose mass is m, is placed horizontally
on the semicylindrical surface, such that contact is below the centroid G. Assuming
that the box does not slip, derive the differential equation of motion governing the
angle φ by which the box rotates away from horizontal.

b

h G

R

Example 6.8
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SOLUTION The center of the wheel in the previous problem followed a straight path,
whereas the motion of the center of the box had no obvious feature. Thus this ex-
ample will give a more complete description of the analysis of bodies that roll. The
free-body diagram of the bar must show the bar at an arbitrary angle of elevation φ.
The friction and normal forces act at the contact point C. In the absence of slippage,
the distance along the bottom from point C to the centerline of the box must equal
the arc length Rφ along the circle from the contact point to the top from the center.
Note that neither the magnitude nor sense of the friction force is known, because
it acts as a constraint force that prevents relative motion of the contacting surfaces.
The only allowable point for summing moments is the center of mass, and it makes
sense from a kinematical viewpoint to orient the x and y axes consistently with the
local plane of contact with the cylindrical surface.

G

N

f

y

x
φ

Rφ
C

mg

Free-body diagram of the box showing the contact forces that prevent
slippage.

The position of the box clearly is specified by the value of φ. (In the terminology
of the analytical dynamics concepts of the following chapters, φ is a generalized
coordinate.) We must express the acceleration of point G in terms of φ consistent
with the no-slip condition. The rate of rotation is φ̇, and we know that point C has
zero velocity, so the velocity of point G is given by

v̄G = ω̄ × r̄ G/C, ω̄ = φ̇k̄.

For the arbitrary position described by the free-body diagram, we have

r̄ G/C = Rφ ī + 1
2

h j̄,

which gives

v̄G = −1
2

hφ̇ ī + Rφφ̇ j̄ . (1)

Because this expression describes an arbitrary position, it may differentiated. The
unit vectors are not constant, so we use the partial differential technique for relative
motion. This gives

āG = ∂v̄G

∂t
+ ω̄ × v̄G

= −1
2

hφ̈ ī + R
(
φ̇2 + φφ̈

)
j̄ + φ̇k̄ ×

(
−1

2
hφ̇ ī + Rφφ̇ j̄

)

= −
(

1
2

hφ̈ + Rφφ̇2

)
ī +

(
Rφ̇2 + Rφφ̈ − 1

2
hφ̇2

)
j̄ .

(2)
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The Appendix gives the centroidal moment of inertia. The corresponding equa-
tions of motion are


 F̄ · ī = f − mg sin φ = maGx = −m
(

1
2

hφ̈ + Rφφ̇2

)
,


 F̄ · j̄ = N − mg cos φ = maGy = m
(

Rφ̇2 + Rφφ̈ − 1
2

hφ̇2

)
,


M̄G · k̄ = f
(

h
2

)
− N (Rφ) = Izzω̇ = 1

12
m
(
b2 + h2

)
φ̈.

(3)

There are three unknowns, φ, N, and f , in these three equations, so we may pro-
ceed to their solution. To obtain the desired differential equation we eliminate the
reactions. The force equations give

f = m
(

g sin φ − 1
2

hφ̈ + Rφφ̇2
)

, N = m
(

g cos φ + Rφ̇2 + Rφφ̈ − 1
2

hφ̇2
)

, (4)

which, when substituted into the moment equations, yield[
h2

3
+ b2

12
+ R2φ2

]
φ̈ + R2φφ̇2 = gh

2
sin φ − gRφ cos φ. (5) �

If the initial values of φ and φ̇ are specified, this differential equation could be
solved for φ as a function of t. We would use numerical techniques to obtain the
solution, because an analytical solution would be difficult. When one performs a
numerical analysis it is useful to have test solutions to verify the analysis. We may
derive one such solution by considering φ to be small, which enables us to linearize
Eq. (5). We introduce the approximations cos φ ≈ 1, sin φ ≈ φ, and drop any terms
that have quadratic or higher powers of φ. The resulting equation for small rotations
is (

h2

3
+ b2

12

)
φ̈ + g

(
R − h

2

)
φ = 0. (6)

When h < 2R, the response obtained from this equation is sinusoidal, corre-
sponding to oscillations about a stable static equilibrium position. The results ob-
tained from solving Eq. (6) should then be a good approximation of those for
Eq. (5). In contrast, when h > 2R, the solution of the linearized equation of mo-
tion is exponential, corresponding to continuous movement away from an unstable
static equilibrium position. The solutions of Eqs. (5) and (6) then will be consistent
only in the early phase of the response, when φ is small.

The transition from stability to instability has a simple explanation. In the case
where the bar is slender, h < 2R, the center of mass rises as φ increases. Thus φ = 0
is a position of minimum potential energy. In contrast, when h > 2R, the center of
mass descends with movement away from the equilibrium position, which means
that φ = 0 corresponds to maximum potential energy. Note that the stability tran-
sition is independent of the value of the length b, whose only effect is its influence
on the effective moment of inertia of the bar, which is the coefficient of the angular
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acceleration term in the equation of motion. Thus, when the equilibrium position is
stable, the value of b solely affects the frequency of the stable oscillation.

The derivation of Eq. (5) assumed that the box does not slip over the cylinder,
but that might not be true. At every instant at which the differential equation has
been solved, the no-slip condition should be verified. This requires that, in addition
to knowing the instantaneous value of φ, we would need to determine φ̇, either
analytically or by finite differences. The corresponding φ̈ may be found from Eq. (5),
which then allows us to evaluate f and N according to Eqs. (4). Coulomb’s friction
laws state that the maximum friction force that can be developed between surfaces
that rub against each other is µs N. It follows that, if the computed value of | f | is less
than µs N, then the solution is acceptable. Conversely, if

∣∣ f̄
∣∣ exceeds µs N, slippage

will occur. In addition, one should monitor the value of
∣∣N̄∣∣ . Negative N indicates

that the surface must pull on the box, which is not possible. When the criteria for no-
slip or positive contact fail to be met, the problem must be reformulated. In the case
of slippage, kinematical equations (1) and (2) are no longer valid, but the friction
force is known. Occurrence of a negative N would indicate that the box has left the
surface, in which case it would be in free motion.

EXAMPLE 6.9 The slender bar moves in the horizontal plane under the constraint
of collars A and B. The horizontal force F acting on collar A is such that the velocity
of this collar is observed to be a constant value v to the right. The mass of bar AB is
m, and the collars have negligible mass. The coefficient of sliding friction between
each collar and its guide bar is µ. Derive an expression for the value of F as a
function of the angle of elevation θ and the other parameters of the system.

L

θ
β

A

B

F

v

Example 6.9

SOLUTION This example highlights some of the issues entailed in applying the
Newton–Euler equations of motion to analyze linkages, without introducing
the complications associated with multibody systems. Properly accounting for the
friction forces is another aspect to be covered. The condition that the collars follow
the guide bars is enforced by the normal constraint forces N̄A and N̄B. The friction
forces f̄A and f̄B oppose the movement of the collars relative to the respective
guide bars, as shown in the free-body diagram. The sense in which the free-body
diagram depicts the friction forces is set by the condition that these forces act in
opposition to the movement of each collar. However, either normal force might
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act in the opposite sense from the one that appears in the diagram, depending on
which direction either end would move if there were no normal force. We will deal
with this complication when we solve the equations of motion. The applied force F̄
also acts as a constraint force because it imposes the kinematical condition that end
A has a constant velocity. Gravity has been omitted from the free-body diagram,
which implies that the system lays in the horizontal plane or that the applied force
F̄ is large compared to mg.

A

F

x

y

G
L/2

θ

β

B
fB

fA

NA

NB
Free-body diagram of the sliding bar.

Bar AB is in general motion, so we place the origin of xyz at the center of mass.
It will be necessary to relate the motions of ends A and B. Doing so is assisted by
aligning the axes such that at the instant described by the equations of motion the
axes are horizontal and vertical.

It is apparent that knowledge of the value of the elevation angle θ fully specifies
the position of the bar. Furthermore, θ̇ is the rotation rate of the bar, which means
that we need to establish the kinematical relationship between θ̈ and the given speed
v. As we saw in Chapter 4, we could obtain this relationship by differentiating al-
gebraic expressions derived from trigonometry. Instead, to convey a picture of how
multibody linkages could be treated, we pursue a kinematical analysis relating the
velocity and acceleration of constrained points. The velocity of end A is stated to
be constant v to the right, so end B must move downward parallel to its guide bar.
Because θ̇ is the rotation rate about the z axis, we have

v̄A = vī, v̄B = vB
(
cos β ī − sin β j̄

)
, ω̄ = −θ̇ k̄,

āA = 0̄, āB = v̇B
(
cos β ī − sin β j̄

)
, ᾱ = −θ̈ k̄.

We relate the velocities of both ends, using θ to describe the relative position.
This gives

v̄B = v̄A + ω̄ × r̄ B/A,

vB
(
cos β ī − sin β j̄

) = vī + (−θ̇ k̄
)× (−Lcos θ ī + Lsin θ j̄

)
.

The scalar equations we obtain by matching like components are

v̄B · ī = vB cos β = v + θ̇ Lsin θ, v̄B · j̄ = −vB sin β = θ̇ Lcos θ.

Elimination of vB from these equations and use of a trigonometric identity lead to

θ̇ = − v sin β

Lcos (β − θ)
. (1)
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We now apply the analogous analysis to acceleration,

āB = āA + ᾱ × r̄ B/A − ω2r̄ B/A,

v̇B
(
cos β ī − sin β j̄

) = (−θ̈ k̄
)× (−Lcos θ ī + Lsin θ j̄

)− θ̇2
(−Lcos θ ī + Lsin θ j̄

)
.

Matching like components gives

āB · ī = v̇B cos β = θ̈ Lsin θ + θ̇2Lcos θ,

āB · j̄ = −v́B sin β = θ̈ Lcos θ − θ̇2Lsin θ.

Elimination of v̇B leads to

θ̈ = −θ̇2 sin (β − θ)
cos (β − θ)

= −
( v

L

)2 (sin β)2 sin (β − θ)

cos (β − θ)3 . (2)

Note that we could have obtained the same expression directly by differentiating
Eq. (1) with respect to time.

Equations (1) and (2) allow us to describe the acceleration of the center of mass
in terms of v and θ. Relating this point to the constrained point A gives

āG = āA + ᾱ × r̄ G/A − ω̄2 × r̄ G/A

= L
2

(
θ̈ sin θ + θ̇2 cos θ

)
ī + L

2

(
θ̈ cos θ − θ̇2 sin θ

)
j̄ .

Substitution of Eqs. (1) and (2) and a trigonometric identity eventually lead to

āG = v2

2L
(sin β)2

cos (β − θ)3

(
cos β ī − sin β j̄

)
. (3)

[The preceding expression indicates that āG is parallel to the left guide bar. This
is a consequence of a general property of rigid-body motion. If G is the mid-
point between points A and B, describing āG in terms of āA and āB leads to
āG = 1

2 (āA + āB) .]
We now are ready to form the equations of motion. The centroidal moment of

inertia of the bar is (1/12) mL2, so we have


 F̄ · ī = F − fA + NB sin β − fB cos β = m
(
āG · ī

) = mv2

2L
(sin β)2 cos β

cos (β − θ)3 ,


 F̄ · j̄ = NA + NB cos β + fB sin β = m
(
āG · j̄

) = −mv2

2L
(sin β)2 sin β

cos (β − θ)3 ,


M̄A · k̄ = NA

(
L
2

cos θ

)
− fA

(
L
2

sin θ

)
− [NB cos (β − θ)]

L
2

− [ fB sin (β − θ)]
L
2

= Izz
(−θ̈

) = − 1
12

mL2
( v

L

)2 (sin β)2 sin (β − θ)

cos (β − θ)3 .

(4)
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These three equations of motion contain five unknown variables: F, NA, NB,

fA, and fB. The required additional equations relate the sliding friction and normal
forces at each collar. Coulomb’s law asserts that, when two surfaces slide over each
other, then

∣∣ f̄
∣∣ = µk

∣∣N̄∣∣ . The free-body diagram properly showed the sense of each
friction force, but it was noted that either normal force might actually be in the op-
posite sense from the one that was used to construct the diagram. Equations (4) may
be employed if either normal force is reversed, provided that NA or NB is replaced
with its negative value. In other words, we may obtain a set of equations that are
valid in all cases by defining NA and NB to be positive values, and replacing NA with
σ A NA and NB with σ BNB in Eqs. (4), with σ A = ±1 and σ B = ±1. Correspondingly,
Eqs. (4) may be written as

[H (σ A, σ B)]

⎧⎪⎪⎨
⎪⎪⎩

F

NA

NB

⎫⎪⎪⎬
⎪⎪⎭ = mv2

L
{K} ,

[H (σ A, σ B)] =

⎡
⎢⎢⎣

1 −µ (σ B sin β − µ cos β)

0 σ A (σ B cos β + µ sin β)

sin (θ) σ A cos (θ) − µ sin (θ) −σ B cos (β − θ) − µ sin (β − θ)

⎤
⎥⎥⎦ ,

{K} = (sin β)2

cos (β − θ)3 [0.5 cos β − 0.5 sin β − sin (β − θ) /6]T
.

(5)
A corrollary of this modification is that solutions of Eqs. (5) are meaningful only

if NA and NB are both positive. Thus we select an angle of inclination in the range
0 < θ < β and solve Eqs. (5) for each permutation of σ A = 1 or −1 and σ B = 1
or −1. We discard the solution for a set of signs if either NA or NB is found to
be negative. This leads to the possiblity of multiple solutions, which is a common
occurrence in nonlinear systems. However, the normal forces found for β = 75◦ and
µ = 0.25, which are depicted nondimensionally in the first set of graphs, indicate
that σ A = σ B = −1 is the only valid case over the entire range of θ.
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Values of the normal forces NA and NB as functions of θ when β = 75◦, µk = 0.25, for each permutation
of their sign factors
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The concluding graph shows F and the reaction forces as functions of the
nondimensional time vt/L. This parameter is related to θ by the law of sines. If
we take t = 0 to correspond to θ = β, then we have

vt
sin (β − θ)

= L
sin β

.

One reason for the rising value of F as t increases (decreasing θ) is the presence of
cos (β − θ)3 in the denominators of both āG and θ̈ .

0 0.2 0.4 0.6 0.8 1
0.001

0.01

0.1

1

10

100

1000

NA L/mv2

FL/mv2

NB L/mv2

vt/L

Forces as functions of nondimensional elapsed time corresponding to σ A = σ B = −1; β = 75◦, µk =
0.25

6.3 NEWTON–EULER EQUATIONS FOR A SYSTEM

The reduction from an arbitrary collection of particles to a rigid body had important
benefits, in that doing so reduced enormously the number of kinematical variables, si-
multaneously with enabling us to ignore the interaction forces exerted between the par-
ticles. Both gains result from the recognition that the particles forming a rigid body are
mutually constrained. In the same manner, it sometimes is useful to consider interacting
rigid bodies as a unified system. The concepts we develop here consider several bod-
ies to act in unison. Doing so lessens the need to consider the forces associated with
the interaction of these bodies. However, in doing so, fewer equations of motion will
be available. Thus the concepts that follow should be considered to supplement, rather
than replace, the basic Newton–Euler equations for each body in a system.

To assemble a system from its constituent rigid bodies, consider the pair of bodies
in Fig. 6.2, which are loaded by a set of external forces that are not labeled. In addition,
Body 2 exerts force f̄1,2 and couple M̄1,2 on Body 1 as a result of their interaction, which
can be the result of their being connected or as a consequence of field effects such as
gravity. The influence of Body 1 on Body 2 consists of force f̄2,1 and couple M̄2,1. These

M1,2

f2,1

M2,1

Body 1

Body 2

f1,2

Figure 6.2. Forces acting on a pair of interconnected rigid
bodies.
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dHG1

maG1
−

G1

dt
dHG2

dt

maG2
−

G2

Figure 6.3. Inertial force–couple systems equivalent to the
forces acting on a pair of interacting rigid bodies.

interaction effects are governed by Newton’s Third Law, which means that f̄2,1 = − f̄1,2,

M̄2,1 = −M̄1,2, and f̄2,1 and f̄1,2 share the same line of action.
The method by which we combine these two bodies into a system appeared in

Fig. 6.1, which depicted the force system acting on a rigid body as being equivalent in
its effect to a dynamic māG applied at the center of mass and a dynamic couple dH̄G/dt.
Figure 6.3 applies the same representation to each body considered in the previous fig-
ure. The forces and couples acting on each body in Figs. 6.2 and 6.3 are equivalent, so
their combined effect must also be equivalent. It follows that their sum, which represents
the resultant force acting on the system, is the same, and their moment about any point
B also is the same. The same conclusion would be reached if the system were composed
of N bodies, so the Newton–Euler equations for the system are


 F̄ =
N∑

j=1

mj āGj ,


M̄B =
N∑

j=1

dH̄Gj

dt
+

N∑
j=1

r̄ Gj/B × mj āGj .

(6.3.1)

These equations of motion share with Eq. (6.1.2) the cumbersome feature of having
the center-of-mass accelerations appear in the moment equations. For a single body,
which was the scope of Eq. (6.1.2), there was no advantage to such an approach. The
same is not true here because of an aspect of the resultant force and moment of the
actual force system. As was noted, the forces and couples exerted between any pair of
rigid bodies satisfies Newton’s Third Law. The contributions of each pair to the force
and moment sums cancel, so we may ignore any forces or couples that are internal to
the system when we formulate the resultants in Eqs. (6.3.1). Another useful aspect of
these equations lies in the arbitrariness of point B. The main consideration in selecting
the point for a moment sum in the static case is the ability to avoid the appearance
of unknown forces (usually reactions) in the moment equilibrium equations. We have
developed here a comparable ability for dynamic systems.

To see the possible advantage in the system viewpoint consider two interacting
rigid bodies in spatial motion. Describing the motion of each rigid body in isolation
from the other yields a total of 12 scalar Newton–Euler equations: three force compo-
nent equations and three moment component equations for each body. These equations
contain the forces and/or couples exerted between each body as unknown reactions,
so the solution of the equations must determine, or at least eliminate, those reactions.
Considering the two bodies as a single system, so that the interaction forces exerted
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between them become internal to the system, leads to three scalar force equations and
three scalar moment equations that do not contain these forces.

The systems viewpoint does not necessarily lead to a solvable set of equations, be-
cause that question depends on the number of external reaction forces and kinematical
variables that arise. In the event that Eqs. (6.3.1) are not sufficient to find the desired
variables, the equations may be supplemented by Newton–Euler equations of motion
for any of the rigid bodies. However, it is important to recognize that Eqs. (6.3.1) are
essentially the same as the result of summing the equations of motion for each isolated
body, so they do not contain any new information. If there are N bodies in a system,
then there are no more than 6N independent scalar Newton–Euler equations of motion.
Up to six of these may be obtained from Eqs. (6.3.1).

The ability to consider a set of moving parts as a system enables us to qualitatively
explain how a bicyclist can maintain balance and maneuver without falling. To avoid
going into details that would obscure the discussion, we employ a simplified model of
the steering configuration. Our model, which is shown in top view in Fig. 6.4, considers
the axis of the steering fork to be perpendicular to the longitudinal axis and to intersect
vertically the axis of the front wheel. Under perfect conditions, to follow a straight path
the bicycle would be oriented vertically, with the rider’s center of mass situated directly
over the line connecting the centers of the wheels. The angular momenta of the forward
and rear wheels, H̄f and H̄r , are horizontal in this case, as shown. If it were not for rolling
resistance, this motion could be sustained without any effort on the rider’s part.

dHf

dt

Hf

= Ω × Hf

Hr

M : Overturning
moment

Ω: Steering
correction

Figure 6.4. Balancing of a bicycle as seen in a top view.

Such ideal conditions cannot be maintained. For example, the rider might lean over
or a gust of wind might arise. Such a disturbance, in combination with the reaction of
the wheels, creates an overturning moment M̄ that acts about the longitudinal axis. (The
situation in the figure corresponds to the rider leaning to the left.) This moment must
be matched by a corresponding change in the angular momentum. If the rider makes
no adjustments and remains stationary relative to the bike, the result will be an angu-
lar acceleration in the direction of M̄. In other words, the bike would fall over. Instead,
the rider turns the handlebars, which causes the steering fork to rotate at some angular
speed �. This rotation causes the tip of H̄f to move in the sense of �̄ × H̄f . The conse-
quence of dH̄f /dt equaling M̄ is that the sense of �̄ induces a turn to the side in which
the bike is tending to lean (left in the case of the figure).

If the rider wishes to return to the direction initially set, then this correctional
maneuver must be reversed. The rider turns the steering wheel in the opposite sense,
thereby reversing the sense of dH̄f /dt . Thus, in the scenario of Fig. 6.4, after compensat-
ing for M̄, the rider would turn the handlebars clockwise as viewed from above, thereby
generating a dH̄f /dt effect that is oriented forward. To generate a force system whose
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resultant moment about the longitudinal axis matches this rate of change of the angu-
lar momentum, the rider simultaneously leans to the right, thereby shifting the center
mass to the other side. Thus riding in a straight line is actually a sequence of correc-
tive steering maneuvers and shifts of the center of mass. In essence, the bicyclist is both
the actuator and controller of a feedback control system. This feature is most evident
in children who have just begun to ride a bicycle. For a very experienced bicyclist, the
corrective maneuvers are barely perceptible. Also, if the rider’s hands are not placed on
the handlebars, then the steering wheel turns of its own accord in the manner required
to change the angular momentum at a rate that matches the unbalanced moment. In any
event the ability to steer is essential to maintaining one’s balance.

When a rider wishes to execute a steady turn the handlebars are not returned after
their initial rotation, so the bicycle is leaning to the side in which the turn is being ex-
ecuted. This situation is essentially as described by Example 6.4, except that it is now
convenient to use a reference frame whose origin is the center of mass of the whole bi-
cycle, with the y axis intersecting the center of both wheels. There is a normal force and
a friction force acting on each wheel, the resultant of the latter being what is required
to make the center of mass of the bicycle follow a circular path at speed v. The angular
momenta of both wheels no longer are oriented in fixed directions, because the bicycle
is rotating about the vertical axis at v/ρ, where ρ is the radius of the circular path. For a
left turn in Fig. 6.4, both dH̄f /dt and dH̄r/dt will be rearward. Regardless of the direc-
tion of the turn, we know that dH̄f /dt + dH̄r/dt must equal the overturning moment of
the friction, gravity, and normal forces about the longitudinal axis.

A performer riding a unicycle exploits these same phenomena to maintain left–right
balance. Thus falling to the left is controlled by twisting the wheel left, and vice versa.
Forward–rear balance requires a different control strategy. This relies on the fact that a
falling stick can be kept at a constant angle of tilt if it is given the correct translational
acceleration in the horizontal direction. Thus the unicyclist compensates for a tendency
to fall forward or back by accelerating in the direction of that tendency. Obviously riding
a unicyle is substantially more difficult than riding a bicycle.

This discussion of a bicycle simplifies much, and it also ignores some important ef-
fects. For example, if the bicycle begins to tip over, the angular momentum of each wheel
will change in the vertical direction. The matching moment is generated at the front and
rear wheels in the form of transverse friction forces that form a vertical couple. These
forces influence the handling and stability of the bicycle. Nevertheless, the discussion
does give a reasonable picture.

EXAMPLE 6.10 An automobile moving at a constant speed v follows a circular
path of radius ρ. The track (distance between a pair of wheels) is w and the wheel-
base (distance from front to rear axle) is �. The mass of the automobile is m, and the
center of mass is on the midplane, at distance b behind the front axle and height h
above the ground. Each wheel has radius R, mass mw, moment of inertia J about its
axle, and coefficient of static friction µ. Determine the maximum speed v that may
be sustained by the vehicle without skidding or tipping over.
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SOLUTION This example explores an interesting effect of the inertia of a wheel as
a way of illustrating the analysis of an assembly of bodies. The system consists of
the vehicle chassis and the four wheels. The xyz coordinate system is defined in the
free-body diagram to have its origin at the center of mass of the chassis, with the
x axis forward. Acting at each wheel is the normal force N̄j , which is assumed to
be collinear with the weight of the wheel acting at its center of mass of the wheel.
Each wheel also has a friction force f̄ j , which is depicted in the free-body diagram
as acting to the left relative to the forward direction, as they would for a left turn.

w

mg

N1

N2
N3

f3
f1f2

mwg
mwg mwg

x
y

z

v

b

v/ ρ

�-b

Free-body diagram of an automobile executing a turn
to the left.

It is reasonable to neglect rolling resistance, so each friction force should be
shown as acting perpendicular to the plane of the wheel. However, this introduces
a complication regarding the front wheels, because they must be rotated to execute
the turn, so the friction forces at the front and rear wheels are not parallel. One
consequence is that there is a net component of the friction force in the longitudinal
x direction, which means that a friction force representing traction must be applied
to maintain a constant speed. To simplify the analysis all friction forces are shown
in the diagram as though the front wheels were not steering, so that they act in the
transverse y direction.

Another simplification we employ is to consider all centers of mass to be fol-
lowing circles whose normal direction are ī . For the wheels on the left side, which
are closer to the center of curvature, the radius of the circle is ρ − w/2, whereas the
radius for wheels on the right side is ρ + w/2. Thus the center-of-mass accelerations
are approximated as

āG0 = ρ�2 j̄, āG1 = āG3 =
(
ρ − w

2

)
�2 j̄, āG2 = āG4 =

(
ρ + w

2

)
�2 j̄, (1)

where � = v/ρ is the rotation rate about the vertical axis. The angular momentum
of the chassis is due to �, and it is constant. The rotation rate of a wheel about
its axle is v/R, so the angular momentum of a wheel has two components: J (v/R)
about its axle, which is parallel to the y axis, and a constant component in the vertical
direction that is due to �. The horizontal component rotates at �̄, so the rates of
change of the angular momenta are

.

H̄G0 = 0̄,
.

H̄Gj = �̄ ×
(

J
v

R
j̄
)

= −J�2 ρ

R
ī . (2)
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We sum moments about the chassis’ center of mass. In view of Eqs. (1) and (2)
and the fact that each mā vector is in the y direction, Eqs. (6.3.1) become


 F̄ =
N∑

j=1

mj āGj = (m + 4mw) ρ�2 j̄,


M̄B =
4∑

j=0

dH̄Gj

dt
+

4∑
j=0

r̄ Gj/B × mj āGj = −4J�2 ρ

R
ī + [

bī − (h − R) k̄
]

× mw (āG1 + āG2) + [− (� − b) ī − (h − R) k̄
]× mw (āG1 + āG2)

=
[
−4J�2 ρ

R
+ 4 (h − R) ρmw�2

]
ī + (2b − �) ρmw�2k̄.

(3)

The simplified construction of the friction force enables us to evaluate the moments
by inspection, so matching like components in Eqs. (1) and (2) leads to


 F̄ · ī ≡ 0̄,


 F̄ · j̄ = ( f1 + f2 + f3 + f4) = (m + 4mw) ρ�2, (4)


 F̄ · k̄ = N1 + N2 + N3 + N4 − mg − 4mwg = 0, (5)


M̄G · ī = (N1 − N2 + N3 − N4)
w

2
+ ( f1 + f2 + f3 + f4) h

= �2
[
−J

ρ

R
+ 4 (h − R) ρmw

]
,

(6)


M̄G · j̄ = (−N1 − N2 + 2mwg) b + (N3 + N4 − 2mwg) (� − b) = 0, (7)


M̄G · k̄ = ( f1 + f2) b − ( f3 + f4) (� − b) = (2b − �) ρmw�2k̄. (8)

There are more unknown forces than the number of available equations of mo-
tion. It is possible to solve Eqs. (4) and (8) for the combinations f1 + f2 and f3 + f4,

and simultaneous solution of Eqs. (5) and (7) leads to a solution for N1 + N2 and
N3+ N4. Doing so shows that

N1 + N2 =
(

� − b
�

m + 2mw

)
g,

N3 + N4 =
(

b
�

m + 2mw

)
g,

f1 + f2 =
[
� − b

�
(m + 4mw) + 2 (2b − �)

�
mw

]
v2

ρ
,

f3 + f4 =
[

b
�

(m + 4mw) − 2 (2b − �)
�

mw

]
v2

ρ
,

(N1 − N2 + N3 − N4)
w

2
=
[
− J

R
− hm − 4Rmw

]
v2

ρ
.

(9)
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We recover the static normal forces from these equations by setting v = 0. It is rea-
sonable to assume that the dynamic effect is such that N1 and N3 on the left side of
the automobile decrease by the same amount � relative to their values, whereas N2

and N4 increase by that same amount. Hence we set

N1 =
(

� − b
2�

m + mw

)
g − � N2 =

(
� − b

2�
m + mw

)
g + �,

N3 =
(

b
2�

m + mw

)
g − �, N4 =

(
b
2�

m + mw

)
g + �.

(10)

The last of Eqs. (9) then yields

� = J + hRm + 4R2mw

2wRρ
v2. (11)

Even though we cannot determine the individual friction forces, we have suf-
ficient information to identify the critical conditions. In the skidding limit, each
wheel has attained its maximum possible friction force, so we analyze it by setting
f j = µNj . From the first and third of Eqs. (9) we find that

vskid =
[

(� − b) m + 2mw�

(� − b) (m + 4mw) + 2 (2b − �) mw

]1/2

(µρg)1/2
. �

The same calculation made with the second and fourth of Eqs. (9) yields

vskid =
[

bm + 2mw�

b (m + 4mw) − 2 (2b − �) mw

]1/2

(µρg)1/2
. �

Note that f1 + f2 and f3 + f4 both increase monotonically with increasing v,

whereas the corresponding normal force sums are independent of speed. Thus the
first value of vskid is the maximum speed for which the front wheels will not skid,
and the second value is the maximum speed for which the rear wheels do not skid.
Safe operation requires that we remain below the lower speed. In the special case in
which the center of mass is midway, b = �/2, both speeds reduce to (µρg)1/2

. The
same result is obtained in the limiting case in which each wheels’s mass vanishes.
Thus we deduce that the primary factors influencing whether the wheels will skid
are the coefficient of static friction and the radius of curvature of the turn.

The condition in which the vehicle is about to tip over occurs if the normal
force at both inner wheels is zero, N1 = N3 = 0, but the vehicle is still horizontal.
In a strict sense, Eqs. (9) do not apply in this case because Eqs. (10) indicate that
if b > �/2 then the value of � for which N3 = 0 gives N1 < 0, which is not possible.
Similarly, if b < �/2, zero N1 corresponds to negative N3. Rather than reanalyze
the basic equations, we argue that any condition where a wheel loses contact with
the ground is dangerous. In that case we take � to be the smaller of the values for
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which N1 or N3 vanishes, then substitute that value into Eq. (11) to determine the
corresponding value of the speed. The result is

vtip =
[

min (b, � − b) m + 2�mw

J + hRm + 4R2mw

]1/2 (
wRρg

�

)1/2

. �

In the limiting case in which the mass of the wheels is negligible, setting mw = J = 0
in the preceding equation gives

vtip =
[

min (b, � − b)
�

]1/2 (
wρg

h

)1/2

.

Our analysis indicated that the speed at which the automobile will begin to skid
is not strongly dependent on the vehicle’s inertial properties, but that is not the case
for tipping over. One is more likely to recover control of a vehicle that has begun
to skid than one that is about to tip over, so we wish that vtip > vskid. Because any
value of J decreases vtip, it is desirable to minimize the mass of the wheels. In the
limit as m and J vanish, we find that this design criterion on the speed is satisfied if

w

h
>

�

min (b, � − b)
µ.

This is consistent with our intuition that an automibile will be less likely to tip over
than a truck or SUV having the same track w.

6.4 MOMENTUM AND ENERGY PRINCIPLES

The force and moment equations discussed thus far govern the linear and angular accel-
eration of a body. Momentum and energy principles, which represent standard integrals
of these equations, may be used to relate the linear and angular velocity of the body
at successive instants or locations. Because these principles are derived directly from
the Newton–Euler equations of motion, these integral relations should be considered to
supplement, rather than replace, the basic acceleration equations. Furthermore, evalu-
ation of the associated impulse and work quantities often requires knowledge of some
aspects of a body’s motion, in which case these principles cannot be used to predict the
motion. One place where momentum principles are particularly useful is understanding
the manner in which any projectile rotates, which is the focus of Section 10.1.

6.4.1 Impulse–Momentum Principles

Equations (5.1.22) and (5.1.24) are the time derivative forms of impulse–momentum
relations. Definite integration of each between any two instants t1 and t2 leads to

P̄2 = P̄1 + ∫ t2
t1


 F̄dt,(
H̄A
)

2 = (
H̄A
)

1 + ∫ t2
t1


M̄Adt.
(6.4.1)
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These relations state that the final value of a body’s linear or angular momentum exceeds
the initial value by the corresponding type of impulse, which is defined to be the time
integral of the resultant force or moment. The linear momentum of a rigid body is mv̄G

and the angular momentum is described by Eqs. (6.1.3).
Both momentum principles are vector equations, so they each yield three scalar

equations obtained from equating like components. If the impulses can be evaluated,
then the scalar equations fully define the corresponding change in the linear or angular
velocities. The difficulty lies in that evaluation. The resultant force and moment acting
on a body are seldom known in advance because the reactions are unknown. Further-
more, it is not sufficient to know the force or moment in terms of components relative
to the body because the corresponding unit vectors are not constant. Evaluating the
impulse integrals in that case would require knowledge of the orientation of the unit
vectors, and of the components, as functions of time. Such information usually is not
available, because it depends on the bodily motion being studied.

Momentum–impulse relations are particularly useful when impulsive forces act on
a body. Examples of such forces are the those generated by an impact, such as between
a golf club and a ball, and explosions. Impulsive forces are defined to impart very large
accelerations to a body over a very short time interval. The notion of an impulsive force
is that it is sufficiently large that the influence of nonimpulsive forces, such as those asso-
ciated with gravity and springs, may be ignored during the brief interval of the impulse.
(Note in this regard that reactions can act impulsively, because they must be as large
as necessary to impose the associated motion constraint.) A corollary of the brevity of
the time interval is that the system’s position cannot change much because the veloc-
ity is finite. These observations lead to a simplified model of the action of impulsive
forces, which is quite useful if we are interested in the macroscopic aspects of a sys-
tem’s motion. We represent the linear and angular impulses by the average values of the
resultant force and moment, and take the velocity to change instantly from time t−

0 to
time t+

0 , while the position is unaltered. Let ti < t < ti + �t denote the interval in which
the impulsive forces act, and let a subscript “imp” denote average values of the resultant
force and moment of the impulsive forces. The simplified model of impulsive action then
states that

P̄
(
t = t+

i

) = P̄
(
t = t−

i

)+ (

 F̄

)
imp �t,

H̄A
(
t = t+

i

) = H̄A
(
t = t−

i

)+ (

M̄A

)
imp �t,

r̄ P/O
(
t = t+

i

) = r̄ P/O
(
t = t−

i

)
,

(6.4.2)

where point P referred to in the last relation is any point in the body. It is obvious that
these relations should be used judiciously. For example, the corollary of taking the ve-
locity to change instantaneously is that the corresponding acceleration is infinite. Thus
the simplified model is of no use if one wishes to study the details of the impulsive pro-
cess, such as what stresses are generated by the collision of bodies. The role of impulse
forces in accounting for collisions between bodies is treated in Subsection 6.4.3.
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The extension of impulse–momentum principles to systems of bodies is readily
obtained from Eqs. (6.3.1). We seek time integrals of those relations in which the fi-
nal result requires knowledge of motion parameters at only the initial and final instants.
Toward that end we operate on the last term in the angular momentum equation by re-
ferring the acceleration of each body’s center of mass to the motion of point B. Because
the summation of mjr̄ Gj/B for each body is the first moment of mass, which defines the
system’s center of mass G, this operation leads to

N∑
j=1

r̄ Gj/B × mj āGj =
N∑

j=1

mjr̄ Gj/B × āB +
N∑

j=1

r̄ Gj/B × mj āGj/B

= msystemr̄ G/B × āB +
N∑

j=1

r̄ Gj/B × mj āGj/B.

(6.4.3)

The next step mirrors the derivation of the angular momentum principle for a particle,
in which the acceleration term in the summation is converted to a velocity-dependent
term by taking the time derivative of the cross product. Because d/dt (r̄ Gj/B) ≡ v̄Gj/B,

the result is
N∑

j=1

r̄ Gj/B × mj āGj = msystemr̄ G/B × āB +
N∑

j=1

d
dt

(r̄ Gj/B × mj v̄Gj/B) . (6.4.4)

Thus an alternative form of the second equation of Eqs. (6.3.1) governing the mo-
ment acting on a system is


M̄B =
N∑

j=1

dH̄Gj

dt
+ msystemr̄ G/B × āB +

N∑
j=1

d
dt

(r̄ Gj/B × mj v̄Gj/B) . (6.4.5)

We seek a form of this relation in which the momentum terms are time derivatives. We
therefore require that the point B about which we sum moments be an inertial point, for
which āB = 0̄, or else the system’s center of mass, in which case r̄ G/B ≡ 0̄. In either case
the right side is an exact derivative, whose integration yields the principle of angular
impulse and momentum for a system. Integration of the first of Eqs. (6.3.1) yields the
corresponding linear impulse–momentum principle, so we have found that

N∑
j=1

m (v̄Gj )2 =
N∑

j=1

m (v̄Gj )1 +
∫ t2

t1

 F̄dt,

N∑
j=1

(
H̄Gj

)
2 +

N∑
j=1

(r̄ Gj/B × mj v̄Gj/B)2

=
N∑

j=1

(
H̄Gj

)
1 +

N∑
j=1

(r̄ Gj/B × mj v̄Gj/B)1 +
∫ t2

t1

M̄Bdt.

(6.4.6)

Proper application of this principle requires that one be cognizant that the moment
equation is valid only if the reference point B is either stationary, in which case the
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term v̄Gj/B is the absolute velocity, that is, v̄Gj/B = v̄Gj , or else it must be the center of
mass for the entire system, which corresponds to v̄Gj/B = v̄Gj − v̄B. One simplification
arises if it should happen that the center of mass is stationary relative to a body. In that
case v̄Gj/B = ω̄ j × r̄ Gj/B, but r̄ Gj/B ≡ −r̄ B/Gj , so that

H̄Gj + r̄ Gj/B × mj v̄Gj/B = H̄Gj + mjr̄ B/Gj × (ω̄ j × r̄ B/Gj )

= H̄Bj if point B is stationary relative to body j,
(6.4.7)

where the final form follows from Eq. (5.1.36).
A primary aspect of the system momentum principles is associated with their vec-

torial nature. Although we might not have a complete idea of the time dependence of
all forces acting on a body, it might be that the component of the resultant force in a
specific fixed direction ēF is known as a function of time. Similarly, we might know the
resultant moment about a fixed axis in direction ēM intersecting an allowable point for
the moment equation. The component of the corresponding type of impulse may be
evaluated and equated to the momentum change in each direction. The most common
situation fitting this specification is that in which an impulse component vanishes. In that
case, the associated component of Eqs. (6.4.6) becomes a conservation principle, stating
that a system’s linear momentum in a certain direction, or angular momentum about a
certain axis, is constant.

EXAMPLE 6.11 A 10-kg square plate suspended by ball-and-socket joint A is at
rest when it is struck by a hammer. The impulsive force F̄ generated by the hammer
is normal to the surface of the plate, and its average value during the 4-ms interval
that it acts is 5000 N. Determine the angular velocity of the plate at the instant
following the impact and the average reaction at the support.

F

360 mm

360 mm

120 mm

G

A

Example 6.11

SOLUTION This straightforward example once again highlights the fact that the be-
havior of bodies in spatial motion is often counterintuitive. We ignore the weight
of the plate, which is much smaller than the average applied force. In contrast, the
reaction exerted by the ball-and-socket joint, which consists of forces acting in each
of the coordinate directions, is impulsive, because it must be as large as necessary
to prevent movement of point A. The plate pivots about the stationary point A
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where the ball-and-socket joint is located, so we place the origin of the body-fixed
xyz coordinate system there and align the axes with the edges of the plate.

F

60 mm

180 mm

x

y

z

Ax

Ay

Az

G

Free-body diagram showing only the impulsive forces that act on
the square plate.

We know that ω̄1 = 0̄, but have no idea what angular velocity results from the
action of F̄ . If we knew ω̄2 we could find v̄G kinematically according to

ω̄2 = ωxī + ωy j̄ + ωzk̄, (v̄G)2 = ω̄2 × r̄ G/A.

We set r̄ G/A = 0.18ī − 0.06 j̄ m, which leads to

(v̄G)2 = 0.06ωzī + 0.18ωz j̄ + (−0.06ωx − 0.18ωy) k̄.

The inertia properties relative to xyz are obtained from the Appendix and the par-
allel axis theorems. The coordinates of point A relative to centroidal axes parallel
to xyz are (−0.18, 0.06, 0) m, which leads to

Ixx = 0.144 kg-m2, Iyy = 0.432 kg-m2, Izz = 0.576 kg-m2,

Ixy = −0.108 kg-m2, Ixz = Iyz = 0.

The final angular momentum about pivot A corresponding to these properties
is (

H̄A
)

2 = (0.144ωx + 0.108ωy) ī + (0.432ωy + 0.108ωx) j̄ + 0.576ωzk̄.

The initial angular momentum is zero, so the final angular momentum must equal
the moment impulse. The sole impulsive force exerting a moment about point A is
F̄ . The moment impulse is the average moment of this force multiplied by the 4-ms
interval or, equivalently, the moment of the linear impulse of F̄ during this interval.
Thus, (

H̄A
)

2 = r̄ F/A × F̄av (�t) = (
0.36ī + 0.12 j̄

)× (
5000k̄

)
(0.004) .

Matching like components in the two descriptions of
(
H̄A
)

2 gives(
H̄A
)

2 · ī = (0.144ωx + 0.108ωy) = 2.4,(
H̄A
)

2 · j̄ = (0.432ωy + 0.108ωy) = −7.2,(
H̄A
)

2 · k̄ = 0.576ωz = 0.
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We solve these equations for the rotation rates, from which we obtain

ω̄2 = 35.90ī − 25.64 j̄ rad/s. �

The next step is to form the linear impulse–momentum principle in order to
determine the reaction. The velocity of the center of mass corresponding to ω̄2 is

(v̄G)2 = ω̄2 × r̄ G/A = 2.462k̄ m/s.

The initial linear momentum was zero, so the final momentum must equal the im-
pulse of all forces:

m (v̄G)2 = [
Axī + Ay j̄ + (Az + F) k̄

]
�t.

The solution of these equations is

Ax = Ay = 0, Az = 1153 N. �

These are average values over the 4-ms interval. The maximum values exceed these.
It might surprise you that the reaction is in the same sense as the impulsive

force F̄ . This result indicates that, if the ball-and-socket joint were not present, the
plate would rotate about its mass center because of the moment of the force, such
that point A moves in the negative z direction. It is possible to locate a curve on
the plate representing the locus of points at which the force can be applied without
generating a dynamic reaction at the joint. Any such point is sometimes referred to
as a center of percussion.

6.4.2 Work–Energy Principles

We begin the derivation of work–energy principles for rigid bodies by considering an
isolated rigid body as a collection of particles. Equation (1.2.14) states the principle for
a single particle. We use it to describe particle number j in a system of N particles. As
we did previously, we denote each force acting on this particle as f̄ j,k if it is exerted
by any other particle k within the body, while F̄j represents the resultant of all forces
exerted on particle j by bodies not included in the system. The resultant force acting on
the particle is the sum of F̄j and all of the f̄ j,k . The work done by this resultant is the
integral of the resultant’s component in the direction of the displacement, multiplied by
the differential displacement. The work–energy principle for this particle states that this
work increases the kinetic energy:

1
2

mj
(
v2

j

)
2

= 1
2

mj
(
v2

j

)
1
+
∮ 2

1

⎛
⎜⎜⎝

N∑
k=1
k �= j

f̄ j,k + F̄j

⎞
⎟⎟⎠ · dr̄ j . (6.4.8)

This relation describes an arbitrary particle within a system, but we are interested
in the specific case in which the particles constitute a rigid body. We recall Chasle’s
theorem, and select any convenient point B as the reference point for the motion. The
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differential displacement dr̄ j is the result of the displacement of point B and the in-
finitesimal rotation dθ about point B, see Eq. (3.3.6), so that

dr̄ j = dr̄ B + dθ × r̄ j/B. (6.4.9)

We know from the Newton–Euler equations of motion that the forces internal to a rigid
body do not directly affect its motion, so the same must be true of any energy princi-
ple. Thus let us focus on the term in Eq. (6.4.8) that contains these force. The identity
for the scalar triple product, ā · (b̄ × c̄

) ≡ (c̄ × ā) · b̄, in conjunction with the preceding
representation of dr̄ j , leads to

N∑
k=1
k �= j

f̄ jk · dr̄ j =
N∑

k=1
k �= j

f̄ j,k · dr̄ B +
N∑

k=1
k �= j

r̄ j/B × f̄ j,k · dθ. (6.4.10)

Note that r̄ j/B × f̄ j,k is the moment of f̄ j,k about point B. Thus the right side of this
expression replaces the work done by internal forces acting on particle j with the work
done by an equivalent force–couple system acting at point B.

Now consider the combination of all particles obtained by adding Eq. (6.4.10) for
j = 1, 2, . . . , N. The first term on the right side will add all of the internal forces at point
B, and the second term will add all moments. Specifically,

N∑
j=1

N∑
k=1
k �= j

f̄ jk · dr̄ j =

⎛
⎜⎜⎝

N∑
j=1

N∑
k=1
k �= j

f̄ j,k

⎞
⎟⎟⎠ · dr̄ B +

⎛
⎜⎜⎝

N∑
j=1

N∑
k=1
k �= j

r̄ j/B × f̄ j,k

⎞
⎟⎟⎠ · dθ. (6.4.11)

For every occurrence of a specific j in the first sum and a specific k in the second, there
is a matching occurrence in the opposite sequence. According to Newton’s Third Law,
f̄ j,k and f̄k, j are equal in magnitude, opposite in sense, and collinear. The consequence
of these properties was seen in Eqs. (5.1.7) to be that the internal forces have a zero re-
sultant, and they exert no net moment about any point. Thus the preceding sum reduces
to zero.

It follows that adding work–energy equation (6.4.8) for each particle of the rigid
body will result in cancellation of the contribution of all internal forces. Because 1

2 mjv
2
j

is the kinetic energy of one particle of the rigid body, and kinetic energy is a scalar,
adding the work–energy equation for each particle in a rigid body leads to the work–
energy equation for a rigid body,

T2 = T1 + W1→2, (6.4.12)

where T1 and T2 are the kinetic energy of the rigid body at any two instants and W1→2 is
the work done by all forces acting on the body as it moves from its position at t1 to its
position at t2:

W1→2 =
N∑

j=1

∮ 2

1
F̄j · dr̄ j . (6.4.13)
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Recall that the kinetic energy of a rigid body corresponding to specified v̄G and ω̄ is

T =

⎧⎪⎪⎨
⎪⎪⎩

1
2

mv2
G + 1

2
ω̄ · H̄G : any motion

1
2
ω̄ · H̄O : pure rotation about point O

. (6.4.14)

Evaluation of the work according to Eq. (6.4.13) requires that we describe function-
ally how each external force depends on the position of the point at which it is applied.
This can be quite cumbersome for two reasons: There might be many points to consider,
and some or all of the points might follow intricate paths. An alternative is to shift the
forces from the point at which they are applied to any convenient point B in the body.
When Eq. (6.4.9) is used to relate the displacement of a force’s point of application to
the displacement of the reference point, the work done by force F̄j in a differential dis-
placement dr̄ j becomes

F̄j · dr̄ j = F̄j · dr̄ B + F̄j · (dθ × r̄ j/B
) ≡ F̄j · dr̄ B + (

r̄ j/B × F̄j
) · dθ, (6.4.15)

where the final form stems from the identity for the scalar triple product. Because
r̄ j/B × F̄j is the moment of F̄j about point B and both dr̄ B and dθ are independent of
which force is under consideration, adding the work done by each force, as required by
Eq. (6.4.13), will lead to two terms containing the resultant force and resultant moment
about point B, specifically,

W1→2 =
∮ 2

1

 F̄ · dr̄ B +

∮ 2

1

M̄B · dθ. (6.4.16)

This expression could have been anticipated from Chasle’s theorem. It shows that the
total work is the sum of the work done by the resultant of the external forces in moving
an arbitrary point B and the work done by the moment of the external forces in the
rotation about that point.

Another alternative to direct evaluation of the work done by a force arises when a
force is conservative. The term “conservative” is a corollary of the property that such a
force does no net work when the point at which it is applied follows an arbitrary closed
path. Consequently, whatever work it does in going from position 1 to position 2 on a
closed path is the negative of the work it will do to return to position 1, so that work is
not lost. This property is expressed by

W1→2 = −W1→2. (6.4.17)

This must be true for any closed path containing the specified positions r̄1 and r̄2 of the
point of application. Furthermore, it must be true for any pair of points r̄1 and r̄2 on
a specific path. These conditions can only be satisfied if the work is determined by the
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change in the value of a function of position. This function, termed the potential energy,
is defined such that

W1→2 = V (r̄1) − V (r̄2) ≡ V1 − V2. (6.4.18)

Strictly speaking, all requirements would be met if the opposite sign was used to define
V (r̄) . The definition we use enables us to interpret the work done by a conservative
force as the amount by which its potential energy is depleted or, equivalently, as the
ability of a force to do work.

One method by which we may determine whether a specific force is conservative,
and if so, determine the corresponding form of the potential energy, is to evaluate the
work the force does when the point at which it is applied follows an arbitrary path. If it
is found that the work depends solely on the initial and final position coordinates of its
point of application, then V (r̄1) and V (r̄2) are merely V (r̄) at either location. Clearly,
forces imparted with a specified time history are not conservative because the work
they do will depend explicitly on the time interval. In the same vein, velocity-dependent
forces such as friction are not conservative.

This approach is readily implemented in the case of gravity close to the Earth’s
surface. Because the force acts in a constant direction, we use Cartesian coordinates to
represent the force and the position, which leads to

F̄ = −mgK̄, dr̄ = dXĪ + dY j̄ + dZK̄. (6.4.19)

The work done by this force is

W1→2 =
∮ 2

1

(−mgK̄
) · (dXĪ + dY j̄ + dZK̄

) = −
∫ Z2

Z1

mg dZ = mgZ1 − mgZ2.

(6.4.20)
Matching this to Eq. (6.4.18) leads to

Vgrav = mgZ, (6.4.21)

which usually is applied by taking Z to be the height of the center of mass above some
arbitrarily selected reference elevation known as the datum.

When we are concerned with a gravity force exerted by a body other than the Earth,
or the motion is known to result in large changes in the distance to the center of the
Earth, we need to apply the universal law of gravitation, which states that

F̄ = −GMm
r2

ēr , (6.4.22)

where r is the distance to the center of mass of the interacting body and ēr is the unit vec-
tor oriented from the attracting body to the body to which F̄ is applied. For the Earth,
one can use GM = 5.990(104) m3/s2. For the determination of V (r̄) we may consider
the attracting body to be stationary, so that ēr is the radial unit vector for spherical
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coordinates. Correspondingly, the differential displacement is dr̄ = v̄dt = drēr +
rdφēφ+(r sin φ) dθ ēθ , so the work is given by

W1→2 =
∮ 2

1

(
−GmM

r2
ēr

)
· (drēr + rdφēφ + rdθ sin φēθ )

= −
∫ r2

r1

GmM
r2

dr = −GmM
r1

+ GmM
r2

.

(6.4.23)

The terms on the right side are the same function of r evaluated at each position, so the
potential energy is given by

Vgrav = − GmM
r

. (6.4.24)

Springs are important as actual devices, as well as models for elastic bodies. If we
take one end of the spring to be stationary, the force F̄ applied to the moving point is
oriented along the radial line toward the fixed end. In the model of a spring that behaves
linearly, the magnitude of the force is k�, where k is the spring stiffness and � is the
elongation. The latter is defined as the difference between the current length � of the
spring and the undeformed length �0:

� = � − �0 (6.4.25)

Spherical coordinates centered at the fixed end are suitable for describing the orienta-
tion of F̄ . Then r = � and dr = d� = d�, so that

F̄ = −k�ēr , dr̄ = d�ēr + �dφēφ + (� sin φ) dθ ēθ ,

W1→2 =
∮ 2

1
(−k�ēr ) · (d�ēr + �dφēφ + �dθ sin φēθ )

= −
∫ �2

�1

k�d� = 1
2

k�2
1 − 1

2
k�2

2.

(6.4.26)

Comparison of the latter expression with Eq. (6.4.18) shows that the potential energy of
a spring is

Vspr = 1
2

k�2. (6.4.27)

At any position, � is the elongation of the spring referenced to the unstretched length
of the spring, as described, by Eq. (6.4.25). Failure to properly describe � is a common
error in the evaluation of a spring’s potential energy.

An alternative approach for examining the conservative nature of a force employs
vector calculus. Consider two positions that differ by an infinitesimal amount, so that
r̄2 = r̄1 + dr̄ . The infinitesimal work dW done by a conservative force in such a dis-
placement is given by

dW = V (r̄1) − V (r̄1 + dr̄) = −dV. (6.4.28)
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Let us use Cartesian coordinates to define the position, so that V is a considered to be
a known function of the XYZ coordinates of the point where the force is applied. The
chain rule for differentiation yields

dW = −∂V
∂ X

dX − ∂V
∂Y

dY − ∂V
∂ Z

dZ. (6.4.29)

In Cartesian coordinates an infinitesimal displacement is dr̄ = dXĪ + dY j̄ + dZK̄, so
the preceding equation is the scalar form of dW = −∇V · dr̄ . However, the work done
by any force in an infinitesimal displacement is dW = F̄ · dr̄ . Either form is equally cor-
rect if F̄ is conservative, so it must be that a conservative force is the negative of the
gradient of its potential-energy function:

F̄cons = −∇V. (6.4.30)

This leads to a simple way of checking that a force is conservative. The curl of the gra-
dient is identically zero, so it must be that

if ∇ × F̄ ≡ 0̄, then F̄ is conservative. (6.4.31)

If some forces are not conservative, we may use Eq. (6.4.18) to account for the con-
servative effects, whereas the work done by the nonconservative forces, which we denote
as Wnc

1→2, is found according to either Eq. (6.4.13) or Eq. (6.4.16). Thus,

W1→2 = V1 − V2 + Wnc
1→2. (6.4.32)

Substitution of this expression into the basic work–energy equation yields

T2 + V2 = T1 + V1 + Wnc
1→2. (6.4.33)

The quantity T + V is called the mechanical energy. In any motion in which the non-
conservative forces do no work, there is conservation of energy, meaning that T + V is
constant throughout the motion.

The development thus far is sufficient for the purpose of analyzing specific systems.
However, we may garner a different perspective for the role of energy by deriving an-
other energy principle. The motion of the center of mass is governed by Newton’s Sec-
ond Law. The derivation in Chapter 1 of the work–energy principle for a particle is
equally valid when applied to the center of mass, so it must be that

1
2

m
(
v2

G

)
2 = 1

2
m
(
v2

G

)
1 +

∮ 2

1

 F̄ · dr̄ G. (6.4.34)

This equation has a simple explanation when we recall Chasle’s theorem to consider the
body’s motion to be a superposition of a translation following the center of mass and a
rotation about the center of mass. As indicated by Eq. (6.4.14), 1

2 mv2
G is the translational

kinetic energy. Thus Eq. (6.4.34) states that the work done by the resultant force to move
the center of mass of a rigid body increases the translational kinetic energy.

An interesting aspect of Eq. (6.4.34) is that the work term on the right side also ap-
pears in the alternative description of work given by Eq. (6.4.16). In view of Eqs. (6.4.14)
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and (6.4.16), taking the difference between the work–energy principle of Eq. (6.4.12) and
Eq. (6.4.34) leaves

1
2
ω̄2 · (H̄G

)
2 = 1

2
ω̄1 · (H̄G

)
1 +

∮ 2

1

M̄G · dθ. (6.4.35)

This relation shows that the work done by the resultant moment about the center of
mass has the effect of increasing the rotational kinetic energy. Thus replacing the actual
forces by an equivalent force–couple system acting at the center of mass leads to an
uncoupling of effects, with the resultant force increasing the translational kinetic energy
and the resultant moment increasing the rotational kinetic energy.

It might seem that Eqs. (6.4.34) and (6.4.35) provide an alternative to the work–
energy principle stated by Eq. (6.4.33). However, this seldom is true, because of a subtle
aspect of constraint forces. We will see in the next chapter that such forces often do
no work. However, if we transfer a constraint force from its actual point of application
to the center of mass, this force will contribute to the work terms in both Eqs. (6.4.34)
and (6.4.35). Constraint forces are not known in advance, so neither the translational
nor rotational work–energy equation would be useful by themselves for evaluating the
motion.

Constraint forces of particular concern are those associated with connections be-
tween moving bodies. It sometimes is possible to avoid the occurrence of such forces by
considering the assembly of bodies to form a system. The mechanical energies T and V,
and the work done by forces, are scalars, so the addition of Eq. (6.4.33) for each body in
a system yields the same form for the assembly:

(T2)total + (V2)total = (T1)total + (V1)total + (
Wnc

1→2

)
total . (6.4.36)

The value of this principle is that some forces exerted between the bodies will do
no work when bodies are considered as a system, even though they do work when each
body is considered individually. To see how this might be, consider the planar situation
in Fig. 6.5, where two bodies are connected by pins to massless link AB. Because the link
has no mass, it effectively is in static equilibrium, which means that it can sustain only
axial force F. The forces exerted to each body are equal and opposite. The differential
amount of work done by these forces when both bodies move is

dW = (FēB/A) · dr̄ B + (−FēB/A) · dr̄ A. (6.4.37)

If the connecting link is considered to be a rigid bar, then the length L is taken to be
constant. In that case the displacements are related by dr̄ B = dr̄ A + dθ AB × r̄ B/A. The
work is zero because the rotational part of the displacement is perpendicular to ēB/A.

L

A B

F

F

Figure 6.5. Forces exerted by a massless rigid connecting link.
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If the link is regarded as an elastic spring, the length L is treated as a variable. The
displacements in this case are related by dr̄ B = dr̄ A + dLēB/A + dθ AB × r̄ B/A, and the
work is dW = FdL. The axial force F in a spring is known to be k�, where � is the
change in the value of L. Thus we may compute the work done by an elastic connect-
ing force. (It would be simpler to merely account for the work of the spring in terms of
its potential energy.) The problematic case occurs when the length L is a variable that
is controlled, as in the case of a servo-actuated hydraulic cylinder. The force F in this
case is not known. Rather, it is a constraint force whose role is to change L in the pre-
scribed manner. Considering both bodies to form a system will not enable us to avoid
considering the unknown connective force in this situation.

The work–energy principle relates velocity parameters at two different positions. If
we differentiate this expression with respect to time we obtain the power balance law,

Ṫ + V̇ = Pnc, (6.4.38)

where Pnc represents the power input to the body by the nonconservative forces. This is
equivalent to the first law of thermodynamics for a rigid body, for it states that the rate
of increase of the body’s mechanical energy equals the rate at which power is provided
to the body. By definition, power is the rate at which work is done, so the work done
by a force in an infinitesimal displacement dr̄ during an interval dt can be computed as
either F̄ · dr̄ or Pdt. It follows from Eq. (6.4.16) that

Pnc =
N∑

j=1

F̄nc
j · v̄ j = 
 F̄nc · v̄B +

∮ 2

1

M̄nc

B · ω̄. (6.4.39)

Some individuals use the power balance law to obtain a differential equation of motion
corresponding to known energy expressions for a system, but we will see in the next
chapter that there is a better way of achieving that end.

As is true for momentum principles, the work–energy principles have inherent
limitations. Most profound of these is the necessity to evaluate the work done by non-
conservative forces. Equation (6.4.16), which replaces any external force by an equiva-
lent force–couple system acting at an arbitrary point, is an aid. Obviously, the motion of
such a point must be known in order to evaluate the path integrals. It is equally impor-
tant to know how the resultant force varies as the position of the selected point changes
and how the moment depends on the angle of orientation. Also, as noted previously,
the work–energy principle is not likely to be useful if any force acting on the body is a
specified function of time or is velocity dependent. Even if it might seem that the work
could be evaluated, doing so might be quite complicated.

Another reason why we cannot rely on momentum and energy principles comes
from the fact that there usually are many position variables to evaluate. For example,
we can locate the position of a rigid body with three position coordinates for its center
of mass and three Eulerian angles. In general, the number of momentum and energy
equations not containing unknown reactions will be fewer than the number of unknown
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position and rate variables. The important thing to remember is that momentum and
energy principles are derived as standard integrals of the Newton–Euler equations of
motion. Thus any information we obtain from these first integrals could be obtained by
solving the differential equations of motion. Although it might be more difficult to solve
such equations, formulation and solution of the equations of motion is often the only
useful approach.

EXAMPLE 6.12 A disk is rolling without slipping in an unsteady manner, such
that the angle θ at which the plane of the coin is inclined is not constant. Prove that
the work done by the friction and normal forces is zero.

SOLUTION The main objective here is to demonstrate how one can evaluate work
when a force acts at a point whose motion is uncertain. Also, the result that the
friction force does no work if the body rolls without slipping has important implica-
tions for our later studies. We draw a free-body diagram of the disk in which xyz is
a centroidal body-fixed reference frame whose y axis at the instant in the diagram is
the horizontal diameter of the disk. The contact force exerted by the ground is de-
composed into three components: N̄ is the normal force, f̄t is the tangential friction
force, which is parallel to the y axis, and f̄n is the friction force transverse to the y
axis.

θ

φ
.

ψ.

mg

N
fn

ft
z

x

y

G

C

Free-body diagram of the disk rolling in an unsteady precession.

At first glance, the fact that the velocity of the contact point C is zero might
seem to make it obvious that the contact forces do no work. Such thinking is based
on the belief that, because v̄C = 0̄, the contact force acts at a stationary point, so it
cannot do work. The difficulty with such reasoning is that the contact point is at rest
for only an instant. After even an infinitesimal rotation, a different point is in contact
with the ground, so one cannot assert with certainty that the forces act at a single
point that does not move. We therefore transfer the forces at the contact point to
the center G, whose motion is easier to understand. The normal and friction forces
at point C are equivalent to a force F̄ and couple M̄G at point G, where F̄ is the
resultant force and M̄G is the resultant moment about point G :

F̄ = N̄ + f̄t + f̄n, M̄G = r̄C/G × (
N̄ + f̄t + f̄n

) = r̄C/G × F̄ .
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In an infinitesimal time interval dt, point G displaces by v̄G dt and the disk ro-
tates by ω̄ dt. The work done by the equivalent force–couple system in this infinites-
imal movement is

dW = F̄ · (v̄G dt) + M̄G · (ω̄ dt) = [
F̄ · v̄G + (

r̄C/G × F̄
) · ω̄

]
dt.

If there is slippage at the contact point, then v̄G and ω̄ are kinematically unrelated,
which leads to a nonzero value for dW. The absence of slippage requires that v̄G =
ω̄ × r̄ G/C. Correspondingly, we have

dW = [
F̄ · (ω̄ × r̄ G/C) + (

r̄C/G × F̄
) · ω̄

]
dt.

We apply the identity ā · (b̄ × c̄
) ≡ (c̄ × ā) · b̄ to the first term inside the brackets,

which gives

dW = [(
r̄ G/C × F̄

) · ω̄ + (
r̄C/G × F̄

) · ω̄
]

dt ≡ 0,

where the result is a consequence of the fact that r̄ G/C ≡ −r̄C/G. The present anal-
ysis is completely general, other than considering the ground to be stationary. In-
tuitively, it makes sense that no work is done when there is no relative slippage
between contacting surfaces, because we associate rubbing with heat generation,
which depletes the mechanical energy.

EXAMPLE 6.13 The sphere, whose mass is m, spins relative to shaft AB at the con-
stant rate η = 10 rad/s. This shaft is attached to the vertical shaft AC by fork-and-
clevis joint A. The vertical shaft rotates freely, with no torque applied to its rotation
axis. The mass of bar AB is m/2, and the other parameters are R = 150 mm and
L = 400 mm. Initially, θ is held constant at 90◦ by a cable, and the precession rate is
� = 5 rad/s. Determine the maximum and minimum values of θ in the motion
following breakage of the cable and the corresponding precession rates. Then
determine the values of θ̇ and � at the instant when θ is the average of these
extreme angles.

A

Ω

θ

L R

B

C

η

Example 6.13
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SOLUTION We see here that momentum and energy principles can be used simulta-
neously, thereby enabling us to analyze an intricate motion. We consider the sphere
and shaft AB to form a system, because the forces exerted between them do no net
work. We include the massless vertical shaft in this system to utilize our knowledge
of how bearing C acts.

A

θ

B

z

y

Ψ

y' x'

z'

C

mg

x

Free-body diagram of the sphere and its supporting shafts.

The free-body diagram of this system shows that bearing C exerts an arbitrary
force and couple, except that the couple has no component about the vertical axis.
This force–couple system does no work, and gravity is conservative. Therefore me-
chanical energy is conserved throughout the motion. We also observe that none of
the forces or couples depicted in the free-body diagram exert no moment about the
z′ axis, which means that the system’s angular momentum about the z′ axis also is
conserved.

Both the sphere and shaft AB are in pure rotation about stationary point A,
so the xyz coordinate system shown in the the free-body diagram, whose z axis co-
incides with AB, will be convenient for describing the angular momentum of both
bodies. We also define another reference frame x′y′z′ that solely precesses about its
z′ axis.

Point A is on the z′ axis, and it is the pivot point for the pure rotation of both the
shaft and the sphere. We develop an expression for H̄A of each body under arbitrary
conditions in order to address all aspects of the problem. The inertia properties in
the Appendix and the parallel axis theorems indicate that

(Izz)s = 2
5

mR2 = 0.009m ≡ I1, (Ixx)s = (Iyy)s = 2
5

mR2 + mL2 = 0.169m ≡ I2,

(Ixx)AB = (Iyy)AB = 1
3

(m
2

)
L2 = 0.02667m ≡ I3. (1)

The angular velocity of the sphere is these bodies is sum of the precession rate �

and the nutation rate θ̇ :

ω̄s = �k̄′ + θ̇ j̄ ′ − ηk̄ = −� sin θ ī + θ̇ j̄ + (� cos θ − η) k̄,

ω̄AB = �k̄′ + θ̇ j̄ ′ = −� sin θ ī + θ̇ j̄ + � cos θ k̄.
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The corresponding angular momenta and kinetic energies corresponding to pure
rotation are (

H̄A
)

s = −I2� sin θ ī + I2θ̇ j̄ + I1 (� cos θ − η) k̄,(
H̄A
)

AB = −I3� sin θ ī + I3θ̇ j̄,

(T)s = 1
2
ω̄s · (H̄A

)
s = 1

2

[
I2�

2 (sin θ)2 + I2θ̇
2 + I1 (� cos θ − η)2

]
,

(T)AB = 1
2
ω̄AB · (H̄A

)
AB = 1

2

[
I3�

2 (sin θ)2 + I3θ̇
2
]
.

(2)

Because no resultant moment about the z′ axis acts on the system, the angular
momentum about this axis is conserved. Point A lies on this axis, so we assert that[(

H̄A
)

s + (
H̄A
)

AB

]
2
· k̄′ = [(

H̄A
)

s + (
H̄A
)

AB

]
1
· k̄′

.

In terms of xyz components we have k̄′ = − sin θ ī + cos θ k̄, which in combination
with Eqs. (2) gives[(

H̄A
)

s + (
H̄A
)

AB

] · k̄′ = (I2 + I3) � (sin θ)2 + I1 (� cos θ − η) cos θ.

We take instant t1 to be the initial condition, at which it is given that �1 = 5 rad/s,
θ1 = 90◦, and θ̇1 = 0. The value of η is specified and the inertia properties are listed
in Eqs. (1). Thus, conservation of angular momentum about the vertical shaft re-
quires that

(I2 + I3) �2 (sin θ2)2 + I1 (�2 cos θ2 − η) cos θ2 = 0.9783m. (3)

This is one relation between �2 and θ2 that must be satisfied. Another is ob-
tained from conservation of energy. The only force acting on the system of rigid
bodies that does work is gravity. We take the elevation of point A to be the datum,
so that

V = mg (−Lcos θ) + mg
2

(
− L

2
cos θ

)
.

Correspondingly, conservation of energy requires that

T2 + V2 = T1 + V1,

1
2

[
(I2 + I3) �2

2 (sin θ2)2 + (I2 + I3) θ̇2
2 + I1 (�2 cos θ2 − η)2

]
−1.25mgLcos θ2 = 2.896m.

(4)

Thus we have two conservation principles relating � and θ at any instant t2.
The value of θ2 is a maximum or minimum when θ̇2 = 0. To determine the

corresponding values of θ2 and �2, we observe that Eq. (3) may be solved for �2 as
a function of θ2:

�2 (θ) = 0.9783m + I1η cos θ2

(I2 + I3) (sin θ2)2 + I1 cos (θ2)2 . (5)
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When this expression is substituted into Eq. (4), the result is an equation that con-
tains only θ2. To determine the roots of this equation, let E

(
θ2, θ̇2,�2

)
denote the

left side of Eq. (4). Thus we seek the roots of a function F (θ2) defined symbolically
by

F (θ2) ≡ 1
m

E (θ2, 0,�2 (θ2)) − 2.896.

A plot of this function would show that it is positive at θ2 = 0 and θ2 = π and is
negative slightly below θ2 = π/2. Thus there are two roots. Numerical software
readily yields these values if we use θ2 = π/4 and θ2 = π/2 as the initial guesses.
The results, and the corresponding values of � at each position, are

(θ2)min = 36.288◦, �2 ((θ2)min) = 14.128 rad/s,

(θ2)max = 90◦, �2 ((θ2)max) = 5 rad/s.

The fact that the system does not rise higher than the angle at which it was released
is not surprising. When the cable is severed, the system falls. As it does so, the value
of � must increase to conserve angular momentum, because the mass is situated
closer to the vertical axis. The inertia of this descent carries the bar past the value
of θ at which a steady precession is possible. At the minimum θ2 the gyroscopic
rotational effects cause the system to swing upward, slowing �. When the system
reaches its initial elevation, it has the value of � with which it was released. Because
the mechanical energy is conserved, and both θ and � match the conditions when
the system was released, it must be that θ̇ also matches the initial value.

The second part seeks the values of �2 and θ̇2 corresponding when θ2 =
0.5[(θ2)min + (θ2)max = 63.14◦. To find �2 we substitute this value of θ2 into Eq. (3)
to find

�2 = 6.467 rad/s at θ2 = 63.14◦. �

Substitution of this value into Eq. (4) converts it to a single equation for θ̇2, whose
solution is

θ̇2 = ±4.0807 rad/s at θ2 = 63.14◦. �

The alternative sign, which results from the fact that θ̇2 is obtained by taking a
square root, indicates that the magnitude of the nutation rate does not depend on
whether the sphere is rising or falling. This is another consequence of the conserva-
tive nature of this system.

EXAMPLE 6.14 The orbiting satellite is spinning about its z axis at 3 rad/s, and
its velocity is 8 km/s parallel to that axis. The mass of the satellite is 5000 kg,
and its inertia properties relative to its center of mass C are Ixx = 32 000, Iyy =
40 000, Izz = 3 600, Ixy = Ixz = Iyz = 0 kg-m2. A 2-kg meteorite, whose velocity is
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−9ī + 12 j̄ km/s, impacts the satellite at point A in the yz plane and then is em-
bedded in the satellite’s wall. The embedding process is completed in an interval
of 400 ms. Determine the velocity of the satellite’s center of mass and its angular
velocity immediately after the collision. Also determine the average impact force
exerted by the meteorite and how much energy is dissipated in the collision. (The
deposition of energy is one of the damage mechanisms.)

Meteorite

1.2 m
9 m

x

y

z
Example 6.14

SOLUTION This example explores how to treat impulsive forces by use of systems
concepts. The only force that is significant during the impact is the interaction force
between the meteorite and the satellite, which is very large because the embedding
process is very short and there is a large velocity difference at the point of impact.
Both bodies move freely, so the interaction force F̄ is the only force to consider.
The body-fixed reference frame is already defined, so there is no need to draw a
free-body diagram.

The external force and moment resultants vanish for this system. Consequently
both linear and angular momentum are conserved. There is no fixed point in this
situation, so we formulate the angular momentum with respect to the center of mass
of both bodies, which we designate as point G. The meteorite’s small size makes
it permissible to consider it to be a particle, so its angular momentum relative to
its own center of mass may be ignored. The linear momentum part of Eqs. (6.4.6)
therefore requires that

ms (v̄C)2 + mm (v̄m)2 = ms (v̄C)1 + mm (v̄m)1 , (1)

whereas the angular momentum equation gives(
H̄C
)

2 + (r̄C/G)2 × ms (v̄C/G)2 + (r̄m/G)2 × mm (v̄m/G)2

= (
H̄C
)

1 + (r̄C/G)1 × mm (v̄C/G)1 + (r̄m/G)1 × mm (v̄m/G)1 .
(2)

The positions and velocities relative to the center of mass are governed by the
first moment of mass. Using the satellite’s center and the meteorite’s location as
alternative reference points for this evaluation leads to

(ms + mm) r̄ G/C = mmr̄m/C =⇒ r̄C/G = −r̄ G/C = − mm

(ms + mm)
r̄m/C,

(ms + mm) r̄ G/m = msr̄C/m =⇒ r̄m/G = −r̄ G/m = − ms

(ms + mm)
(−r̄m/C) .
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These relations are general, so they may be differentiated to describe the relative
velocity terms in Eq. (2). The result is

v̄C/G = − mm

(ms + mm)
v̄m/C, v̄m/G = ms

(ms + mm)
v̄m/C.

Substitution of these relations into Eq. (2) simplifies that equation to(
H̄C
)

2 + msmm

ms + mm
(r̄m/C)2 × (v̄m/C)2 = (

H̄C
)

1 + msmm

ms + mm
(r̄m/C)1 × (v̄m/C)1 . (3)

By definition, v̄m/C = v̄m − v̄C. The initial values of both velocities are given. To
determine the final relative velocity we observe that embedding of the meteorite
means that its velocity will match that of point A on the satellite. Therefore its final
velocity is related to the velocity of point C by the fact that points A and C belong to
the same rigid body. Also, as a consequence of taking the embedding process to be
impulsive, positions are the same at the beginning and end of the impact, so we take
(r̄m/C)2 = (r̄m/C)1 = r̄ A/C. Another aspect of ignoring position changes is that the
given body-fixed xyz coordinate system may be used to describe vectors throughout
the duration of the impact. Thus we have

(v̄m)1 = −9000ī + 12000 j̄ , (v̄C)1 = 8000k̄ m/s, ω̄1 = 3k̄ rad/s ,

(v̄m/C)1 = (v̄m)1 − (v̄C)1 = −9000ī + 12000 j̄ − 8000k̄ m/s,

(v̄m)2 = (v̄C)2 + ω̄2 × r̄ A/C, (v̄m/C)2 = ω̄2 × r̄ A/C.

(4)

The initial values enables us to compute the right side of Eqs. (1) and (3), which
represent the constant values of the respective momenta. For this evaluation we
know H̄C from the standard relation for angular momentum in conjunction with the
given centroidal inertia properties. The result is

(ms + mm) (v̄C)2 + mmω̄2 × r̄ A/C = 5000 (v̄C)1 + 2 (v̄m)1

= (−0.018ī + 0.024 j̄ + 40.000k̄
) (

106
)

kg-m/s,
(5)

(
H̄C
)

2 + msmm

ms + mm
r̄ A/C × (ω̄2 × r̄ A/C) = (

H̄C
)

1 + 10 000
5002

r̄ A/C × (v̄m/C)1

= 235106ī + 161935 j̄ − 10791k̄ kg-m2/s.
(6)

In view of the vectorial nature of Eqs. (5) and (6), their components give six scalar
equations. The unknowns are the components of (v̄C)2 and ω2, but Eq. (6) does
not depend on (v̄C)2 . Thus we first solve Eq. (6) for ω̄2. To assist that solution,
we evaluate the cross product term by representing ω̄2 in terms of its components,
ωx, ωy, and ωz:

msmm

ms + mm
r̄ A/C × (ω̄2 × r̄ A/C) = 164.8140ωxī + (161.9352ωy − 21.5914ωz) j̄

+ (−21.5914ωy + 2.8788ωz) k̄
(7)
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Solving Eq. (6) for the components of ω̄2 is expedited by writing the equation in
matrix form. In matrix notation Eq. (7) may be written as

msmm

ms + mm

{
rA/G

}⊗ {{ω}2 ⊗ {
rA/G

}} = [J ] {ω}2 ,

[J ] =

⎡
⎢⎢⎣

164.8140 0 0

0 161.9352 −21.5914

0 −21.5914 2.8788

⎤
⎥⎥⎦ .

The corresponding form of Eq. (6) is

[[IC] + [J ]] {ω}2 = [235106 161935 − 10791]T
,

which is readily solved for {ω}2 . We then can find (v̄C)2 by substituting the result
into Eq. (5), such that

(ms + mm) {vC}2 = ms {vC}1 + mm (v̄m)1 − mm {ω}2 ⊗ {
rA/C

}
= [−17.920321 23.868431 40 000]T rad/s.

In vector notation the solutions are

ω̄2 = 7.30941ī + 4.03046 j̄ − 2.97105 j̄ rad/s,

(v̄C)2 = −3.58263ī + 4.77178 j̄ + 7996.805k̄ m/s.
�

We readily find the impact force F̄ by applying the linear impulse–momentum
principle to the meteorite isolated from its surroundings. Toward that end we use
Eq. (4) to evaluate the velocity of the meteorite after it is embedded, which yields

(v̄m)2 = −43.422034ī + 70.556508 j̄ + 7988.033489k̄.

The only force whose impulse is important is that of F̄, which we represent by its
average value over the 400-ms duration, from which we find that

(
F̄
)

av = 1
�t

mm [(v̄m)2 − (v̄m)1] = 44.78ī − 59.65 j̄ + 39.94k̄ kN. �

This is the average force acting on the meteorite; the maximum is likely to be sub-
stantially greater. The force acting on the satellite is opposite.

Conservative forces, being position dependent, cannot become large during the
interval of the impact, so the change in potential energy must be negligible during
an impact. Thus the work–energy principle for the system states that

W1→2 = T2 − T1.

We compute the kinetic energy of the satellite by adding the translational part that
is due to the motion of its center of mass to rotational energy about the center of
mass. We then find the kinetic energy of the system by adding the contribution of
the meteorite:

T = 1
2

ms {vC}T {vC} + 1
2

{ω}T [IC] {ω} + 1
2

mm {vm}T {vm} .
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Substitution of the velocity parameters at the initial and final instants yields

T1 = 1.602250
(
1011

)
, T2 = 1.599373

(
1011

)
J,

W1→2 = −2.877
(
108

)
J.

�

It will be noted that T1 and T2 are quite close, so an accurate determination of the
energy change necessitated extra precision in the calculations. The fact that W1→2

is negative means that mechanical energy is lost. It is converted to other types of
energy, such as heat and plastic material deformation. Although the value of W1→2

is small relative to the total kinetic energy, it is an enormous amount of energy
transfer. These observations, in combination with the large value of F̄av, make it
evident that this impact would be devastating for the satellite.

The momentum conservation equations, Eqs. (5) and (6), have an interesting
interpretation. At the conclusion of the impulse process, the meteorite is embedded
in the satellite, so they are essentially one body. The left side of the linear momen-
tum equation, Eq. (5), is actually the product of the total mass and the velocity of the
center of mass of this body. Similarly, the left side of the angular momentum equa-
tion, Eq. (6), is the product of the inertia matrix of this new body and its angular
velocity. In both cases, the motion variables change because the inertial properties
of the combined body are different from those of the satellite before the impact.

In closure, it is useful to observe that formulating the angular momentum with
respect to the system’s center of mass considerably complicated the analysis. The
smallness of the meteorite’s mass causes that center of mass to be nearly coincident
with that of the satellite. If we had ignored the difference between these two points,
it would not have been necessary to consider first moments of mass, and the general
angular impulse–momentum equation would have reduced to(

H̄C
)

2 + r̄ A/C × mm (ω̄2 × r̄ A/C) ≈ (
H̄C
)

1 + r̄ A/C × mm [(v̄m)1 − (v̄C)1] ,

which yields

ω̄2 ≈ 7.31232ī + 4.03206 j̄ − 2.97343k̄ m/s.

This value is extremely close to the value obtained from the full analysis. The av-
erage force and mechanical-energy loss would be essentially unchanged. However,
the distinction between the center of mass of the system and of the satellite would
have been important if ms and mm were of similar orders of magnitude.

6.4.3 Collisions of Rigid Bodies

To the naked eye a collision seems to cause the velocity of a body to change instanta-
neously, which is a characteristic of an impulsive force. This is a fundamental feature
of the model for the action of impulsive forces. In many situations, such as the study of
crash dynamics for vehicles, deformation effects are of primary importance, which ob-
viates analysis by use of rigid-body concepts. In other situations, such as the collision of
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billiard balls, the presence of deformation is not apparent. Although deformation is al-
ways important, we consider here a concept based on empirical observations that makes
it possible to adapt the concepts of rigid-body dynamics. The scope of the treatment is
limited to collisions that leave the bodies essentially unchanged, which is possible if the
relative speed of the colliding bodies is sufficiently low.

We restrict our attention to cases in which there is an identifiable plane of contact
for each body that is tangent to each body at a single point. (For planar motion, this
would correspond to contact along a line perpendicular to the plane.) In the strictest
sense a corner is marked by a slope discontinuity, so no unique tangent point exists
at such a location. However, this ambiguity is removed if we consider the corner to
be slightly rounded. We define a coordinate system xyz whose origin is the point at
which the bodies are in contact and whose yz plane coincides with the contact point.
The configuration is depicted in Fig. 6.6, where points A and B are the centers of mass
of bodies 1 and 2, and points C1 and C2 mark the contact point on the respective body.

x

y
(vB)f

(vA)f

(vA)0

(vB)0

B
A

C2
C1 x

y

F
F

C2

C1

(a) (b)

2

2

1
1

Figure 6.6. Collision of rigid bodies. Points A and B are the centers of mass, and points C1 and C2 are the
respective contact points.

The bodies in Fig. 6.6(a) are free of external restrictions on their movement, so
the only force to consider during the impact is the one exerted between the bodies at
the contact point, as shown in the free-body diagrams of Fig. 6.6(b). We begin with the
idealization that the contacting surfaces are very smooth, so the impact force F̄ on body
A acts in the positive ī direction, whereas it acts on body B in the negative ī direction.
In addition to requiring determination of the final velocities, we need to account for the
angular motion of each body. Thus the initial condition consists of the initial velocities
(v̄A)0 and (v̄B)0 of the centers of mass, as well as the angular velocities (ω̄1)0 and (ω̄2)0 .

The quantities to be determined are these variables at the termination of the impact,
whose values are denoted with the subscript f , and the impulse of the contact force.

The impulsive force model is appropriate, so we represent the unknown impulse as
the product F�t of the average force magnitude and the duration of the impact. An
important aspect of the impulsive force model is that the brevity of the contact interval
makes it permissible to consider all points to have a constant position during the impact.
Hence we can consider xyz to maintain its orientation, and the contact points on each
body are indistinguishable with regard to their position. Thus we may write the position
vector from each center of mass to the respective contact point simply as r̄C/A and r̄C/B.

Equations that are available to determine the unknown linear and angular velocity
parameters come from both the linear and angular impulse–momentum principles. We
formulate these relative to each body’s center of mass because doing so decouples the
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linear and angular velocities in the momentum principles. Thus we have four vector
equations representing the kinetics of the system:

m1 (v̄A) f = m1 (v̄A)0 + F�t ī,

m2 (v̄B) f = m2 (v̄B)0 − F�t ī,(
H̄A
)

f = (
H̄A
)

0 + r̄C/A × (
F�t ī

)
,(

H̄B
)

f = (
H̄B
)

0 + r̄C/B × (−F�t ī
)
.

(6.4.40)

The final angular momenta contain the components of the respective angular velocities.
Thus, if the value of F�t were known, it would be a simple matter to determine the
unknown velocity parameters. It follows that we need one more scalar equation.

A proper analysis would examine the manner in which each body deforms, but do-
ing so is quite challenging. Instead, we introduce a concept that allows for deformation
in the vicinity of the point of contact while retaining the elements of rigid-body dynam-
ics. The deformation of the surfaces that is produced by the large collision force may be
considered to cause each body’s surface to move relative to its nominal position. Thus,
in the time interval following the initial contact t0 until the instant t f immediately be-
fore the bodies separate, the velocity of the contact points C1 and C2 are generally not
describable by rigid-body kinematics. However, there is one exceptional instant when
this is not true. At an instant that we denote as tmax the local deformation has reached a
maximum. This means that the inward displacement of each contact point relative to the
undeformed state has reached its largest value. It follows that the velocity of the contact
points at this instant relative to the nominal rigid-body configuration is zero. Hence, at
this instant, each contact point’s velocity is describable by rigid-body kinematics in terms
of the center-of-mass velocities (v̄A)max and (v̄B)max and angular velocities (ω̄A)max and
(ωB)max . It follows that, at t = t0, tmax, or t f , the contact point velocities are given by

v̄C1 = v̄A + ω̄1 × r̄C/A, v̄C2 = v̄B + ω̄2 × r̄C/B. (6.4.41)

The values of (v̄C1)0 and (v̄C2)0 are set by the initial conditions, whereas (v̄C1) f and
(v̄C2) f are a consequence of the system’s kinetics. However, at tmax the contact point
velocities are also related by

(v̄C1)max · ī = (v̄C2)max · ī . (6.4.42)

The importance of the instant of maximum deformation is that it is featured in the
definition of the coefficient of restitution, ε. This empirical parameter may be considered
to be the result of observation of many collisions in which the bodies do not display
significant permanent deformation. It is the ratio of the impulse of the contact force
during the restitution interval tmax < t < t f to the impulse in the deformation interval
t0 < t < tmax. In other words,

ε =
∫ t f

tmax
Fdt∫ tmax

t0
Fdt

. (6.4.43)
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If the collision is not energetic, then the value of ε is a number between zero and unity
that depends on the materials, shape, and size of the body. (An energetic collision re-
leases an internal energy source, such as a spring with a trigger release.)

Our task now is to convert this definition of ε to one that features the same kine-
matical variables as those appearing in Eqs. (6.4.40). Such a derivation for the case of an
arbitrary spatial motion is complicated by the fact that each angular momentum compo-
nent contains all angular velocity components if each body has an arbitrary shape. We
therefore consider the case of bodies in planar motion. The result will be a form that is
applicable for spatial motion.

For planar motion, we set H̄A = IAω1k̄ and H̄B = IBω2k̄ in Eqs. (6.4.40). Also, be-
cause the centers of mass and the contact point lie in the xy plane for planar motion, the
k̄ components of the cross products in the moments of F̄ about points A and B can be
written as

k̄ · (r̄ × Fī
) ≡ Fr̄ · (ī × k̄

) = −Fr̄ · j̄ if r̄ · k̄ = 0. (6.4.44)

We use this relation to break each of Eqs. (6.4.40) into portions covering the deforma-
tion interval t0 < t < tmax and the restitution period tmax < t < t f . Doing so for body A
yields

m1 (v̄A)max = m1 (v̄A)0 + ∫ tmax

t0

(
Fī
)

dt,

m1 (v̄A) f = m1 (v̄A)max + ∫ t f

tmax

(
Fī
)

dt,

IA (ω1)max k̄ = IA (ω1)0 k̄ + r̄C/A × ∫ tmax

t0

(
Fī
)

dt,

IA (ω1) f k̄ = IA (ω1)max k̄ + r̄C/A × ∫ t f

tmax

(
Fī
)

dt.

(6.4.45)

Notice that the position vector was brought outside the integral in both angular impulses
because positions are taken to not change during the short interval of the impulsive ac-
tion. We take the ī component of the linear momentum equations and the k̄ component
of the angular momentum equations and apply Eq. (6.4.44) to the latter, with the result
that ∫ tmax

t0
Fdt = m1

[
(v̄A)max · ī − (v̄A)0 · ī

]
,∫ t f

tmax
Fdt = m1

[
(v̄A) f · ī − (v̄A)max · ī

]
,(

r̄C/A · j̄
) ∫ tmax

t0
Fdt = −IA [(ω1)max − (ω1)0] ,(

r̄C/A · j̄
) ∫ tmax

t0

(
Fī
)

dt = −IA

[
(ω1) f − (ω1)max

]
.

(6.4.46)

We ratio the second equation to the first and the fourth to the third. In view of Eq.
(6.4.43), each ratio is ε. The result of clearing denominators is

[
(v̄A) f · ī − (v̄A)max · ī

]
= ε

[
(v̄A)max · ī − (v̄A)0 · ī

]
,[

(ω1) f − (ω1)max

]
= ε [(ω1)max − (ω1)0] .

(6.4.47)
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Comparable equations result from following the same procedures for the momenta of
body B : [

(v̄B) f · ī − (v̄B)max · ī
]

= ε
[
(v̄B)max · ī − (v̄B)0 · ī

]
,[

(ω2) f − (ω2)max

]
= ε [(ω2)max − (ω2)0] .

(6.4.48)

Neither set of equations is quite in the form we would like because they contain the
linear and angular velocities at the instant tmax, which are not parameters we need to
know. We remedy this by recalling that the normal velocity components match at tmax,

as described in Eq. (6.4.42). We find an expression for these velocity components by
taking the dot product of the velocities in Eqs. (6.4.41), which gives

v̄C1 · ī = v̄A · ī + (
ω1k̄ × r̄C/A

) · ī ≡ v̄A · ī − ω1
(
r̄C/A · j̄

)
,

v̄C2 · ī = v̄B · ī + (
ω2k̄ × r̄C/B

) · ī ≡ v̄B · ī − ω2
(
r̄C/B · j̄

)
.

(6.4.49)

In light of the form of this relation, we multiply the second of Eqs. (6.4.47) by r̄C/A · j̄
and subtract it from the first of those equations. We also apply similar operations to
Eqs. (6.4.48) for body B. The result is[

(v̄C1) f · ī − (v̄C1)max · ī
]

= ε
[
(v̄C1)max · ī − (v̄C1)0 · ī

]
,[

(v̄C2) f · ī − (v̄C2)max · ī
]

= ε
[
(v̄C2)max · ī − (v̄C2)0 · ī

]
.

(6.4.50)

In view of Eqs. (6.4.48), the velocity components at tmax are identical, so subtraction of
the first of the preceding equations from the second leads to

[
(v̄C2) f · ī − (v̄C1) f · ī

]
= ε

[
(v̄C1)0 · ī − (v̄C2)0 · ī

]
. (6.4.51)

This is the additional equation to be used in conjunction with Eqs. (6.4.40) to eval-
uate the velocities with which the bodies rebound. Although it was derived by consider-
ing planar motion, it is equally applicable to spatial motion. Equation (6.4.51) is useful
for an experiment in which the velocities are measured and the value of ε is com-
puted. When we need to determine how bodies move after they collide, it will be nec-
essary to eliminate the contact velocities in favor of the center-of-mass velocities and
the angular velocities. Equations (6.4.41) are available for that purpose. Evaluation of
the ī component of the cross-product term is somewhat simplified by the identity that
(ω̄ × r̄) · ī = ω̄ · (r̄ × ī

)
. This leads to[

(v̄B) f · ī − (v̄A) f · ī
]

+ (ω̄2) f · (r̄C/B × ī
)− (ω̄1) f · (r̄C/A × ī

)
= ε

{[
(v̄A)0 · ī − (v̄B)0 · ī

]+ (ω̄1) f · (r̄C/A × ī
)− (ω̄2) f · (r̄C/B × ī

)}
.

(6.4.52)

Note that this form is convenient for spatial motion, but planar motion problems are
readily formulated by use of Eq. (6.4.51).

This is a scalar equation. For an arbitrary spatial motion, decomposing Eqs. (6.4.40)
into their components leads to 12 additional scalar equations. The 13 unknowns are the
three components of each center-of-mass velocity, the three components of each angular
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velocity, and the impulse F�t. The number of equations and variables reduces to seven
for planar motion.

As was mentioned at the outset, the coefficient of restitution should be considered
to be an empirical quantity obtained from experimental measurement. This would entail
measuring the initial and final velocities of each contact point, either directly or by cal-
culation from measurements relative to any convenient point in each body. Substitution
into Eq. (6.4.51) would then provide the value of ε. Special names are used to describe
the limiting values of ε. A collision is said to be perfectly plastic if ε = 0. In that case
the contact points have identical velocities in the normal direction after the impact. A
common misconception is to say that the bodies stick together, which is not true because
such a result would require constraint forces acting tangentially to the contact plane. The
case in which ε = 1 is said to be perfectly elastic. This term originates from the fact that
it is the only case in which energy is conserved. It obviously is an idealized case that is
never obtained in a real system.

The development has treated an eccentric impact, which is the term used to describe
a collision in which the centers of mass are not collinear with the line through the contact
point and normal to the plane of contact. Elementary texts typically introduce the topic
of collisions by considering spheres. In that case the centers of mass and point of contact
are collinear with the normal to the tangent plane. That is the characteristic of central
impact, which is always the case for spheres. When the bodies are spheres, r̄C/A = −RAī
and r̄C/B = RBī, so the moment impulses in Eqs. (6.4.40) are zero and the angular veloc-
ity does not appear in Eq. (6.4.52). This means that the angular velocities of the spheres
are unchanged and therefore irrelevant to the collision process.

In some cases, one of the bodies involved in the collision is massive, like the Earth.
The preceding formulation is equally valid in such cases, but it will merely tell us that
the very large body’s motion is unaltered. It is reasonable in such cases to merely say
that a large body’s motion is unaffected by the collision, and correspondingly ignore the
momentum equations for large body.

Often, when bodies collide, one or both are restricted kinematically in the move-
ment they can undergo. Any motion restriction, such as the requirement that a block
slide along the ground, is imposed by a reaction force that must be as large as necessary
to enforce that restriction. In the case of collisions, the impact forces are impulsive, so
the reactions must have that same characteristic. This means that reaction forces can-
not be ignored when one constructs free-body diagrams and that the impulses of these
forces are additional unknowns to be evaluated as part of the analysis of the collision.
Balancing this is the fact that the motion restriction reduces the number of unknown
velocity parameters that will need to be determined.

Figure 6.7 depicts a simple system that makes this aspect apparent. It shows a ball
that strikes the inclined face of a wedge that can slide over a smooth horizontal surface.
The ground prevents the wedge from moving vertically, which means that the horizon-
tal velocity component is the sole unknown velocity variable for this body. The impact
force F̄ acts normally to the face of the wedge. The normal force N̄ prevents the wedge
from penetrating the horizontal surface, so it too must act impulsively. Thus the fact that
the horizontal surface prevents movement of the block in the vertical direction reduces
by one the number of velocity components to determine, while also increasing by one
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x (vA)f

(vB)f

(vA)0

Figure 6.7. An example of a collision in which a body is constrained. The constraint force N̄ and the collision
force F̄ are impulsive.

the number of force impulses that are unknown. Suppose (v̄A)0 were given. Then the
unknowns to be determined in this planar situation are the two components of (v̄A) f ,
the value of (vB) f , F, and N. The angular velocity of the sphere is irrelevant because
this is a central impact for that body. The five available equations are the linear impulse–
momentum equations for the sphere and the wedge, and the relation between velocity
components in the x direction associated with the coefficient of restitution. (A minor
shortcut is to formulate only the horizontal component of the impulse–momentum equa-
tion for the wedge, which would avoid the occurrence of N in the equations to solve.)

A bar that executes a pure rotation is a common configuration featuring constrained
motion. The reactions at the pivot must act impulsively to prevent that point from mov-
ing. These unknown reactions can be avoided in the formulation if the angular impulse–
momentum equation is formulated about the fixed pivot. If the impulse associated with
each component of the pivot reaction is required, such information can be extracted
from the linear impulse–momentum after the rebound velocity of the center of mass has
been determined.

Examination of the collision of unconstrained bodies reveals a general weakness of
this model of collisions. The contact force is taken to act solely in the normal direction.
Consequently the linear impulse–momentum equations indicate that the velocity of each
body’s center of mass tangent to the contact plane is unaltered by the impact. This does
not fit our observation of certain situations in which the contact surfaces are rough, for
example, when a tennis ball touches the ground. This shortcoming can be remedied by
use of a standard friction model. At the initial contact the contact points have different
tangential velocities, which means that a sliding friction model should be appropriate.
The magnitude of the friction force in that model is proportional to the normal force
magnitude F , and the latter acts impulsively.

Consequently, we can insert a tangential force f = µk F in each free-body diagram.
The direction of this force would be opposite the initial tangential velocity of one surface
relative to the other at the initial instant t0. Thus we can say that the force on body A
would be

f̄ = −µk F
(v̄C A)0 · ī − (v̄CB)0 · ī∣∣(v̄C A)0 · ī − (v̄CB)0 · ī

∣∣ . (6.4.53)

The friction force applied to body B would be oppositely directed. The validity of the
coefficient of restitution is unaltered by the friction force, so Eq. (6.4.52) still applies.
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The impulse–momentum equations would be modified by replacing the contact force Fī
acting on body A with Fī + f̄ , whereas the force acting on body B would be changed
from −Fī to −Fī − f̄ . No new variables are introduced by these modifications, so the
solvability of the equations is not altered.

This preceding model of friction effects has limitations. For example, it is
hypothetically possible that the analysis will lead to a rebound in which the tangen-
tial relative velocity at the contact points is reversed from its initial sense, which
would indicate that the sense of f̄ reverses at some intermediate instant between
t0 and t f . As explained in Example 6.17, using this simple friction model would re-
quire determination of the instant at which slipping ceases, which is not part of the
analysis.

EXAMPLE 6.15 The bar, whose mass is m1 and whose moment of inertia about its
pivot is IA, is at rest in the vertical position when it is obliquely struck by the ball,
whose mass is m2. The coefficient of restitution is an unspecified value. Determine
the angular velocity of the bar and the velocity of the ball immediately after the
collision. Also determine the impulse of the pivot force during the collision. Is there
a distance h for the impact that minimizes this impulse?

v

L

h

A

θ

Example 6.15

SOLUTION This example addresses the role of constraint forces during a collision. In
addition to the impact force, which is horizontal, the free-body diagram shows the
forces exerted by the pin to prevent movement of point A. The x axis is defined to
be normal to the contact plane, and the origin has been placed at the pivot point A,
which is an allowable point for summing moments, because doing so will eliminate
the reaction impulses from the angular momentum equation.

v

h

A

C
θ

F

x

y

Ax

Ay

ω Individual free-body diagrams of the bar and the ball.
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We carry out the analysis by considering the ball to be a particle, which means
that we need not consider its rotation. Because the bar executes a pure rotation
about point A, the rebound velocities of the center of mass G and of the impact
point C are kinematically related to the angular velocity of the bar at the conclusion
of the impact. The duration of the impact is brief, so we may use the initial position
of points to characterize this relationship. It is convenient to consider a clockwise
rotation in rebound to be positive, so we have

(v̄G) f = (−ω f k̄
)× r̄G/A = −ω f

L
2

ī,

(v̄C) f = (−ω f k̄
)× r̄C/A = −ω f hī .

(1)

We now turn to the momentum equations. It is evident that the linear momen-
tum equations for the bar will feature Ax and Ay. As noted at the outset, these
forces will not appear in the equation describing the angular momentum of the bar
about the pivot point. We therefore delay consideration of the bar’s linear momen-
tum. As we did for the kinematical equations, we consider the bar’s position to not
change during the impact, so equating the bar’s angular momentum change about
point A to the corresponding angular impulse gives

IA (−ω f ) = − (F�t) h. (2)

The linear impulse–momentum equations for the ball relate the ball’s rebound ve-
locity to the impact force. It is helpful to write these equations in component form:

m2 (v̄2) f · ī = m2 (−v cos θ) + (F�t) , (3a)

m2 (v̄2) f · j̄ = m2v cos θ. (3b)

The second of the preceding equations shows that the velocity of the ball par-
allel to the plane of contact is unaltered by the collision. Three unknowns, ω f ,

(v̄2) f · ī, and F�t, appear in Eqs. (2) and (3a). The third equation is obtained from
the coefficient of restitution. Application of Eq. (6.4.51) in the present case gives

(v̄C) f · ī − (v̄2) f · ī = ε [(−v cos θ) − 0] .

Subsitution of the second of Eqs. (1) into this relation converts it to

−ω f h − (v̄2) f · ī = ε [(−v cos θ) − 0] . (4)

The simultaneous solution of Eqs. (2), (3a), and (4) yields

ω f = (ε + 1)
m2h2

IA + m2h2

(
v

h
cos θ

)
, F�t = IA

h
ω f ,

(v̄2) f · ī = εIA − m2h2

IA + m2h2
(v cos θ) .

�

Now that the rebound velocity of the bar is known, we may evaluate the im-
pulse of the reaction forces. We use Eqs. (1) to describe the velocity of the center
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of mass when we form the linear impulse–momentum equation for the bar, whose
component form is

m1 (v̄G) f · ī = m1

(
− L

2
ω f

)
= Ax�t − F�t,

m1 (v̄G) f · j̄ = 0 = 0 + Ay�t.

The result is

Ax�t =
(

IA

h
− m1L

2

)
ω f , Ay�t = 0. �

Several aspects of these results are interesting. The vertical reaction impulse is
negligible because the impact force acts horizontally. The horizontal reaction im-
pulse also is negligible if h = 2IA/m1L = 2κ2/L, where κ is the radius of gyration.
For the case of a bar whose cross section is uniform, h = 2L/3. This distance is called
the center of percussion, which previously was mentioned in Example 6.11. When a
bar is struck at this distance from an end, it will execute a pure rotation about that
end, even if it is unsupported. �

Another interesting aspect of the results is the change in mechanical energy.
The initial kinetic energy is solely stored in the ball, T0 = m2v

2/2. The kinetic energy
after the collision is found to be

Tf = 1
2

m2 (v̄2) f · (v̄2) f + 1
2

IAω2
f = 1

2
m2v

2
[

IAε2 + m2h2

IA + m2h2
(cos θ)2 + (sin θ)2

]
.

Thus the energy lost is

�T = T0 − T2 = T0
(
1 − ε2) (cos θ)2

(
IA

IA + m2h2

)
.

Therefore, except for this idealized condition of a a perfectly elastic impact, ε = 1,
mechanical energy is dissipated as a result of the collision. This behavior is gener-
ally true. Because the amount of energy that is dissipated can be determined only
after the collision dynamics has been evaluated, one should not use the work–energy
principle to analyze collisions. Another interesting feature of the expression for �T
is the (cos θ)2 factor, which shows that the energy loss decreases significantly if the
ball arrives obliquely. We refer to such an impact as a “grazing blow.”

EXAMPLE 6.16 Suppose the square plate in Example 6.11 is struck at corner A
by a 500-g ball, rather than a hammer. The impact velocity of the ball is v normal
to the plate’s surface, and the plate is initially at rest. The coefficient of restitution
is ε = 0.6. In Example 6.11 the impulsive force had an average value of 5000 N over
a 4-ms duration. Determine the initial speed v of the ball bearing that will generate
an impact equal to the hammer blow. For this initial speed, determine the angular
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velocity of the plate and the velocity of the ball at the instant following the impact,
and the average reaction at the support.

SOLUTION This example introduces techniques for solving collision problems fea-
turing spatial motion. It also is intended to shed some light on the quantitative mag-
nitude of collision effects. The free-body diagram of the plate is unchanged from
Example 6.11, but we also need to consider the ball. Contact occurs along the xy
plane, so the impact force F̄ acts parallel to the z axis.

F

vF

60 mm

180 mm G

x

y

z

Ax

Ay

Az

Free-body diagram showing the impulsive forces that act on
the square plate.

Much of the solution resembles the one followed previously, except that the linear
impulse–momentum equation for the ball and the equation for the coefficient of
restitution need to be considered.

Let point C designate the corner where the ball strikes the plate. We designate
the plate as body 1 and the ball as body 2. The initial state is characterized by (ω̄1)0 =
0̄, (v̄B)0 = vk̄, whereas the rebound is described by arbitrary an arbitrary ω̄2, so that

(ω̄1) f = ωxī + ωy j̄ + ωzk̄,

(v̄G) f = (ω̄1) f × r̄ G/A = 0.06ωzī + 0.18ωz j̄ + (−0.06ωx − 0.18ωy) k̄.
(1)

Because the plate executes a pure rotation about the pivot, whereas Eq. (6.4.52)
refers to point G, we use Eq. (6.4.51) to describe the coefficient of restitution’s role.
Toward that end we form the velocity of the contact point on the plate:

(v̄C) f = (ω̄1) f × r̄C/A = −0.12ωzī + 0.36ωz j̄ + (0.12ωx − 0.36ωy) k̄. (2)

The impulse–momentum equations for the plate are like those previously writ-
ten in Example 6.11:

(
H̄A
)

2 · ī = (0.144ωx + 0.108ωy) = 2.4,(
H̄A
)

2 · j̄ = (0.432ωy + 0.108ωx) = −7.2,(
H̄A
)

2 · k̄ = 0.576ωz = 0.

(3)
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In view of (v̄G) f in Eqs. (1), the linear impulse–momentum principle for the plate
gives

10
[
0.06ωzī + 0.18ωz j̄ + (−0.06ωx − 0.18ωy) k̄

]
= [

Axī + Ay j̄ + (Az + 5000) k̄
]

(0.004) .
(4)

The linear impulse–momentum equation for the ball is

0.5 (v̄2) f = 0.5
(
vk̄
)− (

5000k̄
)

0.004. (5)

The last of the basic equations is the one featuring the coefficient of restitution.
Here k̄ is the normal to the contact plane, so we have

(v̄2) f · k̄ − (v̄C) f · k̄ = ε [0 − v] .

Substitution of Eq. (2) gives

(v̄2) f · k̄ − (0.12ωx − 0.36ωy) = −0.6v. (6)

We find the final angular velocity components and normal velocity of the ball
by simultaneously solving Eqs. (3), which yield

ωx = 35.90, ωy = −25.64 rad/s.

These values are substituted into Eq. (6), which is solved simultaneously with the k̄
component of Eq. (5) to find

(v̄2) f · k̄ = −16.54, v = 23.46 m/s. �

According to Eq. (5), there is no change in the velocity components parallel to the
plate because the contact force does not act in those directions, so the rebound
velocity of the ball is

(v̄2) f = −16.54k̄ m/s. �

Because F here is stated to match the impulsive force in Example 6.11, the aver-
age reaction forces, which are obtained from Eq. (4), are the same as those of the
previous results:

Ax = Ay = 0, Az = 1153 N. �

When one considers that the impact was generated by a 0.5-kg ball moving at an
initial speed of almost 24 m/s, these average reaction forces are not exceptionally
large. However, these are average values that vary inversely to the time duration,
corresponding to a fixed impulse.
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EXAMPLE 6.17 A ball obliquely hits the ground with speed v at angle of elevation
θ . The coefficient of restitution is an unspecified value ε. The rotation rate at the in-
stant of impact is ω0 about the horizontal diameter that is perpendiular to the initial
velocity. The ground is rough, with the effect of friction described by an impulsive
friction force corresponding to coefficient of sliding friction µ. Derive an expression
for the velocity with which the ball bounces off the ground in terms of v, ω, ε, µ,

θ, and the ball’s radius R. Compare the result with the rebound velocity that would
result if the surface were smooth, so that µ = 0.

v
ω0

θ
Example 6.17

SOLUTION This example explores how one can account for friction along the surface
where bodies collide. We consider the ground to be stationary, so only a free-body
diagram of the ball is required. In that diagram the friction force is merely labeled
as f, in the sense it would act if the contact point on the ball were moving to the
left. The only impulsive forces are generated at the contact plane because the ball’s
motion is unconstrained.

f

F

G x

y

Free-body diagram of the spinning ball showing the impulsive contact forces.

The impulse–momentum equations are

m (v̄G) f · ī = mv cos θ − f �t,

m (v̄G) f · j̄ = m (−v sin θ) + F�t,

IG (−ω f ) = IG (−ω0) − f R�t.

(1)

The velocity of the contact point is

v̄C = v̄G + ω
(−k̄

)× (−Rj̄
) = v̄G − ωRī, (2)

so the normal velocity at the point of contact is v̄G · j̄ . Thus the proportionality of
normal velocity components imposed by the coefficient of restitution gives

(v̄G) f · j̄ = ε [0 − (−v sin θ)] . (3)

The unknown variables in Eqs. (1) and (2) are the components of (v̄G) f , the normal
impulse F�t, the friction impulse f �t, and the final rotation rate ω f .
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To use the sliding friction model we need to know the direction in which the
sliding motion occurs. For this, we turn to Eq. (2), which shows that the tangential
velocity is v̄C · ī = v̄G · ī − ωR. Thus, if v cos θ > ω0 R, the contact point is initially
moving to the right, so the sliding force generated when the ball contacts the ground
is f = µF acting to the left, which is the sense shown in the free-body diagram.
Equation (3) gives the vertical velocity component in any case. When that result
and f = µF are substituted into the Eqs. (1), we find that

if v cos θ > ω0 R :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(v̄G) f · ī = v cos θ − µ (1 + ε) v sin θ

(v̄G) f · j̄ = εv sin θ

ω f = ω0 + µ (1 + ε)
mR
IG

v sin θ

F�t = (1 + ε) mv sin θ

. (4)

The case in which v cos θ < ω0 R is analyzed similarly, except that the friction force
is reversed because the contact point is initially moving to the left. Thus we set
f = −µF, and proceed as previously, which yields

if v cos θ < ω0 R :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(v̄G) f · ī = v cos θ + µ (1 + ε) v sin θ

(v̄G) f · j̄ = εv sin θ

ω f = ω0 − µ (1 + ε)
mR
IG

v sin θ

F�t = (1 + ε) mv sin θ

. (5)

Inspection of these results, which are valid if µ = 0, shows that the presence of
friction affects neither the normal contact force nor the vertical component of the
rebound velocity. If the initial spin rate ω0 exceeds (v/R) cos θ, friction increases
the horizontal component of the rebound velocity. The angle of elevation for the re-

bound velocity is θ f = tan−1
[
(v̄G) f · j̄/ (v̄G) f · ī

]
, so this angle is decreased relative

to what it would be if there were no friction. Both trends are reversed in the slow-
rotation case, which is characterized by ω0 < (v/R) cos θ . In either case the rebound
angle is smaller than it would be for a perfectly elastic collision, with the excep-

tion that there is a value of µ in the slow-rotation case beyond which
[
(v̄G) f · j̄

]
>

(tan θ) (v̄G) f · ī, which leads to θ f > θ.

The velocity of the contact point may be found from Eq. (2). In the slow-
rotation case, the friction force decreases v̄G · ī and and it increases ω, so the contact
point is moving more slowly to the right at the conclusion of the impact. If µ is suffi-
ciently large, the implication is that the contact point at the conclusion of the impact
is moving to the left. This would contradict the assumed direction of the friction
force. In effect, there would be an instant between t0 and t f when the contact point
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comes to rest. At that instant, static friction would take over, and there is nothing
that would cause the condition to change during the remainder of the impact. There-
fore the velocity at rebound would be such that (v̄G) f · ī = ω f R, corresponding to
the contact point having no tangential velocity. The friction force can be set to zero
for tmax < t < t f . The difficulty is that ω f is uncertain in this case because the mo-
ment impulse in the second of Eqs. (1) becomes µF (tmax − t0) and we do not know
tmax.
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HOMEWORK PROBLEMS

L

Ω

θ

A

B

Exercise 6.1

EXERCISE 6.1 The cable holds the angle θ for the bar con-
stant as the vertical shaft rotates at the constant speed �.

Determine the value of � for which the tension in the cable
is twice as large as it would be if � were zero.

b

c

b b

Γ

A
B

Exercise 6.2

EXERCISE 6.2 Torque � causes the horizon-
tal shaft to rotate. The triangular plate’s thick-
ness is negligible, as is the mass of the shaft. A
torque � is applied to the shaft, thereby induc-
ing a time-dependent rotation rate �. The sys-
tem was at rest at t = 0. Derive expressions for
� and the bearing reactions as functions of time.
The influence of gravity may be ignored.

L/2

L

L/3

L/2

θ

A

B

Ω

Exercise 6.3

EXERCISE 6.3 The vertical shaft rotates at the
constant speed �. Determine the forces, including
those required to balance the effect of gravity, ex-
erted by the bearings on this shaft. The shaft and
the bar have equal mass m.

A

B
Ω

L

2L

θ

Exercise 6.4

EXERCISE 6.4 Bar AB is pinned to the T-bar and rubs
along the ground. The coefficient of friction is µ. A
torque acting about the vertical axis imposes a con-
stant rotation rate �. Determine the contact forces
exerted on bar AB by the ground and the force–
couple system exerted on the bar at pin A. (It may
be assumed that the friction force acts perpendicular
to the vertical plane depicted in the sketch.)
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Ω

L/2
b/2

b/2

L/2

A

M

B

b

θ

Exercise 6.5

EXERCISE 6.5 The rectangular plate is welded to the ver-
tical shaft, whose mass is negligible. An unsteady pre-
cession rate � is generated by the application of torque
M to the shaft. Derive expressions for M and the total
reactions exerted by bearings A and B, including the
influence of gravity, as functions of the instantaneous
values of � and �́.

D

θ
θ

Exercise 6.6

EXERCISE 6.6 Two identical disks having ra-
dius R and mass m are joined by a rigid bar
whose ends are welded at diametrically oppo-
site points on the perimeter of each wheel. The
mass of the rod also is m. The disks roll with-
out slipping at constant speed v. Prove that
such a motion is consistent with the equations
of motion, and also determine the correspond-
ing friction and normal forces as a function of
the angle θ through which the assembly has rotated. Hint: Define a body-fixed coor-
dinate system such that the y axis aligns with the disks’ center line and the z axis is
perpendicular to the bar.

A

B

L/2

L/2

Ω

β

R

Exercise 6.7

EXERCISE 6.7 The cylinder is mounted on a gimbal that
rotates about the horizontal axis at constant rate � in-
duced by a torque � that acts about shaft AB. Derive
the differential equation governing the angle β between
the bar and the horizontal axis, and also derive an ex-
pression for �.

EXERCISE 6.8 The torque M acting on the gimbal of the gyroscopic turn indicator is
exerted by a torsional spring, so M = −kβ. The precession rate �2 is a specified function
of time, and the spin rate �1 is held constant by a servomotor. Let I1 denote the moment
of inertia of the flywheel about axis AB, and let I2 be the centroidal moment of inertia
perpendicular to axis AB. Derive the differential equation of motion for β.

D

A

M

B

C β

Ω1

Ω2

L Exercise 6.8
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γ

Ω

ψ

A

250 mm

Exercise 6.9

EXERCISE 6.9 Procession angle ψ of the electric fan is un-
steady, and the spin rate � is constant at 1800 rev/min. The
fan blade assembly has a mass of 10 kg, and its radii of gy-
ration are 200 mm about the spin axis and 150 mm about
a centroidal axis perpendicular to the spin axis. This assem-
bly may be considered to be axisymmetric. Determine the dy-
namic force–couple system that must be exerted on the motor
housing at pin A to sustain this motion.

Ω

θ

w

2L/3

2L/3

L/3

w

Exercise 6.10

EXERCISE 6.10 Pin A supporting the 50-kg thin
bar has ideal properties. The angle θ is adjusted
by pulling the cable inward at the constant rate
w = 20 m/s. The precession rate is constant at � =
5 rad/s. Determine the tensile force in the cable
when θ = 35◦. The bar’s length is L = 600 mm.

