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ELEMENTS OF STRING COSMOLOGY

The standard cosmological picture of our Universe emerging from a “big bang”
leaves open many fundamental questions: Is the big bang a true physical singu-
larity? What happens to the Universe at ultra-high energy densities when even
gravity should be quantized? Has our cosmological history a finite or infinite past
extension? Do we live in more than four space-time dimensions? String theory, a
unified theory of all forces of nature, should be able to answer these questions.

This book contains a pedagogical introduction to the basic notions of string
theory and cosmology. It describes the new possible scenarios suggested by
string theory for the primordial evolution of our Universe. It discusses the main
phenomenological consequences of these scenarios, stresses their differences from
each other, and compares them with the more conventional models of inflation.

The first book dedicated to string cosmology, it summarizes over 15 years of
research in this field and introduces current advances. The book is self-contained
so it can be read by astrophysicists with no knowledge of string theory, and high-
energy physicists with little understanding of cosmology. Detailed and explicit
derivations of all the results presented provide a deeper appreciation of the subject.
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Preface

The aim of this book is to provide an elementary, but detailed, introduction to
the possible impact of string theory on the basic aspects of primordial cosmo-
logy. The content of the book includes a discussion of the new models of the
Universe obtained by solving the string theory equations, as well as a systematic
analysis of their phenomenological consequences, for a close comparison with
more conventional inflationary scenarios based on the Einstein equations.

The book is primarily intended for graduate students, not necessarily equipped
with a background knowledge of cosmology and string theory; but any reader
in possession of the basic notions of general relativity and quantum field theory
should be able to benefit from the use of this book (or, at least, of a great part
of it). Some chapters (in particular, Chapters 1, 7 and 8) could also be used
as a “soft” introduction to modern cosmology for string theorists, while other
chapters (in particular, Chapters 2 and 3) as a soft introduction to string theory for
astrophysicists; however, all readers are strongly advised to refer to other, more
specialized books for a rigorous (independent) study of cosmology and string
theory. It should be stressed, also, that this book is not aimed as a comprehensive
and up-to-date review of all research work available in a string cosmology context:
it only provides a pedagogic introduction to the basic ideas and theoretical tools,
hopefully useful to the interested reader as a starting point towards more advanced
research topics currently in progress in this field.

This book grew out of lectures given in May 2001 at the First International
Ph.D. Course on “Gravitational Physics and Astrophysics”, jointly organized by
the Universities of Berlin, Portsmouth, Potsdam, Salerno and Zurich. The style
is that of class lectures: I have tried to be self-contained as much as possible,
and I have not hesitated to insert many computational details and explanations,
which may even appear to be trivial to the expert reader, but which may result
in being of crucial importance for many students, as I have personally verified
during the lectures. Besides organizing known material in a form appropriate to

xi



xii Preface

a pedagogic presentation, the book also presents explicit calculations never seen
in the literature; in addition, it contains new results obtained through simple gen-
eralizations of previous studies. In particular, all topics are discussed (whenever
possible) in the general context of a �d + 1�-dimensional space-time manifold:
known results in d = 3 are thus extended (some of them for the first time) to a
generic number d of spatial dimensions.

A possible objection concerning the explicit absence of exercises and problems
can be preempted by noting that the main text of the various chapters is literally
“filled” with solved exercises, in the sense that all computations are displayed
in full details, including all the explicit passages required for a reader’s easy
understanding. In view of such a large “equation density” in all sections and
appendices, the inclusion of additional exercises seemed to be inappropriate.

Another warning concerns the appendices. In contrast with the common use of
presenting technical details and computations (and with the exception of Appendix
2A), here the appendices are devoted to a self-contained discussion of specific
topics which are closely related to the subject of the chapter, but which are not
essential for the understanding of other chapters, and can be skipped in a first
reading.

It should be explained, finally, why some chapters are characterized by a list of
references much longer than others. The reason is that in some cases (for instance
in Chapters 2 and 3) one can conveniently refer to existing books, which provide
an excellent discussion of the subject; in other cases (for instance in Chapters 7,
8 and 10), no such book is presently available, and one has to resort to a more
detailed bibliography with explicit references to the original papers on the subject.
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Notation, units and conventions

Unless otherwise stated, we adopt the following conventions:
– spatial indices: i� j� k� � � � = 1� � � � � d�

– space-time indices: ��	��� � � � = 0� 1� � � � � d�

– metric signature: g�	 = diag�+�−�−�−� · · · �;
– Riemann tensor: R�	�


 = ���	�

 +��


�	�
 − �� ↔ 	�;

– Ricci tensor: R	� = R�	�
�;

– covariant derivatives: ��V � = ��V � +��

�V 
; ��V� = ��V� −���


V
.
Covariant objects are referred to the symmetric, metric-compatible Christoffel
connection,

��

� = 1

2
g�	

(
��g
	 + �
g�	 − �	g�


)
� (1)

satisfying ��g�	 = 0. We use natural units � = c = kB = 1, where kB is the
Boltzmann constant. The fundamental string mass, Ms, and string length, �s, are
thus related to the string tension T = �2��′�−1 by

M2
s = �−2

s = �2��′�−1� (2)

The four-dimensional (reduced) Planck mass MP, and the Planck length �P, are
related to the Newton constant G (in d = 3 spatial dimensions) by

M2
P = �−2

P = �8�G�−1� (3)

The current experimental value G � 6�709×10−39 GeV−2 [1] then leads to

MP = �8�G�−1/2 � 2�43×1018 GeV (4)

(note the difference from an alternative – often used – definition, MP = G−1/2 �
1�22 × 1019 GeV). In a manifold with D = d + 1 space-time dimensions Eq. (3)
becomes

Md−1
P = �1−d

P = �8�GD�−1� (5)
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where GD is the D-dimensional gravitational coupling constant, and MP, �P are
gravitational scales, possibly different (in principle) from the numerical value (4)
determined by four-dimensional phenomenology. If the geometry of the higher-
dimensional manifold has a factorized, Kaluza–Klein structure, then GD is related
to the four-dimensional Newton constant G through the proper volume of the
internal space �d−3 as follows:

�8�GD�−1Vd−3 = �8�G�−1� Vd−3 =
∫

�d−3

√�g� dd−3x� (6)

The relative strength of Ms and MP is controlled by the scalar dilaton field �,
defined in such a way that, at the tree-level, and in d spatial dimensions,

(
Ms

MP

)d−1

= e�� (7)

Masses, energies and temperatures are usually expressed in eV (or multiples of
eV), and distances in cm (or eV−1), using the equivalence relations:

�1 eV�−1 � 1�97×10−5 cm � 6�59×10−16 s � 8�6×10−5 kelvin−1� (8)

The Planck length, defined as in Eq. (3), corresponds to

�P = �8�G�−1/2 � 8�1×10−33 cm� (9)

The curvature scale of the cosmological manifolds, parametrized by the Hubble
parameter H , is often expressed in Planck units, and the energy densities in units
of critical density c = 3H2/8�G. For the present Universe, in particular,

H0 = 3�2h×10−18 s−1 � 8�7h×10−61MP� (10)

where h = H0/�100 km s−1 Mpc−1�. Recent observations suggest

h = 0�73+0�04
−0�03 (11)

as the current standard [1]. The corresponding critical density is

c�t0� = 3H2
0

8�G
= 3H2

0 M2
P � 1�88h2 ×10−29 g cm−3 � 2�25h2 ×10−120M4

P � (12)

Reference

[1] Particle Data Group webpage at pdg.lbl.gov/





1

A short review of standard and
inflationary cosmology

In this chapter we will recall some basic notions of standard and inflationary
cosmology that will be used later, in a string cosmology context. We will assume
that the reader is already familiar with the geometric formalism of the theory of
general relativity, and with the main observational aspects of large-scale astro-
nomy and astrophysics. We will discuss, in particular, the various assumptions
of the so-called standard cosmological model, the problems associated with its
initial conditions, and the basic aspects of its “inflationary” completion driven by
the potential energy of a cosmic scalar field (further details on the inflationary
scenario will be supplied in Chapter 8). This presentation aims at a self-contained
study of the early cosmological dynamics: for a more detailed introduction, and
a deeper analysis of the topics discussed in this chapter, we refer the interested
reader to [1, 2, 3] for the standard cosmological model, and to [4, 5, 6] for the
inflationary scenario.

1.1 The standard cosmological model

The standard cosmological model, developed during the second half of the last
century, was inspired by two fundamental observational results: the recession of
galaxies, discovered by Hubble [7], and the presence of the Cosmic Microwave
Background (CMB), discovered by Penzias and Wilson [8]. The model relies
upon a number of hypotheses – also motivated by direct and indirect observations
– that we now list, with some illustrative discussion.

1.1.1 Einstein equations

The first assumption is that the gravitational interaction, on cosmological scales
of distance, is well described by the classical theory of general relativity,

1



2 A short review of standard and inflationary cosmology

and in particular by the equations derived from the effective four-dimensional
action

S = − 1
16� G

∫
d4x

√−gR+S� +
∫

d4x
√−g�m� (1.1)

Here S� is the Gibbons–Hawking boundary term [9], required in order to repro-
duce the standard Einstein equations, and �m is the Lagrangian density of the
matter fields, acting as gravitational sources. The variation of the action (1.1) with
respect to the metric g�� yields (see Chapter 2 for an explicit derivation)

G�� ≡ R�� − 1
2
g��R = 8�GT��� (1.2)

where G�� is the so-called Einstein tensor, and T�� is the (dynamical) energy-
momentum tensor of the matter sources, defined by the variation (or functional
differentiation) of the matter action as

�g 	
√−g�m
 = 1

2
√−g T�� �g

��� (1.3)

The right-hand side of Eq. (1.2) represents all the sources gravitationally coupled
to the metric, and therefore includes the possible contribution of the vacuum
energy density associated with a cosmological constant �, and described by the
effective energy-momentum tensor T�� = �g��.

1.1.2 Homogeneity and isotropy

A second assumption is that the spatial sections of the Universe, on large
enough scales of distance, can be described as homogeneous and isotropic (three-
dimensional) Riemann manifolds, geometrically represented by maximally sym-
metric spaces where rotations and translations form a six-parameter isometry
group.

It may be noted that, on scales much smaller than the Hubble radius H−1
0 �

0�9h−1 × 1028 cm, the distribution of visible matter seems to follow a “fractal”
distribution (see for instance [10]), and that it is not very clear, at present, at
which scale the (averaged) matter distribution becomes really homogeneous and
isotropic. The hypothesis of homogeneity and isotropy refers, however, to the
full set of cosmic gravitational sources (including, as we shall see, radiation, dark
matter, dark energy, � � �), and is quite powerful, since it allows a simplified cosmo-
logical description in which the space-time geometry can be parametrized by the
so-called “comoving” chart (or set of coordinates). In that case, the fundamental
space-time interval reduces to

ds2 = b2	t
dt2 −a2	t
d�2	�r
 � (1.4)



1.1 The standard cosmological model 3

where a	t
� b	t
 are generic functions of the time coordinate, and d�2 is the line-
element of a three-dimensional space with constant (positive, negative or zero)
curvature K. Using a set of stereographic coordinates x1� x2� x3�, the metric of
such a maximally symmetric space can be parametrized as [1]

d�2 = dxi dxi +K
	xi dxi
2

1−Kxix
i
� (1.5)

where scalar products are performed with the Euclidean metric �ij .
An important property of the comoving chart is the fact that static observers,

with four-velocity u� = 	u0� �0
, are also geodesic observers. The normalization
condition g��u

�u� = 1, with the metric (1.4), gives indeed u0 = b−1	t
 and

du0

d�
= − ḃ

b3
� �00

0	u0
2 = ḃ

b3
� (1.6)

which implies that the field u0 satisfies the geodesic equation

du0

d�
+�00

0	u0
2 = 0� (1.7)

Here � is the proper time (related to the coordinate time t by d� = √
g00dt =

b	t
dt), and the dot denotes differentiation with respect to t. In addition, if ui = 0,
then

dui

d�
= −�i

00	u
0
2 = − 1

2b2
gij
(
2�0gj0 − �jg00

)≡ 0� (1.8)

Thus, in the absence of non-gravitational forces, static observers are always at rest
with respect to comoving coordinates, even if the geometry is time dependent.

The existence of such observers provides a natural reference frame for syn-
chronizing clocks, and suggests the use of a convenient time coordinate, the
so-called cosmic time, which corresponds to the proper time of the static observ-
ers. The choice of this time coordinate leads to the synchronous gauge, defined
by the condition g00 = 1. It is also convenient to parametrize the maximally
symmetric space of Eq. (1.5) with spherical coordinates r� ����. By setting
x1 = r sin � cos�, x2 = r sin � sin�, x3 = r cos�, and differentiating to compute
d�2, in the synchronous gauge of the comoving chart, one finally arrives at the
well-known Robertson–Walker metric, defined by

ds2 = dt2 −a2	t


[
dr2

1−Kr2
+ r2	d�2 + sin2 � d�2


]
� (1.9)

Here t is the cosmic-time coordinate, and the constant K (with dimensions L−2)
controls the intrinsic curvature of the space-like t= const hypersurfaces, represent-
ing three-dimensional sections of the space-time manifold. With our conventions
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the function a	t
, called the “scale factor”, is dimensionless, while the comoving
radial coordinate r has conventional dimensions of length.

Another choice of time coordinate (often used in this book) is the so-called
conformal gauge, defined by the condition g00 = a2. The time parameter of this
gauge, usually denoted by �, is thus related to the cosmic time t by dt = ad�.
The choice of the conformal gauge is particularly convenient for spatially flat
manifolds (K = 0), whose metric can then be written in conformally flat form,
using cartesian coordinates, as

ds2 = a2	�

(
d�2 −dxi dxi

)
� (1.10)

A space-time described by the Robertson–Walker metric is characterized by a
number of interesting kinematical properties concerning the motion of test bodies
and the propagation of signals (see for instance [1]). For the purposes of this book
it will be enough to recall two effects.

The first effect concerns the spectral shift of a periodic signal, a shift originating
from the well-known temporal slow-down produced by gravity. Indeed, at any
given time t, all points of the three-dimensional spatial sections at constant
curvature will be affected by exactly the same gravitational field, so that any local
process will be equally slowed-down with respect to the same process occurring
in the flat Minkowski space, quite independently of its spatial position. However,
if the scale factor a	t
 varies with time, then the curvature radius of the spatial
sections (and the associated intensity of the local effective gravitational field) will
also vary with time. This will produce a difference in the local gravitational field
(and in the local “slow-down”) between the time tem of emission of a periodic
signal of pulsation �em, and the time tobs > tem when the same signal is observed
with pulsation �obs. The ratio of the two pulsations will be clearly proportional
to the ratio of the local gravitational intensities at tem and tobs, and thus inversely
proportional to the spatial curvature radius.

For a more precise computation of the spectral shift �em/�obs we may consider
a photon of four-momentum p�, traveling along a null geodesic of a spatially
flat Robertson–Walker metric. In the cosmic-time gauge such a null path has
differential equation dt = âni dxi, where n̂ is a unit vector (�̂n� = 1) specifying the
photon direction; the null photon momentum is, in this gauge, p� = p0	1� n̂ i/a
,
with g��p

�p� = 0. The momentum is parallelly transported along the geodesic,
and for the energy p0 we have, in particular,

dp0 = −���
0 dx�p� = �0

ij dxipj

= −ȧp0n̂i dxi = − ȧ

a
p0 dt� (1.11)
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The integration gives p0 = �/a	t
, where the integration constant � represents
the proper frequency of the photon in the Minkowski space locally tangent to the
given cosmological manifold.

The local frequency measured by a static, comoving observer u� is thus time
dependent, being determined by the projection p�u� = �/a	t
. A photon emitted
at t = tem and received at t = tobs, even in the absence of a (possible) Doppler
effect due to the relative motion of source and emitter, will be characterized by
the spectral shift

�em

�obs
= 	p�u�
em

	p�u�
obs
= aobs

aem
(1.12)

(see also Eqs. (8.172)–(8.173), and the discussion of Section 8.2). If the Uni-
verse is expanding, then aobs > aem for tobs > tem, and the Robertson–Walker
metric produces an effective redshift of the signals received from distant sources,
i.e. �obs < �em. In particular, since observations are carried out at the present
time, tobs = t0, it may be useful to introduce a redshift parameter z	t
 defined as

1+ z	t
 = a	t0


a	t

≡ a0

a	t

� (1.13)

which controls the relative “stretching” of the wavelengths of the received radi-
ation,

z = ��

�
= �obs −�em

�em
� (1.14)

A second important feature of the Robertson–Walker kinematics, which we
recall here for later applications, is the possible existence of “horizons”, i.e. of
surfaces with relevant causal properties. For any given observer we may consider,
in particular, the particle horizon, which divides the portion of space-time already
observed from the one yet to be observed, and the event horizon, which divides the
observable portion of space-time from the one causally disconnected [11]. For their
precise definition we must refer to the limiting times tm and tM corresponding,
respectively, to the maximum past extension and future extension of the time
coordinate on the given cosmological manifold.

Let us consider a signal propagating towards the origin along a null radial
geodesic of the metric (1.9) (ds2 = 0, d� = 0 = d�), satisfying the equation
dt/a = dr/

√
1−Kr2, and received by a comoving observer at rest at the origin

of the polar coordinate system. A signal emitted from a radial position r = r1, at
a time t = t1, will be received at r = 0 at a time t = t0 > t1, such that

∫ r1

0

dr√
1−Kr2

=
∫ t0

t1

dt
a	t


� (1.15)
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The considered signal was emitted at a proper distance d	t
 from the origin which,
at time t0, is determined by

d	t0
 = a	t0

∫ r1

0

dr√
1−Kr2

= a	t0

∫ t0

t1

dt
a	t


� (1.16)

In the limit t1 → tm we then define the “particle horizon”, for the given observer
at time t0, as the spherical surface centered at the origin r = 0 with proper radius

dp	t0
 = a	t0

∫ t0

tm

dt
a	t


� (1.17)

This surface encloses the maximal portion of space physically accessible to direct
observation from the origin of the coordinate system at the time t0. Points located
at a proper spatial distance d > dp	t0
 cannot be causally connected with the
given observer at the given time t0 (they may become causally connected at later
times, at least in principle).

Consider now a radial signal emitted towards the origin at time t0, from a point
located at a comoving position r2, and received at the origin at a time t2 > t0.
The proper distance of the emitter from the origin, at time t0, is then

d	t0
 = a	t0

∫ r2

0

dr√
1−Kr2

= a	t0

∫ t2

t0

dt
a	t


� (1.18)

In the limit t2 → tM we can then define the “event horizon”, at the time t0, as
the spherical surface centered at the origin with proper radius

de	t0
 = a	t0

∫ tM

t0

dt
a	t


� (1.19)

Signals emitted from points located at a proper distance d > de	t0
 will never be
able to reach the origin. In other words, points with spatial separations d > de

will never become causally connected, even extending the time coordinate to the
extremal future limit allowed by the given cosmological manifold.

The above horizons exist if the integrals of Eqs. (1.17) and (1.19) are con-
vergent, of course. Consider, for instance, a cosmological solution describing a
Universe expanding for ever from an initial singularity, and parametrized in cos-
mic time by the power-law scale factor a	t
 = t�, with � > 0, and 0 ≤ t ≤ 	:
it can be easily checked that the particle horizon exists if 0 < � < 1, while the
event horizon exists if �> 1. For � = 1 neither the particle horizon nor the event
horizon exists. The definitions of horizon given here will be used in the follow-
ing chapters, and will be applied in particular in Section 5.3 to illustrate some
important differences between standard and string cosmology models of inflation.
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1.1.3 Perfect fluid sources

A third assumption (or set of assumptions) of the standard cosmological
model refers to the gravitational sources that we need to specify in order to
solve the Einsten equations. According to the standard model the sources of
the cosmological gravitational field on large scales, after averaging over pos-
sible spatial fluctuations, can be represented as a barotropic, perfect fluid with
energy-momentum tensor

T�
� = 	�+p
u�u

� −p���� (1.20)

where the energy density � and pressure p depend only on time, and are related
by the equation of state

p

�
= � = const� (1.21)

In addition, the fluid is assumed to be at rest in the comoving frame. Thus, in
the synchronous gauge, u� = 	1� �0
 and T�

� becomes diagonal,

T 0
0 = �	t
� T

j
i = −p	t
�

j
i � (1.22)

With the given sources we are now able to write explicitly the Einstein equations
(1.2), using the following (more convenient, but equivalent) form:

R�
� = 8�G

(
T�
� − 1

2
T���

)
� (1.23)

For the Robertson–Walker metric (1.9) the non-zero components of the Ricci
tensor, in mixed form, depend only on time, and are given by

R1
1 = R2

2 = R3
3 = − ä

a
−2
(
H2 + K

a2

)
�

R0
0 = −3

ä

a
�

(1.24)

where H = ȧ/a (the dot indicates the derivative with respect to cosmic time).
The time and spatial components of Eqs. (1.23) then provide, respectively, the
following independent equations:

ä

a
= −4�G

3
	�+3p
 �

ä

a
+2
(
H2 + K

a2

)
= 4�G	�−p
�

(1.25)
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Combining them in order to eliminate ä/a, and differentiating the energy density
� with respect to time, leads to the system of first-order differential equations:

H2 + K

a2
= 8�G

3
� � (1.26)

�̇+3H	�+p
 = 0 � (1.27)

The last equation can also be directly obtained from the covariant conservation of
the energy-momentum tensor, �� T

�
� = 0, which is a consequence of the contracted

Bianchi identity �� G
�
� = 0 (see Eq. (1.2)).

In order to solve the above system of equations for the three unknown functions
a	t
, �	t
, p	t
, it is necessary to use the equation of state p = p	�
, which in our
case corresponds to the barotropic condition (1.21). In general, the gravitational
sources of the standard cosmological model can be represented as a mixture of
barotropic perfect fluids,

� =∑
n

�n� p =∑
n

pn� pn = �n�n� (1.28)

with no energy transfer between the different fluid components, so that the
energy-momentum tensor of each fluid is separately conserved. Equation (1.27)
then yields, for each component,

�n	t
 = �n	t0


(
a

a0

)−3	1+�n


� (1.29)

where �n	t0
 is an integration constant. Since the energy density of the different
components has a different time behavior, the evolution of the Universe will then
be characterized by different phases, each of them dominated by different fluid
components.

In each cosmological phase the time evolution of the scale factor can be
obtained by substituting Eq. (1.29) into (1.26), and solving the corresponding
differential equation for a	t
. If, in particular, we are interested in the very early
time evolution we can neglect the spatial curvature term (see below), and we
obtain the scale factor

an	t
 =
(

t

t0

)2/3	1+�n


� �n 
= −1� (1.30)

where t0 is an integration constant. The case �n = −1 corresponds to the
energy-momentum tensor of a cosmological constant

T�
� = ����� (1.31)
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which describes an effective fluid with equation of state pn = −�n = −� = const
(see Eq. (1.22)). In this case Eq. (1.29) is still valid, and the integration of
Eq. (1.26) (with K = 0) gives the exponential solution

an	t
 = exp�H	t− t0
�� H =
(

8�G�

3

)1/2

= const� (1.32)

The standard cosmological model, in its original formulation [1], assumes that
the cosmic fluid consists of two fundamental components: incoherent matter (�m)
with zero pressure pm = 0, and radiation (�r ) with pressure pr = �r/3. The
radiation component of the cosmic fluid represents the contribution of all massless
(or very light) relativistic particles (photons, gravitons, neutrinos, � � �), while the
pressureless matter component takes into account the large-scale contribution
of the macroscopic gravitational sources (galaxies, clusters, interstellar gas, � � �),
and the contribution of cosmic backgrounds of heavy, non-relativistic particles
(baryons, as well as other, more exotic, possible dark-matter components). As
we shall see later in more detail (see Eq. (1.39)), the present energy density of
incoherent matter is roughly of the same order of magnitude as the critical density,
�m	t0
 ∼ �c	t0
, where [12]

�c	t0
 = 3H2
0

8�G
= 3H2

0M
2
P � 2�25h2 ×10−120M4

P� (1.33)

and is thus much greater than the radiation energy density today, since [12]

�r	t0
 � 4�15h−2 ×10−5�c	t0
� (1.34)

Therefore, according to the standard cosmological model, the present scale factor
(assuming negligible spatial curvature) should evolve in time as a	t
 ∼ t2/3.

As the Universe expands, however, the energy density of the matter component
decreases in time as the inverse of the proper volume, �m ∼ a−3, i.e. more slowly
than the radiation component, �r ∼ a−4 (see Eq. (1.29)). Going backwards in time
one thus necessarily reaches the so-called equality time, t = teq, characterized by
the same amount of matter and radiation energy density, �m	teq
 = �r	teq
. At
earlier times, t < teq, the standard model then predicts the existence of a primordial
phase where the radiation is the dominant component of the total energy density,
and the scale factor evolves with different kinematics, a	t
 ∼ t1/2, according to
Eq. (1.30).

It is worth stressing that both the matter-dominated and the radiation-dominated
regimes, according to the standard model, correspond to a phase of expansion
which is decelerated and has decreasing curvature, i.e. satisfies

ȧ > 0 � ä < 0 � Ḣ < 0 � (1.35)
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as one can easily verify by differentiating Eq. (1.30) for � = 0 and � = 1/3 (with
a power-law scale factor, we can take H as a good indicator of the time behavior
of the space-time curvature scale). However, the recent large-scale observations
concerning both the Hubble diagram of Type Ia Supernovae [13, 14] and the
harmonic analysis of the CMB anisotropies [15, 16, 17] seem to indicate, with a
growing level of precision and confidence [18, 19, 20], that the present Universe
is undergoing a phase of accelerated expansion, ä > 0.

Such observations are thus compatible with the first of Eqs. (1.25) only if the
sources of cosmic gravity are presently dominated by a component with negative
enough pressure (i.e. �+3p < 0), so as to produce a kind of “cosmic repulsion”
on large scales. Adding explicitly this new source �q (dubbed “quintessence”, or
“dark energy”) to the usual dust matter sources �m, Eq. (1.26) becomes

H2 + K

a2
= 8�G

3
	�m +�q
 � (1.36)

where �q > �m, and pq/�q ≡ �q < −1/3. Dividing by H2 we can then obtain a
relation between the various components of the cosmic fluid in critical units, i.e.

1 = �m +�q +�K� (1.37)

where

�m = �m

�c
� �q = �q

�c
� �K = − K

a2H2
� (1.38)

The simplest model of dark energy is a cosmological constant, �q = � = const
(which corresponds to �q = −1). In this case, replacing �q with �� = �/�c, the
results of present observations can be summarized as follows [12]:

�m = 0�24+0�03
−0�04� �� = 0�76+0�04

−0�06� (1.39)

These results refer to the particular case K = 0, but can be consistently applied
to the present cosmological state where the allowed deviations of �m +�� from
1 are very small: indeed,

�K = −0�015+0�020
−0�016 (1.40)

according to a recent combination of supernovae and CMB data [20].
The experimental results are not very different from those of Eq. (1.39) even if

�q does not correspond to a cosmological constant, but represents the contribution
of some weakly coupled, time-dependent field, as will be discussed in Section 9.3.
In such a case, the effective equation of state �q = pq/�q of the dark-energy
component is presently constrained by the limits

�q = −0�97+0�07
−0�09� (1.41)
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obtained by combining supernovae and CMB data [20] (and assuming K = 0). In
any case, it may be noted that the dilution of the dark-energy density due to the
expansion of the Universe, �q ∼ a−3	1+�q
, is much slower than the corresponding
dilution of the matter component, �m ∼ a−3. Therefore, going backward in time,
the dominance of �q and the associated cosmic acceleration tend to disappear
quickly. In a decelerated Universe, on the other hand, the contribution of the spatial
curvature decreases as �K	t
 ∼ 	aH
−2, going backward in time. Considering
the present limits (1.40) we are thus fully entitled to neglect the spatial curvature
during the early stages of the standard cosmological evolution.

It is also worth mentioning that the addition of �q (with negative pressure) to
the Einstein equation (1.36) may drastically change the conventional, well-known
picture (see for instance [1]) where a Universe with positive spatial curvature
�K < 0 (also called a “closed” Universe) will collapse in a finite time with
a future “big crunch”, while a Universe with �K > 0 (also called an “open”
Universe) will expand forever. If �q 
= 0 there are indeed closed models with
�m +�q > 1 which are of the “hyperbolic” type, and evergrowing, and open
models with �m+�q < 1 which are of the “elliptic” type, and recollapsing. This
possibility can be easily explored by assuming for instance �q =�, and performing
the numerical integration of Eq. (1.36) for various different initial values of
�m and �q (see for instance [21]). If, in addition, �q 
= −1, and/or �q is time
dependent, we can find different types of singularities eventually characterizing
the future configuration of our Universe: “big rip” singularities [22] and “sudden”
singularities [23].

In order to obtain experimental information on the parameters characterizing
our present cosmological state, such as �m	t0
, �q	t0
, �q, H0, we can use two
important quantities which can be directly confronted with observations: (1) the
so-called “age of the Universe”, t0, and (2) the luminosity distance, dL	t0
.

(1) The first parameter t0 simply (and more properly) represents the time scale
of our present cosmological state, and can be defined starting from Eq. (1.36).
Expressing the scale factor in terms of the redshift parameter (1.13), i.e. a	t
 =
a0	1+z
−1, and using the explicit time evolution (1.29) of the �m��q components,
Eq. (1.36) can then be recast in the form

	1+ z
−2
(

dz
dt

)2

= H2	z
� (1.42)

where

H	z
 = H0

[
�m	t0
	1+ z
3 +�q	t0
	1+ z
3+3�q +�K	t0
	1+ z
2]1/2

= H0	1+ z

{
1+ z�m	t0
+�q	t0


[
	1+ z
1+3�q −1

]}1/2
� (1.43)
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(We have used the definitions (1.38) and, in the second line of the equation,
we have eliminated �K through Eq. (1.37).) Let us now integrate Eq. (1.42)
from t = 0 to t = t0, assuming that z → 	 for t → 0 (in other words, we are
extrapolating the standard model up to the so-called “big bang” singularity a = 0
at t = 0). We obtain

t0 =
∫ 	

0

dz
	1+ z
H	z


� (1.44)

which defines t0 as a function of the four parameters H0, �m	t0
, �q	t0
 and �q.
The precision of this definition can be improved by inserting into Eq. (1.43) the

contribution of the radiation energy density, which scales as �r ∼ 	1 + z
4, and
becomes important at earlier epochs than equality (i.e. for z >∼ 104, see below). In
any case, because of our ignorance about the very early cosmological evolution,
one cannot determine t0 from any direct observation; however, given the age of
some component of our present Universe, one can put lower limits on t0, and
then derive indirect constraints on the dark-matter and dark-energy parameters.

(2) What can be directly measured is the correlation between the luminosity
and the redshift of signals received from very distant sources. To obtain such a
correlation we can consider a signal propagating towards the origin along a null
radial geodesic, and satisfying the differential condition

dr√
1−Kr2

= dr
[
1+a2

0H
2
0�K	t0
r

2
]1/2 = dt

a
= 	1+ z


a0
dt = dz

a0H	z

(1.45)

(we have used the definitions of �K and of z, and Eq. (1.42) for dt/dz). Suppose
that the signal was emitted at a distance r from the origin: by integrating between
0 and r the first term of the above equation, taking into account the intrinsic sign
of �K , and using the elementary results

∫ dx√
1+�x2

=

⎧
⎪⎨

⎪⎩

x� � = 0�

�−1/2 sinh−1	
√
�x
� � > 0�

�−1/2 sin−1	
√
�x
� � < 0�

(1.46)

we can then obtain from Eq. (1.45) the comoving distance of the source as a
function of the redshift of the received signal, r	z
, as follows:

a0 r	z
 =

⎧
⎪⎪⎨

⎪⎪⎩

∫ z
0

dz′
H	z′
 � K = 0�

H−1
0 ��K�−1/2 sinh

[
H0 ��K�1/2 ∫ z

0
dz′

H	z′


]
� K < 0�

H−1
0 ��K�−1/2 sin

[
H0 ��K�1/2 ∫ z

0
dz′

H	z′


]
� K > 0�

(1.47)

where H	z
 is defined by Eq. (1.43).
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The above relation for r	z
 cannot be directly applied to observations, however,
because we do not know the comoving radial distance of the various astrophysical
sources. For pratical applications we must use, instead of the radial distance, the
notion of apparent and absolute magnitude, commonly used to set the distance
scales of astronomical observations. Let us consider, for this purpose, a source of
massless radiation located at a distance rem from the origin, with absolute emitting
power (or luminosity) Lem = 	dE/dt
em. The energy flux received at r = 0, per
unit of time and surface, at time t = t0, is then given by

L0 = 1

4�d2
0

(
dE
dt

)

0
� (1.48)

where

d0 ≡ d	t0
 = a	t0

∫ rem

0

dr√
1−Kr2

≡ a0 rem	z
 (1.49)

is the proper distance of the source at time t0, expressed as in Eq. (1.47). Because
of the frequency shift (1.12), the received energy will be shifted by the factor
	dE
0 = 	dE
em	aem/a0
. The time intervals will also be shifted, for the same
reason, as 	dt
0 = 	dt
em	a0/aem
. Taking into account the total shift of the
received power, we can thus express the apparent luminosity L0, for a source at
a distance r, at the time t0, as

L0 = Lem

4�d2
0

(
aem

a0

)2

= Lem

4�a2
0r

2
em	1+ zem


2
� (1.50)

We can now introduce the so-called “luminosity distance” of the source, defined
as the proper distance dL	z
 such that Lem/L0 = 4�d2

L	z
. For a source located
at a distance r	z
 we obtain, using Eq. (1.47),

dL	z
 = a0 r	z
	1+ z
 = 	1+ z


H0 ��K�1/2 �

[
H0 ��K�1/2

∫ z

0

dz′

H	z′


]
� (1.51)

where the function � is defined as � 	x
 = sinh x if �K > 0, � 	x
 = sin x

if �K < 0, and � 	x
 = x if �K = 0. The conventional astronomical unit of
luminosity is the apparent magnitude m, defined by

m = −2�5 log10 L0 + const� (1.52)

where the constant is conventionally fixed by defining the apparent magnitude of
the pole star to be m = 2�15. Comparing Eqs. (1.50) and (1.52) we finally obtain

m	z
 = 5 log10 dL	z
+ cM� (1.53)

where cM is a z-independent quantity related to the absolute magnitude M (i.e. to
the absolute luminosity) of the source (see also [1]).
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Fitting the experimental data for m	z
 in terms of the curves generated by
the theoretical predictions (1.51) and (1.53) it becomes possible, in principle, to
determine the parameters H0, �m	t0
, �q	t0
 and �q contained in H	z
. This
analysis is usually performed using the luminosity distance of the various models,
computing the so-called “distance modulus”, i.e. the difference between the appar-
ent and absolute magnitude m−M , and finally plotting the difference �	m−M


between the distance modulus of a given model and the distance modulus of the
hyperbolic empty model with �m = 0 = �q.

This last special model is characterized by �K = 1, and corresponds to the well-
known Milne parametrization of the globally flat Minkowski space, represented
in Robertson–Walker form by a linear (cosmic time) evolution, a = t/t0, and
by spatial sections with constant negative curvature K = −1/t2

0. The luminosity
distance for such a model, according to Eqs. (1.51) and (1.43), is given by

d0
L	z
 = 	1+ z


H0
sinh ln	1+ z
 = z	2+ z


2H0
� (1.54)

A convenient phenomenological representation of the distance–redshift relation
is then obtained through the variable

�	m−M
 = 5 log10 dL	z
−5 log10 d
0
L	z


= 5 log10

{
2	1+ z


z	2+ z
 ��K�1/2�

[
H0 ��K�1/2

∫ z

0

dz′

H	z′


]}

� (1.55)

where H	z
 is given by Eq. (1.43). Note that such a relation can be easily extended
to a generic model containing an arbitrary number of sources �n	t
, evolving
independently according to Eq. (1.29), provided we replace H	z
 with the more
general expression

H	z
 = H0

[

�K	t0
	1+ z
2 +∑
n

�n	t0
	1+ z
3+3�n

]1/2

� (1.56)

1.1.4 Thermal equilibrium

Another important assumption of the standard cosmological model concerns the
spectral distribution of the radiation fluid. Following present observational evid-
ence, the radiation is assumed to be in a state of thermodynamic equilibrium
at a proper temperature T , with a Planck or Fermi–Dirac distribution according
to the bosonic or fermionic character of the various radiation components. The
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energy distribution, per unit volume and per unit logarithmic frequency, can then
be written in the form

d�	�� t


d log�
≡ �

d�
d�

= N

2�2

�4

e�/T ±1
(1.57)

(see [1, 5]), where the + and − signs correspond to the fermionic and bosonic
cases, respectively, and N is the number of independent polarization states (for
instance, N = 2 for photons, ultrarelativistic electrons and positrons, N = 1 for any
relativistic neutrino/antineutrino species). Integrating over all modes we obtain
the total energy density, which is given by

�b	t
 = �2

30
Nb T

4
b (1.58)

for pure bosonic radiation, and by

�f 	t
 = 7
8
�2

30
Nf T

4
f (1.59)

for pure fermionic radiation. For a thermal mixture of Nb bosonic and Nf fermionic
states the total energy density can then be written as

�r = �2

30
N T

4 � (1.60)

where

N =∑
b

Nb

(
Tb

T

)4

+ 7
8

∑

f

Nf

(
Tf

T

)4

(1.61)

is the total effective number of degrees of freedom in thermal equilibrium at
temperature T .

It may be useful, for later applications, to recall that the entropy S of a system
in thermal equilibrium at temperature T , characterized by proper volume V ∼ a3,
pressure p, and energy density �, must satisfy the differential thermodynamic
condition

dS = 1
T
�d	�V
+pdV� � (1.62)

It follows that the thermal entropy S is exactly conserved during the standard cos-
mological evolution, thanks to the conservation equation (1.27), which (multiplied
by V ) can be rewritten in differential form as

V d� = −3
da
a
	�+p
V = −	�+p
dV� (1.63)

Substituting into Eq. (1.62) this condition leads in fact to dS = 0, which implies
an exact adiabatic evolution for each decoupled component of the cosmic fluid in
thermal equilibrium.
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Using T and V as independent variables, differentiating Eq. (1.62) twice, and
imposing the integrability condition �2S/�V �T = �2S/�T �V , one also obtains [1]

T dp = 	�+p
dT � (1.64)

which allows one to rewrite Eq. (1.62) as

dS = 1
T
�d	�V
+d	pV
−V dp� = d

[
V

T
	�+p


]
� (1.65)

The integration provides the entropy density � , for a generic equation of state
p = ��,

� = S	T�V


V
= 1+�

T
�� (1.66)

For a radiation fluid, in particular, � = 1/3 and � = 4�/3T , a result valid for
bosons as well as for fermions. For a thermal mixture, with Nb bosonic and Nf

fermionic states, we can use Eqs. (1.58) and (1.59) to obtain

�r	t
 = 2�2

45
g T

3 � (1.67)

where

g =∑
b

Nb

(
Tb

T

)3

+ 7
8

∑

f

Nf

(
Tf

T

)3

(1.68)

is the effective number of degrees of freedom contributing to the thermal entropy
density at a given time t. It is important to stress that this number, as well as
the number N of Eq. (1.61), is in general time dependent in a cosmological
context, and that a change in g (due for instance to the disappearance of some
degrees of freedom from the thermal mixture) must necessarily be accompanied
by a corresponding variation of the temperature, in order for the total entropy to
be conserved.

The direct integration of Eq. (1.64) provides another important relation between
� and T for a fluid in thermal equilibrium, namely

T ∼ ��/	1+�
� (1.69)

The time evolution of �, on the other hand, is determined by the solution (1.29)
of the conservation equation. The combination of these two results implies that
the proper temperature of the thermal mixture is not a constant in the Robertson–
Walker geometry, but evolves in time as

T	t
 ∼ a−3�� (1.70)

A radiation fluid, in particular, has � = 1/3 and T	t
 ∼ a−1	t
. It follows that the
radiation temperature is redshifted by the cosmological expansion exactly as the
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proper frequency �	t
 (see Eq. (1.12)). The same conclusion can be reached by
combining Eqs. (1.60) and (1.29).

Thus, although the radiation becomes colder because of the expansion, the ratio
�/T is constant, and the shape (1.57) of the (bosonic and fermionic) spectral
distributions does not change in time (even if the overall height of the peak of the
distributions decreases, being controlled by T 4). This means that the condition
of thermal equilibrium is preserved in the course of the standard cosmological
expansion: as a consequence, one can take the CMB temperature T� as a useful
evolution parameter – like the cosmic time, or the space-time curvature radius –
to which to refer the various phases of the history of our Universe. Using as a
reference the present value of the CMB temperature [12],

T0 ≡ T�	t0
 = 2�725±0�001 K ∼ 2�3×10−4 eV� (1.71)

one can compute, for instance, the temperature at the epoch of matter–radiation
equality, t = teq, when �m = �r . From the Einstein equations we have �r/�m ∼
a−1	t
, hence,

�r	t0
/�m	t0


�r	teq
/�m	teq

= aeq

a0
= 1

1+ zeq
� (1.72)

From the condition of thermodynamic equilibrium, on the other hand, 	1+zeq

−1 =

T0/Teq. We can therefore write

Teq = T0 	1+ zeq
 = T0
�m	t0


�r	t0


� 0�7×104T0h
2
(
�m

0�3

)
� 1�6h2

(
�m

0�3

)
eV

� 2×104h2
(
�m

0�3

)
K� (1.73)

where we have used Eqs. (1.34) and (1.71), and a typical value of the matter
density suggested by the present data (see Eq. (1.39)).

During the radiation-dominated epoch the temperature is directly related to
another important evolution parameter, the curvature scale H	t
. Indeed, using
Eqs. (1.26) and (1.60), and neglecting the contribution of the spatial curvature,
one obtains

H	t
 =
(
�2N 

90

)1/2
T 2	t


MP
� (1.74)

As a simple application, also useful for future discussions, this equation can be
used to estimate the curvature scale at the epoch of matter–radiation equality,
when the radiation temperature is given by Eq. (1.73).
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For a precise computation of N we need to take into account that the cosmic
radiation fluid at t = teq, according to the standard model of particle interactions,
should contain two bosonic degrees of freedom, associated with the polarization
states of the photon, and six fermionic degrees of freedom, associated with the
three neutrino flavors and the corresponding antineutrinos (we are neglecting
other, possibly sub-leading, contributions such as that of gravitons, see Chapter 7).
However, neutrinos are slightly colder than photons, since the photon gas has
been heated up by the annihilation of the electron/positron pairs taking place well
before teq, at a temperature of about 0�43 MeV [1]. Indeed, at the epoch of electron
annihilation, the conservation of the entropy associated with the thermal mixture
of photons (�) and electron/positron (e±) pairs has caused a jump in the electro-
magnetic temperature, from an initial value identical to the neutrino temperature,
T = T�, to a new value T = T� such that �	�
=�	�� e±
. Taking into account that
the e± pairs contribute to the fermionic degrees of freedom before annihilation,
and using Eqs. (1.67) and (1.68), one obtains from entropy conservation

g 	�
T
3
� = 2T 3

� = g 	�� e±
T 3
� =

(
2+ 7

8
×4
)
T 3
� � (1.75)

from which

T� =
(

11
4

)1/3

T�� (1.76)

Let us now consider the total radiation energy density (1.60), where we take T�

as the reference temperature. After the e± annihilation epoch we have Nb = 2,
Nf = 6, so that

N =∑
b

Nb + 7
8

∑

f

Nf

(
T�

T�

)4

= 2+ 42
8

(
4
11

)4/3

� 3�36 � (1.77)

At the time of matter–radiation equality, neglecting the spatial curvature and a
possible dark-energy contribution, the total energy density is �	teq
 = �m +�r =
2�r	teq
. Using Eqs. (1.60), (1.73) and (1.77) one finally obtains

Heq =
(

3�36�2

45

)1/2 T 2
eq

MP
� 3�7×10−55h4

(
�m

0�3

)2

MP� (1.78)

This value is still a very tiny fraction of the Planck mass, but is nevertheless
much greater than the present curvature scale [12]:

H0 � 8�7h×10−61MP � 2�35×10−6Heq

(
0�3
�m

)2

h−3� (1.79)

The two curvatures H0 and Heq will be used as convenient reference scales in
the following chapters.
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The standard cosmological model provides a detailed thermal history of the
Universe [1, 5], and suggests an evolution scenario where an initially hot, dense
and highly curved configuration expands, becoming cooler and flatter. This scen-
ario is in excellent agreement with important observational data referring to our
present cosmological state, such as those concerning the galactic recession velo-
cities and the relic background of microwave radiation. It is also consistent with
the primordial mechanisms of nucleosynthesis and baryogenesis, which can only
take place in the presence of a sufficiently high temperature.

The cosmological solutions of the standard model, however, cannot be ex-
tended indefinitely backward in time. In the radiation-dominated solution, for
instance, the energy density and the temperature diverge at a fixed instant of time,
conventionally chosen to coincide with t = 0:

t → 0 ⇒ � ∼ T 4 ∼ a−4 ∼ t−2 → 	 � (1.80)

At the same instant of time the curvature invariants also diverge:

t → 0 ⇒ (
R��R

��
)1/2 ∼

(
R����R

����
)1/2 ∼ H2 ∼ t−2 → 	 � (1.81)

This singularity is a consequence of rigorous theorems formulated within the
theory of general relativity (see for instance [24]), and cannot be removed even by
abandoning the symmetry hypotheses underlying the Robertson–Walker metric
(see for instance the discussion of the Kasner solution in [2]). It can be shown, in
particular, that a geodesic time-like curve of the standard model, evolved backward
in time from any given finite epoch t0, reaches the singularity at t = 0 in a finite
value of its affine parameter (i.e. in a finite proper time interval). At the classical
level, the space-time cannot be extended beyond a singuarity, and this implies
that the time t = 0 (the so-called “big-bang” singularity) should be interpreted,
within the standard cosmological model, as the beginning of space-time, and as
the birth of the Universe itself.

This conclusion could be avoided if some drastic modification of the standard
scenario were to take place before reaching the initial singularity. After all, the
standard cosmological model is based on general relativity, i.e. on a classical
theory which is not guaranteed to be valid when the space-time curvature becomes
large in Planck units, and the Universe enters the quantum gravity regime.

On the other hand, as already stressed in this section, recent observations
indicate that the standard cosmological model has to be modified even at the
present low-curvature scales, in order to account for the “cosmic repulsion”
producing an accelerated space-time expansion. In addition, as we shall see in the
next section, there are many valid reasons (other than the existence of a singularity)
why the standard cosmological model should be modified when the curvature
reaches high enough scales (i.e. at early enough cosmological epochs). These
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primordial modifications lead to the introduction of the so-called inflationary
scenario, which will be illustrated in the next section.

1.2 The inflationary cosmological model

The present observed values of the cosmological parameters, if taken as initial
conditions to evolve our Universe backward in time according to the standard
picture, lead us to a primordial state characterized by somewhat “unnatural”
properties, even without reaching the initial singularity. A dynamical explanation
of such peculiar properties of the primordial Universe is possible, provided the
epoch of standard (decelerated) expansion is preceded by an appropriate phase
of accelerated evolution, dubbed “inflation” [25, 26, 27]. We start this section by
presenting simple arguments that motivate the introduction of such a phase.

1.2.1 Standard kinematic problems

A first argument is based on the so-called “flatness problem”. As already pointed
out in Section 1.1, the spatial curvature today provides only a small, sub-dominant
contribution to the total space-time curvature (see Eq. (1.40)). This contribution,
however, is not a constant,

��K� ∼ 	aH
−2 ≡ r2	t
� (1.82)

being controlled by the parameter r	t
 which is a monotonically increasing func-
tion of time in the standard cosmological model. For an expanding, power-law
scale factor, a	t
 ∼ t�, with 0 < �< 1 and t → 	, one obtains

t → 	 ⇒ r	t
 = 	aH
−1 = ȧ−1 ∼ t1−� → 	� (1.83)

so that r	t
 is increasing in both the matter-dominated (� = 2/3) and radiation-
dominated (� = 1/2) eras. This implies that the contribution of the spatial
curvature becomes less and less significant as we go back in time, according to
the standard-model equations.

Let us consider, for instance, the Planck epoch t = tP, defined as the time when
H =MP and �= �c = 3M4

P. Using the kinematic properties of the standard model
(a∼H−2/3, a∼H−1/2 for the matter- and radiation-dominated eras, respectively),
we can rescale the parameter r	t
 to the time tP as follows:

rP

r0
≡ r	tP


r	t0

= 	aH
0

	aH
eq

	aH
eq

	aH
P
=
(

H0

Heq

)1/3(
Heq

MP

)1/2

� (1.84)
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Using Eqs. (1.78) and (1.79) for the values of H0 and Heq, and adopting the
conservative constraint ��K	t0
� < 0�1, we obtain

��K	tP
� = ��K	t0
�
(
rP

r0

)2
<∼ 10−60� (1.85)

Such a large suppression of the spatial curvature with respect to the space-time
curvature represents a rather unnatural initial condition, and requires a significant
amount of fine-tuning. Also, what makes the problem even more serious is the fact
that a violation of the above upper limit by only a few orders of magnitude would
be enough to forbid the formation of our present cosmological configuration. In
that case the Universe would enter (much before the present epoch) a curvature-
dominated phase (��K� ∼ 1), which would lead to a subsequent collapse if K >

0, and which would not be appropriate to sustain the formation of large-scale
structures if K< 0.

The initial condition (1.85) can be dynamically explained, however, if the
phase of standard evolution is preceded by a primordial phase during which
the function r	t
 decreases in time (instead of growing, as in Eq. (1.83)). It
then becomes possible to start from a “natural” set of initial conditions for this
primordial epoch, characterized by r ∼ 1, provided that the decrease of r during
such an epoch is large enough to compensate the subsequent growth produced
by the standard evolution.

As an example of this non-standard phase let us consider again a power-law
scale factor, a	t
 ∼ t�, with t → 	. If � is large enough (in particular, � > 1),
then the function r	t
 decreases in time:

t → 	 ⇒ r	t
 = ȧ−1 ∼ t1−� → 0� (1.86)

It is straightforward to check that such a scale factor describes accelerated expan-
sion,

ȧ

a
= �

t
> 0 �

ä

a
= �	�−1


t2
> 0 � (1.87)

hence the term inflation used to denote this phase, complementary to the decel-
erated evolution of the standard cosmological model (see Chapter 5 for a general
classification of the various classes of inflationary kinematics). As will be shown
later, this kind of accelerated expansion can be obtained from the Einstein equa-
tion using, as gravitational source, a scalar field with an appropriate exponential
potential (see Eqs. (1.120) and (1.121)).

The presence of such an inflationary epoch, besides solving the flatness prob-
lem, also provides a solution to the so-called horizon problem of the standard
cosmological model. The standard cosmological evolution (a∼ t�� �< 1) is char-
acterized, in fact, by the existence of particle horizons (see Section 1.1), which
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control, at any given instant of time, the maximum size of the spatial regions
within which causal interactions take place. The proper size of the particle horizon
is of the order of the Hubble radius H−1, and grows linearly with the cosmic
time, according to Eq. (1.17):

dp	t
 = a	t

∫ t

0

dt′

a	t′

= t

1−�
= �

1−�
H−1	t
� (1.88)

Let us consider the spatial section of the Universe included within our current
particle horizon, namely the portion of space of typical size H−1

0 , currently ac-
cessible to our direct observation. Going backward in time, the proper volume of
this spatial region decreases as a3, and therefore its proper radius decreases as
a∼ t�. The radius of the particle horizon, i.e. of the causally connected portion of
space, also decreases going backward in time, but goes linearly with the cosmic
time (according to Eq. (1.88)), and thus faster than the scale factor (recall that
� < 1). As a consequence, the portion of space that we are currently observing
was, in the past, much bigger than the corresponding extension of the particle
horizon: in other words, many parts of the currently observed Universe were not
causally connected. If we rescale, for instance, the proper size of the present
observable Universe, H−1

0 , down to the Planck epoch t = tP, when the horizon
size was H−1

P = M−1
P , we obtain a proper radius much larger than the horizon:

a	tP


a	t0

H−1

0 = r	t0


r	tP

M−1

P ∼ 1029M−1
P � M−1

P � (1.89)

Given such initial conditions, we are led to the questions: why is the current
Universe so homogeneous and isotropic, or why is the average CMB temperature
everywhere the same, as if all the portions of space we are now observing were
in the past in causal contact, and had time to interact and thermalize?

An interesting solution of this problem arises from noticing that the ratio
between the horizon size (∼ H−1) and the proper size of a spatial region (∼ a) is
governed by the same function r	t
 = 	aH
−1 as controls the ratio between the
spatial curvature and the space-time curvature. A sufficiently long inflationary
phase, which makes r	t
 decreasing and which is able to solve the flatness problem,
can thus simultaneously also solve the horizon problem. Indeed, if r	t
 decreases
as time goes on, the causally connected regions expand faster than the Hubble
horizon: at the end of inflation one then precisely obtains a configuration which
corresponds to the “unnatural” initial conditions of the standard cosmological
scenario (see Fig. 1.1).

How long does the inflationary phase have to be in order to solve the flatness
and horizon problems? The answer depends on both the expansion rate and the
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inflation

standard
evolution

time

t f

t i

t 0

H–1(t)

a(t)

Figure 1.1 Qualitative evolution of the Hubble horizon (dashed line) and of the
scale factor (solid curve). The time coordinate is on the vertical axis, while the
horizontal axes are space coordinates spanning a two-dimensional spatial section
of the cosmological manifold. The inflationary phase extends from ti to tf , the
standard cosmological phase from tf to the present time t0. The shaded areas
represent causally connected regions at different epochs. At the beginning of
the standard evolution the size of the currently observed Universe (bounded by
a	t
) is larger than the corresponding Hubble radius (bounded by H−1); all its
parts, however, emerge from a spatial region that is causally connected at the
beginning of inflation.

beginning of the inflationary epoch. In any case, the decrease of the function
r	t
, from the beginning ti to the end tf of inflation, has to be large enough to
compensate for its subsequent increase from tf to the present time t0. This defines
the following necessary condition to be satisfied by a successful inflationary
epoch:

(
rf

ri

)
<∼
(
r f

r0

)
� (1.90)

where rf ≡ r	tf
, and so on. Assuming for the inflationary phase the power-law
evolution (1.86), one then obtains the condition

(
tf
ti

)1−�

=
(
Hi

Hf

)1−�

<∼
(

rf

req

)(
req

r0

)
=
(
Heq

Hf

)1/2
(

H0

Heq

)1/3

� (1.91)

which determines tf , i.e. the scale Hf at which inflation ends, as a function
of � and ti. It may be useful to notice that, for scale factors following a
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power-law evolution in time, the function r is proportional to the conformal time
coordinate: r ∼ ȧ−1 ∼ � = ∫ a−1 dt. The condition (1.90) then directly provides
the minimum duration of inflation in conformal time, i.e.

∣
∣
∣
∣
�f

�i

∣
∣
∣
∣ <∼

∣
∣
∣
∣
�f

�0

∣
∣
∣
∣ � (1.92)

We have inserted the absolute value because, as we shall see later, inflationary
(accelerated) scale factors are parametrized by a power-law evolution within a
range of negative values of the conformal time coordinate.

The presence of a primordial inflationary phase, characterized by accelerated
kinematics, is today universally accepted as the most natural complement of
the subsequent decelerated expansion, driven by the standard radiation/matter
fluids. The presence of such an inflationary phase allows us to explain the
peculiar initial conditions of the standard cosmological model; in addition, it
provides a dynamical mechanism for the origin of the large-scale structures
and of the small CMB anisotropies (as will be discussed in Chapter 8). It
is therefore natural to try to address in the inflationary context the crucial
problem of the standard cosmological model, i.e. the presence of the initial
singularity.

The premises are encouraging. One of the necessary (although not sufficient)
conditions for avoiding the singularity is the violation of the so-called condition of
“geodesic convergence” [24], for any time-like or null geodesic u�. This condition
reads, in our notations,

R��u
�u� ≥ 0 � u�u

� ≥ 0 � (1.93)

and is also equivalent, using the Einstein equations, to the so-called “strong energy
condition” imposed on the gravitational sources,

T��u
�u� ≥ 1

2
Tu�u

�� (1.94)

For a comoving geodesic u� = 	1� �0
 of the Robertson–Walker metric, and for
a perfect fluid source, the above conditions are violated when p < −�/3, which
implies R0

0 = −3ä/a < 0, i.e. just when the expansion is accelerated (ä > 0),
and hence inflationary. It is worth noticing, at this point, that a typical example
of an inflationary solution (which is also, historically, the first example [25,
28]) is the de Sitter solution, which describes a maximally symmetric, four-
dimensional manifold with constant positive curvature, and which is indeed a
regular solution of the Einstein equations (all curvature invariants are constant
and finite everywhere).
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1.2.2 de Sitter inflation

The matter source for the de Sitter solution corresponds to an effective energy-
momentum tensor of the type (1.31), where the cosmological constant � may
be interpreted as the “vacuum” energy density associated with a scalar field (the
“inflaton”), frozen at the minimum ! = !0 of an appropriate potential. Consider
the action for a self-interacting scalar field !, minimally coupled to gravity,

Sm = 1
2

∫
d4x

√−g
[
g�� ��! ��!−2V	!


]
� (1.95)

The variation of Sm with respect to ! yields the equation of motion

���
�!+ �V

�!
= 0� (1.96)

which admits the constant solution ! = !0, ��!0 = 0, provided !0 extremizes
the scalar potential 	�V/�!
!=!0

= 0. The energy-momentum tensor of the scalar
field,

T�� = ��! ��!− 1
2
g��
[
	�!
2 −2V	!


]
� (1.97)

for !=!0 assumes the form (1.31), with �= V	!0
= const, and the correspond-
ing Einstein equations (1.26) and (1.27) are identically satisfied by the regular de
Sitter solution with constant scalar curvature R = −8�GT = −32�GV	!0
.

Using an appropriate, spatially flat (K = 0) chart, the solution can be represented
in exponential form (see Eq. (1.32)) as

ds2 = dt2 −a2	t
�d�x�2 � a	t
 = eHt �

H =
[
V	!0


3M2
P

]1/2

= const � −	 ≤ t ≤ 	 � (1.98)

This solution describes accelerated expansion at constant curvature, ȧ > 0, ä > 0,
Ḣ = 0. Introducing the conformal time coordinate,

� =
∫ t dt′

a	t′

= −e−Ht

H
= − 1

aH
� −	 ≤ � ≤ 0 � (1.99)

it can be written in a conformally flat form,

ds2 = a2	�

(
d�2 −�d�x�2) � a	�
 = 	−H�
−1� (1.100)

and the condition (1.90) of sufficient inflation becomes

ri
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=
∣
∣
∣
∣
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�f

∣
∣
∣
∣=
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= eH	tf−ti
 >∼

r0

rf
� (1.101)
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It can be easily checked, in this form, that a very short duration (in units of H−1)
of the accelerated phase may be enough to compensate for large variations of the
function r, even if inflation occurs at very primordial epochs.

Suppose, for instance, that the inflationary phase ends when Hf = 10−5MP (in
many models, higher values of the curvature scale are inconsistent with CMB
observations, as we shall see in Chapter 7), and that the Universe immediately
enters the radiation-dominated regime. The radiation temperature associated with
tf is then of the order of the grand unification theory (GUT) scale, Tf ∼ 1015 −
1016 GeV, according to Eq. (1.74). For exponential (or quasi-exponential) infla-
tion, on the other hand, the time duration of the accelerated phase �t = tf − ti can
be conveniently expressed in terms of the “e-folding factor”, N = ln	af/ai
. In
terms of N , the condition (1.101) then becomes

N = ln
(
af

ai

)
= H�t

>∼ ln
(
r0

rf

)
= 1

2
ln

(
Hf

Heq

)

+ 1
3

ln
(
Heq

H0

)
(1.102)

(we have used Eq. (1.91)). For Hf = 10−5MP one obtains N >∼ ln 1027 � 62, i.e.
�t >∼ 62H−1, where H is the curvature scale of the de Sitter manifold.

The de Sitter solution may give an appropriate description of the primor-
dial inflationary phase; however, it cannot be extended forward in time towards
“too late” epochs, since the Universe must enter into the standard decelerated
phase that allows nucleosynthesis and the formation of large-scale structures,
and that eventually converges to our present cosmological configuration. The
transition (also called “graceful exit”) between the inflationary and the standard
regime is usually implemented, in conventional models of inflation, by assum-
ing that the scalar field is not exactly constant, frozen at the minimum of its
potential; instead, it is initially displaced from this minimum, and “slow-rolls”
towards it.

1.2.3 Slow-roll inflation

To illustrate this possibility we start by considering the cosmological equations
with the energy-momentum tensor of the scalar field as the only gravitational
source. Also, we assume that we are given an initial spatial domain of size
smaller than (or comparable to) the initial horizon radius H−1, in which the spatial
inhomogeneities of the scalar field are negligible, ��i!� � �!̇�. Restricting to this
spatial domain we can then neglect the spatial dependence of our variables, and
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we can treat the scalar field as a perfect fluid at rest in the comoving frame, with
the following effective energy density and pressure,

� = !̇2

2
+V	!
 � p = !̇2

2
−V	!
 (1.103)

(see Eq. (1.97)), acting as the source of a homogeneous and isotropic Robertson–
Walker geometry. Combining Eqs. (1.25) and (1.26), neglecting K, and using the
identity ä/a = Ḣ +H2, we are then led to the following independent Einstein
equations:

3H2 = 8�G� = 8�G

(
!̇2

2
+V

)

� (1.104)

2Ḣ = −8�G	�+p
 = −8�G!̇2 � (1.105)

We may add to this system the scalar field equation (1.96), which reads

!̈+3H!̇+ �V

�!
= 0� (1.106)

For !̇ 
= 0 this equation is not independent, however, since it can be obtained by
the differentiation of Eq. (1.104) and its combination with Eq. (1.105).

The dynamics of the slow-roll regime can be conveniently illustrated by using
the scalar field as the independent variable (replacing cosmic time) of our differ-
ential equations. Denoting with a prime the differentiation with respect to !, and
dividing Eq. (1.105) by !̇ (assuming a monotonic evolution with !̇ 
= 0), we obtain

2H ′ = −�2
P!̇ (1.107)

(recall that �2
P = 8�G). Inserting !̇ from this equation into Eq. (1.104) we are

led to the first-order equation

H ′2 − 3
2
�2

PH
2 = −1

2
�4

PV� (1.108)

which is equivalent to the Hamilton–Jacobi equation for the gravity-scalar field
system [29]. Let us also define, for later applications, the following useful
parameters:

"H = − Ḣ

H2
= −d lnH

d lna
= 2

�2
P

H ′2

H2
� (1.109)

�H = − !̈

H!̇
= −d ln !̇

d lna
= 2

�2
P

H ′′

H
(1.110)

(we have used Eq. (1.107) to obtain the last equalities of both definitions). The
subscript H makes explicit reference to the Hamilton–Jacobi formalism.
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The so-called slow-roll regime corresponds to a sufficiently slow evolution
of the scalar field, initially dominated by the “geometrical friction” term H!̇,
and characterized by a kinetic energy which is negligible with respect to the
scalar potential. More precisely, the scalar field is slow-rolling if the following
conditions are valid:

!̈ � H!̇ � !̇2 � V � Ḣ � H2� (1.111)

The slow-roll regime is thus implemented in the limit in which the parameters
(1.109) and (1.110) are very small ("H � 1, �H � 1), and very slowly varying
("̇H � 0, �̇H � 0, to first order). In this limit we can immediately integrate
Eq. (1.109) to obtain H = 	"Ht


−1. A second integration leads to the scale factor
a	t
 ∼ t1/"H . Using conformal time,

a	�
 ∼ 	−�
−	1+"H
� (1.112)

One thus obtains an inflationary (i.e. accelerated) scale factor which approximates
the de Sitter metric in the limit "H → 0 (see Eq. (1.100)).

The cosmological dynamics during the slow-roll regime is well described by
the two independent equations

3H2 = �2
PV� 3H!̇ = −V ′� (1.113)

obtained from Eqs. (1.108) and (1.106), respectively, using the conditions "H � 1,
�H � 1. Differentiating with respect to ! the first equation, we obtain

H ′

H
= V ′

2V
� (1.114)

Inserting this condition into the exact definitions (1.109) and (1.110) we are led
to approximate relations defining two new parameters, " and � [30], satisfying

"H � 1

2�2
P

(
V ′

V

)2

≡ "� �H � −"+�� � ≡ V ′′

�2
PV

� (1.115)

and often used for the computation of the spectra of the metric perturbations
amplified by inflation (see Section 8.2). The smallness of these two parameters
guarantees the “flatness” of the potential V	!
, and the consequent slowness of
the motion of ! towards the minimum.

The slow-roll equations (1.113) can be formally integrated, for any given V	!
,
using the exact differential relations da/a = Hdt, dt = d!/!̇, and writing the
scale factor in the form
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a	t
 = ai exp
(∫ t

ti

H dt
)

= ai exp
(∫ !	t


!i

H d!

!̇

)

= ai exp
(

−�2
P

∫ !	t


!i

V

V ′ d!
)
� (1.116)

while !	t
 is obtained by integrating the equation

!̇ = − V ′

3H
= − 1√

3�P

V ′

V 1/2
� (1.117)

This solution is consistent provided the evolution of ! given by Eq. (1.117) is
sufficiently slow (!̇ → 0), and the scale factor (1.116) approximates the expo-
nential de Sitter solution (H → const). A useful parameter, in such a context, is
the number of e-folds N	t
 between a given time t and the end of inflation tf ,

N	t
 = ln
af

a	t

=
∫ tf

t
H dt� (1.118)

Using Eq. (1.116) we can relate N	t
 to the corresponding value of the inflaton
field at the same time t, namely,

N	t
 = N	!	t

 = �2
P

∫ !

!f

V

V ′ d!� (1.119)

This relation will be applied in Chapter 8 to parametrize the primordial spectrum
of metric perturbations obtained in the context of slow-roll inflation.

A simple example of an inflationary solution of the slow-roll type can be
implemented, in practice, using an appropriate exponential potential [31],

V	!
 = V0 e−�P!
√

2/p� (1.120)

where p and V0 are positive parameters. In this case the Einstein equations (1.104)
and (1.105) are solved by the particular exact solution

a = a0t
p�

�P! =√2p ln

[

�Pt

√
V0

p	3p−1


]

� (1.121)

which for p > 1 satisfies the kinematic conditions of power-law inflation (see
Eq. (1.87)). The computation of H , Ḣ , !̇ and !̈ for this solution, together with
the use of the exact definitions (1.109) and (1.110), leads to

"H = �H = p−1� (1.122)

For p� 1 the above solution (1.121) thus describes a phase of slow-roll inflation,
which approaches de Sitter inflation in the limit p → 	.
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Another efficient mechanism for generating slow-roll solutions is based on
simple polynomial potentials of the type V ∼ !n, provided they are flat enough
to satisfy the conditions " � 1 and � � 1 (a typical example is the so-called
“chaotic” inflationary scenario [32], which includes the simplest case n = 2).
For such potentials V ′/V = n/!, and the total e-folding factor (computed from
Eqs. (1.118) and (1.119)) takes the form

N = ln
(
af

ai

)
= �2

P

2n
	!2

i −!2
f 
 � (1.123)

Moreover, V ′′/V ∼ !−2, and the condition � � 1 requires very large values of
the initial inflaton field in Planck units, 	�P!i


2 � 1, for the slow-roll regime
to be valid. But this automatically guarantees an efficient inflationary expansion,
N � 1, according to Eq. (1.123).

It must be noted that the slow-roll parameters associated with a polynomial
potential are (slowly) evolving in time during inflation, in contrast with the case
of the exponential potential where the parameters are constant (see Eq. (1.122)),
and are in principle associated with an “eternal” duration of the phase of inflation.
For models based on polynomial potentials the end of the inflationary phase may
automatically occur as soon as the rolling velocity of the inflation increases,
near to the minimum of the potential. In particular, when the effective mass V ′′
becomes of order H , the inflaton enters a regime of rapid oscillations characterized
by the approximate equality of kinetic and potential energy, �!̇2� � 2�V �. This
regime preludes the inflaton decay and the consequent production of a cosmic
background of relativistic particles, eventually becoming the dominant source of
the standard, radiation-dominated era [5].

1.2.4 Initial singularity

A phase of slow-roll evolution, of the type illustrated by the above examples,
seems to provide a more realistic (and probably even more natural) model of
inflation than the one based upon the de Sitter solution, which requires instead a
scalar field rigidly trapped at the minimum of its potential. Slow-roll solutions,
however, do not describe a regular geometry like the de Sitter manifold, and
therefore do not provide a solution to the singularity problem of the standard
cosmological model. Indeed, the curvature decreases (even if slowly) during
the slow-roll phase and this implies that, going backward in time, the Universe
emerges from a singular state. The suppression of Ḣ during the slow-roll evolution
moves the singularity backward in time towards much earlier epochs than in the
standard scenario, but it does not remove it.
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It should be noted, on the other hand, that even the exact inflationary solution
(1.98), describing exponential expansion at constant curvature, does not com-
pletely remove the initial singularity. This solution, in fact, represents the de Sitter
manifold in a chart that is not geodesically complete: a geodesic observer of such
a coordinate system, starting from the origin, can reach a point at infinite spatial
distance during a finite proper-time interval.

The geodesic incompleteness of the solution (1.98) is shown by recalling
that the four-dimensional de Sitter manifold can be represented [33] as a
pseudo-hypersphere (or hyperboloid) of radius R0 = (

3M2
P/�

)1/2 = H−1 =
const, embedded into a five-dimensional pseudo-Euclidean space with metric
�AB = 	+�−�−�−�−
, spanned by the cartesian coordinates zA = 	z0� z1� � � � z4
.
The hyperboloid has equation

−�ABz
AzB = 	zi
2 + 	z4
2 − 	z0
2 = H−2� (1.124)

where A�B = 0� � � �4, and i = 1�2�3. The metric (1.98) can then be obtained by
defining on the hyperboloid the intrinsic, four-dimensional cartesian chart x� =
	t� xi
, and embedding the hypersurface into the higher-dimensional manifold
through the following parametric equations,

zi = eHtxi�

z0 = 1
H

sinh	Ht
+ H

2
eHtx2

i � (1.125)

z4 = 1
H

cosh	Ht
− H

2
eHtx2

i �

satisfying Eq. (1.124). Differentiating, and substituting into the five-dimensional
form ds2 = �AB dzA dzB, one obtains the line-element (1.98) with exponential
scale factor. However, even for xi and t ranging from −	 to +	, the given
parametrization does not cover the full de Sitter manifold, but only a portion of
it, defined by the condition z0 ≥ −z4 (for t → −	 one reaches the border of the
parametrized region, marked by the null ray z0 = −z4).

A geodesically complete chart, covering the whole de Sitter hyperboloid, is
obtained by considering a solution of Eq. (1.26) with � = −p = � and with
non-vanishing (constant, positive) spatial curvature K = H2 = 	�/3M2

P
. The
corresponding four-dimensional metric can then be written in the form

ds2 = dt2 − cosh2	Ht


[
dr2

1−H2r2
+ r2 d�2

]
� (1.126)

and is related to the five-dimensional hyperboloid through the parametric equa-
tions
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z0 = H−1 sinh	Ht
�

z1 = H−1 cosh	Ht
 cos#�

z2 = H−1 cosh	Ht
 sin# cos�� (1.127)

z3 = H−1 cosh	Ht
 sin# sin � cos!�

z4 = H−1 cosh	Ht
 sin# sin � sin!�

Their differentiation, and substitution into the five-dimensional Minkowski form,
leads to

ds2 = dt2 −H−2 cosh2	Ht

[
d#2 + sin2 #d�2] � (1.128)

which reduces to Eq. (1.126) after setting H−1 sin# = r. It is straightforward to
check that the intrinsic chart x� = 	t�#� ��!
, with −	 ≤ t ≤ 	, 0 ≤ # ≤ �,
0 ≤ � ≤ �, 0 ≤ ! ≤ 2�, provides a full coverage of the hypersurface (1.124) (see
for instance [33]).

By using the regular, complete de Sitter solution to eliminate the initial sin-
gularity we are led to a picture in which the primordial Universe enters a phase
that can be extended (in a geodesically complete way) towards past infinity,
according to the metric (1.126), keeping a constant, finite curvature controlled
by �. However, the kinematic properties of such a phase are determined by
the scale factor a	t
 = cosh	Ht
, describing a Universe which is initially con-
tracting (at t → −	), starting from an infinitely large spatial extension, and
which becomes inflationary expanding only at large enough positive times,
t → +	.

Unfortunately, in models where the complete de Sitter solution is due to the
potential energy of a scalar field satisfying standard causality and weak energy
(� ≥ 0) conditions, it seems impossible (using the Einstein equations) to include
a smooth transition from the contracting to the expanding phase [34, 35]: starting
from the exponentially contracting state, the Universe is doomed to collapse
towards the singularity a → 0, without “bouncing” to reach eventually the phase
of accelerated expansion. In other words, known models of standard, potential-
dominated inflation cannot be “past-eternal” [36].

Thus, for a successful model of de Sitter (or quasi de Sitter) potential-dominated
inflation, the Universe has to enter the exponential regime already in the state of
expansion. Such a state, as we have seen, cannot be arbitrarily extended backward
in time without singularities, even in the case of the exact solution (1.98). We
can say, therefore, that an inflationary phase driven by the potential energy of
a scalar field mitigates the rapid growth of the curvature typical of the standard
cosmological model, and shifts back in time the position of the initial singularity,
without completely removing it, however (see Fig. 1.2)).
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standard
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Figure 1.2 Qualitative evolution of the curvature scale in the standard cosmo-
logical model, and in models of de Sitter inflation and slow-roll inflation.

The problem of the initial configuration of the standard cosmological model,
solved by inflation, then reappears (even if in a more relaxed form) for the infla-
tionary phase, whose effectiveness still depends on the choice of an appropriate
initial state. The question that arises is, in particular, the following: does there
exist a dynamical mechanism able to “prepare” the appropriate initial inflation-
ary state, producing (for instance) a homogeneous space-time domain that is
already characterized by an exponential expansion (the “second half” of the de
Sitter solution), and that can smoothly evolve towards the standard cosmological
configuration?