Ω1

Ω2

R

L/2 L/2

A
B

Exercise 6.11

EXERCISE 6.11 The thin disk is mounted on shaft AB,

which coincides with a diametral line. Servomotors sus-
tain the rotation rates �1 about this axis and �2 about
the vertical are maintained at constant values by servomo-
tors that exert torques about the respective shafts. Derive
expressions for the dynamic reactions at bearings A and
B and the required moment about shaft AB as functions
of θ. It may be assumed that the bearings exert forces, but
not couples, and that only the mass of the disk is signifi-
cant.

L/2

L

L/3

L/2

M

Γ
θ

A

B

C

Ω

Exercise 6.12

EXERCISE 6.12 The uniform bar is pinned to the ver-
tical shaft AB. A servomotor applies torque � about
the axis of pin C, with the result that the angle θ oscil-
lates periodically, θ = π/2 sin (µt) rad. Torque M ap-
plied to the vertical shaft maintains the rotation rate
about the vertical shaft at the constant value �. The
mass of the bar is m and the mass of the shaft is neg-
ligible. For the instants when θ = π/2 and θ = π/3,
derive expressions for M and �.
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θ

3R

R

AB

φ
. Ω

Exercise 6.13

EXERCISE 6.13 The disk of mass m is obliquely
mounted on shaft AB, such that the angle be-
tween the center line of the disk and the shaft
always is θ. The disk spins freely relative to this
shaft at the unknown angular rate φ̇. The illus-
trated position, in which the diametral line per-
pendicular to the shaft is horizontal, corresponds
to φ = 0. A torque � acting about the vertical
shaft maintains the precession rate at the con-
stant value �. Derive the differential equation of
motion governing φ and an expression for � in
terms of φ. Only the mass of the disk is significant.

Ω

θ

R

L

B

C

A

Exercise 6.14

EXERCISE 6.14 Bar BC is pivoted from the end of the T-
bar. A torque � applied to the vertical shaft is such that
the system rotates about the vertical axis at the constant
speed �. Derive the differential equation of motion for
the angle of elevation θ .

x

θ

A

B

C

ψ

L

.

Exercise 6.15

EXERCISE 6.15 Collar C is attached to the vertical shaft by
a fork-and-clevis, so the angle of inclination θ of bar AB is
arbitrary. Because this bar slides through the collar, the dis-
tance x from the pivot point to the center of mass is variable,
but it may be assumed that the bar does not spin about its
own axis. The vertical shaft rotates at the constant rate ψ̇.

Determine the differential equations of motion for x and θ,

as well as expressions for the force–couple system exerted by
the collar on the bar in terms of these responses.

L L/3

L/2

θ

A

B

C

D

ψ.
φ
.

ξ

Exercise 6.16

EXERCISE 6.16 Collar A is welded to the vertical shaft, so
the angle of inclination θ is constant. The rectangular plate,
whose mass is m, is welded to bar BC. This bar may slide
through the collar, as well as spin about its own axis at angu-
lar speed φ̇, with φ = 0 defined to be the position where the
plate is upright in the vertical plane. The mass of the plate
is m and the mass of the bar may be neglected. Consider the
situation in which the system precesses at the constant rate
ψ̇. Derive the corresponding differential equations of mo-
tion for φ and the distance ξ to the end C of the bar.
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A

B

Ω
θ

L

Exercise 6.17

EXERCISE 6.17 The vertical shaft rotates at constant speed �.
Bar AB has mass m. Both collars have negligible mass, and
friction between the collars and their respective guides is neg-
ligible. Derive the differential equation of motion governing
θ.

β β

R

ρ

Ω

Exercise 6.18

EXERCISE 6.18 The cross-sectional view shows a disk of radius R
that rolls without slipping over the interior surface of a cone whose
apex angle is 2β. The axis of the cone is vertical. The motion de-
picted in the sketch is such that the disk remains upright as it pre-
cesses at constant speed �, with its center following a circular path
of radius ρ. Prove that there is no combination of � and β for which
this motion is possible.

L

Ω

R
B

A

Exercise 6.19

EXERCISE 6.19 The sphere, whose mass is m, spins freely
relative to shaft AB, whose mass is negligible. The sys-
tem precesses about the vertical axis at constant rate �,
and joint A is an ideal pin. Consider the possibility that
the sphere rolls over the ceiling without slipping. Deter-
mine whether there is a range of values of � for which
such a motion can occur. It is permissible to assume that
the radial component of the friction force at the ceiling
is zero.

EXERCISE 6.20 A hemisphere is observed to roll without slipping on a horizontal sur-
face. The motion is such that the center of the hemisphere follows a horizontal circle
of radius ρ at constant speed v, and the angle of inclination θ of the centerline of the
hemisphere is constant. Derive an algebraic equation for the speed v corresponding to
specified values of θ and ρ. Also determine friction force f .

ρ

r
v

θ

θ

ρ
θ

zv/ρ
v/ρ

Exercise 6.20
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R
30°

L

L

Ω

A
B

C

Exercise 6.21

EXERCISE 6.21 A thin disk of mass m rolls over the
ground without slipping as it rotates freely relative
to bent shaft ABC. The connection at end A is an
ideal pin. The precession rate of the bent shaft about
the vertical axis is the constant value �. Determine
the magnitude of the normal force N exerted be-
tween the disk and the ground.

θ

Ω2

Ω1

R

b

.

L

B

Exercise 6.22

EXERCISE 6.22 The sphere spins freely about its shaft, which is con-
nected by pin A to the vertical shaft whose rotation rate is �1. The
cylindrical housing, which is shown in cross section, rotates at �2.

Derive an expression for the normal force exerted on the sphere by
the cylinder wall based on the assumption that the sphere rolls over
the wall without slippage.

β

β

r

Exercise 6.23

EXERCISE 6.23 The cone, whose mass is m and apex
angle is 2β, rolls without slipping over the horizontal
surface. The rolling motion of the cone is such that it
is observed to rotate about a fixed vertical axis inter-
secting its apex at constant angular rate ω1. Determine
the maximum value of ω1 for which the cone will not
tip over its rim in this motion. Also, determine the minimum coefficient of static friction
corresponding to that value of ω1. Hint: The line force along the edge where the cone
contacts the ground may be replaced with a normal force and radial friction force. The
magnitude of these forces and the location along the edge where the normal force acts
may be determined from the equations of motion.

Ω2

Ω1

Rr
β

Exercise 6.24

EXERCISE 6.24 The sphere, whose radius is r , rolls without
slipping relative to the wall of the cylindrical tank and the
conical floor. The tank and the floor rotate about the verti-
cal axis at the constant rates of �1 and �2, respectively. It is
observed that the radial line to the center of the sphere also
rotates at �2. This behavior arises when �2 is very large,
which also has the consequence that the friction force ex-
erted by the floor is negligible. (a) Determine the forces ex-
erted on the sphere by each surface it contacts in the special
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case in which β = 90◦. (b) Determine the forces exerted on the sphere by each surface
it contacts if β is an arbitrary acute angle.

θ

Ω2

R

b

L

. A

B

Ω1

Exercise 6.25

EXERCISE 6.25 The sketch shows the cross section of a sta-
tionary cylindrical tank of radius b. A torque, which is not de-
picted, acting on the vertical shaft maintains the precession rate
at a constant angular speed �1 that is very large. The connec-
tion between this shaft and shaft AB is an ideal pin, so the
angle θ can have any value in the range 0 ≤ θ ≤ θmax, where
Lsin θmax + R = b. The sphere spins freely at angular speed �2

relative to shaft AB. For t < 0, a torque applied to shaft AB
keeps the sphere in close proximity to the tank’s wall, that is,
θ is slightly less than θmax. The spin rate in this condition is
�2 = 0. At t = 0, the shaft is released, causing the sphere to
immediately contact the cylinder. The coefficient of sliding fric-
tion between the sphere and the cylinder wall is µ, and all other frictional effects are neg-
ligble. Derive the differential equation governing �2 for t > 0. The mass of the sphere
is m, which is much larger than the mass of shaft AB. Hint: The moment exerted on the
sphere by shaft AB has a zero component in the direction of the shaft.

EXERCISE 6.26 Consider an automobile that is following a straight path at speed v. Its
wheelbase is L and its center of mass is located at distance b behind the front wheels and
distance h above the ground. The coefficient of friction between the tires and the ground
is µ. Determine the maximum possible acceleration rate v̇ for cases of front-wheel, rear-
wheel, and all-wheel drive.

F

R

L

θ

A

B

Exercise 6.27

EXERCISE 6.27 Bar AB is attached at both ends to
rollers that follow a horizontal circular groove of ra-
dius R. Frictional resistance is negligible. At what
angle θ relative to the bar should force F̄ be applied
to maximize the angular acceleration of the bar?
What is the corresponding angular acceleration?

x

y

xA

A

Bθ

Exercise 6.28

EXERCISE 6.28 The bar of mass m is falling toward the horizontal
surface as it slides over the ground. The coefficient of sliding fric-
tion is µ. Derive differential equations of motion for the position
coordinate xA of the lower end and the angle of inclination θ .
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A

BC L

L/3 θ

Exercise 6.29

EXERCISE 6.29 Bar AB is pinned at its lower end to collar
A, and its groove slides over the stationary pin C. Friction
effects are negligible, as is the mass of the collar. The bar’s
center of mass is situated at its midpoint, and its centroidal
radius of gyration is 0.4L. At θ = 30◦ it is observed that
θ̇ = −2(g/L)1/2. What is θ̈ this position?

60°
φ

400 mm

Exercises 6.30 and 6.31

EXERCISE 6.30 The system lies in the vertical
plane. The bar is released from rest at φ = 70◦.
Determine the angular acceleration of the bar at
the instant of release. Friction between the col-
lars and their guides is negligible, as is the mass
of the collars.

EXERCISE 6.31 When the bar is at φ = 20◦, it is
falling with an instantaneous angular velocity of
φ̇ = −8 rad/s. The coefficients of sliding friction
at the ground and the incline are both µ = 0.10,

and the collars have negligible mass. Determine
the angular acceleration φ̈ of the bar in this po-
sition.

b

45°

θ

G
A

B

Exercise 6.32

EXERCISE 6.32 Corner A of the homogeneous square
box remains in contact with the wall as the box falls. Fric-
tional resistance at both the wall and the floor is negli-
gible. Derive the differential equation of motion for the
angle θ at which the box is tilted. Also derive algebraic
equations for the contact forces exerted by the wall in
terms of instantaneous values of θ and its derivatives.

EXERCISE 6.33 At t = 0 a bowling ball is thrown onto the ground with a velocity v that is
essentially horizontal. It is not spinning at the instant it first comes into contact with the
ground. Observation of the ball’s motion reveals that it begins to roll without slipping
at a certain time t = τ . Derive an expression for the coefficient of friction in terms of τ

and the system’s parameters.

EXERCISE 6.34 A cable is wrapped around the drum of the stepped cylinder and held
at angle of elevation θ by the tensile force F̄ . The system was at rest before the appli-
cation of F̄ . The mass of the cylinder is m, its centroidal radius of gyration is κ , and
the coefficients of static and kinetic friction with the ground are both µ. The elevation
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F r1 r2

θ

Exercise 6.34

angle can be any value in the range 0 ≤ θ ≤ 90◦. (a) De-
rive an expression for the maximum value of F for which
the cylinder will roll without slipping at a specified θ. Also
determine the corresponding acceleration of the center of
the cylinder. (b) Graph the results in Part (a) for the case
in which m = 500 kg, r1 = 400 mm, r2 = κ = 300 mm, and
µ = 0.2. (c) Derive expressions for the acceleration of the
center of cylinder and the angular acceleration when F at a
specified θ is 10% greater than the value found in Part (a).

θ
ω

R

Exercise 6.35

EXERCISE 6.35 The homogeneous semicylinder has an an-
gular speed ω = 5 rad/s when θ = 30◦. The cylinder’s mass is
20 kg, and R = 150 mm. Determine the minimum coefficient
of static friction between the ground and the semicylinder for
which slipping between the semicylinder and the ground will
not occur in this position. What is the corresponding angular
acceleration ω̇ of the semicylinder?

F

A

B
C
R

3R

Exercise 6.36

EXERCISE 6.36 Bar AB, which is pinned to collar A
and to the perimeter of the cylindrical pipe, is pushed
to the right by application of force F to the collar. The
mass of the cylinder is m; the influence of the mass
of the bar and of the collar may be neglected. Con-
sider the situation in which F = 0.5mg. From the as-
sumption that the cylinder rolls without slipping, de-
termine the acceleration of the center of the cylin-
der when the system is at the instantaneous position
depicted in the sketch. Also determine the minimum
value of the coefficient of static friction required to pre-
vent slippage at this position.

F R

Exercise 6.37

EXERCISE 6.37 Horizontal force F is applied to the pis-
ton, whose mass is small compared with that of the cir-
cular cylinder of mass m. The coefficients of friction are
µ and η for static and kinetic friction, respectively. (a)
For the case in which there is no slipping relative to the
ground, determine the acceleration of the cylinder’s cen-
ter. (b) Determine the largest value of F for which the
motion in Part (a) is possible. (c) Determine the trans-
lational and angular acceleration of the disk when the
magnitude of F exceeds the value in Part (b).
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θ

F

R

A B hC

Exercise 6.38

EXERCISE 6.38 Horizontal force F causes the actuat-
ing rod to move to the left at the constant speed v. This
rod is connected to the wheel by pin B, which may slide
through the groove. The mass of the wheel is m, the ra-
dius of gyration is κ , and µs and µk are the coefficients
of static and kinetic friction, respectively, between the
wheel and the ground. Friction between the pin and the
groove is negligible, as is the mass of the rod. Consider
the instant when θ = 30◦. Derive expressions for the ac-
celeration of center C, the angular acceleration of the
gear, and the force F under the assumption that (a) the
wheel rolls without slipping, (b) there is slippage be-
tween the wheel and the ground.

v

Exercise 6.39

EXERCISE 6.39 The mass of the ore truck when empty
is m0. The traction force F propels it at constant
speed v while ore is dropped into it at constant mass
flow rate σ . It may be assumed that the ore falls ver-
tically. Derive an expression for F. Hint: Follow the
ore particles that fall into the carrier in an interval dt.

θv

v

w

Exercise 6.40

EXERCISE 6.40 Water that flows out of a hose whose nozzle
area is A is moving at velocity v horizontally when it is inci-
dent upon a curved vane. This deflects the flow such that the
stream is elevated at angle θ. The vane translates horizontally
at constant speed w. What is the force the water exerts on the
vane?

A
C

B
ωA

ωB

L/4
3L/4

Ω

Exercise 6.41

EXERCISE 6.41 Identical disks A and B spin at the con-
stant rates ωA and ωB, respectively, about shaft AB,
which is horizontal. The entire system precesses about the
vertical axis at the constant rate �. Determine the rela-
tionship between the spin rates ωA and ωB for which this
motion can occur without application of a torque acting
about the axis of pin C.
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G2

Ω

G1

H

z

x v

ρ

Exercise 6.42

EXERCISE 6.42 A single-engine turbojet airplane
has its minimum speed v at the top of a vertical
circle of radius ρ. At that instant, the airplane is
executing a roll, clockwise as viewed by the pilot,
at angular speed ω1. The engine turns at angular
speed � about the longitudinal axis, which is la-
beled x in the diagram. This rotation is clockwise
from the pilot’s viewpoint. The rotating parts of
the engine have mass m2, and centroidal moments
of inertia J about the rotation axis and J ′ trans-
verse to the rotation axis. The mass of the airplane,
excluding the rotating parts of the engine, is m1, and the corresponding moments of in-
ertia about centroidal xyz axes are Ix, Iy, and Iz. The spin axis of the engine is collinear
with the longitudinal x axis of the airplane, and the centers of mass G1 and G2, associ-
ated respectively with m1 and m2, both lie on this axis. Derive expressions for the aero-
dynamic force and moment about the center of mass of the airplane required to execute
this maneuver.

θ

w

Ω 1

Ω2

cutting
blade

Exercise 6.43

EXERCISE 6.43 While Abby pushes a lawn
mower at constant speed v along level
ground, she pushes down on the handle,
causing it to rotate about its rear axle at
constant speed �2 = ψ̇. The motor’s ro-
tation rate �1 = θ̇ is constant. Derive an
expression for the dynamic force at each
wheel associated with these rotations when
the motor’s axis is inclined at angle ψ from
the vertical. Do these forces depend on the
angular position of the blade? The mass of
the cutting blade is m, the length of the
blade is L, and the blade may be considered
to be a slender bar.

1 rev/min

8 m

14
o

Exercise 6.44

EXERCISE 6.44 The barrel of a truck transporting
wet-mix concrete rotates at 1 rev/min. The axis of ro-
tation is elevated 14◦ from horizontal. The barrel and
its contents have a mass of 30 000 kg, and the con-
crete may be considered to be a solid that fills the ro-
tating barrel. The centroidal radii of gyration of the
rotating parts are 1.5 m about the rotation axis and
2.5 m transversely to that axis. Determine the dy-
namic force at each wheel associated with rotation
of the barrel when the truck executes a 40-m radius
turn at 50 km/h. The track (distance between a pair
of wheels on opposite sides) is 3 m.
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Exercise 6.45

EXERCISE 6.45 The gimbal supporting the flywheel is
suspended from pivot A by two cables of equal length.
The flywheel, which may be modeled as a thin disk of
mass m1, spins at the constant rate χ . The mass of the
gimbal is m2. It is observed that under certain condi-
tions the system will undergo a steady precession �

about the vertical axis through pivot A with the an-
gle of inclination θ constant and the spin axis BC of
the flywheel horizontal. Derive expressions for χ and
� under these circumstances as functions of the angle
θ and the other system parameters.

EXERCISE 6.46 The force F̄ in Exercise 6.38 is constant and frictional resistance between
pin B and the groove is negligible. Initially, θ = −60◦ and θ̇ = 0. The distance h = 0.6R.

Derive an expression for the angular speed of the wheel when θ = 30◦, based on the
assumption that there is no slippage when the wheel rolls.

EXERCISE 6.47 The bar in Exercise 6.29 is released from rest at θ = 60◦. Determine its
angular velocity when θ = 10◦. The mass of the collar is half the mass of the bar.

EXERCISE 6.48 The semicylinder in Exercise 6.35 is released with angular speed ω0 at
θ = 0. Derive expressions for the normal and friction forces exerted by the ground as
functions of ω0 and θ if the semicylinder rolls without slipping.

B

A

60°

800 mm
φ

Exercise 6.49

EXERCISE 6.49 Bar AB has a mass of 40 kg, and the
stiffness of the spring is 9 kN/m. The bar is released
from rest at φ = 0, at which position the spring is
elongated by 300 mm. The linkage lies in the vertical
plane. (a) Determine the largest value of φ attained
in the subsequent motion. (b) Determine φ̇ when φ

is 5◦ less than the value found in Part (a).

ε

θ

L

Exercise 6.50

EXERCISE 6.50 The small ball is released from rest with the
cable horizontal. At its lowest point the cable encounters the
fixed peg. Describe the speed of the sphere as a function of
the angle θ .
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3R

F

A

B

C
R

θ

Exercise 6.51

EXERCISE 6.51 Gear A has mass m and cen-
troidal radius of gyration κ . It rolls over the hor-
izontal rack because of the constant horizontal
force F acting on collar C. The connecting bar
and collar C have negligible mass. The system
was at rest at θ = 0. Derive an expression for
the speed v of the center of gear A as a function
of θ .

EXERCISE 6.52 Solve Exercise 6.51 for the case in which the mass of rod BC is m/2.

A

v

R

Exercise 6.53

EXERCISE 6.53 The semicircular plate is falling at speed
v with its plane oriented horizontally. It strikes the ledge
at corner A, and the impact is perfectly elastic (that is,
the recoil velocity of corner A is v upward). The interval
of the collision is �t . Derive expressions for the velocity
of the center of mass and the angular velocity at the in-
stant following the collision. Also, derive an expression
for the collision force exerted between the plate and the
ledge.

Ω

θ

A

B

300 mm

Exercise 6.54

EXERCISE 6.54 Bar AB is pinned to the vertical shaft,
which rotates freely. When the bar is inclined at θ = 10◦,
the rotation rate about the vertical axis is � = 10 rad/s, and
θ̇ = 4 rad/s at that instant. Determine the maximum value
of θ in the subsequent motion. The mass of the vertical
shaft may be neglected.

Ω

θ2L/3

2L/3

L/3

F

Exercise 6.55

EXERCISE 6.55 The pin allows the angle of inclina-
tion θ of the 50-kg bar to change when a constant
tensile force of F = 2 kN is applied. No torque is
applied to the vertical shaft, so the precession rate �

varies as θ is altered. At the initial position θ = 20◦,
θ̇ = 0, and � = 5 rad/s. Determine the values of θ̇

and � when θ = 90◦.

EXERCISE 6.56 The system in Exercise 6.14 spins freely about the vertical axis because
the torque � is not present. Initially � = 4 (g/L)1/2 with θ = 150◦ and θ̇ = 0. The mo-
ment of inertia of the T-bar about its rotation axis is 0.5mL2, where m is the masses of
bar BC. (a) Determine the value of θ̇ when θ = 90◦. (b) Determine the minimum value
of θ in the ensuing motion.
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EXERCISE 6.57 The system rotates freely about the vertical axis. Collars A and B are
pinned to the bar that is welded to sphere C. The mass of the sphere is 12 kg, and the
masess of the collars and the bar are negligible. Initially, the system is precessing at
� = 100 rad/s with θ held constant at 20◦. It then is released, causing θ to increase and �

to change. Determine whether θ = 90◦ is attained in the subsequent motion. If so, what
is the angular velocity of the sphere at that position?

A

B

D

θ

53.13

200 mm
200 mm

R = 80 mm

C

Ω

Exercise 6.57

EXERCISE 6.58 The system in Exercise 6.57 was rotating at rate 50 rad/s with θ con-
stant at θ = 30◦ when it was released. Determine whether in the ensuing motion there is
another value of θ at which θ̇ is zero. If so, what is the value of � at that position?

L

L

β

β

Ω

A

B

C

Exercise 6.59

EXERCISE 6.59 A slender bar of mass m, which is sus-
pended by a cable from pivot A, executes a steady pre-
cession about the vertical axis at angular speed � as it
maintains the orientation shown. (a) Determine � and the
angle of inclination β. (b) An impulsive force F̄ at end B,
parallel to the initial velocity of that end, acts over a short
time interval �t . Determine the magnitude of F̄ for which
� = 0 at the conclusion of the impulsive action. What are
the corresponding velocity of the center of mass G and
angular velocity of the bar? Hint: If � = 0, the angular
velocity of the bar must be horizontal.

Ω
θ

θ 100 mm

50 mm

F
B

A

Exercise 6.60

EXERCISE 6.60 The flyball speed governor consists
of two 500-g spheres connected to the vertical shaft
by a parallelogram linkage. This shaft, which passes
through the collar supporting the linkage, rotates
freely. The mass of the links is negligible. The sys-
tem is initially rotating steadily at 900 rev/min about
the vertical axis, with θ = 75◦. A constant upward
force F̄ is applied to the vertical shaft at end B, caus-
ing point A to move upward and θ to decrease. De-
rive algebraic equations for � and θ̇ as functions of
the magnitude of F̄ and θ.
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v

b

h

Exercise 6.61

EXERCISE 6.61 The package was translating to the left
at speed v when it hit cleat A. The collision is perfectly
plastic. Determine the angular velocity of the package
immediately after the collision.

A

B

1.2 m
1.5 m

15 rad/s

Exercise 6.62

EXERCISE 6.62 The 100-kg bar was released from rest in the
horizontal position. The coefficient of restitution between the
bar and bumper B is 0.4, and the duration of the impact is
5 ms. Determine the maximum angle of inclination of the bar
subsequent to the impact and the average force exerted by the
bumper during the impact.

C

A

45°L

L

ω

Exercise 6.63

EXERCISE 6.63 The square plate, whose mass is m, strikes corner
C of ledge at angular speed ω. The impact point is slightly above
the corner of the plate. The coefficient of restitution is ε and the
impact’s duration is 8 ms. Determine the angular velocity at which
the plate rebounds and the average forces that are exerted on the
plate by the ledge and pin A during the impact.

1 m
0.8 m

v45∞

Exercise 6.64

EXERCISE 6.64 The 20-kg bar was at rest when it was hit by the
1-kg ball whose initial velocity was v = 30 m/s in the direction
shown in the sketch. The coefficient of restitution is 0.75. Deter-
mine the angular velocity of the bar and the velocity of the ball
immediately after the collision.

v

L
β

Exercise 6.65

EXERCISE 6.65 The sketch shows the velocity of a small disk at the
instant before its collision with a rigid body consisting of the same
disks connected by a rigid massless bar. Determine the rebound
velocity of each disk in terms of the coefficient of restitution ε.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

Homework Problems 389

v

Exercise 6.66

EXERCISE 6.66 The slender wooden board was at rest on
the surface of a large body of water immediately before
it was hit by a ball having the initial speed v appearing in
the sketch. The masses are 2 kg for the board and 0.5 kg
for the ball. The dimensions are L = 2m, b = 1.4m, and
the coefficient of restitution is ε = 0.3. Determine the velocities of the rock and of the
center of the board, and the angular velocity of the board, at the instant when the bodies
separate.

EXERCISE 6.67 The sketch shows a right triangular plate floating on water at the instant
before it is struck by a ball whose speed is v = 25 m/s in the direction shown. The point
of contact is on the flat surface adjacent to the right-angle corner. The masses are 6 kg
for the plate and 1 kg for the ball. The coefficient of restitution is ε = 0.3. For the instant
when the bodies separate, determine the velocity of the ball, the velocity of the plate’s
center of mass, and the angular velocity of the plate.

v
°

Exercise 6.67

36 m/s Center of
mass

s
450 mm

v

ω

Exercise 6.68

EXERCISE 6.68 A baseball moving at a speed of 36 m/s is
struck by a bat in the orientation depicted in the sketch. At
this instant the batter’s hands are moving forward at v = 10
m/s and the bat is rotating at ω = 20 rad/s, which is equivalent
to the bat being in pure rotation about some point O along its
centerline. The distance from the player’s hands to the point
of impact is s. What value of s will minimize the impulsive
force F̄ the player must exert to maintain the bat in a pure
rotation about point O throughout the impact? What are the
corresponding velocity of the ball and the values of v and ω

after the impact if s has that value? The bat’s radius of gyra-
tion about its center of mass is 300 mm, and the coefficient
of restitution is 0.6. Also, the player may be considered to be
holding the bat at the end.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

390 Newton–Euler Equations of Motion

400 mm

A
B

10°
35°

Exercise 6.69

EXERCISE 6.69 The sketch shows the po-
sition of two billiard balls. It is desired to
give billiard ball B an initial velocity such
that, after the impact, ball A falls into the
pocket by following the path described by
the 35◦ angle. The coefficient of restitution
is ε = 0.75 and the effects of friction may
be neglected. Determine the angle at which
ball B should be aimed, and the direction
of the velocity with which it rebounds from
the collision. The diameter of a billiard ball
is 57.1 mm.

60°

v

Exercise 6.70

EXERCISE 6.70 At the instant before the bar hit the wall with the
orientation shown in the sketch, it was translating at velocity v̄. De-
rive expressions for the velocity of the center of the stick and the
angular velocity of the bar at the instant it rebounds from the wall.
The coefficient of restitution is an arbitrary value ε.

15°

2.4 m

1 m

Exercise 6.71

EXERCISE 6.71 The crate, which was dropped from an air-
craft, hits the ground in the position shown. At the instant of
impact the crate was translating downward at 25 m/s. The co-
efficient of restitution for the impact is 0.10, the mass of the
crate is 20 000 kg, and the crate may be approximated as a ho-
mogeneous body. Determine the velocity of the center of the
crate and the angular velocity of the crate immediately after
the collision.

v

θ

Exercises 6.72 and 6.73

EXERCISE 6.72 The sphere rolls without slipping down the
incline. At the instant it contacts the ground, its speed was
v0. The coefficient of restitution is ε. Derive expressions for
the velocity of its center and its angular velocity at the instant
it rebounds from the collision based on the assumption that
friction between the ball and the ground is negligible.

EXERCISE 6.73 Solve Exercise 6.72 corresponding to a nonzero coefficient of friction.

EXERCISE 6.74 A 100-mm-diameter spinning ball lands on the ground with an initial
speed v̄0 = 20ī − 12k̄ m/s, where the xy plane is horizontal. The angular velocity of the
ball at this instant is ω̄0 = −100ī + 150 j̄ + 50k̄ rad/s. The coefficient of restitution is
ε = 0.5 and the coefficient of friction is µ = 0.2. Determine the ball’s angular velocity
and the velocity of its center of mass at the instant the ball rebounds from the surface.
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CHAPTER 7

Introduction to Analytical Mechanics

Any formulation of equations of motion requires characterization of the role of the
physical restrictions that are imposed on a system’s movement. These restrictions lead
to kinematical relations between motion variables, and they also are manifested as re-
action forces. When a system consists of interconnected bodies, the standard Newton–
Euler formulation isolates individual bodies. The need to account for the kinematical
constraints and corresponding reaction forces associated with each connection substan-
tially enhances the level of effort entailed in deriving equations of motion.

The Lagrangian formulation implicitly recognizes the dual role of motion con-
straints. Indeed, it is recognition of this duality that has made it preferable to use the
term constraint force rather than reaction. A primary benefit of the Lagrangian for-
mulation is the ability to automatically account for constraint forces in the equations
of motion. The formulation will allow us to treat connected bodies as a single system,
rather than individual entities. The primary kinetic quantity for Lagrange’s equations of
motion is mechanical energy (kinetic and potential), whereas the Newtonian equations
of motion are time derivatives of momentum principles.

The term analytical mechanics, which encompasses the developments of Lagrange,
Hamilton, and many others who followed Euler, refers to the fact that the procedures
that we shall develop are more mathematical than those of Newton and Euler. They
also are more abstract. In fact, we often will find that features of the equations of mo-
tion, as well as of the physical responses predicted by those equations, are most readily
explained in terms of Newton–Euler concepts.

7.1 BACKGROUND

As a preview to where we are headed, it is useful to consider a historical development
that preceded Lagrange and provided an important impetus to his work. Some popular
undergraduate textbooks, for example, Hibbeler (2003), state that d’Alembert reformu-
lated Newton’s Second Law as a static principle by defining an inertial force to be the
negative of the product of mass and acceleration, that is,


 F̄ + F̄ inertial = 0̄ where F̄ inertial = −mā. (7.1.1)

Such a viewpoint would be problematic, in that the so-called inertial force is not exerted
by another body, as postulated by Newton’s Third Law. A different perspective, which
one may find in more advanced works such as Goldstein (1980) and Rosenberg (1977),

391
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asserts that d’Alembert introduced the inertial force concept as a vehicle for applying
the principle of virtual work, which had often been used for static systems, to the analysis
of dynamic systems. In fact, it is not clear how d’Alembert came to be associated with the
inertial force concept. Dugas’ (1988) extensive treatment of d’Alembert’s work does not
mention either an inertial force or virtual work. Truesdell (1960) attributes the inertial
force concept to Euler and credits Lagrange with using the concept to apply the principle
of virtual work. We avoid this question of attribution by referring to the concept as the
principle of dynamic virtual work, without mention of d’Alembert. Development of this
principle is how we will begin, but doing so requires that we first consider the principle
of virtual work for static systems.

7.1.1 Principle of Virtual Work

Were it not for the requirement that one consider movement of a static system, the
principle of virtual work would be quite straightforward. The statics laws state that the
actual forces acting on a body are self-equilibrating. Because any set of forces may
be replaced with an equivalent force–couple system acting at an arbitrary point P,

static equilibrium requires that there be a force balance and a moment balance about
point P:


 F̄ = 0̄, 
M̄P = 0̄. (7.1.2)

Physically moving a body that is in static equilibrium requires that the forces acting
on it be altered, such that their resultant does not vanish. Thus let us introduce an ab-
straction called a virtual movement; the word virtual is used here in the same sense as
virtual reality, to denote something that does not really occur. When we introduce the
virtual movement, we consider all forces, including those that constrain motion, to be
unchanged, even though we ignore kinematical restrictions.

The virtual movement results in altering the position of the point P chosen for mo-
ment equilibrium, and it also leads to rotation of the body. The virtual movement we
impart could have any magnitude we wish. However, if it leads to finite changes in
the position of points and the orientation of the body, it will be necessary to evalu-
ate the work as a path integral that accounts for the dependence of the force compo-
nents as the position changes. For this reason, a virtual movement is limited to be such
that the virtual displacements of points and the virtual rotations of bodies are infinites-
imal. Correspondingly, we denote the virtual displacement of point P as δr̄P and the
virtual rotation of the body as δθ , where we use the symbol δ, rather than the differ-
ential symbol d, to emphasize that we are not dealing with an increment that actually
occurs.

The work done by the resultant force in Eq. (7.1.2) is 
 F̄ · δr̄P, and the work done
by the resultant moment is 
M̄P· δθ. Because both the resultant force and resultant mo-
ment vanish, each work term is zero. Furthermore, work is additive as a scalar quantity,
so the virtual work δW also is zero for a system of rigid bodies. A further consequence
of work being a scalar is that we may form it from the individual contributions of each
force F̄ j and couple M̄n that acts on the system. Thus, we are led to the principle of
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virtual work, which states that the work done by the set of forces and couples acting on
a static system vanishes in a virtual displacement,

δW =
∑

j

F̄ j · δr̄ j +
∑

n

M̄n · δθn = 0, (7.1.3)

where δr̄ j is the virtual displacement of the point where force F̄j is applied and δθn is
the virtual rotation of the body on which couple M̄n acts.

At this juncture, it might seem strange that the principle of virtual work can be
useful, because it is a single scalar equation, yet there are likely to be many unknown
forces to determine. Such thoughts ignore a key feature, specifically that we may impose
any virtual movement we wish. The virtual work is different for different movements,
thereby leading to different equilibrium equations. Furthermore, we may select the vir-
tual movement such that the only unknown forces doing work are the forces we wish to
determine. This enables us to form one or more equilibrium equations that contain only
the forces we wish to determine.

These concepts can be understood by considering the frame structure in Fig. 7.1,
where it is desired to determine the horizontal constraint force Cx. To avoid the occur-
rence of the reactions Ax, Ay, and Cy in the virtual work, the virtual movement of the
system should be such that end A remains stationary and end C moves horizontally.
Such a movement will alter the angle θ. Let us denote the virtual increment of this angle
as δθ.

θAx

B
θ

L

Ay Cy

Cx

F

L/2

M

y

x
G

Figure 7.1. Free-body diagram of a frame structure in static
equilibrium.

The work done by the couple M will be Mδθ, but we also must determine the work
done by F̄ and C̄y, which means that we need to determine the virtual displacement
of their points of application. This actually is a familiar task, because ignoring the con-
straint against horizontal motion of point C effectively converts the system to a linkage.
To determine infinitesimal displacements associated with δθ, we first describe both po-
sitions in terms of θ :

r̄C/A = 2Lcos θ ī, r̄G/A = 3
2

Lcos θ ī + 1
2

Lsin θ j̄ . (7.1.4)

The virtual displacements, being infinitesimal, may be obtained from the chain rule, so
that

δr̄C/A = ∂ r̄C/A

∂θ
δθ = (−2Lsin θ ī

)
δθ,

δr̄G/A = ∂ r̄G/A

∂θ
δθ =

(
−3

2
Lsin θ ī + 1

2
Lcos θ j̄

)
δθ.

(7.1.5)
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We add the virtual work done by both forces and M̄, and equate it to zero. This
gives

δW = Cxī · δr̄C/A + (−F j̄
) · δr̄G/A + Mδθ

= Cx (−2Lsin θ) δθ + (−F)
(

1
2

Lcos θ

)
δθ + Mδθ = 0.

(7.1.6)

According to the principle of virtual work, δW must vanish, even though δθ is not zero,
so we find that

Cx = M
2Lsin θ

− F cot θ

4
. (7.1.7)

The same result could be obtained by equilibrating bars AB and BC individually. How-
ever, doing so would lead to several simultaneous equations in which the internal forces
exerted between the bars at pin B appear. The ability to focus on the variables of in-
terest is what makes the principle of virtual work attractive for both static and dynamic
systems.

7.1.2 Principle of Dynamic Virtual Work

The first step in extending the principle of virtual work to dynamic systems entails a
slight alteration of the concept of dynamic equivalence, which we used in Section 6.3 to
obtain equations of motion for a system of rigid bodies. This alteration involves drawing
a single free-body diagram of the system. In addition to the actual forces, an inertial
force–couple system, −māG and −dH̄A/dt, respectively, is shown for each body. (The
former is the d’Alembert inertial force discussed at the beginning of this chapter, and the
second term is the analogous moment effect.) The point A at which this force–couple
system is applied is the same as the reference point for the Newton–Euler equations
of motion. Thus we limit the specific point A to be each body’s center of mass, unless a
body is in pure rotation, in which case it may be the stationary pivot point. These inertial
forces and couples must equilibrate the actual forces and couples that act on the bodies.
Consequently, the total virtual work done by the inertial and actual forces and couples
must be zero, as though the system were in static equilibrium. Also, as in the static case,
the virtual movement may be defined in any manner. Selecting a virtual movement in
which constraint forces do no virtual work will lead to an equation of motion whose only
unknowns are position variables.

A slight modification of the system in Fig. 7.1 serves well to illustrate this concept. In
Fig. 7.2 the pin connection at end C has been replaced with a collar riding in a horizontal
guide, so the system is not rigid. Bar BC executes a general motion, so its center of mass
G is the reference point for the Euler moment equation. Correspondingly, the inertial
force −māG is applied at the center of mass, and the inertial couple applied to this bar
is IGθ̈ k̄, where the sense is opposite the angular acceleration associated with positive θ̈ .

In contrast, bar AB executes a pure rotation about pin A, so it is advantageous to use
this point. Thus the inertial force −māD is applied at end A, and the inertial couple is
−IGθ̈ k̄. These forces and couples are depicted in the free-body diagram.
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Ax

B

Ay Cy

F
M

y

x
G

−maG−maD

D

−IAθ
..

−IGθ
..

Figure 7.2. Free-body diagram showing the actual forces
acting on a linkage, as well as d’Alembert’s inertial forces.

We select the same virtual movement that we used to solve the static version of this
system. Doing so avoids the occurrence of the constraint forces Āx, Āy, and C̄y in the
virtual work. We must add the virtual work of the inertial forces and couples to that of
the actual force system. Because −māD acts at the stationary pin A, it does no work. We
described the virtual displacement of point G in Eqs. (7.1.5). For the virtual rotations,
we observe that increasing θ by δθ causes bar AB to rotate by δθ k̄ and bar BC to rotate
by −δθ k̄. Thus the total virtual work done by the actual and inertial effects is

δW = (
Mk̄ − IAᾱAB

) · δθ k̄ + (−māG − F j̄
) · δr̄G/A + (−IGᾱBC) · (−δθ k̄

) = 0. (7.1.8)

Although we have equated the virtual work to zero, we cannot yet obtain an equa-
tion of motion because we must account for the dependence of āG on θ. Differentiating
r̄G/A in Eqs. (7.1.4) gives

āG = ..

r̄ G/A = −3
2

L
(
θ̈ sin θ + θ̇2 cos θ

)
ī + 1

2
L
(
θ̈ cos θ − θ̇2 sin θ

)
j̄ . (7.1.9)

Substitution of this expression and the angular accelerations into the preceding equation
for δW results in

δW = (
M − IAθ̈

)
δθ + 3

2
mL

(
θ̈ sin θ + θ̇2 cos θ

) (−3L
2

δθ sin θ

)

−
[

1
2

mL2
(
θ̈ cos θ − θ̇2 sin θ

)+ F
](

L
2

δθ cos θ

)
+ IGθ̈ (−δθ) = 0.

(7.1.10)

Because δθ is not zero, it may be factored out. What remains is the differential equation
of motion:[

IA + IG + 9
4

mL2 (sin θ)2 + 1
4

mL2 (cos θ)2
]

θ̈ + 2mL2θ̇2 sin θ cos θ = M − F L
2

cos θ.

(7.1.11)

The analysis leading to this equation of motion exemplifies the direct application of
the principle of dynamic virtual work. Each body is treated as though it were in static
equilibrium under a force–couple system composed of the actual and inertial forces,
where the latter are as given by the Newton–Euler equations of motion. Regardless of
the type of motion, the center of mass is always an appropriate reference point for the
moment equations, so we begin with


 F̄ i + (−mi āGi ) = 0̄, 
M̄Gi +
(

−dH̄Gi

dt

)
= 0̄, i = 1, . . . , K. (7.1.12)

The virtual work of each force resultant is obtained from a dot product with the virtual
displacement of the corresponding body’s center of mass, and the the virtual work of
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each couple resultant is obtained from a dot product with the virtual rotation of the
corresponding body. Summing the individual contributions gives

K∑
i=1

[∑
F̄ i + (−mi āGi )

]
· δr̄Gi +

[∑
M̄Gi +

(
−dH̄Gi

dt

)]
· δθ i = 0. (7.1.13)

(In the case in which a body is in pure rotation, the inertial force–couple system for that
body may be taken to be −māG acting at the pivot point O and −dH̄O/dt, in which case
the inertial force will not contribute to the virtual work if point O does not displace in
the virtual movement.) An alternative to forming the virtual work done by the resultant
force and moment is to consider each force individually, as described by Eq. (7.1.3).
Thus the principle of dynamic virtual work may be written as

K∑
i=1

[
(−mi āGi ) · δr̄Gi +

(
−dH̄Gi

dt

)
· δθ i

]

+
∑

j

F̄ j · δr̄ j +
∑

n

M̄n · δθn = 0.

(7.1.14)

The process of extracting an equation of motion from the virtual work requires that one
formulate a virtual movement of the system in which constraint forces do no work. If
several position variables are required, a variety of virtual movements fitting this crite-
rion can be used to find the appropriate number of equations of motion.

Our exploration here has served to introduce the important concepts of virtual
movement and virtual work, which are keystones of the Lagrangian formulation. The
main points are that virtual displacements are not the same as how a system actually
moves, that virtual displacements are limited to being infinitesimal in order to simplify
as much as possible the description of work, and that the concept of virtual work is mo-
tivated by the desire to avoid the occurrence of constraint forces in the derivation of
differential equations of motion. Based on the example of a linkage, the principle of dy-
namic virtual work might seem to be an attractive tool, but there are several reasons why
it has not been widely adopted. Selection of suitable virtual movements can be problem-
atic, and the manner in which the inertia force–couple systems appear offers substantial
opportunity for sign errors. More important, we will find that formulating Lagrange’s
equations of motion does not require that we describe accelerations, which substantially
simplifies the effort in the kinematical portion of the analysis. To derive those equations
we need to formalize the manner in which a system’s position and velocity are described.

7.2 GENERALIZED COORDINATES AND KINEMATICAL
CONSTRAINTS

One of the most important features of the preceding application of the principle of dy-
namic virtual work is the prominent role of the angle θ locating the bars. Both the actual
accelerations and the virtual displacements were described in terms of this variable, yet
θ is not the only variable that could have been selected for this purpose. For example,
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we could have used the horizontal distance � from the fixed pin A to the collar C. In fact,
because � = 2Lcos θ, we could switch between the two variables. The variables that we
select to locate the current position of a system are called generalized coordinates.

7.2.1 Selection of Generalized Coordinates

Suppose the reference location of a system is given. (Such a location might be the start-
ing position or the static equilibrium position.) The generalized coordinate values must
uniquely define any possible position of the system relative to the initial position. For
example, it should be possible to draw a diagram of the system in its current position by
knowing only values of the generalized coordinates and the fixed dimensions. The mini-
mum number of generalized coordinates required to specify the position of the system is
the number of degrees of freedom of that system. The linkage in Fig. 7.2 has one degree
of freedom because we are able to locate the current configuration of the linkage solely
from knowledge of θ. As mentioned earlier, the choice of generalized coordinates is
not unique. Thus, different individuals analyzing the same system might select different
generalized coordinates, and therefore derive different equations of motion.

When a body moves in space without any restrictions, its current location is defined
by the position of any point, such as the center of mass, and a set of three independent
direction angles locating lines in the body. Thus, in the absence of kinematical con-
straints, any rigid body moving in space has six degrees of freedom, and a possible set
of generalized coordinates are three position coordinates of the center of mass relative
to a convenient fixed reference frame and three Eulerian angles defined relative to that
reference frame. Now suppose a body is constrained to execute a planar motion. This
restriction reduces the number of degrees of freedom to three, because only two posi-
tion coordinates are required to locate a point in the plane of motion, and the only angle
of rotation is about the axis perpendicular to that plane.

Consider the rigid bar in Fig. 7.3(a), where position coordinates xA and yA locate
one end of the bar, and angle θ measured from the horizontal locates the current ori-
entation. Only geometrical parameters that change as the system moves are candidates
for generalized coordinates, whereas fixed parameters, such as L, are considered to be
known system properties. Thus the generalized coordinates defined in Fig. 7.3(a) are
(xA, yA, θ).

Figure 7.3(b) defines an alternative set of three generalized coordinates. The bar’s
location is there described in terms of (xB, yB, φ) , which define the position of end B and
the rotation relative to the vertical direction. In general, it must be possible to express

B

x

y

xA

yA
θA

B

x

y

xB

yB

φ

A
B

x

y

xA

yA
A

(a) (b) (c)

xB

L LL

Figure 7.3. Alternative generalized coordinates for a bar moving in a plane.
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one set of generalized coordinates in terms of another, for each must be capable of
describing the position of all points in the system. The transformation from the set in
Fig. 7.3(a) to Fig. 7.3(b) is

xB = xA + Lcos θ, yB = yA + Lsin θ, φ = θ + π/2. (7.2.1)

Another choice, shown in Fig. 7.3(c), leads to a difficulty. The three generalized co-
ordinates depicted there are (xA, yA, xB). The difficulty is depicted in the figure, where it
is evident that, for given values of xB, the bar can have one of two orientations. Specifi-
cally, because the length L is a fixed parameter, the vertical position of end B is given by

yA ±
[

L2 − (xB − xA)2
]1/2

. Recall that the generalized coordinates must uniquely spec-

ify the location. This means that (xA, yA, xB) can serve as generalized coordinates only
in situations in which we know that end B will remain either above or below end A
throughout the motion. In most cases in which the orientation of a body is significant, it
is best to use angles as the generalized coordinates defining the orientation.

The situations in Fig. 7.3 correspond to cases in which the number of generalized
coordinates equals the number of degrees of freedom. The generalized coordinates in
such cases are unconstrained. This means that their values may be set independently,
without violating any kinematical conditions. (Indeed, unconstrained generalized coor-
dinates are sometimes alternatively called independent coordinates.) When the number
of generalized coordinates exceeds the number of degrees of freedom, the generalized
coordinates are constrained, because they must satisfy additional kinematical conditions,
independently of any other considerations. The kinematical conditions that must be sat-
isfied are called constraint equations.

A set of constrained generalized coordinates for the bar in Fig. 7.3 could be the po-
sition coordinates of each end and the angle of orientation (xA, yA, xB, yB, θ) . Rather
than merely offering a way to transform between alternative sets of generalized coordi-
nates, Eqs. (7.2.1) then become two relationships between the generalized coordinates
that must be satisfied, regardless of how the bar moves. Thus (xA, yA, xB, yB, θ) consti-
tute a set of five generalized coordinates that are related by two constraint equations.
This is consistent with the fact that the bar has three degrees of freedom, because the
existence of two relations among five variables means that only three variables may be
selected independently. The number of degrees of freedom equals the number of gen-
eralized coordinates minus the number of constraint equations.

Other than the restriction to planar motion, the bar in Fig. 7.3 is free to move. Any
constraint imposed on the bar’s motion by supporting it in some manner alters the num-
ber of degrees of freedom and therefore the selection of unconstrained generalized co-
ordinates. If end A of this bar is pinned to the ground, then the number of degrees of
freedom is reduced to one, because the position of the bar is now completely specified
by the value of θ . A different way of locating the bar when end A is a pin is to use
(xA, yA, θ) as a set of three generalized coordinates that are constrained to satisfy two
constraint equations stating that xA and yA are constants. In this viewpoint, three con-
strained generalized coordinates are used to represent a one-degree-of-freedom system,
so there are two constraint equations.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

7.2 Generalized Coordinates and Kinematical Constraints 399

The linkage in Fig. 7.2 connects pinned bar AB to bar CD. That system also has
one degree of freedom because the position of joint B is specified by the orientation of
bar AB, and the position of collar C is then set by the requirement that it be situated
on the horizontal guidebar at a distance L from joint B. Thus attaching bar BC to bar
AB does not allow bar BC any freedom to move independently. This situation is altered
drastically if the bars are joined by a spring rather than a pin, as depicted in Fig. 7.4. Any
connection by means of a spring does not impose kinematical restrictions because the
spring’s length depends on the force it carries. Thus the movements of points B and D
are kinematically unrelated. It is apparent from Fig. 7.4 that the location of both bars is
fully specified by the values of the angles of elevation θ and φ and the horizontal distance
xC from fixed pin A to collar C. Furthermore, these three variables can have any value,
depending on how forces move the system.∗ In other words the system has three degrees
of freedom, and (θ, φ, xC) are a suitable set of unconstrained generalized coordinates.

θ
φ

y

x

L L

k

A C

B

D

xC

Figure 7.4. Generalized coordinates for a linkage whose mem-
bers are connected by a spring.

An alternative would be to use (θ, xD, yD) as a set of unconstrained generalized
coordinates, because, once we know the position of end D, collar C will be situated on
the horizontal guide bar at the point that is distance L from end D. However, there is
a potential difficulty in the selection of yD as a generalized coordinate, because none
of the generalized coordinates directly specifies the orientation of bar CD. Thus it is
preferable to use (θ, φ, xC) as the generalized coordinates. Of course, we also could use
a constrained set of generalized coordinates, such as (θ, φ, xD, yD) . The associated kine-
matical constraint equation relating the generalized coordinates is yD = Lsin φ, which
confirms that there are only three independent variables in the set of generalized coor-
dinates.

The definition of generalized coordinates as geometrical variables locating all parts
of a system has a subtle aspect. In some cases motion is imposed on a point, or a body is
made to rotate in a certain manner. It is implicit to such a specification that the move-
ment is imposed by some force or couple that may be altered as necessary to obtain that
movement. For example, suppose we wish to make horizontal distance xC in Fig. 7.4
change in a specified manner, so that xC = f (t) . We may conceive of doing so with a
very large servomechanism that exerts on the collar an instantaneously adjustable hor-
izontal force. The magnitude of this force will be whatever is required to make collar
C move in the required manner, regardless of the influence of other forces. The condi-
tion xC = f (t) is a constraint equation, and the force exerted by the servomechanism is a

∗ Auxiliary conditions, such as the fact that the movement of collar C cannot be so large that it hits the
stops on the guide bar, may be examined after the equations of motion are formulated.
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constraint force. In this case the linkage is reduced to two degrees of freedom, and (θ, φ)
serve as convenient unconstrained generalized coordinates. Alternatively, we could use
(θ, φ, xC) as a set of constrained generalized coordinates.

It might be troubling that generalized coordinates can be either constrained or
unconstrained. We will see that in some situations it is not possible to identify an un-
constrained set. Furthermore, our studies will show that, when the alternative is avail-
able, there are specific advantages to selecting either type. It also might be troubling
that there is no unique set of generalized coordinates. However, this is the essence of
the modeling process. When we select the variables with which to characterize the mo-
tion of a system, we are concurrently making decisions about the features of the system
that will need to be considered. Different individuals can use different variables to rep-
resent these features and therefore obtain different equations of motion. However, if
their models are equivalent, they will have the same number of degrees of freedom, and
the physical motion predicted by solution of those equations will be identical.

7.2.2 Constraint Equations

To progress in our study of analytical mechanics we need to fit the notions of generalized
coordinates and constraint equations into a mathematical framework. Suppose we select
a set of N constrained generalized coordinates to represent a system. We reserve the
symbol qj to denote the jth generalized coordinate. There might be several constraint
equations that these generalized coordinates must satisfy. If these equations are like
those arising in the previous subsection, each may be written in the functional form

fi (qn, t) = 0, (7.2.2)

where the subscript i denotes which of the several constraints is being considered and the
appearance in the argument list of qn with n unspecified serves to indicate dependence
on all of the generalized coordinates. A relation such as Eq. (7.2.2) is referred to as a
configuration constraint equation. This term stems from the fact that, by limiting the
values the generalized coordinates may have, it restricts the overall arrangement of the
system at any instant. Examples of configuration constraint equations are Eqs. (7.2.1),
which constitute three equations that must be satisfied by the six generalized coordinates
(xA, yA, xB, yB, θ, φ) . Given the value of three of these variables, the values of the other
three may be determined by simultaneously solving these equations.

Constraint equations like Eqs. (7.2.1) represent relations that are time invariant.
Solving such equations for a subset of generalized coordinates would yield values that
depend on only the current values of the other coordinates. In contrast, the general con-
figuration constraint described by Eq. (7.2.2) contains t in its argument list. This is done
to accommodate situations in which physical features of a system change in a known
manner. For example, instead of being fixed, suppose the bar in Fig. 7.3 is replaced with
a hydraulic cylinder whose length L is controlled. In that case Eqs. (7.2.1) would still
apply, except that L would be the length at a specified value of t.
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Rather than directly constraining the position of a system, we can impose condi-
tions on the velocity of its points or the angular velocity of its bodies. Such restrictions
are described by velocity constraint equations. Any configuration constraint may be con-
verted into an equivalent velocity constraint by differentiating it with respect to time.
The chain rule for differentiation must be employed to differentiate Eq. (7.2.2) because
the generalized coordinates are (unknown) functions of time. Thus the velocity con-
straint equation corresponding to Eq. (7.2.2) is

ḟi =
N∑

j=1

[
∂

∂qj
fi (qn, t)

]
q̇j + ∂

∂t
fi (qn, t) = 0. (7.2.3)

One way of viewing the preceding velocity constraint equation is that it is a differential
equation that the generalized coordinates must satisfy. In view of its derivation, multi-
plying Eq. (7.2.3) by dt converts it to a perfect differential that may be integrated. The
constant of integration that arises in this process may be evaluated by substitution of
initial values of the generalized coordinates. If these initial values satisfy the configu-
ration constraint equation, the restriction on velocity represented by Eq. (7.2.3) is fully
equivalent in its effect to the configuration constraint.

A different perspective results if we ignore the fact that a generalized velocity q̇j is
known if the corresponding qj is a known function of time. Instead, suppose we were to
begin to observe a system at an arbitrary time t. We could deduce the corresponding val-
ues of the qj variables at that instant from measurements of the physical position. In this
view, Eq. (7.2.3) constrains the possible values of the generalized velocities when the sys-
tem is at a specific position. Such a view is comparable with using v̄B = v̄A + ω̄ × r̄B/A

to relate the velocities of points in a rigid body, rather than differentiating a general
expression for r̄B/O. Another example of this dual viewpoint is to consider using as con-
strained generalized coordinates the x and y coordinates of the centroid of a collar that
slides along a circular of radius R. If we place the center of the guide bar at the origin,
then the configuration constraint equation for the motion is x2 + y2 − R2 = 0. Differ-
entiation of this relation with respect to time yields the velocity constraint equation
2xẋ + 2yẏ = 0. The position and velocity in Cartesian coordinates are r̄ = xī + y j̄ and
v̄ = ẋī + ẏ j̄ . Thus the velocity constraint equation requires that v̄ · r̄ = 0, that is, the ve-
locity of the collar must always be perpendicular to the position vector from the origin to
the collar. As shown in Fig. 7.5, we could arrive at the same velocity constraint directly
through a kinematical analysis, in which we adjust the velocity components to make v̄

tangent to the circle, and then observe that the angle θ locating v̄ also defines the radial
line. Note that the radius R does not appear in the velocity constraint equation. How-
ever, integrating the velocity constraint equation would require that the initial values of
x and y correspond to a point on a circle of radius R.

Figure 7.5 exemplifies a primary reason to consider velocity constraints. In many
cases, especially those involving complicated systems, it is easier to identify constraint
conditions by analyzing the velocity of a system at a specific system. Furthermore, there
are important situations in which the velocity of a system is constrained, but there is
no corresponding configuration constraint. Such cases may be represented by modifying
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Figure 7.5. Kinematical relationship of generalized velocities for motion
along a circular path.

Eq. (7.2.3) such that the coefficients of the generalized velocities are arbitrary func-
tions, rather than being restricted to be partial derivatives of a configuration function
fn. Specifically, this more general form is

N∑
j=1

ai j (qn, t) q̇j + bi (qn, t) = 0. (7.2.4)

Constraint conditions that have this form are said to be linear velocity constraints, be-
cause they represent linear algebraic equations for the generalized velocities when the
the values of the generalized coordinates and time are given.†

From a philosophical standpoint, considering a generalized coordinate and the
corresponding generalized velocity to be independent variables is an important devel-
opment. A configuration constraint represents an algebraic/transcendental equation that
governs how a system arrived at its current state. In contrast, a velocity constraint rep-
resents a restriction on the manner in which the system can move given its current state.
Movements that are consistent with the constraint conditions are said to be kinematically
admissible.

A kinematical analysis of a system will often lead to one or more velocity constraint
equation. It is useful in such cases to determine whether these equations are equivalent
to configuration constraints. To carry out such an analysis, we convert the velocity form
to a differential by multiplying it by dt, which leads to

N∑
j=1

ai j (qn, t) dqj + bi (qn, t) dt = 0. (7.2.5)

This is the Pfaffian form of a constraint equation. Instead of restricting the generalized
velocities, it represents a restriction on the amount by which the generalized coordinates
may change in a time interval dt. The Pfaffian form of the configuration constraint may
be obtained similarly by multiplying Eq. (7.2.3) by dt :

dfi =
N∑

j=1

[
∂

∂qj
fi (qn, t)

]
dqj + ∂

∂t
fi (qn, t) dt = 0. (7.2.6)

† Equation (7.2.4) does not represent the most general type of kinematical constraint that can be imposed
on the motion of a system. Some types of motion restrictions cannot be treated in any general manner.
One such situation arises in treating inequality relationships, such as the limitation that the wheels of a
car reaching the top of a hill remain in contact with the ground only if the normal contact force is positive.
Also, it is conceivable that generalized velocities might occur nonlinearly in a constraint equation.
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Equations (7.2.5) and (7.2.6) are equivalent if they differ by only a multiplicative factor.
This integrating factor may be a function of the generalized coordinates and time, so
we denote it as gi (q1, q2, . . . , qN, t) . Thus we deduce that a given velocity constraint
equation is derivable from a configuration constraint if there exists an integrating factor
and constraint function such that

gi (qn, t) ai j (qn, t) = ∂

∂qj
fi (qn, t) , j = 1, 2, . . . , N, (7.2.7a)

gi (qn, t) bi (qn, t) = ∂

∂t
fi (qn, t) . (7.2.7b)

If a velocity constraint equation can be shown to satisfy Eqs. (7.2.7) for every j , it
is said to be holonomic, which is a Greek word for “integrable.” Constraint equations
that do not satisfy these conditions are nonholonomic. This terminology arises from
the fact that differentiating a configuration constraint yields a velocity constraint, and
integration is the inverse process. The terms ∂ fi/∂qj constitute the Jacobian of a set
of holonomic constraints. The coefficients ai j are referred to as the Jacobian constraint
matrix, even when the constraint conditions are not holonomic. We will encounter this
matrix in several contexts.

Ascertaining whether a velocity constraint is holonomic requires that we determine
whether, for a given a set coefficient functions ai j , j = 1, 2, . . . , N and bi , there is a
single integrating factor gi and single constraint function fi that satisfy Eqs. (7.2.7).
Such a determination might not be trivial. If we are lucky, we might be able to do it by
inspection. For example, consider the velocity constraint equation yẋ − xẏ = 0, whose
Pfaffian form is ydx − xdy = 0. The left side is recognizable as the numerator of the
perfect differential d (x/y) . Thus we multiply the Pfaffian form by the integrating factor
g = 1/y2. The altered form may be integrated, which leads to x/y = C, where C is the
integration constant. This is the equation of a straight line that intersects the origin,
which was not obvious from the original velocity constraint equation.

If we do not succeed in identifying a suitable integrating factor, there is another
process we can pursue. Let us multiply Eq. (7.2.7a) for each j by the corresponding dqj ,

and multiply Eq. (7.2.7b) by dt, then take the indefinite integral of each. Note that all
other variables other than the one for the integral are held constant in the integration.
Also, the constant of integration is replaced with a function that can depend on all of the
variables, other than the integration variable. Let us denote these functions as hi j (qn, t) ,

where the first subscript, i, indicates the constraint equation to which it pertains, and the
second subscript, j, indicates the generalized coordinate on which it does not depend,
with hit (qn) being independent of t. Thus the result of integrating each of Eqs. (7.2.7)
may be written as

fi (qn, t) =
∫

gi (qn, t) ai j (qn, t) dqj + hi j (qn, t) , j = 1, 2, . . . , N,

fi (qn, t) =
∫

gi (qn, t) bi (qn, t) dt + hit (qn) .

(7.2.8)

If a single configuration function fi and integrating factor gi (qn, t) consistently satisfying
each of these N + 1 constraint can be identified, then the velocity constraint is indeed
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derivable from a configuration constraint. Conversely, if attempting to satisfy conditions
associated with each j leads to an inconsistency, it must be that the constraint is non-
holonomic.

The occurrence of nonholonomic constraint conditions serves to limit our options
when we select generalized coordinates. Suppose there are Jc configuration constraints
and Jv nonholonomic velocity constraints to be satisfied by our choice of N general-
ized coordinates. Let D denote the number of degrees of freedom, so the number of
generalized coordinates must be

N = D + Jc + Jv. (7.2.9)

In principle, we can solve the configuration constraints for JC generalized coordinates
in terms of the other. Such a solution may be used to eliminate the solved generalized
coordinates from the formulation. In contrast, nonholonomic velocity equations cannot
be integrated, unless we know the time history of the generalized coordinates, which
requires solution of the equations of motion. Thus the presence of nonholonomic con-
straints means that generalized coordinates must be a constrained set, with the minimum
number of generalized coordinates being D + Jv. Because it might be difficult to deter-
mine whether some velocity constraints are holonomic, we treat any system represented
by velocity constraint equations as though it were nonholonomic.

The action of the edge of an ice skate blade serves to illustrate these matters. In
Fig. 7.6 point P is the idealized single point of contact between the ice and the curved
blade. The blade’s position is set by the coordinates xp and yP of this point and the angle
θ from the x axis along which the blade is aligned. Thus we have N = 3. As shown in
the figure, the velocity of the point of contact must be aligned with the blade. Thus it
must be that v̄P = ẋPī + ẏP j̄ = vP

(
cos θ ī + sin θ j̄

)
. Eliminating the speed vP leads to

ẋP sin θ − ẏp cos θ = 0, which matches the standard velocity constraint form, with a11 =
cos θ, a12 = − sin θ, a13 = 0, and b1 = 0. This constraint is nonholonomic. To prove this
we observe that, if it were holonomic, then a13g1 = 0 = ∂ f1/θ. This requires that the
constraint be independent of θ, which contradicts the dependence of a11 and a12.

θ

x

y

P

vP

Figure 7.6. Velocity constraint for an ice skate blade.

The skate blade exemplifies a fundamental characteristic of systems with nonholo-
nomic constraints. The blade may be set down in any location, which means that any set
of values for xP, yP, and θ is possible. However, when the blade is brought into con-
tact with the ice, the equivalent Pfaffian form of the constraint equations requires that
dyP = dxP tan θ, which restricts what new position point P can attain.

Further consideration of this ice skate blade points out a problematic aspect of
the term “degrees of freedom” when it is applied to a system having nonholonomic
constraints. In Subsection 7.2.1 N was defined as the minimum number of generalized
coordinates required to locate a system. Here, setting down the skate corresponds to
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defining the initial conditions of the three generalized coordinates, so it might seem that
N = 3. However, on specification of the three generalized coordinates, their values at
the next instant are restricted to be consistent with the Pfaffian form of the differential
constraint equations. Because there is one such equation for the skate blade, only two of
the three generalized coordinates are independent. Provided one recognizes this aspect,
it is consistent to say that the number of degrees of freedom is D = N − Jc − Jv in any
situation.

EXAMPLE 7.1 The disk rolls without slipping as it is pulled to the right by the
yoke. Generalized coordinates are the horizontal distance x to pin B and the angle
θ by which the radial line to pin B rotates. Derive the velocity constraint equation
relating these two variables and show that it is holonomic. What is the corresponding
configuration constraint?

Bθ
R

x

ε
A

F

Example 7.1

SOLUTION This example demonstrates that the kinematical tools developed previ-
ously are readily adapted for analytical mechanics formulation. We sequence the
generalized coordinates as q1 = x, q2 = θ. There is no doubt that these variables
fully locate all parts of the system, but picking both values arbitrarily will lead to
a motion in which there is slippage at the point where the disk is in contact with
the ground. Let the XY axes be horizontal and vertical, respectively. The angular
velocity of the disk is ω̄ = −θ̇ K̄, and the condition that there is no slip requires that
v̄A = Rθ̇ Ī. The velocity of pin B perpendicular to the wall of the groove must match
the velocity of the yoke in that direction, so that v̄B · Ī = ẋ. Because points A and B
are part of the disk, we therefore have

ẋ = v̄B · Ī = (v̄A + ω̄ × r̄B/A) · Ī.

Substitution of r̄B/A = e sin θ Ī + e cos θ J̄ into the preceding equation shows that the
constraint equation relating ẋ and θ̇ is

ẋ − (R + ε cos θ) θ̇ = 0. �

All terms have been brought to the left side in this equation in order to match
it to the standard linear velocity constraint, Eq. (7.2.4). From this we identify the
Jacobian constraint coefficients to be

a11 = 1, a12 = − (R + ε cos θ) , b1 = 0.
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To determine whether the constraint equation is holonomic we multiply it by dt
to convert it to Pfaffian form,

dx − (R + ε cos θ) dθ = 0.

There is no need to introduce an integrating factor because cos θ dθ = d (sin θ) .

Thus the Pfaffian form is a perfect differential, whose integration yields

x − Rθ − ε sin θ = C. �

The constant C may be determined by substituting the values of x and θ at some ref-
erence location. For example, if x = 0 corresponds to θ = 0, then C = 0. We could
have derived this configuration constraint directly by observing that, if there is no
slip, then the horizontal distance displaced by the center is Rθ. Adding the horizon-
tal distance ε sin θ from the center to the yoke gives x.

EXAMPLE 7.2 Two bars, pinned at joint B, move in the horizontal plane subject
only to the restriction that the velocity of end C must be directed toward end A.
Determine the corresponding velocity constraint. Is this constraint holonomic?

θ
A

B

C

L2

L1

φ

X

Y

Example 7.2

SOLUTION The objective here is to demonstrate the procedure for analyzing con-
straint conditions that are more complicated than the one in the previous example.
Determining whether the velocity constraint is holonomic will require more inge-
nuity on our part. The position of each bar is uniquely specified by the coordinates
of pin B and the angle of rotation of each bar. Hence we define q1 = xB, q2 = yB,

q3 = θ, q4 = φ. The given condition on the velocity of point C may be written in
vector form as

v̄C = vCēA/C.

We must express this condition in terms of the generalized coordinates, which means
that the speed vc should be eliminated. Thus we restate the constraint condition
as

v̄C × r̄A/C = 0̄. (1)

Points B and C are common to the same body, so their velocities are related by

v̄C = v̄B + ω̄BC × r̄C/B.
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We express each of the terms on the right side in terms of the generalized coordi-
nates to find

v̄C = ẊBĪ + ẎB J̄ + φ̇K̄ × (−L2 cos φ Ī − L2 sin φ J̄
)

= (
ẊB + φ̇L2 sin φ

)
Ī + (

ẎB − φ̇L2 cos φ
)

J̄ .
(2)

Also, the position vector is

r̄A/C = (L1 cos θ + L2 cos φ) Ī + (L1 sin θ + L2 sin φ) J̄ . (3)

Substitution of Eqs. (2) and (3) into Eq. (1) leads to

(v̄C × r̄A/C) · K̄ = (
ẊB + φ̇L2 sin φ

)
(L1 sin θ + L2 sin φ)

− (
ẎB − φ̇L2 cos φ

)
(L1 cos θ + L2 cos φ) = 0.

Collecting the coefficients of each generalized velocity converts this equation to the
standard form of a linear velocity constraint:

a11 ẊB + a12ẎB + a13θ̇ + a14φ̇ = 0,

a11 = L1 sin θ + L2 sin φ, a12 = − (L1 cos θ + L2 cos φ) , a13 = 0,

a14 = L2 sin φ (L1 sin θ + L2 sin φ) + L2 cos φ (L1 cos θ + L2 cos φ)

≡ L1L2 cos (θ − φ) + L2
2.

�

To determine whether the constraint equation is integrable we convert it to
Pfaffian form by multiplying by dt, which gives

(L1 sin θ + L2 sin φ) dXB − (L1 cos θ + L2 cos φ) dYB

+ [
L1L2 cos (θ − φ) + L2

2

]
dφ = 0.

In view of the appearance of θ and φ in the terms containing dXB and dYB and
the absence of XB and YB in the coefficient of dφ, it certainly does not appear that
this differential constraint equation can be integrated. This, however, is not a proof.
We proceed to the alternative strategy described by Eqs. (7.2.8). Thus we assume
that the velocity constraint equation is equivalent to f1 (qn, t) = 0, and then seek a
configuration function that is consistent with all of the conditions. Equations (7.2.7)
in the present case require that

∂ f1

∂ XB
= g1 (XB, YB, θ, φ) (L1 sin θ + L2 sin φ) ,

∂ f1

∂YB
= −g1 (XB, YB, θ, φ) (L1 cos θ + L2 cos φ) ,

∂ f1

∂θ
= 0,

∂ f1

∂φ
= g1 (XB, YB, θ, φ)

[
L1L2 cos (θ − φ) + L2

2

]
.
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Integrating the first two conditions gives

f1 = (L1 sin θ + L2 sin φ)
∫

g1 (XB, YB, θ, φ) dXB + β1 (YB, θ, φ) ,

f1 = − (L1 cos θ + L2 cos φ)
∫

g1 (XB, YB, θ, φ) dYB + β2 (XB, θ, φ) ,

where βn with associated arguments indicates the functions of integration. The inte-
gration factor g1 cannot be zero, so both conditions state that f1 must depend on θ.

However, the third condition, ∂ f1/∂θ = 0, requires that it not depend on θ. This is a
contradiction, so we conclude that the constraint equation is not holonomic. �

7.2.3 Configuration Space

Everything we need to know about the motion of a particle is conveyed by the time
dependence of its Cartesian coordinates. The configuration space, which is defined to
be an N-dimensional rectangular Cartesian space in which the distance along each axis
is measured by a generalized coordinate, provides a unified perspective for any system.
One of its primary uses is providing a pictorial representation of some abstract mathe-
matical concepts. To distinguish vectors that are defined in the configuration space from
those that are defined in the physical world, we use a caret to denote the former. Thus
the unit vectors of the configuration space are ê1, ê2, . . . , êN. The generalized position is
defined in this space as

r̂ = q1ê1 + q2ê2 + · · · + qNêN. (7.2.10)

This position represents the location of every part of a physical system at a given instant
of time. The generalized coordinates are time dependent, so the motion of a system ap-
pears in the configuration space as a path that is the locus of the instantaneous positions.
This is the configuration path.

The displacement of the entire system in an infinitesimal time interval dt is repre-
sented by the increment of the position in that interval. By virtue of defining the config-
uration space to be Cartesian, the unit vectors ê j are fixed directions. Thus,

dr̂ = r̂ (t + dt) − r̂ (t) = dq1ê1 + · · · + dqNêN. (7.2.11)

Correspondingly, the generalized velocity vector has components that are the rates of
change of the generalized coordinates:

v̂ = dr̂
dt

= q̇1ê1 + q̇2ê2 + · · · + q̇NêN. (7.2.12)

As is true for motion of a point in the physical world, the generalized velocity v̂ and
displacement dr̂ are tangent to the configuration path at the position associated with the
current position r̂ (t) .

The manner in which a system moves obviously depends on the forces that are ap-
plied to it. Thus the path of the system in the configuration space depends on the forces
acting on the system – applying forces at different locations or altering the time depen-
dence of the forces will change the configuration path. Let us consider two alternative
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C1: Actual
configuration
path

C2: Variational
path

r1(t+dt)^

r1(t)^

r2(t)^

δr^
dr^

Figure 7.7. System paths in the configuration space.

configuration paths. Path C1 corresponds to the actual set of forces for the case in which
we are interested, whereas path C2 represents the motion that is due to a slightly dif-
ferent set of forces. Let r̂1 (t) be a point on C1 at a specific instant t, and let r̂2 (t) be
the corresponding point on C2 at that instant. Clearly, r̂2 (t) − r̂1 (t) depends somehow
on the difference between the actual and alternative forces. Let us denote this position
difference as δr̂ . We restrict the difference between the actual and alternative force sys-
tems to be infinitesimal solely because doing so will enable us to employ the tools of
differential calculus. Consequently C2 is infinitesimally close to C1, so that δr̂ also is
infinitesimal. It follows from the definition of r̂ that

δr̂ = δq1ê1 + · · · + δqNêN. (7.2.13)

An alternative configuration path that is infinitesimally close to the actual path
is called the variational path. Figure. 7.7 depicts the situation for a three-degree-of-
freedom system described by three unconstrained generalized coordinates. We see there
that the vector dr̂ represents the actual movement of the system over an elapsed time
dt, whereas δr̂ represents the shift in the position at instant t that would arise if the sys-
tem followed the variational path rather than the actual path. Because this position shift
does not represent an actual movement, we say that δr̂ represents a virtual displacement.
Despite the similar appearance of dr̂ and δr̂ in Eqs. (7.2.11) and (7.2.13), respectively,
one should recall the very different nature of their definitions. In particular, dr̂ is tan-
gent to the actual configuration path, whereas δr̂ is not. The symbol δ is used to convey
the fact that the associated change in any quantity does not represent the actual manner
in which the system evolves.

If the generalized coordinates are unconstrained, then any point in the configura-
tion space is attainable, assuming one has the ability to generate the forces required to
cause the configuration path to pass through that point. In contrast, a constraint equa-
tion represents a restriction on the values that the generalized coordinates may have.
Thus, if a system is described by a set of constrained generalized coordinates, then there
are restrictions on the possible paths the system may follow through the configuration
space.

The restrictions imposed by a configuration constraint that is independent of time
are the easiest to visualize. Such a constraint has the mathematical form fi (q1, . . . , qN) =
0. Imposing a single mathematical relation on the generalized coordinates restricts the
position to lie on a surface in the N-dimensional configuration space. Because the con-
straint does not depend on time, this constraint surface has a shape that is time invariant.
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For this reason the constraint equation, fi (q1, . . . , qN) = 0, is said to be scleronomic,
which is a Greek word conveying the idea of a constraint surface frozen in time. Fig-
ure 7.8 depicts a scleronomic constraint that must be satisfied by three generalized coor-
dinates.

f i(qj)=0

Actual path

Variational path

r(t)^

δr^

dr^

q1 q2

q3
Figure 7.8. Virtual and real displacements in the con-
figuration space satisfying a scleronomic constraint
condition.

At a specified time instant the system’s position is represented by the current value
of r̂ to a specific point on the constraint surface. Because the generalized coordinates
must satisfy the scleronomic constraint equation, which represents an invariant relation,
the configuration path must be situated on the constraint surface. The motion result-
ing from any other set of applied forces must be consistent with the constraints that
are imposed on the system’s motion. Thus it must be that any variational path con-
sistent with a scleronomic constraint must also lie on the constraint surface. In con-
trast, if one were to ignore the constraint condition, any variational path would be
acceptable.

A virtual displacement is said to be kinematically admissible if the point defining δr̂
on the variational path is consistent with all constraint conditions. Both the actual dis-
placement dr̂ and the virtual displacement δr̂ are infinitesimal in magnitude because the
former occurs over an infinitesimal time interval and the variational path is defined to
be infinitesimally close to the actual path. Thus the property that the actual and varia-
tional paths lie on a scleronomic constraint surface leads to the conclusion that the actual
displacement dr̂ and any kinematically admissible δr̂ are situated in the plane that is tan-
gent to that surface. The condition that a vector lie in a tangent plane is equivalent to
saying that the vector is perpendicular to the normal to that plane at the current loca-
tion. The gradient of a surface along which a function of several variables is constant
is perpendicular to the surface. Thus the normal âi to a scleronomic constraint surface
defined by fi (qn) = 0 may be constructed by taking its gradient, according to

âi = ∇̂ fi = ∂

∂q1
fi (qn) ê1 + · · · + ∂

∂qN
fi (qn) êN. (7.2.14)

The condition that both dr̂ and δr̂ are perpendicular to âi requires that

dr̂ · âi = dq1
∂

∂q1
fi (qn) + · · · + dqN

∂

∂qN
fi (qn) = 0, (7.2.15a)

δr̂ · âi = δq1
∂

∂q1
fi (qn) + · · · + δqN

∂

∂qN
fi (qn) = 0. (7.2.15b)
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The first relation is the Pfaffian form of a configuration constraint, Eq. (7.2.6), in the
case of a scleronomic constraint for which ∂ fi/∂t is identically zero. It follows from the
definition of the generalized velocity vector in Eq. (7.2.12) that a scleronomic velocity
constraint requires that v̂, like dr̂ and δr̂ , always be perpendicular to the constraint
surface’s normal direction.

The situation changes if we consider a rheonomic constraint, which is the term used
to describe a configuration constraint that is time dependent, fi (qn, t) = 0. Figure 7.9
depicts a rheonomic constraint imposed on three generalized coordinates. At a specific
instant t, the rheonomic constraint requires that any point be situated on a plane in
the configuration surface. Unlike a scleronomic constraint surface, a rheonomic con-
straint surface changes with time. That is, each instant t corresponds to a different
surface. The prefix “rheo” is Greek for flowing, which is appropriate because the sur-
face seems to flow through the configuration space in a pictorial representation like
Fig. 7.9.

fi(qj,t)=0

fi(qj,t+dt)=0

r(t)^

δr^

dr^

q1 q2

q3

Actual path
Variational path

Figure 7.9. Virtual and real displacements in the configuration space satisfying a rheonomic constraint
condition.

One consequence of the evolving nature of a rheonomic constraint surface is that
the actual configuration path cannot lie in the surface corresponding to a specific in-
stant. Rather, each instant r̂ (t) must locate a point on the constraint surface associ-
ated with that instant t . Thus neither the actual displacement dr̂ nor the generalized
velocity v̂ is tangent to the normal to the constraint surface at the instant associated
with r̂ (t) .

The character of the virtual movement δr̂ is quite different. By definition, if the
alternative motion described by the variational path is consistent with the rheonomic
constraint, then the point r̂ (t) on a variational path will be situated somewhere on the
configuration surface associated with that t, as does the vector r̂ (t) for the actual path.
By definition, δr̂ extends from the point on the configuration path to the point on a
variational path associated with the same instant. It follows that a kinematically admis-
sible virtual displacement δr̂ will be situated in the local tangent plane. The condition
of tangency is described by stating that δr̂ is perpendicular to the normal to the surface.
Because t is constant for the constraint surface at a specific instant, the normal to the
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surface is still described by Eq. (7.2.14), except that t must be added to the argument list
for the constraint function. Thus we have

âi = ∇̂ fi = ∂

∂q1
fi (qn, t) ê1 + · · · + ∂

∂qN
fi (qn, t) êN,

δr̂ · âi = δq1
∂

∂q1
fi (qn, t) + · · · + δqN

∂

∂qN
fi (qn, t) = 0.

(7.2.16)

The velocity and Pfaffian forms of a rheonomic constraint are given by Eqs. (7.2.3) and
(7.2.6), respectively. These may be written in terms of configuration space vectors as

v̂ · âi + bi (qn, t) = 0 ⇐⇒ dr̂ · âi + bi (qn, t) dt = 0. (7.2.17)

By demonstrating that neither v̂ · âi nor dr̂ · âi is zero, the preceding relation emphasizes
that neither v̂ nor dr̂ is tangent to the constraint surface at a specific t.

There is no constraint surface in the case of a nonholonomic constraint, which can
only be stated as a velocity condition, Eq. (7.2.4), or in Pfaffian form, Eq. (7.2.5). Time is
held constant in a virtual displacement. Hence the Pfaffian form of a constraint equation
requires that virtual displacement satisfy

N∑
j=1

ai j (qn, t) δqj = 0. (7.2.18)

Although the ai j functions in this case are not derivable from a configuration constraint,
we nevertheless can consider them to be the components in the configuration space of a
vector âi :

âi = ai1 (qn, t) ê1 + · · · + ai N (qn, t) êN. (7.2.19)

It follows that a nonholonomic constraint requires that the virtual displacement satisfy

âi · δr̂ = 0. (7.2.20)

An overview of the discussion of scleronomic, rheonomic, and nonholonomic con-
straints shows that, in each case, a kinematically admissible virtual displacement must
satisfy Eq. (7.2.20), which is a statement that at each location the virtual displacement
vector must lie in a plane whose normal is âi . For holonomic constraints, this normal is
perpendicular to the plane that is tangent to the associated constraint surface. However,
the existence of a constraint surface, and whether the generalized position vector r̂ and
generalized velocity vector v̂ lie in this plane, will not be crucial issues for the proce-
dures that follow. For this reason, two terms used to describe nonholonomic constraints,
catastatic when bi ≡ 0 and acatastatic when bi �= 0, are introduced for reference purposes
only.

EXAMPLE 7.3 An insect walks along the surface of an expanding spherical bal-
loon whose radius is r = ct . The insect’s position can be described in terms of Carte-
sian, cylindrical, or spherical coordinates, each of which constitute three generalized
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coordinates. Describe in terms of each set of variables the constraint imposed on
the motion of the insect by the condition that it remain on the surface. Describe
the constraint condition in each case as a velocity equation and as a configuration
constraint. Identify the constraint surface in the configuration space, and the corre-
sponding normal â1 to a point on that surface.

SOLUTION The intent of this example is to provide a visualization of the mathemat-
ical relations that we have developed. In practice, one seldom would actually exam-
ine a constraint surface. We begin with generalized coordinates that are Cartesian
coordinates, q1 = x, q2 = y, q3 = z. The origin is not specified, so we can select the
center of the sphere. The distance from the origin to a point on the surface is the cur-
rent value of r, so the configuration constraint corresponding to a set of Cartesian
coordinates may be expressed as

f1 (x, y, z, t) = x2 + y2 + z2 − c2t2 = 0. �

We obtain the corresponding velocity constraint by differentiating this equation
with respect to t, which gives

xẋ + yẏ + zż − c2t = 0. �

This is a linear velocity constraint whose Jacobian constraint coefficients are

a11 = x, a12 = y, a13 = z.

The generalized coordinates in this case are the physical coordinates, so the con-
figuration space is the physical space. Thus the constraint surface is the expanding
sphere. The Jacobian coefficients are the components of â1, so the normal to this
constraint surface is

â1 = xê1 + yê2 + zê3. �

This is identical to the radial vector r̂ from the origin to the point on the sphere
represented by the current values of the generalized coordinates, which verifies that
â1 is normal to the constraint surface.

Let z be the axial direction for cylindrical coordinates, so the second case uses
q1 = R, q2 = θ, q3 = z. The transverse distance R is related to the Cartesian coordi-
nates by R = (

x2 + y2
)1/2

, so the configuration constraint equation now is

f1 (R, θ, z, t) = R2 + z2 − c2t2 = 0. �

Differentiating this with respect to t yields the linear velocity constraint,

RṘ + zż − c2t = 0, �

for which the Jacobian constraint coefficients are

a11 = R, a12 = 0, a13 = z.
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The corresponding normal to the constraint surface at any instant is

â1 = Rê1 + zê3. �

To identify the nature of the configuration constraint surface we replace the physical
variables with their equivalent generalized coordinate label, so we have q2

1 + q2
3 =

c2t2. The axes of the configuration space are Cartesian, so the surface at any t now is
a cylinder whose radius is ct and whose axial direction is ê2. In this view, the normal
direction is â1 = q1ê1 + q3ê3, which is the line from the origin to the projection of the
current position onto the q1q3 plane. The fact that â1 · ê2 = 0 verifies that â1 actually
is normal to the cylindrical constraint surface.

Let x = y = z = 0 be the origin of the spherical coordinates, so the third case is
q1 = r, q2 = φ, q3 = θ. The configuration constraint now is

f1 (r, φ, θ, t) = r2 − c2t2 = 0, �

which corresponds to the velocity constraint

rṙ − c2t = 0. �

The Jacobian constraint coefficients in this case are

a11 = r, a12 = a13 = 0,

so the normal to the constraint surface at any instant is

â1 = r ê1.

In the q1q2q3 Cartesian space of this set of variables, the configuration surface at any
instant is the plane, r = q1 = ct ; the other two generalized coordinates are uncon-
strained. The normal to the constraint surface is ê1, which is parallel to â1.

7.3 EVALUATION OF VIRTUAL DISPLACEMENTS

When we applied the principle of dynamic virtual work earlier in this chapter, the link-
age we considered was a holonomic, one-degree-of-freedom system. The notion of a vir-
tual movement was introduced there as the differential position shift that would occur
if the single generalized coordinate was given an infinitesimal increment. The analysis
of the corresponding point displacements was expedited by the geometrical simplicity of
the system. The introduction of the configuration space significantly extends the variety
of situations that can be considered. An important aspect of this generalization is the
definition of a virtual displacement as the difference between a system’s actual position
at some instant and the position that would be obtained at that same instant if the forces
acting on the system were altered. In the configuration space the virtual displacement δr̂
appears as a vector from a point on the configuration path to a point on the variational
path, with both points corresponding to the same t. The symbol δ serves to distinguish
this displacement from the one that actually occurs. The vector δr̂ is taken to be infinites-
imal in order to use differential calculus to describe the difference of various quantities
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when they are evaluated on the actual and variational paths, so its components are dif-
ferential increments in the generalized coordinate values; see Eq. (7.2.13). In words, this
definition states that:

A virtual movement of a system is what would result if, with time held constant, the
generalized coordinates were incremented by infinitesimal amounts. The increments
δqj are arbitrary values that may vary from instant to instant. Virtual displacements
are the corresponding changes in the positions of points and angles of orientation.

It will be necessary to evaluate the virtual work of the actual forces applied to the
system. Such an evaluation is carried out in the physical world in which these forces
are known. Our first task is to describe the amount by which points in the system move
and bodies rotate when the generalized coordinates are incremented by virtual amounts.
The similarity between δr̂ , whose components are δqj , and the actual displacement dr̂ ,

whose components are dqj corresponding to the actual position change during an in-
finitesimal interval, will be seen to be a significant aid to the evaluation of virtual dis-
placements.

7.3.1 Analytical Method

If all generalized coordinates are measured from stationary reference locations, then
knowledge of the qn values will enable us to locate the position of any point in the sys-
tem. However, in some cases the generalized coordinates might be defined as distances
or angles measured relative to reference locations that undergo a known motion. In such
situations we must know the specific value of t in order to place these references. Thus,
in the most general case, the absolute position of any point depends on the generalized
coordinates and time:

r̄P/O = r̄P/O (qn, t) . (7.3.1)

The analytical method for virtual displacements differentiates algebraic descriptions
of position. Recall that time is held fixed at arbitrary t, whereas the generalized coordi-
nate values are incremented by δq1, . . . , δqN. Correspondingly, the chain rule for partial
differentiation indicates that the virtual displacement of any point is given by

δr̄P =
N∑

j=1

[
∂

∂qj
r̄P/O (qn, t)

]
δqj . (7.3.2)

It is important to recognize that because t is arbitrary, the generalized coordinates have
arbitrary values. Thus an evaluation of the virtual displacement of a specific point ac-
cording to the analytical method begins by describing that point’s position algebraically
in terms of the generalized coordinates. Any geometrical variables that are not gener-
alized coordinates must be eliminated from that description. Equation (7.3.2) may then
be applied directly.
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It will be necessary in many cases to express the amount by which angles that de-
fine the orientation of bodies, but are not generalized coordinates, change in a virtual
movement. The analytical method for virtual displacement requires that we first estab-
lish the functional dependence of those angles on the generalized coordinates, for which
trigonometric relations such as the laws of sines and cosines often are useful. The result
is that, if β represents an angle of orientation, then we have determined the functional
dependence β = f (qn, t) . The virtual rotation is then found by the chain rule to be

δβ =
N∑

j=1

[
∂

∂qj
f (qn, t)

]
δqj . (7.3.3)

Before we implement the analytical method it is instructive to develop Eq. (7.3.2) in
a manner that relates to the earlier discussion of alternative paths in the configuration
space. Consider a system at time t − dt . In the actual movement of the system from this
time to time t the generalized coordinates are incremented by the infinitesimal amounts
dqj . Time is not constant in the true displacement, so the chain rule for the differential
displacement gives

dr̄P =
N∑

j=1

[
∂

∂qj
r̄P/O (qn, t)

]
dqj + ∂

∂t
r̄P/O (qn, t) dt. (7.3.4)

The values of dqj appearing here are those for the true motion.
Suppose we were to alter at time t − dt and onward the forces applied to the system.

This would cause the system to execute a different motion subsequent to time t − dt .
(This different motion corresponds to a variational path in the configuration space that
branches off from the true path at time t − dt .) The set of values of dqj in this alterna-
tive motion would be different from those of the true motion. Let superscript a denote
a quantity associated with this alternative force system. Thus the displacement corre-
sponding to altering the force system at t − dt and onward is given by

dr̄ (a)
P =

N∑
j=1

[
∂

∂qj
r̄P/O (qn, t)

]
dq(a)

j + ∂

∂t
r̄P/O (qn, t) dt. (7.3.5)

The true position of point P at time t is given by r̄P/O (qn, t − dt) + dr̄P, whereas
the position at the same instant of this point in the alternative motion would be
r̄P/O (qn, t − dt) + dr̄ (a)

P . By definition, the virtual displacement of point P is the dif-
ference between its position in the actual motion and the position it would have at the
same instant with a slightly different set of forces. Thus the virtual displacement of the
point at time t is given by δr̄P = dr̄ (a)

P − dr̄P. Using Eqs. (7.3.4) and (7.3.5) to describe
the differential displacements leads to

δr̄P =
N∑

j=1

[
∂

∂qj
r̄P/O (qn, t)

] (
dq(a)

j − dqj

)
. (7.3.6)

By definition, the difference between a generalized coordinate value on the actual
and variational paths is δqj , so the preceding equation is identical to Eq. (7.3.2). This
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strengthens the earlier observation that the study of virtual movement and its associ-
ated effects highlights the differences between alternative responses that could possibly
occur under the action of different sets of forces.

EXAMPLE 7.4 Collar P slides over guide bar CD that is bent in the shape of
a parabola given by y = x2/300, where x and y are measured in millimeters. This
system has one degree of freedom. Determine the virtual displacement of the collar
and the virtual rotation of bar AB corresponding to the following alternatives: (a)
x is a single unconstrained generalized coordinate; (b) θ is a single unconstrained
generalized coordinate; (c) x and θ are two constrained generalized coordinates.

C

A

B
D

800 mm

x

y
θ

P

Example 7.4

SOLUTION In addition to demonstrating the procedure for implementing the ana-
lytical method, this example illustrates how the choice of generalized coordinates
can significantly alter the analysis. That this system has one degree of freedom is
demonstrated by the fact that, if x is given, then y is known from the equation of
bar CD. Also, the horizontal distance from pivot A to the collar is 0.8 − x m, which
then sets the value of θ. Thus we have

y = x2

0.3
, where x and y are in meters,

tan θ = y
0.8 − x

= x2

0.24 − 0.3x
.

In the first approach, q1 = x. Point O is the origin at which x = y = 0. We ex-
press the position of point P and angle θ as functions of x:

r̄P/O = xī + x2

0.3
j̄, θ = tan−1

(
x2

0.24 − 0.3x

)
.

Differentiating each with respect to x yields

δr̄P =
(

ī + x
0.15

j̄
)

δx,

δθ AB = −δθ k̄ = − d
dx

[
tan−1

(
x2

0.24 − 0.3x

)]

× δxk̄ = −
[

2x (0.24 − 0.3x) + 0.3x2

(0.24 − 0.3x)2 + x4

]
k̄δx.

�
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The second formulation requires that we express r̄P/O in terms of θ. The inverse
of the preceding expression for θ is a quadratic equation for x at a given θ,

x2 + (0.3 tan θ) x − 0.24 tan θ = 0,

from which we find

x = −0.15 tan θ +
[
(0.15 tan θ)2 + 0.24 tan θ

]1/2
,

where the positive sign is associated with the square root because x > 0. We differ-
entiate this with respect to θ to find

δx =

⎧⎪⎨
⎪⎩−0.15 + 0.0225 tan θ + 0.12[

(0.15 tan θ)2 + 0.24 tan θ
]1/2

⎫⎪⎬
⎪⎭

1

(cos θ)2 δθ.

The virtual displacement in the y direction is given by

δy =
(

dy
dx

)
δx = x

0.15
δx.

We replace x and δx with their representations in terms of the generalized coordi-
nate θ, which yields

δr̄P = δxī + δy j̄ =
(

ī + x
0.15

j̄
)

δx

=

⎛
⎜⎜⎝ī +

{
−0.15 tan θ +

[
(0.15 tan θ)2 + 0.24 tan θ

]1/2
}

0.15
j̄

⎞
⎟⎟⎠

×

⎧⎪⎨
⎪⎩−0.15 + 0.045 tan θ + 0.24[

(0.15 tan θ)2 + 0.24 tan θ
]1/2

⎫⎪⎬
⎪⎭

1

(cos θ)2 δθ.

�

The virtual rotation of bar AB is δθ AB = −δθ k̄, so that evaluation is simpler than
the first case. Nevertheless, there is no doubt that using θ as the generalized coor-
dinate leads to much more complicated mathematical relations than those obtained
when x is used.

Using q1 = x, q2 = θ as constrained generalized coordinates actually is the sim-
plest approach. These variables are related by the configuration constraint equation
obtained at the outset of this analysis. What makes the use of constrained general-
ized coordinates easier is that, after their constraint equation is identified, the co-
ordinates are considered to be independent until all elements of the equations of
motion are synthesized. Thus the position of the collar is described as it was in the
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first case, r̄P/O = xī + (
x2/0.3

)
j̄, and θ gives the orientation of bar AB. Then the

virtual displacement and rotation are given by

δr̄P =
(

ī + x
0.15

j̄
)

δx,

δθ AB = −δθ k̄.

�

A conclusion to be carried away from this example is that some choices for gen-
eralized coordinates are better than others, but that any set can lead to a successful
analysis if one perseveres. Also, in certain circumstances it might be advantageous
to use constrained generalized coordinates.

7.3.2 Kinematical Method

The analytical method for evaluating virtual displacements requires that we explicitly
differentiate the representation of position as a function of the generalized coordi-
nates. Simple systems, such as those whose parts form isosceles triangles or right an-
gles, are relatively easy to describe geometrically, and the resulting expressions are
likely to be quite easy to differentiate. However, increasing the complexity of the ge-
ometry can lead to substantial complication. One of the primary reasons for developing
kinematical formulas is to address such difficulties. Those formulas represent standard
derivatives.

The essence of the kinematical approach for virtual displacement is to exploit
similarities between the mathematical forms of velocity and virtual displacement. Equa-
tion (7.3.4) expresses the true differential displacement of a point in terms of the gener-
alized coordinates and their increments dqj over an infinitesimal time interval. Dividing
that expression by dt gives an expression for the velocity of a point, which is accom-
panied in the following by Eq. (7.3.2) to highlight the similarity between velocity and
virtual displacement:

v̄P =
N∑

j=1

[
∂

∂qj
r̄P/O (qn, t)

]
q̇j + ∂

∂t
r̄P/O (qn, t) ,

δr̄P =
N∑

j=1

[
∂

∂qj
r̄P/O (qn, t)

]
δqj .

(7.3.7)

These equations indicate that v̄P depends linearly on the generalized velocities q̇j ,

whereas the virtual displacement depends linearly on the virtual increments δqj . The
significant aspect of this similarity is that the coefficient associated with a specific q̇j is
the same as the coefficient of the corresponding δqj and that this coefficient is a vector
function of generalized coordinates and time. The fact that the coefficients are deriva-
tives of the position is unimportant, so we denote them as v̄Pj (qn, t) and let v̄pt (qn, t)
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denote the partial time derivative term. Then the general forms for the velocity and
virtual displacement of a point are

v̄P =
N∑

j=1

v̄Pj (qn, t) q̇j + v̄pt (qn, t) ,

δr̄P =
N∑

j=1

v̄Pj (qn, t) δqj ,

v̄Pj = ∂ r̄P

∂qj
.

(7.3.8)

The methodology for implementing the kinematical method follows from the fact
that both of the preceding relations are always valid, regardless of how one goes about
evaluating the velocity. Thus,

Description of a virtual displacement of a point P in the kinematical method begins
with a velocity analysis of the system, for which the system must be at an arbitrary
position, corresponding to algebraic values of all generalized coordinates and time.
The result of that analysis should be an expression for v̄P that depends solely on the
generalized coordinates, generalized velocities, and time, which requires elimination
of any other variables. To obtain an expression for δr̄P from the result for v̄P, one
merely replaces each q̇j factor with the corresponding δqj , and drops any term that
does not contain a generalized velocity. (The latter type of term represents the velocity
of the point that would be obtained even if the generalized coordinates were constant.
Such a term will not arise if the generalized coordinates are measured from a fixed
reference location.)

As a simple illustration of this procedure, consider a single particle whose posi-
tion is defined by spherical coordinates. If that particle moves freely in space then the
spherical coordinates can be used as three unconstrained generalized coordinates. The
velocity in spherical coordinates is v̄P = ṙ ēr + r φ̇ēφ + r θ̇ sin φēθ . There is no ūp term
here, because each term contains a generalized velocity factor. To obtain an expression
for δr̄P, we replace ṙ with δr, φ̇ with δφ, and θ̇ with δθ. Thus the virtual displacement
of this particle would be δr̄P = (ēr ) δr + (r ēφ) δφ + (r sin φēθ ) δθ. Now suppose that, in-
stead of a particle moving freely in space, point P is the insect in Example 7.3. The
radial distance in that case is controlled to be r = ct, so only φ and θ are generalized
coordinates. The velocity in this case is v̄P = cēr + r φ̇ēφ + r θ̇ sin φēθ . The radial term
does not contain a generalized velocity, so it is ignored. Thus, replacing generalized ve-
locities with the corresponding virtual increments in this case leads to δr̄P = (r ēφ) δφ +
(r sin φēθ ) δθ.

The kinematical method may be applied to describe the three-dimensional virtual
rotation of a body. Such an evaluation would begin by evaluating the angular velocity
ω̄n of nth body in terms of a convenient set of components, for example, a body-fixed
xyz coordinate system. In this description the only allowable variables are the general-
ized coordinates and velocities, and t. The rates of rotation occur linearly in the angular
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velocity. Consequently, ω̄n will depend linearly on the generalized velocities, so its gen-
eral form will be

ω̄n =
N∑

j=1

ω̄nj (qn, t) q̇j + ω̄nt (qn, t) , (7.3.9)

where ω̄nt (qn, t) represents the angular velocity when all generalized velocities are zero.
The virtual rotation is obtained by dropping ω̄nt and replacing each q̇j with the corre-
sponding δqj , so that

δθn =
N∑

j=1

ω̄nj (qn, t) δqj . (7.3.10)

Virtual rotation arises in any situation in which it is convenient to use relative mo-
tion concepts to relate the velocity of two points. The relative velocity formula is

v̄P = v̄O′ + (v̄P)xyz + ω̄ × r̄P/O′ , (7.3.11)

where ω̄ is the angular velocity of xyz and (v̄P)xyz = ẋī + ẏ j̄ + żk̄. We then obtain the
virtual displacement of point P by replacing all rate variables with virtual increments,
which leads to

δr̄P = δr̄O′ + δxī + δy j̄ + δzk̄ + δθ × r̄B/A. (7.3.12)

This expression may be adapted to a variety of situations, but in any case it is necessary
that the only variables that appear are the qj , q̇j , and δqj . In the special case in which
points P and O′ belong to a rigid body, the values of δx, δy, and δz are identically zero.

An example of this representation arises when the orientation of an axisymmetric
rigid body is described by the three Eulerian angles. Let x′y′z′ be a reference frame
that executes the precession ψ and nutation θ of the body, but not the spin, with the
z′ axis defined to coincide with the body’s axis of symmetry and y′ aligned with the
line of nodes. The angular velocity of the body is described by the first of Eqs. (4.2.11).
Correspondingly, virtual rotation would be

δθ = (− sin θ ī ′ + cos θ k̄′) δψ + j̄ ′δθ + k̄′δφ. (7.3.13)

If the body is rotating freely, then each Eulerian angle may be used as a generalized
coordinate. In that case, replacing the rate variables with virtual increments in the rela-
tion between the velocity of two points in a rigid body leads to a relation between the
virtual displacements of the points:

δr̄B = δr̄A + [(− sin θ ī ′ + cos θ k̄′) δψ + (
j̄ ′) δθ + (

k̄′) δφ]× r̄B/A. (7.3.14)

Now suppose that the precession rate is controlled by a servomotor, such that ψ̇ is a
specified function of t. This removes ψ from the list of generalized coordinates. To use
the preceding expression in that case we merely set δψ = 0, which reduces the preceding
relation between virtual displacements to

δr̄B = δr̄A + [(
j̄ ′) δθ + (

k̄′) δφ]× r̄B/A. (7.3.15)
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Equations (7.3.8) and (7.3.10) are also useful as visualization tools. They indicate
that any virtual displacement or rotation is a superposition of individual contributions
resulting from incrementing each generalized coordinate with the others held stationary.
The virtual displacement in that case is like the velocity that would be obtained if only
that generalized coordinate were variable. This knowledge enables us use our experi-
ence and understanding of kinematics to qualitatively assess the correctness of a virtual
displacement we have evaluated.

EXAMPLE 7.5 The disk rolls without slipping over the stationary cylinder. The
rotation φ of the line of centers from vertical is selected as the generalized coordi-
nate for the disk. Point P contacted the cylinder when φ = 0. Determine the virtual
displacement of this point.

r1

r2

φ

θ

P

Example 7.5

SOLUTION The kinematical method is particularly useful for systems in which bod-
ies roll without slipping, as seen here. We begin by deriving an expression for the
velocity of point P as a function of the generalized coordinate φ and generalized
velocity φ̇. This requires that we determine the angle θ, which locates point P rela-
tive to the radial line, as a function of φ. According to the no-slip condition, the arc
length from the current point of contact to point P along the rolling disk must equal
the arc length from the contact point to the top of the stationary cylinder, which
gives

θ = r2

r1
φ.

A convenient global coordinate system has its y axis radially outward through
the center of the disk and its x axis down and to the right. The angular velocity of
the disk is ωk̄ for plane motion. To express ω in terms of the generalized coordinate
φ, we use the no-slip condition for velocity and the fact that the center C follows
a circular path. The radius of this path is r1 + r2, and φ̇ is the angular speed of the
radial line to that point. Thus we have

v̄C = ωk̄ × r1 j̄ = −r1ωī = (r1 + r2) φ̇ ī,

from which we obtain

ω = − (r1 + r2)
r1

φ̇.

The angular motion and the velocity of the center have been expressed in terms
of the generalized coordinate, so we proceed to the unconstrained point P. The
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position of this point is given by

r̄P/C = r1
(− sin θ ī − cos θ j̄

) = r1

[
− sin

(
r2

r1
φ

)
ī − cos

(
r2

r1
φ

)
j̄
]

,

so that

v̄P = v̄C + ωk̄ × r̄P/C

= (r1 + r2) φ̇ ī +
[
− (r1 + r2)

r1
φ̇

] [
r1 cos

(
r2

r1
φ

)
ī − r1 sin

(
r2

r1
φ

)
j̄
]

.

The kinematical method indicates that v̄P should be replaced with δr̄P and φ̇

with δφ. Furthermore, we observe that v̄P = 0 if φ̇ = 0, which means that there are
no terms to drop. Thus we find that the virtual displacement of point P is

δr̄P = (r1 + r2)
{[

1 − cos
(

r2

r1
φ

)]
ī + sin

(
r2

r1
φ

)
j̄
}

δφ. �

EXAMPLE 7.6 The angles θ1, θ2, and θ3 locate the links of the mechanism, but
there is a geometrical relation that these angles must satisfy. Determine the virtual
displacement of collar C, which slides along bar DE under each of the following
conditions: (a) θ1 and θ2 are unconstrained generalized coordinates; (b) θ1 and θ3

are unconstrained generalized coordinates; and (c) θ1 is driven by a motor such that
it is a known function of time, and θ2 is an unconstrained generalized coordinate;
and (d) θ3 is driven by a motor such that it is a known function of time, and θ1 is an
unconstrained generalized coordinate.

A

C

H

B

E

D

θ1 

θ2 

θ3 

y

x

L1

L2

Example 7.6

SOLUTION The purpose here is to illustrate the variety of conditions that can arise in
a system and the significant effect that these conditions can have on the formulation
of virtual displacement. In Part (a) we have q1 = θ1 and q2 = θ2. These variables
uniquely locate the collar, so the fact that θ3 depends on the generalized coordi-
nates is irrelevant to the evaluation of the virtual displacement of the collar. We
follow the kinematical method by describing the velocity of the collar in terms of
the generalized coordinates:

v̄C = v̄B + ω̄BC × r̄C/B = θ̇1k̄ × r̄B/A + θ̇2k̄ × r̄C/B

= − (
L1θ̇1 sin θ1 + L2θ̇2 sin θ2

)
ī + (

L1θ̇1 cos θ1 + L2θ̇2 cos θ2
)

j̄ .
(1)
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We obtain the virtual displacement by replacing the rate variables with the corre-
sponding virtual increments. It is useful to group the coefficients of δθ1 and δθ2, so
we find

δr̄C = (−L1θ̇1 sin θ1 ī + L1θ̇1 cos θ1 j̄
)
δθ1

+ (−L2θ̇2 sin θ2 ī + L2θ̇2 cos θ2 j̄
)
δθ2.

(2) �

In Part (b) we have q1 = θ1 and q2 = θ3. We cannot describe the position of the
collar C in terms of only the generalized coordinates without considering how θ2

depends on θ1 and θ3. To that end we form the tangent of θ3 in terms of horizontal
and vertical distances constructed along bars AB and BC. This gives

tan θ3 = L1 sin θ1 + L2 sin θ2

L1 cos θ1 + L2 cos θ2 − H
,

which may be written as

sin θ2 = tan θ3 cos θ2 + tan θ3

(
L1

L2
cos θ1 − H

L2

)
− L1

L2
sin θ1. (3)

We need to solve this relation for θ2 in terms of θ1 and θ3, which we can do by

using symbolic software or by using sin θ2 ≡
[
1 − (cos θ2)2

]1/2
to obtain a quadratic

equation for cos θ2. The specific solution is unimportant for the present purpose, so
we merely denote it in functional form as

θ2 = f (θ1, θ3) . (4)

We proceed to the analysis of v̄C, for which we recognize that we need to de-
termine θ̇2 in terms of the generalized coordinates and velocities. We could obtain
this result by differentiating Eq. (4), but the function is quite complicated. Instead
we carry out a velocity analysis of the collar, based on its being constrained to
move radially outward at an unknown rate u relative to bar DE. This means that
v̄C = uēE/D + ω̄DE × r̄C/D. We describe r̄C/D in terms of θ1 and θ2 to avoid introduc-
ing the distance from pin D to the collar as another geometrical variable to elimi-
nate. Comparing this viewpoint for v̄C with Eq. (1) gives

v̄C = u
(
cos θ3 ī + sin θ3 j̄

)+ θ̇3k̄ × [
(L1 cos θ1 + L2 cos θ2) ī

+ (L1 sin θ1 + L2 sin θ2) j̄
]

= − (
L1θ̇1 sin θ1 + L2θ̇2 sin θ2

)
ī + (

L1θ̇1 cos θ1 + L2θ̇2 cos θ2
)

j̄ .

Matching like components in the preceding equation gives two simultaneous equa-
tions that may be solved for u and θ̇2 in terms of θ1, θ2, θ3, θ̇1, and θ̇3. Equation (4)
describes θ2. Thus the result of this kinematical analysis has the form

θ̇2 = g1 (θ1, θ3) θ̇1 + g3 (θ1, θ3) θ̇3. (5)

The detailed expressions are intricate, so we merely monitor how the analysis builds
on them. Substitution of Eq. (5) into Eq. (1) gives v̄C in terms of the generalized
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velocities for this case:

v̄C = {− [L1 sin θ1 + L2g1 (θ1, θ3) sin ( f (θ1, θ3))] ī

+ [L1 cos θ1 + L2g1 (θ1, θ3) cos ( f (θ1, θ3))] j̄
}
θ̇1

+ {−L2g3 (θ1, θ3) sin ( f (θ1, θ3)) ī + L2g3 (θ1, θ3) cos ( f (θ1, θ3)) j̄
}
θ̇3.

To obtain the virtual displacement of the collar we replace the generalized velocities
with the corresponding virtual increments, which gives

δr̄C = {− [L1 sin θ1 + L2g1 (θ1, θ3) sin ( f (θ1, θ3))] ī

+ [L1 cos θ1 + L2g1 (θ1, θ3) cos ( f (θ1, θ3))] j̄
}
δθ1

+ {−L2g3 (θ1, θ3) sin ( f (θ1, θ3)) ī + L2g3 (θ1, θ3) cos ( f (θ1, θ3)) j̄
}
δθ3.

(6)

It is obvious that analyzing δr̄C with θ1 and θ3 as generalized coordinates is much
more difficult than it is if θ1 and θ2 are the generalized coordinates. The same would
be true for most other steps ultimately leading to the equations of motion. Thus it
is wise to assess at the outset of a solution the difficulty of eliminating variables that
are not generalized coordinates.

The situation in Part (c) is like that of Part (a), except that θ1 is specified, rather
than a generalized coordinate. Thus the terms in Eq. (1) that contain θ̇1 correspond
to the v̄Pt term in Eq. (7.3.8). In accord with the kinematical method, in Eq. (1) we
replace v̄C with δr̄C and θ̇2 with δθ2, and ignore the θ̇1 term. The resulting virtual
displacement is

δr̄C = (−L2θ̇2 sin θ2 ī + L2θ̇2 cos θ2 j̄
)
δθ2. �

This is the same as Eq. (2) when δθ1 = 0, which is consistent with the definition of a
virtual displacement as corresponding to fixed t, so that θ1 does not change.

Similar to the preceding case, the analysis for Part (d) may be performed by
referring back to Part (b). Because θ3 is not a generalized coordinate in this case,
we set δθ3 = 0 in Eq. (6), which reduces the virtual displacement to

δr̄C = {− [L1 sin θ1 + L2g1 (θ1, θ3) sin ( f (θ1, θ3))] ī

+ [L1 cos θ1 + L2g1 (θ1, θ3) cos ( f (θ1, θ3))] j̄
}
δθ1.

�

An overview of the cases considered here shows that eliminating constrained
variables can lead to significant complications. An alternative not listed in the prob-
lem statement is to use all three angles as constrained generalized coordinates,
rather than trying to eliminate one variable. In each case a constraint equation re-
lating the angles, specifically Eq. (3) or its equivalent, would need to be enforced as
a separate condition. Specification of the rotation of θ1 or θ3 as a function of time
would lead to an additional constraint equation.
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7.4 GENERALIZED FORCES

The selection of a set of generalized coordinates, and the evaluation of the virtual
displacements in terms of those quantities, are primary aspects of the Lagrangian ap-
proach to the derivation of equations of motion for a system. It is necessary to recognize
what parameters are appropriate to the kinematical description. By doing so, we cre-
ate the model on which the rest of the analysis will be based. The kinematics phase of
the formulation is essentially complete when the physical velocities and virtual displace-
ments have been related to the generalized coordinates. The aspects of the formulation
that are concerned with the role of forces and inertia are more straightforward. The first
task is to represent the effect of the forces exerted on a system.

7.4.1 Definition of Generalized Forces

Virtual work is done by the actual forces when a system is given a virtual movement.
Because time is constant in such a movement, forces and couples do not change in mag-
nitude or direction. Let δr̄n denote the virtual displacement of the point where force F̄n

acts. Adding the virtual work done by each load gives

δW =
∑

n

F̄n · δr̄n. (7.4.1)

A virtual displacement is related to the increments of the generalized coordinates by
Eqs. (7.3.8), whose substitution gives

δW =
∑

n

F̄n ·
N∑

j=1

v̄njδqj ≡
∑

n

F̄n ·
N∑

j=1

r̄n

∂qj
δqj . (7.4.2)

We move the sum over the generalized coordinates outside the sum over the forces,
which allows us to collect coefficients of each δqj . The result is

δW =
N∑

j=1

Qjδqj , (7.4.3)

where

Qj =
∑

n

F̄n · v̄nj (qk, t) ≡
∑

n

F̄n · ∂ r̄n

∂qj
. (7.4.4)

The terminology is to say that Qj are generalized forces.
To describe situations in which various couples �̄k are applied to the system, we

recall that the differential work done by a couple is obtained from a dot product with
the differential rotation. Let δθk be the virtual rotation of the body to which couple �̄k is
applied. The virtual work is the sum of the contributions of each force and each couple:

δW =
∑

n

F̄n · δr̄n +
∑

k

�̄k · δθk. (7.4.5)
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Substitution of the kinematical descriptions of virtual displacement and rotation,
Eqs. (7.3.8) and (7.3.10), respectively, into the preceding equation for δW gives

δW =
∑

n

F̄n ·
N∑

j=1

v̄nj (qn, t) δqj +
∑

k

�̄k ·
N∑

j=1

ω̄kj (qn, t) δqj . (7.4.6)

Moving the sum over the generalized coordinates outside the sum over the forces or
couples still allows us to collect coefficients of each δqj , so the virtual work still must
have the standard form in Eq. (7.4.3). We match that expression to Eq. (7.4.6) and recall
that the δqj values may be arbitrarily selected. Consequently, like coefficients of δqj

must match, which leads to the conclusion that

Qj =
∑

n

F̄n · v̄nj (qn, t) +
∑

k

�̄k · ω̄Pj (qn, t) . (7.4.7)

One reason for referring to Qj as a generalized force may be recognized from
the case of free motion of a particle. If the Cartesian coordinates X, Y, and Z mea-
sured relative to a fixed reference frame are selected as the set of qj , then δr̄P =
δXī + δYJ̄ + δZK̄. Correspondingly the virtual work done by the resultant force 
 F̄
acting on this particle is δW = 
FXδX + 
FYδY + 
FZδZ. Comparing this with the
standard form in Eq. (7.4.3) shows that Q1 = 
FX, Q2 = 
FY, and Q3 = 
FZ. In
other words, each generalized force is the net force acting in the direction of the cor-
responding generalized coordinate. Now suppose we use spherical coordinates r, φ,

and θ as the generalized coordinates for the particle. Converting the velocity in spher-
ical coordinates to virtual displacement according to the kinematical method gives
δr̄P = δr ēr + rδφēφ + r (sin φ) δθ ēθ . Correspondingly, the virtual work done by 
 F̄ is
δW = 
Frδr + 
Fφrδφ + 
Fθr (sin φ) δθ. Matching this expression to Eq. (7.4.3) gives
Q1 = 
Fr , Q2 = r
Fφ, and Q3 = r sin φ
Fθ . The first generalized coordinate is the net
force in the radial direction, but the other two are moments that represent the net effect
causing φ and θ to change positively. In any situation we will find that

Each generalized force is the net effect of the force system to cause the associated
generalized coordinate to increase.

Note that this observation is confirmed by the units of the generalized force. The units
of work are force times length. Thus, if qj has units of length, then Qj has units of force,
whereas when qj is an angle, then Qj has moment units, force times length.

Another reason to refer to the coefficient of δqj in Eq. (7.4.3) as a generalized force
may be seen by returning to the configuration space. A system’s position appears there
as a point following its configuration path. Let us define a force vector Q̂ in the configu-
ration space such that the virtual work it does equals δW for the actual forces acting on
the system. Equation (7.2.13) describes the virtual displacement δr̂ in the configuration
space. The virtual work done by Q̂ therefore is

δW = Q̂ · δr̂ = (Q1ê1 + · · · + QNêN) · (δq1ê1 + · · · + δqNêN) . (7.4.8)

Because the configuration space is Cartesian, the unit vectors are orthonormal. Hence
evaluating the dot product yields the same expression for δW as Eq. (7.4.3). From this we
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conclude that in the configuration space a generalized force Qj is the force component
acting in the direction of the corresponding qj .

We seldom use Eq. (7.4.7) to evaluate the generalized forces for a specific system.
Instead, we follow the same procedure as the one that led to that expression. Specifically,
we first evaluate the virtual displacement of each point where a force is applied and the
virtual rotation of each body that carries a torque. We then form the virtual work of
these forces and couples by following Eq. (7.4.5). Matching the coefficient of each δqj

in the actual expression for δW to corresponding coefficient in the standard form of δW,

Eq. (7.4.3), leads to identification of each generalized force.
In principle, the evaluation of virtual work needs to include each force and cou-

ple that acts on a system, whether it is external or internal. However, we will see in
the following sections that two special classes of forces, constraint forces and conser-
vative forces, may be accounted for without explicitly evaluating their contribution
to δW.

EXAMPLE 7.7 Force F acts parallel to link AB. Alternative choices for the gener-
alized coordinate are the angle θ or the distance y. Determine the generalized force
corresponding to each selection.

A

B

C

L

L

yF

θ
Example 7.7

SOLUTION The basic procedure for evaluating generalized forces is covered here, as
well as the association between the nature of a generalized force and the definition
of the generalized coordinate. The virtual work done by F̄ is F̄ · δr̄B, and the choice
of generalized coordinate affects the description of both vectors. Let the x axis be
horizontal to the left and the y axis be the upward vertical. When θ is the generalized
coordinate, the analytical method for virtual displacement gives

r̄B/A = Lsin θ ī + Lcos θ j̄,

δr̄B = ∂ r̄B/A

∂θ
δθ = (

Lcos θ ī − Lsin θ j̄
)
δθ.

The description of F̄ in terms of the generalized coordinate is F̄ = F sin θ ī −
F cos θ j̄, so the virtual work is

δW = (
F sin θ ī − F cos θ j̄

) · (Lcos θ ī − Lsin θ j̄
)
δθ = 2F Lsin θ cos θ δθ.
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The standard form of the virtual work is δW = Q1δθ, so we find that

q1 = θ =⇒ Q1 = F Lsin 2θ. �

Note that 2θ is the angle between F̄ and the line from point B to point A, which
leads to the observation that Q1 actually is the moment of F̄ about the fixed pin A.

When y is the generalized coordinate, constructing a right triangle shows that

cos θ = y
2L

, sin θ =
(
4L2 − y2

)1/2

2L
,

so that

r̄B/A =
(

L2 − y2

4

)1/2

ī + y
2

j̄ .

The analytical method for virtual displacement then gives

δr̄B = ∂ r̄B/A

∂y
δy =

[
− y

2 (4L2 − y2)1/2
ī + 1

2
j̄

]
δy.

The force must also be described in terms of y, for which we use the expressions for
cos θ and sin θ :

F̄ = F

[(
4L2 − y2

)1/2

2L
ī − y

2L
j̄

]
.

The corresponding virtual work is

δW = F

[(
4L2 − y2

)1/2

2L
ī − y

2L
j̄

]
·
[
− y

2 (4L2 − y2)1/2
ī + 1

2
j̄

]
δy = − Fy

2L
δy.

Matching this to the standard form δW = Q1δy gives

Q1 = − Fy
2L

. �

To interpret this we recall that y/2L = cos θ, from which it follows that Q1 is the
component of F̄ downward, which makes sense because y is a variable describing
movement in the vertical direction.

EXAMPLE 7.8 Force F̄ acts tangentially to the flywheel at point P. Generalized
coordinates are selected to be the rotations ψ about the fixed horizontal shaft and
β about shaft AB, which describe the orientation of the gimbal supporting the fly-
wheel, and φ, which locates the flywheel’s orientation relative to the gimbal. Deter-
mine the contribution of F̄ to the corresponding generalized forces.
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β
h/2

h

φ

ψ
B

C

D

A

F
R

Example 7.8

SOLUTION This example of spatial motion uses the kinematical method for virtual
displacements. There is no need to evaluate accleration, so we may use any conve-
nient coordinate system. We attach xyz to the gimbal with its origin at center C,
such that the y axis is aligned with shaft AB, upward, and the z axis is aligned with
the axis of the disk, leftward in the sketch. The angular velocities of the gimbal and
of the disk are

ω̄gimbal = ψ̇ ēψ + β̇ ēA/B, ω̄disk = ω̄gimbal + φ̇k̄.

We describe the unit vectors in terms of the generalized coordinates,

ēψ = − sin β ī + cos βk̄, ēA/B = j̄,

from which we find that

ω̄gimbal = −ψ̇ sin β ī + β̇ j̄ + ψ̇ cos βk̄, ω̄disk = −ψ̇ sin β ī + β̇ j̄ + (
ψ̇ cos β + φ̇

)
k̄.

To describe the velocity of point D where F̄ is applied, we proceed along the gimbal
from collar A, whose center is stationary, to center C, and then onward to D along
the disk, which leads to

v̄C = ω̄gimbal × r̄C/A, v̄D = v̄C + ω̄disk × r̄D/C.

The positions are r̄C/A = − (3h/2) j̄, r̄D/C = Rsin φ ī − Rcos φ j̄ , so that

v̄D =
[
ψ̇ cos β

(
3h
2

+ Rcos φ

)
+ φ̇Rcos φ

]
ī + [(

ψ̇ cos β + φ̇
)

Rsin φ
]

j̄

+
[
ψ̇

(
3h
2

+ Rcos φ

)
sin β − β̇ Rsin φ

]
k̄.

We obtain the virtual displacement by replacing rate variables with virtual in-
crements:

δr̄D =
[
δψ cos β

(
3h
2

+ Rcos φ

)
+ δφRcos φ

]
ī + [(δψ cos β + δφ) Rsin φ] j̄

+
[
δψ

(
3h
2

+ Rcos φ

)
sin β − δβ Rsin φ

]
k̄.
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The force is perpendicular to r̄D/C in the xy plane, so its component representation
is

F̄ = −F cos φ ī − F sin φ j̄,

which leads to the virtual work being

δW = F̄ · δr̄D = (−F cos φ)
[
δψ cos β

(
3h
2

+ Rcos φ

)
+ δφRcos φ

]

+ (−F sin φ) (δψ cos β + δφ) Rsin φ

=
[
−F cos β

(
3h
2

cos φ + R
)]

δψ − F Rδφ.

The standard form of virtual work in this case is δW = Q1δψ + Q2δβ + Q3δφ.

Matching this to the actual δW yields

Q1 = −F cos β

(
3h
2

cos φ + R
)

, Q2 = 0, Q3 = −F R. �

Observe that Q3 is the moment of F̄ about the axis of the disk, which is sensible
because that moment is what causes φ to change. The value of Q2 is zero because
F̄ intersects the line of shaft AB, so it does not have a tendency to change β. The
first generalized force represents the tendency of F̄ to change ψ, which we would
expect to be the moment of F̄ about the horizontal shaft. It is not difficult to verify
that Q1 = (

r̄D/A × F̄
) · ēψ .

7.4.2 Relation Between Constraint Forces and Conditions

The terms “reactions” and “constraint forces” are synonyms describing the forces and
couples that enforce constraint equations, either by preventing motion or by imposing
a motion that is a specified function of time. Whereas the Newton–Euler formulation
requires separate consideration of the forcing effect and the kinematical restriction of
a constraint, we will find here that knowledge of the velocity constraint equation will
suffice to describe the effect of the associated constraint force. We begin by considering
the case in which a particle is constrained to move along a specified curve. A kinematical
description using tangent-normal components indicates that the position of this particle
is given by the arc length s (t) measured along the path, which we select to be the gener-
alized coordinate. The resultant force may be resolved into components 
Ft , 
Fn, and

Fb in the tangent, normal, and binormal directions, respectively. The latter two include
constraint forces because they prevent the particle from moving perpendicularly to the
path. In a virtual movement that increases s by δs, the particle moves in the tangential
direction by that amount, so δr̄ = δsēt . The corresponding virtual work is δW = 
Ft δs.
In this simple situation a virtual displacement that is kinematically admissible, meaning
that it obeys the motion constraints imposed on the system, leads to the constraint forces
doing no work.
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We encountered a similar result when we applied the principle of dynamic virtual
work in Subsection 7.1.2. The free-body diagram in Fig. 7.2 showed constraint forces
Āx and Āy that prevent movement of pin A, and vertical constraint force C̄y exerted
by the horizontal guidebar on collar C to prevent movement in the vertical direction.
The virtual movement used there kept the pin stationary and moved the collar horizon-
tally. Such a movement is kinematically admissible, and the virtual work done by the
constraint forces again was found to be zero.

This observation that the virtual work done by a reaction is zero is not a chance
occurrence. In fact, it provides a consistent definition of a constraint force. (Once again,
constraint force is the preferred term, rather than reaction.) Specifically,

A force or couple is a constraint force associated with a kinematical constraint condi-
tion if, and only if, it does no work in a virtual movement that is consistent with the
constraint.

An important corollary applies when the generalized coordinates are unconstrained,
which can be the case only for a holonomic system. In such a situation, any set of gen-
eralized coordinate values is kinematically possible, so any virtual displacement will be
kinematically admissible. Consequently,

The virtual work done by constraint forces always is zero when unconstrained gener-
alized coordinates are used to describe a holonomic system.

Let us now consider what happens when we use constrained generalized coordi-
nates. A virtual displacement entails incrementing each generalized coordinate by an
arbitrary amount δqj , whereas Eq. (7.2.18) indicates that the δqj values cannot all be
selected arbitrarily if the virtual displacement is to be consistent with the ith constraint
equation. It follows that

When constrained generalized coordinates are used to describe the position of a sys-
tem, constraint forces will do virtual work.

It is necessary in that case to account for the contribution of constraint forces to each
of the generalized forces. One way of doing so is to treat constraint forces as forces that
are known when the virtual work is formed. However, a simpler alternative is available.

In the physical world each constraint equation has an associated constraint force
or couple. Let us denote as R(i)

j , i = 1, 2 . . . J, the contribution of the ith constraint
force to the jth generalized force. In the configuration space the generalized forces are
the components of the vector Q̂ representing the forcing effect on the system. Let R̂(i)

denote the portion that is attributable to the constraint, so that

R̂ (i) = R (i)
1 ê1 + · · · + R (i)

N êN. (7.4.9)

As noted earlier, if the δqj values are selected arbitrarily, the virtual displacement
will not be kinematically admissible. In the configuration space, this would be repre-
sented by a displacement vector δr̂ that may point in any direction. Let us consider the
special situation in which the δqj values are selected such that the virtual displacement is
consistent with the ith constraint equation. Equation (7.2.20) indicates that δr̂ then must
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be perpendicular to the normal direction âi associated with the Jacobian constraint co-
efficients, that is, âi · δr̂ = 0. Furthermore, if δr̂ represents a movement that is consistent
with the ith constraint equation, the definition of a constraint force requires that the
virtual work done by the ith constraint force be zero. The virtual work of this force in
the configuration space is given by R̂(i) · δr̂ , so we find that

if âi · δr̂ = 0, then R̂(i) · δr̂ = 0. (7.4.10)

An important aspect of this condition is that it must be true for any δr̂ that is per-
pendicular to âi , but there is a limitless number of such vectors. Hence Eq. (7.4.10) can
be satisfied only if R̂(i) is parallel to âi . Parallelism of two vectors means that they are
proportional, so we have

R̂(i) = âiλi . (7.4.11)

The factor of proportionality λi is a Lagrange multiplier. When we substitute Eqs. (7.4.9)
and (7.2.19) into this expression, and equate like components in each ê j direction, we
find that

R(i)
j = ai jλi . (7.4.12)

This equation enables us to describe the contributions of constraints to generalized
forces solely by knowing the Jacobian constraint matrix, ai j , which clearly is easier than
actually evaluating the virtual work done by constraint forces.

In some situations it is desirable to see the role of the actual constraint force, rather
than representing it with a Lagrange multiplier. We may do this by evaluating the virtual
work of the force, rather than by using Eq. (7.4.12). Let ēi denote the known direction
in which motion is restricted by a constraint condition. This also is the direction in which
the constraint force acts, so the ith constraint force (or couple) is Ci ēi , where the mag-
nitude Ci is unknown. According to Eqs. (7.3.8) and (7.3.10), the virtual displacement is
linear in the δqj . It follows that the virtual work done by Ci ēi will have the general form

δWi = Ci

N∑
j=1

ci jδqj , (7.4.13)

where the ci j coefficients may be functions of the generalized coordinates and time.
Equating this expression to Eq. (7.4.3), which defines generalized forces, shows that

R(i)
j = ci j Ci . (7.4.14)

A comparison of Eqs. (7.4.12) and (7.4.14) shows that a Lagrange multiplier is propor-
tional to the amplitude of the associated constraint force according to

Ci = ai j

ci j
λi . (7.4.15)

Because this relation must hold for any j, it must be that

Ci = σ iλi , σ i = ai j

ci j
. (7.4.16)
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y
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x

y

(a) (b)

L

xB

yB
F F Figure 7.10. Generalized coordinates for a system

consisting of two spheres connected by a rigid bar.

Establishing the proportionality factor σ i in a specific case requires determination of the
ci j coefficients.

Let us examine a few situations that illustrate when constraint forces may be avoided
in the formulation. First, consider Fig. 7.10(a), where two tiny spheres, modeled as par-
ticles, are constrained to move in the xy plane. The spheres are connected by a massless
rigid bar. As a result, the distance L is constant, so (xA, yA, φ) constitute a set of uncon-
strained generalized coordinates.

Because the bar is massless, it can exert only an axial force on each particle, as shown
in the free-body diagram for each particle, Fig. 7.10(b). To evaluate the virtual work
done by this force, we employ the kinematical method to relate the virtual displacements
of the spheres. The velocities are related by

v̄B = v̄A + (
φ̇k̄
)× r̄B/A = v̄A + Lφ̇ēφ, (7.4.17)

so the virtual displacements are related by

δr̄B = δr̄A + Lδφēφ. (7.4.18)

The virtual work done by the axial force is therefore

δW = (−FēR) · δr̄A + FēR · δr̄B = FēR · Lδφēφ = 0. (7.4.19)

The axial force does no work in this situation because it is the constraint force re-
quired to keep L constant. If we employ a set of constrained generalized coordinates,
this constraint will be violated. For example, suppose that (xA, yA, xB, yB) are used as
generalized coordinates. The constraint condition that the bar distance between the
spheres must be L gives a configuration constraint equation, (xB − xA)2 + (yB − yA)2 =
L2. The velocity form of this equation is

a11 ẋA + a12 ẏA + a13 ẋB + a14 ẏB = 0,

a11 = −a13 = xA − xB, a12 = −a14 = yA − yB,
(7.4.20)

where the leading subscript 1 denotes the first constraint equation. The virtual displace-
ments of the spheres now are unrelated, being given by

δr̄A = δxAī + δyA j̄, δr̄B = δxBī + δyB j̄ . (7.4.21)

The virtual work done by the axial force in this case is

δW = (−FēR) · δr̄A + FēR · δr̄B = F cos φ (δxB − δxA) + F sin φ (δyB − δyA) . (7.4.22)
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We must eliminate φ from this expression because it is not a generalized coordinate.
Forming a right triangle whose hypotenuse is L shows that cos φ = (xB − xA) /L and
sin φ = (yB − yA) /L. We substitute these expressions into δW and match the result to
the standard form, δW = R(1)

1 δxA + R(1)
2 δyA + . . . , from which we find that the contri-

butions of the axial force to the generalized forces are

R(1)
1 = −R(1)

3 = − xB − xA

L
F,

R(1)
2 = −R(1)

4 = − yB − yA

L
F.

(7.4.23)

The virtual work is not zero, as expected. Furthermore, we observe that these expres-
sions fit Eq. (7.4.14), with the constraint force F = C1 and

c11 = −c13 = − xB − xA

L
, c12 = −c14 = − yB − yA

L
. (7.4.24)

This is consistent with Eqs. (7.4.16), for we see that
a j1

c j1
= σ 1 = L, j = 1, 4. (7.4.25)

It follows from Eqs. (7.4.16) that λ1 = F/L.
The case in which the spheres in Fig. 7.10 are connected by a spring offers an in-

structive contrast. Instead of being an unknown reaction that restricts motion, the axial
force within a spring is known in terms of the deformation, � = L− L0, where L0 is the
undeformed length. There would be no constraints on the planar motion of the spheres
in this case, so the system would have four degrees of freedom, and (xA, yA, xB, yB)
would be unconstrained generalized coordinates. The contributions of the axial spring
force to each generalized coordinate in this case are still given by Eqs. (7.4.23), except
that F = k�, which means that the force is now known in terms of the generalized co-
ordinates. This exemplifies the general fact that

Forces and couples are either unknown constraint effects that impose a kinematical
condition, or else they are known as function of time and/or the generalized coordi-
nates, in which case they do not kinematically restrict the motion.

The two-particle system provides an important analogy for the general task of mod-
eling. Let the spheres represent two adjacent particles in a body. Correspondingly, the
force F̄ represents the stress resultant exerted between them. When a body is considered
to be rigid, then the internal stress resultants are equivalent to reactions that maintain
the particles at fixed relative distances. These forces do no virtual work. In contrast,
when deformation of a body must be considered, the internal stress resultants are equiv-
alent to spring forces. Thus derivation of the equations of motion for deformable bodies
requires consideration of the effects of internal stresses.

Connections between bodies are an important element in most dynamic systems.
They impose kinematical conditions on the relative movement of the parts they con-
nect. According to the definition of a constraint force, the force or couple associated
with a connection will do no virtual work if the virtual movement does not violate the
condition imposed by that connection. An important example of this aspect is described
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B1  B2
Bx Bx

By
Figure 7.11. Constraint forces associated with a pin connection.

by Fig. 7.11, where two bars are connected by a pin. Let B1 and B2 denote the connec-
tion point on the respective bars. The pin exerts opposing horizontal and vertical forces
on each bar, which enforce the condition that points B1 and B2 move in unison. The
corresponding virtual work is

δW = (
Bxī + By j̄

) · δr̄B1 + (− Bxī − By j̄
) · δr̄B2. (7.4.26)

If the constraint imposed by the pin is not violated in a virtual displacement, then the
virtual displacements of the connection points will be identical, δr̄B2 = δr̄B1, and δW = 0.

Thus, if the virtual movement of a system maintains the integrity of a pin connection,
the forces exerted by the pin will not contribute to the generalized forces.

Another connection that is commonly encountered is a sliding collar, such as the
one in Fig. 7.12. The collar can move only inward or outward relative to bar CD, corre-
sponding to changing distance R measured along bar CD. In a virtual movement that is
consistent with this constraint, the virtual displacements of points B1 on bar CD and B2
on the collar are related by

δr̄B2 = δr̄B1 + δRēR. (7.4.27)

If friction is negligible, f̄ ≡ 0̄, then the only force that is developed between the collar
and bar CD is the normal reaction N̄. The virtual work done by this force is

δW = (Nēφ) · δr̄B1 + (−Nēφ) · δr̄B2. (7.4.28)

If the virtual displacement is consistent with the constraint imposed by the collar, so that
Eq. (7.4.27) holds, then we find that δW = (−Nēφ) · δRēR = 0. Thus the force associated
with a collar connection will not appear in the generalized forces if the virtual movement
satisfies the kinematical restriction imposed by the collar.

Not all forces associated with a connection are associated with a constraint condi-
tion. For example, the friction force f̄ in Fig. 7.12 acts in opposition to the direction in
which each contacting surface moves relative to the other. (The situation appearing in

N
eR

eR
R

B1

B2

C

D
R

f

f

Figure 7.12. Forces associated with a collar connection.
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this figure corresponds to the collar sliding outward, Ṙ > 0.) The virtual work in this
case would be

δW = (Nēφ + f ēR) · δr̄B1 + (− Nēφ − f ēR) · δr̄B2. (7.4.29)

Even if the the virtual displacement satisfies Eq. (7.4.27), so that the virtual displace-
ment is consistent with the constraint imposed by the collar, the virtual work is not zero.
Rather, it is

δW = (− Nēφ − f ēR) · δRēR = − f δR. (7.4.30)

Note that kinetic friction is not a constraint force, because it does not prevent sliding
motion. Rather it is known by Coulomb’s kinetic friction model to be µk

∣∣N̄∣∣ . (A static
friction force does prevent relative motion. Such a force in the present case would have
the effect of making the collar act as a pin connection, because the collar would not
move relative to the bar.)

Many other types of constraint forces could be considered at this juncture, for exam-
ple, the constraint forces associated with rolling motion. The normal force prevents in-
terpenetration of the contacting surfaces. In the case of no slipping, the tangential force,
developed by friction or gear teeth, makes the points of contact on the two bodies move
by the same amount. Hence it also is a constraint force. It follows that the forces exerted
between two rolling bodies will do no virtual work if there is no slippage in the rolling
motion, provided that the virtual movement does not lead to relative displacement of
the contacting points. (This was proven for a true displacement in Example 6.12.) Con-
versely, the tangential force will do virtual work when there is slippage, because it then
does not constrain motion.

One should realize that, when a system is represented by a set of constrained gener-
alized coordinates that must satisfy a certain number of constraint equations, it is only
the forces associated with these conditions that contribute to the virtual work. There
may be numerous other kinematical restrictions that are always satisfied, regardless of
the values of the generalized forces. The forces associated with the latter conditions will
not appear in the virtual work. For example, if one uses constrained generalized coor-
dinates to model a linkage, but a pin connection remains intact when the δqj values are
arbitrary, then the virtual work of the forces associated with the pin will be zero.

EXAMPLE 7.9 Tensile force F̄ is applied to the free end of the cable, such that the
cable remains horizontal regardless of the position of the pin to which it is attached.
First consider the case in which the disk slips as it rolls over the ground. The coef-
ficient of kinetic friction is µk. Select generalized coordinates, evaluate the virtual
work done by all forces acting on the disk, and identify the corresponding general-
ized forces. Then repeat the analysis for the case in which there is no slippage in the
rolling motion.
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R F

P

O
Example 7.9

SOLUTION This example helps us understand the different roles of static and kinetic
friction, and the way in which each is described. In the first case there is slippage
between the disk and the ground, which means that the motion of the center of
the disk is independent of its rotation. Let us use xO to measure horizontal distance
rightward from some fixed reference to the center O, and let the angle θ of the radial
line from the center to the pin be the generalized coordinate for rotation of the disk.
We show these variables in a free-body diagram of the disk.

θAx

B
θ

L

Ay Cy

Cx

F

L/2

M

y

x
G

Free-body diagram of the rolling disk showing the fric-
tion force f̄ .

The normal force N̄ is a constraint force that prevents the contact point from
moving vertically, and that constraint will not be violated by incrementing either
generalized coordinate. We therefore could ignore this force in the evaluation of the
virtual work. However, the friction force f̄ does not constrain motion when there
is slippage, so we must evaluate its contribution to δW. The sense of f̄ depicted
in the free-body diagram corresponds to the velocity of the contact point being to
the right, so we have f̄ = − f ī, with f = µk N sgn

(
v̄C · ī

)
ī . As we did previously for

bodies that roll, we replace the actual forces with a resultant force S̄ acting at the
center of the disk, and a couple M̄, where

S̄ = (F − f ) ī + (N − mg) j̄, M̄ = − (F Rcos θ + f R) k̄. (1)

In terms of the generalized coordinates the velocity of the center and the angular
velocity are

v̄O = ẋOī, ω̄ = −θ̇ k̄.

Converting velocity variables to virtual increments leads to

δr̄O = δxOī, δθ = −δθ k̄.

The corresponding virtual work is

δW = S̄ · δr̄O + M̄ · δθ = (F − f ) δx0 + (F Rcos θ + f R) δθ. (2)
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The coefficient of δxO in this expression is Q1, and Q2 is the coefficient of δθ, so we
have

Q1 = F − f, Q2 = F Rcos θ + f R. �

When slipping occurs, the velocity of the contact point is v̄C = (
ẋO − Rθ̇

)
ī and N =

mg, so the friction force is f = µkmg sgn
(
ẋO − Rθ̇

)
.

We see that Q1 is the resultant horizontal force, which is the force tending to
increase xO, whereas Q2 is the clockwise resultant moment about the center of the
disk, which is the forcing effect causing θ to increase. As expected, the normal force
does not appear in any generalized force, and the absence of gravity is a conse-
quence of the center moving horizontally.

When there is no slippage, the angle of rotation is θ = xO/R, which is a configu-
ration constraint. We use it to eliminate θ, so xO is now the single unconstrained gen-
eralized coordinate. Differentiating the configuration constraint gives δθ = δxO/R.

Equation (2) for the virtual work is generally valid. When the rotation is consistent
with the no-slip condition, this equation becomes

δW = FδxO

[
1 + cos

(xO

R

)]
.

Matching this to δW = Q1δxO shows that the generalized force is

Q1 = F
[
1 + cos

(xO

R

)]
. �

This is the moment of F̄ about the contact point divided by the radius R. The fric-
tion force does not appear in the generalized force when there is no slippage be-
cause it then is a constraint force that prevents relative movement of the contacting
surfaces.

EXAMPLE 7.10 Force F1 causes the collar to translate such that its horizontal po-
sition x is known as a function of t. Force F2 is known as a function of t. Generalized
coordinates are the absolute angle of rotation θ1 for the upper bar and the relative
angle θ2 for the lower bar. Determine the corresponding generalized forces. The
weight of each bar is negligible in comparison with the magnitude of F̄2.

L1

L2
θ1

θ2

x
F1

F2

Example 7.10
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SOLUTION The intent here is to clarify the role of constraint forces in comparison
with applied forces for a system with prescribed motion. The fact that x is a speci-
fied time function means that it is not a generalized coordinate. It also means that
force F̄1 imposing the motion is a constraint force. The normal force acting on
the collar also is a constraint force. We know that neither will contribute to the
virtual work because θ1 and θ2 are unconstrained generalized coordinates. How-
ever, let us verify that property by explicitly evaluating the virtual work done by all
forces.

We employ the analytical method to determine the virtual displacement. In
terms of horizontal and vertical components, the positions of the points where forces
act are

r̄1 = xī, r̄2 = [x + L1 sin θ1 + L2 sin (θ1 + θ2)] ī − [L1 cos θ1 + L2 cos (θ1 + θ2)] j̄ .

Because t is constant in a virtual displacement, x remains constant in the evaluation
of δr̄1 and δr̄2, which are found to be

δr̄1 = ∂ r̄1

∂θ1
δθ1 + ∂ r̄1

∂θ2
δθ2 = 0̄,

δr̄2 = ∂ r̄2

∂θ1
δθ1 + ∂ r̄2

∂θ2
δθ2

= {
[L1 cos θ1 + L2 cos (θ1 + θ2)] ī + [L1 cos θ1 + L2 sin (θ1 + θ2)] j̄

}
δθ1

+ {
[L2 cos (θ1 + θ2)] ī + [L2 sin (θ1 + θ2)] j̄

}
δθ2.

The virtual work is

δW = (
F1 ī + N j̄

) · δr̄1 + [
F2 cos (θ1 + θ2) ī + F2 sin (θ1 + θ2)

] · δr̄2

= F2
{
[L1 cos θ1 + L2 cos (θ1 + θ2)] cos (θ1 + θ2)

+ [L1 cos θ1 + L2 sin (θ1 + θ2)] sin (θ1 + θ2)
}
δθ1

+ F2
{
[L2 cos (θ1 + θ2)] cos (θ1 + θ2) + [L2 sin (θ1 + θ2)] sin (θ1 + θ2)

}
δθ2

= F2 (L1 cos θ2 + L2) δθ1 + F2L2δθ2.

As expected, neither F1 nor N appears in δW. The standard form is δW = Q1δθ1 +
Q2δθ2, which matches the actual δW with

Q1 = F2 (L1 cos θ2 + L2) , Q2 = F2L. �

It is apparent that the second generalized force is the moment of F2 about the pin
connecting the bars, and it is not difficult to show that Q1 is the moment of F2

about the pivot in the collar. Both forces exempify the notion that a generalized
force captures the tendency of the force system to alter the associated generalized
coordinate.
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EXAMPLE 7.11 The bar is constrained by collars A and B that slide over smooth
guide bars. Force F̄ acts perpendicularly to the bar at its midpoint. (a) Determine
the generalized force when the angle of elevation φ is selected as the single un-
constrained generalized coordinate. (b) Determine the generalized forces when the
angle of elevation φ and the horizontal distance xA are selected as constrained gen-
eralized coordinates. Perform the analysis by evaluating the virtual work done by
the constraint forces. (c) Use Lagrange multipliers to carry out the determination in
Part (b). From this analysis, identify the meaning of the Lagrange multiplier. (d)
Prove that the constraint forces do no virtual work if one selects δφ and δxA in
Part (b) to be kinematically admissible.

L
φ

β
A

B

xA

F

Example 7.11

SOLUTION This example addresses most of the situations we encounter in the evalu-
ation of generalized forces. This system clearly has one degree of freedom, so using
a single generalized coordinate φ in the first analysis automatically leads to a virtual
movement of the system that is consistent with all constraints. Consequently, no re-
actions do work, so we need to evaluate δW only for the applied force F̄ . We must
describe δr̄D for the point where F̄ is applied solely in terms of φ, without reference
to xA. To eliminate the latter variable we apply the law of sines to triangle OAB,

where point O is the intersection of the guide bars. This gives

xA

sin (β − φ)
= L

sin β
.

We solve this for xA, then differentiate the result to determine ẋA:

xA = L
sin (β − φ)

sin β
, ẋA = −Lφ̇

cos (β − φ)
sin β

. (1)

The velocity of collar A is now known in terms of φ and φ̇, and the angular ve-
locity of bar AB is −φ̇k̄, so we proceed to describe the velocity of the midpoint D
according to

v̄D = v̄A + (−φ̇k̄
)× r̄D/A = ẋAī + (−φ̇k̄

)× L
2

(− cos φ ī + sin φ j̄
)

= Lφ̇

[(
1
2

sin φ − cos (β − φ)
sin β

)
ī + 1

2
cos φ j̄

]
.
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We obtain δr̄D by replacing φ̇ with δφ, so

δr̄D = Lδφ

[(
1
2

sin φ − cos (β − φ)
sin β

)
ī + 1

2
cos φ j̄

]
. (2)

The applied force is F̄ = F sin φ ī + F cos φ j̄, so the virtual work done by this force
is

δW = F̄ · δr̄ = F Lδφ

[(
1
2

sin φ − cos (β − φ)
sin β

)
sin φ + 1

2
(cos φ)2

]
.

The standard form is δW = Q1δφ, so the preceding equation leads to

Q1 = F L
(

1
2

− cos (β − φ) sin φ

sin β

)
. �

In the second analysis q1 = φ and q2 = xA are constrained generalized coor-
dinates. The first of Eqs. (1) is the configuration constraint, and the second is the
corresponding velocity constraint. Reaction forces contribute to the virtual work in
such cases, and we are requested to evaluate these contributions explicitly. As an
aid to this analysis, we draw a free-body diagram of the system.

φβ A

B

xA

F
vB

vA

NA

NB

x

y

O

D
Free-body diagram showing the bar in a position correspond-
ing to arbitrary values of the two constrained generalized co-
ordinates.

The important aspect of using constrained generalized coordinates is that, after the
constraint equations have been characterized, the subsequent analytical steps con-
sider these variables to be independent. Thus, in the free-body diagram, collar A
is situated at an arbitrary distance xA, whereas bar AB is attached to collar A and
elevated to an arbitrary φ. This places end B at a location that is not situated on the
inclined guidebar. We may directly describe in terms of φ and xA the velocities of
the points where forces are applied:

v̄A = ẋAī, v̄B = ẋAī + (−φ̇k̄
)× r̄B/A = (

ẋA + Lφ̇ sin φ
)

ī + Lφ̇ cos φ j̄,

v̄D = ẋAī + (−φ̇k̄
)× r̄D/A =

(
ẋA + L

2
φ̇ sin φ

)
ī + L

2
φ̇ cos φ j̄ .

Changing the rate variables to virtual increments gives

δr̄A = δxAī, δr̄B = (δxA + Lδφ sin φ) ī + Lδφ cos φ j̄,

δr̄D =
(

δxA + L
2

δφ sin φ

)
ī + L

2
δφ cos φ j̄ . (3)
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Correspondingly, the virtual work done by F̄ and the normal force applied to each
collar is

δW = (
F sin φ ī + F cos φ j̄

) · δr̄D + NA j̄ · δr̄A + (
NB sin β ī + NB cos β j̄

) · δr̄B

= (F sin φ) δxA + F L
2

δφ + (NB sin β) δxA + NBLδφ (sin β sin φ + cos β cos φ) .

(4)
We match this expression to δW = Q1δφ + Q2δxA to find that

Q1 = F L
2

+ NBLcos (β − φ) ,

Q2 = F sin φ + NB sin β.

(5) �

The third analysis also uses q1 = φ and q2 = xA, but the contributions of NA and
NB to the generalized forces will be described by Lagrange multipliers. The velocity
constraint equation, the second of Eqs. (1), has the standard form of a linear velocity
constraint, a11φ̇ + a12 ẋA + b1 = 0, with the Jacobian constraint coefficients being

a11 = L
cos (β − φ)

sin β
, a12 = 1. (6)

Equation (7.4.12) indicates that the contributions of the associated constraint force
to the generalized forces are

R(1)
1 = λ1a11 = λ1L

cos (β − φ)
sin β

, R(1)
2 = λ1a12 = λ1. (7)

A comparison of these expressions with the terms in Eqs. (5) that contain the NB

shows that

λ1 = NB sin β. (8) �

In other words, the Lagrange multiplier associated with the single constraint equa-
tion is the horizontal component of the associated constraint force. The same rela-
tion could have been derived by matching the NB terms in Eq. (4) to Eq. (7.4.13),
which would lead to the recognition that

c11 = Lcos (β − φ) , c12 = sin β.

Substitution of the preceding equation and Eqs. (6) into Eqs. (7.4.16) reveals that

σ 1 = a11

c11
= a12

c12
= 1

sin β
.

Thus Eq. (8) is consistent with NB = σ 1λ1, as indicated by Eqs. (7.4.16).
The contribution to δW of standard applied like F̄ proceeds in the same way

regardless of whether one employs unconstrained or constrained generalized coor-
dinates. Thus the portion of the generalized forces associated with F̄ is described in
Eq. (4). Adding those terms to the respective R(1)

j in Eqs. (6) gives

Q1 = F L
2

+ λ1L
cos (β − φ)

sin β
, Q2 = F sin φ + λ1. �
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The last task is to consider a situation in which δφ and δxA are consistent with
the constraint equation. This requires that a11δφ + a12δxA = 0. For the Jacobian co-
efficients in Eqs. (6) this leads to

δxA = −a11

a12
δφ = −L

cos (β − φ)
sin β

δφ.

When δxA is related to δφ in this way the virtual work in Eq. (4) becomes

δW = Q1δφ + Q2δxA

=
[

F L
2

+ NBLcos (β − φ)
]

δφ + (F sin φ + NB sin β)
(

−L
cos (β − φ)

sin β
δφ

)

= F Lδφ

(
1
2

− cos (β − φ) sin φ

sin β

)
.

�
We see that neither reaction appears in δW for this special choice of virtual incre-
ments. We also see that the resulting δW is identical to the virtual work in Part (a).

7.4.3 Conservative Forces

The work done by a conservative force equals the amount by which the associated poten-
tial energy is depleted, that is, W1→2 = V1 − V2. This property enables us to characterize
a conservative force’s contribution to the generalized forces solely in terms of the prop-
erties of the potential energy. The potential energy depends on only the position of the
system, so it is an explicit function of the generalized coordinates. It is also possible that
V will explicitly depend on time, which would be the case if generalized coordinates are
measured from reference locations that move in a prescribed manner. Thus the potential
energy is described functionally as V(qj , t).

We obtain a virtual movement by adding a virtual increment δqj to each generalized
coordinate and holding time constant. The corresponding virtual work is the amount by
which V decreases in the shift from the original to the displaced position:

δW = V (qj , t) − V (qj + δqj , t) . (7.4.31)

Because the δqj values are infinitesimal, the chain rule for partial differentiation indi-
cates that

δW =
N∑

j=1

[
− ∂

∂qj
V (qj , t)

]
δqj . (7.4.32)

The definition of a generalized force is that it is the coefficient of the corresponding δqj

in an expression for δW. Hence the bracketed term in the preceding expression must be
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the contribution of conservative forces to the generalized forces:

(Qj )conservative = − ∂

∂qj
V (qj , t) . (7.4.33)

Of course, not all forces are conservative. The virtual work in a general situation
may be apportioned between conservative and nonconservative effects, such that

δW = (δW)nonconservative − δV. (7.4.34)

The corresponding expression for the generalized forces may be written as

(Qj )total = Qj − ∂

∂qj
V (qj , t) . (7.4.35)

Here, and in all future developments, the symbol Qj denotes generalized forces associ-
ated with forces and couples that are not described by the potential energy. This pro-
vides a degree of flexibility. It is not necessary to formulate the potential energy of a
conservative force. If the nature of a force is uncertain, or if it is straightforward to eval-
uate the virtual work of a force that is known to be conservative, then that force may
be considered to be nonconservative. Thus the generalized forces Qj should be under-
stood to describe all forces, conservative and nonconservative, whose effect is derived
from an analysis of the virtual work. Obviously, it would not be correct to account for a
conservative force by including it in the potential energy and also evaluating its virtual
work.

EXAMPLE 7.12 The stiffness of the spring is k, and the unstretched length is R.

Friction between the collar and the vertical guide bar, and between the bar and
the cylinder is negligible. The mass of the bar is m and the mass of the collar is
m/2. Determine the generalized force corresponding to θ ’s being the generalized
coordinate.

R

θ L
k

Example 7.12

SOLUTION We see here that recognizing that a force is conservative simplifies the
evaluation of generalized forces. The fact that the bar is tangent to the cylinder
means that its position is uniquely specified by θ, so this system has one degree
of freedom and there is no need to define other generalized coordinates. The con-
tact point, the center of the cylinder, and the collar form a right triangle whose
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hypotenuse is R + �, where � is the current length of the spring. We find from this
triangle that

� = R
sin θ

− R.

A free-body diagram of the bar and collar would show the spring and gravity
forces, which are conservative. The diagram also would show a horizontal force ex-
erted by the guide bar and a normal force exerted by the cylinder. The latter two
are constraint forces because they prevent movement in the direction in which they
act. The generalized coordinate for this system is unconstrained. These forces may
be ignored in the evaluation of δW because the associated constraint conditions will
not be violated in a virtual movement.

The potential energy of the spring is 1
2 k�2, where � is the elongation. We ex-

press this quantity in terms of θ by subtracting the unstretched length R from �:

Vspring = 1
2

k (� − R)2 = 1
2

k
(

R
sin θ

− 2R
)2

.

The potential energy of a gravity force near the Earth’s surface is defined in terms
of the elevation above a reference location, which should be a physical stationary
point in the system in order to avoid confusion. A convenient location here is the
center of the cylinder. The distance of the collar above this datum is R + �. The bar’s
center of mass is (L/2) cos θ below the collar, so the potential energy of gravity is
given by

Vgravity = mg
2

(R + �) + mg
(

R + � − L
2

cos θ

)
.

We add the potential energy of each conservative force:

V = 1
2

k
(

R
sin θ

− 2R
)2

+ 3
2

mg
(

R
sin θ

)
− mgL

2
cos θ.

These are the only forces that do virtual work, so the generalized force is found from
Eq. (7.4.35) to be

Q1 = −∂V
∂θ

=
[

kR2
(

1
sin θ

− 2
)

+ 3
2

mgR
]

cos θ

(sin θ)2 − mgL
2

sin θ. �

This evaluation certainly is easier than one based on determining the virtual work
done by the gravity and spring forces. Perhaps the only negative aspect of the pro-
cedure is that it sheds little light on the way the forces act.

7.5 LAGRANGE’S EQUATIONS

The generalized forces describe the actual force system’s effects. We now turn our atten-
tion to characterizing the inertial features of a system. The outcome will be a standard
set of equations of motion, which were first derived by Lagrange and therefore bear his
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name. We begin the derivation by considering a single particle, numbered n, in this sys-
tem. Newton’s Second Law describes the relationship between the resultant force 
 F̄n

acting on this particle and the particle’s motion variable, acceleration ān. The principle
of dynamic virtual work to this particle states that(

mnān − 
 F̄n
) · δr̄n = mnān · δr̄n − δWn = 0, (7.5.1)

where δWn denotes the contribution of the resultant force to the virtual work for the
whole system.

Lagrange’s primary contribution is to account for the dependence of kinematical
variables on the generalized coordinates. Two key relations are Eqs. (7.3.7) for velocity
and virtual displacement. Let r̄n denote the position of the particle. The aforementioned
equations then give

v̄n =
N∑

j=1

(
∂ r̄n

∂qj

)
q̇j + ∂ r̄n

∂t
, (7.5.2)

δr̄n =
N∑

j=1

(
∂ r̄n

∂qj

)
δqj . (7.5.3)

A crucial identity may be derived from Eq. (7.5.2). Because position depends solely
on the values of the generalized coordinates and time, the partial derivatives ∂ r̄n/∂q̇j

depend on only those variables. Hence only the kth term the summation for v̄n contains
a specific q̇k. It follows that evaluating ∂v̄n/∂q̇k will filter out all terms other than the kth
term, so it must be that

∂v̄n

∂q̇k
≡ ∂ r̄n

∂qk
, k = 1, 2, . . . , N. (7.5.4)

Each of the preceding relations will be needed at an appropriate juncture as we
manipulate the principle of dynamic virtual work. First we substitute Eq. (7.5.3) into
Eq. (7.5.1), and bring the inertial term inside the sum, which gives

N∑
j=1

mnān ·
(

∂ r̄n

∂qj

)
δqj − δWn = 0. (7.5.5)

The next step is suggested by the fact that ān ≡ dv̄n/dt . Rather than differentiating only
the velocity, let us introduce the rule for the time derivative of a product. Doing so
results in

N∑
j=1

mn
dv̄n

dt
·
(

∂ r̄n

∂qj

)
δqj − δWn

≡
N∑

j=1

{
d
dt

[
mnv̄n ·

(
∂ r̄n

∂qj

)]
− mnv̄n · d

dt

(
∂ r̄n

∂qj

)}
δqj − δWn = 0.

(7.5.6)

Consistent with the occurrence of v̄n, we use Eq. (7.5.4) to remove ∂ r̄n/∂qj from the
first term in the summation. Furthermore, various derivatives of a quantity may be
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performed in any sequence, which means that

d
dt

(
∂ r̄n

∂qj

)
≡ ∂

∂qj

(
d
dt

r̄n

)
≡ ∂v̄n

∂qj
. (7.5.7)

These operations convert the expression for virtual work to

N∑
j=1

{
d
dt

[
mnv̄n ·

(
∂v̄n

∂q̇j

)]
− mnv̄n · ∂v̄n

∂qj

}
δqj − δWn = 0. (7.5.8)

Each term in the summation may be represented as a derivative of v̄n · v̄n because a dot
product is commutative. Thus we have

N∑
j=1

{
d
dt

[
mn

∂

∂q̇j

(
1
2
v̄n · v̄n

)]
− mn

∂

∂qj

(
1
2
v̄n · v̄n

)}
δqj − δWn = 0. (7.5.9)

When we bring mn inside each pair of parentheses, we recognize that the term being
differentiated is the kinetic energy Tn of the particle, so that

N∑
j=1

{
d
dt

(
∂Tn

∂q̇j

)
− ∂Tn

∂qj

}
δqj − δWn = 0, Tn = 1

2
mnv̄n · v̄n. (7.5.10)

A relation such as this applies to each particle in the system. When all such equations
are added, the virtual work terms describe the effect of all forces, which is described by
Eq. (7.4.35). Also, the summation over all particles may be taken inside the sum over
the generalized coordinate index, but the sum of Tn for all particles is merely the kinetic
energy T of the system. Thus we find that

N∑
j=1

{
d
dt

(
∂T
∂q̇j

)
− ∂T

∂qj
+ ∂V

∂qj
− Qj

}
δqj = 0. (7.5.11)

Although this is a single equation, it leads to multiple equations governing each of
the N generalized coordinates. In a virtual displacement the generalized coordinates
are given arbitrary increments. This means that the values of the δqj are an arbitrary set
of infinitesimal values. Suppose we select the first increment, δq1, to be nonzero and all
other δqj values to be zero. Then the summation consists of only the j = 1 term. Because
δq1 is not zero, the coefficient contained within the brace for j = 1 must be zero. Now
repeat the process, except make δq2 the only nonzero virtual increment. Then the term
inside the brace for n = 2 must be zero. Continuing this procedure to j = N leads to the
conclusion that the coefficient of each δqj must vanish.

A different way to arrive at the same conclusion is to observe that δqj are the com-
ponents of the configuration space vector δr̂ . Correspondingly, Eq. (7.5.11) may be con-
sidered to be a dot product in the configuration space of δr̂ and a vector whose compo-
nents are contained inside the braces. Let Â denote the latter vector. Equation (7.5.11)
requires Â · δr̂ = 0, which could simply mean that the vectors are orthogonal. However,
the direction of δr̂ is completely arbitrary. It is not possible for a vector to be orthogonal
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simultaneously to vectors in all directions, so it must be that Â is a null vector. The result
of either line of reasoning is that

d
dt

(
∂T
∂q̇j

)
− ∂T

∂qj
+ ∂

∂qj
V (qj , t) = Qj , j = 1, 2, . . . , N, (7.5.12)

which are Lagrange’s equations.
In this version of Lagrange’s equations any contributions of constraint forces is con-

tained in the generalized forces Qj . The remainder of this chapter is limited to derivation
of the equations of motion for holonomic systems. Constraint forces do not appear in
the generalized forces in that case, so the qj in the case of a holonomic system are the
only dependent variables contained in these equations. Because Eq. (7.5.12) must apply
for each index j, we will obtain N ordinary differential equations for the N generalized
coordinates, in which the Qj contain the nonconservative forces causing the system to
move.

When the generalized coordinates are constrained, the generalized forces contain
contributions from the constraint force associated with each kinematical constraint that
must be enforced explicitly. Section 8.1 develops the techniques by which Lagrange’s
equations are employed in such situations. In any event, derivation of the equations of
motion is only the first part of a dynamic analysis. Determining the system’s response
requires that the differential equations be solved. If these equations are not amenable
to analytical solution, numerical techniques can be employed. This phase of an analysis
is taken up in Sections 7.6 and 8.2.

An alternative form of Lagrange’s equations features the Lagrangian function,
which is defined to be

L = T − V. (7.5.13)

The potential energy cannot depend on the generalized velocities, so it it must be that

∂L

∂q̇j
≡ ∂T

∂q̇j
, (7.5.14)

which allows us to rewrite Lagrange’s equations as

d
dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= Qj , j = 1, 2, . . . , N. (7.5.15)

Although this form has one fewer term than Eq. (7.5.12), both equations require equiva-
lent mathematical evaluations. The primary reason for introducing the Lagrangian func-
tion is its utility for the development of other kinetics principles, some of which are
treated in Chapter 9.

The actual evaluation of Lagrange’s equations for a specific system is straightfor-
ward, provided that one is cognizant of the difference between partial and total deriva-
tives. For the partial derivatives the generalized coordinates qj and generalized veloci-
ties q̇j are treated as independent variables. In the total derivative with respect to time,
both qj and q̇j are time-dependent quantities that must be differentiated.
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A simple example that demonstrates the equivalence of Lagrange’s equations and
Newton’s Second Law is a particle whose spatial motion is described in terms of cylin-
drical coordinates. We consider this motion to be the result of application of a known
force F̄, as well as gravity. Correspondingly, let the axial direction be vertical. The
cylindrical coordinates for this particle are (R, θ, z), and the corresponding velocity is
v̄ = ṘēR + Rθ̇ ēθ + żēz, so the kinetic energy is

T = 1
2

m
(
Ṙ2 + R2θ̇2 + ż2) . (7.5.16)

According to the kinematical method, the virtual displacement is

δr̄ = δRēR + Rδθ ēθ + δzēz, (7.5.17)

so that the virtual work done by the nonconservative force F̄ is

δW = FRδR + Fθ Rδθ + Fzδz. (7.5.18)

Hence the generalized forces are

Q1 = FR, Q2 = Fθ R, Q3 = Fz. (7.5.19)

The gravity force was not included in the generalized forces, so we define the datum for
gravity to be the xy plane, which gives V = mgz.

Now that all terms appearing in Lagrange’s equations have been defined, we pro-
ceed to evaluate the derivatives. The generalized coordinates and velocities are inde-
pendent variables for these operations, so we have

d
dt

(
∂T

∂ Ṙ

)
= d

dt

(
mṘ

) = mR̈,
∂T
∂ R

= mRθ̇
2
,

∂V
∂ R

= 0,

d
dt

(
∂T

∂θ̇

)
= d

dt

(
mR2θ̇

) = 2mRṘθ̇ + mR2θ̈ ,
∂T
∂θ

= 0,
∂V
∂θ

= 0,

d
dt

(
∂T
∂ ż

)
= d

dt
(mż) = mz̈,

∂T
∂z

= 0,
∂V
∂z

= mg.

(7.5.20)

The three Lagrange equations of motion obtained from Eq. (7.5.12) are

mR̈ − mRθ̇2 = FR,

2mRṘθ̇ + mR2θ̈ = Fθ R,

mz̈ + mg = FZ.

(7.5.21)

It is evident that each of these is merely Newton’s Second Law in terms of polar coor-
dinates, with the exception that the second equation, which is associated with qj = θ ,
has an additional factor R. That form results from the fact that Q2 = RFR represents the
moment of the external force system about the z axis. Correspondingly, the left side of
the second of Lagrange’s equations is the derivative of the angular momentum, mR2θ̇ ,
about that axis.

The steps we followed in this simple example parallel those for all systems for which
unconstrained generalized coordinates have been selected. The bulk of the effort usu-
ally is devoted to the kinematical analysis of velocity and virtual displacement. After
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that, the process of forming the kinetic- and potential-energy functions, describing the
generalized forces, and carrying out the derivatives required for Lagrange’s equations
is quite straightforward. In fact, these operations can be readily automated with the aid
of symbolic mathematical software. At the same time, Lagrange’s equations do not pro-
vide one with physical insight. This became apparent when we interpreted Eqs. (7.5.21)
in terms of Newton’s Second Law and angular momentum.

EXAMPLE 7.13 The table rotates in a horizontal plane about bearing A due to
a torque � whose time dependence is known. The mass of the table is m1, and its
radius of gyration about its center is κ . The slider, whose mass is m2, moves within
groove BC under the restraint of two springs that are unstretched in the position
shown. Derive the equations of motion for this system.

h

A

B

C

k
k

Γ

ω

Example 7.13

SOLUTION The objective here is to gain experience in the basic operations associ-
ated with forming Lagrange’s equations. The position of the table is defined by its
rotation about its bearing, and the slider executes a rectilinear motion relative to the
table, so suitable generalized coordinates are the angle of rotation, q1 = θ , and the
displacement of the slider relative to the unstretched position of the springs, q2 = s.
We show these in a free-body diagram of the system.

AX

2k∆

Γ
AY

x

y

.

s

k∆

k∆

ω = θ

Free-body diagram of the system formed by the slider and the
turntable.

Note that, although the spring forces exerted between the slider and the table are
internal to the system, they are not constraint forces, so they are depicted in this
diagram.

The kinetic energy is the sum of the values for the table and for the slider:

T = 1
2

(
m1κ

2) θ̇2 + 1
2

m2v
2
s .
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The velocity of the slider may be related to the generalized coordinates by use of
moving reference frame xyz attached to the table. The velocity of the slider relative
to the table is ṡ parallel to the groove, so

v̄s = ṡ j̄ + θ̇ k̄ × (
hī + s j̄

) = −sθ̇ ī + (
ṡ + hθ̇

)
j̄ .

This gives

T = 1
2

(
m1κ

2
)
θ̇2 + 1

2
m2

[
s2θ̇2 + (

ṡ + hθ̇
)2
]

= 1
2

(
m1κ

2 + m2s2 + m2h2
)
θ̇

2 + 1
2

m2ṡ2 + m2hθ̇ ṡ.

The deformation of each spring is � = ±s, with the sign indicating whether
positive s corresponds to the spring being elongated or compressed. This sign does
not matter because � is squared to obtain potential energy. Thus

V = 2
(

1
2

ks2
)

.

The bearing forces constrain point A from moving, so they do not contribute to the
generalized forces. The remaining forcing effect is the couple �. A virtual movement
increases θ by δθ, so the virtual force is

δW = �δθ = Q1δθ + Q2δs.

The corresponding generalized forces are

Q1 = �, Q2 = 0.

All terms appearing in Lagrange’s equations have been described, so we pro-
ceed to evaluate the various derivatives:

d
dt

(
∂T

∂θ̇

)
= d

dt

[(
m1κ

2 + m2s2 + m2h2
)
θ̇ + m2hṡ

]
= (

m1κ
2 + m2s2 + m2h2

)
θ̈ + 2m2sṡθ̇ + m2hs̈,

d
dt

(
∂T
∂ ṡ

)
= d

dt

(
m2ṡ + m2hθ̇

) = m2
(
s̈ + hθ̈

)
,

∂T
∂θ

= 0,
∂T
∂s

= m2sθ̇2,
∂V
∂θ

= 0,
∂V
∂s

= 2ks.

The corresponding Lagrange’s equations are(
m1κ

2 + m2s2 + m2h2
)
θ̈ + 2m2sṡθ̇ + m2hs̈ = �,

m2
(
s̈ + hθ̈ − sθ̇2

)+ 2ks = 0.
�

Some effects associated with these terms are readily identified. For example,
m1κ

2 + m2s2 + m2h2 represents the total moment of inertia of the system about
bearing A. If we wished to explain other terms, we could consider the Newton–
Euler formulation, in which we would isolate the slider and the turntable in
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individual free-body diagrams. The corresponding equations of motion would be
m2

(
ās · ī

) = 
Fx and m2
(
ās · j̄

) = 
Fy for the slider, and m1κ
2θ̈ = 
Mz for the ta-

ble. Such a derivation would bring into the analysis the normal force exerted be-
tween the slider and the table.

EXAMPLE 7.14 A small sphere of mass m is suspended from the top of a hol-
low pole through which the cable passes. The cable’s free end is pulled inward
by the tensile force F̄ , such that the length of the cable is a specified function
�(t). The sphere is given an initial velocity that causes it to rotate about the pole,
as well as to swing outward from the pole, so that neither the precession rate �

nor the polar angle φ are constant. Determine the equations of motion for the
sphere.

F

Ω
φ

Example 7.14

SOLUTION Although the requested equations of motion could be readily obtained
by applying Newton’s Second Law in conjunction with a description of the sphere’s
motion in terms of spherical coordinates, using Lagrange’s equations to solve this
example will highlight the differences in the way that known and unknown position
parameters are treated. Spherical coordinates describing the position of the sphere
are depicted in the free-body diagram.

φ
θ = ΩF

mg

.

eφ

eθ

er

�

Free-body diagram of the suspended mass.

The radial distance � is a specified function of time, so we do not treat it as a gener-
alized coordinate. We therefore have q1 = φ, q2 = θ, with θ̇ ≡ �.
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The fact that � is not a generalized coordinate is irrelevant to the description of
the kinetic energy. The sphere’s velocity in terms of spherical coordinates is

v̄ = �̇ēr + �φ̇ēφ + �θ̇ sin φēθ .

The corresponding kinetic energy is

T = 1
2

m
[
�̇2 + �2φ̇2 + �2θ̇

2 (sin φ)2
]
.

The top of the post is a convenient datum for gravitational potential energy, so

V = mg (−� cos φ) .

Other than gravity, the only force acting on the suspended sphere is the cable force.
This force does not contribute to the generalized forces. One way of recognizing
this is to evaluate the virtual work. To convert the preceding expression for v̄ to
the virtual displacement, we replace φ̇ with δφ and θ̇ with δθ, and drop the �̇ term
because it is not a generalized velocity. Thus,

δr̄ = �δφēφ + �δθ sin φēθ .

The tensile force acts radially, so δW = (−Fēr ) · δr̄ = 0, giving Q1 = Q2 = 0. Of
course, rather than evaluating the virtual work, we could have observed that F̄ is
the force that makes � change in the specified manner. This means that it is a con-
straint force, and constraint forces do not appear in the generalized forces when the
generalized coordinates are unconstrained.

We now proceed to evaluate the derivatives for Lagrange’s equations. Observe
that, in these derivatives, � is held constant in the partial differentiations, whereas
the variability of � must be recognized when total derivatives with respect to t are
evaluated. Thus,

d
dt

(
∂T

∂φ̇

)
= d

dt

(
m�2φ̇

) = m
(
�2φ̈ + 2��̇φ̇

)
,

d
dt

(
∂T

∂θ̇

)
= d

dt

[
m�2θ̇ (sin φ)2

]
= m

[
�2θ̈ (sin φ)2 + 2��̇θ̇ (sin φ)2 + 2�2θ̇ φ̇ sin φ cos φ

]
,

∂T
∂φ

= m�2θ̇2 sin φ cos φ,
∂T
∂θ

= 0,
∂V
∂φ

= mg� sin φ,
∂V
∂θ

= 0.

The corresponding Lagrange’s equations are

�2φ̈ + 2��̇φ̇ − �2θ̇2 sin φ cos φ + g� sin φ = 0,

�2θ̈ (sin φ)2 + 2��̇θ̇ (sin φ)2 + 2�2φ̇θ̇ sin φ cos φ = 0.
�

We may verify that these equations are correct by recalling the relations for ac-
celeration in terms of spherical coordinates. The preceding equations are merely

Fφ = maφ, multiplied by �/m, and 
Fφ = maφ, multiplied by (�/m) sin φ.
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It is possible to remove one equation of motion by a procedure that anticipates
the treatment of ignorable generalized coordinates in Subsection 9.2.3. Because T
and V do not explicitly depend on θ, and Q2 = 0, the second Lagrange equation
states that

d
dt

(
∂T

∂θ̇

)
= 0,

from which it follows that ∂T/∂θ̇ is a constant value we denote as mβ. For the T
function of this system, we therefore have

�2θ̇ (sin φ)2 = β,

which is what we would find if we actually integrated the preceding second Lagrange
equation. The value of β may be determined by substituting the values of the gen-
eralized coordinates and generalized velocities at the initial instant, which must be
specified if the response is to be uniquely defined. Once that value is known, we may
solve the preceding relation for θ̇ , and then use that result to eliminate θ̇ from the
Lagrange equation for φ. This yields

θ̇ = β

�2 (sin φ)2 ,

�φ̈ + 2�̇φ̇ − β2 cos φ

�3 (sin φ)3 + g sin φ = 0.

The fact that � is not constant would necessitate solution by numerical methods.
However, it is slightly less difficult to solve the second equation than the two La-
grange equations originally obtained. Also, having a single differential equation
makes it somewhat easier to apply formal mathematical analysis tools to identify
fundamental properties.

It is useful at this juncture to compare the situations in the preceding two examples.
In the second, � was a length that depended on time in a specified manner as a result
of the unknown tensile force F. This force did not enter into the analysis because it
is a constraint force whose kinematical condition is not violated when the generalized
coordinates φ and θ are given virtual increments. In contrast, in the first example the
torque causing the rotation was a specified function of time and the corresponding angle
of rotation was unknown. That analysis led to an equation of motion for the rotation
angle. Similarly, specifying F in the second example would lead to � being unknown,
and therefore a suitable generalized coordinate. The result would be three equations of
motion.

These observations lead to an important alternative for systems in which a force
(or couple) causes a length (or angle) parameter ξ to change in a specified manner.
We can consider the force to be an unknown constraint force and treat ξ as we would
any other parameter. In that approach the unknown force will not appear in any of the
equations of motion. On the other hand, we can defer accounting for the fact that the
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time dependence of ξ is specified. In that case ξ becomes a generalized coordinate, and
the force imposing the motion contributes to the generalized forces in the manner of a
standard applied force. This leads to an additional equation of motion associated with ξ .

On substitution of the specified dependence of ξ, the other equations of motion become
the same as those derived in the first approach. After we solve those equations, we can
substitute the resulting generalized coordinates into the ξ equation. Doing so will yield
an algebraic equation for the force imposing the motion.

This alternative is understandable from a more general perspective. When we de-
rive equations of motion ignoring the fact that position parameters are known, we are
using constrained generalized coordinates. The constraint equations are carried through
the analysis, and enforced explicitly as additions to the equations of motion. In such an
analysis the associated constraint forces enter into the equations of motion. The situa-
tion in the preceding example, in which one position variable is specified, is a special
case of constrained generalized coordinates. The first section of Chapter 8 addresses
situations in which several generalized coordinates are related by multiple constraint
equations.

EXAMPLE 7.15 The linkage in the sketch is like the one in Fig. 7.2, except for
the addition of spring k. The spring may sustain compressive as well as tensile
forces, and its unstretched length is L/2. The mass of each bar is m1, and m2 is
the mass of collar C. Use Lagrange’s equations to derive the equation of motion
for θ.

A

B F

M

G
kθ Cθ 

L/2

L/2

Example 7.15

SOLUTION This analysis demonstrates the efficacy of the Lagrange equation ap-
proach for a simple linkage. Similar procedures could be applied to linkages whose
geometry is more complicated, but one should also examine the use of constrained
generalized coordinates for such situations, as will be discussed in Chapter 8. We
can use Fig. 7.2 as the system’s free-body diagram by ignoring the inertial effects de-
picted there and allowing for spring forces on each bar. We use θ as the generalized
coordinate for this one-degree-of-freedom system.

To express T solely in terms of θ, we must describe the velocities of collar C and
of the center of mass of bar BC in terms of this variable. The required expressions
are readily found by differentiating the respective position vectors:

r̄G/A = 3
2

Lcos θ ī + 1
2

Lsin θ j̄, r̄C/A = 2Lcos θ ī,

v̄G = L
2

θ̇
(−3 sin θ ī + cos θ j̄

)
, v̄C = −2Lθ̇ sin θ ī .
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Using these expressions to form the kinetic-energy function of the bars and collar C
gives

T = 1
2

IAθ̇2 + 1
2

m1v
2
G + 1

2
IGθ̇2 + 1

2
m2v

2
C

= 1
2

(IA + IG) θ̇2 + 1
2

m1

(
L
2

θ̇

)2 [
(3 sin θ)2 + (cos θ)2

]
+ 1

2
m2

(
2Lθ̇

)2 (sin θ)2

= 1
2

[
IA + IG + 1

4
m1L2 + (2m1 + 4m2) L2 (sin θ)2

]
θ̇2.

Subtracting the unstretched length of the spring from its length at an arbitrary
θ shows that the elongation is Lcos θ − L/2. We place the datum for gravitational
potential energy at pin A, so the potential-energy function is

V = 1
2

k (Lcos θ − L/2)2 + mg
(

L
2

sin θ

)
(2) .

The effects of the applied force F̄ and torque � are contained in the virtual work. We
find the virtual displacement of point G where F̄ acts by applying the kinematical
method to the expression for v̄G. Thus,

δr̄G = L
2

δθ
(−3 sin θ ī + cos θ j̄

)
.

The virtual work is

δW = (−F j̄
) · δr̄G + Mδθ = Q1δθ,

so the generalized force is

Q1 = − L
2

F cos θ + M.

The derivatives in Lagrange’s equations for this system are
d
dt

(
∂T

∂θ̇

)
= d

dt

{[
IA + IG + 1

4
m1L2 + (2m1 + 4m2) L2 (sin θ)2

]
θ̇

}

=
[

IA + IG + 1
4

m1L2 + (2m1 + 4m2) L2 (sin θ)2
]

θ̈

+ (4m1 + 8m2) L2 (sin θ cos θ) θ̇2,

∂T
∂θ

= (2m1 + 4m2) L2 (sin θ cos θ) θ̇2,

∂V
∂θ

= k (Lcos θ − L/2) (−Lsin θ) + mgLcos θ.

The corresponding Lagrange equation is[
IA + IG + 1

4
m1L2 + (2m1 + 4m2) L2 (sin θ)2

]
θ̈

+ (m1 + 2m2) L2 (sin 2θ) θ̇2 + 1
2

kL2 [sin (θ) − sin (2θ)]

+ mgLcos θ = F L
2

cos θ + M.
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Setting k = 0 and m2 = 0 in this equation of motion gives the same result as
Eq. (7.1.11). A comparison of the procedures discloses that, although implementa-
tion of the principle of dynamic virtual work and Lagrange’s equations both involve
virtual displacement, the latter only requires such an evaluation to describe non-
conservative applied forces. Furthermore, forming Lagrange’s equations does not
require a kinematical analysis of acceleration, and the analysis is performed in the
context of a general methodology.

EXAMPLE 7.16 Motion of the system in the sketch is actuated by the horizontal
force F̄ (t) applied to the rack. The spring, whose stiffness is k, is unstretched when
x = 2R, at which location θ = 0. The masses are mA for the gear, ms for the slider,
and mr for the rack, and the radius of gyration of the gear about its center is κ.

Friction between pin B and the rack is negligible. Derive the differential equations
of motion.

Bθ

x

ε
A

F

R Example 7.16

SOLUTION This example gives a comprehensive view regarding how one treats pla-
nar systems in which bodies roll without slipping. It is useful to begin with a free-
body diagram of the entire system, in which the relevant kinematical variables also
are defined. The gravity forces are omitted because they act vertically and the cen-
ters of mass move horizontally.

Bθ

x

ε
A

F

R

D
C

k∆

D'

Ns

Nr

X

Y

Free-body diagram of the system formed by the gear, the fork,
and the rack.
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This system has two degrees of freedom, which is indicated by the observation
that x locates the slider and θ locates the gear relative to the slider. There is no
slippage between the gear and the rack, so point D on the perimeter of the gear
diametrically opposite pin B was the point of contact with the gear when θ = 0. The
arc length from point D to the current contact point C is Rθ, which must equal the
distance along the rack from point C to point D′ on the rack, which contacted point
D. This enables us to locate any point on the rack. Another line of reasoning leading
to the same conclusion evaluates velocities, which we will need to do to form the
kinetic energy. Let xr denote the distance the rack moves rightward from its starting
position. We relate the velocities of points C, A, and B by using the facts that they
are common to the gear, that point A moves horizontally, and that the horizontal
movement of pin B must match the slider’s motion. Thus,

v̄C = ẋr Ī, v̄A = vA Ī = v̄C + (−θ̇ K̄
)× RJ̄ ,

v̄B = v̄A + (−θ̇ K̄
)× (

ε sin θ Ī + ε cos θ J̄
)
, v̄s = ẋ Ī, ẋ = v̄B · Ī.

Matching like components in the preceding conditions leads to

vA = ẋr + Rθ̇ , ẋ = vA + εθ̇ cos θ, (1)

from which we find that

ẋr = ẋ − (R + ε cos θ) θ̇ . (2)

This is a linear velocity constraint relating x, θ, and xr , which proves that the system
has two degrees of freedom. Furthermore, it is holonomic. Multiplying it be dt and
integrating leads to

xr = x − Rθ − ε sin θ + S, (3)

where S is a constant of integration that may be evaluated if the values of xr , x, and
θ at some reference location, such as the initial position, are given. Thus we may
take q1 = x and q2 = θ, and use Eqs. (2) and (3) to eliminate any dependence on xr .

We form the kinetic energy of the system by adding the energies of the three
bodies, with Eqs. (1) and (2) used to describe vA and ẋr . Thus,

T = 1
2

ms ẋ2 + 1
2

mAv2
A + 1

2

(
mAκ2

)
θ̇2 + 1

2
mr x́2

r

= 1
2

ms ẋ2 + 1
2

mA
(
ẋ − εθ̇ cos θ

)2 + 1
2

(
mAκ2

)
θ̇2 + 1

2
mr
[
ẋ − (R + ε cos θ) θ̇

]2

= 1
2

(ms + mA + mr ) ẋ2 + 1
2

[
mAκ2 + mAε2 (cos θ)2 + mr (R + ε cos θ)2

]
θ̇2

− [mr R + (mA + mr ) ε cos θ ] ẋθ̇ .

(4)
Note that the terms in the kinetic-energy function are grouped according to their de-
pendence on the generalized velocities in order to expedite evaluation of the deriva-
tives in Lagrange’s equations.
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The spring is the only conservative force requiring consideration. It is given
that the spring is unstretched when x = 2R, so the spring is shortened at a general
position by x − 2R, and the potential energy is

V = 1
2

k (x − 2R)2
.

To account for the nonconservative force F̄, we evaluate its virtual work. We may
describe δr̄r by applying the kinematical method to Eq. (2), which gives

δr̄r = [δx − (R + ε cos θ) δθ ] Ī,

δW = (−F Ī
) · δr̄r = −Fδx + F (R + ε cos θ) δθ.

Matching the corresponding virtual work to the standard form, δW = Q1δx + Q2δθ,

gives

Q1 = −F, Q2 = F (R + ε cos θ) . (5)

For the kinetic energy described by Eq. (4), the derivatives appearing in La-
grange’s equations are

d
dt

(
∂T
∂ ẋ

)
= d

dt

{
(ms + mA + mr ) ẋ − [mr R + (mA + mr ) ε cos θ ] θ̇

}
= (ms + mA + mr ) ẍ − [mr R + (mA + mr ) ε cos θ ] θ̈

+ (mA + mr ) ε (sin θ) θ̇2,

d
dt

(
∂T

∂θ̇

)
= d

dt

{[
mAκ2 + mAε2 (cos θ)2 + mr (R + ε cos θ)2

]
θ̇

− [mr R + (mA + mr ) ε cos θ ] ẋ
}

=
[
mAκ2 + mAε2 (cos θ)2 + mr (R + ε cos θ)2

]
θ̈

− [mr R + (mA + mr ) ε cos θ] ẍ − 2
[
(mA + mr ) ε2 cos θ sin θ

+ mr Rε sin θ] θ̇2 + (mA + mr ) ε (sin θ) ẋθ́ ,

∂T
∂x

= 0,

∂T
∂θ

= [− (mA + mr ) ε2 (cos θ sin θ) + mr Rε sin θ
]
θ̇2 + (mA + mr ) ε (sin θ) ẋθ̇ ,

∂V
∂x

= k (x − 2R) ,
∂V
∂θ

= 0.
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The corresponding set of Lagrange’s equations is

(ms + mA + mr ) ẍ − [mr R + (mA + mr ) ε cos θ ] θ̈

+ (mA + mr ) ε (sin θ) θ̇2 + k (x − 2R) = −F,[
mAκ2 + mAε2 (cos θ)2 + mr (R + ε cos θ)2

]
θ̈ − [mr R + (mA + mr ) ε cos θ] ẍ

− [
(mA + mr ) ε2 cos θ sin θ + mr Rε sin θ

]
θ̇2 = F (R + ε cos θ) .

(6) �

EXAMPLE 7.17 The device depicted in the sketch is a simple model of a gyro-
scope. Servomotors make the flywheel spin at a constant rate φ̇ and maintain the
precession rate ψ̇ at a constant value. The Z axis is vertical, and the center of mass
of the flywheel is situated on the spin axis at distance L from point O, which is the
intersection of the precession axis and the line of nodes. The flywheel’s centroidal
moments of inertia are I1 about the spin axis and I2 transverse to that axis, and the
inertia of the gimbals may be neglected. Derive the differential equations of motion
for the system.

Outer
gimbal

Inner
gimbal

90° − θ
θ

φ

ψ

.

.

.
L

Z

G
O

Example 7.17

SOLUTION We see here that Lagrange’s equations are readily employed to analyze
systems in spatial motion. This system is quite similar to the one in Example 6.2, so
a comparison of the present and previous solutions affords one an opportunity to
judge the merits of the Newton–Euler and Lagrange formulations. Because point O
is stationary, the orientation of the disk, which is the only inertial body in the model,
is completely specified by its three Eulerian angles. However, it is specified that only
the nutation angle is uncontrolled, so this system has one degree of freedom, which
is well represented by selecting q1 = θ. The system that is best considered includes
the flywheel and gimbals, because doing so enables us to avoid consideration of all
bearing effects other than the one at the base. There, we see that the base does
not move and the torques that are exerted prevent rotation perpendicular to the
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precession axis. Thus the virtual work is zero, so Q1 = 0. Note that the role of the
servomotors is to maintain a constant rotation rate, so the associated couple mo-
ments do not contribute to the virtual work.

To describe the kinetic energy we need a general description of the angular ve-
locity of the disk. The axisymmetry of the disk makes it suitable to use a coordinate
system attached to the inner gimbal with origin O; the z axis is defined such that
k̄ = ēG/O and the x axis is upward in the vertical plane. Then the angular velocity of
the disk at any instant is given by

ω̄ = ψ̇ K̄ − θ̇ j̄ − φ̇k̄

= ψ̇ sin θ ī − θ̇ j̄ + (
ψ̇ cos θ − φ̇

)
k̄.

The inertia properties with respect to xyz are

Ixx = Iyy = I2 + mL2, Izz = I1.

Because v̄O = 0̄, the disk is in pure rotation about that point, so we have

T = 1
2

[(
I2 + mL2

) ((
ψ̇ sin θ

)2 + θ̇2
)

+ I1
(
ψ̇ cos θ − φ̇

)2
]

= 1
2

[(
I2 + mL2

)
(sin θ)2 + I1 (cos θ)2

]
ψ̇2

+ 1
2

(
I2 + mL2

)
θ̇2 − I1ψ̇φ́ cos θ + 1

2
I1φ̇

2.

The gravity force acts parallel to the Z axis through point G, so the potential energy
is

V = mgLsin θ.

In the derivatives for Lagrange’s equations the values of ψ̇ and φ̇ are treated as
constants, so that

d
dt

(
∂T

∂θ̇

)
= (

I2 + mL2
)
θ̈ ,

∂T
∂θ

= (
I2 + mL2 − I1

)
sin θ cos θ + I1ψ̇φ́ sin θ,

∂V
∂θ

= mgLsin θ.

The corresponding equation of motion is(
I2 + mL2) θ̈ − (

I2 + mL2 − I1
)

sin θ cos θ + (
mgL− I1ψ̇φ́

)
sin θ = 0.

An interesting aspect of the analysis is that it is readily generalized to handle the case
in which the precession or spin rates are specified time functions. Doing so would
merely require that the derivatives occurring in Lagrange’s equations recognize the
dependence of those rates.
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EXAMPLE 7.18 A servomotor makes the bar spin about shaft AB at angular
speed �1 that is a specified function of time, whereas the known torque � induces
the unknown precession rate �2. Pin A allows the angle θ to change. The bar, which
may be considered to be thin, has mass are m1, whereas the mass of shaft AB is m2,

and the moment of inertia of the vertical shaft about its axis of rotation is I3. Derive
the equations of motion and an expression for the required torque.

A

Ω2
θ

L

Γ

R

R

Ω1

B

Example 7.18

SOLUTION This example generalizes the techniques for treating spatial motion by
introducing rotation transformations to describe the motion of a nonaxisymmetric
body. In terms of Eulerian angles �1 = φ̇ is the spin rate, �2 = ψ̇ is the precession
rate, and θ is the nutation angle. Integrating the spin rate subject to the initial con-
dition that φ = 0 at t = 0 gives

φ =
∫ t

0
�1 (τ ) dτ . (1)

Hence, the position of all parts is specified by knowing t, which gives φ, and the cor-
responding values of the other Eulerian angles. Thus we select as the generalized
coordinates, q1 = ψ and q2 = θ. To ensure that we recognize the functional depen-
dence of all terms, we denote the respective rotation rates as ψ̇ and φ̇, rather than
�1 and �2.

The vertical shaft’s bearing permits rotation only about its axis. Thus a free-
body diagram of the system would show, at that bearing, a force–couple reaction
that is arbitrary, except that the couple would have no vertical component. The
free-body diagram also would show the conservative gravity forces acting on the
flywheel and shaft AB, and the nonconservative torque �.

Unlike the previous example, the present system is not axisymmetric, so de-
scribing the kinetic energy will require somewhat more effort. The sketch defines
two moving coordinate systems: xyz is attached to the bar, whereas x′y′z′ only pre-
cesses and nutates. Both the z′ and z axes coincide with the spin axis, and x′ is defined
to align with the line of nodes, whereas the x axis is parallel to the bar’s longitudinal
axis. The angle between x′ and x is φ.
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A

R

R
B

z, z'

x'

x

L

Ω2

Ω1

=

=

.

.
φ

φ

φ θ

ψ

Moving coordinate systems and generalized coordinates for the
spinning bar and the shafts that support it.

The xyz coordinate system executes a simple rotation about the z′ axis relative
to x′y′z′, so the associated rotation transformation is

⎧⎪⎪⎨
⎪⎪⎩

x

y

z

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

cos φ sin φ 0

− sin φ cos φ 0

0 0 1

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

x′

y′

z′

⎫⎪⎪⎬
⎪⎪⎭ . (4)

The angular velocity of the bar is readily found in terms of x′y′z′ components to
be ω̄bar = θ̇ ī ′ + ψ̇

(
sin θ j̄ ′ + cos θ k̄′)+ φ̇k̄′. The introduction of rotation transforma-

tions makes it convenient to switch to matrix notation. Then the xyz components are
given by

{ωbar} =

⎡
⎢⎢⎣

cos φ sin φ 0

− sin φ cos φ 0

0 0 1

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

θ̇

ψ̇ sin θ

ψ̇ cos θ + φ̇

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

θ̇ cos φ + ψ̇ sin θ sin φ

−θ̇ sin φ + ψ̇ sin θ cos φ

ψ̇ cos θ + φ̇

⎫⎪⎪⎬
⎪⎪⎭ .

(5)

The inertia matrix for the bar relative to xyz is obtained from the tabulated proper-
ties and the parallel axis theorems, which give

[Ibar] =

⎡
⎢⎢⎢⎢⎢⎣

m1L2 0 0

0
1

12
m1 (2R)2 + m1L2 0

0 0
1

12
m1 (2R)2

⎤
⎥⎥⎥⎥⎥⎦ .

The kinetic energy of the bar is Tbar = 1
2 {ωbar}T [Ibar] {ωbar} . The x′y′z′ axes are prin-

cipal axes for shaft AB, with Ix′x′ = Iy′ y′ = (1/3) m2L2, Iz′z′ = 0, and the angular ve-
locity of this shaft is ω̄AB = θ̇ ī ′ + ψ̇

(
sin θ j̄ ′ + cos θ k̄′) . The vertical shaft is in pure

rotation at rate ψ̇, and its moment of inertia about its rotation axis is I3. The sum of
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the kinetic energy of each body is

Tbar = 1
2

[(
m1L2

) (
θ̇ cos φ + ψ̇ sin θ sin φ

)2

+
(

1
3

m1 R2 + m1L2

) (−θ̇ sin φ + ψ̇ sin θ cos φ
)2

+
(

1
3

m1 R2

) (
ψ̇ cos θ + φ̇

)2
]

+ 1
2

(
1
3

m2L2

)[(
ψ̇ sin θ

)2 + θ̇
2
]

+ 1
2

I3ψ̇
2.

(6)
Collecting like coefficients of the generalized velocities in T expedites evaluation of
the derivatives in Lagrange’s equations, so we write the expression as

T = 1
2

{(
I ′
2 + I ′

3

)
(sin θ)2 + I ′

1

[
1 − (sin θ)2 (sin φ)2

]
+ I3

}
ψ̇2

+ 1
2

[
I ′
2 + I ′

3 + I ′
2 (sin φ)2

]
θ̇2 + 1

2
I ′
1φ̇

2 − 1
2

I ′
1ψ̇ θ̇ (sin θ) (sin 2φ)

+ I ′
1ψ̇φ̇ (cos θ) ,

(7)

where

I ′
1 = 1

3
m1 R2, I ′

2 = m1L2, I ′
3 = 1

3
m2L2.

The elevations of the centers of mass depend only on θ . The corresponding
potential energy is

V = −
(

m1 + 1
2

m2

)
gLcos θ (8)

We may now form Lagrange’s equations for each generalized coordinate. The
derivatives of T are more intricate than they were in the previous problem because
the precession angle now is a generalized coordinate and the spin rate is variable.
The derivatives are

d
dt

(
∂T

∂ψ̇

)
= d

dt

{ [(
I ′
2 + I ′

3

)
(sin θ)2 + I ′

1

[
1 − (sin θ)2 (sin φ)2

]
+ I3

]
ψ̇

− 1
2

I ′
1θ̇ (sin θ) (sin 2φ) + I ′

1φ̇ (cos θ)
}

=
{(

I ′
2 + I ′

3

)
(sin θ)2 + I ′

1

[
1 − (sin θ)2 (sin φ)2

]
+ I3

}
ψ̈

−
[

1
2

I ′
1 (sin θ) (sin 2φ)

]
θ̈ + I ′

1φ̈ (cos θ)

+
[(

I ′
2 + I ′

3 − I ′
1 (sin φ)2

)
(sin 2θ)

]
ψ̇ θ̇ −

[
I ′
1 (sin θ)2 (sin 2φ)

]
ψ̇φ̇

−
[

1
2

I ′
1 (cos θ) (sin 2φ)

]
θ̇2 −

[
2I ′

1 (sin θ) (cos φ)2
]
θ̇ φ̇,
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d
dt

(
∂T

∂θ̇

)
= d

dt

{[
I ′
2 + I ′

3 + I ′
2 (sin φ)2

]
θ̇ − 1

2
I ′
1ψ̇ (sin θ) (sin 2φ)

}

=
[

I ′
2 + I ′

3 + I ′
2 (sin φ)2

]
θ̈ −

[
1
2

I ′
1 (sin θ) (sin 2φ)

]
ψ̈

+ [
I ′
2 (sin 2φ)

]
θ̇ φ̇ − 1

2

[
I ′
1 (cos θ) (sin 2φ)

]
ψ̇ θ̇

− [
I ′
1 (sin θ) (cos 2φ)

]
ψ̇φ̇,

∂T
∂ψ

= 0,
∂T
∂θ

= 1
2

[
I ′
2 + I ′

3 − I ′2
1 (sin φ)2

]
(sin 2θ) ψ̇2

−1
2

I ′
1ψ̇ θ̇ (cos θ) (sin 2φ) − I ′

1ψ̇φ̇ (sin θ) ,

We could proceed to substitute the preceding terms into Lagrange’s equations,
but there is little to be gained from doing so because we will not solve the result-
ing equations of motion. It is obvious that the loss of axisymmetry complicated the
analysis. At the same time, it also is obvious that these complications entail math-
ematical operations, rather than the basic formulation. As was mentioned earlier,
symbolic mathematical software can significantly alleviate these complications.

7.6 SOLUTION OF EQUATIONS FOR HOLONOMIC SYSTEMS

When the motion of a system is known, the equations of motion may be solved alge-
braically for the forces, such as applied loads, required for sustaining that motion. The
more interesting situation arises when some aspect of the motion is unknown. In that
case the generalized coordinates are governed by differential equations of motion. In
some situations, notably those involving vibration relative to a static equilibrium posi-
tion, the generalized coordinates remain sufficiently small to permit linearizing prob-
lematic terms in the equations of motion. For example, when a pendulum is released
from a small initial angle, the rotation angle θ will be small. The gravity moment for a
pendulum is mg� sin θ, which may be simplified under the small-angle restriction to to
mg�θ. Linearization of equations of motion and the solution of the resulting linearized
equations of motion are discussed extensively by Ginsberg (2001).

Our concern here is situations for which it is inappropriate to simplify the equations
of motion. When these equations are derived by direct application of Lagrange’s equa-
tions, they have a standard form that follows as a consequence of the fact that the kinetic
energy has a standard functional dependence on the generalized velocities. To demon-
strate this, consider the general form of the kinetic energy of a particle. The position r̄k

of particle k in a system may be an explicit function of the generalized coordinates and
time, that is, r̄k = r̄k (qi , t). The corresponding velocity expression is

v̄k ≡ d
dt

r̄k (qi , t) =
∑

j

(
∂

∂qj
r̄k (qi , t)

)
q̇j + ∂

∂t
r̄k (qi , t) . (7.6.1)
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The kinetic energy of this particle therefore is

Tk = 1
2

mk v̄k · v̄k

= 1
2

∑
j

∑
n

mk

(
∂

∂qj
r̄k (qi , t)

)(
∂

∂qn
r̄k (qi , t)

)
q̇j q̇n

+
∑

j

mk

(
∂

∂qj
r̄k (qi , t)

)(
∂

∂t
r̄k (qi , t)

)
q̇j + 1

2
mk

(
∂

∂t
r̄k (qi , t)

)2

.

(7.6.2)

The preceding expression indicates that the terms forming the kinetic energy of a
particle fall into one of three categories: They either contain the generalized velocities
as quadratic products or as linear terms, or they are independent of the generalized
velocities; no term in the kinetic energy contains the q̇i in any other manner. We also
see that the terms multiplying each occurrence of a generalized velocity may depend on
the generalized coordinates and time. This basic form is not altered if we add the kinetic
energy of the various particles forming a system. Furthermore, the kinetic energy of
a rigid body contains quadratic products of the velocity of the center of mass and the
angular velocity, and both types of velocities depend on the generalized coordinates in
a manner similar to that of Eq. (7.6.1). It follows that the kinetic energy of a system of
particles and rigid bodies is a quadratic sum in the generalized velocities, which means
that it consists of three groups of terms: T2 is quadratic in q̇i , T1 is linear in q̇i , and T0 is
independent of the q̇i . The general form is

T = T2 + T1 + T0 (qi , t) , (7.6.3)

where

T2 = 1
2

∑
j

∑
n

Mjn (qi , t) q̇j q̇n, T1 =
∑

j

Nj (qi , t) q̇j . (7.6.4)

A useful property obeyed by the coefficients of the quadratic terms, Mjn, is symmetry:

Mnj = Mjn, j, n = 1, 2, . . . , N, (7.6.5)

which follows from the fact that the order in which the product q̇j q̇n is formed is unim-
portant.

It will be crucial for some later developments to recognize situations in which all
terms in the kinetic energy are quadratic in the generalized velocities, so that T = T2.
To identify when such a condition arises, we note that the terms contributing to T1 and
T0 originated from ∂ r̄k/∂t in Eq. (7.6.1). This term vanishes if all generalized coordi-
nates are measured from a stationary position, in which case the system is at rest if all
generalized coordinates are maintained at zero.

Let us consider the result of using Eqs. (7.6.4) to form the Lagrange’s equations
associated with a specific generalized coordinate qs . We begin with ∂T2/∂q̇s . We know
that ∂ Mjn/∂q̇s ≡ 0. Partial differentiation of the product q̇j q̇n with respect to q̇s will give
zero unless either or both of the indices j and n matches s. We use the Kronecker delta
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δ js, which is zero if j �= s and one if j = s, to describe this property. This symbol allows
us to write

∂T2

∂q̇s
= 1

2

∑
j

∑
n

Mjn
∂

∂q̇s
(q̇j q̇n) = 1

2

∑
j

∑
n

Mjn (δs j q̇n + q̇jδsn)

= 1
2

∑
n

Msnq̇n + 1
2

∑
j

Mjsq̇j =
∑

n

(Msn + Mns) q̇n =
∑

n

Msnq̇n,

(7.6.6)

where the last step is a consequence of the symmetry of the Mjn coefficients. Similar
operations applied to T1 and T0 lead to

∂T1

∂q̇s
= Ns,

∂T0

∂q̇s
= 0, (7.6.7)

from which it follows that

d
dt

(
∂T
∂q̇s

)
=
∑

n

[
Msnq̈n +

(
dMsn

dt

)
q̇n

]
+ dNs

dt
. (7.6.8)

Proper evaluation of the total time derivative requires that we recognize that the coeffi-
cients may depend explicitly on the generalized coordinates, which are time dependent.
Accounting for this dependence leads to

d
dt

(
∂T
∂q̇s

)
=
∑

n

Msnq̈n +
∑

n

∑
j

∂ Msn

∂qj
q̇j q̇n +

∑
n

Ṁsnq̇n

+
∑

j

∂ Ns

∂qj
q̇j + Ṅsn,

(7.6.9)

where the overdot indicates partial differentiation with respect to time. We proceed sim-
ilarly to evaluate ∂T/∂qs . Because the generalized coordinates and velocities constitute
independent variables for the partial differentiation, we find that

∂T
∂qs

= 1
2

∑
n

∑
j

∂ Mjn

∂qs
q̇j q̇n +

∑
j

∂ Nj

∂qs
q̇j + ∂T0

∂qs
. (7.6.10)

Substitution of the preceding derivatives into Lagrange’s equations leads to

∑
n

Msnq̈n +
∑

n

∑
j

(
∂ Msn

∂qj
− 1

2
∂ Mjn

∂qs

)
q̇j q̇n +

∑
n

(
Ṁsn + ∂ Ns

∂qn
− ∂ Nn

∂qs

)
q̇n

+ Ṅsn + ∂T0

∂qs
+ ∂V

∂qs
= Qs, s = 1, 2, . . . , N.

(7.6.11)

This expression is an analytical confirmation that a wide variety of terms might be
generated when one forms the Lagrange equations for a system. For our present pur-
pose the main feature is that the highest derivative of a generalized coordinate that can
occur is second order and that these derivatives occur linearly. The other terms may
be grouped on the right side of the equality sign as a single function Fs (qi , q̇i , t) . The
term containing the second derivative is the summation form of the product of a matrix
[M] and a vector of generalized coordinates {q} . Thus the standard form of Lagrange’s
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equations for a holonomic system described by unconstrained generalized coordinates
is

[M (qi , t)] {q̈} = {
F (qi , q̇i , t)

}
. (7.6.12)

This set of second-order differential equations is likely to be highly nonlinear and
[M] seldom is constant. An analytical solution of these equations is not likely to be
found, so evaluation of the response will require a numerical procedure. Numerous nu-
merical methods and associated standard computerized routines have been developed
to assist us to solve sets of coupled differential equations, but most require that we ex-
press the differential equations of motion in first-order form. The standard form of such
equations is

d
dt

{z} = {
G (zi , t)

}
. (7.6.13)

A discussion of numerical algorithms by which a set of equations in this form may
be solved is beyond the scope of this book. A good starting point to learn about possible
techniques is the text by Press et al. (1992). Most computational software packages, such
as Matlab and Mathcad, as well as libraries of compiled languages such as c and for-
tran, provide functions or subroutines that can solve these equations. The procedures
step forward in time, that is, they obtain the value of {z} at time t + �t, in some cases
proceeding in an automatic manner for as many time steps as required. Implementing
this capability requires that one specify how to compute {G} from the current values of
the elements of {z} and t. From this juncture onward, we assume that a reliable tech-
nique capable of solving a system of differential equations in the form of Eq. (7.6.13)
is available. The task we address here is how we convert Eq. (7.6.12) to a form that is
compatible with Eq. (7.6.13).

At any instant t , the state of a system consists of the values of its generalized co-
ordinates {q} and velocities {q̇} . From such data the generalized accelerations may be
computed from Eq. (7.6.12), and higher derivatives may be computed by differentiat-
ing that equation. For this reason the values of {q} and {q̇} are said to constitute the
state space. Conversion of the governing equations to state-space form will lead to the
requisite form of the equations of motion.

The key step is to treat the generalized velocities as variables that are independent
of the generalized coordinates by defining a set of 2N variables xi . The first group of N
variables comprises the generalized coordinates, whereas the second group comprises
the generalized velocities:

xi = qi , xi+N = q̇i , i = 1, . . . , N. (7.6.14)

This may be described in matrix form with {q} and {q̇} used as upper and lower partitions
of a vector, according to

{x} =
{ {q}

{q̇}

}
. (7.6.15)
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The derivative of {q} obviously is {q̇}. We may write this identity for the derivative in
partitioned form by recognizing that {q} is the upper partition of {x} and {q̇} is the lower
partition. Recall that, when matrices are partitioned conformably, then a product may
be formed by treating the partitions as though they were individual elements. Thus we
have

[
[U]N×N [0]N×N

] {x} = {q} ,
[
[0]N×N [U]N×N

] {x} = {q̇} , (7.6.16)

where [U] is an identity matrix. The following set of N differential equations results
from using these relations to enforce the identity that the time derivative of {q} is {q̇}:

[
[U]N×N [0]N×N

] {ẋ} = [
[0]N×N [U]N×N

] {x} . (7.6.17)

We obtain another set of N equations by solving the equations of motion, Eq. (7.6.12),
for the generalized accelerations, which yields

{
q̈∗} = [M (qi , t)]−1 {F (qi , q̇i , t)

}
. (7.6.18)

The asterisk is used to indicate that the generalized accelerations are obtained by solv-
ing a set of equations that is evaluated at the current instant. Note that the inverse is
used here solely to indicate solution of the matrix equation. Unless [M] is constant, it
is far more efficient in practice to merely solve Eq. (7.6.12) numerically by any conve-
nient algorithm, such as LU decomposition or Gauss elimination. To fully transform
to the state-space variables we use Eqs. (7.6.14) to replace any occurrence of a qi or
q̇i variable appearing in the preceding equation with the corresponding variable xi or
xi+N, respectively. The last step is to assemble the full set of equations by stacking the
derivative identity above the equations of motion. The result is a form of the equations
of motion for a holonomic system suitable for solution by most numerical algorithms,
specifically

d
dt

{x} =
{ [

[0]N×N [U]N×N

] {x}
[M (xi , t)]−1 {F (xi , xi+N, t)

}
}

. (7.6.19)

The foregoing, whose form is the same as that of Eq. (7.6.13), represents a set of 2N
first-order differential equations for the 2N elements of {x}. To solve them numerically
one needs to identify to the software how to compute the vector on the right side. In
addition, initial values are required to start the numerical solver. Thus we need to specify
the initial values of the generalized coordinates and velocities at an initial time t0, from
which we may form the initial state-space vector according to

{x0} =
{{

q (t = t0)
}

{
q̇ (t = t0)

}
}

. (7.6.20)
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The preceding equation describes the analytical steps required to solve numerically
the equations of motion for a holonomic system. Software packages typically offer sev-
eral functions/subroutines based on different algorithms. Each has its benefits for certain
classes of problems. A good starting point for dynamical systems is the fourth-order-
Runge–Kutta algorithm, but one should be prepared to switch if irregularities, such as
numerical instability, severely decreased time step in an automated algorithm, or error
build-up, are observed as the program marches forward. Methods for stiff systems, such
as the Gear method, often are useful if such difficulties are encountered.

EXAMPLE 7.19 Parameters for the rack and gear in Example 7.16 are mr =
20 kg, mA = 10 kg, ms = 2 kg, R = 200 mm, ε = 0.175 mm, κ = 150 mm, and k =
40 kN/m. The system starts from rest at x = 2R, θ = 0, at which location xr is defined
to be zero. A constant actuating force F = 200 N is applied at t = 0. Determine and
graph x, xr , and θ as functions of time.

SOLUTION The emphasis for this example is the setup of the differential equations
and the application of a software package. The discussion is framed in terms of Mat-
lab, but it is readily modified to treat the reader’s choice of software. The generalized
coordinates are q1 = x and q2 = θ, so the state-space vector is‡

{x} = [
x θ ẋ θ̇

]T
.

It is easier to program the solution if the equations of motion are written in terms
of the elements of {x} . Thus the coefficient matrix multiplying generalized acceler-
ations in Eqs. (6) of Example 7.16 is written as

[M] =

⎡
⎢⎢⎣

(ms + mA + mr ) − [mr R + (mA + mr ) ε cos (x2)]

− [mr R + (mA + mr ) ε cos (x2)]

[
mAκ2 + mAε2 (cos (x2))2

+ mr (R + ε cos (x2))2
]
⎤
⎥⎥⎦ . (1)

All terms not containing generalized accelerations are placed on the right side of
the first-order equations, so that

{F} =

⎧⎪⎪⎨
⎪⎪⎩

− (mA + mr ) ε (sin (x2)) (x4)2 − k (x1 − 2R) − F{[
(mA + mr ) ε2 cos (x2) sin (x2) + mr Rε sin (x2)

]
(x4)2

+ F (R + ε cos (x2))
}

⎫⎪⎪⎬
⎪⎪⎭ . (2)

‡ The parameters in the problem statement are given as dimensional quantities, so the equations are pro-
grammed in that form. However, nondimensionalizing a system of equations can sometimes beneficially
affect both the accuracy and stability of a solution. One can obtain such a form in the present problem
by using R as a length scale, ms + mA + mr as a mass scale, and [(ms + mA + mr ) /K]1/2 as a time scale.
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The state-space equations to be solved are

d
dt

{x} =

⎧⎪⎪⎨
⎪⎪⎩

x3

x4

[M]−1 {F}

⎫⎪⎪⎬
⎪⎪⎭ . (3)

It is specified that the system starts from rest with x = 2R, θ = 0, so the initial state-
space vector is

{
x (0)

} = [2R 0 0 0]T
.

The ODE suite of functions in Matlab (ODE45, ODE23, etc.) differ in their inter-
nal algorithmic steps, but they all require that one define in an M-file a function that
evaluates the right side of Eq. (3). The first two input arguments for this function
are required to be the current values of t and {x} ,after which one can place other
system parameters. The function that was used to obtain the following solution is

function dx dt = dx dt rack(t, x, m r, m A, m s, R, eps, ...

kappa, K, Force)

M(1,1) = m r + m A + m s;

M(1,2) = -(m r * R + (m A + m r) * eps * cos(x(2)));

M(2,1) = M(1,2);

M(2,2) = m A * (kappa^2 + (eps * cos(x(2)))^2) ...

+ m r * (R + eps * cos(x(2)))^2;

F(1,1) = - (m A + m r) * eps * sin(x(2)) * x(4)^2 ...

- K * (x(1) - 2 * R) - Force ;

F(2,1) = ((m A + m r) * eps^2 * sin(x(2)) * cos(x(2)) ...

+ m r * R * eps * sin(x(2))) * x(4)^2 ...

+ Force * (R + eps * cos(x(2)));

dx dt = [x(3:4); M\F];
Note that the “\”, or left divide, operation in the last line implements an algebraic
solution, which is more efficient than actually evaluating [M]−1 {F} .

The ODE suite implement adaptive algorithms with built-in error controls,
which means that they have the capability of automatically evaluating the output
at a succession of instants in a single invocation of the ODE function. However, the
author’s experience is that using this automatic capability is unreliable, and requires
tuning of the error tolerances. Such was found to be the case here for some com-
binations of parameters other than those specified in the problem statement. When
the code appearing after this discussion was modified to call ODE45 once for the
same error parameters (stored in options)with an initial t0 = 0 and a final t f = 1,

significant deviations from the results displayed here were found as t increased. In
contrast, the displayed results were unaltered when the error parameters were re-
duced by a factor of 100 or alternative algorithms were used. In general, if one is
analyzing a system with relatively few degrees of freedom and does not need to
perform multiple computations with a variety of system parameters, it is preferable
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to limit the time steps to be sufficiently small that error build-up is not an issue.
This is achieved here with a program loop in which the new start time is set to the
final time for the previous step. Although 100 integration steps are used here, far
fewer would suffice. Another item to note in the following program fragment is the
manner in which the argument list of ODE45 specifies which function should evaluate
d {x} /dt. An anonymous function, which is a feature of Matlab 7, provides the capa-
bility of passing system parameters other than t and {x} to the function dx dt rack.
Here dx dt anon is the anonymous function that is passed as a “function handle”
to ODE45. The definition of this function, which must appear before it is used, tells
the differential equation solver to look for the variables it needs in the function
dx dt rack. Note that all parameters other than those contained in the argument
list, which are t and x in the present case, have been defined. The main steps stored
in a Matlab script file are

options = odeset(’RelTol’,1e-6,’AbsTol’,[1e-6 1e-6 1e-6 1e-6]);

x state(1, 1:4) = [2*R 0 0 0]’; t state(1,1) = 0;

dx dt anon = @(t, x) dx dt rack(t, x, m r, m A, m s, R, eps, ...

kappa, K, Force);

t max = 1; N step = 100; t = [0:N step]/N step;

for j = 2:N step + 1

x 0 = x state(j - 1,:)’;

[t ode, x] = ode45(dx dt anon, [t(j - 1) t(j)], x 0,

options);

% Determine how many steps ODE45 took.

% Save the values at the last step.

% Row j of x state is the state vector at t(j)

n steps = size(x, 1);

x state(j,:) = x(n steps,1:4);

t state(j,1) = t(j);

end

The state-space vectors provide all of the response information required to
evaluate any feature of the response. The first two columns of x state contain the
values of x and θ at the instants in t state, whereas the third and fourth columns are
the corresponding generalized velocity values. The problem statement requested
the response xr , for which we recall Eq. (3) in Example 7.16. It is stated here that
xr = 0 when x = 2R and θ = 0. Substituting these values into Eq. (3) gives S = −2R.

It also is useful to consider where the center of the gear is situated. This quantity
is given by xA = x − ε sin θ. We compute these displacements by writing x rack =

x state(:,1) - 2 * R - R * x state(:,2) - eps * sin(x state(:,2));

x A = x state(:,1) - eps * sin(x state(:,2));. If it is desired to evaluate
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forces, such as the one exerted between pin B and the groove, one can employ the
Newton–Euler equations of motion for isolated bodies. Such an evaluation would
require the accelerations at each instant, which can be obtained from the equations
of motion, which indicate that

[
ẍ θ̈

]T = [M ({x})]−1 {F ({x})} ,

where the state vector {x} would be the state vector at any instant. (An alternative
method for finding internal forces by use of constrained generalized coordinates is
discussed in the next chapter.)

The first graph shows that θ increases almost monotonically to a peak value and
then falls off. The slider moves little in the early stages of the motion, after which
it begins to oscillate, with an amplitude that increases after the gear has attained
its maximum rotation. The mean value for x is approximately 2R, which is its start-
ing value. The second graph compares the positions of the rack, the slider, and the
center of the gear. The rack moves to the left (negative xr ) in a nearly monotonic
manner until the gear attains its maximum rotation, after which it begins to move
rightward. In contrast, the slider and the gear execute similar oscillations. The phys-
ical interpretation of this behavior is that force F̄ pushes the rack to the left, and the
inertia of the gear resists this movement, thereby causing it to rotate clockwise (pos-
itive θ) about its center. The result is that pin B and the follower move to the right.
When θ is small in the early stage, this movement is small, but x becomes eventu-
ally becomes large. This increases the compression of the spring, until a position is
reached at which the follower’s velocity reverses. Then the follower moves to the
left, which eventually induces a tensile force in the spring that is sufficient to pull
the follower back to the right, and so on.
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Time dependence of the generalized coordinates.
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HOMEWORK PROBLEMS

X,x

Y y
u

u

Exercise 7.1

EXERCISE 7.1 The slider descends along a curved guide
as the guide translates to the right at the constant speed
u. The shape of the guide bar in terms of a body-fixed
set of coordinates is y = βx2. Generalized coordinates se-
lected for this system are the fixed X and Y coordinates of
the collar. Independently derive the velocity and configu-
ration constraint equations relating X and Y. Then show
that integration of the velocity constraint yields the con-
figuration constraint.

θ

sA

sB

LH

Exercise 7.2

EXERCISE 7.2 The length of rod AB connecting the col-
lars is a controlled function L(t) . Generalized coordi-
nates selected for this system are the distances sA and sB

and the inclination angle θ. Derive the velocity constraint
equations governing these variables, then integrate those
constraint equations to obtain the corresponding configu-
ration constraints. Show that the configuration constraint
equations could have alternatively been obtained from a
geometrical analysis.

s

X

Y

R
θ A

Exercise 7.3

EXERCISE 7.3 The gear rolls without slipping over the
rack, which pivots about pin A. Generalized coordinates
for this system are selected to be the angle of rotation θ of
the rack, the distance s from the pivot to the center of the
gear, and the (X, Y) coordinates of the center of the gear.
Determine the velocity constraints relating these general-
ized coordinates. Are these constraints holonomic? How
many degrees of freedom does this system have?
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L

L

Exercise 7.4

EXERCISE 7.4 The generalized coordinates selected for the com-
pound pendulum are the x, y coordinates of the lower end and the
rotation angle of the upper bar. Perform a kinematical analysis
to derive the velocity constraint equation relating these variables.
Then perform a geometrical analysis of position to derive the con-
figuration constraint. Prove that differentiating the configuration
constraint leads to the velocity constraint.

H

y

x

A

B

θ

ψ

Exercise 7.5

EXERCISE 7.5 Collar A slides along the vertical guide
bar, and collar B follows the horizontal guide. Bar
AB is connected to collar A by a fork-and-clevis,
and the connection to collar B is a ball-and-socket
joint. It has been decided to use y, θ, and ψ as con-
strained generalized coordinates for this system. (a)
Derive all applicable configuration constraints relat-
ing these variables based on a geometrical analysis.
(b) Derive all applicable velocity constraints relating
these variables based on a velocity analysis that uses
these generalized coordinates to represent the posi-
tion. (c) Show that differentiating the results of Part
(a) yields velocity constraints that are equivalent to
the results of Part (b).

x

θ

A

B

C

ψ

L

.

Exercise 7.6

EXERCISE 7.6 The yoke permits collar C to precess
through angle ψ̇ and to nutate through angle θ. Bar AB
slides freely relative to the collar, so the distance x to end
B is an unknown function of time. What velocity con-
straint(s) must apply in order that the velocity of end B
always be horizontal. Are they holonomic? If so, deter-
mine the corresponding configuration constraints.

EXERCISE 7.7 The Cartesian coordinates (x, y, z) of a particle relative to a fixed refer-
ence frame are related by[

ay2 cos
(

ax
y2

)
− czy2

]
ẋ +

[
−2axy cos

(
ax
y2

)
+ 2byzsin

(
bz
y2

)
+ 2cxyz

]
ẏ

−
[

by2 sin
(

bz
y2

)
+ cxy2

]
ż = 0,

where a, b, and c are constants. Prove that this constraint is holonomic, and derive the
corresponding configuration constraint.
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A

B
C

D

L

L

L

θ1

θ2

θ3

H

Exercise 7.8

EXERCISE 7.8 The angles θ1, θ2, and θ3 have been
selected as generalized coordinates for the linkage.
Perform a velocity analysis of the linkage to derive
the velocity constraint equations that must satisfied
by these angles. Then prove that these equations are
holonomic.

LA

B

x

y vA

γ

Exercise 7.9

EXERCISE 7.9 The bar is made to slide along the horizon-
tal plane such that the velocity of end A is always directed
at a constant angle γ relative to the bar. Generalized co-
ordinates are the x and y coordinates of end B and the
angle θ. Describe the corresponding velocity constraint.
Then determine whether the constraint is holonomic.

.

.
L

vA

vB

w

θ

F β

B

A

C

D

Exercise 7.10

EXERCISE 7.10 The sketch shows the top view of a sled
that is towed over the ice by fastening a cable to loop D.

The ice constrains the velocity of points A and B to be
parallel to the rails, but the speeds of each point may be
different. Generalized coordinates have been selected as
the east and north coordinates of point C in the horizon-
tal plane and the heading angle θ. What are the associ-
ated constraint equations?

θ

L

A

β

B

xA

vB

Exercise 7.11

EXERCISE 7.11 The illustrated linkage lies in the hor-
izontal plane. End A of the bar follows the horizontal
guide, and a wheel at end B is aimed at an angle β that is
a specified function of time. The wheel rolls without slip-
ping over the ground, so the velocity v̄B must be in the
direction indicated in the diagram. Generalized coordi-
nates are selected to be the horizontal position xA and
the rotation angle θ. Determine the velocity constraint
relating these variables. Prove that this constraint equa-
tion is nonholonomic unless β is constant.

I
_

R

X

Y

Z

ψ

Exercise 7.12

EXERCISE 7.12 The figure shows a disk that is con-
strained to roll without slipping on a horizontal XY
plane, such that its plane remains vertical. Let the po-
sition coordinates X and Y of the geometric center, the
heading angle ψ , and the spin angle φ be generalized
coordinates. Describe the velocity constraints between
these generalized coordinates. From those results, de-
termine the number of degrees of freedom, and whether
the system is holonomic.
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vB

Y

β

vA

X

B

A

Exercise 7.13

EXERCISE 7.13 An interesting example of a non-
holonomic constraint, which does not usually arise
in a course in mechanics, is a pursuit problem. The
sketch depicts airplane A that flies eastward at a
constant velocity vA. Airplane B has a laser that
is mounted parallel to its axis, and therefore paral-
lel to v̄B. It is necessary to maneuver this airplane
such that the laser is always aimed at airplane A.
Derive the constraint equations that must be satis-
fied by the coordinates XB and YB and the heading angle β.

M
β

A
B

C

2R

2R
R u

ψ
.

Exercise 7.14

EXERCISE 7.14 The horizontal platform translates up-
ward at constant speed u as the T-bar assembly rotates
about the vertical axis at angular speed ψ̇. Disk C, which
spins freely about its shaft, rolls over the platform with-
out slipping in the direction perpendicular to the dia-
gram, although slippage in the direction transverse to
the vertical shaft does occur. Derive the velocity con-
straint equation(s) relating the precession angle ψ, the
elevation angle β, and the angle φ by which the disk
spins about shaft BC.

L

vA

b

b

R
A

i

β
φ1

φB

φC

θ

r

B

C X

Y

Exercise 7.15

EXERCISE 7.15 The figure shows a child’s tricy-
cle as viewed from above. When the wheels do not
slip over the ground, the velocity of each wheel’s
center must be perpendicular to the wheel’s shaft
in the horizontal plane, as shown. Consider a set
of generalized coordinates consisting of the posi-
tion coordinates XA and YA of the steering joint,
the angle of orientation θ of the frame, the steer-
ing angle β, and the spin angles φA, φB, and φC of
the wheels. Derive the velocity constraints among
these seven generalized coordinates. From that re-
sult, determine the number of degrees of freedom.

L

L

y

F

M

θ

Exercise 7.16

EXERCISE 7.16 The parallelogram linkage, which
lies in the vertical plane, is loaded by force F that
acts perpendicular to the link to which it is applied,
and torque M. The mass per unit length of each bar
is σ . The spring can support compressive or tensile
axial force, and is unstretched when y = 1.5L. De-
termine the conservative and nonconservative por-
tions of the generalized force associated with the
selection of the vertical distance y as the general-
ized coordinate. Then repeat the analysis using the
angle θ as the generalized coordinate.
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EXERCISE 7.17 The distances sA and sB have been selected as generalized coordinates
for the system in Exercise 7.2. Determine the virtual work done by all forces acting on
the collars in an arbitrary virtual displacement. Then show that the virtual work done
by the forces exerted by the hydraulic cylinder vanishes if the virtual displacement is
kinematically admissible.

EXERCISE 7.18 Suppose the angle θ and vertical distance y are selected as generalized
coordinates for the system in Example 7.12. Determine the virtual work done by all
forces acting on the collar and bar when δy and δθ are arbitrary values. Then show that
the result is equivalent to the expression obtained in Example 7.12 when the virtual
displacement is kinematically admissible.

EXERCISE 7.19 Consider the force that constrains the velocity of the wheel in Exer-
cise 7.11. Evaluate the virtual work done by this force when the generalized coordinates
xA and θ are given arbitrary virtual increments. Then show that this work vanishes if the
increments δxA and δθ are kinematically admissible.

EXERCISE 7.20 Generalized coordinates for the linkage in Exercise 7.5 are the vertical
distance y and the angles θ and ψ. Determine the virtual work done by gravity and
the constraint force exerted by the horizontal guide on collar B. Then show that the
virtual work of the constraint force vanishes when δy, δθ, and δψ are kinematically
admissible.

EXERCISE 7.21 A force is observed to depend on the x and y coordinates of the point
at which it is applied according to F̄ = (

xī − y j̄
)
/
(
x2 − y2

)1/2
. Show that this force is

conservative, and determine its potential-energy function. Is there a limitation on the
range of values of x and y for which this function applies?

EXERCISE 7.22 The slider in Exercise 7.1 has mass m, and the curved guide bar is situ-
ated in the vertical plane. Determine the differential equations of motion. Friction has
negligible effect.

β

L
k

F

Exercise 7.23

EXERCISE 7.23 The collar of mass m slides over the smooth
guide, which is elevated by β from the horizontal. The
spring’s stiffness is k, and its unstretched length 0.8L. The
force F acting tangentially to the guide varies in a known
manner. Determine the equations of motion for the system.
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L
C

D

A

B

k

H

θ
Γ

Exercise 7.24

EXERCISE 7.24 Rod AB slides through collar C,

which is pinned to collar D that slides over the ver-
tical guide. The bar’s mass is m, and the mass of each
collar is m/2. The motion is actuated by torque �(t).
The system lies in the vertical plane, and the spring is
unstretched in the position where θ = 20◦. Determine
the equations of motion for the system. Then deter-
mine θ for static equilibrium when (g/H)1/2 = 4 rad/s,
(k/m)1/2 = 5 rad/s, L = 2H, and � = 0.

k

k

L

b

b F

b

Exercise 7.25

EXERCISE 7.25 The bar is supported by two springs
whose stiffness is k. The springs are unstretched when
the bar is horizontal. Determine the equations of mo-
tion. The force F , which acts perpendicularly to the
bar, is a known excitation.

θ
4m

m

k

2k

Exercise 7.26

EXERCISE 7.26 The stiffness of the horizontal
spring is 2k, whereas the spring holding the small
block has stiffness k. The masses are 4m and m for
the cart and the block, respectively. Frictional re-
sistance at all contacting surfaces is negligible. De-
termine the equations of motion for the system.

1

2

F

θ

L/2L/2

y

Exercise 7.27

EXERCISE 7.27 A downward force F(t) is ap-
plied to block 2. The masses are m1 = 2m,

m2 = 3m. (a) Derive the equation of motion
corresponding to using y as the generalized
coordinate for the system. (b) Derive the
equation of motion corresponding to using θ

as the generalized coordinate for the system.

EXERCISE 7.28 A horizontal force H (t) is applied at the low end of the compound pen-
dulum in Exercise 7.4. Both bars have mass m. Determine the corresponding differential
equations of motion.
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k

k

R1

R2

θ

Γ

Exercise 7.29

EXERCISE 7.29 Identical small collars of mass m slide with neg-
ligible frictional resistance over the bar that is made to rotate in
the vertical plane by torque � that acts about its pivot. The result
is that the angle θ is made to vary as a specified function of time.
The unstretched length of the identical springs is L. Derive dif-
ferential equations of motion governing the radial distances R1

and R2.

P

L

L/2

L

θk

Exercise 7.30

EXERCISE 7.30 The linkage is braced by a spring of stiffness
k in order to support the force P that acts perpendicularly
to the long link. The system lies in the vertical plane, and
σ is the mass per unit length of both bars. The spring is
unstretched when θ = 45◦. Derive the equation of motion
governing θ .