One possible approach to this issue is provided by the methods of quantum
cosmology (see Chapter 6). Using the Wheeler–De Witt equation [37, 38] it is
possible to compute, for instance, the probability that our Universe emerges in
the appropriate inflationary state directly from the vacuum (through a process
conventionally called “tunneling from nothing” [39, 40, 41]). Such a probability,
unfortunately, is strongly dependent on the initial quantum state representing the
Universe before the transition, and this state is unknown, as it should be determ-
ined in correspondence with the initial singularity. There are various possible
prescriptions for choosing the appropriate boundary conditions [39–43]: they are
however “ad hoc”, and lead to different (and strongly contrasting) results, leaving
the debate still open.

Another possible, semiclassical approach is the one based on the “chaotic”
inflationary scenario [32, 44]. In this approach the initial values of the scalar field
are randomly distributed over different space-time regions, and those regions are
characterized by different degrees of homogeneity with respect to the horizon
scale. If, in some region, the scalar field happens to be sufficiently homogeneous,
sufficiently large (in Planck units) and displaced from the minimum, then a phase
of slow-roll inflation is triggered, and that initial region can evolve towards a
configuration similar to the Universe in which we are living. In other space-time
regions, where such conditions are not satisfied, inflation does not occur, and the



34 A short review of standard and inflationary cosmology

subsequent evolution diverges from the path leading to the present cosmological
state.

We should mention, finally, that even after a satisfactory explanation of the
initial conditions, the scalar potential-dominated inflationary scenario suffers from
other conceptual difficulties (see [45] for a recent discussion), such as the cosmolo-
gical constant problem, the so-called “trans-Planckian” problem (see Section 5.3).
String theory, as we shall see in the following chapters, may support inflationary
mechanisms different from those based on the potential energy of a scalar field.
As a consequence, different primordial scenarios are also possible, based on initial
configurations other than the highly curved, hot and dense state approaching the
initial singularity, typical of the standard model and of the inflationary models
considered in this section.



References

[1] S. Weinberg, Gravitation and Cosmology (New York: John Wiley & Sons, 1972).
[2] J. B. Zeldovic and I. D. Novikov, The Structure and Evolution of the Universe

(Chicago: University of Chicago Press, 1983).
[3] P. Coles and F. Lucchin, Cosmology (Chichester, UK: John Wiley & Sons, 2000).
[4] A. D. Linde, Particle Physics and Inflationary Cosmology (New York: Harwood,

1990).
[5] E. W. Kolb and M. S. Turner, The Early Universe (Redwood City, CA: Addison-

Wesley, 1990).
[6] A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure

(Cambridge, UK: Cambridge University Press, 2000).
[7] E. P. Hubble, Proc. Nat. Acad. Sci. 15 (1927) 168.
[8] A. A. Penzias and R. W. Wilson, Ap. J. 142 (1965) 419.
[9] G. W. Gibbons and S. Hawking, Phys. Rev. D15 (1977) 2752.

[10] F. Sylos Labini, M. Montuori and L. Pietronero, Phys. Rep. 293 (1998) 61.
[11] W. Rindler, Mon. Not. R. Astron. Soc. 116 (1956) 6.
[12] Particle Data Group web pages at pdg.lbl.gov/.
[13] S. Pelmutter et al., Nature 391 (1998) 51.
[14] A. G. Riess et al., Astronom. J. 116 (1998) 1009.
[15] P. de Bernardis et al., Nature 404 (2000) 955.
[16] S. Hanay et al., Ap. J. Lett. 545 (2000) L5.
[17] N. W. Alverson et al., Ap. J. 568 (2002) 38.
[18] D. N. Spergel et al., Ap. J. Suppl. 148 (2003) 175.
[19] A. G. Riess et al., Ap. J. 607 (2004) 665.
[20] D. N. Spergel et al., astro-ph/0603449.
[21] P. B. Pal, Pramana 54 (2000) 79.
[22] R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev. Lett. 91 (2003)

07130.
[23] J. D. Barrow, Class. Quantum Grav. 21 (2004) 5619.
[24] S. W. Hawking and G. R. F. Ellis, The Large Scale Structure of Space-Time

(Cambridge: Cambridge University Press, 1973).
[25] A. Guth, Phys. Rev. D23 (1981) 347.
[26] A. D. Linde, Phys. Lett. B108 (1982) 389.
[27] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48 (1982) 1220.
[28] A. A. Starobinski, Phys. Lett. B91 (1980) 99.
[29] D. S. Salopek and J. R. Bond, Phys. Rev. D42 (1990) 3936.
[30] A. D. Liddle and D. Lyth, Phys. Lett. B291 (1992) 391.

35



36 A short review of standard and inflationary cosmology

[31] F. Lucchin and S. Matarrese, Phys. Rev. D32 (1985) 1316.
[32] A. D. Linde, Phys. Lett. B129 (1983) 177.
[33] W. Rindler, Essential Relativity (New York: Van Nostrand Company, 1969).
[34] A. Vilenkin, Phys. Rev. D46 (1992) 2355.
[35] A. Borde and A. Vilenkin, Phys. Rev. Lett. 72 (1994) 3305.
[36] A. Borde, A. Guth and A. Vilenkin, Phys. Rev. Lett. 90 (2003) 151301.
[37] J. A. Wheeler, in Battelle Rencontres, eds. C. De Witt and J. A. Wheeler (New

York: Benjamin, 1968).
[38] B. S. De Witt, Phys. Rev. D160 (1967) 1113.
[39] A. Vilenkin, Phys. Rev. D30 (1984) 509.
[40] A. D. Linde, Sov. Phys. JETP 60 (1984) 211.
[41] V. A. Rubakov, Phys. Lett. B148 (1984) 280.
[42] J. B. Hartle and S. W. Hawking, Phys. Rev. D28 (1983) 2960.
[43] S. W. Hawking, Nucl. Phys. B239 (1984) 257.
[44] A. D. Linde, Phys. Lett. B351 (1995) 99.
[45] R. Brandenberger, in Proc. YKIS 2005 (Yukawa Institute for Theoretical Physics,

Kyoto, Japan, July 2005), hep-th/0509159.



2

The basic string cosmology equations

The aim of this chapter is to present the effective string theory equations govern-
ing the low-energy dynamics of the gravitational field and of its sources. Such
equations are not postulated ad hoc but, as we shall see in the next chapter,
they are required for the consistency of a quantum theory of strings propagating
in a curved manifold, and interacting with other fields possibly present in the
background. For a more systematic approach to these equations, the analysis of
this chapter should probably follow the discussion of string quantization and the
computation of the spectrum of the bosonic string states, which will be presented
in Chapter 3. However, in the context of a cosmologically oriented book, we have
preferred to postpone the string theory motivations in favor of a more immediate
presentation of the basic string gravity equations, lying at the foundations of string
cosmology just like the Einstein equations are at the foundations of standard
cosmology.

For our purposes we only need to recall that the exact string theory equations,
for all fields (including gravity) present in the string spectrum, can be approx-
imated by a perturbative expansion, in general in two ways [1]: �i� as a higher-
derivatives expansion (namely, as an expansion in powers of the “curvatures”,
or field strengths), and �ii� as an expansion in powers of the coupling parameter
g2

s , controlling the intensity of the string interactions. This second expansion is
similar to the “loop” expansion of conventional quantum field theory, while the
first one is peculiar to strings, since it is controlled by the fundamental length �s

appearing in the (two-dimensional) string action integral (see Chapter 3); such an
expansion disappears in the point-particle limit �s → 0.

The discussion of this chapter will concentrate on the tree-level equations
for the fundamental massless (boson) fields present in all models of strings
and superstrings [1, 2] (here “tree-level” means that the equations are truncated
to lowest order in both the curvature expansion, controlled by the parameter
2��′ = �2

s , and the loop expansion, controlled by g2
s ). Such equations can be

37
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derived from an effective action which is valid for manifolds with low enough
curvature, �′R � 1, and for fields with weak enough interactions, g2

s � 1 (the
action is valid, therefore, in the low-energy, perturbative regime). Nevertheless,
they can be basic equations even in a primordial cosmological context where
there are scenarios – possibly suggested by string-duality symmetries – with
perturbative initial configurations, well described by the low-energy equations [3]
(see Chapter 4). Also, such equations are used in the context of the so-called
“string gas cosmology” [4] that will be discussed in Chapter 6.

These low-energy equations will be explicitly derived from the action in the
string frame (Section 2.1) and in the Einstein frame (Section 2.2). In the last
section (and in the appendix) we will discuss the possible corrections induced by
the addition of quadratic curvature terms to the effective gravitational equations,
to first order in the �′ expansion.

2.1 Tree-level equations

The gravitational (massless, bosonic) sector of the string effective action contains
not only the metric but also (and even to lowest order) at least one more funda-
mental field: a scalar field �, called the “dilaton”. The corresponding tree-level
action can be written as follows:

S = − 1
2�d−1

s

∫
dd+1x

√�g� e−�
[
R+ ����2

]
+S	 +Sm
 (2.1)

Here S	 is the boundary term required to reproduce the standard Einstein equations
in the general-relativistic limit, and Sm is the action of all other fields, possibly
coupled to � and to g�� as prescribed by the conformal invariance of fundamental
string interactions (see the discussion of the next chapter). Note that we have used
(and we shall often use) the compact notation ����2 = ����

��.
The above equation is written adopting the so-called “string frame” (S-frame)

parametrization of the action, where � is dimensionless, and where the metric
g�� is the same metric to which a fundamental string is minimally coupled, and
with respect to which a free “test” string evolves geodesically. Otherwise stated,
the action (2.1) is parametrized by the same metric field present in the two-
dimensional action integral governing the motion of a fundamental string in a
curved background (as illustrated in Chapter 3).

It should be noted, also, that we have generically considered the action for a
D = �d+1�-dimensional space-time manifold. As we shall see later, the quantum
theory of an extended object like a string can be consistently formulated only
if the number of dimensions is fixed at a critical value D = Dcrit (for instance,
Dcrit = 26 for the bosonic string, Dcrit = 10 for a superstring [1, 2]). We will
often also consider a number of dimensions less than critical – in particular,
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D = 4 – assuming, in that case, that the background fields have a factorizable
structure, that the integral over the remaining Dcrit −D spatial dimensions gives
only a trivial (finite) volume factor, and that such an extra factor has been absorbed
by an appropriate rescaling of the dilaton.

The constant length �s appearing in the action (2.1) represents the character-
istic proper extension of a quantized one-dimensional object like a fundamental
string, and provides the natural units of length (�s) and energy (�−1

s = Ms) for
a physical model based on the S-frame action [5]. The comparison with the
�d+1�-dimensional Einstein–Hilbert action,

S = − 1

2�d−1
P

∫
dd+1x

√�g� R (2.2)

immediately provides the (tree-level) relation between the string length and the
Planck length,

�P

�s
= Ms

MP
= e�/�d−1� (2.3)

which clearly shows how the effective gravitational coupling, 8�GD ≡ �d−1
P , is

controlled by the dilaton, in string units, as 8�GD = �d−1
s exp�.

For a �-independent matter action Sm, the action (2.1) would seem to describe a
scalar-tensor model of gravity of the Brans–Dicke (BD) type, with BD parameter
� = −1. In fact, if we set

e−�

�d−1
s

= �

8�GD

 (2.4)

the gravi-dilaton part of the action can be rewritten in the “canonical” BD form
(see for instance [6]),

SBD = 1
8�GD

∫
dd+1x

√�g�
[
−�R+��−1 ����2

]
 (2.5)

provided � is fixed to the value −1.
Even for the gravi-dilaton sector, however, the analogy with a “pure” BD model

is possibly valid only at the tree-level: in fact, after including the higher-loop
corrections required by string theory in the strong coupling limit, the effective
action may be rewritten in the form (2.5), only at the cost of defining a BD
parameter which is dilaton dependent, � = ���� (see for instance [7, 8]). In
addition, the tree-level analogy with BD models only holds for a particular class
of fields, whose S-frame action Sm is decoupled from the dilaton (for example, for
the bosonic forms present in the Ramond–Ramond sector of type IIA and type IIB
superstrings, see e.g. [1, 2] and Appendix 3B). String theory, in general, predicts
a non-minimal and non-universal coupling of the various fields to the dilaton
(see Chapter 9): it is thus impossible, in principle (even at the tree-level), to
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introduce an appropriate “Jordan frame” where all fields (except the dilaton) are
geodesically coupled to the metric, and satisfy the principle of equivalence.

The variation of the gravi-dilaton action (2.1) with respect to g�� can be
performed as in general relativity, using the standard definition (1.3) of the
dynamical energy-momentum tensor T��, and exploiting the standard result for
the variation of the scalar curvature density:

�g

(√�g�R
)

=√�g� (G���g
�� +g���

2�g�� −�����g
��
)

(2.6)

(here G�� = R�� − g��R/2 is the Einstein tensor, and �2 ≡ ���
� denotes the

covariant d’Alembert operator). In our context, however, the integral over the
second derivatives of �g�� is no longer equivalent to a surface integral, because
of the dilaton pre-factor multiplying the scalar curvature. After a first integration
by parts, and the application of the metricity condition ��g�� = 0, the variation
of the action (2.1) gives

�gS = 1
2

∫

�
dd+1x

√�g�T�� �g
�� +�gS	 − 1

2�d−1
s

∫

�
dd+1x

√�g� e−�

×
[

G�� +���g���
� −����� +������− 1

2
g�� ����

2

]

�g��

− 1
2�d−1

s

∫

�
dd+1x

√�g� ��

[

e−�g���
��g�� − e−��� �g

��

]

 (2.7)

where � is the �d+ 1�-dimensional portion of the manifold where we impose
that the action be stationary (�gS = 0), with the condition of no variation on
the boundary, ��g��� = 0. A second integration by parts of the gradients of �g

cancels the bilinear term ������, and introduces the second derivatives of the
dilaton field. Collecting all similar terms we obtain

�gS = 1
2

∫

�
dd+1x

√�g�T�� �g
�� +�gS	

− 1
2�d−1

s

∫

�
dd+1x

√�g� e−�

[

G�� + 1
2
g�� ����

2 −g���
2�+�����

]

�g��

− 1
2�d−1

s

∫

��

√�g� e−�

[

g���
��g�� −�� �g

��

]

d	�

− 1
2�d−1

s

∫

��

√�g� e−�

[

g���
���g�� −����g��

]

d	� (2.8)

where we have used the Gauss theorem to transform the integrals of a divergence
over the hypervolume � into hypersurface integrals over the boundary ��.
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Imposing that the action be stationary, we have no contribution from the last
surface integral, because �g = 0 on the boundary. However, the gradients of �g

are not required to be vanishing by the variational procedure: in order to obtain the
desired field equations we have thus to cancel the other surface integral through
an appropriate boundary term S	, as in general relativity. By defining

S	 = 1
2�d−1

s

∫

��

√�g� e−�K� d	� (2.9)

we must require, in particular, that

�g

(∫

��

√�g� e−�K�d	�

)
=
∫

��

√�g� e−�

[

g���
��g�� −�� �g

��

]

d	�
 (2.10)

It follows that S	 differs from the Gibbons–Hawking boundary term [9], used in
general relativity to reproduce the Einstein equations, only by the presence of the
dilaton pre-factor exp�−��. Hence, as in general relativity, we can geometrically
identify K� as K� = Kn�, where K and n� are, respectively, the trace of the
extrinsic curvature and the normal vector of the d-dimensional hypersurface ��,
bounding the portion of space-time � over which we are varying the action.

Taking into account the cancelation of all surface integrals, the condition �gS =
0 then leads to the equations

G�� +�����+ 1
2
g�� ����

2 −g���
2� = �d−1

s e� T��
 (2.11)

In string units �d−1
s = 1 (which are the natural units of this frame), the exponential

exp��� thus parametrizes the effective gravitational coupling 8�GD.
The independent equation governing the dynamics of the dilaton field is ob-

tained by varying the action (2.1) with respect to �. In analogy with the definition
(1.3) of the energy-momentum tensor T�� – which represents the tensor “current
density” of the matter sources – we can define the scalar charge density � of the
sources by the variation with respect to � as

��Sm = −1
2

∫
dd+1

√�g� � ��
 (2.12)

As already noted, this scalar charge is zero for a pure BD model in the Jordan
frame, but is non-zero, in general in all frames, for the string effective action. The
variation of the full action with respect to � leads to the Euler–Lagrange equation
for the dilaton,

��

[
−2
√�g�e−� ���

]
= e−�

√�g� [R+ ����2]−�d−1
s

√�g�� (2.13)

which can be written in explicit covariant form as

R+2�2�− ����2 = �d−1
s e��
 (2.14)
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Using this equation to eliminate the scalar curvature present in the Einstein tensor,
we can eventually recast Eq. (2.11) in the simplified form

R�
� +���

�� = �d−1
s e�

(
T�

� + 1
2
��� �

)

 (2.15)

The system of equations (2.14) and (2.15) (or, equivalently, (2.11)) replaces the
Einstein equations in the description of the low-energy gravitational dynamics for a
given distribution of sources, and can be applied to discuss possible modifications
of the standard cosmological scenario. It is important to note, even at this stage,
that with the above system of equations the contracted Bianchi identity, ��G�

� =
0, no longer implies the covariant conservation of the stress tensor T��. Computing
the covariant divergence of Eq. (2.11), and using the Bianchi identity, we obtain

������
���+ ��������

��−����
2�� = �d−1

s e�
(
��T�

� +T�
����

)

 (2.16)

The commutator of two covariant derivatives, on the other hand, is determined
by the properties of the Riemann tensor, which imply

����� −�����A
� = R���

�A� (2.17)

for any vector A�. The application of this commutation relation to the first term
of Eq. (2.16) then gives

������
��� = ����

2��+R���
��
 (2.18)

Inserting this result into Eq. (2.16), and using Eq. (2.15) for the Ricci tensor, we
are finally led to the generalized conservation law

��T�
� = 1

2
����
 (2.19)

This result represents the crucial difference between the string gravity equations
and the equations of a conventional BD model of scalar-tensor gravity, where
� = 0 (in the Jordan frame), so that T�� is separately conserved. The above
equation implies, as we shall see in Chapter 9, that the motion of a free test
body is no longer geodesic when the body has an intrinsic scalar charge and the
gravitational background contains a non-trivial dilaton component.

Let us now come back to the action (2.1), to note that the gravitational sector
can be generalized by the possible addition of a dilaton potential, V���, and by
the presence of a third, fundamental string theory field belonging to the massless
multiplet of bosonic string states (see Chapter 3). Such a field is represented by
the antisymmetric tensor potential B�� = −B��, usually called “Neveu-Schwarz–
Neveu-Schwarz” (NS–NS) two-form, with totally antisymmetric field strength
H���:

H��� = ��B�� + ��B�� + ��B��
 (2.20)
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For historical reasons the field B is also called “torsion” since, to lowest order, it
can be identified with the antisymmetric part �����

� of the affine connection, in the
context of a non-Riemannian geometric structure. An alternative, often used, name is
“Kalb–Ramond axion”, in reference to the pseudo-scalar (axion) field� related toH ,
in four dimensions, by the space-time “duality” transformation H��� = ������

��.
Including the additional contributions of V and B, the gravi-dilaton part of the

action (2.1) turns out to be generalized as follows:

S = − 1
2�d−1

s

∫
dd+1x

√�g� e−�

[
R+ ����2 +2�d−1

s V���− 1
12

H2
]
 (2.21)

where H2 = H���H
���. Note that we have normalized the dilaton potential in

such a way that V has the canonical dimensions of an energy density, �V�=Md+1.
With these new terms, there are new contributions to the variation of the action,
with respect to g:

�gS = − 1
2�d−1

s

∫
dd+1x

√�g� e−� � −g���
d−1
s V���+ 1

24
H2g��

− 1
4
H���H�

�� ��g�� (2.22)

and with respect to �:

��S = 1
2�d−1

s

∫
dd+1x

√�g� e−�

[
2�d−1

s

(
V − �V

��

)
− 1

12
H2
]
��
 (2.23)

Adding up these contributions to Eqs. (2.8) and (2.13), we obtain

G�
� +���

��− 1
4
H���H

���

+1
2
���

[
����2 −2�2�−2�d−1

s V���+ 1
12

H2
]

= �d−1
s e�T�

� (2.24)

R+2�2�− ����2 +2�d−1
s

(
V − �V

��

)
− 1

12
H2 = �d−1

s e�� (2.25)

R�
� +���

��−�d−1
s ���

�V

��
− 1

4
H���H

��� = �d−1
s e�

(
T�

� + 1
2
��� �

)


(2.26)

replacing Eqs. (2.11), (2.14) and (2.15), respectively. As we shall see in Chapter 4,
the presence of the antisymmetric field is crucial in order to implement a gen-
eralized form of duality symmetry of the cosmological equations in the case
of homogeneous backgrounds. The dilaton potential tends to break such a sym-
metry, but its presence is important for the formulation of a realistic cosmological
scenario (as we shall see in many phenomenological applications).
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The above system has to be completed by the equation of motion of the two-
form field. By varying the action (2.21) with respect to B��, and defining the
“axion” current density J�� = −J�� of the matter sources as

�BSm = 1
2

∫
dd+1

√�g� J�� �B�� (2.27)

the corresponding Euler–Lagrange equations can be written in the form

1
√�g���

(√�g� e−�H���
)

≡ ��

(
e−�H���

)
= 2�d−1

s J��
 (2.28)

As an example of matter with non-zero J�� we quote here the case of a gas of free
fundamental strings [10], and we note that the role of the antisymmetric current
J�� is essential for extending to the matter sector the duality symmetries of the
low-energy string effective action.

Let us conclude this section by providing the explicit form of the above equa-
tions for a homogeneous, isotropic and spatially flat background (representing a
typical cosmological configuration). We assume that B�� is vanishing and that the
matter sources can be represented in the form of a fluid, with energy density ��t�,
pressure p�t� and dilaton charge ��t�. In the synchronous gauge of the comoving
frame we can set, therefore,

g�� = diag�1−a2�ij� a = a�t� � = ��t�

T�
� = diag��−p�

j
i � � = ��t� p = p�t� � = ��t�


(2.29)

An explicit computation for a �d+ 1�-dimensional manifold gives the following
non-zero components of the connection:

�0i
j = H�

j
i  �ij

0 = aȧ�ij (2.30)

(where H = ȧ/a) and of the Ricci tensor:

R0
0 = −dḢ −dH2

Ri
j = −�

j
i �Ḣ +dH2�


(2.31)

The scalar curvature is

R = −2dḢ −d�d+1�H2
 (2.32)

For the dilaton field we have

����2 = �̇2 �2� = �̈+dH�̇

�0�
0� = �̈ �i�

j� = H�̇�
j
i 


(2.33)
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The �00� component of Eq. (2.24) then gives

�̇2 −2dH�̇+d�d−1�H2 = 2�d−1
s

(
e��+V

)
 (2.34)

the space component �ij� of Eq. (2.26) gives

Ḣ −H�̇+dH2 = �d−1
s

[
e�
(
p− �

2

)
− �V

��

]
 (2.35)

and the dilaton equation (2.25) gives

2�̈− �̇2 +2dH�̇−2dḢ −d�d+1�H2 = 2�d−1
s

(
e�

�

2
+ �V

��
−V

)

 (2.36)

By differentiating Eq. (2.34) with respect to time, eliminating Ḣ through
Eq. (2.35), and �̈ through Eq. (2.36), we are led to the generalized conservation
equation,

�̇+dH��+p� = 1
2
��̇ (2.37)

which also directly follows from Eq. (2.19). We note, finally, that by eliminating
Ḣ and H2 through Eqs. (2.34) and (2.35) the dilaton equation can be rewritten
in a useful form which explicitly contains the scalar coupling to the trace of the
matter stress tensor:

�̈+dH�̇− �̇2 +2�d−1
s

[
V +

(
d−1

2

)
�V

��

]

+�d−1
s e���−dp�+ d−1

2
�d−1

s e� � = 0
 (2.38)

This set of low-energy cosmological equations will be used repeatedly in many
parts of this book.

2.2 The Einstein-frame representation

The discussion of the previous section is based on the S-frame representation of
the string effective action, i.e. on the frame in which the coupling to a constant
dilaton is unambiguosly fixed (at the tree-level) for all fields, and to all orders
in the higher-derivative �′ expansion [1, 2, 3]. The S-frame is, in a sense, the
“preferred” string theory frame, where physical intuition is often more direct and
easily applicable. However, in various practical applications it may be convenient
to work in other frames, using a representation of the action different from that of
Eq. (2.1). Of course – as will be again emphasized in this book – all observable
results must be “frame independent”, namely independent of the particular set of
fields (generically called “frame”) chosen to parametrize the action.
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For a direct comparison of different cosmological scenarios, or for the direct
application of known general relativistic results, it may be useful to rewrite the
effective string equations in the so-called “Einstein frame” (E-frame), where the
dilaton enters as a canonically normalized scalar field, minimally coupled to
gravity, and where the Planck scale provides the natural units of length (�P) and
energy (�−1

P =MP). This frame is preferred, in particular, for performing canonical
quantization, for identifying the particle content of a theory, and for defining the
effective low-energy masses and couplings (as will be discussed in Chapter 9).

The E-frame parametrization is obtained from the S-frame action (2.1) by per-
forming the conformal transformation (or “Weyl rescaling”) that diagonalizes the
gravi-dilaton kinetic term exp�−��R. To this purpose we introduce the rescaled
metric g̃, related to the S-frame metric g by the field redefinition

g�� = g̃��

(
�s

�P

)2

e��x� (2.39)

where � is an arbitrary (scalar) space-time function. A computation of the trans-
formed scalar curvature then gives [11, 12]

R =
(
�s

�P

)2

e−��x�

[
R̃−d�̃2�− d

4
�d−1���̃��2

]
 (2.40)

where R = R�g�, R̃ = R̃�̃g� and �̃ is the covariant derivative associated with g̃.
By using

√�g� =√�̃g�
(
�s

�P

)d+1

e��d+1�/2 (2.41)

the action becomes

S = Sm�� g̃�−
1

2�d−1
P

∫
dd+1x

√�̃g� e−�+��d−1�/2

×
[

R̃−d�̃2�− d

4
�d−1���̃��2 +

(
�̃�

)2 +2
�d+1

s

�2
P

e�V���

]

(2.42)

(we have included the potential, normalized as in Eq. (2.21)). We now fix the
conformal factor as

� = 2�
d−1

 (2.43)

in such a way that the exponential pre-factor disappears from the action, and �̃2�

becomes a total divergence which can be neglected. The action parametrized by g̃

then assumes the standard Einstein form, with the dilaton field minimally coupled
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to the metric, and the gravitational coupling strength determined (as usual) by the
Planck length �P:

S = 1

2�d−1
P

∫
dd+1x

√�̃g�
[

− R̃+ 1
d−1

(
�̃�

)2 −2
�d+1

s

�2
P

V��� e2�/�d−1�

]

+ Sm�� g̃�
 (2.44)

We can finally introduce the rescaled dilaton �̃, such that

�̃ = �� � =
(
Md−1

P

d−1

)1/2

 (2.45)

where �d−1
P = M1−d

P = 8�GD. This new field has canonical dimensions, ��̃� =
M�d−1�/2, and its kinetic term is canonically normalized. The action becomes

S =
∫

dd+1x
√�̃g�

[

− R̃

16�GD

+ 1
2

(
�̃�̃

)2 − Ṽ ��̃�

]

+Sm��̃ g̃� (2.46)

where

Ṽ =
(
�s

�P

)d+1

V��̃� e2�̃/��d−1�
 (2.47)

It is important to note the flipped sign of the dilaton kinetic term with respect to
the action (2.1). Note, also, that the factor ��s/�P�

d+1 rescales in Planck units the
potential V , originally expressed in string units in the S-frame action.

The E-frame equations for the gravi-dilaton sector of the action (2.46) are
identical to the equations one obtains in general relativity for a canonical scalar
field �̃, possibly self-interacting through the potential Ṽ , and minimally coupled
to the metric g̃ with strength fixed by the Newton constant GD = �d−1

P /8�.
All known general-relativistic results for the system �̃g �̃� can thus be safely
applied to this case. The inclusion of other matter fields, however, leads to a set
of equations in principle different from the corresponding equations of general
relativity, because of the different dilaton couplings possibly generated by the
transformation from g to g̃ for the matter fields present in Sm.

The full set of E-frame equations can be derived in two ways: either by varying
the action (2.46), or by directly transforming the S-frame equations, using the
relations (2.39), (2.43) and (2.45) between the two sets of variables. Here we
follow the first procedure, starting from the definition of the E-frame sources of
tensor and scalar interactions:

�̃gSm = 1
2

∫
dd+1x

√�̃g� T̃�� �̃g
��

�
�̃
Sm = −1

2

∫
dd+1x

√�̃g� �̃��̃
 (2.48)
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It is instructive, before proceeding with the variational computation, to derive the
explicit relation between T̃ , �̃ and the S-frame sources T , � , following from the
transformation laws (2.39) and (2.43).

For the stress tensor we have
∫

dd+1x
√�g� T���g

�� =
∫

dd+1x
√�̃g�

(
�s

�P

)d−1

e
d+1
d−1�T��e− 2�

d−1 �̃g�� (2.49)

from which

T̃�� =
(
�s

�P

)d−1

e�T��

T̃�
� = g̃��T̃�� =

(
�s

�P

)d+1

e
d+1
d−1�T�

�


(2.50)

Reintroducing �̃, and considering the diagonal stress tensor of a perfect fluid, one
obtains, in particular,

�̃ =
(
�s

�P

)d+1

e
d+1
d−1

�̃
� �

p̃ =
(
�s

�P

)d+1

e
d+1
d−1

�̃
� p

(2.51)

where the constant ratio ��s/�P�
d+1 is needed, as before, to rescale in Planck

units the physical variables originally expressed in string units in the S-frame.
For the density of scalar charge we have, similarly,

∫
dd+1x

√�g� ��� =
∫

dd+1x
√�̃g�

(
�s

�P

)d+1

e
d+1
d−1�

(
�

�

)
��̃ (2.52)

from which

�̃ =
(
�s

�P

)d+1

e
d+1
d−1

�̃
�

(
�

�

)

 (2.53)

Note that � has the dimension of an energy density, while �̃ has different
dimensions, being defined with respect to �̃, which is not dimensionless like �.

Let us now consider the variation of the action (2.46). By varying with respect
to g̃, and eliminating the variational contribution of �̃ �̃g through an appropriate
boundary term (see Section 2.1), we obtain

∫
dd+1x

√�̃g�
[

− G̃��

2�d−1
P

+ 1
2

(
���̃���̃− 1

2
g̃����̃�̃�

2
)

+ 1
2
g̃��Ṽ

]

�̃g��

+ �̃gSm = 0
 (2.54)
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A second variation with respect to �̃, taking explicitly into account the dependence
of Sm on �̃ induced by the conformal transformation (2.39), gives

∫
dd+1x

√�̃g�
[

− 1
√�̃g���

(√�̃g� ���̃
)

− �Ṽ

��̃

]

��̃

+
∫

dd+1x

[
�
√�̃g��m

��̃
+ �

√�g��m

�g��
�g��

��̃

]

��̃ = 0
 (2.55)

We can also use the transformation (2.39), and the relation (2.50) between T and
T̃ , to obtain

�Sm
�g��

�g��

��̃
��̃ = 1

2

∫
dd+1x

√�g� T��

�g��

��̃
��̃

= − 1
��d−1�

∫
dd+1x

√�̃g� T̃ ��̃
 (2.56)

By inserting the explicit sources into the variational equations we are thus led
to the system of equations

G̃�
� = �d−1

P

[
T̃�

� + ���̃ ���̃− 1
2
�����̃�̃�

2 +��� Ṽ

]
 (2.57)

�̃2�̃+ �Ṽ

��̃
+ �̃

2
+ T̃

��d−1�
= 0 (2.58)

describing the low-energy gravitational dynamics according to the E-frame rep-
resentation of the string effective action (�̃ is defined by the first term in the
second line of Eq. (2.55)). The application of the contracted Bianchi identity,
�̃�G̃

�
� = 0, leads to the associated conservation equation

�̃�T̃
�
� =

[
�̃

2
+ T̃

��d−1�

]

�̃��̃
 (2.59)

Finally, we note that the standard equations of general relativity are recovered
in the limit in which we neglect the non-minimal coupling of the dilaton to the
trace of the stress tensor T̃ (induced by the conformal transformation) and to �̃ ,
induced by the intrinsic (S-frame) scalar charge � .

For a conformally flat metric background, and a perfect-fluid representation of
the matter sources, we may now directly transfer to the E-frame the results of
Eqs. (2.29)–(2.33) (simply by adding a tilde over all variables, ã �̃ 
 
 
 ), and write
the independent components of the system of equations (2.57) and (2.58). We
use the explicit form (2.47) of Ṽ in terms of V (which is convenient for further
applications), and we denote H̃ = ˙̃a/̃a the Hubble parameter for the E-frame
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metric g̃, where the dot denotes differentiation with respect to the E-frame cosmic
time. The �00� component of Eq. (2.57) then gives

d�d−1�H̃2 = 2�d−1
P

[

�̃+ 1
2

˙̃
� 2 +

(
�s

�P

)d+1

e
2

d−1
�̃
� V��̃�

]

 (2.60)

the �ij� component gives

2�d−1� ˙̃
H +d�d−1�H̃2 = 2�d−1

P

[

−p̃− 1
2

˙̃
� 2 +

(
�s

�P

)d+1

e
2

d−1
�̃
� V��̃�

]

 (2.61)

and the dilaton equation (2.58) gives

¨̃
�+dH̃

˙̃
�+ �̃

2
+ 1

��d−1�
�̃�−dp̃�+

(
�s

�P

)d+1

e
2

d−1
�̃
�

[
2V��̃�

��d−1�
+ �V

��̃

]

= 0


(2.62)

Differentiating Eq. (2.60), and eliminating ˙̃
H and ¨̃

� through Eqs. (2.61) and
(2.62), respectively, we obtain the conservation equation

˙̃�+dH̃�̃�+ p̃� = 1
2
�̃

˙̃
�+ 1

��d−1�
�̃�−dp̃�

˙̃
� (2.63)

which obviously corresponds to the homogeneous and isotropic limit of the general
equation (2.59).

We conclude the section with an instructive exercise showing that the set of
cosmological equations (2.60)–(2.62), obtained by varying the E-frame action, can
also be obtained by directly transforming to the E-frame the S-frame cosmological
equations (2.34)–(2.38).

We start by defining k = ��s/�P�, and representing the conformal rescaling in
compact form as follows:

ã = k−1a e− �
d−1  d̃t = k−1dt e− �

d−1  �̃ = ��

�̃ = kd+1e
d+1
d−1�� p̃ = kd+1e

d+1
d−1�p �̃ = kd+1e

d+1
d−1��−1�


(2.64)

Here t̃ is the cosmic-time coordinate in the E-frame, and � is the factor (2.45)
required for the canonical rescaling of the dilaton. Using the above transformations
we obtain, in particular,

�̇ = d�
dt

= 1
�

d�̃

d̃t

d̃t
dt

= 1
k�

˙̃
� e−�/�d−1� (2.65)
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where ˙̃
� ≡ d�̃/d̃t, and

�̈ = d̃t
dt

d�̇

d̃t
= e− 2�

d−1

k2

⎡

⎣
¨̃
�

�
−

˙̃
� 2

�2�d−1�

⎤

⎦  (2.66)

where ¨̃
� = d2�̃/d̃t2. In the same way

H = 1
a

da
dt

= e− �
d−1

k

⎡

⎣H̃ +
˙̃
�

��d−1�

⎤

⎦  (2.67)

where H̃ = ˙̃a/̃a with ˙̃a = d̃a/d̃t, and

Ḣ = e− 2�
d−1

k2

⎡

⎣ ˙̃
H +

¨̃
�

��d−1�
− H̃

˙̃
�

��d−1�
−

˙̃
� 2

�2�d−1�2

⎤

⎦  (2.68)

where ˙̃
H = dH̃/d̃t, and so on.

The S-frame dilaton equation (2.38), using the above relations, can then be
written in terms of the E-frame variables as

¨̃
�+dH̃

˙̃
�+kd+1 e

d+1
d−1�

[
�−dp

��d−1�
+ �

2�

]
+ 2kd+1

d−1
e

2�
d−1

[
V

�
+ �d−1�

2
�V

��̃

]

= 0

(2.69)

so that we exactly recover Eq. (2.62) after use of the definitions (2.64) for �, p
and � . In a similar way, starting from the S-frame equation (2.34), we obtain

d�d−1�H̃2 = 2�d−1
P

⎡

⎣
˙̃
� 2

2
+kd+1

(
e

d+1
d−1��+ e

2�
d−1 V

)
⎤

⎦  (2.70)

which reduces to Eq. (2.60) after use of the definitions (2.64). Finally, starting
from Eq. (2.35), we obtain

˙̃
H +dH̃2 +

¨̃
�

��d−1�
+ dH̃

˙̃
�

��d−1�
+��d−1

P kd+1 e
2�
d−1

�V

��̃

= �d−1
P kd+1 e

d+1
d−1�

(
p− �

2

)

 (2.71)

The last three terms on the left-hand side, as well as the last term on the right-hand
side of this equation, can be eliminated through Eq. (2.69), which implies
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¨̃
�

��d−1�
+ dH̃

˙̃
�

��d−1�
+��d−1

P kd+1 e
2�
d−1

�V

��̃
+ �

2
�d−1

P kd+1 e
d+1
d−1�

= − kd+1

�2�d−1�

[
2e

2�
d−1 V + e

d+1
d−1���−dp�

]

≡ −2�d−1
P

d−1

[
Ṽ + 1

2
�̃�−dp̃�

]

 (2.72)

Inserting this result into Eq. (2.71), and eliminating �̃ through Eq. (2.60), we
exactly recover the spatial equation (2.61) which completes the system of cosmo-
logical equations in the E-frame representation.

2.3 First-order �′ corrections

The effective action introduced in the previous sections is compatible with the
conformal invariance of a quantized string in a curved background only to zeroth
order of the expansion in powers of �′ = �2

s/2� (as we shall see in Chapter 3).
To first order in �′, the condition of quantum conformal invariance introduces
higher-derivative terms in the equations for the background fields, in such a way
that their equations can be derived from an effective action containing quadratic
curvature corrections, of the type ∼ �′R2.

The �′ corrections to the effective action become more and more important as
the curvature grows: in principle, all higher-order contributions should be included
when the curvature radius of the space-time – or, more generally, the inverse of
the gradients of the background fields – becomes comparable with (or smaller
than) the fundamental string length (namely when �2

sR >∼ 1, �2
s ����

2 >∼ 1, and so
on). In that regime, the perturbative expansion of the effective action fails to give
a consistent description of the background dynamics: one should instead adopt
an exact conformal field-theory model, which automatically takes into account
(in a non-perturbative way) the �′ corrections to all orders (see [13] for possible
examples in a cosmological context).

The �′ corrections to the classical field equations are a peculiar string theory
effect, due to the finite extension of the fundamental components of the theory.
They may be expected to play an important role in the possible regularization of the
singularities appearing in the gravitational Einstein theory (and, more generally,
in any field theory based on the notion of point-like particles). Here we limit our
discussion to the first-order �′ corrections, but we stress that even to this order
the higher-derivative terms seem to have promising applications to the problem
of removing the curvature singularities, not only in a cosmological context [14]
but also in the case of static and spherically symmetric gravitational fields [15].
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It must be stressed, also, that the whole series of �′ corrections is rigidly
prescribed by the condition of conformal invariance applied to the scattering
amplitudes determined by the string S-matrix [1] (at the tree-level in the string
coupling gs). At each approximation level – corresponding to the truncation of
the action at a given order of the �′ expansion – there is, however, an intrinsic
(and unavoidable) ambiguity, due to field redefinitions which preserve the general
covariance and the gauge invariance of the action [16]. Performing such redefin-
itions one can obtain a large class of different effective actions which are all of
the same order in �′, and all acceptable, in the sense that they are all equivalent
to the same S-matrix, and thus perfectly compatible with the condition of con-
formal invariance. Such an ambiguity remains even when imposing on the field
redefinitions the restriction of preserving a given frame representation.

The discussion of this section concerns the gravi-dilaton sector of the funda-
mental multiplet of massless string states, and is referred to the S-frame, where the
coupling to a constant dilaton is unambiguously fixed. The most general action
quadratic in the curvature then contains nine different additional terms: it can be
written as S = S0 +S1, where S0 is the gravi-dilaton action (2.1), and

S1 = �′

2�d−1
s

∫
dd+1x

√�g� e−�a0

[

R2
���� +a1R

2
�� +a2R

2 + a3

4
R��������

+ a4

4
R����2 + a5

4
R�2�+ a6

4
��2��2 + a7

8
�2�����2 + a8

16
����4

]




(2.73)

Any other quadratic invariant built up with the metric and the dilaton can be
reduced to one of these nine terms, up to a total divergence.

Given a set of parameters �a0 a1 
 
 
  a8�, determined in such a way that
the condition of conformal invariance of the quantized string model is satisfied,
a new, equivalent set of parameters can be obtained through an appropriate
field redefinition (truncated to first order in �′), which preserves the general
covariance of the action (and also the gauge invariance under tranformations
�B�� = ���� − ����, were the NS–NS two-form included in S1). Choosing to
preserve the S-frame representation, and working with the gravi-dilaton sector,
one can still perform the following general transformations [16]:

g′
�� = g�� +�′

{
b1R�� + b2

4
������+g��

[
b3R+ b4

4
����2 + b5

2
�2�

]}


�′

2
= �

2
+�′

{
c1R+ c2

4
����2 + c3

2
�2�

}
 (2.74)
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with arbitrary coefficients bi ci. The computation of the transformed action,
truncated to first order in �′, leads again to the form (2.73), but with a new set
of coefficients �a′

0 a
′
1 
 
 
  a

′
8�, given in terms of ai bi ci as follows [16]:

a′
0 = a0

a′
1 = a1 −b1

a′
2 = a2 −2c1 + b1

2
+ b3

2
�d−1�

a′
3 = a3 −4b1 −b2

a′
4 = a4 +8c1 −2�d+1�b3 −2c2 + b2

2
+ b4

2
�d−1�

a′
5 = a5 −8c1 +b1 +2db3 −2c3 + b5

2
�d−1�

a′
6 = a6 −8c3 +2db5

a′
7 = a7 +3b2 +2db4 −8c2 +8c3 −2�d+1�b5

a′
8 = a8 −4b2 +8c2 −2�d+1�b4


(2.75)

It can be easily checked that, besides a0, the following combination of coeffi-
cients is also invariant:

a8 +2a7 +4a6 −8a5 −4a4 +16a2 = const
 (2.76)

It follows that one can eliminate at most seven of the nine parameters present
in the action (2.73), through an appropriate transformation of the type (2.74).
A convenient choice is then represented by the field redefinition which fixes
a1 = a2 = · · · = a7 = 0, in view of the fact that the condition of conformal
invariance requires (in the S-frame) that a8 = 0, and that a0 = k/4, where k is
a model-dependent numerical coefficient depending on the considered model of
string [16]. One obtains in this way the simplest form of the gravi-dilaton action
compatible with a consistent string quantization, up to first order in �′. For the
bosonic string, in particular, k = 1, so that

S = − 1
2�d−1

s

∫
dd+1x

√�g� e−�

[
R+ ����2 − �′

4
R2
����

]

 (2.77)

The application of this action as an effective model of string gravity – for
instance in a cosmological context – is complicated by the fact that the equations
following from the variation of the Riemann-squared term contain, in general,
higher than second derivatives of the metric tensor. Such a formal complication
can be avoided, however, by performing an appropriate field redefinition shifting
the action from the set of parameters a1 = a2 = · · · = a8 = 0 to a new, equivalent
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set in which a1 = −4 and a2 = 1, in such a way that the Riemann-squared term
turns out to be replaced by the so-called Euler–Gauss–Bonnet invariant,

R2
GB ≡ R2

���� −4R2
�� +R2
 (2.78)

In that case it is known that the gravitational field equations contain at most
second-order derivatives of the metric tensor (see for instance [17]).

Considering the general transformation rules (2.75) we can see that it is always
possible to obtain the desired result, provided we introduce �′ corrections also
to the dilaton kinetic term. We may consider, for instance, the following field
redefinitions:

g′
�� = g�� +4�′ [R�� −������+g������

2] 

�′ = �+�′ [R+ �2d−3�����2]  (2.79)

corresponding to the transformation (2.74) with b1 = 4, b2 = −16 = −b4, c1 =
1/2, c2 = 2�2d− 3�. When applied to the action (2.77) one finds that the new
coefficients a′

3 a
′
4 
 
 
  a

′
7 are still vanishing, but a′

8 = −16 �= 0, and one is led
to the following effective action (truncated to first order in �′):

S = − 1
2�d−1

s

∫
dd+1x

√�g� e−�

[
R+ ����2 − �′

4
R2

GB + �′

4
����4

]

 (2.80)

It will be shown, in the following chapters, that the cosmological equations
obtained from this action (as well as from the action (2.77), and from other, equi-
valent forms of the first-order action) admit particular solutions describing a phase
of constant curvature and linearly evolving dilaton – which represents a possible
exact solution of the string theory equations even to all orders of the �′ expansion
[10]. However, we will concentrate our attention on the particular parametriza-
tion associated with the action (2.80) because, in that case, there are solutions in
which such a (typically “stringy”) phase of high, constant curvature may act as an
asymptotic attractor of the primordial cosmological evolution: in particular, for
those solutions, the constant curvature phase is smoothly connected to the string
perturbative vacuum, which may represent a natural initial configuration in the
context of “self-dual” inflationary scenarios (see Chapter 6).

The property of smooth cosmological evolution, unfortunately, is not invariant
under field redefinitions when the action is truncated at any given finite order of
the perturbative expansion. There are, for instance, other choices of the coefficients
ai corresponding to actions which are still free from higher derivatives in the
field equations, compatible with the required condition of conformal invariance
[18], and also compatible with a higher-order extension of the tree-level T-duality
symmetry [19]. In those cases the solutions at constant curvature exist, and are
fixed points of the cosmological evolution, but they are classically disconnected
from the perturbative regions of phase space.
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2.3.1 Higher-order gravi-dilaton equations

We conclude this section with a detailed derivation of the set of gravi-dilaton
equations following from the higher-order action (2.80). Using the method presen-
ted here, we believe that the reader will be able to apply the same procedure to
derive the field equations for any other model of higher-derivative action.

In view of the presence of quadratic curvature terms it is convenient to adopt
the language of the external (differential) forms, for a more compact notation (a
few technical details and definitions, to introduce the reader to this formalism, will
be provided in Appendix 2A). This formalism is based on the projection of the
gravitational dynamics on the Minkowski space locally tangent to the Riemannian
manifold and uses, as fundamental variables, the vielbein (Va) and the Lorentz
connection (�ab) one-forms,

Va = Va
� dx� �ab = ��

ab dx� (2.81)

(see for instance [11]). The notations that will be adopted from now on to the end
of this chapter will be as follows: Greek indices �� · · · = 01 
 
 
  d (usually
called holonomic indices, or world indices) will denote tensor components trans-
forming covariantly under general coordinate reparametrizations of the curved
Riemannian manifold, with metric g��; Roman indices ab · · · = 01 
 
 
  d
(called anholonomic indices, or flat indices) will denote components of the tensor
representation of the local Lorentz group acting in the flat Minkowski space-time,
with metric �ab, locally tangent to the given world manifold.

In such a context, any world tensor A��··· can be locally projected into a
corresponding flat-space (Lorentz) tensor Aab··· = A��···Va

�V
b
� · · · (and vice versa)

through the vielbein fields Va
� (and their inverse V

�
a , such that Va

�V
�
b = �ab),

which represent an orthonormal base in the locally tangent Minkowski space,
and which satisfy the orthonormality conditions

g��Va
�V

b
� = �ab �abV

a
�V

b
� = g��
 (2.82)

The reparametrization invariance of the Riemannian manifold is thus translated
into the local Lorentz invariance of the tangent-space formulation of the gravita-
tional equations. In the presence of a local symmetry, on the other hand, we need
a “connection”, which in this case is represented by the Lorentz connection ��

(also called the “spin connection” [6]), representing the “gauge potential” which
compensates the non-homogeneous transformations of the gradient with respect
to local Lorentz rotations ��x�, and which transforms as

�� → ����
−1 − ������−1
 (2.83)



2.3 First-order �′ corrections 57

This connection defines a Lorentz-covariant derivative, which will be denoted by
D� = �� +��, and which transforms homogeneously even locally:

A → ��x�A =⇒ D�A → ��x� �D�A�
 (2.84)

In particular, for variables which are tensor-valued on the local Lorentz group,
the linear action of the connection is represented by the �d+ 1�× �d+ 1� anti-
symmetric matrices ��

ab = −��
ba. For a generic (world-scalar) Lorentz tensor

Aa···
b··· we have, for instance,

D�A
a···

b··· = ��A
a···

b··· +��
a
cA

c···
b··· −��

c
bA

a···
c··· + · · · 
 (2.85)

For an object carrying both curved and flat space indices the full covariant
derivative will be defined, of course, by using both the Lorentz and the Christoffel
connection. An important example of this type is represented by the covariant
derivative of the vielbein field,

��V
a
� = ��V

a
� +��

a
bV

b
� −���

�Va
� ≡ D�V

a
� −���

a
 (2.86)

It is important to note that, for consistency with the relations (2.82), the previous
covariant derivative has to be vanishing for a gravitational theory which is of the
metric type (i.e. which satisfies ��g�� = 0), and for a local symmetry group which
(like the Lorentz group) contains d�d+ 1�/2 parameters, and is thus associated
with an antisymmetric connection (which implies D��ab = 0).

The metricity condition ��V
a
� = 0 provides a relation between the Lorentz and

the Christoffel connection which enables us to express, by direct substitution, the
Riemann tensor in terms of the local Lorentz connection �. Such an expression
can also (and more easily) be obtained by considering the commutator of two
covariant derivatives applied to a generic Lorentz vector Aa:

[
����

]
Aa = [

D�D�

]
Aa

= (
����

a
b − ����

a
b +��

a
c ��

c
b −��

a
c ��

c
b

)
Ab (2.87)

(the terms containing the Christoffel connection cancel because of its symmetry
in the two lower indices, ���

� = ���
�). Using the projection Aa =A�Va

� , the met-
ricity condition �V = 0, and the property (2.17) of the Riemann tensor, we have
also

[
����

]
A�Va

� = Va
� R���

�A� = Va
�V

b
� R��

��Ab (2.88)

from which

R��
����� = Va

a V
�
b R��

ab���

R��
ab��� = ����

ab +��
a
c ��

cb − �� ↔ ��

(2.89)
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Note the different position of the second pair of (antisymmetric) indices (�� and
ab) of the curvature tensor, which leads to a difference of sign between R��� and
R���, due to the fact that we are following the standard conventions for R���,
while we have adopted different conventions for R��� (see the definition of the
Riemann tensor in the preliminary section specifying the adopted conventions).

The gravitational equations, usually formulated in the curved space-time mani-
fold in terms of the Riemannian variables �g ��g�R����, can thus be equivalently
expressed in the local tangent space in terms of the set of related variables
�V��V�R����. In this second case one can make the formalism explicitly inde-
pendent of the choice of the coordinate system, using as basic “gauge” variables
the one-forms (2.81). The associated “field strengths” are, respectively, the torsion
(Ra) and curvature (Rab) two-forms, whose definitions fully specify the geometric
and algebraic structure of the gravitational theory under consideration. In our case,
from the antisymmetric part of Eq. (2.86), and the definition (2.89) of R���, we
find, respectively,

Ra ≡ �����
a dx� ∧dx� = DVa ≡ dVa +�a

b ∧Vb (2.90)

Rab ≡ 1
2
R��

ab dx� ∧dx� = d�ab +�a
c ∧�cb (2.91)

where d denotes the external derivative, D= d+� the (Lorentz) covariant external
derivative, and the wedge the (antisymmetric) external product of forms (see
Appendix 2A). By taking the external covariant derivative of the previous two
equations (also called “structure equations”) one easily finds the identities

DRa = Ra
b ∧Vb DRab = 0
 (2.92)

These identities, when rewritten in the usual tensor language for a torsionless
connection (Ra = 0), exactly correspond to the first and second Bianchi identities,
respectively, characterizing the standard Riemann geometry. We shall restrict our
subsequent computations always to the case of vanishing torsion, DVa = 0.

Using the above variables, we can now rewrite the higher-order action (2.80)
in differential form as

S = − 1
2�d−1

s

∫
e−�

[

Rab ∧  �Va ∧Vb�+D�∧  D�

− �′

4
Rab ∧Rcd ∧  �Va ∧Vb ∧Vc ∧Vd�+

�′

4
D�∧  D�∧  �D�∧  D��

]



(2.93)

where D� = d� = ���dx� is the one-form corresponding to the gradient of the
dilaton field, and the star denotes the “Hodge dual” map, defined in Appendix 2A.
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The absence of an explicit measure in the action integral is due to the fact that the
infinitesimal volume element is already implicitly contained in the definition of
the integrated D-forms. Consider, for instance, the quadratic dilaton kinetic term:
it can be written explicitly as

D�∧  D� = 1
d!����

�����1···�ddx� ∧dx�1 ∧· · ·dx�d

= ����
�����

√�g�dd+1x (2.94)

where we have used Eqs. (2A.15), (2A.18) and (2A.20). In the same way, the
other three terms of the above action correspond, respectively, to the Einstein
action and to the �′ corrections appearing in the action (2.80).

We now vary the action (2.93) with respect to � and Va, to obtain the corres-
ponding field equations written in the language of differential forms. In order to
simplify notations, we adopt the convenient definition Va1

∧Va2
∧ · · · ≡ Va1a2···.

The variation with respect to � of the action, integrated over the space-time
volume �, then gives

2�d−1
s ��S =

∫

�
�� e−�

[

Rab ∧  Vab +D�∧  D�− �′

4
Rab ∧Rcd ∧  Vabcd

+ �′

4
D�∧  D�∧  �D�∧  D��

]

−2
∫

�
e−���D��∧  D�

−�′
∫

�
e−���D��∧  D�∧  �D�∧  D��

=
∫

�
�� e−�

[

Rab ∧  Vab −D�∧  D�+2D D�

]

− �′

4

∫

�
�� e−�

{

Rab ∧Rcd ∧  Vabcd

+
[

3D�∧  D�−4D D�

]

∧  �D�∧  D��

−4D �D�∧  D��∧  D�

}


 (2.95)

To obtain the second equality, the variational contribution of �D� has been
computed by using the properties of the Hodge dual and of the external product
(see Appendix 2A), and by exploiting the two identities
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e−���D��∧  D�

= d�e−��� D��− e−���D D�+ e−���D�∧  D� (2.96)

e−���D��∧  D�∧  �D�∧  D��

= d�e−��� D��∧  �D�∧  D��

−e−����D D�−D�∧  D��∧  �D�∧  D��

−e−���D �D�∧  D��∧  D�
 (2.97)

The integral over the external-derivative terms, appearing on the right-hand sides
of the above identities, can be transformed into a surface integral over the bound-
ary �� of the integration volume, with no contribution to the field equations
because of the variational condition ������ = 0. Imposing that the action be sta-
tionary, �S/��= 0, and summing up all contributions proportional to ��, one then
obtains from Eq. (2.95) the dilaton equation, including to first order the �′ correc-
tions. Shifting eventually to the usual tensor language – using the correspondence
D D� → �2�, D�∧  D� → ����2, and so on (see Eqs. (2A.27)–(2A.29)) –
such an equation can be finally written as follows:

2�2�− ����2 +R− �′

4

[
R2

GB +3����4 −4��2������2

−4�����������
2]= 0
 (2.98)

In the limit �′ → 0 one exactly recovers the tree-level result (2.14).
In order to vary the action with respect to the base field Va we first observe that,

by projecting the dual forms in the local tangent space according to Eq. (2A.2),
we can explicitly rewrite the dual of the product of p base vectors as follows:

 Va1


ap
= 1

�D−p�! �a1


aD
V ap+1+ ∧ · · ·VaD
 (2.99)

Its variation gives

�V �
 Va1


ap

� = D−p

�D−p�! �Vap+1 ∧· · ·VaD�a1


aD
≡ �Vap+1 ∧  Va1


ap+1


 (2.100)

From the first and third terms of the action (2.93) we then obtain a first variational
contribution:

2�d−1
s �VS1 = −

∫
e−��V i ∧

(
Rab ∧  Vabi −

�′

4
Rab ∧Rcd ∧  Vabcdi

)

 (2.101)

A second variational contribution is obtained from the dilaton terms. Since
�VD� = 0, their contribution arises (as in the case of the tensor formalism) from
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the scalar products, represented by the Hodge dual operator. Using the tangent
space representation,

 D� = 1
d!�

a� �ab1


bd
V b1 ∧· · ·Vbd = 1

d!V
�
c ��� �c b1


bd

V b1 ∧· · ·Vbd (2.102)

we obtain

�V �
 D�� = 1

�d−1�!�
a� �ab1


bd

�V b1 ∧· · ·Vbd

− 1
d!�V

a
� �a� V�

c �c b1


bd
V b1 ∧· · ·Vbd (2.103)

(in the second term we have used the identity Vc
���V

�
a � = −��V c

��V
�
a , following

from the definition (2.82) of the inverse vielbein field). Thus, using again the
definition of dual,

�V �
 D�� = �a� �Vb ∧  Vab −�a�

∗�Va
 (2.104)

In the same way we obtain

�V � �D�∧  D��� = �V ��a��
a�� = 2��V�

c �����
c� = −2��Va

���a��
��

≡ −2�a��b�
 ��Va ∧  V b�
 (2.105)

Exploiting these results, the variational contribution of the two dilaton terms of
the action (2.93) can be written as follows:

2�d−1
s �VS2 =

∫
e−��V i ∧

[
!i +

�′

4
�!i +2�i��b�

 Vb�����2
]
 (2.106)

where

!i = �b�D�∧  Vbi +�i�
 D� (2.107)

is the d-form representing the usual stress tensor of a scalar field.
At this point, we still need to compute the variational contribution of the

curvature two-forms appearing in the action. To this purpose we first express the
variation of the curvature in terms of the variation of the Lorentz connection,
using the definition (2.91):

�Rab��� = d��ab +��a
c ∧�cb +�a

c ∧��cb ≡ D��ab
 (2.108)

This expression has to be used in the first and third terms of the action (2.93).
Integrating by parts, using the torsionless property of the connection, D Vab··· = 0,
and the Bianchi identity, DRab = 0, the variational contribution of the curvature
terms can be written as

2�d−1
s �VS3 = −

∫
e−�D�∧�V�

ab ∧
(
 Vab − �′

2
Rcd ∧  Vabcd

)
 (2.109)
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modulo a surface integral to be canceled by an appropriate generalization of the
standard Gibbons–Hawking boundary term (as discussed in Section 2.1).

In order to express �� as a function of �V we can now use the torsionless
condition DVa = 0, whose variation implies

�V�
a
b ∧Vb = −d�Va −�a

b ∧�Vb ≡ −D�Va
 (2.110)

This equation can be solved exactly by cyclic permutation of its components,
and by repeated use of the antisymmetry property of the Lorentz connection,
��ab = −��ba. The full result for �� is the one-form

�V�
ab = Vc

(
Fba

c −Fa
c
b −Fc

ba
)
 Fab

c = V�
a V�

b ����V��
a
 (2.111)

Such a variational contribution has to be saturated by external multiplication
with  Vab,  Vabcd, inserted into Eq. (2.109), and integrated by parts. Collecting
all terms providing equivalent contributions, and neglecting the boundary terms
because of the variational constraint ��V��� = 0, it turns out that the net variational
contribution of �� can be conveniently represented by the simpler effective
expression

�V�
ab = �b�Va −�a�Vb
 (2.112)

Inserting this result into Eq. (2.109), and integrating by parts, we can then express
the variation of the curvature terms as

2�d−1
s �VS3 = −

∫
e−��V i ∧ ��a�D�−�aD��∧ (2 Vai −�′Rcd ∧  Vaicd

)



(2.113)
Summing up the contributions (2.101), (2.106) and (2.113), we can finally write

the string gravity equation, to first order in �′, as follows:

Rab ∧  Vabi −�i�
 D�+ ��a�D�−2�aD��∧  Vai

− �′

4

[

Rab ∧Rcd ∧  Vabcdi +
(
�b�D�∧  Vbi +�i�

 D�+2�i��b�
 Vb

)
����2

+4��a�D�−�aD��∧Rcd ∧  Vaicd

]

= 0
 (2.114)

The quadratic curvature term, which would represent the sole contribution of the
Gauss–Bonnet term in the absence of non-minimal coupling to the dilaton, is
non-zero only in D> 4 dimensions. The above equation can be easily rewritten in
the conventional tensor language by exploiting the correspondence between forms
and tensor components, according to the equations (2A.31)–(2A.38) reported in
the appendix. The gravitational equation then takes the form

G�
� +A�

� +�′B�
� = 0 (2.115)



2.3 First-order �′ corrections 63

where G�
� is the Einstein tensor, A�

� represents the tree-level dilaton contribu-
tions

A�
� = ���

��−����
2�+ 1

2
����2��� (2.116)

(see Eq. (2.11)), while B�
� contains all �′ corrections:

B�
� = 1

2
����

������ − 1
8
�������

��2+R

2
����� −��

��+G�
�����

� −��
��

−R�
������ −��

��−R�
�����

� −��
��

+ ����R�
� +R��

�������� −��
��+L�

� (2.117)

(for simplicity, we have denoted with an index the covariant derivative acting on
the dilaton field, namely �� ≡ ���, ��

� ≡ ���
��, 
 
 
 ). The last term of the

above expression denotes the so-called “Lanczos tensor”,

L�
� = 1

8
���R

2
GB − 1

2
RR�

� +R�
�R�

� +R��
��R�

� + 1
2
R��

"�R�"
�� (2.118)

which is absent in D = 4 and which, in D > 4, represents the sole correction to
the Einstein equations induced by the Gauss–Bonnet invariant in the absence of
the dilaton.

Let us conclude this chapter with a remark – useful in view of subsequent
cosmological applications – concerning the possibility of solving Eq. (2.114)
through “de Sitter-like” configurations at constant curvature, characterized by
Rab = �Va ∧Vb, with � = const. Consider, for instance, the case D > 4, and
the simple situation in which the dilaton is frozen, �a� = 0 = D�. Inserting this
ansatz into Eq. (2.114) we obtain an algebraic equation for �,

d!
[

�

�d−2�! − �′�2

4�d−4�!
]
 Vi = 0 (2.119)

with non-trivial solution

� = 8�
�2

s �d−2��d−3�

 (2.120)

It will be shown in Chapter 6 that non-trivial cosmological solutions at constant
curvature can be obtained from Eq. (2.114) even in D = 4, provided D� = 0.



Appendix 2A
Differential forms in a Riemannian manifold

A differential form A of degree p, or p-form, is an element of the linear vector space �p

spanned by the (totally antisymmetric) external composition of p differentials, which can
be represented as follows:

A ∈ �p =⇒ A = A�1


�p
dx�1 ∧· · ·dx�p (2A.1)

where dx� ∧dx� = −dx� ∧dx� for any pairs of indices, and where A�1


�p
, called “com-

ponents” of the p-form, correspond to the components of a totally antisymmetric world
tensor of rank p. Using the basic one-forms on the local tangent space, Va =Va

� dx�, where
Va
� is the vielbein field, and considering the local projection A�1


�p

= Aa1


ap
V a1
�1


 
 
 V
ap
�p

,
it follows that any p-form also admits the coordinate-independent representation

A = Aa1


ap
V a1 ∧· · ·Vap ∈ �p (2A.2)

equivalent to (2A.1).
In a D = �d+1�-dimensional manifold, the direct sum of the vector spaces �p defines

the so-called “Cartan’s algebra” �=⊕D
p=0 �

p, i.e. the linear vector space spanned by the
composition of 012 
 
 
  p differentials (or basic one-forms). This space is equipped
with a map �×� → � denoted by the wedge symbol ∧, called “external product”,
and satisfying the properties of bilinearity, associativity and skewness. Such properties,
when referred to the elements of the (coordinate) differential base dx�1 ∧dx�2 · · · , can be
expressed, respectively, as follows:

�1� ��dx�1 ∧· · ·dx�p +�dx�1 ∧· · ·dx�p�∧dx�1 ∧· · ·dx�q

= �dx�1 ∧· · ·dx�p ∧dx�1 ∧· · ·dx�q

+�dx�1 ∧· · ·dx�p ∧dx�1 ∧· · ·dx�q  (2A.3)

�2� �dx�1 ∧· · ·dx�p�∧ �dx�p+1 ∧· · ·dx�p+q �

= dx�1 ∧· · ·dx�p+q  (2A.4)

�3� dx�1 ∧· · ·dx�p = dx��1 ∧· · ·dx�p� (2A.5)

where � and � are real numbers, the indices in square brackets are totally antisymmetrized,
and p+ q ≤ D. The exterior multiplication of a number of differentials larger than the
dimensions of the space-time manifold is identically vanishing, due to the third property.
It follows, in particular, that the external product of a p-form A ∈ �p and a q-form
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B ∈ �q is a mapping ∧ # �p ×�q →�p+q, bilinear, associative and antisymmetric, which
defines the �p+q�-form C:

C = A∧B = A�1


�p
B�p+1


�p+q

dx�1 ∧· · ·dx�p+q ∈ �p+q (2A.6)

and which satisfies the commutation property

A∧B = �−1�pqB∧A
 (2A.7)

The external derivative of a form A ∈ �p can be interpreted as the external product
of the one-form gradient and of the p-form A, and is thus represented by the mapping
d # �p → �p+1 which defines the �p+1�-form dA:

dA = ��1
A�2


�p+1

dx�1 ∧ 
 
 
dx�p+1

= ��1
A�2···�p+1

dx�1 ∧· · ·dx�p+1 ∈ �p+1
 (2A.8)

The second equality, i.e. the replacement

��A��


 → ��A��


 −���
�A��


 −���

�A��


 · · ·  (2A.9)

is justified by the symmetry of the two lower indices of the Christoffel connection, which
has vanishing contraction with the (antisymmetric) exterior product of differentials. An
obvious consequence of the definition (2A.8) is the property

d2A = d ∧dA ≡ 0 (2A.10)

valid for all forms. Another consequence of the definition is the (generalized) Leibniz
rule for the external derivative of a product: given A ∈ �p and B ∈ �q one obtains,
from Eq. (2A.8),

d�A∧B� = dA∧B+ �−1�pA∧dB

d�B∧A� = dB∧A+ �−1�qB∧dA
 (2A.11)

The Lorentz-covariant external derivative is represented by the one-form D = d+�,
where � = �ab

� Sab dx� is given by the contraction of the matrix-valued spin connection
one-form �ab

� and of the (tangent space) Lorentz generators Sab, appropriate to the fields
we are differentiating. For a p-form A which is scalar-valued with respect to local Lorentz
rotations, for instance, DA = dA, while for a tensor-valued p-form Aa




b


 ∈ �p the
connection � acts linearly on all indices of the local Lorentz representation:

DAa



b


 = dAa




b


 +�a
c ∧Ac




b


 −�c
b ∧Aa




c


 +· · ·
≡
[
��1

�A�2


�p+1
�a


 b


+��1

a

c
�A�2


�p+1

�c


 b


 −· · ·
]
dx�1 ∧· · ·dx�p+1 
 (2A.12)

The above expression also applies to zero-forms, namely to world-scalar objects (p= 0)
which are tensor-valued in the representation of the local Lorentz group. Two examples
are in order, also in view of further applications: the Lorentz-covariant derivative of the
local Minkowski metric, �ab, and of the local Levi-Civita tensor density, �a1


aD . Both
geometrical objects are covariantly constant with respect to D: by applying Eq. (2A.12),
and using the antisymmetry of the Lorentz connection, �ab = ��ab�, one obtains

D�ab = �a
b�

cb +�b
c�

ac ≡ 0 (2A.13)

D�a1


aD = �a1
c �

ca2


 +�a2
c �

a1c


 +· · · = �c
c �

a1


aD ≡ 0
 (2A.14)



66 The basic string cosmology equations

It should be noticed that the Leibniz rule (2A.11) can also be applied to the external
covariant derivative D, which, like d, is a one-form. The property (2A.10), however,
is no longer valid when d is replaced by D, because the commutator of two covariant
derivatives is non-zero, in general, and proportional to the space-time curvature. One
finds, in fact, D2 ≡ D∧D = d�+�∧�, which, after explicit insertion of the flat-space
indices, exactly reproduces the curvature two-form of Eq. (2.91).

For a consistent formulation of the gravitational equations in an arbitrary number
D of dimensions we need, finally, the so-called “Hodge duality” operation, a mapping
 # �p →�D−p which associates, to any p-form A, its �D−p�-dimensional “complement”
 A:

 A = 1
�D−p�!A

�1


�p��1


�D
dx�p+1 ∧· · ·dx�D ∈ �D−p
 (2A.15)

Here � is the totally antisymmmetric tensor, related to the Levi-Civita tensor density �
by

��1


�D
=√�g� ��1


�D


 (2A.16)

The dual of the identity thus corresponds, according to the definition (2A.15), to the
scalar measure representing the covariant world-volume element:

 1 = 1
D! ��1


�D

dx�1 ∧· · ·dx�D =√�g�dx1 ∧dx2 
 
 
dxD =√�g�dDx
 (2A.17)

Using the well-known multiplication rule ��1


�D
��1


�D =D!, we obtain the useful result

dx�1 ∧· · ·dx�D = ��1


�D

√�g�dDx
 (2A.18)

It follows that the integral of the external product of a p-form with the dual of a
form of the same degree automatically reproduces a volume integral, which is invariant
under general coordinate reparametrizations of the D-dimensional world manifold. This,
in particular, is what allows us to rewrite the action in terms of p-form variables.
Considering, for instance, A ∈ �p and B ∈ �p one obtains

∫
A∧  B = 1

�D−p�!
∫

A�1


�p
B�1


�p��1


�p�p+1


�D

dx�1 ∧· · ·dx�D

=
∫

dDx
√�g�A�1


�p

B�1


�p�
�1


�p
�1


�p

= p!
∫

dDx
√�g�A�1


�p

B�1


�p 
 (2A.19)

We have used the multiplication rules of two totally antisymmetric tensors with a number
D−p of contracted indices, namely

��1


�p�p+1


�D
��1


�p�p+1


�D = �D−p�!��1


�p

�1


�p  (2A.20)

where the so-called generalized Kronecker symbol is defined by the following determinant

�
�1


�p
�1


�p =

∣
∣
∣
∣
∣
∣
∣
∣

��1
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��2
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 (2A.21)
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We can also rewrite the result of Eq. (2A.19) as

A∧  B = B∧  A =  1p!A�1


�p
B�1


�p  (2A.22)

where A and B are forms of the same degree.
After introducing all the required tools we can now check that the various terms of the

action (2.93), written in the language of external forms, exactly reproduce all the terms
of the action (2.80), written in the conventional tensor language.

The correspondence of the dilaton kinetic terms has already been illustrated in Eq.
(2.94). For the Einstein term we have

Rab∧ �Va∧Vb� = 1
2�D−2�!R��

ab V�
a V

�
b ����1


�D−2

dx�∧dx�∧dx�1 ∧· · ·dx�D−2

= 1
2
R��

������
��
��

√�g�dDx = 1
2

(
R��

�� −R��
��
)√�g�dDx

= R
√�g�dDx (2A.23)

where we have used the relation (2.89) betwen the Lorentz and the Christoffel connection.
In the same way we obtain, for the Gauss–Bonnet term,

Ra1a2 ∧Ra3a4 ∧  �Va1
∧· · ·Va4

�

= 1
4�D−4�!R�1�2

a1a2R�3�4

a3a4V�1
a1


 
 
 V �4
a4

��1


�4�5


�D
dx�1 ∧· · ·dx�4 ∧· · ·dx�D

= 1
4
R�1�2

�2�1���R�3�4

�4�3�����1


�4
�1


�4

√�g�dDx

= 1
4

√�g�dDx

{

R��
��R��

�� +R��
��R��

�� +R��
��R��

�� −R��
��R��

��

−R��
��R��

�� −R��
��R��

�� −R��
��R��

�� −· · ·
}

=√�g�dDx
(
R2 −4R�

�R�
� +R��

��R��
��
)≡√�g�dDxR2

GB
 (2A.24)

The curly brackets contain the 4! = 24 terms arising from the possible permutations
of the four contravariant indices ���� (at fixed covariant indices) of the products
R��

��R��
��, with the �+� sign for even permutations and the �−� sign for odd

permutations.
Finally, for the quartic dilaton term present in the action (2.93), we can note that

D�∧  D� is a �d+1�-form, with components

1
d!����

�����1


�d

 (2A.25)

The associated dual, according to the definition (2A.15), is the zero-form ����2. Thus,
using Eqs. (2A.18) and (2A.20),

D�∧  D�∧  �D�∧  D�� = ����2����
����

�

√�g�dDx = ����4
√�g�dDx
 (2A.26)

Consider now the dilaton equation (2.95), written in terms of differential forms. For its
translation to the tensor language we still need to compute the three terms containing the
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second derivatives of the dilaton. Using Eqs. (2A.15), (2A.18) and (2A.20), and replacing
D� with �� in the form components (because of the total antisymmetrization of the tensor
indices), we obtain

D D� = 1
d!���

�����1


�d
dx� ∧dx�1 ∧· · ·dx�d = �2�

√�g�dDx (2A.27)

D D�∧  �D�∧  D�� = ����2�2�
√�g�dDx (2A.28)

D �D�∧  D��∧  D� = ��

d! ����
2������1


�d

dx� ∧dx�1 ∧· · ·dx�d

= ���������
2
√�g�dDx
 (2A.29)

Inserting these results into Eq. (2.95) one then recovers the dilaton equation (2.98).
We close the appendix by computing the tensor counterpart of the various

terms appearing in the gravitational equation (2.114). The first term can be written
explicitly as

Rab ∧  Vabi =
1

2�D−3�!R�1�2

abV �1
a V

�2
b V

�3
i ��1�2�3�3


�d

dx�1 ∧· · ·dx�d 
 (2A.30)

Let us antisymmetrize the components of this d-form by multiplying them by ���1


�d ,
and use the multiplication rule (2A.20). We are thus led to

1
2
R�1�2

�2�1���V
�3
i ���1�2

�1�2�3

= 1
2

{

R�1�2

�1�V
�2
i +R�1�2

��2V
�1
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�2�1V
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i

−R�1�2

�1�2V
�
i −R�1�2

��1V
�2
i −R�1�2

�2�V
�1
i

}

= 1
2

(
2RV�

i −4R�
i

)= −2G�
�V

�
i  (2A.31)

where G�
� is the Einstein tensor. We proceed in the same way for the other d-forms,

following the order of Eq. (2.114). The second term is

�i�
 D� = 1

d!�i��
�����1···�d

dx�1 ∧· · ·dx�d 
 (2A.32)

Antisymmetrizing its components, and exploiting the multiplication of the antisymmetric
tensors, we are led to

1
d!�i��

�����1


�d
���1


�d = �i��

��
 (2A.33)

Using the same procedure we can associate a tensor term to each d-form, according to
the following correspondence:

�a�D�∧  Vai ⇒ ����i�− ����2V
�
i  (2A.34)

�aD�∧  Vai ⇒ ���i�−�2�V
�
i  (2A.35)
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�i��b�
 V b ⇒ ����i� (2A.36)

��a�D�−�aD��∧Rcd ∧  Vaicd ⇒R�����i�−���i��

+ �2R�
i −RV

�
i ����

2 −�2��

−Ri
a�����a�−���a��

+2�Ra
bV

�
i +Rai

b����a��b�−�a�b��

−2Ra
���i��

a�−�i�
a��
 (2A.37)

The last term we must consider is the quadratic curvature term of Eq. (2.114), which
does not contribute to the gravitational equations in D = 4. In D > 4 its contribution is
represented by the so-called Lanczos tensor, according to the correspondence

Rab ∧Rcd ∧  Vabcdi ⇒ R2
GBV

�
i −4RRi

� +8Ri
�R�

�

+8Ri�
��R�

� +4Ri"
��R��

"� (2A.38)

where R2
GB is the Gauss–Bonnet invariant.
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3

Conformal invariance and string effective actions

In this chapter we will illustrate the quantum/stringy origin of the effective field
equations introduced in the previous chapter. In particular, we will show that such
equations must be satisfied by the background fields through which a bosonic
string is propagating, in order to implement a consistent quantization of the string
motion without anomalies (i.e. without quantum breakdown of the symmetries
already present at the classical level).