F

k
L

L L

L
θ

A

C
D

B

Exercise 7.31

EXERCISE 7.31 Determine the equations of motion for the
linkage shown in the diagram when the horizontal distance
from pin A to piston B is used as the generalized coordi-
nate. The mass of each bar is m, the mass of collar B is
negligible, and the unstretched length of the spring is 3L/4.

EXERCISE 7.32 Derive the differential equation governing the motion of the parallel-
ogram linkage in Exercise 7.16. The mass per unit length of each bar is σ , and the un-
stretched length of the spring is 2L.

EXERCISE 7.33 Use Lagrange’s equations to derive the differential equation of motion
for the angle θ at which the box in Exercise 6.32 is tilted.

θ

L

u

Exercise 7.34

EXERCISE 7.34 The collar to which the bar is pinned is given a
specified displacement u(t). The collar and the bar have equal
mass m. Use Lagrange’s equations to derive the equations of
motion for this system.
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L

kk

Exercise 7.35

EXERCISE 7.35 The collar, whose mass is m1, supports
a bar whose mass is m2. The springs restraining the
collar have identical properties. Determine the equa-
tions of motion for this system.

.
θ

ε

L

A

C

B

kT

Exercise 7.36

EXERCISE 7.36 A simplified model of one blade of a helicopter
is shown in the sketch. The short segment AB is driven at a con-
stant rotational speed �. The blade BC is connected to AB by
a pin, about which is wrapped a torsional spring having stiffness
kT . The spring is unstressed when the lag angle φ is zero. Derive
the equation of motion governing φ. Blade BC may be consid-
ered to be a homogeneous bar whose cross section is uniform.

EXERCISE 7.37 Consider the system treated in Example 7.12. Derive the differential
equation of motion when θ is used as the unconstrained generalized coordinate.

EXERCISE 7.38 Use Lagrange’s equations to solve Exercise 6.29.

R

θωt

ω
F A

Exercise 7.39

EXERCISE 7.39 The circular hoop rotates in the verti-
cal plane about its pivot at the constant angular speed
ω, so ωt is the angle from the diametral line to the
vertical. The collar, whose mass is m, slides over the
guide bar under the influence of the cable, which car-
ries a known tensile force F at its free end. Frictional
resistance between the collar and the guide is negligi-
ble. Derive the equation of motion for this system.

R

θ

Ω

x

z

Γ

Exercise 7.40

EXERCISE 7.40 A known torque � acts about the hor-
izontal shaft, resulting in rotation �. The collar slides
without friction over the hoop. The collar is essen-
tially a hollow circular cylinder whose axis of symme-
try is the tangential x axis. The mass of the collar is
m, and its centroidal moments of inertia are I1 and I2

about the x and z axes, respectively. The moment of
inertia of the hoop–shaft assembly about its rotation
axis is I3. Derive the equations of motion based on
the assumption that the collar does not spin about the
x axis relative to the hoop.
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Ω
θ

θ

F

L

L/2

M

Exercise 7.41

EXERCISE 7.41 Application of the force F to the verti-
cal control rod in the flyball speed governor causes the
angle θ to change. Simultaneously, a servomotor ap-
plies torque M to maintain a constant precession rate
�. Determine the differential equations of motion for
this system. The mass of each sphere is m, and the links
have negligible mass.

ββ

Γ

Exercise 7.42

EXERCISE 7.42 Each collar has mass m and is sufficiently small
to consider it to be a particle. The bar assembly on which the
collars ride rotates about the vertical axis due to a known tor-
sional load �(t). The moment of inertia of the bar assembly
about its axis of rotation is I. Derive the differential equations
of motion for the system.

Rψ

Exercise 7.43

EXERCISE 7.43 The homogeneous semicylinder rolls without
slipping. Derive the equation of motion governing the angle
of rotation ψ.

L+x

F

k

R
r

θ

Exercise 7.44

EXERCISE 7.44 The known excitation force F
pushes the cart to the right, which causes the ho-
mogeneous cylinder to roll without slipping rela-
tive to the cylindrical cavity in the cart. The mass
of the cart is m1 and the mass of the cylinder is m2.

The spring’s unstretched length is L, so x is the dis-
placement from the static equilibrium position in
the absence of F. It may be assumed that the cart’s
wheels are massless and friction at the wheel bearings is ineligible. Derive differential
equations of motion governing x and the angle θ locating the center of the cylinder.

EXERCISE 7.45 The pulleys roll over the rack without slipping. The masses and cen-
troidal radii of gyration are mi and κ i (i = 1 for the left pulley and i = 2 for the right).
The spring, whose stiffness is k, is capable of sustaining both compressive and tensile
forces. Determine the equations of motion.
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k
1.5R 2RR

A
B

Exercise 7.45

EXERCISE 7.46 Use Lagrange’s equations to derive the differential equation of motion
governing the elevation angle for the box in Example 6.8.

RA

RB

θ

Exercise 7.47

EXERCISE 7.47 The cylinders roll in the vertical plane such
that there is no slipping between them, nor between cylinder
A and the ground. The vertical surface is sufficiently smooth
to assume that there is negligible frictional resistance there.
The masses of the cylinders are mA and mB. Derive the equa-
tion of motion governing the unconstrained generalized coor-
dinate θ .

R

ε

θ

β

Exercise 7.48

EXERCISE 7.48 Because of the cutout sec-
tion, the center of mass of the gear is situ-
ated at a distance ε from the geometrical cen-
ter. The gear has mass m1, its centroidal ra-
dius of gyration is κ, and the mass of the rack
is m2. Friction between the rack and the in-
cline is negligible. Derive differential equa-
tions of motion governing the angle θ locat-
ing the center of mass and the distance s that
the rack has translated.

M

f

L
4L

Exercise 7.49

EXERCISE 7.49 The couple M acting causing the
crankshaft to rotate is resisted by the drag force f act-
ing on the piston. The masses are m1, m2, and m3 for
the piston. Gravity is unimportant. Derive the differ-
ential equation governing the angle of rotation of the
crankshaft.

θ

L

R F

Exercise 7.50

EXERCISE 7.50 Two cylinders, each having mass m,
are linked by a connecting rod whose mass is negligi-
ble. A known horizontal force F(t) is applied to the
right cylinder, and neither cylinder slips in its rolling
motion. In the initial position, the angle θ locating the
connecting pin is zero. Derive the equation of motion
for this angle.
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θ

β

L
R

F
A

B

Exercise 7.51

EXERCISE 7.51 The horizontal force F pushes cylin-
der A to the right, thereby pushing cylinder B up the
hill. Both cylinders have identical mass m and radius
of gyration κ about their axis of symmetry. The mass
of the connecting rod also is m. Determine the equa-
tion of motion corresponding to using the elevation
angle θ of the connecting rod as the generalized co-
ordinate. It may be assumed that there is no slippage
when the cylinders roll.

R

A

B

C

F

D
θ

Exercise 7.52

EXERCISE 7.52 Force P acts normal to rack CD,
which pivots about pin D. Because gear A must roll
without slipping, the result is that rack B is forced
to move to the left. The mass of the racks is m, and
they may be approximated as homogeneous bars. The
mass of the gear is 2m and its radius of gyration about
its center is 0.8R. Derive the equations of motion for
the system assuming that frictional resistance is unim-
portant.

120°
R

L

Exercise 7.53

EXERCISE 7.53 A circular disk of mass m is suspended in the
horizontal plane by three cables of equal length L. The ca-
bles are vertical when the system is at its equilibrium position.
Derive the equation of motion for the angle θ by which the
disk rotates about its vertical axis of symmetry. Assume that
all cables remain taut.

ψ
θ

X

Y

Z

Γ

s

Exercise 7.54

EXERCISE 7.54 The slider, whose mass is m1,
oscillates within the groove in the turntable,
so the distance s from the center of the
block to the axis of the shaft is an undefined
function of time. In turn, the turntable ro-
tates freely relative to the shaft, so the nuta-
tion angle θ also is variable, and the torque
� (t) induces the precessional rotation ψ.

The shaft is horizontal, and ψ = 0 corre-
sponds to the diagram depicting the vertical
plane. The centroidal moments of inertia of
the turntable are I1 and I2 about axes that are respectively perpendicular to, and paral-
lel to, the shaft, and the inertia of the shaft may be ignored. The spring restraining the
slider has stiffness k and it is unstretched when s = 0. Derive the Lagrange equations
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of motion governing the generalized coordinates s, θ, and ψ. Note that gravity is im-
portant because the rotation θ has no other force inducing it.

A

B
L/2

L/2

Ω

β

R

M

Exercise 7.55

EXERCISE 7.55 The orientation of the homogeneous
cylinder relative to the gimbal is described by the an-
gle β. The torque M is such that the rotation rate �

of the gimbal about the horizontal axis is constant.
The gimbal’s mass is negligible. Derive the equation
of motion for β.

θ

Ω1
Ω2 C

Exercise 7.56

EXERCISE 7.56 The couple C(t) induces rota-
tion at rate �1 of the system about the horizon-
tal shaft. A servomotor causes the disk to spin
at an unsteady rate �2 whose time dependence
is known. Derive the differential equation gov-
erning �.

EXERCISE 7.57 Find the equations of motion for the rotordynamic system in Exer-
cise 7.56 for the case in which the servomotor torque � driving is specified and the spin
rate �2 is unknown.

θ

L L

ψ

M

.

Exercise 7.58

EXERCISE 7.58 The square plate is pinned to the vertical shaft,
which is made to rotate by a known torque M (t). Derive differ-
ential equations of motion for the precession angle ψ and nuta-
tion angle θ .

L

L

β

θ

ψ

A

B

C

.

Exercise 7.59

EXERCISE 7.59 Slender bar BC is suspended from pivot A by a
cable. A precessional motion about the vertical is induced. It is
desired to investigate the ensuing motion under the assumption
that the cable remains taut, in which case it forms angle β rela-
tive to the vertical. The bar lies in the same vertical plane as the
cable, at angle θ from vertical. Derive the differential equations
of motion governing β, θ , and the precession angle ψ.
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φ
θ L

H

Ω

Exercise 7.60

EXERCISE 7.60 A shipping container is suspended
from a crane by an inextensible cable. The crane ro-
tates in the vertical plane at angular speed � whose
time dependence is known. It may be assumed that
the cable remains taut, so its orientation is describ-
able in terms of the angle θ locating the vertical plane
in which it is situated relative to the plane of the
crane, and the angle of elevation φ from a vertical
line. Based on a model of the container as a small par-
ticle, derive differential equations of motion in which
the only unknowns are θ and φ.

θ

A

B

C

Ω

ξL

Exercise 7.61

EXERCISE 7.61 Collar C is attached to the vertical shaft by a
fork-and-clevis, so the angle of inclination θ of bar AB is arbi-
trary. Because this bar slides through the collar, the distance
ξ from the pivot point to the end of the bar is variable, but it
may be assumed that the bar does not spin about its own axis.
The vertical shaft rotates at the constant rate �. Derive the
differential equations governing ξ and θ.

Lψ

B

A

M

F

z

θ

Exercises 7.62 and 7.63

EXERCISE 7.62 The force–couple system F̄ and M̄ causes the
vertical shaft to move upward and precess. The couple is such
that the precession rate ψ̇ is constant, but the vertical displace-
ment z of the shaft is not known a priori. The spring’s exten-
sional stiffness (in opposition to displacement z) is kE, and
z = 0 corresponds to the spring being undeformed. The mass of
the shaft is m1, and the mass of bar AB is m2, and both bodies
may be approximated as being very thin. Pin A is ideal, so the
angle of inclination θ is an unknown function of time. Derive
the differential equations of motion for z and θ.

EXERCISE 7.63 A specified force–couple system F̄ and M̄ causes the vertical shaft to
move upward and precess. The spring’s extensional stiffness kE acts in opposition to
displacement z, and the torsional stiffness kT opposes precession ψ. The spring is unde-
formed in the position where z = ψ = 0. The mass of the shaft is m1, the mass of bar AB
is m2. and both bodies may be approximated as being very thin. Pin A is ideal. Derive
the differential equations of motion for z, ψ and θ.
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L
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A

Exercise 7.64

EXERCISE 7.64 A known torque � acting about the ver-
tical shaft causes the T-bar to precess at angular speed
ψ̇ = �. Pin B is ideal, so the angle of elevation of bar BD
also is unknown. The mass of bar BC is m, and the mo-
ment of inertia of the T-bar about its rotation axis is IT.

Derive the differential equations of motion governing θ

and ψ.

A

L

B

Γ

Exercise 7.65

EXERCISE 7.65 A known couple � (t) induces rotation of
the system about the vertical axis. Collars A and B, each of
whose mass is m, are interconnected by a rigid bar whose
mass is 4m. The moment of inertia of the T-bar about the
vertical axis is IT . Derive the equations of motion for this
system.

L

Lβ

R
Γ

ψ.

φ
.

Exercise 7.66

EXERCISE 7.66 A known torque � is applied to the ver-
tical post, which causes the system to rotate about the
vertical axis at angular speed ψ̇. Pin B allows the angle
β to change freely, but the spin rate of the flywheel is
the constant value φ̇. The moment of inertia of the ver-
tical post about its axis of rotation is IP, the mass of the
forked arm may be neglected, and the flywheel may be
considered to be a thin disk with mass m and moment
of inertia Iφ about its spin axis. Derive the equations of
motion for ψ̇ and β. Under what conditions will β be
constant?

L

L

L
β

φ
.

Ω
A

B

C

Exercise 7.67

EXERCISE 7.67 Bent arm ABC is welded to the
vertical shaft, which rotates at the constant rate
�. The square plate rotates freely about axis BC
at angular speed φ̇, with φ = 0 corresponding to
the plate being situated in the vertical plane, as
shown in the sketch. Determine the differential
equation governing φ.
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Exercise 7.68

EXERCISE 7.68 Collar A is welded to the vertical shaft, so
the angle θ is constant. The rectangular plate is welded to
bar BC, which may slide through the collar and rotate by an-
gle φ about its own axis relative to the collar. When φ = 0,

the plate is in the upright position shown. The whole system
freely precesses about the vertical axis, and frictional resis-
tance is negligible. Only the mass of the plate is significant.
Derive the differential equations of motion for this system.

EXERCISE 7.69 The semicylinder in Exercise 7.43 is released from rest with its flat side
in the vertical plane, ψ = π/2. Determine and graph the ensuing response ψ (t) . From
that result deduce the period of oscillation. Compare that result with the period when
the semicylinder is released from rest at ψ = π/20. Hint: Use the nondimensional time
τ = (g/R)1/2 t to remove algebraic parameters from the differential equations.

EXERCISE 7.70 Consider the system in Example 7.15 when there is no applied couple,
M = 0. The system is initially at rest at θ = 80◦ when a constant force F = 2mg is ap-
plied. The spring stiffness is k = 0.5mg/L. Determine whether the linkage attains the
horizontal position, θ = 0. If so, what is the elapsed time and angular speed θ̇ for that
condition?

EXERCISE 7.71 The parameters of the system in Exercise 7.64 are R = L, IT = 0.5mL2,

M = 4mgL, and (L/g)1/2 = 0.1 s. The system is released from rest at t = 0 with θ = 90◦.
Determine θ as function of time in the ensuing motion, as well as the torque �. What is
the minimum value of θ during the course of the motion? Does θ approach a steady-state
value?

EXERCISE 7.72 Prior to t = 0 the spherical pendulum in Example 7.14 was undergo-
ing a steady precession at angle of inclination θ = 15◦, with the cable length � constant
at a specified value L. The angular speed � in this condition was the value associated
with steady precession at a constant cable length. At t = 0 the tensile force is sud-
denly changed from the value required for steady precession to F = 4mg. Determine
and graph as functions of time the length �, angle θ, and precession rate �. Compare
the instants when each of these variables have their maximum and minimum values.
Hint: Use the nondimensional time τ = (g/L)1/2 t to convert the equations of motion to
a form suitable for numerical integration.

EXERCISE 7.73 The compound pendulum in Exercise 7.4 is released from rest with both
bars inclined at 75◦ from the vertical position. The bars are identical with (g/L)1/2 =
2 rad/s. Examine the equations of motion to determine whether it is possible for the
system to oscillate with both bars remaining aligned. Then solve the equations of motion
to determine each angle of inclination as a function of time. Is the response periodic?

EXERCISE 7.74 The system in Exercise 7.54 is initially at rest in the vertical plane,
ψ = 0, with the groove tilted at θ = π/4 and the block coincident with the axis of the
shaft, s = 0. At that instant a constant torque of M = 40 N-m is applied. Determine and
graph the displacement s and rotation θ as functions of time. Also graph the precession
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rate ψ̇. Properties of the system are m1 = 500 g, k = 128 N/m, and I1 = 2.5 kg-m2, I2 =
1.5 kg-m2.

EXERCISE 7.75 The system of interest is the flyball governor in Exercise 7.41 in the case
where the torque M acting about the vertical axis is zero. Suitable generalized coordi-
nates are q1 = ψ and q2 = θ, where ψ is the precession angle. The initial conditions for
the system are

ψ = 0, ψ̇ = 1500 rev/min, θ = 85o, θ̇ = 0 @ t = 0,

and the system parameters are m = 250 g, and L = 400 mm. (a) If properly derived, the
Lagrange equation associated with ψ is a perfect differential. The result of integrating
that equation is the constant angular momentum about the z axis, which relates the
values of ψ̇ and θ corresponding to the specified initial conditions. Solve this equation
for ψ̇ at θ = 30o. (b) Let F have the constant value obtained from the Lagrange equation
when θ = 30o, θ̇ ≡ 0, and ψ̇ has the value found in Part (a). Use numerical methods to
solve the equations of motion corresponding to this value of F and the specified initial
conditions. Plot ψ and θ as functions of t for an interval sufficiently long to ascertain
whether θ = 30o is a dynamic equilibrium state. Check the correctness of the integration
by monitoring whether the angular momentum about the vertical axis is constant. (c)
An alternative value of F is found by simultaneously solving the angular momentum
equation in Part (a) and the work–energy principle �T + �V = F�yB, where �yB is
the upward displacement of the vertical bar to which F is applied. The initial conditions
for this evaluation of F are those specified and θ = 30◦ and θ̇ = 0 at the second position.
The value of F obtained in this manner does the minimum amount of work required
to attain the second state, but it is possible that this value of F would not be adequate
to move the system beyond some intermediate position. Solve the equations of motion
with the initial conditions set at the specified values and F equated to this minimum-
work value. Does the system actually arrive at θ = 30◦ with θ̇ = 0?
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CHAPTER 8

Constrained Generalized Coordinates

The basic development of Lagrange’s equations in the preceding chapter is suitable for
many important engineering applications. However, up to now these equations have
only been employed when the generalized coordinates constitute an unconstrained set.
The first part of this chapter removes this limitation. For nonholonomic systems the use
of constrained generalized coordinates is mandatory. However, it might be desirable to
use constrained coordinates to analyze holonomic systems, as will be seen. This is the
situation when the effect of sliding friction is an important feature, which will be treated
in depth.

Regardless of whether one follows the Lagrangian or Newton–Euler approach,
derivation of the differential equations of motion is only the first phase of a dynamic
analysis. Solution of those equations to simulate a system’s response is usually the ul-
timate objective. As several examples have already demonstrated, the equations of
motion can be quite complicated, and therefore not amenable to analytical solution.
The basic state-space approach to solving the differential equations of motion asso-
ciated with holonomic systems was developed in Section 7.6. The occurrence of con-
straint equations and Lagrange multipliers requires modification of that formulation.
The second part of this chapter develops and implements several numerical algorithms
that may be used to solve the equations of motion governing constrained generalized
coordinates.

8.1 LAGRANGE’S EQUATIONS—CONSTRAINED CASE

Lagrange’s equations for unconstrained coordinates constitute a set of differential equa-
tions of motion whose number equals the number of generalized coordinates. Thus the
only other information required to solve these equations is an appropriate set of ini-
tial conditions. When generalized coordinates are constrained, the equations of motion
are supplemented by kinematical constraint equations. Another difference is that an ar-
bitrary virtual movement will not be consistent with the stated constraint conditions,
which has the consequence of causing constraint forces to be manifested in the general-
ized forces. Our first task is to see how to synthesize a solvable set of equations in this
situation. We then consider some general situations in which constrained generalized
coordinates are either necessary or useful, and specific procedures for analyzing each
situation.

492
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As we saw in the previous chapter, scleronomic (time-invariant) and rheonomic
(time-dependent) configuration constraints can be written as linear velocity constraint
equations, which is the only form of nonholonomic constraint we consider here. Writing
all constraint equations in velocity form is more than a matter of convenience. The equa-
tions that result turn out to be much more amenable to standard numerical analysis than
they would be if configuration constraints equations were used. Thus we consider a set
of N generalized coordinates that are required to satisfy J velocity constraint equations
described by

N∑
j=1

ai j q̇j + bi = 0, i = 1, 2, . . . , J. (8.1.1)

The Jacobian constraint coefficients ai j , which multiply the generalized velocities, as
well as the bi coefficients, may depend on the values of the qj variables and time t.

By definition, the symbol Qj represents the role of all nonconservative forces, as
well as any conservative forces that have not been represented by the potential energy.
Let us apportion Qj into two parts: Q(a)

j is associated with the applied loads and Rj is
associated with the unknown reactions,

Qj = Q(a)
j + Rj . (8.1.2)

A constraint force enforces each constraint equation that is described by Eq. (8.1.1).
The influence of each such force will appear in the Rj terms. Virtual work is additive
as a scalar, which means that Rj is a scalar sum of the contribution R(i)

j associated with
each constraint:

Rj =
J∑

i=1

R(i)
j , j = 1, 2, . . . , N. (8.1.3)

We saw in Subsection 7.4.2 that knowledge of the Jacobian constraint coefficients is
sufficient to characterize each R(i)

j term. According to Eq. (7.4.12), a Lagrange multiplier

λi is proportional to R(i)
j . When we use that equation to represent each R(i)

j term in

Eq. (8.1.3), and combine that result with Q(a)
j , the resulting Lagrange’s equations are

d
dt

(
∂T
∂q̇j

)
− ∂T

∂qj
+ ∂V

∂qj
= Q(a)

j +
J∑

i=1

ai jλi , j = 1, 2, . . . , N. (8.1.4)

In some situations it is necessary to determine the actual constraint forces Ci , as well
as the generalized coordinates. We may obtain these quantities from the associated La-
grange multipliers λi by invoking Eqs. (7.4.16), which stated that Ci = σ iλi . We may
identify the proportionality factors σ i by explicitly evaluating the virtual work of the
constraint forces. Alternatively, we can express the virtual work explicitly in terms of
the constraint forces. This approach will be demonstrated in Example 8.7.
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The requirement that one eliminate all variables other than the qj and t from the
potential and kinetic energies applies equally for constrained and unconstrained gener-
alized coordinates. Such an analysis leads to the functions T (qn, q̇n, t) and V (qn, t) . It
follows that the terms on the left side of Lagrange’s equations will contain generalized
coordinates, velocities, and accelerations. Thus these equations constitute a set of N dif-
ferential equations governing the N generalized coordinates. They are not a sufficient
set of equations because they also contain J unknown λi parameters. The necessary J
additional equations are provided by the kinematical constraint equations. Thus eval-
uation of system response when a system is described by constrained generalized co-
ordinates entails simultaneously satisfying N differential equations of motion, given by
Eqs. (8.1.4) and J differential equations of constraint, Eq. (8.1.1). The result of such a
solution would be the value of each qj and each λi as a function of t.

When a system has nonholonomic constraints, we have no choice but to use con-
strained coordinates. However, we might decide to use constrained generalized coordi-
nates to describe holonomic systems. One reason for doing so is to simplify the synthesis
of the equations of motion. This aspect may be explained by considering a one-degree-
of-freedom system. Suppose the positions of various parts of such a system are con-
veniently described by two generalized coordinates that are related by a scleronomic
constraint, f (q1, q2) = 0. If we wish to use q1 as a single unconstrained generalized coor-
dinate, we must algebraically solve this constraint equation for q2 in terms of q1. It might
be that this solution, q2 = g (q1) , is extremely difficult to obtain, but if we succeed in
doing so, we must differentiate it to describe the generalized velocity, q̇2 = q̇1 (dg/dq1).
Substitution of this relationship and q2 = g (q1) into the energy expressions yields T and
V as functions of only q1 and q̇1. These functions are likely to be quite complicated un-
less the g function has a simple form. Now consider the alternative of using both q2 and
q1 to describe the system. The velocity constraint equation obtained by differentiating
the configuration constraint will be enforced explicitly as part of the solution, so q1 and
q2 are treated as completely independent variables in the formulation. Thus we leave the
energy expressions in basic forms containing both q1 and q2. Because the expressions for
T and V will be functionally simpler, the complexity of the operations required to form
Lagrange’s equations will be lessened. At the same time, there is a penalty, because
there are two Lagrange equations and a velocity constraint in this case, as opposed to
the single Lagrange equation when q1 solely is used. In essence, the philosophy underly-
ing the use of constrained generalized coordinates for complicated holonomic systems is
to shift the burden from formulating the equations of motion to solving them. Computer
methods are quite adept at the latter, as we will see.

Another reason to use constrained generalized coordinates to describe a holonomic
system is to evaluate constraint forces. If we were to use unconstrained generalized
coordinates, reaction forces could be determined by a multiphase process that begins
with the solution of the equations of motion, and saving the values of qj , q̇j , and q̈j

at each instant. These results would be used to compute the linear and angular po-
sitions, velocities, and accelerations of all parts of the system. Substituting those val-
ues into the Newton–Euler equations of motion for individual bodies would yield the
constraint force of interest. Such a procedure is suitable to situations in which most or
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all of the reaction forces need to be evaluated, but it is inefficient if only a few reac-
tions are of interest. In contrast, it is possible to solve for the instantaneous reactions
simultaneously with the generalized coordinates when we use constrained generalized
coordinates.

We previously encountered in Example 7.14 a simple situation suggesting how con-
strained generalized coordinates can be used for this purpose. We found there that we
could obtain an expression for the cable force in the spherical pendulum by consider-
ing the cable length to be a generalized coordinate subject to a rheonomic constraint,
rather than a specified length variable. The general concept underlying the treatment of
such situations uses a set of generalized coordinates that do not automatically satisfy the
kinematical condition imposed by the desired constraint force. This force, in the form
of the associated Lagrange multiplier, will appear in the equations of motion. Solution
of the differential equations of motion formulated in this manner would yield the time
history of the Lagrange multiplier. The actual constraint force can then be determined
from Ci = σ iλi , as described by Eqs. (7.4.16).

The need to evaluate a constraint force is often a discretionary matter. However, in
situations involving Coulomb sliding friction, the evaluation of the normal force is an
intrinsic part of the solution process, because the magnitude of the tangential friction
force depends on the normal force. The sliding friction force does not prevent motion.
Therefore it acts like an applied force that does virtual work. Hence, even if we use
unconstrained generalized coordinates, the magnitude of the normal force will always
occur in some of the generalized forces. The procedure we follow is to use constrained
generalized coordinates that are selected such that the constraint against movement per-
pendicular to the contact surface must be enforced explicitly. The associated normal
force will appear in the virtual work in addition to the friction force. The constraint
equations and the additional Lagrange equations arising from using more generalized
coordinates than necessary will provide the requisite number of equations.

A system illustrating this aspect is the linkage in Fig. 8.1, which was the subject of
Example 7.15. In the previous analysis there was no friction between collar C and the
guide bar, so the angle θ could be used as an unconstrained coordinate, with the an-
gle φ for bar BC equated to θ. If there is sliding friction at the collar, that analysis will
not suffice, because the friction force will do virtual work when θ is incremented. The
friction force f is proportional to the magnitude of the normal force, so the single equa-
tion of motion would contain two unknowns, θ and NC. A constrained formulation of
this problem could use θ and φ as generalized coordinates that must satisfy the sclero-
nomic constraint, θ − φ = 0. Because it is necessary to violate the kinematical constraint
of the collar without having other constraint forces contribute to the virtual work, the

A

B F

M

G

θ Cφ
L/2

L/2

NC
f

Figure 8.1. A linkage in which there is friction at collar C.
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configuration of the system for arbitrary θ and φ is taken to be such that the connection
at pin B remains intact. Thus the position of the collar is given by

r̄C/A = L(cos θ + cos φ) ī + L(sin θ − sin φ) j̄ . (8.1.5)

The corresponding virtual displacement is

δr̄C = ∂ r̄C/A

∂θ
δθ + ∂ r̄C/A

∂φ
δφ

= L
(− sin θ ī + cos θ j̄

)
δθ + L

(− sin φ ī − cos φ j̄
)
δφ.

(8.1.6)

Rather than using a Lagrange multiplier to describe N̄C, we treat this force as any
other nonconservative force, because

∣∣N̄C
∣∣ will occur anyway when we describe the fric-

tion force. The latter force may be written as f̄ = −µk |NC|sgn
(
v̄C · ī

)
ī, which captures

the fact that the friction force is proportional to the normal force’s magnitude and its
sense is opposite that of v̄C. The virtual work done by the forces at collar C in this for-
mulation is

δW = [−µk |NC| sgn
(
v̄C · ī

)
ī + NC j̄

] · δr̄C. (8.1.7)

Substitution of the expression for δr̄C leads to the recognition that the generalized forces
are

Q1 = µk |NC| Lsin θsgn
(
v̄C · ī

)+ NC Lcos θ,

Q2 = µk |NC| Lsin φsgn
(
v̄C · ī

)− NC Lcos φ.
(8.1.8)

Thus, using θ and φ as constrained coordinates leads to two Lagrange equations, in
which the normal force occurs in both generalized forces. In combination with the con-
straint equation, we have three equations governing θ, φ, and NC. These considerations
will be an important aspect of Example 8.7, which will derive and then solve the equa-
tions of motion when friction effects are important.

EXAMPLE 8.1 A servomotor applies torque � to the horizontal shaft of the T-bar
such that the rotation rate � increases in proportion to the angle θ by which bar BC
swings away from the radial position, that is, � = bθ2. The masses are m1 for bar
AB and m2 for bar BC, and the cylindrical shaft’s moment of inertia about its axis
of rotation is I3. Determine the equations of motion for the system.

θ

L

H ΓΩ
A

B

C

Example 8.1
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SOLUTION This example is a straightforward demonstration of how constraint con-
ditions are incorporated into an analysis of spatial motion. The location of bar BC
is fully specified by the angle the T-bar rotates about its bearings, and the angle θ by
which bar BC rotates about pin B relative to bar AB. Rotation about the bearings
is a precession, which we denote to be angle ψ, with ψ̇ = � and ψ = 0 defined to
correspond to bar AB being upright. The given constraint on the motion is ψ̇ = cθ,

which is nonholonomic. Hence we employ both angles as generalized coordinates,
q1 = θ and q2 = ψ . Comparing the stated constraint equation with the standard form
for a linear velocity constraint shows that

a11 = 0, a12 = 1, b1 = −bθ2. �

It is useful to draw a free-body diagram of the system in which we define coordi-
nate systems for describing the motion. The x′y′z′ coordinate system is attached to
the T-bar, whereas xyz is a centroidal coordinate system for bar AB with y aligned
with the bar and x aligned with pin B.

θ

Γψ

A

B

C

.

G

m1g
m2 g

z'

x'

y'y

x

z

Free-body diagram of the swinging bar and its support-
ing shaft

In addition to the transverse and axial forces exerted by the bearings, the applied
loads are the conservative gravity force and the nonconservative torque �.

All motion variables required for constructing the kinetic energy must be de-
scribed solely in terms of the generalized coordinates. The angular velocity of the
T-bar is ψ̇ k̄′

. Adding the two simple rotations of bar BC gives

ω̄BC = ψ̇ k̄′ + θ̇
(−ī

) = − θ̇ ī − ψ̇ sin θ j̄ + ψ̇ cos θ k̄.

We obtain an expression for v̄G by recognizing that points G and B are on the swing-
ing bar, whereas points B and A are on the T-bar, so that

v̄G = v̄B + ω̄BC × r̄ G/B = ψ̇ k̄′ × H j̄ ′ + ω̄BC × L
2

j̄ = −ψ̇

(
H + L

2
cos θ

)
ī − L

2
θ̇ k̄.

We decompose the kinetic energy of the T-bar into contributions of the shaft
and bar AB, which is the manner in which the inertia properties are specified.
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Considering the thickness of both bars to be negligible gives

T = 1
2

I3ψ̇
2 + 1

2

(
1
3

m1 H2

)
ψ̇2 + 1

2
m2v

2
G + 1

2
ω̄BC · H̄G

= 1
2

(
I3 + 1

3
m1 H2

)
ψ̇2 + 1

2
m2

[
ψ̇2

(
H + L

2
cos θ

)2

+ L2

4
θ̇2

]

+ 1
2

(
1

12
m2L2

)[
θ̇2 + ψ̇2 (cos θ)2

]

= 1
2

(
1
3

m2L2

)
θ̇2 + 1

2

[
I3 +

(
1
3

m1 + m2

)
H2

+
(

1
3

m2L2

)
(cos θ)2 + m2 HLcos θ

]
ψ̇2.

We define the datum for gravitational potential energy to coincide with the
shaft. We may find the elevation of point G by geometrically projecting this point’s
position onto the vertical direction, or else by coordinate transformations. Either
way, the result is

V = m1g
H
2

cos ψ + m2g
(

H + L
2

cos θ

)
cos ψ.

Note that the positive sign for the elevation applies because ψ = 0 was defined to
correspond to bar AB being upright.

To evaluate the virtual work we observe that � imposes the constraint on ψ̇.

We can represent its effect with a Lagrange multiplier. (If we wished to derive an
equation for � we would evaluate how it contributes to the virtual work, rather than
using a Lagrange multiplier.) The bearing forces constrain the shaft from moving,
and those constraints are not violated by a virtual movement, regardless of the val-
ues of δψ and δθ. Thus we have δW = 0, so that Q1 = Q2 = 0. (Depending on how
the bearings are designed, it is possible that they also exert couples orthogonally to
the shaft. Those couples too would not appear in δW because they would impose
rotational constraints that are not violated in the virtual movement.) We form the
derivatives of T and V appearing in Lagrange’s equations and substitute the result
into the Lagrange multiplier form of the equations of motion, Eq. (8.1.4). This yields

1
3

m2L2θ̈ +
[

1
3

m2L2 (cos θ) + 1
2

m2 HL
]

(sin θ) ψ̇
2 − 1

2
m2gLsin θ cos ψ = a11λ1 = 0

[
I3 +

(
1
3

m1 + m2

)
H2 +

(
1
3

m2L2

)
(cos θ)2 + m2 HLcos θ

]
ψ̈

−
[

2
3

m2L2 (cos θ) + m2 HL
]

(sin θ) θ̇ ψ̇ −
(

1
2

m1 + m2

)
g sin ψ

− 1
2

m2gLcos θ sin ψ = a12λ1 = λ1. �
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There are three unknowns in these two equations; the third equation is the con-
straint, ψ̇ = bθ2.

The simple nature of some constraint equations, such as ψ̇ = cθ in the present
case, sometimes leads inexperienced individuals to a fundamental error. It might
seem that we could simplify the energy expressions if we were to use the constraint
equations to eliminate one or more generalized coordinates. For example, here we
could completely eliminate θ by substituting θ = (

ψ̇/b
)1/2

. However, this is a for-
bidden operation. The reason for this prohibition goes back to the derivation of La-
grange’s equations, which requires an arbitrary virtual displacement, whereas using
a constraint equation in the aforementioned manner limits the adjacent variational
paths.

EXAMPLE 8.2 A known torque M (t) actuates the linkage. The masses are m1,

m2, and m3 for bars AB, BC, and DE, respectively, and collar C has mass m4. The
system lies in the vertical plane, and friction is negligible. Derive the equations of
motion.

A

C

H

B

E

D

θ1

θ2

θ3

y

x

L1

L2

M
Example 8.2

SOLUTION The benefits of using constrained generalized coordinates to lessen the
complications of geometrical complexity are demonstrated in this example. We en-
countered this system previously in Example 7.6. It has two degrees of freedom,
because the position of all bars is specified by their respective angles, and one angle
is algebraicially related to the other two. If we were to use θ1 and θ2 as uncon-
strained generalized coordinates, we would find that the expression for θ3 is fairly
complicated, so that the kinetic-energy expression is intricate. We therefore use all
three angles as a set of constrained generalized coordinates.

The first task is to establish the constraint equation these variables must sat-
isfy. We could obtain the velocity equation directly by following a linkage analysis,
according to

v̄C = vrelēE/D + θ̇3k̄ × r̄C/D = θ̇1k̄ × r̄ B/A + θ̇2k̄ × r̄C/B.

However, Example 7.6 derived the configuration constraint based on the horizontal
and vertical distances proceeding from pin A to pin B and then pin C. Doing so gave

tan θ3 = L1 sin θ1 + L2 sin θ2

L1 cos θ1 + L2 cos θ2 − H
,
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which may be rewritten as(
cos θ1 + L2

L1
cos θ2 − H

L1

)
tan θ3 − sin θ1 − L2

L1
sin θ2 = 0.

Differentiation of this expression yields the velocity constraint equations:

a11θ̇1 + a12θ̇2 + a13θ̇3 = 0,

a11 = − sin θ1 tan θ3 − cos θ1, a12 = − L2

L1
(sin θ2 tan θ3 + cos θ2) , �

a13 = L1 cos θ1 + L2 cos θ2 − H

L1 (cos θ3)2 .

The kinetic energy of the system is the sum of contributions of the three bars
and the sliding collar. Each term may be described in terms of whichever generalized
coordinates are appropriate, without concern for the fact that they are constrained.
Thus the angular velocities of the bars are θ̇1k̄, θ̇2k̄, and θ̇3k̄. Bars AB and DE are
in pure rotation. We may obtain expressions for the velocity of the center of mass of
bar BC and of the collar by differentiating the respective position vectors described
in terms of θ1 and θ2, which are

r̄ G2/A =
(

L1 cos θ1 + L2

2
cos θ2

)
ī +

(
L1 sin θ1 + L2

2
sin θ2

)
j̄,

r̄C//A = (L1 cos θ1 + L2 cos θ2) ī + (L1 sin θ1 + L2 sin θ2) j̄,

which leads to

v̄G2 =
(

−L1θ̇1 sin θ1 − L2

2
θ̇2 sin θ2

)
ī +

(
L1θ̇1 cos θ1 + L2

2
θ̇2 cos θ2

)
j̄,

v̄C = (−L1θ̇1 sin θ1 − L2θ̇2 sin θ2
)

ī + (
L1θ̇1 cos θ1 + L2θ̇2 cos θ2

)
j̄ .

Let L3 be the length of bar DE. Then the kinetic energy derived from these expres-
sions is

T = 1
2

(
1
3

m1L2
1

)
θ̇2

1 + 1
2

m2

[(
−L1θ̇1 sin θ1 − L2

2
θ̇2 sin θ2

)2

+
(

L1θ̇1 cos θ1 + L2

2
θ̇2 cos θ2

)2
]

+ 1
2

(
1
12

m2L2
2

)
θ̇2

2

+ 1
2

(
1
3

m3L2
3

)
θ̇2

3 + 1
2

m4

[(−L1θ̇1 sin θ1 − L2θ̇2 sin θ2
)2

+ (
L1θ̇1 cos θ1 + L2θ̇2 cos θ2

)2
]
.

Collecting like coefficients of the generalized velocities converts this to

T = 1
2

(
1
3

m1 + m2 + m4

)
L2

1θ̇
2
1 + 1

2

(
1
3

m2 + m4

)
L2

2θ̇
2
2 + 1

2

(
1
3

m3L2
3

)
θ̇2

3

+ 1
2

(m2 + 2m4) L1L2 cos (θ1 − θ2) θ̇1θ̇2.
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The system is stated to lie in the vertical plane, which implies that the analysis
should account for gravity. The elevation of the center of mass of each body above
the datum for gravity, which we take to coincide with pins A and D, may be repre-
sented in terms of whichever of the generalized coordinates is most suitable. Hence
the potential energy of gravity is

V = m1g
L1

2
sin θ1 + m2g

(
L1 sin θ1 + L2

2
sin θ2

)

+ m4g (L1 sin θ1 + L2 sin θ2) + m3g
L3

2
sin θ3

=
(m1

2
+ m2 + m4

)
gL1 sin θ1 +

(m2

2
+ m4

)
gL2 sin θ2 + m3

2
gL3 sin θ3.

The constraints imposed by pin A and D are not violated when the angle of each
bar is incremented. Therefore the only nonconservative load contributing to the
virtual work is the torque M, which gives δW = Mδθ1 =⇒ Q1 = M, Q2 = Q3 = 0.

The Jacobian coefficients were listed earlier. The three Lagrange equations that
result are(

1
3

m1 + m2 + m4

)
L2

1θ̈1 + 1
2

(m2 + 2m4) L1L2
[
θ̈2 cos (θ1 − θ2) + θ̇2

2 sin (θ1 − θ2)
]

+
(m1

2
+ m2 + m4

)
gL1 cos θ1 = Q1 + a11λ1 = M − (sin θ1 tan θ3 + cos θ1) λ1,(

1
3

m2 + m4

)
L2

2θ̈2 + 1
2

(m2 + 2m4) L1L2
[
θ̈1 cos (θ1 − θ2) − θ̇2

1 sin (θ1 − θ2)
]

+
(m2

2
+ m4

)
gL2 cos θ2 = Q2 + a12λ1 = − L2

L1
(sin θ2 tan θ3 + cos θ2) λ1,

1
3

m3L2
3θ̈3 = Q3 + a13λ1 = L1 cos θ1 + L2 cos θ2 − H

L1 (cos θ3)2 λ1. �

Evaluation of the response would entail simultaneously solving these three
equations of motion and the constraint equation for the three generalized coordi-
nates and the Lagrange multiplier λ1. We could eliminate the Lagrange multiplier
by solving one equation of motion for λ1, and substituting that expression into the
other two equations of motion. This would reduce the problem to three simulta-
neous differential equations (two equations of motion and the velocity constraint),
whose form would be significantly more complicated than the original set of four
equations.

EXAMPLE 8.3 A known force F̄ is applied to the yoke, causing the system to
move rightward. The disk rolls without slipping, and the coefficient of kinetic fric-
tion between pin B and the yoke is µ. Masses are m1 for the yoke and m2 for the
homogeneous disk. Derive the equations of motion.
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Bθ
R

x

ε
A

F

Example 8.3

SOLUTION We see here how constrained generalized coordinates are used to ana-
lyze systems with Coulomb friction. As was shown in Example 7.1, this system has
a single degree of freedom. That example derived the velocity constraint and corre-
sponding configuration constraint that must be satisfied by x and θ in order that the
pin remain situated in the groove of the yoke. The result was

ẋ − θ̇ (R + ε cos θ) = 0 ⇐⇒ x − Rθ − ε sin θ = C, (1)

where C depends on where the disk is situated when x = θ = 0. We need to ob-
tain equations of motion in which the normal force exerted between pin B and the
yoke appears. That force imposes Eq. (1). We select q1 = θ and q2 = x as general-
ized coordinates because arbitrary increments of each will result in the normal force
appearing in δW. The disk is always situated on the ground, and the yoke is on the
guide bar, so that the only constraint not automatically satisfied is the one associated
with pin B.

To capture the effect of the forces exerted at pin B, we draw a free-body dia-
gram of each body. The forces at the ground are constraint forces associated with
the no-slip condition, and N̄3 prevents vertical movement of the yoke; these condi-
tions are not violated when x and θ are incremented. Also, the center of mass of
each body displaces horizontally in this virtual movement. Thus the only forces that
do virtual work are the normal force N̄2, the friction force f̄2 associated with contact
between pin B and the yoke, and the applied force F̄ .

F

N1

N2

N2

N3

f2 f2

f1

A

B

mg

Free-body diagrams of the rolling disk and the yoke showing
the pin force exerted between them.
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The collar translates horizontally, so the virtual displacement of all points on
the yoke are δr̄yoke = δxī . We obtain the virtual displacement of pin B on the disk
by the kinematical method. For no slippage at the contact, we have vA = θ̇ R, so that

v̄B = v̄A + (−θ̇ k̄
)× ε

(
sin θ ī + cos θ j̄

) = (R + ε cos θ) θ̇ ī − εθ̇ sin θ j̄ . (2)

The corresponding virtual displacement is

δr̄ B = (R + ε cos θ) δθ ī − εδθ sin θ j̄, (3)

from which we find the virtual work to be

δW = (
N2 ī + f2 j̄

) · δr̄ B + (−N2 ī − f2 j̄
) · δxī + Fī · δxī

= [N2 (R + ε cos θ) − f2ε sin θ] δθ + (F − N2) δx.

The generalized forces obtained by matching δW to the standard form are

Q1 = N2 (R + ε cos θ) − f2ε sin θ, Q2 = F − N2. (4)

As an aside, it should be noted that if the virtual movement were kinematically
admissible, then the Pfaffian form of the velocity constraint would lead to δx =
(R + ε cos θ) δθ. In that case the constraint force N2 would not appear in δW, which
is what would happen if we were to use θ or x as the sole generalized coordinate.

The expression for kinetic energy is particularly easy to obtain because we may
use θ and/or x to describe each term. Thus

T = 1
2

m1v
2
A + 1

2

(
1
2

m1 R2
)

θ̇2 + 1
2

m2 ẋ2 = 1
2

(
3
2

m1 R2
)

θ̇2 + 1
2

m2 ẋ2.

The corresponding Lagrange’s equations are

3
2

m1 R2θ̈ = N2 (R + ε cos θ) − f2ε sin θ,

m2 ẍ = F − N2.

(5) �

These equations are the same as what one would obtain by summing moments about
the point where the disk contacts the ground, and summing forces horizontally for
the yoke. They are not yet ready to solve because they contain f2. The kinetic-
friction law states that the magnitude of f2 is µ |N2| and that it opposes the slid-
ing motion. In the free-body diagram of the yoke, f2 is shown acting downward,
which corresponds to pin B moving downward relative to the yoke. Thus we set
f2 = µ |N2|sgn

(−v̄B · j̄
)
. Substitution of the expression for v̄B in terms of the gener-

alized coordinates converts this to f2 = µ |N2|sgn
(
θ̇ sin θ

)
. The full set of differential

equations of motion to solve are the Lagrange equations, Eqs. (5), with this descrip-
tion of f2, and the velocity constraint, Eq. (1). Specifically

3
2

m1 R2θ̈ = N2 (R + ε cos θ) − µ |N2| εsgn
(
θ̇ sin θ

)
sin θ,

m2 ẍ = F − N2,

ẋ − (R + ε cos θ) θ̇ = 0.

(6) �
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These constitute three differential equations for θ, x, and N2. Their relatively
simple form allows us to contemplate reducing the number of equations. Two differ-
ent approaches are possible. We can eliminate N2 by solving the second of Eqs. (6)
to obtain

N2 = F − m2 ẍ. (7)

If we substitute Eq. (7) into the first of Eqs. (6), we can ignore the second of Eqs. (6)
when we solve the equations of motion. Alternatively, we can eliminate x by differ-
entiating the constraint equation with respect to t , which yields

ẍ = θ̈ (R + ε cos θ) − εθ̇2 sin θ. (8)

Substitution of Eq. (8) into the second of Eqs. (6) allows us to ignore the third
equation in the solution process. Furthermore, substitution of both Eqs. (7) and
(8) into the first of Eqs. (6) reduces the problem to a single, rather complicated,
differential equation for θ. In the ideal case, in which µ = 0, that equation would
be found to be identical to the one we would have obtained by using θ as a single
unconstrained generalized coordinate.

EXAMPLE 8.4 A thin disk wobbles as it rolls without slipping along the ground.
Consequently, the plane of the disk is inclined at an unsteady angle. Derive the
equations of motion for the system. Then specialize the result to the steady preces-
sion case, in which the disk is tilted at a constant angle and the disk’s center follows
a circular path. The radius of gyration of the disk about its axis of symmetry is κ .

SOLUTION This problem is a comprehensive illustration of the use of Lagrange mul-
tipliers. We will solve the resulting equations of motion in the next section. The
position of any rigid body may always be described in terms of three position co-
ordinates for any point, such as the center of mass, and three Eulerian angles. The
circular shape of the disk and the absence of slipping constrain some of these vari-
ables, so we recall from Section 4.4 the kinematical analysis of a disk that wobbles
as it rolls without slipping.

The first step is to draw a free-body diagram of the disk, in which several refer-
ence frames are depicted. The axes of XYZ are fixed, and x′y′z′ is defined to have its
origin at the center of the disk with the z′ axis always vertical and the y′ axis always
coincident with the horizontal diametral line for the disk. The angle between y′ and
J̄ for the fixed reference frame is defined to be the precession angle ψ, and y′ is the
line of nodes for nutation angle θ measured from vertical to the axis of symmetry.
The xyz reference frame is defined to execute the nutation relative to x′y′z′, with
the z and z′ axes always coincident. The x′y′ plane is horizontal, so the friction force
has been represented in the free-body diagram in terms of components parallel to
the x′ and y′ axes. The only other forces are the normal reaction and gravity.
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I Free-body diagram and Eulerian angles for a disk that rolls un-
steadily.

To ascertain the kinematical restrictions imposed on the Eulerian angles and
position coordinates, we relate the velocities of the constrained points on the disk:
the contact point and the center. Because of the rotational symmetry of the disk, a
kinematical description using xyz components will yield a general representation.
The angular velocity of the disk is the vector sum of precession ψ̇, nutation θ̇ , and
spin φ̇:

ω̄ = ψ̇ k̄′ + θ̇ j̄ ′ + φ̇k̄ = −ψ̇ sin θ ī + θ̇ j̄ + (
ψ̇ cos θ + φ̇

)
k̄. (1)

It is stated that there is no slippage at the ground, so the velocity of the center of the
disk is

v̄C = ω̄ × (−Rī
) = −R

(
ψ̇ cos θ + φ̇

)
j̄ + Rθ̇ k̄. (2)

The velocity of the center may also be described in terms of the coordinates relative
to the fixed reference frame:

v̄C = ẊĪ + ẎJ̄ + Żk̄. (3)

Matching Eqs. (2) and (3) will yield relations between the position coordinates and
the Eulerian angles. This operation requires that both descriptions be converted to
a common set of components, which we can do by using rotation transformations or
by projecting the unit vectors as follows:

ī = cos θ
(
cos ψ Ī + sin ψ J̄

)− sin θ k̄,

j̄ = − sin ψ Ī + cos ψ J̄ ,

k̄ = sin θ
(
cos ψ Ī + sin ψ

)
J̄ + cos θ k̄.

We use these expressions to match the components of Eqs. (2) and (3), which yields

Ẋ = R
(
ψ̇ cos θ + φ̇

)
sin ψ + Rθ̇ cos ψ sin θ,

Ẏ = −R
(
ψ̇ cos θ + φ̇

)
cos ψ + Rθ̇ sin ψ sin θ,

Ż = Rθ̇ cos θ.

(4)
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These relations are three velocity constraints that the six position variables must
satisfy, so the disk has only three degrees of freedom. The first two equations are
nonholonomic. However, the one governing Z may be integrated. Multiplying each
rate variable in the last equation by dt makes both sides perfect differentials. When
θ = 0, the disk lies in the XY plane, so integrating the third velocity equation and
setting Z = 0 at θ = 0 leads to

Z = Rsin θ. (5)

This configuration constraint enables us to eliminate Z from the formulation. Hence
we employ five generalized coordinates in the sequence: X, Y, ψ , θ , φ. These are con-
strained generalized coordinates because they must satisfy the first two of Eqs. (4),
which have the standard form of linear velocity constraints:

ai1 Ẋ + ai2Ẏ + ai3ψ̇ + ai4θ̇ + ai5φ̇ = 0, i = 1, 2, (6) �

where

a11 = 1, a12 = 0, a13 = −Rsin ψ cos θ, a14 = −Rcos ψ sin θ, a15 = −Rsin ψ,

a21 = 0, a22 = 1, a23 = Rcos ψ cos θ, a24 = −Rsin ψ sin θ, a25 = Rcos ψ.

(7) �

We now proceed to formulate the mechanical energies. We use the fact that
the disk is thin to set Ixx = Iyy = Izz/2, with Izz = mκ2. The velocity of the center in
terms of the generalized coordinates is described by Eq. (3) with Ż = Rθ̇ cos θ, and
Eq. (1) gives the corresponding angular velocity, so that

T = 1
2

mv2
C + 1

2
ω̄ · H̄C

= 1
2

m
[

Ẋ2 + Ẏ2 + R2θ̇2 (cos θ)2
]

+ 1
2

mκ2

[
1
2

(
ψ̇ sin θ

)2 + 1
2
θ̇2 + (

ψ̇ cos θ + φ̇
)2
]

.

(8)
The potential energy of gravity is

V = mgZ = mgRsin θ. (9)

We are not specifically interested in the reactions at the ground, which en-
force the constraint against slippage. Therefore we employ the Lagrange multi-
plier formulation. There are no other nonconservative forces to describe, so we set
all Qj = 0. The constrained Lagrange’s equations, Eqs. (8.1.4), are formed from
the kinetic energy in Eq. (8), the potential energy in Eq. (9), and the Jacobian
constraint coefficients in Eqs. (7). There are two constraint equations, each of
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which has an associated Lagrange multiplier. The result is a set of five differential
equations:

mẌ = λ1, mŸ = λ2, (10, 11)

mκ2

{
1
2
ψ̈
[
1 + (cos θ)2

]
− ψ̇ θ̇ sin θ cos θ + φ̈ cos θ − θ̇ φ̇ sin θ

}

= −λ1 Rsin ψ cos θ + λ2 Rcos ψ cos θ,

(12 )

m
{
θ̈

[
1
2
κ2 + R2 (cos θ)2

]
+
(

1
2
κ2ψ̇2 − R2θ̇

2
)

sin θ cos θ

+ κ2ψ̇φ̇ sin θ + gRcos θ
} = −λ1 Rcos ψ sin θ − λ2 Rsin ψ sin θ,

(13 )

mκ2 (ψ̈ cos θ + φ̈ − ψ̇ θ̇ sin θ
) = −λ1 Rsin ψ + λ2 Rcos ψ. (14) �

There are seven unknowns: the five generalized coordinates and the two Lagrange
multipliers. These variables must satisfy Eq. (6) for i = 1 and i = 2, and Eqs. (10)–
(14).

When the disk precesses steadily, such that θ is constant and the center follows
a circular path, the precession rate will be the rotation rate of the radial line from
the center of the path to the center of the disk. Also, ψ̈ = 0 for steady precession.
Let ρ denote the radius of the path, so that vc = ρ

∣∣ψ̇∣∣. Setting θ̇ = 0 in Eq. (2) shows
that v̄c = ρψ̇ j̄ = −R

(
ψ̇ cos θ + φ̇

)
j̄, from which it follows that

φ̇ = −
( ρ

R
+ cos θ

)
ψ̇. (15)

Substitution of this expression into Eqs. (4) leads to

Ẋ = −ρψ̇ sin ψ, Ẏ = ρψ̇ cos ψ.

These relations may be integrated directly to find

X = ρ cos ψ + X0, Y = ρ sin ψ + Y0, (16)

where X0 and Y0 are constants of integration. The fact that these coordinates satisfy
(X − X0)2 + (y − Y0)2 = ρ2 verifies that the center follows a circular path, and leads
to recognition of X0 and Y0 as the coordinates of the center of the path.

With the constraint equations now satisfied, we use the Lagrange equations to
relate ρ and ψ̇. Substitution of Eqs. (16) into Eqs. (10) and (11) gives expressions
for the Lagrange multipliers:

λ1 = m
(−ρψ̇2 cos ψ

)
, λ2 = m

(−ρψ̇2 sin ψ
)
. (10′, 11′)

We substitute these expressions, together with ψ̈ = 0, θ̇ = 0, and Eq. (15) for φ̇,
into Eqs. (12)–(14). The only one that is not identically satisfied is Eq. (13), which
becomes(

1
2
κ2ψ̇2

)
sin θ cos θ − κ2ψ̇2

( ρ

R
+ cos θ

)
sin θ + gRcos θ = ρRψ̇2 sin θ.
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Solving this for ψ̇ yields an expression for the steady precession rate corresponding
to a constant nutation angle:

ψ̇ =
[

2gR2 cot θ

2ρ (R2 + κ2) + κ2 Rcos θ

]1/2

. �

If the disk is homogeneous, then κ = R/
√

2, which leads to

ψ̇ =
[

4g cot θ

6ρ + Rcos θ

]1/2

.

This solution is in complete agreement with the result derived in Example 6.4 with
the Newton–Euler formulation. The earlier methods provide greater physical in-
sight, but it would have been more difficult to use them to derive the equations of
motion for the unsteady case treated here.

8.2 COMPUTATIONAL METHODS

Our focus here is on techniques for finding solutions of the differential equations of mo-
tion, which are derived from kinetics principles, that also satisfy the constraint equations,
which represent kinematical restrictions intrinsic to the system. Although the discussion
is centered on the application of Lagrange’s equations, the development is readily al-
tered to treat situations in which the equations of motion are derived from a Newton–
Euler formulation or from principles discussed in the next chapter. We have seen that
numerical methods are often required to solve the equations of motion associated with
unconstrained generalized coordinates. The need to satisfy constraint equations in ad-
dition to the equations of motion makes it even likely that we will need to invoke such
methods when the generalized coordinates are kinematically constrained.

We found in Section 7.6 that it is convenient to write the equations of motion in
matrix form. The presence of constraint equations does not alter the fact that the kinetic
energy is a quadratic sum in the generalized velocities, so that the terms appearing in
Lagrange’s equations are as described by Eqs. (7.6.9) and (7.6.10). In fact, the only alter-
ation relative to the standard form in Eq. (7.6.12) is the addition of terms to account for
the contribution of constraint forces to the Qj . Equations (8.1.4) describe these terms as
a linear sum of Lagrange multipliers. The matrix representation of that sum is [a]T {λ} .

Thus the general form of the equations of motion will be

[M (qj , t)] {q̈} = [a (qj , t)]T {λ} + {
F (qj , q̇i , t)

}
, (8.2.1)

where
{

F (qi , q̇i , t)
}

consists of the generalized forces {Q} and any terms from the left
side of Lagrange’s equations that do not contain generalized accelerations. The corre-
sponding matrix form of the velocity constraint equations, Eq. (8.1.1), is

[a (qi , t)] {q̇} + {
b (qi , t)

} = {0} . (8.2.2)
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One should note that the preceding equations are the forms we shall use to discuss the
implementation of numerical algorithms. However, when Coulomb friction forces are
present, it is preferable to let the constraint forces appear explicitly, rather than using
Lagrange multipliers to represent them. The modifications required for such systems are
addressed in Subsection 8.2.4.

Usage of a computer routine to solve the differential equations of motion requires
input of the current generalized acceleration values, denoted as {q̈∗}. When the gener-
alized coordinates are unconstrained, these values may be obtained directly by solving
Eq. (7.6.19). When the generalized coordinates form a constrained set, the occurrence
of Lagrange multipliers and constraint equations means that the {q̈∗} values cannot be
found solely from the equations of motion. Unfortunately, the manner in which {λ} oc-
curs prevents a direct solution.

To recognize the difficulty, recall that standard numerical algorithms handle a set of
first-order differential equations whose form is

d
dt

{x} = {
G (xi , t)

}
. (8.2.3)

The generalized velocities are treated as though they are independent coordinates, and
the Lagrange multipliers also are unknown, so we form the state vector from these vari-
ables. We stack the derivative identity, the Lagrange equations, and the velocity con-
straint equations to form

⎡
⎢⎢⎢⎣

[U]N×N [0]N×N [0]N×J

[0]N×N [M]N×N − (
[a]J×N

)T

[a]J×N [0]J×N [0]J×J

⎤
⎥⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

{q̇}
{q̈}
{λ}

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

{q̇}
{F}
− {b}

⎫⎪⎪⎬
⎪⎪⎭ . (8.2.4)

We need to solve these equations for the generalized accelerations, but the first and
third partition rows of the coefficient matrix merely differ by the factor [a]. Conse-
quently, this matrix is not full rank, so the equations cannot be solved for the values
of {q̈}.

Because Eq. (8.2.4) does not contain derivatives of the λ variables, it is said to con-
stitute a set of differential-algebraic equations (DAEs). Several solution strategies have
been developed to solve them. One approach is to use a DAE solver, which is imple-
mented programmatically in the same manner as one uses a routine such as Runge–
Kutta for solving unconstrained equations of motion. Brenan et al. (1989) provide a
comprehensive discussion of this topic. These methods do not seem to have been widely
implemented by dynamics researchers, because they are more prone to numerical dif-
ficulties and often are less computationally efficient than the procedures we develop
here. However, a popular dynamic simulation software package known as ADAMS re-
lies on a DAE solver. Rather than attacking the problem with a general solution process,
the procedures we consider exploit the special nature of the equations for a dynamical
system.
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8.2.1 Algorithms

The fundamental difficulty is the fact that the derivative identity and the constraint equa-
tions govern the generalized velocities rather than the accelerations. To circumvent this
aspect, the latter is differentiated with respect to time, thereby converting them to ac-
celeration constraint equations. This leads to

[a] {q̈} +
[

da
dt

]
{q̇} = −

{
db
dt

}
. (8.2.5)

The use of the total derivative notation to denote the time derivative of [a] serves as a
reminder that the differentiation needs to recognize that the Jacobian constraint matrix
may depend on the generalized coordinates. Consequently, the derivatives are evaluated
according to

dain

dt
=

N∑
j=1

∂ain

∂qj
q̇j + ∂ain

∂t
,

dbi

dt
=

N∑
i=1

∂bi

∂qj
q̇j + ∂bi

∂t
, i = 1, .., J, n = 1, .., N.

(8.2.6)
The most direct solution strategy for solving the differential equations is to define

integrated multipliers. Let µi denote the definite integral of λi :

µi (t) =
∫ t

0
λi (τ ) dτ ⇐⇒ λi = µ̇i . (8.2.7)

When the Lagrange multipliers are replaced with the respective µ̇i parameter, the as-
sembly of the derivative identity, the equations of motion, and the acceleration con-
straint equations yields

⎡
⎢⎢⎣

[U] [0] [0]

[0] [M] − [a]T

[0] − [a] [0]

⎤
⎥⎥⎦ d

dt

⎧⎪⎪⎨
⎪⎪⎩

{q}
{q̇}
{µ} .

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{q̇}
{F}[

da
dt

]
{q̇} +

{
db
dt

}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (8.2.8)

(The negative of the acceleration constraint was used to form the third partition row
in order that the coefficient matrix be symmetric.) This set of equations has the form
described by Eq. (8.2.3) with

{z} = [{q}T {q̇}T {µ̇}T]T
,

{
G (zi , t)

} =

⎡
⎢⎢⎣

[U] [0] [0]

[0] [M] − [a]T

[0] − [a] [0]

⎤
⎥⎥⎦

−1
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{q̇}
{F}[

da
dt

]
{q̇} +

{
db
dt

}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.
(8.2.9)

Note that the matrix inverse appears in the preceding equation for notational purposes.
The value of

{
G (zi , t)

}
at the desired instant may be obtained more efficiently by a

standard technique for linear algebraic equations, such as Gauss elimination.
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The alternative formulation known as the augmented method proceeds similarly to
the integrated multiplier procedure, but it is more efficient from a computational stand-
point. If we omit the derivative identity when we assemble the equations, we find that

[
[M] − [a]T

− [a] [0]

]{ {q̈}
{λ}

}
=

⎧⎪⎨
⎪⎩

{F}[
da
dt

]
{q̇} +

{
db
dt

}
⎫⎪⎬
⎪⎭ . (8.2.10)

This constitutes a set of N + J simultaneous algebraic equations for the values {q̈} and
{λ} corresponding to any instant that the values of {q} and {q̇} are known. Thus the state-
space vector here is defined to contain only the generalized coordinates and velocities. In
combination with the current value of {q̇} , the values of {q̈} obtained from the preceding
equation provide the input for the differential equation solver. Thus the augmented
algorithm entails implementing Eq. (8.2.3), with

{z} =
{ {q}

{q̇}

}
,

{
G (zi , t)

} =
{ {q̇}

{q̈}

}
,

{ {q̈}
{λ}

}
=
[

[M] − [a]T

− [a] [0]

]−1
⎧⎪⎨
⎪⎩

{F}[
da
dt

]
{q̇} +

{
db
dt

}
⎫⎪⎬
⎪⎭ .

(8.2.11)

Once again, the {q̈} values should be obtained by a standard technique for linear alge-
braic equations, rather than with a matrix inverse.

Both the integrated multiplier and augmented methods evaluate the Lagrange mul-
tipliers at each instant. A different approach to solving the coupled set of dynamical
equations of motion and constraint is sometimes implemented manually in an ad hoc
manner. We refer to it as the elimination method, because it entails eliminating the mul-
tipliers by direct substitution. We may see the essence of the approach by considering
Eqs. (10) and (11) in Example 8.4. Those equations may be solved for the two Lagrange
multipliers in terms of the qj , q̇j , and q̈j . Substitution of those expressions into the re-
maining equations of motion, (12)–(14), would lead to three differential equations of
motion. When these equations are combined with the acceleration form of the constraint
equations, the result is a set of five differential equations governing the five generalized
coordinates.

We may formalize this approach by decomposing the equations of motion into two
partitions: an upper set of J equations and a lower set of N − J equations,⎡

⎣ [M1]J×N

[M2](N−J )×N

⎤
⎦ {q̈} =

{ {F1}J×1

{F2}(N−J )×1

}
+
[

[a1]T

[a2]T

]
{λ}J×1 , (8.2.12)

where the Jacobian constraint matrix is partitioned as

[a]J×N =
[
[a1]J×J [a2]J×(N−J )

]
. (8.2.13)
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It is necessary that the equations used to form the first group be such that [a1] is full
rank, that is,

∣∣[a1]
∣∣ �= 0. Then the upper partition of Eq. (8.2.12) may be solved for {λ} ,

{λ} = [a1]−T [M1] {q̈} − [a1]−T {F1} , (8.2.14)

where [a1]−T is the transpose of the inverse of [a1] . Substitution of this expression for
{λ} into the second partition row of Eq. (8.2.12) leads to[

[M2] − [a2]T [a1]−T [M1]
]
{q̈} = {F2} − [a2]T [a1]−T {F1} . (8.2.15)

All quantities appearing in this expression other than {q̈} are known at any instant in
terms of the current values of {q} , {q̇} , and t. We then obtain a solvable set of equa-
tions by stacking these equations above the acceleration constraint equations. Thus the
elimination algorithm is summarized by

{z} =
{ {q}

{q̇}

}
,

{
G (zi , t)

} =
{ {q̇}

{q̈}

}
,

{q̈} =
[

[M2] − [a2]T [a1]−T [M1]

− [a]

]−1
⎧⎪⎨
⎪⎩

{F2} − [a2]T [a1]−T {F1}[
da
dt

]
{q̇} +

{
db
dt

}
⎫⎪⎬
⎪⎭ .

(8.2.16)

The preceding expression for {q̈} contains an important subtlety. The manner in which
[a1]−T appears requires actual evaluation of an inverse. In contrast, it is solely for no-
tational purposes that an inverse is used to indicate solution for {q̈} values, whereas
the actual implementation should use a more efficient solution technique such as Gauss
elimination.

One can perform Eq. (8.2.14), as well as subsequent operations, algebraically if the
number of equations is not too large. Alternatively, one can carry out the operations nu-
merically at each time instant using the current values of {q} and {q̇} . In any event, care
must be taken to avoid grouping the equations of motion in a manner that causes [a1] to
be uninvertible or ill-conditioned. If such a situation occurs subsequently to initiation of
the integration process, it is necessary to interrupt the solver in order to resequence the
columns of [a] and the elements of {q} in a consistent manner, such that the submatrix
[a1] of the rearranged [a] is well behaved.

Such resequencing can be carried out manually, but an automated procedure can be
quite useful when there are many equations. The process of shifting columns of [a] may
be represented by an N × N sorting matrix [P] that satisfies

[ã] = [a] [P] , (8.2.17)

where a rearranged matrix is denoted with a tilde, ∼. The corresponding rearrangement
of the elements of {q} is described by

{q} = [P] {q̃} . (8.2.18)

The elements of [P] are a set of ones and zeros, and [P] would obviously be the identity
matrix in the event that resequencing was not necessary. As an example, suppose N = 3,
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J = 2, and we wish for [ã1] , which is the left J × J partition of [ã] , to consist of the first
and third columns of [a] . This requires that

[
a11 a13 a12

a21 a23 a22

]
=
[

a11 a12 a13

a21 a22 a23

]⎡⎢⎢⎣
P11 P12 P13

P21 P22 P23

P31 P32 P33

⎤
⎥⎥⎦ . (8.2.19)

The nonzero elements of [P] satisfying this condition are P11 = P32 = P23 = 1. In gen-
eral, if we wish for column j of [ã] to match column k of [a] , then Pkj = 1, whereas the
unspecified elements of [P] will be zero.

Because [P] is constant, we have[
dã
dt

]
=
[

da
dt

]
[P] , (8.2.20)

so substituting Eq. (8.2.18) into the acceleration constraint equations leads to

[ã]
{ ..

q̃
}

= −
[

dã
dt

] { .

q̃
}

−
{

db
dt

}
, (8.2.21)

which has the same form as that of the original constraint equations. Because the gener-
alized coordinates are now represented by {q̃} , we also substitute Eq. (8.2.18) into the
Lagrange equations. To maintain the symmetry of the coefficient matrix, we premultiply
the result of that substitution by [P]T

, which leads to[
M̃
] { ..

q̃
}

= [ã]T {λ} + {
F̃
}
, (8.2.22)

where [
M̃
] = [P]T [M] [P] ,

{
F̃
} = [P]T {F} . (8.2.23)

Equations (8.2.21) and (8.2.22) have the same form as the respective original equations,
so the solution process can resume after resorting by use of the rearranged matrices in
place of the respective original versions. The solution vector returned by the differential
equation solver may be restored to the original {q} by application of Eq. (8.2.18).

In the elimination method, one can evaluate the Lagrange multipliers at any in-
stant by substituting the {q̈} values obtained from Eqs. (8.2.16) into Eq. (8.2.14). In con-
trast, the orthogonal complement method completely removes the Lagrange multipliers
from consideration. The orthogonal complement of the Jacobian constraint matrix is an
(N − J ) × N matrix [C] that satisfies the condition that

[C][a]T = [0]. (8.2.24)

Note that [C] is not unique, as one can recognize by considering the foregoing to be
a set of simultaneous equations obtained on an element-by-element basis. There are
(N − J ) N elements of [C], but the product has only (N − J ) J elements.

Let us for the moment assume that we can find a suitable [C]. When we multiply the
Lagrange equations by [C], we find that

[C][M]{q̈} = [C]{F} + [C][a]T{λ} = [C]{F}. (8.2.25)
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We see that the consequence of this operation is to remove the Lagrange multipliers
from the equations to be integrated. Because [C] has N − J rows, we may compute val-
ues of the N generalized accelerations at any instant by combining Eq. (8.2.25) with the
acceleration constraint equations. Thus the orthogonal complement algorithm is cap-
sulized by

{z} =
{ {q}

{q̇}

}
,

{
G (zi , t)

} =
{ {q̇}

{q̈}

}
,

{q̈} =
[

[C] [M]

− [a]

]−1
⎧⎪⎨
⎪⎩

[C] {F}[
da
dt

]
{q̇} +

{
db
dt

}
⎫⎪⎬
⎪⎭ .

(8.2.26)

These values and the associated current values of the generalized velocities constitute
the inputs required for implementing the differential equation solver associated with
Eq. (8.2.3).

Implementation of the orthogonal complement method requires that the orthogonal
complement to the current value of [a] be determined prior to each call to the differen-
tial equation solver. Several techniques for determining the orthogonal complement are
discussed in the text by Amirouche (1992) under the category of coordinate reductions.
One method not discussed there is suggested by the recognition that the condition for
the orthogonal complement can be rewritten as

[a][C]T = [0]. (8.2.27)

Thus we may consider the columns of [C]T
, that is, the rows of [C] , to be nonzero

solutions of

[a] {y} = {0} . (8.2.28)

A numerical procedure for determining all possible solutions for {y} is the singular value
decomposition (SVD), which is described by Press et al. (1992). The method is briefly
summarized here.

If [A] is a known I × J array, with I ≥ J , then the SVD of [A] is

[A]I×J = [L]I×J [w]J×J [R]T
J×J , (8.2.29)

where [w] is a diagonal array that holds the singular values of [A], and [L] and [R] consist
of columns that are orthonormal:

[L]T[L] = [U]J×J , [R]T[R] = [U]J×J . (8.2.30)

It is important for our development that the singular values are real and nonnegative,
w j ≥ 0. Press et al. give a reliable subroutine for carrying out the process, and compa-
rable routines are contained in most mathematical software packages. Only the singular
values [w] are unique, so [L] and [R] obtained from different pieces of software might
not be the same.
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Now consider the situation in which [A] is a square m × m matrix, and we seek to
solve

[A]{y} = {0}. (8.2.31)

Clearly, the only solution is {y} = {0} unless
∣∣[A]

∣∣ = 0. Any {y} �= {0} satisfying this
equation is said to be in the null space of [A]. The number k of independent solutions
lying in the null space of [A] is the nullity of [A], and the rank of [A] is m − k. It can be
shown that the nullity of a matrix is the number of zero singular values obtained in its
SVD. (In general, the ratio of the largest to the smallest singular value is the condition
number of a matrix.) For our present purpose, the significance of zero singular values
is a theorem that states that, if w j = 0, then column # j of [R] is an independent vector
in the null space of [A]. The singular values may be arranged in any sequence without
violating Eq. (8.2.29), provided that the columns of [L] and [R] are rearranged in the
same manner. It is convenient to use this property to arrange the singular values such
that the w j values occur in ascending order, which leads to w1 = · · · = wk = 0. Let

{
Rj
}

denote the jth column of [R] . It follows that

[A]
{

Rj
} = {0} , j = 1, 2, . . . , k. (8.2.32)

These may be assembled into a single matrix relation:

[A] [{R1} {R2} . . . {Rk}] = [0] . (8.2.33)

To employ SVD to determine the orthogonal complement [C] satisfying Eq.
(8.2.27), we form the square array [A] by stacking the J × N matrix [a] above an ar-
ray of (N − J ) × N zeros:

[A]N×N =
⎡
⎣ [a]J×N

[0](N−J )×N

⎤
⎦ . (8.2.34)

Aside from degenerate conditions that might occur at some instant, the J constraint
conditions are independent, so the rank of [A] is J . It follows that the nullity of [A]
formed as previously defined is N − J . Hence, when we perform a SVD of the previously
defined [A], and resequence the singular values in the prescribed manner, then the first
N − J columns of the resulting [R] are in the null space of [A]. In view of the partitioned
manner in which [A] is defined, it follows that

[a]
[{R1} {R2} . . .

{
R(N−J )

}] = [0] . (8.2.35)

A comparison of this relation with Eq. (8.2.27) indicates that we should use these
{

Rj
}

to form the rows of [C]:

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

{R1}T

{R2}T

...{
R(N−J )

}T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (8.2.36)
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Using SVD may not be the most efficient method for finding the orthogonal comple-
ment, but it is reliable. Example 8.5 illustrates the SVD method for a typical step in
the solution of a set of constrained equations of motion by the orthogonal complement
method.

Each of the algorithms discussed thus far require that the constraint equations be
satisfied explicitly as a supplement to the Lagrange equations. A different approach
that has received some advocacy uses the constraint equations to algebraically eliminate
the dependent constrained generalized velocities and accelerations. Amirouche (1992)
refers to this as the embedding method, because the constraint equations become inter-
twined with the Lagrange equations of motion. The notion is to select N − J of the gen-
eralized coordinates to be unconstrained, whereas the other J generalized coordinates
are required to satisfy the constraint equations. The method begins by assigning a set of
N − J generalized coordinates to {qu}, which consists of the generalized coordinates that
are considered to be unconstrained. The remaining J generalized coordinates form the
constrained variables, which are placed in {qc}. This partitioning can be implemented by
use of a sorting matrix [P] in the manner of Eq. (8.2.18), such that

{q} = [P]

{ {qu}(N−J )×1

{qc}J×1

}
. (8.2.37)

Of course, if {qc} is formed from the last J elements of {q} , then [P] would be an N × N
identity matrix. As indicated by Eq. (8.2.17), [P] also leads to partitioning of [a] accord-
ing to [

[au]J×(N−J ) [ac]J×J

]
= [a] [P] , (8.2.38)

from which it follows that

[a] {q} ≡ [[au] [ac]]

{ {qu}
{qc}

}
. (8.2.39)

The task now is to express the constrained variables in terms of the unconstrained
ones. Toward that end we observe that [P] is constant, so differentiation of Eq. (8.2.37)
gives

{q̇} = [P]

{ {q̇u}(N−J )×1

{q̇c}J×1

}
. (8.2.40)

In view of Eq. (8.2.38), the result of substitution of this expression into the velocity
constraint equations is

[[au] [ac]]

{ {q̇u}
{q̇c}

}
≡ [au] {q̇u} + [ac] {q̇c} = − {b} . (8.2.41)

The only condition imposed on the selection of which generalized coordinates form
{qc} is that the resulting [ac] be full rank and well conditioned. Then we may solve the
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preceding equation for the constrained generalized velocities:

{q̇c} = − [ac]−1 [au] {q̇u} − [ac]−1 {b} . (8.2.42)

This expression enables us to evaluate the full set of generalized velocities from the
unconstrained values according to

{q̇} = [P]

{ {q̇u}
{q̇c}

}
= [D] {q̇u} + [B] {b} , (8.2.43)

where

[D] = [P]

⎡
⎣ [U](N−J )×(N−J )

− [ac]−1 [au]

⎤
⎦ , [B] = [P]

⎡
⎣ [0](N−J )×J

− [ac]−1

⎤
⎦ . (8.2.44)

A similar expression giving the full set of generalized accelerations is obtained from the
acceleration constraint equations, which may be written as

[au] {q̈u} + [ac] {q̈c} = −
[

da
dt

]
{q̇} −

{
db
dt

}
, (8.2.45)

so that

{q̈c} = − [ac]−1 [au] {q̈u} − [ac]−1
{[

da
dt

]
{q̇} +

{
db
dt

}}
. (8.2.46)

When we use this expression to reconstruct the full set of generalized accelerations, we
find that

{q̈} = [P]

{ {q̈u}
{q̈c}

}
= [P]

⎡
⎣ [U](N−J )×(N−J )

− [ac]−1 [au]

⎤
⎦ {q̈u}

+ [P]

⎡
⎣ [0](N−J )×J

− [ac]−1

⎤
⎦{[da

dt

]
{q̇} +

{
db
dt

}}
.

(8.2.47)

In view of Eq. (8.2.43), this reduces to

{q̈} = [D] {q̈u} + [B]
[

da
dt

]
[D] {q̇u} + {E} , (8.2.48)

where

{E} = [B]
[

da
dt

]
[B] {b} + [B]

{
db
dt

}
. (8.2.49)

An important identity is that

[a] [D] ≡ [a] [P]

[
[U]

− [ac]−1 [au]

]
= [[au] [ac]]

[
[U]

− [ac]−1 [au]

]

≡ [au] − [ac] [ac]−1 [au] ≡ [0] .

(8.2.50)
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The significance of this property becomes apparent when we substitute Eq. (8.2.48) into
the Lagrange equation, Eq. (8.2.1), which leads to

[M]
{

[D] {q̈u} + [B]
[

da
dt

]
[D] {q̇u} + {E}

}
= {F} + [a]T {λ} . (8.2.51)

We premultiply this equation by [D]T. According to Eq. (8.2.50), we have∗

[D]T [a]T ≡ [[a] [D]]T = [0] . (8.2.52)

Thus the equations of motion reduce to

[D]T [M] [D] {q̈u} = [D]T
{
{F} − [M] [B]

[
da
dt

]
[D] {q̇u} − [M] {E}

}
. (8.2.53)

The constraint equations are embedded in these equations, rather than enforced
explicitly. Thus, as indicated by Amirouche (1992), it appears that the procedure has re-
duced the equations of motion to a form comparable with those for a holonomic system
having N − J degrees of freedom. However, this view misses the fact that [M] , [a] , and
the other coefficient matrices are likely to depend on all generalized coordinates, not
just on the unconstrained variables. Furthermore, {F} , [da/dt] , and {db/dt} are likely
to depend on all of the generalized velocities. Thus, at every time step in the integration
process, it will be necessary to also evaluate the current values of {qc} and {q̇c}. Toward
that end, we can consider Eq. (8.2.42) to be an auxiliary set of differential equations
that are to be integrated simultaneously with the basic equations of motion. Implemen-
tation of the embedding algorithm requires that the solver implementing Eq. (8.2.3) be
formulated with

{z} =

⎧⎪⎪⎨
⎪⎪⎩

{qu}
{q̇u}
{qc}

⎫⎪⎪⎬
⎪⎪⎭ ,

{
G (zi , t)

} =

⎧⎪⎪⎨
⎪⎪⎩

{q̇u}
{q̈u}
{q̇c}

⎫⎪⎪⎬
⎪⎪⎭ ,

{q} = [P]

{ {qu}(N−J )×1

{qc}J×1

}
,

[
[au]J×(N−J ) [ac]J×J

]
= [a] [P] ,

{q̇c} = − [ac]−1 [au] {q̇u} − [ac]−1 {b} ,[
[D]T [M] [D]

]
{q̈u} = [D]T

{
{F} − [M] [B]

[
da
dt

]
[D] {q̇u} − [M] {E}

}
,

(8.2.54)

where [D] and [B] are defined in Eqs. (8.2.44), and Eq. (8.2.49) gives {E} .

At any time step the value of {z} will be known. To perform the next integration step
one needs to extract {qu} and {qc} from the current {z} . Knowledge of the generalized
coordinate values allows one to evaluate the current values of [a], [da/dt] , and {b} ,

which then allows for evaluation of [ac] and [au] . The values of {q̇c} and {q̈u} may then be

∗ According to Eq. (8.2.50), [D]T is the orthogonal complement of [a] . The primary difficulty with using
this, rather than SVD, to implement the orthogonal complement method lies in the need to be certain
that [ac] is invertible.
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found by direct substitution. These values in conjunction with the {q̇u} values extracted
from the current {z} are used to evaluate the current value of {G} , which is the input
to the differential equation solver. In this process it is important to monitor [ac] for
invertibility. If this matrix were to become ill-conditioned at some integration step, or
actually become rank deficient, it would be necessary to change the definition of {qc} .

This is readily achieved because it merely entails changing the definition of [P] .

Greenwood (2003) offers a different procedure that also embeds the constraint
equations. It avoids the need to split the generalized coordinates into constrained and
unconstrained sets, so that the question of invertiblity of [ac] does not arise. The mod-
ified procedure begins by solving the N Lagrange equations for the generalized accel-
erations, and then substituting that solution into the acceleration constraint equations,
which leads to

{q̈} = [M]−1
{

[a]T {λ} + {F}
}

,

[a] [M]−1
{

[a]T {λ} + {F}
}

+
[

da
dt

]
{q̇} +

{
db
dt

}
= {0} .

(8.2.55)

The expression for {λ} obtained by solving the second set of equations is used to elimi-
nate the multipliers from the first set. This leads to an alternative embedding algorithm:

{z} =
{ {q}

{q̇}

}
,

{
G (zi , t)

} =
{ {q̇}

{q̈}

}
,

{q̈} = [M]−1 {F} − [M]−1 [a]T
[
[a] [M]−1 [a]T

]−1 {
[a] [M]−1 {F} + [ȧ] {q̇} + {

ḃ
}}

.

The associated Lagrange multipliers values are not needed to invoke the differential
equation solver, but their value at any instant can be obtained from

{λ} = −
[
[a] [M]−1 [a]T

]−1 {
[a] [M]−1 {F} + [ȧ] {q̇} + {

ḃ
}}

. (8.2.56)

An overview of the methods that have been presented shows that preparing the
equations to be passed to the differential equation solver at each time instant requires
several operations. Thus the issue of which is more efficient depends on more than the
number of equations to be integrated in each method. Furthermore, in addition to the
number of operations associated with each approach, it might happen that the equations
for one of these methods are better behaved, in the sense that the method allows for
a larger time step without loss of numerical stability. Which of these methods will be
best in a specific situation cannot be stated a priori. One factor that can be used as a
guideline is that some of the techniques are preferable if the values of the Lagrange
multipliers/constraint forces are required. In the author’s experience, the augmented
method provides a reliable approach that is easy to implement, reasonably efficient, and
provides all the information one might seek in a dynamics simulation.
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8.2.2 Numerical Error Checking

Regardless of the algorithm one uses, a potential difficulty lies in the fact that the ve-
locity constraint equations are not satisfied directly at every instant. Rather, they occur
only in differentiated form as acceleration constraint equations. Numerical methods are
not exact, so it is possible that a small error in satisfying the acceleration constraint
equations at each time step will accumulate to a substantial error relative to the veloc-
ity constraint equations. A similar issue arises if it was decided to ignore the fact that
a constraint condition is holonomic by expressing it in velocity form, rather than using
unconstrained generalized coordinates. It is wise to implement an auxiliary step to mon-
itor this error periodically as the integration process marches forward. The associated
operations are simple. Let an asterisk denote a quantity that is a current value returned
by the equation solver. When we substitute the instantaneous values {q∗} and {q̇∗} into
each velocity constraint equation, the resulting value of each equation leads to an error
vector {ε}:

{εv} = [a (q∗
i , t)]

{
q̇∗}+ {

b (q∗
i , t)

}
. (8.2.57)

In the same manner, another error vector may be formed from the values of any config-
uration constraints that apply: {

ε f
} = {

f (q∗
i , t)

}
. (8.2.58)

Other error measures are available from any conservation theorems that pertain,
such as mechanical energy, a linear or angular momentum component, or the Hamilto-
nian, which is discussed in Subsection 9.2.1. The value of a conserved quantity is known
from the initial conditions, so the difference between the current and initial values of a
conserved quantity is the error. The value of an error measure by itself is not significant.
Rather, the magnitude of each scalar error needs to be compared with the largest term
from which it is formed. If such a comparison suggests that the solution is drifting from
its correct condition, one would be wise to halt the numerical solution, at least to adjust
the parameters passed to the differential equation solver.

Baumgarte’s (1972) constraint stabilization method is sometimes used to compen-
sate for the tendency of error in the velocity constraints to accumulate. In it, the accel-
eration constraint is modified by the addition of the velocity constraint, multiplied by an
appropriate constant. This modified constraint equation is

[a] {q̈} + [ȧ] {q̇} + {
ḃ
}+ 2α

{
[a] {q̇} + {b}} = {0} . (8.2.59)

Clearly, the added term would have no effect if the velocity constraint equations actually
have been satisfied. To understand the rationale behind this alteration, designate the
constraint equation as {h} = [a] {q̇} + {b} = {0} . The acceleration constraint equation
requires that d {h} /dt = 0, but the numerical approximations and round-off errors in
effect convert this to d {h} /dt = {εh} . Depending on the nature of {εh} , the integral of
{εh} dt might grow, or even be unstable. The stabilized constraint in the presence of an
error term has the form d {h} /dt + 2α {h} = {εh} . This is like the equation of motion
for a damped oscillator, in which 2α is the damping rate. The effect of the damper is to
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remove energy and thereby inhibit growth of the solution. In fact, the 2α {h} term acts
like artificial viscosity, which is often introduced when partial differential equations are
solved by finite differences. Nevertheless, the constraint stabilization method does have
limitations, a discussion of which may be found in the text by Haug (1989).

The constraint stabilization method can be altered to account for any constraints
that are holonomic. Also, other procedures have been developed to correct for errors in
quantities that should be conserved. None of these are infallible. One reason for having
several numerical algorithms for solving differential equations is the fact that, for a given
set of equations with a given time increment, some might be more efficient, whereas
others might be able to go farther in time with lower errors. Thus, if one encounters
difficulty, it might be appropriate to change the method by which the equations are
solved. This might entail restarting the simulation, or switching to a different algorithm
at an intermediate instant in the integration process.

8.2.3 Initial Conditions

Determination of a unique solution of the differential equations of motion and con-
straint requires that the initial conditions be specified. As was mentioned, the left side
of Lagrange’s equations contains generalized accelerations. Thus we may consider these
equations to give the values of the q̈j variables when all qj and q̇j , as well as all forces, are
specified at some time t. It follows that the required initial conditions are the values of
each qj and q̇j at an initial time t0. When the generalized coordinates are unconstrained,
J = 0, the initial value of each qj and q̇j may be selected arbitrarily. In contrast, con-
strained generalized coordinates must satisfy the constraint equations at every instant,
including the initial one. If one fails to do so, the solution of the equations of motion will
be meaningless.

Satisfaction of the velocity constraint equations is necessary to ensure that the sys-
tem initially is moving in a kinematically admissible manner. A simple example of this
consideration is the ice skate blade described by Fig. 7.6. The constraint that must be en-
forced gives a velocity that is oriented in the direction in which the blade cuts a groove in
the ice. Initial generalized velocities that are inconsistent with this constraint correspond
to the blade skidding sideways over the ice, which is a condition that is not described by
the corresponding equations of motion.

Similarly, it is necessary that the initial conditions satisfy all configuration con-
straints, because failure to do so would start the system from an unattainable position.
Recall that our approach is to express all constraint equations in velocity form. It is
irrelevant to the algorithms described in Subsection 8.2.1 whether some of those equa-
tions actually are holonomic. However, it is crucial for setting the initial conditions that
all configuration constraints be satisfied. Thus, setting the initial conditions is the only
point in the solution process at which it is essential to know that a velocity constraint
equation actually is holonomic. Let Jc ≤ J denote the number of holonomic constraint
equations, so the N initial values (qj )0 must satisfy

fk
(
(qj )0 , t = 0

) = 0, k = 1, 2 . . . , Jc. (8.2.60)
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It follows that one may assign N − Jc of the (qj )0 to match what is known about the
initial position of the system. The remaining (qj )0 values must then be found as solutions
of these (algebraic) configuration constraints.

After initial values of the generalized coordinates consistent with Eq. (8.2.60) have
been determined, initial generalized velocities consistent with the velocity constraint
equations may be evaluated. For this evaluation there is no need to distinguish be-
tween holonomic and nonholonomic equations Thus the initial generalized velocities
must satisfy

[
a
(

(q0) j , t = 0
)]

{q̇0} +
{

b
(

(q0) j , t = 0
)}

= {0} . (8.2.61)

There are J velocity constraints. Hence only N − J elements of {q̇0} may be selected
as appropriate to specific initial velocity of the system. The unassigned J elements of
{q̇0} velocities must satisfy Eq. (8.2.61). These equations are linear in the generalized
velocities, and one may use a sorting matrix [P] as described in the previous section to
isolate the initial velocities that are computed.

EXAMPLE 8.5 At a particular instant, the generalized coordinates and general-
ized velocities for the rolling disk in Example 8.4 are

X = 2 m, Y = −1 m, ψ = −0.6109 rad, θ = 0.4363 rad, φ = 3.6652 rad,

ψ̇ = 0.4000 rad/s, θ̇ = −0.2000 rad/s, φ̇ = 80.0000 rad/s.

The disk’s radius is R = 0.25 m. First determine the values of Ẋ and Ẏ at this instant.
Then describe programming steps and carry out the evaluation of {z} and {ż} at this
instant according to the (a) integrated multiplier method, (b) augmented method,
(c) the elimination method, (d) the orthogonal complement method, and (e) the
embedding method.

SOLUTION By demonstrating the actual operations required to implement a single
step of each of the algorithms, this example makes us more aware of the relative
merits of each technique. In addition, converting the given initial values to a state
vector {z} exemplifies the operations required for initializing each algorithm. We
sequence the generalized coordinates like the scheme in Example 8.4:

{q} = [X Y ψ θ φ]T
. (1)

One should note that only three of the five initial generalized velocities are given in
the problem statement. The values of the other two are obtained by satisfying the
velocity constraint equations.

The first step for each algorithm is to express the equations of motion and con-
straint in matrix form, with elements described in terms of qj symbols. Equations
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(10)–(14) in the previous example can be placed into the standard matrix form,
Eq. (8.2.1). Thus the inertia matrix is

[M ({q})] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 0.5κ2
(

1 + (cos q4)2
)

0 κ2 cos q4

0 0 0
(

0.5κ2 + R2 (cos q4)2
)

0

0 0 κ2 cos q4 0 κ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2)
The excitation matrix is

{
F ({q} , {q̇})} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

κ2

[
1
2

q̇3q̇4 sin (2q4) + q̇4q̇5 sin (q4)
]

1
2

(
R2q̇2

4 − 1
2
κ2q̇2

3

)
sin (2q4) − κ2q̇3q̇5 sin (q4) − gRcos (q4)

κ2q̇3q̇4 sin (q4)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3)
The Jacobian constraint matrix and its time derivative are

[a ({q} , {q̇})] = R

[
1/R 0 − cos (q3) cos (q4) sin (q3) sin (q4) − cos (q3)

0 1/R − sin (q3) cos (q4) − cos (q3) sin (q4) − sin (q3)

]
,

(4)[
da
dt

({q} , {q̇})
]

= R

[
0 0 (q̇3 sin (q3) cos (q4) + q̇4 cos (q3) sin (q4))

0 0 (−q̇3 cos (q3) cos (q4) + q̇4 sin (q3) sin (q4))

(q̇3 cos (q3) sin (q4) + q̇4 sin (q3) cos (q4)) q̇3 sin (q3)

(q̇3 sin (q3) sin (q4) − q̇4 cos (q3) cos (q4)) −q̇3 cos (q3)

]
.

(5)
Also {b} = {0} . Note that the mass m has been factored out of all equations, so the
computed Lagrange multipliers will be the true λn values divided by m. Regardless
of which algorithm is implemented, functions to evaluate each of these matrices cor-
responding to current values of {q} and {q̇} need to be provided. The discussion that
follows is framed in terms of Matlab, so it is assumed that function m-files named
M.m, F.m, a.m, and a dot.m exist in the search path.

The values Ẋ = q̇1 and Ẏ = q̇2 are not specified in the problem statement, so we
know that, at the given instant,

{q} = [2 − 1 − 0.6109 θ 3.6652]T
,

{q̇} = [? ? 0.4000 − 0.2000 80.0000]T
.
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To determine Ẋ and Ẏ we observe that [a] {q̇} = {0} constitutes two equations for
the five generalized coordinates. Because X and Y are the first two variables in {q} ,

the appropriate partitioning of these equations is[
[aL]2×2 [aR]2×3

] [
[q̇1 q̇2] [q̇3 q̇4 q̇5]

]T
= {0} .

Thus we find that {
q̇1

q̇2

}
= − [aL]−1 [aR]

⎧⎪⎪⎨
⎪⎪⎩

q̇3

q̇4

q̇5

⎫⎪⎪⎬
⎪⎪⎭ .

To extract [aL] and [aR] from [a] we use the given values of ψ and θ to evaluate
Eq. (4):

[a] =
[

1 0 −0.1856 −0.0606 −0.2048

0 1 0.1300 −0.0865 0.1434

]
,

Correspondingly, we find from the preceding algebraic solution that

Ẋ = q̇1 = 16.4452, Ẏ = q̇2 = −11.5408. �

Now that we have the initial values of {q} and {q̇} , we may evaluate the other
system matrices. The results corresponding to κ = R/

√
2 for a solid disk are

[M] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 0.0285 0 0.0283

0 0 0 0.0670 0

0 0 0.0283 0 0.0312

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

{F} =
[

0 0 −0.2123 −2.6447 −0.0011
]T

,

[
da
dt

]
=
[

0 0 −0.0693 0.0606 −0.0574

0 0 −0.0621 0.0129 −0.0819

]
.

We are now ready to follow each algorithm. Each will be described in terms of
Matlab operations, based on knowing the current value of the state-space vector {z}
for that formulation. In the integrated multiplier method the state-space vector is

{z} =

⎧⎪⎪⎨
⎪⎪⎩

{q}
{q̇}
{µ}

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[X Y ψ θ φ]T

[
Ẋ Ẏ ψ̇ θ̇ φ̇

]T

[µ1 µ2]T

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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The actual values of µ1 and µ2 do not arise in the assembled equations, so we may
set them to zero. Therefore the state-space vector at the given instant is

{z} =

⎧⎪⎪⎨
⎪⎪⎩

[2 − 1 − 0.6109 0.4363 3.6652]T

[16.4452 − 11.5408 0.40 − 0.20 80.00]T

[0 0]T

⎫⎪⎪⎬
⎪⎪⎭ . �

The manner in which {z} is displayed is intended to facilitate identifying which parts
are {q} , {q̇} , or {µ} . Because {z} is the variable that would be returned by the differ-
ential equation solver, we extract the values of {q} and {q̇} from {z} as submatrices.
The following Matlab fragment defines LHS and RHS as the left coefficient matrix
and right coefficient vector appearing in Eqs. (8.2.9):

q = z(1:5); q dot = z(6:10);

LHS = [[eye(5) zeros(5,7)]; [zeros(5) M(q) -a(q)’];...

[zeros(2,5) -a(q) zeros(2)]];

RHS = [q dot; F(q,q dot); a dot(q,q dot) * q dot];

z dot = LHS\RHS;
where M(q), a(q), a dot(q,q dot), and F(q,q dot)are defined in function m-files.
The result is

{ż} =

⎧⎪⎪⎨
⎪⎪⎩

[16.4452 −11.5408 0.40 −0.20 80.00]T

[1.9061 2.7173 − 75.7185 − 44.7319 68.5679]T

[1.906 2.717]T

⎫⎪⎪⎬
⎪⎪⎭ . �

The state-space vector in the augmented method is

{z} =
{ {q}

{q̇}

}
=
⎧⎨
⎩

[X Y ψ θ φ]T

[
Ẋ Ẏ ψ̇ θ̇ φ̇

]T

⎫⎬
⎭ ,

whose value at the given instant is known from the analysis of initial conditions to
be

{z} =
{

[2 − 1 − 0.6109 0.4363 3.6652]T

[16.4452 −11.5408 0.40 −0.20 80.00]T

}
. �

The Matlab operations to compute {ż} are like those for the integrated multiplier
method, but there are fewer partitions to define. As before, it is assumed that func-
tion m-files have been written to evaluate the basic coefficient matrices, so the fol-
lowing program fragments implement the operations associated with Eqs. (8.2.11):

q = z(1:5); q dot = z(6:10);

LHS = [[M(q) -a(q)’];.[-a(q) zeros(2)]];

RHS = [F(q,q dot); a dot(q,q dot) * q dot];

sol = LHS\RHS; q2 dot = sol(1:5);

z dot=[q dot; q 2dot]];
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Note that we could extract the instantaneous Lagrange multiplier values as the
lower part of the solution vector sol if their behavior was of interest. The value
of {ż} that results is

{ż} =
{

[16.4452 −11.5408 0.40 −0.20 80.00]T

[1.9061 2.7173 − 75.7185 − 44.7319 68.5679]T

}
. �

The state-space vector {z} in the elimination method is the same as the one
for the augmented method, so its value at the present instant is as stated previ-
ously. There are two Lagrange multipliers to eliminate, so the first partition [a1]
in Eq. (8.2.13) will be 2 × 2. Inspection of [a] for this problem shows that its left
2 × 2 partition is the identity matrix, which is invertible, so there is no need to rear-
range any matrices. Thus we partition the computed values of [M] , [a] , and {F} as
prescribed in Eq. (8.2.12), with J = 2. After we perform these operations, we may
proceed directly to evaluate {q̈} according to Eqs. (8.2.16). The Matlab program
fragment implementing these operations is

q = z(1:5); q dot = z(6:10);

a mat = a(q); M mat=M(q); F mat = F(q,q dot);

a 1 = a mat(1:2,1:2); a 2 = a mat(1:2,3:5);

M 1 = M mat(1:2,1:5); M 2 = M mat(3:5,1:5);

F 1 = F mat(1:2); F 2 = F mat(3:5);

LHS = [(M 2-a 2’ * inv(a 1)’ * M 1; -a mat ];

RHS = [F 2 - a 2’ * inv(a 1)’ * F 1; a dot(q,q dot) * q dot];

q 2dot = LHS\RHS; z dot = [q dot; q 2dot]

The value of z dot produced by these operations is identical to the result of the
augmented method.

We use SVD to implement the orthogonal complement method. The state-
space vector here is the same as that of the augmented and elimination methods.
Determination of the orthogonal complement [C] corresponding to the present state
must be done before {q̈} can be evaluated according to Eqs. (8.2.26). Toward that
end we define [A] according to Eq. (8.2.34). After SVD has been performed the sin-
gular values w j are sorted in ascending order, with the same sorting sequence also
applied to [U] and [R] . Matlab steps carrying out these operations are

q = z(1:5); q dot = z(6:10);

A = [a(q); zeros(3,5)]; [L svd,w svd,R svd] = svd(A);

w diag = diag(w svd); [w,n sort] = sort(w diag);

for j=1:5;

L(:,j) = L svd(:,n sort(j));

R(:,j) = R svd(:,n sort(j));

end
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The first three singular values w diag should be zero because [A] has three rows of
zeros. This is confirmed by the computed results, which give

w = [0.0000 0.0000 0.0000 1.0056 1.0554]T
.

We correspondingly form the rows of [C] from the first three columns of [R], then
use that value to implement Eqs. (8.2.26),

C = R(:,1:3)’; LHS = [C*M(q); -a(q)];

RHS = [C * F(q,q dot); a dot(q,q dot) * q dot]

q 2dot = LHS\RHS; z dot = [q dot; q 2dot]

The value of {ż} that results is identical to that obtained from the augmented and
elimination methods. An interesting feature of Matlab is that it contains the null
function, which gives the orthogonal complement without all of the intermediate
programming steps. Specifically, we could have written C = null(A)’. The solution
did not focus on this alternative because most mathematical software contains a
SVD routine, whereas the null routine is less common. In the event that one wishes
to compare these alternative functions, it is important to realize that [C] obtained
from the null function is likely to differ from the result obtained from SVD.

Implementation of the embedding method version begins by selecting the gen-
eralized coordinates to place in the constrained set and defining the corresponding
sorting matrix [P] . In the present context it is logical to select X and Y as the con-
strained variables, consistent with our analysis of initial conditions, so that

{qc} = [X Y]T
, {qu} = [ψ θ φ]T

.

Satisfaction of Eq. (8.2.37) for these definitions of {qu} and {qc} requires that

[q1 q2 q3 q4 q5]T = [P] [q3 q4 q5 q1 q2]T
.

The nonzero element in row j of [P] occurs in column n, where n is the row where
qj occurs in the right side vector multiplying [P] . A Matlab fragment implementing
this definition is

P = zeros(5); P(1,4) = 1; P(2,5) = 1;

P(3,1) = 1; P(4,2) = 1; P(5,3) = 1;

The corresponding definition of the state vector is

{z} =

⎧⎪⎪⎨
⎪⎪⎩

{qu}
{q̇u}
{qc}

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ψ θ φ]T

[
ψ̇ θ̇ φ̇

]T

[X Y]T

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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The current value of {z} is composed of the given parameters. (There is no need to
determine the values of Ẋ and Ẏ as in the other algorithms because those variables
have been eliminated as part of the embedding process.) Thus we set

{z} =

⎧⎪⎪⎨
⎪⎪⎩

[−0.6109 0.4363 3.6652]T

[0.40 −0.20 80.00]T

[2 − 1]T

⎫⎪⎪⎬
⎪⎪⎭ . �

The sequence of operations by which we proceed from a known value of {z} at some
instant is to form the full {q} from that {z} , which we use to evaluate [ac] and [au].
We then use these submatrices to evaluate the full {q̇} , at which point we have the
data required for solving for

{
q̈∗

u

}
. The following fragment from a Matlab script file

calls the same functions as previously described to evaluate [M] , [a] , [da/dt] , and
{F}:

q u = z(1:3); q dot u = z(4:6); q c = z(7:8);

q = P * [q u; q c]; a sort = a(q) * P;

a u = a sort(1:2,1:3); a c = a sort(1:2,4:5);

a c inv = inv(a c); D = P * [eye(3); -a c inv * a u];

B = P * [zeros(3,2); -a c inv]; q dot = D * q dot u;

LHS = D’ * M(q) * D;

RHS = D’ * (F(q,q dot) - M(q) * B * a dot(q,q dot) ...

* D * q dot)

q 2dot u = LHS\RHS; z dot = [q dot u; q 2dot u; q dot c];

Note that there is no need to define [E] because {b} = {0} . The computation yields

{ż} =

⎧⎪⎪⎨
⎪⎪⎩

[0.40 −0.20 80.00]T

[−75.7185 − 44.7319 68.5679]T

[16.4452 −11.5408 ]T

⎫⎪⎪⎬
⎪⎪⎭ . �

The preceding presentation illustrates the computations required to apply each
algorithm in conjunction with a differential equation solver that marches forward
in time. The value of {ż} that was computed would be

{
G (zi , t)

}
in a differential

equation solver associated with Eq. (8.2.3). The output of that solver would be an
updated value of {z} . The program fragments presented here could be incorporated
into programs for each algorithm. These programs can be made quite general by
allowing for an arbitrary number of generalized coordinates. Of course, the func-
tions/subroutines that evaluate [M] , {F} , [a] , and {b} would need to be modified to
describe a specific system.
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EXAMPLE 8.6 A thin disk whose radius is 250 mm rolls without slipping after
being set into motion. Two sets of initial conditions are of interest:

1. The precession and spin rates are set to the values required for a steady preces-
sion at θ = 60o, such that the center would follow a circular path having radius
ρ = 5R. However, the initial nutation angle is θ = 30o and the initial nutation
rate is θ̇ = −ψ̇/2, rather than zero. Other initial conditions are X = 0, Y = 5R,

ψ = 0, φ = 0.
2. The disk is set into planar motion with its center’s velocity being 0.1155 (gR)1/2

in the X direction, and ψ̇ = θ̇ = 0. The disk is leaning slightly, with a nutation
angle of π/2 − 0.01 rad, and the other initial conditions are X = Y = 0, ψ = 0,

φ = 0.

For each case use numerical methods to solve the equations of motion. Graph the
response in a manner that describes the motion in each case.

SOLUTION This example builds on the expertise developed in the previous example,
while also leading to responses that have numerous interesting features. The compu-
tation is based on the augmented algorithm because it is relatively easy to program,
and reasonably efficient. For either set of initial conditions the main program per-
forms a number of fundamental tasks. It begins with an evaluation of the full set
of initial generalized velocities corresponding to the given unconstrained values. It
then executes a loop that saves the current set of {q} and {q̇} values, increments
time, and calls the differential equation solver. As noted in Example 7.19, some
subprograms for solving differential equations are adaptive. Such a routine will au-
tomatically select time steps and perform multiple corresponding substeps between
the specified beginning and termination times. The present work uses such a solver
with the time interval subdivided into many subintervals. The state vector computed
at each step initializes the next step. Specifically, the results were obtained with the
Matlab ODE45 function, which employs fourth- and fifth-order Runge–Kutta formu-
las. (The alternative ODE23, which implements lower-order formulas, was found to
require approximately 30% more time to execute, with no difference in the output.)
The programmatic steps that were executed to call ODE45 were constructed as fol-
lows. The state-space vector formed from the values of {q} and {q̇} at the beginning
of the integration step is contained in the variable z 0 and the corresponding time is
t0. The time for the desired response is tf. The program fragment is

z dot anon = @(t,z) z dot aug(t,z,radius,kappa)

for i = 1:i max; t0 = (i - 1) * dt; tf = i * dt;

< Data storage and error checking operations >

[t,z] = ode45(z dot anon, [t0,tf], z 0, options);

n steps = size(z,1); z 0 = z(n steps,1:10)’;

end
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The first argument in the call to the ode45 function is the handle of the
anonymous function z dot anon, which passes the requisite parameter values to
a function m-file z dot aug.m that evaluates {ż} = [{q̇}T {q̈}T]T corresponding to
the current {z} = [{q}T {q̇}T]T. (See Example 7.19 for a more detailed discussion
of anonymous functions in Matlab.) These operations parallel those described in
Example 8.5 for a single time step using the augmented algorithm. The options

value contains various parameters for ode45 that are set with the odeset function.
All of these parameters were left at their defaults, except that the relative and abso-
lute errors were set to 10−8, both of which are substantially smaller than the defaults.
The output variable t is a vector of time steps at which ode45 computed a response.
The output z has the same number of rows, with each row containing the state vector
corresponding to each row of t.

The storage and checking operations mentioned in the listing evaluate the total
mechanical energy E = T + V corresponding to the current {z} . They also evaluate
[a] {q̇}, which would grow if the velocity constraints drift even though the accel-
eration constraints are satisfied. The values of E and norm([a] {q̇}) are appended
to z 0, which is saved in additional operations before the next integration step is
begun.

In general, it is a good idea to verify that any numerical simulation gives the
correct results in situations in which a known solution exists. Such is the case here.
The conditions for steady precession were derived in Example 8.5. If we modify
the initial conditions in Case 1 such that θ = 60o and θ̇ = 0, the steady precession
formulas indicate that the response should be given by

X = 1.25 sin (1.7234t) , X = 1.25 cos (1.7234t) m,

ψ = 1.7234t, θ = π/3, φ = −9.479t rad.

The computed result closely matched these expressions. Throughout the integra-
tion interval the values of ψ̇ and φ̇ matched the formula values to seven significant
figures, and

∣∣θ̇ ∣∣ remained smaller than 10−15 rad/s.
The responses corresponding to the Case 1 initial conditions are displayed in

the first two graphs as plots of X, Y, θ ψ̇, and φ̇ as functions of time. Throughout
the time interval of the plots, the mechanical energy remained at E/m = 4.250498
and the norm of the velocity constraint error remained below 2

(
10−13

)
. The first

set of plots suggests that the motion is like a steady precession, in that the time
dependence of X and Y is oscillatory and nearly sinusoidal. Also, θ, which rep-
resents the wobble, executes a relatively small oscillation about the mean value
at which it was set. In contrast, the plots of ψ̇ and φ̇ differ substantially from the
steady precession case, in which they would be constant. These rotation rates now
execute a synchronized oscillation that is a large fraction of their respective mean
values.
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conditions resembling a steady precession

A clearer picture emerges from the third graph, which plots (X, Y) pairs at suc-
cessive values of t ; this is the path of the center of the disk as viewed looking down
the Z axis. Careful inspection would show that the center follows a nearly elliptical
path relative to the XY plane, with the major and minor axes of this ellipse rotating
a little in successive cycles. At any instant the distance to the disk’s center from
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the origin is between the length of the semiminor and semimajor axes. The average
distance from this center is approximately 0.32 m, which is much less than the value
ρ = 5R that was intended with the initial conditions.

One might be surprised that a nearly steady precession is obtained, despite the
difference between the given initial conditions and those for the intended motion.
This is a manifestation of the overall stability resulting from the gyroscopic moment,
which induces a rotation about an axis perpendicular to the axis of an applied mo-
ment. Stability is the motivation for considering the second set of initial conditions.
A classical result states that, if one attempts to cause a disk to roll freely in the verti-
cal plane, that motion will be unstable if the forward speed is below a certain value.
Before we examine the computational result, let us see how such a stability analy-
sis is carried out. The reference free-rolling motion corresponds to Ẋ = v, Ẏ = 0,

θ = π/2, ψ̇ = 0, and φ̇ = v/R. A stability analysis entails considering a motion in
which the generalized coordinates differ by a very small amount from this reference
solution. To highlight this difference we let ε designate a small parameter, and de-
fine the deviations as εξ j , where the ξ j variables are taken to have a unit order of
magnitude, specifically,

X = vt + εξ 1, Y = εξ 2, ψ = εξ 3, θ = π

2
− εξ 4, φ = vt

R
+ εξ 5. (1)

The idea is to substitute these expressions into the equations of motion and drop
all terms that contain ε in quadratic and higher powers, on the grounds that higher-
order terms will be negligible if ε is sufficiently small. The trigonometric terms are
linearized with the aid of identities, such that

sin ψ = sin (εξ 3) ≈ εξ 3, cos (ψ) = cos (εξ 3) ≈ 1,

sin (θ) = sin
(π

2
− εξ 4

)
= cos (εξ 4) ≈ 1,

cos (θ) = cos
(π

2
− εξ 4

)
= sin (εξ 4) ≈ εξ 4.

(2)

The equations of motion and constraint equations were derived in Example 8.4.
Substitution of Eqs. (1) and (2) into the constraint equations gives

v + εξ̇ 1 − R
[(

εξ̇ 3
)

(εξ 4) +
( v

R
+ εξ̇ 5

)]
+ R

(−εξ̇ 4
)

(εξ 3) = 0,

εξ̇ 2 − R
[(

εξ̇ 3
)

(εξ 4) +
( v

R
+ εξ̇ 5

)]
(εξ 3) − R

(−εξ̇ 4
) = 0.

The terms in the preceding equations that are independent of ε cancel, and lin-
earization eliminates all higher-order terms in ε. Thus the constraint equations
reduce to

ξ̇ 1 = Rξ̇ 5, ξ̇ 2 = −Rξ̇ 4 + vξ 3. (3)
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To eliminate as many generalized coordinates as possible from the equations of
motion, we substitute Eqs. (1) and (3) into the Lagrange equations for X and Y,

which leads to

mε
(
Rξ̈ 5

) = λ1, mε
(−Rξ̈ 4 + vξ̇ 3

) = λ2. (4)

Substitution of these expressions into the remaining Lagrange equations elim-
inates the Lagrange multipliers. We simplify the algebraic operations by observing
that both λ1 and λ2 are of order ε, which makes it possible to ignore a priori some
small terms containing λ1 and λ2. The result is

mκ2

(
1
2
εξ̈ 3 + εξ̇ 4

v

R

)
= 0,

mε

[
1
2
κ2
(−εξ̈ 4

)+ κ2 (εξ 3)
v

R
+ gR(εξ 4)

]
= −λ2 R,

mκ2
(
εξ̈ 5

) = −λ1 R.

(5)

Satisfaction of the first of Eqs. (4) and the last of Eqs. (5) requires that ξ 5 = 0. This
enables us to obtain a single differential equation for one variable. The first of Eqs.
(5) indicates that ξ̇ 3 = −2 (v/R) ξ 4, which we substitute along with λ2 from Eqs. (4),
into the second of Eqs. (5). We thereby obtain(

1
2
κ2 + R2

)
ξ̈ 4 +

[
2
(

κ2

R2
+ 1

)
v2 − GR

]
ξ 4 = 0. (6)

This is the differential equation for a linear undamped spring–mass system. The
coefficient of the acceleration term is always positive, so the solution for ζ 4 will be
sinusoidal if the coefficient of the springlike terms is also positive. A sinusoidal term
does not grow as time evolves, so it corresponds to a stable situation. In contrast, if
the coefficient is negative, the solutions are exponential, with one positive charac-
teristic exponent. Because this means that ξ 4 will grow as t increases, corresponding
to a divergence from the nominal value θ = π/2, the response is said to be unstable.
The radius of gyration for a thin disk is κ = R/

√
2, so we have found that

v >

(
gR
3

)1/2

=⇒ stability.

This result is often misinterpreted. The analysis is valid only if ξ 4 remains at
unit order, so we may conclude that a disk will not roll upright along a straight
line if the speed does not satisfy the stability criterion. However, the analysis does
not tell us what will happen in the unstable case, just as the fact that a ball at the
apex of a hill is unstable does not tell us much. Finding out what actually hap-
pens requires a numerical solution. The given forward speed in the Case 2 initial
conditions is 20% of this stability limit. The full set of initial conditions, which is
obtained by satisfying the constraint equations with the given initial parameters, is

{q} = [0 0 0 π/2 − 0.1 0]T
, {q̇} =

[
0.1155 (gR)1/2 0 0 0 0.1155 (g/R)1/2

]T
. This
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is the only alteration required to invoke the same computer routine as that used to
obtain the Case 1 response. As before, conservation of energy and the norm of the
velocity constraints are monitored as error checks. It was found that E = 2.476145
throughout and the norm of the velocity constraint equations never exceeded 10−9.

Inspection of the plots of X and Y as functions of time shows that the overall
motion is a slow sinusoidal variation with Y leading X by π/2, which is suggestive
of a steady precession. However, additional oscillations are superimposed on these
responses. The plot of θ (t) shows the extraordinary behavior of oscillating between
a minimum that is nearly zero and a maximum that is close to π/2. (The actual
minimum θ = 0.1308 and the maximum is the initial value π/2 − 0.10.) We also see
that the values of ψ̇ and φ̇ are very large when θ is at the minima, and almost zero
at maximum θ, and the higher-frequency aspect of the oscillation in X and Y is also
synchronized with the oscillation of θ.
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Generalized coordinates and velocities when the disk is released with a slow forward motion in a nearly
upright orientation

The plot of Y as a function of X in the fourth graph helps us to interpret this
response. It shows that the overall motion resembles a steady precession following
a circular path. However, this overall motion is composed of many loops. The outer
part of the loop consists of the disk being nearly upright, θ ≈ π/2. When θ begins
to decrease, the center moves inward to the center of the overall path. The disk’s
center executes a small loop at the bottom of its descent, and then rises back to a
nearly upright position. In the course of executing this looping motion, the overall
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precession angle has changed, thereby setting up the overall circular pattern. The
computed result for the center’s path is almost closed. Another run with a larger
initial deviation from an upright orientation, θ = π/2 − 0.1, showed a similar loop-
ing pattern, but it was visibly open. This suggests that setting the initial value of θ

extremely close to π/2 would indeed produce a closed path corresponding to a truly
periodic response.

0 0.5-0.5

-0.5

1.0-1.0

-1.0

1.5-1.5

-1.5

-2.5

-2.0

0

X (meter)

Path of the center of the disk when it is released with a slow forward motion in a nearly upright
orientation

Although this result is extremely interesting, it also points out the limits of com-
puter modeling that do not truly capture reality. An actual disk could not sustain
this motion because of rolling friction, which dissipates energy, whereas energy is
conserved in the present idealized model. The only condition in our analysis that
would indicate cessation of the motion would be that θ < 0 or θ > π , both of which
correspond to the center falling to the ground. It would also be appropriate to termi-
nate our ideal model if the instantaneous friction force required to prevent slippage
exceeds the maximum that can be developed for the current normal force. However,
checking this condition would require that we redo the entire formulation, for we
then would need to track the actual friction and normal forces, rather than employ-
ing Lagrange multipliers to represent those force. We also would need to evaluate
the normal force at each instant. We can implement such modifications by following
techniques developed in the the next section.

In closing, it is useful to consider using an algorithm other than the aug-
mented method. Matlab’s null function makes it particularly easy to program the
orthogonal complement algorithm, as described in the previous example. Other
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than altering how {q̈} is evaluated at each time step, all other aspects of the solution
obtained with the augmented method were retained. Because the orthogonal com-
plement eliminates the Lagrange multipliers, the instantaneous generalized acceler-
ations are obtained by solving five simultaneous equations, whereas the augmented
method entails solving seven equations. Nevertheless, the orthogonal complement
method required 41% more cpu time. This apparently is due to the computational
overhead required to perform the SVD.

8.2.4 Analysis of Coulomb Friction

When it is necessary to account for Coulomb friction forces, it is mandatory that the
constraint forces be evaluated, rather than represented by Lagrange multipliers. Let us
partition the virtual work into three parts: δWa is the contribution of known applied
forces, δWC denotes the contribution of the constraint forces that act perpendicularly
to contact surfaces, and δWf is the contribution of the friction forces. The first part is
described in the usual manner as

δW(a) =
N∑

j=1

Q(a)
j δqj . (8.2.62)

The explicit contribution of a single constraint force Ci to the virtual work is described
by Eq. (7.4.13). We adapt that description to a friction analysis by using Ni to denote the
normal force, and allow for the possibility that there are several such forces by adding
the individual contributions. Thus we have

δWC =
J∑

i=1

Ni

N∑
j=1

ci jδqj . (8.2.63)

The form of δWf is a generalization of the typical situation described by Eq. (8.1.7).
Each friction force may be written as

f̄i = −µ |Ni | sgn ((v̄rel)i · ēt ) ēt , (8.2.64)

where (v̄rel)i is the velocity of the surface on which f̄i acts relative to the other surface
and ēt is the direction that is tangent to the plane of contact. Furthermore, velocities
may be expressed as a linear sum of generalized velocities. It follows that the virtual
work done by all friction forces is described in general by

δWf =
J∑

i=1

N∑
j=1

ui j (qi , q̇i , t) |Ni | δqj , (8.2.65)

where the ui j (qi , q̇i , t) will contain signum functions of the generalized velocities.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

8.2 Computational Methods 537

The generalized forces obtained from these three contributions to the virtual work
are

Qj = Q(a)
j +

J∑
i=1

ci j Ni +
J∑

i=1

ui j |Ni | . (8.2.66)

The analog of Eqs. (8.1.4) when the generalized forces are described in this manner is

d
dt

(
∂T
∂q̇j

)
− ∂T

∂qj
+ ∂V

∂qj
= Q(a)

j +
J∑

i=1

ci j Ni +
J∑

i=1

ui j |Ni | , j = 1, . . . , N. (8.2.67)

The matrix version of these equations is

[M] {q̈} = {F} + [c]T {N} + [u] {|N|} , (8.2.68)

where {N} is a vector of normal force values and {|N|} is the corresponding vector of
magnitudes.

If the contacting surfaces are such that the normal force can act in only one direc-
tion, as in the case of a block on a plane, then the corresponding N̄i can act only to press
the surfaces together. In that case, Ni can only be positive, because negative Ni would
mean that the surfaces are about to separate. If only compressive contact forces are per-
mitted, |Ni | can be replaced with Ni , so the equations of motion are linear in the normal
forces. Any of the algorithms that entail evaluating the Lagrange multipliers are readily
modified to address this situation. An important aspect of the one-sided nature of the
contact force in this case is that the solution ceases to be valid whenever any Ni becomes
negative.

The problematic case is that in which the sense of the normal force is not known
in advance, as would be the case for a collar sliding on a guide bar. In planar motion,
this means that the sign of the normal force is unknown, whereas the magnitude of the
normal force in spatial motion is the resultant of the two force components perpendic-
ular to ēt . In either case, the normal force does not occur linearly in the equations of
motion, so there is no simple modification of the solution algorithms. One approach is
implemented in the next example. The idea is to use the fact that one can obtain the
magnitude of a scalar by multiplying the value by its sign. Thus

|Ni | = Ni sgn (Ni ) . (8.2.69)

The value of Ni is taken to be unknown, and sgn(Ni ) is set by the value of Ni that was
most recently determined.

A separate issue for Coulomb friction is whether slippage actually occurs. The static
friction law states that, at any instant when there is no relative velocity between the con-
tacting surfaces, sliding will resume only if the magnitude of the friction force exceeds
µs |Ni | , where µs is the coefficient of static friction. Thus a simulation of the Coulomb
friction force should implement a separate test for this condition, which would be called
for whenever the contacting surfaces are sensed to have reversed the sense of their slid-
ing motion.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

538 Constrained Generalized Coordinates

EXAMPLE 8.7 The coefficient of sliding friction between collar A and its horizon-
tal guide is µ, but friction between collar B and the inclined guide is negligible. The
spring, whose stiffness is k, is unstretched when φ = 0. The bar and each collar have
identical mass m. Determine the equations of motion of the system. Then consider
a specific case in which kL/mg = 4, β = 60o, and the coefficient of sliding friction is
µ = 0.25. The bar is released from rest at φ = 30o. Determine the elapsed time until
the bar comes to rest and the mechanical energy that is dissipated by friction in that
interval.

L

φ
β

A

B

Example 8.7

SOLUTION This example is representative of how sliding friction can be incorpo-
rated into the Lagrange equations of motion, and the numerical solution will clarify
some of the issues regarding how to handle friction forces. Also, its similarity with
Example 6.9, which was analyzed with the Newton–Euler equations of motion, pro-
vides an opportunity to assess the merits of each approach.

The position of the bar is fully specified by the angle φ, so this is a holonomic
system with one degree of freedom. We use two generalized coordinates in order
to violate the constraint that collar A must slide along its guide, because doing so
will cause the normal force at that location to appear in the virtual work. Because
friction at collar B is negligible, we do not wish to violate the constraint condition for
that collar. Thus the generalized coordinates we use are the angle of orientation and
the distance from the intersection of the guide bars to collar B, so q1 = φ, q2 = s.
We place the origin O of a fixed coordinate system XYZ at this intersection, so the
vectors corresponding to arbitrary values of the generalized coordinates are

r̄ B/O = s
(− cos β Ī + sin β J̄

)
,

r̄ A/O = r̄ B/O + r̄ A/B = s
(− cos β Ī + sin β J̄

)+ L
(
cos φ Ī − sin φ J̄

)
,

r̄ G/O = r̄ B/O + r̄ G/B = s
(− cos β Ī + sin β J̄

)+ L
2

(
cos φ Ī − sin φ J̄

)
.

(1)

We readily obtain the configuration constraint by applying the law of sines with the
collar A situated on the horizontal guide bar. The result is written as

s sin β − Lsin φ = 0. (2)

Differentiating this gives the velocity constraint equation:

ṡ sin β − Lφ̇ cos φ = 0. (3)
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We describe the virtual work done by the normal force at point A explicitly,
as called for by the general procedure for handling friction forces. Arbitrary incre-
ments in the generalized coordinates cause collar B to merely displace parallel to its
guide, so the normal force acting on collar B will not contribute to the virtual work.
For collar A we take the normal force N̄A to be positive upward, and the friction
force f̄A is taken to be positive when it acts to the left, corresponding to v̄A being to
the right. Applying the analytical method for virtual displacement to the second of
Eqs. (1) gives

δr̄ A = δs
(− cos β Ī + sin β J̄

)+ Lδφ
(− sin φ Ī − cos φ J̄

)
.

The gravity and spring forces are conservative, so the virtual work is

δW = (− fA Ī + NA J̄
) · δr̄ A = L(−NA cos φ + fA sin φ) δφ + (NA sin β + fA cos β) δs,

from which it follows that the generalized forces are

Q1 = −NALcos φ + fALsin φ, Q2 = NA sin β + fA cos β. (4)

We will introduce Coulomb’s law later, so we proceed to formulating the energy
expressions. The bar is in general motion, with −φ̇k̄ being its angular velocity. The
required velocities may be described by by direct differentiation of the positions in
Eqs. (1):

v̄B = d
dt

r̄ G/O = ṡ
(− cos β Ī + sin β J̄

)
,

v̄A = d
dt

r̄ A/O = (−ṡ cos β − Lφ̇ sin φ
)

Ī + (
ṡ sin β − Lφ̇ cos φ

)
J̄ ,

v̄G = d
dt

r̄ G/O =
(

−ṡ cos β − L
2

φ̇ sin φ

)
Ī +

(
ṡ sin β − L

2
φ̇ cos φ

)
J̄ .

The kinetic energy corresponding to these quantities is

T = 1
2

mv2
G + 1

2

(
1

12
mL2

)
φ̇2 + 1

2
mv2

A + 1
2

mv2
B

= 1
2

m

[(
−ṡ cos β − L

2
φ̇ sin φ

)2

+
(

ṡ sin β − L
2

φ̇ cos φ

)2

+ 1
12

L2φ̇2

+ (−ṡ cos β − Lφ̇ sin φ
)2 + (

ṡ sin β − Lφ̇ cos φ
)2 + ṡ2

]

= 1
2

m
[

4
3

L2φ̇2 + 3ṡ2 − 3Lφ̇ṡ sin (β − φ)
]

.

(5)

The potential energy is readily constructed in terms of the constrained gener-
alized coordinates. The distance from the intersection O of the guide bars to the
collar is r̄ A/O · Ī. At φ = 0, where the spring is undeformed, this distance is L. Thus
the spring elongation is � = L− r̄ A/O · Ī. Let the X axis be the reference elevation
for gravity potential energy. Then the elevation of the collars and of the center of
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mass are the vertical components of the respective position vectors given in Eqs. (1).
These considerations lead to

V = 1
2

k [L(1 − cos φ) + s cos β]2 + mg
(

3s sin β − 3
2

Lsin φ

)
.

The Lagrange equations corresponding to these energy expressions and the gener-
alized forces in Eq. (2) are

4
3

mL2φ̈ − 3
2

mLs̈ sin (β − φ) + kL[L(1 − cos φ) + s cos β] sin φ

− 3
2

mgLcos φ = −NALcos φ + fALsin φ,

3ms̈ − 3
2

mLφ̈ sin (β − φ) + 3
2

mLφ̇2 cos (β − φ) + k [[L(1 − cos φ)]

+ s cos β] cos β + 3mg sin β = NA sin β + fA cos β.

(6) �

The last step in the derivation is to characterize the friction force. The gen-
eralized forces were derived with positive NA corresponding to the normal force
acting upward. However, the constraint imposed by the guide bar is still effective
if the collar is tending to move upward, which would lead to NA being negative.
We therefore describe the magnitude of the sliding friction force as | fA| = µ |NA| .
Furthermore, f̄A was taken to be directed to the left, which corresponds to collar
A moving to the right. Such a movement means that v̄A · Ī > 0, so we may say that
fA = µ |NA|sgn

(
v̄A · Ī

)
. Because v̄A · Ī = −ṡ cos β − Lφ̇ sin φ, substituting fA into

Eqs. (6) shows that we have three unknowns, φ, s, and NA, that are governed by the
two Lagrange differential equations and the velocity constraint equation.

These equations are highly nonlinear, so we solve them numerically. Even if
dimensional system parameters were given, it is good practice to begin by nondi-
mensionalizing the equations. Let ξ = s/L, and let nondimensional time be τ =
t (g/L)1/2

, so that each time derivative is replaced with a derivative with respect
to τ according to d/dt = (g/L)1/2 d/dτ . Changing the variables in this manner con-
verts Lagrange equations (6), and velocity constraint equation (3) to

4
3
φ̈ − 3

2
ξ̈ sin (β − φ) + �2 [(1 − cos φ) + ξ cos β] sin φ − 3

2
cos φ

= −N̂ cos φ + µ cos β
∣∣N̂∣∣ sgn (vA) sin φ,

3ξ̈ − 3
2
φ̈ sin (β − φ) + 3

2
φ̇2 cos (φ − β) + �2 [(1 − cos φ) + ξ cos β] cos β + 3 sin β

= N̂ sin β + µ
∣∣N̂∣∣ sgn (vA) cos β,

ξ̇ sin β − φ̇ cos φ = 0,

where an overdot now denotes differentiation with respect to τ , and

vA = −ξ̇ cos β − φ̇ sin φ, �2 = kL
mg

, N̂ = NA

mg
.
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As suggested by Eq. (8.2.69), we handle the appearance of |N| in the friction
force by replacing it with N sgn(N) . The resulting differential equations to solve
may be written as

[M] {q̈} = {F} + {H} N̂,

− [a] {q̈} = [ȧ] {q̇} ,
(7)

where {q} now is formed from φ and ξ, and

[M] =

⎡
⎢⎢⎣

4
3

−3
2

sin (β − q1)

−3
2

sin (β − q1) 3

⎤
⎥⎥⎦ ,

{F} =

⎧⎪⎪⎨
⎪⎪⎩

− �2 [(1 − cos q1) + q2 cos β] sin q1 + 3
2

cos q1

−3
2

q̇2
1 cos (β − q1) − �2 [(1 − cos q1) + q2 cos β] cos β − 3 sin β

⎫⎪⎪⎬
⎪⎪⎭ ,

{H} =
{− cos q1 + µ cos βsgn

(
N̂
)

sgn (−q̇2 cos β − q̇1 sin q1) sin q1

sin β + µsgn
(
N̂
)

sgn (−q̇2 cos β − q̇1 sin q1) cos β

}
,

[a] = [− cos q1 sin β] ,

[
da
dt

]
= [q̇1 sin q1 0] .

(8)

We employ the augmented method to solve these equations, which requires
that the values of {q̈} and N̂ be evaluated at each instant. Toward that end we write
Eqs. (7) as [

[M] −{H}
− [ȧ] 0

]{ {q̈}
N̂

}
=

⎧⎪⎨
⎪⎩

{F}[
da
dt

]
{q̇}

⎫⎪⎬
⎪⎭ . (9)

This is the standard form for the augmented algorithm, the third of Eqs. (8.2.11), ex-
cept that the coefficient matrix is not symmetric. The state vector formed by stack-
ing the current {q̇} value above the {q̈} value obtained from Eq. (9) constitutes the
input for the differential equation solver. Solving these equations linearly requires
that {H} , which depends on sgn

(
N̂
)
, be evaluated before solving the equations. The

results presented in the following discussion were computed by setting the sign of N̂
at each time step to the sign of the result for N̂ computed at the previous time step.

Starting the differential equation solver requires initial values of {q} and {q̇} ,

but this is a holonomic system, which means that only the initial values φ0 and φ̇0

may be defined freely. The constraint conditions then give

s0 = Lsin φ0

sin β
, ṡ0 = Lφ̇0 cos φ0

sin β
.

The results presented here were obtained with the Matlab ODE45 function,
which uses Runge–Kutta integration. The time step was set at �τ = 0.004. Be-
fore we examine the results, it is appropriate to consider some general issues. Error
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checking should be done to verify that the configuration constraint equation actu-
ally is satisfied. This was done by computing at each time instant the nondimensional
configuration constraint ξ sin β − sin φ, which should be zero. The maximum value
of this quantity was found to be less than 5

(
10−11

)
. Another check is to set µ = 0

in the computer program, in which case the system is conservative. We can monitor
the mechanical energy in a simulation with µ = 0 to verify that E = T + V is indeed
constant. If we seek further verification, we can use the principle of conservation
of energy when µ = 0 to evaluate the angular velocity when φ = 0, and compare
that result with the computed response. In the same vein, we know that the sliding
friction force always opposes the movement, so it must be that E decreases mono-
tonically whenever µ > 0.

The last consideration is the decision to halt computation. Properly done, when-
ever the velocity of collar A reverses sign, meaning that collar A has momentarily
come to rest, we should launch a separate static analysis of the friction and nor-
mal forces required to hold the system in equilibrium at the current location. If
| fstatic| < µstatic |Nstatic| , then there is adequate friction to sustain the equilibrium
state, which would indicate that the simulation should be halted. A simpler alterna-
tive, which was employed here, is to step forward in time until it is observed that
vA becomes extremely small for several time steps. One weakness of this approach
is that it does not account for the difference between the static and sliding friction
coefficients, but it is easier to program.

The first set of graphs depicts the position and velocity variables. Of course,
only one such variable is actually required for this one-degree-of-freedom system,
whereas the others could be computed from the kinematical equations, but it is
convenient to see them assembled.
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Position and velocity as functions of time for the falling bar.
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The motion ceased at τ = 5.696, when the value of vA/ (gL)1/2 = −φ̇ sin φ − ξ̇ sin β

reversed sign and remained below 10−5. At that time the bar was at φ = −77.035o.

The graphed velocity shows that this was the third instant after release at which
collar A came to rest. �

The next set of graphs displays the value of N̂ obtained from the function that
solves Eq. (9) when called by the differential equation solver. The graph also dis-
plays the mechanical energy E computed from the generalized coordinates and ve-
locities at each instant. The nondimensional form of E = T + V is scaled by mgL,

such that

T
mgL

= 1
2

[
4
3
φ̇2 + 3ξ̇

2 + 3φ̇ξ̇ sin (φ − β)
]

,

V
mgL

= 1
2
�2 [(1 − cos φ) + ξ cos β]2 +

(
ξ sin β − 1

2
sin φ

)
.

The energy that is dissipated by friction is the difference between the initial and final
values of E, which leads to

�E = (T + V)
∣∣
τ=0 − (T + V)

∣∣
τ=5.696 = 2.478mgL. �

The graph of the normal force is interesting for the fact that it shows small discon-
tinuities in N̂. The instants for this occurrence are those at which vA changes sign,
causing the friction force to reverse.
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In a strict sense, the present derivation of equations of motion cannot be com-
pared with the solution of Example 6.9 because the present situation featured a
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spring, and the collars had mass, whereas friction at both collars was important for
the previous case. Furthermore, the previous analysis dealt with a situation in which
collar A had a constant velocity. Nevertheless, we can see that the kinematical as-
pects of the current solution were simpler by virtue of its use of unconstrained gener-
alized coordinates. In fact, if it were necessary to account for friction at both collars,
as was done previously, we would use three constrained generalized coordinates,
which would need to satisfy constraint conditions associated with both collars. An-
other noteworthy aspect is that accounting for each collar’s mass entailed little addi-
tional effort for the Lagrange equation formulation, whereas the previous approach
would require that Newton’s Second Law be applied to each collar to account for
the internal forces exerted between each collar and the bar.
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HOMEWORK PROBLEMS

L

R
Ω

A B

Exercise 8.1

EXERCISE 8.1 A torque � acting about the vertical
shaft is such that the precession rate is � = �0 sin (βt).
The sliders, whose masses are mA and mB, are tied to-
gether by an inextensible cable. The moment of inertia
of the T-bar about the precession axis is Ip. Derive the
equation of motion for the radial distance R assuming
that frictional resistance is negligible, and also obtain
an expression for �.

θ
φ

R
2.5R

A

B

C
F

Exercise 8.2

EXERCISE 8.2 Force F̄(t) pushes collar A,
whose mass is m, to the left. This causes the
gear to roll over the horizontal rack. The mass
of the gear is 2m, and its radius of gyration
about center point C is κ ; the mass of bar AB is
m. Use the angles θ and φ as constrained gen-
eralized coordinates to derive the equations of
motion for the system.

A

B

Ω

β

R

w

H

Exercise 8.3

EXERCISE 8.3 The cylinder of mass m is free to rotate
by angle β relative to the gimbal, which rotates about
the horizontal axis. The precessional rate � is held con-
stant by varying an unknown torque � that acts about
the horizontal axis AB of the gimbal. Use Lagrange’s
equations to derive the equation of motion governing
β, as well as an expression for �.

D

A

L
M

B

C β

Ω1

ψ

Exercise 8.4

EXERCISE 8.4 A torque � that is a known function of
time acts about the vertical shaft, whereas M is a servo-
torque that controls the gimbal’s precession, such that
β́ = c1ψ̇ + c2β + c3, where the cn are constants. The
spin rate �1 is maintained at a constant value by a ser-
vomotor. The mass of this motor and the gimbal are
negligible. The mass of the flywheel is m, and its princi-
pal radii of gyration for centroidal axes are κ1 about its
spin axis and κ2 normal to that axis. Derive Lagrange
equations of motion, then assemble a set of state-
space equations suitable for implementing a computer
solution.
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L

A

L
F

M

C

B

Exercise 8.5

EXERCISE 8.5 A known couple M(t) is applied to the upper
bar. Force F , which is applied perpendicularly to the lower
bar, acts to make the velocity of end C always be parallel to
the line from joint A to end B. The bars have equal mass
m, and the system lies in the vertical plane. Use the method
of Lagrange multipliers to derive the equations of mo-
tion.

k1 k1

k2

x

θ

F

Exercise 8.6

EXERCISE 8.6 The force F̄ applied to the small suspended
sphere m2 acts perpendicularly to spring k2, which represents
an elastic cable. This force is such that the velocity of the
sphere is always parallel to the cable. Springs k1 are com-
pressed by the same amount at the position where the dis-
placement x of the collar is zero. The mass of the collar is
m1. Friction between the collar and the horizontal guide bar
is negligible. Derive the differential equations governing the
motion of this system.

EXERCISE 8.7 Collars A and B are pinned to the bar that is welded to sphere C. A
servomotor acting about the pin in collar A applies torque � to bar AC with the result
that collar A moves downward at a constant specified speed v. The system rotates freely
about the vertical axis, so the precession rate �2 is unknown, but the spin rate �1 is held
at a constant value by another servomotor. The mass m of the sphere is sufficiently large
to neglect the inertia of the other parts. Derive a set of equations whose solution would
give �2 as a function of time and the corresponding value of �.
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D

θ
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L
L

R
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v

Ω1

Γ

Exercise 8.7

L

L
θ1

θ2Ω

A

B

C

Exercise 8.8

EXERCISE 8.8 A servoactuator at joint B applies a torque that
maintains θ2 = 1.5θ1. The rotation rate � is held constant by a
torque applied to the vertical shaft. Derive a set of equations
of motion whose solution would yield θ1, as well as the con-
trolling torques applied to the vertical shaft and between the
bars at pin B.
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M
β

A
B

C

2R

2R
R F

Exercise 8.9

EXERCISE 8.9 The horizontal platform translates up-
ward, and the T-bar rotates about the vertical axis. Both
the force F̄ and torque M̄ are known functions of time.
The rolling motion of disk C, which spins freely about
shaft BC, is such that there is no slippage in the direc-
tion perpendicular to the sketch, but there is slippage in
the radial direction. Derive the Lagrange equation(s) of
motion governing this system in the situation where only
the disk’s mass is significant.

H

F
β

vG

G

Exercise 8.10

EXERCISE 8.10 The thrust of an outboard motor on a boat
may be represented as a force F̄ acting at an angle β relative
to the axis of the boat. The hydrodynamic properties of the
boat are such that the velocity of the center of mass G is con-
strained to be parallel to the longitudinal axis of the boat. The
component of the hydrodynamic force parallel to the axis of
the boat is the drag fd. Derive the equations of motion for the
boat by using Lagrange multipliers. The mass of the boat is m,
and its centroidal moment of inertia is I.

θ

L
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β

B
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vB

F

Exercise 8.11

EXERCISE 8.11 The diagram depicts a linkage that is
situated in the horizontal plane. Collar A slides along
the stationary guide bar, and the steerable wheel B at
the other end of rigid bar AB rolls over the ground. A
servomotor controls the steering angle β. There is no
slippage in the rolling motion, so the velocity of end
B must be in the sense shown in the diagram. Move-
ment is actuated by the known force F (t) applied to
the collar. Generalized coordinates are the horizontal
position xA and the rotation angle θ. Use the method
of Lagrange multipliers to derive the equations of
motion governing these variables.

.

.
H
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vB

w

θ

F

P

β

A

B

C

L

X (east)

Y (north)

Exercise 8.12

EXERCISE 8.12 The sketch shows the top view of
a sled that is towed over the ice by fastening a ca-
ble to hook C. Force F is the tensile force applied
to the tow cable at its free end P; its magnitude
and direction angle β relative to the sled’s center
line are known functions of time. The edge contact
constrains the velocity of points A and B to be par-
allel to the rails, but the speed of each point may be
different. Generalized coordinates have been se-
lected as the east and north coordinates of the cen-
ter of mass G and the heading angle θ. The radius
of gyration about the vertical centroidal axis is κG.

Use Lagrange’s equations to derive the equations
governing the motion for this system.
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G
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A

L

R

F2

F1

Exercise 8.13

EXERCISE 8.13 The wheelbarrow is pushed in
the horizontal plane by forces F̄1 and F̄2 acting
at the ends of the handles. The chassis has mass
m, with its center of mass situated at point G on
the centerline. The centroidal moment of iner-
tia of the chassis about a vertical axis is I. The
wheel, which may be approximated as a thin
disk, rolls without slipping. Derive the Lagrange
equations of motion.
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Exercise 8.14

EXERCISE 8.14 Beth applies torque � about
the front axle, thereby causing the front wheel
to spin by angle φ1. She also applies a torque
to the handlebars, with the result that β (t) is is
a known time function. Beth may be considered
to be immobile relative to the chassis, so she and
the chassis represent a rigid body having mass
mc, center of mass G, and moment of inertia Ic

about a vertical axis through point G. All wheels
may be approximated as thin disks with mass
m1 and radius R for the front wheel and mass
m2 and radius r for those in the rear, and they
may be assumed to roll without slipping. Gener-
alized coordinates are the coordinates XA and
YA of the steering fork, the chassis angle θ, and the spin angles φ1, φ2, and φ3 of the
wheels. Derive the corresponding differential equations of motion.

Exercise 8.15

EXERCISE 8.15 Force F is applied to collar A, and
arm CD rotates at the constant rate �. Each collar
has mass m, and the mass of the connecting bar
AB is 2m. Friction is negligible, as is the effect of
gravity. Constrained generalized coordinates have
been selected to be the horizontal position s of col-
lar A, the precession of bar AB relative to the hor-
izontal guide, and the angle between bar AB and
the horizontal guide. Derive the corresponding La-
grange equations of motion.

EXERCISE 8.16 The distance Lbetween the spheres remains constant as the spheres spin
freely about the connecting shaft. The spheres are identical, with mass m and radius R,

and the mass of the shaft also is m. Derive the Lagrange equations of motion governing
the x, y coordinates of the center of the shaft and the inclination angle θ in the case in
which the spheres roll without slippage over the inclined surface.
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Exercise 8.16
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Exercise 8.17

EXERCISE 8.17 Consider the motorboat in Ex-
ercise 8.10. The magnitude of the drag force de-
pends on the speed of the center of mass. In ad-
dition, when the motor is set to full throttle, the
thrust is speed dependent because of cavitation
at the propeller. Thus, if v̄m and v̄G are the in-
stantaneous velocities at the motor and the cen-
ter of mass, then the respective forces are de-
scribed by the functions f (|v̄G|) and F (u) de-
scribed in the accompanying graphs, where u ≡ v̄m · [cos (θ + β) Ī + sin (θ + β) J̄

]
. The

boat’s mass is 4000 kg, and its centroidal radius of gyration about the vertical axis is 4 m.
Also, the distance H = 6 m. Suppose the boat is at rest pointing northward when the
motor is suddenly moved to full throttle and held there. The steering angle is set and
held at 1◦ for 30 s, then reversed to −4◦ for the next 30 s. Use numerical methods to
determine the path of the center of mass during this 1-min interval. Also, determine the
speed and heading of the boat at t = 60 s.

R

θ 4R
y

Exercise 8.18

EXERCISE 8.18 The collar and bar have equal mass m, and
the effect of friction is negligible. The system is released from
rest at θ = 90◦. Determine the inclination angle θ as a func-
tion of t for the case where (g/R)1/2 = 1.6 rad/s by following
alternative formulations: (a) θ is a single unconstrained gen-
eralized coordinate, (b) θ and y are constrained generalized
coordinates.

EXERCISE 8.19 The sled in Exercise 8.12 is at rest pointed eastward (θ = 0) , with its
hook C at X = −L, Y = 0. At t = 0, Tundra, the great Alaskan Malamute, begins to
pull it by applying a constant tensile force of 300 N as she walks northward along the Y
axis. Parameters for the system are m = 500 kg, κG = 600 mm, H = 1.5 m, w = 1 m, and
L = 10 m. Solve the equations of motion to determine how the position coordinates of
point C and the heading angle θ vary as a function of time. How long does it take for the
heading angle to be θ = 89o?
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EXERCISE 8.20 The linkage in Exercise 8.2 was at rest at t = 0 with bar AB inclined
at φ = 10◦. The actuating force is F = 50 sin (4t) N. The system parameters are m =
800 g, R = 200 mm, and κ = 150 mm. Use numerical methods to solve the state-space
equations governing the constrained generalized coordinates φ and θ. What is the largest
value of θ attained in the ensuing motion?

EXERCISE 8.21 The torque in Exercise 8.5 is constant at 60 N-m. The system is at rest at
t = 0 with bar AB horizontal to the right, and bar BC vertically downward. Determine
the angle of inclination of each bar. Use those results to graph the path followed by end
C. The mass of each bar is m = 4 kg, and L = 500 mm.

EXERCISE 8.22 The force F in Exercise 8.11 is constant at 50 N. The masses are 2 kg for
bar AB and 0.5 kg for collar A, the mass of the wheel is negligible, and L = 800 mm. At
t = 0, the system was at rest with θ = 0. The steering angle is β = 0.5π [2 exp (−2t) − 1]
rad, where t is in units of seconds. Determine xA and θ as functions of time. What are
the extreme values of θ attained in the motion?

EXERCISE 8.23 A sphere of radius R rolls without slipping over a horizontal turntable
that rotates about its center at constant angular speed �. Two generalized coordinates
are selected to be the radial distance r from the turntable axis to the center of the sphere
and the angle ψ of that radial line. Rotation of the sphere about its vertical diameter
does not affect the velocity of the center relative to the turntable, so the nutation and
spin angles of the sphere suffice as the other generalized coordinates. Derive the equa-
tions of motion for this system. Then solve them numerically for the case where the
initial conditions are r = 3R, ṙ = ψ = 0, ψ̇ = � at t = 0. Hint: Nondimensionalize the
equations of motion using R as the length scale and 1/� as the time scale.

θ

L

Exercise 8.24

EXERCISE 8.24 The bar is slipping relative to the ground as it falls. The
coefficient of kinetic friction is µ. Use Lagrange’s equations to derive
the equations of motion for the bar.

θ
R

Exercises 8.25 and 8.26

EXERCISE 8.25 The semicylinder, whose mass is m, is released
from rest at an initial orientation θ > 0. The coefficient of kinetic
friction µ between the cylinder and the ground is not adequate
to prevent sliding, and friction with the wall is negligible. Use
Lagrange’s equations to derive the equations of motion for the
bar.

EXERCISE 8.26 The semicylinder, whose mass is m, is released from rest at an initial
orientation θ > 0. The coefficient of kinetic friction µ between the cylinder and both
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surfaces it is in contact with is µ. The system is released from rest at θ = 90◦, and the
value of µ is not adequate to prevent sliding. Derive Lagrange’s equations of motion.

θ

φ
L

H

Exercise 8.27

EXERCISE 8.27 The bar is supported by a ball-and-
socket joint A. The coefficient of sliding friction be-
tween end B of the bar and the wall is µ. Use La-
grange’s equations to derive the equation of motion
governing the angle of inclination θ .

H

φA

B

L

Exercise 8.28

EXERCISE 8.28 The coefficient of sliding friction between
the bar and corner A is µ, but friction between end B of the
bar and the vertical wall is negligible. Derive the Lagrange
equations of motion for this system.

EXERCISE 8.29 The bar in 8.24 is released from rest at θ = 75◦. The coefficient of sliding
friction is 0.1, and (g/L)1/2 = 0.5 rad/s. Determine the time required for the bar to fall
to the ground, and compare that time with the case in which friction is negligible.

EXERCISE 8.30 In Exercise 8.18 the coefficient of sliding friction between the bar and
the cylinder is µ, but friction between the collar and the vertical post is negligible. (a)
Derive the differential equations of motion. (b) Consider the case in which the coeffi-
cient of friction is µ = 0.1 and (g/R)1/2 = 1.6 rad/s. The system is released from rest at
θ = 20◦. Solve the Lagrange equations of motion to determine the inclination angle θ as
a function of the elapsed time t.

EXERCISE 8.31 In Exercise 8.28 the coefficient of sliding friction between the bar and
both surfaces it is in contact with is µ = 0.1. (a) Derive the Lagrange equations of mo-
tion. (b) Consider the situation in which the bar is released from rest at φ = 85◦. The
dimensions are L = 600 mm and H = 500 mm. Determine the angle of elevation as a
function of time for the interval during which it remains in contact with both surfaces.
Does the bar lose contact with the wall or with the corner?
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CHAPTER 9

Alternative Formulations

The preceding developments suffice to treat systems that are described by a finite num-
ber of degrees of freedom. They are not directly applicable if a system is best modeled
as a flexible continuum, in which bodies deform and also have mass. One cannot com-
partmentalize kinetic and potential energy in such systems, because a mass element also
stores strain energy. Consequently, concepts like generalized coordinates become prob-
lematic. The derivation of principles that can be used to model continuous media is the
first priority for this chapter.

Another focus here is exploration of alternative formulations for deriving equa-
tions of motion for discrete systems. Derivation of these formulations has received
considerable attention for more than a century and a half. Those efforts were moti-
vated by a desire to seek simpler equation forms, either from the perspective of ease
of implementation or ease of solution. We consider a few formulations, but extensive
discussions may be found in the works by Greenwood (2003) or Papastavridis (1998,
2002).

One of the outcomes of these alternative formulations are conservation principles
that sometimes can be used when the standard momentum and energy principles cannot
be implemented. Such principles enable us to determine features of a system’s response
without solving equations of motion and also provide checks for computation solutions.
Overall, the developments that follow are intended to enhance understanding of the
basic concepts of analytical mechanics and to provide increased versatility to carry an
analysis to completion.

9.1 HAMILTON’S PRINCIPLE

Lagrange’s equations are restricted to systems composed of rigid bodies that have mass,
and therefore store kinetic energy, whereas potential energy is stored in massless springs
and other sources of conservative forces. This is an idealization, as is evident when one
considers that no material can sustain stresses without deforming, and all springs have
mass. Any model of a system needs to be tested by examination of the assumptions on
which the model is founded. This leads to the need to consider models in which the rela-
tive position of mass points is not kinematically constrained. Each body’s displacement
then is a function of location within the body. This function is the displacement field.
It represents the spatial distribution of displacement, which causes some individuals to
refer to such models as distributed parameter systems.

552
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One approach for deriving equations of motion of continua relies on the concepts
in mechanics of materials. Specifically, a differential element of the system is isolated
in a free-body diagram, and the internal stress distribution is described by stress-strain
and strain-displacement relations. The primary difference from the static case is the us-
age of Newton–Euler equations of motion, rather than the laws of statics, to describe
the balance of forces acting on the isolated mass element. Such an approach works well
when applied to simple systems, such as a vibrating elastic bar, but it becomes cum-
bersome and prone to error in more complicated situations. Fortunately, there is an
alternative formulation that relies on Hamilton’s Principle, which was presented by Sir
William Rowan Hamilton in 1834. From one perspective, the relationship of continuum
formulations using Hamilton’s Principle and mechanics of materials approaches is anal-
ogous to the relationship of Lagrange’s equations and the Newton–Euler equations for
discrete systems. However, the remarkable aspect of Hamilton’s Principle is that it is far
more general. It provides an alternative derivation of Lagrange’s equations, yet, with
suitable adjustments in the definition of energy, it can be applied to relativistic systems.
It also provides the basis for many approximation techniques, including finite element
analysis, that are used to derive discrete models of continua.

9.1.1 Derivation

The steps leading to Hamilton’s Principle parallel the derivation of Lagrange’s equations
in Chapter 7, with the important difference that generalized coordinates are not used to
describe position. We begin with a single particle. The principle of dynamic virtual work
states that (


 F̄ − mā
) · δr̄ = 0̄. (9.1.1)

The virtual work done by the actual forces is δW, so we have

δW − mā · δr̄ = 0. (9.1.2)

The explicit occurrence of the acceleration may be removed by introducing the rule for
differentiating a product, which leads to

δW − d
dt

(mv̄ · δr̄) + mv̄ · d
dt

(δr̄) = 0. (9.1.3)

Interchanging the virtual increment and the time derivative in the last term enables us
to rewrite the preceding as

δW − d
dt

(mv̄ · δr̄) + mv̄ · δv̄ = 0. (9.1.4)

Aside from holding t constant, the rules for a virtual increment are like those for a
differential, so that

mv̄ · δv̄ = δ

(
1
2

mv̄ · v̄

)
≡ δT, (9.1.5)
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where T is the kinetic energy of the particle. It follows that

δT + δW − d
dt

(mv̄ · δr̄) = 0. (9.1.6)

We now extend this relation to treat any system. All systems are composed of a
collection of particles,∗ and Eq. (9.1.6) is descriptive of any particle. Let index n de-
note which particle it represents. Because the preceding is a scalar equation, each term
becomes a simple sum when we add the equations for all particles. This leads to redef-
inition of T as the kinetic energy of all particles in the system and δW as the virtual
work done by all forces. The latter was decomposed in Eq. (7.4.34), which means that
the virtual work done by the conservative forces is the negative of the virtual change in
the potential energy. The symbol δW shall henceforth represent the virtual work done
by all forces that have not been described by a potential-energy function. In that case,
addition of Eq. (9.1.6) for each particle in the system yields

δT − δV + δW −
∑

n

d
dt

(mnv̄n · δr̄n) = 0. (9.1.7)

The first two quantities are the increments of the kinetic and potential energies if
the system were to follow the variational path, rather than the true one associated with
the actual forces. The third is the virtual work done by those forces. Each quantity is
evaluated for points on the true and variational points corresponding to the same time
instant. The fourth term has no significance relative to the standard kinetics principles,
although we recognize mnv̄n as a particle’s momentum. To handle this term, we observe
that it is differentiated with respect to time. Integrating Eq. (9.1.7) over time enables us
to consider this problematic term solely at the limits of the integration. These limits are
the initial time t0 at which we have initial conditions and an arbitrary subsequent time
t1. Thus we have ∫ t1

t0
(δT − δV + δW) dt −

∑
n

(mnv̄n · δr̄n)
∣∣∣t=t1

t=t0
= 0. (9.1.8)

This relation is best understood by considering the motion of the system through the
configuration space. We consider generalized coordinates for the system to be the set of
position coordinates for all particles contained in that system. Then the configuration
space for a system of N particles is the 3N-dimensional Cartesian space whose coordi-
nates are the set of position coordinates. (Letting the dimensionality be infinite for a
continuous distribution of mass does not lessen the validity of the discussion.) Figure 9.1
shows the true path and a variational path. Recall that the concept of a variational path
is that it represents a different evolution of a system’s state, corresponding to a set of
forces that is altered from the true one. However, regardless of what forces are applied,
the system must start from the specified initial state, which we take to occur at t0. In
addition, we wish to arrive at the true state of the system at the instant corresponding

∗ The rigid-body and continuum models are mathematical abstractions, which are included in the discus-
sion by considering the particles to be differential elements of mass. A summation accounting for each
particle then becomes an integration over the domain.
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Actual
path

Variational
path

r(t1)^

r(t0)^
r (t)^

δr̂
Figure 9.1. Actual and variational paths in the configuration
space starting from a specified initial position and arriving at
the same ultimate state.

to the end of the variational path. Thus the true and variational paths should intersect
at both instants, as shown in Fig. 9.1, so that δr̂ = 0̂ at t0 and t1. Correspondingly, we
set δr̄n = 0̄ at these instants. Under these conditions, Eq. (9.1.8) reduces to Hamilton’s
Principle:

∫ t1

t0
(δT − δV + δW) dt = 0. (9.1.9)

According to this relation the true path is distinguishable from all possible variational
paths by the fact that the time dependence of the generalized coordinates and forces
yields a zero mean value for δT − δV + δW. Introducing the Lagrangian L = T − V
gives a more compact form of Hamilton’s Principle:∫ t1

t0
(δL + δW) dt = 0. (9.1.10)

Note that δT and δV represent the difference between quantities associated with the
variational and true paths at an arbitrary instant. In contrast, there is no “work” quantity
W from which the virtual work of a nonconservative force may be derived. Suppose we
consider the restricted class of systems for which δW = 0. Clearly, this can be the case
only if a system is conservative, but it also is necessary that the system be holonomic.
Otherwise, the constraint forces will do work when the generalized coordinates are given
arbitrary virtual increments. In this special case of a conservative holonomic system, we
find that, among all variational paths connecting the initial and final position, the true
one is the one for which the action integral I has a stationary value, which is stated as

I =
∫ t1

t0
(T − V) dt, δI = 0. (9.1.11)

In other words, the motion of a conservative holonomic system evolves in a manner that
gives a stationary value of the action integral (maximum, minimum, or inflection point).

It is logical at this juncture to question the significance of these results, as Hamilton’s
Principle seems to represent only one relation. For example, we know that the work–
energy principle �T + �V = W1→2 is not adequate by itself to solve problems involving
several generalized coordinates. The difference is that Eq. (9.1.9) leads to many rela-
tions, because the virtual movement is arbitrary except at the initial and final instants.
An infinite number of variational curves can be constructed, and Hamilton’s Principle
must be satisfied for each. If the system consists of particles and rigid bodies, we can
construct different variational paths by holding all generalized coordinates except one
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constant, and imparting a virtual increment to the remaining generalized coordinate that
is arbitrary, other than being zero at instants t0 and t1.

Hamilton’s Principle can be used in a variety of ways. One application is based on
the recognition that the various kinetics principles that have been formulated in this text
rely on a set of axioms, specifically Newton’s Laws. We could instead take Hamilton’s
Principle to be the fundamental axiom on which other principles are founded. Indeed,
as we will soon see, Lagrange’s equations are readily derived from Hamilton’s Principle.
If one is merely concerned with classical mechanics, this capability might seem to be
unimportant. However, generalizing the definition of kinetic energy to include relativis-
tic effects would enable us to greatly expand the scope of our investigations.

In the present context Hamilton’s Principle was introduced to derive equations of
motion for continua. The mathematical tool by which those equations can be obtained
is the calculus of variations. This entails treating the displacement of each particle in the
system as a function of its starting position r̄ and time, denoted as ū (r̄ , t) . The concept
is to evaluate the increment of the kinetic and potential energies associated with a vir-
tual increment of the displacement field δū, and then use the calculus to replace depen-
dences on derivatives of δū with explicit dependence on δū. Arbitrariness of the virtual
displacement field will lead to the governing equations. This application is addressed in
Subsection 9.1.2.

Hamilton’s Principle can also be used as the foundation for approximate solutions
of the response of continuous media. The notion here is to introduce a simplified rep-
resentation of the displacement field, for example, a series expansion. This leads to en-
ergy expressions corresponding to the coefficients of this series. Satisfaction of Hamil-
ton’s Principle yields the best possible equations governing these coefficients. This is the
essence of the Ritz series method, which is introduced in a subsequent section.

To illustrate the use of Hamilton’s Principle, let us use it to derive Lagrange’s equa-
tions. Independently of the previous derivation, it is a simple matter to identify that, if
position is uniquely defined by a set of generalized coordinates qj , then the kinetic en-
ergy is a function of the qj , q̇j , and t, whereas the potential energy is a function of the
qj and t, that is, T (qj , q̇j , t) and V (qj , t) . The definitions of δT and δV are that they are
the change of the respective values when the generalized coordinates and velocities are
given infinitesimal increments at a specified instant, so we have

δT = T (qj + δqj , q̇j + δq̇j , t) − T (qj , q̇j , t) ,

δV = V (qj + δqj , t) − T (qj , t) .
(9.1.12)

Because the δqj and δq̇j values are infinitesimal, we may use the rules of differential
calculus, specifically, the chain rule for differentiation, to describe the difference. This
leads to

δT =
N∑

j=1

(
∂T
∂q̇j

δq̇j + ∂T
∂qj

δqj

)
, δV =

N∑
j=1

∂V
∂qj

δqj . (9.1.13)

To apply Hamilton’s Principle we consider the δqj values to be a selected set of time
functions, because we need to apply the variation at every instant of time along the
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configuration path. The values of the δq̇j are defined by the choice for the δqj (t) func-
tions, because

δq̇j ≡ d
dt

δqj . (9.1.14)

Accordingly, we account for this dependence by manipulating the first term in
Eq. (9.1.13):

∂T
∂q̇j

δq̇j = d
dt

(
∂T
∂q̇j

δqj

)
−
[

d
dt

(
∂T
∂q̇j

)]
δqj . (9.1.15)

The next step is to substitute into Hamilton’s Principle this expression, Eq. (9.1.13) for
δV, and the standard description of δW in terms of generalized forces. The result is

∫ t1

t0

N∑
j=1

{
d
dt

(
∂T
∂q̇j

δqj

)
+
[
− d

dt

(
∂T
∂q̇j

)
+ ∂T

∂qj
− ∂V

∂qj
δqj + Qj

]
δqj

}
dt = 0. (9.1.16)

The first term in the integrand is a perfect differential; its integration yields

∫ t1

t0

N∑
j=1

d
dt

(
∂T
∂q̇j

δqj

)
dt =

N∑
j=1

(
∂T
∂q̇j

δqj

)∣∣∣∣∣∣
t1

t0

. (9.1.17)

In the derivation of Hamilton’s principle we asserted that the variational path must orig-
inate and end at the true points in the configuration space. This means that δr̂ = 0̂ at t0
and t1, so it must be that all of the δqj = 0 at those instants. Consequently, the preceding
term vanishes, which reduces Eq. (9.1.16) to

∫ t1

t0

⎧⎨
⎩

N∑
j=1

[
− d

dt

(
∂T
∂q̇j

)
+ ∂T

∂qj
− ∂V

∂qj
δqj + Qj

]
δqj

⎫⎬
⎭dt = 0. (9.1.18)

Hamilton’s Principle must apply for any variational path, which means that the δqj

may be arbitrary time functions, subject only to the condition that δqj (t0) = δqj (t1) = 0.

For a specific set of δqj functions, the integral could vanish by merely having the negative
values over portions of the time interval cancel the positive values over the remaining
time portions. However, the same result must be obtained for any set of δqj functions,
whose value at any instant may be positive or negative. This leads to the fundamental
lemma of the calculus of variations:

If an integral over any dependent variable ξ is such that I = ∫
f (ξ) g (ξ) dξ,

and I must be zero for arbitrary g (ξ) , then it must be that f (ξ) = 0.

Application of this reasoning to Eq. (9.1.18) leads to the conclusion that the factor of
δqj must be zero for each value of j, which is the same relation as the basic form of
Lagrange’s equations.
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9.1.2 Calculus of Variations

The motion of continua is characterized by displacements that are functions of the ini-
tial position of the moving point, as well as t. One advantage of using the calculus of
variations to derive field equations is that it will definitively identify what boundary
conditions are appropriate. Furthermore, although the procedure is more intricate in
its mathematical steps, it requires less physical insight. This expedites the derivation of
field equations for complicated continuum models. The calculus of variations is a math-
ematical procedure that exists independently of Hamilton’s Principle. It can be applied
to a variety of other areas. For example, one can use it address a number of problems in
geometry, such as the identification of a geodesic curve, which is the shortest path con-
necting two points on a specified curved surface. Weinstock (1974) offers a fundamental
treatise on this important concept.

In the most general situation, the displacement of any continuum is defined by a
vector function of position and time. For simplicity, we restrict the development to sit-
uations in which the displacement of any point may be described in terms of a scalar
function u(x, t), where x is a spatial coordinate spanning 0 ≤ x ≤ L. Many systems of
engineering significance fit this specification, including vibrating cables and beams. In
a continuum model, particles are replaced with differential mass elements, so the en-
ergy expressions will consist of integrals over all mass elements. To understand how the
calculus of variations is implemented, we must recognize that the kinetic energy will de-
pend on the time derivative of the displacement, and the potential energy will depend on
the material strain, which in turn depends on spatial gradients of displacement. Thus let
us consider the Lagrangian L, which is the primary part of the integrand in Hamilton’s
principle, to depend on u̇, u′, u′′, and u̇′, where an overdot and prime respectively denote
temporal and spatial partial differentiation. (This dependence is sufficiently general to
enable us to identify the appropriate manner in which to proceed if higher derivatives
of u or several displacement components appear in L.) A convenient notation is to use
brackets to indicate the dependent variables that appear in the integrand of L, so we are
considering L [u̇, u′, u′′, u̇′] . Mathematically, the use of square brackets is intended to
convey the fact that L is a functional of the bracketed variables, meaning that a variety
of operations must be performed on these variables in order to obtain L.

The virtual displacement we impart is a differential increment δu(x, t) to the actual
displacement. It is important to recognize that this quantity is an arbitrary function we
select, subject to some restrictions that will evolve in the course of the development.
Selection of a specified δu(x, t) in turn sets the derivatives of δu. Furthermore, the out-
come is the same regardless of whether one increments u and then differentiates it, or
takes the virtual increment of the derivative, so that

δu̇ = ∂

∂t
δu, δu′ = ∂

∂x
δu. (9.1.19)

The definition of δL is that it is the difference in the value of the integral when its inte-
grand is formed with u + δu, rather than u. Thus,

δL = L [u̇ + δu̇, u + δu′, u′′ + δu′′, u̇′ + δu̇′] − L [u̇, u′, u′′, u̇′] . (9.1.20)
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Let g (u̇, u′, u′′, u̇′) denote the integrand of L, so that

δL =
∫ L

0
[g (u̇ + δu̇, u + δu′, u′′ + δu′′, u̇′ + δu̇′) − g (u̇, u′, u′′, u̇′)] dx. (9.1.21)

Because u and its derivatives are infinitesimal, a Taylor series expansion of the first inte-
grand may be truncated at first-order terms. Examination of the expression that results
shows that it is the same as what one would obtain if δ were considered to be a differen-
tial operator that is applied to the integrand. We call this the variational derivative, the
result of which is written as

δL =
∫ L

0

[(
∂g

∂ (u̇)

)
δu̇ +

(
∂g

∂ (u′)

)
δu′ +

(
∂g

∂ (u′′)

)
δu′′ +

(
∂g

∂ (u̇′)

)
δu̇′
]

dx. (9.1.22)

Note that if the integrand contains other derivatives of u, the variational derivative
would account for increments of g corresponding to each derivative.

The form of δL in Eq. (9.1.22) does not recognize that δu represents a function that
we have selected, so that derivatives of δu are known in terms of δu. Integration by
parts enables us to account for such relationships. Spatial derivatives of δu are handled
by integrating over x, whereas time derivatives require an integration of δL over time.
Thus we form∫ t1

t0
δLdt =

∫ t1

t0

∫ L

0

[(
∂g

∂ (u̇)

)
δu̇ +

(
∂g

∂ (u′)

)
δu′ +

(
∂g

∂ (u′′)

)
δu′′ +

(
∂g

∂ (u̇′)

)
δu′
]

dxdt

=
∫ L

0

(
∂g

∂ (u̇)

)
δu dx

∣∣∣∣
t=t1

t=t0

−
∫ t1

t0

∫ L

0

[
∂

∂t

(
∂g

∂ (u̇)

)]
δu dxdt

+
∫ t1

t0

(
∂g

∂ (u′)

)
δu dt

∣∣∣∣
x=L

x=0

−
∫ t1

t0

∫ L

0

[
∂

∂x

(
∂g

∂ (u′)

)]
δu dxdt (9.1.23)

+
∫ t1

t0

(
∂g

∂ (u′′)

)
δu′ dt

∣∣∣∣
x=L

x=0

−
∫ t1

t0

∫ L

0

[
∂

∂x

(
∂g

∂ (u′′)

)]
δu′ dxdt

+
∫ L

0

(
∂g

∂ (u̇′)

)
δu′ dx

∣∣∣∣
t=t1

t=t0

−
∫ t1

t0

∫ L

0

[
∂

∂t

(
∂g

∂ (u̇′)

)]
δu′ dxdt.

The last three integral terms still contain δu′ dx, which gives δu when integrated. Thus
we apply an integration by parts over x to these terms, with the result that∫ t1

t0
δLdt =

∫ t1

t0

∫ L

0

[
∂2

∂x2

(
∂g

∂ (u′′)

)
+ ∂2

∂x∂t

(
∂g

∂ (u̇′)

)
− ∂

∂t

(
∂g

∂ (u̇)

)

− ∂

∂x

(
∂g

∂ (u′)

)]
δu dxdt +

∫ L

0

[(
∂g

∂ (u̇)

)
− ∂

∂x

(
∂g

∂ (u̇′)

)]
δu dx

∣∣∣∣
t=t1

t=t0

(9.1.24)
+
∫ t1

t0

[
∂g

∂ (u′)
− ∂

∂t

(
∂g

∂ (u̇′)

)
− ∂

∂x

(
∂g

∂ (u′′)

)]
δu

∣∣∣∣
x=L

x=0
dt

+
∫ t1

t0

(
∂g

∂ (u′′)

)
δu′
∣∣∣∣
x=L

x=0

dt +
(

∂g
∂ (u̇′)

)
δu

∣∣∣∣
x=L

x=0

∣∣∣∣∣
t=t1

t=t0

.
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In addition to a description of δL, Hamilton’s Principle requires specification of the
virtual work. For this we consider the external force system to consist of a distributed
force f (x, t) (units of force per unit length) acting in the same sense as that of the dis-
placement. Thus, if u is a displacement in a certain direction, then f acts in that direction.
Similarly, if u is a torsional rotation, then f is distributed torsional loading. The force
resultant acting on a differential segment dx is f dx, and δu is the virtual displacement.
Hence the virtual work is

δW =
∫ L

0
f δu dx. (9.1.25)

The result of adding Eqs. (9.1.24) and (9.1.25) to form Hamilton’s Principle, as pre-
scribed by Eq. (9.1.10), is called the variational equation. It is obvious that it contains
a variety of terms, all of which must sum to zero. However, the function δu associated
with the variation is selected arbitrarily, which means that the fundamental lemma of
the calculus of variations applies. We begin by applying this theorem to the terms in the
variational derivative that are integrated over both x and t, which must be zero. If we
knew the actual response function u (x, t) associated with the distributed force f x, t),
we certainly could find a function δu that would cause this double integral to vanish.
However, a different f (x, t) would lead to a different u(x, t), yet the integral must still
vanish in that circumstance. In order that Hamilton’s principle be satisfied for any set of
applied forces, it must be that the factor of δu in the integrand vanishes, so we have

∂2

∂x2

(
∂g

∂ (u′′)

)
+ ∂2

∂x∂t

(
∂g

∂ (u̇′)

)
− ∂

∂t

(
∂g

∂ (u̇)

)
− ∂

∂x

(
∂g

∂ (u′)

)
= 0. (9.1.26)

This is the Euler–Lagrange equation. When we form it for the function g(u̇, u′, u′′, u̇′)
appropriate to the system of interest, we obtain the partial differential equation govern-
ing the displacement field.

When the Euler–Lagrange equation is satisfied, the terms remaining in the vari-
ational derivative are those that are evaluated at x = 0 and x = L, and/or t = t0 and
t = t1. Recall that the latter correspond to the beginning and end points of the path
through the configuration space of each particle in the system. The fact that there are
an infinite number of such points, so that the configuration space has infinite dimen-
sion, does not alter the requirement that a variational path should begin and end at the
true state of the system, so that δu = 0 at t = t0 and t = t1 for every x. This condition
causes all terms evaluated at the time limits to be zero, so the terms that remain in the
variational derivative are∫ t1

t0
δLdt =

∫ t1

t0

[
∂g

∂ (u′)
− ∂

∂t

(
∂g

∂ (u̇′)

)
− ∂

∂x

(
∂g

∂ (u′′)

)]
δu

∣∣∣∣
x=L

x=0
dt

+
∫ t1

t0

(
∂g

∂ (u′′)

)
δu′
∣∣∣∣
x=L

x=0

dt.

(9.1.27)

The arbitrariness of δu allows us to consider the value of δu′ at x = 0 or x = L to be a
separately selectable parameter, independent of the value of δu at these locations. Thus
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the time integral associated with evaluation of the integrand at each boundary must be
zero. Furthermore, δu (L, t) is independent of δu (0, t). This leads to the requirement
that each integrand evaluated at each end must vanish. There are several possible ways
in which this condition might be satisfied, because each integrand is a product of a term
that depends on g and a term that depends on δu, either of which being zero will lead to
a zero value for the integral. Let us address each possibility individually. The condition
that δu = 0 at x = 0 or x = L for all t means that u (0, t) or u (L, t) is fully specified, and
therefore not changeable. The most common condition of this type is that in which the
displacement is made to be zero, as is the case for the stationary end of a cable. We must
examine the system of interest to ascertain whether such a condition applies. If not, then
it must be that the coefficient of δu in the first integral is identically zero. The condition
that u is known at a boundary constitutes a kinematical condition, so it is referred to as
a geometric boundary condition. In contrast, the factor of δu depends on the function g,

which means that it depends on the nature of the kinetic and potential energies. These
quantities correspond to inertial effects and internal forces, so the factor of δu could
said to be said to be a force boundary condition. However, the common terminology is
to refer to it as a natural boundary condition.

A similar argument applies to the second integral in Eq. (9.1.27). This integral will
be zero if δu′ = 0 at the ends. Such a condition results if u′ is specified at x = 0 or x = L.

An example of such a situation is the condition on the transverse displacement of a
beam, where u′ = 0 for an end that is clamped or welded to a wall. Once again this is a
kinematical condition, so a situation in which δu′ = 0 at x = 0 or x = L is a geometric
boundary condition. If δu′ is not known to be zero at either end, then there is a natural
boundary condition to satisfy.

In summary, there are alternative geometrical or natural boundary conditions at
each end. In the case in which g depends on u′, u′′, u̇, and u̇′, there are two boundary
conditions at each end. The possibilities are

x = 0 and x = L :

⎧⎪⎨
⎪⎩

specify u as a function of time or

set
∂g

∂ (u′)
− ∂

∂t

(
∂g

∂ (u̇′)

)
− ∂

∂x

(
∂g

∂ (u′′)

)
= 0;

x = 0 and x = L :

⎧⎪⎨
⎪⎩

specify u′ as a function of time or

set
∂g

∂ (u′′)
= 0.

(9.1.28)

Thus the calculus of variations has led us to the differential equation governing the dis-
placement field, as well as alternative boundary conditions that might apply. Selecting
from these alternatives the set of boundary conditions appropriate to a specific system
is our responsibility.

EXAMPLE 9.1 Transverse vibration of axially moving cables is important for a
variety of applications, such as conveyor belts, cable–pulley systems, and computer



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

562 Alternative Formulations

tape drives. Consider the situation in which a cable is stretched to a very high tensile
force and wrapped around two rollers, whose rotation imparts a horizontal transla-
tional velocity v to the unsupported segment of the cable. The mass per unit length
of the cable is µ, and the cable tension is F. Use the calculus of variations to de-
rive the differential equation and boundary conditions governing the transverse dis-
placement w. It is permissible to consider w to be very small compared with the
distance between the rollers, such that the slope of the cable in the displaced posi-
tion also is small.

SOLUTION This example is an application of the general calculus of variations for-
mulation to a system whose equations will be found to have some interesting fea-
tures. In the sketch XYZ is a fixed reference frame with its origin at the left end
of the cable. If the cable did not displace transversely, the position of a point along
the span would be defined solely by the horizontal distance X, so this system fits
the prescription of a system having a displacement that depends on a single position
coordinate.

v

F

Y

X

F

w

d

Coordinates and displacement variables for a translating
cable.

We begin by considering the kinetic energy of the cable segment d� highlighted
in the sketch. The position of d� is r̄ = XĪ + w (X, t) J̄ . The stated smallness of w

means that the cable primarily moves horizontally, so Ẋ ≈ v. The vertical veloc-
ity results from explicit time dependence of w, as well as the fact that different
points on the cable, having different w, arrive at a specified X as time elapses. Both
effects are captured by taking a total derivative of r̄ , so the velocity of the cable
segment is

v̄s = dr̄
dt

= ẊĪ +
(

Ẋ
∂w

∂ X
+ ∂w

∂t

)
J̄ = v Ī + [ẇ + vw′] j̄ .

The segment d� would be situated on the X axis if the cable did not deflect, so it must
be that the mass of d� is the same as that of a segment of length dX in a situation in
which w is zero, which is µdX. The kinetic energy of this segment is 1

2 (µdx)v̄s · v̄s,

so the kinetic energy functional is

T = 1
2
µ

∫ L

0

[
ẇ2 + 2vw′ẇ + v2 (w′)2

]
dX + 1

2
mLv2.

The last term is the translational kinetic energy the cable would have if it did not dis-
place transversely. It is independent of w, so it will be unimportant to the derivation
of the field equation.
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Potential energy is stored as a result of stretching the cable. The stipulation
that the cable tension F is very high in the initial state means that there is a sub-
stantial strain within the cable, even if w = 0. Because w is assumed to be small,
the additional strain associated with w will also be small relative to the initial
strain. It follows that it is reasonable to assume that F remains constant when w

is nonzero. Thus the work done by F, which is stored as potential energy, is the
product of F and the amount �� by which the cable length is increased from the un-
deflected to deflected conditions. By the Pythagorean theorem, the differential arc
length is

d� =
[
(dX)2 + (w′dX)2

]1/2
.

Integrating the preceding equation to obtain the deflected arc length � and then
subtracting the original length L yields ��. To F�� we add the potential energy of
gravity. Let the X axis be the datum, so that w is the elevation of segment d�, whose
weight is µd�. Hence the potential-energy functional is

V = F
[∫ L

0

(
1 + (w′)2

)1/2
dX − L

]
+
∫ L

0
w µgdX.

The virtual work δW is zero because all forces doing work when w is incremented
have been included in the potential energy.

Rather than merely forming Eqs. (9.1.26) and (9.1.28), let us explicitly perform
the basic operations on the present functionals. We begin with the kinetic-energy
term in Hamilton’s Principle:∫ t1

t0
δTdt =

∫ t1

t0
δ

{
1
2
µ

∫ L

0

[
ẇ2 + 2vw′ẇ + v2 (w′)2

]
dX + 1

2
mLv2

}
dt

=
∫ t1

t0
µ

∫ L

0

[
ẇδ (ẇ) + vẇ δw′ + vw′δẇ + v2w′δw′] dXdt.

Note how the variational derivative is implemented as a differential operator ap-
plied to all terms containing w. We interchange the virtual increments and deriva-
tives of w in accord with Eqs. (9.1.19). Terms containing time derivatives of δw are
integrated by parts with respect to t, whereas terms containing spatial derivatives of
δw are integrated by parts with respect to x. These operations replace terms con-
taining derivatives of δw with equivalent representations in terms of δw:∫ t1

t0
δTdt = µ

∫ L

0
[(ẇ + vw′) δw]

∣∣∣∣
t=t1

t=t0

+
∫ t1

t0
µ

{[
vẇ + v2w′] δw∣∣∣x=L

x=0

}
dt

−
∫ t1

t0
µ

∫ L

0

(
ẅ + 2vẇ′ + v2w′′) δw dXdt.

It is interesting to observe that the slope w′ is essentially the rotation of the
tangent line because of the smallness of the displacement. Consequently, the middle
term in the integrand is the product of the angular velocity of the segment d� and the
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translational speed v. The two factor confirms that this term represents the effects
of Coriolis acceleration.

Similar operations are followed to express the contribution of the strain-energy
term to Hamilton’s Principle. Thus,∫ t1

t0
δVdt =

∫ t1

t0
δ

{
F
[∫ L

0

(
1 + (w′)2

)1/2
dX − L

]
+
∫ L

0
w µgdX

}
dt

=
∫ t1

t0

{
F
∫ L

0

(
1
2

)(
1 + (w′)2

)−1/2
(2w′δw′) dX +

∫ L

0
µgδwdX

}
dt

=
∫ t1

t0

⎧⎪⎨
⎪⎩F

⎛
⎜⎝ w′(

1 + (w′)2
)1/2

⎞
⎟⎠ δw

∣∣∣∣∣∣∣
X=L

X=0

⎫⎪⎬
⎪⎭dt

−
∫ t1

t0

∫ L

0

⎡
⎢⎣F

∂

∂ X

⎛
⎜⎝ w′(

1 + (w′)2
)1/2

⎞
⎟⎠− µg

⎤
⎥⎦ δwdXdt.

The variational equation is the difference of the preceding equations. The varia-
tional path is such that δw = 0 at t = t0 and t = t1, so

∫ t1

t0
δTdt −

∫ t1

t0
δVdt =

∫ t1

t0

⎧⎪⎨
⎪⎩
⎡
⎢⎣µ

[
v ẇ + v2w′]− F

⎛
⎜⎝ w′(

1 + (w′)2
)1/2

⎞
⎟⎠
⎤
⎥⎦ δw

∣∣∣∣∣∣∣
x=L

x=0

⎫⎪⎬
⎪⎭ dt

−
∫ t1

t0

∫ L

0

⎧⎪⎨
⎪⎩
[
µ
(
ẅ + 2v ẇ′ + v2w′′)]− F

∂

∂ X

⎛
⎜⎝ w′(

1 + (w′)2
)1/2

⎞
⎟⎠

−µg} δwdXdt = 0.

We obtain the Euler–Lagrange equation by equating to zero the coefficient of δw in
the integrand of the double integral over X and t :

F
∂

∂ X

⎛
⎜⎝ w′(

1 + (w′)2
)1/2

⎞
⎟⎠− µ

(
ẅ + 2vẇ′ + v2w′′) = −µg. �

When the Euler–Lagrange equation is satisfied, the remaining terms in the vari-
ational derivative are

∫ t1

t0

⎧⎪⎨
⎪⎩
⎡
⎢⎣µ

(
v ẇ + v2w′)− F

⎛
⎜⎝ w′(

1 + (w′)2
)1/2

⎞
⎟⎠
⎤
⎥⎦ δw

∣∣∣∣∣∣∣
x=L

x=0

⎫⎪⎬
⎪⎭dt = 0.

Satisfaction of this condition requires that the integrand evaluated at each end be
zero, because the value of δw at x = L is independent of its value at x = 0. Thus we
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find that one boundary condition must be satisfied at each end. This boundary con-
dition is an alternative between the geometric condition, which requires that δw = 0
at an end, and the natural condition we obtain by equating to zero the coefficient
of δw at that end. The latter is a condition on the vertical component of the tensile
force, which does not apply to the system under condition. The rollers prevent the
ends from displacing, so we set

w (0, t) = w (L, t) = 0. �

The Euler–Lagrange equation is a nonlinear partial differential equation. We
may simplify it by considering

∣∣w′∣∣ � 1, which should be valid because |w| at all
locations is small compared with L.† When we use this to simplify the denominator
of the X derivative term, we obtain

Fw′′ − µ
(
ẅ + 2v ẇ′ + v2w′′) = −g.

An interesting aspect of this differential equation is that is not amenable to direct
solution by the standard method of separation of variables. The solution of this
equation and an exploration of numerous interesting phenomena may be found in
the work of Wickert and Mote (1990), and many others after that.

9.1.3 Ritz Series Method

The Euler–Lagrange equation that is obtained from Hamilton’s Principle can be quite
challenging to solve. For that reason approximate analysis techniques are required. One
approach begins by assuming that the displacement field can be represented as a series
having a finite number of terms. Walther Ritz (1878–1909) proposed the use of a specific
form of such a series, in which each term is a product of a selected function of position
and a time function whose dependence is to be determined. The spatial functions are
referred to as basis functions. The general form of a Ritz series for the vectorial displace-
ment of an arbitrary continuous system therefore has the form

ū (r̄) =
N∑

n=1

ψ̄n (r̄) qn (t) . (9.1.29)

The basis functions are ψ̄n (r̄) . They are indicated to be vectors because, in the most
general situation, ū might have independently variable components. It will be noted that
the symbol qn is used to denote the time functions. This is done to emphasize that, as
a consequence of selecting the basis functions as a first step in formulating the analysis,
the sole variables required to evaluate the displacement ū are the qn(t) variables, so they
are effectively generalized coordinates.

† As the frequency of vibration increases, the length scale over which w changes might become significantly
smaller than the span L. The consequence is that the approximation of small |∂w/∂x| loses validity.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

566 Alternative Formulations

A Ritz series may be considered to be a generalization of a Fourier series. [In fact,
some texts have referred to Eq. (9.1.29) as “generalized Fourier series.”] To understand
why, suppose a displacement field is a function of a single spatial coordinate and that
it is periodic in a distance L measured along that coordinate direction. Any periodic
function may be expanded in a Fourier series, so the displacement in this scenario may
be expressed as

ū (x) = C0 +
N∑

n=1

[
Cn cos

(
2nπx

L

)
+ Sn sin

(
2nπx

L

)]
. (9.1.30)

If we consider the coefficients Cn and Sn to be time dependent, we extend the Fourier
series to situations in which the displacement field has an arbitrary time dependence,
while still maintaining its spatial periodicity. Thus, in this scenario, the cosine and sine
functions are the basis functions of a Ritz series, and the Cn and Sn coefficients are the
generalized coordinates qn. In a linear algebra perspective, the ψ̄n (x̄) define favored
directions in a functional space, like the unit vectors ēj for a vector space, which is why
they are said to be basis functions. The qn values may then be considered to be the
displacement components parallel to the basis functions.

The most problematic aspect of formulating a Ritz series analysis is selection of the
basis functions. There are a few inviolable requirements. The first is that the functions
must be linearly independent, which is equivalent to requiring that the Ritz series yield
a zero value of ū at all r̄ only if all qn are zero. The second requirement is that the ba-
sis functions must satisfy all geometric boundary conditions that pertain to the system
being analyzed. (This requirement, of course, assumes that one has identified what the
geometric boundary conditions are. In extraordinary circumstances, it might be neces-
sary to apply the calculus of variations, but we usually can identify these conditions by
inspection.) It is important to realize that the natural boundary conditions need not be
considered when the basis functions are selected. Because they constitute conditions on
force resultants at the boundary, natural boundary conditions are accounted for in the
virtual work.‡

Some individuals consider the Ritz series to be a guessing procedure, in that one
has no other guidelines as to how to select the basis functions. However, in many cases
it is possible to identify basis functions that satisfy the geometric boundary conditions
and also consitute a parameterized family of functions. For example, the sine and cosine
functions in Eq. (9.1.30) are parameterized by the harmonic number n. The terms of a
power series, (x/L)n

, are another parameterized set, as are the basis functions used in
finite element analysis. In fact, one can consider the finite element technique for elastic
systems to be a special case of a Ritz series analysis, as discussed by Ginsberg (2001).
The significance of increasing the length N of the Ritz series is that doing so will bring
the solution closer to what one would obtain by solving the differential equations of

‡ In some situations elastic springs might be situated at the boundaries. In that case the aspects of a natural
boundary condition associated with the spring force are addressed by including in the V functional the
spring’s potential energy.
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motion, if such a solution were possible. It can be proven that the limit N → ∞ would
yield an infinite dimensional representation that is the true response.

Once we have selected the basis functions, generation of the equations of motion for
the generalized coordinates is fairly straightforward. It is assumed that prior to initiating
the analysis we have derived the appropriate functionals describing how the kinetic and
potential energies of the continuous system depend on the displacement. These func-
tionals feature integrals over the spatial domain of the system. When we substitute the
Ritz series into these functionals, all spatial dependencies have been set, so the integrals
may be evaluated. This process converts the functionals of displacement into functions
of the generalized coordinates. As before, we limit our attention here to cases in which
a displacement field consists of a single component that depends on a single spatial co-
ordinate and time, u (x, t) . Correspondingly, we take all ψn to be scalar functions of x
and t. The mathematical statement of the operation of substituting the Ritz series is

L [u̇, u′, u′′, u̇′, t] = L
[

N∑
n=1

ψnq̇n,

N∑
n=1

ψ ′
nqn,

N∑
n=1

ψ ′′
nqn,

N∑
n=1

ψ ′
nq̇n, t

]
= L (q̇n, qn, t) .

(9.1.31)

In other words, substitution of the Ritz series enables us to reduce the Lagrangian from
a functional featuring spatial integration to a discrete function of the generalized co-
ordinates and velocities. In practice, such a reduction will entail integrating a variety
of terms containing the basis functions and their derivatives. These integrations may be
carried out analytically or by means of computer techniques using symbolic or numerical
software.

Formulation of Hamilton’s Principle also requires description of the virtual work.
Let f (x, t) denote the distributed force per unit length acting in the direction of the
displacement u. The external force acting on an interval dx is f dx, and the virtual dis-
placement at this location is δu(x, t), so the virtual work is

δW =
∫ L

0
f (x, t) δudx =

∫ L

0
f (x, t) δudx. (9.1.32)

When we form the Ritz series, Eq. (9.1.29), the basis functions have been set. Thus a
virtual displacement entails imparting virtual increments solely to the series coefficients:

δu =
N∑

n=1

ψnδqn. (9.1.33)

We substitute this representation into the preceding expression for δW and bring the
integral inside the summation. The result is a representation of δW that matches the
standard form containing generalized forces, specifically,

δW =
N∑

n=1

Qnδqn, Qn =
∫ L

0
f (x, t) ψn (x) dx. (9.1.34)
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This completes the basic operations of a Ritz series analysis. The system model has
been reduced to one in which the Lagrangian is a function of the generalized coordinates
and generalized velocities, and the virtual work is characterized by a set of generalized
forces. As we saw earlier, Hamilton’s Principle for such a system reduces to Lagrange’s
equations. Thus the formulation of Ritz series in essence has reduced the continuous
system from one having an infinite number of degrees of freedom to an approximate
one described by a finite number of degrees of freedom. An important aspect of this
procedure, which is often forgotten, is that consideration should be given to whether
a convergent representation of the phenomena of interest results from the analysis. If
one has normalized the basis functions such that they have unit order of magnitude
everywhere, then it is possible to ascertain that convergence has been attained by merely
examining the convergence properties of the series coefficients qn.

EXAMPLE 9.2 Consider the analysis of transverse displacement of a cable that
translates at a constant speed, which was described in Example 9.1. Derive the equa-
tions of motion governing a set of Ritz series coefficients.

SOLUTION Beyond merely illustrating how to implement a Ritz series analysis, this
example is intended to interest the reader in some of the more modern issues en-
countered in vibration research. A suitable Ritz series is readily identified. As shown
in the previous example, both ends are constrained by the rollers to not displace, so
the geometric boundary condition applies at each end. We therefore seek a set of
basis functions that is linearly independent and has zero value at X = 0 and X = L.

The simplest such function is a set of sines, specifically,

ψn = sin
(

nπ X
L

)
,

so our Ritz series for this system is

w (X, t) =
N∑

n=1

qn (t) sin
(

nπ X
L

)
.

We substitute this series into the kinetic-energy functional derived previously,
which leads to

T = 1
2
µ

∫ L

0

[
ẇ2 + 2vw′ẇ + v2 (w′)2

]
dX + 1

2
mLv2

= 1
2
µ

∫ L

0

⎧⎨
⎩
⎡
⎣ N∑

j=1

q̇j sin
(

jπ X
L

)⎤⎦
[

N∑
n=1

q̇n sin
(

nπ X
L

)]⎫⎬
⎭dX

+µv

∫ L

0

⎧⎨
⎩
⎡
⎣ N∑

j=1

(
jπ
L

)
qj cos

(
jπ X

L

)⎤⎦
[

N∑
n=1

q̇n sin
(

nπ X
L

)]⎫⎬
⎭dX
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+ 1
2
µv2

∫ L

0

⎧⎨
⎩
⎡
⎣ N∑

j=1

qj

(
jπ
L

)
cos

(
jπ X

L

)⎤⎦[ N∑
n=1

qn

(nπ

L

)
cos

(
nπ X

L

)]⎫⎬
⎭dX

+ 1
2
µLv2.

The most important aspect of this substitution is that a different index is used to
describe the summation for each factor in products of w and its derivatives. This is
done to ensure that we account for each possible combination of terms. We focus on
integrating over x by bringing the integration operator inside the summations. The
first and third integrals simplify as a consequence of the orthogonality of the sine
function, with the result that

T = 1
4
µL

N∑
j=1

[
q̇2

j +
(

jπv

L

)2

q2
j

]
+ µv

N∑
j=1

N∑
n=1

Bjnqj q̇n + 1
2

mLv2,

where

Bjn =

⎧⎪⎨
⎪⎩

2 jn
n2 − j2

if j + n is odd

0 if j + n is odd

.

The reduction of V from a functional of w to a function of the Ritz series co-
efficients follows similar steps. However, the presence of the square root substan-
tially complicates the task of integrating over x. We address this by recalling that
|∂w/∂x| � 1. When this condition is valid, the square root term may be approxi-
mated by a binomial series that is truncated. Thus we write

V ≈ F
[∫ L

0

(
1 + 1

2
(w′)2

)
dX − L

]
+
∫ L

0
w µgdX + O

(
w4
)

= 1
2

F
∫ L

0
(w′)2 dX +

∫ L

0
w µgdX.

(9.1.35)

Note that the series expansion of the square root term has been truncated at the
lowest order possible. This level of approximation is equivalent in every respect to
linearizing the Euler–Lagrange equation in Example 9.1. Substitution of the Ritz
series into this functional yields

V = 1
2

F
∫ L

0

⎛
⎝ N∑

j=1

(
jπ
L

)
qj cos

(
jπ X

L

)⎞⎠( N∑
n=1

(nπ

L

)
qn cos

(
nπ X

L

))1/2

dX

+µg
∫ L

0

N∑
n=1

qn sin
(

nπ X
L

)
dX

= 1
4

F L
N∑

j=1

(
jπ
L

)2

q2
j + µg

N∑
n=1

(
L

nπ

)
[1 − (−1)n] qn.
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As in the previous example the virtual work is zero. Thus we proceed to evaluate
Lagrange’s equations for this system. For this, we observe that partial differentiation
of a summation with respect to a specific qn or q̇n will yield a nonzero contribution
only when the index of the summation matches n. To avoid confusion in this process
the symbol denoting the summation index should be changed to differ from n. The
operations are carried out as follows:

d
dt

(
∂T
∂q̇n

)
= d

dt

⎧⎨
⎩ ∂

∂q̇n

⎛
⎝1

4
µL

N∑
j=1

[
q̇2

j +
(

jπv

L

)2

q2
j

]
+ µv

N∑
j=1

N∑
k=1

Bjkqj q̇k

⎞
⎠
⎫⎬
⎭

= d
dt

⎛
⎝1

2
µLq̇n + µv

N∑
j=1

Bjnqj

⎞
⎠ = 1

2
µLq̈n + µv

N∑
j=1

Bjnq̇j ,

∂T
∂qn

= ∂

∂qn

⎛
⎝1

4
µL

N∑
j=1

[
q̇2

j +
(

jπv

L

)2

q2
j

]
+ µv

N∑
j=1

N∑
k=1

Bjkqj q̇k

⎞
⎠

= µv2

L

(
n2π2

2

)
qn + µv

N∑
k=1

Bnkq̇k,

∂V
∂qn

= ∂

∂qn

⎛
⎝1

4
F L

N∑
j=1

(
jπ
L

)2

q2
j + µg

N∑
j=1

(
L
jπ

)[
1 − (−1) j

]
qj

⎞
⎠

= F
L

(
n2π2

2

)
qn + µgL

[1 − (−1)n]
nπ

.

The assembled Lagrange equations are thereby found to be

µL
2

q̈n +
(

F
L

− µv2
)(

n2π2

2

)
qn + µv

N∑
j=1

Bjnq̇j − µv

N∑
k=1

Bnkq̇k

+µgL
[1 − (−1)n]

nπ
= 0.

We may simplify this equation by recognizing that any symbol may be used as the
index for a summation. Changing j to k in the first summation leads to

µL
2

q̈n − µv

N∑
k=1

Gnkq̇k +
(

F
L

− µv2
)(

n2π2

2

)
qn = −µgL

[1 − (−1)n]
nπ

; j = 1, 2, . . . , N,

�
where

Gnk = −Gkn = Bnk − Bkn =

⎧⎪⎨
⎪⎩

4kn
k2 − n2

if j + n is odd

0 if j + n is odd
.
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This set of Lagrange’s equations constitutes a set of coupled linear ordinary
differential equations. They have an interesting feature when written in matrix form
as

µL{q̈} − 2µv [G] {q̇} +
(

F
L

− µv2
)

[K] {q} = {F} ,

where [K] is a diagonal array whose elements are Kj j = j2π2. In the study of vibra-
tory response of structural and mechanical systems the coefficient of {q̈} in equa-
tions of motion is referred to as the inertia matrix, and the coefficient of {q} is called
the stiffness matrix. In the present context, the inertia matrix is proportional to the
identity matrix, and the stiffness matrix is diagonal. Fundamental vibration studies
typically do not encounter terms like [G] , which is skew symmetric. This term is
the Ritz series manifestation of the Coriolis acceleration encountered in the Euler–
Lagrange equation derived in Example 9.1. Similar Coriolis acceleration terms are
encountered in vibrating pipes with high-speed internal flows. Terms having a sim-
ilar appearance also are encountered in studies of flexible rotordynamic systems,
where they are associated with gyroscopic effects. The presence of Coriolis and gy-
roscopic effects has a profound effect on the nature of the vibratory response. The
solutions of the Ritz series equations of motion were addressed by the author (Gins-
berg, 2001).

9.2 GENERALIZED MOMENTUM PRINCIPLES

Hamilton’s enunciation of the principle bearing his name is arguably his most im-
portant contribution to the dynamics of systems, but not his only one. He used La-
grange’s equations to derive a set of first-order equations of motion that are quite dif-
ferent from the state-space formulations encountered thus far. This formulation leads
to additional conservation principles that would be more difficult to derive by other
approaches.

9.2.1 Hamilton’s Equations

Hamilton’s equations of motion, which govern systems that have a finite number of de-
grees of freedom, are founded on a relation between momentum and kinetic energy. A
suggestion that there is such a relation in general comes from considering a single par-
ticle whose motion is described by its Cartesian coordinates in a fixed reference frame,
q1 = x, q2 = y, and q3 = z. The momentum components are mẋ, mẏ, and mż, and the
kinetic energy is T = 1

2 m
(
ẋ2 + ẏ2 + ż2

)
, so we have

∂T
∂ ẋ

= mẋ,
∂T
∂ ẏ

= mẏ,
∂T
∂ ż

= mż. (9.2.1)

These simple relations between momentum and kinetic energy actually are mani-
festations of a more general perspective. Consider the kinetic energy of a single particle.
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Differentiation of T for this particle with respect to a selected generalized velocity q̇n

gives

∂T
∂q̇n

= ∂

∂q̇n

(
1
2

mv̄ · v̄

)
= mv̄ · ∂v̄

∂q̇n
. (9.2.2)

The particle’s velocity is related to the generalized coordinates by

v̄ (q̇i , qi , t) =
N∑

j=1

(
∂

∂qj
r̄ (qi , t)

)
q̇j + ∂

∂t
r̄ (qi , t) . (9.2.3)

Because q̇n represents a specific variable, it occurs within the summation only when the
index j matches n, with the result that

∂

∂q̇n
v̄ (q̇i , qi , t) ≡ ∂

∂qj
r̄ (qi , t) , (9.2.4)

which is an identity we first encountered in the derivation of Lagrange’s equations. With
this, Eq. (9.2.2) becomes

∂T
∂q̇n

= mv̄ · ∂ r̄
∂qn

. (9.2.5)

One way of interpreting this relation is that ∂ r̄/∂qn is a vector in the direction of increas-
ing qn, like the unit vectors of a curvilinear coordinate system. In this interpretation
∂T/∂q̇n is the component of momentum in the direction of increasing qn, which leads
to its being referred to as the generalized momentum. The kinetic energy of any system
may be decomposed into contributions of individual particles, so it follows that ∂T/∂q̇n

is the total momentum of a system in the sense of qn. The symbol pn is typically reserved
for a generalized momenta, so we define

pn = ∂T
∂q̇n

= ∂L
∂q̇n

, (9.2.6)

where the form containing the Lagrangian is a direct consequence of the fact that V
cannot depend on the generalized velocities.

The essence of Hamilton’s formulation is that the generalized momenta should re-
place the generalized velocities as the rate variables in the equations of motion. This is
accompanied by the introduction of a new energylike quantity called the Hamiltonian
and denoted by the symbol H. Motivation for the definition may be found in comparing
the mechanical energy E = T + V and the Lagrangian L for a particle whose position
is described by its Cartesian coordinates. If we express T in terms of the momentum
components in this case, we have

E = 2T − L = (mẋ) ẋ + (mẏ) ẏ + (mż) ż − L. (9.2.7)
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This suggests a generalization in which the momentum components are replaced with
pn and the velocity components are replaced with q̇n. The result is the definition of H:

H =
N∑

j=1

pj q̇j − L. (9.2.8)

An alternative definition of the Hamiltonian results when we recall Eqs. (7.6.4),
which decomposed the kinetic energy into a term T2 representing contributions that are
quadratic in the generalized velocities, a term T1 that is linear in those variables, and a
term T0 that is independent of the q̇j . The result of using Eqs. (7.6.4) to form pj is

pj = ∂

∂q̇j

[
1
2

N∑
k=1

N∑
n=1

Mkn (qi , t) q̇kq̇n +
N∑

k=1

Nk (qi , t) q̇k + T0 (qi , t)

]

=
N∑

k=1

Mkj (qi , t) q̇k + Nj (qi , t) , j = 1, 2, . . . , N.

(9.2.9)

This expression shows that the generalized momenta are linearly related to the general-
ized velocities. We will soon have another use for this relation, but currently we merely
substitute it into Eq. (9.2.8), which leads to

H =
N∑

j=1

[
N∑

k=1

Mkj (qi , t) q̇k + Nj (qi , t)

]
q̇j − (T − V)

= 1
2

N∑
j=1

N∑
k=1

Mjk (qi , t) q̇kq̇j − T0 (qi , t) + V (qi , t)

= T2 (q̇i , qi , t) − T0 (qi , t) + V (qi , t) .

(9.2.10)

Thus, if T1 and T0 happen to be zero for a system, so that T2 is the total kinetic energy,
then H is indeed the mechanical energy E.

We have not yet faced the most troublesome aspect of the Hamiltonian formula-
tion, which is removal of the generalized velocities from the dependence. With this as
our objective, we return to Eq. (9.2.9), which we now view as a set of N simultaneous
equations for the generalized velocities corresponding to a specified set of qi and pi . Re-
call that [M] is always invertible because the kinetic energy is positive definite. Hence it
is always possible to solve Eq. (9.2.9) for the generalized velocities. The matrix form of
that solution is

{q̇} = [M (qi , t)]−1 {{p} − {
N (qi , t)

}}
. (9.2.11)

These constitute one part of Hamilton’s equations. It is imperative to recognize that,
although matrix notation is employed here, these operations must be done algebraically.
Symbolic mathematical software can be quite useful for this task.
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Substitution of Eq. (9.2.11) into the alternative form of H, Eq. (9.2.10), eliminates
the generalized velocities. The matrix form of the result is

H = 1
2

{q̇}T [M] {q̇} − T0 (qi , t) + V (qi , t)

= 1
2

{
{p}T − {

N (qi , t)
}T
}

[M (qi , t)]−1 {{p} − {
N (qi , t)

}}− T0 + V.

(9.2.12)

When we collect like terms in this expression and recognize that [M] is symmetric, so

that
(

[M]−1
)T

= [M]−1
, we obtain a definition of the Hamiltonian that contains only

the pn and qn variables, specifically,

H = 1
2

{p}T [M (qi , t)]−1 {p} − {
N (qi , t)

}T [M (qi , t)]−1 {p}

− 1
2

{
N (qi , t)

}T [M (qi , t)]−1 {N (qi , t)
}− T0 (qi , t) + V (qi , t) .

(9.2.13)

Now that we know how to construct H, we turn our attention to identifying a cor-
responding set of equations of motion. The most direct route is to return to the original
definition, Eq. (9.2.8). To ascertain some identities obeyed by derivatives of H, we form
the total time derivative dH/dt by using two perspectives. From one view H is a general
function of the pj , qj , and t, so that

dH
dt

=
N∑

j=1

∂H
∂pj

ṗj +
N∑

j=1

∂H
∂qj

q̇j + ∂H
∂t

. (9.2.14)

In the other view Eq. (9.2.8) explicitly defines H in terms of these variables, so differen-
tiating that expression yields

dH
dt

=
N∑

j=1

( ṗj q̇j + pj q̈j ) −
⎡
⎣ N∑

j=1

(
∂L
∂q̇j

q̈j + ∂L
∂qj

q̇j

)
+ ∂L

∂t

⎤
⎦

=
N∑

j=1

( ṗj q̇j + pj q̈j ) −
N∑

j=1

(
pj q̈j + ∂L

∂qj
q̇j

)
− ∂L

∂t

=
N∑

j=1

(
ṗj q̇j − ∂L

∂qj
q̇j

)
− ∂L

∂t
.

(9.2.15)

Both descriptions of the time derivative must be the same, regardless of the details
of the system’s response. To enforce this assertion we observe that, although pj and
q̇j are related by Eq. (9.2.9), one set of variables does not define the other because
the relation depends on the current values of the generalized coordinates. Thus we may
consider the pj variables at any instant to be independent of the q̇j variables. This means
that the coefficient of each ṗj in Eq. (9.2.14) must match the corresponding coefficient in
Eq. (9.2.15). When this equality holds, then the remaining terms that are coefficients of
the q̇j must also match, which in turn requires that the remaining partial time derivatives
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also match. The result is that

q̇j = ∂H
∂pj

,
∂L
∂qj

= − ∂H
∂qj

,
∂L
∂t

= −∂H
∂t

. (9.2.16)

We substitute these relations and the definition of the pj variables as derivatives L into
Lagrange’s equations, which yields

q̇j = ∂H
∂pj

,

ṗj + ∂H
∂qj

= Qj .

(9.2.17)

These are Hamilton’s equations of motion.
The only occurrence of generalized velocities is in the first set of equations, because

the q̇j have been removed from H. These equations, which describe how the generalized
coordinates are influenced by the other effects, are the scalar equivalent of Eq. (9.2.11).
Some individuals prefer to use that relation to obtain the q̇j variables, rather than dif-
ferentiating H. In any event, Hamilton’s equations constitute a set of 2N coupled, first-
order differential equations governing the N generalized coordinates qj and N general-
ized momenta pj . If the generalized coordinates are constrained, these equations must
be supplemented by the constraint equations, in which any occurrence of generalized
velocity must be replaced with its relation to the generalized momenta, as described by
Eq. (9.2.11). The constraint forces would then appear in the generalized forces, or alter-
natively, the Lagrange multiplier terms may be added to the generalized force array.

When both sets of Hamilton’s equations are assembled, the result has an attrac-
tive state-space form, in that only the state vector {x} = [{q}T {p}T]T appears on the left
side. This feature might seem to make Hamilton’s equations more efficient for numerical
analysis because evaluation of the right side of the assembled equations gives the value
of {ẋ} to be sent to a differential equation solver. In comparison, numerical solution of
the Lagrange equations for a holonomic system require evaluation of the current gener-
alized accelerations by solving [M] {q̈} = {F} ; see Section 7.6. The fact that Hamilon’s
equations of motion directly give the {ẋ} vector, whereas the state-space formulation
of Lagrange’s equations requires intermediate calculations, might seem to make Hamil-
ton’s equations more efficient for a numerical solution. However, this is an incomplete
view because it fails to recognize that [M] must be inverted algebraically to form H ac-
cording to Eq. (9.2.13), whereas evaluation of {q̈} for the state-space equations can be
done by generating a formal inverse of [M] or by numerically solving [M] {q̈} = {F} at
each instant.

EXAMPLE 9.3 The angles of rotation are selected as generalized coordinates for
the double pendulum, whose bars have equal mass m. Derive Hamiltonian equa-
tions of motion.
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L

θ1

θ2

A

B L
Example 9.3

SOLUTION This system is sufficiently simple that we could skip some steps, but we
will follow the formal procedures in order to get a good picture of what operations
are required for formulating Hamilton’s equations for a complicated system. We
begin the analysis by expressing the Lagrangian in terms of the generalized coor-
dinates and velocities. Bar AB is in pure rotation about end A, and bar BC is in
general motion. We obtain the velocity of the center of mass G of bar BC by differ-
entiating its position, which gives

v̄G =
(

L θ̇1 cos θ1 + L
2

θ̇2 cos θ2

)
ī +

(
Lθ̇1 sin θ1 + L

2
θ̇2 sin θ2

)
j̄,

where ī is to the right and j̄ is upward. The kinetic energy is

T = 1
2

I1θ̇
2
1 + 1

2
mv̄G · v̄G + 1

2
IGθ̇

2
2

= 1
2

(
1
3

mL2

)
θ̇

2
1 + 1

2
m
[

L2θ̇
2
1 + L2

4
θ̇

2
2

+ L2θ̇1θ̇2 (cos θ1 cos θ2 + sin θ1 sin θ2)
]+ 1

2

(
1
12

mL2

)
θ̇

2
2

= 1
2

mL2

[
4
3
θ̇

2
1 + 1

3
θ̇

2
2 + θ̇1θ̇2 cos (θ2 − θ1)

]
.

The elevation of pin A is a convenient datum for gravitational potential energy. The
corresponding Lagrangian is

L = 1
2

mL2

[
4
3
θ̇

2
1 + 1

3
θ̇

2
2 + θ̇1θ̇2 cos (θ2 − θ1)

]

+ mg
L
2

cos θ1 + mg
(

Lcos θ1 + L
2

cos θ2

)
.

(1)

The next step is to form the generalized momenta. The kinetic energy has only
quadratic terms in the generalized velocities, so {N} = {0} and T0 = 0. The easiest
way to identify [M] is to form the pj variables by differentiating L and then compare
the result with Eq. (9.2.9). Differentiation yields

p1 = ∂L

∂θ̇1
= mL2

[
4
3
θ̇1 + 1

2
θ̇2 cos (θ2 − θ1)

]
,

p2 = ∂L

∂θ̇2
= mL2

[
1
3
θ̇2 + 1

2
θ̇1 cos (θ2 − θ1)

]
.
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Matching this to {p} = [M] {q̇} + {N} leads to

[M] = mL2

⎡
⎢⎢⎣

4
3

1
2

cos (θ2 − θ1)

1
2

cos (θ2 − θ1)
1
3

⎤
⎥⎥⎦ . (2)

The inverse of the inertia matrix is

[M]−1 = 1
mL2�

[
12 −18 cos (θ2 − θ1)

−18 cos (θ2 − θ1) 48

]
, (3)

where

� = 16 − 9 cos (θ2 − θ1)2
. (4)

From this, we form H by following Eq. (9.2.13), which yields

H = 1
2

[p1 p2] [M]−1

{
p1

p2

}
+ V

= 1
2mL2�

[
12p2

1 + 48p2
2 − 36p1 p2 cos (θ2 − θ1)

]
− mg

L
2

(3 cos θ1 + cos θ2) .

(5)

All applied forces are conservative forces, and the generalized coordinates are un-
constrained, so the generalized forces are zero.

We obtain the first set of Hamilton’s equations by differentiating H with respect
to the generalized momenta:

θ̇1 = ∂H
∂p1

= 1
mL2�

[12p1 − 18p2 cos (θ1 − θ2)] ,

θ̇2 = ∂H
∂p2

= 1
mL2�

[48p2 − 18p1 cos (θ1 − θ2)] .

(6) �

Differentiation of H with respect to the generalized coordinates leads to the second
portion of Hamilton’s equations. The generalized coordinates appear in the inertial
terms only as θ2 − θ1, which simplifies the operations. Thus,

ṗ1 = − ∂H
∂θ1

= 1
2mL2

{
1

�2

d�

dθ1

[
12p2

1 + 48p2
2 − 36p1 p2 cos (θ2 − θ1)

]}

+ 1
2mL2�

[−36 sin (θ2 − θ1)] − 3
2

mgLsin θ1

= − 18 sin (θ2 − θ1)
mL2�2

[(
6p2

1 + 24p2
2

)
cos (θ2 − θ1)

− p1 p2

(
16 + 9 cos (θ2 − θ1)2

)]
− 3

2
mgLsin θ1,

(7) �
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ṗ2 = − ∂H
∂θ2

= 18 sin (θ2 − θ1)
mL2�2

[(
6p2

1 + 24p2
2

)
cos (θ2 − θ1)

− p1 p2

(
16 + 9 cos (θ2 − θ1)2

)]
− 1

2
mgLsin θ2.

Given that this system is relatively uncomplicated, it is clear that forming Hamil-
ton’s equations in more engineering-oriented systems is likely to be a tedious pro-
cess, unless one uses symbolic mathematical software.

9.2.2 Conservation of the Hamiltonian

One of the features of Hamilton’s equations that has attracted attention is that they
permit canonical transformations. The result of such transformations are new variables
other than generalized coordinates and momenta that nevertheless satisfy Hamilton’s
equations. Goldstein (1980) and Desloges (1982) give good explanations of this appli-
cation. For us, the primary value of the Hamiltonian formulation lies in an associated
conservation theorem. We return to Eq. (9.2.15), into which we substitute the definition
of a generalized momentum, Eq. (9.2.6), in order to eliminate pj . The altered form is

dH
dt

=
N∑

j=1

[
d
dt

(
∂L
∂qj

)
− ∂L

∂qj

]
q̇j − ∂L

∂t
. (9.2.18)

The term in the brackets equals the generalized force in Lagrange’s equations, so we
find that

dH
dt

=
N∑

j=1

Qj q̇j − ∂L
∂t

. (9.2.19)

The first case we consider is a time-invariant system, which means that the posi-
tion of all points at any instant depends on the generalized coordinates in a functional
relationship that does not explicitly display the elapsed time. This has a number of con-
sequences regarding Eq. (9.2.19) because physical velocities are related homogeneously
to the generalized velocities according to

v̄ (q̇i , qi , t) =
N∑

j=1

∂ r̄
∂qj

q̇j . (9.2.20)

Correspondingly, the power input by a set of nonconservative forces is

Ẇ =
∑

n

F̄n · v̄n =
∑

n

F̄n ·
N∑

j=1

(
∂ r̄n

∂qj

)
q̇j . (9.2.21)

According to Eq. (7.4.4) the generalized forces are describable as

Qj =
∑

n

F̄n · ∂ r̄n

∂qj
. (9.2.22)
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A rearrangement of the sequence in which the sums in Eq. (9.2.21) are performed re-
veals that the power input Ẇ for a time-invariant system attributable to nonconservative
forces is given by

Ẇ =
N∑

j=1

Qj q̇j . (9.2.23)

Another corollary of the time-invariant feature is that the kinetic energy consists
solely of terms in which the generalized velocities appear quadratically, T = T2 (q̇i , qi ) .

According to Eq. (9.2.10), H is identical to the mechanical energy in this case. In addition
to T not depending explicitly on the elapsed time, V is also independent of t, because
the position is known if the qj values are known, regardless of the value of t . It follows
that ∂L/∂t = 0. Hence, we find that Eq. (9.2.19) reduces to Ė = Ẇ. This is the power
balance law, that is, the time derivative of the basic work–energy relation. Thus no new
insights will result from evaluating the Hamiltonian for a time-invariant system.

Consider now an important special class of time-dependent systems in which ve-
locities contain a term that is independent of generalized velocities, but they do not
explicitly depend on t. In other words, suppose that positions have the form r̄ (qi , t) ,

but ∂ r̄/∂t is not an explicit function of t, so that all velocities are described by

v̄ (q̇i , qi , t) =
N∑

j=1

v̄ j (qi ) q̇j + v̄0 (qj ) , v̄ j = ∂ r̄
∂qj

. (9.2.24)

A body that precesses at a constant rate typifies this situation. The precession angle
in that case is proportional to t, so we do not take it to be a generalized coordinate.
All positions depend on this angle, which means that they are explicitly time dependent.
In contrast, the angular velocity components relative to body-fixed coordinate axes are
independent of the precession angle. Consequently, the product of the precession rate
and a unit vector parallel to the precession axis will represent a contribution to ω̄ that
does not contain a generalized velocity; this is the type of quantity that v̄0 represents.

When Eq. (9.2.24) applies for all relevant velocities, both T0 and T1 are likely to
be nonzero. In that case, H will be different from E, even though T does not depend
explicitly on t. If it happens that V also is not an explicit function of t, then ∂L/∂t = 0.

The consequence is that Eq. (9.2.19) indicates that

dH
dt

=
N∑

j=1

Qj q̇j . (9.2.25)

Because H is different from E, the left side is not the rate at which mechanical energy
changes. Correspondingly, the summation on the right side does not represent the power
input by nonconservative forces.

To understand the difference between Eq. (9.2.25) and the work–energy principle,
suppose the generalized coordinates are unconstrained. Constraint forces then do not
appear in any of the generalized forces, so the left side of Eq. (9.2.25) is the instanta-
neous power of the applied forces. However, making a system move in the specified
time-dependent manner requires that there be constraint forces to sustain the motion.
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The work done by these forces is not described by Eq. (9.2.25), but it does contribute
to the power balance law. For example, consider the situation discussed previously, in
which a body precesses at a constant rate. A torque must be applied to maintain that
rate, regardless of how the nutation angle changes. The product of this torque and the
precession rate is the power input from a constraint force. If the precession angle is used
as a generalized coordinate, this power input does not contribute to the right side of
Eq. (9.2.25).

It follows that Eq. (9.2.19) for time-dependent systems is quite different from the
power balance form of the basic work–energy principle. If it happens that ∂L/∂t = 0,

then we may employ Eq. (9.2.25) in the same way that we would use the power balance
law for a time-invariant system. A further specialization pertains to a conservative sys-
tem, in which case all Qj are zero. Equation (9.2.25) indicates that, if ∂L/∂t = 0 for a
conservative system, then dH/dt = 0, which is equivalent to stating that H is a constant
quantity. This is Jacobi’s integral. Knowledge of constancy of H can be used in the same
way that one would apply conservation of energy to a conservative system. Thus we may
obtain a relation for the rate variables at some position by equating the value of H at
that position to the value at the initial position, where the system’s state presumably is
known.

EXAMPLE 9.4 Application of an unspecified torque � causes the system to rotate
about the vertical axis at the known constant rate �. Pin A has ideal properties,
which allows the angle θ to change freely. Compare the rate of change of the Hamil-
tonian of the system with the result of applying the power balance principle.

A

B

Ω

θ

L

Example 9.4

SOLUTION This example clarifies the difference between Jacobi’s integral and en-
ergy principles. The central quantity is the kinetic energy as a function of the gen-
eralized coordinates. The only generalized coordinate required here is the nutation
angle θ because the precession rate is specified as ψ̇ = �. Let pin A be the origin of
xyz, which is attached to bar AB such that its x axis is aligned with the bar and the
z axis is situated in the vertical plane. Then the angular velocity of the bar is

ω̄ = −� cos θ ī − θ̇ j + � sin θ k̄.
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With the pin defined to be the datum for gravitational potential energy, the corre-
sponding energy functions are

T = 1
2

(
1
3

mL2
)[

θ̇
2 + �2 (sin θ)2

]
, V = −mg

L
2

cos θ. (1)

Time does not occur explicitly in these expressions, so Eq. (9.2.25) is applicable.
The generalized momentum corresponding to the sole generalized coordinate is

p1 = ∂T

∂θ̇
= 1

3
mL2θ̇ , (2)

so M1,1 = (1/3) mL2. Inspection of T shows that it does not contain a term that is
linear in θ̇ , so the kinetic energy matches the standard form, Eqs. (7.6.4), with

N1 = 0, T0 = 1
2

(
1
3

mL2
)

�2 (sin θ)2
.

These expressions enable us to employ Eq. (9.2.13) to derive the Hamiltonian, which
leads to

H = 1
2

1
M1,1

p2
1 − T0 + V

= 3
2mL2

p2
1 − 1

6
mL2�2 (sin θ)2 − mg

L
2

cos θ.

(3)

A virtual displacement increments θ by δθ, but the only force that does work in
such a movement is gravity, which is included in V. Therefore Q1 = 0, from which it
follows that Jacobi’s integral, which is the conservation form of Eq. (9.2.25), applies.
We may establish the constant value H0 of the Hamiltonian by evaluating it at the
initial state. Hence any motion of the system must be such that the Hamiltonian in
Eq. (3) remains constant:

3
2mL2

p2
1 − 1

6
mL2�2 (sin θ)2 − mg

L
2

cos θ = H0.

We may express this conservation equation in terms of θ by substituting Eq. (2),
which yields

1
6

mL2
[
θ̇

2 − �2 (sin θ)2
]

− mg
L
2

cos θ = H0. (4) �

This relation is an integral of the equation of motion, just like the principle of con-
servation of energy for a conservative, time-independent system. Knowledge of the
constancy of H can be used to determine a value of θ̇ at a specified θ. Another use
is to check the results of a computer simulation.

Now let us examine the power balance principle for this system. The mechanical
energy is E = T + V, so

E = 1
6

mL2
[
θ̇

2 + �2 (sin θ)2
]

− mg
L
2

cos θ.
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The only nonconservative force that does work when the system moves is the couple
� that sustains a constant precession rate �, so the power input is

Ẇ = ��.

The work–energy principle states that Ė = Ẇ, which leads to

1
3

mL2 [θ̇ θ̈ + �2θ̇ (sin θ) (cos θ)
]+ mg

L
2

θ̇ sin θ = ��. (5) �

We may derive another differential equation for θ from Jacobi’s integral by
observing that dH/dt = 0. Differentiation of Eq. (4) shows that

1
3

mL2 [θ̇ θ̈ − �2θ̇ (sin θ) (cos θ)
]+ mg

L
2

θ̇ sin θ = 0. 6 (�)

This is identical to Lagrange’s equation for θ multiplied by an additional θ factor.
Taking the difference between Eqs. (5) and (6) yields an expression for �:

� = 2
3

mL2�θ̇ (sin θ) (cos θ) . (7)

Equations (5) and (6) can be obtained by an alternative formulation that uses
as constrained generalized coordinates q1 = θ and q2 = ψ, which must satisfy the
constraint equation that ψ̇ = �. The Lagrange equation for θ would be the same as
Eq. (6) divided by the common factor θ̇ . Substitution of the condition that ψ̇ = �,

ψ̈ = 0, into the Lagrange equation for ψ would yield Eq. (7).

9.2.3 Ignorable Coordinates and Routh’s Method

Consideration of generalized momenta in some circumstances can lead to additional
conservation theorems, as well as simplification of the equations of motion. The first
situation arises when the Lagrangian does not depend explicitly on a specific general-
ized coordinate qn, even though the corresponding q̇n does appear explicitly. Because
∂L/∂qn = 0 in this case, Lagrange’s equation for this generalized coordinate is

d
dt

(
∂L
∂q̇n

)
≡ dpn

dt
= Qn. (9.2.26)

The solution of this differential equation is

pn|t2 = pn|t2 +
∫ t2

t1
Qndt. (9.2.27)

This is a generalized impulse–momentum principle. Both linear and angular momenta
are described by it, depending on the type of geometric quantity associated with qn. It
should be noted that, if Qn depends on any of the generalized coordinates, this momen-
tum principle could not be used independently to relate the states at t1 and t2, because
the impulse could not be evaluated until the time dependence of the generalized coordi-
nates has been determined. Such a situation corresponds to the Newtonian formulation
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of position-dependent forces, in which momentum principles are not used because the
impulse cannot be evaluated.

Now consider the more restrictive situation, in which L does not depend on a specific
qn and the corresponding generalized force Qn vanishes, Qn = 0. We find from the fore-
going that pn is constant, which corresponds to conservation of a generalized momentum.
When such a situation occurs, the value of pn may be computed from the system’s ini-
tial conditions. On the other hand, when we return to the definition of pn we obtain an
expression that depends on the full set of generalized coordinates and velocities. Thus,
if we form

∂L
∂q̇n

= pn = constant, (9.2.28)

we may algebraically solve this relation for q̇n in terms of the other generalized coor-
dinates and generalized velocities. This solution may be substituted into the remaining
Lagrange’s equations to obtain equations of motion in which neither qn nor q̇n appears.
For this reason qn is said to be an ignorable coordinate.SS

We used this procedure to simplify the equations of motion in Example 7.14 in
Chapter 7. Although the resulting equations will have a more complicated form in com-
parison with those that feature the ignorable coordinate, there will be fewer equations
to solve. Thus one should assess whether the effort to remove the ignorable coordi-
nate is warranted in view of the potential improvement for the solution. When several
generalized coordinates are ignorable, the set of momentum conservation equations,
Eq. (9.2.28), comprises simultaneous algebraic equations that may be solved for each
ignorable coordinate’s generalized velocity in terms of the other variables.

An important aspect of the elimination process is that the coordinates are removed
by operating on the Lagrange’s equations that are derived by use of the full set of equa-
tions. It might seem that a shortcut would be to substitute the q̇n expressions for the
ignorable coordinates derived from Eq. (9.2.28) directly into the Lagrangian and use
that reduced Lagrangian to obtain the equations for the nonignorable coordinates. Do-
ing so would be incorrect because a fundamental step leading to Lagrange’s equations
required that the virtual increments in the generalized coordinates be completely arbi-
trary.

Routh’s method for the ignoration of coordinates is an alternative elimination pro-
cedure that enables us to remove the ignorable coordinates before the equations for
the nonignorable coordinates are derived. In essence, it derives the Lagrangian for an
equivalent system having a reduced number of degrees of freedom. To develop the pro-
cedure, let K denote the number of generalized coordinates, sequenced as q1 to qK,

that appear explicitly in the Lagrangian, and therefore are not ignorable. Then there
are N − K ignorable coordinates, sequenced as qK+1 to qN. The first step in following
Routh’s method is to form Eq. (9.2.28) for each ignorable coordinate and to solve those
equations algebraically. These operations will yield the ignorable generalized velocities

SS Rather than being said to be ignorable, such variables are often said to be cyclic coordinates. This name
stems from the observation that most cases in which a generalized coordinate is ignorable involve rotation
about an axis. Occasionally, these variables are said to be kinosthenic coordinates.
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in terms of the other variables, that is,

∂L
∂qn

= pn for n = K + 1, . . . , N yields

q̇n = fn (q̇1, . . . , q̇K, q1, . . . , qJ , pK+1, . . . , pN, t) for n = K + 1, . . . , N.

(9.2.29)

The Routhian function is defined in terms of the Lagrangian for the system according
to

� = L −
N∑

n=K+1

pnq̇n. (9.2.30)

The result of substituting the expressions for the ignorable generalized veloc-
ities is that the functional dependence of the Routhian is �(q̇1, . . . , q̇K, q1, . . .,
qK, pK+1, . . . , pN, t). The definition of � is reminiscent of H. Thus it should not be sur-
prising that the Routhian equations of motion are derived by a procedure that is like
the route we took to derive Hamilton’s equations. As was true for the direct elimination
procedure discussed previously, here we must recognize that, although pNq+1, . . . pN, are
constants in the actual motion, they must be treated as variables when we derive equa-
tions of motion. Rather than a time derivative, we consider the virtual increment of the
Routhian. In view of the general functional dependence of �, its variation is described
by

δ� =
K∑

j=1

(
∂�
∂q̇j

δq̇j + ∂�
∂qj

δqj

)
+

N∑
n=K+1

∂�
∂pn

δ pn. (9.2.31)

Alternatively, we may form δ� based on the definition in Eq. (9.2.30). Because the La-
grangian does not depend on ignorable coordinates, the variation of � is

δ� =
K∑

j=1

(
∂L
∂q̇j

δq̇j + ∂L
∂qj

δqj

)
+

N∑
n=K+1

∂L
∂q̇n

δq̇n −
N∑

n=K+1

(pnδq̇n + δ pnq̇n)

=
K∑

j=1

(
pjδq̇j + ∂L

∂qj
δqj

)
−

N∑
n=K+1

δ pnq̇n.

(9.2.32)

We are free to select the time dependence of each δqj arbitrarily. Hence, like coefficients
of the virtual increments in the alternative representations of δ� in Eqs. (9.2.31) and
(9.2.32) must match, so that

∂�
∂q̇j

= ∂L
∂q̇j

,
∂�
∂qj

= ∂L
∂qj

, j = 1, . . . , K,

∂�
∂pn

= −q̇n, n = K + 1, . . . , N

(9.2.33)
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When we substitute the first two identities into Lagrange’s equations we obtain the
Routhian equations of motion:

d
dt

(
∂�
∂qj

)
− ∂�

∂qj
= Qj , j = 1, . . . , K. (9.2.34)

In other words, the Routhian may be considered to be the Lagrangian for a system
described by K generalized coordinates. If the generalized coordinates are an uncon-
strained set, then the Routhian represents an equivalent system having K degrees of
freedom.