The main content of this chapter has no direct application in cosmology, and
will not often be referred to in the rest of this book. The simple introduction
presented here, even if incomplete and approximate in many respects, is non-
etheless compulsory for a reader with no previous knowledge of string theory, in
order to understand how the cosmological equations used throughout the book are
rigidly prescribed by the theory and cannot undergo ad hoc modifications, unlike
the equations of other, more conventional models of gravity based on the notions
of fields and point-like sources.

The motion of a point-like particle, in fact, can be consistently quantized
without imposing any constraints on the background fields with which the point
is interacting. In particular, the geometry of the space-time manifold in which
the particle trajectory is embedded may be generated by arbitrary sources, may
be characterized by an arbitrary number of dimensions, and may be governed by
dynamical equations arbitrarily prescribed (or arbitrarily modified with respect
to the Einstein equations), without dramatically affecting the quantization of the
point motion.

In the string case the situation is different. Assuming that the string represents
a unified model of all fundamental interactions, then every field with which the
string can interact should be contained in the spectrum of states associated with
the quantization of its free oscillations. The dynamics of all background fields
(even at the classical level) must thus be determined so as to be consistent with
the results of string quantization: in particular, their interactions must not destroy
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the (two-dimensional) conformal invariance which is present in all string models,
and which is crucial to obtain the quantum spectrum in which the background
fields themselves are included.

This constraint, as we will see, imposes a set of differential conditions on the
background fields interacting with the string: such conditions fully determine the
dynamical evolution of these fields, in principle to all orders of a perturbative ex-
pansion. The gravitational dynamics (in particular) and the possible cosmological
scenarios (as a consequence) are thus rigidly fixed by the chosen model of string,
and the only possible freedom left is in the choice of the initial configurations of
the various fields.

In order to illustrate such a revolutionary aspect of string theory we will
discuss in Section 3.1 the conformal invariance of the so-called “sigma model”
action, which describes the dynamical evolution of a string in the presence of
“condensates” of its massless modes (including, in particular, the gravitational
field), and we will explicitly determine the background field equations to the
lowest perturbative order. In Section 3.2 we will briefly comment on the expected
(perturbative and non-perturbative) corrections introduced by the high-curvature
and strong-coupling regimes. In Appendix 3A we will present a detailed discussion
(and computation) of the spectrum of the physical states associated with the
quantization of open and closed bosonic strings in Minkowski space. In Appendix
3B we will finally sketch the various models, and the corresponding effective
actions, obtained in the context of the supersymmetric string. For a complete
introduction to, and a deeper insight of, the string theory aspects discussed in this
chapter interested readers are referred to the excellent books already existing on
this subject [1, 2].

3.1 Strings in curved backgrounds and conformal anomalies

The action of a string freely evolving in a background gravitational field –
classically described as a curved, Riemannian manifold with metric g�� – can be
easily constructed following the analogy with the case of a free point-like particle.

Let us recall that the motion of a point describes a “world-line” in the space-
time manifold in which the point is embedded, and that the corresponding action
is proportional to the length of the trajectory, computed as the line integral over
an appropriate time parameter �. If the trajectory is represented by the parametric
equation x� = x����, we then have the action

S = m
∫ b

a
ds = m

∫ b

a

√
dx� dx� g�� = m

∫ �2

�1

d�
√
ẋ�ẋ�g��� (3.1)
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where ẋ = dx/d�. The square root appearing in the above equation can be elimin-
ated by introducing an appropriate auxiliary field (or Lagrange multiplier) V���,
and reformulating the action as follows:

S = 1
2

∫
d�
(
V−1ẋ�ẋ�g�� +m2V

)
� (3.2)

It can be easily checked that the variation with respect to V provides the constraint

ẋ�ẋ�g�� = V 2m2� (3.3)

which, solved for V , and inserted into Eq. (3.2), exactly reproduces the action
(3.1). The action (3.2), however, is also defined for massless particles, unlike
the action (3.1). Its variation with respect to x� leads to the Euler–Lagrange
equation describing the relativistic motion of the particle. Choosing, in particular,
an appropriate temporal “gauge” in which the field V (determined by the condition
(3.3)) is fixed to a constant, one obtains the equation

d
d�

	L

	ẋ�
= d

d�
�ẋ�g��� = ẍ� + 1

2
ẋ�ẋ


(
	
g�� + 	�g�


)

= 	L

	x�
= 1

2
ẋ�ẋ
	�g�
� (3.4)

Rewriting the equation in explicitly covariant form one then recovers the standard
geodesic motion of the particle in the given background metric:

ẍ� +��

�ẋ�ẋ
 = 0� (3.5)

The action for a free string in a gravitational background can be written fol-
lowing the analogy with the point particle, and noting that the time evolution of a
one-dimensional object describes, instead of a curve, a two-dimensional surface �,
called a “world-sheet”, in the space-time manifold (also called the “target space”)
in which it is embedded. The corresponding action can thus be expressed as a
two-dimensional surface integral and, as discussed in more detail in Appendix
3A, is proportional to the proper area of the world-sheet spanned by the string
motion (one obtains, in this way, the so-called Nambu–Goto action [3]).

As in the particle case, it is convenient to eliminate the square root present
in the action and to work with the (equivalent) Polyakov form [4, 5], which
extends the action (3.2) to objects with one-dimensional spatial extension. Let us
call X� = X��a�, with � = 0�1� � � � �D−1, the parametric equations governing
the embedding of the world-sheet � into the D-dimensional target space (with a
prescribed number of dimensions, as will be explained in Appendix 3A); also, let
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us call a, with a�b = 0�1, the intrinsic world-sheet coordinates. The Polyakov
action then takes the form

S ≡ 1
�2

s

∫

�
d2 L�X� 	X� = 1

2�2
s

∫

�
d2

√−� �ab	aX
���	bX

���g���X�� (3.6)

where 	a ≡ 	/	a, and where the symmetric tensor �ab��, with Lorentzian sig-
nature �+�−� and determinant � ≡ det �ab, represents the intrinsic metric of
the world-sheet surface, here playing the role of an auxiliary field analogous
to the field V��� of the action (3.2). Finally, �−2

s = M2
s is the so-called string

tension (or mass per unit length), determining the natural units to which to refer
the world-sheet area, and representing the only arbitrary fundamental parameter
of the considered model. In the rest of this chapter we will put �2

s = 2�
′, to
follow the conventional notations usually adopted in the string theory literature.
Note that, for a flat background metric g�� = ���, the above action is quadratic
in the fields X�; for a curved background metric, g���X�, we have instead a
non-linear action, called the sigma model, for the fields X��� defined on the
given world-sheet surface.

The string equations of motion are now obtained by varying the action (3.6)
with respect to the coordinates X�, as in the particle case. By imposing appro-
priate boundary conditions (see Appendix 3A for a discussion of the various
possibilities), we obtain the standard Euler–Lagrange equations,

	a
	L

	�	aX
��

= 	a
(√−� �ab	bX

�
)
g�� +√−� �ab	bX

�	aX

	
g��

= 	L

	X�
= 1

2
√−� �ab	aX


	bX
�	�g
�� (3.7)

Dividing by
√−�, and introducing the target space connection � , we can rewrite

the equations in a form which closely resembles the point-like geodesic equation:

�ab�a�bX
� +�ab	aX


	bX
��
�

� = 0� (3.8)

where �ab�a�b = �
√−��−1	a�

√−��ab	b� is the covariant d’Alembert operator
for the curved world-sheet metric. By varying the action with respect to the
auxiliary field �ab we also obtain the constraint

Tab ≡ 	aX
�	bX

�g�� − 1
2
�ab	cX

�	cX�g�� = 0� (3.9)

which generalizes the “mass-shell” condition (3.3), previously obtained for the
point-like particle. We note that Tab, defined by the variation of the intrinsic
metric �ab, corresponds to the geometric stress tensor of the two-dimensional
world-sheet theory. The conformal invariance of this theory (see below) is then
reflected in the fact that the trace of such a tensor is identically vanishing, as



3.1 Strings in curved backgrounds and conformal anomalies 75

can be checked by its definition, quite independently of the equation of motion
Tab = 0.

The above equations can be applied to study the free motion of a string (or
of a perfect gas of non-interacting strings) in a given gravitational field and, in
particular, in a cosmological background. One then finds, even at the classical
level, interesting results which will be reported later [6–9]. For the purpose of
this chapter, the point we must focus on is the invariance of the two-dimensional
model (3.6) under conformal transformations (i.e. local scale transformations, or
Weyl transformations) of the world-sheet metric, defined by

�ab → e2����ab� �ab → e−2����ab� (3.10)

In a generic, D-dimensional manifold we have
√−��ab → e�D−2��√−��ab� (3.11)

so that, for D = 2, the action (3.6) turns out to be exactly invariant.
Thanks to this invariance, it is always possible to represent the string dy-

namics in the so-called “conformal gauge” in which the world-sheet has a flat
intrinsic metric, �ab = �ab. Using the reparametrization invariance of the world-
sheet surface, we can first perform a suitable coordinate transformation a → ̃a,
imposing two conditions on the three independent components of �ab, in such a
way that the transformed metric is diagonal and conformally flat, �ab → a2���ab.
Then, by exploiting the conformal invariance (3.11), we can eventually obtain the
Minkowski metric through a last rescaling with conformal factor exp�2�� = a−2.
In the conformal gauge (which will be repeatedly used in Appendix 3A) the string
equations of motion are considerably simplified: Eq. (3.8) reduces to

Ẍ� −X′′� +�
�
�
(
Ẋ
 +X′
)

(
Ẋ� −X′�

)
= 0� (3.12)

where the dot denotes differentiation with respect to the time-like world-sheet
coordinate, 0 = �, and the prime with respect to the space-like coordinate 1 =� .
Also, the constraints (3.9) can be written in the form

g��

(
Ẋ�Ẋ� +X′�X′�)= 0� g��Ẋ

�X′� = 0� (3.13)

where the first condition is obtained from the components T00, T11, while the
second one is from T10.

It is important to stress that the conformal invariance of the action (3.6)
holds, at a classical level, quite independently of the given target space geometry
(namely, it holds for any given metric g���X�). At the quantum level, however,
such an invariance tends to break because of the required loop corrections,
being preserved only for particular metric backgrounds satisfying appropriate
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differential conditions imposed to avoid conformal anomalies, order by order in
the perturbative expansion of the sigma model quantization [1].

The property of conformal invariance is expected to be valid also in a quantum
context for the formulation of a consistent theory in which quantum corrections
can be expanded around a compatible classical solution; after all, conformal
transformations are part of the two-dimensional reparametrization group [10],
and the background fields present in the sigma model action – in particular,
the gravitational field represented by the metric g�� – are part of the quantum
spectrum of physical states obtained by using the conformal invariance of the
action. It follows that all background field configurations admissible in a string
theory context – not only for the metric of the space-time manifold, but also
for any (boson and fermion) matter field on it – are not arbitrary: the only
allowed configurations are those satisfying the differential conditions imposed by
the requirement of conformal invariance of the quantized sigma model expansion.
The effective action introduced in Chapter 2 is indeed the action which reproduces
the appropriate differential conditions for the basic gravitational multiplet, to
lowest order in the loop expansion of the sigma model quantization.

To provide an explicit example of this important string theory result we now
consider the case which is the most relevant one in the context of this book,
considering the geodesic evolution of a string in a pure gravitational background,
described by the action (3.6), and interpreted as an effective action for the quantum
field X�.

For the computation of the one-loop corrections we consider the fluctuations
x̂� of the field around a classical expectation value, performing the shift X� →
X� + x̂�, and expanding the action in powers of the quantum fluctuations. The
shift represents a coordinate transformation of the target space-time manifold, and
thus induces a transformation of the metric tensor, g�X� → g�X+ x̂�, which also
has to be expanded in powers of the quantum fluctuations. Such an expansion
is in general complicated, but it can be expressed in a rather simple form by
exploiting the general covariance of the theory: in particular, if we introduce the
so-called Riemann “normal” coordinates z��̂x� (see e.g. [11]), then all explicitly
non-covariant terms disappear from the expansion, and the shifted fields, g and
X, can be expressed in powers of these new variables as follows:

g���X� → g���X�− 1
3
R�
���X�z
z� +· · · �

	aX
� → 	aX

� + 	az
� − 1

3
	aX

�R�

���X�z
z� � � � (3.14)
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By inserting this expansion in the sigma model action (3.6), up to terms of order
z2, we obtain for the fluctuations the following quadratic action:

S2 = 1
4�
′

∫
d2

√−��ab
[
	az

�	bz
�g���X�− 	aX

�	bX
�R�
���X�z
z�

]
�

(3.15)

This action includes two terms which we can interpret, respectively, as the kinetic
term and the effective mass term for the quantum field z�� in a classical (curved)
background.

A quantum model of this type contains divergences, which are to be renormal-
ized by introducing appropriate counterterms; such counterterms can be taken as
proportional to the effective mass, and in this case are of the form [1]

S� = − 1
4�
′

∫
d2

√−��ab	aX
�	bX

�R�
���z
z��=′ � (3.16)

Here

�z
z��=′ = lim
→′

[

−i 2�
′g
�
∫ d2k

�2��2

e−ik·�−′�

k2

]

(3.17)

is the one-loop term obtained from the two-point correlation function �z
��z��′��
(namely from the Fourier transform of the propagator of the free field z�), in
the limit  → ′. Notice that this contribution is of order 
′ with respect to
the classical terms of the action, in agreement with the fact that the quantum
effects must become negligible when the action integral becomes larger than one
in natural units, namely in the limit 
′ → 0. In other words, the expansion in
quantum loops of the sigma model must correspond to a perturbative expansion
in powers of 
′.

Adding such a term we obtain a model which is regular but no longer con-
formally invariant, in general. For an explicit check of this important point we
can consider an infinitesimal deformation of the number of dimensions of the
world-sheet manifold, from D = 2 to D = 2 + �, in such a way as to make the
integral (3.17) computable in finite form. In D = 2 + � dimensions the factor√−��ab is not conformally invariant, and the same is true for the action S�.
Considering an infinitesimal conformal transformation with parameter ��, and
expanding the result (3.11) to first order in ��, we can easily obtain the corres-
ponding infinitesimal variation of the one-loop action (3.16), in 2+� dimensions,
as

�S� = − �

4�
′
∫

d2+�
√−��ab	aX

�	bX
�R�
���z
z��=′ ��� (3.18)

The conformal invariance would seem to be restored in the limit � → 0, where
one recovers a two-dimensional world-sheet integral. For � 	= 0, however, the
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one-loop contribution can be computed explicitly, and it can be shown to contain
a pole which diverges as �−1 for � → 0.

For the explicit computation of the integral (3.17) we can conveniently absorb
the imaginary factor −i inside the space-like integration variable, so as to obtain
an integral with an effective Euclidean metric. We can then evaluate the one-loop
contribution as follows:

∫ d2k

�2��2

1
k2

= lim
��m→0

∫ +�

−�
d2+�k

�2��2+�

1
k2 +m2

= lim
��m→0

∫ +�

−�
d2+�k

�2��2+�

∫ �

0
ds e−s�m2+k2�

= lim
��m→0

∫ �

0

ds
�2��2+�

(�
s

) 2+�
2

e−sm2

= lim
��m→0

m�

�4��
2+�

2

�
(
−�

2

)

= − lim
�→0

1
2��

� (3.19)

where we have used the Gauss result for the integral over k, and the definition
of the Euler Gamma function for the integral over s. Therefore, according to the
definition (3.17),

�z
z��=′ = − lim
�→0


′

�
g
�� (3.20)

When inserted into Eq. (3.18), this one-loop contribution exactly cancels the
�-dependence introduced by the infinitesimal conformal transformation, so that
the variation of the action remains non-zero (�S�/�� 	= 0) even in the limit �→ 0:

�S� = − 1
4�

∫
d2

√−��ab	aX
�	bX

�R�� �� (3.21)

(we have used R�� = R
��

). As a consequence, this regularized quantum model

turns out to be conformally invariant, if and only if the classical background
geometry satisfies the differential conditions

R���X� = 0� (3.22)

namely, if and only if we restrict the gravitational background to field configura-
tions satisfying the vacuum Einstein equations!

Similar arguments, applied to a sigma model which includes the interaction
with a background gauge field, lead us to conclude that the conformal invariance
is preserved at the quantum level provided the gauge field satisfies the appropriate
Yang–Mills equations (see [10, 12, 13] for an explicit computation in the case of
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the heterotic superstring model). In the same way one finds that the requirement
of “superconformal” invariance (i.e. world-sheet conformal symmetry) supplies
the dynamics for the space-time fermion fields [10].

The conceptual importance of these results, showing that the consistency of
the quantum string motion uniquely fixes the dynamics of the fields with which
the string is interacting, can hardly be underestimated. Thanks to this effect, on
one hand, we can recover – through a purely theoretical argument, and as a first,
low-energy approximation – the field equations of the classical forces, originally
postulated on the grounds of phenomenological motivations only. On the other
hand, we can compute – through an unambiguous, automatic procedure – the
quantum corrections to such classical equations, pushing to higher orders the

′ expansion generated by the loop corrections (and, in addition, considering
world-sheet manifolds with non-trivial topologies, as we will see in Section 3.2).

However, the example we have just discussed cannot be regarded as a complete
description of the string motion in a gravitational background, since the condition
of conformal invariance cannot be separately imposed on the metric, on the gauge
fields, and so on: it should be simultaneously imposed on all background fields
with which a string can interact. Such fields are contained in the spectrum of
states (with growing level of masses) that one obtains in the first quantization
of the given (open or closed, bosonic or supersymmetric) model of string, and
that associates with the metric other important gravitational partners. For the
cosmological applications of this book we here focus our attention on the multiplet
of three massless states present in the spectrum of the closed bosonic string (see
Appendix 3A), as well as in the various models of superstrings (see Appendix 3B):
the graviton, the dilaton and the Kalb–Ramond axion, respectively represented by
a tensor field (the metric g��), a scalar field � and a second-rank antisymmetric
tensor (the NS–NS two-form B��).

The interaction of a string with these background fields is described by the
following sigma model action:

S = 1
4�
′

∫

�
d2

{

	aX
�	bX

�
[√−��abg���X�+ �abB���X�

]

+ 
′

2
√−� R�2���X�

}

� (3.23)

We have added to the Polyakov action the so-called Wess–Zumino term [14, 15]
describing the interaction with the field B�� = −B�� (�ab = −�ba is the two-
dimensional Levi-Civita tensor density on the world-sheet surface). We have also
included the explicit coupling between the dilaton and R�2�, the intrinsic scalar
curvature associated with the world-sheet metric [16]. If � is a constant such a
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term does not contribute to the sigma model equations, as
∫

d2R�2� is a pure
Euler two-form in two dimensions, just like the Gauss–Bonnet four-form in four
dimensions, see Section 2.3.

It is important to notice that the first two terms of the above action are classic-
ally invariant under conformal transformations of the metric �ab, while the dilaton
term breaks conformal invariance at the classical level. For dimensional reasons,
however, the dilaton term is of order 
′ with respect to the others, namely it is of
the same order as the quantum one-loop corrections: the (classical) contribution
of the dilaton term is thus to be included into the condition of one-loop conformal
invariance of the total action. In order to obtain the differential conditions gov-
erning the motion of g, B and �, we thus proceed by computing the variation of
the action (3.23) under infinitesimal conformal transformations to the one-loop
order for g and B, and at the classical level for �.

We need, first of all, a generalization of the string equations of motion (3.8),
so as to include the interaction with the new background field B��. Without
repeating the computation already performed for the gravitational background, it
will be enough to add to the left-hand side of Eq. (3.8) the contribution of the
Wess–Zumino Lagrangian, given by

	a
	LWZ

	�	aX
��

− 	LWZ

	X�

= �ab	a	bX
�B�� + �ab	bX

�	aX

	
B�� − 1

2
�ab	aX


	bX
�	�B
�� (3.24)

The first term is vanishing for the antisymmetry of �ab. Antisymmetrizing the
second term with respect to 
 and �, and adding the new terms to Eq. (3.8)
(remembering that we have divided by

√−�), we obtain the equation of motion

�a�aX
� +�ab	aX


	bX
��
�

� − 1
2

eab√−�
	aX


	bX
�H�


� = 0� (3.25)

where H�
� = 	�B
� + 	
B�� + 	�B�
.
We can then compute the conformal transformation of the classical dilaton

term appearing in the action (3.23). Considering the transformation (3.10), and
applying the general result (2.40), (2.41) we obtain, in a total number of D = 2
dimensions,

√−�R�2� → √−�
(
R�2� −2�2�

)
� (3.26)

For an infinitesimal transformation with parameter �� we have, to first order,
��

√−�R�2�� = −2
√−� �2��, and we find that the variation of the dilaton part

of the action (3.23) is

�S� = − 1
4�

∫
d2

√−���a	
a�����X�� (3.27)
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Integrating by parts two times, and setting 	a� = 	aX
�	��, we obtain

�S� = 1
4�

∫
d2

√−��ab	aX
�	b��	��

= − 1
4�

∫
d2

√−� ��

[
1√−�

	b�
√−��ab	aX

��	��+�ab	aX
�	bX

�	�	��

]
�

(3.28)

Let us finally write the result in explicit covariant form, using the definition
����� = 	�	��−���

�	��, and applying the string equation of motion (3.25).
The infinitesimal variation of the dilaton action then takes the form

�S� = − 1
4�

∫
d2 ��

[√−��ab	aX
�	bX

������

+1
2
�ab	aX

�	bX
�H��
�


�

]
� (3.29)

which represents the classical conformal anomaly of the sigma model (3.23) due
to the dilaton, to be added to the one-loop contributions due to g�� and B��.

For the computation of the B contribution we may follow the procedure used
for the gravitational field, by shifting the coordinates around a classical solution,
and expanding the Wess–Zumino term in Riemann normal coordinates. We must
then complement Eq. (3.14) with the two-form expansion,

B���X� → B���X�+�
B��z

 + 1

2

(
�
��B�� − 1

3
R�


��B��

−1
3
R�


��B��

)
zaz� +· · · (3.30)

to be inserted into the Wess–Zumino term of the action (3.23). Stopping the
expansion to order z2, we are led to the following quadratic action for the quantum
fluctuations z�:

SWZ
2 = 1

4�
′
∫

d2 �ab

[

	az
�	bz

�B���X�+2	aX
��
B���X�	bz

�z


+ 	aX
�	bX

�

(
1
2
�
��B���X�−R�


���X�B���X�

)
zaz�

]

� (3.31)

For the simplification of the final equations it is convenient to rewrite this action
in terms of the field strength H��
, eliminating the antisymmetric potential B��.
By using the definition of H , the properties of the Riemann tensor, integrating
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by parts, and using the definitions 	aB�� = 	aX

	
B�� and so on, we obtain the

equivalent form

SWZ
2 = 1

4�
′
∫

d2 �ab
[
z
	az

�	bX
�H�
��X�− 1

2
	aX

�	bX
��
H����X�z
z�

]
�

(3.32)
to be added to the gravitational action (3.15).

With the addition of SWZ
2 , the effective action for the quantum field z acquires

a new contribution to the mass term z
z�, plus an additional “soft” mass term
proportional to za	zb. In order to regularize the new divergences we have thus to
introduce another counterterm, to be added to Eq. (3.16) used for the gravitational
background. In the one-loop approximation, the new term is given by

SWZ
� = − 1

4�
′
∫

d2 	aX
�	bX

�

(
1
2
�ab�
H��� + 1

4
√−��abH�


�H���

)

×�z
z��=′ (3.33)

(in fact by rewriting in canonical form the full quadratic action for z�, it can
be shown that the effective mass term is given by the sum of the initial mass
term, minus the coefficient of the soft term divided by two and squared (see e.g.
A. Sagnotti, Lectures on String Theory (Università di Roma “Tor Vergata” and
“Scuola Normale Superiore”, Pisa, 2004), unpublished.)).

Again, this counterterm induces a breaking of the conformal symmetry, as can
be easily checked by shifting to d = 2 + � dimensions, and performing an infin-
itesimal conformal transformation which introduces into SWZ� the factor ���. The
� factor is canceled by the one-loop contribution (3.20), so that the infinitesimal
conformal anomaly survives even in the limit � → 0:

�SWZ
� = 1

4�

∫
d2 	aX

�	bX
�

(
1
2
�ab�
H
�� + 1

4
√−��abH�
�H�


�

)
���

(3.34)
We are now able to determine the full set of differential conditions to be

satisfied by the background fields for a consistent cancelation of the conformal
anomalies, to leading order in the 
′ (one-loop) corrections. Using the results
(3.21), (3.29) and (3.34), imposing �S� + �SWZ� + �S� = 0, and separating the
symmetric and antisymmetric factors of 	aX

�	bX
� we obtain, respectively,

R�� +�����− 1
4
H�
�H�


� = 0� (3.35)

and

�
H
�� −�
�H
�� = 0 = �

(

e−�H
��

)
� (3.36)
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These equations exactly coincide with the effective equations (2.26) and (2.28)
(without sources) discussed in the previous chapter.

The above set of equations has to be completed by the addition of the dilaton
equation of motion, which can be obtained through a combination of the above
two equations. In fact, if we compute the covariant divergence of Eq. (3.35),
using the contracted Bianchi identity ��R�� = ��R/2, the commutation relation
(2.18), and the torsion equation (3.36), we obtain

��

(
R

2
+�2�− 1

2
��2

)
− 1

4
H�
���H
�� = 0� (3.37)

The last term, using the explicit definition of the field strength H and of the
covariant derivative, can be rewritten as

−1
4
H�
� 1

3

(
��H
�� +�
H��� +��H�
�

)

= − 1
12

H�
���H
�� = − 1
24

��

(
H
��H


��
)
� (3.38)

Thus

��

(
R+2�2�−��2 − 1

12
H2
)

= 0� (3.39)

which coincides with the gradient of the dilaton equation (2.25) (without sources
and potential).

The above equation actually implies

R+2�2�−��2 − 1
12

H2 = c� (3.40)

where c is any constant number. Such a constant, however, is found to be zero
in a perturbative approach to string quantization, where the quantum theory is
consistently formulated only in a critical number D=Dc of space-time dimensions
(see Appendix 3A). For the bosonic string, in particular, one finds [5, 10] that c =
�D−26�/3
′ (for the superstring c ∼ �D−10�). Taking into account this result,
the set of equations (3.35), (3.36) and (3.40), for the multiplet of fundamental
fields g�B and �, can be deduced from the effective action

S = − 1
2�d−1

s

∫
dd+1x

√�g� e−�

(
R+��2 − 1

12
H2 + 26−D

3
′

)
� (3.41)

as discussed in the previous chapter (see Eq. (2.21)). In a non-critical number of
dimensions (D 	= 26) the action should contain a dilaton potential V ∝ �Dc −D�,
which is not in general constant at higher levels of the perturbative approximation,
as we will see in the next section.
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3.2 Higher-curvature and higher-genus expansion

As noted in the previous section, the quantum loop expansion of the sigma
model quantization corresponds to an expansion in powers of the string length
parameter 
′ = �2

s/2�. This parameter represents the natural (i.e. model-provided)
unit of distance to which to refer the geometry described by the sigma model
metric g��: in particular, curvature radii which are large with respect to

√



′

will correspond to small curvatures in string units (i.e. to small gradients of the
gravitational background). The quantum sigma model expansion in powers of 
′
is thus equivalent to a geometric expansion in powers of the curvature and of its
derivatives, namely to a higher-derivative expansion of the metric (and of all the
other background fields).

This fact is also evident from the computations of the previous section, where
the expansion (3.14) around the classical solution can be continued to higher
orders, in Riemann normal coordinates, as follows:

g���X� → g���X�− 1
3
R�
���X�z
z� + c1R�
���X�R�

�
�
��X�z
z�z�z� +· · · �

(3.42)

where c1 is an appropriate numerical coefficient. Extending the computation of
the quantum corrections to higher orders one then finds that the condition of
conformal invariance (3.22), at the two-loop level, acquires quadratic curvature
corrections [1],

R�� + 
′

2
R�
��R�


�� = 0� (3.43)

with associated quadratic corrections (of order 
′) to the effective action (3.41).
The same is true for the other background fields B, � included in the equations
of motion.

Such corrections, as already noted in Section 2.3, suffer from an intrinsic
ambiguity: by performing appropriate field redefinitions it turns out to be possible
to satisfy the condition of conformal invariance even when the field equations have
different higher-derivative corrections – and thus admit solutions with different
geometrical properties – at any given order of the (truncated) 
′ expansion [17].

This ambiguity may be resolved only in the context of an exact conformal
theory, where the background fields satisfy the equations of the non-linear sigma
model (to all orders of the 
′ expansion, not only to a given truncated or-
der). For the purposes of this book, i.e. for a simple illustration of the possibile
higher-derivative effects in a cosmological context, we will adopt in the following
chapters the “minimal” gravi-dilaton model with quadratic curvature corrections,
parametrized by the action (2.80), and discussed in detail in the previous chapter.
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We refer the reader to the literature for perturbative actions including 
′ correc-
tions also in the B�� sector [17] – possibly satisfying particular duality properties
[18, 19] – and for a study of exact conformal models with possible applications
in a string cosmology context [20, 21].

The higher-derivative expansion, controlled by the parameter 
′, is a peculiar
string theory property, closely related to the finite one-dimensional extension
�s ∼ √



′ of the fundamental objects of the theory. However, it is not the only

possible expansion that we can apply in the context of the sigma model action
for a perturbative approach to the effective background equations.

Another important (and useful) sigma model approximation is the expansion
in the growing level of complexity of the topology of the world-sheet surface,
the so-called “higher-genus” expansion [1]. This is also a typical aspect of string
theory which has, however, a well-known counterpart in a quantum field theory
context, represented by the conventional loop expansion in powers of the coupling
constant. The various topological levels of the world-sheet surface, in fact, can
be closely correlated to the various levels of Feynman graphs of a field theory
with point-like sources. Higher levels of topological complexity correspond to
higher powers of the coupling constant g2

s which controls the strength of the
interactions among strings. It is thus of crucial importance to stress that such a
topological expansion can be expressed as an expansion in powers of exp���, a
result which clearly identifies the expectation value of the dilaton, ���, as the
parameter controlling the effective coupling constant of perturbative string theory.

Consider, in fact, the usual loop expansion of a scattering process in a quantum
field theory context, graphically represented by a sum of Feynman diagrams as
in Fig. 3.1. String interactions can be described by a similar sum of elementary
processes: the time evolution of a string, however, describes a world-surface,
not a world-line, and the interactions correspond to modifications of the world-
sheet topology, as illustrated in Fig. 3.1. For a closed string, for instance, the
interaction region (represented by the shaded areas of the figure) has the topology
of a sphere in the tree-level graphic, of a torus in the one-loop graphic, and
so on. The interaction region of a general, n-loop graph thus corresponds to a
two-dimensional Riemannian surface �n of genus n, i.e. to a manifold with n

“handles”.
For a two-dimensional closed orientable manifold, on the other hand, the genus

n is completely determined by the so-called Euler characteristic �, which, by
virtue of the Gauss–Bonnet theorem, is given by the topological invariant

� = 1
4�

∫

�n

d2
√−� R�2���� ≡ 2−2n� (3.44)

If we take the dilaton part of the sigmal model action (3.23), and we set
� = �0 +� (extracting from the dilaton field a classical, constant part �0 = ���,
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tree-level one-loop two-loop

+ +

+ +

gs
–2 gs

0 gs
2

Figure 3.1 Loop expansion for particle interactions (top diagrams) and string
interactions (bottom diagrams). The string-loop counting parameter is the string
coupling g2

s , and the n-loop amplitude of the process is proportional to g2�n−1�
s .

averaged with respect to the sigma model partition function), then the action is
simply shifted by a constant term which is genus dependent:

S���� = S����+ 1
2
��0� (3.45)

The index � of the action identifies a sigma model defined on a world-sheet with
Euler characteristic �, according to Eq. (3.44). The partition function describing
the string scattering of Fig. 3.1, written as a topological expansion of growing
genus,

� =∑

�

��� �� =
∫

�X e−S���� = e− �
2 �0

∫
�X e−S����� (3.46)

can then be rewritten, using Eq. (3.44), as an expansion in growing powers of
exp��0�:

� =∑

�

�� =
�∑

n=0

e�n−1��0

∫
�X e−Sn���� (3.47)

A comparison with the conventional loop expansion clearly identifies the expo-
nential of the dilaton expectation value with the parameter controlling the tree-
level string coupling (i.e. with the string-loop counting parameter g2

s of Fig. 3.1),
namely

g2
s = exp���� (3.48)

The two approximations defined in the context of the sigma model action – the
higher-derivative expansion, controlled by 
′, and the higher-genus expansion,
controlled by g2

s – are in principle independent, and can be applied simultaneously.
Taking into account both possibilities, the most general perturbative form of the
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string effective action can be schematized as follows (for simplicity, we include
here only the gravi-dilaton sector):

S = − 1
2�d−1

s

∫
dd+1x

√�g�
{

e−�

[
R+ ����2 − 
′

4
R2 +· · ·

]

+
[
c1
RR+ c1

�����2 +
′c1

′R2 +· · ·

]

+ e�
[
c2
RR+ c2

�����2 +
′c2

′R2 +· · ·

]

+ e2� �· · · �+· · ·
}

� (3.49)

where the first line contains the tree-level terms in g2
s , the second line contains the

one-loop terms in g2
s , and so on. At any given order of the topological expansion

there is a full expansion in 
′, for all fields, and to all orders. Conversely,
at any given order in 
′, the contribution of the topological loops introduces
dilatonic corrections, cnen�, which are in general different for different fields
and at different orders. Therefore, the growth of the coupling strength tends to
break the universality of the dilaton coupling to the various matter fields: this
effect, as we shall discuss in Chapter 9, may induce an effective violation of the
equivalence principle, with possibly interesting phenomenological implications
(unless the dilaton-mediated force is too weak, or too short-range).

In particular, the lowest-order action discussed in Chapter 2 is valid at low
enough energy scales (when the field gradients are small enough in string units)
and at weak enough coupling. In the following chapters we will often consider
background configurations (possibly implemented in a primordial cosmological
context) in which the coupling is weak (g2

s  1, � → −�), while the curvature
is non-negligible in string units, and for which we can limit the expansion to
the lowest topological order, including only the 
′ corrections. In the present
cosmological configuration the curvatures are low (
′R  1), but the couplings
are probably inside (or very near to) the strong coupling regime (gs ∼ 1): in that
case, we can use the tree-level approximation in 
′, but we should include the
loop contributions of the topological expansion, possibly to all orders. In that
regime, a realistic form of the (string-frame) gravi-dilaton effective action is then
the following:

S = − 1
2�d−1

s

∫
dd+1x

√�g� [ZR���R+Z��������2 +V���
]
� (3.50)

where the loop contributions are included into the dilaton “form factors” ZR, Z�

(see Chapter 9).
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We have also included in the above action a possible dilaton potential, which
we have seen to be present, at the perturbative level, for a model formulated in
non-critical dimensions (D 	= Dc). At the n-loop order, such a potential is the
source of an exponential contribution of the form

Vpert��� ∼ Dc −D

�2
s

e�n−1��� (3.51)

When the coupling is large we should also take into account the possible presence
of a non-perturbative potential, which is non-zero even in critical dimensions, and
which is required, for instance, by superstring models of supersymmetry breaking
[22], producing an effective mass term for the dilaton [23].

In order to discuss the possible form of the functions Z��� and V��� we first
note that in the weak coupling regime (g2

s → 0) one must recover the tree-level
action (3.41), so that ZR → Z� → exp�−�� for � → −�. In the same regime
we know that the non-perturbative potential has to be extremely flat, typically
characterized by an instantonic suppression of the type

V��� ∼ e−
/g2
s ∼ e−
e−�

� � → −�� (3.52)

where 
 is a model-dependent coefficient of order one. As � is growing, the
loop contributions lead the potential to develop a structure with local maxima and
minima (see for instance [24]), which could trap the dilaton, and freeze out the
string coupling g2

s to a realistic value compatible with our present cosmological
scenario (see Fig. 3.2). However, there are at present no firm and unambiguous
theoretical predictions for the behavior of the dilaton potential in the limit of
extremely strong coupling, � → +�: the perturbative component of the potential
is exponentially divergent (see Eq. (3.51)), but such a divergence could be sup-
pressed by large non-perturbative effects. The two possible limiting cases, V → 0
and V → �, are illustrated, respectively, by the dashed curves (a) and (b) of
Fig. 3.2.

φ

V(φ)

weak coupling strong coupling

(a)

(b)

Figure 3.2 Possible qualitative behavior of the non-perturbative dilaton potential.
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An important remark is in order at this point. In the context of a theory in
which the fundamental coupling parameter is fully controlled by a field, the
dilaton – and thus is free to run, following the dilaton evolution – the stabiliza-
tion (or quasi-stabilization) of the coupling, needed for a realistic description of
present interactions, requires an effective dilaton potential. Quite independently
of the possible origin of such a potential (see [25] for recent progress towards
the stabilization of all moduli fields in a cosmological context), there are in
principle two alternative scenarios for the phenomenology of the stabilization
mechanism.

A first scenario is based on a potential which is rapidly increasing at large values
of �, so as to make the strong-coupling regime hardly accessible, and which has
a local minimum V ′��0� = 0 at a value �0 located in the semi-perturbative region
in which �0 < 0, ��0� = ��1�, so as to be phenomenologically consistent with
the tree-level relation (2.3) between string mass and Planck mass. For models in
which D−4 spatial dimensions are compactified at the string scale, and in which
Ms � 0�1MP (as required by a consistent string unification of gravitational and
gauge interactions [26]), one can estimate the value of �0 as

�0 = 2 ln
(

Ms

MP

)
� −4�6� (3.53)

A possible “minimal” example of such a potential, corresponding to the curve (b)
of Fig. 3.2, and with an amplitude controlled by the single dimensional parameter
m2, is the following [24]:

V��� = m2
[
ek1��−�1� +� e−k2��−�1�

]
e−
 exp�−���−�1��� (3.54)

where k1� k2�
������1 are dimensionless numbers of order one. Choosing ap-
propriate values of such parameters one can easily obtain a local minimum at
�0 � �1, satisfying the requirement (3.53). However, in this case the dilaton may
tend to be shifted away from the equilibrium position in the course of the cosmo-
logical evolution because of its non-minimal coupling to the trace of the matter
stress tensor, unless the effective dilaton mass m2 is restricted to an appropriate
range of values [27].

A second possibility for the stabilization scenario is based on a model in
which both the potential and the dilaton form factors, Z���, admit an asymptotic
expansion in inverse power of the “bare” (i.e. tree-level) coupling g2

s = exp�, for
� → +� [28]:

V��� = V0e−� +V1e−2� +· · · �
Z���� = −c2

2 +b2
2e−� +a2

2e−2� +· · · �
ZR��� = c2

1 +b2
1e−� +a2

1e−2� +· · · � � → +��

(3.55)
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The leading-order (dimensionless) coefficients ci of this expansion are determ-
ined by the number N of gauge fields present in the given model of superstring
unification, and contributing to the loop corrections. In realistic grand-unification
models such a number is large: one has, typically, c2

1 ∼ c2
2 ∼ N ∼ 102 (the coeffi-

cient c2
2 enters with a minus sign, in order to guarantee the correct normalization

of the dilaton kinetic term in the limit � → +�). As a consequence, the effect-
ive coupling constant g2

s , which in this context asymptotically controls the ratio
between string mass and Planck mass, turns out to be saturated to a (realistic)
moderately perturbative value in the limit in which the bare coupling parameter
g2

s ���= exp� becomes sufficiently large. We obtain, from Eqs. (3.55) and (3.50),
(

Ms

MP

)d−1

= Z−1
R ��� →

(
c2

1 +b2
1e−� +· · ·

)−1

→ g2
s ���

c2
1g

2
s ���+b1

→ 1

c2
1

≡ g2
s � � → +�� (3.56)

A possible example of non-perturbative potential which agrees with the asymp-
totic behavior of Eqs. (3.52) and (3.55) is the following [29]:

V��� = m2
[
e− 1

�1
exp�−�� − e− 1

�2
exp�−��

]
� �1 > �2 > 0� (3.57)

Here �1, �2 are dimensionless parameters of order one, and the typical scale
of the potential is determined, as before, by the dimensional parameter m2 (a
comparison with Eq. (3.55) gives V0 = m2��1 −�2�/�1�2). The above potential,
which has a “bell-like” structure like the curve labelled (a) of Fig. 3.2, obviously
requires a dilaton field running towards +�, in order to implement the saturation
mechanism of Eq. (3.56).

The two examples of non-perturbative potential presented in this section will
be applied in Chapter 9 to discuss possible scenarios of “late time” cosmology, in
which the Universe is characterized by a phase of low curvatures and (moderately)
strong couplings, as seems to be typical of our present cosmological configuration.



Appendix 3A
The massless multiplet of the bosonic string in

Minkowski space

The action of a one-dimensional object freely evolving in a D-dimensional Minkowski
space, in close analogy to the action of a free particle, is proportional to the proper area
of the world-sheet � spanned by its motion. Let us call a, a = 0�1, the coordinates on
the world-sheet surface, and X� = X���, � = 0�1� � � � �D−1, the parametric equations
governing the embedding of � in the Minkowski space-time �: the action can then be
written as follows:

S = 1
2�
′

∫

�
d2

√�h�� (3A.1)

Here �2�
′�−1 = M2
s = �−2

s is the string tension (i.e. the proper mass per unit proper
length of the string), and h = det hab, where

hab = 	X�

	a

	X�

	b
��� (3A.2)

is the so-called “induced metric”, derived from the mapping X � � → � parametrized
by X���. Following the usual convention in which 0 = � and 1 = � are, respectively,
time-like and space-like (dimensionless) coordinates, we obtain the metric

h00 = Ẋ�Ẋ�� h01 = h10 = Ẋ�X′
�� h11 = X′�X′

�� (3A.3)

where Ẋ = 	X/	�, X′ = 	X/	�; the action (3A.1) can then be written in explicit Nambu–
Goto form [3] as

S = 1
2�
′

∫ �

0
d�
∫ �2

�1

d�
∣
∣Ẋ�Ẋ�X

′�X′
� − �Ẋ�X′

��
2
∣
∣1/2

� (3A.4)

We have assumed, as usual, that for an open string the spatial ends correspond to the values
� = 0 and � = �, and that for a closed string the periodicity condition X��� = X�� +��
is satisfied.

As in the case of a point-like particle, the formal problems associated with the presence
of a square root in the action can be avoided by introducing a new auxiliary field �ab,
which in this case represents the “intrinsic” metric of the world-sheet surface, and which
leads to defining the so-called Polyakov action [4, 5],

S = 1
4�
′

∫

�
d2

√−��ab	aX
�	bX

����� (3A.5)
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where 	aX ≡ 	X/	a. This action can be interpreted either geometrically, as the action
for a relativistic string propagating in the physical space-time � , or as the action for
a two-dimensional conformal field theory living on the world-sheet �, with fields X�

taking values in the target space � . The equivalence with the Nambu–Goto action can
be easily checked by varying Eq. (3A.5) with respect to �ab, which gives the constraint

Tab ≡ 	aX
�	bX

���� − 1
2
�ab�

ij	iX
�	jX

���� = 0� (3A.6)

Solving the constraint with respect to �ab (using the definition (3A.2) of the induced
metric), one obtains �ab = hab, and inserting back into the Polyakov action (using the
property �ac�bc = �a

b) one immediately recovers the action (3A.1).
The string equations of motion can be deduced by varying the Polyakov action with

respect to X� – at fixed metric and world-sheet coordinates – and by imposing the
standard boundary conditions of zero variation at the initial and final times of the motion,
�X���1� = 0 = �X���2�. Defining

S =
∫ �2

�1

d�
∫ �

0
d�L�Ẋ�X′��

L�Ẋ�X′� = 1
4�
′

√−��ab	aX
�	bX�� (3A.7)

and integrating by parts, we obtain

�S =
∫ �2

�1

d�
∫ �

0
d�

	L

	�	aX
��

�	aX
�

= −
∫ �2

�1

d�
∫ �

0
d�
[
	a

	L

	�	aX
��

]
�X�

+
∫ �

0
d�
[

	L

	Ẋ�
�X�

]�2

�1

+
∫ �2

�1

d�
[

	L

	X′� �X�

]�

0

� (3A.8)

The first term after the equality corresponds to the usual Euler–Lagrange equations, the
second term does not contribute because �X = 0 at the time boundaries, and the third
term represents the variational contribution at the spatial ends of the action integral, to
be fixed by appropriate boundary conditions. Using the Lagrangian (3A.7) one then finds
that the action is stationary provided the string satisfies the equations of motion

	a

(√−��ab	bX�

)= 0� (3A.9)

and the following boundary conditions:
[

	L

	X′� �X�

]�=�

�=0

= 0� (3A.10)

The boundary conditions will be discussed later, when presenting the classical solution
for open and closed strings separately. It is first appropriate to note that the equations of
motion can be simplified using the symmetries of the Polyakov action (3A.5), which are
of three types: �i� global invariance under Poincaré transformations of the target space
coordinates, X��� → ��

�X
���+ a�, where ��a are constants, and  is fixed; �ii�

local invariance under reparametrization of the world-sheet manifold, a → ̃a��; �iii�
conformal invariance under local scale transformations of the world-sheet metric, �ab →
�ab exp�2����. Thanks to the last two symmetries, in particular, it is always possible to
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choose the “conformal gauge” in which the world-sheet manifold is characterized by a
globally flat (Minkowskian) geometry, �ab = �ab, as already discussed in Section 3.1. In
this gauge, the equations of motion (3A.9) simplify to

Ẍ� −X′′
� = 0� (3A.11)

and the constraints Tab = 0 of Eq. (3A.6) can be combined to give the conditions

1
2
�T00 +T10� = 1

4
���

(
Ẋ� +X′�) (Ẋ� +X′�)= 0�

1
2
�T00 −T10� = 1

4
���

(
Ẋ� +X′�) (Ẋ� −X′�)= 0�

(3A.12)

also known as “Virasoro constraints” [30], written in a form which is useful for later
applications. One can easily check that the world-sheet “stress tensor” Tab is covariantly
conserved, �aTab = 0: thus, if the constraints Tab = 0 are satisfied at a given time � = �0,
they will be satisfied at all times along the string trajectory.

For solving the equations of motion explicitly it is finally convenient to introduce in
the flat world-sheet manifold a non-cartesian base, the so-called “light-cone” coordinates
±, defined in such a way that

± = � ±�� 	± = 1
2
�	� ± 	�� �

� = 1
2

(
+ +−) � � = 1

2

(
+ −−) �

(3A.13)

The two-dimensional wave equation (3A.11) then becomes

	+	−X
� = 0� (3A.14)

and can be solved, in general, by a linear combination of left- and right-moving waves,

X��� = X
�
L�

+�+X
�
R�

−�� (3A.15)

In these coordinates the Virasoro constraints take the form

T++ ≡ 1
2
�T00 +T10� = 	+X

�	+X� = 0�

T−− ≡ 1
2
�T00 −T10� = 	−X

�	−X� = 0�

(3A.16)

We are now able to present the full explicit solutions governing the classical motion of a
bosonic string in Mikowski space. In the following, we will analyze separately the cases
of closed and open strings.

3A.1 Classical closed string

If the string is a closed loop, without free ends, topologically equivalent to a circle, the
associated world-sheet is a “tube” whose spatial section is the surface enclosed inside
the string loop. The boundary conditions (3A.10) can be identically satisfied in this case
by having a spatial coordinate � which varies between 0 and �, and by imposing the
periodicity condition

X������ = X����� +��� (3A.17)
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The solutions of the wave equation satisfying this condition, expanded in Fourier series,
and separated into right- and left-moving modes, can be parametrized, respectively, as
follows:

X
�
R�

−� = 1
2
x
�
0 +
′p��� −��+ i

√

′

2

∑

n	=0


�
n

n
e−2in��−���

X
�
L �

+� = 1
2
x
�
0 +
′p��� +��+ i

√

′

2

∑

n	=0


̃�
n

n
e−2in��+��

(3A.18)

(we are following the conventions of [1]). Here x
�
0 and p� are integration constants

representing, respectively, the initial position and the total (constant) momentum of the
center of mass of the string (see below, Eq. (3A.44)). The sum is extended to all non-zero
(negative and positive) integers, and the Fourier coefficients 
n� 
̃n must satisfy the reality
condition �
�

n �
∗ = 
�

−n, �
̃�
n �

∗ = 
̃�
−n, for the reality of the coordinates X�. Summing up

the left and right components we obtain the full general solution

X���� �� = x
�
0 +2
′p�� + i

√

′

2

∑

n	=0

1
n

(

�

n e2in� + 
̃�
n e−2in�

)
e−2in� � (3A.19)

In order to impose on this solution the constraints (3A.16) we first compute the light-
cone gradients 	±X�: defining 


�
0 = p�

√

′/2 we can include the case n = 0 in the sum

of Fourier modes, and we obtain

	+X
� = √

2
′
�∑

n=−�

̃�

n e−2in��+���

	−X
� = √

2
′
�∑

n=−�

�

n e−2in��−���

(3A.20)

It is also convenient to introduce the so-called Virasoro functionals [30], defined (at any
given fixed time �) by

Lm = 1
4�
′

∫ �

0
d� T−−e2im��−���

L̃m = 1
4�
′

∫ �

0
d� T++e2im��+���

(3A.21)

and satisfying the complex conjugation relations L∗
m = L−m, L̃∗

m = L̃−m. The contraints
(3A.16) are then implemented by the conditions Lm = 0 = L̃m. By using the explicit
definition of T−− the first constraint can then be written in the (explicitly time independent)
form

Lm = 1
2�

∫ �

0
d�
∑

n

∑

k


�
n
k� e−2i��−���n+k−m�

= 1
2

∑

n

∑

k


�
n
k��k�m−n

= 1
2

+�∑

n=−�

�

m−n
n� = 0 (3A.22)
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(we have used the orthonormality of the base e2in�/
√

� in the space L2�0���). In the
same way, the computation of T++ gives, for the left-moving modes,

L̃m = 1
2

+�∑

n=−�

̃�

m−n
̃n� = 0� (3A.23)

The solution (3A.19), complemented by the constraints (3A.22) and (3A.23), provides
the full general description of the motion of a closed string in Minkowski space.

3A.2 Classical open string

When the string has two non-coincident ends, corresponding to the values 0 and � of the
spatial coordinate � , the boundary conditions (3A.10) must be imposed at each end of
the string, and can be satisfied in two ways. A first possibility is to impose 	L/	X′� = 0
at the two spatial boundaries. In the conformal gauge, where

L = 1
4�
′

(
Ẋ�Ẋ� −X′�X′

�

)
� (3A.24)

one then directly obtains the so-called Neumann boundary conditions,

X′���=0 = 0� X′���=� = 0� (3A.25)

which guarantee that no momentum is flowing off the ends of the string. The condition
(3A.10), however, can be rewritten as

[
	L

	X′� �X�

]�=�

�=0

=
[

	L

	X′�
(
Ẋ��� +X′���

)]�=�

�=0

=
[

	L

	X′� Ẋ���

]�=�

�=0

= 0� (3A.26)

and we see that it can be satisfied also by imposing the so-called Dirichlet boundary
conditions,

Ẋ���=0 = 0� Ẋ���=� = 0� (3A.27)

corresponding to the case in which the ends of the strings are kept fixed.
Generally, one can impose Neumann conditions on the time coordinate and on p spatial

directions, X0�X1� � � � �Xp!, and the Dirichlet conditions on the other D−p−1 directions,
 Xp+1� � � � �XD−1! assuming, in the simplest configuration, that all open strings begin and
end on a p-dimensional plane located at a fixed position Xi, with p+ 1 ≤ i ≤ D− 1.
Such a hyperplane is called a Dirichlet membrane, or Dp-brane. The ends of the strings
are fixed in the Dirichlet directions, but can still move freely along the p+ 1 Neumann
directions, spanning the world-volume of the brane. Neumann and Dirichlet directions
are also called “parallel” and “transverse” directions, with reference to the space-time
orientation of the brane.

In the rest of this appendix we will mainly concentrate our discussion on the case
of Neumann boundary conditions (see [2] for a systematic discussion of Dp-branes in a
string theory context). The solutions for the open string motion can be separated, again,
into left- and right-moving modes, and expanded in Fourier series as in Eq. (3A.18), with
the only difference being that the expansion is now referred to the base exp�−in�� ±���
(without the factor 2 required for closed strings by the boundary condition (3A.17)). One
then finds that the Neumann condition (3A.25) is satisfied provided n is an integer, and
provided p� = p̃�, 
�

n = 
̃�
n . With this condition, when summing up the two solutions
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X
�
R and X

�
L , it turns out that the left and right components combine to give a stationary

wave, and one obtains

X���� �� = x
�
0 +2
′p�� + i

√
2
′ ∑

n	=0


�
n

n
e−in� cos�n��� (3A.28)

The open string solution satisfying the Dirichlet boundary conditions can be written,
instead, in the form

X���� �� = x
�
1 + �x

�
2 −x

�
1 �

�

�
+ i

√
2
′ ∑

n	=0


�
n

n
e−in� sin�n��� (3A.29)

where x1 and x2 are the positions of the ends of the strings, corresponding to � = 0 and
� = �, respectively.

In order to impose the Virasoro constraints we can then apply the same procedure as
in the closed string case, by defining 


�
0 = p�

√
2
′ so as to include the mode n = 0 in

the Fourier series. The computation of the light-cone gradients then gives

	±X
� =

√

′

2

�∑

n=−�

�

n e−in��±��� (3A.30)

There is, however, a subtle difference from the previous case, due to the fact that the
functions e−in� do not provide a complete orthonormal base in the considered �0���
interval. Such a problem can be solved analytically by extending the solution over the
interval �−����, imposing the conditions [1]

X
�
R�� +�� = X

�
L ���� X

�
L �� +�� = X

�
R���� (3A.31)

from which

X′��−�� = −X′����� Ẋ��−�� = Ẋ����� (3A.32)

With the given boundary conditions the open string solution becomes periodic, with
period 2�, over the extended interval −� ≤ � ≤ �. The Virasoro constraints in such
a case can be expressed by a unique condition, since they emerge as the even and odd
part (with respect to spatial reflections � → −�) of the condition T++ = 0. The Virasoro
functional can be defined on the extended interval �−����, and gives the constraint

Lm = 1
2�
′

∫ �

−�
d� T++eim��+�� = 1

2�
′

∫ �

−�
d� 	+X

�	+X�eim��+��

= 1
4�

∫ �

−�
d�
∑

n

∑

k


�
n
k�e−i��+���n+k−m�

= 1
2

+�∑

n=−�

�

m−n
n� = 0� (3A.33)

Let us conclude the classical part of this discussion by noting that there is a close
connection between L0, L̃0 and the canonical Hamiltonian associated with the Polyakov
action, for both closed and open strings.
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In the conformal gauge, described by the Lagrangian density (3A.24), we have the
following canonical expressions for the momentum density, "�, and for the Hamiltonian
density, � :

"� = Ẋ�

2�
′ �

� = Ẋ�"� −L = 1
4�
′

(
Ẋ�Ẋ� +X′�X′

�

)
�

(3A.34)

Integrating over the spatial dimension, and using Eqs. (3A.6) and (3A.16), we can write
the Hamiltonian as

H = 1
4�
′

∫ �

0
d�
(
Ẋ�Ẋ� +X′�X′

�

)

= 1
2�
′

∫ �

0
d� T00 = 1

2�
′

∫ �

0
d� �T++ +T−−� � (3A.35)

For a closed string, using the definition (3A.21) of Lm, one immediately obtains

H = 2�L0 + L̃0�� (3A.36)

For the open string we have to recall that Lm is defined over the extended interval
�−����, so that

Lm = 1
2�
′

(∫ �

0
d� +

∫ 0

−�
d�
)
T++eim��+��� (3A.37)

The extended open string solution, however, satisfies the periodicity conditions (3A.31)
and (3A.32), so that the reflection � → −� transforms T++ into T−−, i.e.

� → −�� 	+X
�
L 	+XL� → 	−X

�
R	−XR�� (3A.38)

We can then rewrite

Lm = 1
2�
′

∫ �

0
d�
(
T++eim��+�� +T−−eim��−��

)
� (3A.39)

and the comparison with (3A.35) immediately gives

H = L0 (3A.40)

for the canonical Hamiltonian of the open string. It may be anticipated that the above
difference between the Hamiltonians of closed and open strings will produce a factor of
4 difference between the two mass spectra, after quantization.

3A.3 Quantization

The first quantization of the bosonic string model can now be performed according to the
standard canonical procedure, in which the classical variables are promoted to operators
defined in an appropriate Hilbert space, and the classical Poisson brackets are replaced
by commutators according to the well-known prescription  A�B! → −i�A�B�. We thus
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impose on the (canonically conjugate) position-momentum variables the fundamental
(equal time) commutation relations

�"�������X����� ′�� =
[

Ẋ�

2�
′ ������X
����� ′�

]

= i������ −� ′��

�X�������X����� ′�� = 0 = �Ẋ������� Ẋ����� ′��

(3A.41)

(recall that �ij = −�ij in our notations). Inserting the solutions for X� previously de-
termined we can then obtain the corresponding commutators for the Fourier coefficients

�� 
̃�, which now become operators satisfying the hermitian conjugation conditions

�
�
n �

† = 
�
−n� �
̃�

n �
† = 
̃�

−n� (3A.42)

replacing the classical complex conjugation.
Consider for instance a closed string, described by the solution (3A.19). Differentiating

with respect to �, and imposing Eq. (3A.41), we obtain for the zero modes the canonical
commutation relation for the position and the center of mass of the string,

[
P

�
CM�X�

CM

]= i���� (3A.43)

where

X
�
CM = 1

�

∫ �

0
d�X���� �� = x

�
0 +2
′p���

P
�
CM = 1

�

∫ �

0
d�"���� �� = p�

�
�

(3A.44)

For the other Fourier coefficients, imposing null commutation brackets between left and
right modes,

�
�
n � 
̃

�
m� = 0� (3A.45)

we find the condition

i
2�

∑

n	=0

∑

m	=0

1
m

(
�
�

n �

�
m�e

2i�n�+m� ′� + �̃
�
n � 
̃

�
m�e

−2i�n�+m� ′�) e−2i��n+m�

= i������ −� ′�� (3A.46)

This condition is satisfied provided

�
�
n �


�
m� = m����n+m�0 = �̃
�

n � 
̃
�
m�� (3A.47)

as can be easily checked by including the case n = 0�m = 0 in the sums of Eq. (3A.46),
and by exploiting the distributional convergence of the functions e2in�/

√
� to the Dirac

delta function:
+�∑

n=−�
e2in��−� ′� = ���� −� ′�� (3A.48)

The above commutators are very similar to those encountered in the quantization of
the harmonic oscillator problem. We can obtain an even closer analogy by changing n to
−n in Eq. (3A.47), and introducing new operators a�

m, defined by


�
m = √

ma�
m� 
�

−m = �
�
m�

† = √
m�a�

m�
†� (3A.49)
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through which we can rewrite the previous commutators with the conventional oscillator
normalization as follows:

[
�a�

n �
†� a�

m

]= ����mn� (3A.50)

The operators an�a
†
n (or their equivalent version 
n�
−n) thus represent creation and

annihilation operators for the various energy levels of the quantum string. Through their
action we can build up a spectrum characterized by a ground state �p�0�, which is
an eigenstate of the momentum p� of the center of mass of the string, and which is
annihilated by all annihilation operators,


�
m�p�0� = 0 = 
̃�

m�p�0�� ∀m > 0� (3A.51)

The corresponding Fock space of the system, spanned by the states obtained by applying
to the vacuum an arbitrary number of creation operators,

�p�n1�m2� � � �� = �
�
−n�

n1�
�
−m�

m2 � � � �p�0�� (3A.52)

is not positive-definite, however. If we consider, for instance, the state �a0
m�

†�p�0�, we
can easily check, by using the commutation relations (3A.50), that its norm is negative:

�0� p�a0
m�a

0
m�

†�p�0� = �0� p� (�a0
m�

†a0
m + �a0

m� �a
0
m�

†�
) �p�0�

= −�0� p�p�0� = −1 (3A.53)

(we are assuming that the ground state is normalized to one). In order to obtain the
physical states associated with the quantum string spectrum we must thus consider a
subset of this Fock space, by imposing appropriate restrictions in order to eliminate all
“ghost” (i.e. negative norm) states.

We should recall that even at the classical level there are restrictions on the solu-
tions of the string equations of motion, due to the Virasoro constraints, which impose
the conditions Lm = 0 = L̃m. We may thus expect that the elements �#� of the Fock
subspace containing the physical states must satisfy the conditions Lm�#� = 0 = L̃m�#�.
In a quantum context, however, the Virasoro functionals Lm are promoted to operators,
and their definition is in general affected by ordering ambiguities because of the pres-
ence of products of non-commuting operators, like 
m
n. We can then adopt the usual
“normal ordering” prescription, defining 2Lm = ∑

n � 
�
m−n
n� � (see e.g. Eq. (3A.22)),

in which all annihilation operators are moved to the right of the creation operators. This
is unambiguous, except for L0 and L̃0, since according to the rules (3A.47) it is just for
m = 0 that the commutators of 
�

m−n
n� are non-zero, and the definition of the operator is
ordering dependent. Taking into account this effect, we can impose the quantum Virasoro
constraints on the physical states as follows:

�L0 −���#� = 0 = �L̃0 −���#�� Lm�#� = 0 = L̃m�#�� m > 0� (3A.54)

where L and L̃ are the ordered operators, and � is a finite constant depending on the
chosen ordering prescription. Note that the number of imposed conditions (one for each
value of m ≥ 0) is equal to the number of temporal oscillators 
0

m associated with the
negative norm states, and is thus sufficient, in principle, to eliminate the ghosts from the
physical subspace provided the value of � is chosen appropriately.

In order to fix � we follow a non-covariant procedure, in which we rewrite the classical
solutions of the string equations of motion by adopting the light-cone gauge not only
for the world-sheet but also for the target space manifold, introducing the coordinates
X� =  X+�X−�Xi!, where i = 1� � � � �D− 2, and X± = �X0 ±XD−1�/

√
2. We are able,
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in this way, to linearize the Virasoro constraints. Also, we fix the residual degrees of
freedom left by the conformal gauge by assuming that the motion of the string along the
X+ direction is a pure translation,

X+ = x+ +2
′p+�� (3A.55)

without any residual oscillation, i.e. that 
+
n = 0 = 
̃+

n , ∀n 	= 0 (see Eqs. (3A.19) and
(3A.28)). Using the Virasoro constraints we can then eliminate the 
−

n oscillators in terms
of 
i

n ones, and we are eventually left with the oscillations along the D− 2 transverse
directions, parametrized by 
i

n, n 	= 0, as the only independent degrees of freedom to be
quantized. It is convenient, at this point, to discuss separately the open and closed string
spectrum.

3A.4 Open string spectrum

In the light-cone gauge, the Virasoro functional L0 can be rewritten as follows:

L0 = 1
2

+�∑

n=−�

�

−n
n� = 1
2



�
0 
0� + 1

2

∑

n	=0


�
−n
n�

= 
′p�p� + 1
2

∑

n	=0

(
2
+

−n

−
n −
i

−n

i
n

)

= 
′p�p� − 1
2

�∑

n=1

(

i

−n

i
n +
i

n

i
−n

)
� (3A.56)

where we have used the definition 

�
0 = √

2
′p� (valid in the open string case), and the
condition 
+

n = 0. By applying the commutation rule �
i
n�


j
−n� = n�ij we then obtain

L0 = 
′p�p� − 1
2

�∑

n=1

[
2
i

−n

i
n + �D−2�n

]
� (3A.57)

The term quadratic in the 
i corresponds, in a quantum context, to a normal ordered
operator, while the divergent sum over n represents the infinite contribution of the vacuum
energy of the oscillators, and has to be appropriately regularized for extracting meaningful
physical predictions. We can use, in particular, an exponential regularization scheme, by
rewriting the divergent sum as follows:

lim
�→0

�∑

n=0

ne−�n = lim
�→0

(

− d
d�

�∑

n=0

e−�n

)

= − lim
�→0

d
d�

�1− e−��−1

= − lim
�→0

d
d�

(
�− �2

2
+ �3

6
+· · ·

)−1

= − lim
�→0

d
d�

1
�

(
1− �

2
+ �2

6
+· · ·

)−1

= − lim
�→0

d
d�

1
�

(
1+ �

2
+ �2

12
+· · ·

)

= lim
�→0

(
1
�2

− 1
12

)
� (3A.58)
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By subtracting the infinite part we thus obtain the following regularized expression

L0 = 
′p2 −
�∑

n=1

Nn + D−2
24

� (3A.59)

where we have introduced the number operator Nn = 
i
−n


i
n.

We now recall that the classical constraint L0 = 0, for an open string, corresponds
to the canonical mass-shell condition H = 0, according to Eq. (3A.40). The comparison
with the quantum constraint (3A.54) defines the parameter � for the normal ordered
version of L0, i.e. � = �D−2�/24, and determines the mass spectrum of the open string
states as


′M2 = N − D−2
24

� (3A.60)

where we have denoted with N =∑
n Nn the sum of the number operators of all oscillator

modes, and with M2 = p�p� the square of the proper energy of the N th excited level
in D-dimensional Minkowski space. This result is consistently defined only in a fixed
number D = Dc of dimensions, as we discuss in the following.

First of all we note that the spectrum of the number operators Nn ranges over all
non-negative integers, and that the ground state �p�0�, corresponding to the case in which
all number eigenvalues are zero, is associated with a mass

M2 = −D−2
24
′ � (3A.61)

For D > 2 one obtains M2 < 0, so that this level describes a scalar “tachyonic” con-
figuration which seems to signal an instability of the quantum theory (such a negative
eigenvalue of M2 disappears, as we shall see, in a superstring context).

The first excited level corresponds to the eigenvalue 1 of N , and describes a vector-like
configuration 


�
−1�p�0�, associated with a mass

M2 = 1

′

(
1− D−2

24

)
� (3A.62)

Contracting with the polarization tensor �� of the produced vector state, and imposing
the constraint generated by the Virasoro operator L1, it can be easily checked that the
polarization of this state has to be transverse, i.e. that p��� = 0. Indeed, using the normal
ordering of L1 and the commutator (3A.47), we have

L1��

�
−1�p�0� = 1

2
��

∑

n

� 
�
1−n
n� � 


�
−1�p�0� = 1

2
�� a�

0
1�

�
−1 �p�0�

= 1
2
�� a�

0

[

1��


�
−1

] �p�0� = 1
2
��


�
0 �p�0� = 0� (3A.63)

from which, using 

�
0 ∼ p�, one finally obtains p��� = 0.

It must be recalled now that, for any oscillator 
�, there are only D−2 physical degrees
of freedom that can always be associated with the string oscillations along the transverse
directions Xi, as discussed in the light-cone gauge. On the other hand, a transverse vector
�� with only D− 2 independent space-like components corresponds to the irreducible
vector representation of the so-called “little group” SO�D− 2�, and is associated with a
light-like momentum p� (a transverse, massive vector field has, in fact, D−1 independent
components). The spectrum of the open bosonic string is thus compatible with a Lorentz-
invariant description of the physical states only if the vector level N = 1 is characterized



102 Conformal invariance and string effective actions

by the condition M2 = 0: this implies, according to Eq. (3A.62), that the theory must be
formulated in a space-time with critical number of dimensions

D = Dc = 26� (3A.64)

3A.5 Closed string spectrum

As in the previous case we introduce light-cone coordinates, and impose the conditions

+

n = 0 = 
̃+
n , ∀n 	= 0. For a closed string we have 


�
0 = p�

√

′/2 = 
̃

�
0 , and we can

rewrite the Virasoro functionals, after the regularization, as follows:

L0 = 
′

4
p2 −

�∑

n=1


i
−n


i
n + D−2

24
�

L̃0 = 
′

4
p2 −

�∑

n=1


̃i
−n
̃

i
n + D−2

24
�

(3A.65)

In a classical context the two constraints L0 = 0, L̃0 = 0 must be separately satisfied by
both left- and right-moving modes. In a quantum context we may thus impose that the
physical states be annihilated by the sum and by the difference of the normal ordered
version of the above operators. The difference provides the so-called “level-matching”
condition, �L0 −L̃0��#� = 0, which guarantees the same eigenvalue of the number operator
for the 
 and 
̃ oscillators, namely N �#� = Ñ �#�, where N = ∑

n 

i
−n


i
n and Ñ =∑

n 
̃
i
−n
̃

i
n. The sum, which is proportional to the Hamiltonian, provides instead the

canonical mass-shell condition, and defines the allowed energy levels of the quantum
closed string:


′

2
M2 = N + Ñ − D−2

12
� (3A.66)

The ground state �p� 0̃0� is obtained as the tensor product of the eigenstates of N and
Ñ with zero eigenvalue, and describes again a tachyonic configuration, with mass

M2 = −D−2
6
′ � (3A.67)

The first excited level allowed by the level-matching condition corresponds to the ei-
genvalue 1 of N and Ñ , and describes the tensor configuration 


�
−1
̃

�
−1�p� 0̃0� associated

with the mass

M2 = 2

′

(
2− D−2

12

)
� (3A.68)

Again, by multiplying by the polarization tensor ���, and imposing the constraints gen-

erated by the Virasoro operators L1 and L̃1, one finds a state of transverse polarization,
p���� = 0. On the other hand, as already discussed in the open string case, the number of
independent degrees of freedom is D− 2 for any vector index, which is only consistent
for massless field configurations, M2 = 0, and which again implies D = Dc = 26, using
Eq. (3A.68), as in the open string case.

To extract the particle content of this massless level we note that the transverse
polarization tensor �ij can be decomposed into components transforming as irreducible
representations of SO�D−2�, namely,
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�ij = hij +Aij +
�

D−2
�ij�

hij = ��ij� −
�

D−2
�ij� Aij = ��ij�� � = �ij�ij� (3A.69)

where hij is the symmetric, trace-free part, Aij the antisymmetric part, and � the scalar
trace. This level thus contains a transverse, traceless symmetric tensor, an antisymmetric
tensor, and a scalar field: they are all massless fields, representing the graviton, torsion
and dilaton multiplet introduced in Chapter 2, and studied in this chapter in Section 3.1.

We can observe, as a useful check, that the traceless symmetric tensor hij has a total
number of �D2 − 3D�/2 components, exactly the same number of polarization states
as a spin-two gravitational wave h�� in D space-time dimensions, as we shall discuss
in Chapter 7. Also, in D − 2 transverse directions, the antisymmetric tensor Aij has
��D− 2�2 − �D− 2��/2 independent components, which is exactly the number of �D−
3��D−2�/2 independent degrees of freedom of a two-form “gauge potential” B�� living in
D space-time dimensions. The sum of these components plus one (the scalar component)
obviously reproduces the �D−2��D−2� components of the rank-two tensor �ij .

We can finally note that, after removing the negative-norm states, a physical state �#�,
belonging to a positive-definite subset of the Hilbert space, is only defined up to the
addition of null states, i.e. �#� ∼ �#�+���, where ����� = 0, and ��� is orthogonal to all
physical vectors �#�. Adding such null states, for the massless levels of the closed string,
corresponds to adding new polarization components as follows:

����� ∼ ����� +p�� +p��� ����� ∼ ����� +p��� −p���� (3A.70)

where � and �� are arbitrary vectors orthogonal to p�. By Fourier transforming we
see that adding null states is equivalent to performing local transformations generated by
� and ��, exploiting the residual gauge freedom left by the transversality condition, in
agreement with the properties of gauge invariance typical of a massless spin-two field
and of a massless antisymmetric tensor field in Minkowski space.



Appendix 3B
Superstring models and effective actions

We will now generalize the bosonic string model presented in Appendix 3A by includ-
ing fermions (required for a realistic description of all fundamental interactions), and
eliminating the tachyons present in the ground level of the spectrum (see Eqs. (3A.61,
3A.67)). An appropriate generalization, which satisfies the above requirements and is
consistent with an anomaly-free quantization, can be achieved by making the world-sheet
action invariant under supersymmetry transformations generated by a number N = 1 of
“supercharges” [1].

In that case, as we shall see in this appendix, a consistent string quantization requires
a number Dc = 10 of critical dimensions, and needs a truncation of the spectrum which
makes the theory supersymmetric not only on the world-sheet, but also on the 10-
dimensional space-time in which the string is embedded. Such an “induced” space-time
supersymmetry may be characterized by N = 1 or N = 2 supercharges, depending on
the choice of the boundary conditions imposed on the fermionic fields present in the
action: one then obtains, respectively, the so-called type I (open and closed) or type
II (closed) superstring model. Another possibility of implementing N = 1 space-time
supersymmetry is provided by the so-called “heterotic” model, in which only the right-
moving modes of the closed bosonic string are supersymmetrized, while the left-moving
sector is independently quantized following a different scheme.

The supersymmetric generalization of the bosonic string action is based on the intro-
duction of new fermion fields on the world-sheet, by adding to the bosonic coordinates
X���� �� an equal number of fermionic “partners”, represented by the fields #

�
A��� ��.

These new fields transform as a two-component Majorana spinor (with index A = 1�2)
with respect to world-sheet transformations, and as a vector (with index �= 0�1� � � � �D−
1) with respect to Lorentz transformations in the target space manifold. We recall, also in
view of later applications, that a spinor in an even number D of space-time dimensions
has, in general, 2D/2 components, which may be chosen to be real if the spinor satisfies
the Majorana condition, i.e. if it is invariant (modulo a phase) under the action of the
charge conjugation operator (see below).

In a curved world-sheet geometry, however, supersymmetry can be consistently im-
plemented only as a local invariance of the action (the commutator of two infinitesimal
supersymmetry transformations generates in fact a translation [31], and only local trans-
lations make sense in a curved manifold). A local supersymmetric action, on the other
hand, requires the presence of an additional Rarita–Schwinger field, the vector-spinor
(or “gravitino”) field, represented by the variable �a

A��� �� which transforms as a two-
component Majorana world-sheet spinor in the index A, and as a world-sheet vector
(with respect to local reparametrizations) in the index a = 0�1. The components of this

104
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field provide the fermionic partners of the “zweibein” field V i
a��� �� associated with the

two-dimensional world-sheet metric, �ab = V i
aV

j
b�ij , where i� j = 0�1 are Lorentz indices

in the flat Minkowski space locally tangent to the curved world-sheet manifold (see
Section 2.3).

Using these new variables we are now able to write a locally supersymmetric world-
sheet action, generalizing the bosonic Polyakov action (3A.5) as follows:

S = 1
4�
′

∫
d2

√−�

[

�ab	aX
�	bX

� + i#
�
�a�a#

�

− 2�a�
b�a#�	bX

� − 1
2
#

�
#��a�

b�a�b

]

��� (3B.1)

(a sum over the spin indices is to be understood, as usual). Here # = #†�0, � = �†�0

and �a��� �� = Va
i �

i are two-dimensional matrices defined on the curved world-sheet in
terms of the constant (flat space) Dirac matrices �i, i = 0�1. We recall that the Dirac
matrices obey the standard anticommutation relations

{
�i��j

}≡ �i�j +�j�i = 2�ij� (3B.2)

and satisfy �0 = ��0�†, �1 = −��1�†. We adopt a convenient basis in which all the �i

have imaginary components,

�0 =
(

0 −i
i 0

)
� �1 =

(
0 i
i 0

)
� (3B.3)

and in which the Majorana spinors are real. Finally, �a# is the covariant spinor derivative,
computed in terms of the spin connection �ij

a associated with local Lorentz transformations
on the world-sheet manifold. Notice that, in the two-dimensional action (3B.1), there are
no kinetic terms for the V i

a and �a fields (which are instead present in all supergravity
models formulated in D > 2).

The action (3B.1) is invariant under global Poincaré transformations in the flat target
space, and under local Lorentz transformations and general coordinate transformations
in the world-sheet manifold, like the bosonic string action. The new property is the
invariance under local supersymmetry transformations, mixing the bosonic and fermionic
degrees of freedom. In infinitesimal form, such transformations can be represented as
follows:

�X� = �#�� �#� = −i�a�
(
	aX

� −#
�
�a

)
�

�V i
a = −2i��i�a� ��a = �a��

(3B.4)

where ���� �� is an anticommuting Majorana spinor. The presence of only one spinor
� in the above transformations is associated with the presence of only one conserved
“supercurrent”, and reflects the N = 1 character of the considered supersymmetry trans-
formations. The invariance of the action (modulo a total divergence) can be checked by
using the properties of the Dirac matrices and of the two-dimensional Majorana spinors,
which are defined by

� = �c ≡ C �T � (3B.5)

Here C is the charge conjugation operator, which satisfies

CT = −C� C−1�iC = −��i�T (3B.6)
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(C = −�0 in the representation of Eq. (3B.3)). One then obtains, in particular, that
�#� = #��. It is also useful to note that �a�a# ≡ �a	a# for a two-dimensional Majorana
spinor.

The action (3B.1) has two further local symmetries. One represents the extension of the
conformal (Weyl) invariance associated with the rescaling of the world-sheet metric (see
Eq. (3.10)) and thus of the vielbein field, according to the transformation V i

a → V i
a exp���.

Indeed, for a local rescaling induced by the infinitesimal parameter ������, each term of
the action (3B.1) is left invariant by the following infinitesimal transformation:

�X� = 0� �V i
a = �V i

a�

�#� = −1
2
�#�� ��a = 1

2
��a�

(3B.7)

The other local symmetry is represented by the infinitesimal gravitino transformation,

��a = i�a�� ��a = −i��a�

�X� = �#� = �V i
a = 0�

(3B.8)

where ���� �� is an arbitrary two-component Majorana spinor (the invariance of the
action can be easily checked using the identity �a�

b�a = 0, valid in two dimensions). The
combination of these two local symmetries is also called “superconformal” symmetry.

For the bosonic string we have seen, in Section 3.1, that the conformal symmetry can
be used to simplify the description of the string dynamics by choosing an appropriate
“conformal gauge”. In the same way, for the superstring, we can impose the “supercon-
formal gauge” in which the metric of the world-sheet is flat (�ab = �ab), and the gravitino
field is vanishing (�a = 0).

On the world-sheet, in fact, there are four local bosonic symmetries (two general
coordinate transformations, one local Lorentz transformation and one Weyl rescaling),
which can be used to set the four components of the zweibein in the trivial form V i

a = �i
a.

Also, there are four fermionic symmetries (two supersymmetry transformations with
spinor parameter �A, and two superconformal transformations with spinor parameter �A),
which can be used to set to zero the four-component of �a

A. In this superconformal gauge
the action (3B.1) reduces to the so-called Ramond–Neveu–Schwarz (RNS) superstring
action [32, 33],

S = 1
4�
′

∫
d� d� �ab

(
	aX

�	bX
� + i#

�
�a	b#

�
)
���� (3B.9)

which is invariant under the global infinitesimal supersymmetry transformations

�X� = �#�� �#� = −i�a	aX
��� (3B.10)

where � is a constant, anticommuting Majorana spinor.
The equations of motion and the constraints, for the model of superstring that we are

considering, can be obtained by varying the action (3B.1) with respect to the variables
X�#�� and V . Imposing (after the variation) the superconformal gauge, we can consid-
erably simplify the dynamics, and we are led, respectively, to the following equations of
motion for the bosonic variables,

�ab	a	bX
� = 0� (3B.11)

for the fermionic variables,

�ab�a	b#
� = 0� (3B.12)
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and to the set of constraints,

Ja ≡ �b�a#�	bX� = 0� (3B.13)

Tab ≡ 	aX
�	bX� + i

2
#

�
��a	b�#� − 1

2
�ab

(
	iX

�	iX� + i
2
#

�
�i	

i#�

)
= 0� (3B.14)

The last two conditions are associated with the vanishing of the so-called world-sheet
supercurrent, Ja, and energy-momentum tensor, Tab, defined (in units 4�
′ = 1) by

2VJa = �S

��a

�

Tab = Vi�bTa�
i� 2VTa

i = �S

�Va
i

�

(3B.15)

where V ≡ detV i
a. The conditions (3B.13) and (3B.14) represent the supersymmetric

generalizations of the bosonic Virasoro constraints (3A.6).
The solution of the equations of motion is simplified by introducing the light-cone

coordinates ± defined on the world-sheet as in the bosonic case, according to Eqs.
(3A.13). For the fermionic variables #� it is also convenient to introduce the (one-
component) Majorana–Weyl spinors #

�
±, defined by the chiral projections

1
2

(
1+�3

)
#� =

(
#�

−
0

)
�

1
2

(
1−�3

)
#� =

(
0
#

�
+

)
� (3B.16)

and satisfying

�3#
�
± = ∓#

�
±� (3B.17)

where �3 = �0�1 is the chirality operator (equivalent to the �5 operator in four dimen-
sions). The action (3B.9) can then be rewritten as

S = 1
�
′

∫
d� d�

(
	+X

�	−X� + i
2
#

�
+	−#+� + i

2
#�

−	+#−�

)
� (3B.18)

and provides the boson equations of motion in the form (3A.14), plus the fermion
equations of motion

	−#
�
+ = 0� 	+#

�
− = 0� (3B.19)

Their general solutions, #+ = #+�+�, #− = #−�−�, clearly show that the chirality states
#− ≡ #R and #+ ≡ #L describe right- and left-moving modes, respectively. Also, from
the light-cone components of the stress tensor (3B.14) we obtain the super-Virasoro
constraints in the form

T++ = 1
2
�T00 +T10� = 	+X

�	+X� + i
2
#

�
+	+#+� = 0�

T−− = 1
2
�T00 −T10� = 	−X

�	−X� + i
2
#�

−	−#−� = 0�

(3B.20)

Finally, we have to include the condition of vanishing supercurrent, according to
Eq. (3B.13). The two conditions J 0 = 0 and J 1 = 0 are equivalent, and both provide two
independent constraints which, in the light-cone gauge, can be written as follows:

J+ = #
�
+	+X� = 0� J− = #�

−	−X� = 0� (3B.21)
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All the above constraints are associated with quantities which are covariantly conserved
on the world-sheet, like the bosonic stress tensor appearing in the constraint (3A.12):
thus, if the constraints are imposed at a given time �, they will also be valid at all later
times along the string trajectory.

3B.1 Fermionic boundary conditions

Before presenting explicit solutions to the equations of motion we need to choose from
the possible boundary conditions. For the bosonic coordinates we can apply the discussion
of Appendix 3A, which is still valid. For the fermionic coordinates we have a similar
situation, which we discuss in the following. The variation of the fermionic part of the
action (3B.18) gives two types of boundary terms,

i
4�
′

∫ �2

�1

d�
∫ �

0
d�

[

	� �#+ ·�#+ +#− ·�#−�+ 	� �#− ·�#− −#+ ·�#+�

]

= i
4�
′

∫ �

0
d�

[

#+ ·�#+ +#− ·�#−

]�2

�1

+ i
4�
′

∫ �2

�1

d�

[

#− ·�#− −#+ ·�#+

]�

0

�

(3B.22)

where we have denoted with a dot the contraction of the target space indices, # ·�# ≡
#��#�. The first term, integrated over the � variable, is identically vanishing because
the variational principle requires �#± = 0 at the time boundaries �1 and �2. We are thus
left with the condition

[

#− ·�#− −#+ ·�#+

]�=�

�=0

= 0� (3B.23)

which can be satisfied in various ways.
For an open superstring the ends of the strings are independent, and we must require

#− · �#− = #+ · �#+ at each end of the string, � = 0 and � = �. This can be satis-
fied by imposing either periodic (Ramond) or antiperiodic (Neveu–Schwarz) boundary
conditions,

#
�
+���0� = #�

−���0�� #
�
+����� = ±#�

−����� (3B.24)

(and the same for �#
�
±). Here the plus sign corresponds to Ramond (R) boundary condi-

tions, and the minus sign to Neveu–Schwarz (NS) boundary conditions. For both choices
of boundary conditions we can then express the solutions of Eqs. (3B.19) in explicit form,
expanding in Fourier series and separating left- and right-moving modes. In particular, in
the case of R boundary conditions we have the solution

�R� � #
�
± =

√

′

2

�∑

n=−�
d�

n e−in��±��� (3B.25)
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where the sum runs over all integers n (we have used the same normalization as in the
bosonic case, see Eq. (3A.30)). In the case of NS boundary conditions, on the contrary,
we have the solution

�NS� � #
�
± =

√

′

2

�∑

n=−�
b
�
n+1/2 e−i�n+1/2���±��� (3B.26)

where the sum runs over all half-integers r = n+1/2.
For a closed superstring the two chirality components #

�
± are independent, and the

boundary conditions (3B.23) can be satisfied by imposing periodicity (R) or antiperiodicity
(NS) on each component of #� separately, i.e.

#�
−��� = ±#�

−�� +��� #
�
+��� = ±#

�
+�� +�� (3B.27)

(and the same for �#±). Depending on the behavior of #+ and #− we thus have four pos-
sible choices of boundary conditions: R–R, R–NS, NS–R and NS–NS, which correspond
to different sectors of the closed string spectrum. As in the bosonic case, we denote with
a tilde the Fourier coefficients of the left-moving modes. For R boundary conditions the
solutions of Eq. (3B.19) can then be expanded as follows:

�R� � #�
− = √


′
�∑

n=−�
d�

n e−2in��−���

�R̃� � #
�
+ = √


′
�∑

n=−�
d̃�

n e−2in��+���

(3B.28)

In the case of NS boundary conditions we have instead the expansion

�NS� � #�
− = √


′
�∑

n=−�
b
�
n+1/2 e−2i�n+1/2���−���

�NS� � #
�
+ = √


′
�∑

n=−�
b̃�

n+1/2 e−2i�n+1/2���+���

(3B.29)

3B.2 Classical constraints

For both open and closed strings the classical solutions are completed by imposing the
constraints (3B.20) and (3B.21). At the quantum level these constraints will remove the
states of negative norm, and will fix the levels of the energy spectrum, just as in the case
of the bosonic string.

To impose the constraints it is convenient to introduce the generalized Virasoro op-
erators Lm and L̃m which are associated with the conditions (3B.20), and which can be
separated into bosonic and fermionic parts as follows:

Lm = LX
m +L#

m� L̃m = L̃X
m + L̃#

m� (3B.30)

The bosonic part refers to the solutions 	±X, and has already been computed in Appendix
3A (see Eqs. (3A.21)–(3A.23) for the closed string, and Eq. (3A.33) for the open string
case). For the fermionic part of the constraint we can follow the same procedure, recalling
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that the open string solution has to be analytically extended over the whole interval
−� ≤ � ≤ �, using the prescription

#� =
{
#

�
+���� 0 ≤ � ≤ ��

#�
−�−��� −� ≤ � ≤ 0�

(3B.31)

We are then led to the definitions (valid at any given fixed value of �, as in the bosonic
case)

L#
m = 1

�
′

∫ �

0
d�
(

i
2
#�

−	−#−� eim��−�� + i
2
#

�
+	+#+� eim��+��

)

= 1
�
′

∫ �

−�
d�

i
2
#

�
+	+#+� eim��+��� (3B.32)

for the open superstring (see Eq. (3A.39)), and

L#
m = 1

2�
′

∫ �

0
d�

i
2
#�

−	−#−� e2im��−���

L̃#
m = 1

2�
′

∫ �

0
d�

i
2
#

�
+	+#+� e2im��+���

(3B.33)

for the closed superstring (see Eq. (3A.21)). In both cases, the fermionic operator L#
m has

to be separately evaluated for R and NS boundary conditions.
Inserting the explicit solutions for #

�
± it is possible to express the above Virasoro

functionals in terms of the Fourier coefficients d�
n � b

�
r . For the open string we can exploit

the orthonormality of the base ein�/2� on the interval �−����, while for the closed
string the orthonormality of e2in�/� on the interval �0���: in both cases we obtain the
same result in terms of the Fourier coefficients. We are interested, in particular, in the
zero-frequency part of the Virasoro operators, which is the part generating the mass-shell
condition. For the R boundary conditions, using Eqs. (3B.25) and (3B.28), we obtain the
time-independent result

�R� � LR
0 = 1

2

�∑

n=−�
nd�

−ndn�� (3B.34)

while in the case of NS boundary conditions, using Eqs. (3B.26) and (3B.29), we obtain

�NS� � LNS
0 = 1

2

�∑

n=−�

(
n+ 1

2

)
b
�
−n−1/2bn+1/2��

= 1
2

∑

r

r b�
−rbr�� (3B.35)

where the sum over r = n+ 1/2 denotes a sum over all half-integer numbers. In the
closed superstring case we have similar expansions for L̃R

0 � L̃
NS
0 in terms of d̃� b̃.
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For the sake of completeness we also report here the fermionic generators of the
supercurrent constraints (3B.21). In the open string case one finds that the generator
associated with the R boundary conditions, using Eq. (3B.25), is given by

�R� � Fm = 1
�
′

∫ �

0
d�
(
J+eim��+�� + J−eim��−��

)

≡ 1
�
′

∫ �

0
d� #

�
+	+X� eim��+�� =

�∑

n=−�

�

−ndn+m��� (3B.36)

while the generator associated with the NS boundary conditions, using Eq. (3B.26), is

�NS� � Gr = 1
�
′

∫ �

0
d�
(
J+eir��+�� + J−eir��−��

)

=
�∑

n=−�

�

−nbn+r��� (3B.37)

Similarly, in the closed string case, we have from Eq. (3B.28) the R supercurrent gener-
ators,

�R� � Fm = 1√
2�
′

∫ �

0
d�J−e2im��−�� =

�∑

n=−�

�

−ndn+m���

F̃m =
�∑

n=−�

̃�

−nd̃n+m���

(3B.38)

and, from Eq. (3B.29), the NS supercurrent generators,

�NS� � Gr = 1√
2�
′

∫ �

0
d�J−e2ir��−�� =

�∑

n=−�

�

−nbn+r���

G̃r =
�∑

n=−�

̃�

−ñbn+r���

(3B.39)

3B.3 Quantization

We are now in the position of computing the energy spectrum of the quantized superstring
models, imposing on the physical states to be annihilated by the application of the
(normal-ordered) operators associated with the classical constraints:

�L0 −���#� = 0 = �L̃0 − �̃��#�� Lm�#� = 0 = L̃m�#�� m > 0�

Fm�#� = 0 = F̃m�#�� m ≥ 0� Gr �#� = 0 = G̃r �#�� r > 0 (3B.40)

(compare with Eq. (3A.54)). The first constraint, in particular, will provide the quantum
mass-shell condition after determining the parameters �� �̃ through the normal ordering
of the operators L0� L̃0.

In the bosonic case the computation was performed by introducing light-cone co-
ordinates in the target manifold, and fixing the residual gauge degrees of freedom by
eliminating the oscillations along the X+ direction (see Eq. (3A.55)). We have used, in
particular, the condition 
+

m = 0 = 
̃+
m for all modes m, where 
+ = �
0 +
D−1�/

√
2. In
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the superstring case we can still use this convenient gauge choice, extending it to the
fermionic sector of the action through the definition of transverse (#i) and longitudinal
(#±) fermionic coordinates, such that

#± = 1√
2

(
#0 ±#D−1

)
� #i� i = 1� � � � �D−2�

#�#� = 2#+#− −#i#i� (3B.41)

Thanks to the superconformal symmetry, in fact, we have the freedom of applying a
local supersymmetry transformation to gauge away the #+ component of the fermionic
coordinates. We can thus complete the gauge specification by imposing the conditions

d+
m = 0 = d̃+

m� b+
r = 0 = b̃+

r � (3B.42)

which greatly simplifies the Virasoro operators, leaving only the transverse fermionic
modes di

n� b
i
r , i = 1� � � � �D−2.

To obtain the superstring spectrum we have now to compute the regularized version
of � L0 �, promoting to operators the coefficients of the classical Fourier expansion, and
imposing canonical commutation relations for the bosonic modes and anticommutation
relations for the fermionic ones. Concerning the bosonic part of the operators we can
safely apply all results presented in the previous appendix. For the fermionic part we
shall impose the anticommutation brackets,

 d�
m�d

�
n! =  ̃d�

m� d̃
�
n! = −����m+n�0�

 b�
r � b

�
s ! =  ̃b�

r � b̃
�
s ! = −����r+s�0�

(3B.43)

which define (for m > 0, r > 0) dm�br as annihilation and d−m = d†
m, b−m = b†

r as
creation fermionic operators. Notice that, according to their statistical properties, d and
b are nilpotent operators, �d�

m�
2 = 0, �b�

m�
2 = 0, and the associated number operators are

projectors, satisfying �d�
−mdm��

2 = d�
−mdm�, �b�

−rbr��
2 = b�

−rbr�, with discrete eigenvalues
0�1.

Let us now separately consider the cases of R and NS boundary conditions. In the first
case we start from Eq. (3B.34) and we obtain, in the light-cone gauge,

LR
0 = 1

2

�∑

n=−�
nd�

−ndn� = −1
2

�∑

n=−�
ndi

−nd
i
n

= −1
2

�∑

n=1

(
ndi

−nd
i
n −ndi

nd
i
−n

)

= −
�∑

n=1

ndi
−nd

i
n + D−2

2

�∑

n=1

n

= −NR − D−2
24

� (3B.44)

where we have defined the operator NR =∑
n ndi

−nd
i
n, with a spectrum of non-negative

integer eigenvalues, NR = 0�1�2� � � � We notice, for the sake of clarity, that the second line
of the above equalities follows from the transformation n → −n, the third line from the
anticommutation relations (3B.43), and the fourth line from the exponential regularization
(3A.58) of the infinite sum over n.
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In the case of NS boundary conditions we obtain, from Eq. (3B.35),

LNS
0 = 1

2

∑

r

r b�
−rbr� = −1

2

∑

r

r bi
−rb

i
r

= −1
2

�∑

r=1/2

(
rbi

−rb
i
r − rbi

rb
i
−r

)

= −
�∑

r=1/2

rbi
−rb

i
r + D−2

2

�∑

r=1/2

r� (3B.45)

Applying again the exponential regularization procedure one finds

�∑

r=1/2

r =
�∑

n=0

(
n+ 1

2

)
= lim

�→0

�∑

n=0

(
n+ 1

2

)
e−��n+1/2�

= − lim
�→0

d
d�

e−�/2
∑

n

e−�n

= lim
�→0

e−�/2

1− e−�

(
1
2

+ e−�

1− e−�

)
= lim

�→0

(
1
�2

+ 1
24

)
� (3B.46)

Thus, after subtracting the infinite contribution of the vacuum,

LNS
0 = −NNS + D−2

48
� (3B.47)

where we have denoted by NNS the operator
∑

r rb
i
−rb

i
r , with a spectrum including the

zero and all positive half-integer eigenvalues, NNS = 0�1/2�3/2� � � �
Summing up the bosonic and fermionic parts of the Virasoro operator we can then

write down the mass-shell condition determining the superstring energy spectrum, for
both R and NS boundary conditions. In the open string case, using the bosonic result
(3A.59), and imposing LX

0 +L
#
0 = 0, we obtain two possible spectra:

• the R sector, with L
#
0 = LR

0 , and

�R� � 
′M2 = N +NR$ (3B.48)

• the NS sector, with L
#
0 = LNS

0 , and

�NS� � 
′M2 = N +NNS − D−2
16

� (3B.49)

In the closed string case, right- and left-moving modes are independent, and we must
separately impose that the sum and the difference of L0 = LX

0 +L
#
0 and L̃0 = L̃X

0 + L̃
#
0 are

vanishing on the physical states, thus obtaining the mass-shell condition and a generalized
version of the “level-matching” condition, respectively. Using the result (3A.65) for the
bosonic operator we then obtain four different sectors of the spectrum:

• the R–R sector, with LR
0 and L̃R

0 , characterized by

�R–R� � 
′M2 = 2�N + Ñ +NR + ÑR��

N +NR = Ñ + ÑR$
(3B.50)
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• the R–NS sector, with LR
0 and L̃NS

0 , characterized by

�R–NS� � 
′M2 = 2
(
N + Ñ +NR + ÑNS − D−2

16

)
�

N +NR = Ñ + ÑNS − D−2
16

$

(3B.51)

• the NS–R sector, with LNS
0 and L̃R

0 , characterized by

�NS–R� � 
′M2 = 2
(
N + Ñ +NNS + ÑR − D−2

16

)
�

N +NNS = Ñ + ÑR + D−2
16

$

(3B.52)

• the NS–NS sector, with LNS
0 and L̃NS

0 , characterized by

�NS–NS� � 
′M2 = 2
(
N + Ñ +NNS + ÑNS − D−2

8

)
�

N +NNS = Ñ + ÑNS�

(3B.53)

It should be noted that, for a generic value of D, only the R–R and NS–NS sectors are
characterized by an equal number of left- and right-moving modes (and then satisfy a
true level-matching condition). Also, only in the closed R–R and in the open R sectors
is the ground state massless: in the other spectra the lowest-energy level is tachyonic,
M2 < 0, for a generic number D of the space-time dimensions.

We are now able to determine the number of critical dimensions for a consistent
quantization of the considered model of superstring. We can start, for instance, from the
open NS spectrum of Eq. (3B.49), and consider the lowest-mass, non-tachyonic state,
corresponding to the eigenvalues N = 0 and NNS = 1/2: this state can be obtained from
the vacuum by applying the creation operator bi

−1/2, and thus describes the transverse,
vector-like configuration bi

−1/2�0NS�, with i = 1� � � � �D−2, and with mass eigenvalue

M2 = 1

′

(
1
2

− D−2
16

)
� (3B.54)

As discussed in the bosonic string case, a transverse vector with only D−2 independent
degrees of freedom is compatible with the D-dimensional Lorentz symmetry only if such
a vector is massless. The condition M2 = 0 then immediately implies that the model of
superstring is consistent in a critical number

D = Dc = 10 (3B.55)

of space-time dimensions (differently from the bosonic string which requires Dc = 26,
see Eq. (3A.64)).

The same result holds for the closed superstring model, as can be checked starting from
the NS–NS spectrum of Eq. (3B.53) and considering the eigenvalues N = Ñ = 0, NNS =
ÑNS = 1/2. One obtains in this way the lowest excited level, represented by the (transverse)
tensor configuration bi

−1/2̃b
i
−1/2�0NS̃0NS�: this configuration can be decomposed into a

graviton, a dilaton and an antisymmetric tensor as in the case of the bosonic string, and
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is consistent with the D-dimensional Lorentz group only if these fields are massless, i.e.
if D−2 = 8 according to Eq. (3B.53).

It may be noticed that, once we have fixed Dc = 10, we have also fixed the value of
the ordering parameters �� �̃ appearing in Eq. (3B.40). Remembering that � = �D−2�/24
for the bosonic case (Eq. (3A.59)), and summing the fermionic contribution, separately
for R and NS boundary conditions (Eqs. (3B.44) and (3B.47), respectively), we obtain

�R = �̃R = Dc −2
24

− Dc −2
24

= 0�

�NS = �̃NS = Dc −2
24

+ Dc −2
48

= Dc −2
16

= 1
2
�

(3B.56)

It is only for these values that we may have a consistent model of quantum superstring.
In order to determine the statistical properties of the different sectors of the spectrum

we now observe that the operators d
�
0 , associated with R boundary conditions, satisfy the

Clifford algebra

 d
�
0 �d

�
0! = −��� (3B.57)

(see Eq. (3B.43)), where ��� is the metric of the 10-dimensional Minkowski space-time:
thus, they can be represented by the D = 10 canonical Dirac matrices ��, by setting
d

�
0 = i��/

√
2 in order to agree with the standard Dirac algebra, Eq. (3B.2).

The operators d
�
0 , on the other hand, do not introduce transitions between different

mass-levels, but generate maps of the given state onto itself. Each mass-level of the
open R spectrum must then provide a representation of the Clifford algebra (3B.57): the
ground state �0R�, in particular, must correspond to an irreducible representation, since
there is no additional degeneracy of this level produced by other zero-mode operators.
Since the unique irreducible representation of this algebra is the spinor representation of
the Lorentz group SO�1�9�, it follows that the R ground state has to be a D = 10 spinor,
with 2D/2 = 25 = 32 independent components. All the other states of the R spectrum,
obtained by applying to �0R� the vector-like creation operators 
�

−m, d�
−m, m > 0, are

thus space-time spinors, and this is how space-time fermions appear in the quantized
superstring model in spite of their absence in the initial sigma model action (3B.9).

The ground state of the NS spectrum, on the contrary, is non-degenerate and transforms
as a scalar representation of the SO�1�9� group. All the levels of the open NS spectrum,
obtained by applying to �0NS� an arbitrary number of vector creation operators 
�

−m, b�
−r , are

thus space-time tensors, and represent the bosonic content of the open superstring spectrum.
This analysis can be easily extended to the closed superstring spectrum, considering

the ground states of the four different sectors (3B.50)–(3B.53) and noting that the product
of two spinor representations of the Lorentz group, �0R 0̃R� ≡ �0R�⊗ �̃0R�, corresponds to
a vector representation with bosonic statistical properties, while the product of a tensor
and a spinor, like �0NS 0̃R� ≡ �0NS�⊗ �̃0R�, is again a spinor. Thus, the R–R and NS–NS
sectors of the closed superstring spectrum describe bosons, while the R–NS and NS–R
sectors describe space-time fermions.

A consistent theory of interacting string can now be constructed by putting together
the Hilbert subspaces of the physical states of the R and NS sectors: the model obtained
in this way contains bosons and fermions, is consistent in a critical number of D = 10
space-time dimensions, but is still unsatisfactory for various reasons.

First of all, there is still a tachyon in the ground state of the NS spectrum (see
Eqs. (3B.49) and (3B.53)). Furthermore, there are states which correspond to space-time
bosons, and which are connected by transformations generated by an odd number of
anticommuting (fermion-like) operators. Consider, for instance, the second-excited level
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of the open NS spectrum (3B.49), with 
′M2 = 1/2: it contains the state 

�
−1�0NS�, with

eigenvalues N = 1�NNS = 0, but contains also the state b
�
−1/2b

�
−1/2�0NS�, with eigenvalues

N = 0�NNS = 1. This second configuration can be obtained by applying the fermionic
operator b

�
−1/2 to the massless level b�

−1/2�0NS� of the open NS spectrum, so that we are
in a situation in which two bosonic states (the first and the second excited level of the
NS spectrum) are mapped onto each other by an operator with anticommuting statistical
properties.

A third difficulty is that, if we compare the bosonic states of the NS spectrum with the
corresponding fermionic ones of the R spectrum, we find in general a different number
of bosonic and fermionic degrees of freedom, even at the level of the same mass eigen-
value. This prevents a possible implementation of supersymmetry in the context of the
10-dimensional physical space-time, in contrast with the two-dimensional supersymmetry
already present in the world-sheet action.

A concrete example of this problem can be illustrated by considering the massless
levels of the open string spectrum. In the NS sector of the spectrum we find a transverse
vector state, represented by bi

−1/2�0NS�, associated with a total number of D − 2 = 8
independent degrees of freedom. In the R sector we find a spinor, �0R�, which has in
general 2D/2 = 32 complex components. For a Majorana spinor we can always choose a
representation in which the 10-dimensional Dirac matrices �� have imaginary components
and the operators d

�
0 = i��/

√
2 are real, so that we are left with a spinor with 32 real

components. In addition, this state has to be annihilated by the constraints generated by
the supercurrent operator (see Eq. (3B.40), and which implies Fm�#� = 0, m ≥ 0, for
all states of the open R spectrum. The vacuum �0R�, in particular, is the lowest-mass
solution of the condition F0�#� = 0, which is equivalent to the Fourier transform of the
massless Dirac equation ��	�# = 0. Such a condition reduces the number of independent
components by a factor 1/2, since it relates half of the spinor components to the other
ones. Thus, one is left with 32/2 = 16 real components, which is still twice, however,
the number of independent components of a massless vector.

All the difficulties mentioned above can be automatically solved by performing the so-
called GSO projection [34, 35], i.e. by imposing on the physical states a condition which
eliminates (or “projects out”) in the NS sector all states obtained from the vacuum by
applying an even number of anticommuting operators b�

−r , and in the R sector eliminates
one of the two chirality components of the spinor. This procedure, in particular, removes
the NS tachyon, as well as the fermionic mapping among states with bosonic statistics.
Also, and most importantly, the chirality condition imposed on the fermionic states �#�
of the R sector implies that this sector describes Majorana–Weyl spinors, i.e. spinors
satisfying the reality condition and the chirality condition

�11�#� = ±�#�� �11 = �0�1 � � � �9�  �11� ��! = 0 (3B.58)

(remarkably, the two conditions are only compatible in D = 2 (modulo 8) space-time
dimensions). The chirality condition eliminates half of the spinor components and thus,
in particular, reduces from 16 to 8 the number of real components of the R vacuum �0R�.
Hence, after the GSO projection, one obtains that the massless states of the open string
spectrum represent a 10-dimensional “supermultiplet”

{
bi

−1/2�0NS�� �0R�} � (3B.59)

with an equal number (8) of boson and fermion components, as appropriate to a 10-
dimensional supersymmetric gauge theory [1].
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The GSO projection produces the same number of bosonic and fermionic components
not only in the case of the massless level, but also for all levels of the superstring
spectrum. In a generic level the projection is represented by the condition

PNS
GSO��� = ���� PNS

GSO = −�−1�
∑�

r=1/2 b
�−r br� � (3B.60)

to be satisfied by all physical (bosonic) states of the NS spectrum, and by the condition

PR
GSO�#� = �#�� PR

GSO = �11�−1�
∑�

n=1 d
�−ndn�� (3B.61)

to be satisfied by all physical (fermionic) states of the R spectrum. Without discussing the
technical details of these conditions we should explain, however, why the elimination of
one of the two chirality components is consistent also at the level of the massive fermion
states. It is well known, indeed, that massive fermions cannot be represented by chiral
(or Weyl) spinors, since the chirality operator (�11, in our case) does not anticommute
with the massive Dirac operator �i��	� +m�. The crucial point is that, after imposing
the condition (3B.61), one is left with R states having either �i� positive chirality and an
even number of d�

−m creation operators, or �ii� negative chirality and an odd number of
d�

−m creation operators. At each mass-level these two states of opposite handedness can
be combined to give a Majorana spinor that corresponds to a full (non-chiral) massive
representation of the Lorentz group [1].

It should be mentioned, finally, that the equality of the number of boson and fermion
degrees of freedom is a necessary condition for the construction of a model with space-
time supersymmetry, but does not constitute a proof of the existence of such a symmetry,
of course. The supersymmetry becomes manifest only if the considered string model
is reformulated starting from a world-sheet action which already contains space-time
supersymmetry, unlike the actions (3B.1) or (3B.9), which are supersymmetric only on
the two-dimensional world-sheet manifold. A presentation of this formalism is outside
the scope of this appendix (see for instance [1]); it is important to mention, however,
that quantizing the space-time supersymmetric action one finds that the GSO conditions
are automatically built in from the outset, without having to make any truncation of the
spectrum (which might appear a contrived sort of procedure in the model of superstring
so far considered).

3B.4 Type IIA and type IIB superstrings

In the closed string case, the GSO conditions must be separately applied both to the
left-moving and to the right-moving sectors of the spectra. For the fermionic R sector,
however, we have two possibilities, depending on which chirality component we want
to keep in the ground state: there are two inequivalent GSO projections, in which we
take either opposite chiralities, �0+

R 0̃−
R �, or the same (for instance positive) chiralities,

�0+
R 0̃+

R � (the plus and minus superscripts refer to the eigenvalues of the chirality equa-
tions (3B.58)). The resulting theories are called, respectively, type IIA and type IIB
superstrings.

Let us look at the particle content of their fundamental massless level, M2 = 0, after
imposing the GSO conditions, considering separately the four possible sectors of the
closed superstring spectrum.

(1) The NS–NS sector, Eq. (3B.53), is not affected by the choice of chirality, so that
the particle content is the same for both types of strings. The level M2 = 0 corresponds to
the eigenvalues N = Ñ = 0, NNS = ÑNS = 1/2, and is represented by the tensor (bosonic)
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configuration bi
−1/2 b̃

j
−1/2�0NS 0̃NS� (which survives the GSO projections as it contains an

odd number of b and b̃ operators). Such a state transforms as the product of two irreducible
vector representations of the group SO�8�, i.e. 8V ⊗ 8̃V . The total number of on-shell
components is thus 8 × 8 = 64, which can be decomposed into the D�D− 3�/2 = 35
components of the symmetric trace-free tensor hij , the �D−3��D−2�/2 = 28 components
of the antisymmetric tensor Aij , and the scalar trace: they correspond, respectively, to the
graviton, the antisymmetric tensor (or NS–NS two-form) and the dilaton. The situation
is exactly the same as that we have already encountered in the bosonic string case, see
Eq. (3A.69). Summarizing,

bi
−1/2 b̃

j
−1/2�0NS 0̃NS� −→ �� g��� B��� (3B.62)

(2) In the R–R sector, Eq. (3B.50), the massless level corresponds to zero eigenvalue of
all number operators, and after the GSO projection is associated with the tensor product
of the two eight-dimensional spinors �0R� and �̃0R�: we obtain thus a representation of the
Lorentz group of bosonic type, again with 8 × 8 = 64 independent components. Such a
representation can be decomposed into antisymmetric tensor components, whose explicit
form depends on the chirality of the two initial spinors.

To discuss this point let us introduce two Majorana–Weyl spinors with components
%a and %ȧ, forming an eight-dimensional representation of the transverse SO�8� group in
the light-cone gauge, and corresponding to opposite eigenvalues of the chirality operator:
we may assume, for instance, that %a belongs to the irreducible spinor representation 8+
with positive chirality, and that %ȧ belongs to the irreducible spinor representation 8−
with negative chirality. We then obtain terms like %ã%ḃ, associated with the represent-
ation 8+ ⊗ 8̃− and typical of the state �0+

R 0̃−
R � of type IIA strings, and terms like %ã%b,

associated with the representation 8+ ⊗ 8̃+ and typical of the state �0+
R 0̃+

R � of type IIB
strings.

On the other hand, given the eight-dimensional spinors %a� %ȧ, and the 16 × 16 Dirac
matrices �i of SO�8�, satisfying

�i =
(

0 �i
aȧ

�i
ḃb

0

)
� �i

aȧ�
j
ȧb +�

j
aȧ�

i
ȧb = 2�ij�ab� (3B.63)

we can construct two different classes of antisymmetric tensor objects through the fol-
lowing contractions:

�ijk��� = %a

(
��i�j · · ·�k�

)aḃ
%̃ḃ� �ij��� = %a

(
��i · · ·�j�

)ab
%̃b� (3B.64)

where the first contraction contains an odd number, and the second an even number, of
gamma matrices. This clearly shows how odd-rank antisymmetric tensors (like �i, �ijk)
are associated with terms of the type %a%ḃ, i.e. to the decomposition of the representation
8+ ⊗ 8̃−, while even-rank antisymmetric tensors (like 1, �ij , �ijkl) are associated with
terms of the type %a%b, i.e. to the decomposition of the representation 8+ ⊗ 8̃+. Counting
the 64 on-shell degrees of freedom, available in D = 10, we are then led to the following
decomposition of the product of two spinor representations of opposite chirality (type IIA
superstrings):

IIA � 8+ ⊗ 8̃− = 8V ⊕56V (3B.65)
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(the subscript V denotes the vector representation). For the product of spinor repres-
entations of the same chirality (type IIB superstrings), on the contrary, we have the
decomposition:

IIB � 8+ ⊗ 8̃+ = 1⊕28V ⊕35V� (3B.66)

In other terms, the massless R–R sector of type IIA superstrings describes a vector (or
one-form) and a third-rank antisymmetric tensor (or three-form):

IIA � �0+
R 0̃−

R � −→ A�� A��
� (3B.67)

They contain, respectively, D−2 = 8 and �D−4��D−3��D−2�/3! = 56 physical degrees
of freedom. The massless R–R sector of type IIB superstrings describes, instead, a scalar
(or zero-form), a two-form, and a four-form with self-dual field strength:

IIB � �0+
R 0̃+

R � −→ A� A��� A��
�� (3B.68)

containing, respectively, 1, 28 and 35 degrees of freedom. It can be checked, as a useful
exercise, that the supercurrent constraints F0�#� = 0 and F̃0�#� = 0 provide the equations
of motion and the Bianchi identities for the antisymmetric tensors associated with these
states. In terms of the field strengths, H��
��� = 	��A�
����, such conditions are represented,
respectively, by the first-order differential equations

	�H��
��� = 0� 	��H�
����� = 0� (3B.69)

Using the language of differential forms, exterior derivatives and Hodge dual (see Ap-
pendix 2A), and denoting with a subscript the rank of a form, the previous equations can
be rewritten, respectively, as

Hp = dAp−1� d &Hp = 0� dHp = 0� (3B.70)

It should be noted, finally, that the five-form field strength H5 = dA4 must satisfy
the self-duality condition H5 = &H5, which is needed in order to halve the number of
components of A4 and to match the representation 35V of the decomposition (3B.66).
A totally antisymmetric potential of rank p, in D dimensions, has indeed �D−p−1��D−
p��D−p+ 1� · · · �D− 2�/p! independent components, which become 70 in D = 10 for
p = 4, and which are reduced to 35 only if H5 satisfies the self-dual condition.

(3) In the NS–R sector, Eq. (3B.52), the massless level corresponds to the eigenvalues
N = Ñ = ÑR = 0, NNS = 1/2, and is represented by the state bi

−1/2�0NS 0̃±
R �, which trans-

forms according to the product of the vector and spinor representations, 8V ⊗ 8̃±. The
64 components of this representation can be decomposed into a spinor � (the so-called
“dilatino”), and a vector-spinor �i (or gravitino) carrying both vector and spinor indices,
with a total of 8+56 = 64 physical degrees of freedom (the gravitino has 7×8 compon-
ents, instead of 8 × 8, because of the additional conditions �i�i = 0 following from the
supercurrent constraints). Depending on the chirality imposed by the GSO projection on
the R sector we have two possibilities:

IIA � bi
−1/2�0NS 0̃−

R � −→ �−��
�
−$ (3B.71)

IIB � bi
−1/2�0NS 0̃+

R � −→ �+� �
�
+� (3B.72)

(4) In the R–NS sector, Eq. (3B.51), the massless level corresponds to the eigenvalues
N = Ñ = NR = 0, ÑNS = 1/2, and is represented by the state b̃i

−1/2�0+
R 0̃NS�, which trans-

forms according to the representation, 8+ ⊗ 8̃V. As in the previous case we can decompose
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this level into the sum of two spinor states: one dilatino  and one gravitino i, with a
total of 64 independent components. In this case, however, there is no difference due to
the chirality choice, and we obtain the same fields in both types of strings, IIA and IIB:

b̃i
−1/2�0+

R 0̃NS� −→ +� 
�
+� (3B.73)

The fermion sector of the spectrum, for the two superstring models, contains two
gravitinos and two dilatinos, with opposite chirality in type IIA, and with the same
chirality in type IIB. We have thus a non-chiral theory (type IIA superstring) and a
chiral theory (type IIB superstring). In both cases, the presence of two gravitinos, and
the equality of the number (64×2 = 128) of bosonic and fermionic degrees of freedom,
suggests that both superstring models are compatible with the invariance under space-
time supersymmetry transformations associated with N = 2 conserved supercharges – as
indeed confirmed by a reformulation of the superstring action in a form which is explicitly
supersymmetric in the target space-time manifold [1].

Putting together the results of the various sectors, we can summarize the content of
the massless (bosonic and fermionic) particles for type II superstrings as follows:

type IIA −→ {
��g���B��

}
NS−NS

+{A��A���

}
R−R

+{�−��
�
−� +� 

�
+
}

NS↔R
� (3B.74)

type IIB −→ {
��g���B��

}
NS−NS

+{A�A���A����

}
R−R

+{�+��
�
+� +� 

�
+
}

NS↔R
� (3B.75)

We conclude the discussion by reporting the tree-level effective action for the pure
bosonic part of these two superstring models, in Dc = 10 space-time dimensions and in
the S-frame (see for instance [2]). For the type IIA superstring we have the action

SIIA =− 1
2�8

s

∫
d10x

√−g

[
e−�

(
R+��2 − 1

12
H2

3

)

+1
4
H2

2 + 1
48

�H4 −A1 ∧H3�
2

]

+ 1
4�8

s

∫
B2 ∧H4 ∧H4� (3B.76)

while for the type IIB superstring we have the action

SIIB =− 1
2�8

s

∫
d10x

√−g

[

e−�

(
R+��2 − 1

12
H2

3

)
− 1

2
H2

1 − 1
12

(
H3 −A0H3

)2

− 1
240

(
H5 − 1

2
A2 ∧H3 + 1

2
B2 ∧H3

)2
]

+ 1
4�8

s

∫
A4 ∧H3 ∧H3�

(3B.77)

We have defined the field strengths of various ranks as Hp = dAp−1, with the only
exception being the case p = 3, where H3 = dB2 is the field strength of the NS–NS
two-form, while H3 = dA2 is the field strength of the R–R two-form. Finally, the square
of a form simply denotes the tensor scalar product, i.e. H2

p = H�1�2����p
H�1�2����p .

A few comments are in order. The action for the NS–NS fields (the first three terms in
the square brackets) is the same for both models, and also coincides with the tree-level
action obtained from the closed bosonic string, Eq. (3.41), modulo a different number
of critical dimensions. The R–R fields (the remaining terms in the square brackets) are
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associated with antisymmetric tensor potentials Ap of odd rank (p = 1�3) in type IIA
theory, and of even rank (p = 0�2�4) in type IIB theory; in both cases, it should be
stressed that the R–R fields are not directly coupled to the dilaton, in the string frame.
The last term of the above actions is a Chern–Simons term, required by space-time
supersymmetry; such a term, however, is identically vanishing for the homogeneous and
isotropic backgrounds that will be the main object of our cosmological applications in the
following chapters. Finally, it is important to note that the field equations obtained from
the type IIB action are to be supplemented by the additional constraint H5 = &H5, which
does not follow from the action (3B.77), but which is compatible with it, and required
by the self-duality (or chirality) of the R–R gauge field A4, as stressed before.

3B.5 Type I superstring

The previous models, based on the consistent quantization of closed superstrings, provide
an elegant (and very interesting) supersymmetric description of gravitational interactions.
It seems hard, however, to connect these models to the phenomenology of the other low-
energy fundamental interactions, and to the standard model of elementary particle physics.
The main difficulty is probably the explicit absence of Yang–Mills fields and of non-
Abelian symmetry groups, related to the standard description of nuclear and subnuclear
interactions. A possible solution to this problem, in the context of type II superstrings,
is that the gauge groups may arise as isometries of the internal geometry upon reduction
from ten to four dimensions, through some appropriate compactification mechanism.

A more direct solution of this phenomenological problem is provided by models based,
at least in part, on open superstrings. These strings, in fact, may have “charges” on their
ends, associated with a non-Abelian symmetry group which coincides with U�n� for open
oriented strings, and with SO�n� or USp�2n� for open non-oriented strings.

We should recall that non-oriented strings are strings with a quantum spectrum of states
which is invariant under the so-called “world-sheet parity” transformation P� , defined by

P� � � → � −� = −� �modulo ��� (3B.78)

Let us consider for simplicity a bosonic string, whose mode expansion for the open
and closed solution is given, respectively, in Eqs. (3A.28) and (3A.19). Acting on those
solutions with the transformation (3B.78), one can easily derive the transformation rules
of 
 and 
̃, so as to determine also the transformation of a bosonic string state with total
occupation number given by N . One then finds

P� �N� = �−1�N �N� (3B.79)

for open string states, and

P� �N � Ñ� = �Ñ �N� (3B.80)

for closed string states. Non-oriented string models are defined by keeping only those
states which are left invariant by P� (namely, which are “insensitive” to the world-sheet
orientation). So, for the bosonic string, the only states which survive this projection are
the open string states with even occupation number, and the closed string states which
are symmetric in the exchange of left- and right-moving modes, N ↔ Ñ .

Non-Abelian gauge fields can be included in the open string model by introducing
additional degrees of freedom, or “charges” (called Chan–Paton factors [36]) at the ends
of the string, transforming according to the fundamental representation �n� of U�n� at one
end, and according to the complex-conjugated representation �n� at the other end of the
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string. The massless vector state of the open string spectrum thus acquires two additional
labels, a�b, and can be written in the form

�A��ab = 

�
−1�0ab�� (3B.81)

where a is an index of �n�, and b of �n� (again, for simplicity, we are considering the
bosonic string case). The tensor product of the two representations, �n�⊗ �n�, corresponds
to the so-called adjoint representation, so that the massless states A� can be interpreted
as the gauge boson of the non-Abelian gauge group U�n�.

In the case of open non-oriented strings, however, the two ends of the string must
be equivalent, so that the allowed states of changed non-oriented strings are those left
invariant by the generalized parity transformation P� which inverts � and, simultaneously,
exchanges the indices a and b. Such a transformation can be defined as follows:

P� �N ab� = � �−1�N �N ba�� (3B.82)

where � = ±1. Imposing that the spectrum is invariant under the action of P� then
leaves us with two possibilities, depending on the value of �. If � = 1 we find that the
vector state (3B.81) (corresponding to N = 1) transforms as the gauge boson of the group
SO�n�, whose adjoint representation is antisymmetric with respect to the exchange of the
indices. If � = −1 we find, instead, that the vector state transforms as the gauge boson
of the symplectic group USp�2n�, whose adjoint representation is symmetric. The same
discussion and results apply to the superstring case, with the only difference that the sign
of � has to be inverted with respect to the bosonic case [1].

Considering open strings we can thus include non-Abelian gauge fields at the level
of the 10-dimensional model, without resorting to the dimensional reduction mechanism.
A consistent quantum model, however, cannot contain only open strings (after all, open
strings must be allowed to join ends, giving rise to closed strings), but may contain
either closed strings only, or both open and closed strings. Open and closed oriented
strings, however, cannot be combined to form a supersymmetric theory, because closed
oriented strings contain two gravitinos in their spectrum and, as already stressed, provide
an explicit realization of N = 2 space-time supersymmetry, while open strings are only
compatible with N = 1 supersymmetry.

In order to combine open and closed strings in a consistent supersymmetric way we
must “project out” one of the two gravitinos of the closed superstring spectrum, so as to
reduce down to N = 1 the degree of supersymmetry of the system. The required projection
turns out to be equivalent to imposing on the states the property of world-sheet parity,
thus producing a model of closed non-oriented superstrings. We can use the type IIB
model of superstring, but not the type IIA superstring in which the left and right modes of
the spectrum have opposite chirality, and there are no states symmetric in their exchange.
On the other hand, the model of closed non-oriented type IIB superstring at the quantum
level is affected by divergences and anomalies which can only be canceled by adding to
the model open strings with gauge group SO�32� [37, 38] (and then open non-oriented
superstrings, according to our previous discussion of the Chan–Paton factors). We are
eventually led, in this way, to a quantum-mechanically consistent theory of non-oriented
open and closed strings, with N = 1 supersymmetry and SO�32� gauge invariance, which
is known as the type I superstring.

To extract the particle content of the theory let us first consider the type IIB spectrum,
and note that the projection over non-oriented states imposes the symmetry in the exchange
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of left- and right-moving quantities, b�
r ↔ b̃�

r , �0R� ↔ �̃0R�, according to Eq. (3B.80). In
the NS–NS sector, the symmetrization of the massless level (3B.62) leads to the state

NS–NS �
1
2

(
bi

−1/2̃b
j
−1/2 + b̃i

−1/2b
j
−1/2

)
�0NS 0̃NS�� (3B.83)

This clearly shows that the antisymmetric tensor component disappears from the spectrum,
and that we are left with the graviton and the scalar dilaton only, with a total of 35+1 = 36
bosonic degrees of freedom.

In the R–R sector, taking into account the change of sign due to the exchange of two
fermionic states, we are led to the following massless combination:

R–R �
1
2

(
�0+

R 0̃+
R �− �̃0+

R 0+
R �
)
� (3B.84)

Among the different terms associated with the decomposition of the spinor representation
8+ ⊗ 8̃+ (see Eq. (3B.64)), we have to select those with an even number of tensor indices
(because of the type IIB model), and those which are antisymmetric in the exchange % ↔ %̃
(because of the world-sheet parity). We are only left with a two-index antisymmetric
tensor, which means that only the two-form A�� survives the projection, for a total of 28
independent bosonic components.

Finally, the symmetrization of the NS–R sector, Eq. (3B.72), and R–NS sector,
Eq. (3B.73), leads to the same (non-oriented) massless level, associated with the state

NS↔R �
1
2

(
bi

−1/2�0NS 0̃+
R �+ b̃i

−1/2�0̃+
R 0NS�

)
� (3B.85)

We are left with one gravitino �
�
+ and one dilatino �+ only, for a total of 64 fermionic

degrees of freedom, equal to the 36 + 28 = 64 bosonic degrees of freedom of the other
sectors (as required by space-time supersymmetry).

In addition to these states, belonging to the closed superstring spectrum, the model
also contains the massless levels of the open non-oriented superstring, with gauge group
SO�32�. In the NS sector, Eq. (3B.49), the massless level with N = 0, NNS = 1/2 cor-
responds to the state bi

−1/2�0NS ab�, associated with the gauge vector Aa
� of the group

SO�32�. In the R sector, Eq. (3B.48), the massless level �0R a� corresponds to the eigen-
values N = 0 = NR, and is associated with the massless spinor multiplet #a (also called
“gaugino”), whose combination with Aa

� forms the vector supermultiplet of the gauge
group SO�32�.

In conclusion, we can summarize the particle content of the massless levels of type I
superstring as follows:

type I −→ {
��g��

}
NS−NS

+{A��

}
R−R

+{�+��
�
+
}

NS↔R
+{Aa

��#
a
}
SO�32�

�

(3B.86)

where the first three contributions arise from the closed, non-oriented spectrum, while the
last contribution is from the open, non-oriented superstring spectrum. The corresponding
tree-level, N = 1 supersymmetric action for the bosonic fields, in the S-frame, can be
written as [2]

SI = − 1
2�8

s

∫
d10x

√−g

[

e−�
(
R+��2

)− 1
12

H
2
3 + 1

4
e−�/2 Tr F 2

2

]

� (3B.87)
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where F2 is the matrix valued two-form representing the Yang–Mills field for the gauge
group SO�32�, and the trace refers to the vector representation of SO�32�. Finally,

H3 = dA2 −Tr
(
A1 ∧dA1 + 2

3
A1 ∧A1 ∧A1

)
(3B.88)

represents the mixed contribution of the R–R two-form A2 and of the matrix valued
one-form A1, associated with the gauge potential of the SO�32� group.

3B.6 Heterotic superstrings

A different possibility for including non-Abelian gauge interactions in string theory is
provided by the so-called “heterotic” model [39, 40], based on closed oriented strings in
which only one half of the physical degrees of freedom (for instance, those associated
with right-moving modes) is supersymmetrized, while the other half keeps its bosonic
properties and is quantized without fermionic partners. This procedure is allowed because,
in closed string theory, left- and right-moving modes are decoupled and can be treated
independently.

The bosonic sector, on the other hand, can be consistently quantized only in the
presence of 26 space-time dimensions (as discussed in the previous appendix), while
the quantization of the supersymmetric sector has to be performed in a 10-dimensional
subspace (with the appropriate GSO projection, and all the required constraints). The extra
26 − 10 = 16 spatial dimensions are then to be compactified, or identified periodically,
by setting X
 = X
 + w


�i�, 
 = 11�12� � � � �26, where the 16 vectors w�i� generate a
16-dimensional lattice. We obtain, in this way, a 10-dimensional theory with N = 1
supersymmetry and a non-Abelian gauge group, associated with the symmetries of the
16 extra spatial dimensions. The consistent quantization of the left-moving modes, as we
shall see, is only compatible with two groups, SO�32� and E8 ×E8: as a consequence,
we end up with only two possible models of superstring, heterotic SO�32� and heterotic
E8 ×E8.

For an explicit formulation of the model through a world-sheet action we can separate
the 10-dimensional supersymmetric part from the part referring to the extra bosonic
coordinates, containing only left-moving modes. Instead of using a different number of
dimensions for the different sectors of the model, however, it is convenient to notice
that 16 free left-moving bosons (the coordinates X


+, 
 = 11�12� � � � �26) are equivalent,
for what concerns quantum anomalies in a two-dimensional world-sheet [1], to 32 left-
moving Majorana–Weyl spinors �A

+, A = 1�2� � � � �32. We can thus write the action in
the form

S = 1
4�
′

∫
d� d�

[
9∑

�=0

(
	aX

�	aX� +2i#�
−	+#−�

)+2i
32∑

A=1

�A
+	−�

A
+

]

� (3B.89)

where the �−� and �+� subscripts denote right- and left-moving modes, respectively. This
action has a global world-sheet supersymmetry mixing the 10 right-moving fermions #�

−
and the right-moving part X�

− of the 10 bosonic coordinates, like the action (3B.9).
The left-moving (non-supersymmetric) part of the model corresponds to the 10 bosonic

coordinates X
�
+ and to the 32 spinors �A

+. If such spinors are all quantized with the same
boundary conditions we have a model with an evident SO�32� symmetry. The only other
consistent quantization, as we shall see, is the case in which the spinors are separated
into two independent groups of 16, and we consider periodic and antiperiodic boundary
conditions for each group: in that case one is led to the symmetry group E8 ×E8.
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The discussion of this appendix is concentrated on the case of SO�32� symmetry, and
on the corresponding particle content of the massless sector of the spectrum. We start
by noting that the spinors �A

+ can be quantized using periodic (P) or antiperiodic (A)
boundary conditions, by applying, respectively, the procedure of the R and NS sectors
of the superstring spectrum. In the periodic case we shall expand the (closed string)
solutions as

P � �A
+ =

�∑

n=−�
�A

n e−2in��+��� (3B.90)

where the sum is over all integers (see Eq. (3B.28)); in the antiperiodic case we shall
expand the solutions as

A � �A
+ =

�∑

r=−�
�A

r e−2ir��+��� (3B.91)

where the sum is over all half-integers r = n+ 1/2 (see Eq. (3B.29)). In the quantum
version of the model the Fourier coefficients �A

n , �A
r become operators satisfying the

canonical anticommutation relations

 �A
m��

B
n! = �AB�m+n�0�  �A

r ��
B
s ! = �AB�r+s�0� (3B.92)

The heterotic spectrum can then be easily determined by exploiting the previous com-
putations of the ordered and regularized version of the right-moving and left-moving
operators, L0, L̃0, for both the bosonic and the fermionic part of the spectrum.

Let us first consider the right-mode sector, supersymmetrized by the GSO projection.
Summing up the bosonic part (relative to X�

−) and the fermionic part (relative to #�
−),

the regularized Virasoro operator can be written as L0 = �
′/4�p2 −N , where N is a
number operator with integer eigenvalues which takes into account all the states left in
the spectrum after the projection. Then, we have to consider the left-mode sector: we
decompose the operator as L̃0 = L̃X

0 + L̃�
0 , where L̃X

0 is the bosonic part (relative to X
�
+)

and L̃�
0 is the fermionic part (relative to �A

+). For the bosonic part we can always apply
the regularized result (3A.65), which can be written as

L̃X
0 = 
′

4
p2 − ÑX + 8

24
(3B.93)

(we have set D− 2 = 8 because the X
�
+ coordinates are defined on the 10-dimensional

space-time of the superstring model). For the fermionic part we must separately consider
the case in which we impose periodic or antiperiodic boundary conditions.

In the periodic case, using the anticommutation relations of �m��n, and repeating
exactly the same computations as those leading to the result (3B.44) for the R superstring
spectrum, we obtain

L̃P
0 = −ÑP − 32

24
� (3B.94)

where ÑP = ∑�
n=1 n�

A
−n�

A
n , and where the index P denotes the periodic sector of the

spectrum. The different numerical factor, 32 instead of D− 2, is due to the sum of the
indices A�B of the 32 spinor variables �, which appears by taking the trace of their
anticommutation relation. In the same way, for antiperiodic boundary conditions, we



126 Conformal invariance and string effective actions

can repeat the computations applied to the NS superstring sector (see Eq. (3B.47)) to
obtain

L̃A
0 = −ÑA + 32

48
� (3B.95)

where the index A denotes the antiperiodic sector, and ÑA =∑�
r=1/2 r�

A
−r�

A
r .

The sum of the bosonic and fermionic parts of the left-moving spectrum now gives
L̃0, where we define Ñ as the total occupation number of all fermionic and bosonic
left-moving modes. Using also the right-moving operator L0, and imposing the conditions
L0 + L̃0 = 0, L0 − L̃0 = 0, we then obtain, respectively, the mass-shell condition and the
generalized level-matching conditions. For the periodic sector this leads to the spectrum

P � 
′M2 = 2�N + Ñ +1��

N = Ñ +1$ (3B.96)

for the antiperiodic sector we have, instead,

A � 
′M2 = 2�N + Ñ −1��

N = Ñ −1� (3B.97)

Two comments are now in order. The first is that, since the minimal eigenvalue of
the number operators is zero, the massless states will belong to the antiperiodic sector
of the spectrum. The second is that the GSO projection, which is imposed within the
supersymmetric (right-moving) sector of the spectrum, and which leaves the operator N
with a set of integer eigenvalues, implies the necessity of a GSO-like projection also for
the P and A left-moving sectors. One has indeed to eliminate all states with half-integer
values of Ñ , which would be in contrast with the conditions N = Ñ ±1.

Before moving to the analysis of the massless levels of the spectrum, it seems ap-
propriate to discuss the possible existence of symmetries other than SO�32� in the 32-
dimensional space spanned by the fermionic coordinates �A

+. Let us suppose that we break
the SO�32� symmetry of the previous example by separating the fermions into two groups
of n and 32 −n components, respectively. Imposing periodic and antiperiodic boundary
conditions separately, and independently, on the two groups, we may then obtain, for the
left-moving modes, four possible different sectors that we denote as PnP32−n, PnA32−n,
AnP32−n, AnA32−n, where Pn means that the group of n fermions is assigned periodic
boundary conditions, A32−n that the group of 32 − n fermions is assigned antiperiodic
boundary conditions, and so on. Repeating the previous computations, and summing the
bosonic and fermionic parts of the (normal-ordered, regularized) operator L̃0, for the
different sectors, we obtain the following possible results:

PnP32−n � L̃0 = 
′

4
p2 − Ñ −1� (3B.98)

PnA32−n � L̃0 = 
′

4
p2 − Ñ +1− n

16
� (3B.99)

AnP32−n � L̃0 = 
′

4
p2 − Ñ −1+ n

16
� (3B.100)

AnA32−n � L̃0 = 
′

4
p2 − Ñ +1� (3B.101)
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We have to use, at this point, the Virasoro operator of the right-moving (supersymmet-
ric) sector, L0 = �
′/4�p2 −N , and to impose the level-matching condition L0 = L̃0. We
obtain a relation between N and Ñ which depends on the considered sector, and which
can be written as

N = Ñ ±1� N = Ñ ±
(

1− n

16

)
� (3B.102)

where the first condition refers to the PP and AA sectors, and the second one to the AP
and PA sectors. We have to take into account, also, that N has only integer eigenvalues
(because of the GSO supersymmetrization), while Ñ takes integer values in the P sector,
integer and half-integer values in the A sector (remember the definitions of ÑP and
ÑA, Eqs. (3B.94) and (3B.95)). It follows that there are two possibilities to satisfy the
conditions (3B.102).

�1� If n is not divisible by eight, then there are no physical states in the AP and PA
sectors (the unphysical ones are to be eliminated by a suitable projection). In this case
we are back to the situation in which all 32 fermions obey the same boundary conditions,
and the symmetry group is SO�32�, as before (actually, SO�32�/Z2 because of the two
classes of periodic and antiperiodic conditions).

�2� If n is divisible by eight, then we have the possible values n = 0�8�16�24�32. The
cases n = 0�32 correspond again to the full SO�32� symmetry. The cases n = 8�24 lead
to models affected by quantum anomalies [1], and will not be considered further. We are
left with n = 16, which corresponds to the subdivision of the 32 spinor variables �A into
two equal groups, and which implies an integer shift between the left- and right-moving
number operators, i.e. N − Ñ = 0�±1. By performing on this spectrum the projections
required by a consistent quantization, one then finds that the associated symmetry group
is E8 ×E8 [1].

Coming back to the heterotic model with symmetry group SO�32�, let us finally
analyze the field content of the massless states which, as already stressed, belong to the
antiperiodic sector of the spectrum (Eq. (3B.97)), and are characterized by the eigenvalues
N = 0, Ñ = 1. Let us first consider, separately, the left- and right-moving contributions.

In the left-moving sector we must recall the definition of the number operator Ñ for
antiperiodic boundary conditions,

Ñ = ÑX +∑
r

r�A
−r�

A
−r =

�∑

n=1


i
−n


i
n +

�∑

r=1/2

r�A
−r�

A
−r (3B.103)

(see Eq. (3B.95)). One then immediately finds that there are two left-moving states with
Ñ = 1:

{

i

−1�0+�� �A
−1/2�

B
−1/2�0+�} � (3B.104)

The first is an SO�32� scalar, which transforms as a transverse vector under the action of
the Lorentz group in 10-dimensional Minkowski space; the second is a Lorentz singlet
which transforms as an antisymmetric, second-rank tensor (i.e. according to the adjoint
representation) of the gauge group SO�32�.

In the right-moving (supersymmetric) sector we find that there are two states with
N = 0 (see e.g. the superstring spectrum (3B.48), (3B.49)), and which contribute to the
massless heterotic spectrum:

{
bi

−1/2�0−�NS� �0−�R

}
� (3B.105)
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The first is a transverse vector of the Lorentz group, with eight independent com-
ponents, the second is an eight-component, right-moving spinor: their combination
8V ⊕ 8− represents the vector supermultiplet, already encountered in the open superstring
spectrum.

The complete set of states of the massless level of the heterotic string can now be
obtained as the tensor product of the left- and right-moving massless sectors (3B.104) and
(3B.105), as typical of all closed string models. The product of the two Lorentz-vector
states gives a tensor state with 8 × 8 = 64 components which can be decomposed, as
usual, into a symmetric traceless part (the graviton), an antisymmetric part (the torsion)
and a scalar part (the dilaton):


i
−1�0+�⊗b

j
−1/2�0−�NS −→ {

��g���B��

}
� (3B.106)

Similarly, the product of the left-moving vector with the right-moving fermion repro-
duces the vector-spinor representation with 64 independent components, which can be
decomposed into a 56-component gravitino field �i (satisfying the condition �i�

i = 0)
and the 8-component spinor �:


i
−1�0+�⊗ �0−�R −→  ����! � (3B.107)

Finally, the tensor product of the 16 components of the vector supermultiplet (3B.105),
with the 32×31/2 = 496 components associated with the antisymmetric tensor

�A
−1/2�

B
−1/2�0+�� (3B.108)

gives the super Yang–Mills multiplet for the gauge group SO�32�:

�A
−1/2�

B
−1/2�0+�⊗ (bi

−1/2�0−�NS ⊕�0−�R

)−→ {
A��#

}
(3B.109)

(we have suppressed, for simplicity, the group indices). The total number of components
is 16×496, equally distributed between bosonic and fermionic degrees of freedom.

Comparing these results with Eq. (3B.86) we can notice, at this point, that the field
content of the massless levels of the heterotic string is exactly the same as that of the
type I superstring: a graviton, a dilaton, a two-form, a gravitino, a dilatino, a gauge boson
and a gaugino. The massive levels, however, have a different particle content. But even
at the massless level there are important differences, due to the coupling of the massless
fields to the dilaton. In particular, the two-form A�� of type I superstrings arises from the
R–R sector of the spectrum, and is uncoupled from the dilaton in the string frame (see
the action (3B.87)). In the heterotic model, on the contrary, the two-form B�� belongs to
the gravitational multiplet (3B.106), and couples to the dilaton exactly as in the type II
string (or bosonic string) case. The coupling to the dilaton of the gauge field strength is
also different, in the two cases.

Indeed, the tree-level, S-frame heterotic effective action can be written as [2]

Shet = − 1
2�8

s

∫
d10x

√−g e−�

(
R+��2 − 1

12
H

2
3 + 1

4
Tr F 2

2

)
� (3B.110)

where F2 is the matrix valued two-form for the gauge field strength (SO�32� or E8 ×E8),
and where

H3 = dB2 −Tr
(
A1 ∧dA1 + 2

3
A1 ∧A1 ∧A1

)
� (3B.111)
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This action is different from the type I action (3B.87). However, it is interesting to point
out that the heterotic action can be obtained from Eq. (3B.87) by performing the rescaling

g�� = g̃��e4�/�D−2� ≡ g̃��e�/2� � = −�̃� (3B.112)

In fact, applying the general transformation rules (2.40) and (2.41) presented in Chapter 2,
one can easily check that, in terms of the “tilded” variables g̃, �̃, the type I action exactly
reproduces the heterotic action (3B.110). The transformation � → −�, in particular,
inverts the coupling parameter gs = exp��/2�, and suggests that the strong coupling limit
of one theory should be appropriately described by the other theory, in the perturbative
regime.

The superstring effective actions presented in this appendix, type I, type IIA, type
IIB, heterotic SO�32� and heterotic E8 × E8, will be used in the following chapters
for various cosmological applications. In particular, the heterotic model with E8 ×E8
gauge symmetry, with six “internal” dimensions appropriately compactified on a complex
(three-dimensional) Calabi–Yau manifold (see for instance [41])), seems to represent a
promising model for a realistic description of the standard low-energy phenomenology.

These five superstring theories, however, are not independent, being connected by
the so-called “duality” transformations: in particular, target space duality, or T-duality
(see Chapter 4), acting on the background geometry, and S-duality, acting on the string
coupling constant parametrized by the dilaton (see for instance [2]). In addition, all
these five models seem to represent the weak coupling limit of a more fundamental,
11-dimensional theory, called M-theory [42, 43].

The low-energy limit of this fundamental theory is believed to be represented by
the 11-dimensional, N = 1 supergravity theory [44], which has the largest space-time
dimensionality allowed in a supersymmetric theory of gravity. Its particle content includes,
in 11 dimensions, the graviton g�� (with �D2 − 3D�/2 = 44 degrees of freedom), an
antisymmetric three-form potential A��� (with �D− 4��D− 3��D− 2�/3! = 84 degrees
of freedom) and a gravitino #� (a Majorana spinor with 128 degrees of freedom). The
number 128 is obtained by multiplying the vector degrees of freedom, D− 2 = 9, by
the number of components of a Dirac–Majorana spinor, which in an odd number D of
dimensions is given by 2�D−1�/2/2 = 16 (the overall 1/2 factor is given to the Majorana
condition). From the product 9×16 = 144 we must subtract, however, the 16 conditions
��#

� = 0 (following from the local gauge invariance of the gravitino action), and we
are left with 144−16 = 128 independent degrees of freedom. The bosonic sector of this
supergravity theory is described by the action

S11 = 1
16�G11

[∫
d11x

√�g�
(
R− 1

48
F 2

4

)
+ 1

6

∫
A3 ∧F4 ∧F4

]
� (3B.113)

where F4 = dA3, and where, as in the previous models, the Chern–Simons term arises as
a direct consequence of the space-time supersymmetry.

One can show, in particular, that the compactification of this theory on a circle exactly
leads to the type IIA superstring action, and that the 10-dimensional dilaton field arises
as the dynamical scale factor of the eleventh dimension, � ∝ lna11. It is thus clear
that, in such a context, the weak coupling limit � → −� corresponds to a11 shrinking
to zero, and is thus associated with the dynamical dimensional reduction from 11 to
10 dimensions, and to the appearance of the 10-dimensional superstring models playing
the role of perturbative approximations of a more fundamental theory. We refer the reader
to the existing literature for a detailed discussion of the interesting relations connecting
the five 10-dimensional superstring models and the 11-dimensional supergravity theory.
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4

Duality symmetries and cosmological solutions

The lowest-order string-gravity equations introduced in the previous chapters will
be applied in this chapter to the case of homogeneous cosmological backgrounds,
and will be shown to be invariant under an important class of transformations
associated with the so-called “duality” symmetries of the string effective action.
These symmetries cannot be implemented in the context of the standard general-
relativity equations, as they require the presence of the full massless multiplet
of states of the closed bosonic string spectrum (the metric, the dilaton and the
antisymmetric tensor field), coupled exactly as predicted by the string effective
action (see Chapter 3). It will be shown that, by exploiting these symmetries, it
is possible to obtain new cosmological solutions starting from known configura-
tions, typical of the standard scenario. These new solutions may suggest possible
scenarios for the primordial evolution of our Universe.

It should be recalled that the above-mentioned cosmological symmetries rep-
resent the extension to time-dependent backgrounds of the so-called “target space
duality” (or T-duality) symmetry, present in the spectrum of a closed bosonic
string propagating in a manifold in which some spatial dimensions are compact
[1, 2]. It is well known, in fact, that the spatial periodicity along such directions
(topologically equivalent to a circle or, more generally, to a higher-dimensional
torus), implies the quantization of the conjugate momenta, p→ pn = n/R, where
n is an integer and R is the (constant) radius of the compact dimensions. A closed
string, however, can also “wrap” an arbitrary number m of times around the
compact dimensions (in that case, the integer m is called the “winding number”).
Taking into account both momentum quantization and winding, the solution of
the equations of motion for a closed string along a compact direction Y can then
be written as

Y = y0 +2�′ n
R
�+2mR�+ i

√
�′

2

∑

n�=0

1
n

(
��n e2in� + �̃�n e−2in�

)
e−2in�� (4.1)
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This is still a solution of the flat-space wave equation (3A.14), but dif-
fers from the solution (3A.19), valid in Minkowski space, because of the
term with linear dependence on sigma, describing the wrapping of the string
around Y . Separating left- and right-moving modes, and defining two new
variables,

pL = 1
2

(
n

R
+mR

�′

)
�

pR = 1
2

(
n

R
−mR

�′

)
�

(4.2)

the above solution can also be rewritten as

Y = y0 +2�′pL ��+�	+2�′pR ��−�	+oscillations� (4.3)

If we interpret the momenta pL, pR as “internal” degrees of freedom, and refer
the mass-shell condition M2 = p�p� to the translational motion of the center of
mass of the string along the “external” non-compact directions (see Appendix 3A),
we can then rewrite the regularized Virasoro constraints (in D = 26 dimensions)
by separating pL, pR from the external momenta p�. It follows that Eq. (3A.65)
is generalized as

L0 = �′

4
M2 −�′p2

R −N +1 = 0�

L̃0 = �′

4
M2 −�′p2

L − Ñ +1 = 0�

(4.4)

From the sum and the difference of these conditions we are led, respectively, to
a generalized form of mass-shell condition,

�′

2
M2 = �′

2

(
n2

R2
+m2 R

2

�′2

)
+N + Ñ −2� (4.5)

and level-matching condition,

N − Ñ +nm= 0� (4.6)

These new energy levels differ from the Minkowski spectrum of Eq. (3A.66)
as they depend on the “internal” quantum numbers n, m, and are clearly invariant
with respect to the so-called T-duality transformation

R↔ �′

R
� n↔m (4.7)

(according to the definitions (4.2), such a transformation can also be represented
as a reflection of the right-moving momenta, pR ↔ −pR, pL ↔ pL). Interestingly
enough, the invariance under the transformation (4.7) suggests the existence of an
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intrinsic “indistinguishability” (for the string) between geometric configurations
of “small radius” and “large radius”, in units �′: in other words, it suggests the
actual existence of a “minimal” length scale R = √

�′, below which the same
physics as that of scales above

√
�′ is reproduced.