EXAMPLE 9.5 Assume that the ball within a roulette wheel rolls without slip-
ping and that rolling resistance is negligible. The position of the center of the ball
is defined by two cylindrical coordinates, the azimuthal angle θ measured about the
wheel’s rotation axis and the transverse distance R measured from that axis. The
elevation is a function Z(R) that specifies the profile of the roulette wheel, and σ is
the radius of the ball. The mass of the ball is m, the moment of inertia of the wheel
is I, and it is permissible to assume that the roulette wheel rolls without slipping rel-
ative to the roulette wheel. Determine the Routhian corresponding to the minimum
number of differential equations of motion governing this system.

SOLUTION This example is an interesting application of Routh’s method, but the
omission of numerous effects, such as bearing and rolling friction, makes the model
incapable of predicting the actual motion of a ball in a roulette wheel. The absence
of slippage means that it is sufficient to select generalized coordinates that locate
the center of the ball, and another generalized coordinate is required to locating the
roulette wheel. Thus we select q1 = R, q2 = θ, and q3 = ψ, which is the angle the
wheel rotates about the vertical.

β

β

R

Z
eR

eZ
z

xψ. O

C

Example 9.5

We begin with a kinematical analysis in terms of the generalized coordinates.
The sketch shows a vertical cross section. This plane has rotated by angle θ relative
to some reference orientation, and R is the perpendicular distance to the center of
the ball from the wheel’s axis, which corresponds to a set of cylindrical coordinates
having horizontal and vertical unit vectors, as shown. The sketch also shows an xyz
coordinate system that is defined such that the z axis is normal to the surface of the
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wheel at contact point C with the xz plane always coincident with the plane of the
sketch. Because the x axis is tangent to the surface in the vertical plane, its angle of
elevation β is related to the slope z′ ≡ dz/dR, so that

β = tan−1 (Z′) =⇒ sin β = Z′[
1 + (Z′)2

]1/2
, cos β = 1[

1 + (Z′)2
]1/2

,

ēR = cos β ī − sin βk̄, ēZ = sin β ī + cos βk̄.

(1)

The angular velocity of the ball consists of the precession θ̇ at which the plane
of the sketch rotates about the vertical axis, onto which is superposed unknown
rotations �x about the x axis and �z about the z axis. Therefore the angular velocity
of the ball is given by

ω̄ = θ̇
(
sin β ī + cos βk̄

)+ �xī + �y j̄ . (2)

The no-slip condition requires that v̄O = v̄C + ω̄ × r̄O/C, where the position of the
center O relative to the contact point C is r̄O/C = σ k̄. The transverse distance from
the axis of rotation to the contact point is RC = R + σ sin β, and the velocity of this
point on the roulette wheel is RCψ̇ j̄ . The condition that there is no slippage at point
C therefore leads to

v̄O = RCψ̇ j̄ + [(
θ̇ sin β + �x

)
ī + �y j̄ + θ̇ cos βk̄

]× σ k̄

= �yσ ī + [
RCψ̇ − (

θ̇ sin β + �x
)
σ
]

j̄ .
(3)

We also can describe the velocity of the ball’s center in terms of the cylindrical
coordinates. Here we use the fact that Z is a known function of R, so that Ż =
Ṙ(dZ/dR) ≡ ṘZ ′. In view of the representation of the cylindrical coordinate unit

vectors in Eqs. (1), it follows that

v̄O = ṘēR + Rθ̇ ēθ + Żk̄

= (
Ṙcos β + ṘZ′ sin β

)
ī + Rθ̇ j̄ + (−Ṙsin β + ṘZ′ cos β

)
k̄

≡ Ṙ
cos β

ī + Rθ̇ j̄,

(4)

where the last form is a consequence of the definition of β in Eqs. (1). Each compo-
nent of this description of v̄O must match the corresponding component in Eq. (3),
which leads to

�y = Ṙ
σ

Ṙ
[
1 + (Z′)2

]1/2
,

�x = −
(

R
σ

+ sin β

)
θ̇ + RC

σ
ψ̇ ≡

(
R
σ

+ sin β

) (
ψ̇ − θ̇

)
.

The angular velocity in Eq. (2) correspondingly is

ω̄ =
[(

R
σ

+ sin β

)
ψ̇ − R

σ
θ̇

]
ī + Ṙ

σ cos β
j̄ + θ̇ cos βk̄. (5)
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Because β is a known function of R, Eqs. (4) and (5) are suitable for describ-
ing the energy functionals in terms of the generalized coordinates. The moment of
inertia of the sphere about any centroidal axis is (2/5) mσ 2, so the kinetic energy is

T = 1
2

mv̄O · v̄O + 1
2

(
2
5

mσ 2

)
ω̄ · ω̄

= 1
2

m

[(
Ṙ

cos β

)2

+ (
Rθ̇
)2

]

+ 1
2

(
2
5

mσ 2

){[(
R
σ

+ sin β

)
ψ̇ − R

σ
θ̇

]2

+
(

Ṙ
σ cos β

)2

+ (
θ̇ cos β

)2

}
+ 1

2
Iψ̇2

.

Collecting like coefficients in this expression yields

2T = 7
5

m
(

Ṙ
cos β

)2

+ m
[

7
5

R2 + 2
5
σ 2 (cos β)2

]
θ̇

2

+
[

2
5

m (R + σ sin β)2 + I
]

ψ̇2 − 4
5

(
R2 + σ 2 sin β

)
θ̇ ψ̇ .

This expression for T has the standard quadratic form of kinetic energy. The inertia
coefficients are

M1,1 = 7
5

m

(cos β)2 , M2,2 = m
[

7
5

R2 + 2
5
σ 2 (cos β)2

]
,

M3,3 = 2
5

m (R + σ sin β)2 + I,

M2,3 = M3,2 = −2
5

m
(
R2 + σ Rsin β

)
, Mi, j = 0 otherwise, Nj = T0 = 0.

Gravity is conservative, with Z(R) defining the elevation of the sphere, and no
other force contributes to the virtual work. Thus the Lagrangian is

L = 1
2

(
M1,1 Ṙ2 + M2,2θ̇

2 + M3,3ψ̇
2 + 2M2,3θ̇ ψ̇

)
− mgZ(R) .

The only generalized coordinate appearing explicitly in this expression is R, so both
θ and ψ are ignorable coordinates. The corresponding generalized momenta are

p2 = ∂L
∂θ̇

= M2,2θ̇ + M2,3ψ̇,

p3 = ∂L
∂ψ̇

= M3,2θ̇ + M3,3ψ̇.

The values of p2 and p3 are constants that may be evaluated from the initial
conditions. The Mj,n coefficients are known functions of R, so solution of these
generalized momentum equations yields expressions for the values of θ̇ and ψ̇ at
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a specified R. This solution is most conveniently described in matrix form. Let [MI ]
denote the submatrix of [M] associated with the ignorable coordinates,

[MI ] =
[

M2,2 M2,3

M3,2 M3,3

]
,

which leads to [
θ̇ ψ̇

]T = [MI ]−1 [p2 p3]T
.

Forming the Routhian with this expression is assisted by the fact that R is iner-
tially uncoupled from the ignorable coordinates, so L may be rewritten as

L = 1
2

M1,1 Ṙ2 + 1
2

[
θ̇ ψ̇

]
[MI ]

[
θ̇ ψ̇

]T − mgZ.

The summation in Eq. (9.2.30) defining the Routhian is equivalent to {pI}T {q̇I} ,

where each vector contains the variables for the ignorable coordinates. Thus substi-
tution of the solution for the ignorable generalized coordinates into the Routhian
for the present system yields

� = L − {pI}T {q̇I}

= 1
2

M1,1 Ṙ2 + 1
2

[
θ̇ ψ̇

]
[MI ]

[
θ̇ ψ̇

]T − [p2 p3]
[
θ̇ ψ̇

]T − mgZ

= 1
2

M1,1 Ṙ2 + 1
2

[p2 p3] [MI ]−1 [MI ] [MI ]−1 [p2 p3]T

− [p2 p3] [MI ]−1 [p2 p3]T − mgZ

= 1
2

M1,1 Ṙ2 − 1
2

[p2 p3] [MI ]−1 [p2 p3]T − mgZ.

�

Because Z and [MI ] are known functions of R, the Routhian � depends on only
R and Ṙ, so it represents the Lagrangian of an equivalent one-degree-of-freedom
system. The first term, which contains the generalized velocity, is the equivalent
kinetic energy, whereas the equivalent potential energy is the negative of the sum
of the remaining terms. The single differential equation of motion is Lagrange’s
equation formulated in terms of � rather than the Lagrangian, with q1 = R and
Q1 = 0. After this equation has been solved for R, the time dependence of θ and
φ may be found by treating the definitions of p2 and p3 as first-order differantial
equations. One advantage of having to analyze only one acceleration equation is
that fundamental properties are readily established. For example, we may identify
the equilibrium positions by seeking the values of R at which ∂� /∂ R = 0.

9.3 FORMULATIONS WITH QUASI-COORDINATES

The dynamics principles associated with Lagrange and Hamilton share the attribute that
the sole kinematical variables to be determined are the generalized coordinates. They
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also share the feature of being based on formulating the kinetic and potential ener-
gies exclusively in terms of those variables. A different line of development has led to
formulations in which the variables used to describe the velocity of a system are not
the time derivatives of the generalized coordinates. We consider two such formulations
here. The Gibbs–Appell equations bear some similarity to Lagrange’s equations, in that
their equations of motion are obtained by differentiation of a function of the kinemati-
cal variables, whereas Kane’s equations are derived as a generalization of the dynamical
virtual work principle.

Despite the difference in the way they are derived and their ultimate appearance,
the Gibbs–Appell and Kane’s equation formulations yield the same differential equa-
tions of motion. A source of confusion that has arisen is that some quantities are com-
mon to both formulations, but are referred to differently in each. We first develop the
Gibbs–Appell approach, which chronologically preceded Kane’s approach, using the
terminology associated with it. The similarities will be pointed out when we address
Kane’s equations by using its associated terminology.

Implementing the Gibbs–Appell or Kane’s equations requires that we describe the
acceleration of a system. This is a distinct disadvantage relative to Lagrange’s equations,
which require only a velocity analysis. On the other hand, much freedom is gained by
allowing us to select velocity variables independently of the position variables. The mer-
its of these formulations will be discussed after each has been developed. In any event,
our study of the Gibbs–Appell equations and Kane’s equations will give a picture of the
variety of possible approaches that we might encounter.

9.3.1 Quasi-Velocities and Quasi-Coordinates

By definition, we may uniquely describe the instantaneous position of a system in terms
of the generalized coordinates qj . Up to now, we have correspondingly described the
instantaneous velocity of a system in terms of generalized velocities q̇j . However, this
is not the only way in which we could describe velocity. For example, consider a gen-
eral angular motion. The Eulerian angles could be the generalized coordinates, and the
angular velocity components ωx, ωy, and ωz could be the variables we use to describe
velocity and acceleration in Euler’s equations. Except for planar motion, an angular ve-
locity component seldom is the rate at which a rotation angle changes. However, the
definition of angular velocity is that it is dθ/dt, so the infinitesimal angle of rotation
about the x axis during an interval dt would be ωxdt. Thus this is a situation in which a
rate variable corresponds to a differential change, but there is no corresponding finite
change. Rate variables like ωx are said to be quasi-velocities, which are denoted as γ̇ j .

Correspondingly, the symbol γj is called a quasi-coordinate. The prefix “quasi” denotes
that γj need not have any meaning as a position coordinate, whereas the γ̇ j parameters
and the associated differential increments dγ j = γ̇ j dt will have physical significance. It
is acceptable, however, to employ a position variable as a quasi-coordinate, in which
case we would have γ j = qj .

To get an idea of how quasi-coordinates arise, consider the familiar relation between
the velocity of two points in a rigid body, v̄B = v̄A + ω̄ × r̄B/A, when we describe the
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position, and angular velocity vectors in terms of components relative to a body-fixed
reference frame. The result is

v̄B = v̄A + (−rz j̄ + ryk̄
)
ωx + (

rzī − rxk̄
)
ωy + (

rx j̄ − ryī
)
ωz. (9.3.1)

The components of ω̄ can be considered quasi-velocities. They occur linearly in the
preceding description of velocity, with vector coefficients that may depend on gener-
alized coordinates and time. There also is a term in the preceding equation that does not
contain these quasi-velocities. This form represents a generalization of Eq. (9.2.3), with
derivatives of generalized velocities q̇j replaced with quasi-velocities.

To develop this concept we begin by considering a situation in which the number
of quasi-coordinates we select is N, the number of generalized coordinates. Then the
mathematical form of a physical velocity will be

v̄P (γ̇ i , qi , t) =
N∑

j=1

v̄Pj (qi , t) γ̇ j + v̄P0 (qi , t) . (9.3.2)

In view of the fact that we have the option of describing the velocity of any point in
terms of the q̇j according to Eq. (9.2.3) or in terms of the γ̇ j variables according to
Eq. (9.3.2), it must be that the two sets of variables are kinematically related. Indeed,
when we contemplate matching like components of the alternative descriptions of ve-
locity, it becomes apparent that there is a linear relationship between the two sets of
variables, with the coefficients of that relationship being dependent on the generalized
coordinates. In other words,

q̇j =
N∑

n=1

Cjn (qi , t) γ̇ n + Dj (qi , t) ; j = 1, . . . , N. (9.3.3)

These are the kinematical equations, which will form one part of the differential equa-
tions of motion.

Suppose that there are J velocity constraint equations relating the generalized coor-
dinates. We can formulate these equations in terms of quasi-velocities by using descrip-
tions of linear and angular velocities having the form of Eq. (9.3.2). The result will be a
set of constraint equations that are linear in the quasi-velocities. Thus, when there are J
constraint equations to be satisfied, it is necessary that the quasi-velocities at any instant
satisfy

N∑
n=1

A jn (qi , t) γ̇ n + Bj (qi , t) = 0; j = 1, . . . , J. (9.3.4)

[In some situations it might be that linear velocity constraint equations have already
been described in terms of the generalized velocities. In that case, substitution of
Eq. (9.3.3) will lead to the preceding form.]

We now come to one of the beneficial features of quasi-coordinates. Velocity con-
straint equations that are expressed in terms of generalized velocities also depend on the
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values of the generalized coordinates. Consequently, in the nonholonomic case, they are
differential equations that can be solved only in conjunction with the kinetics equations.
In contrast, the γ̇ i appear in the preceding constraint equations only linearly, with coef-
ficients that are independent of the quasi-coordinates. Thus we may consider Eq. (9.3.4)
to be a set of J algebraic equations for the instantaneous γ̇ i values at a specified posi-
tion and time. We could solve those equations for J values in terms of the remaining
N − J values. The latter set constitutes unconstrained quasi-velocities. This name con-
veys the fact that any choice of the N − J remaining quasi-velocities will inherently lead
to a motion that is kinematically admissible. On the other hand, there are situations in
which constrained quasi-velocities are useful, such as systems in which Coulomb friction
is important.

We can accommodate all possibilities by letting K denote the number of quasi-
coordinates, while we retain N as the number of generalized coordinates and J as the
number of constraint equations. In the initial discussion of nonholonomic constraint
equations, the number of degrees of freedom was defined to be the number of gener-
alized velocities whose value at any instant can be selected arbitrarily and still obtain
a kinematically admissible velocity for all parts of the system. Thus K − J is the num-
ber of degrees of freedom. This generalization requires an adjustment of the summation
range in the kinematical equations, such that

q̇j =
K∑

n=1
Cjn (qi , t) γ̇ n + Dj (qi , t) ; j = 1, . . . , N. (9.3.5)

If J > 0, then the constraint equations will also be like the earlier set, except for the
altered summation range. Thus the quasi-velocities must satisfy constraint equations
whose form is

K∑
n=1

A jn (qi , t) γ̇ n + Bj (qi , t) = 0; j = 1, . . . , J. (9.3.6)

Quasi-coordinates are also used to describe virtual movements. The true displace-
ment of point P is v̄Pdt, which Eq. (9.3.2) shows to be

dr̄P =
K∑

j=1

v̄Pj (qi , t) γ̇ j dt + v̄P0 (qi , t) dt. (9.3.7)

To convert this to a virtual displacement, for which time is held constant, we drop the
last term and replace each γ̇ j dt with an infinitesimal value δγ j . (Just as the γ̇ j param-
eters need not directly describe the rates at which position coordinates change, the δγ j

values might have an abstract meaning in terms of change of position.) Thus the virtual
displacement of a point is described by

δr̄P =
K∑

j=1

v̄Pj (qi , t) δγ j . (9.3.8)
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Similarly, the virtual increments of the generalized coordinates are found from
Eq. (9.3.5) to be

δqn =
K∑

j=1

Cnj (qi , t) δγ j . (9.3.9)

We further observe that, if the quasi-coordinates are constrained, then their virtual in-
crements must be selected to be kinematically admissible. We multiply the constraint
equations, Eq. (9.3.6), by dt to obtain the Pfaffian form, then convert γ̇ j dt to δγ j , and
drop the term containing dt, which leads to the condition that the virtual displacement
will be kinematically admissible if

N∑
j=1

Anj (qi , t) δγ j = 0; j = 1, . . . , J. (9.3.10)

An overview of the kinematical concepts associated with quasi-coordinates shows
that generalized coordinates solely describe position dependence, whereas quasi-
coordinates describe velocity and virtual displacement. We begin a kinematical descrip-
tion by selecting the geometrical variables that constitute the set of qj and the rate vari-
ables that constitute the γ̇ j parameters. It is permissible that some or all of the latter are
the rate of change of a generalized coordinate. The number K of quasi-velocities must
be sufficient to describe every possible kinematical movement of the system.

EXAMPLE 9.6 End A of the bar is constrained to follow the guide, whereas end
B has a steerable wheel that rolls in the horizontal XY plane. The steering angle β is
controlled by a servomotor, so it is a known function of time. Let the position coordi-
nates of pivot B and angle θ be generalized coordinates, and let the quasi-velocities
be θ̇ and the velocity components of point G relative to the body-fixed xyz coor-
dinate system. (a) Determine the constraint equations relating the quasi-velocities.
(b) Determine the kinematical equations relating the generalized coordinates to the
quasi-velocities.

Example 9.6

SOLUTION This example demonstrates that the basic procedure for formulating ve-
locity constraint equations by use of quasi-velocities differs little from the proce-
dure for generalized velocities. However, to highlight this attribute, the general-
ized coordinates and quasi-velocities that have been selected are not the param-
eters an experienced practitioner would use. It is specified that the generalized
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coordinates are q1 = XA, q2 = YA, and q3 = θ, and that the quasi-velocities are
γ̇ 1 = (vG)x , γ̇ 2 = (vG)y , and γ̇ 3 = θ̇ . Collar A requires that v̄A be parallel to the
X axis, whereas wheel B requires that v̄B be at angle β relative to the x axis. Thus
we begin by relating the velocity of each end to the velocity of the center of mass
and the angular velocity, which are known in terms of the quasi-velocities:

v̄A = v̄G + ω̄ × r̄A/G = (vG)x ī + (vG)y j̄ + θ̇ k̄ ×
(

− L
2

ī
)

,

v̄B = v̄G + ω̄ × r̄B/G = (vG)x ī + (vG)y j̄ + θ̇ k̄ ×
(

L
2

ī
)

.

(1)

The constraints require that v̄A be parallel to the X axis and v̄B be at angle β above
the x axis. Both conditions can be imposed with cross products and unit vectors in
the respective directions, specifically,

v̄A × (
cos θ ī − sin θ j̄

) = 0̄,

v̄B × (
cos β ī + sin β j̄

) = 0̄.
(2)

We substitute Eqs. (1) to eliminate vA and vB, neither of which is a quasi-velocity.
The cross products have only k̄ components, so evaluation of Eqs. (2) leads to

− (vG)x sin θ −
[

(vG)y − L
2

θ̇

]
cos θ = 0,

(vG)x sin β −
[

(vG)y + L
2

θ̇

]
cos β = 0.

When each quasi-velocity is designated by the appropriate γ̇ symbol, these con-
straint equations become

γ̇ 1 sin θ + γ̇ 2 cos θ − L
2

γ̇ 3 cos θ = 0,

γ̇ 1 sin β − γ̇ 2 cos β − L
2

γ̇ 3 cos β = 0.

�

Both of these have the standard linear velocity constraint form in Eq. (9.3.4), with

A1,1 = sin θ, A1,2 = cos θ, A1,3 = − L
2

cos θ, B1 = 0,

A2,1 = sin β, A2,2 = −cos β, A2,3 = − L
2

cos β, B2 = 0.

There are three quasi-velocities that must satisfy two velocity constraints, so there
is one degree of freedom.

The kinematical equations express the rates at which the generalized coordi-
nates XB, YB, and θ change in terms of the quasi-velocities. We observe that θ̇ is
defined to be γ̇ 3, so one kinematical equation is an identity. To obtain the other
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kinematical equations associated with XB and YB we observe that these variables
describe the position of point B. Thus, instead of describing the velocity of point
B according to Eqs. (1), we could have expressed v̄B in terms of the generalized
velocities as

v̄B = ẊBĪ + ẎB J̄ = (vG)x ī +
[

(vG)y j̄ + θ̇
L
2

]
j̄ .

Taking components of each expression and replacing the various symbols with their
quasi-velocity designations yields

ẊB = γ̇ 1 cos θ −
(

γ̇ 2 + L
2

γ̇ 3

)
sin θ,

ẎB = γ̇ 1 sin θ +
(

γ̇ 2 + L
2

γ̇ 3

)
cos θ,

θ̇ = γ̇ 3,

�

which matches Eq. (9.3.5) with

C1,1 = cos θ, C1,2 = − sin θ, C1,3 = − L
2

sin θ, D1 = 0,

C2,1 = sin θ, C2,2 = cos θ, C2,3 = L
2

cos θ, D2 = 0,

C3,1 = C3,2 = 0, C3,3 = 1, D3 = 0.

9.3.2 Gibbs–Appell Equations

It is possible to modify Lagrange’s equations such that the term that contains a deriva-
tive with respect to a generalized velocities is replaced with terms that depend on the
quasi-velocities, see Desloge (1982). However, the transformation may be conveniently
carried out only for a holonomic system. In contrast, the Gibbs–Appell equations place
no restrictions on the conditions to which they apply. The derivation begins at the fun-
damental level of a particle P. We describe the position of this particle in terms of its
coordinates with respect to a fixed XYZ reference frame, which we denote indicially as
x1, x2, x3. Let (FP)n denote the corresponding components of the resultant force acting
on this particle. In view of Newton’s Second Law, the virtual work done on this particle
must be such that

δWP =
3∑

n=1

(FP)n δxn =
3∑

n=1

mPẍnδxn. (9.3.11)

Now consider using quasi-velocities to describe the motion. The relation between
the ẋn and the γ̇ n variables has the form of Eq. (9.3.5), and the relation between



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

9.3 Formulations with Quasi-Coordinates 595

the virtual increments must have the associated form in Eq. (9.3.10). We therefore
have

ẋn =
K∑

j=1

Cnj (xi , t) γ̇ j + Dn (xi , t) ,

δxn =
K∑

j=1

Cnj (xi , t) δγ j .

(9.3.12)

The result of substituting δxn into the left side of Eq. (9.3.11) is the usual description
of generalized forces, with the difference that δqj variables are replaced with δγ j pa-
rameters. We accordingly use the symbol � to denote generalized forces associated with
quasi-coordinates, so that

δWP =
3∑

j=1

(�P) j δγ j , (�P) j =
3∑

n=1

(FP)n Cnj (xi , t) . (9.3.13)

Substitution of δxn into the right side of Eq. (9.3.11) gives

δWP =
3∑

n=1

⎛
⎝mPẍn

K∑
j=1

Cnj (xi , t) δγ j

⎞
⎠ . (9.3.14)

To handle the acceleration components we differentiate the generalized velocities
in Eq. (9.3.12) to find

ẍn =
K∑

k=1

(
Cnk (qi , t) γ̈ k + γ̇ k

d
dt

Cnk (qi , t)
)

+ d
dt

Dn (qi , t) . (9.3.15)

There is no need to actually differentiate the coefficients. Rather, we observe that such
derivatives cannot lead to q̈j factors, so no additional occurrences of quasi-accelerations
γ̈ j will be found in the preceding equation. In other words each ẍn depends linearly on
the γ̈ j . It follows that

∂

∂γ̈ j
(ẍn) = Cnj . (9.3.16)

We use this relation to eliminate the Cnj coefficients in Eq. (9.3.14). When we rearrange
the sequence in which the summations are performed, we find that

δWP =
K∑

j=1

3∑
n=1

mPẍn
∂

∂γ̈ j
(ẍn) δγ j ≡

K∑
j=1

{
∂

∂γ̈ j

3∑
n=1

[
1
2

m (ẍn)2
]}

δγ j . (9.3.17)

The inner summation can be rewritten vectorially in terms of the particle’s acceleration
āP, so equating the alternative descriptions of virtual work in Eqs. (9.3.13) and (9.3.17)
for this particle leads to

δWP =
K∑

j=1

[
∂

∂γ̈ j

(
1
2

mPāP · āP

)]
δγ j =

K∑
n=1

(�P) j δγ j . (9.3.18)
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If particle P is part of a large set, the virtual work done on this particle will still be
as previously described. The virtual work for all particles will be the sum of these scalar
equations. The result of making the sum over all particles interior to the sum over the
quasi-coordinates results is

δW =
∑

P

δWP =
K∑

j=1

{
∂

∂γ̈ j

(∑
P

1
2

mPāP · āP

)}
δγ j =

K∑
n=1

[∑
P

(�P) j

]
δγ j . (9.3.19)

We now invoke the arguments that enabled us to extract Lagrange’s equations from
the description of virtual work. Thus we observe that, in the case in which the gener-
alized coordinates are unconstrained, the δγ j values may be selected arbitrarily at any
instant. Furthermore, even if there are constraint equations to satisfy, which subset of
δγ j is taken to be unconstrained is arbitrary. Consequently, corresponding coefficients
of δγ j in these alternative descriptions of virtual work must match, which leads us to the
Gibbs–Appell equations of motion,

∂S
∂γ̈ j

= � j , k = 1, . . . , K, (9.3.20)

where

S =
∑

P

1
2

mPāP · āP (9.3.21)

and

δW =
K∑
j1

� jδγ j . � j =
∑

P

F̄P · v̄Pj (qi , t) δγ j . (9.3.22)

The quantity S is the Gibbs–Appell function. Its similarity to the definition of kinetic
energy causes some to refer to S as an acceleration energy, but that is obviously a mis-
nomer.

Although they are associated with the δγ j quantities, rather than the δqj , the � j are
generalized forces. Their definition in terms of virtual work, Eqs. (9.3.22), is similar to
the definition of the Qj terms for Lagrange’s equations. Thus the basic procedure for
characterizing the � j entails matching the standard form of δW to the virtual work done
by the actual forces.

After the generalized coordinates and quasi-velocities have been selected for a spe-
cific system, formulation of the Gibbs–Appell equations of motion requires that we de-
scribe S (γ̈ i , γ̇ i , qj , t) and the associated generalized forces. Application of this formu-
lation to describe the motion of rigid bodies requires an expression for S in terms of
angular motion variables and inertia properties. Toward that end, we define a conve-
nient reference location as point A and consider a differential element of mass that is
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situated at position P. Let r̄ denote the position of point P relative to point A, so the
acceleration of this mass element is

ā = āA + ᾱ × r̄ + ω̄ × (ω̄ × r̄) . (9.3.23)

Before we use this expression to form S, it is useful to observe that only those terms
in S that contain a quasi-acceleration γ̈ j will give a nonzero derivative in regard to
Eq. (9.3.20). However, the quasi-accelerations occur only in linear and angular accel-
erations, as evidenced by Eq. (9.3.15), which leads to the realization that any term in S
that does not contain a linear or angular acceleration may be ignored. It follows that the
contribution of the mass element to S for the rigid body may be written as

dS = 1
2

dm [āA + ᾱ × r̄ + ω̄ × (ω̄ × r̄)] · [āA + ᾱ × r̄ + ω̄ × (ω̄ × r̄)]

= 1
2

dm (āA · āA) + 1
2

dm [(ᾱ × r̄) · (ᾱ × r̄)] + dm āA · (ᾱ × r̄)

+ dm āA · [ω̄ × (ω̄ × r̄)] + dm (ᾱ × r̄) · [ω̄ × (ω̄ × r̄)] + · · · ,

(9.3.24)

where “· · · ” is our standard notation indicating terms that depend solely on the angular
velocity components, and therefore are irrelevant to the equations of motion.

It is necessary to integrate this description of dS over all mass elements. The velocity
and acceleration variables are properties of the body, whereas r̄ and dm are variables for
such integrals. To isolate the latter we call on basic identities for the scalar and vector
triple products:

ā · (b̄ × c̄
) ≡ b̄ · (c̄ × ā) ≡ c̄ · (ā × b̄

)
, (9.3.25a)

ā × (
b̄ × c̄

) ≡ b̄ (ā · c̄) − c̄
(
ā · b̄

)
. (9.3.25b)

The first identity yields

(ᾱ × r̄) · (ᾱ × r̄) ≡ ᾱ · [r̄ × (ᾱ × r̄)] ,

(ᾱ × r̄) · [ω̄ × (ω̄ × r̄)] ≡ ᾱ · {r̄ × [ω̄ × (ω̄ × r̄)]
}
.

(9.3.26)

Now consider the term within the braces, r̄ × [ω̄ × (ω̄ × r̄)] . Because ω̄ × r̄ is perpen-
dicular to both ω̄ and r̄ , invoking Eq. (9.3.25b) with ā = r̄ and b̄ = ω̄ gives

r̄ × [ω̄ × (ω̄ × r̄)] ≡ − (ω̄ × r̄) (r̄ · ω̄) . (9.3.27)

It is readily verified that this is the same quantity as the result of applying Eq. (9.3.25b)
to ω̄ × [r̄ × (ω̄ × r̄)] with ā = ω̄ and b̄ = r̄ . It follows that

ω̄ × [r̄ × (ω̄ × r̄)] ≡ r̄ × [ω̄ × (ω̄ × r̄)] . (9.3.28)

These identities convert the expression for dS to

dS = 1
2

dm (āA · āA) + 1
2

dmᾱ · [r̄ × (ᾱ × r̄)] + dm āA · (ᾱ × r̄)

+ dm āA · [ω̄ × (ω̄ × r̄)] + dmᾱ · {ω̄ × [r̄ × (ω̄ × r̄)]
}+ · · · .

(9.3.29)
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Recall that the integral of r̄dm is the first moment of mass with respect to the point
from which r̄ is measured, which is point A, so that∫∫∫

r̄ dm = mr̄G/A.

Thus we find that

S =
∫∫∫

dS = 1
2

m (āA · āA) + 1
2
ᾱ ·
∫∫∫

[r̄ × (ᾱ × r̄)] dm + māA · (ᾱ × r̄G/A)

+ māA · [ω̄ × (ω̄ × r̄G/A)] + ᾱ ·
{
ω̄ ×

∫∫∫
[r̄ × (ω̄ × r̄)] dm

}
+ · · · .

(9.3.30)
The final step in the derivation comes from recognition that the last integral is the angu-
lar momentum H̄A of the body relative to point A. The integral contained in the second
term has the same form, except that ᾱ replaces ω̄. Recall that, when we employ body-
fixed axes to represent the components of ω̄, the components of ᾱ are the same as the
rates at which the respective components of ω̄ change. Hence the integral in the second
term is ∂ HA/∂t, which reduces the Gibbs–Appell function to

S = 1
2

m (āA · āA) + 1
2
ᾱ · ∂ H̄A

∂t
+ ᾱ · (ω̄ × H̄A

)
+ māA · (ᾱ × r̄G/A) + māA · [ω̄ × (ω̄ × r̄G/A)] + · · · .

(9.3.31)

In our previous analyses of rigid bodies, we selected the reference point A for angu-
lar momentum as the center of mass, or the fixed point of a body in pure rotation. The
former gives r̄G/A = 0̄, whereas the latter leads to āA. Each causes the last two terms
in the preceding description of S to vanish, thereby reducing S to three terms, none of
which couples rotational motion with the translational motion of the reference point.
Thus, we maintain the earlier restriction that point A should be the center of mass for a
translating body or a body in general motion, or the fixed pivot point for a body in pure
rotation. In either case, the Gibbs–Appell function for the body is given by

S = 1
2

m (āA · āA) + 1
2
ᾱ · ∂ H̄A

∂t
+ ᾱ · (ω̄ × H̄A

)
. (9.3.32)

The significant aspect of this formula is that it allows us to evaluate the Gibbs–Appell
function in terms of the same quantities as those we encountered for the Newton–Euler
equations of motion. Note that S is a scalar, so we obtain its value for a system by sum-
ming the contribution of each constituent body.

Planar motion is an important special case. Without loss of generality, let ω̄ = ωk̄
and ᾱ = ω̇k̄ for motion parallel to the xy plane. In this case only the k̄ component of
∂ H̄A/∂t will lead to terms in S. Regardless of the inertia matrix properties, this compo-
nent is

(
∂ H̄A/∂t

) · k̄ = Izzω̇. Also, ω̄ × H̄A is perpendicular to ᾱ in this case, so it has no
role in regard to forming S. It follows that

planar motion: S = 1
2

m (āA · āA) + 1
2

Izzω̇
2. (9.3.33)
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As was true for Lagrange’s equations, shortcuts are available to assist the evaluation
of the � j terms. Regardless of the nature of a physical force, it is always permissible
to identify its contribution to the generalized forces by explicitly evaluating its virtual
work, as described by Eq. (9.3.22). For conservative forces we can alternatively use the
associated potential-energy function, V, which is a function solely of the generalized
coordinates and, possibly, time. The virtual work such forces do is

δWcons = −δV = −
N∑

n=1

∂V
∂qn

δqn. (9.3.34)

In the Gibbs–Appell formulation, the virtual increments are the δγ j quantities, which
are kinematically related to the corresponding δqj by Eq. (9.3.9). Thus,

δWcons = −
N∑

n=1

∂V
∂qn

K∑
j=1

Cnjδγ j . (9.3.35)

We obtain a useful identity for extracting the Cnj coefficients by differentiating the kine-
matical equations, Eq. (9.3.5), with respect to a specific quasi-velocity, which yields

Cnj = ∂q̇n

∂γ̇ j
.

We substitute this relation into δWcons and recognize that the coefficient of δγ j is the
contribution of conservative forces to the jth generalized force. It follows that

(� j )conservative = −
N∑

n=1

∂V
∂qn

∂q̇n

∂γ̇ j
. (9.3.36)

Now consider the constraint forces. The generalized forces here are like those for
Lagrange’s equations, so any constraint force whose kinematical constraint condition
is satisfied regardless of the qj and γ̇ j values will not appear in any generalized force.
As a corollary, using unconstrained quasi-velocities leads to equations of motion that
do not contain constraint forces. In contrast, if the quasi-velocities are a constrained set
that must satisfy kinematical constraint equations like Eq. (9.3.6), then an arbitrary set
of δγ j values will correspond to a kinematically inadmissible movement, which means
that the constraint forces will contribute to the virtual work. As was true for constrained
generalized coordinates, the contribution of the ith constraint force to � j may be de-
scribed by a Lagrange multiplier λi defined in conjunction with the Jacobian constraint
coefficients Ai j . We thereby find that

(� j )reactions =
J∑

i=1

Ai jλi . (9.3.37)

Thus we find that a generalized force in the Gibbs–Appell formulation may consist of
three types of terms,

� j =
∑

P

F̄P · v̄Pj (qi , t) −
N∑

n=1

∂V
∂qn

∂q̇n

∂γ̇ j
+

J∑
i=1

Ai jλi . (9.3.38)
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This leads us to the form of the Gibbs–Appell equations that we will implement:

∂S
∂γ̈ j

=
∑

P

F̄P · v̄Pj (qi , t) −
N∑

n=1

∂V
∂qn

∂q̇n

∂γ̇ j
+

J∑
i=1

Ai jλi , j = 1, . . . , K. (9.3.39)

Many texts use the symbol γ̃ to denote unconstrained quasi-coordinates, corre-
sponding to the absence of constraint equations. However, from our viewpoint there
is nothing special about these variables. We merely set J = 0 in the preceding equation,
which removes the term with Lagrange multipliers from the preceding Gibbs–Appell
equations.

A summary of the procedure required for formulating the Gibbs–Appell equations
of motion is appropriate at this junction. The first step is to define a set of N generalized
coordinates qi to describe the instantaneous position and a set of K quasi-velocities γ̇ i .

A kinematical analysis is performed to derive an expression for each q̇i in terms of the
instantaneous values of the γ̇ i and qi parameters. These relations constitute the kine-
matical equations, whose form is described by Eq. (9.3.5). A kinematical analysis is also
required to ascertain whether assigning an arbitrary value to each γ̇ i at an arbitrary po-
sition will lead to a kinematically admissible motion for the system. If not, then velocity
constraint equations like Eq. (9.3.6) must be derived. The number of such equations is
J.

A kinematics analysis also must characterize the velocity and acceleration parame-
ters required to form the Gibbs–Appell function for each body according to Eq. (9.3.32).
Thus expressions for the body-fixed angular velocity components as functions of the γ̇ j

and qj parameters, and for the body-fixed angular acceleration components as functions
of the γ̈ j , γ̇ j , and qj parameters, need to be derived. If the reference point for the an-
gular motion is the center of mass, then the acceleration of the center of mass of that
body must also be derived as a function of γ̈ j , γ̇ j , and qj . We obtain the Gibbs–Appell
function for the system by summing the contribution of each of its bodies. The last task
prior to forming the Gibbs–Appell equations is to determine the generalized force as-
sociated with each quasi-coordinate. We address the contribution of conservative forces
by describing their potential energy as a function of the generalized coordinates. The
contribution of forces that are not associated with constraints is described by evalua-
tion of their virtual work. This entails further kinematical analysis in order to charac-
terize the associated virtual displacement (or rotation) resulting from arbitrary incre-
ments δγ j when the system is at an arbitrary location. Any constraint force that we wish
to appear explicitly in the equations of motion, especially the normal force associated
with Coulomb friction, may be described in this manner. The portion of the general-
ized forces associated with the remaining constraint forces is described by the Lagrange
multipliers. In the case of unconstrained quasi-coordinates, for which all physical con-
straint conditions are implicitly satisfied, the Lagrange multipliers are omitted from the
formulation.

After we have carried out these preliminaries, we differentiate S as called for in
Eq. (9.3.39). This yields a set of K Gibbs–Appell equations of motion in which the sole
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variables are γ̈ j , γ̇ j , qj , possibly t, and the Lagrange multipliers. These may be con-
sidered to be set of ordinary differential equations governing the γ̇ j , which will occur
only linearly. In other words, the Gibbs–Appell equations may be written in matrix no-
tation as

[M (qi , t)]K×K
d
dt

{
γ̇ j

}
K×1

= {
F (γ̇ i , qi , t)

}
K×1 + (

[A]J×K

)T {λ}
J×1

. (9.3.40)

Obviously, [M] here is not the same as the inertia matrix for Lagrange’s equations. Also,
if constraint forces Ri are used in lieu of Lagrange multipliers, the last term would be
replaced with [A′] {R} , where the [A′] coefficients would be identified from the virtual
work.

By themselves these equations cannot be sent to a differential equation solver be-
cause they feature the current values of the qj , as well as the Lagrange multipliers if
J �= 0. A numerical solution requires the aforementioned kinematical equations, whose
matrix form is

d
dt

{
qj
}

N×1 = [C (qi , t)]N×K

{
γ̇ j

}
K×1

+ {
D(qi , t)

}
N×1. (9.3.41)

In addition, if J > 0, so that there are Lagrange multipliers to determine, then there are
J velocity constraint equations. To satisfy the constraint equations simultaneously with
the Gibbs–Appell and kinematical equations, we differentiate the velocity constraints to
obtain acceleration constraint equations, whose matrix form is

[A (qi , t)]J×K
d
dt

{
γ̇ j (qi , t)

}
K×1

= −
[

d
dt

A (qi , t)
]

J×K

{
γ̇ j (qi , t)

}
K×1

−
{

d
dt

B
}

.

(9.3.42)

Thus we obtain K + N + J coupled ordinary differential equations for γ̇ j for j =
1, ..., K, qj for j = 1, ..., N, and λ j for j = 1, . . . , J. These equations have the form re-
quired to employ the numerical solution techniques in Subsection 8.2.1. As always, care
must be taken to select initial conditions that are consistent with all constraints. This
issue was addressed in Subsection 8.2.3.

The ability to use quasi-coordinates is the primary merit of the Gibbs–Appell ap-
proach. It affords us more flexibility than Lagrange’s equations in deciding how to for-
mulate an analysis. In many cases this freedom simplifies the equations of motion be-
cause the variables naturally fit the fundamental system features. Also, the number of
quasi-coordinates can be less than the number of generalized coordinates, in which case
there will be fewer differential equations of motion than there would be with Lagrange’s
equations. We will examine the merits of these alternative approaches after several
examples applying the Gibbs–Appell equations have been presented. These examples
focus on nonholonomic systems, because the primary advantage of the Gibbs–Appell
equations is claimed to lie in its application to such systems.
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EXAMPLE 9.7 Use the Gibbs–Appell equations to derive Euler’s equations of
motion for a rigid body.

SOLUTION The fact that Euler’s equations can be derived from a formulation of the
Gibbs–Appell equations, but not from Lagrange’s equations, has been argued to
be a philosophical advantage. The velocity variables in Euler’s equations are the
angular velocity components relative to a set of body-fixed axes, so we define the
quasi-velocities to be these components, γ̇ 1 = ωx, γ̇ 2 = ωy, γ̇ 3 = ωz. Because ᾱ ≡
∂ω̄/∂t , the angular velocity and angular acceleration are

ω̄ = γ̇ 1 ī + γ̇ 2 j̄ + γ̇ 3k̄, ᾱ = γ̈ 1 ī + γ̈ 2 j̄ + γ̈ 3k̄.

Euler’s equations pertain to principal axes, in which case we have

H̄A = Ixxγ̇ 1 ī + Iyyγ̇ 2 j̄ + Izzγ̇ 3k̄,

∂ H̄A

∂t
= Ixxγ̈ 1 ī + Iyyγ̈ 2 j̄ + Izzγ̈ 3k̄.

At this juncture, we could use the preceding expressions to form the full ex-
pression for S. However, it is sufficient to demonstrate the equivalence between a
Gibbs–Appell equation for one quasi-velocity and the corresponding Euler equa-
tion because the components of all of the preceding vectors are symbolic permuta-
tions. Hence we evaluate the equation for ∂S/∂γ̈ 1. This reduces the analytical effort
because we may ignore any terms that do not contain γ̈ 1. We also may ignore the
translational acceleration term in Eq. (9.3.32) because the motion of the center of
mass is independent of the angular motion until we introduce constraint conditions.
The terms we need to form S are

ᾱ · ∂ H̄A

∂t
= Ixxγ̈

2
1 + · · · ,

ᾱ · (ω̄ × H̄A
) = (

γ̈ 1 ī + · · · ) · [(· · · + γ̇ 2 j̄ + γ̇ 3k̄
)× (· · · + Iyyγ̇ 2 j̄ + Izzγ̇ 3k̄

)]
= γ̈ 1 [(Izz − Iyy) γ̇ 2γ̇ 3] + · · · .

Correspondingly, the Gibbs–Appell function is

S = 1
2

Ixxγ̈
2
1 + γ̈ 1 [(Izz − Iyy) γ̇ 2γ̇ 3] + · · · .

The force system acting on any rigid body is equivalent to a resultant force 
 F̄
applied at point A and a couple 
M̄A that is the moment of the force system about
point A. In the absence of constraint conditions the virtual displacement of point A
does not depend on the angular motion variables. To obtain the virtual rotation we
observe that the true rotation in an infinitesimal time interval is

dθ = ω̄dt = (γ̇ 1dt) ī + (γ̇ 2dt) j̄ + (γ̇ 3dt) k̄.
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We obtain the virtual rotation by replacing each γ̇ dt with δγ , so

δθ = δγ 1 ī + δγ 2 j̄ + δγ 3k̄.

The virtual work is

δW = 
M̄A · δθ = (
MA)x δγ 1 + · · · = �1δγ 1 + · · · .

The Gibbs–Appell equation for γ̇ 1 is

∂S
∂γ̈ 1

= Ixxγ̈ 1 + (Izz − Iyy) γ̇ 2γ̇ 3 = �1 = (
MA)x . �

Replacing each quasi-velocity with the corresponding component of ω̄ makes it
evident that this is the same as the Euler equation for moment about the x
axis.

EXAMPLE 9.8 The wheelbarrow remains upright as it is pushed in the horizontal
plane by forces F̄A and F̄B acting at each handle. The body of the wheelbarrow has
mass m1 with its center of mass at point G; the corresponding centroidal moment
of inertia about a vertical axis is I. The wheel, which rolls without slipping, has
mass m2, moment of inertia J about its axle, and radius R. Derive the Gibbs–Appell
equations of motion.

FB

G

FA

L

C Example 9.8

SOLUTION This example of a nonholonomic system illustrates how one may employ
a quasi-velocity that is not a generalized velocity. Because the wheel rolls without
slipping and the wheelbarrow remains upright, the angular velocity component of
the wheel about its bearing axis is ω1 = v/R, where v is the speed of the center
C of the axle. Also, because there is no slippage, the velocity of point C must be
along the longitudinal centerline, which we define to be the x axis of a coordinate
system that is attached to the wheelbarrow’s body, that is, ī = ēC/G. Convenient
generalized coordinates for the wheelbarrow are the absolute position coordinates
of point C, q1 = XC, q2 = YC, and the angle θ locating the x axis relative to a fixed
XYZ reference frame, which we define such that X is to the right and Z is vertical.
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We could define a fourth generalized coordinate to be the spin angle of the wheel.
This can be avoided here because no forces or couples depend on this angle, and we
can account for the spin rate through the no-slip condition.

We may identify a suitable set of unconstrained quasi-velocities by visualizing
the motion. At an arbitrary position, we know that point C must move in the direc-
tion indicated by the longitudinal axis, but we do not know its speed. This suggests
that one quasi-velocity should be γ̇ 1 = v. Knowledge of the current values of v and
θ sets the velocity of point C, so only the rotation of the wheelbarrow is undefined.
Thus we take γ̇ 2 = θ̇ . Note that the condition that the velocity of point C be parallel
to the x axis is a velocity constraint that is identically satisfied for arbitrary values of
these two quasi-velocities, which shows that the system has two degrees of freedom.
A formulation using Lagrange’s equations would require explicit enforcement of a
constraint equation relating the three generalized coordinates, whereas the quasi-
velocities we have defined constitute an unconstrained set.

Two kinematical equations come from the rolling constraint, which requires
that ẊC and ẎC be the components in the fixed directions of the velocity of point C.

The third kinematical equation comes from the definition of γ̇ 2. We use γ̇ 1 rather
than v in order to remember that v is a quasi-velocity. Hence the kinematical equa-
tions are

ẊC = γ̇ 1 cos θ, ẎC = γ̇ 1 sin θ, θ̇ = γ̇ 2. (1) �

It is good practice at this juncture to describe S for the system in terms of the
physical parameters in order to highlight which accelerations should be described
in terms of the quasi-velocities. We must account for the inertia of the wheel in
addition to that of the wheelbarrow’s chassis. The latter body is in planar motion, so
we add Eq. (9.3.32) for the wheel to Eq. (9.3.33) for the chassis:

S = 1
2

m1a2
G + 1

2
Iω̇2

1 + 1
2

m2a2
C + 1

2
ᾱ2 · ∂ H̄C

∂t
+ ᾱ2 · (ω̄2 × H̄G

)
. (2)

We may obtain an expression for āC in terms of the quasi-velocities by dif-
ferentiating a general description of v̄C. We know that v̄C = vī and note that ī
is fixed to the chassis, whose angular velocity is γ̇ 2k̄. Consequently, it must be
that

āC = d
dt

(
γ̇ 1 ī

) = γ̈ 1 ī + γ̇ 1

(
γ̇ 2k̄ × ī

) = γ̈ 1 ī + γ̇ 1γ̇ 2 j̄ . (3)

The fact that points C and G belong to the chassis then leads to

āG = āC + (
γ̈ 2k̄

)× r̄G/C − γ̇ 2
1r̄G/C = (

γ̈ 1 + γ̇ 2
2L
)

ī + (γ̇ 1γ̇ 2 − γ̈ 2L) j̄ . (4)

To describe the angular motion for the wheel, we observe that it precesses about a
vertical axis at the angular speed θ̇ of the wheelbarrow while it simultaneously spins
about its own axis. As noted earlier, the spin rate is v/R. We defined ī = ēC/B, and



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

9.3 Formulations with Quasi-Coordinates 605

k̄ has been taken to be the upward vertical, so the sense of the spin axis is j̄ . Thus
the angular velocity and angular acceleration of the wheel are

ω̄2 = γ̇ 1

R
j̄ + γ̇ 2k̄,

ᾱ2 = γ̈ 1

R
j̄ + γ̇ 1

R

(
γ̇ 2k̄ × j̄

)+ γ̈ 2k̄ = − γ̇ 1γ̇ 2

R
ī + γ̈ 1

R
j̄ + γ̈ 2k̄.

(5)

Based on the assumption that the wheel is thin, so that the transverse centroidal
moment of inertia is J/2, the angular momentum and its body-fixed derivative are

H̄C = J
R

γ̇ 1 j̄ + J
2

γ́ 2k̄,

∂ H̄C

∂t
= − J

2R
γ̇ 1γ̇ 2 ī + J

R
γ̈ 1 j̄ + J

2
γ̈ 2k̄.

(6)

When we substitute Eqs. (3)–(6) into Eq. (2) for S, we omit any terms that do
not contain either γ̈ 1 or γ̈ 2. The specific operations are

S = 1
2

m1

[(
γ̈ 1 + γ̇ 2

2L
)2 + (γ̇ 1γ̇ 2 − γ̈ 2L)2

]
+ 1

2
I γ̈ 2

2

+ 1
2

m2

[
(γ̈ 1)2 + · · ·

]
+ 1

2

[
J

R2
γ̈ 2

1 + J
2

γ̈ 2
2

]

+
(

− γ̇ 1γ̇ 2

R
ī + γ̈ 1

R
j̄ + γ̈ 2k̄

)
·
[(

γ̇ 1

R
j̄ + γ̇ 2k̄

)
×
(

J
R

γ̇ 1 j̄ + J
2

γ́ 2k̄
)]

= 1
2

m1

[(
γ̈ 1 + γ̇ 2

2L
)2 + (γ̇ 1γ̇ 2 − γ̈ 2L)2

]

+ 1
2

(
I + J

2

)
γ̈ 2

2 + 1
2

(
m2 + J

R2

)
γ̈ 2

1 + · · · .

(7)

Note that the terms associated with a gyroscopic moment for the wheel, which are
the ī terms in ∂ H̄C/∂t and ω̄2 × H̄C, do not appear in S because the system has
been constrained to move in the horizontal plane. Momentum effects tending to
cause the wheelbarrow to tilt are balanced by reactions, which would be out-of-
plane components of the forces F̄A and F̄B.

The next step is to evaluate the generalized forces. The friction and normal
forces exerted on the wheel by the ground are constraint forces that respectively pre-
vent slipping and prevent the wheel from penetrating the ground. Both constraint
conditions are satisfied for any set of quasi-velocities, so these forces do not con-
tribute to the virtual work. Gravity acts perpendicularly to the plane of motion, so
it too does not contribute to δW. To characterize the effect of the applied forces F̄A

and F̄B, we recall that we have already described the velocity of point C. We there-
fore replace these forces with a force–couple system, R̄ and M̄, acting at point C:

R̄ = F̄A + F̄B, M̄ = r̄A/C × F̄A + r̄B/C × F̄B.

An expression for δr̄C follows directly from the velocity of that point,

v̄C = γ̇ 1 ī =⇒ δr̄C = δγ 1 ī,
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so the virtual work associated with the forces applied to the handles is

δW = R̄ · δr̄C + M̄ · δγ 2k̄ = (
R̄ · ī

)
δγ 1 + (

M̄ · k̄
)
δγ 2.

Matching the two descriptions of δW yields the generalized forces:

�1 = R̄ · ī, �2 = M̄ · k̄.

All that remains to be done is to differentiate the Gibbs–Appell function,
Eq. (7), with respect to each of the quasi-acceleration variables. This yields

∂S
∂γ̈ 1

=
(

m1 + m2 + J
R2

)
γ̈ 1 + m1Lγ̇ 2

2 = R̄ · ī,

∂S
∂γ̈ 2

=
(

m1L2 + I + 1
2

J
)

γ̈ 2 − m1Lγ̇ 1γ̇ 2 = M̄ · k̄.

�

These are two coupled first-order differential equations governing γ̇ 1 and γ̇ 2. They
have the interesting feature that the generalized coordinates do not appear in them.
This means that the equations can be solved numerically for γ̇ 1 = v and γ̇ 2 = θ̇

as functions of time. If we wish to know where the wheelbarrow goes, we would
substitute these solutions into the kinematical equations, Eqs. (1)–(3), which would
give XC, YC, and θ as functions of time. This is an exceptional situation stemming
from the fact that the motion is unaffected by the wheelbarrow’s position. In most
cases, such as the one in the next example, it is necessary to treat the Gibbs–Appell
and kinematical equations as a coupled set of differential equations.

EXAMPLE 9.9 The system in the sketch is like the one in Example 9.6. A motor
mounted internally applies a known torque to the wheel’s axle, thereby generating
the known traction force F (t) . This force acts tangentially to the wheel. The wheel
rolls without slipping, and the steering angle β changes in a prescribed manner. The
collar is attached to a linearly elastic spring k. The mass of the bar, the collar, and
the wheel are m1, m2, and m3, respectively, and the centroidal moments of inertia of
the wheel are I1 and I2, respectively parallel and perpendicular to the wheel’s axle.
Determine the Gibbs–Appell equations of motion governing a set of constrained
quasi-coordinates.

θ

A

β

BL

k

F

Example 9.9
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SOLUTION Most of the basic operations involved in formulating the Gibbs–Appell
equations of motion in terms of constrained quasi-velocities are demonstrated here.
Example 9.6 established that this system has one degree of freedom. The position
of all parts of the system is readily described if we know the angle θ and the length
� of the spring, so we use these variables as generalized coordinates, q1 = θ, q2 = �.

Similarly, all velocities and accelerations are readily described in terms of θ̇ and �̇

and their time derivatives, so we select these variables as the quasi-velocities:

θ̇ = γ̇ 1, �̇ = γ̇ 2. (1, 2) �

These are the kinematical equations relating the generalized coordinates to the
quasi-velocities.

We consider the bar, the collar, and the wheel as a system. The forces acting on
this system at the wheeel are the traction force and a constraint force perpendicular
to v̄B. The only other force of concern is the normal force exerted on the collar. We
show these forces in a free-body diagram that also defines the generalized coordi-
nates. The xyz coordinate system in this diagram is attached to the bar. The x′y′z′

system is attached to the wheel, but the fact that this body is axisymmetric enables
us to take the x′ axis to be horizontal without loss of generality.

θ

A

β

B

L/2

L/2

k∆

F

NA

NB
x

x'

y

y'

G
Free-body diagram showing generalized coordinates

The constraint that collar A must follow the guide bar is identically satisfied
by these variables, because � is the sole variable affecting the position of the collar,
so that v̄A = −�̇ Ī = −γ̇ 2 Ī. The constraint that v̄B be parallel to the orientation of
the wheel must be enforced explicitly. Because points A and B belong to bar AB, it
must be that v̄B = v̄A + θ̇ k̄ × r̄B/A. To be sure that the appropriate rate variables are
recognized as quasi-velocities, we denote them as γ̇ rather than use their symbolic
name. Hence the velocity of point B is described as

v̄B = vB
(
cos β ī + sin β j̄

)
= γ̇ 2

(− cos θ ī + sin θ j̄
)+ γ̇ 1k̄ × Lī .

Matching like components in the preceding equation gives two simultaneous equa-
tions for vB in terms of γ̇ 1 and γ̇ 2. Eliminating vB gives the constraint equation, and
the resulting expression for vB will soon be needed. The constraint equation is

γ̇ 1Lcos β + γ̇ 2 sin (θ + β) = 0, (3) �



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

608 Alternative Formulations

and the speed of end B is

vB = −γ̇ 2
cos θ

cos β
. (4)

Collar A translates, and bar AB is in general planar motion with angular ac-
celeration θ̈ about the vertical axis. In contrast, the wheel executes a general three-
dimensional motion. Hence the Gibbs–Appell function for this system is given by

S = 1
2

m1a2
G + 1

2
IGγ̈ 2

1 + 1
2

m2a2
A + 1

2
m3a2

B

+ 1
2

(
ᾱ · ∂ H̄B

∂t

)
wheel

+ [
ᾱ · (ω̄ × H̄B

)]
wheel .

(5)

The only rate variables allowed in S are the quasi-velocities. Expressions for the
point accelerations are readily obtained from the facts that all points reside on bar
AB and that collar A translates to the left at γ̇ 2. Thus,

āA = γ̈ 2

(− cos θ ī + sin θ j̄
)
,

āG = āA + γ̈ 1k̄ × L
2

ī − L
2

γ̇ 2
1 ī =

(
−γ̈ 2 cos θ − L

2
γ̇ 2

1

)
ī +

(
L
2

γ̈ 1 + γ̈ 2 sin θ

)
j̄,

āB = āA + γ̈ 1k̄ × Lī − Lγ̇ 2
1 ī = (−γ̈ 2 cos θ − Lγ̇ 2

1

)
ī + (Lγ̈ 1 + γ̈ 2 sin θ) j̄ .

(6)

Because the wheel rolls without slipping, its rotational motion consists of a spin
about its axle at angular speed vB/R, where R is the wheel’s radius, accompanied by
a precession about the vertical axis at angular speed θ̇ + β̇. Therefore

ω̄wheel = vB

R
j̄ ′ + (

γ̇ 1 + β̇
)

k̄′.

The parameter vB is not a quasi-coordinate, so we use Eq. (4) to eliminate it:

ω̄wheel = − γ̈ 2

R
cos θ

cos β
j̄ ′ + (

γ̇ 1 + β̇
)

k̄′. (7)

This expression is generally valid, so it may be differentiated. In doing so, it is im-
portant to recognize that β is time dependent, so that

ᾱwheel =
(

− γ̈ 2

R
cos θ

cos β
+ γ̇ 1γ̇ 2

R
sin θ

cos β
− γ̇ 2β̇

R
cos θ sin β

(cos β)2

)
j̄

− γ̇ 2

R
cos θ

cos β

[(
γ̇ 1 + β̇

)
k̄′ × j̄ ′]+ (

γ̈ 1 + β̈
)

k̄′

=
(

− γ̈ 2

R
cos θ

cos β
+ γ̇ 1γ̇ 2

R
sin θ

cos β
− γ̇ 2β̇

R
cos θ sin β

(cos β)2

)
j̄ ′

+ γ̇ 2

(
γ̇ 1 + β̇

)
R

cos θ

cos β
ī ′ + (

γ̈ 1 + β̈
)

k̄′.

(8)
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When the components of ω̄ and ᾱ are denoted symbolically, with ωx = 0 in the
present case, the portion of S attributable to the wheel’s rotation is

Srot = 1
2

(
αxī ′ + αy j̄ ′ + αzk̄′) · (I2αxī ′ + I1αy j̄ ′ + I2αzk̄′)

+ (
αxī ′ + αy j̄ ′ + αzk̄′) · [(ωy j̄ ′ + ωzk̄′)× (

I1ωy j̄ ′ + I2ωzk̄′)]
= 1

2

(
I2α

2
x + I1α

2
y + I2α

2
z

)+ (I2 − I1) αxωyωz.

Writing Srot in this symbolic form enables us to recognize that, because neither the
angular velocity components nor αx contains quasi-accelerations, the first and last
terms in the preceding equation may be ignored. Furthermore, terms that do not
contain either quasi-acceleration may be ignored when αy and αz are squared. We
extract the ᾱ components from Eq. (8), and substitute them into Srot, with the result
that

Srot = 1
2

I1

[(
γ̈ 2

R
cos θ

cos β

)2

− 2
γ̈ 2

R
cos θ

cos β

(
γ̇ 1γ̇ 2

R
sin θ

cos β

− γ̇ 2β̇

R
cos θ sin β

(cos β)2

)
+ · · ·

]
+ 1

2
I2
(
γ̈ 1 + β̈

)2
.

Substitution of the acceleration terms, Eqs. (6), into Eq. (5) yields the other terms
of S. Once again, terms that do not contain quasi-accelerations are ignored when
the other contributions to S are formed. The evaluation proceeds as follows:

S = 1
2

m1

[(
−γ̈ 2 cos θ − L

2
γ̇ 2

1

)2

+
(

L
2

γ̈ 1 + γ̈ 2 sin θ

)2
]

+ 1
2

(
1

12
m1L2

)
γ̈ 2

1 + 1
2

m2γ̈
2
2 + 1

2
m3

[(−γ̈ 2 cos θ − Lγ̇ 2
1

)2

+ (Lγ̈ 1 + γ̈ 2 sin θ)2
]

+ Srot

= 1
2

m1

[
γ̈ 2

2 + γ̈ 2γ̇
2
1Lcos θ + 1

4
L2γ̈ 2

1 + γ̈ 1γ̈ 2Lsin θ + · · ·
]

+ 1
2

(
1

12
m1L2

)
γ̈ 2

1 + 1
2

m2γ̈
2
2 + 1

2
m3

[
γ̈ 2

2 + 2γ̈ 2γ̇
2
1Lcos θ

+ L2γ̈ 2
1 + 2γ̈ 1γ̈ 2Lsin θ + · · · ]+ Srot.

We collect like terms and substitute Srot to find

S = 1
2

(
1
3

m1 + m3

)
L2γ̈ 2

1 + 1
2

(m2 + m1 + m3) γ̈ 2
2

+ 1
2

(m1 + 2m3) L
(
γ̈ 1γ̈ 2 sin θ + γ̈ 2γ̇

2
1 cos θ

)
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+ 1
2

I1

R2

[(
γ̈ 2

cos θ

cos β

)2

− 2γ̈ 2
cos θ

cos β

(
γ̇ 1γ̇ 2

sin θ

cos β

− γ̇ 2β̇
cos θ sin β

(cos β)2

)
+ · · ·

]
+ 1

2
I2
(
γ̈ 1 + β̈

)2
.

(9)

The last aspect to be considered prior to evaluating the equations of motion is
the role of the forces. The spring is conservative, and its deformation is the differ-
ence between the current and original length of the spring, so that

V = 1
2

k (� − �0)2
.

The coefficients required convert derivatives of V to generalized coordinates are
found from kinematical equations (1) and (2) to be

∂�̇

∂γ̇ 1
= 0,

∂�̇

∂γ̇ 2
= 1.

Correspondingly the contribution of the spring force to the generalized forces is

(�1)k = −∂V
∂�

∂�̇

∂γ̇ 1
= 0, (�2)k = −∂V

∂�

∂�̇

∂γ̇ 2
= −k (� − �0) .

The thrust F̄ is not conservative. The virtual displacement of point B, where it
is applied, may be obtained from the initial expression for v̄B, which was

v̄B = −γ̇ 2 cos θ ī + (γ̇ 1L+ γ̇ 2 sin θ) j̄ .

The infinitesimal displacement of this point is v̄Bdt, and changing each γ̇ dt to δγ j

gives the virtual displacement:

δr̄B = −δγ 2 cos θ ī + (δγ 1L+ δγ 2 sin θ) j̄ .

The corresponding virtual work done by F̄ is

δWF = F
(
cos β ī + sin β j̄

) · δr̄B

= Fδγ 2 (− cos β cos θ + sin β sin θ) + F Lsin βδγ 1.

The generalized forces are the coefficients of each δγ , so

(�1)F = F Lsin β, (�2)F = −F cos (θ + β) .

The constraint of collar A is implicitly satisfied for all values of the generalized
coordinates and quasi-velocities, so the normal constraint force acting on the collar
does not contribute to the virtual work. The same is not true for N̄B, which makes
the wheel move in the intended direction. This force is associated with constraint
equation (3), so we may describe its contribution to the generalized force with a
Lagrange multiplier by using the Jacobian coefficients of Eq. (3), which are

A1,1 = Lcos β, A1,2 = sin (θ + β) .
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Thus the generalized forces corresponding to the quasi-coordinates are

�1 = F Lsin β + λ1Lcos β,

�2 = −F cos (θ + β) − k (� − �0) + λ1 sin (θ + β) .

The least difficult aspect of forming the Gibbs–Appell equations is evaluating
the derivatives. The first equation is ∂S/∂γ̈ 1 = �1, which evaluates to

(
1
3

m1 + m3

)
L2γ̈ 1 + 1

2
(m1 + 2m3) Lγ̈ 2 sin θ

+ I2
(
γ̈ 1 + β̈

) = F Lsin β + λ1Lcos β.

(10) �

The second Gibbs–Appell equation, ∂S/∂γ̈ 1 = �1, is

(m1 + m2 + m3) γ̈ 2 + 1
2

(m1 + 2m3) L
(
γ̈ 1 sin θ + γ̇ 2

1 cos θ
)

+ I1

R2

[
γ̈ 2

(
cos θ

cos β

)2

− cos θ

cos β

(
γ̇ 1γ̇ 2

sin θ

cos β
− γ̇ 2β̇

cos θ sin β

(cos β)2

)]

= −F cos (θ + β) − k (� − �0) + λ1 sin (θ + β) .

(11) �

Thus we have obtained five equations of the differential-algebraic type, consist-
ing of these two Gibbs–Appell equations, the two kinematical equations, Eqs. (1)
and (2), and the constraint equation, Eq. (3). The variables for these equations are
γ̇ 1, γ̇ 2, θ, �, and λ1. The highest order of the derivatives of the variables is one, and
those derivatives occur linearly. Hence, any of the techniques in Subsection 8.2.1
may be employed directly to obtain the response for specified initial conditions.

EXAMPLE 9.10 Consider the system in Example 9.9. Determine the Gibbs–
Appell equations of motion using unconstrained quasi-coordinates.

SOLUTION A comparison of this solution with the preceding one will enable us to
judge the merits of eliminating the constraint equations through the use of con-
strained generalized coordinates. Another feature of this example is its usage of a
quasi-velocity that is not a derivative of a generalized coordinate. This system has
one degree of freedom. The single unconstrained quasi-velocity we use is the speed
of the wheel’s center:

γ̇ 1 = vB.

As we did in the preceding example, we let the generalized coordinates be q1 = θ,

q2 = �.
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Enforcing the condition that the collar must move along its guide leads to the
kinematical equations. It is necessary that v̄A = v̄B + ω̄AB × r̄A/B , and we know the
directions in which both end points move. It actually is preferable for this system
to use as the global coordinate system stationary XYZ, with X to the right and Y
upward in the previous sketch, rather than the body-fixed xyz coordinate system
used previously. Thus we have

− �̇ Ī = vB
[
cos (θ + β) Ī + sin (θ + β) J̄

]+ θ̇1 K̄ × L
(− cos θ Ī − sin θ J̄

)
.

Matching like components gives

− �̇ = vB cos (θ + β) + Lθ̇ sin θ,

0 = vB sin (θ + β) − Lθ̇ cos θ.

The solution of these equations for θ̇ and �̇ in terms of vB are the kinematical equa-
tions:

θ̇ = vB

L
sin (θ + β)

cos θ
,

�̇ = −vB

[
cos (θ + β) + sin (θ + β)

cos θ
sin θ

]
≡ −vB

cos β

cos θ
.

(1)

All parts have significant inertia, and the wheel is executing a rotation about
two axes, so the Gibbs–Appell function is

S = 1
2

m1a2
G + 1

2
IGθ̈

2 + 1
2

m2a2
A + 1

2
m3a2

B

+ 1
2

(
ᾱ · ∂ H̄B

∂t

)
w

+ [
ᾱ · (ω̄ × H̄B

)]
w .

(2)

The only rate variables that may appear in S are vB and v̇B. This requires that we
eliminate θ̈ and �̈, so we differentitate Eqs. (1) to find that

θ̈ = v̇B

L
sin (θ + β)

cos θ
+ vB

(
θ̇ + β̇

)
L

cos (θ + β)
cos θ

+ vBθ̇

L
sin (θ + β) sin θ

(cos θ)2

= v̇B

L
sin (θ + β)

cos θ
+ v2

B

L2

sin (θ + β) cos β

(cos θ)3 + vBβ̇

L
cos (θ + β)

cos θ
,

�̈ = −v̇B
cos β

cos θ
− vBθ̇

sin θ cos β

(cos θ)2 + vBβ̇
sin β

cos θ

= −v̇B
cos β

cos θ
− v2

B

L
sin (θ + β) sin θ cos β

(cos θ)3 + vBβ̇
sin β

cos θ
.

(3)

Note that these forms were obtained by use of the first of Eqs. (1) to eliminate θ̇

because that variable is not a quasi-velocity.
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We know that |āA| = �̈, but describing the other variables appearing in S re-
quires a kinematical analysis. To describe āB we differentiate the component repre-
sentation of v̄B and again use Eqs. (1) to eliminate θ̇ . This gives

āB = d
dt

[
vB cos (θ + β) Ī + vB sin (θ + β) J̄

]
= v̇B

[
cos (θ + β) Ī + sin (θ + β) J̄

]+ vB
(
θ̇ + β̇

) [− sin (θ + β) Ī + cos (θ + β) J̄
]

=
[
v̇B cos (θ + β) − v2

B

L
(sin (θ + β))2

cos θ
− vBβ̇ sin (θ + β)

]
Ī

+
[
v̇B sin (θ + β) + v2

B

L
sin (θ + β) cos (θ + β)

cos θ
+ vBβ̇ cos (θ + β)

]
J̄ . (4)

It is not necessary to describe the motion of the center of mass explicity, because
the consequence of its being the midpoint is that

v̄G = 1
2

(v̄A + v̄B) , āG = 1
2

(āA + āB) . (5)

We use the x′y′z′ coordinate system defined in the preceding example to de-
scribe the contribution of the wheel to S. The corresponding angular velocity and
angular acceleration are found by the standard method to be

ω̄w = vB

R
j̄ ′ + (

θ̇ + β̇
)

k̄′,

ᾱw = v̇B

R
j̄ ′ + vB

R

[(
θ̇ + β̇

)
k̄′ × j̄ ′]+ (

θ̈ + β̈
)

k̄′.

Substitution of Eqs. (1) and (3) to eliminate θ̇ and θ̈ yields

ω̄w = vB

R
j̄ ′ +

(
vB

L
sin (θ + β)

cos θ
+ β̇

)
k̄′,

ᾱw = −
[

v2
B

LR
sin (θ + β)

cos θ
+ vBβ̇

R

]
ī ′ + v̇B

R
j̄ ′ +

[
v̇B

L
sin (θ + β)

cos θ

+ v2
B

L2

sin (θ + β) cos β

(cos θ)3 + vBβ̇

L
cos (θ + β)

cos θ
+ β̈

]
k̄′.

(6)

The next step is to use Eqs. (3)–(6) to form the individual terms in S. As a start, we
use Eqs. (5) to replace āG in S, and also account for the facts that āA = −�̈ Ī and ω̄w

has no component in the x′ direction, from which it follows that

S = 1
8

m1 (āA · āA + 2āA · āB + āB · āB) + 1
2

IGθ̈
2 + 1

2
m2a2

A + 1
2

m3a2
B

+ 1
2

(
Ixxa2

x + Iyya2
y + Izza2

z

)
wheel

+ (
αxī + αy j̄ + αzk̄

) · [(ωy j + ωzk̄
)

× (
Iyyωy j + Izzωzk̄

)]
wheel
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= 1
8

(m1 + 4m2) �̈2 + 1
8

(m1 + 4m3) āB · āB − 1
4

m1�̈ Ī · āB

+ 1
2

IGθ̈
2 + 1

2

(
Iyya2

y + Izza2
z

)
w

+ · · · .

The terms that are omitted from the preceding equation are associated with the
wheel’s rotation, but do not contain v̇B. We substitute Eqs. (3), (4), and (6) into this
description of S to find that

S = 1
8

(m1 + 4m2)

[
−v̇B

cos β

cos θ
− v2

B

L
sin (θ + β) sin θ cos β

(cos θ)3 + vBβ̇
sin β

cos θ

]2

+ 1
8

(m1 + 4m3)

[
v̇B cos (θ + β) − v2

B

L
(sin (θ + β))2

cos θ
− vBβ̇ sin (θ + β)

]2

+ 1
8

(m1 + 4m3)
[
v̇B sin (θ + β) + v2

B

L
sin (θ + β) cos (θ + β)

cos θ

+ vBβ̇ cos (θ + β)
]2 − 1

4
m1

[
−v̇B

cos β

cos θ
− v2

B

L
sin (θ + β) sin θ cos β

(cos θ)3

+ vBβ̇
sin β

cos θ

][
v̇B cos (θ + β)− v2

B

L
(sin (θ + β))2

cos θ
− vBβ̇ sin (θ + β)

]

+ 1
2

IG

[
v̇B

L
sin (θ + β)

cos θ
+ v2

B

L2

sin (θ + β) cos β

(cos θ)3 + vBβ̇

L
cos (θ + β)

cos θ

]2

+ 1
2

I1

(
v̇B

R

)2

+ 1
2

[
v̇B

L
sin (θ + β)

cos θ
+ v2

B

L2

sin (θ + β) cos β

(cos θ)3

+ vBβ̇

L
cos (θ + β)

cos θ
+ β̈

]2

.

When the products appearing in this expression are evaluated, the quasi-
acceleration v̇B will appear in S in only three combinations: v̇2

B, v̇Bv2
B/L,

or v̇BvBβ̇. All other terms are unimportant, so the final form of S may be
written as

S = 1
2

S1 (vB, θ, β) v̇2
B + S2 (vB, θ, β) v̇Bv2

B/L+ S3 (vB, θ, β) v̇BvBβ̇. (7)

It still remains to describe the effect of the forces. The spring force is conserva-
tive, so its influence is described by the potential energy. The current length of the
spring is �, and its unstretched length is �0, from which it follows that

V = 1
2

k (� − �0)2
.
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Equation (9.3.36) describes the contribution of potential energy to the generalized
forces. The coefficients ∂q̇j/∂γ̇ 1 are obtained from Eqs. (1), with the result that

(�1)conservative = −
(

∂V
∂θ

∂θ̇

∂vB
+ ∂V

∂�

∂�̇

∂vB

)
= −k (� − �0)

[
−cos β

cos θ

]
.

There is no need to consider the reaction forces N̄A or N̄B because they are the
constraint forces that prevent movement in the direction in which they act, and both
constraints were satisfied to derive the kinematical equations. The thrust F̄ is not
conservative, so we form the virtual work it does. It acts parallel to v̄B, and γ̇ 1 = vB,

which leads to

F̄ = Fēt , δr̄B = δγ 1ēt , δW = Fδγ 1,

so that

�1 = (�1)conservative + (�1)F = k (� − �0)
cos β

cos θ
+ F.

The single Gibbs–Appell equation obtained from Eq. (7) is

∂S
∂v̇B

= S1v̇B + S2v
2
B/L+ S3vBβ̇ = k (� − �0)

cos β

cos θ
+ F. (8) �

The Sj terms are lengthy and are not listed here for the sake of brevity. This omis-
sion does not detract from our ability to compare the present analysis with the one in
the previous example, which used constrained quasi-coordinates. In the present case
there are three first-order differential equations, consisting of one Gibbs–Appell
equation, Eq. (8), and two kinematical equations, Eqs. (1), which govern vB, θ, and
�. In the previous analysis there were five first-order DAEs, consisting of two kine-
matical equations, one constraint equation, and two Gibbs–Appell equations. The
unknowns there were two quasi-velocities, two generalized coordinates, and one
Lagrange multiplier. Thus the present set of equations is easier to solve, both be-
cause they are fewer in number and also because they are purely differential equa-
tions. Countering this positive aspect of the present approach is the observation that
the process of obtaining an expression for S was much more difficult. The primary
reason for the greater intricacy of the manipulations here lies in the fact that the
kinematical equations, which express the role of the constraint conditions, become
embedded into all aspects of the kinematical relations. In this respect, the merits
of using constrained quasi-velocities are like those of using constrained generalized
coordinates to analyze a holonomic system with Lagrange’s equations.

It also is instructive to compare both analyses of this system using quasi-
coordinates with an analysis using generalized coordinates in conjunction with La-
grange’s equations. This system is nonholonomic, so the generalized coordinates
for such an analysis would of necessity be constrained. If we were to select q1 = θ

and q2 = �, there would be one velocity constraint equation. The kinetic energy of
this system in terms of these generalized coordinates is significantly easier to con-
struct than was S in either analysis, primarily because neither linear nor angular
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accelerations need to be described. The derivation of the generalized forces would
involve comparable effort with the analyses for the Gibbs–Appell equations. How-
ever, the derivatives for Lagrange’s equations are more intricate. There would be
two Lagrange equations that are second-order differential equations in regard to the
generalized coordinates, which would be supplemented by the constraint equation.
The unknowns would be the two generalized coordinates and one Lagrange mul-
tiplier, whose presence would be purely algebraic. Converting the Lagrange equa-
tions to state-space form would therefore result in a set of five first-order DAEs,
which is the same as the situation for the equations derived in Example 9.9.

For some individuals, the derivation of equations of motion that are of a purely
differential type is of primary importance, in which case an analysis using uncon-
strained quasi-coordinates to form the Gibbs-Appell equations (or Kane’s equa-
tions, which are derived in the next section) would be the preferred route. How-
ever, in situations featuring friction, it is often is necessary to examine the associated
forces. Doing so would require the use of constrained quasi-coordinates, in order to
violate the sliding constraint condition. The author’s perspective is that there are
numerous readily implemented techniques for solving DAEs, such as those in Sub-
section 8.2.1, which, when coupled with the greater ease in deriving the required
expressions for T and V, makes Lagrange’s equations the preferred method.

9.3.3 Kane’s Equations

Kane’s equations may be considered to be a generalization of the dynamic virtual work
principle, which we examined in Subsection 7.1.2. The differential equations of motion
that are derived from Kane’s formulation for a specified set of generalized coordinates
and quasi-velocities are the same as those derived from the Gibbs–Appell equations.
However, the operations leading to those equations are quite different. We will examine
the similarities and differences after Kane’s equations are derived, at which time we
will address some of the aspects that have caused Kane’s equations to be somewhat
controversial.

Recall that the basic concept is to formulate a virtual work of the actual forces and
of the equivalent inertial forces. It is convenient to restate the principle here:

∑
k

[
−mkāGk · δr̄Gk +

(
−dH̄Gk

dt

)
· δθk

]

+
∑

n

F̄n · δr̄n +
∑

k

M̄k · δθk = 0.

(9.3.43)

In this expression r̄n is the point at which force F̄n is applied, and each body in the
system is assigned an index k, with M̄k being the applied torsional couples. There are
a variety of virtual displacements that we can consider. Some choices for these virtual
displacements might not be kinematically admissible, in which case the constraint forces
associated with violated kinematical restrictions will need to be included.
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The difficulty with applying the dynamic virtual work principle directly is the need
to identify suitable virtual movements for various parts of a system. This issue was ad-
dressed earlier by considered virtual displacements that are produced by differential
increments of the generalized coordinates, which led to Lagrange’s equations. Now we
consider the implication of describing virtual displacements in terms of differentials δγ j

associated with the quasi-coordinates. The virtual displacement of points in this case is
given by Eq. (9.3.8), and a similar relation applies for virtual rotation. The inertial terms
in Eq. (9.3.43) already require that we express the velocity of the center of mass and the
angular velocity of each body in terms of the γ̇ j . Hence this means that for each body we
can derive the required virtual displacements from the corresponding velocity variables:

v̄Gk =
N∑

j=1

(v̄Gk) j γ̇ j + (v̄Gk)0 =⇒ δr̄Gk =
K∑

j=1

(v̄Gk) j δγ j ,

ω̄k =
N∑

j=1

(ω̄k) j γ̇ j + (v̄Gk)0 =⇒ δθk =
N∑

j=1

(ω̄k) j δγ j .

(9.3.44)

It is necessary that we also derive similar expressions for the point where each force is
applied and the body to which each couple is applied. When we substitute these rep-
resentations of virtual displacements and rotations into Eq. (9.3.43), and collect like
coefficients of δγ j , the result is

N∑
j=1

{∑
k

[
−mkāGk · (v̄Gk) j +

(
−dH̄Gk

dt

)
· (ω̄k) j

]

+
∑

n

F̄n · (v̄n) j +
∑

n

M̄n · (ω̄n) j

}
δγ j = 0.

(9.3.45)

We now invoke the usual argument that independence of the δγ j quantities requires
that the coefficient of each virtual increment vanish. Thus we obtain Kane’s equations:

∑
k

[
mkāGk · (v̄Gk) j +

(
dH̄Gk

dt

)
· (ω̄k) j

]

=
∑

n

F̄n · (v̄n) j +
∑

n

M̄n · (ω̄n) j ; j = 1, . . . , K.

(9.3.46)

There is one Kane’s equation for each quasi-coordinate. In addition to the quasi-
velocities, the variables in these equations will be the N generalized coordinates and
the J constraint forces associated with the kinematical constraints conditions that are
not automatically satisfied. As is true for the Gibbs–Appell equations, N kinematical
equations in the form of Eq. (9.3.5), which give the generalized velocities q̇j in terms
of the current γ̇ j and qj values, and J velocity constraint equations supplement Kane’s
equations.

One interpretation of Kane’s equations comes from considering a physical velocity
to consist of quasi-velocities measured parallel to corresponding directions vectors (v̄) j
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or (ω̄) j , which are not unit vectors. It is evident from Eqs. (9.3.44) that

(v̄Gk) j ≡ ∂

∂γ̇ j
v̄Gk, (ω̄k) j ≡ ∂

∂γ̇ j
ω̄k. (9.3.47)

For this reason the (v̄Gk) j and (ω̄k) j are referred to as partial velocities. Thus Kane’s
equations constitute components, in a generalized sense, of the combined dynamic force
and moment equilibrium equations for a system in the directions of each partial velocity.
Kane’s choice to call the γ̇ j values generalized speeds does not acknowledge the prior
reference to them as quasi-velocities in other formulations. More profoundly, Kane’s
equations are typically stated in texts devoted to Kane’s approach [see, for example,
Kane and Levinson (1985)] directly as a new concept, without placing them in the con-
text of prior development. From the author’s perspective, it seems unlikely that one
would arrive at this concept without considering the principle of dynamic virtual work.

9.3.4 Relationship of the Formulations

The relationship of Kane’s equations to the Gibbs–Appell equations has been the topic
of much discussions. Although the alternative formulations are derived quite differ-
ently, they lead to the same differential equations of motion governing a specific set
of generalized coordinates and quasi-velocities. The first step in recognizing this equiva-
lence comes from returning to the virtual work expressed in terms of quasi-coordinates,
Eq. (9.3.45). The terms containing the force resultants F̄n and moment resultants M̄n

represent the virtual work done by all forces. A comparison with Eq. (9.3.38) shows that
the Kane equation terms containing the actual forces are merely the generalized forces
� j associated with quasi-coordinates when one ignores whether a force is conservative
or imposes a constraint. Thus we can rewrite Eq. (9.3.46) as

∑
k

[
mkāGk · (v̄Gk) j +

(
dH̄Gk

dt

)
· (ω̄k) j

]
= � j , j = 1, . . . , K. (9.3.48)

Now let us consider the left side of the Gibbs–Appell equations when S is the sum of
the contributions of several bodies, with each term defined by Eq. (9.3.32). In any case
we may take point A for each body to be the center of mass G. Both ω̄ and H̄G depend
on velocity variables, but not accelerations. Hence the derivative of Sk for body k with
respect to γ̈ j is

∂Sk

∂γ̈ j
= m

(
āGk · ∂ āGk

∂γ̈ j

)
+ 1

2
∂ᾱk

∂γ̈ j
· ∂ H̄Gk

∂t
+ 1

2
ᾱk · ∂

∂γ̈ j

(
∂ H̄Gk

∂t

)

+ ∂ᾱk

∂γ̈ j
· (ω̄k × H̄Gk

)

= m

(
āGk · ∂ āGk

∂γ̈ j

)
+ ∂ᾱk

∂γ̈ j
· dH̄Gk

dt
− 1

2
∂ᾱk

∂γ̈ j
· ∂ H̄Gk

∂t

+ 1
2
ᾱk · ∂

∂γ̈ j

(
∂ H̄Gk

∂t

)
.

(9.3.49)



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

9.3 Formulations with Quasi-Coordinates 619

To progress further it is convenient to recall the matrix representation of ∂ H̄Gk/∂t, when
ω̄k is represented in terms of components relative to body-fixed axes:{

∂ HGk

∂t

}
= [Ik] {αk} . (9.3.50)

In this representation [Ik] is constant, so we have

ᾱk · ∂

∂γ̈ j

(
∂ H̄Gk

∂t

)
= {αk}T ∂

∂γ̈ j

{
∂ HGk

∂t

}
= {αk}T [Ik]

{
∂αk

∂γ̈ j

}
. (9.3.51)

Because [Ik] is symmetric, we also have

∂ᾱk

∂γ̈ j
· ∂ H̄Gk

∂t
=
{

∂αk

∂γ̈ j

}T {
∂ HGk

∂t

}
=
{

∂αk

∂γ̈ j

}T

[Ik] {αk}

= {αk}T [Ik]

{
∂αk

∂γ̈ j

}
= ᾱk · ∂

∂γ̈ j

(
∂ H̄Gk

∂t

)
.

(9.3.52)

This reduces Eq. (9.3.49) to

∂Sk

∂γ̈ j
= māGk · ∂ āGk

∂γ̈ j
+ ∂ᾱk

∂γ̈ j
· dH̄Gk

dt
. (9.3.53)

The final step is to recall the discussion centered around Eq. (9.3.15). As we did
there, we consider the time derivative of a velocity that is expressed in terms of quasi-
coordinates. The variables of interest now are the derivatives of the velocity of the center
of mass and the angular velocity, which are described by Eqs. (9.3.44). The result may
be written as

āGk =
N∑

j=1

(v̄Gk) j γ̈ j +
N∑

j=1

[
d
dt

(v̄Gk) j

]
γ̇ j + d

dt
(v̄Gk)0 ,

ᾱk =
N∑

j=1

(ω̄k) j γ̈ j +
N∑

j=1

[
d
dt

(ω̄k) j

]
γ̇ j +

N∑
j=1

[
d
dt

(ω̄k) j

]
γ̇ j + d

dt
(ω̄k)0 .

(9.3.54)

Our focus here is the dependence on the γ̈ j parameters. Such dependence cannot result
from differentiating the partial velocities, which depend on only the generalized coordi-
nates. Thus we find that

∂ āGk

∂γ̈ j
≡ (v̄Gk) j ,

∂ᾱk

∂γ̈ j
≡ (ω̄k) j . (9.3.55)

Substitution of these relations into Eq. (9.3.53) yields

∂Sk

∂γ̈ j
= māGk · (v̄Gk) j + dH̄Gn

dt
· (ω̄k) j . (9.3.56)

This term is the quantity within the summation in Kane’s equations, Eq. (9.3.48). Be-
cause S for a system is the sum of the Sk of each body, we conclude that the Gibbs–
Appell equations and Kane’s equations will yield identical differential equations of mo-
tion governing a specified set of generalized coordinates and quasi-coordinates.
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Although the equations are derived from the two formulations, the operations re-
quired for implementing each are substantially different. The Gibbs–Appell formulation
is more automated in terms of the operations, in that one has a single function S to de-
scribe. In the Kane equation approach, one shows the equivalent inertial forces in a free-
body diagram and then evaluates the partial velocities for the centroidal motion and the
rotation of the body. The former approach can be cumbersome, in that numerous terms
usually arise in S, some of which might not even be relevant to the equations of motion.
Also, by coercing us to carefully consider free-body diagrams, Kane’s equation tends to
lead us to a greater understanding of the way the parts of a system interact.

Although Kane’s equations and the Gibbs–Appell equations seem to be quite dif-
ferent from Lagrange’s equations, these differences actually only stem from the use of
quasi-velocities that are not identically generalized velocities. If one defines the quasi-
velocities to be the derivatives of the generalized coordinates, then implementing Kane’s
equations or the Gibbs–Appell equations will lead to essentially the same differential
equations as those derived from Lagrange’s equations. The only difference is that La-
grange’s equations are second order, but converting the resulting differential equations
to state-space form will yield a set of first-order differential equations in which the dy-
namical equations are the same and the derivative identity is the same as the Kane’s and
Gibbs–Appell kinematical equations.

From one perspective this equivalence is obvious. Our derivation of Kane’s equa-
tions began by representing the virtual displacement in terms of quasi-coordinates to
formulate the dynamical virtual work principle. In contrast, we derived Lagrange’s equa-
tions by satisfying the same principle by using a representation of virtual displacements
in terms of generalized coordinates. If one has γ̇ j ≡ q̇j , then the two approaches are the
same, with the Lagrange equation derivation proceeding further in order to introduce
kinetic energy.

The aforementioned equivalence can be proven mathematically. Consider the trans-
lational acceleration term in Eq. (9.3.48) for body k in this case. In view of Eqs. (9.3.47)
with γ̇ j = q̇j , this term may be rewritten as

mkāGk · (v̄Gk) j = mk
dv̄Gk

dt
· ∂

∂q̇j
v̄Gk

= d
dt

(
mk v̄Gk · ∂

∂q̇j
v̄Gk

)
− mk v̄Gk · d

dt

(
∂

∂q̇j
v̄Gk

)
.

(9.3.57)

To simplify the second term, recall the identity in Eq. (7.5.4), which was used to derive
Lagrange’s equations. Applying it in the present situation leads to

∂

∂q̇j
v̄Gk ≡ ∂

∂qj
r̄Gk, (9.3.58)

from which we find that

d
dt

(
∂

∂q̇j
v̄Gk

)
= ∂

∂qj

(
d
dt

r̄Gk

)
= ∂

∂qj
(v̄Gk) . (9.3.59)



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

9.3 Formulations with Quasi-Coordinates 621

This converts the Kane equation term to

mkāGk · (v̄Gk) j = d
dt

(
mk v̄Gk · ∂

∂q̇j
v̄Gk

)
− mk v̄Gk · ∂

∂qj
(v̄Gk)

= d
dt

[
∂

∂q̇j

(
1
2

mk v̄Gk · v̄Gk

)]
− ∂

∂qj

(
1
2

mk v̄Gk · v̄Gk

)
.

(9.3.60)

The term 1
2 mk v̄Gk · v̄Gk is the translational kinetic energy of body k relative to its cen-

ter of mass, and the overall expression is like the kinetic-energy terms in Lagrange’s
equations.

Now consider the rotational inertia term in Kane’s equations. Following similar
steps to the preceding equation gives(

dH̄Gk

dt

)
· (ω̄k) j = d

dt

(
H̄Gk · ∂

∂q̇j
ω̄k

)
− H̄Gk · d

dt

(
∂

∂q̇j
ω̄k

)
. (9.3.61)

The rotational equivalent of Eq. (9.3.59) is

d
dt

(
∂

∂q̇j
ω̄k

)
≡ ∂

∂qj
ω̄k, (9.3.62)

which leads to(
dH̄Gk

dt

)
· (ω̄k) j = d

dt

(
H̄Gk · ∂

∂q̇j
ω̄k

)
− H̄Gk · ∂

∂qj
ω̄k

= d
dt

[
∂

∂q̇j

(
1
2

H̄Gk · ω̄k

)]
− ∂

∂qj

(
1
2

H̄Gk · ω̄k

)
.

(9.3.63)

The term 1
2 H̄Gk · ω̄k is the rotational kinetic energy of body k. The total kinetic energy

of this body is the sum of its translational and rotational parts. Hence, if quasi-velocity
γ̇ j is the same as generalized velocity q̇j , Eq. (9.3.48) is equivalent to

∑
k

d
dt

[
∂

∂q̇j

(
1
2

mk v̄Gk · v̄Gk

)
+ ∂

∂q̇j

(
1
2

H̄Gk · ω̄k

)]

−
∑

k

[
∂

∂qj

(
1
2

mk v̄Gk · v̄Gk

)
+ ∂

∂qj

(
1
2

H̄Gk · ω̄k

)]

≡ d
dt

[
∂

∂q̇j

∑
k

(
1
2

mk v̄Gk · v̄Gk + 1
2

H̄Gk · ω̄k

)]

− ∂

∂qj

∑
k

(
1
2

mk v̄Gk · v̄Gk + 1
2

H̄Gk · ω̄k

)

≡ d
dt

(
∂T
∂q̇j

)
− ∂T

∂qj
= � j .

(9.3.64)

This of course is the same as the raw form of Lagrange’s equations prior to finding
alternative ways for describing the generalized force.

An overview of the developments here shows that, for a given set of general-
ized coordinates and quasi-velocities, the equations of motion derived by following the
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Gibbs–Appell or Kane’s equation formulations will be the same. Furthermore, if the
quasi-velocities actually are generalized velocities, then both yield the same equations of
motion as those obtained by Lagrange’s equations. Both the Gibbs–Appell and Kane’s
formulations have strong advocates. There also are other formulations of the equations
of motion. All are obviously related by the fact that they describe the same system sub-
ject to the same set of axioms, Newton’s Laws. The mathematical relationship between
the various formulations has been extensively explored by Papastavridis (2002). In spe-
cial circumstances one approach might prove to be advantageous. The author’s experi-
ence has been that Lagrange’s equations, supplemented by the Newton–Euler equations
to provide physical insight, serve well as an overall tool for a broad range of engineering
problems.

EXAMPLE 9.11 Use Kane’s equations to derive the differential equations of mo-
tion of the wheelbarrow in Example 9.8.

SOLUTION The objective here is to compare the operations required to implement
Kane’s equations and the Gibbs–Appell equations. We proceed as though we had
not previously solved this problem using the Gibbs–Appell equations, except that
we call on the previous results of the kinematical analysis. We begin with a free-body
diagram of the system. In this diagram the mā vector for each center of mass and the
centroidal dH̄/dt for each body are shown as dashed lines in order to identify them
as the inertial effects. (In situations in which there are many bodies and/or many
forces, it might be advantageous to draw separate diagrams for the actual forces and
their inertial equivalents.) Note that, because the wheelbarrow is in planar motion,
dH̄G/dt for it reduces to I θ̈ about the vertical axis.

FB

G

FA

N
y

x

C

maC

dHC
dt

maG

Iθ
..

Free-body diagram of the wheelbarrow showing the equivalent inertial effects

We use the same generalized coordinates and quasi-velocities as in the pre-
vious analysis, so q1 = XC, q2 = YC, q3 = θ, γ̇ 1 = v, γ̇ 2 = θ̇ . It is helpful to use
Eqs. (9.3.47) to describe the partial velocities explicitly when we write Kane’s
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equation. Thus Kane’s equations for this system are

(m1āG) · ∂v̄G

∂γ̇ j
+ (Iγ̈ 2)

∂θ̇

∂γ̇ j
+ (m2āC) · ∂v̄C

∂γ̇ j
+
(

dH̄C

dt

)
· ∂ω̄2

∂γ̇ j

= (
F̄A + F̄C + N j̄

) · ∂v̄C

∂γ̇ j
+ (

r̄A/C × F̄A + r̄A/C × F̄C
) · ∂θ̇

∂γ̇ j
k̄, j = 1, 2,

(1)

where we have used the previous approach to replace the forces acting on the han-
dles with an equivalent force–couple system acting at point C. Each term must be
described solely in terms of the qi and γ̇ i variables, which would require a kinemat-
ical analysis if we had not already done so in Example 9.8. From that development
we have

āC = γ̈ 1 ī + γ̇ 1γ̇ 2 j̄, āG = (
γ̈ 1 + γ̇ 2

2L
)

ī + (γ̇ 1γ̇ 2 − γ̈ 2L) j̄

ω̄2 = γ̇ 1

R
j̄ + γ̇ 2k̄, ᾱ2 = − γ̇ 1γ̇ 2

R
ī + γ̈ 1

R
j̄ + γ̈ 2k̄.

(2)

We had not explicitly described the velocity of point G, but it is readily obtained.
Thus the quantities required for evaluating the partial velocities are

v̄C = vī = γ̇ 1 ī, v̄G = v̄C + θ̇ k̄ × (−Lī
) = γ̇ 1 ī − Lγ̇ 2 j̄ . (3)

The angular momentum terms corresponding to Eqs. (2) for ω̄2 and ᾱ2 are

H̄C = J
(

γ̇ 1

R

)
j̄ + J

2
(γ̇ 2) k̄,

∂ H̄C

∂t
= J

2

(
− γ̇ 1γ̇ 2

R

)
ī + J

(
γ̈ 1

R

)
j̄ + J

2
γ̈ 2k̄,

dH̄C

dt
= ∂ H̄C

∂t
+ ω̄2 × H̄C = − J

R
γ̇ 1γ̇ 2 ī + J

R
γ̈ 1 j̄ + J

2
γ̈ 2k̄.

(4)

Because θ̇ = γ̇ 1, substitution of Eqs. (2) and (3) into Eq. (1) for each j yields

j = 1 : m1āG · ī + I θ̈ (0) + m2āC · ī + dH̄C

dt
·
(

1
R

j̄
)

= R̄ · ī + M̄ · 0̄,

j = 2 : m1āG · (−Lγ̇ 2 j̄
)+ I θ̈ (1) + m2āC · (0̄)+ dH̄C

dt
· (1k̄

) = R̄ · 0̄ + M̄ · (1k̄
)
,

where R̄ and M̄ are the resultant force and moment about point C of the forces F̄A

and F̄B. The result of substituting Eqs. (2) and (4) into the preceding equations is

m1
(
γ̈ 1 + γ̇ 2

2L
)+ m2γ̈ 1 + J

R2
γ̈ 1 = R̄ · ī,

m1 (γ̇ 1γ̇ 2 − γ̈ 2L) (−Lγ̇ 2) + Iγ̈ 2 + J
2

γ̈ 2 = M̄ · k̄.

�

These equations of motion are the same as the result of Example 9.8. The kine-
matical quantities that must be described in each approach are essentially the same.
The primary difference is that S is generated in a more automatic fashion, but the
manipulations are more tedious. The operations in Kane’s equations are broken
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into smaller steps, and one can gain some physical insights by examining the forcing
effects in the directions associated with the partial velocities.

EXAMPLE 9.12 Use Kane’s equations with γ̇ 1 = vB and q1 = θ, q2 = � to derive
equations of motion for the steerable linkage in Example 9.10.

SOLUTION As a closure to our exploration of alternative techniques for deriving
equations of motion, we apply Kane’s equations to a system in which the derivation
of the Gibbs–Appell function encountered considerable complexity. Whether the
same level of complexity is encountered here is a key question to be addressed. We
begin with a free-body diagram. For the sake of clarity, we use separate diagrams
to describe the actual forces and the inertial equivalents. (The diagram on the left is
like the one in Example 9.9, except that it now shows the fixed XYZ coordinate sys-
tem that is selected as the global system.) Bar AB is in planar motion, so the forces
acting on it are equivalent to a force m1āG at the center of mass and a couple IGθ̈

acting about the vertical axis. Collar A follows its stationary guide in any movement
because the quasi-velocity is unconstrained. Hence the inertial effect for this body
is merely m2āA along the guide. In contrast, the wheel executes a spatial rotation, so
the equivalent system is a force m3āB and a couple

(
dH̄B/dt

)
w .

θ

A

β

B

L/2

L/2

k∆

F

NA

NB

x'

y'

G

A

B

vB

x'

G

d(HB)w

IGθ
..

m2aA

m1aG

m3aB

. XX

Y

Y

dt

Actual forces and their inertial equivalents

There is no need to carry out a kinematical analysis here, because the present
motion variables are the same as those previously used to describe S. The only quasi-
velocity is vB, so Kane’s equation for this system is

m1āG · ∂v̄G

∂vB
+ IGθ̈

∂θ̇

∂vB
+ (−m2�̈ Ī

) · ∂v̄A

∂vB
+ m3āB · ∂v̄B

∂vB
+
(

dH̄B

dt

)
w

· ∂ω̄w

∂vB

= k� Ī · ∂v̄A

∂vB
+ F

[
cos (θ + β) Ī + sin (θ + β) J̄

] · ∂v̄B

∂vB
.

It should be noted that the reaction forces N̄A and N̄B do not appear here be-
cause the respective partial velocities will be perpendicular to these constraint forces
as a result of using unconstrained quasi-coordinates. Before we perform the main
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substitutions, it is useful to simplify the preceding by using Eqs. (5) in Example 9.10
to describe the motion of the center of mass. We also account for the facts that
v̄A = −�̇ Ī, that F̄ acts parallel to v̄B, and that ω̄w · ī ′ = 0. Thus, we have

1
4

m1
(−�̈ Ī + āB

) ·
(

− ∂�̇

∂vB
Ī + ∂v̄B

∂vB

)
+ IGθ̈

∂θ̇

∂vB
+ m2�̈

∂�̇

∂vB

+ m3āB · ∂v̄B

∂vB
+ (

I1αy′ j̄ ′ + I2αz′ k̄′) · ∂
(
ω′

y j̄ ′ + ωz′ k̄′)
∂vB

+ [(
ω′

y j̄ ′ + ωz′ k̄′)× (
I1ω

′
y j̄ ′ + I2ωz′ k̄′)]

wheel
· ∂
(
ω′

y j̄ ′ + ωz′ k̄′)
∂vB

= −k�
∂�̇

∂vB
+ F (ēt )B · ∂

∂vB
[(vB) (ēt )B] .

It is evident that the last of the inertial terms in the preceding equation vanishes.
Combining like terms in the remainder reduces Kane’s equation to(

1
4

m1 + m2

)
�̈

∂�̇

∂vB
+
(

1
4

m1 + m3

)
āB · ∂v̄B

∂vB

− 1
4

m1

(
�̈ Ī · ∂v̄B

∂vB
+ āB · ∂�̇

∂vB
Ī
)

+ IGθ̈
∂θ̇

∂vB

+ I1αy′
∂ω′

y

∂vB
+ I2αz′

∂ωz′

∂vB

= −k�
∂�̇

∂vB
+ F.

The acceleration terms were derived in Example 9.10. We obtain the partial veloci-
ties by differentiating the kinematical equations and velocity expressions that were
derived there, which gives

∂�̇

∂vB
= −cos β

cos θ
,

∂θ̇

∂vB
= 1

L
sin (θ + β)

cos θ
,

∂v̄B

∂vB
= cos (θ + β) Ī + sin (θ + β) J̄ ,

∂ωy′

∂vB
= 1

R
,

∂ωz′

∂vB
= ∂θ̇

∂vB
.

Substitution of these expressions and the previously derived acceleration terms con-
verts Kane’s equation for this system to

(
1
4

m1 + m2

)[
−v̇B

cos β

cos θ
− v2

B

L
sin (θ + β) sin θ cos β

(cos θ)3 + vBβ̇
sin β

cos θ

](
−cos β

cos θ

)

+
(

1
4

m1 + m3

)[
v̇B cos (θ + β) − v2

B

L
(sin (θ + β))2

cos θ
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− vBβ̇ sin (θ + β)
]

cos (θ + β) +
(

1
4

m1 + m3

)[
v̇B sin (θ + β)

+ v2
B

L
sin (θ + β) cos (θ + β)

cos θ
+ vBβ̇ cos (θ + β)

]
sin (θ + β)

− 1
4

m1

[
−v̇B

cos β

cos θ
− v2

B

L
sin (θ + β) sin θ cos β

(cos θ)3

+ vBβ̇
sin β

cos θ

]
cos (θ + β) − 1

4
m1 [v̇B cos (θ + β)

− v2
B

L
(sin (θ + β))2

cos θ
− vBβ̇ sin (θ + β)

](
−cos β

cos θ

)

+ IG

[
v̇B

L
sin (θ + β)

cos θ
+ v2

B

L2

sin (θ + β) cos β

(cos θ)3

+ vBβ̇

L
cos (θ + β)

cos θ

]
1
L

sin (θ + β)
cos θ

+ I1

(
v̇B

R

)
1
R

+
[

v̇B

L
sin (θ + β)

cos θ
+ v2

B

L2

sin (θ + β) cos β

(cos θ)3

+ vBβ̇

L
cos (θ + β)

cos θ
+ β̈

]
1
L

sin (θ + β)
cos θ

= k (� − �0)
cos β

cos θ
+ F.

We could go on to simplify this equation of motion by collecting the coefficients
of v̇B, v2

B/L, and vBβ̇. There is no need to do so in the present context, because the
main features are evident. We see that, for a given set of generalized coordinates
and quasi-velocities, the effort to analyze the kinematical features of a system is the
same for the Gibbs–Appell equations and Kane’s equations. From that common
starting point, the steps leading to the final equations are considerably less intricate
for Kane’s equations. The comparison of the two examples here suggests that this
aspect is more important than the ability to construct the Gibbs–Appell function in
a standard procedure.
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HOMEWORK PROBLEMS

EXERCISE 9.1 The kinetic and potential energies of a stretched cable are

T = 1
2
µ

∫ L

0
ẇ2dx,

V = F
[∫ L

0

(
1 + (w′)2

)1/2
dx − L

]
+
∫ L

0
w µgdx,

where w (x, t) is the transverse displacement. Only unforced motion is of interest, so
δW = 0. Use Hamilton’s Principle to derive the nonlinear field equation and the as-
sociated boundary conditions at x = 0 and x = L. The square root term in V may be
approximated by a three-term truncation of its series expansion for

∣∣w′∣∣ � 1.

EXERCISE 9.2 The transverse vibration of a straight beam according to linear theory is
described by a function w (x, t) that is the displacement of the beam’s centerline. The
energy functionals and virtual work are

T = 1
2

∫ L

0
µẇ2dx,

V = 1
2

∫ L

0
EI (w′′)2 dx +

∫ L

0
w µgdx,

δW =
∫ L

0
f (x, t) δwdx,

where µ is the mass per unit length and EI is the bending rigidity, both of which can de-
pend on x. Also, f (x, t) is the transverse load per unit length. Use Hamilton’s Principle
to derive the field equation governing w, as well as the possible boundary conditions.
Recall that δw is an arbitrary, but selected, function of x. Consequently, all derivatives
of δw are defined by δw in the interior region 0 < x < L, whereas w and its derivatives
are mutually independent at x = 0 and x = L.

EXERCISE 9.3 Torsion of a short bar whose cross section is not circular features warping
of the cross section. This means that, in addition to exhibiting an overall torsional rota-
tion θ (x, t) , a cross section at distance x along the beam will also undergo a displace-
ment in the axial direction that varies with position on the cross section. Approximate
potential- and kinetic-energy functionals capturing this effect are

T = 1
2

∫ L

0
ρ J θ̇2dx,

V = 1
2

∫ L

0

[
GJ

(
∂θ

∂x

)
+ E�

(
∂2θ

∂x2

)]2

dx,

where GJ and E� are cross-section properties that may depend on x. Use Hamilton’s
Principle to derive the field equation governing w, as well as the possible boundary
conditions corresponding to unforced motions.
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EXERCISE 9.4 When an axial force P acts on a beam that undergoes transverse displace-
ment w (x, t) , the force does work unless both ends are immobile. This combines with
the strain energy associated with flexure and leads to the possibility of dynamic buckling.
The corresponding energy functionals are

T = 1
2

∫ L

0
µẇ2dx,

V = 1
2

∫ L

0

[
EI (w′′)2 − P (w′)2

]
dx.

The coefficient EI is the bending rigidity, which might depend on x. Use Hamilton’s
Principle to derive the differential equation and possible boundary conditions govern-
ing w.

EXERCISE 9.5 Under certain circumstances, a horizontally stretched cable that is ex-
cited in the vertical plane can exhibit a whirling response in which the displacement has
nonzero horizontal and vertical components, labeled wy (x, t) and wz (x, t). The energy
functionals and virtual work in this case are

T = 1
2

∫ L

0
µ
[
ẇ2

y + ẇ2
z

]
dx,

V = F

⎡
⎣∫ L

0

[
1 +

(
∂wy

∂x

)2

+
(

∂wz

∂x

)2
]1/2

dx − L

⎤
⎦+

∫ L

0
wy µgdx,

δW =
∫ L

0
[ fy (x, t) δwy + fz (x, t) δwz] dx,

where fy and fz are distributed transverse forces in the respective directions. Both ends
of the cable are stationary. Use Hamilton’s Principle to derive the differential equations
governing wy and wz. It is permissible to expand the integrand of V in a Taylor series of
the displacement variables, in which terms higher than the fourth power of displacement
variables are discarded.

EXERCISE 9.6 When a bar having an arbitrary cross-sectional shape is loaded by a trans-
verse force, the cross section will undergo displacements wy and wz in two orthogonal
directions transverse to the longitudinal x axis. The kinetic and potential energies in this
case are

T = 1
2

∫ L

0

(
ẇ2

y + ẇ2
z

)
ρ A dx,

V = 1
2

∫ L

0
E

[
Izz

(
∂2wy

∂x2

)
+ 2Iyz

(
∂2wy

∂x2

)(
∂2wz

∂x2

)
+ Iyy

(
∂2wz

∂x2

)2
]

dx,

δW =
∫ L

0
[ fy (x, t) δwy + fz (x, t) δwz] dx,

where Iyy, Izz, and Iyz, which are second moments of the cross-sectional area, might de-
pend on x. Also, fy and fz are distributed transverse forces in the respective directions.
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The virtual displacement field in this case consists of independent fields δwy (x, t) and
δwz (x, t) , both of which must be continuously differentiable in order to be kinemat-
ically admissible. Use Hamilton’s Principle to derive the pair of differential equations
governing wy and wz, as well as the possible boundary conditions pertaining to each
displacement component.

EXERCISE 9.7 It is desired to use the Ritz series method to derive approximate equa-
tions describing the effects of nonlinearity in the vibration of the stretched cable in Ex-
ercise 9.1. Both ends are stationary, so that w = 0 at x = 0 and x = L, which means that
suitable basis functions are ψ j = sin ( jπx/L) . Derive the differential equations govern-
ing the two-term Ritz series that uses these basis functions.

EXERCISE 9.8 The energy functionals for flexural vibration of a beam are given in Ex-
ercise 9.2. A cantilever beam is one in which one end is not permitted to displace or
rotate, corresponding to w = ∂w/∂x = 0 at x = 0, while the other end, x = L, is free to
move. Suitable basis functions have the form ψ j = (x/L) j+p

, where p is an integer. (a)
Identify the lowest value of p that is appropriate to the cantilever beam. (b) Derive the
equations for the Ritz series coefficients when the series is truncated at two terms and p
has the value in Part (a). The cross-sectional properties are constant, and the transverse
loading is a uniformly distributed harmonic excitation, f (x, t) = F0 sin (�t) .

EXERCISE 9.9 The energy functionals for an axially loaded beam are given in Exer-
cise 9.4. A cantilever beam is one in which one end is not permitted to displace or ro-
tate, corresponding to w = ∂w/∂x = 0 at x = 0, while the other end, x = L, is free to
move. Use a three-term Ritz series for the transverse displacement to derive approxi-
mate equations for this beam’s vibration in the presence of the axial force.

EXERCISE 9.10 Both ends of a cable like the one described in Exercise 9.5 are fixed, so
suitable basis functions for both displacement components are sin ( jπx/L). The cable is
excited by a uniformly distributed transverse load in the xy plane, fy (x, t) = F0 sin (�t) ,

fz = 0. Use a two-term Ritz series for each transverse displacement component to de-
rive approximate equations describing the whirling response. All terms in the differen-
tial equations may be truncated at cubic powers of the Ritz series coefficients, which
means that Taylor series expansions of the energy functionals may be truncated at quar-
tic powers of wy and wz.

L

R
Ω

A B

Exercise 9.11

EXERCISE 9.11 Torsional excitation � acting about
the vertical shaft causes the T-bar to rotate at angular
speed �. Collars A and B are connected by an inex-
tensible cable. Derive Hamilton’s equations of motion
governing � and the radial distance R to a collar based
on the assumption that the cable remains taut.
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θ
4m

m

k

Exercise 9.12

EXERCISE 9.12 The small mass m is supported by a spring
as it moves along the smooth incline on the cart, whose
mass is M. The spring has stiffness k and its unstretched
length is �. Derive Hamilton’s canonical equations for the
system.

EXERCISE 9.13 Derive Hamilton’s equations of motion for the system in Exercise 7.35.

θ

A

B

C

Ω

ξL

Exercise 9.14

EXERCISE 9.14 Collar C is attached to the vertical shaft by
a fork-and-clevis, so the angle of inclination θ of bar AB
is arbitrary. Because this bar slides through the collar, the
distance ξ from the pivot point to the end of the bar is vari-
able, but it may be assumed that the bar does not spin about
its own axis. The vertical shaft rotates at the constant rate
�. Derive Hamilton’s equations governing ξ and θ.

A

B

Ω

β

R

w

H

Exercise 9.15

EXERCISE 9.15 The cylinder of mass m is free to rotate
by angle β relative to the gimbal, which rotates about
the horizontal axis. The precessional rotation is uncon-
strained, so ψ̇ = � is unknown. Derive Hamilton’s equa-
tions governing the gimbal’s precession angle ψ and the
relative rotation angle β.

Γ

θ

s
ψ.

Exercise 9.16

EXERCISE 9.16 The disk rotates by angle θ relative to
the gimbal, which precesses at a constant angular speed
ψ̇ because of the constraining torque �. A block of
mass m slides inside a slot within the disk. The spring
has stiffness is k, and s = 0 corresponds to the un-
stretched position of the spring. The disk has been bal-
anced to be axisymmetric about the gimbal shaft, with
centroidal moments of inertia I about this shaft and
I ′ perpendicular to it. Derive Hamilton’s equations of
motion governing θ and s.
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EXERCISE 9.17 Consider the system in Exercise 9.11 in the situation in which � is main-
tained at a constant value by the torque �. Use conservation of the Hamiltonian and the
work–energy principle to find the differential equation governing R and an expression
for the associated value of �.

θ

θ L

L/2

F

ψ.

Exercise 9.18

EXERCISE 9.18 The precession rate ψ̇ of the flyball
governor is held constant by a torque � that acts about
the vertical shaft, while that shaft is pushed upward
by a constant force F. Each ball has mass m, and the
inertia of each bar is negligible. Formulate the angu-
lar momentum about the rotation axis, the mechanical
energy, and the Hamiltonian of this system. Are any
of these quantities conserved? What is the differential
equation of motion associated with the time derivative
of each quantity?

Ω

F

θ

200 mm
400 mm

400 mm

Exercise 9.19

EXERCISE 9.19 The angle θ is adjusted by pulling
the cable inward, thereby causing the bar to pivot
about the horizontal pin in the vertical shaft. The
mass of the bar is 20 kg, and the moment of iner-
tia of the vertical shaft about its axis of rotation is
0.2 kg-m2. The cable tension is constant at 2 kN. At
the initial position θ = 20◦, θ̇ = 0, and � = 5 rad/s.
Determine the value of θ̇ when θ = 90◦ in the fol-
lowing circumstances: (a) A torque is applied to the
vertical shaft, with the result that � is constant. (b)
There is no torque acting on the vertical shaft, with
the result that the system precesses freely.

A

B

R

Ω

φ
.