In a cosmological context, where the target space geometry becomes time
dependent, the above invariance property of the closed string spectrum is reflected
by the invariance property of the background field equations, which in the simplest
case corresponds to the so-called “scale-factor duality” symmetry [3, 4] that will
be discussed in Section 4.1. The possible extension of such a symmetry to include
the presence of hydrodynamical matter, antisymmetric tensor backgrounds and
an appropriate (non-local) dilaton potential will be illustrated in Sections 4.2,
4.3 and Appendix 4A, respectively. We will also present and discuss various
examples of regular and non-regular cosmological solutions, together with their
duality properties, in Appendix 4B.

Throughout this chapter we will work in the context of the low curvature,
weak coupling regime described by the lowest order, S-frame effective action
(2.21), possibly supplemented by the contribution of fluid-matter sources. The
corresponding equations for the metric, the dilaton and the antisymmetric field
are given by Eqs. (2.24), (2.25) and (2.28), respectively.

4.1 Scale-factor duality and the pre-big bang scenario

Let us consider a �d+ 1	-dimensional space-time manifold, homogeneous but
anisotropic, spatially flat, described by a diagonal metric of the Bianchi-I type.
We start with the study of the gravi-dilaton system, setting B�
 = 0, but including
the possible contribution of (anisotropic) perfect fluid sources: they have no
viscosity and friction terms in their stress tensor, but may have different pressure
components pi along the different spatial directions. In the synchronous gauge of
the comoving system of coordinates (see Section 1.1) we can set, therefore,

g�
 = diag�1�−a2
i �ij	� ai = ai�t	� �= ��t	�

T�

 = diag��−pi�ji 	� = �t	� pi = pi�t	� � = ��t	�

(4.8)

An explicit computation then gives the following non-zero components of the
connection:

�0i
j =Hi�

j
i � �ij

0 = aiȧi �ij (4.9)
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(Hi = ȧi/ai, no sum over i), and of the Ricci tensor:

R0
0 = −∑

i

(
Ḣi+H2

i

)
�

Ri
j = −�ji

(

Ḣi+Hi
∑

k

Hk

)

�

(4.10)

The associated scalar curvature is

R= −∑
i

(
2Ḣi+H2

i

)−
(
∑

i

Hi

)2

� (4.11)

For the dilaton field we have:

���	2 = �̇2� �2�= �̈+ �̇∑
i

Hi�

�0�
0�= �̈� �i�

j�= �̇Hi �
j
i �

(4.12)

We are now in the position of writing the anisotropic version of the string
cosmology equations presented in Section 2.1. We work for simplicity in string
units, setting everywhere 2�d−1

s = 1. The dilaton equation (2.25) then gives

2�̈− �̇2 +2�̇
∑

i

Hi−
∑

i

(
2Ḣi+H2

i

)−
(
∑

i

Hi

)2

+V −V ′ = 1
2

e��� (4.13)

the �00	 component of Eq. (2.24) gives

�̇2 −2�̇
∑

i

Hi+
(
∑

i

Hi

)2

−∑
i

H2
i −V = e�� (4.14)

while the diagonal part �ii	 of the space components, after some simplifications
performed using Eq. (4.13), finally gives

Ḣi−Hi
(

�̇−∑
k

Hk

)

+ 1
2
V ′ = 1

2
e�
(
pi−

�

2

)
� (4.15)

where V ′ = �V/��.
The above set of d+ 2 equations contains 2d+ 3 variables, �ai� pi� �����.

Their solution obviously requires additional information concerning the sources,
in the form of d+1 “equations of state”, pi = pi�	, � = ��	, able to eliminate
the pressure and the dilaton charge density from the set of unknown variables.
However, before studying the solutions, and independently of the particular types
of sources, we are first interested here in the invariance properties of the given
equations.
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The first property, which also characterizes the Einstein equations, is the
classical invariance under the “time-reversal” transformation t→ −t, for which

�̇→ −�̇� H → −H� �̈→ �̈� Ḣ → Ḣ� (4.16)

According to this invariance property, given any set of variables � =
�ai�t	���t	��t	� representing an exact solution of the above equations, it follows
that the time-reversed set �̃ = �ai�−t	���−t	� �−t	� is also another acceptable
solution of the same cosmological equations. In addition, the string cosmology
equations are invariant under other transformations which have no analogue in
the corresponding Einstein equations.

For a simple illustration of the new invariance properties let us first consider
the equations in vacuum, T�
 = 0 = � , and in the absence of the dilaton potential,
V = 0. It is convenient to introduce the so-called “shifted dilaton” variable �,
defined by

�= �− ln ��iai	= �−∑
i

lnai�

�̇= �̇−∑
i

Hi� �̈= �̈−∑
i

Ḣi�
(4.17)

Equations (4.14), (4.15) and the dilaton equation (4.13) can then be rewritten,
respectively, as follows:

�̇
2 −∑

i

H2
i = 0�

Ḣi−Hi�̇= 0�

2�̈− �̇2 −∑
i

H2
i = 0�

(4.18)

Consider then the transformation ai → ãi = a−1
i (at fixed t), for which

H → H̃ =
˙̃a
ã

= a

(
da−1

dt

)
= −H� (4.19)

It can be immediately checked that all the equations (4.18) are invariant under
the transformations

ai → a−1
i � �→ �� (4.20)

called “scale-factor duality” transformations [3, 4].
The above transformations extend the T-duality transformations (4.7) to the

case of a time-dependent gravi-dilaton background, and are only a particular case
of a more general class of transformations that will be discussed in Section 4.3.
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Unlike in the case of the T-duality transformations (4.7) there is no need for
the inverted scale factor to be associated with compact dimensions, in this case.
Furthermore, the invariance property does not concern the energy levels of the
quantum string spectrum, being a property of the “classical” fields present in
the background in which the string is moving. Finally, the invariance under the
duality transformations (4.20) cannot be implemented for the scale factor alone
without an associated transformation of the dilaton field [5, 6], which is required
to guarantee the invariance of the shifted variable � of Eq. (4.17). Because of
this last point, there is no analogue of this symmetry in the gravitational Einstein
equations.

Thanks to the invariance property (4.20), given a set of variables representing
an exact solution of Eqs. (4.18),

� = �a1� a2� � � � � ad���� (4.21)

we can then automatically generate another set of variables �̃ representing a new
(and physically different) solution of the same equations simply by inverting k
scale factors (1 ≤ k≤ d),

�̃ = �a−1
1 � a−1

2 � � � � � a−1
k � ak+1� � � � � ad� �̃�� (4.22)

The new dilaton �̃ is determined by the condition �= �̃, namely,

�≡ �−
d∑

i=1

lnai = �̃≡ �̃−
k∑

i=1

lna−1
i −

d∑

i=k+1

lnai� (4.23)

which implies

�̃= �−2
k∑

i=1

lnai� (4.24)

In particular, by inverting all scale factors, we obtain the full duality transformation

�ai� ��→ �a−1
i � �−2

d∑

i=1

lnai�� (4.25)

At this point, an important remark is in order. The combination of time-reversal
and duality transformations leads to defining, for any given solution associated
with a scale factor ai�t	, four different (and, in principle, physically distinct)
branches:

ai�t	� ai�−t	� a−1
i �t	� a−1

i �−t	� (4.26)

Consider, for instance, an isotropic d-dimensional background, in which the
vacuum equations (4.18) are reduced to

�̇
2 = dH2� Ḣ =H�̇� 2�̈− �̇2 = dH2 (4.27)
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Table 4.1 Kinematic classification of the four branches (4.29)

1 ȧ > 0, expansion ä < 0, decelerated Ḣ < 0, decreasing curvature

2 ȧ < 0, contraction ä < 0, accelerated Ḣ < 0, increasing curvature

3 ȧ < 0, contraction ä > 0, decelerated Ḣ > 0, decreasing curvature

4 ȧ > 0, expansion ä > 0, accelerated Ḣ > 0, increasing curvature

(in this case, for �̇ �= 0, only two equations are independent). Such equations are
satisfied by the particular exact solution

a�t	=
(
t

t0

)1/
√
d

� �= − ln
(
t

t0

)
� (4.28)

for any value of t0 = const. Using duality and time-reversal transformations we
can associate with this solution four different cosmological configurations:

1 time reversal 2

�a= t1/
√
d� �= − ln t� ⇐⇒ �a= �−t	1/

√
d� �= − ln�−t	�

� duality duality � (4.29)

�a= t−1/
√
d� �= − ln t� ⇐⇒ �a= �−t	−1/

√
d� �= − ln�−t	��

3 time reversal 4

The solutions 1 and 3 are defined for t > 0, the solutions 2 and 4 for
t < 0. In fact, all four solutions are affected by a curvature singularity at �t� → 0,
and are thus classically defined only on the real (positive or negative) half-line.
They have different (and complementary) kinematic properties, as summarized in
Table 4.1. Two branches describe expansion (H > 0), two branches contraction.
Two branches (those defined for t < 0) are characterized by growing curvature
(H2, or �H�, is growing in time), the other two branches (t > 0) by decreasing
curvature, as clearly illustrated in Fig. 4.1. Finally, two branches (t < 0) are
accelerated (i.e. sign ȧ= sign ä), two branches (t > 0) are decelerated (sign ȧ= −
sign ä).

It is worth noticing, in particular, that any given solution H�t	 of type 1 ,
with the typical properties of the standard cosmological evolution, is always
associated – through duality and time-reversal transformations – with a “dual
partner” H̃�−t	, namely with a solution of type 4 , describing accelerated (i.e.



4.1 Scale-factor duality and the pre-big bang scenario 139

H(t)

H(–t) H(t)
~

H(–t)
~

T

DD

T 1

2 3

4

H

t

Figure 4.1 Time evolution of the Hubble parameter in the four branches of the
isotropic vacuum solution (4.29). The vertical arrows, labeled by “D”, represent
duality transformations. The diagonal arrows, labeled by “T”, represent time
reflections.

inflationary, see Chapter 5) expansion and growing curvature. This possibility of
symmetry-correlated solutions, which are absent in the context of the standard
equations of general relativity, suggests a model of “self-dual” cosmological evol-
ution characterized by a solution satisfying a�t	= a−1�−t	, and associated with
a “bell-like” shape of the curvature scale, as illustrated in Fig. 4.2 (see Appendix
4B for explicit examples). The curvature, in such a context, would avoid the
standard cosmological singularity: moving back in time from the present epoch,
it would reach a maximum – possibly controlled by the fundamental string scale
�2

s – after which it would become decreasing again, asymptotically approaching
the flat space configuration. The phase of high (but finite) string-scale curvature
would replace the big bang singularity of the standard cosmological scenario, so
that it becomes natural in this context to call “pre-big bang” [7, 8] the initial
phase (t < 0), accelerated and at growing curvature, in contrast to the subsequent,
“post-big bang” phase (t > 0) of standard evolution at decreasing curvature.

The vacuum solutions that we are considering, on the other hand, must satisfy

Eqs. (4.27): the first of these equations implies �̇ = ±√
dH , which means that

the solutions (4.29) actually represent the bisecting lines of the plane ��̇�
√
dH�.

Looking at the signs of H and �̇, the four branches can then be plotted as in
Fig. 4.3, where each branch ranges from the origin to infinity (or vice versa). The
origin corresponds to the trivial solution H = 0, �= const, and the singularity is at
infinity. The flow of the various branches, following the increasing-time direction,
is illustrated by the big (black and white) arrows. The growing-curvature solutions

2 and 4 (of pre-big bang type) are characterized by �̇ > 0, while the decreasing-

curvature solutions 1 and 3 (of post-big bang type) are characterized by �̇ < 0.
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curvature scale

time
pre-big bang post-big bang

H(t)

BIG    BANG !

t = 0
t = – ∞

H(–t)
~

Figure 4.2 Qualitative example of self-dual solution which smoothly interpol-
ates between an initial (pre-big bang) phase with growing curvature and acceler-
ated expansion, and a final (post-big bang) phase with decreasing curvature and
decelerated expansion.

A transition from the pre- to the post-big bang regime must thus correspond to a

transition from �̇ > 0 to �̇ < 0.
It is also appropriate, in this context, to consider the sign of �̇, in order to have

information on the behavior of the dilaton (and thus on the tree-level coupling
exp�) in the various branches. Rewritten in terms of the � variable, the four
branches (4.29) are given by

a±�±t	= �±t	±1/
√
d�

�±�±t	= ��±t	+d lna±�±t	= �±√
d−1	 ln�±t	�

(4.30)

It can be easily checked that among the branches �a±�−t	��±�−t	� at growing
curvature, the solution a−�−t	 – corresponding to the curve 4 and describ-
ing an expanding pre-big bang configuration – is associated with a growing
dilaton, while the solution a+�−t	 – corresponding to the curve 2 and describ-
ing a contracting pre-big bang configuration – is associated with a decreasing
dilaton.

On the other hand, as we will see in the next section, a genuinely self-dual
cosmological scenario seems to require a growth of the coupling constant (and
thus of the dilaton) during the initial pre-big bang phase: this requirement thus
selects an expanding metric, according to the above solutions. In such a case, we
should expect that the transition from the pre- to the post-big bang phase (the
dashed curve of Fig. 4.3) may possibly occur in the strong coupling regime, as
we will discuss in Chapter 6. However, one could also construct a scenario which
is not self-dual, in which the pre-big bang phase corresponds to a contraction of
the (S-frame) metric, and is associated with a decreasing dilaton coupling [9] (see
Chapter 10). In that case the transition to the expanding, post-big bang phase (the
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expanding
pre-big bang41

3

expanding
post-big bang

contracting
pre-big bang

contracting
post-big bang

2

φ
.

d H

Figure 4.3 The four branches of Fig. 4.1 in the “phase space” plane spanned

by �̇ and
√
dH . Growing curvature (pre-big bang) phases correspond to �̇ > 0,

decreasing curvature (post-big bang) phases to �̇ < 0.

dotted curve of Fig. 4.3) is represented by a “bounce” of the scale factor, and is
expected to occur in the weak coupling regime.

It should be stressed, finally, that the close relation that we have considered
between the time behavior of a and � (sign ȧ = sign �̇) is referred to a simple
isotropic solution of the string cosmology equations. In more general cases of an-
isotropic, higher-dimensional solutions it is possible to find that both the curvature
and the dilaton are growing even in the presence of contracting dimensions,
provided there is a sufficient number of expanding dimensions.

To elucidate this point we may consider the generalization of the solution (4.28)
to the case of an anisotropic D-dimensional metric, by setting

ai =
(±t
t0

)�i
� �= − ln

(±t
t0

)
� (4.31)

We obtain

Hi =
�i
t
� Ḣi = −�i

t2
� �̇= −1

t
� �̈= 1

t2
� (4.32)

and all the vacuum equations (4.18) are satisfied provided
∑

i

�2
i = 1� (4.33)

The corresponding solution for the dilaton is

�= �+∑
i

lnai =
(
∑

i

�i−1

)

ln
(±t
t0

)
+ const (4.34)
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(the well-known Kasner solution, valid for the standard Einstein equations and
characterized by the additional condition

∑
i �i = 1, thus corresponds to a constant

dilaton). The negative-time branches of the above solution describe a growing-
curvature regime, which can be associated with both expanding and contracting
dimensions. Let us take here the particular, anisotropic case in which there are
d expanding spatial dimensions, with scale factor a�t	, and n contracting spatial
dimensions, with scale factor b�t	:

a�t	= �−t	−1/
√
d+n� b�t	= �−t	1/

√
d+n� t < 0� t→ 0−� (4.35)

The solution (4.34) becomes, for this background,

��t	= n−d−√
d+n√

d+n ln�−t	+ const� (4.36)

so that the dilaton (together with the coupling parameter g2
s = exp�) is growing

for t→ 0−, provided

d+√
d+n > n� (4.37)

i.e. provided the number of expanding dimensions is sufficiently large with respect
to the number of contracting ones.

It may be noted that a frozen dilaton (�̇= 0) with d= 3 expanding dimensions
is only allowed, in such a context, for n = 6 contracting dimensions, i.e. for a
total number of dimensions (D = d+n+ 1 = 10) which exactly corresponds to
the critical number Dc = 10 required by superstring theory (see Chapter 3). It
should be mentioned, however, that the above solution is not expected to provide
a realistic description of the final cosmological configuration with stabilized
dilaton, as it describes a vacuum scenario which does not include the contribution
of other fields and, in particular, of the ordinary matter sources. The presence of
matter, as we shall see in the following section, modifies the conditions required
for obtaining solutions at constant dilaton.

4.2 Duality with matter sources

In the previous section we have illustrated the simplest example of duality sym-
metry for the free gravi-dilaton system in vacuum. The invariance under the trans-
formations (4.20) also applies in the presence of a dilaton potential V , provided
V depends on the dilaton only through the shifted variable � (see Appendix 4A).
Such an invariance is preserved in the presence of matter sources, provided they
satisfy appropriate transformation laws.
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To discuss this second possibility let us start with sources which can be
approximated as perfect fluids, and consider the full set of equations (4.13)–(4.15),
with V = 0. Introducing for the fluid the “shifted” variables,

= �iai� p= p�iai� � = � �iai� (4.38)

we can complete the vacuum equations (4.18) as follows:

�̇
2 −∑

i

H2
i =  e�� (4.39)

Ḣi−Hi�̇= 1
2

e�
(
pi−

�

2

)
� (4.40)

2�̈− �̇2 −∑
i

H2
i = 1

2
�e�� (4.41)

These d+ 2 equations are all independent, and their combination leads to the

covariant conservation equation. Differentiating Eq. (4.39), eliminating �̈ with

Eq. (4.41), Ḣi with Eq. (4.40), and �̇ with Eq. (4.39), we obtain,

̇+∑
i

Hipi =
1
2
�

(

�̇+∑
i

Hi

)

� (4.42)

which can be rewritten in terms of the non-shifted variables as

̇+∑
i

Hi�+pi	= 1
2
��̇� (4.43)

in agreement with the general equation (2.19). When � = 0 one recovers the usual
covariant conservation of the matter stress tensor.

It is evident, from the explicit form of the above equations, that they are
invariant under the time-reversal transformation (4.16). In addition, they are in-
variant under the duality transformation (4.20) if the dilaton charge is vanishing,
� = 0, and if the inversion of the scale factor is accompanied by an appropriate
transformation of  and p which reads, in terms of the shifted variables [4],

ai → a−1
i � �→ �� → � pi → −pi� � = 0� (4.44)

In the perfect fluid approximation, scale-factor duality thus requires a “reflection”
of the equation of state for its implementation. Note that the transformation of 
is trivial, but the transformation of the physical variable  is non-trivial: in fact,
from the definitions (4.38), we obtain

→ ̃= �ia
2
i � (4.45)

if all scale factors are inverted.
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It should be mentioned that the above symmetry can be extended to include a
non-vanishing dilaton charge, provided the sources are coupled to the dilaton only
through the shifted variable �: in that case it can be shown that the contribution
of � disappears from the spatial equation (4.40), and that the duality symmetry of
the dilaton equation requires the invariance of the shifted charge density, � , to be
added to the transformation laws (4.44) (see e.g. [10]). In such a case, however,
the general covariance of the effective action requires a non-local interaction
of the dilaton with the matter sources, as in the case of the dilaton potential
discussed in Appendix 4A. We will not discuss such a possibility here so that, in
our context, the presence of the dilaton charge will always signal a breakdown of
duality invariance.

In the next section we will present an explicit example of physical sources
transforming in agreement with Eq. (4.44). In this section we first discuss some
important aspects of the duality transformations (4.44), in view of possibly realistic
cosmological applications.

Let us first observe that, even in the presence of sources, the string cosmology
solutions are in general characterized by four different branches. A simple example
can be given by considering an isotropic background with d spatial dimensions,
sourced by a barotropic perfect fluid, with equation of state p/= � = const. In
the limit � = 0 we are thus left with a system of three equations for the three
variables a���, and we can conveniently choose Eqs. (4.39), (4.41) and (4.42)
as our independent equations.

Looking for a particular exact solution we set

a=
(
t

t0

)�
� �= −� ln

(
t

t0

)
� p= �� (4.46)

from which

�̇= −�
t
� �̈= �

t2
�

H = �

t
� Ḣ = −�

t2
� e� =

(
t

t0

)−�
�

(4.47)

The integration of the conservation equation (4.42) then gives

= 0a
−d�� (4.48)

where 0 is an integration constant. Equation (4.39) is satisfied provided

d��+�= 2� (4.49)

and, once satisfied, fixes 0 as a function of t0. Equation (4.41) finally provides
the additional constraint

2�−�2 −d�2 = 0� (4.50)
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The elimination of � leads to the equation

�2�1+d�2	−��4+2d�2	+4 = 0� (4.51)

with two possible solutions for our set of parameters:

�1	 �= 2� �= 0� � = 0� (4.52)

�2	 �= 2
1+d�2

� �= 2�
1+d�2

� � �= 0� (4.53)

The first case corresponds to a particular (S-frame) solution describing a glob-
ally flat space-time and a non-trivial evolution of the dilaton, � = � = −2 ln t,
sustained by a perfect fluid with vanishing pressure and constant energy density,
 =  = const. Such a peculiar string cosmology configuration provides a pos-
sible example of initial pre-big bang evolution, in a regime where the space-time
curvature is negligible with respect to the dilaton kinetic energy [11]. In such a
case the two duality-related branches of the solution obviously coincide, while
the branches connected by time-reversal transformations are different.

To obtain four different branches we may consider the second set of parameters
(4.53), associated with � �= 0. The corresponding solution, expressed in terms of
the conventional variables �a����, has the form [12]

a=
(
t

t0

) 2�
1+d�2

�

= a−d = 0a
−d�1+�	� (4.54)

�= �+d lna= 2�d�−1	
1+d�2

ln
(
t

t0

)
+ const�

In this case the general transformation (4.44) (which preserves � and ) simply
corresponds to the reflection

� ↔ −�� (4.55)

and the four different branches of the solution (connected by duality and time-
reversal transformations) can be written as

a±�±t	∼ �±t	±
2���

�1+d�2	 �

±�±t	∼ �±t	∓2 d����1±���	
�1+d�2	 �

p± = ±���±�

�±�±t	∼ −2
1∓d���
1+d�2

ln�±t	+ const�

(4.56)
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The positive-time branches are decelerated, with a+�t	 which describes expansion
and a−�t	 which describes contraction (the curves 1 and 3 of Fig. 4.1). The
negative-time branches are accelerated, of the pre-big bang type, with a+�−t	
which describes contraction and a−�−t	 which describes expansion (the curves
2 and 4 of Fig. 4.1). Again, as in the vacuum case, the solution a+�t	, typical

of the standard cosmological evolution, has a dual partner a−�−t	 describing
inflationary expansion (see Chapter 5 for a kinematic classification of the various
types of inflation). And, again, this dual “complement” is associated with a dilaton
field which (at least in the isotropic case) is always growing as t → 0−, for any
given equation of state:

e�−�−t	 = �−t	−2 1+d���
1+d�2 → +�� t→ 0−� (4.57)

It is instructive to consider the realistic example of a Universe with d = 3
isotropic spatial dimensions, dominated by a radiation fluid with � = 1/3. In this
case, the expanding decelerated branch �a+�t	��+�t	� +�t	� of Eq. (4.56) exactly
reproduces the well-known solution of the standard cosmological scenario,

a= t1/2� �= const� = 0 a
−4� p= /3� (4.58)

describing decelerated expansion, decreasing curvature and frozen dilaton for
0< t <�:

ȧ > 0� ä < 0� Ḣ < 0� �̇= 0� (4.59)

Through a dual inversion and a time reflection we obtain the associated inflation-
ary partner �a−�−t	��−�−t	� −�−t	�, i.e.

a= �−t	−1/2� �= −3 ln�−t	� = 0 a
−2� p= −/3� (4.60)

This solution is defined for −� < t < 0, and describes a phase of accelerated
expansion (driven by the dilaton and by negative-pressure sources), growing
curvature and growing dilaton:

ȧ > 0� ä > 0� Ḣ > 0� �̇ > 0� (4.61)

This simple example may give us interesting suggestions on how to extrapolate
back in time the evolution of the standard cosmological scenario, which we know
to be characterized by a time-decreasing curvature and, at least locally, by a nearly
constant dilaton – it is the dilaton, indeed, which controls the effective gravita-
tional coupling (see Eq. (2.3)), determining a value ofG which is found by present
measurements to be constant (or, at most, very slowly varying, see e.g. [13]). Start-
ing from the present cosmological phase, and looking for a past extension of the
cosmological history on the grounds of a principle of self-duality – i.e. assuming
that the past evolution of our Universe should represent the dual “complement” of
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the present one (assuming also the possible smoothing out of the big bang singu-
larity) – string theory then suggests for the Universe, at very early epochs, a phase
characterized not only by growing curvature, but also by growing dilaton [4, 7, 8].

The dilaton, on the other hand, represents the exponential (tree-level) paramet-
rization of the fundamental string coupling g2

s (as discussed in Chapter 3). As a
consequence, it automatically controls the strength of all (gravitational and gauge)
interactions. The principle of self-duality thus suggests that the Universe reached
its present state after a long evolution starting from an extremely simple – almost
trivial – initial configuration, characterized by a nearly flat geometry and a very
small coupling parameter,

H2 → 0� e� → 0� (4.62)

the so-called “string perturbative vacuum”. With this assumption, which is the
basis of all models of pre-big bang inflation [7, 8], the initial Universe evolves
in a low-energy, extremely perturbative regime, in which the curvatures (i.e. the
field gradients) are small, and the couplings are weak (in string units),

H2

M2
s

� 1�
�̇2

M2
s

� 1� � � � � g2
s � 1� (4.63)

so that the dynamics may be appropriately described by the lowest-order string
effective action, at tree-level in the �′ and quantum-loop expansion (see Fig. 4.4).

This picture is in remarkable contrast with the conventional cosmological scen-
ario in which the Universe evolves starting from a very hot, curved and dense
initial configuration: in that context, the more we go back in time, the more
we enter a Planckian and (possibly) trans-Planckian non-perturbative regime of
ultra-high energies (see [14] for a recent discussion), requiring, for its correct
description, the full inclusion of all quantum gravity effects, to all orders. The

pre-big bang

H

t t
pre-big bangpost-big bang post-big bang

string 
perturbative

vacuum

string 
perturbative

vacuum

standard
cosmological

scenario

strong coupling

standard-model 
configuration

 – ∞ – ∞
00

2gs  = 
 
eφ

Figure 4.4 Qualitative time evolution of the curvature scale (left panel) and of
the dilaton (right panel) for a typical self-dual solution of the string cosmo-
logy equations: the present standard configuration is the outcome of a smooth
evolution from the string perturbative vacuum.
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self-duality principle, instead, suggests a picture in which the more we go back in
time (after reaching the maximum curvature scale), the more we approach a flat,
cold and vacuum configuration, which can be perfectly described by the classical
background equations. Quantum effects, in the form of both higher-derivative
corrections, ��Hn/Mn

s 	, and higher-loop contributions, ��gns 	, are expected even-
tually to become important only towards the end of the phase of pre-big bang
inflation, when the background approaches the string scale. In that limit the
higher-order string theory effects should come into play, and possibly trigger the
transition from the pre- to the post-big bang regime, as discussed in Chapter 6.

4.2.1 General integration of the lowest-order equations

The last part of this section is devoted to the exact integration of the string
cosmology equations (4.39)–(4.41) in the fully anisotropic case, under the as-
sumption that the sources are represented by a barotropic fluid (p/ = const),
with a uniformly distributed dilaton charge proportional to the energy density
(�/= const). In this case we can set

pi = �i� � = �0� (4.64)

where �i��0 are d+ 1 constant parameters specifying the equation of state of
a given model of source. This parametrization includes, in particular, the case
of a homogeneous scalar field � = ��t	, exponentially coupled to the dilaton
according to the matter action

Sm ∼
∫

dd+1x
√�g� (������

)
ek�� (4.65)

which is typical of a massless axion or of a higher-dimensional modulus field, as
we shall see in the following chapters.

Using the assumption (4.64) we can rewrite the spatial equation (4.40) as

d
dt

(
e−�Hi

)
= 1

2

(
�i−

�0

2

)
� (4.66)

and Eqs. (4.41), (4.39) can be combined to give

d2

dt2

(
e−�
)

= 1
2

(
1− �0

2

)
� (4.67)

Defining a convenient (dimensionless) time parameter x, such that

dx
dt

= L

2
 (4.68)
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(L is a constant length parameter), we can then integrate a first time the previous
two equations, obtaining

1
2

(

e−�
)′ = −1

2
 e−��′ =

(
1− �0

2

) x+x0

L2
� (4.69)

1
2
 e−�

(
a′
i

ai

)
=
(
�i−

�0

2

) x+xi
L2

� (4.70)

where x0 and xi are integration constants (the derivative with respect to x has
been denoted by a prime).

We now need the conservation equation (4.42), which can be rewritten in terms
of the new variable x as follows:

′ +∑
i

(
a′
i

ai

)(
�i−

�0

2

)
= 1

2
�0 �

′
� (4.71)

Multiplying by e−�, eliminating a′
i through Eq. (4.70) and �

′
through Eq. (4.69),

we obtain

1
2

e−� ′ = −∑
i

(
�i−

�0

2

)2 x+xi
L2

− 1
2
�0

(
1− �0

2

) x+x0

L2
� (4.72)

The sum of this last equation and of Eq. (4.69) gives

(
1
2

e−� 
)′

=
(

1− �0

2

)2 x+x0

L2
−∑

i

(
�i−

�0

2

)2 x+xi
L2

� (4.73)

and its integration leads to

L2e−� =D�x	�

D�x	=
(

1− �0

2

)2
�x+x0	

2 −∑
i

(
�i−

�0

2

)2
�x+xi	2 +�� (4.74)

where � is a (dimensionless) integration constant, still to be fixed. Inserting this
result into Eqs. (4.69) and (4.70) we can then obtain two independent equations
for � and ai:

�
′ = −2

(
1− �0

2

) x+x0

D�x	
� �0 �= 2� (4.75)

a′
i

ai
= 2

(
�i−

�0

2

) x+xi
D�x	

� �0 �= 2�i� (4.76)
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Up to now we have used Eq. (4.40) and a combination of Eqs. (4.39) and (4.41).
Imposing that Eq. (4.39) is also separately satisfied, and using the last three
equations for a′

i, �
′
, D, we finally obtain the condition

4
(

1− �0

2

)2
(
x+x0

D

)2

−4
∑

i

(
�i−

�0

2

)2
(
x+xi
D

)2

= 4
D
� (4.77)

which identically fixes the integration constant �, giving, in this case, �= 0.
We must consider now the values of �i and �0 excluded from the previous

analysis. If �0 = 2 then Eq. (4.75) is to be replaced by

�
′ = − 2x0

D�x	
� �0 = 2� (4.78)

and the quadratic form D�x	 is given by

D�x	= x2
0 −∑

i

(
�i−

�0

2

)2
�x+xi	2 � (4.79)

If, instead, �0 �= 2, but �0 = 2�i for i = 1�2� � � � � k, then the corresponding k

components of Eq. (4.76) are to be replaced by

a′
i

ai
= 2xi
D�x	

� �0 = 2�i� i= 1�2� � � � � k� (4.80)

and the quadratic form D�x	 is given by

D�x	=
(

1− �0

2

)2
�x+x0	

2 −
k∑

i=1

x2
i −

d∑

i=k+1

(
�i−

�0

2

)2
�x+xi	2 � (4.81)

In both cases the relation L2e−� =D�x	 is left unchanged.
It can be easily checked, from the equations for �

′
and a′, that a necessary con-

dition for obtaining regular solutions (without singularities in both the curvature
and the dilaton kinetic energy) is the absence of real zeros of the quadratic form
D�x	, on the whole real line −� ≤ x ≤ +�. Examples with such properties can
be obtained by including in the above equations the contribution of a non-local,
duality-invariant dilaton potential, as will be shown in Appendix 4B. Without
such a contribution D�x	 always has real zeros in the isotropic case, as can be
checked by setting D= �x2 +bx+c, and noting that b2 −4�c≥ 0 when all the xi
and �i parameters are equal. In the anisotropic case, on the contrary, it is possible
to obtain regular solutions [15], provided �0 �= 2 and �0 �= 2�i (see Appendix 4B).
However, for such solutions it turns out thatD�x	 is everywhere negative, and thus
 < 0 according to Eq. (4.74). Sources of this type may possibly be interpreted
as a classical, phenomenological description of the backreaction of the quantum
fluctuations outside the horizon [16, 17, 18].
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Particular examples of regular, self-dual solutions, smoothly interpolating
between the phase of pre-big bang evolution and the standard cosmological
regime, will be presented in Section 4.3 and Appendix 4B. However, we may
expect that the regularization of the big bang singularity in general needs the
effects of the higher-order loop and �′ corrections, possibly introducing violations
of the weak (or strong) energy conditions, as we shall discuss in Chapter 6. The
discussion of this section will be restricted to the pure low-energy string effective
action, without dilaton potential, and with conventional matter sources satisfying
the weak energy condition  > 0. The solutions associated with the pre- and
post-big bang branches will be disconnected by a curvature singularity, and thus
appropriate to describe the scenario of Fig. 4.4 only sufficiently far from the
transition regime �t� → 0.

Let us consider, in particular, the integration of Eqs. (4.75) and (4.76), so
as to include in our discussion the case �0 = 0 (compatible with the duality
transformations (4.44)). Computing the zeros of D�x	 we can set

D�x	= �x2 +bx+ c ≡ ��x−x+	�x−x−	� (4.82)

where

�=
(

1− �0

2

)2 −∑
i

(
�i−

�0

2

)2
�

x± = �−1

(
∑

i

xi�
2
i −x0�

2
0 ±�

)

� (4.83)

2�= �b2 −4�c	1/2 =
⎡

⎣

(

x0�
2
0 −∑

i

xi�
2
i

)2

−�
(

x2
0�

2
0 −∑

i

x2
i �

2
i

)⎤

⎦

1/2

�

and where we have introduced the convenient notation

�0 = 1−�0/2� �i = �i−�0/2� (4.84)

We can now integrate the two equations (4.75) and (4.76), for the case �2 ≥ 0,
to obtain the following general solution (see e.g. [19]):

ai = ai0
∣
∣�x−x+	�x−x−	

∣
∣�i/�

∣
∣
∣
∣
x−x+
x−x−

∣
∣
∣
∣

�i

� (4.85)

e� = e�0
∣
∣�x−x+	�x−x−	

∣
∣−�0/�

∣
∣
∣
∣
x−x+
x−x−

∣
∣
∣
∣

−�0

� (4.86)
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where ai0��0 are integration constants, and where

�i =
�i
��

(

�xi−x0�
2
0 +∑

i

xi�
2
i

)

�

�0 = �0

��

(

�x0 −x0�
2
0 +∑

i

xi�
2
i

)

�

(4.87)

This result generalizes to the case �0 �= 0 the solutions presented in [12, 11]. From
Eq. (4.74) we can then obtain the time evolution of the energy density,

= D�x	

L2
e� = �

L2
e�0�x−x+	�x−x−	

∣
∣�x−x+	�x−x−	

∣
∣−�0/�

∣
∣
∣
∣
x−x+
x−x−

∣
∣
∣
∣

−�0

�

(4.88)
which also fixes the evolution of pi = �i and � = �0.

The above class of solutions is characterized by two (in general different)
singular points x = x±, where both the curvature and the kinetic energy of the
dilaton diverge. In the range x < x− and x > x+ one recovers the two branches
describing, respectively, the pre-big bang and the post-big bang regime. These
two branches are disconnected by the singularity and (if x+ �= x−) also by an
extended intermediate region where  becomes negative (see for instance Fig. 4.5,
where we have plotted a particular isotropic solution with d = 3, �0 = 0 and
�i = 1/3). This confirms, as anticipated, the difficulties one encounters in a naive
extrapolation of the lowest-order solutions outside their validity regime, without
the appropriate corrections in powers of �′ and g2

s .
It should be mentioned, finally, that the integration procedure applied here to

the anisotropic, Bianchi-I-type background (4.8) can be extended and applied to
other classes of homogeneous Bianchi models, characterized by a d-dimensional
group of non-Abelian isometries. In that case the metric can be parametrized (in
the synchronous frame) as

g00 = 1� g0i = 0� gij = emi �x	�mn�t	e
n
j �x	� (4.89)

where all dependence on the spatial coordinates is contained in the “spatial”
vielbein emi , whose Ricci rotation coefficients

Cmn
p = eime

j
n

(
�ie

p
j − �jepi

)
(4.90)

are constant. They are determined by the algebraic structure of the isometry group
as

��m� �n�= Cmn
p�p� �p = �ip�i� (4.91)

where �ip, with p = 1� � � � � d, are the d Killing vectors generating the given
non-Abelian isometries (see for instance [20]). The integration method presented
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Figure 4.5 Plot of the solutions (4.85), (4.86), (4.88), for the isotropic case with
d= 3, �0 = 0, �i = 1/3, x0 = 0, xi = 1, ai0 = 1, �0 = 0 and L2 = 2/3 (a similar
plot can be obtained for the dual case with � = −1/3). There are two singular
points at x± = �1±√

3	/2 where the curvature diverges; the asymptotic behavior
(4.56) is recovered at small enough curvature, in the limit x→ ±�.

here has been applied to the low-energy equations in four dimensions, with
homogeneous (i.e. space-independent) dilaton, without sources (T�
 = 0), torsion
background (B�
 = 0) and dilaton potential (V = 0), to obtain the general exact
solution for homogeneous metrics of Bianchi type I, II, III, V, VI0 and VIh
[21]. In all those cases one finds that the solution exhibits, in general, two
physical branches characterized by an initial or final singularity, except for the
trivial case in which the dilaton is constant and the metric globally flat (up to
reparametrizations). Thus, the singularity cannot be avoided in the context of
homogeneous gravi-dilaton backgrounds, at least if other sources and/or higher-
derivative and quantum loop corrections are not included in the effective action.

4.2.2 Asymptotic limits

The possible regularizing effect of the higher-order corrections will be discussed in
Chapter 6. Here we conclude the discussion by illustrating an important property
of the general low-energy solution (4.85), (4.86): as one approaches the singular
points x → x± the contribution of the matter sources becomes more and more
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negligible, and one recovers the vacuum solutions presented in Section 4.1. In
the opposite, small curvature limit x → ±� one finds instead a configuration
dominated by the matter sources, of the same type as the solution presented in
the example (4.56). In the presence of sources the pre-big bang phase is thus
characterized, in general, by two stages with different kinematic properties (this
may significantly affect the spectrum of the cosmological perturbations [22], as
will be discussed in Chapters 7 and 8).

To illustrate these asymptotic properties we start by considering the solutions
(4.85) and (4.86) in the high-curvature limit x→ x±, where

ai ∼ �x−x±� �i� ±�i � �∼ − ln �x−x±� �0
� ±�0 � (4.92)

The time coordinate x, on the other hand, is related to the cosmic time t by the
definition (4.68), which in this limit reduces to

dx
dt

∼ �x−x±�1− �0
� ∓�0 � (4.93)

from which

�x−x±� ∼ �t− t±��/��0±��0	 � (4.94)

Using this result in Eq. (4.92) we obtain

ai ∼ �t− t±��i � �∼ − ln �t− t±� � (4.95)

where

�±
i = �i±��i

�0 ±��0
�

∑

i

��±
i 	

2 = 1� (4.96)

and we exactly recover the Kasner-like, dilaton-dominated solution for anisotropic
backgrounds, already given in Eqs. (4.31) and (4.33). It is important to stress
that for this gravi-dilaton system there is no occurrence of the so-called BKL
oscillations [23] of the Kasner exponents �i near the singularity [24] (however,
such oscillations generically reappear when all the massless, bosonic p-form fields
present in superstring models are turned on, leading the system to a chaotic
approach to the singularity [25]).

In the opposite, small-curvature limit, where �x� � �x±�, the solutions (4.85)
and (4.86) become

ai ∼ �x�2�i/�� �∼ − ln �x�2�0/�� (4.97)

and the definition (4.68) for x�t	 gives

�x� ∼ �t� �
2�0−� � (4.98)
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Using the cosmic-time coordinate, the asymptotic solution for x→ ±� takes the
form

ai ∼ �t�2�i/�1−�2
0/4+∑i �

2
i 	 �

�∼ �0 −2

1−�2
0/4+∑i �

2
i

ln �t��

�∼ 2
∑
i �i−�0

1−�2
0/4+∑i �

2
i

ln �t��

∼ �t�−��0−�2
0/2+2

∑
i �

2
i 	/�1−�2

0/4+∑i �
2
i 	 �

(4.99)

which generalizes to the case � = �0 �= 0 the results already presented in [12, 11].
For �0 = 0, and in the isotropic limit, one recovers the particular solution of
Eq. (4.54).

Let us conclude the section by reporting, in view of future applications, the
isotropic form of the asymptotic solutions (in the small and large curvature limits)
as a function of the conformal time �, for both the S-frame and the E-frame
representations.

The large-time, matter-dominated solution (4.99), in a �d+ 1	-dimensional,
isotropic background where �i ≡ � has the same value along all directions, takes
the form

a�t	∼ �t��2�−�0	/�1+d�2+�d−1	�2
0/4−d��0��

�∼ 2d�−2+ �1−d	�0

2�−�0
lna� (4.100)

∼ a−�2d��1+�	+�0�1−d−2d�	+�d−1	�2
0/2�/�2�−�0	

(it should be noted that for �0 �= 0 the reflection � → −� is not a symmetry
transformation generating new solutions, since the duality invariace is broken for
matter with dilaton charge). Using the conformal-time coordinate �, defined by
dt = ad�, the above expressions for � and  in terms of a are still valid, while
the scale factor becomes

a��	∼ ����2�−�0	/�1+d�2−2�+�0�1−d�	+�d−1	�2
0/4�� (4.101)

In the opposite, large-curvature limit we have a dilaton-dominated solution which
takes the isotropic form (4.30), and which can also be rewritten as

a±�t	∼ �t�±1/
√
d� �± ∼ √

d�
√
d∓1	 lna±� (4.102)

In conformal time

a±��	∼ ���±1/�
√
d∓1	� (4.103)
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Now we move to the E-frame, parametrized by the “tilded” variables ã� �̃� � � � ,
related to the S-frame variables by the set of transformations (2.64). We absorb,
for simplicity, the powers of �s/�P into the transformed variables, with the
understanding that we are switching from string to Planck units. We also recall
that we are using units in which 2�d−1

s = 1, so that �=√2/�d−1	. The matter-
dominated, isotropic solution (4.100), expressed in terms of the E-frame cosmic
time t̃, then becomes

ã�̃t	 ∼ �̃t��E�

̃ ∼ ã−2/�E� (4.104)

�̃ ∼ �d−1	2�d�−1	−�d−1	�0
2�1−�	 ln ã�

where

�E = 2�1−�	
�d−1	�1+d�2	+2�1−d�	+ �d−1	�0 �1−d�+ �d−1	�0/4�

�

(4.105)

We note that for a radiation fluid (d� = 1) with zero dilaton charge (�0 = 0)
the dilaton is trivially constant, and the solution retains the same form in both
the E-frame and the S-frame (compare Eqs. (4.105) and (4.100)). However, this
triviality is broken by the direct coupling of the dilaton to the matter sources. The
conformal-time version of the above solution can be easily obtained by recalling
that the conformal-time parameter is the same in both frames,

d�= dt
a

= d̃t
ã

= d�̃ (4.106)

(from the transformations (2.64)), and that a and ã are related by

ã= a2�1−�	/�d−1	�2�−�0	 (4.107)

(again, using Eq. (2.64)). We thus obtain, from Eq. (4.101),

ã��	∼ ���2�1−�	/�d−1	�1−2�+d�2+�0�1−d�	+�d−1	�2
0/4�� (4.108)

Let us finally report the E-frame transformed version of the vacuum, dilaton-
dominated solution (4.102). By applying the transformations (2.64) we obtain

ã± = a
�±√

d−1	/�d−1	
± � �t� = �̃t��d−1	/�d∓√

d	� (4.109)

Their combination, and the use of the solution (4.102), leads to

ã±�̃t	∼ �̃t�1/d� �̃± ∼ ±√2d�d−1	 ln ã±� (4.110)

In conformal time �= �̃,

ã±��	∼ ���1/�d−1	� (4.111)
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For this E-frame solution, a duality transformation inverting the S-frame scale
factor, a+ ↔ a−, is associated with a dilaton reflection, i.e. with a transformation
inverting the tree-level string coupling �̃g±

s 	
2 = exp��̃±	:

−�̃− = �̃+ ↔ �̃− = −�̃+� ⇒ g̃+
s ↔ �̃g+

s 	
−1� g̃−

s ↔ �̃g−
s 	

−1� (4.112)

The scale-factor duality typical of the S-frame is thus mapped into a weak coup-
ling – strong coupling transformation, with no effect on the E-frame metric
background, since ã+ = ã−.

4.3 Global O(d, d) symmetry

The generalized properties of target space duality illustrated in the previous sec-
tion are not limited to the case of Bianchi-I-type metric backgrounds, but are
expected to be valid (with the appropriate modifications) for generic string theory
backgrounds, possibly to all orders [26]. Already at the tree-level, for instance, it
turns out that the symmetry associated with scale-factor duality transformations
is only a particular case of a more general invariance under global transforma-
tions of the pseudo-orthogonal group O�d�d	, which induce a non-trivial mixing
of the metric and of the NS–NS two-form B [27, 28], and which is valid in
time-dependent backgrounds with d Abelian isometries (see [29] for a general
discussion). Such an invariance property can also be extended to backgrounds
with non-Abelian isometries [30], as will be briefly discussed at the end of this
section.

In order to illustrate the O�d�d	 covariance of the string cosmology equa-
tions we need the full multiplet of massless states of the closed bosonic string:
���g�
�B�
�. We assume that the �d+ 1	-dimensional background is isometric
with respect to the d spatial translations, so that we can choose a “synchronous”
system of coordinates where

g00 = 1� g0i = 0 = B0�� (4.113)

and where ���gij�Bij� are functions of the cosmic time only. The symmetry
properties of this multiplet can then be studied by rewriting the action (2.21)
directly in the synchronous gauge (to obtain the field equations, however, one
must reintroduce g00 in the action, imposing the gauge only after performing the
variational procedure).

For the purposes of this section it is convenient to adopt a matrix notation,
defining a d×d matrix G representing the spatial part of the covariant metric
tensor gij (obviously, G−1 will represent the contravariant components gij). We
can then write in matrix form the non-vanishing components of the connection,

�ij
0 = −1

2
Ġij� �0i

j = 1
2
gjkġik = 1

2

(
G−1Ġ

)
i
j� (4.114)
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and of the Ricci tensor,

R0
0 = −1

4
Tr
(
G−1Ġ

)2 − 1
2

Tr
(
G−1G̈

)− 1
2

Tr
(
Ġ−1Ġ

)
�

Ri
j = −1

2

(
G−1G̈

)
i
j − 1

4

(
G−1Ġ

)
i
jTr
(
G−1Ġ

)+ 1
2

(
G−1ĠG−1Ġ

)
i
j�

(4.115)

where

Tr
(
G−1Ġ

)= (G−1)ij Ġji = gijġji� (4.116)

and so on, and where we have used the notation Ġ−1 ≡ d
(
G−1

)
/dt. In the same

way, by introducing the matrix B representing the spatial components Bij of the
antisymmetric field, we obtain

H0ij = Ḃij�

H0ij = gikgjlḂkl =
(
G−1ḂG−1)ij �

H�
�H
�
� = 3H0ijH

0ij = 3Ḃij�G
−1ḂG−1	ij = −3Tr

(
G−1Ḃ

)2
�

(4.117)

Finally, we introduce the rescaled variable �, defined by

e−� = �−d
s

∫
ddx
√

�det gij� e−�� (4.118)

which can also be interpreted as the homogeneous limit of the non-local (but
general-covariant) scalar variable defined in Appendix 4A, as we will see
later. Assuming that our background has spatial sections of finite volume,
�
∫

ddx
√�g�	t=const = �

√�g�Vd	t=const < �, and absorbing into � the constant
ln�Vd/�

d
s 	, we obtain

�= �− 1
2

ln �detG�� �̇= �̇− 1
2

Tr�G−1Ġ	 (4.119)

(we have used the identity �detG� = exp�Tr lnG�).
Summing up all contributions arising from �, R and H�
�, the effective action

(2.21) can then be written, in the synchronous gauge, as follows:

S = −�s

2

∫
dt e−�

[

�̇
2 +V + 1

4
Tr
(
G−1Ġ

)2 − 1
2

Tr
(
Ġ−1Ġ

)+ 1
4

Tr
(
G−1Ḃ

)2

−Tr
(
G−1G̈

)+ �̇Tr
(
G−1Ġ

)
]

� (4.120)
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The last two terms of this equation can be eliminated (modulo a total derivative)
by noting that

d
dt

[
e−� Tr

(
G−1Ġ

)]= e−�
[
Tr
(
G−1G̈

)+Tr
(
Ġ−1Ġ

)− �̇Tr
(
G−1Ġ

)]
�

(4.121)
Using the identity G−1G= I , from which Ġ−1G= −G−1Ġ, and

Ġ−1Ġ= −G−1ĠG−1Ġ� (4.122)

we can finally obtain for the action a quadratic expression in the first derivatives
of the fields,

S = −�s

2

∫
dt e−�

[
�̇

2 − 1
4

Tr
(
G−1Ġ

)2 + 1
4

Tr
(
G−1Ḃ

)2 +V
]
� (4.123)

We are now in the position of discussing the properties of O�d�d	 invariance,
introducing a 2d× 2d matrix M constructed from the spatial components of the
metric and of the antisymmetric field as follows:

M =
(

G−1 −G−1B

BG−1 G−BG−1B

)
� (4.124)

Using the invariant metric � of the O�d�d	 group in the off-diagonal representa-
tion,

�=
(

0 I

I 0

)
(4.125)

(I is the unit d-dimensional matrix), we have

M�=
( −G−1B G−1

G−BG−1B BG−1

)
� (4.126)

and

Tr
(
Ṁ�
)2 = 2Tr

[
Ġ−1Ġ+ (G−1Ḃ

)2]= −2Tr
(
G−1Ġ

)2 +2Tr
(
G−1Ḃ

)2
� (4.127)

so that the action (4.123) can be rewritten as

S = −�s

2

∫
dt e−�

[
�̇

2 + 1
8

Tr
(
Ṁ�
)2 +V

]
� (4.128)

The matrix M , on the other hand, is symmetric, and belongs itself to the O�d�d	
group, since

MT�M =M�M = �� (4.129)

as can be checked from the definition (4.124). Thus M�= �M−1 and

Ṁ�= �Ṁ−1�
(
Ṁ�
)2 = �Ṁ−1Ṁ�� (4.130)
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whose trace gives

Tr
(
Ṁ�
)2 = Tr

(
ṀṀ−1) (4.131)

(we have used the cyclic property of the trace). The action (4.128) can thus be
recast in the form

S = −�s

2

∫
dt e−�

[
�̇

2 + 1
8

Tr
(
ṀṀ−1)+V

]
� (4.132)

The kinetic part of this action is explicitly invariant under global transformations
of theO�d�d	 group preserving the shifted dilaton�, i.e. under the transformations

�→ �� M → M̃ =�TM�� (4.133)

where � is a constant matrix satisfying

�T��= �� (4.134)

Indeed,

M−1 →�−1M−1��T	−1� (4.135)

so that

Tr
(
ṀṀ−1)→ Tr

[
�TṀ��−1Ṁ−1��T	−1]= Tr

[
ṀṀ−1��T	−1�T

]

= Tr
(
ṀṀ−1) � (4.136)

Such an invariance is still valid in the presence of a dilaton potential only if V
is a constant, or is a function of the variable � (see Appendix 4A), or, more
generally, is a function of some O�d�d	 scalar formed with M and �.

In this general context, the scale-factor duality transformations (4.20) can be
retrieved as a particular O�d�d	 transformation. Let us consider a pure gravi-
dilaton background with B = 0, and a global transformation generated by the
particular matrix � ∈ O�d�d	. We have

M =
(
G−1 0

0 G

)
� M̃ =�TM�= �M�=

(
G 0
0 G−1

)
� (4.137)

so that G→ G̃ = G−1, i.e. the considered transformation produces an effective
inversion of the spatial part of the metric. For a diagonal isotropic metric, in
particular, G= −a2I , and we obtain the scale-factor inversion a→ ã= a1.

4.3.1 O�d�d	 symmetry and matter sources

As in the case of scale-factor duality, the invariance under global O�d�d	 trans-
formations can be extended to the case in which there are sources (other than
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the � and B fields) in the cosmological equations, provided the sources satisfy
appropriate transformation rules [31]. To illustrate this possibility it is convenient
to introduce “shifted” variables associated with the various source terms, namely

=√�g�T 0
0 � � =√�g�T ij� � =√�g��� J =√�g� J ij� (4.138)

where � and J are d×d matrices representing, respectively, the spatial parts of
the symmetric stress tensor and of the antisymmetric current density (2.27). In
terms of these variables we can rewrite in compact matrix form the full set of
equations (2.24), (2.25) and (2.28).

Let us consider, in particular, the case of an O�d�d	 covariant background with
V = V��	 and � = 0. The variation of the action (4.132) with respect to � gives

�̇
2 −2�̈− 1

8
Tr�Ṁ�	2 + �V

��
−V = 0� (4.139)

which represents the matrix version of the dilaton equation (2.25). Re-inserting the
variable g00 in the action, and performing the variation, we obtain the constraint

�̇
2 + 1

8
Tr�Ṁ�	2 −V = e�� (4.140)

which exactly corresponds to the �00	 component of Eq. (2.24) (in units
2 �d−1

s = 1). Finally, the variation with respect to M gives [27, 28, 31]

d
dt
�M�Ṁ	− �̇�M�Ṁ	= e�T� (4.141)

where

T =
( −J� −�G+ JB
G�−BJ� GJG+BJB−G�B−B�G

)
(4.142)

is a 2d×2d matrix representing the variational contribution of the matter action.
This last equation contains the combination of the spatial part of the gravita-
tional equations (2.26), and of Eq. (2.28) for the antisymmetric tensor field. Note
however that there is an important difference from the spatial components of
Eq. (2.26) (which is written for V = V��	): the difference concerns the complete
absence of the dilaton potential, and is due to the intrinsic “non-locality” of the
variable � (see Appendix 4A for a detailed computation).

The matrix equations given above are all independent, and their combina-
tion leads to a generalized energy-conservation equation. The differentiation of

Eq. (4.140), and the elimination of �̈ and �̇
2 − V , through Eqs. (4.139) and

(4.140), respectively, gives

̇= e�
d
dt

[
1
8

Tr�Ṁ�	2e−2�
]
� (4.143)
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Let us also exploit the spatial equation (4.141), written in the form

d
dt

(
e−�M�Ṁ�

)
= T�� (4.144)

and note that

d
dt

(
e−�M�Ṁ�e−�M�Ṁ�

)
= e−� (T�M�Ṁ�+M�Ṁ�T�) � (4.145)

Tracing the last equation, using the identity

�M�Ṁ�	2 = −�Ṁ�	2 (4.146)

(following from the fact thatM ∈O�d�d	), and inserting the result into Eq. (4.143)
we can finally rewrite the conservation equation in the following useful form:

̇+ 1
4

Tr�T�M�Ṁ�	= 0� (4.147)

For an explicit demonstration of the possible physical effects of the antisym-
metric tensor we consider here the example of a perfect fluid source, with diagonal
stress tensor �G= −pI , evolving in a diagonal metric background withG= −a2I ,
and G−1Ġ= 2HI . The conservation equation (4.147) then reduces to

̇+dHp+ 1
2

Tr
(
JḂ
)= 0� (4.148)

that is

̇+dH�+p	+ 1
2
J ikḂik = 0� (4.149)

We can thus note that the antisymmetric source-density J ik, in this equation, plays
the same role as that of an intrinsic vorticity tensor in the context of cosmological
models with spinning fluid sources (see e.g. [32, 33]). In those models, on the
other hand, it is known that vorticity is a source of repulsive contributions to the
gravitational equations, possibly smoothing out the initial singularity [34]. We are
thus led to the speculation that the same effect could be induced in string models
with B �= 0 (at the end of this section we will present a model confirming this
conjecture).

The point we wish to stress, before further applications, is that the entire set of
cosmological equations (4.139)–(4.141), with matter sources and with potential
V��	, is globally O�d�d	 covariant under the generalized transformations

�→ �� → � M →�TM�� T →�T T�� (4.150)

as can be easily checked using the transformation properties ofM and � previously
discussed. In other words, the O�d�d	 symmetry is still valid in the presence of
sources, provided T transforms exactly like M . It seems to be appropriate to show
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immediately an example of sources satisfying this property, consisting of a gas of
classical, non-interacting strings, minimally coupled to the massless background
B�g��.

The evolution of a single string in the given background is described by the
sigma model action (3.23). Following the discussion (and using the notations) of
Chapter 3, we choose the world-sheet metric in the conformal gauge. The total
action Sm for the string gas is then given by the sum over the single component
strings, Sm =∑i S

i
string, where

Sstring = 1
4��

∫
dd+1x

∫

 
d� d� �d+1 �x−X����		 [���X���X
−X′�X′
	g�
�x	

+ ���X�X′
− ��X
X′�	B�
�x	
]

(4.151)

(we have omitted the index i, for simplicity, and we have written explicitly partial
derivatives with respect to �, as we reserve the dot for cosmic-time differentiation).
Note that there is no direct dilaton coupling because R�2	 = 0 in the conformal
gauge (the world-sheet metric is globally flat). We have thus a gas with zero
dilaton charge, in agreement with our assumption leading to Eqs. (4.139)–(4.141).

The variations with respect to X� and to the world-sheet metric �ab = �ab
lead, respectively, to the “geodesic” equations of motion and to the associated
constraints (see Chapter 3). The variation with respect to g�
 and B�
 leads,
instead, to the energy-momentum density, T�
, and to the axion current density,
J�
, according to the standard definitions (1.3) and (2.27). For any string we can
write, in particular,

�
�
 ≡√�g�T�
�t	= 1

2��

∫
d�

d�
dX0

���X
���X


−X′�X′
	� (4.152)

J
�
 ≡√�g�J�
�t	= 1

2��

∫
d�

d�
dX0

���X
�X′
− ��X
X′�	� (4.153)

where we have integrated with respect to t = X0, and we have absorbed the
spatial part of the delta function into the trivial volume integral of the action
(for a background with the given isometries, all fields and sources are only time
dependent). The total stress tensor and axion current density are then obtained
by summing over the single string contributions. We recall that this model of
cosmological fluid may be characterized by a negative effective pressure [35, 36],
and is used as the dominant background source in the context of the so-called
string-gas cosmology that will be discussed in Chapter 6 (see [37] for a recent
review).

In order to compute the duality transformations of the matrix T , and thus of
� and J , we must determine how a solution of the string equations of motion,
X�����	, is changed when the background fields B andG are changed by a duality
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transformation represented by M → �TM�. For a convenient approach to this
problem we can rewrite the string equations of motion (3.25), and the associated
constraints, in explicit O�d�d	 covariant form. Introducing the 2d-dimensional
vector Z, with components

ZT = �Pi�X
′i	� Pi =Gij��X

j +BijX′j� (4.154)

the equations of motion and constraints can be written in matrix form, respectively,
as [31]

�2
�X

0 −X′′0 = 1
2
ZTṀZ� ��Z = ��MZ	′� (4.155)

���X
0	2 + �X′0	2 +ZTMZ = 0� ZT�Z+2��X

0X′0 = 0� (4.156)

It can be easily verified, in this form, that if a given set of string variables
���X

0�X′0�Z� satisfies the above equations for a given background M , then the
transformed set

��X
0 → ��X

0� X′0 → X′0� Z→�−1Z (4.157)

satisfies the same equations in the transformed background

M →�TM� (4.158)

(this computation requires the use of the identity �T = ��−1�, following from
Eq. (4.134)). To obtain the corresponding transformations of the source terms ,
T , we may notice that, from Eq. (4.152),

=√�g�T 0
0 = 1

4��

∫
d�

d�
dX0

[
���X

0	2 − �X′0	2
]
� (4.159)

It follows that  is automatically invariant under the transformation (4.157). The
spatial matrix T , on the other hand, can be rewritten in terms of Z and M , in
compact form, as [31]

T = 1
4��

∫
d�

d�
dX0

(
MZZT�−�ZZTM) � (4.160)

By applying the transformations (4.157) and (4.158), and exploiting the O�d�d	
invariance of �, Eq. (4.134), we immediately obtain

T →�T T�� (4.161)

Both source terms  and T , for the model of string gas we have considered, thus
transform exactly as required by Eq. (4.150) to preserve the O�d�d	 symmetry of
the cosmological background.
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We can also check that, in the absence of torsion, the particular duality trans-
formation (4.137) generated by �= � acts on the sources as

T =
(

0 −�G
G� 0

)
→ �T�=

(
0 �G

−G� 0

)
� (4.162)

and thus induces a “reflection” of the spatial part of the stress tensor,
√�g�Ti j →

−√�g�Ti j , exactly as predicted by the scale-factor duality transformation (4.44)
for diagonal sources. More general O�d�d	 transformations, however, do not
preserve the diagonal form of the matter stress tensor, and automatically introduce
shear and/or bulk-viscosity terms (even if the background is torsionless).

A simple illustration of this important cosmological effect can be obtained

by considering a perfect fluid source, characterized by �
i

j = −p�ij , J ij = 0, in
a torsionless, Bij = 0, isotropic metric background, gij = −a2�ij . The initial
configuration is then represented by

M =
(
G−1 0

0 G

)
� G= −a2I� T =

(
0 pI

−pI 0

)
� (4.163)

Let us consider, for simplicity, the case of d = 2 spatial dimensions, and let
us apply to the configuration (4.163) the one-parameter O�2�2	 transformation
generated by the 4×4 matrix

���	= 1
2

⎛

⎜⎜
⎝

1+ c s c−1 −s
−s 1− c −s 1+ c
c−1 s 1+ c −s
s 1+ c s 1− c

⎞

⎟⎟
⎠ � c ≡ cosh�� s ≡ sinh��

(4.164)
where � is a real parameter ranging from 0 to �. It can be easily checked that
�T��= �, and that for �→ 0 this transformation simply generates the discrete
inversion of one of the two scale factors [38]. The transformed sources �T T�

still have J = 0, but are associated with a non-diagonal stress tensor,

�̃
i

j = −p�ij� �ij =
(

c −s
−s −c

)
� (4.165)

in a non-diagonal metric background [31]

G̃= − 1
2ca2

(
c�1+a4	+a4 −1 −s�1+a4	

−s�1+a4	 c�1+a4	−a4 +1

)
� (4.166)

We should recall now that the stress tensor of a comoving fluid, including
possible viscosity terms, can be parametrized in general as [39]

�ij = −�p−�V	�ij +2S�ij� (4.167)
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Here � and S are, respectively, the bulk and shear viscosity coefficients, V =��u
�

is the expansion parameter, u� is the geodesic velocity field of the comoving
fluid and

�ij = �iuj −
V

D−1
�ij (4.168)

is the traceless shear tensor in D space-time dimensions. For the transformed
metric (4.166) we can easily find that V = 0, and that �ij = �i0j = H�ij , with
H = ȧ/a. Comparing Eqs. (4.165) and (4.167) we are thus led to conclude that
the transformed source can be consistently described as a pressureless fluid with
no bulk viscosity, and with shear viscosity proportional to the original pressure,
i.e.

p̃= 0� �̃ = 0� S̃ = − p

2H
� (4.169)

Therefore, we can say that the perfect fluid approximation is not compatible,
in general, with the property of O�d�d	 covariance of the string cosmology
equations.

4.3.2 General integration of the matrix equations

The property of O�d�d	 symmetry is crucial for obtaining an exact integration of
the equations with antisymmetric field and sources, for a wide class of equations
of state which generalize the barotropic case (4.64) discussed in the previous
section.

For such an integration we have to work, indeed, with the matrix form of the
equations; in particular, we need the combination of Eqs. (4.139) and (4.140),
which we write in the form

d2

dt2

(
e−�
)

+ 1
2

e−�
(
�V

��
−2V

)
= 1

2
� (4.170)

and which we couple to Eq. (4.144), multiplied from the right by �. Let us also
re-introduce the time variable x defined by Eq. (4.68), and assume that the sources
satisfy the differential relation

 d� = T dx� (4.171)

where � is a 2d× 2d (possibly time-dependent) matrix relating  and T . In
this sense, � specifies a particular “equation of state” for the sources. Finally,
assuming that

�V

��
= 2V� (4.172)
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we find that the equations (4.170) and (4.144) can be integrated a first time to
give

1
2

(

e−�
)′ = x+x0

L2
� (4.173)

M�M ′ = 4
L2

e���x	� (4.174)

Using the last equation, and the definition T/ = � ′, we can also rewrite the
conservation equation (4.147) as

1
2

e−� ′ + 1
4L2

Tr �����	′ = 0� (4.175)

Summing Eqs. (4.173) and (4.175), and integrating, we obtain

L2  e−� = �+ �x+x0	
2 − 1

2
Tr ���	2 ≡D�x	� (4.176)

where � is a dimensionless integration constant. Inserting this result into
Eqs. (4.173) and (4.174) we are finally led to separate equations for � and M ,

�
′ = − 2

D�x	
�x+x0	� (4.177)

M�M ′ = 4
D�x	

��x	� (4.178)

generalizing the equations (4.75) and (4.76) which are valid for the pure gravi-
dilaton system.

We have still to fix the constant �, which can be determined by imposing the
separate validity of Eq. (4.140). Using the previous two equations, together with
the identity (4.146), we then obtain the condition

�x+x0	
2 − 1

2
Tr ���	2 =D�x	+ D2�x	

L22 V��	 (4.179)

which, together with the condition (4.172) on the potential, can be satisfied in
two ways. A first possibility is the trivial case V = 0, which implies �= 0. In this
case we are led to the same situation as that discussed in the previous section,
and in which regular isotropic solutions are excluded. Now, however, there is a
second, non-trivial possibility, corresponding to the potential

V = −V0 e2�� V0 = const� (4.180)

which also satisfies Eq. (4.172) and leads, through Eq. (4.176), to

�= L2V0� (4.181)
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In this case one can obtain smooth solutions even in the isotropic case, provided
V0 > 0, as will be shown in Appendix 4B.

4.3.3 Non-trivial solutions via duality transformations

New exact solutions of the cosmological equation can also be obtained without
performing an explicit integration, and by applying appropriate O�d�d	 transform-
ations to already known (even trivial) solutions. The procedure is conceptually the
same as that we have exploited in the case of scale-factor duality transformations,
and here will be applied to derive a regular class of low-energy cosmological
backgrounds (with a non-vanishing two-form field, but without fluid sources).

Let us start from the trivial solution with V = 0, B = 0, constant dilaton and
flat space-time metric, parametrized in Milne coordinates as

ds2 = dt2 −
(
t

t0

)2

dx2 −dy2 −dz2
i � �= const� (4.182)

where zi are cartesian coordinates spanning a Euclidean �d− 2	-dimensional
manifold. In spite of the non-trivial scale factor a�t	 along the x-axes, this met-
ric describes a globally flat space-time, as can be checked by performing the
transformation

x′ = t sinh
(
x

t0

)
� t′ = t cosh

(
x

t0

)
� (4.183)

and noting that, with the new coordinates �t′� x′� y� zi	, the quadratic form (4.182)
assumes everywhere the standard Minkowski form. This trivial solution is asso-
ciated with the “dual partner”

ds2 = dt2 −
(
t

t0

)−2

dx2 −dy2 −dz2
i � �= −2 ln

∣
∣
∣
∣
t

t0

∣
∣
∣
∣+ const� (4.184)

obtained through the scale-factor duality transformation (4.25). This is also an
exact solution of the low-energy string cosmology equations but, unlike the previ-
ous one, is characterized by a non-trivial geometry of the two-dimensional sections
spanned by x and t. The corresponding space-time curvature is non-zero, and the
two branches t < 0 and t > 0 (describing, respectively, pre-big bang accelerated
expansion and post-big bang decelerated contraction) are separate by a singularity
at t = 0.

Such a singular background can be regularized through a global O�d�d	 trans-
formation (in our case, d = 2), in the sense that it can be transformed into a new
exact solution of the same equations containing an additional dynamical dimen-
sion (along the y direction), and in which the pre- and post-big bang branches are
smoothly connected near the origin, without singularities [38]. The same O�d�d	
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transformation, applied to the trivial solution (4.182), also provides a new non-
trivial solution which is smooth everywhere, and which asymptotically reproduces
the regimes of linear expansion and contraction at t→ ±�, typical of the Milne
metric.

Let us write explicitly the initial matrix configuration representing the solutions
in the spatial �x� y	 plane, namely,

B = 0� G± = −
(
a2± 0
0 1

)
� M± =

(
G−1± 0

0 G±

)
�

a± =
∣
∣
∣
∣
t

t0

∣
∣
∣
∣

±1

� �= − ln

∣
∣
∣
∣
t

t0

∣
∣
∣
∣

(4.185)

(the ± signs correspond, respectively, to the Milne metric (4.182) and to its dual
(4.184)). This two-dimensional sector of the solution has two Abelian isometries
(indeed, it is invariant under spatial translations along x and y), and we can
thus consider a global “boost” of the pseudo-orthogonal group O�2�2	, generated
by the one-parameter matrix already introduced in Eq. (4.164). By applying the
transformations (4.133) to our initial background (4.185), we obtain a new set of
background fields �G̃� B̃� �̃�, defined as follows [38]:

G̃±��	= −
⎛

⎜
⎝

c∓1+�c±1	�t/t0	
2

c±1+�c∓1	�t/t0	2
s�1+�t/t0	2�

c±1+�c∓1	�t/t0	2

s�1+�t/t0	2�
c±1+�c∓1	�t/t0	2

1

⎞

⎟
⎠ �

B̃±��	=
⎛

⎜
⎝

0 −s�1+�t/t0	2�
c±1+�c∓1	�t/t0	2

s�1+�t/t0	2�
c±1+�c∓1	�t/t0	2

0

⎞

⎟
⎠ �

�̃± = − ln
[
c±1+ �c∓1	�t/t0	

2] �

(4.186)

These new backgrounds exactly satisfy the string cosmology equations with
T�
 = 0 = V , as can be explicitly checked by Eqs. (2.24), (2.25) and (2.28), or by
their matrix versions (4.139)–(4.141). Unlike the initial backgrounds, however,
the new ones are non-trivial and everywhere regular, since all curvature invariants
are bounded, as well as the string couplings �̃g2

s 	± = exp��̃±	. The new solutions
represent a �2+1	-dimensional background evolving smoothly from (anisotropic)
contraction to expansion, or vice-versa, according to the behavior of the initial
metric (the Milne solution or its dual, respectively). These kinematic properties
can be displayed by computing, for instance, the rate of change H̃ of the relative
distance along the x direction between two comoving observers, which for the
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Figure 4.6 The dashed curves represent the Hubble parameters H±�±t	 for
the pre-boosted solutions of Eq. (4.185). The full bold curves, labeled by H̃±,
represent the corresponding variables (4.187) for the boosted solution (4.186).
Also shown is the smooth behavior of the string coupling �g2

s 	± (thin curves).

metric G̃± is given by

H̃± = V�
 n
�n
 = ± 4ct

t20�c+1+ �c−1	�t/t0	2��c−1+ �c+1	�t/t0	2�
� (4.187)

Here V�
 = ���u
	 is the so-called expansion tensor for a congruence of comoving
geodesics u�, and n� is a unit space-like vector along the x direction, n�n

� = −1,

n�u
� = 0. By taking u� = �

�
0 then, in the synchronous frame, H̃ = �11

0 = −ġ11/2.

The plots of H̃±, together with those of �g2
s 	±, are given in Fig. 4.6 for the

particular values t0 = 1 and �= 1 (for �� 1 the two coupling parameters �g2
s 	+

and �g2
s 	− tend to coincide).

In both cases, the boosted backgrounds M̃+ and M̃− describe the evolution
from a phase of growing curvature and growing dilaton, to a phase of decreasing
curvature and decreasing dilaton, as appropriate to a transition from a pre-big
bang to a post-big bang configuration. Being �2 + 1	-dimensional, and highly
anisotropic, this class of solutions does not seem appropriate to provide a realistic
description of the present cosmological state. The situation drastically changes,
however, if the final configuration for t→ � is modified by including the back-
reaction of the radiation produced by the transition from the accelerated to the
decelerated regime (according to the mechanism discussed in Chapter 7).

Let us consider, for instance, the class of metric backgrounds G̃−, which for
t < 0 describe a phase of pre-big bang inflationary expansion, and let us extend
the solution to a third spatial dimension, which has initially a trivial dynamics.
Also, let us include, for t > 0, a small amount of radiation as a possible (initially
negligible) source of the background geometry. A numerical analysis [40] of the
string cosmology equations for t > 0 then shows that, after a short period of
post-big bang contraction, the radiation tends to become dominant with respect to
the dilaton kinetic energy. Once it is dominant, it rapidly stabilizes the dilaton and
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isotropizes the metric background, eventually turning the initial contraction into
a phase of decelerated and isotropic expansion of all the three spatial dimensions
(as appropriate to a realistic configuration of the standard cosmological scenario).

Other examples of regular, homogeneous and isotropic backgrounds will be
presented in Appendix 4B. We recall here that the reported example of regular
solution, obtained by applying an appropriate O�d�d	 transformation to a singular
background, is not the only example available in the literature of this interesting
property of the string cosmology equations. Another example has been obtained
by applying an O�3�3	 transformation to the four-dimensional, non-homogeneous
and singular solution of Nappi and Witten [41]: the transformed five-dimensional
axion-gravi-dilaton background [42] is still non-homogeneous, but does not con-
tain singularities, either in the curvature of the transformed metric G̃, or in the
tree-level coupling g̃2

s = exp �̃.

4.3.4 Non-Abelian duality

The presence of the O�d�d	 symmetry is a general property of the string back-
grounds admitting a d-parameter group of Abelian isometries. When the isometries
are spatial translations, in particular, the corresponding background is described
by a Bianchi-I type metric; this background, however, is only a particular case of
a larger class of homogeneous manifolds – the so-called Bianchi models, whose
d-dimensional spatial sections are invariant under the action of a d-parameter Lie
group of non-Abelian isometries [20]. A question which naturally arises, there-
fore, is whether a new class of duality transformations may exist in a generic
homogeneous background, generalizing the O�d�d	 transformations only valid
for Abelian isometry groups.

The answer to this question is positive [30], and, in general, the modified
duality transformations associated with a non-Abelian group can be implemented
through the standard prescriptions, using either a Lagrangian or a Hamiltonian
approach [43] (see also [44]).

Consider, for instance, a Wess–Zumino–Witten (WZW) model represented by
the two-dimensional action (3.23), and describing a string conformally coupled
to a homogeneous backgroud (with non-Abelian isometries). The metric g�
 can
be parametrized as in Eq. (4.89), and the same factorization can be used for the
NS–NS two-form B�
,

B0i = 0� Bij = emi �X	�mn�t	e
n
j �X	� (4.188)

Here �mn = −�nm, and the spatial dependence of the vielbein fields emi is fixed
(up to reparametrizations) by the isometry group according to Eqs. (4.90) and
(4.91). Performing an appropriate transformation of the spatial coordinates of the
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string, Xi → X̃i, of the spatial part of the metric, G→ G̃, and of the two-form,
B→ B̃, one can obtain a “dual” conformal action representing a new WZW model
parametrized by the coordinates X̃ and by the transformed background fields G̃,
B̃, where [30]

G̃−1�X̃� t	= ��+�+K	�−1��−�−K	�
B̃�X̃� t	= −��−�−K	−1��+K	��+�+K	−1� (4.189)

Here � and � are d×d matrices (symmetric and antisymmetric, respectively),
representing the background tensors �mn and �mn of Eqs. (4.89) and (4.188), and
K is an antisymmetric d×d matrix representing the tensor

Kmn = Cmn
pX̃p� (4.190)

directly associated with the non-Abelian part of the isometry group.
It can be easily checked that the above transformation extends to the non-

Abelian case the global O�d�d	 transformation generated by the off-diagonal
metric � of Eq. (4.125). In fact, starting with a generic non-symmetric background
(G �= 0 and B �= 0), and applying the transformation (4.133) with � = �, one
finds

M̃ = �M�=M =
(
G−BG−1B BG−1

−G−1B G−1

)

� (4.191)

Comparing M̃ with the definition (4.124) of the background matrix M one then
obtains

G̃−1�t	=G−BG−1B = �G+B	G−1�G−B	�
B̃�t	= B−1 −G−1BG−1 = −�G−B	−1B�G+B	−1� (4.192)

reproducing the transformation (4.189) for the special case K = 0 of an Abelian
isometry group.

An important point to be stressed for the non-Abelian case is that the initial
background, �G�B�, and the duality-transformed one, �G̃� B̃�, do not share, in
general, the same isometry group, as evident from Eq. (4.189). This is to be con-
trasted with the case of Abelian duality transformations. An even more important
difference concerns the transformation of the dilaton field, which is required to
complete the set of background transformations.

The standard prescription, dictated by the conformal invariance of the integra-
tion measure in the path-integral representation of the partition function [3, 5, 6,
45, 46, 47], is only valid for non-Abelian isometry groups which are semisimple
[44]. The homogeneous Bianchi models, on the other hand, provide important
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examples of physically relevant background solutions with non-semisimple, non-
Abelian isometry groups, whose dual counterpart fails to satisfy the expected
requisite of conformal invariance, no matter what choice is made for the trans-
formed dilaton. Explicit examples of this anomalous behavior have been presented
for models of Bianchi types V [43], IV [44] and III [21].

The reason for this failure is that, for non-semisimple groups, there are generat-
ors with non-vanishing trace in the adjoint representation, which are sources of a
mixed gauge and gravitational anomaly in the integration measure of the integral
representation of the model [44] (see also [48]). Such a mixed anomaly generates
a contribution to the trace anomaly (of the world-sheet stress tensor) which cannot
be absorbed by any shift or redefinition of the dilaton. This implies a breakdown
of conformal invariance, and requires an additional anomaly cancelation condition
for the quantum consistency of the non-Abelian duality transformations [44].



Appendix 4A
A non-local, general-covariant dilaton potential

The shifted variable � defined in Eq. (4.119) is invariant under global O�d�d	 transform-
ations, but is not a scalar under general coordinate transformations. If we want to add
a potential energy term V��	, without breaking the general covariance of the effective
action, we must include the full �d+1	-dimensional proper volume into the definition of
�, thus leading to a scalar potential which is a non-local function of the dilaton. We will
show in this appendix that the self-dual action (4.132), and the derived duality-covariant
equations (4.139)–(4.141), can be obtained as the homogeneous limit of an action in
which the dilaton potential is a local function of the non-local (but scalar under general
coordinate transformations) variable �= ���	, defined by [49]

e−��x	 = �−d
s

∫
dd+1x′√�g�x′	� e−��x′	

√
����x

′	����x′	 � ���x	−��x′		 � (4A.1)

This definition of � is obviously appropriate to backgrounds with ����
�� > 0, but it

can be easily extended to include the case of non-cosmological backgrounds, in which
space-like dilaton gradients may be dominant.

We start by noting that in the limit of a homogeneous and isotropic background we can
use the cosmic-time gauge, where g00 = 1, �= ��t	, and the previous definition reduces
to

e−��x	 = �−d
s Vd

∫
dt′

d�
dt′
√�g�t′	� e−��t′	 � ���t	−��t′		= �−d

s Vd
√�g�t	� e−��t	�

(4A.2)

where Vd = ∫ dx′. Assuming that the background has spatial sections of finite volume,
Vd <�, we can absorb the constant volume factor inside �, and we exactly recover the
definition of � already used in Eqs. (4.17) and (4.119) of this chapter. Since exp� plays
the role of a “dimensionally reduced” coupling constant, we may expect (at least in the
perturbative regime) the dilaton potential to go as some power of the coupling; we thus
set V = V�exp�	, and consider the following scalar-tensor action,

S = − 1
2�d−1

s

∫
dd+1x

√�g� e−�
[
R+ ���	2 +2�d−1

s V�e−�	
]
+Sm� (4A.3)

invariant under general coordinate reparametrizations, as well as global O�d�d	 trans-
formations of background fields with Abelian isometries. To obtain the field equations we

174
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shall impose that the action be stationary, by equating to zero the functional derivatives
of S with respect to g�
 and �.

Let us first consider the case of the metric tensor. For the local part of the action
(i.e. for Sm and the kinetic terms Sk) we can directly apply the results of Section 2.1 (in
particular Eq. (2.8)) to obtain

�

�g�
�x	
�Sk+Sm	=

∫
dd+1x′ �d+1�x−x′	

[
1
2

(√�g� T�

)

x′

− 1
2�d−1

s

(√�g� e−�
)

x′

(
G�
 +���
�+ 1

2
g�
��

2 −g�
�2�

)

x′

]

� (4A.4)

We have included in Sk the surface term required to cancel the second derivatives of the
metric. Note that we are using the convenient notation in which a variable appended to
round brackets, �� � � 	x, means that all quantities inside the brackets are functions of the
appended variable. We also use the notation �x ≡ ��x	.

The functional differentiation of the potential gives

A�v�x	≡ �

�g�
�x	

∫
dd+1x′

(√�g�e−�V
)

x′

=
∫

dd+1x′
[

− 1
2

(√�g�e−�g�
V
)

x′
�d+1�x−x′	

+ 1
�ds

(√�g�e−�V ′
)

x′

�

�g�
�x	

∫
dd+1y

(√�g�e−!√��!	2
)

y
��!x′ −!y	

]

�

(4A.5)

where V ′ denotes the derivative of the potential with respect to its argument,

V ′ ≡ �V

�e−� = −e�
�V

��
� (4A.6)

The functional derivative of the last term of Eq. (4A.5) can be written explicitly as

−1
2

∫
dd+1y

(√�g�e−���

√
���	2

)

y
�d+1�x−y	��!x′ −!y	� (4A.7)

where

��
 = g�
 − ����
�

���	2
� (4A.8)

Inserting this result into Eq. (4A.5), and integrating the first term with respect to x′, and
the second with respect to y, we obtain

−A�v = 1
2

(√�g�e−�g�
V
)

x
+ 1

2

(√�g�e−2���

√
���	2

)

x
I1�x	� (4A.9)

where

I1�x	= �−d
s

∫
dd+1x′

(√�g� V ′
)

x′
���x′ −�x	 � (4A.10)
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Finally, integrating Eq. (4A.4), and summing all terms to those of Eq. (4A.9), we are led
to the integro-differential, generally covariant, gravitational equation

G�
 +���
�+ 1
2
g�

[
���	2 −2�2�−2�d−1

s V
]−�d−1

s e−�√���	2 ��
I1

= �d−1
s e�T�
� (4A.11)

which generalizes Eq. (2.11) to the case of a dilaton potential depending on the non-local
variable (4A.1).

The derivation of the dilaton equation proceeds along the same lines, through the
computation of the functional derivative with respect to ��x	. For the local part of the
action one finds, in agreement with the results of Section 2.1,

�

���x	
�Sk+Sm	=

∫
dd+1x′ �d+1�x−x′	

[

− 1
2

(√�g� �
)

x′

+ 1
2�d−1

s

(√�g� e−�
)

x′

(
R+2�2�−��2

)
x′

]

� (4A.12)

The derivative of the non-local potential gives

B ≡ �

���x	

∫
dd+1x′

(√�g� e−�V
)

x′

= −
(√�g�e−�V

)

x
+ 1
�ds

∫
dd+1x′

(√�g� e−�V ′
)

x′

×
∫

dd+1y

[

−
(√�g� e−�√���	2

)

y
���x′ −�y	�d+1�x−y	

+
(√�g� e−�√���	2

)

y
�′��x′ −�y	

[
�d+1�x−x′	−�d+1�x−y	]

]

− 1
�ds

∫
dd+1x′

(√�g� e−�V ′
)

x′

×
∫

dd+1y ��

[√�g� e−� ���
√
���	2

���x′ −�y	
]

�d+1�x−y	� (4A.13)

where �′ denotes the derivative of the delta distribution with respect to its argument.
Integrating, and using the properties of the delta distribution, one finds that there are exact
cancelations between the first and the third integral, and the terms of the last integral
containing �� exp�−�	 and ������x′ −�y	�, respectively. Thus, we are left with

B = −
(√�g� e−�V

)

x
− e−2���

(√�g� ���
√
���	2

)

I1�x	

+ 1
�ds

∫
dd+1x′

(√�g� e−�V ′
)

x′

∫
dd+1y

(√�g� e−�√���	2
)

y
�′��x −�y	� (4A.14)
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The second term on the right-hand side, which multiplies I1, can now be conveniently
rewritten as

−e−2���

(
���
√
���	2

)

= −e−2�

√�g�
√
���	2

��
�
��
�� (4A.15)

In the term containing �′ we can set dy0 = d�y/�̇y, �d/d�y	= �̇−1
y �d/dy0	, and we obtain

�−d
s

∫
ddy d�y

(√�g� e−�√���	2

�̇

)

y

�′��x −�y	

= �−d
s

∫
ddy

d�y
�̇y

d
dy0

(√�g� e−�√���	2

�̇

)

y

���x −�y	

= −e−��x	+ e−��x	�−d
s

∫
ddy

d�y
�̇y

d
dy0

(√�g�√���	2

�̇

)

y

���x −�y	

= −e−��x	+ e−��x	�−d
s

∫
ddy

d�y
�̇y

(√�g�√���	2
)

y
�′��x −�y	

= −e−��x	+ e−��x	I2�x	� (4A.16)

where

I2�x	= �−d
s

∫
dd+1y

(√�g� √���	2
)

y
�′ (�x −�y

)
� (4A.17)

Thus

−B =
(√�g� e−�

)

x

(

V + e−�
√
���	2

��
�
��
�I1 + e−�V ′ − e−� V ′I2

)

x

� (4A.18)

Summing to this equation the contribution of Eq. (4A.12) we are finally led to the dilaton
equation

R+2�2�− ���	2 +2�d−1
s

[

V − �V

��
+ e−�
√
���	2

��
�
��
�I1 − e−�V ′I2

]

= �d−1
s e��� (4A.19)

which generalizes Eq. (2.14) to the case of the non-local potential V
(

exp�−�	). This
equation can be used to eliminate the scalar curvature in Eq. (4A.11), and to obtain

R�

 +���
�−�d−1

s �
�

(
�V

��
+ e−�V ′I2

)

+�d−1
s e−�

(

�
�
����

����
√
���	2

−�� 

√
���	2

)

I1 = �d−1
s e�

(
T�


 + 1
2
�
��

)
� (4A.20)

which generalizes Eq. (2.15).
It is important to stress that the equations following from the non-local action (4A.3)

are qualitatively different from an action which has the same form but a local dilaton
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potential (see for instance Eqs. (2.24)–(2.26), with H�
� = 0). The differences tend to
disappear in a metric background of the cosmological type, but they are not completely
eliminated even if the geometry is homogeneous, isotropic and spatially flat, as is shown
in detail in the following.

Let us consider, in fact, the conformally flat background introduced at the end of
Section 2.1, and described in the cosmic-time gauge by Eqs. (2.29)–(2.33). We find, in
this background,

e−� =�d a
de−�� �00 = 0� �i

j = �i
j�

I1 =�d a
d V

′

�̇
� I2 = d�d a

d H

�̇
� (4A.21)

where �d = Vd/�
d
s is the volume of the spatial sections in string units. In this homogen-

eous limit we can thus establish the particular relations

����
����

√
���	2

I1 = V ′ I2� e−�√���	2 I1 = −�V
��
� (4A.22)

which lead to a considerable simplification of the corresponding equations. From the �00	
component of Eq. (4A.11), in particular, we obtain

�̇2 −2dH�̇+d�d−1	H2 = 2�d−1
s

(
e�+V ) � (4A.23)

In the spatial components �ij	 of Eq. (4A.20) all terms induced by the non-local potential
cancel, and we obtain

Ḣ−H�̇+dH2 = �d−1
s e�

(
p− �

2

)
� (4A.24)

From the dilaton equation (4A.19) we obtain, finally,

2�̈+2dH�̇− �̇2 −2dḢ−d�d+1	H2 = 2�d−1
s

(
�V

��
−V + 1

2
e��

)
� (4A.25)

Their combination leads to the conservation equation

̇+dH�+p	= 1
2
��̇� (4A.26)

while the elimination of Ḣ and H2 through Eqs. (4A.23) and (4A.24), respectively, leads
to rewriting the dilaton equation in more conventional form as

�̈+dH�̇−�̇2 +2�d−1
s

(
V − 1

2
�V

��

)
+�d−1

s e��−dp	+ 1
2
�d−1	�d−1

s e�� = 0� (4A.27)

We are now in the position of comparing these isotropic equations (4A.23)–(4A.27)
with the equations (2.34)–(2.38), derived in the presence of a local potential V = V��	.
The �00	 and the conservation equation are the same, while in the dilaton equation
(4A.25) the term �V/�� is simply replaced by �V/��. The most important differ-
ence appears in the spatial equation (4A.24), where the contribution of the potential
completely disappears: this is to be contrasted with the corresponding equation (2.35),
where the contribution of the local potential survives in the term �V/��. It is just
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because of this difference that the low-energy equations with some particular poten-
tial V��	 are exactly integrable and admit regular solutions, as will be illustrated in
Appendix 4B.

In order to facilitate their integration, it will be useful to rewrite the equations in terms
of the shifted variables:

�= �−d lna� = ad� p= pad� � = �ad� (4A.28)

From Eqs. (4A.23)–(4A.25) we obtain, respectively (in units 2�d−1
s = 1),

�̇
2 −dH2 −V = e��

Ḣ−H�̇= 1
2

e�
(
p− �

2

)
�

2�̈− �̇2 −dH2 +V − �V

��
= 1

2
e���

(4A.29)

and the conservation equation becomes

̇+dHp= 1
2
���̇+dH	� (4A.30)

These generalize to the case V = V��	 �= 0, Eqs. (4.39)–(4.41), and to the case � �= 0,
the homogeneous, isotropic, torsionless limit of the matrix equations (4.139)–(4.141).

We conclude this appendix by presenting the E-frame version of the above equations,
which is useful for later computations of the scalar and tensor spectrum of metric per-
turbations. The E-frame form of the non-local contributions can be determined either
by transforming the action (4A.3), and then determining the corresponding cosmological
equations [50], or by directly transforming into the E-frame the cosmological S-frame
equations. Here we apply the second procedure, using the standard relations (2.64)–(2.68)
connecting the geometric and matter variables of the two frames, for a homogeneous and
isotropic background.

Starting from Eq. (4A.23), and denoting with the tilde the E-frame variables, we obtain

d�d−1	H̃2 = 2�d−1
P

(
̃+ 1

2
˙̃
�

2

+ e
2
d−1

�̃
� kd+1V

)
� (4A.31)

identical to Eq. (2.60) for the local potential (we recall that k= �s/�P). From the dilaton
equation (4A.27) we obtain

¨̃
�+dH̃ ˙̃

�+ �̃

2
+ 1
��d−1	

�̃−dp̃	+ 2kd+1

d−1
e

2
d−1

�̃
�

(
V

�
− 1

2�
�V

��

)
= 0� (4A.32)

which differs from the corresponding local equation in the terms containing �V/��. From
the spatial equation (4A.24) we obtain

˙̃
H+dH̃2 +

¨̃
�

��d−1	
+ dH̃

˙̃
�

��d−1	
= �d−1

P

(
p̃− �

2
�̃
)
� (4A.33)
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Eliminating ¨̃
��

˙̃
� through the dilaton equation (4A.32), and ̃ through Eq. (4A.31), we

can recast the spatial equation in the form

2�d−1	 ˙̃
H+d�d−1	H̃2 = 2�d−1

P

[
−p̃− 1

2
˙̃
�

2

+kd+1e
2
d−1

�̃
�

(
V − �V

��

)]
� (4A.34)

to be compared with Eq. (2.61), valid for a local potential. The difference, again, is
induced by the presence of the potential derivative �V/��.



Appendix 4B
Examples of regular and self-dual solutions

In this appendix we apply the integration procedure presented in Sections 4.2 and 4.3
to obtain explicit examples of bouncing solutions, smoothly interpolating between an
initial accelerated, growing curvature phase to a final decelerated, decreasing curvature
phase. Throughout this section we limit ourselves to the case of torsionless (but possibly
anisotropic) gravi-dilaton backgrounds, described by a Bianchi-I-type metric, possibly
sourced by perfect fluid matter.

Let us start by recalling that, without the dilaton potential, regular isotropic solutions are
impossible as already remarked in the discussion following Eq. (4.81). Regular anisotropic
metric backgrounds are not forbidden [15], however, as will be shown here by considering
an example in which the spatial geometry can be factorized as the direct product of
two conformally flat manifolds, with d and n dimensions, respectively. Following the
notations of Section 4.2 we set

ai = a1� �i = �1� xi = x1� i= 1� � � � � d�

ai = a2� �i = �2� xi = x2� i= d+1� � � � � d+n� (4B.1)

and we choose a convenient set of integration constants, such that the linear term bx of
the quadratic form (4.82) disappears. For instance,

x0 = 0� x1 = −x2

n�2
2

d�2
1

� (4B.2)

In this case the discriminant is simply 4�2 = −4�c, and the constant term c turns out to
be always negative,

c = −dx2
1�

2
1 −nx2

2�
2
2 < 0� (4B.3)

The presence of real zeros of the quadratic form D�x	 can then be avoided provided

�= �2
0 −d�2

1 −n�2
2 < 0� (4B.4)

Assuming that this condition is satisfied, the integration of Eqs. (4.75) and (4.76) leads
to the following exact solution:

ai = ai0Ei�x	 �D�x	��i/� � i= 1�2�

e� = ad10a
n
20 e�0Ed1E

n
2 �D�x	�−��0−d�1−n�2	/� � (4B.5)

= −L−2 e�0a−d
10 a

−n
20 E

−d
1 E−n

2 �D�x	�1−��0+d�1+n�2	/� �
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where

Ei�x	= exp
[

2xi�i√
�c

tan−1

(
�x√
�c

)]
� (4B.6)

and a10� a20��0 are integration constants.
As discussed in [15], it can be shown that in the space of the parameters �i��0

there is a non-vanishing region where the condition (4B.4) is satisfied, together with
the conditions required to guarantee that the curvature, the dilaton kinetic energy, the
effective string coupling and the matter energy density are bounded everywhere. It can
also be imposed, simultaneously, that the energy density goes to zero, asymptotically, and
that at large positive times the solutions describe a final configuration with d expanding
and n contracting dimensions (as seems appropriate for a “realistic” phase of dynamical
dimensional reduction).

The condition (4B.4) implies, however, D�x	 < 0 everywhere and thus, according to
Eq. (4.74),  < 0 everywhere (as also evident from the last term of the explicit solution
(4B.5)). Therefore, the matter sources present in this context cannot represent the ordinary
macroscopic fluids appearing in the standard cosmological equations, but are possibly a
classical, effective representation of the backreaction of quantum fluctuations outside the
horizon [16, 17, 18]. Thus, the above solutions are possibly appropriate for a description
of the cosmological background in close proximity to the transition regime from the pre-
to the post-big bang configuration, where it is known that a violation of the classical
energy conditions is required to avoid the singularity in a spatially flat background [51].
In that regime, solutions regularized by the contributions of ghost fields [52] or ghost
condensation [53] have also been suggested.

Regular solutions, implementing more realistic configurations, asymptotically domin-
ated by conventional matter sources, can be obtained in the context of duality-invariant
equations by including an appropriate potential V��	. Before introducing sources, how-
ever, it is worth stressing that with a dilaton potential depending on the non-local,
duality-invariant variable � we can obtain regular solutions even for isotropic, vacuum
metric backgrounds.

Consider, for instance, the following potential,

V��	= −V0 e4�� V0 > 0� (4B.7)

possibly interpreted as a four-loop correction in a perturbative context. With this potential,
and for T�
 = 0 = � , the isotropic �d+ 1	-dimensional equations (4A.29) are exactly
solved by the following particular solution [54]:

a�t	= a0

[
t

t0
+
(

1+ t2

t20

)1/2
]1/

√
d

�= −1
2

ln
[√
V0 t0

(
1+ t2

t20

)]
� (4B.8)

where a0 and t0 are integration constants. This regular, “bouncing” solution is exactly self-
dual, in the sense that it satisfies the property a�t	/a0 = a0/a�−t	, and is characterized
by a bounded, “bell-like” shape not only of the curvature but also of the dilaton kinetic
energy (see Fig. 4.7, left panel). The solution smoothly interpolates between the two
expanding branches of the isotropic vacuum solutions (4.29), connecting the pre-big bang,
inflationary configuration

t→ −� ⇒ a∼ �−t	−1/
√
d� �∼ √

d lna� (4B.9)
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to the final, post-big bang, decelerated configuration

t→ � ⇒ a∼ t1/
√
d� �∼ −√

d lna� (4B.10)

Together with its time-reversed partner such a solution describes a perfect “figure-eight-

shaped” curve in the phase-space plane spanned by �̇ and
√

3H (Fig. 4.7, right panel).
It should be noted that, for the above solution, the dilaton keeps monotonically growing

(indeed, �∼ �
√
d−1	 ln t, for t→ �), but the curvature is bounded even in the E-frame,

where the background smoothly evolves from accelerated contraction to decelerated
expansion. To illustrate this point we have plotted in Fig. 4.7 also the E-frame Hubble
parameter HE, defined according to Eq. (2.64) (with k= 1) as

HE�t	= d lnaE

dtE
=
(

H− �̇

d−1

)

e�/�d−1	 (4B.11)

(here H = d lna/dt and �̇ = d�/dt are both referred to the S-frame cosmic time).
However, the fact that the string coupling is unbounded is not consistent, asymptotically,
with the use of a tree-level effective action. Also, when the dilaton is unbounded, the
curvature might be singular in some frame, different from the string and the Einstein
frames.

The potential (4B.7) is only a particular case of a general class of potentials, defined
by

V�e−�	=m2e2�

[(
�− e2n�

) 2n−1
n −d

]
� (4B.12)

parametrized by the dimensionless coefficient � and by the “loop-counting” parameter
n (for n = 1, � = d and m2 = V0 one recovers the particular potential (4B.7)). For this
class of potentials there are particular exact solutions of the vacuum, duality-invariant
equations (4A.29) which are regular, for any given value of � and n [49, 50].
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Figure 4.7 The left panel shows the plot of the curvature and of the dilaton
kinetic energy for the solution (4B.8). The thin dashed curve illustrates the
evolution of the E-frame Hubble parameter (4B.11), as a function of the S-frame
cosmic time t. The right panel shows the trajectory of the solution and of its
time-reversed partner in the phase space of Fig. 4.3 (the dashed bisecting lines
represent the asymptotic vacuum solutions (4.29)). All curves are plotted for
t0 = 1, V0 = 1 and d = 3.
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We consider here some particular examples for the case � > 0 and n > 0. Assuming

�̇ �= 0, Eqs. (4A.29) (in the absence of sources other than the potential) can be reduced
to quadratures as follows:

H =H0 e�� t = ±
∫

d�
(
V +dH2

0 e2�
)−1/2

� (4B.13)

where H0 is an integration constant. By inserting the potential (4B.12), and considering
the class of solutions with H0 =m, the integral can be solved exactly,

mt =
∫

dy
(
�−y−2n

) 1−2n
2n = �−1

(
�y2n−1

)1/2n
(4B.14)

(we have set y = exp�−�	). We are thus led to the class of particular, exact solutions

H =m e� =m

[
�

1+ ��mt	2n

]1/2n

� (4B.15)

whose “bell-like” shape describes a bouncing evolution of the curvature scale, i.e. a
smooth transition from growing to decreasing curvature, and from accelerated to decel-
erated expansion.

Consider the asymptotic limit �t� → �, where H → ��1−2n	/n�t�−1. In this limit we can
easily integrate Eq. (4B.15) to obtain a�t	, and we find an initial, accelerated configuration
with growing dilaton,

t→ −� ⇒ a∼ �−t	−��1−2n	/2n
� �∼ − [d��1−2n	/2n+1

]
ln�−t	� (4B.16)

evolving towards a final “dual” and time-reversed configuration

t→ � ⇒ a∼ t�
�1−2n	/2n

� !∼ [d��1−2n	/2n−1
]

ln t� (4B.17)

The “minimal”, vacuum solutions (4B.9) and (4B.10), dominated by the dilaton kinetic
energy, are thus recovered for

�= dn/�2n−1	� (4B.18)

If this condition is not satisfied, then the contribution of the potential remains non-
negligible, even asymptotically.

The asymptotic sign of �̇ is controlled, instead, by the product d��1−2n	/2n. In partic-
ular, if d��1−2n	/2n > 1, the dilaton keeps growing also in the post-big bang branch (see
Eq. (4B.17)), with the possible occurrence of curvature singularities when the solution
is transformed to other frame representations. In the E-frame, for instance, we find from
the definition (4B.11) that the curvature of the post-big bang branch has the following
behavior:

HE ∼
[

1−��1−2n	/2n

d−1

]
× t d

d−1 ���1−2n	/2n−1�� (4B.19)

Thus, the solution is regular and bouncing even in the Einstein frame, only provided

��1−2n	/2n < 1 (4B.20)

(this condition is always satisfied by the free vacuum solutions characterized by
Eq. (4B.18), as already stressed).

Given the interesting regularizing properties of V��	, we are led to investigate, in the
same context, the possibility of more realistic solutions containing also the conventional
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fluid sources, and reducing asymptotically to some standard cosmological configuration
(with stabilized dilaton). Examples of this type will be given here using the duality-
invariant potential satisfying Eqs. (4.75) and (4.76), in a �d+ 1	-dimensional isotropic
background, sourced by a perfect barotropic fluid with equation of state p/= � = const.

In such a case G= −a2I , G� = −pI so that, using the definitions of Section 4.3 for
M , T and � ,

M�M ′ = 2
a′

a

(
0 I
−I 0

)
� T = p

(
0 I
−I 0

)
�

� ′ = T



(
0 I
−I 0

)
� � = ��x+x1	

(
0 I
−I 0

)
�

(4B.21)

where x1 is an integration constant. Equations (4.177) and (4.178) reduce to

�
′ = −2�x+x0	

D
�

a′

a
= 2��x+x1	

D
� � �= 0� (4B.22)

where, from Eq. (4.176),

D�x	= �x+x0	
2 −d�2�x+x1	

2 +L2V0 ≡ �x2 +bx+ c (4B.23)

(the same result can be obtained by the direct integration of Eqs. (4A.29) for p = �

and V = −V0 exp�2�	). Because of the presence of V0, it becomes possible to choose
the integration constants x0, x1 in such a way that D�x	 has no real zeros, even if the
background is isotropic and the sources have a positive energy density. Indeed, for the
quadratic form (4B.23),

�2 = 1
4
�b2 −4�c	= d�2�x1 −x0	

2 +L2V0�d�
2 −1	" (4B.24)

we can thus can obtain �2 < 0 provided the equation of state is not too “stiff”, i.e. for
d�2 < 1.

This result is valid also for the case � = 0 (“dust” fluid source), which is not included,
however, in the general integration (4B.22). For this particular case we can start directly
from Eqs. (4A.29) with p= 0 = � , and, after a first integration, we are led to

�
′ = −2�x+x0	

D
�

a′

a
= 2x1

D
� � = 0� (4B.25)

where

D�x	= �x+x0	
2 −dx2

1 +L2V0� (4B.26)

replacing Eqs. (4B.22) and (4B.23). One then finds that regular exact solutions are allowed
for �2 = dx2

1 −L2V0 < 0. A first, very simple example can thus be obtained by choosing
x1 = 0 = x0, which leads to the (almost) trivial solution describing a flat (S-frame) space-
time, with the dilaton performing a time-symmetric, bell-like evolution sustained by the
presence of the constant energy density of the dust sources:

a= a0� = 0 = const� p= 0� e� = e�0

1+ �t/t0	2 � (4B.27)

Here a0� 0 are integration constants, satisfying

e�00 = V0 e2�0 = 4

t20
� (4B.28)
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Such a solution acquires a less trivial representation in the E-frame where one finds,
using the standard transformations (2.64), in conformal time,

aE��	= a0 e− �0
d−1

(
1+ �2

�2
0

) 1
d−1

�

e� = e�0

(
1+ �2

�2
0

)−1

�

E��	= 0a
d
0

(
1+ �2

�2
0

)− d
d−1

� (4B.29)

with �0 = t0/a0. In this frame the metric describes a non-trivial evolution from accelerated
contraction to decelerated expansion, sustained by the dilaton and by a symmetric, bell-
like evolution of the energy density of the pressureless fluid. The two asymptotic branches
of such a “self-dual” solution are simply related by a time-reversal transformation, as
appropriate to the E-frame metric [12].

Another, possibly realistic example can be obtained by considering a radiation fluid,
with equation of state � = 1/d, and its “dual” partner, with equation of state � = −1/d
(this second type of source can be phenomenologically interpreted as a gas of strings
“frozen” outside the horizon [35, 36, 55], or also as a gas of “winding” strings [56, 57],
see Section 6.3). For this example let us come back to Eq. (4B.22), and assume that
�2 < 0 (we can satisfy this condition, for instance, by setting x1 = x0 in Eq. (4B.24)).
The integration of Eqs. (4B.22) then provides regular solutions which can be written in
the form [7]

�= �0 + ln �D�−1/�− 2�x0 −b
���� T�x	�

a= a0�D��/� exp
[
��2�x1 −b	

���� T�x	

]
� (4B.30)

where

�= 1−d�2 = d−1
d

� T�x	= tan−1

(
�x+b/2

���
)

(4B.31)

(�0 and a0 are integration constants). Their combination gives

e� = ad0 e�0 �D� d�−1
� exp

[
2��x1d�−x0	+b�1−d�	

���� T�x	

]
� (4B.32)

while from the result (4.176) we obtain the (positive) energy density of the fluid
source,

= L−2 e�0D
�−1
� exp

[
−2�x0 −b

���� T�x	

]
� (4B.33)

It may be interesting to note that for a radiation fluid we have

�

�
= 1
d−1

= 1−�
�

� (4B.34)
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Figure 4.8 The plots of the solutions (4B.30) with constant equation of state
� = 1/d (upper thin curve) and � = −1/d (lower thin curve) compared to the
plot of the solution (4B.41) with time-dependent equation of state, interpolating
between � = −1/d and � = 1/d (bold curve). The vacuum asymptotic solutions
(4.29), represented by the dashed lines, are not approached because of the
presence of sources. The solutions (4B.30) have been plotted for d = 3, x1 = 1,
x0 = 1/3 and �= L2V0 = 8/9. The solution (4B.41) has been plotted for d = 3,
x0 = 0 and x1 = �= L2V0 = 1.

so that, asymptotically,  ∼ a−1. As  ∼ dx/dt (from the definition (4.68)), it turns
out that the time parameter x asymptotically coincides with the conformal time co-
ordinate: dt ∼ adx, from which x ∼ t�d−1	/�d+1	. Also, for the radiation solution, the
dilaton (4B.32) goes to a constant as x → ±�. The radiation-dominated solution with
� = 1/d thus provides a smooth interpolation between an initial phase of accelerated
contraction, a ∼ �−t	2/�d+1	, constant dilaton � = �− and growing curvature, to a final
phase of decelerated expansion, a ∼ t2/�d+1	, constant dilaton � = �+ and decreasing
curvature. There are neither horizons nor singularities in the curvature and in the string
coupling.

The dual solution with �̃ = −� = −1/d is related to the radiation solution by a
scale-factor duality transformation, i.e. by

ã= a−1� ̃= � �̃= �� (4B.35)

as also evident from the solutions (4B.30) and (4B.33), written explicitly in terms of
�. One obtains, in that case, a smooth evolution from an initial phase of accelerated
expansion, ã∼ �−t	−2/�d+1	, and logarithmically increasing dilaton, to a final phase of de-
celerated contraction and logarithmically decreasing dilaton. Again, the maximal curvature
regime is crossed over without singularities.

The two duality-related solutions, with � = ±1/d, thus perform a smooth transition
from the pre- to the post-big bang sector of Fig. 4.3. The evolution of the scale factor,
however, is non-monotonic, as the gravi-dilaton system evolves from contraction to
expansion, or vice-versa. This is clearly illustrated in Fig. 4.8, where we have plotted
the radiation-dominated solution and its dual partner for a particular set of parameters
corresponding to �2 < 0 (we have plotted, in particular, the case with b= 0 and c= �=
1−d�2, so that D�x	= �1−d�2	�1+x2	).

The two examples we have given suggest the possibility of describing a monotonic
evolution, from pre- to post-big bang expansion, based on a non-barotropic fluid source
in which the equation of state is time dependent, and evolves smoothly from � = −1/d at
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−� to � = 1/d at +�. A particular, integrable model of such behavior (justified by the
study of the equation of state of a string gas in rolling backgrounds [55]) is given by [7]:

p


= x

d�x2 +x2
1	

1/2
� (4B.36)

We can still apply Eq. (4B.21) to this case, with the exception of the result for the �
matrix, which is now obtained by integrating the definition � ′ = T/:

��x	= 1
d

(
x2 +x2

1

)1/2
(

0 I
−I 0

)
� (4B.37)

The new equations for a and � are then

�
′ = −2�x+x0	

D�x	
�

a′

a
= 2
d

�x2 +x2
1	

1/2

D�x	
� (4B.38)

where

D�x	= �x+x0	
2 − 1

d
�x2 +x2

1	+L2V0� (4B.39)

We integrate here the above equations for the particularly simple choice of parameters
x0 = 0 and x2

1 = �= L2V0, for which

D�x	= d−1
d

�x2 +x2
1	� (4B.40)

More general choices of the parameters may lead to solutions characterized by a short con-
traction stage between the initial inflationary expansion and the final radiation-dominated
epoch [58]. This may have interesting phenomenological applications, but does not
modify the global properties of the cosmological background, so that the following dis-
cussion concentrates on the simplifying choice (4B.40). In such a case, the integration of
Eqs. (4B.38) gives

a= a0

(
x+
√
x2 +x2

1

) 2
d−1

� e� = e�0
(
x2 +x2

1

)− d
d−1 � (4B.41)

where a0��0 are integration constants. Their combination, together with Eqs. (4.176) and
(4B.36), leads to

e� = e�ad = ad0 e�0

(

1+ x
√
x2 +x2

1

) 2d
d−1

�

= d−1
dL2

e�0
(
x2 +x2

1

)− 1
d−1 �

e� = d−1
dL2

e2�0
(
x2 +x2

1

)− d+1
d−1 �

pe� = d−1
d2L2

e2�0x
(
x2 +x2

1

)− 3d+1
2�d−1	 �

(4B.42)

The smooth behavior of the solution (4B.41) in the plane ��̇�
√

3H	 is illustrated in
Fig. 4.8.
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Figure 4.9 Time-evolution of the relevant geometric and matter variables for
the isotropic, self-dual solution given in Eqs. (4B.41) and (4B.42). The plots
correspond to the particular case d = 3, x1 = 1, L= 1, �0 = 0 and a0 = e−2/3.

The above solution is self-dual, in the sense that ��x	= ��−x	, and

[
a

a0x
2/�d−1	
1

]

�x	=
[

a

a0x
2/�d−1	
1

]−1

�−x	 (4B.43)

(with an appropriate choice of the integration constant a0 it is always possible to set to 1
the fixed point of the scale-factor inversion). We also note that, asymptotically,

x→ −� ⇒ a∼ �−x	−2/�d−1	 ∼ ∼ dx
dt
�

x→ +� ⇒ a∼ x2/�d−1	 ∼ 1


∼ dt
dx
�

(4B.44)

In the asymptotic limit we can then easily re-express the solution in terms of the cosmic-
time coordinate, to find that it describes a monotonic evolution from an initial state of
accelerated expansion and growing dilaton, associated with negative-pressure matter,

t→ −� ⇒ a∼ �−t	− 2
d+1 � e� ∼ �−t	− 4d

d+1 � p= −
d
� (4B.45)

towards a final, radiation-dominated state of decelerated expansion and asymptotically
frozen dilaton,

t→ � ⇒ a∼ t
2
d+1 � e� ∼ const� p= 

d
� (4B.46)

The curvature parameters H and Ḣ , the effective energy density and pressure, and the
string coupling g2

s , are everywhere bounded as illustrated in Fig. 4.9.
The interpolating solution (4B.41) is associated with a dual partner which can be

obtained by applying the transformation (4.44), and which corresponds to the same type
of time-dependent equation of state as that of Eq. (4B.36), but with the opposite sign.
It describes a background in monotonic contraction, with the sources evolving from
positive to negative pressure. The combination of the two types of solutions may suggest
a �d+n	-dimensional, anisotropic scenario, in which the d-dimensional “external” spatial
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sections of the geometry are isotropically and monotonically expanding, with scale factor
a�t	, sourced by an effective, time-dependent pressure p such that

p


= 1
d+n

x

�x2 +x2
1	

1/2
� (4B.47)

while n-dimensional “internal” spatial sections are isotropically and monotonically con-
tracting, with scale factor b�t	= a−1�t	, sourced by an effective, time-dependent pressure
q such that

q


= − 1

d+n
x

�x2 +x2
1	

1/2
� (4B.48)

Equations (4B.38) become, in this case,

�
′ = −2�x+x0	

D�x	
�

a′

a
= −b

′

b
= 2
d+n

�x2 +x2
1	

1/2

D�x	
� (4B.49)

where

D�x	= �x+x0	
2 − 1

d+n�x
2 +x2

1	+L2V0� (4B.50)

Choosing, as before, x0 = 0 and x2
1 = L2V0, we can avoid the real zeros of D�x	, and the

integration leads to the following exact solution [7]:

a= a0

(
x+
√
x2 +x2

1

) 2
d+n−1

= b−1�

e� = e�0
(
x2 +x2

1

)− d+n
d+n−1 �

(4B.51)

from which

e� = ad−n
0 e�0

(
x+
√
x2 +x2

1

) 2�d−n	
d+n−1 (

x2 +x2
1

)− d+n
d+n−1 �

= �d+n−1	e�0

�d+n	L2

(
x2 +x2

1

)− 1
d+n−1 �

(4B.52)

This anisotropic solution describes a higher-dimensional scenario which includes in-
flation and dynamical dimensional reduction. By exploiting the asymptotic behavior of
, and the relation between x and t, we may recover for x→ ±� a particular example of
the general anisotropic solution (4.99). For x→ −� we find, in particular, that the initial
configuration is characterized by the accelerated expansion of d dimensions, driven by a
negative exterior pressure, and by the accelerated contraction of n dimensions, driven by
a positive internal pressure:

a∼ �−t	−2/�d+n+1	 = b−1� p= − 

�d+n	 = −q < 0� (4B.53)

In the opposite limit x → � we find instead a final configuration characterized by the
decelerated expansion of d dimensions, driven by positive-pressure radiation, and by the
decelerated contraction of n dimensions, damped by a negative internal pressure:

a∼ t2/�d+n+1	 = b−1� p= 

�d+n	 = −q > 0� (4B.54)
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It is important to remark that the non-local potential V��	 plays no role in determining the
kinematics of such asymptotic configurations, but is only effective in arranging a smooth
connection between the two branches when approaching the high-curvature regime.

For this last anisotropic solution the background curvature scale has the same qualitative
behavior as that illustrated in Fig. 4.9. There is an important difference, however, for
the dilaton field at large positive times: the dilaton is not stabilized but is decreasing
asymptotically, driven by the decelerated contraction of the internal dimensions. From
Eq. (4B.52) we find that, for x→ +�,

e� ∼ x− 4n
d+n−1 ∼ t−

4n
d+n+1 � (4B.55)

One thus obtains, in this background, an interesting link between the variation of the
coupling constants (controlled by the dilaton in the context of string models of unifica-
tions), and the contraction of the internal dimensions. For a sufficiently slow contraction
the scenario could be phenomenologically acceptable, and in agreement with recent ob-
servational results [13].
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5

Inflationary kinematics

We have shown in Chapter 4 that the symmetries of the low-energy string cosmo-
logy equations can be used to obtain new solutions, characterized by kinematic
properties which are of “dual” type with respect to the known solutions of the
standard cosmological scenario. In particular, we have stressed that such new solu-
tions are characterized by an accelerated evolution of the background geometry,
and thus describe a phase of cosmological inflation.

For a better illustration of this important point it should be recalled that the
“naturalness” problem of the initial conditions of the standard cosmological scen-
ario can be solved (as discussed in Chapter 1) by introducing a suitable period of
“inflationary” evolution, during which the function

r�t� = �aH�−1 (5.1)

decreases in time – instead of growing as in the epoch of standard decelerated
evolution. In particular, if the inflationary kinematics is parametrized by a power-
law scale factor, a�t� ∼ t�, we obtain the explicit condition

r�t� = �ȧ�−1 ∼ t1−� → 0� (5.2)

to be satisfied as the cosmic-time parameter increases from the beginning to the
end of inflation.

In this chapter we will illustrate the different ways in which this condition
can be implemented in general, and in the context of models based on the string
cosmology equations in particular. The present discussion will purely concen-
trate on the kinematic aspects of the various classes of metric backgrounds,
while the important phenomenological consequences of the different kinematics
(concerning amplification of fluctuations, anisotropy production, structure forma-
tion, � � � ) will be discussed in the following chapters (see, in particular, Chapters 7
and 8).

194
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5.1 Four different types of inflation

The condition (5.2) can be satisfied, in general, by two different classes of (homo-
geneous and isotropic) metric backgrounds. The first class of inflationary solutions
is defined over a positive range of values of the cosmic-time coordinate, and can
be parametrized by the following scale factor,

Class I a ∼ t�� � > 1� t > 0� t → +�� (5.3)

This parametrization, which satisfies Eq. (5.2), represents a phase of “power-
inflation” [1], characterized by accelerated expansion

ȧ ∼ �t�−1 > 0� ä ∼ ���−1�t�−2 > 0� (5.4)

and decreasing curvature,

H = ȧ

a
= �

t
> 0� Ḣ = − �

t2
< 0� (5.5)

It is probably useful to point out explicitly that we call “accelerated” the case in
which sign �ȧ� = sign �ä�, quite independently of the sign of ȧ. Also, taking H2

as a generic indicator of the time behavior of the space-time curvature scale, the
curvature will be growing for a phase in which d�H2�/dt > 0, namely sign �H� =
sign �Ḣ�, and decreasing in the opposite case, quite independently from the sign
of H .

This first class of backgrounds includes the limiting case � → �, which we
may call “de Sitter inflation” [2],

a ∼ ekt� k = const > 0� t > 0� t → +�� (5.6)

since the scale factor grows exponentially in cosmic time, as in the case of the
spatially flat chart of the de Sitter solution (see Eq. (1.98)). This scale factor also
satisfies Eq. (5.2), and represents a phase of accelerated expansion,

ȧ ∼ k ekt > 0� ä ∼ k2 ekt > 0� (5.7)

at constant curvature,

H = k = const� Ḣ = 0� (5.8)

The second class of inflationary backgrounds is defined over a negative range
of values of the cosmic-time coordinate, and is parametrized by the following
scale factor,

Class II a ∼ �−t��� � < 1� t < 0� t → 0−� (5.9)

This case also satisfies Eq. (5.2), and includes two possible subclasses. One is

Class IIa � < 0� (5.10)



196 Inflationary kinematics

representing a phase of “super-inflation” [3, 4, 5] (or “pole-inflation”), charac-
terized by accelerated expansion,

ȧ ∼ −��−t��−1 > 0� ä ∼ ���−1��−t��−2 > 0� (5.11)

and growing curvature scale,

H = − �

�−t�
> 0� Ḣ = − �

t2
> 0� (5.12)

The other is

Class IIb 0 < � < 1� (5.13)

representing a phase of “accelerated contraction” [6]

ȧ ∼ −��−t��−1 < 0� ä ∼ ���−1��−t��−2 < 0� (5.14)

and growing curvature scale,

H = − �

�−t�
< 0� Ḣ = − �

t2
< 0� (5.15)

An important remark, at this point, is in order. All inflationary backgrounds of
Class I are defined in a range of positive values of the cosmic-time coordinate,
and describe accelerated evolution from the higher-curvature towards the lower-
curvature regime, as occurs in typical models of slow-roll inflation [7] (with the
exception of the limiting case of de Sitter inflation, where the curvature stays
constant; see however the discussion of Section 1.2 on the problems concerning
an infinite past extension of such an expanding solution). If extrapolated up to
their maximum (classical) limit of validity, these geometries are characterized by
an initial curvature singularity, located at some finite time in the past, and are
thus appropriate to describe a phase of inflation occurring after the big bang,
much in agreement with the standard cosmological picture in which the Universe
is expected to emerge from the initial singularity.

The evolution of the Class II backgrounds, defined in a negative time range,
goes instead from the lower- to the higher-curvature regime and, if extrapolated
to its maximum validity limit, is characterized by a final singularity, occurring
at a given future value of the time coordinate. This class of backgrounds is
thus appropriate to describe a phase of inflation occurring before the big bang
(assuming the singularity smoothed out by string effects), and is typical of the
scenario suggested by the self-duality principle discussed in the previous chapter,
as well as of models characterized by a BPS initial configuration and by a
shrinking scale factor, formulated in the context of the ekpyrotic [8, 9] or cyclic
[10, 11] scenarios. For the duality-generated inflationary solutions in particular,
the two subclasses IIa and IIb turn out to be dynamically equivalent, in the



5.1 Four different types of inflation 197

sense that they may be interpreted as two possible kinematic descriptions of the
same inflationary model, represented in two different (but conformally related)
frames.

This possible equivalence of Classes IIa and IIb will be illustrated in the
next section. Here we will conclude the discussion of the different inflationary
classes by reporting their convenient representation in terms of the conformal-
time coordinate 	, such that dt = a d	. Indeed, all types of inflation that we
have introduced can be parametrized in the negative range of values of the
conformal time coordinate, with an appropriate power 
 ranging from −�
to �. This parametrization will be very useful to emphasize the phenomeno-
logical differences among the various classes, as we shall see in Chapters 7
and 8.

Let us define

a�	� = �−	�
� −� ≤ 	 < 0� −� ≤ 
 ≤ +�� (5.16)

The particular case 
 = −1 gives t ∼ ln�−	�−1, and we recover for a�t� the
exponential de Sitter parametrization, Eq. (5.6). For 
 �= −1, we obtain, in
general,

−�1+
�t = �−	�1+
� (5.17)

so that

a = �−	�
 = �−�1+
�t��� � = 


1+

� (5.18)

We may thus consider three cases.

(1) The case 
 < −1. In this case t in Eq. (5.18) varies over a range of positive values,
and the power � is always larger than one. The scale factor (5.16) thus describes a
phase of power-inflation, according to the definition (5.3).

(2) The case −1 < 
 < 0. In this case the range of values of t is negative, and the power
� also turns out to be negative. The scale factor describes super-inflation, according
to Eqs. (5.9) and (5.10).

(3) The case 
 > 0. The range of values of t is negative, again, and we find that
0 < � < 1. The scale factor describes accelerated contraction, according to Eqs. (5.9)
and (5.13).

These three different cases, plus the de Sitter one, are graphically summarized in
Fig. 5.1. Considering the behavior of the geometry at the two temporal boundaries,
it may be noted that the scale factor (5.16) goes to zero for 	 → −� if 
 < 0,
and for 	 → 0− if 
 > 0. The curvature, on the other hand, diverges for 	 → −�
only if 
 < −1, while it diverges for 	 → 0−, if 
 > −1. This clearly shows that
the scale factor may safely go to zero without being associated with a curvature
singularity. Conversely, the curvature may diverge even if the scale factor goes



198 Inflationary kinematics

α
super-inflation

de Sitter

power-inflation acc. contraction
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Figure 5.1 The four types of inflationary kinematics as a function of the power

, according to the conformal-time parametrization of Eq. (5.16).

to infinity. An example of this last possibility, the so-called “big rip” singularity,
has been recently discussed as the possible fate of our Universe in the context of
“phantom” models of the dark energy field [12], describing the present stage of
accelerated cosmic evolution (see Chapter 9).

5.2 Dynamical equivalence of super-inflation and accelerated contraction

In the context of the duality-generated solutions of the string cosmology equations,
the background geometries of Class IIa and Class IIb may correspond to different
kinematic representations of the same inflationary model, in two different frames.
A metric background representing a phase of super-inflationary expansion in the
S-frame, in fact, tends to become a metric describing a phase of accelerated
contraction when it is transformed to the E-frame [6, 13].

This effect can be conveniently illustrated by recalling here the S-frame, aniso-
tropic and vacuum solution already presented in Eqs. (4.35) and (4.36), in which
the spatial sections of the background geometry are factorizable as the direct
product of two conformally flat manifolds, with d and n dimensions, respectively
expanding with scale factor a and contracting with scale factor b = a−1. In the
cosmic-time gauge we have

a�t� = �−t�−1/
√

d+n� b�t� = �−t�1/
√

d+n� t < 0� (5.19)

The associated dilaton field,

�t� =
(
d−n+√

d+n
)

ln a� t < 0� (5.20)

is growing as t → 0−, provided d+√
d+n > n.

This solution of the low-energy string effective action describes an accelerated
evolution of all dimensions, as can be easily checked in the conformal-time gauge,
where

a = �−	�
1� b = �−	�
2� 
1 = −
2 = − 1

1+√
d+n

� (5.21)

The first power satisfies −1 < 
1 < 0, so that the d “external” dimensions expand
in a super-inflationary way; the second power satisfies 
2 > 0, implying that the n
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“internal” dimensions undergo accelerated contraction (see Fig. 5.1). Let us now
ask if (and how) the kinematic is different when this solution is transformed to
the E-frame.

The transformation of an anisotropic solution like this could be performed by
directly applying the general prescription presented in Chapter 2, see Eqs. (2.39)
and (2.43). It is instructive, however, to rederive the transformation by working
with the explicit form of the free gravi-dilaton action (2.1), written for a
Bianchi-I-type metric without fixing the temporal gauge, i.e. by setting

 = �t�� g00 = N 2�t�� gij = −a2
i �t��ij� (5.22)

Defining Hi = ȧi/ai, F = Ṅ /N , and inserting explicitly (whenever needed) the
sum symbol, we obtain

���2 = ̇2

N 2
�

√−g = N
∏

i

ai�

�0i
j = Hi�

j
i � �ij

0 = aiȧi

N 2
�ij� �00

0 = Ṅ

N
≡ F�

R = 1
N 2

⎡

⎣2F
∑

i

Hi −2
∑

i

Ḣi −
∑

i

H2
i −

(
∑

i

Hi

)2
⎤

⎦ �

(5.23)

By noting that

d
dt

[
2

e−

N

∏

k

ak

∑

i

Hi

]

= e−

N

(
∏

k

ak

)⎡

⎣2
∑

i

Ḣi −2F
∑

i

Hi −2̇
∑

i

Hi +2

(
∑

i

Hi

)2
⎤

⎦ � (5.24)

we can rewrite the S-frame action (2.1) in the standard quadratic form, by elim-
inating the terms linear in the first derivative of H and N . We obtain, modulo a
total derivative (in units 2�d−1

s = 1),

S = −
∫

dd+1x
√	g	 e−

(
R+�2)

= −
∫

ddx dt

(
d∏

i=1

ai

)
e−

N

⎡

⎣̇2 −∑
i

H2
i +

(
∑

i

Hi

)2

−2̇
∑

i

Hi

⎤

⎦ � (5.25)
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In the same anisotropic background, on the other hand, the Einstein action takes
the form (again, modulo a total derivative, and in units 2�d−1

P = 1)

S̃�̃g� ̃� = −
∫

dd+1x
√	̃g	

(
R̃− 1

2
�̃̃2

)

= −
∫

ddx
dt

Ñ

(
d∏

i=1

ãi

)⎡

⎣−1
2

˙̃


2
−∑

i

H̃2
i +

(
∑

i

H̃i

)2
⎤

⎦ � (5.26)

It can be immediately checked that the field redefinition (at fixed coordinates!)

ãi = ai e−/�d−1�� Ñ = N e−/�d−1�� ̃ = 

√
2

d−1
� (5.27)

gives

H̃i = Hi −
̇

d−1
� (5.28)

and directly transforms the E-frame action (5.26) into the S-frame action (5.25).
The above transformation generalizes Eq. (2.64) to the anisotropic case, for an
arbitrary choice of the temporal gauge.

Let us now apply this result to the particular solution (5.19). Using the explicit
form of the dilaton solution, Eq. (5.20), we obtain

ã = a�2n−1−√
d+n�/�d+n−1�� b̃ = b a�n−d−√

d+n�/�d+n−1�� (5.29)

(notice that ã �= b̃−1). For the study of the kinematic properties of ã and b̃, it
is then convenient to use the conformal-time gauge, by imposing Ñ dt = ã d	̃.
Since the conformal-time coordinate is the same in the two frames (in fact, if we
choose N = a, then Ñ = ã from the transformation (5.27)), we can directly use
for a�	� and b�	� the expressions (5.21). The result is

ã�	� = �−	�
̃1� 
̃1 = − 2n−1−√
d+n

�1+√
d+n��d+n−1�

�

b̃�	� = �−	�
̃2� 
̃2 = 2d−1+√
d+n

�1+√
d+n��d+n−1�

�

(5.30)

Using the kinematic definitions illustrated in Fig. 5.1 we can now identify the
type of inflationary behavior of the transformed solution.

In the isotropic case, corresponding to n = 0� it can be easily checked that the
S-frame super-inflationary expansion, a ∼ �−	�−1/�1+√

d�, becomes in the E-frame
accelerated contraction, ã ∼ �−	�1/�d−1�. For the anisotropic configuration with
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n �= 0, on the contrary, the E-frame evolution of the external dimensions described
by ã may, in principle, remain of the super-inflationary type, provided

2n > 1+√
d+n� (5.31)

If we require, however, that the S-frame solution describe a growing dilaton
(as suggested, for instance, by the self-dual scenario introduced in the previous
chapter), then the condition (5.31) turns out to be in competition with the growing-
dilaton condition d+√

d+n > n (see Eq. (5.20)), which forbids too large values
of n. By choosing, for instance, d = 3, and imposing both conditions, we find
that the E-frame scale factor ã is (super-inflationary) expanding only for n = 2.
In all other cases the power 
̃1 turns out to be positive, so that the d-dimensional
part of the metric is transformed from super-inflation to accelerated contraction.

It should be stressed, in any case, that the inflationary properties of the ac-
celerated metric – namely, the solution of the kinematic problems through the
condition (5.2), the possible amplification of the vacuum fluctuations (discussed
in the following chapters), and so on – keep their validity, quite apart from the
particular choice of S-frame or E-frame representation, and from the expanding or
contracting behavior of the scale factor. The condition which fixes the minimum
duration of inflation as a necessary condition of any successful scenario, in par-
ticular, has the same form in both frames (see Eq. (1.92)): if satisfied in a frame it
is thus automatically satisfied also in the other, conformally related representation
[6, 13]. This means that the inflationary properties of a background are frame
independent, at least for frames corresponding to consistent representations of the
same underlying physical model.

Let us finally notice that the kinematical properties of the transformed solutions
can be deduced also through a direct computation in the cosmic-time gauge, by
setting Ñ dt = d̃t, and using the relation (5.27) connecting N and Ñ . Starting from
the S-frame solution (5.20), in the gauge N = 1, we obtain

d̃t = dt e−/�d+n−1�� �−̃t � ∼ �−t��
√

d+n�d+n�+d−n�/�
√

d+n�d+n−1��� (5.32)

Thus, from Eq. (5.29),

ã� t̃ � = �−̃t ��̃1� �̃1 = − 2n−1−√
d+n√

d+n�d+n�+d−n
�

b̃� t̃ � = �−̃t ��̃2� �̃2 = 2d−1+√
d+n√

d+n�d+n�+d−n
�

(5.33)

The computation of ˙̃a, ¨̃a and ˙̃
H (where the dots denote differentiation with respect

to t̃ ) then confirms the previous results concerning the kinematical properties
of the transformed background. A similar analysis, with similar results, can be
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repeated for other examples of accelerated backgrounds, possibly including matter
sources and other fields in the effective action.

5.3 Horizons and kinematics

As stressed in Section 5.1, the accelerated backgrounds of Class I are typical of
the conventional (i.e. post-big bang) inflationary scenario, while those of Class II
are peculiar to string cosmology models of (pre-big bang) inflation. The difference
between the two classes is not only of kinematical type (as for Class IIa and Class
IIb), but is also dynamical, and may be conveniently illustrated using the notion
of “event horizon” already introduced in Chapter 1.

We should recall that the proper distance de�t� of the event horizon from
a comoving observer, at rest in a homogeneous and isotropic background, is
given by

de�t� = a�t�
∫ tM

t
dt′a−1�t′�� (5.34)

Here tM is the maximal allowed extension, towards the future, of the cosmic-time
coordinate in the given space-time manifold. This integral converges for all types
of accelerated (expanding or contracting) scale factors. For Class I metrics and,
in particular, for power-inflation (� > 1, t > 0), we have

de�t� = t�
∫ �

t
dt′t′−� = t

�−1
= �

�−1
H−1�t�� (5.35)

while, for de Sitter inflation,

de�t� = eHt
∫ �

t
dt′e−Ht′ = H−1 = const� (5.36)

For Class II metrics (� < 1, t < 0), we have

de�t� = �−t��
∫ 0

t
dt′�−t′�−� = �−t�

1−�
= �

�−1
H−1�t� (5.37)

(note that de is always positive, even for accelerated contraction where H < 0,
but � > 0 and �− 1 < 0). In all cases the proper distance de evolves in time as
the so-called “Hubble horizon” (also called the “Hubble radius”, i.e. the inverse
of the modulus of the Hubble parameter), and then as the inverse of the curvature
scale. Thus, the proper size of the horizon will be constant or growing in models
of post-big bang inflation (Class I), decreasing in pre-big bang inflation (Class II),
in both the S-frame and E-frame representations.

Such an important difference is illustrated in Figs. 5.2 and 5.3, where the
dashed lines represent the time evolution of the horizon, and the solid curves
the evolution of the scale factor. The shaded area at the time t0 represents the
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Figure 5.2 Qualitative evolution of the Hubble horizon (dashed lines) and of
the scale factor (solid curves) in a model of standard, post-big bang inflation at
constant curvature.

pre-big bang
inflation

standard
evolution

time

tf

ti

t0

H 

–1(t)

a(t)

a(t)

a(t)~

Figure 5.3 Qualitative evolution of the Hubble horizon (dashed lines) and of
the scale factor (solid curves) in a model of pre-big bang inflation, represented
by the S-frame expansion a�t� or by the E-frame contraction ã�t�.
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portion of the Universe inside our present Hubble radius. As we go back in time,
according to the standard scenario, the Hubble horizon shrinks linearly while the
decrease of the scale factor is slower, so that, at the beginning of the standard
evolution t = tf , we are left with a causal horizon much smaller than the portion
of the Universe that we presently observe. This is the “horizon problem” already
presented in Section 1.2.

In Fig. 5.2 the phase of standard evolution is preceded by a phase of conven-
tional (in particular de Sitter) inflation. Going back in time, for t < tf , the scale
factor keeps shrinking, and our portion of the Universe “re-enters” the horizon
during a phase of constant (or slightly growing in time) Hubble radius. In Fig. 5.3
the standard evolution is preceded in time by a phase of pre-big bang inflation.
The Universe “re-enters” the Hubble radius during a phase of shrinking horizon.
To emphasize the difference, we have plotted the evolution of both the S-frame,
expanding scale factor, a, and the E-frame, contracting scale factor, ã. It may
be noted that, in models of pre-big bang inflation, the proper size of the initial
portion of our Universe may be very large in string (or Planck) units at the time
of re-entry, but always no larger than the horizon itself [14], as clearly illustrated
in the picture.

The initial horizon H−1
i , on the other hand, is large because the initial curvature

scale is small (in string models, in particular, the initial configuration satisfies
Hi � �−1

s ). This is a basic consequence of the choice of the initial state which, for
models inspired by the self-duality principle, is expected to approach the flat, cold
and empty perturbative vacuum (H → 0,  → −�), as discussed in the previous
chapter (and also in agreement with the principle of “asymptotic past triviality”
introduced in [15]). Such an initial state has to be contrasted with the highly
curved initial state of the conventional slow-roll scenario, which is more deeply
anchored to the standard big bang picture, and which describes a Universe starting
to inflate at (or soon after) the Planck scale, with Hi ∼ �−1

P .
For a better illustration of the possible “revolutionary” approach suggested by

string theory to the dynamics of the very early Universe – and, in particular, to the
initial cosmological configuration – it will be instructive to provide an explicit,
quantitative estimate of the size of the initial horizon within a typical example of
pre-big bang (or “shrinking-horizon”) inflation.

It will be enough, for this purpose, to consider an oversimplified model in
which the standard radiation era is extrapolated back in time down to the Planck
scale, and is just preceded by a phase of accelerated evolution. One finds that,
at the beginning of the radiation era, the size of the Hubble horizon is of order
of the Planck length, �P ∼ 10−1�s, while the proper size of the homogeneous
and causally connected region inside our present Hubble radius (rescaled down
according to the standard scenario) is unnaturally larger than the horizon by the
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factor �f/�P ∼ 1030 (or �f/�s ∼ 1029), as already remarked in Chapter 1. Going
back in time during the inflationary epoch, the ratio r = �aH�−1 must thus increase
at least by the factor 1030, so as to push the homogeneous region inside the
horizon by the amount required to compensate for the effects of the subsequent
decelerated evolution. Using the relation r ∼ 	 we can express the condition of
efficient inflation (1.92), in this case, as

rf

ri
= 		f 	

		i	
<∼ 10−30� (5.38)

where 	f and 	i are, respectively, the epochs at which inflation ends and begins.
Let us choose, as our explicit example, a phase of d-dimensional isotropic

super-inflation, described by the S-frame scale factor

a ∼ �−t�−1/
√

d ∼ �−	�−1/�1+√
d� (5.39)

(according to Eqs. (5.19), (5.21) with n = 0). By applying the condition (5.38)
it follows that, going back in time during inflation, the scale factor decreases by
the factor ai/af � 10−30/�1+√

d�. Therefore, the proper size of the homogeneous
region at the beginning of a phase of “minimal” efficient inflation is still very large
in string units (which are the natural units for the S-frame variables that we are
considering):

�i = �f

(
ai

af

)
∼ 10− 30

1+√
d 1029�s ∼ 10

30
√

d

1+√
d 10−1�s� (5.40)

For instance, �i ∼ 1018�s if d = 3. This result has to be contrasted with the case
of standard slow-roll inflation which, for the purpose of the present discussion,
we can approximate as a phase of de Sitter inflation with a ∼ �−	�−1. In this
case, going back in time during inflation, the scale factor turns out to be re-
duced by the factor 10−30, so that the size of the initial homogeneous region
is just of order 10−1�s, like the horizon which stays (approximately) frozen
(see Fig. 5.2).

The contrast is even more striking if we express the initial size �i in Planck
units, and we take into account that, in the S-frame, the effective Planck length
varies (according to Eq. (2.3)) as �P = �s exp�/�d − 1��. Using the isotropic
limit (n = 0) of the solutions (5.20) and (5.21) we can then estimate that the
initial value of the Planck length, �P�	i�, is smaller than the (standard) final value
�P�	f� ∼ 10−1�s by the factor

�P�	i�

�P�	f�
=
(

	f

	i

) √
d

d−1
<∼ 10−30

√
d

d−1 � (5.41)
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As a consequence, the lower bound (5.40) is enhanced (in Planck units) by the
factor �P�	f�/�P�	i�, and we obtain

�i = �f

(
ai

af

)
�P�	f�

�P�	i�
∼ 10

30d
d−1 �P� (5.42)

corresponding to �i
>∼ 1045�P for d = 3. We may note that the left-hand side of

Eq. (5.42) exactly represents the initial size of the homogeneous region evaluated
in the E-frame, where �i = �f �̃ai/̃af�. In this frame, where �P is constant, the
inflation is represented as a contraction: following the evolution of the scale factor
back in time we are led to a much larger size of the initial homogeneous region,
as clearly illustrated also in Fig. 5.3.

However, it should be stressed that a large size of the initial homogeneous
region (in Planck or string units) is in contrast neither with the spirit of the
classical inflationary paradigm, nor with the solution of the kinematic problems
of the standard cosmological scenario. Without the presence of the phase char-
acterized by accelerated evolution, in fact, the initial homogeneous region would
be much larger than the horizon itself (see the spatial sections of Figs. 5.2, 5.3 at
the time t = tf ). For those models in which inflation occurs at growing curvature
(or shrinking horizon) the initial region is large in string units, but not larger than
the corresponding initial horizon, as we now verify explicitly.

Consider again the super-inflationary, S-frame solution (5.39). As we go back
in time, the size of the horizon H−1 grows linearly in cosmic time. Starting with
the value H−1

f = �P = 10−1�s, we can compute, for the given example, the ratio
of the initial to final horizon size as

H−1
i

H−1
f

= ti

tf
=
(

	i

	f

) √
d

1+√
d

� (5.43)

Taking into account the condition (5.38), we find that the initial horizon is at least
as large as

H−1
i ∼ 10

30
√

d

1+√
d 10−1�s� (5.44)

i.e. exactly as large as the proper size (5.40) of the initial homogeneous region.
The same result is obtained if we repeat the same analysis in Planck units for the
E-frame metric (as illustrated in Fig. 5.3).

We should mention, in addition, that a large horizon in Planck units at the
beginning of inflation makes the model free from the so-called “trans-Planckian
problem” [16], which affects all models of inflation where the size of the initial
horizon is Planckian. It is clear, in fact, that if the proper length � of a metric
fluctuation (for instance, a gravitational wave) has to be of sub-horizon size at the
beginning of inflation (in order to represent a causal perturbation present today
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inside our Hubble radius), then ��ti� < H−1
i so that, for H−1

i ∼ �P, its initial proper
energy was larger than Planckian, ��ti� = �−1�ti� > Hi ∼ MP. On the other hand,
the extrapolation to this regime of known, sub-Planckian physics is problematic,
and the cosmological predictions one obtains in this way are questionable. Toy
model calculations have shown that the inflationary results on the spectrum of
perturbations may indeed be strongly sensitive to the details of the trans-Planckian
initial conditions [17]. This problem is absent if H−1

i � �P since, in that case,
the ratio �/MP = �P� ∼ ã−1 decreases as we go back in time during inflation,
so that the initial fluctuations are always normalized well inside the perturbative
regime (see also Chapters 7 and 8).

Let us finally comment on the “naturalness” of the choice of initial condi-
tions for a phase of inflationary evolution. The Planck (or string) length certainly
provides a natural standard [18] for the size of the initial homogeneous patches
when initial conditions are imposed on a cosmological configuration approaching
the high-curvature, quantum gravity regime (as in models of post-big bang infla-
tion). In models of pre-big bang inflation, however, initial conditions are to be
imposed when the Universe is deeply inside the low-curvature, weak-coupling,
highly classical regime. In that case, the Planck or string length is certainly not a
typical scale for the background geometry, while the classical horizon scale H−1

seems to provide the relevant standard for a natural homogeneity scale [14].
It should be noted, also, that if we assume the saturation of the holographic

bound applied to a cosmological metric [19–22], then a large (homogeneous)
Hubble horizon should imply a large initial entropy, at least if Si ∼ (horizon area in
Planck units). This should correspond, in a quantum context, to a small probability
P that such a configuration be obtained through a process of quantum tunneling,
since P ∼ exp�−S�. In models of pre-big bang inflation, however, quantum effects
such as tunneling or reflection of the Wheeler–De Witt wave function [23, 24, 25]
are expected to become important possibly towards the end of inflation, not the
beginning (see Appendix 6A). They may be effective to exit from the inflationary
regime, not to enter it, and to explain the origin of the initial state. A large
entropy of the initial state, in the weakly coupled, highly classical regime, can
only correspond to a large probability of such a state which, for classical and
macroscopic configurations, is expected to be proportional to exp�+S�.

In any case, an initial state characterized by a set of large (or small) dimen-
sionless parameters, associated with a large value of the initial horizon scale
H−1

i , is an unavoidable aspect of all models in which inflation starts at scales
much smaller than Planckian. In the post-big bang inflationary scenario, where the
observational tracks of any pre-Planckian epoch are washed out, one might regard
as unnatural [18] having an initial homogeneity scale of order H−1, whenever H

is small in Planck (or string) units. In the context of models in which inflation
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Table 5.1 Kinematical and dynamical properties of the various inflationary classes

Class I Class II

accelerated
power-inflation de Sitter super-inflation contraction

cosmic time,
a = 	t	�

� > 1, t > 0 � = �, t > 0 � < 0, t < 0 0 < � < 1, t < 0

conformal time,
a = 			



 < −1, 	 < 0 
 = −1, 	 < 0 −1 < 
 < 0, 	 < 0 
 > 0, 	 < 0

kinematics accelerated
expansion

accelerated
expansion

accelerated
expansion

accelerated
contraction

curvature H2 decreasing constant growing growing
horizon de�t� growing constant shrinking shrinking

precedes the Planck era, however, the phenomenological imprints of the Planck
epoch are not necessarily washed out by a long and subsequent inflationary phase.
The pre-Planckian history of the Universe may become visible [26], and sub-
Planckian initial conditions accessible (in principle) to observational tests, so that
their naturalness could also be analyzed with a Bayesian approach, in terms of
a-posteriori probabilities, as discussed in [15] (see also [27] for a more detailed
comparison of pre-big bang versus post-big bang inflation).

We conclude this chapter by reporting, in Table 5.1 a schematic summary of
the four possible types of accelerated evolution, and of their main properties. The
powers 
 and � used in the table are related by Eq. (5.18), and the event horizon
is defined in Eqs. (5.35)–(5.37).
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6

The string phase

From the solutions of the low-energy string cosmology equations, presented in
the previous chapters, we have learned that the traditional picture of a Universe
which emerges from the inflation of a very small and curved space-time patch is
a possibility, not a necessity: quite different initial conditions are possible, and not
necessarily unlikely. In particular, there are scenarios suggesting an overturning
of the traditional scheme of slow-roll inflation, describing a Universe which starts
inflating from an initial state characterized by a perturbatively small space-time
curvature. Such a state is unstable and, pushed by the dilaton, tends to decay with
an accelerated evolution towards higher and higher curvature configurations.

The growth of the curvature during this accelerated regime is possibly
accompanied by the growth of the dilaton, and thus of the string coupling
gs = exp��/2�. As time goes on, in such a context, the Universe is thus
approaching the two limits marking the validity of the lowest-order string effec-
tive action: �i� the string curvature scale, reached when �sH ∼ 1 and/or �s�̇ ∼ 1,
and �ii� the strong coupling regime, reached when gs ∼ 1. Reaching the first
boundary requires the inclusion of �′ corrections (higher powers of the curvature
and higher derivatives of all background fields), while the second boundary
requires the inclusion of quantum loop corrections (higher genus corrections and
higher powers of g2

s ). Crossing both limits would necessarily imply a Universe
entering the non-perturbative regime of the (still) largely unknown M-theory
(see for instance [1, 2]).