θ

L

Exercise 9.20

EXERCISE 9.20 Application of an unspecified torque �

to the vertical shaft causes the system to rotate at con-
stant rate �. The mass of the disk is m1, its centroidal
radii of gyration are κ1 and κ2 respectively about axis
AB and transverse to that axis, and the mass of shaft
AB is m2. Pin A has ideal properties, which allows the
angle θ to change freely. Consider two situations: (a)
The disk spins freely relative to shaft AB at angular
speed φ̇ that is an unknown function of time; (b) a ser-
vomotor maintains the spin rate φ̇ at a known constant.
For each case, identify whether any angular momenta
are conserved, and compare the rate of change of the
Hamiltonian of the system with the result of applying
the power balance principle.
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r

θ
x

y

z
Ω

Exercise 9.21

EXERCISE 9.21 The ball bearing rolls without slipping
on the horizontal turntable, whose rotation rate � is
constant. The xyz coordinate system is attached to the
turntable, so the position of the ball bearing relative to
the turntable is defined by the radial distance r and az-
imuthal angle θ. It may be assumed that the ball bearing
does not spin about its vertical centerline relative to the
turntable. The radius of the ball bearing is R. Determine
whether the differential equations of motion governing r
and θ can be derived solely as time derivatives of conser-
vation equations.

EXERCISE 9.22 Angle θ for the flyball governor in Exercise 9.18 is controlled by apply-
ing force F , whose value at any instant is known. The system rotates freely about the
vertical axis. The mass of each sphere is m, and the mass of the linkage is negligible. Use
Routh’s method for the ignoration of coordinates to derive a single differential equation
governing θ .

EXERCISE 9.23 Consider the cart with a small attached mass in Exercise 9.12. Derive
a single differential equation of motion for the relative distance x, by using Routh’s
method for the ignoration of coordinates.

EXERCISE 9.24 Consider the system in Exercise 9.15. Let w = H/2, so that the center
of mass is coincident with the horizontal axis. Use Routh’s method for the ignoration of
coordinates to derive a single differential equation governing β. Can such a formulation
be used when w �= H/2? Explain your answer.

R

R/2k

Ω
m

θ

Exercise 9.25

EXERCISE 9.25 Collar m slides along the circular guide,
which spins freely about the vertical axis at angular speed
�. The spring’s stiffness is k = mg/R and its unstretched
length is R/2. The collar was at rest relative to the guide at
its initial position θ = 60◦, at which location the rotation
rate was � = (g/R)1/2

. Use Routh’s method to derive a
single differential equation of motion for θ .

EXERCISE 9.26 Use the Routhian to derive differential equations of motion governing
the system in Exercise 9.14 in the case where the precession rate � is constant.

EXERCISE 9.27 Consider the system in Exercise 7.66 in the case where the torque � = 0
and the flywheel disk spins freely without servocontrol. The rotation angles β, ψ , and
φ are suitable generalized coordinates, but the latter two are ignorable. Thus there is
a Routhian function from which a single differential equation governing β can be ex-
tracted. Derive this function.
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EXERCISE 9.28 The absolute velocity of a particle may be represented by the compo-
nents vx, vy, and vz relative to the axes of a moving reference system xyz. Suppose that
the angular velocity ω̄ of xyz and the velocity v̄O of the origin of xyz are known as func-
tions of time. Derive the Gibbs–Appell equations of motion relating the quasi-velocities
γ̇ 1 = vx, γ̇ 2 = vy, and γ̇ 3 = vz to the resultant force acting on the particle.

EXERCISE 9.29 Derive the Gibbs–Appell equations of motion for the system in
Exercise 9.12.

EXERCISE 9.30 Derive the Gibbs–Appell equations of motion for the flyball governor
in Exercise 9.18.

EXERCISE 9.31 Derive the Gibbs–Appell equations of motion for the semicylinder in
Exercise 7.43.

EXERCISE 9.32 Derive the Gibbs–Appell equations of motion for the motorboat in
Exercise 8.10

θ

L

R F

Exercise 9.33

EXERCISE 9.33 Two cylinders, each having mass m,
are linked by a connecting rod whose mass is negligi-
ble. A known horizontal force F(t) is applied to the
right cylinder, and neither cylinder slips in its rolling
motion. In the initial position, the angle θ locating
the connecting pin is zero. Derive the Gibbs–Appell
equation(s) of motion.

H

φA

B

L

Exercise 9.34

EXERCISE 9.34 Friction between the rod and the surfaces
it contacts is negligible. Use the Gibbs–Appell formula-
tion to derive differential equations describing the motion
while the rod remains in contact with the wall.

EXERCISE 9.35 Derive the Gibbs–Appell equations of motion for the system in
Exercise 7.58.

L

A

L
F

M

C

B

Exercise 9.36

EXERCISE 9.36 A known couple M̄(t) is applied to the up-
per bar. Force F̄ , which is applied perpendicularly to the
lower bar, acts to make the velocity of end C always be
collinear with the line from joint A to end B. The bars
have equal mass m, and the system lies in the vertical
plane. Derive the Gibbs–Appell equations of motion gov-
erning a set of generalized coordinates and unconstrained
quasi-velocities.
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D

A

L
M

B

C β

Ω1

ψ

Exercise 9.37

EXERCISE 9.37 Torque M, which induces the gimbal
rotation β, is a specified function of time, while the
torque � causes the precession rate to vary according
to ψ̇ = c1β̇ + c2β + c3, where the cn are constants. The
spin rate �1 is maintained at a constant value by a ser-
vomotor. The mass of this motor and the gimbal are
negligible. The mass of the flywheel is m, and its princi-
pal radii of gyration for centroidal axes are κ1 about its
spin axis and κ2 normal to that axis. Derive the Gibbs–
Appell equations of motion.

EXERCISE 9.38 Consider the system in Exercise 9.15 in the case in which D �= L/2. De-
rive the Gibbs–Appell equations governing the precession angle ψ and nutation angle θ.

EXERCISE 9.39 Derive the Gibbs–Appell equations of motion for the sphere on a rotat-
ing turntable in Exercise 8.23 when unconstrained quasi-velocities are used to describe
the motion.

θ

φ
L

H

Exercise 9.40

EXERCISE 9.40 The bar is supported by a ball-and-socket
joint A. The coefficient of sliding friction between end B
of the bar and the wall is µ. Derive a set of Gibbs–Appell
equations of motion.

EXERCISE 9.41 Use Kane’s formulation to derive the differential equations of motion
describing the system in Exercise 9.12.

EXERCISE 9.42 Derive Kane’s equations of motion for the flyball governor in
Exercise 9.18.

EXERCISE 9.43 Consider the system in Exercise 9.15 in the case in which D �= L/2.

Derive Kane’s equations for the precession angle ψ and nutation angle θ.

EXERCISE 9.44 Derive Kane’s equations of motion for the power boat in Exercise 9.32.

EXERCISE 9.45 Derive Kane’s equations of motion for the gyroscope in Exercise 9.37
when unconstrained quasi-velocities are used to describe the motion.

EXERCISE 9.46 Friction between the rod in Exercise 9.34 and the surfaces it contacts is
negligible. Use Kane’s formulation to derive the differential equations of motion. Con-
sider only the interval during which the rod remains in contact with the wall.

EXERCISE 9.47 The coefficient of kinetic friction between the rod and corner A in Exer-
cise 9.34 is µ, while frictional resistance at the wall is negligible. Use Kane’s formulation
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to derive the equations of motion for this system corresponding to the interval during
which the rod remains in contact with the wall.

EXERCISE 9.48 Use Kane’s formulation to derive the equations of motion of the steer-
able linkage in Example 9.9 when θ̇ and �̇ are selected as the quasi-velocities.

EXERCISE 9.49 Derive Kane’s equations governing the steerable linkage in Example 9.9
when the speed v of the wheel is used as the sole quasi-velocity.

EXERCISE 9.50 Beth, the tricycle rider in Exercise 8.14, steers by applying a known
torque M to the handlebars. Derive Kane’s equations corresponding to using the speed
vA of the center of the front wheel, the chassis rotation rate θ̇ , and the steering rate β̇ as
unconstrained quasi-velocities. The inertia of the rear wheels may be ignored.

EXERCISE 9.51 Derive Kane’ equations of motion governing a set of unconstrained
quasi-velocities for the sphere on a rotating turntable in Exercise 8.23.
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CHAPTER 10

Gyroscopic Effects

The focus thus far has been on the derivation of equations of motion for rigid-body
motion. Sometimes the goal was to characterize the force system required to produce
a specified motion, while other situations entailed where the response was not known,
which led to differential equations of motion. Both situations will be encountered in
this chapter, where the common thread is the prominent role of gyroscopic action. Such
phenomena are exploited in gyroscopes, whose theory will be introduced here. How-
ever, much can be learned about the nature of dynamical responses by beginning with
studies of simpler, yet more common, systems that display similar effects.

10.1 FREE MOTION

One of the first types of spatial motion treated in basic physics and engineering courses
on mechanics is projectile motion, whose study is devoted to the determination of the
motion of the center of mass. In contrast, the manner in which the body rotates about its
center of mass is seldom discussed in a fundamental course. Our study of free rotation
will be based on the assumption that the only external force is gravitational attraction
acting at the center of mass. The corollary is that the resultant moment about the center
of mass is zero, from which it follows that

H̄G is constant. (10.1.1)

A further corollary of taking the resultant moment to be zero is that the rotational mo-
tion occurs independently of the motion of the center of mass. In reality, aerodynamic
forces acting on a body may be represented as a force–couple system acting at the mass
center. Such forces depend on the orientation (angle of attack) as well as on the overall
velocity. Hence, accurate models of the motion of objects through the air might require
consideration of coupling between the translational and rotational motions.

10.1.1 Axisymmetric Bodies

An axisymmetric body, whose shape is obtained by rotating a curve about the axis of
symmetry, and whose mass is independent of the azimuthal angle relative to that axis,
has special inertial properties. Specifically, if the axis of symmetry is one of the coordi-
nate axes, then the coordinate system is principal with the moments of inertia about the
other two axes having equal values. Without loss of generality, we select the z axis to be

637
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the axis of symmetry, and correspondingly let Izz = I and Ixx = Iyy = I ′. (Actually, any
body having two equal principal moments of inertia behaves inertially as though it were
axisymmetric. The analysis that follows is valid for the free motion of any such object,
provided that the z axis is aligned with the axis that has the distinct moment of inertia.)

The constant value of H̄G in corollary (10.1.1) can be determined if the angular
velocity is known at the instant the body is released. The direction of this constant vector
defines a reference for studying the response. Let us define this direction as the Z axis
for a translating reference frame XYZ, so we have

K̄ = H̄G∣∣H̄G
∣∣ . (10.1.2)

We define Z to be the precession axis for a set of Eulerian angles and let the body’s axis
of symmetry be the spin axis. The nutation angle is measured between the precession
and spin axes, so we have the situation in Fig. 10.1. The body-fixed x axis depicted there
is the centroidal transverse axis that lies in the plane containing the space-fixed Z axis
and the body-fixed z axis at the instant of interest.

HG

mg

θψ
φ
..

Z

z
x

G

Figure 10.1. Free-body diagram and Eulerian angles for free ro-
tation of an axisymmetric body.

The angular velocity corresponding to an arbitrary set of Eulerian angles is the pre-
cessional, spinning, and nutational rotations. The latter occurs about the line of nodes,
which is perpendicular to both the precession and spin axes. This direction is opposite
the sense of the y axis associated with Fig. 10.1, so

ω̄ = ψ̇ K̄ − θ̇ j̄ + φ̇k̄ = ψ̇ sin θ ī − θ̇ j̄ + (
ψ̇ cos θ + φ̇

)
k̄. (10.1.3)

We can use this description of ω̄ to construct H̄G. A different representation comes from
the observation that H̄G lies in the Zz plane at an angle θ from the z axis, so we have

H̄G = I ′ψ̇ sin θ ī − I ′θ̇ j̄ + I
(
ψ̇ cos θ + φ̇

)
k̄

= HG sin θ ī + HG cos θ k̄.
(10.1.4)

These alternative representations must be consistent, which requires that

I ′ψ̇ sin θ = HG sin θ, I ′θ̇ = 0, I
(
ψ̇ cos θ + φ̇

) = HG cos θ. (10.1.5)

Solving these relations for the rotation rates yields

ψ̇ = HG

I ′ , θ̇ = 0, φ̇ =
(

1
I

− 1
I ′

)
HG cos θ. (10.1.6)
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This shows that the free rotation of an axisymmetric body is characterized by a steady
spinning rotation about the axis of symmetry, accompanied by a steady precession about
an axis that is parallel to the angular momentum, with an invariant nutation angle be-
tween these axes.

HG

φ
.

z
x

G

ω
β

Z

θ

ψ.

Figure 10.2. Evaluation of the Eulerian angle properties and angular
momentum when the angular velocity of an axisymmetric body is
known.

Presumably, the body’s orientation and angular velocity are known when it was re-
leased. As noted earlier, this allows us to construct H̄G, from which we may determine θ.

Let us formalize this construction. Because θ̇ = 0, it must be that ω̄, H̄G, and the z axis
are coplanar. Therefore the initial condition must be as depicted in Fig. 10.2, where the
vector ω̄ and its angle β from the z axis presumably are known as initial conditions. We
may construct the components of ω̄ from this angle. When we use these components to
construct H̄G, we obtain a representation that must match either form in Eqs. (10.1.4),
so it must be that

H̄G · k̄ = I (ω cos β) = I
(
ψ̇ cos θ + φ̇

) = HG cos θ,

H̄G · ī = I ′ (ω sin β) = I ′ψ̇ sin θ = HG sin θ.
(10.1.7)

Eliminating all kinematical parameters except ω and β from these relations yields

tan θ = I ′

I
tan β,

ψ̇ = HG

I ′ =
[

(sin β)2 +
(

I
I ′ cos β

)2
]1/2

ω,

φ̇ =
(

1 − I
I ′

)
ω cos β.

(10.1.8)

It is evident that there are two cases to consider, depending in whether I ′/I is less
than or greater than unity. If the body is slender, like a javelin, then I ′ > I, whereas
I ′ < I for an oblate body, such as a disk. (In the case of a sphere, for which I ′ = I, H̄G is
always parallel to ω̄, so there is no need to distinguish between ψ̇ and φ̇.) The rotation
of a slender body is such θ > β and φ̇ has the same sign as ω if β < 90◦. (Cases in which
β > 90◦ are best treated by reversing the sense of the z axis.) The property that φ̇ and
ω have the same sign indicates that the spin is in the same sense as the overall rotation;
this is said to be a regular precession. Conversely, an oblate body executes a retrograde
precession, in which the spin is in the opposite sense from the overall rotation (φ̇/ω < 0
when β < 90◦). In this case θ < β.
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The picture provided by Fig. 10.2 is descriptive of any instant, provided we recognize
that, because of the precession, the plane depicted by this figure rotates about the Z axis.
Thus the angular velocity is situated on a cone whose axis coincides with Z and whose
semivertex angle is θ − β. The significance of this observation is that ω̄ determines the
velocity of points relative to the center of mass, according to v̄P/G = ω̄ × r̄P/G. Thus
every point on a line parallel to ω̄ and intersecting point G is not moving relative to
point G. This leads us to a conceptual model formed from (right circular) space and
body cones. The space cone consists of the locus of the vector ω̄ from the viewpoint of
an observer translating with the center of mass when the tail of ω̄ is placed at that point.
Thus H̄G defines the axis of the space cone, and |θ − β| is the semivertex angle. The body
cone represents the locus of the same ω̄ vector from the perspective of an observer who
moves in unison with the body. Hence the body cone’s semivertex angle is β, and its axis
is the body’s axis of symmetry. The free rotation of the body may be visualized by letting
the body cone, which is attached to the body, roll without slipping over the stationary
space cone. The line of contact for this rolling motion is parallel to ω̄ at the instant of
interest.

G

HG

HG

φ
.

φ
.

z

G

ω
ω

β

θ − β
β − θ

ψ
.

ψ.

β

z

(a) (b)

Figure 10.3. Body and space cones for free motion. The body cone and the body are shaded. (a) Regular
precession, (b) retrograde precession.

Because θ > β for a regular precession such as the one in Fig. 10.3(a), the exterior
of the body cone in this case rolls over the exterior of the space cone. The precession
describes the rotation of the body cone’s axis about the axis marked by H̄G, and the spin
rate is such that points on the body cone that contact the space cone have zero velocity
relative to the center of mass. Retrograde precession, which is depicted in Fig. 10.3(b),
features β > θ, so the space cone is interior to the body cone. In this case the sense of ω

indicates the sense of the precession, but the spin takes place in the opposite sense. The
term “retrograde” stems from the perception that the body is spinning oppositely to the
sense of its overall rotation.

EXAMPLE 10.1 A football has an instantaneous velocity of 25 m/s parallel to its
longitudinal axis, z, and it is spinning about that axis at 5 rev/s. At that instant, the
ball is deflected by a transverse force F̄ at the forward tip. As a result of the action
of F̄ , whose duration is very short, the ensuing motion relative to the center of mass
is such that the longitudinal axis always lies on the surface of a cone whose apex
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angle is 60◦. The radii of gyration about centroidal axes are 40 mm and 70 mm along
and transversely to the longitudinal axis, respectively. Determine (a) the angular ve-
locity and the velocity of the center of mass immediately after the application of F̄,

(b) the orientation of the precession axis for the subsequent rotation relative to the
orientation of the longitudinal axis prior to the application of F̄, (c) the precession
and spin rates for the rotational motion.

125 mm

F

25 m/s

5 rev/s

z

x

y

Example 10.1

SOLUTION This example applies the basic relations to a system that is rather familiar
to some sports fans. The force F̄ fits the impulsive model, which enables us to con-
sider the orientation of the body-fixed xyz reference frame to be unaltered during
the interval of the impulse. The moments of inertia are

I = Izz = m (0.040)2 = 0.0016m kg-m2,

I ′ = Ixx = Iyy = m (0.070)2 = 0.0049m kg-m2,

where m is the mass (in units of kilograms).
The initial linear and angular momenta are

P̄1 = m (v̄G)1 = 25mk̄ kg-m/s,(
H̄G
)

1 = Iωzk̄ = I (−5) (2π) k̄ kg-m2/s.

Because the change in the position of any point on the football is negligible during
the impulse interval, the point of application of F̄ is essentially constant at r̄P/G =
0.125k̄ m. The corresponding impulse–momentum principles are

m(v̄G)2 = 25mk̄ + F (�t) ī,

(H̄G)2 = (H̄G)1 + r̄P/G × F (�t) ī = −0.05027mk̄ + 0.125F (�t) j̄ .
(1)

Because I ′ > I, the free rotation of the football is a regular precession. Accord-
ing to Fig. 10.3, the given information that the z axis sweeps out a 60◦ cone in the
subsequent rotation means that the nutation angle is θ = 30◦, with the precession
axis coincident with the axis of that cone. The corresponding angle β between the
angular velocity and the axis of symmetry is found from Eqs. (10.1.8) to be

β = tan−1
(

I
I ′ tan θ

)
= 10.08◦. (2)
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The expression for (H̄G)2 in Eqs. (1) indicates that ωx = 0 at the instant when F̄
terminates and ωy > 0 and ωz < 0. Hence the angular velocity at that instant must
be

ω̄ = ω
(
sin β j̄ − cos βk̄

) = ω
(
0.18526 j̄ − 0.9027k̄

)
.

The corresponding angular momentum is

(H̄G)2 = I ′ωyī + Iωzk̄ = mω(0.9078 j̄ − 1.5723k̄)(10−3).

Matching this to (H̄G)2 in Eqs. (1) yields

mω(0.9078)(10−3) = 0.125F (�t) ,

mω(−1.5723)(10−3) = −0.05027m,
(3)

from which we find that

ω = 31.97 rad/s,
F (�t)

m
= 0.2322 m/s.

This defines the final value of ω̄, and the corresponding value of v̄G is given by
the first of Eqs. (1),

ω̄ = 5.923 j̄ − 31.42k̄ rad/s, (v̄G)2 = 0.2322 j̄ + 25k m/s. �

The precession axis is parallel to (H̄G)2, so we have

K̄ = (H̄G)2∣∣(H̄G)2
∣∣ = 0.500 j̄ − 0.8660k̄. �

Note that the angle between K̄ and k̄, that is, between the symmetry and precession
axes, is cos−1(−0.8660) = 150◦, in agreement with the stated conditions.

From these results we may draw a sketch of the position of the body cone rela-
tive to the space cone at the initiation of the free motion. We also show (v̄G)2 in that
sketch. The corresponding precession and spin rates are found from Eqs. (10.1.8):

ψ̇ = 11.85 rad/s, θ̇ = 21.16 rad/s. �

x

Z

z

y

(HG)2

(vG)2ω2=32 rad/s

0.23 m/s

25 m/s

θ=30o

β=10.08o

Space
cone

Body 
cone

Movement of the football subsequent to application of the impulsive force.
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10.1.2 Arbitrary Bodies

Analysis of the free motion of an arbitrary body proceeds similarly to the treatment
of axisymmetric bodies. The analysis is substantially simplified by defining xyz to be
the body’s principal centroidal axes. The principal moments of inertia are denoted as
Ixx = I1, Iyy = I2, and Izz = I3. Even though the body has arbitrary inertia properties,
H̄G must still be constant, so the fixed Z axis for precession ψ is again defined again to
coincide with this vector. The other Eulerian angles are defined consistently with the
conventions established in Section 4.2. Thus the spin φ occurs about the principal axis
denoted as z, the nutation angle θ is measured from Z to z, and the line of nodes is
perpendicular to the plane formed by the Z and z axes.

The intermediate x′y′z′ coordinate system, which only precesses and nutates, facil-
itates the description of ω̄. The z′ axis is defined to coincide with the z axis, and the y′

axis is parallel to the line of nodes in the sense of the right-hand rule from Z to z. The
angular velocity is then

ω̄ = ψ̇ K̄ + θ̇ j̄ ′ + φ̇k̄. (10.1.9)

We can use projections or rotation transformations to resolve K̄ and j̄ ′ into xyz compo-
nents, with the result that

K̄ = − sin θ cos φ ī + sin θ sin φ j̄ + cos φk̄,

j̄ ′ = sin φ ī + cos φ j̄ .
(10.1.10)

The corresponding representation of the angular velocity is

ω̄ = (−ψ̇ sin θ cos φ + θ̇ sin φ
)

ī + (
ψ̇ sin θ sin φ + θ̇ cos φ

)
j̄

+ (
ψ̇ cos φ + φ̇

)
k̄.

(10.1.11)

As was true for axisymmetric bodies, the angular momentum can be constructed
from this description of ω̄, as well as from the fact that it coincides with the Z axis. Thus
it must be that

H̄G = HGK̄ = HG
(− sin θ cos φ ī + sin θ sin φ j̄ + cos φk̄

)
= I1

(−ψ̇ sin θ cos φ + θ̇ sin φ
)

ī + I2
(
ψ̇ sin θ sin φ + θ̇ cos φ

)
j̄

+ I3
(
ψ̇ cos φ + φ̇

)
k̄.

(10.1.12)

The constant value of H̄G is set by the initial conditions, in the form of a known value
of ω̄. If the components of the initial angular velocity are denoted as (ωx)0 , (ωy)0 , and
(ωz)0 , the corresponding angular momentum is

H̄G = HGK = I1 (ωx)0 ī + I2 (ωy)0 j̄ + I3 (ωz)0 k̄. (10.1.13)

It follows that

HG =
[

I2
1 (ωx)2

0 ī + I2
2 (ωy)2

0 + I2
3 (ωz)

2
0

]1/2
.
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Thus, matching like components of H̄G in Eq. (10.1.12) leads to a set of three ordinary
differential equations governing the Eulerian angles:

I1
(
ψ̇ sin θ cos φ − θ̇ sin φ

) = HG sin θ cos φ,

I2
(
ψ̇ sin θ sin φ + θ̇ cos φ

) = HG sin θ sin φ,

I3
(
ψ̇ cos φ + φ̇

) = HG cos θ.

(10.1.14)

These equations are alternatives to the Euler or Lagrange equations of motion for
the case in which all resultant moments are zero. The latter would be second order,
whereas Eqs. (10.1.14) are first order. This difference is a consequence of the fact that
conservation of angular momentum is an integral of the standard equations of motion.
Solution of Eqs. (10.1.14) as differential equations governing the Eulerian angles or as
algebraic equations for ψ̇, θ̇ , and φ̇ at specified Eulerian angles requires knowledge of
the value of HG, which can be obtained from the initial conditions.

Equations (10.1.14) are highly nonlinear. Solution schemes for specified initial con-
ditions are easier to implement if the equations are not coupled in the derivatives. We
obtain such a form by solving the first two of Eqs. (10.1.14) for ψ̇ and θ̇ , after which φ̇ is
found from the last equation. Because sin θ is factored out in those operations, the cases
in which θ = 0 or π are special, and shall be treated separately. If sin θ �= 0, it must be
that

ψ̇ = HG

(
(cos φ)2

I1
+ (sin φ)2

I2

)
,

θ̇ = HG

(
1
I2

− 1
I1

)
sin θ sin φ cos φ,

φ̇ = HG

(
1
I3

− (cos φ)2

I1
− (sin φ)2

I2

)
cos θ.

(10.1.15)

We obtain a quick verification of this result by noting that, if the body is axisymmetric
and z is defined to be the axis of symmetry, then I1 = I2 = I ′ and I3 = I. These expres-
sions for the Eulerian rotation rates then reduce to Eqs. (10.1.6).

Analytical solutions for the Eulerian angles as functions of time in the form of el-
liptic functions can be obtained (Synge and Griffith, 1959). Also, because Eqs. (10.1.15)
already are in first-order form, the differential equations are readily integrated numer-
ically. Rather than following either line of analysis, the next section will develop the
Poinsot construction, which is a graphical way of understanding the rotation. Before we
continue, there are a few general observations that we can make regarding the solutions
of these differential equations.

First, note that ψ̇ is always positive, which means that a body in free motion never
changes the direction in which it precesses. However, the signs of θ̇ and φ̇ depend on
the relative magnitudes of the moments of inertia, and on the current quadrant in which
θ and φ reside. This suggests that there might be free motions in which the nutation
and spin rates, and therefore the corresponding angles, oscillate. In turn, this leads to
questions regarding the stability of a rotational motion that has been established.
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Specific results regarding stability can be obtained in the case in which a body is
released with an initial rotation rate � about a principal axis. Without loss of generality,
we define this axis to be the z axis for the Eulerian angles. We may take the initial spin
rate to be �, corresponding to θ = 0, whereas the initial precession rate and nutation
angle are both zero. The case in which sin θ = 0 was excluded from Eqs. (10.1.15), so we
return to Eqs. (10.1.14). These equations are indentically satisfied by constant θ = 0 or
π, ψ̇ = 0, and φ̇ = HG/�. Thus a pure spinning motion about any of the principal axes
is a possible type of rotation. However, we are not likely to impart an initial rotation
to a body in which the axis of rotation is exactly aligned with one of the principal axes.
Even if we could, any temporary disturbance, such as a mild gust of wind, would alter
the initial rotation. A more realistic expectation is that, because of a small error, the
initial motion will feature nutation and precession rates that are much smaller than �,
with the initial nutation angle being small. To study the ensuing rotation we perform
a linearized perturbation analysis. If an evaluation of the response confirms that these
small initial perturbations remain small for all t , then we may conclude that the rotation
is stable. In contrast, a result indicating that the the disturbances grow merely means
that the ensuing rotation will differ much from the initial motion.

The disturbed response is represented as

φ̇ = � + εξ̇ 3, θ = εξ 2, ψ = εξ 1, (10.1.16)

where the ξn parameters are time functions that are taken to be unit order and the
perturbation parameter ε, which scales the magnitude of the disturbance, is a positive
number much less than unity. Note that this representation considers the precession and
spin nutation angles to be small values, whereas the spin angle is approximately �t . We
obtain the easiest derivation of solvable equations for these parameters by substituting
this representation into Eqs. (10.1.14). After we do so, we apply small-angle approxima-
tions to the trigonometric terms, which leads to

I1
[(

εξ̇ 1
)

(εξ 2) cos φ − εξ̇ 2 sin φ
] = HG (εξ 2) cos φ,

I2
[(

εξ̇ 1
)

(εξ 2) sin φ + εξ̇ 2 cos φ
] = HG (εξ 2) sin φ,

I3
[(

εξ̇ 1
)

cos φ + (
� + εξ̇ 3

)] = HG cos θ.

(10.1.17)

We retain only the leading-order term in each equation, with the result that

−I1ξ̇ 2 sin φ = HGξ 2 cos φ,

I2ξ̇ 2 cos φ = HGξ 2 sin φ,

I3� = HG cos φ.

(10.1.18)

A change of variables that expedites solution of these equations is suggested by
the observation that sin φ and cos φ are the direction cosines of j̄ ′, which is the line
of nodes, relative to the body-fixed x and y coordinate axes. Wherever ξ 2 occurs in
the perturbation equations, it is multiplied by one of these direction cosines. Because
ξ 2 represents the disturbance of the nutation, which is about the line of nodes, let us
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define a vector ξ̄ 2 parallel to the line of nodes, whose components are u and v, such
that

ξ̄ 2 = ξ 2 j̄ ′ = uī + v j̄,

u = ξ 2 sin φ, v = ξ 2 cos φ.
(10.1.19)

According to Eqs. (10.1.16), the first approximation of φ̇ is �, so differentiation of the
preceding equations shows that

u̇ ≈ ξ̇ 2 sin φ + �ξ 2 cos φ = ξ̇ 2 sin φ + �v,

v̇ ≈ ξ̇ 2 cos φ − �ξ 2 sin φ = ξ̇ 2 cos φ − �u.
(10.1.20)

We use these relations to eliminate ξ 2 and φ from Eqs. (10.1.18), which yields

I1 (u̇ − �v) = −I3�v,

I2 (v̇ + �u) = I3�u.
(10.1.21)

These are a pair of coupled, homogeneous, linear differential equations with con-
stant coefficients. Their solution must be exponential in time, so we set

u = A exp (λt) , v = Bexp (λt) . (10.1.22)

Substitution of these forms into Eqs. (10.1.21) gives[
I1λ (I3 − I1) �

(I2 − I3) � I2λ

]{
A

B

}
=
{

0

0

}
. (10.1.23)

This is an eigenvalue problem because the only solution is the trivial one, A = B = 0,

unless the value of λ is such that the determinant of the coefficient matrix vanishes. The
characteristic equation obtained from setting this determinant to zero is

I1 I2λ
2 + (I3 − I1) (I3 − I2) = 0. (10.1.24)

Because the moments of inertia are positive values, the roots of this quadratic equa-
tion occur either as a pair of conjugate imaginary values or as real values with opposite
signs, depending on the sign of the last term. A positive value of λ corresponds to ex-
ponential growth of u and v, and therefore of ξ 2. This is the instability condition, which
indicates that the spin axis will not remain close to the precession axis. In contrast, purely
imaginary values of λ represent an oscillatory ξ 2. This is the stable case in which the spin
axis remains close to the precession axis.

Recall that I3 is the moment of inertia about the principal axis for the nominal spin.
The stability condition requires (I3 − I1) (I3 − I2) > 0, which is satisfied either if I3 > I1

and I3 > I2, or else, I3 < I1 and I3 < I2. In other words, a body that is released with an
initial angular velocity that is essentially a spin about the principal axis having either
the largest or smallest moment of inertia will continue to have that type of rotation. An
initial spin about the principal axis for which the moment of inertia is the intermediate
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value will show a growth in the nutation angle, such that the eventual rotation does
not resemble the attempted initial state. Note in this regard that the present analysis
merely describes the tendency to deviate from the initial state. It provides no informa-
tion regarding the ultimate response, because the assumption of a small nutation angle
on which it is based would not be valid.

If you wish, you may test these stability properties by throwing a homogeneous
rectangular object, such as a wooden block or a board eraser. Try to impart to it an
initial spin about an axis parallel to one of its edges. It is fairly easy to obtain a motion
in which the object spins about an axis parallel to the shortest or longest edge. However,
a comparable attempt for rotation about the intermediate edge does not produce the
desired steady spin.

These results are consistent with the previous investigation of an axisymmetric body.
To use the stability analysis in the case in which the initial angular velocity is close to the
symmetry axis, we set Izz = I = I3 and Ixx = Iyy = I ′ = I1 = I2. In the space and body
cone construction we set the apex angle β for the body cone to a very small value. Equa-
tions (10.1.8) indicate that the apex angle θ for the body cone will also be small, from
which it follows that the angular velocity will be close to the symmetry axis.∗ The stabil-
ity analysis leads to the same conclusion because either I3 < I2 and I3 < I1 for a slender
body or I3 > I2 and I3 > I1 for an oblate body. Interestingly, the stability analysis does
not yield a definitive result for the case of an axisymmetric body to which one imparts
an initial spinning motion about the transverse axis. That situation is covered by setting
I3 = I ′, in which case I1 = I and I2 = I ′ or vice versa. The characteristic equation yields
λ = 0, which means that it is a degenerate condition in which the linearized analysis is
inadequate. We will examine this situation in the next subsection, which does not rely
on simplifications.

10.1.3 Poinsot’s Construction for Arbitrary Bodies

As was mentioned earlier, one approach for determining how a body with arbitrary
inertia properties rotates is to seek analytical or numerical solutions of the first-order
equations of motion, Eqs. (10.1.14) or (10.1.15). Here we develop a pictorial represen-
tation of the motion that considerably enhances our qualitative understanding of free
rotation. We derive this representation by considering the kinetic energy and angular
momentum jointly.

The only force acting on a body in our model of free motion is gravitational attrac-
tion, which acts through the center of mass. It was shown in Subsection 6.4.2 that the
rotational kinetic energy can be altered only by the application of a moment about the
center of mass. Thus the rotational kinetic energy is constant. The ellipsoid of inertia,
which was developed in Subsection 5.2.3, describes how the angular velocity must vary
relative to the body if the rotational kinetic energy is to remain constant.

∗ An extremely slender body, for which I ′ � I, represents an exceptional case, because a small nonzero
β will correspond to a large θ. Although the spin axis of this type of body cannot remain close to the
precession axis unless the angular velocity is extremely close to the spin axis, it is still stable in the sense
that θ remains below 90◦.
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In terms of body-fixed principal axes, the shape of the ellipsoid of inertia is described
by

Ixxx2 + Iyy y2 + Izzz2 = 1. (10.1.25)

The corresponding expression for the rotational kinetic energy is

Trot = 1
2

(
Ixxω

2
x + Iyyω

2
y + Izzω

2
z

)
. (10.1.26)

Let us depict the angular velocity as a vector whose tail is always situated at the origin of
xyz. If the head of this vector is always situated on the inertia ellipsoid, then we would
have ω̄ = xī + y j̄ + zk̄, where x, y, and z satisfy Eq. (10.1.25). In that case the rotational
kinetic energy would maintain the constant value at Trot = 1/2. The actual rotational
kinetic energy will be obtained if this vector is scaled by (2Trot)

1/2
. In other words, if ρ̄

denotes the position vector extending from the origin to a point on the inertia ellipsoid,
then constancy of the rotational kinetic energy requires that the angular velocity be such
that

ω̄ = (2Trot)
1/2

ρ̄. (10.1.27)

The component representation of this relation is

x = ωx

(2Trot)
1/2

, y = ωy

(2Trot)
1/2

, z = ωx

(2Trot)
1/2

. (10.1.28)

To exploit this property we let the inertia ellipsoid serve as a fictitious proxy that
moves in unison with the body. The inertia ellipsoid’s properties give us some idea of
how the angular velocity is viewed from the perspective of the body. The next feature
comes from the constancy of the angular momentum about the center of mass. The
component of ρ̄ parallel to H̄G, which is denoted as ρH, may be evaluated from a dot
product. In view of the preceding relation this distance is

ρH = ρ̄ · H̄G∣∣H̄G
∣∣ =

(
1

2Trot

)1/2
ω̄ · H̄G∣∣H̄G

∣∣ . (10.1.29)

Recall that ω̄ · H̄G = 2Trot. In view of the fact that both
∣∣H̄G

∣∣ and Trot are constant in a
free motion, the angular velocity must always be oriented relative to the body such that
ρH maintains a constant value given by

ρH = (2Trot)
1/2∣∣H̄G
∣∣ . (10.1.30)

One definition of a plane states that it is the locus of points whose distance to a specified
point, measured in the direction normal to the plane, is constant. It follows that the
point P on the inertia ellipsoidal to which ρ̄ extends always lies on a plane that is at the
constant distance ρH from the center of mass and that H̄G is the normal to that plane. If
we ignore the movement of the center of mass, this plane appears to be stationary; it is
the invariable plane.
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This property is important, but it does not tell us how point P moves along the
invariable plane, nor does it tell us how the ellipsoid is oriented relative to the plane.
These questions are resolved by another property of the ellipsoid of inertia. We saw
that, if ω̄ equals ρ̄, then the motion corresponds to Trot = 1/2. Setting ρ ′ = cρ defines
a family of concurrent ellipsoids having the same proportions as the inertia ellipsoid. It
follows from Eq. (10.1.25) that the coordinates of a point on one of these concurrent
ellipsoids is defined by

F (x, y, z) = Ixxx2 + Iyy y2 + Izzz2 = c2, (10.1.31)

where c = 1 corresponds to the ellipsoid of inertia. In general, the gradient applied to a
family of functions defined in this manner indicates the direction in which the value of c
changes most rapidly in going from one surface to another. Therefore the gradient of F ,
which is

∇F = 2
(
Ixxxī + Iyy y j̄ + Izzzk̄

)
, (10.1.32)

defines the normal to the ellipsoid at the point on the surface whose coordinates are
(x, y, z). To make this point lie on the ellipsoid of inertia, we require that these co-
ordinates satisfy Eq. (10.1.31) with c = 1. However, Eq. (10.1.28) indicates that these
coordinates are the respective components of ω̄ divided by (2Trot)

1/2
. It follows that the

normal direction at any point on the inertia ellipsoid is defined by

∇F = 2

(2Trot)
1/2

(
Ixxωxī + Iyyωh j̄ + Izzωzk̄

) =
(

2
Trot

)1/2

H̄G. (10.1.33)

We conclude from this that the normal to the inertia ellipsoid at any point where it
intersects the invariable plane is parallel to H̄G. However, the normal to the invariable
plane is also parallel to H̄G. These two conditions can be satisfied simultaneously only
if the ellipsoid of inertia tangentially contacts the invariable plane. Furthermore, the
velocity of this point of contact relative to the center of mass is zero, because ω̄ × ρ̄ = 0̄.
These observations lead us to the Poinsot construction, first disclosed in 1857:

The ellipsoid of inertia of a body in free motion rotates about the center of mass such that
it rolls without slipping over the invariable plane. The normal to the invariable plane is
parallel to the constant angular momentum of the body. The line extending from the center
of mass to the point where the ellipsoid tangentially comes into contact with the invariable
plane is parallel to the instantaneous axis of rotation. The rolling motion is such that the
perpendicular distance from the center of mass to the invariable plane is constant at a value
that depends on the angular momentum and constant rotational kinetic energy,.

Figure 10.4 provides a pictorial representation of the Poinsot construction. It is impor-
tant to realize that this construction is solely for the purpose of understanding the ori-
entation of the ellipsoid of inertia, and therefore of the body. Application of Chasle’s
theorem relative to the center of mass in combination with the Poinsot construction
would allow us to fully describe the motion.

The initial conditions at the instant the body was released define H̄G and Trot, which,
in turn, define the invariable plane and the distance from the center of mass to the
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ρ

ρ

Figure 10.4. Poinsot’s construction showing the inertia ellipsoid rolling over the invariable plane.

invariable plane. At each instant, a different point on the inertia ellipsoid contacts the
invariable plane. The locus of contact points on the inertia ellipsoid is a curve called the
polhode, whereas the locus on the invariable plane is the her polhode. The herpolhode is
generally an open curve, which means that the rotation does not repeat, but the polhode
is a closed curve. We may establish the closure of the polhode, as well as the overall
nature of these curves, by noting that the inertia ellipsoid represents the constancy of
the kinetic energy in the rotational motion. However, the angular momentum is also
constant, which means that

∣∣H̄G
∣∣2 = I2

xxω
2
x + I2

yyω
2
y + I2

zzω
2
z. (10.1.34)

When Eqs. (10.1.28) are used to represent the angular velocity components, the preced-
ing equation becomes

I2
xxx2 + I2

yy y2 + I2
zzz2 =

∣∣H̄G
∣∣2

2Trot
= 1

ρ2
H

≡ D. (10.1.35)

The usage of D rather than 1/ρ2
H is done for convenience. Clearly, D is constant, so the

preceding equation represents another ellipsoid whose origin is at the center of mass
and whose principal axes are x, y, and z. In other words, constancy of the angular mo-
mentum’s magnitude leads to the conclusion that the point where the inertia ellipsoid
contacts the invariable plane is situated on another ellipsoid that is stationary with re-
spect to the body-fixed xyz coordinate system. The intersection of this ellipsoid with the
ellipsoid of inertia, given by Eq. (10.1.25), is the polhode. The closure of the polhode
is a direct consequence of the fact that both ellipsoids, and therefore their intersection,
rotate with the body.

The value of the constant D is determined by the initial motion. If this initial state
is a rotation about the x axis, then H̄G = Ixxωī, so |HG|2 = 2Trot/Ixx. Similar statements
apply to initial rotations about the other principal axes. This leads to the observation
that initial rotations about each of the principal axes correspond to D = I1, I2, and I3,
respectively. Without loss of generality, we now specify the labeling of the xyz axes to
be such that I1 = Ixx is the smallest value and I3 = Izz is the largest. Then, I1 ≤ I2 ≤ I3.
We may construct the polhode for a specified value of D by picking a value of one co-
ordinate, and then solving Eqs. (10.1.25) and (10.1.35) simultaneously for the other two.
A visualization that is easier to obtain depicts polhode curves in terms of their projec-
tions onto the principal coordinate planes. We derive equations for these projections by
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eliminating the coordinate normal to that plane from the two ellipsoid equations. These
projection equations are

x − y plane: I1 (I3 − I1) x2 + I2 (I3 − I2) y2 = I3 − D,

y − z plane: I2 (I2 − I1) y2 + I3 (I3 − I1) z2 = D − I2,

x − z plane: I1 (I2 − I1) x2 − I3 (I3 − I2) z2 = I2 − D.

(10.1.36)

The coefficients in these equations are positive for the assigned sequence I1 ≤ I3 ≤
I3. For this ordering, the projections onto the x − y and y − z planes are ellipses, whereas
the projections onto the x − z plane are hyperbolas. These projections and the outline
of the inertia ellipsoid are illustrated in Fig. 10.5 for the positive quadrants.

Polhode
Projection

x
y

z

D=I 2

D>I2

D<I2

1/√I3

1/√I1

1/√I2

Figure 10.5. Typical polhode curves and their projections onto the principal axis coordinate planes for
I1 = 1, I2 = 4, I3 = 8.

The curve corresponding to D = I2 is the separatrix between the hyperbolas in the
x − z plane, but it appears as an ellipse in the other coordinate planes. The correspond-
ing polhode curves on the ellipsoid of inertia are shown in Fig. 10.6.

We concluded in the previous section that an attempt to impart a rotation about the
principal axis of smallest or largest moment of inertia would produce a stable rotation.
This is further demonstrated here. Recall that the instantaneous angular velocity ω̄ is
parallel to a line from the origin to the point where the polhode curve contacts the
invariable plane. If the initial rotation is approximately about the z axis, then D is slightly
smaller than I3. In that case the projection of the polhode curve onto the x − y plane is
a small ellipse, corresponding to an angular velocity that always is nearly parallel to the
z axis. Similarly, an initial rotation approximately about the x axis, which gives a value

x y

z

D=I2

D>I2

D<I2
Figure 10.6. Typical polhode curves and the inertia ellip-
soid for I1 = 1, I2 = 4, I3 = 8.
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of D slightly larger than I1, leads to a polhode curve projection on the y − z plane that
is a small ellipse. This corresponds to an angular velocity that is always nearly parallel
to the x axis. In contrast, if the initial motion is approximately about the y axis, then
D ≈ I2. Then the polhode curves are close to the separatrices. Depending on whether D
is greater than or less than I2, the closed polhode curve is centered about either the z axis
or the x axis, respectively. In either case, the angle between ω and any of the coordinate
axes varies greatly in the motion. This explains why the rotation of an arbitrary body is
often difficult to observe.

An axisymmetric body is a special case in which two principal moments of inertia
are equal. To match the earlier analysis of axisymmetric bodies, let us place the tail of
ω̄ at the apex of the body cone and divide ω̄ by (2Trot)

1/2
. The vector formed in this

manner is the position vector ρ̄ in Poinsot’s construction. Because the magnitude of ω̄

for free motion of an axisymmetric body is constant, it must be that the tip of the scaled
vector will always be situated on a circular cross section of the body cone. This is the
polhode curve. Poinsot’s construction leads to the same conclusion. The ellipsoid of in-
ertia for an axisymmetric body is spheroidal. Constancy of

∣∣H̄G
∣∣ corresponds to another

spheroid having the same axis of symmetry. The polhode curve is the intersection of
these two spheroids, which is a circular cross section they have in common. Recall that
H̄G is perpendicular to the cross sections of the space cone. Thus the invariable plane
for an axisymmetric body is the cross section of the space cone that contacts the cross
section of the body cone that is the polhode curve. In regard to the previous stability
analysis, we now see that an initial motion that is almost a pure spin about the axis of
symmetry corresponds to a very small radius polhode, which means that the angular
velocity does not deviate much from the initial condition. This confirms the earlier anal-
ysis. We also can now answer the degenerate case for the previous stability analysis, in
which an axisymmetric body is set into motion with a rotation that is almost a pure ro-
tation about a transverse axis. The polhode curve for such a motion is a circle close to
the equator of the spheroid. This proximity leads to the conclusion that an axisymmetric
body also is stable if it is launched with an angular velocity that is perpendicular to the
axis of symmetry. Followers of American football will recognize this as the case of an
“end-over-end” kick.

EXAMPLE 10.2 The xyz coordinate system in the sketch is a set of body-fixed
principal centroidal axes for the 10-kg rectangular plate. At the instant the plate is
dropped, the y axis is horizontal and the z axis is inclined at 30◦ from vertical. The
angular velocity at that instant lies in the xz plane at an unspecified angle β from
the z axis. (a) Determine the value of β for which the precession axis is vertical. (b)
Determine the maximum value of β for which the angle between the z axis and the
precession axis will not exceed 90◦ in the rotation after release. (c) For the case in
which β is one half the critical value in Part (b), determine the minimum and maxi-
mum angles between the plate’s normal and the precession axis during the rotation.
Evaluate the corresponding angular velocity at these limits.
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ω
β

240 mm

120 mm

x

y

z
Vertical

30° − β

Example 10.2

SOLUTION We see in this example that much information regarding the free motion
of a body can be extracted without solving the differential equations of motion. The
sequence in which the coordinate axes have been labeled matches the derivation,
where x is the principal axis having the smallest moment of inertia, Ixx = I1, and z is
the principal axis having the largest moment of inertia, Izz = I3. Here, these values
are

I1 = 1
12

(10) (0.12)2 = 0.012, I2 = 1
12

(10) (0.24)2 = 0.048,

I3 = I1 + I2 = 0.060 kg-m2.

The orientation of the initial angular velocity relative to xyz is described by the
angle β, so we have

ω̄ = ω
(− sin β ī + cos βk̄

)
. (1)

The corresponding constant angular momentum is

H̄G = ω
(−I1 sin β ī + I3 cos βk̄

)
. (2)

To answer the first question, we require that the angular momentum be parallel
to the vertical axis, which is stated to be situated in the xz plane at an angle of 30◦

from the z axis. Resolving this vector into xyz components gives

H̄G = HG
(−0.5ī + 0.8660k̄

)
.

This description must be consistent with Eq. (2), so like components must match,
which leads to

−I1ω sin β = −0.5HG, I3ω cos β = 0.8660HG,

so that

I1

I3
tan β = 0.5774 =⇒ β = 70.89◦

{
for precession about

the vertical axis
. �

To address the second question, we turn to Fig. 10.6. In the Poinsot construc-
tion the invariable plane is tangent to the inertia ellipsoid and the normal to the
invariable plane is parallel to the precession axis. Consider the polhode curves
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corresponding to D > I2, which surround the z axis. The tangent plane at any point
on such a curve has a normal that forms an acute angle with the z axis. The limiting
case is the separatrix, for which half of the curve lies on a portion of the ellipsoid
where the normal is more than 90◦ from the z axis. Thus the maximum value of β sat-
isfying the specification in Part (b) is that which gives D = I2. The initial rotational
kinetic energy for an arbitrary β is found from Eqs. (1) and (2) to be

2Trot = ω̄ · H̄G = ω2
[

I1 (sin β)2 + I3 (cos β)2
]
. (3)

Using this expression to form the critical condition, D = I2, leads to

D =
∣∣H̄G

∣∣2
2Trot

= I2
1 (sin β)2 + I2

3 (cos β)2

I1 (sin β)2 + I3 (cos β)2 = I2. (4)

In other words,

I1 (I2 − I1) (sin β)2 = I3 (I3 − I2) (cos β)2
,

β = tan−1
[

I3 (I3 − I2)
I1 (I2 − I1)

]1/2

= 52.239◦
{

for rotation about

the z axis
. �

For Part (c), we set β = 26.119◦. The value of D obtained from Eq. (4) for this
angle is

D = 0.057798.

Because D > I2, the polhode curve surrounds the z axis. Now examine the polhode
curve for this case in Fig. 10.6. The minimum and maximum angles between the z
axis and the normal to the tangent plane, which is the fixed precession axis, occur
when the polhode curve intersects the xz plane and yz plane, respectively. Thus the
task of identifying the minimum and maximum angle conditions reduces to estab-
lishing the conditions for which the angular velocity has either a zero y or x com-
ponent, respectively. This observation leads us to conclude that the initial motion
must represent the minimum angle condition, because it is specified that ωy = 0 at
that instant. Thus we obtain the minimum angle condition by setting β = 26.119◦ in
Eq. (2), from which we can determine the direction of H̄G, which is K̄:

H̄G = ω(−0.005283ī + 0.053873k̄) = HGK̄.

The angle from K̄ to the z axis is θ, so we find that

θmin = cos−1

(∣∣H̄G · k̄
∣∣∣∣H̄G
∣∣
)

= 5.601◦. �

To determine the maximum angle we seek the solution of the polhode equa-
tions corresponding to the preceding value of D subject to the condition that x = 0.

The polhode curves correspond to values of (x, y, z) that simultaneously satisfy
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Eq. (10.1.25) for the inertia ellipsoid and Eq. (10.1.35) describing constancy of
∣∣H̄G

∣∣.
For the present values of the parameters, these equations are

0.012(x2 + 4y2 + 5z2) = 1,

(0.012)2 (x2 + 16y2 + 25z2) = 0.057798.

The polhode we are interested corresponds to z > 0, because ωz was initially posi-
tive. We therefore seek the root of these equations for which x = 0 and z > 0. The
roots are

y = ±1.9553, z = 3.6889.

The alternative sign results from the symmetry of the polhode curves. We use the
positive value of y; either sign will yield the same angle. According to Eqs. (10.1.28),
the corresponding angular velocity components are

ωx = 0, ωy = 1.9553 (2Trot)
1/2

, ωz = 3.6889 (2Trot)
1/2

, (5)

which leads to the angular momentum being

H̄G = (2Trot)
1/2 (0.093854 j̄ + 0.221334k̄

) = HGK̄.

From this we find the angle β between ω̄ and the z axis and the angle θ between the
z axis and the precession axis to be

β = tan−1
(

ωy

ωz

)
= 27.926◦, θmax = cos−1

(
H̄G · k̄∣∣H̄G

∣∣
)

= 22.979◦.

The rotational kinetic energy corresponding to Eq. (5) must be the same as the value
when the plate was released. We obtain this value by substituting β = 26.119◦ into
Eq. (3), which gives

2Trot = 0.050697ω2
0,

where ω0 is the magnitude of the angular velocity when the plate was released. Sub-
stitution of this value into Eq. (5) results in

ω̄ = ω0
(
0.4403 j + 0.8306k̄

)
. �

The orientation of the principal axes and of the angular velocity at this instant
are depicted in the accompanying sketch. To construct the picture, the fixed orienta-
tion of H̄G relative to vertical is established in the release position as the difference
of the 30◦ angle to the z axis and the 5.6◦ angle from the z axis to H̄G. We find the
orientation of all vectors at the other extreme orientation by copying the H̄G vector
to that sketch, then using the computed θmax to locate the z axis. Then the z axis
provides the reference from which β is measured to locate ω̄. Note that the planes
for each sketch are not the same; to locate the plane for the second sketch we would
need to know the precession angle. Also, each configuration in the sketch is mir-
rored by another, not shown, in which all features are reflected to the other side
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of H̄G, corresponding to a 180◦ rotation about the precession axis. At an arbitrary
instant, the angles between the z axis and the precession axis, and between the angu-
lar velocity and the precession axis, will be intermediate to the illustrated conditions
and its mirror image.

ωω
HG

HG

z

x

y

zvertical
vertical

240 mm 120 mm

26.1°

27.9°
23.0°

5.6°

24.4°

(a) (b)

24.4°

Orientation of the plate at extreme locations on the polhode curve: (a) release at β = 26.1◦,
(b) largest β.

10.2 SPINNING TOP

The toy known as a spinning top consists of an axially symmetric body that executes a
pure rotation about an apex situated on the axis of symmetry. (We shall not worry here
about the drift that occurs when the apex is not anchored, primarily because such effects
are complicated by minor irregularities in the surface over which the apex would move.)
The study of a spinning top leads to many insights regarding the interplay among rota-
tion, angular momentum, and the moment exerted by forces. The results for its motion
may be extended to other bodies that rotate about a reference point due to the moment
of the gravitational force; such systems include certain types of gyroscopes.

Point O in Fig. 10.7 is stationary because of a reaction force having three compo-
nents Fj in orthogonal directions. The gravity force acts through the center of mass G.
Its moment about point O is mgLsin θ in the sense of the horizontal axis through point
O that is perpendicular to the axis of symmetry. Because such an axis is the line of nodes
for a set of Eulerian angles, it is natural to use those parameters as generalized coordi-
nates. The reactions exert no moments about the precession, spin, and nutation axes,
and gravity is conservative, so the generalized force associated with each angle is iden-
tically zero. Thus the principal difference between a spinning top and an axisymmetric
body in free motion is the presence of a moment about the reference point for the rota-
tion. This moment depends on the nutation angle and must be balanced by an angular
momentum that varies with time.

We employ Lagrange’s equations to formulate the equations of motion. Let I be the
moment of inertia about the axis of symmetry and let I ′ be the moment of inertia about
any axis perpendicular to the axis of symmetry and intersecting point O. In terms of
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Figure 10.7. Free-body diagram and coordinate systems for a
spinning top.

components relative to the x′y′z′, which only precesses and nutates, the angular velocity
of the body is

ω̄ = −ψ̇ sin θ ī ′ + θ̇ j̄ ′ + (
ψ̇ cos θ + φ̇

)
k̄′. (10.2.1)

The moment of inertia about any body-fixed axis that is aligned with j̄ ′ at the instant of
interest is I ′, so the kinetic energy corresponding to this expression for ω̄ is

T = 1
2

[
I ′ψ̇2 (sin θ)2 + I ′θ̇2 + I

(
ψ̇ cos θ + φ̇

)2
]
. (10.2.2)

The elevation of the apex is a convenient reference for the gravitational potential en-
ergy, so

V = mgLcos θ. (10.2.3)

We noted earlier that the generalized forces are all zero in our idealized model.
Furthermore, the Lagrangian, L = T − V, does not depend explicitly on either the pre-
cession or spin angles. As a result the precession and spin angles are ignorable coordi-
nates, corresponding to conservation of the generalized momenta associated with these
variables. These momenta are

pψ = ∂T

∂ψ̇
= I

(
ψ̇ cos θ + φ̇

)
cos θ + I ′ψ̇ (sin θ)2 ≡ I ′βψ,

pφ = ∂T

∂φ̇
= I

(
ψ̇ cos θ + φ̇

) ≡ I ′βφ,

(10.2.4)

where βψ and βφ are constants having the units of angular speed. These parameters may
be evaluated from the initial conditions, so these conservation equations may be solved
for the rotation rates:

ψ̇ = βψ − βφ cos θ

(sin θ)2 ,

φ̇ =
βφ

[
I ′ (sin θ)2 + I (cos θ)2

]
− βψ I cos θ

I (sin θ)2 .

(10.2.5)
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An important distinction is that a constant value of βφ corresponds to constancy of the
total rotation rate about the axis of symmetry, ωz = ψ̇ cos θ + φ̇. Thus the precession
and spin rates are individually constant only when the nutation angle is constant. If θ is
known as function of time, then these equations could be integrated to determine the
precession and spin angles.

Constancy of pψ and pφ are derived from the Lagrange equations associated with ψ

and φ. Proper evaluation of the Lagrange equation associated with θ requires that the
derivatives of the energy expressions be evaluated before the conserved momenta are
used to eliminate the ignorable coordinates. The resulting equation of motion is

I ′θ̈ − (
ψ̇ sin θ

) [
I ′ψ̇ cos θ − I

(
ψ̇ cos θ + φ̇

)]− mgLsin θ = 0. (10.2.6)

Substitution of Eqs. (10.2.5) eliminates the precession and spin rates, with the result that

θ̈ + 1

(sin θ)3

(
βψ − βφ cos θ

) (
βφ − βψ cos θ

)− mgL
I ′ sin θ = 0. (10.2.7)

The only variable in this second-order differential equation is θ. We shall return to
it later, but for now we use conservation of energy to obtain a first integral describing
the nutation rate. We require that T + V = E be constant, and we use Eqs. (10.2.5) to
eliminate ψ̇ and φ̇, which leads to

1
2

I ′θ̇2 + 1
2

I ′
(

βψ − βφ cos θ

sin θ

)2

+ (I ′)2

2I
β2

φ + mgLcos θ = E. (10.2.8)

As is true for the generalized momenta, the value of E is specified by the initial condi-
tions.

Multiplication of this equation by (sin θ)2 leads to a form in which the derivative
occurs only in the combination θ̇ sin θ. Also, because (sin θ)2 = 1 − (cos θ)2

, the vari-
able terms that do not contain derivatives may be considered to depend on cos θ . This
suggests that it would be useful to define a new variable such that

u = cos θ, u̇ = −θ̇ sin θ. (10.2.9)

Also, it is convenient to define the following combination of parameters:

ε = 2E
I ′ − I ′

I
β2

φ, γ = 2mgL
I ′ . (10.2.10)

Substitution of these expressions into the energy conservation equation, Eq. (10.2.8),
gives

u̇2 = (ε − γ u)
(
1 − u2

)− (
βψ − βφu

)2
. (10.2.11)

This differential equation may be solved by separating variables, which would yield
an expression for t as a function of u in the form of an elliptic integral; see Grad-
steyn and Rhyzek (2000). Numerical methods provide an alternative solution procedure.
However, we may determine much qualitative information about the motion by merely
studying the roots of the cubic polynomial on the right side of Eq. (10.2.11). These roots
describe the conditions for which u̇ is zero, corresponding to either an extreme or a
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f (u)

u
u1 u2

-1 1
Figure 10.8. Roots of the function f (u) describing the nutation
rate of a spinning top.

constant value of the nutation angle. The polynomial is

f (u) = (ε − γ u)
(
1 − u2)− (

βψ − βφu
)2

. (10.2.12)

Because u = cos θ , the physically meaningful values of u must lie in the range −1 ≤ u ≤
1, subject to the requirement that f (u) ≥ 0 in order that θ̇ be real.

Let us investigate the nature of the roots of f (u). If u � 1, then f (u) ≈ γ u3 > 0
because γ is a positive parameter. Similarly, u � −1 corresponds to f (u) < 0. Fur-
thermore, u = ±1 corresponds to f (u) < 0. Thus one root must be situated in u > 1,

which is extraneous. We reason that there must be some range of precession angles for
which θ̇

2
> 0, which means that f (u) must be positive somewhere between u = −1 and

u = +1. One possible situation is depicted in Fig. 10.8, where the region of positive f (u)
straddles u = 0. In that case the significant roots are u1 < 0 and u2 > 0. However, it
might be that both roots are positive or negative.

The variable u may be interpreted geometrically as being the elevation above the
apex of a point P on the (z) axis of symmetry at a unit distance from the apex. In this
interpretation the precession angle ψ and the nutation angle θ are spherical coordinates
for point P, whose path lies on a sphere of unit radius. Because f (u) = 0 corresponds
to θ̇ = 0, the larger root of f (u), that is, u = u2, represents the highest elevation of
point P, or equivalently the smallest nutation angle is the smallest. Similarly, the lowest
elevation attained in the motion is u = u1, corresponding to the largest nutation angle.
The nutational motion is such that the symmetry axis oscillates between high and low
positions, u1 ≤ u ≤ u2. The exceptional situation in which the roots are repeated, u1 =
u2, corresponds to a constant nutation angle. This is an important possibility, because we
saw in Eqs. (10.2.5) that the precession and spin rates are constant when θ is constant.
Thus the case of repeated roots corresponds to steady precession, which we shall treat
later.

If we have determined that a certain value of u occurs at some instant, the corre-
sponding precession rate given by Eqs. (10.2.5) is found to be

ψ̇ = βφ (u0 − u)

1 − u2
, u0 = βψ

βφ

. (10.2.13)

Because |u| ≤ 1, we observe from this relation that the sense of the precession, which
is defined by the sign of ψ̇ , is determined by the value of u − u0. Whether ψ̇ actually
vanishes in a specific response depends on whether the value of u0 lies in the range
u1 ≤ u ≤ u2.

There are three ways in which the value of u0 may be situated relative to u1 and u2.
Understanding each requires recognition of the interplay between the alteration in the
rotational motions necessary to conserve angular momentum and mechanical energy.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

660 Gyroscopic Effects

Conservation of angular momentum about the axis of symmetry requires that the total
rate of rotation about that axis, ωz = φ̇ + ψ̇ cos θ, remain constant. This means that a
decrease in the precession rate or an increase in the nutation angle will be compensated
by an increase in the spin rate. The effect of the nutation on the precession rate may be
seen from the expression for pψ , Eqs. (10.2.4). This term originates from two sources:
the projection of the spin momentum pφ onto the precession axis, and the angular mo-
mentum associated with the precession itself. The equivalent moment of inertia for the
latter effect is I ′ (sin θ)2. Increasing the nutation angle increases this moment of inertia,
while it simultaneously decreases the projection of pφ . Hence an increase in the nutation
angle has competing effects on the precession rate, depending on the value of pφ relative
to pψ .

Equation (10.2.8) indicates that changing the nutation angle also has competing ef-
fects on the mechanical energy. The portion of the kinetic energy attributable to the
precession and spin rates might increase or decrease when θ increases, depending on
the values of βφ and βψ . This is accompanied by a decrease in the potential energy with

increasing θ . The nutational portion of the mechanical energy, that is, I ′θ̇2
/2, must main-

tain the balance between kinetic and potential energy. At the extremes of the nutational
motion, the change in potential energy is exactly compensated by the change in the pre-
cession and spin kinetic energy, so the nutational energy vanishes at those locations.

• Unidirectional Precession
This is the case in which the precession rate ψ̇ never changes sign. According to
Eq. (10.2.13), such a situation is encountered if u0 ≤ u1 or u0 ≥ u2. The sense of the
precessional motion that is imparted at the initial instant continues throughout the
motion. The nutation angle has its maximum and minimum values at u = u1 and u2,
but the precession continues at those locations. As shown in Fig. 10.9, the path of
point P at its highest and lowest elevations is tangent to horizontal circles on the unit
sphere. One way in which we may initiate a unidirectional precession is to release
the top at the highest elevation of point P, where u = u2, with the precession rate set
in the desired sense, and the initial nutation rate set to zero, corresponding to u̇ = 0.
The initial precession rate should be relatively large, sufficient to make u0 = βψ/βφ

exceed u2.
• Looping Precession

This response is characterized by a precession that reverses direction, although the
overall motion is in one direction. Such a motion corresponds to u1 ≤ u0 ≤ u2. The
reversal of direction is indicated by ψ̇ = 0, whose occurrence is indicated by Eq.

θ2 θ1

r =1
u = u2

u = u1

ψ.

Figure 10.9. Path of the spin axis of a top in unidirectional
precession.
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θ2 θ1

r =1
u = u2 u = u0

u = u2

ψ.

Figure 10.10. Path of the spin axis of a top in looping
precession.

(10.2.13) to correspond to u = u0. The tangent to the path at these locations coin-
cides with a meridian of the unit circle. In contrast, the nutation rate vanishes at the
lowest and highest elevations. At those locations, the tangent to the path is horizon-
tal, with movement at the low point indicating the direction of the overall preces-
sion. As shown in Fig. 10.10, the movement at the upper limit is opposite the overall
motion. (The overall precession might proceed oppositely to the motion depicted in
the figure.)

A looping precession may be attained by releasing a top at the highest elevation,
u = u2, with a comparatively small precession rate. The nutation rate at release must
be zero in order for u2 to be the maximum elevation. As the top falls, the portion of
the precession associated with βψ is eventually overwhelmed by the counter effect
associated with βφ . The elevation u0 marks the location where these effects balance.

• Cuspidial Motion
This case is a transition between the unidirectional and looping precessions previ-
ously discussed. Like looping precession, the precession comes to rest, but this oc-
curs at the highest elevation, u0 = u2. Because the tangent to the path at the highest
elevation coincides with the meridian, the path at that location has a cusp. As shown
in Fig. 10.11, the path of point P resembles a cycloidal path that is wrapped around
the unit sphere.

Cuspidial motion may be attained by releasing the top at the highest elevation,
u = u2, with no initial precessional or nutational motion. The precessional motion
that arises as the top falls is therefore due to only the spin momentum βφ . As the top
falls, it gains kinetic energy and loses potential energy. Conservation of βψ and βφ

causes the the precession rate to increase, until at the low point the contributions of
the precession and spin rates to the kinetic energy equal the decrease in the potential
energy, so θ̇ vanishes. Incidentally, we may prove by this reasoning that the cusps
cannot arise at the lowest elevation, where u = u1. Such a motion would lead to

θ2 θ1

r =1
u = u2 = u0

u = u1

ψ.

Figure 10.11. Path of the spin axis of a top in cuspidial
precession.
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kinetic and potential energies that are both maximum values at the lowest elevation,
in violation of energy conservation.

The coincidence of the values of u0 and u2 in this case simplifies the governing
equations sufficiently to permit solving them for the Eulerian angles as functions
of time. We have seen that suitable initial conditions leading to cuspidial motion
are ψ̇ = θ̇ = 0, with the initial spin rate φ̇0 nonzero. The elevation at the instant of
release is cos θ = u2 = u0. The corresponding momentum parameters are given by
Eqs. (10.2.4) to be

βφ = I
I ′ φ́0, βψ = βφu0. (10.2.14)

The energy level parameter in Eq. (10.2.8) is

E = mglu0 + (I ′)2

2I
β2

φ, (10.2.15)

whose substitution into Eqs. (10.2.10) gives

ε = γ u0. (10.2.16)

On substitution of these parameters, the energy function f (u) defined in
Eq. (10.2.12) becomes

f (u) = (u0 − u)
[
γ
(
1 − u2)− β2

φ (u0 − u)
]
, (10.2.17)

whose roots in the acceptable range |u| ≤ 1 are

u1 = U − (
U2 − 2u0U + 1

)1/2
, u2 = u0, (10.2.18)

where

U = β2
φ

2γ
= I2φ́

2
0

4I ′mgL
. (10.2.19)

These expressions for the limits of the nutation in cuspidial motion as a function
of the initial conditions may be simplified further if we limit our attention to the
situation that usually arises: a fast top, in which the spin rate imparted in the initial
motion is large. We quantify this restriction by specifying that

U � 1 ⇐⇒ β2
φ � 2γ . (10.2.20)

The corresponding minimum elevation obtained from the leading terms in a series
expansion of the first of Eqs. (10.2.18) is

u1 = u0 − 1 − u2
0

2U
. (10.2.21)

In view of the definition of U, this equation states that the difference between the
maximum and minimum elevations for a fast top decreases as the inverse square of
the initial spin rate.

The smallness of the cuspidial motion at high spin rates allows us to evaluate the
precessional and nutational rotations as explicit functions of time. The technique
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for such an investigation is perturbation analysis, based on the observation that the
difference between u0 and u must be small throughout the motion, and that 1/ U is
a small quantity that scales this difference. This suggests a series expansion for u:

u = u0 − 1
U

v1 (t) − 1
U2

v2 (t) + · · · , (10.2.22)

where the v j (t) are unknown functions of time that are independent of the parame-
ter U. Many terms would be required to obtain a convergent series when the value
of U is arbitrary. In contrast, the error that arises from truncating the series be-
comes smaller and smaller as the value of U increases. We say that Eq. (10.2.22) is
an asymptotic series for the variable u in terms of the perturbation parameter 1/U
� 1.

We obtain differential equations for the unknown functions v j by requiring that
the asymptotic series satisfy the equation of motion at each level of approxima-
tion, associated with increasing powers of 1/U. The most direct approach to de-
riving these equations uses the second-order differential equation that is the time
derivative of the energy conservation relation, Eq. (10.2.11), with the right side rep-
resented by Eq. (10.2.17). These operations lead to

2u̇ü = dF
du

u̇ = [−γ
(
1 − u2)− 2γ u (u0 − u) + 2β2

φ (u0 − u)
]

ú. (10.2.23)

We cancel the common factor u̇, then substitute the asymptotic series. Concurrently,
we use Eq. (10.2.19) to eliminate γ , with the result that

− 2
U

v̈1 − 2
U2

v̈2 = − β2
φ

2U

[
1 −

(
u0 − 1

U
v1 − 1

U2
v2

)2
]

− β2
φ

U

(
u0 − 1

U
v1 − 1

U2
v2

)(
1
U

v1 + 1
U2

v2

)

+ 2β2
φ

(
1
U

v1 + 1
U2

v2

)
.

(10.2.24)

This equation must be satisfied for arbitrary (large) values of U, which means that
the coefficients of like powers of 1/U must match. The leading order is 1/U, which
gives results that are sufficiently descriptive. Thus we expand the preceding and
retain only the coefficients of 1/U, which leads to

v̈1 + β2
φv1 = 1

4
β2

φ

(
1 − u2

0

)
. (10.2.25)

The solution of this differential equation must satisfy the initial conditions for
cuspidial motion, which we have taken to be that u = u0 and u̇ = 0 at the instant
of release. The leading term in Eq. (10.2.22) satisfies these conditions, so the next
order of approximation must satisfy rest conditions, v1 = v̇1 = 0 at t = 0. The sum
of the complementary and particular solutions satisfying the initial conditions is

v1 = 1
4

(
1 − u2

0

) [
1 − cos

(
βφ t

)]
, (10.2.26)
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which corresponds to an elevation given by

u ≈ u0 − v1

U
= u0 − γ

2β2
φ

(
1 − u2

0

) [
1 − cos

(
βφ t

)]
. (10.2.27)

Recall that u̇ = − θ̇ sin θ. In the present context it is sufficient to apply this rela-
tion with θ approximated be the angle θ2 at which the motion was initiated. Because
1 − u2

0 = (sin θ2)2
, we find that

θ̇ = − u̇
sin θ2

≈ γ

2βφ

sin θ2 sin
(
βφ t

)
. (10.2.28)

We obtain a simplified expression for the precession rate by using u = u0 to simplify
the denominator of Eq. (10.2.13). Substitution of βφ from Eqs. (10.2.14) and u from
Eq. (10.2.27) then yields

ψ̇ = γ

2βφ

[
1 − cos

(
βφ t

)]
. (10.2.29)

The interpretation of these results is that the average precession rate of a fast
top varies harmonically about the mean value γ /2βφ , with an amplitude equal to
the mean value. When the precession rate is zero, [cos

(
βφ t

) = 1], the nutation rate
is zero and the top is at its highest elevation. At the instant when the precession rate
is maximum [cos

(
βφ t

) = −1], the nutation rate is zero once again, corresponding to
the lowest elevation.

• Steady precession
If the appropriate initial motion is imparted to the top, it is possible to obtain a rota-
tion in which the nutation angle and precession rate are constant. The corresponding
spin rate in that case also will not vary from its initial value. Attaining such a mo-
tion requires that the top be released with θ̇ = 0. It also is necessary that the initial
values of θ, ψ̇, and φ̇ be such that the coefficient of θ in the original differential
equation, Eq. (10.2.6), vanishes. Then θ̈ will be zero at the instant of release, which
in combination with θ̇ being zero initially, leads to θ̇ being constant for all t. Thus
we seek the combination of θ, ψ̇, and φ̇ for which(

ψ̇ sin θ
) [

I ′ψ̇ cos θ − I
(
ψ̇ cos θ + φ̇

)]+ mgLsin θ = 0. (10.2.30)

In most cases the spin rate is set before the top is set into motion. Thus the preceding
condition can be considered to govern the initial precession rate required to obtain
a steady precession with specified values φ̇ and θ. One possibility is sin θ = 0, which
we will address separately. Factoring out sin θ from the equation leads to a quadratic
equation, whose roots are

ψ̇ = Iφ̇ ± [
I2φ̇2 − 4mgL(I ′ − I) cos θ

]1/2

2(I ′ − I) cos θ
. (10.2.31)

An important aspect is that no real root exists unless the spin rate exceeds a critical
value given by

φ̇ > ωcr =
[

4mgL(I ′ − I) cos θ

I2

]1/2

. (10.2.32)
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The roots in Eq. (10.2.31) entail no approximations, but we usually are inter-
ested in the case of a fast top. In that case φ̇ is large, which leads to simplification of
the formula based on a binomial series expansion of the square root, which gives

[
I2φ̇2 − 4mgL(I ′ − I) cos θ

]1/2 ≈ Iφ̇ − 2mgL
(I ′ − I)

Iφ̇
cos θ. (10.2.33)

This reduces the roots to

ψ̇1 = mgL

Iφ̇
, ψ̇2 = I

(I ′ − I) cos θ
φ̇. (10.2.34)

The first root, ψ1, is inversely proportional to φ̇, so it is comparatively low. The fast
precession rate ψ̇2 matches the value obtained from Eqs. (10.1.6) for a symmetric
body in free motion. In essence, the spin and precession rates in the fast case are
so high that the gravitational moment is negligible in comparison with the moments
required to alter the angular momentum of the top. Steady precession of a top usu-
ally occurs at the slow precession rate, because the kinetic energy required to attain
ψ̇2 is prohibitive.

A special case of steady rotation is the sleeping top, which is the term used when
the axis of symmetry of the top is vertical, sin θ = 0. The precession and spin are in-
distinguishable in a sleeping top, because the rotations are about concurrent axes.
(The name “sleeping top” stems from the merger of spin and precession, which
causes a polished body of revolution without markings to appear to be stationary.)
Because of the similarity of precession and spin in such a rotation, some of the re-
lations for steady precession become trivial. For example, sin θ = 0 identically sat-
isfies Eq. (10.2.30), which is the condition for θ̈ being identically zero. However,
all relations for steady precession remain valid in the limit as θ → 0. We treat this
degenerate case by noting that the angular velocity of a sleeping top is merely

ω = ψ̇ + φ̇. (10.2.35)

Hence, we find from Eq. (10.2.32) that the minimum rotation rate required for a top
to sleep is

ω > ωcr =
[

4mgL(I ′ − I)
I2

]1/2

. (10.2.36)

Our analysis suggests that the axis of symmetry cannot remain vertical if ω is
below this value. However, we saw earlier that θ̈ = 0 whenever sin θ = 0, which
suggests that the top will sleep for any spin rate if θ = θ̇ = 0 when the top is released.
In that condition the angular momentum is vertical, and therefore constant, and the
moment of the gravity force about the pivot point vanishes. In essence, by obtaining
the sleeping top as a special case, we have demonstrated that θ = 0 is unstable if
ω < ωcr.

In actuality, the effect of friction at the apex O is to slow the rate of rotation.
When the value of ω for a sleeping top falls below ωcr, the top begins to nutate.
Because the nutational velocity is zero at the instant when the rotation rate falls
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below critical, the ensuing motion is a cuspidial precession. If the spin rate de-
creases slowly, the amplitude of the nutation will slowly increase until the top hits
the ground or falls from its support.

EXAMPLE 10.3 A 2-kg top is in a state of steady slow precession at a spin rate
of 500 rev/min with its axis at θ = 120◦. A vertical impulsive force acting through
the axis of symmetry suddenly induces an upward nutation, such that the ensuing
motion is observed to be cuspidial. The radii of gyration of the top about its pivot
are 360 mm and 480 mm parallel and transversely to the axis of symmetry, respec-
tively, and the distance from the center of mass to the pivot is 200 mm. Determine
(a) the nutation rate induced by the impulsive force, (b) the largest and smallest
values of the nutation angle in the cuspidial precession, (c) the number of cusps in
the path of the axis of symmetry for one revolution of the top about the vertical
axis, and (d) the maximum, minimum, and average precession rates in the cuspidial
motion.

SOLUTION Many of the basic formulas for a spinning top are implemented in the
solution of this example. We begin by evaluating the steady precession preceding
the application of the impulse force. The first of Eqs. (10.2.34) gives an approxi-
mate value for the slow precession rate. We could use that relation provided that
we verify that the associated value of βφ is sufficiently high to warrant using that
expression. Instead, we use Eq. (10.2.31) to find the slow precession rate. The pa-
rameters for the present system are m = 2 kg, I = mκ2 = 0.2592 kg-m2, I ′ =
m (κ ′)2 = 0.4608 kg-m2, L = 0.2 m, and φ̇ = 52.36 rad/s, which leads to the two
roots

ψ̇1 = 0.28843 rad/s, ψ̇2 = −134.93 rad/s.

Both values are extremely close to the approximations obtained from Eqs. (10.2.34).
Because it is stated that the initial precession is slow, we use ψ̇1 as the initial preces-
sion rate.

The impulsive force induces an unknown nutation rate θ̇ , because it exerts a
moment about the horizontal axis through the pivot. However, the spin and preces-
sion rates are not altered during the impulse interval because the force exerts no
moment about either axis. We find θ̇ from the fact that the subsequent precession is
cuspidial. We need the values of the precession and spin momentum parameters to
evaluate cuspidial motion, so we substitute the values of ψ̇1 and φ̇ into Eqs. (10.2.4),
which gives

βφ = 29.371 rad/s, βψ = −14.469 rad/s.

From this we find that the highest elevation in the cuspidial motion is

u0 = βψ

βφ

= −0.49264. (1)
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The perturbation analysis of cuspidial motion may be employed if the parame-
ter U is large. The imbalance parameter is found from Eqs. (10.2.10) to be

γ = 2mgL
I ′ = 17.026, (10.2.37)

whose substitution into Eq. (10.2.19) gives

U = β2
φ

2γ
= 25.334.

This value is sufficiently large to warrant using Eq. (10.2.27) to describe the nutation
angle. Because u = cos θ, we find that

θ = cos−1

[
u0 − 1 − u2

0

4U

[
1 − cos

(
βφ t

)]]

= cos−1 [−0.49264 − 0.007473 [1 − cos (29.371t)]] rad.

(2)

The extreme values of the nutation angle in Eq. (2) correspond to cos (29.371t) =
±1, which leads to

θ2 = θmin = 119.512◦, θ1 = θmax = 120.503.◦ �

Direct substitutions into Eqs. (10.2.28) and (10.2.29) yield the corresponding nuta-
tion and precession rates:

θ̇ = 0.25223 sin (29.371t) , ψ̇ = 0.28984 [1 − cos (29.371t)] rad/s, (3)

To determine the nutation rate imparted by the impulsive force we need to es-
tablish when the force was applied. (Recall that t = 0 is an instant when θ = θmin, at
which the cusp occurs.) The instant t = t0 at which the force ceased may be de-
termined from the fact that θ = 2π/3 initially. Setting θ in Eq. (2) to this value
gives

−0.5 = −0.49264 − 0.007473 [1 − cos (29.371t0)] =⇒ t0 = 0.05299 s.

The first of Eqs. (3) indicates that the nutation rate at this instant is

θ̇ = 0.25223 rad/s. �

To determine the average precession rate we observe that the average of a sinu-
soidal function is zero, so the second of Eqs. (3) leads to

ψ̇av = 0.2898, ψ̇min = 0, ψ̇max = 0.5796 rad/s. �

Finally, we note that cusps occur when θ = θmin, or alternatively when ψ̇ = 0. Ac-
cording to Eqs. (2) and (3), these conditions occur whenever cos (29.371t) = 1.
Therefore the time interval between two adjacent cusps is the period of the oscilla-
tion:

�t = 2π

29.371
= 0.2139 s.
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At the average precession rate, the time interval for one revolution about the verti-
cal axis is

T = 2π

ψ̇av
= 21.68 s.

The number of cusps is the ratio of this period to the period �t for the θ oscillation,
so

N = 101.34.

EXAMPLE 10.4 Example 5.4 examined the implications of the inverse square law
for gravitation in the context of the oblateness of the Earth and the tilt of the Earth’s
polar action. It was shown there that the Moon and the Sun each exert a force–
couple system acting at the Earth’s center of mass. Show that the primary conse-
quence of these couples is a nearly steady precession of the Earth’s polar axis about
an axis that is normal to the orbital plane, accompanied by a very minor wobble.
Determine the precession rate associated with each attracting body.

SOLUTION Although the role of gravitational moments exerted on the Earth is not
like the effect of gravity on a spinning top, the implications of the similarities of a
top and the Earth’s rotation is quite interesting. It was shown in Example 5.4 that
the moment exerted by the Moon is more than twice as large as the Sun’s effect,
so we start by considering the Moon’s effect. The previous analysis found that the
Moon’s gravitational attraction can be resolved into a force and couple acting at the
Earth’s center (of mass) given by

F̄ = GMmoon Me

R2
moon

ēR,

M̄ = 3GMmoon (I − I ′)
R3

moon

(
ēR · k̄

) (
ēR × k̄

)
,

(1)

where k̄ is the unit vector from the South Pole to the North Pole, ēR is the unit vector
from the center of the Earth to the center of the Moon, R is the distance between
centers, and I and I ′ are the centroidal moments of inertia, with I being about the
polar axis. To describe the unit vectors and angular motion of the Earth, we let xyz
be the body-fixed coordinate system, and let XYZ be a translating reference frame
whose origin is always situated at the Earth’s center with the XY plane coincident
with the orbital plane of the Moon. An auxiliary coordinate system x′y′z′ is defined
such that it precesses about the Z axis by ψ and nutates about the y′ axis by angle θ.

The y′ axis, which is the line of nodes, lies in the orbital plane. The spin rate of xyz
relative to x′y′z′ is φ̇, which is the spin rate ωe of the Earth. As shown in the sketch,
the radial line to the Moon coincides with the Moon’s orbital plane, and this line
rotates at the orbital speed � of the Moon, which we consider to be constant. (By
taking Rmoon and � to be constant, we are ignoring the eccentricity of the orbit.)
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Coordinate systems and Eulerian angles for analyzing the
rotation of the Earth resulting from the gravitational attrac-
tion of the Moon.

Thus the angle between the X axis and ēR is �t. (The definition of the instant when
t = 0 will not be relevant to the analysis.)

Because of the axisymmetry of the Earth about its polar axis, we can use x′y′z′

as the global coordinate system for the equations of motion. The transformation
from XYZ to x′y′z′ components is the standard one for Eulerian angles:

[x′ y′ z′]T = [R] [X Y Z]T
,

[R] =

⎡
⎢⎢⎣

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cos ψ sin ψ 0

− sin ψ cos ψ 0

0 0 1

⎤
⎥⎥⎦ .

(2)

The components of ēR relative to XYZ are found from the sketch to be

ēR = cos (�t) Ī + sin (�t) J̄ .

Using this representation in conjunction with [R] gives the x′y′z′ components of
ēR. Trigonometric identities for the sine and cosine of the difference of two angles
simplify the result to

{eR}x′ y′z′ = [R]

⎧⎪⎪⎨
⎪⎪⎩

cos (�t)

sin (�t)

0

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

cos θ cos (�t − ψ)

sin (�t − ψ)

sin θ cos (�t − ψ)

⎫⎪⎪⎬
⎪⎪⎭ . (3)

This expression enables us to compute the dot and cross products of ēR and k̄′ ≡ k̄:

ēR · k̄ = sin θ cos (�t − ψ) ,

ēR × k̄ = sin (�t − ψ) ī − cos θ cos (�t − ψ) j̄ .

Substituting these terms into M̄, as described in Eqs. (1), leads to

M̄ = � sin θ sin (2�t − 2ψ) ī − G sin θ cos θ [1 + cos (2�t − 2ψ)] j̄,

� = 3GMmoon (I − I ′)
2R3

moon
.

(4)
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We are now ready to address the equations of motion. The angular velocity of
the Earth is

ω̄ = ψ̇ K̄ + θ̇ j̄ ′ + φ̇k̄′ = −ψ̇ sin θ ī ′ + θ̇ j̄ ′ + (
φ̇ + ψ̇ cos θ

)
k̄′. (5)

The translational and rotational portions of the motion are uncoupled, so the rota-
tional kinetic energy is the same as in Eq. (10.2.2) for a spinning top. Rather than
using potential energy to describe the role of gravity, it is easier to evaluate the
virtual work done by the gravitational moment. The Eulerian angles are the gener-
alized coordinates. The virtual rotation is found by analogy to the angular velocity
to be

δ� = −δψ sin θ ī ′ + δθ j̄ ′ + (δφ + δψ cos θ) k̄′.

The virtual work is M̄ · δ�, which leads to the generalized forces being

Qψ = � (sin θ)2 sin (2�t − 2ψ) , Qθ = −� sin θ cos θ [1 + cos (2�t − 2ψ)] .

The spin angle does not appear explicitly in T and Qφ = 0, so the associated
generalized momentum is conserved. Thus the Lagrange equation for the spin angle
is the same as for a spinning top:

pφ = ∂T

∂φ̇
= I

(
ψ̇ cos θ + φ̇

) ≡ I ′βφ. (6)

Unlike the precession angle of a spinning top, here the precession angle is not ignor-
able because the generalized forces depend on this variable. The Lagrange equation
for the precession is[

I ′ (sin θ)2 + I (cos θ)2
]
ψ̈ + Iφ̈ cos θ + 2(I − I ′)ψ̇ θ̇ sin θ cos θ

−I θ̇ φ̇ sin θ = � (sin θ)2 sin (2�t − 2ψ) .

(7)

The equation of motion for the nutation is the same as that for the spinning top,
except that the potential-energy term is replaced with the generalized force Qθ .

Substitution of Eq. (6) into that equation gives

I ′θ̈ − I ′ (ψ̇ sin θ
) (

ψ̇ cos θ − βφ

) = −� sin θ cos θ [1 + cos (2�t − 2ψ)] . (8)

We know from astronomical observation that the nutation angle is nearly con-
stant. Furthermore, if the time-dependent term were not present in Eq. (6), a con-
stant value of θ would lead to a constant value of ψ̇. Thus we let

θ = θ0 + εθ1 (t) , ψ̇ = ψ̇0 + εψ̇1 (t) , (9)

where ε is a small parameter and the quantities with subscript one are not large.
When the leading-order terms that arise in Eq. (8) are matched to the constant
portion of the right side, the result is

I ′ (ψ̇0 sin θ0
) (

ψ̇0 cos θ0 − βφ

) = � sin θ0 cos θ0.
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The nutation angle is not zero, so sin θ0 can be factored out. The precession rate
obtained from this quadratic equation is much less than the Earth’s spin rate, so we
may simplify the preceding relation by ignoring the contribution of ψ̇ to Eq. (6),
which gives I ′βφ ≈ Iφ̇0. Correspondingly, we find†

ψ̇0 ≈ −� cos θ0

Iφ̇0
= 3

2
GMmoon

R3
moonφ̇0

(
I ′ − I

I

)
cos θ0. (10)

The spin rate of the Earth is φ̇0 = 7.292(10−5) rad/s. Example 5.4 lists Mmoon =
7.348

(
1022

)
kg and Rmoon = 3.844

(
108

)
m. The quantity (I ′ − I) /I is called the dy-

namic elipticity. The accepted value for this parameter is 1/305, which leads to(
ψ̇0
)

moon = 5.356
(
10−12) rad/s. �

The corresponding period is 2π/
(
ψ̇0
)

moon , which is 37 180 years. This value is 50%
greater than the observed period of 26 000 years. One source for the discrepancy is
that we have not accounted for the effect of the Sun. Changing the parameters in
Eq. (10) to those for the Sun gives an expression for the precession rate if the Sun is
the sole attracting body. The significant aspect is that the orbital plane of the Moon is
approximately 5◦ different from the ecliptic plane, which is the term used to refer to
the plane of the Earth’s orbit. Thus it is a reasonable approximation to use the same
precession axis to analyze the effects of the Sun and the Moon. Correspondingly,
we may add the associated gravitational moment components associated with each
attracting body. The oscillatory frequency 2� is much lower for the Sun than for
the Moon, but the mean values, which are the nonoscillatory parts of the moments,
add. The parameters for the Sun are Ms = 1.98892

(
1030

)
kg and Rs = 1.4960

(
1011

)
m, which leads to (

ψ̇0
)

sun = 2.452
(
10−12) rad/s.

The period obtained from adding to the precession rate the contributions of the
Moon and the Sun is

T = 2π(
ψ̇0
)

moon + (
ψ̇0
)

sun

= 25 500 years. �

This result is very close to the measured period of 26 000 years. The agreement
is even more remarkable when one considers that the analysis treated the Earth as
though it were a rigid body, which ignores such effects as tidal motions of the oceans.
The average precessional motion is referred to in astronomy as the precession of the
equinoxes. (At an equinox the polar axis is perpendicular to ēR, corresponding to
�t in the figure for this problem being an odd multiple of π/2.) The consequence

† Goldstein (1980) in Section 11-3 derived this expression from Lagrange’s equations by evaluating the
gravitational potential energy of a nonspherical axisymmetric body whose axis is tilted relative to the
ecliptic plane. The derivation of the gravitational force–couple system in Example 5.4 is more general
because it addresses an arbitrary body.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

672 Gyroscopic Effects

of the precession of the equinoxes is that 13 000 years from now the seasons will be
reversed, so that the first day of summer in the Northern Hemisphere will come in
December. Another consequence is that Polaris, which is popularly known as the
North Star because it is almost concurrent with the Earth’s polar axis, in the future
will no longer be aligned in that manner.

One could proceed to analyze the second-order approximation associated with
Eqs. (9). Because the first-order terms describe the effect of the mean value of the
gravitational moment, the higher-order terms are driven by the oscillatory portion
of the moment. The contributions of the Moon and the Sun add, but, as was noted
previously, they have vastly different frequencies. In any event, the nutation and
precession rates must exhibit minor fluctuations. The more noticeable one is the
nutation, which represents a minor wobble. Earth-based astronomers must com-
pensate for this wobble, as well as the precession, when they aim a telescope.

10.3 GYROSCOPES FOR INERTIAL GUIDANCE

The gyroscopic moment, which is associated with altering the direction of a rotation axis,
is generally proportional to the product of rotation rates. We explore here a number of
ways in which this effect has been employed in devices that guide moving vehicles au-
tonomously. In essence, these devices provide an inertial reference system that moves
with the vehicle, so they are referred to as inertial guidance systems. The conceptual pic-
tures for our studies will be quite crude. In practice, the various pieces of equipment
are manufactured with exceptionally high accuracy and with the finest bearings, in or-
der to match as closely as possible the ideal conditions that we shall treat. Some of the
concepts have been rendered obsolete with the availability of GPS navigation systems,
but the virtue of the ones we examine is that they lead to self-contained systems. Also,
modern electronic capabilities have made it possible to construct devices that achieve
the same purpose with other technologies. For example, some systems exploit relativis-
tic effects associated with the fact that light rays traveling in opposite directions through
a rotating fiber-optic loop have differing phase speeds. However, many conventional
gyroscopes are still in use, and their study will enhance our general understanding of
fundamental phenomena.

10.3.1 Free Gyroscope

The gyroscope appearing in Fig. 10.12 is said to be free because the rotation of the ro-
tor is unconstrained. The outer gimbal permits precessional rotation, the inner gimbal
permits nutation, and the rotor shaft permits spin. For our introductory study we ig-
nore the effect of the motion of the vehicle supporting the outer gimbal. In that case
the center point O is stationary, because the three rotation axes are concurrent at that
point.

If the center of mass G of the rotor does not coincide with the fixed point O, the
gimbals must rotate. The excitation is the moment of the gravity force about the line
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Figure 10.12. Rotations of a free gyro: precession of the outer
gimbal, nutation of the inner gimbal, and spin of the rotor.

of nodes, which is the axis about which the inner gimbal rotates relative to the outer
gimbal. The configuration of the system, with the center of mass situated on the spin
axis relative to a fixed point that is also on that axis, is identical to that of a spinning
top. It follows that the two systems behave in the same manner. In the special case in
which the center of mass coincides with the fixed point O, the free gyroscope behaves
like a body in free motion, Section 10.1, because there are no external moments. We
shall employ the results of the previous sections, as necessary.

Suppose a steady precession, in which the nutation angle is constant, has been es-
tablished. The relation among the precession rate, the spin rate, and the nutation angle
is given by Eq. (10.2.31). In order for there to be a steady precession, the spin rate must
exceed the minimum value given by Eq. (10.2.32). If the center of mass coincides with
the fixed point O, then the steady slow precession rate is zero, which means that the axis
of symmetry has a constant orientation.

An important question that must be addressed is whether the steady precession is
a stable response. If it is not, then such motion would not be observed in reality. Our
analysis of the dynamic stability of steady precession will follow the procedure used in
Subsection 10.1.2 to study a pure spin of a body about either of its principal axes. We
introduce a small disturbance of the nutation angle from the constant value it has when
a steady precession has been established. Thus, let

θ = θ∗ + εξ, (10.3.1)

where θ∗ denotes the constant value for steady precession, ε is a small parameter, and ξ

is a time-dependent function that is assumed to have unit order of magnitude.
This description of the nutation angle must satisfy the basic equation of motion,

Eq. (10.2.7), which we multiply by (sin θ)3
. We require only the terms that have the

leading order of magnitude, so we employ Taylor series and retain only terms that are
either independent of, or proportional to, ε. For example,

cos θ = cos θ∗ − εξ sin θ∗, (sin θ)4 = (sin θ∗)4 + 4εξ (sin θ∗)3 cos θ∗. (10.3.2)

These series expansions are substituted into Eq. (10.2.7), and terms are grouped into
those that are independent of ε and those that are proportional to ε. The former vanishes
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because it is the relation that must be satisfied for steady precession, that is,(
βψ − βφ cos θ∗) (βφ − βψ cos θ∗)− γ

2
(sin θ∗)4 = 0. (10.3.3)

Canceling the ε factor in the remaining terms leads to

(sin θ∗)3
ξ̈ + {[βφ

(
βφ − βψ cos θ∗)

+βψ(βψ − βφ cos θ∗)] sin θ∗ − 2γ (sin θ∗)3 cos θ∗}ξ = 0.
(10.3.4)

The definitions of βψ and βφ in Eqs. (10.2.4) simplifies this differential equation to

ξ̈ + Kξ = 0,

K = β2
φ + (

ψ̇∗ sin θ∗)2 − 2γ cos θ∗.
(10.3.5)

The steady precession is stable to small disturbances if the value of ξ remains
bounded. Such a condition is obtained if K > 0, in which case the solution for ξ is os-
cillatory. However, Eq. (10.2.32) states that a steady precession can exist only if the the
spin rate, and therefore βφ , is sufficiently large. It follows that K > 0 for any steady pre-
cession. In other words, if the spin momentum is sufficiently large to establish a steady
precession at nutation angle θ∗, then an attempt to change the nutation angle by a small
amount will result in an oscillatory nutational motion whose mean value is θ∗.

The balanced free gyroscope, for which γ = 0 corresponding to L = 0, is stable re-
gardless of the spin momentum. It has been used to provide an inertial platform as part
of an inertial navigation system that tracks vehicle motion in aircraft and missiles. The
concept uses a free gyroscope and accelerometers. An accelerometer measures accel-
eration in the direction that it is oriented. [As explained in most fundamental texts on
vibrations, such as Ginsberg (2001), an accelerometer features a very small mass that is
suspended by a stiff spring. The displacement of the mass relative to the base on which
the spring is supported is proportional to the base acceleration.] Three accelerometers
mounted orthogonally therefore can measure an acceleration vector. An inertial naviga-
tion system using a free gyroscope mounts the gyroscope and orthogonal accelerometers
on a freely suspended platform. If the supports had ideal properties, the platform’s in-
ertia would prevent its rotation. In that case, the platform would constitute a translating
reference frame, so the accelerometer would measure the absolute acceleration of the
platform. However, friction and other nonideal effects, regardless of how small they are,
cause the platform to rotate. Sensors measure the rotation of the gimbals relative to the
gyroscope, whose axis indicates a invariant direction. Servomotors apply counterrota-
tions to the platform in order to hold its orientation constant. (Because only rotations
about two axes can be sensed with a single free gyroscope, two or more are required.)
The absolute acceleration is obtained from the accelerometer outputs. It is integrated
twice in order to determine the absolute position at each time instant. The position rela-
tive to the Earth is readily determined because the absolute motion of any point on the
Earth is a known function of time.

A much simpler concept is the directional gyroscope. It uses the free gyroscope in
Fig. 10.12 in the balanced case, with the spin axis aligned along the longitudinal axis of
the flight vehicle. The Z axis, which is the bearing axis of the outer gimbal, is stationary
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with respect to the vehicle; it is aligned perpendicularly to the longitudinal axis. This
defines the yaw axis. The spin axis of the idealized balanced free gyroscope maintains
a constant orientation regardless of how its gimbals rotate. Thus the yaw angle can be
measured with a sensor that measures the rotation of the mount with respect to the
outer gimbal. Similarly, the pitch angle is the rotation of the outer gimbal with respect
to the inner one. A vertical gyroscope uses a similar arrangement, with the spin axis
aligned perpendicularly relative to the vehicle’s longitudinal axis. This is equivalent to
the yaw axis for the directional gyroscope. (For an airplane this would be the verti-
cal direction.) The axis of the outer gimbal is aligned along the longitudinal axis. Then
the rotation of the mount relative to the outer gimbal is the roll, and the rotation of
the outer gimbal with respect to the inner is the pitch. In practice, friction at the bear-
ings would cause the rotor axis to drift for both the directional and rate gyros. This is
compensated by force sensors/actuators that apply smoothing torques to counter such
deviations.

EXAMPLE 10.5 To overcome the effects of friction, a servomotor applies a torque
about the spin axis of an unbalanced gyroscope, with the result that the spin rate
is constant. The initial conditions are such that the initial precession rate ψ̇∗ and
nutation angle θ∗ correspond to steady precession. Determine whether the action of
the servomotor can cause the gyroscope to be unstable to small disturbances.

SOLUTION The idea here is to develop the ability to analyze nonideal effects for gy-
roscopes. The primary difference between the present system and a free gyroscope
is that there are only two degrees of freedom, because the spin rate φ̇ is constrained,
rather than the spin momentum βφ being constant. We commence to derive the
equations of motion for the servogyroscope by using the energies in Eqs. (10.2.2)
and (10.2.3):

T = 1
2

[
I ′ψ̇2 (sin θ)2 + I ′θ̇2 + I

(
ψ̇ cos θ + φ̇

)2
]
, V = mgLcos θ.

The precession angle is an ignorable generalized coordinate, because only its deriva-
tive appears in T. The corresponding conservation of momentum equation is iden-
tical to the first of Eqs. (10.2.4):

βψ = ψ̇

[
I
I ′ (cos θ)2 + (sin θ)2

]
+ I

I ′ φ̇ cos θ. (1)

We may find the actual value of βψ by substituting ψ̇∗ and θ∗. Equation (10.2.6) is
the Lagrange equation for θ corresponding to arbitrary dependence of ψ and φ. It
may be written as

θ̈ + g (ψ, θ) = 0,

g (ψ, θ) =
(

I
I ′ − 1

)
ψ̇

2 sin θ cos θ +
(

I
I ′ ψ̇φ̇ − mgL

)
sin θ.

(2)



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

676 Gyroscopic Effects

Because the initial conditions are those appropriate to a steady precession, we have

g (ψ∗, θ∗) = 0. (3)

We assume that the configuration of interest is not a sleeping top, so sin θ∗ �= 0.

Satisfaction of Eq. (3) therefore requires(
I
I ′ − 1

) (
ψ̇∗)2 cos θ∗ + I

I ′ ψ̇
∗φ̇ − mgL = 0, (4)

which matches the expression established in Example 10.3 for the free gyroscope.
Although the angular motion in steady precession is identical to that of a free gy-
roscope, the stability situation is different. Constancy of βψ now requires that any
fluctuation in the nutation angle be compensated solely by a change in the preces-
sion rate. We consider the deviations from the nominal steady-state condition by
setting ψ̇ = ψ̇∗ + εψ̇1 and θ = θ∗ + εθ1, where ε � 1 and ψ̇1 and θ1 are taken to
have unit magnitude. We substitute these expressions into the basic equations of
motion, Eqs. (1) and (2), both of which are expanded in Taylor series in powers of
ε. The results are

βψ = ψ̇∗
[

I
I ′ (cos θ∗)2 + (sin θ∗)2

]
+ I

I ′ φ̇ cos θ∗ + ε

{
ψ̇1

[
I
I ′ (cos θ∗)2 + (sin θ∗)2

]

−
[

2ψ̇∗
(

I
I ′ − 1

)
(sin θ∗ cos θ∗) + I

I ′ φ̇ cos θ∗
]

θ1

}
,

g (ψ∗, θ∗) + ε

[
θ̈1 +

(
∂g

∂ψ̇

)∗
ψ1 +

(
∂g
∂θ

)∗
θ1

]
= 0.

The zero-order terms in each of the preceding equations convey no new information
because ψ̇∗ and θ∗ satisfy Eq. (3) and also give the value of βψ in Eq. (1). The first-
order terms in the preceding therefore must satisfy

ψ̇1

[
I
I ′ (cos θ)2 + (sin θ)2

]
−
[
ψ̇∗
(

I
I ′ − 1

)
sin (2θ∗) + I

I ′ φ̇ sin θ∗
]

θ1 = 0, (5)

whereas the first-order terms obtained from the energy conservation equation (2)
require that

θ̈1 +
(

∂g

∂ψ̇

)∗
ψ1 +

(
∂g
∂θ

)∗
θ1 = 0. (6)

Both derivatives are marked by an asterisk to remind us that they are evaluated at
the steady precession state. We solve Eq. (5) for ψ̇1, and substitute that expression
into Eq. (6). The result has the form

θ̈1 + Kθ1 = 0. (7)
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The constant K, which is obtained by differentiating the expression for g in Eqs. (2)
and then substituting the aforementioned expression for ψ̇1, is

K =
[(

I
I ′ − 1

) (
ψ̇∗)2 cos (2θ∗) +

(
I
I ′ φ̇ψ̇∗ − γ

2

)
cos θ∗

]

+ I ′ (sin θ∗)2

I (cos θ∗)2 + I ′ (sin θ∗)2

[
2
(

I
I ′ − 1

)
ψ̇∗ cos θ∗ + I

I ′ φ̇
]2

.

To simplify this further, we employ Eq. (4) to eliminate φ̇. The result after many
manipulations is

K = I ′ (sin θ∗)2(
ψ̇

∗)2
[

I (cos θ∗)2 + I ′ (sin θ∗)2
] {γ 2

4
+
(

I
I ′ − 1

) (
ψ̇

∗)2
[
γ cos θ∗ − (

ψ̇∗)2
]}

.

(7)

The solutions of Eq. (7) are sinusoidal when K > 0, whereas one grows ex-
ponentially if K < 0. Thus, as was true for the free gyroscope, whose stability was
described by Eqs. (10.3.5), K < 0 indicates situations in which the servo-driven gyro-
scope is unstable to small disturbances of the nutation angle. Suppose we are inter-
ested in evaluating whether a specific design corresponding to specified values of φ̇,

γ , and I/I ′ is unstable in some range of θ∗. To address this question we would con-
sider Eq. (4) to be a quadratic equation for the steady precession rate ψ̇∗. We would
substitute the smaller root, corresponding to slow precession, into Eq. (7), which
would yield an expression for K as a function of θ∗. Scanning this function over
0 < θ∗ < π would reveal whether K is negative in some range of θ∗. As an exam-
ple of such a computation, consider I/I ′ = 1.5 and γ = 20 rad/s2. Setting φ̇ > 3.366
rad/s leads to stability for any θ∗, whereas φ̇ = 2 rad/s leads to stability only for
0 < θ∗ < 97.09◦.

The possibility that controlling the spin rate can lead to instability could have
been anticipated on the basis of physical arguments. The free gyroscope is a con-
servative system. In contrast, the servo-driven gyroscope is not, because the servo-
motor does work to hold the spin rate constant. The energy provided to the system
from this source can drive the nutational motion away from steady precession. How-
ever, most situations of practical interest are like the preceding numerical example,
in that the spin rate below which the gyroscope would lose stability is sufficiently
low to be of no concern.

10.3.2 Gyrocompass

A fundamental requirement for earthbound navigation is knowledge of the orientation
of true north. The balanced free gyroscope maintains a fixed orientation as the Earth
rotates; an observer on the Earth perceives the gyroscope to be rotating. The gyrocom-
pass has the feature that its steady precession always matches the Earth’s rotation, so an
observer on the Earth perceives the rotor axis to always point in a constant direction.
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Figure 10.13. A gyrocompass on the surface of the Earth.

The gyrocompass bears much similarity to an unbalanced free gyroscope, except for
the placement of the mass causing the imbalance. As shown in Fig. 10.13, the center of
mass of the rotor is situated on the intersection of the precession and spin axes, but a
small additional mass m is attached to the inner gimbal. This arrangement is selected
in order that the gravitational moment be like that for a pendulum. The Earth-fixed
coordinate system XYZ defined in Fig. 10.13 is introduced to describe the orientation
relative to the Earth. The Z axis is oriented in the direction perceived as vertical to an
observer on the Earth, and the X axis is situated in the northerly direction, which means
that X is tangent to a meridian. In terms of these components the angular velocity of the
Earth is

ω̄e = ωe
(
cos λ Ī + sin λK̄

)
, (10.3.6)

where ωe = 7.292(10−5) rad/s ≈ 2π rad/24 h is the rotation rate.
The rotation of the gyrocompass’ rotor is unconstrained. Eulerian angles are used

to describe the orientation of the rotor, relative to XYZ. The xyz coordinate system,
which is attached to the inner gimbal, facilitates the description. The z axis is aligned
with the axis of symmetry of the rotor and the y axis is the line of nodes formed by the
bearings of the inner gimbal. Our goal here is to determine whether there is any set of
precession and nutation angles for which the axis of the rotor remains stationary relative
to the Earth. For this reason we consider the values of ψ and θ to be constant, and we
also assume that φ̇ remains constant. The corresponding angular velocity of the rotor
relative to XYZ is φ̇k̄. The absolute angular velocity ω̄ is the sum of this term and the
angular velocity of the Earth-fixed reference frame. To express ω̄ in terms of component
relative to xyz, we refer to Fig. 10.13 to find that

Ī = cos ψ
[
cos θ ī + sin θ k̄

]− sin ψ j̄,

J̄ = sin ψ
[
cos θ ī + sin θ k̄

]+ cos ψ j̄,

K̄ = − sin θ ī + cos θ k̄.

(10.3.7)
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Adding the Earth’s rotation to the rotor spin then leads to

ω̄ = ωe (cos λ cos ψ cos θ − sin λ sin θ) ī − ωe cos λ sin ψ j̄

+ (
ωe cos λ cos ψ sin θ + ωe sin λ cos θ + φ̇

)
k̄.

(10.3.8)

Terms containing ωe have a very small value, so we may simplify the kinetic energy
of the system by neglecting effects that are of the order of ω2

e . The corresponding kinetic
energy for the system is

T = 1
2

(
I ′ω2

x + I ′ω2
y + Iω2

z

)

= 1
2

I
[
φ̇2 + 2ωeφ̇ (cos λ cos ψ sin θ + sin λ cos θ)

]
.

(10.3.9)

The potential energy is associated with the unbalanced mass on the inner gimbal. When
the datum is set at the elevation of center O of the rotor, we find that

V = mgLcos
(π

2
+ θ

)
= −mgLsin θ. (10.3.10)

There are no nonconservative forces in this ideal model, so the Lagrange’s equations for
the generalized coordinates in this case of steady precession are

ωeφ̇ cos λ sin ψ sin θ = 0,

Iωeφ̇ (− cos λ cos ψ cos θ + sin λ sin θ) − mgLcos θ = 0,

φ̇ + ωe (cos λ cos ψ sin θ + sin λ cos θ) = βφ,

(10.3.11)

where βφ = pφ/I is the spin momentum parameter associated with the ignorable coor-
dinate φ.

Because of the smallness of ωe, the last of Eqs. (10.3.11) indicates that the spin mo-
mentum is primarily associated with the spin itself. The first equation is satisfied when
sin θ = 0 or sin ψ = 0. The first possibility is not useful, because then the rotor does not
provide any directional information. The second case is the one we seek, because it is
satisfied when ψ = 0 or π, which corresponds to the spin axis being aligned along the
north–south meridian. Setting cos ψ = ±1 in the second of Eqs. (10.3.11) yields(

mgL± Iωeφ̇ cos λ
)

cos θ = Iωeφ̇ sin λ sin θ, (10.3.12)

from which we find that

cot θ = Iωeφ̇ sin λ

mgL± Iωeφ̇ cos λ
. (10.3.13)

The smallness of ωe simplifies this result further. For any likely value of φ̇, the denom-
inator term containing ωe can be ignored. Furthermore, because cot θ is very small, θ is
close to π/2, so that cot θ ≡ tan (π/2 − θ) ≈ π/2 − θ. Consequently, the nutation angle
for steady motion is

θ = π

2
− Iωeφ̇ sin λ

mgL
, ψ = 0 or π. (10.3.14)



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

680 Gyroscopic Effects

In summary, the analysis shows that attaching a pendulous mass to an otherwise
balanced gyroscope will result in a steady precession in which the spin axis is always
situated in the vertical plane containing the local northerly direction. This behavior is
obtained if the rotor is released with its spin axis situated in the vertical plane contain-
ing the northerly direction and slightly off horizontal, as described by the nutation angle
in Eqs. (10.3.14). The only adjustment that is necessary is that this angle must be ad-
justed as the vehicle on which the gyrocompass moves in order to compensate for its
dependence on the latitude λ.

The analysis identified the conditions for dynamic equilibrium at a specified latitude
λ. The next example will show that the gyrocompass is stable to small disturbances.
The primary limitation on its use is loss of accuracy that is due to rapid movement of
the vehicle in which it is mounted. To learn why this is so, we observe that movement
of the vehicle relative to the Earth may be approximated locally as following a great
circle that is the intersection with the Earth’s surface of the plane formed by the velocity
and the center of the Earth. Such movement corresponds to rotation of the radial line
from the center of the Earth to the vehicle, which is the vertical Z axis in Fig. 10.13. In
other words, the vehicle’s forward velocity v̄ is accompanied by an angular velocity ωv.

The true angular velocity of the gyrocompass’ base is the sum of this angular velocity
and the angular velocity of the Earth. The consequence is that the northerly direction
indicated by the gyrocompass is based on the angular velocity of the base, rather than
the angular velocity of the Earth.

ωv = v/Re

ωecos λδ
Indicated

north

(ωbase)hor

β
β

X (north)

Y  (west)
v

Figure 10.14. Directional error of a gyrocompass that is due to
movement of its base at velocity v̄. The angular velocity ω̄rel rep-
resents the additional angular velocity associated with the motion
being along a great circle.

We may quantify this effect by describing the vehicle’s velocity along the local great
circle as v̄ = ω̄v × r̄O′/O, with r̄O′/O = Re K̄. If the vehicle is traveling at angle β west of
north, then v̄ = v

(
cos β Ī + sin β J̄

)
, from which it follows that

ω̄v = v

Re

(− sin β Ī + cos β J̄
)
. (10.3.15)

An inspection of the analysis of the gyrocompass would reveal that the direction in-
dicated as being north is the direction of the horizontal component of the base angu-
lar velocity. The addition of the horizontal angular velocity components is depicted in
Fig. 10.14, where δ locates the true angular velocity of the base in the horizontal plane.
The sum of the Earth’s rotation, Eq. (10.3.6), and the preceding rotation of the base
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relative to the Earth is

ω̄base =
(

ωe cos λ − v

Re
sin β

)
Ī + v

Re
cos β J̄ + ωe sin λK̄. (10.3.16)

Matching this vector to one that is oriented at angle δ west of north shows that

δ = tan−1
(

v cos β

ωe Re cos λ − v sin β

)
. (10.3.17)

The mean radius of the Earth is Re = 6370 km, which corresponds to ωe Re =
465 m/s. The value of δ will be small if v � ωe Re, which excludes aircraft and spacecraft.
However, even for a slow-moving vehicle, like a ship, the error will be quite substantial
near either the North or South Pole, where |λ| = π/2. In practice, λ is known, so one can
use the preceding expression for δ to compensate for the gyrocompass readings. How-
ever, this does not entirely remove the difficulty near the Poles, because the manner in
which a gyrocompass responds to disturbances at the Poles introduces additional errors,
as is discussed in Example 10.6.

Other sources of error arise from motion of the vehicle on which the gyrocompass
is mounted. These motions add to the base rotation and add accelerations to the pendu-
lous mass. The former effect contributes additional deviations of the indicated northerly
direction, whereas the latter alters the apparent magnitude and direction of the gravita-
tional force. Both effects can be averaged out if the motion of the vehicle is not violent,
just as one can average the rotation of a swinging pendulum to identify the vertical direc-
tion. For all of these reasons, the gyrocompass has been used primarily as a navigational
aid for slowly moving vehicles, especially ships.

EXAMPLE 10.6 A gyrocompass tracking the northerly direction in a steady pre-
cession is given a small initial nutational disturbance �θ , causing it to deviate from
its proper direction. Determine the response to this initial disturbance. Then, from
that result, assess the stability of the gyrocompass.

SOLUTION In addition to enhancing one’s ability to analyze the stability of a gy-
roscope, the result will disclose another limitation of a gyrocompass. We begin by
assuming that the response is stable, because doing so will allow us to linearize the
equations of motion, and thereby analytically solve for the response. We then will
be able to assess the stability limits by seeking conditions for which the linearized
response grows with increasing time. We assume that the rotor spins freely, so the
orientation of the rotor relative to the base is described by the three Eulerian an-
gles, none of which are constant. The previous equations of motion, Eqs. (10.3.11),
are limited to constant values of ψ and θ, so we must derive a more general set of
equations of motion.

The angular velocity of the flywheel is a superposition of the rotation of the
Earth, given by Eq. (10.3.6), and the full set of Eulerian angles defined relative to
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the Earth-based XYZ coordinate system. Equations (10.3.7) give the transformation
to body-fixed components, from which we find that

ω̄ = ω̄e + ψ̇ K̄ + θ̇ j̄ + φ̇k̄

= [−ψ̇ sin θ + ωe (cos λ cos ψ cos θ − sin λ sin θ)
]

ī + (
θ̇ − ωe cos λ sin ψ

)
j̄

+ [
ψ̇ cos θ + φ̇ + ωe (cos λ cos ψ sin θ + sin λ cos θ)

]
k̄.

Because the disturbance is small, the nutation angle θ will remain close to π/2, pro-
vided that the system is stable. We therefore define a new variable η that measures
the deviation of θ from its nominal value, such that

η = π

2
− θ, η̇ = −θ̇ .