In the context of the inflationary solutions of the higher-dimensional, tree-level,
gravi-dilaton effective action there is no way to stop the accelerated growth of
the curvature and of the string coupling. We may thus expect that the damping
of inflation, the stabilization of the extra d − 3 spatial dimensions in some
compactified configuration compatible with the standard-model symmetries, as
well as the eventual transition to a phase of decelerated expansion of three
spatial dimensions, be eventually induced by the effects of the �′ and loop

210



The string phase 211

corrections, with the possible contribution of other fields. In particular, this
could include the contribution of the R–R and/or NS–NS p-form fields, typical
of the superstring effective actions: we should recall that the regular bouncing
model of Section 4.3, obtained by “boosting” the Milne solution, was based on
the presence of the NS–NS two-form B. Higher-order corrections seem to be
generally required, however, to contrast the possible tendency of the inflationary
Kasner-like solutions to enter the chaotic regime [3].

Concerning the relative importance of the various corrections we may, in prin-
ciple, distinguish two cases, depending on the parameters characterizing the initial
configuration. A first possibility is that the string loop corrections become impor-
tant at an epoch in which the curvature and the gradients of all background fields
are still small (in string units), so that the �′ corrections can be safely neglected. To
estimate the importance of the loop corrections on the cosmological evolution we can
compute the backreaction of the particles produced by the mechanism of parametric
amplification of the vacuum fluctuations (see Chapter 7). The total energy density
of such particles, produced at a curvature scale H , is of the order of �q ∼ NH4, where
N is the total number of effective degrees of freedom participating in the amplific-
ation process. The backreaction starts to become important when �q approximates
the critical energy density, �c ∼ M2

PH2 ∼ �gs�s�
−2H2, namely when

Ng2
s �2

s H2 ∼ 1� (6.1)

When the above condition is satisfied inflation may be stopped by the quantum
corrections, and the background may experience an almost immediate “bounce”
towards the decreasing-curvature regime (see trajectory 1 → 1a of Fig. 6.1),
without any contribution from the �′ corrections. Examples of this type have
been reported in Chapter 4, with the quantum backreaction simulated by effective
sources with negative energy density, or by effective perturbative potentials (see
[4] for other possible examples). The “big bang”, in this case, may be represented
as the process of radiation production due to the amplification of the vacuum
fluctuations associated with the curvature bounce. It should be stressed that the
condition (6.1) also signals the saturation of the so-called “Hubble entropy bound”
[5] for the radiation produced.

The condition (6.1), however, marks the beginning of a phase characterized
by a copious, non-perturbative production of strings and higher-dimensional
branes (see for instance [6]). If the loop corrections do not induce an imme-
diate bounce, the Universe necessarily enters a truly “stringy” phase, which is
higher-dimensional, strongly coupled, populated by strings, branes and antibranes,
possibly winding and wrapping around the compact dimensions [7, 8, 9], even-
tually colliding and annihilating among each other. The “big bang”, in this case,
could be represented by a collision of branes [10]. Also, the interactions of the
branes with the background fields could be responsible for the stabilization of the
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Figure 6.1 Qualitative sketch of the possible evolution of regular (bouncing)
cosmologies in the plane 	g2

s 
�2
s H

2� (in logarithmic scale). For trajectory 1
the string loop corrections become important before the �′ corrections (in case
1a there is an immediate bounce due to the loop backreaction, in case 1b

the model goes through a phase of string/brane-dominated evolution). Trajectory
2 , on the contrary, leads the model to a regime of high, constant curvature,

and only later may quantum loop effects come into play, eventually inducing the
bounce of the curvature.

background in a standard-model configuration [11], possibly inducing an addi-
tional phase of slow-roll, post-big bang inflation [12, 13, 14] on a brane identified
with our Universe, which subsequently evolves through the steps of the standard
cosmological picture (trajectory 1 → 1b of Fig. 6.1). Such a phase of brane
inflation (see Chapter 10), however, is not an unavoidable necessity if this stringy
phase is preceded by a sufficiently long period of pre-big bang inflation.

The second possibility is that the high curvature limit is reached when the
background fields are still in the weak coupling regime, gs � 1. In this case,
when �sH ∼ 1, the Universe enters a phase which is again typically “stringy”, but
which has different properties with respect to the previous one. The string effects,
represented by the �′ corrections, now tend to stabilize the curvature at a constant
value near the string scale [15], while the dilaton keeps growing (see trajectory
2 of Fig. 6.1, from (a) to (b)). The metric evolution remains accelerated, so that

the Universe is still inside the regime of pre-big bang inflation: if this phase is
long enough it may affect in a significant way the final spectra of cosmological
pertubations, as we shall see in the following chapters.

The discussion of this chapter will concentrate, first of all, on the dynamical
properties of the high-curvature, weak-coupling regime. It will be shown in
Section 6.1 that, when the quantum loop corrections are negligible, a background
configuration with constant curvature and linearly evolving dilaton may represent
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a solution of the string effective action to all orders in �′ (and thus correspond
to some exact conformal field theory model). Such a solution represents a “fixed
point” of the string cosmology equations which, in some models, is also smoothly
connected to the perturbative vacuum. It is thus possible that the Universe, starting
from an initial, perturbative configuration, is attracted at late times towards such
a (typically stringy) high-curvature configuration.

The extension in time of such a phase, even if long, is finite because – unless
one introduces some extra mechanism of dilaton stabilization – the string coupling
keeps growing until the loop corrections become important (at the scale Ng2

s ∼ 1),
and move the gravi-dilaton system away from the fixed-point configuration. Then,
if the loop perturbations are pushing towards unbounded growth of the curvature
and of the coupling, the system necessarily enters the full M-theory regime (dashed
trajectories of Fig. 6.1). If, on the contrary, only the coupling is growing (but the
curvature is frozen), then the system is led to the same phase populated by strings
and branes as in the previous case, with the complication that �′ corrections are also
necessary (see [16] for recent studies in this regime). Finally, if the loop corrections
are appropriate, the Universe may bounce instead towards the standard cosmological
regime as illustrated by trajectory 2 of Fig. 6.1, and as will be discussed in Sec-
tion 6.2 (see in particular the discussion after Eq. (6.32) for a precise definition of the
physical effects coming into play at the points marked by (a), (b) and (c) in Fig. 6.1).

In Section 6.3 we will finally consider the possibility of a Universe which,
evolving from the weak coupling along trajectory 1 , does not immediately
bounce when hitting the borderline of loop backreaction, but enters a phase where
the strong coupling effects are associated with the production of a gas of strings
and branes. We will discuss, in particular, the case in which the Universe is
filled by a string gas as the dominant source of the background geometry. It will
be shown that the presence of “winding modes”, in backgrounds with compact
topology, is not an efficient source of inflation but can induce the transition to a
final configuration with only three dimensions expanding in a decelerated way,
and the other spatial dimensions remaining compact at the string scale [7, 8]
(see [17] for a recent review of this string-gas cosmological scenario).

6.1 High-curvature fixed points of the string cosmology equations

In the context of higher-derivative models of gravity, it is known that the presence
of non-minimally coupled scalar fields tends to remove any exact solution at
constant curvature [18, 19] (which generically exists, instead, in models of pure
gravity containing higher powers of the curvature invariants in the action [20]).
In the context of the S-frame string effective action, however, such solutions may
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exist, even to all orders in �′, provided they are associated with a non-trivial
(time-dependent) dilaton background.

Let us consider, in fact, a spatially flat, homogeneous but anisotropic gravi-
dilaton background, parametrized by

g00 = N 2�t�
 gij = −a2
i �t��ij
 ai = ei
 � = ��t�
 (6.2)

where i
 j = 1
 � � � 
 d. Defining

� = �−∑
i

i (6.3)

and using the fact that, to the lowest order of the g2
s expansion, the dependence

of the S-frame action on a constant dilaton field is fixed [21], we can write the
exact S-frame gravi-dilaton action, to all orders in �′, as [15]

S =
∫

dt Ne−�L
(


�n�
i 
�

�n�
)

(6.4)

(modulo a spatial volume factor). Here the effective Lagrangian L is a general
function of the (covariantized) time derivative of the fields �, i, at all orders
n ≥ 1:


�n�
i =

n∏

k=1

(
1
N

d
dt

)k

�t�
 �
�n� =

n∏

k=1

(
1
N

d
dt

)k

��t�� (6.5)

Note that we are excluding from this discussion the possible presence of a constant
cosmological term, which means that we are considering a critical number of
dimensions or, for d �= dc, that the constant contribution �d −dc�/�′ is canceled
by the appropriate contribution of some “passive” sector of the model we are
considering.

The variation of the action with respect to N , � and i, and the subsequent
choice of the cosmic-time gauge N = 1, gives, respectively, the equations

L− ̇i

�L

�̇i

− �̇
�L

��̇
−2̈i

�L

�̈i

−2�̈
�L

��̈
+· · ·

+e�̄ d
dt

(

e−�̄̇i

�L

�̈i

+ e−�̄ �̇
�L

��̈

)

+· · · = 0
 (6.6)

−L− e� d
dt

(

e−� �L

��̇

)

+ e� d2

dt2

(

e−� �L

��̈

)

+· · · = 0 
 (6.7)

�L

�̇i

− e� d
dt

(
e−� �L

�̈i

)
+· · · = e�̄Qi
 (6.8)
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where Qi are d integration constants. These equations have been multiplied by
exp �, and the last equation for i has been integrated a first time, using the
fact that i are cyclic variables for the action (6.4), and the associated conjugate

momenta are conserved. If �̇ �= 0 then the above d + 2 equations are not all
independent, because of the condition [15]

̇i

�S

�i

+ �̇
�S

��
= N

d
dt

(
�S

�N

)

 (6.9)

following from the general covariance of the action (the validity of this condition
can also be checked directly using Eqs. (6.6) – (6.8)). We are thus led to a system
of d+1 independent equations for the d+1 variables i
�.

Let us look for solutions of the form

Hi = ̇i = xi = const
 �̇ = x0 = const
 (6.10)

describing, in cosmic time, a phase of exponential evolution of the scale factors,
ai = exp�xit�, and linear evolution of the dilaton, � = x0t + const. The background
scalar curvature is constant, even if the space-time manifold is not maximally
symmetric. Such a configuration represents a fixed point for the system of Eqs.
(6.6) – (6.8), in the sense that if the gravi-dilaton system at some time (for instance
the initial time) is there, then it is trapped for ever in such a configuration
(modulo the introduction of external perturbations). This behavior is similar to
that described by the renormalization group equations [15], in a different context.

Imposing the conditions (6.10), the background equations become a system
of d + 1 algebraic equations for the d + 1 unknown variables 	x0
 xi�. There is
always the trivial solution, describing a constant dilaton in Minkowski space, and
representing a well-known (exact) string theory solution, to all orders in �′, in
critical dimensions (if d �= dc the corresponding solution is flat space-time with
linear dilaton [22]). But also non-trivial geometries (at constant scalar curvature)
are allowed, in principle to all orders, provided the algebraic system admits a real
(non-trivial) set of values for the constant x0
 xi. Assuming that such a solution
exists, an interesting question is whether this phase at constant curvature may
represent (or not) an unavoidable stage of the cosmic evolution for models starting
from perturbative initial conditions.

Let us note, to this purpose, that in the limit in which Eq. (6.10) is satisfied, the
left-hand side of Eq. (6.8) becomes a constant. To obtain a constant also on the

right-hand side, a first possibility (for Qi �= 0) is that, in the same limit, also �̇ = 0.
In this case, however, the dilaton equation (6.7) is no longer a consequence
of the other equations, and must be imposed as an additional condition. One
obtains, in this way, additional constraints on the values of the conserved moment
Qi. These integration constants stay fixed at the value they had in the initial
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configuration: the system may thus evolve towards the configuration (6.10) only if
the parameters of the initial state are appropriately fine-tuned to satisfy the required
constraints.

A more interesting possibility is the case in which the solution (6.10) satisfies
the condition

�̇ = �̇−∑
i

̇i < 0� (6.11)

In such a case the right-hand side of Eq. (6.8) tends to go to zero at large enough
times, and the equation can be automatically satisfied by the constant-curvature
configuration quite irrespective of the initial values (even non-zero) of the
momenta Qi, independently assigned by the low-energy initial conditions.
A background configuration satisfying Eqs. (6.10) and (6.11) may thus play the
role of “late-time attractor” for the string cosmology equations.

However, the condition (6.11) is necessary, but not sufficient for this pur-
pose. Indeed, it only implies that it will attract towards the configuration (6.10)
all phase-space trajectories passing sufficiently near to it. Low-energy solutions,
starting near the trivial fixed point with ̇i = 0 = �̇, will smoothly evolve towards
the high-curvature fixed point (6.10) only in the absence of a singularity discon-
necting the perturbative vacuum from the high-curvature string phase (and/or in
the absence of other fixed points).

An example of such a smooth evolution can be obtained, to first order in �′, by
considering the effective S-frame action introduced in Chapter 2, that we repeat
here for the reader’s convenience:

S = − 1
2�d−1

s

∫
dd+1x

√�g� e−�

[
R+ ����2 − �′

4
R2

GB + �′

4
����4

]
� (6.12)

Recall that the higher-curvature corrections have been represented by the Euler–
Gauss–Bonnet invariant R2

GB = R2 − 4R2
�� + R2

���, in order to eliminate terms
with higher than second derivatives from the field equations. The associated field
equations have been presented, in fully covariant form, in Section 2.3. For our
applications, however, it is useful to derive here the equations governing the
Bianchi-I-type background (6.2) starting directly from the action, written in terms
of N , �, i and of their derivatives. For such a background metric, in particular,
the connection and the scalar curvature have already been computed in Eq. (5.23).
For the computation of G2

GB we also need the Ricci-squared invariant,

N 4R��R�� = F 2

[
∑

i

H2
i + �

∑

i

Hi�
2

]

−2F

[
∑

i

Hi

∑

i

Ḣi +
∑

i

HiḢi +2
∑

i

Hi

∑

i

H2
i

]
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)
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∑

i
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∑
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 (6.13)

and the Riemann-squared invariant,

N 4R���R��� = 4F 2∑

i

H2
i −8F

∑

i

H3
i −8F

∑

i

HiḢi +2
∑

i

H4
i +4

∑

i

Ḣ2
i

+2�
∑

i

H2
i �2 +8

∑

i

ḢiH
2
i � (6.14)

Their combination with N 4R2 leads to the following explicit expression for the
Gauss–Bonnet invariant:

N 4R2
GB =12F

∑
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Hi

∑

i

H2
i −8F
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i

H3
i −4F
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H4
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H2
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HiḢi� (6.15)

For the discussion of this chapter it will be enough to assume that the spatial
sections of the Bianchi-I manifold can be factorized as the product of two conform-
ally flat spaces, with d and n dimensions, and scale factors exp �t� and exp ��t�,
respectively. Integrating the action by parts, so as to eliminate all terms with
higher than first derivatives, we also automatically eliminate all terms containing
F = Ṅ /N (as expected, as N is only an auxiliary field whose variation provides
the Hamiltonian constraint). The action (6.12) (modulo the spatial volume factor,
in string units) then takes the form

S = �s

2

∫
dt ed+n�−�

[
1
N

(

− �̇2 −d�d−1�̇2 −n�n−1��̇2 −2dṅ�̇

+2ḋ�̇+2n�̇�̇

)

+ k�′

4N 3

(

c1̇
4 + c2�̇

4 + c3�̇̇3 + c4�̇�̇3 + c5�̇̇�̇2

+ c6�̇̇2�̇ + c7̇
2�̇2 + c8̇�̇3 + c9̇

3�̇ − �̇4

)]


 (6.16)
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where

c1 = −d

3
�d−1��d−2��d−3�


c2 = −n

3
�n−1��n−2��n−3�


c3 = 4
3

d�d−1��d−2�


c4 = 4
3

n�n−1��n−2�


c5 = 4dn�n−1�
 (6.17)

c6 = 4dn�d−1�


c7 = −2dn�d−1��n−1�


c8 = −4
3

dn�n−1��n−2�


c9 = −4
3

dn�d−1��d−2��

Note that we have re-inserted the coefficient k as a pre-factor multiplying the �′
corrections, to take into account possible different contributions from different
string models: for instance, k = 1 for the bosonic string, k = 1/2 for the heterotic
superstring [21].

We can now easily obtain the field equations, by varying the action with
respect to �
N
 and �. For simplicity, we report here the equations for the
d-dimensional isotropic case only, setting everywhere n = 0 (see [15] for a more
general discussion). The variation with respect to N then gives

�̇2 +d�d−1�̇2 −2ḋ�̇− 3
4

k�′
(
c1̇

4 + c3�̇̇3 − �̇4
)

= 0� (6.18)

The variation with respect to � gives

−2�̈+2d̈+ �̇2 +d�d+1�̇2 −2d�̇̇

+k
�′

4

[
3c3̇

2̈−12�̇2�̈+3�̇4 + �dc3 + c1�̇
4 −4ḋ�̇3

]
= 0� (6.19)

The variation with respect to  gives

−2d�d−1�̈+2d�̈−d2�d−1�̇2 −d�̇2 +2d�d−1��̇̇

+k
�′

4

[

12c1̇
2̈+3c3�̈̇2 +6c3�̇̇̈+3dc1̇

4

+�2dc3 −4c1��̇̇3 −3c3�̇
2̇2 +d�̇4

]

= 0� (6.20)
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For the constant-curvature configuration specified by Eq. (6.10), all the above
equations become algebraic equations. By setting ̇ = x1 = const, �̇ = x0 = const,
we obtain, from Eqs. (6.18) and (6.19) (in units k�′ = 1),

x2
0 +d�d−1�x2

1 −2dx0x1 − 3
4

(
c1x

4
1 + c3x0x

3
1 −x4

0

)= 0


x2
0 +d�d+1�x2

1 −2dx0x1 + 1
4

[
3x4

0 + �c1 +dc3�x
4
1 −4dx1x

3
0

]= 0�

(6.21)

One can easily check that, for any value of d from 1 to 9, there is a non-trivial
pair of real solutions defining a fixed point for the (isotropic) gravi-dilaton system
in the plane 	�̇
 ̇�. Anisotropic fixed points seem to be absent for the simple
example we have considered, but they can be obtained, for instance, by adding
to the action (6.12) the contributions of the NS–NS two-form [23], with the
appropriate �′ corrections. For the isotropic case we report here the solutions of
the above equations for d = 3
 6
 9:

d = 3
 x0 = ±1�40���
 x1 = ±0�616���


d = 6
 x0 = ±1�37���
 x1 = ±0�253���
 (6.22)

d = 9
 x0 = ±1�38���
 x1 = ±0�163���


where the same sign has to be taken for x0 and x1 in any pair (the fact that there
are solutions of opposite sign is due to the time-reversal symmetry of the string
cosmology equations).

It is important to stress that, for the solutions (6.22), the third equation (6.20)
also turns out to be automatically satisfied, as expected, and that the same solutions
can also be obtained from the system of equations (6.18) and (6.20), or from
Eqs. (6.19) and (6.20). In this last case one obtains an additional solution which

satisfies the condition �̇ = x0 −dx1 = 0. In that case, however, the three equations
are all independent, and one has to impose that the third equation is also satisfied:
one then finds that the third condition completely eliminates the new solution.

The pairs of positive values in the above solution (6.22) describe expansion

and, for d ≥ 3, satisfy �̇ = �̇−ḋ < 0: thus, according to the previous discussion,
they can in principle represent late-time attractors of the low-energy inflationary
evolution (in the absence of obstructions). This is indeed what happens for the
action (6.12), as clearly shown by the numerical integration of Eqs. (6.19) and
(6.20) reported in Fig. 6.2. The initial curvature scale has been fixed by setting
̇ = 0�05 at t = −1 (in string units k�′ = 1), and the associated value of �̇ has
been obtained, for any d, using Eq. (6.18) as a constraint on the set of initial
data. The numerical integration from t = −100 to t = 100 then leads to the results
illustrated in Fig. 6.2.
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Figure 6.2 Numerical solutions of the isotropic equations (6.18) – (6.20) (in
units k�′ = 1) for d = 3
 6
 9, and with initial conditions on the expanding pre-
big bang branch of the tree-level solutions (approaching from positive values
the trivial fixed point ̇ = 0 = �̇). The upper panels illustrate the time evolution
towards a final string phase at constant curvature and linear dilaton. The lower
panels illustrate the smooth flow of the curvature parameters between the two
fixed points.

Starting from initial conditions satisfying ̇ > 0 and �̇ > 0, and thus compat-
ible with the expanding, pre-big bang branch of the low-energy solutions (see
Section 4.1), the gravi-dilaton system smoothly evolves in time to reach the ex-
panding, fixed-point configurations of Eq. (6.22) (Fig. 6.2, upper panels). This
is possible because, for the action (6.12), the high-curvature fixed points (i.e.
the string phase) and the trivial fixed point (i.e. the perturbative vacuum), both
characterized by ̈ = 0 and �̈ = 0, are connected by a smooth “renormalization
group” flow of the curvature parameters ̈, �̈ (Fig. 6.2, lower panels). It is worth
noticing that these isotropic, high-curvature fixed points can be reached even
starting from slightly anisotropic initial configurations, provided all the variables
i have the same sign [15].

Real solutions of the type (6.22) – with constant curvature, linear dilaton, and
properties of asymptotic attractors – may exist for scalar-tensor models of gravity
with higher-derivative corrections, whether or not formulated in a string theory
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context. They are not, however, a property of any model with quadratic curvature
corrections: if we consider, for instance, the action (2.77) (related to the action
(6.12) by a truncated field redefinition), and we repeat the previous discussion,
we find that there are no (non-trivial) real solutions to the system of algebraic
equations for any reasonable number of dimensions.

In addition, even assuming that the equations admit non-trivial fixed points,
they are not necessarily connected to the perturbative vacuum as in the previous
example: there are examples in which the vacuum and the string phase are
disconnected by a curvature singularity, or by a non-physical region of phase
space where the curvature becomes imaginary.

An example of this “disconnected” situation can be obtained by starting from
the action (2.77), and performing the field redefinition

g�� → g�� +4�′R��
 � → �+�′ [R− ����2] � (6.23)

Truncating the action to order �′, and applying the results of Chapter 2 (in
particular Eq. (2.75)) we are led to the action

S = − 1
2�d−1

s

∫
dd+1x

√�g� e−�

{

R+ ����2

− k�′

4

[
R2

GB −4G��������+2�2�����2 − ����4]
}


 (6.24)

where G�� is the Einstein tensor. It is worth noticing that this action is compatible
with a symmetry [24, 25] which may be regarded as an extension to order �′ of the
scale-factor duality symmetry typical of the tree-level action. This new invariance
property can be easily displayed by considering the background geometry (6.2)
in the cosmic-time gauge N = 1, by introducing the matrix G associated with
the spatial metric tensor gij , the shifted dilaton � according to Eq. (4.119), and
finally defining the 2d×2d matrix

M�′ =
(

G−1 − k�′
4 G−1ĠG−1ĠG−1 0

0 G+ k�′
4 ĠG−1Ġ

)


 (6.25)

which generalizes to first order in �′ (and for B�� = 0) the O�d
d� matrix M

of Eq. (4.124). Using the results of Section 4.3, the action (6.24) can then be
rewritten in terms of M�′ , � and of the O�d
d� metric �, and turns out to be
invariant (to first order in �′) under the transformation [24, 25]

M�′ → �M�′�
 � → �
 (6.26)

generalizing the tree-level transformation associated with the inversion of the
scale factor (see Eq. (4.137)).
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The field equations for the action (6.24) are still second-order equations. If
we repeat the previous analysis we find that they admit high-curvature fixed
points of the type (6.10), for any d (at least up to d = 9). However, such points
cannot be smoothly approached by low-energy trajectories emerging from the
trivial fixed point: all low-energy solutions describing expanding pre-big bang
inflation necessarily evolve towards a curvature singularity, which prevents their
continuous convergence towards a stable string phase.

As shown by the quoted examples, the nice property of the action (6.12) to
admit solutions able to damp the initial growth of the curvature is not invariant,
in general, under field redefinitions of the type (2.74), truncated to first order
in �′. This ambiguity affects all models truncated to any given finite order of
the �′ expansion and can be resolved, in principle, only by considering an exact
conformal model which automatically includes the corrections to all orders (see
[26, 27] for some specific string cosmology examples of exact conformal models).

Even with the choice of an appropriate action, compatible with a smooth
connection of the perturbative vacuum with the string phase, a model of pre-big
bang inflation based only on the �′ corrections is still incomplete. Indeed, in a
possibly realistic picture, the Universe cannot stay frozen for ever in the constant-
curvature regime, but has to evolve towards the standard, decelerated, decreasing-
curvature regime. In other words, and with reference to the four asymptotic
branches of the low-energy solutions, a complete transition (in the absence of
matter sources and/or of other background fields) should connect branch 4 to
branch 1 of Fig. 4.3.

This requires, as already stressed, that the initial configuration with �̇ > 0 may

evolve towards a final one with �̇ < 0. This requirement is indeed satisfied by
the solutions of the action (6.12), as illustrated in Fig. 6.3 (left panel), where
we have plotted the same numerical solution as in Fig. 6.2, for d = 3, in the

plane ��̇

√

3̇�. The final fixed points, however, are not placed on the post-big
bang, asymptotic branches of the low-energy solutions, represented by the dashed
lines. Thus, for the action (6.12), it it impossible to perform a “phase-space loop”
leading the system back to the origin (as was the case for the examples presented
in Appendix 4B).

Such an impossibility, which appears as a clear asymmetry in the plane

��̇

√

3̇�, is also due in part to the fact that we are considering an action which
is invariant for time reflections but is not invariant for scale-factor duality trans-
formations: thus, there are no “self-dual” solutions. Indeed, a smooth evolution
from the perturbative vacuum to the string phase (or vice versa) is allowed for
the expanding pre-big bang branch of the lowest-order solution (curve 4 ), and
for its time-symmetric partner, the contracting post-big bang branch (curve 3 ),
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Figure 6.3 The same numerical solution as in Fig. 6.2, for the case d = 3.
The dashed curves represent the (singular) branches of the tree-level, vacuum
solutions (see also Figs. 4.1 and 4.3). The left panel shows the smooth connection
of the initial asymptotic state with ̇ = 0 = �̇ to the fixed points of Eq. (6.21).
The right panel shows the time-symmetric evolution of the regularized Hubble
parameter.

as illustrated in Fig. 6.3, right panel. The expanding post-big bang branch (curve
1 ), on the contrary, stays singular, and cannot be smoothly connected to the

regularized pre-big bang branch.
It is possible, as we have seen, to restore the duality invariance at the level

of the truncated action. In that case the non-trivial fixed points may acquire a
self-dual distribution in the phase-space plane: however, this may not be enough
for implementing a regular and complete transition, since the points could be
placed in phase-space regions physically disconnected from the origin (as in the
example (6.24)). The existence and the location of the fixed points, with reference
to a possible duality symmetry of the higher-order action, has been discussed in
general in [28, 29].

What seems to be crucial in order to shift the cosmological evolution away
from the fixed point, towards the standard post-big bang regime (even without
respecting self-duality), is the effect of the quantum loop corrections. Indeed, as
long as the Universe is anchored to the high-curvature string phase, the dilaton
keeps growing linearly in cosmic time, and the string coupling g2

s keeps growing
exponentially, so that the loop corrections are doomed to become eventually
important, quite independently from the initial value of the dilaton. The possible
effect of such corrections will be discussed in the following section.

6.2 Strong coupling corrections and the curvature “bounce”

The backreaction of the quantum loop corrections on the background geometry
may be described, in an appropriate limit, as the contribution of an effective
source with negative energy density [30, 31], whose presence tends to contrast the
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growth of both the curvature and the dilaton kinetic energy [32]. Some particular
examples, represented by an effective fluid or by a non-local potential containing
powers of g2

s , have been presented in Chapter 4 within the small curvature regime.
Another effect associated with the string loop corrections is the backreaction of
the massive string modes: they are produced with a density distribution which is
exponentially rising with the energy [33, 34], and could be responsible for the
bounce of H and �̇ even in the absence of �′ corrections [35]. In general, all
types of effects and contributions should be simultaneously taken into account for
a complete description of the strong coupling regime.

In this section we discuss, in particular, the effect of the quantum loop cor-
rections on a background which is already inside the high-curvature regime,
and which is temporarily stabilized in the string-phase configuration, at constant
curvature. It is clear that the inclusion in the effective action of terms growing
with � can easily induce an acceleration of the gravi-dilaton system, removing
it from the high-curvature fixed point at late enough times. It should be imme-
diately stressed, however, that a successful transition to the standard, post-big
bang regime – the so-called “graceful exit” [36] – must fulfil various non-trivial
requirements.

First of all, a true smoothing out of the low-energy singularities requires that
the curvature be regularized in all frames, not just in the S-frame as in the case of
the example presented in the previous section. The physical motivation underlying
this condition is that different test particles, associated with fundamental fields
differently coupled to the dilaton, follow the geodesics of different metric frames.
The gravitons, for instance, evolve according to the E-frame geodesics [37];
other fields, for instance those belonging to the R–R sector of type IIA and
type IIB superstrings, are canonically coupled to the S-frame metric background,
and follow instead the S-frame geodesics. The regularity and completeness of
a classical space-time manifold, on the other hand, are fully determined by the
properties of its geodesic network [38]. If the regularization of the curvature is
not frame independent, the singularity might disappear for some types of test
particles, but would persist for others [39].

A simple example of this effect can be obtained by considering the isotropic
S-frame solution with constant H and �̇, derived in the previous section. The
dilaton is monotonically growing, so that the curvature certainly diverges in the
E-frame representation, where the Hubble parameter is given by

HE =
(

H − �̇

d−1

)

e�/�d−1� (6.27)

(see also Eq. (4B.11)), where the dot denotes differentiation with respect to the
S-frame cosmic time. Indeed, for constant H and �̇, the E-frame curvature avoids
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divergences at t → +
 only if � is constant or decreasing. If we have, on the
contrary, a regular S-frame solution in which H and �̇ are decreasing (fast enough)
as t → +
, then the dilaton could be growing and would still avoid the curvature
singularity in the E-frame, as well as in other frames (this is what happens, for
instance, in the solution of Eq. (4B.8)). For a growing dilaton (�̇ > 0), however,
Eq. (6.27) also implies the constraint

�̇ < �d−1�H
 (6.28)

(stronger than the condition (6.11)), which is required to implement a realistic
scenario in which the metric is expanding also in the E-frame (HE > 0), after the
transition. Both the constraints (6.11) and (6.28) can be translated into energy
conditions, to be satisfied by the stress tensor of the effective matter sources
controlling the background evolution [40, 41].

However, a dilaton which keeps growing asymptotically is doomed to con-
flict with the perturbative approach and with the truncated expansion of the
string effective action: sooner or later the background will be led to the full
non-perturbative M-theory regime – or at least to the regime where the quantum
loop corrections are to be included, to all orders. In that case, a possibly real-
istic scenario could be implemented by invoking a “saturation” mechanism (see
Section 9.3) by which, in spite of the growth of � and of the “bare” coupling
exp���, the effective string coupling g2

s tends to become frozen on moderate
values, compatible with the condition g2

s = M2
s /M2

P
<∼ 1.

In the absence of a saturation mechanism, the stabilization of gs seems to
require the stabilization of the dilaton itself, � � const. In that case, if the growth
of the dilaton leads to the phase of high (but constant) curvature and strong
coupling, where the Universe becomes populated by higher-dimensional branes,
an interesting possibility is that the dilaton (together with the volume of the extra
dimensions) becomes stabilized by appropriate fluxes of R–R and NS–NS p-form
fields [42, 11], or by the mechanism recently proposed in [43]. If stabilization is
not achieved in this way, because the bounce to the decreasing-curvature regime
is induced very early by the loop corrections, there is still the possibility of a
“late-time” dilaton stabilization if, after the transition to the radiation-dominated
Universe, some attracting minimum is developed in the non-perturbative dilaton
potential.

Let us consider, for instance, a late-time picture of cosmological evolution
where the Universe has already entered the decelerated, decreasing curvature
regime (thanks to the effects of the loop corrections), and the value of � has grown
large enough to justify the introduction of a non-perturbative potential V���. Let
us suppose, also, that the transition from the string phase to the decelerated regime
has largely amplified the quantum fluctuations of all background fields, which
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after re-entering inside the horizon behave as an effective radiation fluid, and tend
to become the dominant source of the background geometry. The �′ corrections
are going to become more and more negligible, so that the background evolution
is determined by the effective low-energy equations, with the possible inclusion
of dilaton loop contributions due to the strong coupling regime.

Including such contributions into the (S-frame) dilaton equation (2.38), for a
generic matter source with equation of state p = p��� and zero dilaton charge,
one then obtains the evolution equation [44]:

A�����̈+dH�̇�−B����̇2 +V + 1
2

�d−1�V ′ + 1
2

C��� e���−dp� = 0 (6.29)

(we have used units 2�d−1
s = 1, and V ′ = �V/��). Here A
B
C are the “form

factors” containing the loop corrections (and reducing to 1 in the weak coupling
limit gs � 1); other quantum corrections are possibly included in the potential
V���. In such a context, a stable solution with � = �0 = const is thus possible
only if

dp−� = 2C−1��0� e−�0

(
V + d−1

2
V ′
)

= const� (6.30)

Combining this condition with the conservation of the matter stress tensor, we are
left with three possible configurations compatible with a constant dilaton [45]:

(1) vacuum, � = p = 0, and V +V ′�d−1�/2 = 0;
(2) cosmological constant, � = −p = �0 = const, and V +V ′�d−1�/2

= −C��0��0 e�0�d+1�/2 = const �= 0;
(3) radiation, � = dp, and V +V ′�d−1�/2 = 0.

The first two cases are still peculiar to the inflationary regime. When the back-
ground becomes decelerated and radiation dominated, however, it becomes com-
patible with a dilaton stabilized at a value �0 such that

V��0�+ d−1
2

V ′��0� = 0� (6.31)

Note that this value exactly coincides with an extremum of the E-frame potential
Ṽ , related to the S-frame potential V by Eq. (2.47) (the above condition is
equivalent, indeed, to Ṽ ′ = 0). Note also that the radiation-dominated phase is
compatible with a constant dilaton even in the limiting case of vanishing potential,
as illustrated by the examples of Chapter 4 in which the dilaton is asymptotically
driven to a constant: in that case, the final value of the dilaton depends on the
parameters of the initial post-big bang configuration.

In this section we present an example of transition to the post-big bang regime
with a dilaton which tends to be stable, asymptotically; the case of a dilaton
which keeps (slowly) varying even after inflation will be discussed in Section 9.3.
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According to the previous discussion, an effective action possibly accounting for
a graceful exit from the high-curvature string phase, and preventing a significant
trespass into the strong coupling regime, should contain the following terms:

S = S0 +S�′ +Sloop +Sm� (6.32)

Here S0 is the lowest-order gravi-dilaton action, describing the initial infla-
tionary evolution away from the string perturbative vacuum; S�′ contains the
high-curvature corrections damping the acceleration, and leading the system to a
(temporary) stabilization around the fixed-point configuration; Sloop contains the
quantum loop corrections inducing the curvature bounce; Sm finally represents
the matter sources, possibly interacting with the dilaton and contributing to its
final stabilization. With reference to the trajectory labelled 2 in Fig. 6.1, we can
say that S�′ comes into play at point (a), and is responsible for the first correction
to the initial trajectory; Sloop comes into play at point (b), where the background
is shifted away from the fixed point, towards the low-curvature regime; finally,
the last and decisive correction is due to Sm, stopping the growth of the dilaton
at point (c) of Fig. 6.1.

Models evolving in this way have been explicitly constructed in [29, 40, 41],
using in particular loop corrections which become sub-leading at large times, after
their contribution to the graceful exit: in that case, the final asymptotic regime is
still described by the solutions of the lowest-order effective action (this scenario is
consistent provided the final growth of the dilaton is stopped, of course). Here we
follow the particular example discussed in [29, 46], based on the most general (first-
order) �′ corrections leading to equations containing at most second derivatives.
Limiting ourselves to the four-dimensional case we consider the action

S�′ = − 1
2�2

s

k�′

4

∫
d4x

√−g e−� � a0R
2
GB +b0G

��������

+ c0�
2�����2 +d0����4 � 
 (6.33)

where the coefficients a0
 b0
 c0
d0 are fixed in such a way as to be compat-
ible with the conformal invariance of the sigma model action, to order �′ (see
Chapter 3). In particular, they must satisfy the conditions

a0 = −1
 b0 +2�c0 +d0� = 2
 (6.34)

ensuring that the above action can be obtained by performing a suitable field
redefinition (of the type (2.74), (2.75)) from the Riemann-squared term of the
action (2.77), which correctly reproduces the string scattering amplitudes [21].
For b0 = c0 = 0 one recovers, in particular, the action (6.12) used in the previous
section, while for b0 = 4 and c0 = −2 one gets d0 = 1, and recovers the duality-
invariant action (6.24).
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Concerning Sloop, it should be mentioned that the existing computations for
the gravi-dilaton and the moduli sectors are strongly dependent on the considered
model of compactification (see for instance [47, 48, 49]). In the absence of definite
results, generally valid for any model and for the full string-loop expansion,
we follow here the semi-phenomenological approach of [28, 29] where the loop
expansion is simulated by the inclusion of additional �′ corrections, weighted by
higher powers of g2

s = exp���. We limit the expansion to the two-loop order, and
set

Sloop = − 1
2�2

s

k�′

4

∫
d4x

√−g e−�

×
{

A1e�

[

a1R
2
GB +b1G

��������+ c1�
2�����2 + d1����4

]

+A2e2�

[

a2R
2
GB +b2G

��������+ c2�
2�����2 +d2����4

]}

�

(6.35)

Here the one-loop and two-loop terms have been parametrized so as to contain
the higher-curvature corrections in the same form as in S�′ (to avoid higher-
than-second derivatives of the background in the field equations); however, the
coefficients a1
 b1
 � � � and a2
 b2
 � � � are in principle different from the tree-level
coefficients a0
 b0
 � � � , and are not subject to the constraint (6.34). The constant
parameters A1 and A2 control the onset of the loop corrections, and their late-time
suppression for a successful exit. Their precise values, as well as the values of
the other coefficients, should be the outcome of a specific computation performed
within a given compactification model.

For the choice of Sm we note, finally, that the stabilization of � at a minimum of
its effective potential energy requires some level of fine-tuning on the parameters
of both the potential and the cosmological state at the beginning of the decelerated
regime [50]. We thus assume that the dilaton damping is simply due to its coupling
to the radiation, and that the radiation fluid, described by Sm, is quite negligible
in the initial phase of pre-big bang evolution, but is copiously produced by the
curvature bounce and becomes important in the post-big bang regime.

Summing up all terms, and considering a homogeneous, spatially flat metric
background, with scale factor a�t� = exp �t�, we can write the action (6.32)
(modulo a total derivative, in units 2�2

s = 1) as follows:

S =
∫ dt

N
e3−��6̇�̇− �̇2 −6̇2�− k�′

4

2∑

n=0

∫ dt

N 3
e3+�n−1��Ln +Sm
 (6.36)
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where (setting A0 = 1, and using Eqs. (6.33) and (6.35))

Ln = An

[
an�̇̇3 +3bn�̇2̇2 +2cṅ�̇3 +

(cn

3
+dn

)
�̇4
]

� (6.37)

The variation with respect to N
 and � leads, respectively, to the equations

�̇2 +6̇2 −6̇�̇+ 3
4

k�′
2∑

n=0

Lnen� = e��
 (6.38)

2�̈−4̈+4̇�̇− �̇2 −6̇2

+k�′

4

2∑

n=0

en�

[
Ln + d

dt

(
�Ln

�̇

)
+ �3̇+ �n−1��̇�

�Ln

�̇

]
= 1

3
e��
 (6.39)

6̈−2�̈−6̇�̇+12̇2 + �̇2

+k�′

4

2∑

n=0

en�

[
�n−1�Ln + d

dt

(
�Ln

��̇

)
+ �3̇+ �n−1��̇�

�Ln

��̇

]
= 0 (6.40)

(in the equation for  we have divided by 3 and we have used the equation of
state of the radiation fluid contained in Sm).

A detailed analysis of the fixed points of this system of equations, and of the
subsequent transition to the decelerated regime, shows that there is a wide region

of parameter space allowing fixed points with �̇ < 0, smoothly connected to the
vacuum and compatible with the graceful exit [29], even without the inclusion
of the radiation contribution. To give an explicit example we present here a
numerical integration with the following values of the non-zero loop coefficients,

a0 = a1 = a2 = −d0 = −d1 = −d2 = −1
 (6.41)

chosen to preserve the simple form of the action (6.12) (but the bounce is im-
plemented even if b0, c0 are non-zero, and different from b1, b2 and c1, c2).
We also choose, for our example, A1 = 1 and A2 < 0, with �A2� � 1 (the op-
posite sign of the two terms seems to be required for a successful transition
[28, 29], at least when the loop corrections are truncated to second order). With
this choice of parameters the numerical integration of Eqs. (6.38)–(6.40) shows
that the background can smoothly evolve from the string perturbative vacuum to
the high-curvature string phase, and then decay (thanks to the loop corrections)
towards the decelerated, decreasing curvature regime, even if � = 0. The final
dilaton damping, however, requires the coupling to the radiation fluid, which is
here made more effective by allowing a possible decay into radiation, with decay
width � : the matter conservation equation is then modified as follows:

�̇+4H�− 1

2
��̇2 = 0
 (6.42)



230 The string phase

and the dilaton equation (6.40) has to be completed by adding, on the right-hand
side, the friction term −���̇/2� exp��� required for the covariant conservation of
the total stress tensor.

The resulting system of equations (6.39), (6.40) and (6.42) has been numerically
integrated from t = −40 to t = 100, for the particular values k�′ = 1, A2 =
−2 × 10−3, � = 5�63 × 10−4, using Eq. (6.38) as a constraint on the initial data,
specified (in string units) as follows: � = −10, � = 0�005, ̇ = 0�05
 �̇ = 0�225 66
at t = −1. The results are illustrated in Fig. 6.4, where the curvature bounce
and the dilaton damping are shown in the left panel, while the closure of the
phase-space cycle (i.e. the exit completion) is shown in the right panel.

In spite of the possible existence of phenomenological examples of smooth
bouncing transitions and a graceful exit from the phase of high-curvature inflation,
it should be stressed that it is at present unclear whether such a scenario could
be the outcome of a reliable string theory computation. A perturbative approach
to the two-loop order, in particular, may be self-consistent only for a sufficiently
small value of the final coupling, gs � 1. In the numerical example reported in
Fig. 6.4, on the contrary, the coupling seems to approach a final value which
is not sufficiently small. It is possible, of course, to choose a different set of
values for the parameters of the numerical solution, and to end up with smaller
asymptotic values for the final dilaton. In that case, however, a smooth transition
seems to require values of A1 and A2 larger than one (in modulus), and of the
same order [29, 46], in contrast with the expectations for the coefficients of a
perturbative expansion (see Eq. (6.35)). This result might signal a natural tendency
of the background to enter the strong coupling regime and the phase populated by
strings and higher-dimensional branes, thus probably implying that only in that
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Figure 6.4 Numerical integration of Eqs. (6.38) – (6.42) (the values of the para-
meters and of the initial conditions used in these plots are given in the text).
The left panel shows the curvature bounce, the right panel shows the smooth
evolution from the vacuum to the fixed point of Fig. 6.3, and the subsequent
“exit” induced by the quantum corrections (the dashed lines are the low-energy
solutions describing pre- and post-big bang evolution).
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phase is an efficient and realistic dilaton stabilization achieved, together with the
stabilization of the internal moduli [11, 42].

6.3 String gas cosmology

Assuming that the Universe does not immediately bounce back when reaching the
regime of (moderately) strong coupling, then the cosmological evolution enters
a new phase in which the Dirichlet branes, or Dp-branes (see Appendix 3A) –
the fundamental, p-dimensional string theory objects [51], with effective mass
∼ g−1

s ��′�−�p+1�/2 – start to become light, and can be gravitationally produced
in pairs from the vacuum [6]. In this phase, the Universe is potentially large and
filled with a “hot soup” of strings, branes and antibranes (i.e. branes with opposite
spatial orientation), of all possible sizes and of all dimensions p allowed in a
string theory context, possibly wrapping around the compact dimensions. Such a
configuration has been invoked as the initial state of the “string gas” [7, 8] or
“brane gas” [9] cosmological scenario, as well as of other scenarios [52, 53, 54]
trying to explain why our effective macroscopic world is three-dimensional (see
Chapter 10 for a specific introduction to brane cosmology).

A possible way to take into account the loop corrections arising from higher-
genus topologies, in such a context, is to add to the tree-level action of the
background fields, Eq. (2.21), the sigma model action of fundamental strings,
which has no dilaton pre-factor in it, and is thus of order g2

s with respect to the
usual tree-level action [55]. Summing over all components of the string gas (see
e.g. Eq. (4.151)), and using the corresponding energy-momentum tensor as the
source of the “bulk” geometry, one then arrives at the so-called string gas approach
to early cosmological evolution, which will be briefly illustrated in this section
(a similar approach can be adopted for a gas of higher-dimensional branes).

There are two main assumptions in this approach: �i� the toroidal topology
of the spatial dimensions, and �ii� the “adiabatic” evolution of the string gas
components (see [17] for a detailed discussion of this scenario). Thanks to this
second assumption, in particular, one can neglect the gradients of the metric and
of the other background fields in the string evolution equations: thus, locally, each
single string will not be influenced by the time evolution of the cosmological
background, and one can still apply the results for the energy spectrum obtained
in a flat, static background.

Let us then recall that, for a string wound around one compact dimension of
radius R, the energy spectrum is fixed by the mass-shell condition (4.5), which
can be rewritten as

E2 =
∣
∣
∣�Pnc

∣
∣
∣
2 + n2

R2
+m2 R2

�′2 + 2
�′ �N + Ñ −�− �̃�� (6.43)
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Here �Pnc is the momentum associated with translations along the flat non-compact
directions; n and m are, respectively, the excitation levels of the momentum and
winding modes in the compact dimension, and N , Ñ are the eigenvalues of the
number operators for right- and left-moving modes, respectively. Note that we
have not specified the constants �, �̃ whose explicit values are fixed by the normal
ordering prescription, but depend on the model of string that we adopt (for the
bosonic string � = �̃ = 1, see Appendix 3A).

If all spatial dimensions are compact, as assumed by the string gas cosmology,
then �Pnc = 0. Let us call ai, i = 1
 � � � 
 d, the scale factors along the various spatial
dimensions, and replace the constant radii Ri with the “rolling radii” Ri →

√
�′ai,

by exploiting the adiabatic assumption. The previous equation for the energy
spectrum can then be generalized as follows:

E2 = 1
�′
∑

i

(
n2

i

a2
i

+m2
i a

2
i

)
+ 2

�′ �N + Ñ −�− �̃�� (6.44)

Summing over all strings, the energy density of the string gas is given by

� =∑

s

nsEs
 (6.45)

where ns = NsV
−1 is the number density of string states in a (proper) spatial

volume V ∼∏
i ai, with energy Es specified by a given set of quantum numbers,

i.e. Es = Es�n
m
N
 Ñ �.
To illustrate the dynamical effects of the winding modes on the background

geometry we concentrate our discussion on the massless levels of the string
spectrum (for closed bosonic strings, for instance, on the case N = Ñ = 1 = � = �̃),
and we consider an isotropic initial situation in which the gas of winding and
momentum modes is uniformly distributed in all spatial dimensions: thus ai = a,
∀i, and V ∼ ad. The equation of state of the gas can then be obtained using
again the adiabatic assumption, T dS = d��V� + p dV = 0, which gives for the
pressure

p = −
(

��V

�V

)

S=const
� (6.46)

For the winding modes, taking the square root of the spectrum (6.44), we obtain
Ew ∼ �wad ∼ a, from which �w ∼ a1−d and

pw = −�Ew

�a

da

dV
= −Ew

dV
= − 1

d
�w� (6.47)

For the momentum modes we have, instead, Em ∼ �mad ∼ a−1, from which
�m ∼ a−1−d and

pm = −�Em

�a

da

dV
= Em

dV
= 1

d
�m� (6.48)
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The gas of momentum modes is thus characterized by a radiation-like equa-
tion of state, while for the winding modes we find the “dual” equation of
state, according to the terminology of Section 4.2 (the same equation of state,
p/� = � = −1/d, is also obtained for a gas of long, stretched strings, frozen
outside the horizon [57, 58]). These results are automatically consistent with
the (separate) covariant conservation of both winding and momentum gases,
which implies � ∼ a−d�1+�� (see Eq. (1.29)), and which separately reproduces the
same scale-factor dependence of �w and �m as that directly obtained from the
spectrum (6.44).

Let us now consider the effects of these gases on the evolution of the gravi-
dilaton background, with particular attention to the possible production of a final
configuration with three spatial dimensions much larger than the others. We
start from the background equations (4.39)–(4.41), which we repeat here, for the
reader’s convenience, for an isotropic d-dimensional space and for sources with
zero dilaton charges (� = 0):

�̇
2 −dH2 = e��
 Ḣ −H�̇ = 1

2
e�p


�̈−dH2 = 1
2

e��

(6.49)

(in the last equation we have eliminated �̇
2

through Eq. (4.39)). The shifted
variables, �, p are defined as in Eq. (4.38). We study the solutions of these

equations in the phase-space plane spanned by the coordinates 	�̇

√

dH�, using
as sources a mixture of winding and momentum modes,

� = �w +�m
 p = −�w

d
+ �m

d

 (6.50)

and exploiting the solutions of the conservation equation, �w ∼ a, �m ∼ a−1. A
possible dynamical explanation of the observed large-scale dimensionality can
then be obtained [8] starting from an initial configuration in which the back-
ground has already reached the post-big bang regime, characterized by decelerated

expansion with H > 0 and �̇ < 0. The condition of positive energy density im-

plies, in this case, ��̇� >
√

dH (from the first equation of the system (6.49)), and
locates the initial state in the upper-left quadrant of phase space (see Fig. 6.3,
left panel), below the dashed line labeled by �1� (representing the vacuum solu-

tion �̇ = −√
dH) but above the horizontal axis H = 0. The background may

have reached such a state, for instance, driven by the effects of the loop back-
reaction, as illustrated by the numerical solution plotted in the right panel of
Fig. 6.4.
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Starting from an initial configuration in which the background is isotropically
expanding, it is clear that the density of the winding gas, growing like �w ∼ a,
will rapidly become dominant with respect to the radiation gas, which dilutes as
�m ∼ a−1. On the other hand, the low-energy gravi-dilaton equations sourced by a
perfect barotropic fluid have been exactly integrated in Chaper 4, for any equation
of state p/� = � = const (see Eqs. (4.75) and (4.76)). From the general solution
we can see that the background, starting from the given initial conditions, tends
to reach, at late times, the asymptotic configuration satisfying the condition

H = −��̇ (6.51)

(obtained by combining Eqs. (4.75) and (4.76), in the limit x → +
). The

winding-dominated background thus asymptotically approaches the state �̇ = dH ,
represented in the phase-space plane by a line crossing the origin, with positive
angular coefficient 1/

√
d. This effect is illustrated by the plots reported in Fig. 6.5,

and corresponding to a numerical integration of the equations (6.49) for d = 3
and for a mixture of momentum and winding modes in the initial ratio 1:100. The
three plotted trajectories have been obtained by varying the initial conditions of

�̇ (−1�25, −1 and −0�75) at fixed initial values of all the other parameters.
As clearly illustrated in the figure, all the trajectories we are considering evolve

towards the origin in the region of negative �̇, and may thus join the asymptotic

regime �̇ = dH only when H is also negative [8, 9]. This implies that, starting
from an initial expanding configuration, the background is unavoidably driven
by the winding modes towards a final contracting state. In particular, for H

and �̇ approaching zero from negative values, the Universe enters the so-called
“loitering” regime [9, 59] (see Fig. 6.5). The same regime, characterized by
decreasing dilaton and by the decelerated contraction of the internal dimensions,
filled with a negative pressure fluid, was also obtained in the context of the

√dH

–1.25 0.25

–0.25

0.25
initial state

loitering regime

φ –3Η
–0.75 –0.25

Figure 6.5 Phase space trajectories describing the winding-driven evolution, and
the asymptotic approach to the loitering regime (for d = 3). The dashed lines
represent the same vacuum solutions as in Fig. 6.3; the solid line crossing the
origin represents the asymptotic solution (6.51).
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phenomenological examples presented in Appendix 4B (see Eqs. (4B.54) and
(4B.55), and also Fig. 4.8).

Thus, if the initial Universe has reached a phase of decreasing dilaton, and has
compact spatial dimensions isotropically filled by a gas of string winding modes, it
cannot expand, and its size remains confined at the initial scale, naturally identified
with the string scale – with possible oscillations due to the alternate dominance
of winding modes (preventing expansion) and momentum modes (preventing
contraction). Can winding modes disappear, allowing the Universe to expand?

In a background with stable cycles, such as a torus, the expansion becomes
possible only if winding modes annihilate with antiwinding modes (i.e. with modes
wound around the cycles with the opposite orientation). Assuming a symmetric
initial configuration with equal numbers of winding and antiwinding modes (for
instance, a bath in thermal equilibrium), using the fact that the world-volumes
of extended objects with p spatial dimensions have measure zero probability of
intersecting in more than 2p+ 1 spatial dimensions, and following the intuition
that interactions are due to intersections, it was argued in [7] that string (p = 1)
winding modes can annihilate only in d ≤ 2+1 = 3 spatial dimensions. Thus, at
most three spatial dimensions may become permanently dominated by momentum
modes (i.e. by radiation) and can expand, hence explaining the observed space-
time dimensionality. The remaining d−3 spatial dimensions, on the contrary, are
kept confined at the string scale by the presence of the winding gas and by their
dynamical backreaction.

This qualitative counting argument has been verified numerically [60] using
the fact that, in d = 3, the interaction of winding states and their energy transfer
to non-winding states can be described in close analogy with the cosmic string
case. The intersection of two winding strings with the opposite orientation, in
particular, produces closed loops with vanishing winding number, characterized
by the same equation of state of non-relativistic (dust) matter. A quantitative,
numerical analysis of the background evolution in the presence of “unwinding”,
due to loop production, has also shown [59] that the annihilation of the winding
modes leads the background to exit from the loitering phase, and to approach the
origin of the phase-space plane from positive values of H , in a state of three-
dimensional, loop-driven isotropic expansion. These conclusions, however, have
been challenged by a series of numerical works [61, 62, 63] showing that, because
of the dilaton dependence of the string coupling, the annihilation mechanism and
the resulting liberation of three growing dimensions only works if the initial value
of the dilaton is sufficiently large. Otherwise, the compactification of all or none
of the spatial dimensions is the most probable final configuration.

The above scenario, in which the background evolution is controlled by the
presence of string winding modes, can be easily generalized to the case in which
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all spatial dimensions are isotropically filled with a gas of Dp-branes, wrapping
around the cycles of the toroidal background, and possibly oscillating in the
directions transverse to the brane. The dynamics of these higher-dimensional
objects, extended along p spatial dimensions, is described by the Dirac–Born–
Infeld (DBI) action (see e.g. [51]),

Sp = −Tp

∫
dp+1� e−�/2

∣
∣det�hab +Bab +2��′Fab�

∣
∣1/2


 (6.52)

which generalizes the Nambu–Goto action of a string, see Eq. (3A.1). Here Tp ∼
��′�−�p+1�/2 is the tension (or mass per unit volume) of the brane, hab the induced
metric on the brane, Bab the induced antisymmetric tensor, and Fab the possible
gauge field confined on the brane. Finally, the coordinates �a, a = 1
 � � � 
 p+ 1,
span the brane world-volume.

As in the case of the string gas we limit ourselves to a torsionless background,
B = 0, and we concentrate the discussion on the degrees of freedom leading to
a gas with an effective negative pressure, thus neglecting gauge fields and other
matter fields possibly living on the brane, as well as the oscillations transverse
to the brane (they are all degrees of freedom contributing an “ordinary”, positive
pressure term to the brane gas, as can be seen by expanding to second order
the above action [9]). We are then left with the action for the brane winding
modes, which in the adiabatic approximation has the same form as the action
for a cosmological term �p ∼ g−1

s Tp confined on the �p+1�-dimensional world-
volume of the brane. In an isotropic, �d + 1�-dimensional bulk manifold, with
scale factor a, we have thus a “wrapping” energy Ep ∼ g−1

s Tpap localized on the
brane, with effective pressure (in a bulk volume V ∼ ad) given, in the adiabatic
approximation, by

p̃ = −�Ep

�V
= −pEp

dV
= −p

d
�p� (6.53)

The equation of state is thus controlled by the barotropic parameter � = −p/d

(for p = 1 we recover the same result as in the case of the string winding modes).
Using the conservation equation we eventually obtain

�p = �pad ∼ a−d� = ap
 (6.54)

generalizing to any p the scaling behavior of string winding modes, � ∼ a.
We can now repeat the analysis of the background equations (6.49), to find

qualitatively the same results as before: the contribution of the winding modes of
the brane becomes dominant with respect to that of the positive-pressure sources,
and prevents the expansion of the spatial dimensions, leading the background
towards an asymptotic regime of loitering contraction along the phase-space

trajectory �̇ = −H/� = dH/p. The annihilation of these modes in d≤2p + 1
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dimensions leads eventually to the same conclusions as the string gas cosmology,
but with the additional possible introduction of an interesting hierarchy in the size
of the compact internal dimensions [9].

Suppose, in fact, we start with a hot, thermal mixture of all possible types of
p branes, with comparable number densities for all species of branes, and with
equal numbers of winding and antiwinding modes. Suppose also that, initially,
the Universe expands isotropically: as the gravitational contribution of the branes
grows as � ∼ ap, we will have a series of phases, starting with the phase in which
the component of the mixture with the largest dimensionality (say p1) becomes
dominant first. The annihilation of these modes will leave 2p1 +1 dimensions free
to expand, but this expansion will stop when other higher-dimensional objects
(say p2-branes, with p2<p1) will become dominant. Their annihilation will leave
a new subset of 2p2 + 1 expanding dimensions, and so on, down to p = 1. The
domain-wall problem, possibly arising at each stage of brane-dominated evolution,
should be solved by the loitering phase preceding the annihilation [59].

In the realistic case of a primordial Universe living in critical (d = 9) superstring
dimensions we may note, first of all, that there is no difficulty for the intersection,
the interaction and the self-annihilation of all branes with p ≥ 4 (i.e. for all p

such that 9≤2p + 1). The isotropic expansion of the nine spatial dimensions is
thus possibly prevented by p = 3, 2, 1 branes only. The p = 3 branes (if they
exist) are the first to become dominant, and when they annihilate will first allow
a seven-dimensional spatial section (say, a seven-dimensional torus T 7) freedom
to expand. The size of this (hypothetical) T 7, however, cannot grow too large,
because D2-branes, sooner or later, will become dominant, halting the expansion.
The annihilation will allow a T 5 subspace of this T 7 to expand, until the winding
modes of D-strings (p = 1 branes) or fundamental strings dominate. Within this
T 5, the disappearance of the string winding modes will finally allow a T 3 subspace
to expand, and become large without further obstructions.

Thus, we eventually recover the same result as before, with a possible hierarchy
of size of the internal d − 3 dimensions: after the above phase transitions, the
nine-dimensional spatial manifold M9 will acquire the structure:

M9 → T 2 ×T 7 → T 2 ×T 2 ×T 5 → T 2 ×T 2 ×T 2 ×T 3� (6.55)

Interestingly enough one obtains, in this context, a configuration in which two
dimensions may be larger, in principle, than the remaining internal ones, suggest-
ing a possible connection with proposed scenarios with large internal dimensions
[64, 65].

A final, important comment on string gas cosmology must concern the stabil-
ization of the volume of the internal dimensions and, eventually, of the dilaton,
both required for a phenomenologically consistent late-time cosmology.
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The interactions of winding modes, and their backreaction on the geometry,
suggest, as we have seen, a possible explanation of the large-scale dimensionality
of the space-time in which we live (provided we accept some level of fine-tuning
on the initial value of the dilaton). In the same way, the interplay of winding
and momentum modes can stabilize the radius of the internal dimensions in an
oscillating (S-frame) configuration [66]. However, this is not enough to stabilize
the extra dimensions in all frames since, in this context, the dilaton keeps running.
The inclusion of additional string states that are massless at the self-dual radius
R ∼ √

�′ seems to be required, in particular, to stabilize the extra dimensions
in the E-frame [67] (but, again, the whole process is sensitive to the initial
conditions [17]).

An alternative approach, possibly free from fine-tuning problems, is based on
the mechanism of “quantum moduli trapping” [43]: when the background reaches
an “enhanced symmetry point” like the self-dual radius, there is an additional
production of massive states which become light near that point, and which should
generate a confining potential preventing the modulus departing from it (see [17]
for an application of this mechanism to a bosonic string model embedded in a
five-dimensional space-time compactified on a circle).



Appendix 6A
Birth of the Universe in quantum string cosmology

In the standard cosmological scenario the Universe is expected to emerge from a space-
time singularity, and to evolve initially through a phase of very high curvature and
density, well inside the quantum gravity regime. In string cosmology, instead, there are
scenarios which avoid the singularity, and in which the Universe emerges from a state
of perturbative vacuum: in that case the initial phase is classical, with a curvature and a
density very small in string (or Planck) units.

Even for those scenarios, however, the transition to the decelerated, radiation-
dominated regime seems to occur only after the establishment of the high-curvature
and strong coupling regime, as discussed in this chapter. The “birth of our Universe”,
regarded as the beginning of the present (Friedman-like) cosmological state, corresponds
in that case to the transition (or “bounce”) from the phase of growing to decreasing
curvature, and also in that case can be described using quantum cosmology methods, as
for a Universe born from an initial singularity.

There is, however, a crucial difference between a quantum description of the “big bang”
and of the “big bounce”: indeed, the bounce is preceded by a long period of classical
evolution, while the standard big bang picture assumes that there is an abrupt truncation
of the space-time dynamics at the singularity, with no classical description allowed at
previous epochs (actually, there are no “previous” epochs, as the time coordinate itself
ends at the singularity with no further allowed extension). It follows that in the standard
scenario the initial state of the Universe is unknown, in principle, and has to be fixed
through some ad hoc prescription: there are indeed various possible choices for the initial
boundary conditions [68–73], leading in general to different quantum pictures for the
early cosmological evolution.

In string cosmology models of bouncing, on the contrary, the initial state is fixed
by the given pre-big bang (or pre-bounce) evolution, which, for instance, approaches
asymptotically the string perturbative vacuum: this unambiguously determines the initial
“wave function” of the Universe [74, 75], and the subsequent transition probabilities.

In a quantum cosmology context the Universe is described by a wave function evolving
in superspace, according to the so-called Wheeler–De Witt (WDW) equation [76, 77], in
much the same way as in ordinary quantum mechanics a particle is described by a wave
function evolving in Hilbert space, according to the Schrödinger equation. Each point of
Hilbert space corresponds to a state, and the quantum dynamics may allow transitions
even in the case in which such transitions are forbidden in the context of the classical
dynamics. In the same way, each point of superspace corresponds to a possible geometric
configuration of the space-like sections of our space-time manifold, and the quantum
cosmology dynamics may allow transitions between different geometrical states (for
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instance, from contraction to expansion, or from growing to decreasing curvature), even
in the case in which such configurations are classically disconnected by a singularity.

It is probably appropriate to recall here that the quantum cosmology approach is affected
by various problems, already present also in the context of the standard cosmological
scenario: we can mention, in particular, the meaning of the probabilistic interpretation [78],
the existence (and the possible meaning) of a semiclassical limit [79], the unambiguous
identification of a time-like coordinate in superspace [80]. The problems of the boundary
conditions and of the operator ordering in the WDW equation disappear, as we shall
see, in a string cosmology context: the other problems, however, remain. Nevertheless, if
we accept giving up a deterministic description of the bouncing transition, the quantum
cosmology approach may allow a precise formulation of the question concerning the birth
of our present cosmological state, and may provide a quantitative answer to this question.

For an elementary illustration of this possibility we discuss in this appendix the simplest
example of “low-energy” quantum string cosmology, based on the following gravi-dilaton
effective action:

S = − 1
2 �d−1

s

∫
dd+1x

√�g� e−�
[
R+ ����2 +V��
g�

]
� (6A.1)

We neglect higher-order (�′ and loop) corrections, except those encoded in the (possibly
non-local and non-perturbative) dilaton potential: the approach is similar to that of low-
energy quantum mechanics, where one neglects relativistic and higher-order corrections.
This first approximation is already sufficient, however, to take into account the quantum
geometric effects we are interested in (see [81, 82] for higher-curvature contributions to
the WDW equation).

We use, for our examples, the background (6.2) in the isotropic limit. Thus, our
cosmological system is characterized by two degrees of freedom, the scale factor a and
the dilaton � (the “lapse” function N = √

g00 can be fixed to arbitrary values by choosing
an appropriate gauge). The quantum evolution of this system can then be described by
the WDW equation in a two-dimensional “minisuperspace”, which we parametrize using
the following convenient coordinates:

 = √
d ln a
 � = �−√

d − ln
∫

ddx �−d
s (6A.2)

(we are assuming spatial section of finite volume,
∫

ddx < 
). Each given “point”
	�t�
��t�� of such minisuperspace represents a classical solution of the action (6A.1).

To obtain the WDW equation we now rewrite the action in terms of the variables 

and �, without fixing the temporal gauge, and using for the background the previous
results (5.23)–(5.25). Defining

S =
∫

dt L�N

�� (6A.3)

we obtain (after integration by parts)

L�N

�� = �s

e−�

2N

[
̇2 − �̇

2 −N 2 V�
��

]
� (6A.4)

The variation with respect to N defines the total energy density of the system, and leads
to the so-called Hamiltonian constraint. In the cosmic-time gauge N = 1,

(
�S

�N

)

N=1

= 0 ⇒ �̇
2 − ̇2 −V = 0� (6A.5)
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The two momenta, canonically conjugated to the minisuperspace coordinates  and �,
are given, respectively, by

� =
(

�L

�̇

)

N=1

= �s ̇ e−�


�� =
(

�L

��̇

)

N=1

= −�s �̇ e−��

(6A.6)

The Hamiltonian constraint can thus be rewritten in terms of the momenta as

�2
 −�2

�
+�2

s V�
�� e−2 � = 0� (6A.7)

The WDW equation is finally obtained as the differential implementation of the Hamilto-
nian constraint through the gradient representation of the momenta, � → i� :

[
�2

�
− �2

 +�2
s V�
�� e−2�

]
� �
�� = 0� (6A.8)

In the absence of dilaton potential this equation reduces to the free d’Alembert equation
in a flat, two-dimensional manifold, and the solution can be factorized in plane waves as
follows:

� �
�� = �±
 �±

�
∼ e±ike±i�� (6A.9)

Here k is a positive constant, and �±
 , �±

�
are free momentum eigenstates, satisfying the

eigenvalue equations

� �±
 = ±k�±

 


�� �±
�

= ±k�±
�
�

(6A.10)

Recalling that � ∼ ̇ and �� ∼ −�̇ (according to their definitions), one can immediately
check that the four particular solutions of type (6A.9) – corresponding to the four possible
combinations of positive and negative eigenvalues – provide a plane-wave representation
of the four asymptotic branches of the classical low-energy solutions, satisfying the
condition

�̇ = ±√
dH = ±̇ ⇒ � = ±��
 (6A.11)

and corresponding to the bisecting lines of the “phase space” plane of Fig. 4.3. With
reference to Fig. 4.3 we have the following correspondence between the classical solutions
and the plane-wave representation in minisuperspace:

• expansion −→ ̇ > 0 −→ �+
 ,

• contraction −→ ̇ < 0 −→ �−
 ,

• pre-big bang −→ �̇ > 0 −→ �−
�

,

• post-big bang −→ �̇ < 0 −→ �+
�

.
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In this representation, the transition from an initial expanding pre-big bang phase to a
final expanding post-big bang phase (represented by the upper dashed curve of Fig. 4.3)
becomes a transition between the initial state

�in = �+
 �−

�
∼ eik�−ik
 � > 0
 �� < 0
 (6A.12)

and the final state

�out = �+
 �+

�
∼ e−ik�−ik
 � > 0
 �� > 0� (6A.13)

The corresponding minisuperspace trajectory describes a monotonic evolution along 

and a reflection along �: thus, it can be represented as a scattering process of the WDW
wave function in the plane spanned by  and �, where  plays the role of a time-like
coordinate, and � of space-like coordinate [74, 75] (see Fig. 6.6).

The boundary conditions for this process are uniquely fixed by the choice of the
string perturbative vacuum as the initial state, corresponding to an incoming wave
emerging from the asymptotic region  → −
, � → −
, associated with a posi-
tive eigenvalue of � and apposite eigenvalue of ��. As illustrated in the figure,
such an incident wave is partially transmitted towards the singularity ( → +
, � →
+
), and partially reflected back towards a post-big bang configuration, still expand-
ing, but with decreasing curvature. The transition probability is fixed by the reflection
coefficient

Rk =
∣
∣�+

k

∣
∣2

��−
k �2 
 (6A.14)

given by the ratio between the left-moving and the right-moving parts of the asymptotic
solution along �.

ϕ

β = √d ln a

 reflected to
post-big bang

incident from
 pre-big bang

 transmitted to
the singularity

ψβ ψϕ ~ e–ikφ  – ikβ
 

+ +

ψβ ψϕ ~ e+ikφ  – ikβ
 

+ −     

Figure 6.6 Birth of the Universe from the string perturbative vacuum, as a pro-
cess of scattering and reflection of the WDW wave function in minisuperspace.
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6A.1 Tunneling from the string perturbative vacuum

Without potential in the WDW equation there is no scattering, and then no transition,
of course. With appropriate potentials, allowing a smooth evolution from the pre- to the
post-big bang regime at the level of the classical solution, the transition probability Rk

tends to unity; such a probability may be non-zero, however, even if the two branches of
the classical solution are causally disconnected by a singularity [74]. We present here a
very simple illustration of this effect, using as dilaton potential a cosmological constant,
V�
�� = � = const [75].

In this case the classical solution satisfies the condition

�̇
2 −dH2 ≡ �̇

2 − ̇2 = �
 (6A.15)

and is represented by a hyperbola in the plane 	�̇
 ̇� of Fig. 4.3 (in the limit �̇ → ±
,
̇ → ±
 one recovers the four distinct branches of the free solution (6A.11)). The
explicit form of this hyperbolic solution, obtained by integrating the low-energy equations
(4A.29) (with V = � and no sources), is well known [83], and can be written as

a�t� = a0

(

tanh

∣
∣
∣
∣
∣

√
�

2
t

∣
∣
∣
∣
∣

)±1/
√

d




� = �0 − ln sinh
∣
∣
∣
√

�t
∣
∣
∣ 
 (6A.16)

where a0 and �0 are integration constants. This solution contains two branches, of the
pre- and post-big bang type, defined respectively for t < 0 and t > 0, and separated by
a singularity of the curvature invariants and of the effective string coupling at t = 0.
Both branches are characterized by a conserved momentum along the  axis, defined by
Eq. (6A.6) as

�ṡ e−� = ±�s

√
� e−�0 ≡ ±k = const� (6A.17)

For this potential the WDW equation reduces to
(
�2

�
− �2

 +�2
s �e−2�

)
��
�� = 0
 (6A.18)

and can be solved by exploiting the conservation of �, separating the variables as

� �
�� = �k���e−ik
 (6A.19)

where (
�2

�
+k2 +�2

s �e−2�
)

�k��� = 0� (6A.20)

The general solution of this equation is a linear combination of Bessel functions [84]
J��z� and J−��z�, of index � = ik and argument z = �s

√
� exp�−��. Assuming a flat and

perturbative geometric configuration as the initial condition, i.e. choosing the initial wave
function incoming from the asymptotic regime � → −
,  → −
 (see Fig. 6.6), we
can impose that there are only right-moving waves (along �) approaching the singularity

� → +
 (namely waves representing a state with �̇ > 0, or �� < 0). Using the small
argument limit of the Bessel functions,

lim
�→+


J±ik

(
�s

√
� e−�

)
∼ e∓ik�
 (6A.21)
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we can then uniquely fix the WDW solution (modulo an arbitrary normalization factor
Nk) as follows:

�k�
�� = NkJ−ik

(
�s

√
� e−�

)
e−ik� (6A.22)

After imposing the boundary conditions we expand the normalized solution in the
opposite, perturbative limit � → −
, where we find

lim
�→−


�k�
�� = Nke−ik

�2�z�1/2

[
e−i�z−�/4�ek�/2 + ei�z−�/4�e−k�/2

]

≡ �−
k +�+

k � (6A.23)

This expression contains a superposition of the initial incoming state (�−
k , char-

acterized by �� < 0, i.e. by growing dilaton), and of the reflected compon-
ent (�+

k , characterized by �� > 0, i.e. by decreasing dilaton). The correspond-
ing transition probability is then determined by the reflection coefficient (6A.14)
as [75]

Rk = e−2�k� (6A.24)

Therefore, the quantum probability for this process is non-zero even if this trans-
ition is classically forbidden. We find, in particular, the same exponential suppression
appearing also in the “tunneling” processes typical of the standard quantum cosmo-
logy scenario, where the quantum effects are expected to generate a Universe in the
appropriate inflationary state. There is, however, an important difference due to the
fact that, in the string cosmology scenario we are considering, the quantum gravity
(Planckian) regime is reached at the end of a long phase of accelerated evolution,
when the Universe is expected to exit (not to enter) the inflationary regime. Thus,
quantum effects have not to be responsible for inflationary initial conditions (indeed,
the Universe emerges from the scattering process into a state of standard, decelerated
expansion).

In spite of these differences, the result (6A.24) is formally very similar to the probability
that our Universe may emerge from the Planckian regime according to the “tunneling
from nothing” (and other similar) inflationary scenarios [70–73]. The explanation of this
formal analogy is simple, if we recall that the choice of the string perturbative vacuum
as the initial state implies that there are only outgoing (right-moving) waves approaching
the singularity at � → 
. This is exactly equivalent to imposing tunneling boundary
conditions, which select “only outgoing modes at the singular space-time boundary”
[78, 85]. In this sense, the quantum reflection that we have illustrated can also be
interpreted as a tunneling process, not “from nothing” but “from the string perturbative
vacuum”.