The corresponding mechanical energies are

T = 1
2

I ′ [−ψ̇ cos η + ωe (cos λ cos ψ sin η − sin λ cos η)
]2

+ 1
2

I ′ (− η̇ − ωe cos λ sin ψ)2 + 1
2

I
[
ψ̇ sin η + φ̇

+ωe (cos λ cos ψ cos η + sin λ sin η)]2
,

V = −mgLcos η.

(1)

Neither T nor V depends explicitly on φ, and the generalized force associated with
φ is zero. Hence φ is ignorable, as it was in the case of steady precession. The deriva-
tion of the equations of motion for η and ψ is considerably shortened if we follow
Routh’s method, rather than retaining φ as a generalized coordinate. We begin by
evaluating the generalized momentum associated with φ, which is conserved,

∂T

∂φ̇
= pφ = I

[
φ̇ + ψ̇ sin η + ωe (cos λ cos ψ cos η + sin λ sin η)

] = Iβφ. (2)

The expression for βφ is the same as the one defined in Eqs. (10.3.11), but we now
use it to form the Routhian, which is

� = T − V − pφφ̇.

We solve Eq. (2) for φ̇, and use that expression to eliminate all occurrences of φ̇ in
�. The result is

� = 1
2

I ′ [−ψ̇ cos η + ωe (cos λ cos ψ sin η − sin λ cos η)
]2

+ 1
2

I ′ (η̇ + ωe cos λ sin ψ)2 + 1
2

Iβ2
φ − Iβφ

[
βφ − ψ̇ sin η

−ωe (cos λ cos ψ cos η + sin λ sin η)] + mgLcos η.

(3)

We obtain the equations of motion for η and ψ by using �, rather than L, to evaluate
Lagrange’s equations. Trigonometric identities for the sine and cosine of a double
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angle simplify the equations. The result for η is

I ′η̈ + 1
2

I ′ψ̇2 sin 2η + I ′ψ̇ωe

[
2 cos λ cos ψ (cos η)2 + sin λ sin 2η

]
− Iβφ[ψ̇ cos η − ωe (cos λ cos ψ sin η − sin λ cos η)]

− I ′ω2
e (cos λ cos ψ sin η − sin λ cos η) (cos λ cos ψ cos η

+ sin λ sin η) + mgLsin η = 0,

(4)

and the equation for ψ is

I ′ψ̈ (cos η)2 − I ′ψ̇η̇ sin 2η + Iη̇βφ cos η − I ′η̇ωe [cos λ cos ψ cos 2η

+ sin λ sin 2η] − I ′ω2
e

[
1
2

(cos λ)2 sin 2ψ + 1
4

sin 2λ cos η sin ψ sin 2η

]

+ Iβφωe cos λ sin ψ cos η = 0.

(5)

If the system is stable, then η and ψ will not grow relative to their initial mag-
nitude. The smallness condition enables us to linearize Eqs. (4) and (5) by setting
cos η ≈ 1, sin η ≈ η, cos ψ ≈ 1, and sin ψ ≈ ψ, and then dropping any terms that
are quadratic or higher degree in the generalized coordinates. Concurrently, we also
simplify the coefficients of the resulting equations by dropping any term containing
ωe if it is added to a term that does not contain ωe. Another consistent approx-
imation entails ignoring terms that are quadratic in ωe. The simplified linearized
equations of motion are

I ′η̈ − Iβφ ψ̇ + mgLη = Iβφωe sin λ,

I ′ψ̈ + Iβφ η̇ + (
Iβφωe cos λ

)
ψ = 0.

(6)

These are a coupled pair of linear ordinary differential equations, in which the
inhomogeneous term is a constant. We form the solution of these differential equa-
tions by adding a complementary solution to the constant particular solution. The
latter are

ηp = Iβφωe

mgL
sin λ, ψ p = 0.

The value of βφ is essentially the same as φ̇ because the spin rate is high, so the
preceding is the same as the gyrocompass’ nominal steady angles, as given by Eqs.
(10.3.14). To derive the homogeneous solution of Eqs. (6), we reason that a stable
response will be marked by oscillations about the nominal state, which means that
the homogeneous solution of the linear equations should be sinusoidal. Further-
more, the homogeneous terms in Eqs. (6) relate a generalized coordinate and its
second derivative to the first derivative of the other generalized coordinate. Conse-
quently, one generalized coordinate must be 90◦ out of phase relative to the other.
A suitable trial form for the complementary solution therefore is

ηc = A sin (σ t − γ ) , ψc = Bcos (σ t − γ ) . (7)
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Requiring that these expressions be solutions of the homogeneous portions of Eqs.
(4) and (5) leads to (

mgL− I ′σ 2
)

A + (
Iβφσ

)
B = 0,(

Iβφσ
)

A + (
Iβφωe cos λ − I ′σ 2

)
B = 0.

(8)

In order for there to be a nontrivial solution, the determinant of the coefficients of
A and B must vanish, which leads to the characteristic equation,

(I ′)2
σ 4 − (

I2β2
φ + I ′mgL+ I ′ Iβφωe cos λ

)
σ 2 + mgL

(
Iβφωe cos λ

) = 0.

The constant term in this biquadratic polynomial is very small, which means that
one root is large and the other is small. For practical applications, the spin rate is
sufficiently large that the middle coefficient may be simplified to − (Iβφ

)2. Then the
roots σ 2 of the quadratic equation are well approximated as

σ 2
1 = mgLωe cos λ

Iβφ

, σ 2
2 =

(
I
I ′ βφ

)2

. (9)

Only the positive square roots of σ 2
1 and σ 2

2 are required. For each frequency σ j ,
there is a corresponding ratio B/A. The first of Eqs. (8) indicates that

Bj = µ j A j , µ j = I ′σ 2
j − mgL

Iβφσ j
.

For the assumed orders of magnitude of βφ , mgL/I, and ωe, substitution of the roots
in Eqs. (9) leads to

µ1 ≈ −
(

mgL
Iβφωe cos λ

)1/2

, µ2 ≈ 1

We conclude from the foregoing that the complementary solution, which is a
free vibration, occurs as either of two modes. The frequency of the first mode is σ 1,

which is very low. The magnitude of µ1 is very large, which means that the ampli-
tude of the nutation is much smaller than that of the precession. In contrast, the
frequency σ 2 of the second mode is high, and the amplitudes of the nutation and the
precession are approximately equal. The most general solution is a sum of the two
modes, and of the particular solution. Thus we find that the response to the distur-
bance is

η = Iωeφ̇ sin λ

mgL
+ A1 sin (σ 1t − γ 1) + A2 sin (σ 2t − γ 2) ,

ψ = −
(

mgL
Iβφωe cos λ

)1/2

A1 cos (σ 1t − γ 1) + A2 cos (σ 2t − γ 2) .

�

The actual values of the amplitudes A j and phase angles γ j depend on the initial
conditions, which are not stated. In most actual situations, dissipation effects damp
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the high-frequency mode much more than the low-frequency mode, in which case
the oscillation at frequency σ 1 is more persistent and therefore more likely to be
observed.

In regard to the question of stability, we note that the values of σ 1 and σ 2 are
always real. Hence, disturbances of the gyrocompass always result in bounded oscil-
lations, corresponding to a stable steady motion. However, the value of σ 1 becomes
very small if cos λ = 0, corresponding to locations near the North or South Pole.
Hence, at those locations the gyrocompass executes very slow oscillations when dis-
turbed. The northerly direction is indicated by the average value of ψ, that is, zero.
The low oscillation frequency at the Earth’s poles requires that ψ be measured over
a long interval in order to see the average direction in which the rotor is aimed.

10.3.3 Single-Axis Gyroscope

Safe operation of aircraft requires that the vehicle’s angular velocity be monitored. The
single-axis gyroscope, which has only an inner gimbal, provides such information be-
cause its nutation is essentially proportional to the precession rate. A conceptual model
of a single-axis gyro appears in Fig. 10.15, where the platform is assumed to undergo
arbitrary rotations about axes ξ, η, and ζ that are attached to the platform. These axes
are defined such that the ξζ plane is parallel to the platform, with ξ aligned with the
bearing axis of the gimbal. The xyz reference frame is attached to the gimbal. Rotation
of the gimbal relative to the platform is resisted by linear torsional springs whose total
stiffness is K. A torsional damper whose constant is C acts in parallel with the springs.
The springs are mounted such that they are undeformed in the position where the rotor
axis is parallel to the platform.

The orientation of the rotor relative to the platform is defined by the spin angle φ

and the rotation θ of the gimbal, which we consider to be a nutation about the x axis,
with the precession set to zero. Thus θ is the angle from the ζ axis to the rotor axis.
According to this definition, θ = 0 represents the undeformed position of the spring.

ξ

η

ζ

Ωξ
Ωζ

Ωη

z x
θ

θ
Torsional 
spring

Torsional 
damper

φ
.

Figure 10.15. Conceptual model of a single-axis gyrosope
that is mounted on a base whose angular velocity is �̄.
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The angular motion of the platform is described in terms of rotation rates �ξ, �η,

�ζ about the body-fixed axes. The angular velocity of the rotor is the sum of this rotation
and that of the platform, so

ω̄ = �ξ ēξ + �ηēν + �ζ ēζ + θ̇ ī + φ̇k̄ (10.3.18)

Let I denote the moment of inertia of the rotor about the z axis. Because of the ax-
ial symmetry, the moments of inertia of the rotor about the x and y axes are both I ′,
regardless of the angle of spin of the rotor. Correspondingly, expressing ω̄ in terms of
components relative to xyz will yield an expression for the kinetic energy that is descrip-
tive of any instant. The result is

ω̄ = (
�ξ − θ̇

)
ī + (�η cos θ − �ζ sin θ) j̄ + (

φ̇ + �η sin θ + �ζ cos θ
)

k̄. (10.3.19)

We ignore gimbal inertia for this idealized analysis, so the corresponding kinetic-energy
expression is

T = 1
2

I ′
[(

�ξ − θ̇
)2 + (�η cos θ − �ζ sin θ)2

]
+ 1

2
I
(
φ̇ + �η sin θ + �ζ cos θ

)2
.

(10.3.20)

Our interest is how the platform’s rotation affects θ, so we consider φ̇ to be a spec-
ified constant value. (Considering φ to be another generalized coordinate would yield
an equation of motion that would either describe the torque that a servomotor must
apply to hold φ̇ constant, or else an equation describing conservation of momentum.
We will see that the spin rate should be much higher than the rotation rates of the
platform, which makes the distinction between the two spin cases unimportant.) The
position where the nutation angle is zero corresponds to the unstretched position of the
torsional spring, so the potential energy is

V = 1
2

Kθ2. (10.3.21)

The dashpot exerts a torque Cθ̇ in opposition to the rotation, so the virtual work is

δW = −cθ̇ δθ . (10.3.22)

The corresponding Lagrange equation for θ is

I ′ (θ̇ − �̇ξ

)+ I ′ (�η cos θ − �ζ sin θ) (�η sin θ + �ζ cos θ)

− I
(
φ̇ + �η sin θ + �ζ cos θ

)
(�η cos θ − �ζ sin θ) + Kθ = −Cθ̇ .

(10.3.23)

The rotor in a practical single-axis gyroscope is made to spin much more rapidly than
the highest anticipated rate of rotation of the platform. Also, the stiffness and damp-
ing parameters are usually selected to restrict the nutation angle to a small magnitude.
Under these assumptions, trigonometric terms may be simplified by the small-angle ap-
proximation, and also by neglecting terms that are products of the platform’s rotation
rates. The equation of motion then reduces to

I ′θ̈ + Cθ̇ + Kθ ≈ Iφ̇�η if φ̇ � �η,�ζ , �̇ξ /�η. (10.3.24)
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This is the equation of motion for a damped, one-degree-of-freedom linear oscilla-
tor. Its natural frequency ωnat and ratio of critical damping σ are

ωnat =
(

K
I ′

)1/2

, σ = C

2 (KI ′)1/2
. (10.3.25)

Let us begin by evaluating the nutation when �η is a constant, nonzero value. We may
obtain the corresponding response by adding the complementary and particular solu-
tions. In the absence of rotations of the platform, the gimbal will be at rest at its equilib-
rium position θ = 0, so we set θ = θ̇ = 0 when t = 0 as initial conditions. If the system is
underdamped, σ < 1, the corresponding response is

θ = Iφ̇�η

K

{
1 − exp (−σωt)

[
cos (ωdt) + σ

(1 − σ 2)1/2
sin (ωdt)

]}
, (10.3.26)

where ωd = ω
(
1 − σ 2

)1/2 is the damped natural frequency. This expression indicates
that when t > 4/σω the nutation angle differs by less that 2% from a constant steady
value that is proportional to the rate at which the platform is rotating about the η axis,

θ → I�η

K
φ̇. (10.3.27)

Thus the nutation angle may be measured and compared with a scale that is calibrated
in units of the rotation rate �η. Significantly, the foregoing steady-state response would
also be obtained if �η were time dependent, provided that the free-vibration response
decays in a much smaller time than the interval required for observing substantial
changes in �η. This condition may be achieved by designing the system to have a high
natural frequency and to be highly damped, subject to σ < 1. This calls for a single-axis
gyro to be constructed with a spring and a dashpot that are both stiff. Such a device
is called a rate gyroscope. Because a rate gyroscope indicates the rotation about only
one axis, three, mounted about orthogonal axes, are employed to measure the angular
velocity of flight vehicles.

There is an alternative configuration for a single-axis gyro that has been employed
frequently. Suppose the torsional spring is not present. Setting K = 0 in Eq. (10.3.24)
leads to

I ′θ̈ + Cθ̇ ≈ Iφ̇�η. (10.3.28)

A solution valid for arbitrary �η, not necessarily constant, consists of a convolution
integral that may be derived either from a Laplace transform or from a Duhamel integral
by use of the impulse response of a second-order linear oscillator that has no spring. The
result is

θ = Iφ̇
C

∫ t

0
�η (τ )

{
1 − exp

[
−C

I ′ (t − τ )
]}

dτ . (10.3.29)

It is desirable that the damping rate be large, in order to make the exponential term in
the integrand quickly decay. Then, after an initial start-up interval, the nutation angle
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will be well approximated by

θ = Iφ̇
C

∫ t

0
�η (τ ) dτ . (10.3.30)

The nutation angle in this case is proportional to the integral of the rotation rate about
the η axis, which represents the cumulative rotation. For this reason, a well-damped
single-axis gyro that is not restrained by a spring is called an integrating gyroscope. As
is true for rate gyroscopes, a complete guidance system would require three integrating
gyroscopes whose nutation axes are aligned with mutually orthogonal axes.

A common application is to use three rate gyros to measure the rotation rates about
yaw, pitch, and roll axes of a flight vehicle. This arrangement is referred to as a strapdown
gyroscope, because it is directly mounted on the vehicle. The rotation rates that are
measured in this manner are about a set of body-fixed axes, so the system yields the
instantaneous absolute angular velocity of the vehicle. Furthermore, integration of the
rates, which can be done electronically, gives the angles of rotation about the body-
fixed axes. Using these angles in conjunction with the rotation transformation concepts
enables one to determine the orientation of the vehicle’s axes relative to an inertial
reference frame.

As a closing note, it is important that one recognize that this discussion of inertial
guidance systems has been drastically simplified, both through the models that were cre-
ated and the assumptions used to obtain responses. For example, we generally idealized
systems by neglecting the inertia of the gimbals. In some cases this merely affects os-
cillation frequencies. However, the additional inertial resistance can lead to qualitative
differences. Such is the case for a free gyroscope that is subjected to a small distur-
bance. The inertia of the outer gimbal can cause a precession that drifts away from the
initial orientation, rather than merely oscillating about it. In regard to the analysis of
responses, linearization often avoids some important questions, such as loss of dynamic
stability through nonlinear mechanisms. Practical usage of the gyroscope as a tool for
navigation over long ranges requires more sophisticated analyses, accounting for gimbal
inertia and bearing friction, than those presented here. However, the features of such
investigations would show many similarities to the steps we have pursued.

EXAMPLE 10.7 An airplane initially in level flight executes a body-fixed rotation
about an axis that lies in the ηζ plane in Fig. 10.15, at angle γ from the ζ axis.
The rotation rate � about this axis is a sinusoidal pulse over a time interval τ : � =
�0 sin (π t/τ ) for 0 ≤ t < τ, � = 0 for t > τ . The rotor of a rate gyro was spinning
in its reference position θ = 0 when the aircraft began its rotation. Determine the
nutational response θ (t) of the gyroscope for the case in which damping is less than
critical. From that solution determine the conditions for which the value of Kθ/Iβφ

closely matches nominal response in Eq. (10.3.27).

SOLUTION This example is intended to shed light on some of the design issues
that one must confront to make a practical rate gyro. Because the given rotation
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is specified as being about a body-fixed axis, the angular velocity components are
found by projections onto the ξηζ axes, so that

�ξ = 0, �η = � sin γ , �ζ = � cos γ .

The response we seek is the solution to Eq. (10.3.24) for this rotation of the base,
subject to the initial conditions that θ = θ̇ = 0 when t = 0.

Several methods are available for determining this response. We exploit the
similarity of the problem to that encountered in conventional transient vibrations.
For the given angular velocity components, the conditions φ̇ � �η, �ζ , and �̇ξ /�η

required for employing Eq. (10.3.24) are satisfied if βφ � � and βφ � (π/τ ) tan γ .
(When γ = ±π/2, the rotation is essentially about the ζ axis. Such a rotation would
presumably be measured by a rate gyro that is arranged orthogonally to the one
under consideration.) We assume that βφ meets these conditions. Substitution of
the given functional form of � for t < τ then leads to

I ′θ̈ + Cθ̇ + Kθ = Iβφ�0 sin γ sin
(

π t
τ

)
.

This represents a one-degree-of-freedom system having natural frequency ωnat =
(K/I ′)1/2 and ratio of critical damping σ = 0.5C/ (I ′K)1/2 that is subjected to a si-
nusoidal excitation at frequency π/τ . The response is the sum of the complementary
solution and the particular solution. The latter, which is known as the steady-state
response in vibration theory, consists of the quasi-static response, which is the am-
plitude that would be obtained if the system only had stiffness K, multiplied by a
frequency response factor and delayed by a phase lag δ. For the parameters of the
present system the steady-state response is

θ ss = � sin
(

π t
τ

− δ

)
, � = 1

D
I
I ′

βφ

ωnat

�0

ωnat
sin γ ,

D =
⎧⎨
⎩
[

1 −
(

π

ωnatτ

)2
]2

+ 4σ 2

(
π

ωnatτ

)2
⎫⎬
⎭

1/2

,

δ = tan−1

[
2σπ/ωnatτ

1 − (π/ωnatτ )2

]
, 0 ≤ δ ≤ π.

(1)

The initial conditions must be satisfied by the combination of the particular and
complementary solutions. Because the damping is stated to be less than critical,
σ < 1, the complementary solution, whose form is the same as that of the free-
vibration response, is oscillatory with an overall amplitude that decays exponentially
in time, according to

θ c = exp (−σωnatt) [A sin (ωdt) + Bcos (ωdt)] , ωd = (
1 − σ 2)1/2

ωnat. (2)

Satisfaction of the initial conditions requires that θ ss + θ c = 0 and θ̇ ss + θ̇ c =
0 at t = 0. These represent two equations for A and B. The corresponding
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response is

θ = � sin
(

π t
τ

− δ

)
+ � exp (−σωnatt)

[
(σωnatτ ) sin δ − π cos δ

(1 − σ 2)1/2
ωnatτ

sin (ωdt)

+ sin δ cos (ωdt)

]
, 0 ≤ t ≤ τ .

(3) �

The airplane’s rotation ceases at t = τ , after which the rotor executes a free
vibration. Equation (2) describes such a response if we change t to the elapsed time
measured from the instant when the rotation ceases, which is t ′ = t − τ . The initial
conditions for this response are the values of θ and θ̇ obtained from Eq. (3) at the
instant when the rotation ended. Let us denote these values as θτ and θ̇ τ . Then the
free response is given by

θ = exp [−σωnat (t − τ )]
{

θ̇ τ + σωnatθτ

ωd
sin [ωd (t − τ )]

+ θτ cos [ωd (t − τ )]
}

, t ≥ τ .

(4) �

Equations (3) and (4) describe the response for any set of system parameters for
which σ < 1. We desire that both expressions match Eq. (10.3.27). The rotation rate
is given, and the stiffness parameter may be written as K = I ′ω2

nat, so the desired
nutation is described by

θ ideal = I�η

K
φ̇ =

⎧⎪⎨
⎪⎩

I
I ′

φ̇

ωnat

�0

ωnat
sin γ sin

(
π t
τ

)
if 0 ≤ t ≤ τ

0 if t > τ

. (5)

In general, the spin rate will be much larger than the rate at which the aircraft ro-
tates, so φ̇ �� �0, which means that βφ ≈ φ̇. When this condition applies, �, which
is defined in Eqs. (1), is the coefficient appearing in θ ideal multiplied by the frequency
response factor 1/D. Thus comparing Eq. (3) to θ ideal in Eq. (5) for t < τ shows that
the ideal response will be obtained if D is as close to unity as possible and δ is very
small. In addition σωnat should be very large, so that the exponential factor quickly
decays. Furthermore, if σωnat is very large, then Eq. (4) indicates that θ will decay
to zero soon after t = τ , which matches the ideal response in Eq. (5) for t > τ.

Because σ < 1, the condition of large σωnat requires that ωnat itself be large.
In addition, the analysis began with the requirements that φ̇ � �η, �ζ and �̇ξ /�η.

The first two conditions are met when the spin rate is sufficiently high to warrant
approximating βφ as φ̇. The third condition requires φ̇ � π/τ .

Fortunately, simultaneous satisfaction of each condition is attained if the natu-
ral frequency ωnat is very high, the damping ratio σ is as large as possible, subject to
the condition that σ < 1, and the spin rate is much higher than both the airplane’s
peak angular velocity and the fluctuation rate π/τ of that angular velocity. These re-
quirements are not difficult to meet, because the spin, roll, and yaw motions of even
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a very high-performance aircraft are moderate from a mechanical standpoint. For
example, a very violent maneuver might consist of several rolls in a few seconds, for
which τ might be of the order of 0.2 s. In contrast, a natural frequency of 1000 rad/s
and a spin rate of 25 000 rev/min are readily obtained.

It is evident from Eq. (5) that the rate gyro becomes less sensitive as the rotation
axis becomes increasingly close to the spin axis, corresponding to γ decreasing. For
this reason, three rate gyros arranged orthogonally are required for measuring an
arbitrary spatial rotation.
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HOMEWORK PROBLEMS

EXERCISE 10.1 An axially symmetric Earth satellite, whose ratio of principal moments
of inertia is I/I ′ = 1.6, precesses about its axis once every 2 s. The spin rate in this
state is 0.1 rad/s. Determine the overall rate of rotation and the angle from the axis of
symmetry to the precession axis. Then determine the minimum angular impulse that a
set of control rockets fastened to the satellite must exert in order to bring the precession
axis into coincidence with the axis of symmetry. What is the rotation rate of the satellite
at the conclusion of such a maneuver? (Assume that the rockets act impulsively.)

15°
ω

Exercise 10.2

EXERCISE 10.2 A coin is tossed into the air with plane horizon-
tal and its initial angular velocity at 15◦ off-vertical, as shown in
the sketch. Construct the space and body cones at the instant of
release, and also evaluate the precession and spin rates.

v

200 mm

100 mmΩ

Exercise 10.3

EXERCISE 10.3 The cylinder, whose mass is 20 kg,
translates downward at v = 40 m/s with its axis of
symmetry horizontal. The spin rate about that axis is
� = 50 rad/s. Its circular edge collides with the ledge,
with the result that its center of mass has a down-
ward velocity of 10 m/s immediately after the col-
lision. Friction between the cylinder and the ledge
is negligible. Describe the rotational motion of the
cylinder after impact.

EXERCISE 10.4 Prove that the polhode description of free motion for an arbitrary
body reduces to the space and body cone analogy when the body is axisymmetric.

θ

z
300 mm

x

y

F

Exercise 10.5

EXERCISE 10.5 The communications satellite
was precessing steadily about its z axis at
2 rad/s when the steering thruster was turned
on, resulting in the application of an average
thrust force of 20 kN for a 100 ms interval.
The inertia properties relative to the principal
xyz axes are Ixx = 750, Iyy = Izz = 1500 kg-
m2. (From the viewpoint of inertia the satellite
may be considered to be axisymmetric relative to the x axis.) Determine the orientation
of the satellite’s angular momentum when the thruster was turned off. Then determine
the nutation angle, and the precession and spin rates for the subsequent free motion.
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60°

v

ωe

X

Y

Z

Exercise 10.6

EXERCISE 10.6 Consider a model of the Earth in
which its only motion is its daily spin relative to
the inertial XYZ reference frame. The diagram de-
picts the impact of a meteorite at the Earth’s equa-
tor. The velocity is v = 21 000 km/h at 60◦ from the
radial line to the center in the meridional plane.
This meteorite becomes embedded impulsively in
the Earth, which disturbs the Earth’s steady rota-
tion. Describe the rotational motion of the Earth
that results from the collision. The meteorite’s mass
is 0.01% of the Earth’s mass, and it may be treated
as a particle.

EXERCISE 10.7 Consider the coin in Exercise 10.2. Describe the location of the invari-
able plane relative to the coin. Graph the projections of the polhode curve onto the
principal axis planes, and show in each graph the intersection of the coordinate plane
with the inertia ellipsoid. Assess these projections in light of the space and body cone
construction for axisymmetric bodies.

250 mm

100 mm

x

y

z

150 mm

ω

130°

45°

Exercise 10.8

EXERCISE 10.8 The angular velocity of a
wooden block at the instant it is released
is as shown. Which body-fixed axis is sur-
rounded by the polhode curve for the free
rotation? What are the maximum and min-
imum angles between this axis and the con-
stant direction of the angular momentum?
What are the angular velocities of the block
at these maximum and minimum condi-
tions?

h

h
h

20°
5 rad/s

Exercise 10.9

EXERCISE 10.9 The sketch shows the initial an-
gular velocity with which a plate in the shape
of an isosceles triangle is thrown. Based on the
assumption that air resistance is negligible, de-
termine the location of the invariable plane rel-
ative to the plate. Then draw the projection of
the polhode curve for this motion onto the prin-
cipal axis planes. Also show in each graph the
intersection of the inertia ellipsoid with the each
plane.
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Ω2

θ
L

Ω1

R

Exercise 10.10

EXERCISE 10.10 The thin disk, whose mass is m1, spins
relative to shaft AB, whose mass is m2. Both the spin
rate �1 and precession rate �2 are held constant, and
the pin connection A has ideal properties. The verti-
cal orientation, θ = 0, is like a sleeping top. Evaluate
the stability of a steady precession in this position as a
function of �1, �2, and the length ratio R/L.

EXERCISE 10.11 A free gyroscope is in a state of slow, steady precession at a nutation
angle of 53.13◦ and a spin rate at 10 000 rev/min. The rotor’s mass is 5 kg, its radii of
gyration about its pivot are κ = 100 mm, κ ′ = 180 mm, and its center of mass is 120 mm
from the pivot. A person accidentally touches the outer gimbal, thereby causing the pre-
cession rate to decrease suddenly by 0.6 rad/s. Determine whether the ensuing motion
is unidirectional, looping, cuspidial, or steady precession. What are the maximum and
minimum nutation angles in that motion?

EXERCISE 10.12 A free symmetric gyroscope initially in a state of steady slow precession
is subjected to a small disturbing torque εmgLsin (�t) acting about the fixed vertical
shaft supporting the outer gimbal. Use a perturbation analysis for ε � 1 to determine
the frequency, if any, at which the system resonates.

y

θ

z

x

Ω

Exercise 10.13

EXERCISE 10.13 The diagram shows a single-axis
gyroscope that is used to aim a satellite. The gim-
bal’s axis is coincident with the y axis of the satel-
lite, and the flywheel spins at constant speed � rel-
ative to the gimbal. The principal moments of in-
ertia of the satellite are arbitrary values Ixx, Iyy,

and Izz about the coordinate axes in the sketch,
and the moments of inertia of the flywheel are I
about the spin axis, and I ′ about the gimbal axis.
The gimbal’s mass is negligible, and the center of
the flywheel is coincident with the satellite’s cen-
ter of mass. Because there are no external forces
acting on this system and θ = 0 initially, the angular momentum of the system is the
constant at H = I� to the right in the sketch. A servomotor mounted to the satellite’s
body imparts a specified change to the angle θ of the spin axis, which causes the ori-
entations of both the satellite and the gimbal to change. Derive equations of motion
describing this process. Hint: Let x′y′z′ be a coordinate system attached to the gimbal.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

Homework Problems 695

Then the rotation of the gimbal consists of precession ψ about the direction indicated by
H̄ and a nutation θ g about the gimbal axis. Correspondingly, the rotation of the satellite
relative to the gimbal is θ in the opposite sense from θ g and the rotation of the flywheel
relative to the gimbal is φ about the spin axis, with φ̇ = �.

ψθ

X

Y

Z

A

B

O

L

z'

y'

φ
.

Exercise 10.14

EXERCISE 10.14 The device shown is a gy-
ropendulum, which has been used in some
applications to locate the vertical direction.
The spin rate φ̇ is held constant by a servo-
motor. Let m be the mass, and let I and I ′ be
the centroidal principal moments of inertia
of the flywheel parallel and transverse to the
spin axis; ignore the inertia of the gimbals.
Evaluate the nutation response θ (t) and the
precessional response ψ (t) of the flywheel to
a disturbance that causes it to rotate by very
small angles away from the vertical reference
position, at which θ = π/2. Compare the frequency of these responses with that of a
simple pendulum, and use that result to discuss an advantage of the gyropendulum.

EXERCISE 10.15 Consider the gyropendulum in Exercise 10.14. Because of movement
of the vehicle, the center point O has a constant acceleration v̇ directed parallel to the
axis of the outer gimbal (that is, āO = v̇ēB/A). Let this acceleration be directed at angle
β north of east. Derive equations of motion for the Eulerian angles including the effect
of the Earth’s rotation, and of the movement of the vehicle in a great circle at angular
speed v/Re.

EXERCISE 10.16 The platform of an integrating gyroscope rotates about the η axis
in a time-dependent manner. Consider an angular speed that consists of an average
value �0, over which is superposed a harmonic fluctuation at amplitude �1 and fre-
quency λ, that is, �η = �0 + �1 sin (λt). What conditions must be true if the nutational
response θ (t) following the initial transient phase is to be proportional to the mean
rotation �0?

EXERCISE 10.17 A top is initially in a state of steady precession at a precession rate
ψ̇∗ and a nutation angle θ∗. Application of an impulsive force in the direction of the
precession suddenly changes the precession rate by the amount εψ̇∗, where |ε| � 1. It
is desired to determine the precessional and nutational responses after cessation of the
impulsive force. Toward that end, perform a perturbation analysis of the basic motion
equations for a top, Eqs. (10.2.4) and (10.2.6), with ψ̇ = ψ́

∗ + εψ̇1, θ = θ∗ + εθ1, and
φ̇ = φ̇∗ + εφ̇1, where the quantities having a subscript “1” are not large.

EXERCISE 10.18 Whirling is a phenomenon in turbomachinery in which a rotating shaft
undergoes displacement as a beam, with the plane in which the displacement occurs
rotating at an angular speed that might differ from the shaft speed. To study this effect,
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Exercise 10.18

consider the shaft supporting the disk of
mass m and radius R to be flexible in
bending, rigid in extension and torsion,
and massless. Thus the shaft acts like a
set of springs that exert forces in opposi-
tion to displacement of the disk’s center
C, and couples in opposition to the disk’s
rotation. The movement of the disk is de-
scribed by use of several moving coordi-
nate systems. First, there is xyz, which ro-
tates at the shaft speed � with its z axis
coincident with the centerline between
bearings A and B. The origin O of xyz is situated at the location where center C would
reside if the shaft were rigid. Coordinate system x′y′z′ has center C as its origin, with
its y′ axis always parallel to the y axis. The y′ axis is the line of nodes for the nuta-
tional rotation β of x′y′z′ relative to xyz. The third coordinate system, which is x′′y′′z′′

in the sketch, is attached to the disk with its origin also at center C. The rotation of this
coordinate system relative to x′y′z′ is γ about the x′′ axis, which is defined to always
coincide with the x′ axis. (This is an alternative definition of Eulerian angles that also
is used in aerospace applications.) The displacement of the center C is ξ ī + η j̄ and the
angular velocity is �k̄ + β̇ j̄ ′ + γ̇ j̄ ′′. In a properly designed system the displacements will
be very small compared with the span between bearings and the rotation angles will be
sufficiently small to take them to equal their sine. For a shaft of symmetric cross sec-
tion, each deformation is resisted solely by a corresponding proportional elastic force
or moment. Thus the elastic effect of the shaft may be represented by a restoring force
−kξ ξ ī − kηη j̄ applied to the disk at point C and a torque −κγ γ ī ′′ − κββ j̄ ′′, where the
small-angle approximation makes it permissible to take j̄ ′′ = j ′. Derive the correspond-
ing linearized equations of motion.

EXERCISE 10.19 Consider the effects of the inertia of the gimbals in a balanced free
gyroscope. Let A, B, and C denote the (principal) moments of inertia of the inner gimbal
about the x′y′z′ axes, where y′ is the line of nodes and z′ is the spin axis of the rotor.
Also, let A′ denote the moment of inertia of the outer gimbal about the precession axis.
Derive the equations of motion for the gyroscope in this case.

EXERCISE 10.20 Suppose that the gyroscope in Exercise 10.19 is initially spinning at φ̇

and the nutation angle is constant at θ0; there is no precession in this initial motion. At
t = 0 a nutational velocity ε � φ̇ is imparted to the inner gimbal. Use a perturbation
analysis in which θ = θ0 + εθ1 + ε2θ2 and ψ̇ = εψ̇1 + ε2ψ̇2 to determine the nutational
and precessional fluctuations induced by the disturbance. Show that, because of gimbal
inertia, the response exhibits gimbal walk, in which there is a nonzero average preces-
sional rotation rate, even though the gyroscope is balanced.
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CENTROIDAL INERTIA PROPERTIES∗

Slender bar

x
G y

z

L/2

L/2

Cross-sectional
area A

m = ρ AL,

Ixx ≈ 0, Iyy = Izz = 1
12

mL2.

Cylinder

R

L/2
L/2

x

y

z

G

m = πρR2L,

Ixx = Iyy = 1
12

m
(
3R2 + L2

)
, Izz = 1

2
mR2.

∗ Products of inertia that are not listed are zero.
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Semicylinder

R

L/2
L/2

4R/3π x

y

z

G

m = 1
2
πρR2L,

Ixx =
(

1
4

− 16
9π2

)
mR2 + 1

12
mL2,

Iyy = m
12

(
3R2 + L2

)
, Izz =

(
1
2

− 16
9π2

)
mR2.

Rectangular parallelepiped

a/2

b/2

c/2
c/2

b/2

a/2

x
y

z

G

m = ρabc,

Ixx = 1
12

m
(
b2 + c2

)
, Iyy = 1

12
m
(
a2 + c2

)
, Izz = 1
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m
(
a2 + b2

)
.

Right prism
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z
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c

b/3
b
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a
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m = 1
2
ρabc,

Ixx = 1
18

m
(
b2 + c2

)
, Iyy = 1

36
m
(
3a2 + 2c2

)
, Izz = 1

36
m
(
3a2 + 2b2

)
,

Iyz = − 1
36

mbc,

Right tetrahedron

y

x

z

G

a

a/4

b b/4

c

c/4

m = 1
6
ρabc,

Ixx = 3
80

m
(
b2 + c2

)
, Iyy = 3

80
m
(
a2 + c2

)
, Izz = 3

80
m
(
a2 + b2

)
,

Ixy = − 1
80

mab, Iyz = − 1
80

mbc, Ixz = − 1
80

mac.

Sphere

z

x
y

R

G

m = 4
3
πρR3,

Ixx = Iyy = Izz = 2
5

mR2.
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Hemisphere

z

3R/8
x

y

R

G

m = 2
3
πρR3,

Ixx = Iyy = 83
320

mR2, Izz = 2
5

mR2.

Ellipsoid

a

b
c

c
b

a

x y

z

G

m = 4
3
πρabc,

Ixx = 1
5

m
(
b2 + c2

)
, Iyy = 1

5
m
(
a2 + c2

)
, Izz = 1

5
m
(
a2 + b2

)
.

Semiellipsoid

a

b

c

b

a

3c/8
x

y

z

G

m = 2
3
πρabc,

Ixx = m
(

1
5

b2 + 19
320

c2

)
, Iyy = m

(
1
5

a2 + 19
320

c2

)
, Izz = 1

5
m
(
a2 + b2

)
.
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Right circular cone

R

L

3L/4

x y

z

G

m = 1
3
πρR2L,

Ixx = 3
10

mR2, Iyy = Izz = 3
80

m
(
4R2 + L2

)
.

Semicone

R

3L/4
L

R/π x

y
z

G

m = 1
6
πρR2L,

Ixx = 3
80

m
(
4R2 + L2

)
, Iyy =

(
3
20

− 1
π2

)
mR2 + 3

80
mL2, Izz =

(
3

10
− 1

π2

)
mR2,

Ixz = 1
20π

mRL.

Thin disk (h � R)

z

x
y

RG h

m = πρR2h,

Ixx = Iyy = 1
4

mR2, Izz = 1
2

mR2.
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Semicircular plate (h � R)

z

x

y

R
G

4R/3πh

m = 1
2
πρR2h,

Ixx = 1
4

mR2, Iyy =
(

1
4

− 16
9π2

)
mR2, Izz = Ixx + Iyy.

Semicircular wire arc

z

x

y
R

G

2R/π
Cross-sectional
area A

m = πρ AR,

Ixx =
(

1
2

− 4
π2

)
mR2, Iyy = 1

2
mR2, Izz = Ixx + Iyy.

Monomial sector plate (h � a, b)

z

y
x

G

y=b(x/a)n

n+1
n+2

a

n+1
2(2n+1)

b

ba
h

m = 1
n + 1

ρhab,

Ixx =
[

n + 1
3 (3n + 1)

− (n + 1)2

4 (2n + 1)2

]
mb2, Iyy =

[
n + 1
n + 3

− (n + 1)2

(n + 2)2

]
ma2,

Izz = Ixx + Iyy, Ixy =
[

1
4

− (n + 1)2

(2n + 1) (n + 2)

]
mab.
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1.1 F̄ = 3009ī − 3492 j̄ + 1937k̄ N, M̄A = 7749ī − 12034k̄, Mshaft = −11624 N-m.
1.4 c1 = −143.39, c2 = −0.534501, c3 = 440.334 rad/s.
1.6 F1 = 336.8, F2 = 386.2 N.
1.8 v̄P = [εα cos (αt) cos θ − Rαt sin θ ] ī + [εα cos (βt) sin θ + Rαt cos θ ] j̄,

θ = 1
2
αt2, v̄‖ = εα cos (αt) , v̄⊥ = Rαt.

1.10 v̄ = [
ẋ + L1θ̇1 cos θ1 + L2

(
θ̇1 + θ̇2

)
cos (θ1 + θ2)

]
ī

− [
L1θ̇1 sin θ1 + L2

(
θ̇1 + θ̇2

)
sin (θ1 + θ2)

]
j̄,

where ẋ = 1000 cos (50t) mm/s, θ̇1 = −10π sin (50t) rad/s,

θ̇2 = 10π cos (50t − π/3) rad/s.

2.1 v̄ = [2gRsin (s/R)]1/2 ēt , ā = g cos (s/R) ēt + 2g sin (s/R) ēn.

2.3 (a) s = s0/4; (b) s = s0/2; (c) R = 2s0/π ; (d) sin (πs/s0) = (2/3)1/2
.

2.6 v̄ = (
0.1451ī − 0.4785 j̄

)
β, ā = (

0.105280ī − 0.347154 j̄
) (

β2/k
)
.

2.9 v̄ = v0 (1 − kβ sinh η)
(

ī + sinh η j̄
cosh η

)
,

ā = −v2
0k (1 − kβ sinh η)

(
ī + sinh η j̄

cosh η

)
+ v2

0

β
(1 − kβ sinh η)2

[
−sinh η ī + j̄

(cosh η)3

]
.

2.11 ēt = −0.4804ī + 0.27740 j̄ + 0.8321k̄, ēn = −0.5160ī + 0.6769 j̄ − 0.5241k̄,

ēb = −0.7086ī − 0.6818 j̄ − 0.1818k̄, ρ = 6.392 m, τ = 40.33 m.

2.14 ēb = ρ

(s ′)3 r̄ ′ × r̄ ′′, τ = (s ′)6

ρ2 (r̄ ′ × r̄ ′′) · r̄ ′′′ ,

where ρ = (s ′)3[
(r̄ ′′ · r̄ ′′) (s ′)2 − (r̄ ′ · r̄ ′′)2

]1/2
.

2.16 v̄ = Lβ
[− sin (βt) ī + cos (βt) j̄ − 2 sin (2βt) k̄

]
,

ā = Lβ2
[− cos (βt) ī − sin (βt) j̄ − 4 cos (2βt) k̄

]
.

2.19 (a) x = 32.72 m; (b) β = 35.61◦.

2.21 (a) v0 = 0.2887
(

αH3

m

)1/2

; (b) t f = 1.3095
( m

aH

)1/2
; yf = 0.8574

(mg
αH

)
.
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2.24 (a) v̄ = uī + π Hu
L

cos
(πx

L

)
j̄, ā = −π2 Hu2

L2
sin

(πx
L

)
j̄ ;

(b) max (v) = u

[
1 +

(
π H

L

)2
]!/2

at x = nL, n is an integer;

(c) max (|ā|) = π2 Hu2

L2
at x = 2n − 1

2
L; (d) u <

(
gL2

π2 H

)1/2

.

2.26 x = ẏ0

u
[1 − cos (µt)] + ẋ0

u
sin (µt) , y = ẏ0

u
sin (µt) − ẋ0

u
[1 − cos (µt)] ,

z = ż0t, helical path.

2.28 v̄ = (cβ)1/2
λēR − 2π

3
(cβ)1/2

γ λēθ + 8π

3
λβ ēz,

ā = −π

3
(cβ)1/2

γ 2λ2ēR +
(

2π√
3

− 1
)

(cβ)1/2
γ λ2ēθ + 2βλ2ēz.

2.31 v̄ = u cot θ ēR + L� sin θ ēθ − uēz, ā = −
(

u2

L(sin θ)3 + L�2 sin θ

)
ēR + 2�u cot θ ēθ.

2.33 N = 555.7 N, µ = 1.788.

2.36 v̄ = ah
(
α̇ēa + β̇ ēβ

)
,

ā = a

[
hα̈ + α̇2 − β̇

2

h
(sinh α) (cosh α) − 2

α̇β̇

h
(sin β) (cos β)

]
ε̄α

+
[

hβ̈ + α̇2 − β̇
2

h
(sin β) (cos β) + 2

α̇β̇

h
(sinh α) (cosh α)

]
ε̄β .

2.39 v = 12.329 m/s, v̇ = 8.922 m/s2, ρ = 0.2689 m.

2.41 v̄ = (
Ṙcos θ − Rθ̇ sin θ

)
ī + (

Ṙsin θ + Rθ̇ cos θ
)

j̄,

a =
(

R̈cos θ − 2Ṙθ̇ sin θ − Rθ̈ sin θ − Rθ̇
2 cos θ

)
ī

+
(

R̈sin θ + 2Rθ̇ cos θ + Rθ̈ cos θ − Rθ̇
2 sin θ

)
j̄ .

2.44 v = Aω
[
1 + 3 (sin θ)2

]1/2
, v̇ = 3ω2 A

sin θ cos θ[
1 + 3 (sin θ)2

]1/2
,

ā · ēn = 2ω2 A[
1 + 3 (sin θ)2

]1/2
.

2.46 ṙ = −350.0 m/s, λ̇ = 0.06239 rad/s, θ̇ = −0.0324 rad/s,

r̈ = 40.40 m/s, λ̈ = 0.02345 rad/s, θ̈ = −0.00516 rad/s.

2.49 v̄ = θ̇ (R′ēR + Rēθ ) , ā = θ̇
2 [(R′′ − R) ēR + 2R′ēθ ] , ρ =

[
(R′)2 + R2

]3/2

R′′ R − R2 − 2 (R′)2 .

2.51 v̄ = 29.48 m/s, ā = −781.3 m/s2, F = 280.4 N.

2.54 v = 30.05 m/s, v̇ = −520.8 m/s2, F = 40.01.N.
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3.1 [R] =

⎡
⎢⎢⎣

0.8321 −0.5547 0

0.3714 0.5571 0.7428

−0.412 −0.618 0.6695

⎤
⎥⎥⎦ , r̄C/A = 0.4828 j̄ − 0.5356k̄ m.

3.4 [R] =

⎡
⎢⎢⎣

−0.9285 0.3714 0

−0.1564 −0.3910 0.9070

0.3369 0.8422 0.4211

⎤
⎥⎥⎦ , r̄O/A = 46.42ī + 7.82 j̄ − 16.84k̄ m.

3.6 (a) [xE yE zE] = [−75.09 −48.32 −42.73] mm;

(b) [XE YE ZE] = [−1.62 −98.80 −6.06] mm.

3.9 β = cos−1 (0.7192 cos θ − 0.6428 sin θ) .

3.11 [XC YC ZC] = [0.1465 0.3357 0.0766] m.

3.14 φ = 77.14◦ about K̄′ = 0.9265 Ī − 0.3258 J̄ − 0.1881K̄.

3.16 [R] =

⎡
⎢⎢⎣

0.3185 0.8209 −0.4740

−0.8209 0.4889 0.29510

0.4740 −0.29510 0.8296

⎤
⎥⎥⎦ , 50.58◦ between original and new y axes.

3.19 �r̄C = −406.9 Ī − 378.6 J̄ − 505.1K̄ mm.

3.21 �r̄C = −171.88 Ī + 173.38 J̄ − 13.76K̄ mm.

3.24 �r̄C = −49.65 Ī − 33.59 J̄ + 5.30K̄ mm,
v̄C (t = 0) �t = −56.12 Ī − 25.55 J̄ + 5.80K̄ mm.

3.26 ω̄ = 1000π ī + 0.16667k̄ rad/s, ᾱ = 166.7π j̄ rad/s2,

where ī = ēt and j̄ = ēn for the airplane’s path.

3.29 θ = 90◦ : ω̄ = 5236 j̄ − 20k̄ rad/s, ᾱ = 104 720ī + 100k̄ rad/s2.

θ = 60◦ : ω̄ = 5246 j̄ − 17.32k̄ rad/s, ᾱ = 90 690ī − 50 j̄ + 86.60k̄ rad/s2.

3.32 ω̄ = −0.4330
(
θ̇ + 2β̇

)
ī + 0.5

(
θ̇ + 2γ̇

)
j̄ + 0.250

(
3θ̇ − 2β̇

)
k̄,

ᾱ = −0.250
(
θ̇ β̇ + 3θ̇ γ̇ − 2β̇γ̇

)
ī − 0.8660θ̇ β̇ j̄ + 0.4330

(
θ̇ β̇ − θ̇ γ̇ − 2β̇γ̇

)
k̄.

3.34 āC =
[

Lθ̈ sin 2θ − Lθ̇
2 (9 + cos 2θ)

]
ī +

[
Lθ̈ (3 + cos 2θ) + Lθ̇

2 sin 2θ
]

j̄, ī = ēC/B.

3.37 āB/A = (−�2 H + 2�θ̇W sin θ
)

ī −
(
�2 + θ̇

2
)

W (cos θ) j̄ − θ̇
2W sin θ k̄.

3.39 vE = − (226.2L+ 102.6R) j̄ − 10 (L+ R) k̄,

āE = − (2.285L+ 1.064R) 104 ī + 1508 (L+ R) j̄ − (1.656L+ 0.740) 104k̄.

3.42 v̄A = −32.83ī − 11.736 j̄ + 35.68k̄ m/s, āA = −1259.4ī − 811.4 j̄ − 1586.7k̄ m/s2,

where j̄ = ēB/A and k̄ = ēB/A × ēC/B/
∣∣ēB/A × ēC/B

∣∣ .
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3.45 ω̄ =
(

v

τ
+ v

dβ

ds

)
ēt + v

ρ
ēb,

ᾱ =
(

v̇

τ
− v2

τ 2

dτ

ds
+ v̇

dβ

ds
+ v2 d2β

ds2

)
ēt + v2

ρ

dβ

ds
ēn +

(
v̇

ρ
− v2

ρ2

dρ

ds

)
ēb.

3.47 u̇ = (50 − sin θ) g + θ̇
2L+ �2L(cos θ)2

,

Nhorizontal = 2m�
(
u cos θ − θ̇ Lsin θ

)
, Nvertical = m

(
g cos θ + �2Lsin θ + 2θ̇u

)
.

3.50 v̄B = ξ̇ ī + �ξ sin θ j̄ + θ̇ ξ k̄,

āB =
[
ξ̈ − θ̇

2
ξ − �2ξ (sin θ)2

]
ī + [

2�ξ sin θ + 2�θ̇ξ cos θ
]

j̄

+ [
θ̈ ξ − �2ξ sin θ cos θ + 2θ̇ ξ̇

]
k̄.

3.52 ω̄ = −0.9397� cos φ ī + (
0.3420� + φ̇

)
j̄ − 0.9397� sin θ k̄,

ᾱD = 0.9397�φ̇ sin φ ī + φ̈ j̄ − 0.9397� sin φk̄.

v̄D = 1.9397�Lsin φ ī − 0.9397�Lsin φ j̄

+ (−1.9397�Lcos φ − 0.3420�L− Lφ̇
)

k̄

āD = L
[(

−1 − 0.6634 cos φ + 0.8830 (cos φ)2
)

�2 − φ̇2 − 0.6480�φ̇
]

ī

−L
[
(1.8227 + 0.3214 cos φ) �2 + 1.8194 (cos φ) �φ̇

]
j̄

+ [−φ̈ + (0.8830 cos φ − 0.6634) (sin φ) �2
]

k̄

3.55 (v̄B)x2 y2z2
= 45.06ī − 41.30 j̄ m/s, (āB)x2 y2z2

= −19 767ī − 5072 j̄ m/s2.

3.57 āP = 2.343ī − 9.145 j̄ − 5.553k̄ m/s2.

3.60 s =
[(

u
2ωe sin λ

)2

− d2

]1/2

+
(

u
2ωe sin λ

)
to the right.

3.62 (a) x = 0, y = − cos λ

(
2ωe H

g

)1/2 (2H
3

)
;

(b) x = 0, y = cos λ

(
2ωe H

g

)1/2 (H
3

+ Re

)
.

4.1 v̄D = (
Rω1 cos β − Rω2 − Lβ̇

)
ī + Lω1 sin β j̄ − Rω1 sin βk̄,

āD = (
Lω2

1 sin β cos β − Lβ̈
)

ī + [−R
(
ω2

1 + ω2
2

)+ 2ω1
(
Lβ̇ + Rω2

)
cos β

]
j̄

−
[
ω2

1L(sin β)2 + Lβ̇
2 + 2Rω2β̇

]
k̄.

4.3 φ̇ = 97.93 rad/s, θ̇ = −20 rad/s, ψ̇ = −48.44 rad/s,

ω̄ = 10.12ī − 19.19 j̄ + 50.22k̄ rad/s.

4.6 [R] = [Rx (φ)] [Ry (θ)] [Rz (ψ)] ,

ω̄ = (
φ̇ − ψ̇ sin θ

)
ī + (

θ̇ cos θ + ψ̇ sin φ cos θ
)

j̄ + (−θ̇ sin θ + ψ̇ cos φ cos θ
)

k̄,

ᾱ = [
φ̈ − ψ̈ sin θ − ψ̇ θ̇ cos θ

]
ī + [

ψ̈ cos θ sin φ + θ̈ cos φ − ψ̇ θ̇ sin θ sin φ

+ ψ̇φ̇ cos θ cos φ − θ̇ φ̇ sin φ
]

j̄ + [
ψ̈ cos θ cos φ − θ̈ sin φ − ψ̇ θ̇ sin θ cos φ

− ψ̇φ̇ cos θ sin φ − θ̇ φ̇ cos φ
]

k̄.
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4.8 v = 5.313 m/s, v̇ = 724.1 m/s2.

4.11 v̄A = bθ̇ cos θ J̄ , āA = b
(
θ̈ cos θ − θ̇

2 sin θ
)

J̄ ,

v̄B = −bθ̇ sin θ Ī, āB = −b
(
θ̈ sin θ + θ̇

2 cos θ
)

Ī,

v̄G =
√

2
2

bθ̇ cos
(
θ + π

4

) (
Ī + J̄

)
,

āG =
√

2
2

b
[
θ̈ cos

(
θ + π

4

)
− θ̇

2 sin
(
θ + π

4

)] (
Ī + J̄

)
.

4.13 θ = 60◦ : ω̄BC = −0.1111θ̇ k̄, ᾱBC = −0.5797θ̇
2k̄, k̄ is outward.

θ = 120◦ : ω̄BC = −0.2727θ̇ k̄, ᾱBC = −0.2586θ̇
2k̄.

4.16 ω̄BC = −0.8660ωABk̄, ω̄CD = 0.50ωABk̄, ᾱBC = −0.250ω2
ABk̄,

ᾱCD = −1.616ω2
ABk̄, k̄ is outward.

4.18 v̄B = 0.866vAī + 0.866L� j̄ + 0.5vAk̄, v̄G = 0.433vAī + 0.433L� j̄ − 0.25vAk̄,

where k̄ is upward and ī is radial.

4.21 v̄C = −R� sin θ ī + u j̄ − u tan θ k̄, āC = −2�uī − R�2 sin θ j̄ − u2

R
1

(cos θ)3 k̄.

4.23 vD = 18.138 m/s, ω̄CD = 17.490ī + 141.22 j̄ − 90.88k̄ rad/s,

aD = −13802 m/s2, αCD = 950.7ī + 4718 j̄ − 4940k̄ rad/s2.

4.26 (a) No unique solution; (b) ωAB = −ωCD = 1.20 J̄ + 1.60k̄ rad/s, where Ī = ēA/C.

4.28 v̄P = (R − r) θ̇
[(

1 + ε

r
cos φ

)
θ̇ ī − ε

r
sin φ j̄

]
,

āP = (R − r)
[
θ̈
(

1 + ε

r
cos φ

)
− ε

r

(
R
r

− 1
)

θ̇
2 sin φ

]
ī

+ (R − r)
[
−θ̈

ε

r
sin φ + θ̇

2
(

1 + ε

r
− εR

r2

)
cos φ

]
j̄ .

4.31 ω̄A = 0.7273
v

R
clockwise, ᾱA = 0.1172

v2

R2
clockwise.

4.33 ω̄ = v (cos θ)2

R(cos θ)2 + h
clockwise, ᾱ = 2v2h (cos θ)3 sin θ[

R(cos θ)2 + h
]3 clockwise.

4.36 ω̄ = − v

R
ī + v

R
cos β j̄, ᾱ = v2

R2
(1 + cos β) sin βk̄,

ī parallel to the cone generator and j̄ upward.

4.39 ω̄ = �1 sin (β + γ ) ī −
[
�1 cos (β + γ ) + (�1 − �2)

sin β

sin γ

]
k̄,

ᾱ = �̇1 sin (β + γ ) ī + (�1 − �2) �1
sin β

sin γ
sin (β + γ ) j̄

−
[
�̇1 cos (β + γ ) + (

�̇ 1 − �̇2
) sin β

sin γ

]
k̄.
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4.41 Precession: ψ̇ = �1 + (�1 − �2)

(sin β)2

[(
R
r

− 1
)

cos β − 1
]

,

Spin: φ̇ = (�1 − �2)

(sin β)2

(
R
r

− 1 − cos β

)
,

ω̄ = (
ψ̇ cos β + φ̇

)
ī + ψ̇ sin βk̄, ᾱ = φ̇ψ̇ sin β j̄,

ī parallel to the cone generator, k̄ upward.

4.44 ψ = 33.69◦, ψ̇ = −15.428 rad/s, θ̇ = 0.6934 rad/s, φ̇ = 13.699 rad/s.

4.46 ω̄ = 2� (1 + cos β) ī + u
R(sin β − 2 cos β)

j̄ − � cos βk̄,

ᾱ = − 2�u sin β

R(sin β − 2 cos β)
ī − [

β̈ − �2 cos β (2 + 2 cos β − sin β)
]

j̄

+2�u (1 + cos β − sin β)
R(sin β − 2 cos β)

k̄, ī = ēC/B, k̄ upward.

5.1 Initial H̄O = 2mh2� sin θ
(− sin θ Ī + cos θ J̄

)
,

�H̄O = −mh2� sin 2θ
[
1.523

(
10−4

)
J̄ + 0.01745K̄

]
,

where XYZ is stationary, with X aligned with the shaft and

Z perpendicular to the initial plane of the bars.

5.6 m = 7
12

πρR2L, Ixx = 31
160

πρR4L, Iyy = Izz = πρR2L
(

31
320

R2 + 2
15

L2

)
.

5.9 m = 6.369 kg, xG = 1.1078 m, yG = 0.5847 m,

Ixx = 3.544, Iyy = 9.931, Izz = 13.475 kg-m2, Ixy = 5.776 kg-m2.

5.11 m = 414.1 kg, r̄G/O = 2.26 j̄ + 200k̄ mm, centroidal x̂ ŷẑ are principal axes with

Ix̂x̂ = 9.495, Iŷŷ = 9.498, Iẑẑ = 9.800 kg-m2.

5.13 [I] = mR2

⎡
⎢⎢⎣

0.542 0.042 0

0.042 2.542 0

0 0 2.583

⎤
⎥⎥⎦ .

5.16 Ixx = 0.006667 − 0.004 (cos θ)2
, Iyy = 0.002667 + 0.004 (cos θ)2

,

Ixy = −0.002 sin 2θ kg-m2.

5.19 I1 = 26.61
(
10−6

)
, I2 = 456.7

(
10−6

)
, I3 = 483.3

(
10−6

)
kg-m2.

5.21 [I] =

⎡
⎢⎢⎣

191.5 229.6 −64.8

229.6 1687.5 −11.1

−64.8 −11.1 1613.0

⎤
⎥⎥⎦ kg-m2.

5.26 H̄C = 1
9

mL2� sin θ j̄, dH̄C/dt = 1
9

mL2�2 sin θ cos θ k̄.
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5.28 Ix′x′ = 0.125, Iy′ y′ = 0.260, Iz′z′ = 0.225 kg-m2,

H̄C = 0.1320ωī + 0.054ω j̄ = 0.1118ωī′ + 0.1163ω j̄ ′ kg-m2/s, T = 0.076ω2 J.

5.31 F̄A = −1
3

mbω2 j̄, M̄A = −17
36

mabω2 ī, k̄ = ēB/A.

5.33 F̄O = − mL
[
ψ̇2 (sin θ)2 + θ̇

2
]

ī − mL
[
θ̈ − ψ̇2 sin θ cos θ

]
j̄

− mL
[
ψ̈ sin θ + 2ψ̇ θ̇ cos θ

]
k̄,

M̄O = [
I1ψ̈ cos θ − (I1 − I2 + I3)ψ̇ θ̇ sin θ

]
ī + [

I2ψ̈ sin θ − (I1 − I2 − I3)ψ̇ θ̇ cos θ
]

ī

− [
I3θ̈ + (I1 − I2) ψ̇2 sin θ cos θ

]
k̄, ī = ēG/O.

5.36 H̄G = mR2ω1
[
0.125λī + (0.433λ − 0.5) k̄

]
,

dH̄G

dt
= mR2ω2

1

(
0.25λ − 0.10825λ2

)
j̄

λ = 2.309 for no dynamic reactions,

ī is the axis of the disk, j̄ is perpendicular to the diagram.

5.39 F̄B = 3mR�2
(
cos θ ī − sin θ k̄

)
,

M̄B = 1
4

mR2
[
−2�φ̇ (cos θ)2 + (

�2 − φ̇2
)

sin θ cos θ
]

j̄

ī is the axis of the disk, j̄ is perpendicular to the diagram.

6.1 � =
(

3g
2Lcos θ

)1/2

.

6.4 F̄A = −
[

mL�2

(
1
3

+ 1
9

cos θ

)
+ 1

6
mg sin θ

]
ī,

F̄B = −
[

mL�2

(
1
3

+ 1
9

cos θ

)
− 1

6
mg sin θ

]
ī + 2mgk̄,

ī ′ is radial to the right, k̄ is upward.

6.6 θ = 0 : v̇ = 0, N1 = N2 = 3
2

mg, f1 = − f2 = mv2

12R
.

θ = 90◦: v̇ = 0, N1 = 3
2

mg + mv2

12R
, N2 = 3

2
mg − mv2

12R
, f1 = f2 = 0.

6.9 F̄A = −0.7445ψ̇2 ī + 1.143ψ̇2 j̄ − 1.364ψ̈ k̄ N,

M̄A = 0.3352ψ̈ ī + 0.4638ψ̈ j̄ + (−41.16ψ̇ + 0.2058ψ̇2
)

k̄ N-m,

ī along the axis of symmetry, k̄ horizontal.

6.11 F̄A = −F̄B = mR2

2L
�1�2 cos θ parallel to the upward diameter of the disk,

M̄1 = 1
8

mR2�2
2 sin 2θ ēA/B.

6.14
1
3
θ̈ + �2

(
1
2

+ 1
3

cos θ

)
sin θ = g

2L
cos θ.
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6.16 ξ̈ + ψ̇2

[(
L
4

− ξ

)
(sin θ)2 − L

6
sin θ cos θ cos φ

]
+ L

3
ψ̇φ̇ sin θ cos φ = g cos θ,

1
27

Lφ̈ − ψ̇2

[
1

27
L(sin θ)2 sin φ cos φ + 1

24
(L− 4ξ) sin θ cos θ sin φ

]

−1
3
ψ̇ ξ̇ sin θ cos φ = 1

6
g sin θ sin φ.

6.19 ω2
1 >

2gR
0.8 + 2.5 sin 2θ

.

6.21 N [L(1 + cos γ ) − Rsin γ ] = mgL(1 + cos γ ) + mR2�2

[(
L

2R
cos γ − L2

R2
sin γ

)

(1 + cos γ ) − 1
4

sin γ cos γ

]
, γ = π

6
.

6.24 NB = mg cot β + m (R − r) �2
2 − 2

5
mrψ̇φ̇ cos β,

fB = −2
5

mr φ̇ψ̇, NA = mg
sin β

− 2
5

mrψ̇φ̇,

where φ̇ = R − r − r cos β

r(sin β)2
(�1 − �2) and ψ̇ = �2 − φ̇ cos β.

6.26 Front-wheel drive: v̇ = µg
L− b

L+ µh
, rear-wheel drive: v̇ = µg

b
L− µh

,

all-wheel drive: v̇ = µg.

6.29 θ̈ = 0.9262
g
L

.

6.31 φ̈ = −13.845 rad/s.

6.34 (a) Fcrit = min

(
mg

sin θ
,

µmg
(
κ2 + r2

1

)
κ2 (cos θ + µ sin θ) + µr2

1 sin θ + r1r2

)
,

v̇ = Fcrit

m
r2

1 cos θ − r1r2

κ2 + r2
1

.

6.36 v̇ = 1
3

g, µmin = 0.2.

6.39 F = σv.

6.41 ωA − ωB = gL

R2ψ̇
.

6.44 �N = 128.8 N (decrease at front wheels).

6.46 v = 1.7194
(

F R
m

)1/2

.

6.49 max φ = 37.49◦, φ̇ = 38.62 rad/s at φ = 37.49◦.

6.51 v2 = 2F R3

m (R2 + κ2)

[
θ + sin θ − √

5 +
(

8 − 2 cos θ − (cos θ)2
)1/2

]
.

6.54 max φ = 37.49◦.
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6.56 (a) θ̇ = 4.3503
( g

L

)1/2
, (b) max (θ) = 133.8◦ above horizontal.

6.59 (a) β = 46.56◦, �1 = 0.9494
( g

L

)1/2
,

(b) P�t = 0.1148m (gL)1/2
, vG = 1.1123 (gL)1/2

.

6.61 ω2 = mvh
2IA

, where point A is the corner where impact occurs.

6.64 ω2 = 4.065 rad/s, v̄2 = 24.70 rad/s at 59.17◦ above left horizontal.

6.66 (v̄G)2 = −0.2467v sin θ j̄, ω2 = −0.2220v sin θ,

v̄ball = (− cos θ ī − 0.0333 sin θ j̄
)
v.

6.69 (v̄B)2 = 0.8613v1 at 50.74◦ below the left direction.

6.71 v̄G = 15.459 m/s downward, ω2 = 17.441 rad/s counterclockwise.

6.74 v̄2 = 19.20ī + 1.61 j̄ + 6k̄ m/s, ω̄2 = 30.25ī + 170.12 j̄ + 50k̄ rad/s.

7.1 2β (X − ut) Ẋ − Ẏ − 2β (X − ut) u = 0, Y = β (X − ut)2
.

7.3 Rθ̇ + ṡ − ẊC cos θ + ẎC sin θ = 0, sθ̇ + ẊC sin θ + ẎC cos θ = 0,

both constraints are holonomic.

7.6 ẋ cos θ − θ̇x sin θ = 0.

7.8 θ̇1 sin θ1 + θ̇2 sin θ2 + θ̇3 sin θ3 = 0, θ̇1 cos θ1 − θ̇2 cos θ2 − θ̇3 cos θ3 = 0.

7.11 ẋA sin (θ + β) − Lθ̇ cos β = 0.

7.14 (sin β − 2 cos β) Rβ̇ − u = 0, [2 (1 + cos β) − sin β] ψ̇ + φ̇ = 0.

7.16 q1 = y: Qcons
1 = −k (y − 1.5L) − 8σ L, Qnc

1 = − F
(
3y2 + 4L2

)+ 2ML

2L(4L2 − y2)1/2
,

q1 = θ : Qcons
1 = −2kL2 (2 sin θ − 1.5) cos θ − 16σ L2 cos θ,

Qnc
1 = −F L

[
2 + 6 (sin θ)2

]
− M.

7.19 δW = −NB sin (θ + β) δxA + NBLδθ cos β,

δxA = Lδθ
cos β

sin (θβ)
if kinematically admissible.

7.21 V = − (
x2 − y2

)1/2
.

7.24 m

[
1
3

L2 + H2

(cos θ)4

]
θ̈ + 2m

H2

(cos θ)5
θ̇

2 + 1
2

mgLcos θ

+ kH2

(
tan θ − tan

π

9

)
(cos θ)2 + mgH

(cos θ)2
= −�,

θ = 16.662◦ for static equilibrium.

7.26 3mẌ + ms̈ cos θ + 2kX = 0, ms̈ + mẌcos θ + ks − mg sin θ = 0.

7.29 m
[
2R̈1 + R̈2 − (2R1 + R2) θ̇

2
]

+ k (R1 − L) + 2mgR1 sin θ = 0,

m
[

R̈1 + R̈2 − (2R1 + R2) θ̇
2
]

+ k (R2 − L) + mgR2 sin θ = 0.



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

712 Answers to Selected Homework Problems

7.31
8
3

mL2θ̈ + kL2

(
4 sin θ − 3

2
L
)

cos θ = 2 (F + mg) Lcos θ.

7.34
1
3

mL2θ̈ + 1
2

mL(ü + g) sin θ = 0.

7.36
1
3

mL2φ̈ + 1
2

mLε�2 sin φ + kφ = 0.

7.39 4mR2
(
θ̈ + ω2 sin θ cos θ

)+ 2mgRsin (2θ + ωt) = 2F Rsin θ.

7.41
[
1 + 8 (cos θ)2

]
θ̈ +

(
9�2 − 16θ̇

2
)

sin θ cos θ = (2mg − 4F)
mL

sin θ.

7.44 (m1 + m2) ẍ − m2 (R − r)
(
θ̈ cos θ − θ̇

2 sin θ
)

+ kx = F,

3
2

(R − r) θ̈ − ẍ cos θ + g sin θ = 0.

7.46
(

1
12

L2 + 1
3

h2 + R2θ2
)

θ̈ + mR2θ θ̇
2 + g

(
Rθ cos θ − h

2
sin θ

)
= 0.

7.48 (m1 + m2)s̈ + m1(R + ε cos θ)θ̈ − m1εθ̇
2 sin θ = (m1 + m2)g,

m1(R2 + ε2 + κ2 + 2Rε cos θ)θ̈ + m1(R + ε cos θ)s̈

− m1 Rεθ̇2 sin θ − m1gε sin(β + θ) = 0.

7.51
mL2

(sin β)2

{[(
4
3

+ κ2

R2

)(
(cos θ)2 + cos (β − θ)2

)
+ 1

2
cos θ cos (β − θ) cos β

]
θ̈

− 1
2

[(
4
3

+ κ2

R2

)
(sin 2θ + sin (β − 2θ)) + 1

2
sin (2θ − β) cos β

]
θ̇

2
}

+ 3
2

mgLcos θ = F L
cos (β − θ)

sin β
.

7.54 ms̈ − m
[
θ̇

2 + ψ̇2 (sin θ)2
]

s + ks + mg sin θ cos ψ = 0,(
I1 + ms2

)
θ̈ + 2msṡθ̇ − mψ̇2s2 sin θ cos θ + mgs cos θ cos ψ = 0,[

I2 + ms2 (sin θ)2
]
ψ̈ + 2mψ̇s

[
ṡ (sin θ)2 + sθ̇ sin θ cos θ

]
− mgs sin θ sin ψ = M.

7.56
1
4

mR2
[(

1 + (cos θ)2
)

�̇1 + 2�̇2 cos θ
]

= C.

7.58
1

12
mL2

[(
1 + 3 (sin)2

)
ψ̈ + 6ψ̇ θ̇ sin θ cos θ

]
= �,

1
12

mL2
[
11θ̈ + 3ψ̇2 sin θ cos θ

]+ 1
2

mgLsin θ = 0.
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7.61 ξ̈ −
[
�2 (sin θ)2 + θ̇

2
]
ξ + 1

2
Lθ̇

2 + g cos θ = 0,(
1
3

L2 − Lξ + ξ 2
)

θ̈ + 2
(

ξ − L
2

)
ξ̇ θ̇ − �2

(
ξ 2 + 1

12
L2

)
sin θ cos θ

− mg
(

ζ − L
2

)
sin θ = 0.

7.63 (m1 + m2) z̈ + 1
2

m2L
(
θ̈ sin θ + θ̇

2 cos θ
)

+ (m1 + m2)g + kz = F,

1
3

Lθ̈ + 1
2

z̈sin θ − 1
3

Lψ̇2 sin θ cos θ + 1
2

g sin θ = 0,

1
3

m2L2
[
ψ̈ (sin θ)2 + 2ψ̇ θ̇ sin θ cos θ

]
= M.

7.66
[

Ip + m
(

L2 + 1
4

R2

)(
1 + (cos β)2

)
+ 2mL2 cos β

]
ψ̈

−2m sin β

[
L2 +

(
L2 + 1

4
R2

)
cos β

]
β̇ψ̇ + 1

2
mR2φ̇β̇ sin β = �,

m
(

L2 + 1
4

R2

)
β̈ + m sin β

[
L2 +

(
L2 + 1

4
R2

)
cos β

]
ψ̇

2 − 1
2

mR2ψ̇φ̇ sin β

−mgLcos β = 0.

8.2 m
(
6R2 + 2κ2 + 4R2 sin θ

)
θ̈ + 3.75mR2 [sin φ − cos (θ + φ)] φ̈ + 2mR2θ̇

2 cos θ

+ 3.75mR2φ̇2 [cos φ + sin (θ + φ)] = F R(1 + sin θ) + λ1 cos θ,

25
3

mR2φ̈ + 3.75mR2 [sin φ − cos (θ + φ)] θ̈ + 3.75mR2θ̇
2 sin (θ + φ)

+ 1.25mgRcos φ = 2.5F Rsin φ − 2.5λ1 cos φ.

8.4 {z} = [
ψ β ψ̇ β̇

]T
, I1 = m

[
L2 + κ2

1 (sin β)2 + κ2
2 (cos β)2

]
,

⎡
⎢⎢⎣

I1 0 −c1

0 mκ2
2 1

−c1 1 0

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

ψ̈

β̈

λ1

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−m
(
κ2

1 − κ2
2

)
ψ̇β̇ sin 2β + mκ2

1�1β̇ cos β + �

1
2

m
(
κ2

1 − κ2
2

)
ψ̇2 sin 2β + mκ2

1�1ψ̇ cos β

c2ψ̇

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

8.6 (m1 + m2) ẍ − m2

(
R̈ − Rθ̇

2
)

cos θ + m2
(
Rθ̈ + 2Ṙθ̇

)
sin θ + 2k1x = λ1 sin θ,

m2

(
R̈ − ẍ cos θ − Rθ̇

2
)

+ k2 (R − R0) = 0,

m2
(
Rθ̈ + ẍ sin θ + 2Ṙθ̇

)− m2g cos θ = λ1, ẋ sin θ + Rθ̇ = 0.

8.9 m1 R2

{[
4.5 + 8 cos θ + 3.75 (cos θ)2

]
ψ̈ + 1

2
(sin φ) φ̈ − (8 + 7.5 cos θ) (sin θ) ψ̇ θ̇

+ 1
2
φ̇θ̇ cos θ

}
= M + λ1 R(sin θ − 2 − 2 cos θ) ,
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{
4.25m1 R2 + m2 R2

[
1 − 2 sin 2θ + 3 (cos θ)2

]}
θ̈ − 1

2
m2 R2 (4 cos 2θ + 3 sin 2θ) θ̇

2

+ m1 R2 (4 + 3.75 cos θ) (sin θ) ψ̇2 − 2 (m1 + m2) gRcos θ + m2gRsin θ

= F R(sin θ − 2 cos θ) ,

1
2

m1 R2
(
φ̈ + ψ̈ sin θ + ψ̇ θ̇ cos θ

) = λ1 R, R(sin θ − 2 − 2 cos θ) ψ̇ + Rφ̇ = 0.

8.11 (mA + mAB) ẍA − 1
2

mABL
(
θ̈ sin θ + θ̇

2 cos θ
)

= F + λ1 sin (β + θ) ,

1
3

mABL2θ̈ − 1
2

mABLẍA sin θ = λ1Lcos β, ẋA sin (β + θ) + θ̇ Lcos β = 0.

8.13 q1 = XC, q2 = YC, q3 = θ, ẊC sin θ − ẎC cos θ = 0(
m + 3

2
mw

)
ẌC + m�

(
θ̈ sin θ + θ̇

2 cos θ
)

= (
F̄1 + F̄2

) · Ī + λ1 sin θ,(
m + 3

2
mw

)
ŸC − m�

(
θ̈ cos θ − θ̇

2 sin θ
)

= (
F̄1 + F̄2

) · J̄ − λ1 cos θ,(
I + 1

4
mw R2

)
θ̈ + m�

(
ẌC sin θ − ŸC cos θ

) = r̄A/C × F̄1 + r̄B/C × F̄2.

8.15 4ms̈ + 2mLθ̈ + 2mLθ̇
2 cos θ = F + λ2 sin �t,[

1
6

+ 3
2

(sin ψ)2 (sin θ)2
]

ψ̈ − 3
8
θ̈ sin 2ψ sin 2θ + 3

2
ψ̇2 sin ψ cos ψ (sin θ)2

+ 3
4
θ̇

2 sin 2ψ + 3
2
ψ̇ θ̇ (sin ψ)2 sin 2θ = 1

mL
(λ1 cos ψ sin θ − λ2 cos �t sin ψ sin θ) ,

mL2

[
1
6

+ 3
2

(sin θ)2 + 3
2

(cos ψ)2 (cos θ)2
]

θ̈ + 2mLs̈ sin θ

+ 3
2

mL2θ̇
2 sin 2θ

[
1 + (cos ψ)2

]
− 1

2
mL2ψ̇2

[
1
3

+ 3 (sin ψ)2
]

sin 2θ

= λ1Lsin ψ cos θ + λ2L[sin �t sin θ + cos �t cos ψ cos θ ] ,

Lψ̇ cos ψ sin θ + Lθ̇ sin ψ cos θ = 0,

ṡ sin �t − Lψ̇ cos �t sin ψ sin θ + Lθ̇ [sin �t sin θ + cos �t cos ψ cos θ ]

+�
[
s cos �t − Lsin �t cos ψ sin θ − L(cos �t)2

]
= 0.

8.17 XG = −111.2 m, YG = −70.0 m, θ = 56.2◦ at t = 60 s.

8.19 θ passes 89◦ when t = 9.28 s.

8.22 max(θ) = 80.73◦ when t = 1.995 s.

8.25
1
2
θ̈ + 4

3π

g
R

sin θ + µ

[
g
R

− 4
3π

(
θ̈ sin θ + θ̇

2 cos θ
)]

sgn
(
θ̇
) = 0.

8.28
1
3

mL2φ̈ + 1
2

mlŸB sin φ − 1
2

mgLsin φ = µ |NA| (cos φ) sgn
(
φ̇
)− NA sin φ,

mŸB (sin φ)2 + 1
2

mLφ̈ sin φ + 1
2

mLφ̇2 cos φ = − H
sin φ

NA, ẎB (sin φ)2 + Hφ̇ = 0.
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8.31 {q} = [φ XB YB]T
, {x} = [{q}T {q̇}T]T

,
d
dt

{x} = [{q̇}T {q̈}T]T
,

[
[M] − [B]

− [a] [0]

]⎧⎪⎪⎨
⎪⎪⎩

{q̈}{
NA

NB

}
⎫⎪⎪⎬
⎪⎪⎭ =

{ {F}
[ȧ] {a} {q̇}

}
,

[M] =

⎡
⎢⎢⎣

L2/3 (L/2) cos φ (L/2) sin φ

(L/2) cos φ 1 0

(L/2) sin φ 0 1

⎤
⎥⎥⎦ ,

[B] =

⎡
⎢⎢⎣

−H/ sin φ 0

− (
µ sin φ sgn

(
φ̇
)+ cos φ

)
1(

µ cos φ sgn
(
φ̇
)− sin φ

)
0

⎤
⎥⎥⎦ , {F} =

⎧⎪⎪⎨
⎪⎪⎩

(L/2) g sin φ

(L/2) φ̇2 sin φ

g − (L/2) φ̇2 cos φ

⎫⎪⎪⎬
⎪⎪⎭ ,

[a] =
[

0 1 0

H 0 (sin φ)2

]
, [ȧ] =

[
0 0 0

0 0 φ̇ sin 2φ

]
,

NB = 0 at t = 0.237 s, φ = 45.54◦.

9.2 µẅ + (EIw′′)′′ + µg − f = 0; either w is specified or (EIw′′)′ = 0 at x = 0 and
x = L; either w′ is specified or EIw′′ = 0 at x = 0 and x = L.

9.5 −µẅy + F

{[
1 − 3

2

(
∂wy

∂x

)2

− 1
2

(
∂wz

∂x

)2
]

∂2wy

∂x2
− ∂wy

∂x
∂wz

∂x
∂2wz

∂x2

}
− µg + fy = 0,

−µẅz + F

{[
1 − 3

2

(
∂wz

∂x

)2
∂2wz

∂x2
− 1

2

(
∂wy

∂x

)2
]

∂2wz

∂x2
− ∂wy

∂x
∂wz

∂x
∂2wy

∂x2

}
+ fz = 0.

9.7
1
2
µLq̈1 + π2 F

2L
q1 − π4 F

16L3

(
3q3

1 + 24q1q2
2

)+ 2
π

µgL = 0,

1
2
µLq̈2 + 4π2 F

L
q2 − 3π4 F

2L3

(
q2

1 q2 + 2q3
2

) = 0.

9.10
1
2
µLp̈1 + π2 F

2L
p1 − π4 F

L3

[
3

16
p3

1 + 3
16

p1q2
1 + 3

2
p1 p2

2 + 1
2

p1q2
2 + q1 p2q2

]
+ 2

π
µgL

= 2
π

f0Lsin (�t) ,

1
2
µLq̈1 + π2 F

2L
q1 − π4 F

L3

[
3

16
q3

1 + 3
16

p2
1q1 + 1

2
q1 p2

2 + 3
2

q1q2
2 + p1 p2q1

]
= 0,

1
2
µLp̈2 + 2π2 F

L
p2 − π4 F

L3

[
3
2

p2
1 p2 + 1

2
q2

1 p2 + p1q1q2 + 2p3
2 + 2p2q2

2

]
= 0,
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1
2
µLq̈2 + 2π2 F

L
q2 − π4 F

L3

[
1
2

p2
1q2 + 3

2
q2

1 q2 + p1q1 p2 + 2q3
2 + 2p2

2q1

]
= 0.

9.12 mẋ1 = p1 − p2 cos θ

5 − (cos θ)2 , mẋ2 = −p1 cos θ + 5p2

5 − (cos θ)2 , ṗ1 = 0, ṗ2 = m2g sin θ − kx2.

9.15 ψ̇ = p1

�
, β̇ = p2

I2
, ṗ1 = −mg

(
H
2

− w

)
sin β cos ψ,

ṗ2 = − p2
1

2�2
(I1 − I2) sin 2.β − mg

(
H
2

− w

)
cos β sin ψ,

� = I1 (cos β)2 + I2 (sin β)2
.

9.17 Ḣ = 2mṘR̈ − m (2R − L) Ṙ�2 = 0,

Ė − Ḣ = 2m (2R − L) Ṙ�2 = ��.

9.20 Define I1 = m1κ
2
1, I2 = m1κ

2
2 +

(
m1 + 1

3
m2

)
L2.

Case (a): Ḣ = I1φ̇φ̈ + I2θ̇ θ̈ + 1
2

(I1 − I2) (sin 2θ) �2θ̇ +
(

m1 + 1
2

m2

)
gLθ̇ sin θ = 0,

Ė = I1φ̇φ̈ + I2θ̇ θ̈ − 1
2

(I1 − I2) (sin 2θ) �2θ̇ +
(

m1 + 1
2

m2

)
gLθ̇ sin θ = ��.

Case (b): Ḣ = I2θ̇ θ̈ + 1
2

(I1 − I2) (sin 2θ) �2θ̇ +
(

m1 + 1
2

m2

)
gLθ̇ sin θ = 0,

Ė = I2θ̇ θ̈ − 1
2

(I1 − I2) (sin 2θ) �2θ̇ +
(

m1 + 1
2

m2

)
gLθ̇ sin θ = �� + �φφ̇.

9.22
1
2

mL2θ̈
[
1 + 8 (cos θ)2

]
− 4mL2θ̇

2 sin θ cos θ − 2p2
2

9mL2

cos θ

(sin θ)3 − mgLsin θ = 0,

p2 = 9
2

mL2ψ̇ (sin θ)2
.

9.25 mR2θ̈ − p2
2 cos θ

mR2 (sin θ)3 + 1
2

mgRsin θ

[
1 + 2 sin θ

(5 + 4 cos θ)1/2

]
= 0,

p2 = mR2ψ̇ (sin θ)2 = 3
4

mgR.

9.27 p2 =
[

Ĩ + Iφ (cos φ)2
]
ψ̇ − Iφφ̇ cos β, p3 = Iφ

(
φ̇ − ψ̇ cos β

)
,

R =1
2

(
mL2 + Iφ

)
β̇

2 − 1
2Iφ Ĩ

[
Iφ (p2 + p3 cos β)2 + Ĩ p2

2

]
+ mgLsin β,

Ĩ = mL2 (1 + cos β)2 + 1
2

Iφ (sin β)2 + IP.

9.30 γ̇ 1 = ψ̇, γ̇ 2 = θ̇ ,

mL2

[
9
2
γ̈ 1 (sin θ)2 + 9γ̇ 1γ̇ 2 sin θ cos θ

]
= 0,

mL2

[
1
2

+ 4 (cos θ)2
]

γ̈ 2 − mL2

(
9
2
γ̇ 2

1 + 4γ̇ 2
2

)
sin θ cos θ = (mg = 2F) Lsin θ.
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9.32 γ̇ 1 = v, γ̇ 2 = θ̇ , ẊG = γ̇ 1 cos θ, ẎG = γ̇ 1 sin θ, mγ̈ 1 = F cos β, Iγ̈ 2 =
−F Dsin β.

9.34
[

1
3

L2 (cos θ)5 − DL(cos θ)4 + D2 cos θ

]
γ̈ 1 +

[
2D2 − 1

2
DL(cos θ)3 (sin θ) γ̇ 2

1

]

= g
[

D − L
2

(cos θ)3
]

(cos θ)3
, γ̇ 1 = θ̇ .

9.37 γ̇ 1 = ψ̇, γ̇ 2 = β̇, γ̇ 1 − c1γ̇ 2 − c2β − c3 = 0,

m
[
k2

1 (sin β)2 + κ2
2 (cos β)2

]
γ̈ 1 + m

(
κ2

1 − κ2
2

) (
γ̇ 1γ̇ 2 − γ̇ 2

1

)
sin β cos β

+ m
(
κ2

1 − κ2
2

)
γ̇ 1� cos β = λ1,

mκ2
2γ̈ 1 + mκ2

1γ̇ 1� cos β − m
(
κ2

1 − κ2
2

)
γ 2

1 sin β cos β = −c1λ1.

9.39 γ̇ 1 = r, γ̇ 2 = θ̇ ,
7
5
γ̈ 1 − r γ̇ 2

2 = 0,

(
r2 + 2

5
R2

)
γ̈ 2 + 2r γ̇ 1γ̇ 2 = 0.

9.42 γ̇ 1 = θ̇ ,
1
2

mL2
[
1 + 8 (cos θ)2

]
γ̈ 1 −

(
4mL2γ̇ 2

1 + 9
2
ψ̇2

)
sin θ cos θ

= (mgL− 2F) sin θ.

9.45 γ̇ 1 = β̇, mκ2
2γ̈ 1 + mκ2

1�1ψ̇ cos β + m
(
κ2

2 − κ2
1

)
ψ̇2 sin β cos β = M.

9.48 γ̇ 1Lcos β + γ̇ 2 sin (θ + β) = 0,(
1
3

m1L2 + m2L2 + I2

)
γ̈ 1 +

(
1
2

m1 + m2

)
Lγ̈ 2 sin θ + I2β̈ = F sin β + NB cos β,

[
m1 + m2 + m3 + I1

R2

(
cos θ

cos β

)2
]

γ̈ 2 +
(

1
2

m1 + m3

)
L
(
γ̈ 1 sin θ + γ̇ 2

1 cos θ
)

− I1

R2
γ̇ 1γ̇ 2

sin θ cos θ

(cos β)2 + I1

R2
γ̇ 2β̇

(cos θ)2 sin θ

(cos β)3

= −F cos (β + θ) − NB sin (θ + β) + k (� − �0) , γ̇ 1 = θ̇ , γ̇ 2 = �̇.

9.50 γ̇ 1 = vA, γ̇ 2 = θ̇ , γ̇ 3 = β̇, ẊA = γ̇ 1 cos (θ + β) , ẎA = γ̇ 1 sin (θ + β) ,[
m1

(
1 + κ2

1

R2

)
+ mC

]
γ̇ 1 − mCγ̈ 2h sin β + mCγ̇ 2

2h cos β = �

R1
,

(
1
2

mκ2
1 + mCh2 + IC

)
γ̈ 2 + 1

2
mκ2

1γ̈ 3 − mCh [γ̈ 1 sin β + γ̇ 1 (γ̇ 2 + γ̇ 3) cos β] = 0,

1
2

mκ2
1 (γ̈ 2 + γ̈ 3) = �.

10.1 |ω̄| = 3.135 rad/s, θ = 94.87◦, �H̄G = −3.130I ′ ī, |ω̄2| = −0.1667 rad/s.

10.3 ωx = 50 rad/s, ωz = 450 rad/s, β = 83.66◦, θ = 86.82◦.

10.6 ω̄ = 7.2902
(
10−5

)
rad/s about an axis through the center of the Earth at 0.1558◦

from the polar axis in the meridional plane at 90◦ from the meridian of impact.

10.8 Precession about the z azis; ω̄ = 7.594ī + 6.275k̄ rad/s @ max (θ) = 45.91◦;
ω̄ = 5.534ī + 6.766k̄ rad/s @ min (θ) = 13.57◦.
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10.11 Looping precession, min (θ) = 53.130◦, max (θ) = 53.300◦, ψ̇ = 0 at θ = 53.199◦.

10.14 ψ = A1 cos
(

ω2

σ
t + ν1

)
+ A2 cos (σ t + ν2) , ω2 = mgL

I ′ , σ = I
I ′ + mL2

,

θ = π

2
+ A1 sin

(
ω2

σ
t + ν1

)
− A2 sin (σ t + ν2) .

10.16
I ′λ
c

� 1, t � I ′�1

c�0
,

I ′

I
= O(1) .

10.19
[
(I + C) (cos θ)2 + (I ′ + A) ψ̇ (sin θ)2 + A

]
ψ̇ + Iφ̇ cos θ = pψ,

I
(
ψ̇ cos θ + φ̇

) = pφ, (I ′ + B) θ̈ + (I + C − I ′ − A)ψ̇2 sin θ cos θ + Iφ̇ψ̇ sin θ = 0.
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Absolute system of units, 15
Absolute acceleration, 11, 14, 136, 147, 150, 647
Absolute displacement, 114, 134, 186
Absolute position, 11, 91, 674
Absolute velocity, 11, 91, 147, 341
Absolute reference frame, 13, 178
Acatastatic constraint, 412
Acceleration

angular, see angular acceleration
centripetal, 36, 61, 71, 134, 148
constraint equation, 510, 513, 517, 519, 520, 601
Coriolis, see Coriolis acceleration
definition of, 10
free fall, 13, 148–150
generalized, see generalized acceleration
in Cartesian coordinates, 45
in curvilinear coordinates, 70–71
in linkages, 190
in rolling, 203–206
in spherical coordinates, 61–62
in terms of quasi-coordinates, 595
mixed kinematical description of, 76
normal, see acceleration, centripetal
of points in a rigid body, 175–176
quasi-, 595, 597
relative, 134, 136
tangential, 34–36

Action integral, 555
Admissible movement, 402, 411, 431
Alembert, Jean Le Rond d’, 23, 391
Allowable point, for moments, 233–234, 236, 319,

341
Angle

azimuthal, 51–52, 58, 637
direction, 92–93
of rotation, 99, 107–110
polar, 58

Angular acceleration
in terms of Eulerian angles, 180
analysis of, 127–128,

procedure, 128–129
of a rigid body, 127
relation to angular velocity components, 143, 276

Angular momentum
definition, 20, 232

derivative of, 20, 234, 275–280, 297–299,
332–333

in free motion, 637–639, 643, 649–650
of a particle, 20
of a rigid body, 233–234, 241–242
of a spinning top, 657–658
of a system of particles, 232
using principal axes, 277

Angular velocity,
definition, 122
analysis of, 127–129
in free motion, 638–640, 643–644
in terms of Eulerian angles, 180
of a rigid body, 136, 175
of the Earth, 148, 670–672

Appell, Paul Emile, 25
Arclength, 30–31, 38, 64, 200–201
Asymptotic series, 663
Augmented method, 511, 519
Axes

body-fixed, 96, 99, 100
coordinate, 3, 45, 241
space-fixed, 100, 103

Axis of rotation, 99–100, 108–110
Axis of symmetry, 180, 242, 244, 270
Azimuthal angle, 51–52, 58, 637

Balanced free gyroscope, 674, 680
Balancing, 302, 304, 320, 333
Ball-and-socket joint, 184, 189, 234
Bicycle, 333
Binormal direction, 34, 43, 44
Body cone, 213–214, 640, 652
Body–fixed,

axes, 96, 99, 100
rotation, 100–101, 105

Calculus of variations, 656–661
Cardan joint, 196–200
Cartesian coordinates, 3, 30, 38, 45
Catastatic constraint, 412
Center

instant, 176, 236
of curvature, 33

719
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Center (cont.)
of mass, 230–232, 234, 248–253, 300, 600
of percussion, 343, 368

Central force, 14,
Centripetal acceleration, see acceleration,

centripetal
Chasle’s theorem, 175–176, 188, 228, 231, 233, 343,

345, 348
Christoffel symbols, 66–67
Classical mechanics, 1, 14, 556
Collar connection, 186–187, 436
Components

of a unit vector, 74, 93–94
of a vector, 3, 43, 45, 95–96
Composite shape, for inertia properties, 253

Computational techniques,
augmented method, 511, 519
constraint stabilization, 520–521
embedded method, 516–519
for holonomic systems, 466–470
integrated multiplier, 510
orthogonal complement, 513–515, 519

Condition number, 515
Configuration constraint, see constraint equations,

configuration
Configuration space, 408–411, 414, 416, 427, 448, 554,

557, 560
Conservation

of energy, 348, 658
of generalized momentum, 583, 667

for a spinning top,
of momentum, 21, 341, 644
of the Hamiltonian function, 578–580

Conservative force, 345–346, 348
virtual work of, 444–445

Constrained generalized coordinates, 398, 400, 409,
432, 437, 456, 544

equations of motion for, 492–494, 508
initial conditions for, 521

Constraint equations, 183, 398, 400–405
acatastatic, 412
catastatic, 412
configuration, 400–405, 409–412, 493–494, 520,

521
holonomic, 403–404, 520, 521
in the configuration space, 409–412, 432–434
nonholonomic, 403–405, 412, 493, 522, 591,
on acceleration, 510, 513, 517, 519, 520, 601
on quasi-velocities, 590, 591, 601, 617
on position, see configuration constraint
on velocity, 189, 190, 401–405, 411, 431, 493, 494,

508, 516, 520, 521
Pfaffian form, 402, 405, 411, 412, 592
relation to constraint forces, 431–433
rheonomic, 411–412, 493, 495
scleronomic, 410–411, 493, 494
time-dependent, 411–412, 493

Constraint condition
ball-and-socket joint, 184, 189, 234

collar, 186–187
for planar motion, 128, 183–184, 186, 364
pin, 185–187
rolling, 200–206
slider, see collar
see also, constraint equation

Constraint force, 349, 350, 379, 391, 431–437, 449
contribution to generalized forces, 550, 493, 495,

536, 599
see also, reaction

Constraint matrix, see Jacobian constraint matrix
Constraint stabilization method, 520–521
Coordinate system, 3, 6, 10, 13, 95

global, 128, 129, 135, 136, 275
Coordinates

affine, 28
Cartesian, see Cartesian coordinates
change due to rotation, 96
curvilinear, see curvilinear coordinates
cylindrical, see cylindrical coordinates
extrinsic, 30, 45
generalized, see generalized coordinates
hyperbolic-elliptic, 68–69
ignorable, 455, 482–485, 657
intrinsic, see path variables
quasi-, see quasi-coordinates
right-handed, 6, 95, 274
spherical, see spherical coordinates

Coriolis acceleration, 54, 61, 71, 135, 571
in motion relative to the Earth, 150–151

Coriolis, G., 24, 54
Curve

parametric representation of, 38–39
properties of, 32–33, 43–44

Curvilinear coordinates, 64–67, 69–71
see also, coordinates

Cycloidal path, 89, 201–202, 661
Cylindrical coordinates, 51–54, 134

and Lagrange’s equations, 450

d’Alembert’s inertial force, 14, 391–392, 394, 620
Degrees of freedom, 183, 188, 397, 400, 404–405, 518,

552, 562, 585, 591
Derivative

of a unit vector, 32–33, 43–44, 52–53, 60, 65–67,
123, 126, 127

of a vector, 9–10, 123
of angular momentum, 20, 232, 275–280
of angular velocity, see angular acceleration
relative to a moving reference frame, 11, 122, 206

Differential equations of motion,
Gibbs-Appell, 600
Hamilton’s, 575
Lagrange’s, 449, 508
see also, computational techniques,

Differential-algebraic equation, 509
Dimensional homogeneity, 15, 16
Direction angles, 92–93
Direction cosines, 92–95,
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for principal axes, 264, 268–270
of an equivalent axis of rotation, 107–110

Displacement, 112–115
definition, 17, 113
Eulerian, 115
infinitesimal, 17, 18, 119–121
kinematically admissible, 410
Lagrangian, 115
of a rigid body, 173–175
relative, 114–115, 120
virtual, see virtual displacement

Dynamic imbalance, 302, 304, 320

Earth
as a moving reference frame, 13, 16, 47–151,

154–158, 672, 680
forces acting on, 15–16, 148, 249–252, 668–672
mass of, 16

Eigenvalue problem
for axis of rotation, 108–109
for principal axes, 268–270
for stability of free motion, 646

Elevation
for gravitational potential energy, 346
of center of mass of a top, 657–665

Ellipsoid of inertia, 263–264, 270
in Poinsot’s construction, 647–652

Elongation, of a spring, 347
Embedding method, 516–519
Energy

mechanical, 348, 350, 520, 572–573, 579
of a spinning top, 659–660
see also kinetic energy, potential energy

Energy principles, see work-energy principles
Equations of motion

Euler’s, 277–278, 298–300,
procedure, 300–301

first order form, 469–471, 509–519
for planar motion, 319–320
for a single-axis gyroscope, 686
for a spinning top, 657–658
for free motion, 644
for unsteady rolling, 504–508
Hamilton’s, 575
Lagrange’s, 449, 508
matrix form, 298, 301, 469–471, 510, 511, 512, 514,

518, 519
Newton’s, 1, 14, 34–35, 46, 54, 62, 231
state-space form, 469–471, 509–519

Equivalent,
vectors, 6
force systems, 250, 297–298, 332, 349, 392, 435,

616
Error,

for a gyrocompass, 680–681
in an asymptotic series, 663
in solving differential equations of motion,

520–521
Euler Lagrange equation, 560, 565

Euler’s equations, 277–278, 298
from Gibbs-Appell equations, 589, 598, 602–603

Euler’s theorem, 106, 109
Euler, Leonhard, 22–23
Eulerian angles,

angular acceleration in terms of, 180
angular velocity in terms of, 180
definition, 178
for an arbitrary rotation axis, 109–110
for a free gyroscope, 673
for a gyrocompass, 678
for a spinning top, 667
for free motion, 638
for rotation of the earth, 669
for unsteady rolling, 505
rotation transformation in terms of, 179

Extrinsic coordinates, 30, 45

Fast top, 662, 664
First moments of mass, 230–231, 234, 248, 250, 253,

340, 598
Force, 14

conservative, 345–346, 348
generalized, see generalized force
gravitational, 16, 150, 230, 248–252, 346
reaction, see constraint force
resultant, see resultant force
spring, 347, 350
work done by, see work

Force-couple system, 251, 297, 332, 344, 349, 395–396
Fork-and-clevis joint, 18
Foucault, Jean Louis, 158
Foucault pendulum, 158
Frame of reference, see reference frame
Free body diagram, 14, 299, 300, 360, 364, 365, 394,

620
Free fall acceleration, 13, 16, 148–150
Free gyroscope, 672–675, 688

stability of, 677
Free motion

of an arbitrary body, 643–647
Poinsot’s construction, 647–652

of an axisymmetric body, 637–640, 652
stability of, 645–647, 652

Frenet’s formulas, 44, 126
Friction, 322–324, 327–328, 330, 351, 365–366

in Lagrange’s equations, 437, 495–496, 502, 509,
536–542

in Gibbs-Appell equations, 591, 600
rolling, 315, 335, 535

Fully constrained system, 202, 204

Galilean invariance, 15
Galileo, Galilei, 21
General motion, 175–176, 228, 300, 598
Generalized acceleration, 469, 470, 508–509, 514, 517
Generalized coordinates,

constrained, 398, 400, 409, 492–494, 516
dependence of kinetic energy on, 467, 582–583
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Generalized coordinates, (cont.)
dependence of potential energy on, 444, 582–583
for a Ritz series, 565–566
in conjunction with quasi-velocities, 589–591, 617
in the configuration space, 408–412, 421, 427,

431–432, 437, 555–557
initial conditions, 521
position in terms of, 415–416, 419, 447
selection of, 396–405, 432, 437, 455–456, 552, 620
unconstrained, 398, 409, 432, 450, 516

Generalized force, 426–428
associated with quasi-coordinates, 595–596, 599
contribution of constraint forces, 431–437, 599
for Coulomb friction, 536–537
for a Ritz series, 567
in the configuration space, 427, 432–433
relation to potential energy, 444–445, 599
relation to power, 579–580

Generalized momentum, 571–573, 582–584
for a gyrocompass, 682
for a spinning top, 657–658

Generalized velocity, 401–402, 408, 411, 420, 467,
494, 575, 579, 583, 589–590

Gibbs-Appell equations, xi, 594–596, 601, 616,
618–619

Gibbs-Appell function, 596, 597–598, 599–600
Gibbs, Josiah Williard, 25, 589

Gimbal of a gyroscope, 672–675, 678, 685
Gimbal walk, 696
Gradient, 270, 348, 410, 578, 649
Gravitation

law of, 16, 150
force-couple resultant, 230, 248–252
potential energy, 346

Gravitational constant, universal, 16, 248
Gravitational system of units, 15–16
Gyrocompass, 677–681
Gyroscope, 461

free, 672–675
stability of, 677
single-axis type, 685–688

integrating type, 687
rate type, 687,

Gyroscopic moment, 299, 320

Hamilton’s canonical equations, 571, 575
Hamilton’s principle, 552–557

using the calculus of variations, 558–561
with Ritz series, 565–568

Hamilton, William Rowan, 24
Hamiltonian function, 520, 572–574

conservation of, 578–580
relation to mechanical energy, 573, 579

Herpolhode, 650
Holonomic constraint, 403, 412, 520, 521

in the configuration space, 409–411
rheonomic, 411
scleronomic, 410

Holonomic system, 432, 449, 466, 492, 494

Ignorable coordinates, 455, 562–564
for a gyroscope, 657, 679

Impulse-momentum principles
angular, 20–21, 338–341
generalized, 582–583
for collisions, 360–366
linear, 19–20, 338–340

Impulsive force, 19–20, 339, 359–360, 364
Independent coordinates, see generalized

coordinates, unconstrained
Inertia

coefficients, 276
ellipsoid, 263–264, 267, 270, 648

see also Poinsot’s construction
matrix, 242, 263, 267–269
moment of, 17, 242, 263
product of, 242–243, 254, 255, 269

Inertia properties
rotation transformation, 258–260, 267–270
translation transformation, 258–260, 263–264,

267–271
tabulation, 697–792

Inertial force, see d’Alembert’s inertial force
Inertial guidance systems, see gyrocompass,

gyroscope
Inertial reference frame, 15–16, 91, 148, 232, 234,

672, 688
Infinitesimal displacement, 17, 18, 120–121, 344, 347,

348, 392, 396, 408–409
Infinitesimal rotations, 121, 123, 127, 344
Initial conditions, 35, 360, 405, 470, 520, 521–522,

639, 643, 644, 658, 687
Instantaneous axis of rotation, 134–135, 176

in free motion, 640
Instantaneous center of zero velocity, 176
Internal forces, 229–230, 233, 332–333, 344, 362, 394,

435, 553
Intrinsic coordinates, 30
Invariable plane, see Poinsot’s construction
Inverse of rotation transformation, 93–94, 100,

108

Jacobi’s integral, 580–582
Jacobian constraint matrix, 403, 433, 493, 510, 511,

513, 599
Jerk, 11

Kane’s equations, xi, 589, 616–622
Kinematically admissible, 402, 410–412, 431–432,

521, 591–592, 599
Kinematics, definition of, x, 1
Kinetic energy

for Lagrange’s equations, 448, 466–468, 508
in Hamilton’s equations, 572–573
in Hamilton’s principle, 553–554, 556, 558
of an elastic bar, 628
of a moving cable, 562
of a gyrocompass, 679
of a particle, 18, 466–467
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of a rigid body, 345, 467
in free motion, 647–650

of a single-axis gyroscope, 686
of a spinning top, 657, 660, 665
of a system of particles, 235–237, 344, 554
rotational, 258, 263, 349, 621, 648
translational, 348, 621

Kinetics, definition of, x, 1

Lagrange multiplier, 433, 493, 495, 508–514, 519,
599–601

Lagrange’s equations, xi, 447–449, 553, 556–557, 578
evaluation of, 450, 467–468, 494
for constrained systems, 493, 509–510, 537
for ignorable coordinates, 585
for quasi-coordinates, 589

Lagrange, Joseph-Louis, 23–24, 392, 447
Lagrangian function, 449, 555, 558, 567, 572,

582–583, 585
Latitude, 58, 148, 680
Law

Newton’s, see Newton’s laws
of dimensional homogeneity, 15, 16
of gravitation, 16, 150

Line of nodes, 179, 181, 277, 638, 643
Linkage, 117–119, 124–125, 190–191
Longitude, 58, 148

Mass, 14
unit of, 15–16
of the Earth, 16

Matrix form,
for vector algebra, 7
of angular momentum, 242, 276
of constraint equations, 403
of equations of motion, 298, 301, 469–470,

508–510, 601
of Hamiltonian function, 574
of inertia properties, 242, 267–270
of kinetic energy, 258, 573
see also, displacement, rotation transformation

Mechanical energy, 348, 350, 543, 572–573, 579–580
in computations, 520
of a top, 659–660

Mixed kinematical descriptions, 73–76
Mohr’s circle, 290
Moment

equation of motion, see Euler’s equations
gyroscopic, 299, 320
of a force, 9
of inertia, see inertia properties
of momentum, see angular momentum
resultant, 20, 21, 229–230, 233

Momentum principles, see impulse-momentum
principles

Newton’s laws, 1, 13–15, 34, 54, 62, 149–150
Newton, Isaac, 14, 22–23
Newtonian relativity, 15

Nonholonomic system, 492, 601
Normal direction, 32–33, 39, 44, 649
Null space, 515
Numerical methods, see computational techniques
Nutation, 179–181, 277

in rolling, 205
in free motion, 638–640, 643–646
of a free gyroscope, 672–674
of a spinning top, 656–665

Orientation, rotation transformation
Orthogonal complement, 513–516, 518
Orthogonality

of principal inertia axes, 269
of unit vectors, 43, 66, 95

Osculating plane, 33–34, 43–44

Parallel axis theorems, 253–255
Partially constrained system, 188, 190
Particle, 11, 14, 20
Path, 11, 30–31, 36, 73, 558

in configuration space, 408–411, 414–415, 554–555
variational, 409–411, 416, 554–555, 557, 560

Path integral, 17–18
Path variables, 30–36, 43–44, 73–75

parametric form, 38–39
Perturbation analysis,

for a free gyro, 673–674
for a spinning top, 663–664
for stability of free motion, 645–646

Pfaffian form, 402–403, 404, 405, 411, 412, 592
Pin connection, 185–187
Planar motion, 19, 76

generalized coordinates for, 397–398
kinematics of, 128, 176, 163–184
kinetics of a rigid body, 242, 299 319–320, 360,

362, 364
Poinsot’s construction, 649–651
Point

for Chasle’s theorem, 175–176, 188, 228, 233, 649
for decomposition of kinetic energy, 236, 243, 245,

248
selection for moment equation, 233–234, 275, 319,

331
Polar angle, 58
Polhode, 650–652
Position,

definition, 2, 6, 11
in Cartesian coordinates, 45
in curvilinear coordinates, 52, 58, 60, 64
in path variables, 30–31, 38
in relative motion, 91–92, 96, 112–113, 120
in terms of generalized coordinates, 415, 419–420
in the configuration space, 410–412
with respect to the Earth, 148–151

Potential energy, 118, 346
and virtual work, 444–445, 554, 556
gravity, 346–347
spring, 347, 552



P1: JzG/KcY P2: JzG

CUFX195-Book CUFX195-Ginsberg 978 0 521 88303 0 November 13, 2007 21:37

724 Index

Pound force, 16
Power, 350, 579–580
Precession, 178, 181, 300

cuspidial, 662–664
in free motion, 638–640, 643–647
looping, 661–662
of a free gyroscope, 672–674
of a gyrocompass, 677–680
of a single-axis gyroscope, 685, 688
of a spinning top, 656–665
of the equinoxes, 248, 252
regular, 639–640
retrograde, 639–640
steady, 306–309, 312–315, 530, 664–665
unidirectional, 660

Principal axes, 244, 264, 267–270, 277, 298, 301, 320
for rotationally symmetric bodies, 269–270

Principle
d’Alembert’s, x, 14, 23, 24, 391–392, 394, 620

see also, principle of dynamic virtual work
Hamilton’s, 24, 553–557, 558–561, 565–568
of dynamic virtual work, x, 392, 394–396, 447,

616–617
of impulse and momentum, see

impulse-momentum principles
of virtual work, x, 392–393
of work and energy, see work-energy principle

Products of inertia, 242–243, 255, 269
Pure rotation, 175–176, 234, 236, 253, 296, 300, 345,

394, 396, 598, 652

Quasi-coordinate, 589–591,
Quasi-velocity, 589–592, 596, 599–601, 617–

622

Radius
of curvature, 32–33, 39
of gyration, 242

Rate gyroscope, 687
Reaction,

description of, 299–301, 333, 391, 432–435,
493–495

impulsive, 339, 364–365
Newton’s Third Law, 14, 149
normal, 35
relation to kinematics, 173, 183, 234, 431–437
see also constraint force, free body diagram

Redundant constraint, 300
Reference frame

absolute, 11, 13, 91, 147–148, 178
angular motion of, 127–129, 147
body-fixed, 96, 99–101
displacement relative to, 114–115
Earth-fixed, 13, 147–148
Galilean, 15, 136
inertial, 15, 136
motion relative to, 11, 134–135, 232, 421
translating, 135–136, 231–232, 638

Relative acceleration, 134–135, 147–151
Relative velocity, 122, 134–135, 147–151

Relative position, 14, 91, 151, 552
Resultant force

for a particle, 14, 17–18, 19, 35, 46, 54, 62, 149,
228

for a rigid body, 228, 296–299, 341, 344–345, 348,
392

for a system of particles, 229
for a system of rigid bodies, 331–333
of gravity, 248–252

Resultant moment, 20–21
for a rigid body, 234, 296–299, 341, 349, 392
for a system of particles, 229–230
for a system of rigid bodies, 331–333
of gravity, 248–252

Rheonomic constraint, 411–412, 493, 495
Right-hand,

rule, 5, 99–100, 121, 176
coordinate system, 6, 45, 52, 59, 65, 95, 269

Rigid body
definition of, 91
equations of motion for, 277–278, 298, 319–320
Gibbs-Appell function for, 597–598
kinematics of, 136, 173–176
virtual displacement of, 421

Rigid system, 190
Ritz, Walther, 25–26
Rolling

kinematics of, 200–206
kinetics of steady motion, 312–315
kinetics of planar motion, 322–324
work done by friction, 351–352
unsteady, 206, 504–508, 522–528

Rotation
about a coordinate axis, see simple rotation
about an arbitrary axis, 106–110

see also, Eulerian angles
body-fixed, 100–101
infinitesimal, 120–121
of the Earth, 13, 15, 147–151
of the osculating plane, 44
pure, 175–176, 234, 236, 253, 296, 300, 345, 394,

396, 598, 652
sequence of, 100–101, 103–105
simple, 99–100
space-fixed, 103–105
spatial, 100, 105, 299

Rotation transformation, 92–96
in terms of Eulerian angles, 109–110, 178–180
inverse of, 93–94
of inertia properties, 253, 258–260

Rotational kinetic energy, see kinetic energy
Routh, Edward John, 24–25
Routh’s method, 583–585

Scleronomic constraint, 410–411, 493, 494
Screw motion, 176
Sequence of rotations, see rotation, sequence
SI units, 15–16
Single-axis gyroscope, 685–688
Singular value decomposition, 514–515
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Sleeping top, 665
Slider, see collar connection
Slug, mass unit, 17
Space cone, 213–214, 640, 652
Space-fixed

axes, 100, 103, 638
rotations, 103–105, 121

Speed, 33, 48–51
Spherical coordinates, 51, 58–62, 70, 168, 246–247

for virtual displacement, 420
Spherical pendulum, 154–158
Spin

Eulerian angle, 179–180
in free motion, 637–640, 643–644
of a free gyroscope, 673–675
of a gyrocompass, 678
of a single-axis gyroscope, 685–686
of a top, 657–665

Spinning top, 656–666
Spring, linearly elastic, 347
Stability

of a gyrocompass, 681–685
of asteady precession, 306–309
of a rolling disk, 532–533
of a servo-driven gyroscope, 675–677
of a sleeping top, 685–666
of free motion, 645–647

State-space equations
for a holonomic system, 469–470
for constrained generalized coordinates, 491,

509–514, 516–519
Static equilibrium, 14, 20, 228, 233, 234, 392–

393
Static indeterminacy, 300
Steady precession, see precession
Stiffness of a spring, 347, 666
Stretch ratio, 64–67
Symmetry, for inertia properties,
System

holonomic, 409–412, 432, 449, 466–468, 492
nonholonomic, 404, 412, 492, 601
of particles, 228–232, 467, 596
of rigid bodies, 331–334, 467
time-dependent, 411–413, 493, 579–580

Tangent-normal components, see path variables
Tangential

direction, 32–33, 38, 44
acceleration, 33–34, 35

Tensor of inertia properties, 259
Torsion

of a curve, 44
of an elastic bar, 560, 628

Transformation
of inertia properties, see inertia properties
oh a unit vector, see rotation transformation

Translation
motion, 15, 91, 115, 175–176, 228, 234
transformation of inertia properties, see parallel

axis theorems

transformation of position coordinates, 91–92,
113, 174

Translational kinetic energy, 348, 621

U. S. Customary units, 16
Unit sphere, see spinning top
Unit vectors

evaluation, 4
for Cartesian coordinates, 3, 4, 6, 45
for curvilinear coordinates, 52–53, 59–61, 64–66,

69–71
for path variables, 32–34, 38–39, 43–44, 126
in a mixed kinematical description, 73–76
matrix representation, 94–95, 259, 267–270
rate of change of, 123, 126, 127, 134, 275, 278
transformation of, see rotation transformation

Units
absolute, 15
gravitational, 15–16
SI, 15–16
U. S. customary, 16

Universal gravitational constant, 16
Universal joint, see cardan joint

Variational path, 409–411, 414–416, 554–555, 557,
560

Vector algebra, 1–7
Vector calculus, 9–11
Velocity

absolute, 11, 91, 147, 341
angular, see angular velocity
definition of, 9–10
for rigid body motion, 136, 173–176
generalized, see generalized velocity
in Cartesian coordinates, 45
in curvilinear coordinates, 53, 60, 69–70
in path variables, 31, 33–35
in rolling, 201–205
in terms of generalized coordinates, 401–403,

419–421, 447, 466, 572, 579
in terms of quasi-coordinates, 589–591, 617–618
mixed kinematical description of, 73–76
of linkages, 124–125, 190–191
relation to virtual displacement, 419–421
relative, 122, 134–135, 147–151

Velocity constraint equations
for generalized coordinates, 401–404, 431, 493,

521
for quasi-velocities, 590, 601
in conjunction with computational methods,

508–520
in a kinematical analysis, 189, 190, 203
in the configuration space, 409–412

Virtual displacement, xi, 392–394, 396
analytical method, 415–416
in terms of quasi-coordinates, 591
in the configuration space, 410–412
kinematical method, 419–421
relation to physical displacement, 416
relation to velocity, 419–421
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Virtual movement, 392–396, 411, 415, 431–432,
435–436, 444, 555, 591

see also, virtual displacement
Virtual work, x–xi, 415, 426–428, 431–432, 435–437,

444, 496, 555, 567
for a rolling body, 437–439
principle of, 392–393
in configuration space, 427–428, 432–433
in terms of quasi-coordinates, 594–596,

599

Weight, 15, 16
Work, 17–18, 343–350

in rolling, 351–352
of a conservative force, 345–348
virtual, see virtual work

Work-energy principle
for a particle, 18
for a system of particles, 235
for a rigid body, 343–350
for a time-dependent system, 579–580
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