6A.2 Operator ordering

It seems appropriate, at this point, to stress that the WDW equation of string cosmology
is not affected by operator ordering ambiguities, thanks to the symmetry properties of
the string effective action [74]. The presence of the duality symmetry, in particular,
implies that the minisuperspace geometry is globally flat: thus, it is always possible to
choose a convenient parametrization associated with a flat metric in momentum space,
and to a Hamiltonian manifestly free from operator ordering problems. Conversely, if we



Appendix 6A Birth of the Universe 245

introduce curvilinear coordinates in minisuperspace, the ordering imposed by duality is
equivalent to the requirement of general reparametrization invariance.

For a general illustration of this property we may start from the O�d
d�-covariant form
of the low-energy effective action introduced in Chapter 4, considering in particular the
Lagrangian associated with the action (4.132):

L�M
�� = −�s

2
e−�

[
�̇

2 + 1
8

Tr�ṀṀ−1�+V

]
� (6A.25)

The canonical momentum �M for the torsion-graviton background,

�M = �L

�Ṁ
= �s

8
e−�M−1ṀM−1
 (6A.26)

leads to the classical Hamiltonian density

H = 4
�s

e� Tr�M�MM�M�
 (6A.27)

which would seem to have ordering problems, since �M
�M� �= 0. However, thanks to the
O�d
d� properties of the matrix M , we can always rewrite the torsion-graviton kinetic
terms in the form (4.131)

1
8

Tr�ṀṀ−1� = 1
8

Tr�Ṁ��2
 (6A.28)

with a corresponding momentum

�M = −�s

8
e−��Ṁ�� (6A.29)

The associated Hamiltonian density,

H = − 4
�s

e� Tr���M��M�
 (6A.30)

has a flat metric in momentum space, and no ordering problems for the WDW equation.
A flat minisuperspace metric also manifestly appears in the gravi-dilaton Hamiltonian

(6A.7). Let us discuss, however, the effects of changing the chosen parametrization, using,
for instance, the new pair of coordinates 	a
�� different from those of Eq. (6A.4). The
action becomes

S = �s

2

∫
dt

e−�

N

(
d

ȧ2

a2
− �̇

2 −N 2 V

)

 (6A.31)

and the new conjugate momenta,

�a = d�s

ȧ

a2
e−�
 �� = −�s�̇ e−�
 (6A.32)

lead to the following (classical) Hamiltonian constraint:

a2

d
�2

a −�2
�
+�2

s Ve−2� = 0� (6A.33)
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The kinetic part of this Hamiltonian has a non-trivial 2×2 metric �AB in minisuperspace:

H� = a2

d
�2

a −�2
�

= �AB�A�B


�AB = diag
(

d

a2

−1

)

 (6A.34)

and we now encounter an ordering problem for the quantum system, since �a
�a� �= 0.
Using the differential representation of the momentum operators we can write, in

general, the Hamiltonian operator in the form

H� = �

��
2 − a2

d

�2

�a2
− �

a

d

�

�a

 (6A.35)

where � is a (real) c-number parameter, depending on the ordering (there are no additional
contributions to the ordered Hamiltonian from the scalar curvature � of superspace [86],
since � is vanishing for the metric (6A.34)). On the other hand, if we want to reproduce the
general result (6A.30) – which is valid also in the isotropic case with B = 0 and G = −a2I
– one easily finds that the operators a2�2

a and a�a must appear in the Hamiltonian with
the same numerical coefficient, which forces us to the choice � = 1. Otherwise stated, the
ordering specified by � = 1 is the only one compatible with the invariance of the action
under the scale-factor duality transformation a → ã = a−1, � → �. By applying such a
transformation to the ordered Hamiltonian (6A.35) one obtains, in fact,

H��a� = H��̃a�+ 2
d

��−1� ã
�

�̃a

 (6A.36)

so that only for � = 1 is the form of the Hamiltonian preserved.
It may be observed, finally, that this ordering prescription is exactly equivalent to the

requirement of reparametrization invariance in minisuperspace, which imposes on the
kinetic part of the Hamiltonian the covariant d’Alembert form [86]:

� = −�A�A = − 1√−�
�A�

√−��AB�B�� (6A.37)

For the metric (6A.34), on the other hand,

−�A�A = �

��
2 − a

d

�

�a
− a2

d

�2

�a2

 (6A.38)

which again implies � = 1, when compared to Eq. (6A.35).

6A.3 Scattering of the wave function in minisuperspace

Let us conclude this appendix by noting that the scattering process illustrated in Fig. 6.6
is not the only process of quantum string cosmology which may occur – and possibly
describe the birth of our present cosmological state – in the two-dimensional minisuper-
space of Eq. (6A.8). Even after fixing the boundary conditions with the choice of the
perturbative vacuum (represented, asymptotically, by the wave function �+

 �−
�

), there
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Figure 6.7 The four possible channels of vacuum decay in the two-dimensional
WDW minisuperspace spanned by  and �.

are indeed four different types of processes, associated with four different configurations
�±

 �±
�

of the wave function in the final state, and corresponding to four possible “decay
channels” of the string perturbative vacuum [87].

Such a range of possibilities is due to the arbitrary choice of the time-like coordinate
in minisuperspace [88], and also to the fact that, with appropriate assumptions about the
scattering potential (supposed to be localized in a finite region of superspace), one can
obtain asymptotical �out� states which are superpositions of waves with the same �

and opposite ��, or with the same �� and opposite �. Taking into account that one
component of the �out� state must correspond to the transmitted part of the incident wave
function, �in = �+

 �−
�

, the possible components of the outgoing wave function will be

of the type �out ∼ �+
 �±

�
and �out ∼ �−

�
�±

 , depending on momentum conservation along

 or along �, respectively. A graphic illustration of the possible processes is shown in
Fig. 6.7.

Two of these processes (I and IV) describe a monotonic evolution along , the other
two (II and III) along �. The time-like coordinate, however, coincides with  for cases I
and II, and with � for cases III and IV. As a consequence, only cases I and III represent
a true “reflection” of the momenta along a spatial axis: the other two processes, II and
IV, are qualitatively different, as the final state is a superposition of modes of positive
and negative frequency with respect to the time-like axis (namely, they are positive
and negative “energy” eigenstates). In the context of the so-called “third quantization”
formalism [89–92] (i.e. second quantization of the WDW wave function), they represent
a Bogoliubov mixing describing the production of a “pair of universes” from the vacuum.
The wave moving backward with respect to the time axis has to be “reinterpreted” (as
in quantum field theory for the antiparticles) as an “antiuniverse” of positive energy
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and opposite spatial momentum (in superspace). In our case such a superspace inversion
corresponds to a reflection of ̇, so that this reinterpretation principle changes expansion
into contraction, and vice versa.

Let us discuss in more detail the four possible processes, starting from the spatial
reflections I and III. Case I describes a reflection along the spatial axis �, and has been
discussed previously (see Fig. 6.6). In particular, the evolution is monotonic along ,
so that the Universe always keeps expanding. The incident wave is partially transmitted
towards the big bang singularity (� → +
), and partially reflected back towards the
low-energy, expanding, post-big bang regime ( → 
, � → −
). In case III, on the
contrary, the evolution is monotonic along �, and the incident wave is reflected along
, interpreted as the spatial axis. The incident wave is totally transmitted towards the
singular region (� → +
), but in part as an expanding (̇ > 0) and in part as a contracting
(̇ < 0) configuration. It may be noted that this process (as well as process II) requires a
duality breaking potential V = V�
��, otherwise � is conserved, �H
�� = 0, and the
reflection along  is forbidden, even at the quantum level.

6A.4 Antitunneling from the string perturbative vacuum

Consider now the third-quantization processes, II and IV. Case IV, in particular, describes
the production of universe–antiuniverse pairs (one expanding, the other contracting)
from the string perturbative vacuum [93]. However, the pairs evolve towards the strong
coupling regime (� → +
), so that all members of the pairs fall inside the big bang
singularity. Case II is probably more interesting, from a phenomenological point of view,
since there the universe and the antiuniverse of the pair are both expanding: one falls
inside the singularity, but the other expands towards the low-energy, post-big bang regime
(� → −
,  → +
), and may represent the birth of a universe like ours in a standard
Friedman-like configuration [94].

In this second case, the production of pairs from the vacuum – just as in the particle
case – is associated with the parametric amplification of the wave function in the minisu-
perspace. The birth of the Universe, in this case, may be seen as a process of antitunneling
from the string perturbative vacuum, and the probability of this process is no longer
exponentially suppressed, as in the case of the tunneling transitions of type I and III.

This type of process requires an effective potential containing both the metric and
the dilaton, but not in the combination �: otherwise, �V
�� = 0, the Hamiltonian is
translationally invariant along the  axis, and the �out� state cannot be a mixture of states
with positive and negative eigenvalues of �. A simple example of a potential of this
type is the two-loop potential

V�
�� = ���−�e2� ≡ ���−�e2��+√
d�
 (6A.39)

which has been studied in [94]. Here � is a positive constant, and � is the Heaviside step
function, introduced to mimic an efficient damping of the potential outside the interaction
regime (in particular, in the large-radius limit  → 
 of the expanding, post-big bang
configuration).

With this potential, the WDW equation (6A.8) can be conveniently separated in terms
of the eigenstates of ��, looking for solutions of the form

� �
�� = �k��eik�
 (6A.40)
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where [
�2

 +k2 −�2
s ���−�e2

√
d
]

�k�� = 0� (6A.41)

In the region  > 0 the potential is vanishing, and the solution is a superposition of
eigenstates of � represented by the free (positive and negative) frequency modes �±

 .
In the region  < 0 the solution is a combination of Bessel functions J��z�, of imaginary
index � = ±ik/

√
d and argument z = i�s

√
�/d exp�

√
d�. The boundary conditions are

fixed at  → −
, imposing that the universe starts expanding from the string perturbative
vacuum,

lim
→−


� �
�� ∼ eik��−�� (6A.42)

Imposing the matching of � and � ′ at  = 0 one then computes the Bogoliubov coef-
ficients determining, in the third-quantization formalism, the probability distribution of
the pairs of universes produced from the vacuum, for each mode k (where k represents a
given configuration in the space of the initial parameters).

One finds [93, 94], in particular, that the initial wave function is parametrically ampli-
fied provided k < �s

√
�. In that case the birth of our present, post-big bang cosmological

phase may proceed efficiently as a forced production of pairs of universes from the
quantum fluctuations of the string perturbative vacuum. Since k ∼ g−2

s , the process is
strongly favored for configurations of large enough coupling gs and/or large enough
cosmological constant � (in string units). For k � �s

√
�, on the contrary, there is no

parametric amplification, and the initial state runs almost undisturbed towards the sin-
gularity. Only a small, exponentially suppressed fraction of it is able to emerge in the
post-big bang regime (just as in the case of tunneling, or reflections): the number of pro-
duced pairs is exponentially damped, nk ∼ exp�−k/�s

√
��, and the resulting distribution

describes a “thermal bath” (or “foam”) of “baby universes” at an effective temperature
T ∼ √

� in superspace (see [94, 95] for a more detailed discussion).
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7

The cosmic background of relic
gravitational waves

In Chapter 5 we have shown that there are various classes of inflationary
kinematics, and we have stressed that the kinematic properties of the string
cosmology backgrounds may be very different from the “standard” kinematic
properties typical of field theory models of inflation. A question which naturally
arises is whether such kinematic differences may correspond (at least in principle)
to observable phenomenological differences, suitable to provide a clear signature
of the various primordial scenarios.

The answer to this question is positive, as the transition from accelerated to
decelerated (i.e. from inflationary to standard) evolution amplifies the quantum
fluctuations of the various background fields, and may produce a large amount of
various species of radiation. The spectral properties of this radiation, on the other
hand, are strongly correlated to the kinematics of the inflationary phase, as we shall
see in this chapter. A direct (or indirect) observation of such a primordial com-
ponent of the cosmic radiation may thus give us important information on the in-
flationary dynamics, testing the predictions of the various cosmological scenarios.

This chapter is devoted to the study of the direct inflationary production of
gravitational radiation, starting from the amplification of the tensor part of the
metric fluctuations and the subsequent formation of a cosmic background of relic
gravitons. Such a background, if produced at curvature scales H <∼ MP, is expected
to survive almost unchanged till the present epoch, thus transmitting to us (encoded
inside its spectral structure) a faithful imprint of the primordial kinematics [1].

We should recall that the Universe becomes “transparent” to the gravitational
radiation just below the Planck scale. For the electromagnetic radiation such a
transparence is reached only at exceedingly lower scales, i.e. at the “decoup-
ling” scale Hdec ∼ 10−57MP when the temperature drops below 3000 K, roughly
corresponding to the temperature of recombination of hydrogen atoms (see for
instance [2]). This big difference of scales underlines the exceptional relevance
of a direct observation of the primordial graviton background for a possible
reconstruction of the early history of our Universe.
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7.1 Propagation of tensor perturbations

In order to discuss the production of gravitational waves in a generic inflationary
scenario we need, first of all, the equation describing the propagation of tensor
perturbations on a cosmological background (generalizing the usual d’Alembert
wave equation, valid in Minkowski space). Such an equation can be deduced in
two different (but equivalent) ways.

The first approach is based on the direct perturbation of the field equations,
and on the expansion of the metric to first order around a given zeroth-order
solution g��,

g�� → g�� +�g��� �g�� ≡ h��� (7.1)

Using the unperturbed equations for g�� one then obtains a linearized equation
for the first-order perturbation h��. This is a convenient approach if we are
only interested in the classical propagation of tensor perturbations, but is not
appropriate if we want to study the evolution of the quantum fluctuations of the
metric background.

The second approach is based on the same metric expansion as before, but the
expansion is now applied to the action, which is perturbed up to terms quadratic
in h��. Using the unperturbed equations for g�� one obtains a quadratic action,
��2�S ≡ S�h2�, whose variation with respect to h�� provides a linear propagation
equation – exactly the same equation as that obtained with the previous method.
Given ��2�S, however, it is possible to diagonalize the kinetic term of the fluctu-
ations, and define the so-called “normal modes” of oscillations: such modes can
be quantized by imposing canonical commutation relations, and can be used to
normalize the perturbed solutions to a spectrum of quantum fluctuations of the
vacuum [3], as we shall see in this section.

We apply this second procedure to the lowest-order, gravi-dilaton effective
action (already introduced in Chapters 2 and 3),

S = − 1
2	d−1

s

∫
dd+1x

√�g� e−

[
R+ ��
�2 +V�
�

]
� (7.2)

where we have also included a scalar potential for possible applications to gen-
eric inflationary scenarios. In order to study the pure tensor part of the metric
fluctuations (see Chapter 8 for scalar metric perturbations) we do not perturb
the scalar dilaton field, setting �
 = 0 (indeed, scalar and tensor perturbations
are decoupled in the linear approximation). We can then parametrize the metric
perturbation with a transverse and traceless tensor field, as follows:

�g�� = h��� ��h�
� = 0� g��h�� = 0� (7.3)

where �� represents the unperturbed covariant derivative, and the indices of h��

are raised and lowered with the unperturbed metric g��.
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In order to expand the action up to terms quadratic in the fluctuations variable
h��, let us start considering the contravariant components of the metric and the
determinant of the metric tensor. We obtain

��1�g�� = −h��� ��2�g�� = h��h�
�� (7.4)

��1�√−g = 0� ��2�√−g = −1
4
√−g h��h

��� (7.5)

where we are using the notation in which ��k�A denotes the kth term in the
expansion of the variable A in powers of h. As usual, the signs of the contravariant
components are fixed by the condition

�g�� +h����g
�� +��1�g�� +��2�g��� = ��

�� (7.6)

For the Christoffel connection we obtain

��1���
� = 1

2
g��

(
��h�� + ��h�� − ��h��

)

− 1
2
h��

(
��g�� + ��g�� − ��g��

)
� (7.7)

��2���
� = −1

2
h��

(
��h�� + ��h�� − ��h��

)

+ 1
2
h��h�

�

(
��g�� + ��g�� − ��g��

)
� (7.8)

and so on for the components of the Ricci tensor, ��1�R��, ��2�R��. We may note
that the first-order perturbation ��1� , using the explicit form of the unperturbed
connection, can also be rewritten in a useful covariant form as

��1���
� = 1

2
g��

(
��h�� +��h�� −��h��

)
� (7.9)

Applying this procedure to Eq. (7.2), we are led to consider the following perturbed
action:

��2�S = − 1
2	d−1

s

∫
dd+1x e−


[
√�g�

(

��1�g����1�R�� +R���
�2�g�� +g����2�R��

+��2�g����
��


)

+
(

g��R�� +g����
��
+V

)

��2�
√�g�

]

� (7.10)

Up to now the formalism is completely covariant, and all equations are valid
quite independently of the specific form of the unperturbed metric. Since we
are interested in the perturbation of a cosmological background, however, it is
possible (and more convenient) to compute the perturbed action using directly
the synchronous gauge, where g00 = 1. In particular, in order to illustrate the



256 The cosmic background of relic gravitational waves

possible dynamical contribution of the internal moduli [4–7], we work with a
simple example of higher-dimensional manifold whose spatial sections can be
factorized as the product of two conformally flat spaces, with d and n dimensions,
and scale factors a�t� and b�t�, respectively. We thus set, in the synchronous
gauge,

g00 = 1� g0i = 0� gij = −a2�t��ij�

gia = 0� gab = −b2�t��ab�
(7.11)

where i� j = 1� � � � � d are “external space” indices, a�b = d + 1� � � � � d + n are
“internal space” indices, and ��� = 0� � � � � d + n. For this background, and in
this gauge,

0i
j = H�

j
i � ij

0 = −Hgij�

0a
b = F�b

a� ab
0 = −Fgab�

Rij = −gij
(
Ḣ +dH2 +nHF

)
�

Rab = −gab
(
Ḟ +nF 2 +dHF

)
�

R00 = −dḢ −nḞ −dH2 −nF 2�

(7.12)

where H = ȧ/a and F = ḃ/b.
We concentrate our study on the (transverse and traceless) tensor fluctuations of

the external d-dimensional space, which in the linear approximation are decoupled
from the possible fluctuations of the internal metric background. Also, we assume
that the translations along all internal dimensions are exact isometries not only
of the unperturbed metric (7.11), but also of its perturbations. As a consequence,
h�� only depends on the external space-time coordinates, and Eq. (7.3) (for our
background, in the synchronous gauge) reduces to

h0� = 0 = ha�� hij = hij�t� �x��
gijhij = 0� �jh

j
i = 0 (7.13)

(see [8] for a more general discussion in which also the internal gradients of hij are
non-vanishing). The quadratic, perturbed action can then be written explicitly as

��2�S = − 1
2	d−1

s

∫
dd+1xadbne−


{
−hij��1�Rij −h

j
i h

i
j

(
Ḣ +dH2 +nHF

)

+g����2�R�� − 1
4
h
j
i h

i
j

[

̇2 +V −2dḢ −2nḞ −d�d+1�H2 −n�n+1�F 2

−2dnHF
]}

� (7.14)
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where we have integrated over the trivial coordinates of the compact internal
space, and we have omitted the dimensionless volume factor 	−n

s

∫
dnx.

We now need the perturbed expression of the Ricci tensor, at first and second
order. From the definitions (7.7) we find, first of all, the first-order components
of the perturbed connection:

��1�ij
0 = −1

2
ḣij�

��1�0i
j = 1

2
gjkḣik −Hh

j
i � (7.15)

��1�ij
k = 1

2

(
�ih

k
j + �jh

k
i − �khij

)

(the dot denotes differentiation with respect to cosmic time, and �k ≡ gjk�j). Using
the identity

�0h
j
i = ḣ

j
i = �0

(
gjkhik

)= gjk ��0hik� = gjkḣik −2Hh
j
i � (7.16)

the second term of Eq. (7.15) can be rewritten in the form

��1�0i
j = 1

2
ḣ
j
i � (7.17)

more convenient for further applications. The first-order perturbation of the Ricci
tensor,

��1�Rij = ��

(
��1�ij

�
)

− �i

(
��1�j�

�
)

+��1���
�ij

�

+ ��
���1�ij

� −��1�i�
��j

� −i�
���1��j

�� (7.18)

then becomes

��1�Rij = −1
2
ḧij + 1

2
�2

a2
hij − 1

2
ḣij ��d−2�H +nF�+ H

2

(
gkjḣ

k
i +gikḣ

k
j

)
�

(7.19)

where �2 is the flat-space Laplace operator, �2 ≡ �ij�i�j .
The final perturbation equations will be simpler if we use, as gravitational

variables, the mixed components h
j
i ≡ gjkhik of the fluctuation tensor. Let us

compute for this purpose the covariant time-derivative of Eq. (7.16):

�0�0h
j
i = �0ḣ

j
i = ḧ

j
i = gjkḧik − �2Ḣ +4H2�h

j
i −4Hḣ

j
i � (7.20)

The inversion of Eqs. (7.16) and (7.20) leads to the identities

ḣij = gjk

(
ḣk
i +2Hhk

i

)
�

ḧij = gjk

(
ḧk
i +4Hḣk

i +2Ḣhk
i +4H2hk

i

)
�

(7.21)
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which can be used to eliminate ḧij and ḣij in Eq. (7.19), and to obtain

��1�Rij = −1
2
gjk

[
ḧk
i − �2

a2
hk
i + �dH +nF�ḣk

i + �2Ḣ +2dH2 +2nHF�hk
i

]
�

(7.22)

This result can be used to compute the mixed form of the perturbed Ricci tensor,
��1�Ri

j , and to check that it reduces, as usual, to the covariant d’Alembert form
for the higher-dimensional background (7.11):

��1�Ri
j = gjk��1�Rik −hjkRik = gjk��1�Rik + (Ḣ +dH2 +nHF

)
h
j
i

= −1
2

[
ḧ
j
i + �dH +nF�ḣ

j
i − �2

a2
h
j
i

]

≡ −1
2

(
���

�
)
h
j
i � (7.23)

Let us now consider second-order perturbations. From Eqs. (7.8), (7.13) and
(7.16), we first compute the perturbed connection:

��2�0i
j = −1

2
ḣk
i h

j
k�

��2�ij
k = −1

2
hkl
(
�ihjl + �jhil − �lhij

)
�

(7.24)

The perturbed Ricci tensor,

��2�R�� = ��

(
��2���

�
)

− ��

(
��2���

�
)

+��1���
���1���

� −��1���
���1���

�

+��2���
���

� +��
���2���

� −��2���
���

� −��
���2���

��

(7.25)

using the previous expressions for  , ��1� and ��2� , can be written explicitly as

��2�R00 = 1
2
ḧ
j
i h

i
j + 1

4
ḣ
j
i ḣ

i
j +H ḣ

j
i h

i
j�

��2�Rij = 1
2
�lh

k
j �

lhik + 1
4
hk
l �i�jh

l
k + H

2
gijḣ

k
l h

l
k + 1

4
gklḣ

k
j ḣ

l
i +

1
4
gjlḣ

k
i ḣ

l
k�

��2�Rab = F

2
gab ḣk

l h
l
k

(7.26)

(we have used Eq. (7.21) for ḣik, and we have neglected all terms that, after
integration by parts, do not contribute to the perturbed action because of the gauge
condition �jh

j
i ).
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We now insert the Ricci perturbations in the action (7.14), and sum up all
contributions. Adopting a matrix notation for h

j
i we write

h
j
i h

i
j = Tr�h2�� ḣ

j
i h

i
j = Tr�ḣh� (7.27)

(and so on), and we arrive at the following quadratic action:

��2�S = − 1
2	d−1

s

∫
dd+1xadbne−
Tr

{
ḧh− 1

4
h
�2

a2
h+ 3

4
ḣ2 + ḣh ��d+1�H +nF�

+ h2

2

[

dḢ +nḞ + d

2
�d+1�H2 + n

2
�n+1�F 2 +dnHF − 
̇2

2
− V

2

]}

�

(7.28)

where the terms containing ḧh and ḣh can be integrated by parts, using the
identity

adbn e−
 Tr
[
ḧh+ ḣh�dH +H +nF�

]
= d

dt

[

adbne−
Tr

(

ḣh+ H

2
h2 + 
̇

2
h2

)]

− adbne−
Tr
{
ḣ2 + 1

2
h2�Ḣ +dH2 +nHF + 
̈− 
̇2 + �d−1�H
̇+nF
̇�

}
�

(7.29)

We obtain (modulo a total derivative)

��2�S = 1
2	d−1

s

∫
dd+1xadbne−
Tr

{
1
4
ḣ2 + 1

4
h
�2

a2
h+ h2

2

[


̈− 
̇2

2
+ V

2
− �d−1�Ḣ

−nḞ + �d−1�H
̇+nF
̇− d

2
�d−1�H2 − n

2
�n+1�F 2 − �d−1�nHF

]}
�

(7.30)

A last simplification is due to the vanishing of the coefficient of the quadratic
“mass term” h2/2, thanks to the unperturbed gravitational equations for the ho-
mogeneous background (7.11) (see in particular the spatial equation, obtained by
varying with respect to � the action (6.16) without �′ corrections and with the
addition of a potential V�
�). This leads us to the final result

��2�S = 1
2	d−1

s

1
4

∫
ddx dt adbne−


(
ḣ
j
i ḣ

i
j +h

j
i

�2

a2
hi
j

)
� (7.31)

which, using conformal time (d� = dt/a), can also be rewritten

��2�S = 1
2	d−1

s

1
4

∫
ddx d�ad−1bne−


(
h

′j
i h

′i
j +h

j
i �

2hi
j

)
� (7.32)
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where h′ = aḣ, and the prime denotes differentiation with respect to �.
The variation of this action with respect to h provides the linearized equation

for the tensor perturbations in the higher-dimensional background (7.11), and
in the string frame. Such an equation generalizes the results first obtained and
studied in [9, 10, 11], as it includes contributions from the geometry of the internal
dimensions (the “modular” dynamics described by b�t�), and from the dilaton.
In the conformal-time gauge, in particular, the variation of the action (7.32)
leads to

h
′′j
i +

[
�d−1�

a′

a
+n

b′

b
−
′

]
h

′j
i −�2h

j
i = 0� (7.33)

In cosmic time, from the action (7.31),

ḧ
j
i + �dH +nF − 
̇�ḣ

j
i − �2

a2
h
j
i = 0� (7.34)

In a more general, fully covariant form, the perturbation equation can be
expressed as

1
√�g���

(√�g� e−
g����

)
h
j
i = 0� (7.35)

The components of h
j
i are decoupled in the linear approximation, and satisfy an

evolution equation which in the Einstein frame (where the factor exp�−
� disap-
pears) is exactly the same equation describing the evolution of a free, minimally
coupled scalar field.

It should be stressed that the above equations are obtained from the lowest-order
string effective action, and are valid in the low-energy limit. When the curvature
of the background is high in string units (	sH ∼ 1) these equations should be
improved, possibly including all relevant higher-derivative contributions. Such
contributions can be in principle determined by perturbing the full action contain-
ing the �′ corrections (see Appendix A7 for an explicit computation to first order
in �′ [12]).

It is also worth noticing that the equations we have obtained do not contain
explicit contributions either from the scalar potential V , or from other matter
fields (possibly present in the action, and minimally coupled to the metric).
Both the potential and the matter fields, however, do indirectly affect the evolu-
tion of h

j
i through their contributions to the background solutions for a�t�, b�t�

and 
�t�.

7.1.1 Frame independence

Up to now all computations have been performed in the string frame, where the
gravi-dilaton action has the form (7.2). In other frames the functional dependences
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of the action on the dilaton may be different, with a resulting different equation
for the evolution of tensor perturbations. The dynamical properties of tensor
perturbations (and, in particular, their spectral energy distribution) are however
“frame independent”, at least in the case in which the metrics of the various frames
differ by a conformal rescaling which is only dilaton dependent. This important
property can be illustrated by various simple arguments.

One may consider, for instance, a generic dilaton-dependent metric rescaling,

g�� = g̃��e��
�� g�� = g̃��e−��
�� (7.36)

and compute the transformed metric perturbations, with unperturbed dilaton. One
obtains

�
 = 0� �g�� ≡ h�� = �̃g�� e� ≡ h̃�� e�� (7.37)

so that

h�
� ≡ g��h�� = g̃��e−�h̃��e� ≡ h̃�

�� (7.38)

which shows that the tensor perturbation variable, in mixed form, is the same in
both frames.

One can also check that the evolution equations for h and h̃ are formally
different in the two frames, and the background solutions around which the
expansion is performed are different, but these two differences exactly compensate
each other to give the same effective equation for h and h̃.

A simple example of this effect is obtained by considering the E-frame metric
g̃��, related to the S-frame metric g�� by the rescaling

g�� =
(

	s

	P

)2

g̃�� e2
/�d+n−1�� 
 = 
̃
[
	d+n−1

P �d+n−1�
]1/2

� (7.39)

appropriate to a �d+n+1�-dimensional manifold. The action (7.2) becomes, in
Planck units,

S = −
∫

dd+n+1x
√�̃g�

[
R̃

2	d+n−1
P

− 1
2

(
�̃
̃
)2 + Ṽ �
̃�

]

(7.40)

(see Section 2.2). Expanding the metric g̃�� around a background factorized as

in Eq. (7.11), with scale factors ã and b̃, and following the same procedure as
before, we obtain the perturbed action

��2�S = 1

2	d−1
P

1
4

∫
ddx d� ãd−1̃bn

(
h̃

′j
i h̃

′i
j + h̃

j
i �

2h̃i
j

)
� (7.41)
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We have used the conformal time coordinate, which is the same in both frames
(see Eq. (4.106)). The corresponding E-frame perturbation equation

h̃
′′j
i +

[

�d−1�
ã′

ã
+n

b̃′

b̃

]

h̃
′j
i −�2h̃

j
i = 0� (7.42)

is thus a “pure” (covariant) d’Alembert equation for the metric g̃��, different from
Eq. (7.33). According to the transformation (7.39), however,

ã = a

(
	P

	s

)
e−
/�d+n−1�� b̃ = b

(
	P

	s

)
e−
/�d+n−1�� (7.43)

from which

�d−1�
ã′

ã
+n

b̃′

b̃
= �d−1�

a′

a
+n

b′

b
−
′� (7.44)

so that the S-frame and E-frame equations for h and h̃ actually coincide, in
agreement with the identity (7.38).

7.1.2 Canonical normalization

In the last part of this section we show how to define, starting from the perturbed
action, the canonical variable associated with the dynamics of tensor perturbations.
Such a variable is a necessary ingredient for the normalization of the initial
tensor spectrum, and for studying the evolution of the quantum fluctuations of
the vacuum.

Let us come back to the action (7.32), and set h
j
i = hA��

A�
j
i , where �A is the

polarization tensor representing a given polarization state hA. The sum over A

runs over all possible independent polarizations, which are in general �d + 1�
�d−2�/2 for transverse and traceless tensor fluctuations, defined on a D= �d+1�-
dimensional, spatially flat manifold. Tensor fluctuations are represented by a
D-dimensional symmetric matrix, which has in general D�D+ 1�/2 independ-
ent components. On these components we can always impose D gauge condi-
tions (choosing, for instance, the harmonic gauge [2]) and, in addition, we can
eliminate other D components through an appropriate coordinate transformation,
using the reparametrization invariance of the gravitational theory. We are thus
left with

1
2
D�D+1�−2D = 1

2
D�D−3� ≡ 1

2
�d+1��d−2� (7.45)

components, corresponding to the number of independent polarization states (in
d = 3, for instance, we have the two well-known “plus” and “cross” polarizations
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[13], h+ and h×). By exploiting the properties of the spin-two polarization
tensor, Tr��A�B�= 2�AB, one obtains h

j
i h

i
j = 2

∑
A h2

A. For each polarization mode
hA�t� xi� the action (7.32) can thus be rewritten as

��2�S = 1
2

∫
ddx d�z2���

(
h′2 +h�2h

)
(7.46)

(we have omitted, for simplicity, the polarization index), where

z��� = M
�d−1�/2
s√

2
a�d−1�/2bn/2e−
/2� (7.47)

The above action describes the dynamics of a scalar variable h, non-minimally
coupled to a time-dependent background field z��� (also called the “pump field”),
represented in this case by the dilaton and by the external and internal scale factors
(the so-called “moduli” fields). The canonical variable u, which diagonalizes the
kinetic part of the action and describes, asymptotically, a freely oscillating field,
can now be defined as

u = zh� (7.48)

This variable has the correct dimensions �u� = �M�d−1�/2� appropriate to a scalar
field in a D-dimensional manifold; the perturbed action ��2�S, written in terms of
u, and after integration by parts, takes the canonical (diagonalized) form

��2�S = 1
2

∫
ddx d�

(
u′2 +u�2u+ z′′

z
u2
)
� (7.49)

the variation with respect to u eventually leads to the canonical (Schrödinger-like)
evolution equation

u′′ − [�2 +U���
]
u = 0� U = z′′

z
� (7.50)

Note that, if we write z in terms of the E-frame variables ã, b̃ of Eq. (7.43), we
obtain

z = M
�d−1�/2
P√

2
ã�d−1�/2̃bn/2 ≡ z̃� (7.51)

where we have used (7.43) without rescaling the internal modulus b̃ with the factor
	P/	s, because such a factor has already been absorbed into the internal volume
factor 	−n

P

∫
dnx (not explicitly written in the E-frame action (7.41)). Since z̃���

exactly represents the E-frame pump field (see Eq. (7.41)), it follows that the
canonical transformation (7.48) also diagonalizes the E-frame action. In other
words, the canonical action and the evolution equation are frame independent.
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We can notice, at this point, that the effective action (7.49) is formally the
same as the action for a free scalar field in Minkowski space, with time-dependent
“mass term” −z′′/z, and effective Lagrangian

� = 1
2

[
u′2 − ��iu�

2 +
(
z′′

z

)
u2
]
� (7.52)

This field can be quantized starting from the definition of the usual momentum
density � , canonically conjugate to u,

� = ��

�u′ = u′� (7.53)

and imposing (equal-time) canonical commutation relations

[
u�xi������x′

i� ��
]= i�d�x−x′� (7.54)

on the � = const hypersurface. The classical variable u is then promoted to a field
operator, and can be expanded over a complete set of solutions of the classical
equation (7.50). Such an equation can be separated using the Fourier modes �k

satisfying the eigenvalue equation �2�k = −k2�k, so that the field u can be
expanded in plane waves as follows:

u�xi��� =
∫ ddk

�2��d/2

[
akuk���e

ikix
i +a†

ku
∗
k���e

−ikix
i
]
� (7.55)

The modes uk��� satisfy the eigenvalue equation

u′′
k +
(
k2 − z′′

z

)
uk = 0� (7.56)

and are chosen to be positive frequency modes with respect to �, i.e. iu′
k = �kuk,

with �k > 0, on a given (initial) hypersurface � = const. Notice that we have
already imposed on the Fourier expansion (7.55) the condition following from
the reality of the classical solution, which now becomes a hermiticity condition
(u = u†) for the corresponding quantum operator.

Using the mode expansion, the commutation relation (7.54) can be written
explicitly as

1
�2��d

∫
ddkddk′

{
uku

′
k′ �ak�ak′ � ei�kx+k′x′� +uku

′∗
k′ �ak�a

†
k′ � ei�kx−k′x′�

+u∗
ku

′
k′ �a

†
k� ak′ � e−i�kx−k′x′� +u∗

ku
′∗
k′ �a

†
k� a

†
k′ � e−i�kx+k′x′�

}
= i�d�x−x′��

(7.57)
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It is convenient, on the other hand, to normalize the modes uk in such a way that
the commutation relations for a and a† keep the usual canonical form,

�ak�ak′ � = 0 = �a†
k� a

†
k′ �� �ak�a

†
k′ � = �d�k−k′�� (7.58)

so that we can apply the usual interpretation of ak and a†
k as annihilation and

creation operators. By integrating over k, k′, and using the integral representation
of the delta distribution, one then obtains that Eqs. (7.57) and (7.58) are compatible
provided the modes uk satisfy the normalization condition

uku
′∗
k −u′

ku
∗
k = i� (7.59)

It can be easily checked, in particular, that this condition is exactly equivalent
to the orthonormality relation for the set of modes uk�x��� = uk���e

ikx/�2��d/2

(used for the expansion of the u operator), where the orthonormality is referred
to the so-called Klein–Gordon scalar product 
uk�uk′ �, defined as


uk�uk′ � ≡ −i
∫

ddx
(
uku

′∗
k′ −u′

ku
∗
k′
)= �d�k−k′�� (7.60)

The normalization condition (7.59) can now be applied to fix the initial amp-
litude of the quantum fluctuations of the metric in a typical inflationary back-
ground where, as we shall see in the next section, the effective potential z′′/z → 0
as � → −�. In such an initial asymptotic regime the canonical equation (7.56)
reduces to the free-field equation,

u′′
k +k2uk = 0� � → −�� (7.61)

with oscillating solutions. Imposing on the solution to represent a positive fre-
quency mode on the initial hypersurface at � → −�, namely uk��� = Nke−ik�,
and using the canonical normalization (7.59), one obtains 2k�N �2 = 1, i.e.

uk = e−ik�

√
2k

� � → −�� (7.62)

The initial amplitude may contain, in general, an arbitrary phase factor, uk →
ukei�k (which we have omitted here for simplicity), possibly associated with
random (or chaotic) initial conditions. Quite irrespective of such an initial phase,
the important property of the normalized, positive frequency solution (7.62) is
that it identifies the initial vacuum state of the tensor fluctuations as the incoming
state of lowest energy associated with the action (7.49). In a time-dependent
background, however, the notion of positive frequency is not time independent,
because of the evolution of the effective mass term −z′′/z. Hence, the definition of
the vacuum state is neither unique nor globally defined on the whole cosmological
manifold [14]. This implies, in particular, that a state which is initially “empty” of
particles (i.e. of quanta of the given fluctuations) may become non-empty later on,



266 The cosmic background of relic gravitational waves

at subsequent epochs. This effect is the basis of the mechanism of cosmological
particle production, which we shall discuss in the next section.

It may be useful to recall, finally, that the normalization (7.62) of the canonical
variable uk automatically fixes the normalization of the Fourier component of
the metric fluctuation variable, hk = uk/z. The equation for hk can be directly
obtained from the canonical equation (7.56) and can be written, in terms of z, as

h′′
k +2

z′

z
h′
k +k2hk = 0� (7.63)

For the phenomenological applications in this book we use the following
convenient definition of Fourier transform,

h�xi��� =
√

V

�2��d

∫
ddkhk���e

ik·x� (7.64)

corresponding to the continuum limit of the discrete Fourier expansion over a
comoving (d-dimensional) normalization volume V :

h�xi��� = 1√
V

∑

k

hk���e
ik·x� (7.65)

With such a definition, the variable hk has dimensions �hk� = �M−d/2�, so that
both h�x� and kd/2hk are dimensionless quantities. The momentum variable,
canonically conjugate to h according to the action (7.46), is given by

�k = z2h′
k� (7.66)

and satisfies the equation

�′′
k −2

z′

z
�′

k +k2�k = 0� (7.67)

The coupled analysis of the equations of motion of h and � turns out to be very
useful for discussing the amplification of tensor perturbations and the computation
of their final spectrum [15], as we shall see in the next section.

7.2 Parametric amplification and spectral distribution

In the previous section we have shown how to derive the equation governing
the evolution of tensor perturbations on a cosmological background, and how to
impose the canonical normalization on their initial spectrum. Here we discuss the
possible amplification of such perturbations, which is typically (but not necessar-
ily) triggered by the accelerated evolution in time of the “pump field” z = z̃. In a
string cosmology context z may contain, in general, contributions from the external
space-time geometry, from the internal moduli fields, and from the dilaton: as
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a consequence, tensor perturbations may be amplified by the inflationary expan-
sion of the external space [11, 16–20], and/or by the accelerated contraction of
the internal dimensions [4, 5, 6], and/or by the accelerated variation in time of
the coupling constants [7].

In order to illustrate the amplification mechanism it is convenient to parametrize
the evolution of z in the negative range of the conformal time coordinate, with a
power �, as follows:

z��� = M
�d−1�/2
P√

2

(
− �

�1

)�

� −� < � < 0� (7.68)

Here �1 is an (appropriate) reference time scale, and the mass factor is required
for the correct normalization of the canonical variable (see Eq. (7.47)). In the
standard cosmological picture in which there are no contributions from internal
dimensions, and the external space is three-dimensional (n = 0, d = 3), the pump
field is proportional to the E-frame scale factor, namely z ∼ ã ∼ �−��� (see
Eq. (7.51)). As � is varying from −� to +�, one then reproduces all possible
types of inflationary backgrounds (see Chapter 5, and in particular Fig. 5.1):
power-inflation (� < −1), de Sitter (� = −1), super-inflation (−1 < � < 0) and
accelerated contraction (� > 0). In all these cases the evolution is accelerated, in
the sense that

sign
{

d̃a

d̃t

}
= sign

{
d2ã

d̃t2

}
� (7.69)

Given the power-law behavior (7.68), the effective potential takes the form
U = z′′/z = ���−1�/�2, and the canonical perturbation equation (7.56) becomes
an exact Bessel equation,

u′′
k +
[
k2 − ���−1�

�2

]
uk = 0� (7.70)

valid in the negative-time range � < 0. At early enough times (� → −�) the
potential U��� goes to zero (as anticipated in the previous section), and the kinetic
energy tends to become dominant with respect to the potential energy. A given
massless mode of comoving frequency k enters the “kinetic-dominated” regime
for values of � such that �k��  1. Inside such a regime the proper frequency
� = k/a is much greater than the Hubble scale,

� = k

a
 �a��−1 ∼ �H�� (7.71)

or – equivalently – the proper wavelength 	 = a/k is much smaller than the
Hubble horizon H−1, i.e. �	H� � 1. One says that, in the limit � → −�, all
modes tend to be “inside the horizon”. In this limit the canonical variable uk is
freely oscillating with constant amplitude, according to Eqs. (7.61) and (7.62),
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and the metric fluctuation hk��� is also oscillating, but with an “adiabatically”
evolving amplitude,

hk��� = e−ik�

z���
√

2k
� (7.72)

The associated canonical momentum (7.66), in this limit, is given by

�k��� = −i

√
k

2
z���e−ik�� (7.73)

Consider now the opposite limit � → 0−, corresponding to the asymptotic
future of the cosmological phase associated with the pump field (7.68). At late
enough times all modes tend to be “outside the horizon”, namely tend to be in a
configuration in which the kinetic energy is negligible with respect to the potential
energy, �k�� � 1, the proper frequency is much smaller than the Hubble scale,
and the proper wavelength is much larger than the Hubble horizon

� = k

a
� �a��−1 ∼ �H�� �	H�  1� (7.74)

In this regime the tensor perturbation equation (7.63) can be solved by the
following asymptotic expansion [3, 15, 21]:

hk��� = Ak

[
1−k2

∫ �

�ex

d�′z−2��′�
∫ �′

�ex

d�′′z2��′′�+· · ·
]

+Bk

[
k
∫ �

�ex

d�′z−2��′�+· · ·
]
� (7.75)

valid for the mode k and for times �ex <�< 0, where ��ex� = k−1 is the time scale
of horizon crossing of the given mode. For the conjugate momentum �k, satisfying
Eq. (7.67), we can write a similar expansion, using however an “inverted” (or
“dual”) pump field, z → z−1:

�k��� = z2h′
k = kBk

[
1−k2

∫ �

�ex

d�′z2��′�
∫ �′

�ex

d�′′z−2��′′�+· · ·
]

−kAk

[
k
∫ �

�ex

d�′z2��′�+· · ·
]
� (7.76)

The coefficients Ak and Bk are integration constants, to be determined through
the initial normalization at � = �ex:

Ak = hk��ex�� Bk = k−1�k��ex�� (7.77)
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With the power-law pump field of Eq. (7.68) the integration can be performed
exactly and we obtain, to leading order as � → 0−,

hk��� =

⎧
⎪⎨

⎪⎩

Ak + 2Bk

Md−1
P

k�1
�1−2��

(∣
∣
∣�ex
�1

∣
∣
∣
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∣
∣
∣ �
�1

∣
∣
∣
1−2�

)
+· · · � � �= 1/2�
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P

k�1 ln
∣
∣
∣ �
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∣
∣
∣+· · · � � = 1/2�
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⎧
⎪⎨

⎪⎩
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Bk + AkM

d−1
P

2 k�1 ln
∣
∣
∣ �
�ex

∣
∣
∣+· · ·

)
� � = −1/2�

(7.78)

It is important to notice that these asymptotic solutions are always characterized
by a constant term and by a time-dependent one. This second term may be
growing or decreasing as � → 0−, depending on the value of the power �, i.e. on
the particular kinematic behavior of the background fields a, b, 
. Thus, at late
enough times, tensor perturbations are either frozen – if the time-dependent term
decays away – or growing – if the time-dependent term is growing.

In any case, the behavior in time of the amplitude is different from the adiabatic
evolution (7.72), (7.73), typical of modes inside the horizon. Comparing with the
adiabatic solutions, we find that for a growing pump field (� < 0) the evolution
outside the horizon always tends to enhance the amplitude, i.e.

hk��k�� > 1�
hk��k�� < 1�

→ 0� � → 0−� (7.79)

For a decreasing pump field (� > 0), on the contrary, what is enhanced is the
amplitude of the conjugate momentum, i.e.

�k��k�� > 1�
�k��k�� < 1�

→ 0� � → 0−� (7.80)

For � > 1 both amplitudes are enhanced, and the background may become grav-
itationally unstable [22, 23], since the initial homogeneity may be completely
destroyed by the growth of the quantum fluctuations of the metric.

Therefore, it is a long enough phase of “super-horizon” evolution (also called a
phase of “stretching” outside the horizon) that is responsible for the cosmological
amplification of the metric fluctuations. Such an amplification occurs, according
to the canonical equation (7.70), whenever the fluctuations evolve from an initial
adiabatic and oscillating regime to a final regime dominated by the “geometric”
potential energy, U  k2. In all cases, it is important to stress that the kinematical
amplification of the amplitude always corresponds to a physical amplification of
the energy density stored in the fluctuations.
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For a concrete illustration of this point let us consider the Hamiltonian density H

associated with the perturbed action (7.46). For each mode k, using the canonical
momentum (7.66), we have

Hk = 1
2

(
z−2 ��k�2 +k2z2 �hk�2

)
� (7.81)

The total Hamiltonian is obtained by integrating over all modes. In the initial,
oscillating regime, described by the solutions (7.72) and (7.73), we find that
z�h� and z−1��� are time independent, so that the energy density stored in a
given oscillating mode stays frozen, at a constant value fixed by its canonical
normalization. In the final super-horizon regime, on the contrary, we must apply
the asymptotic solutions (7.78), and we find that both terms in the Hamiltonian
are in general time dependent:

zhk =
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P

2

)1/2

Âk
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∣
∣
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1+� ]
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(7.82)

where we have represented by Âk and B̂k the appropriate combinations of constants
containing the frozen part of the solution (7.78) (in the case � = ±1/2 we have
to include the logarithmic corrections that we are neglecting here is assuming
� �= ±1/2).

With a simple analysis of the time evolution of hk and �k as � → 0− it
can be easily checked that for � > 1/2 the metric fluctuation h is growing, but
the momentum variable � is frozen, and its contribution z−1� asymptotically
dominates the Hamiltonian. For � < −1/2, on the contrary, the momentum �

is growing, while the variable h is frozen, and its contribution zh dominates
the asymptotic Hamiltonian. Finally, for −1/2 < � < 1/2, both variables can
dominate the Hamiltonian, but they are always represented by the frozen part of
the asymptotic solution (7.78). Thus, quite irrespective of the value (and sign)
of �, the energy density of the super-horizon fluctuations can be estimated by
inserting into the Hamiltonian (7.81) the frozen part of the solutions for hk and
�k, namely [15]

Hk = k2

2

(
z2
∣
∣
∣Âk

∣
∣
∣
2 + z−2

∣
∣
∣B̂k

∣
∣
∣
2
)
� � → 0−� (7.83)
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This quadratic form is always growing as � → 0−, and its growth represents,
as already anticipated, the amplification of the energy density stored in each
fluctuation mode. Such an energy growth may be associated either with the
amplification of the metric amplitude h, if z is growing, or with the amplification
of the momentum amplitude �, if z is decreasing, as illustrated by the previous
discussion.

7.2.1 Spectral amplitude

For later phenomenological applications it is now convenient to establish a precise
connection between the spectral distribution of the amplified fluctuations and
the kinematic parameters of the cosmological background. Let us introduce the
so-called spectral amplitude, which can be defined starting from the two-point
correlation function �h�r� which characterizes the fluctuations on a comoving
scale of distances r:

�h��r� = 
h��x�h��x+�r��� (7.84)

The brackets here denote quantum expectation values if the perturbations are
quantized, and are expanded into annihilation and creation operators (see the
previous section); if we are working in the classical limit, instead, the brackets
may denote an ensemble average represented by a spatial integral over some given
volume V :

�h��r� = 1
V

∫
ddxh��x�h��x+�r�� (7.85)

In this last case, using the Fourier transform (7.64), and the reality condition
h�k = h∗

−�k for the metric perturbation field, we obtain

�h��r� = 1
�2��d

∫
ddk�hk�2e−i�k·�r � (7.86)

The same result can be obtained, of course, by evaluating the expectation value
for the quantum field h.

We now assume that the amplified fluctuations satisfy the so-called “isotropy
condition”, i.e. that �hk� is only a function of ��k� (see for instance [24]). Using
polar coordinates, and integrating over the angles of the �d−1�-dimensional unit
sphere, we are led to

�h�r� = 4�d/2

�2��d�d/2�

∫ �

0

dk
k

sin kr

kr
��h�k��2 � ��h�k��2 = kd�hk�2� (7.87)

where  is the Euler Gamma function (we are assuming that �hk�2 satisfies the ap-
propriate cut-off at high and low frequency, so as to make the above integral
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convergent). The quantity ��h�k��2 is called “spectral amplitude” (or “power spec-
trum”), and represents the typical (dimensionless) amplitude of a tensor fluctuation
on the comoving length scale r = k−1. Indeed, for a power-law spectrum, ��h�2
is proportional to the two-point correlation function evaluated at r = k−1:

��h�k��2 = kd�hk�2 ∼ ���r��r=k−1 � (7.88)

Let us now compute the spectral amplitude outside the horizon, in the limit
� → 0, using the asymptotic solution (7.78). We have to fix, first of all, the
integration constants Ak, Bk, by exploiting the continuity with the oscillating
solutions at � = �ex = −k−1. If we are interested in the amplification of the
quantum fluctuations of the vacuum we can adopt, in particular, the canonical
normalization (7.72), (7.73), which leads to

hk��ex� = ei�k

zex

√
2k

≡ �k�1�
�

√
kMd−1

ei�k

�k��ex� = zex

√
k

2
ei�k ≡ 1

2

√
kMd−1�k�1�

−� ei�k�

(7.89)

where �k and �k are arbitrary (constant) phase factors. Determining Ak, Bk
according to Eqs. (7.77), and inserting their values into (7.78), we obtain the
asymptotic normalized solution for �ex < � < 0:

hk��� =

⎧
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1√
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]
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�k�1�
1/2

√
kMd−1

[
ei�k − ei�k ln �k��] � � = 1/2�

(7.90)

When computing the final spectral amplitude, ��h�2 = kd�hk�2, we may thus
conveniently distinguish three cases.

(1) In the case � < 1/2 the asymptotic amplitude of hk is dominated by the
constant term of the solution (7.90), and we obtain the spectral amplitude

��h�k��2 ∼
(

k1

MP

)d−1( k

k1

)d−1+2�

� (7.91)

where we have defined k1 ≡ �−1
1 , and we have omitted an unimportant (�-

dependent) constant coefficient of order one. Using the definitions (7.51) and
(7.68), and evaluating the pump field z at � = −�1, we find ãd−1

1 b̃n
1 = 1. We may

thus separately normalize at �1 the two scale factors by setting

ã = �−�/�1�
� � b̃ = �−�/�1�

� � (7.92)
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where, according to the parametrization (7.68),

�d−1��+n� = 2�� (7.93)

In this case ã1 ≡ ã�−�1� = 1, and the spectral amplitude of the mode k1 can
be directly referred to the E-frame curvature scale of the d-dimensional external
space, evaluated at the time of horizon crossing, and defined by H1 ≡ k1/̃a1 = k1.
The previous spectrum (7.91) may thus be rewritten as

��h�k��2 ∼
(

H1

MP

)d−1( k

k1

)d−1+2�

� (7.94)

or, in terms of the E-frame parameters � and �,

��h�k��2 ∼
(

H1

MP

)d−1( k

k1

)�d−1��1+��+n�

� (7.95)

(2) In the case � > 1/2 the asymptotic amplitude of hk is dominated by the
time-dependent term of the solution (7.90). Using the same arguments as before
we obtain the spectrum

��h�k����2 ∼
(

H1

MP

)d−1( k

k1

)d+1−2�

�k1��
2�1−2��� (7.96)

or, in terms of the E-frame parameters � and �:

��h�k����2 ∼
(

H1

MP

)d−1( k

k1

)d+1−�d−1��−n�

�k1��
2�1−2��� (7.97)

It is important to note that in this case the spectral amplitude is time dependent, and
tends to diverge as � → 0−, since the power 1−2� is negative. The perturbative
analysis remains valid provided the amplification phase is not extended much
beyond the reference time �1 = 1/k1: indeed, the time-dependent factor present in
�h remains smaller than one, as long as ��/�1� > 1. Even so, the time dependence
of the spectral amplitude is important, as it may change the final distributions of
the modes when they re-enter the horizon, after the end of the accelerated epoch.

(3) Finally, in the limiting case � = 1/2, there is only a logarithmic growth of
the perturbations, and we obtain the spectral amplitude [21, 25]

��h�k����2 ∼
(

H1

MP

)d−1( k

k1

)d

�ln �k���2 � (7.98)

This particular case corresponds to the vacuum solutions of the tree-level string
cosmology equations (see Eqs. (4.31)–(4.34) for the more general, fully aniso-
tropic version). For a �1+d+n�-dimensional background, such solutions, written
in conformal time, lead in fact to the pump field

z2 ∼ �−��2� ∼ ad−1bne−
 ∼ �−��� (7.99)
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corresponding to � = 1/2 for any value of d and n, and for all background
kinematics satisfying the conditions (4.33) and (4.34).

A few remarks on the spectral distributions (7.94), (7.96) and (7.98) are now
in order. We should note, first of all, that for any realistic phenomenological
application the model of the background should be completed by extending the
cosmological solutions to the region � > 0, so as to possibly include all (acceler-
ated and decelerated) phases up to the present epoch. The final distribution of the
amplified perturbations, computed after the fluctuation modes have re-entered the
horizon, is affected in general by all background transitions, and may be different
from the spectrum we have just computed outside the horizon, after a single
amplification. Nevertheless, there is a close connection between the frequency
distribution of the spectrum and the kinematic behavior of the background fields,
which clearly emerges even at the level of this simple example, and which we
now illustrate in some detail.

We should consider the so-called “spectral index” nT (not to be confused with
the number of internal dimensions!), which characterizes the spectral distribution
as a power of k, and which is defined by

nT = d ln ��h�k��2
d ln k

� (7.100)

From Eqs. (7.94), (7.96) and (7.98) we obtain, modulo logarithmic corrections,

nT =
{
d−1+2�� 2� ≤ 1�
d+1−2�� 2� ≥ 1�

(7.101)

The spectrum is said to be “flat” if it is k-independent (i.e. if nT = 0), growing
(or “blue”) if nT > 0, and decreasing (or “red”) if nT < 0. As clearly shown by
the previous equation, the spectrum that we have obtained is characterized by
a “maximal” spectral index nT = d, corresponding to a pump field with power
� = 1/2. In particular, the tensor spectrum is growing if 1 −d < 2� < 1 +d,
decreasing if 2� < 1 −d or 2� > 1 +d, and flat in the limiting case in which
2� = 1±d (see Fig. 7.1).

Let us concentrate on the case 2� ≤ 1, which contains the range �< 0 and thus
includes the conventional scenarios where one neglects the contributions of the
moduli fields: in this case, the fluctuations are only amplified by the inflationary
expansion of the external scale factor a ∼ �−���, with � = 2�/�d − 1�. The
corresponding spectrum is given by Eq. (7.95). With n = 0, in particular, we
obtain

��h�k����2 ∼ k�d−1��1+��� ��d−1� ≤ 1� (7.102)

and we can immediately establish a close connection between the frequency
behavior of this spectrum and the time behavior of the background curvature
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Figure 7.1 The spectral index nT as a function of the pump field kinematics,
specified by the power � of Eq. (7.68). The spectrum is flat for � = �1±d�/2,
and the maximal power kd (modulo log corrections) is obtained for � = 1/2.

scale [26]. The spectrum is decreasing, flat or increasing depending on whether
the E-frame scale factor describes power-inflation, de Sitter inflation or super-
inflation, respectively:

power-inflation� � < −1 ⇒ red spectrum�

de Sitter inflation� � = −1 ⇒ flat spectrum� (7.103)

super-inflation� � > −1 ⇒ blue spectrum�

A red spectrum is thus associated with a background with decreasing curvature, a
flat spectrum with a background with constant curvature, and a blue spectrum with
a background with growing curvature, as can be easily deduced from Table 5.1,
which summarizes the main properties of the various kinematic classes of inflation.

It must be noted that such a direct connection between the spectrum and the
curvature cannot be applied, in general, in the presence of dynamical internal
dimensions, contributing with the factor n� �= 0 to the full spectral power. In that
case the spectral behavior is strongly dependent on the number of internal and
external dimensions [6], and it is possible, for instance, to obtain non-blue spectra
even from a background whose overall curvature is growing.

Also, we cannot generically apply (7.103) if the pump field has a power
� > 1/2. Such a power can be easily obtained in a string cosmology context: we
may recall here, as a typical example, the isotropic, d-dimensional background
driven by perfect fluid sources, presented in Section 4.2, and described by the
E-frame scale factor of Eq. (4.108). Setting to zero the dilatonic charge (�0 = 0)
we obtain, in this case,

2� = 2�1−��

1−2�+2d�
� (7.104)
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Thus, in particular, � = 1 in the radiation case (� = 1/d), and � = �d + 1�/
�d+3�> 1/2 (for d> 2) also in the case of the “dual” equation of state, � = −1/d.

7.2.2 Graviton production and spectral energy density

The spectral distribution �h represents a useful tool for studying the amplification
of the quantum fluctuations in a time-dependent background. For many phe-
nomenological applications, related in particular to tensor perturbations and to the
study of the cosmic background of relic gravitational waves, another convenient
variable is represented by the so-called “spectral energy density” �g�k�, which
measures the energy density (in critical units) stored inside the fluctuations, per
logarithmic interval of frequency:

�g�k� = d��/�c�

d ln k
= k

�c

d�
dk

� (7.105)

The present value of this spectral parameter, �g�k��0�, refers to all fluctuation
modes which are inside our present horizon (k�0  1), and thus estimates the
available energy density for producing signals in a gravitational detector, as a
function of the parameters of the given inflationary scenario.

For a basic introduction to the computation of �g we start from the canonical
evolution equation (7.56). The effective potential U = z′′/z, in a realistic cosmolo-
gical scenario, should approach zero at the beginning of the primordial accelerated
phase, � → −�, and should be decreasing towards zero also in the opposite limit
� → +�, during the phase of standard decelerated evolution. This is certainly
the case if we consider a standard, isotropic, d = 3 background, describing a
Universe which in the E-frame evolves from inflation (z ∼ ã ∼ �−���, � < 0)
to radiation-dominated (z ∼ ã ∼ �, � > 0) and matter-dominated (z ∼ ã ∼ �2,
� > 0) decelerated expansion. This implies that the global evolution of the tensor
fluctuations across this type of background can be described as a process of
potential scattering of the canonical variable uk, which is freely oscillating in
the initial configuration, interacts with an effective potential localized in a finite,
intermediate region, and tends to be oscillating again in the asymptotic region
� → +� (see Fig. 7.2).

There is, however, an important difference between such a cosmological evol-
ution of the perturbations and an ordinary problem of quantum mechanical scat-
tering of the Schrödinger wave function: in our case, the differential variable of
the canonical equation (7.56) is a time-like parameter, not a space-like coordin-
ate. As a consequence, the oscillation frequency corresponds to energy, not to
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Figure 7.2 Parametric amplification of the canonical variable uk in a cosmo-
logical background characterized by the bell-like potential U��� = 2/�2 +�2�
(bold curve), describing a smooth transition from de Sitter inflation, a ∼ �−��−1,
to matter-dominated evolution, a ∼ �2. The oscillating curve shows a numerical
solution of the canonical equation (7.56) with k = 1�1, and initial conditions
u��i� = 0, u′��i� = −0�74 at �i = −10. Such an amplification can be described,
in a semiclassical way, as an “anti-tunneling” effect [27].

momentum. So, even choosing the initial solution canonically normalized as a
positive energy mode,

� → −�� uin
k = 1√

2k
e−ik�+i
in eik·x (7.106)

(
in is an arbitrary initial phase), we obtain a final asymptotic solution which is
in general a superposition of positive and negative energy modes,

� → +�� uout
k = 1√

2k

[
c+�k�e−ik� + c−�k�e+ik�

]
eik·x� (7.107)

It is well known, in a quantum field theory context, that such a frequency mixing
describes a process of pair production from the vacuum (see for instance [14]),
where the complex coefficients c±�k� parametrize the so-called “Bogoliubov
transformation” connecting the annihilation and creation operators of the �in�
states to the corresponding set of operators of the �out� ones [1, 19, 20]. Such a
mechanism of particle production is a crucial ingredient for the discussion of the
cosmic background of relic gravitational waves produced by inflation, and will
be introduced in some detail in the following.

Consider an orthonormal and complete set of solutions vk���x� of Eq. (7.56),
which are positive-frequency modes on a given initial hypersurface � = �i. The
field u can then be expanded in this basis as

u =∑
k

(
bkvk +b†

kv
∗
k

)
� (7.108)
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where


vk�vk′ � = �kk′ = −
v∗
k�v∗

k′ �� 
vk�v∗
k′ � = 0� (7.109)

and the orthonormality relations are referred to the Klein–Gordon scalar product
(7.60). Note that, for simplicity, we are discussing the Bogoliubov transformations
using periodic boundary conditions on a spatial box of finite comoving volume,
corresponding to Fourier modes with a discrete spectrum. In such a context, the
continuous expansion (7.55) is exactly replaced by Eq. (7.108).

As we have already stressed in Section 7.1, the notion of positive frequency, in
general, is not time invariant, even if the cosmological background is characterized
by a distinguished time direction (i.e. by a globally defined time-like Killing
vector). So, given a final hypersurface � = �f (different from the initial one), the
field u can in principle be expanded over a different set of mode solutions uk,
which are positive frequency modes at � = �f :

u =∑
k

(
akuk +a†

ku
∗
k

)
� (7.110)

where


uk�uk′ � = �kk′ = −
u∗
k�u∗

k′ �� 
uk�u∗
k′ � = 0� (7.111)

When the field u is quantized the Fourier coefficients �b� b† and �a�a† are
promoted to annihilation and creation operators satisfying canonical commutation
relations, and determining two Fock representations (in principle different) of the
Hilbert space, for the system of quantum fluctuations we are considering.

The relation between the two sets of operators a and b can be easily obtained by
equating the scalar products 
uk�u� obtained from Eqs. (7.108) and (7.110), and
using the properties 
u∗�v∗� = −
u�v�∗ = −
v�u� following from the definition
(7.60). We obtain

ak =∑
k′

(
�kk′bk′ +�∗

kk′b
†
k′
)
� (7.112)

where

�kk′ = 
uk�vk′ �� �∗
kk′ = 
uk�v∗

k′ �� (7.113)

are the so-called Bogoliubov coefficients. In the same way, the product 
vk�u�
leads to the inverse relation

bk′ =∑
k

(
ak�

∗
kk′ −a†

k�
∗
kk′
)
� (7.114)

Equations (7.112) and (7.114) are compatible with the canonical commutation
relations of a and b provided the Bogoliubov coefficients satisfy the conditions

∑

k′
��kk′�∗

k′i −�∗
kk′�k′i� = �ik� (7.115)
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∑

k′
�−�kk′�∗

ik′ +�∗
kk′�ik′� = 0� (7.116)

Suppose now that the spatial dependence of both modes vk and uk may be
expanded in plane waves, namely that

vk = vk���e
ik·x� uk = uk���e

ik·x� (7.117)

just as in the case of the asymptotic solutions (7.106) and (7.107). In such a
case the Bogoliubov transformations become diagonal and isotropic in momentum
space, and the Bogoliubov coefficients may be written in the general form

�kk′ = c+�k��kk′� �∗
kk′ = c∗

−�k��−kk′ (7.118)

(we have used (7.113), and the definition of the Klein–Gordon scalar product in
the discrete representation). The condition (7.115) implies

∣
∣c+�k�

∣
∣2 −�c−�k��2 = 1 (7.119)

for all k (which also guarantees that the asymptotic modes (7.107) still satisfy
the canonical normalization (7.59)). Inserting (7.118) into (7.112), and using the
adjoint relation for a†, we can finally express the Bogoliubov transformation in
matrix form as

(
ak

a†
−k

)
=
(

c+�k� c∗−�k�

c−�k� c∗+�k�

)(
bk

b†
−k

)
� (7.120)

It may be useful, for specific cosmological applications, to note that the above
Bogoliubov transformation can also be represented as a unitary transformation
generated by the “two-mode squeezing operator” Sk [28–31],

Sk = exp
(
−s∗

kbkb−k + skb
†
kb

†
−k

)
� (7.121)

where Sk = S−k, S†
k�s� = S−1

k �s� = Sk�−s�, and where sk = rk exp�2i�k� is the
so-called “squeezing parameter”, related to c±�k� by

c+�k� = cosh rk� c∗
−�k� = e2i�k sinh rk� (7.122)

Consider in fact the transformation S†
kbkSk, where we define

Sk = eAk� Ak = rk

(
e2i�kb†

kb
†
−k − e−2i�kbkb−k

)
� (7.123)

and apply the well-known BHC operator expansion [32],

e−Ab eA = b− �A�b�+ 1
2
�A� �A�b��+· · ·+ �−1�n

n! �A� �· · · �A�b� · · · ��+· · · �
(7.124)



280 The cosmic background of relic gravitational waves

Using the canonical commutation relations for b and b†,

�Ak� bk� = −re2i�kb†
−k�

�Ak� �Ak� bk�� = r2bk�

�Ak� �Ak� �Ak� bk��� = −r3e2i�kb†
−k� · · · �

(7.125)

one is led to

S†
kbkSk = bk

(
1+ r2

2! + · · ·
)

+b†
−ke2i�k

(
r + r3

3! + · · ·
)

≡ bk cosh rk +b†
−ke2i�k sinh rk� (7.126)

With the same procedure one obtains the transformation of b†
−k,

S†
kb

†
−kSk = bke−2i�k sinh rk +b†

−k cosh rk� (7.127)

Comparing with Eqs. (7.120) and (7.122) one can finally rewrite the Bogoliubov
transformations as

ak = S†
kbkSk� a†

−k = S†
kb

†
−kSk� (7.128)

In the Heisenberg representation the unitary operator Sk thus transforms the initial
operators �b� b† into the final ones �a�a† . In the Schrödinger representation, in
which the operators are fixed, the operator Sk transforms instead the initial state
of the tensor fluctuations into a final “squeezed state”.

We may suppose that our initial state coincides with the vacuum state �0�,
annihilated by all bk operators, and characterized by zero expectation value of the
number operator n = b†b, for all modes k,

bk�0� = 0 = 
0�b†
k� 
nk�in = 
0�b†

kbk�0� = 0� (7.129)

In the final “squeezed vacuum” state, �sk� = Sk�0�, the expectation value of the
number operator is 
nk�out = 
sk�b†

kbk�sk�, which obviously coincides with the
corresponding one for the Heisenberg representation, 
nk�out = 
0�a†

kak�0� (see
Eq. (7.128)). The important point to be stressed is that, independently of the chosen
representation, the final asymptotic configuration is in general characterized by a
non-zero expectation number of (pairs of) particles in each mode ��k� (particles are
created in pairs because of momentum conservation). Such a number is determined
by the squeezing parameter r = �sk� or, equivalently, by the Bogoliubov coefficient
c−�k� controlling the presence of negative frequency modes in the �out� solution
(7.107). Indeed, for each mode k,



7.2 Parametric amplification and spectral distribution 281


nk +n−k�out = 
s�b†
kbk +b†

−kb−k�s� = 
0�S†
k

(
b†
kbk +b†

−kb−k

)
Sk�0�

= 
0�a†
kak +a†

−ka−k�0� = 
0�c−b−kc
∗
−b†

−k + c−bkc
∗
−b†

k�0�
= 2�c−�k��2 = 2 sinh2 rk� (7.130)

One can also start, more generally, from an initial state different from the
vacuum: a non-trivial number state, for instance, or a statistical mixture of number
states. The final configuration will then describe a “squeezed number” state, or
a squeezed statistical mixture [33, 34], with total number of particles which is
always increased with respect to the initial configuration. The squeezed-state
formalism turns out to be useful, in particular, for the analysis of the statistical
properties of the radiation produced, and for the study of the entropy growth
associated with particle production [35, 36].

By applying the formalism of the Bogoliubov transformations one can then
describe the amplification of tensor perturbations, in a second-quantization lan-
guage, as the production of pairs of gravitons from the given initial state. For
each mode �k, the differential energy density of the amplified perturbations (in d

spatial dimensions) is given by

d�k = k

2
�d+1��d−2�
nk�

ddk

�2��d
� (7.131)

where k is the energy of the given (massless) mode, �d + 1��d − 2�/2 is the
number of polarization states, and 
nk� the number density of produced gravitons.
Assuming that the final graviton distribution satisfies the isotropy condition (i.e.
that 
nk� depends only on k = ��k�), and integrating over the whole �d − 1�-
dimensional angular sphere, one obtains

k
d�k

dk
= �d+1��d−2��d/2

�2��d�d/2�
kd+1
nk�� (7.132)

The computation of the spectral energy density requires knowledge of 
nk� =
�c−�k��2, and then requires the solution of the perturbation equation in the asymp-
totic limit of large positive times (see Eq. (7.107)).

7.2.3 Matching conditions

Before concluding this section we present an explicit example of computation of
the spectrum for a very simple model of background, which includes a first phase
of accelerated evolution from −� to −�1, and a second decelerated phase from
−�1 to +�. After solving the perturbation equation, separately in the two phases,
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we fix the integration constants by imposing �i� the canonical normalization,
and �ii� the continuity of the metric fluctuation h and of its first derivative h′
(or, equivalently, of its conjugate momentum) at the transition epoch � = −�1.
For a more general background characterized by n+ 1 distinct phases, such a
procedure can be iterated n times, and it is also possible to provide diagrammatic
prescriptions allowing an automatic (and fast) estimate of the final spectrum [37]).

We work in the so-called “sudden approximation” [38], considering a back-
ground characterized by the following graviton pump field z���:

z��� =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
Md−1

P

2

)1/2(
− �

�1

)�1

� −� ≤ � ≤ −�1�

(
Md−1

P

2

)1/2(
�+2�1

�1

)�2

� −�1 ≤ � ≤ +�
(7.133)

(we have assumed the continuity of z in �1). The canonical equation becomes, in
the two phases,

u′′
k +
[
k2 − �1��1 −1�

�2

]
uk = 0� � ≤ −�1�

u′′
k +
[
k2 − �2��2 −1�

��+2�1�
2

]
uk = 0� � ≥ −�1�

(7.134)

The general solution can be written in terms of the first- and second-kind Hankel
functions [39],

u1
k =�1/2

[
A1

+�k�H�2�
�1

�k��+A1
−�k�H�1�

�1
�k��

]
� � ≤ −�1�

u2
k = ��+2�1�

1/2
[
A2

+�k�H�2�
�2

�k�+2k�1�

+A2
−�k�H�1�

�2
�k�+2k�1�

]
� � ≥ −�1� (7.135)

where A1�2
± are integration constants, and the Bessel indices �1� �2 are determined

by the pump-field kinematics as

�1 = 1/2−�1� �2 = 1/2−�2� (7.136)

We now use the canonical normalization at � → −� to fix the integration
constants A1±. Using the large-argument limit of the Hankel functions we have [39]

H�2�
� �k�� =

√
2

�k�
e−ik�−i�� � H�1�

� �k�� =
√

2
�k�

eik�+i�� � � → −�
(7.137)
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(�� = −��/2 −�/4 is a �-dependent phase factor), and we can thus impose,
according to Eq. (7.106),

A1
+ =√�/4� A1

− = 0� (7.138)

By applying the large argument behavior to the second solution, u2
k, we can then

identify the Bogoliubov coefficients in the asymptotic limit � → +�. Comparing
with Eq. (7.107) we obtain

c±�k� =
√

4
�

A2
±�k� (7.139)

(modulo a constant phase factor absorbed into c±). With such a normalization,
the general solution for the metric fluctuation field, hk = uk/z, can be written
eventually in the form

h1
k = ei��1

(
��1

2Md−1
P

)1/2( �

�1

)�1

H�2�
�1

�k��� � ≤ −�1�

h2
k =

(
��1

2Md−1
P

)1/2(�+2�1

�1

)�2 [
c+H�2�

�2
�k�+2k�1� (7.140)

+ c−H�1�
�2

�k�+2k�1� � � � ≥ −�1�

It may be instructive, at this point, to compare this exact result with our previous
approximate solutions. To this purpose we exploit the small argument limit of the
Hankel functions, which gives, for � �= 0 [39],

H�1�
� �x� = p�x

� + iq�x
−� +· · · �

H�2�
� �x� = p∗

�x
� − iq�x

−� +· · · �
(7.141)

where q and p are �-dependent coefficients, with modulus of order one (when
� = 0 there are additional logarithmic corrections). By applying such an expansion
to the h1

k solution (i.e. considering metric fluctuations well outside the horizon,
with �k�� � 1), and setting � = �1 = 1/2 −�1, one can easily reproduce the
asymptotic solution (7.90), characterized by a constant part and a part which
depends on time as ���1−2�1 . One also exactly recovers the same k-dependence,
with two terms proportional to k1/2−�1 and k�1−1/2.

We are now in a position to determine the coefficients c± by imposing the
continuity conditions at the transition time � = −�1. It should be noted that
the requirement of continuity of the metric fluctuation h is not equivalent, in
general, to the continuity of the canonical variable u, if the matching conditions
are imposed on a discontinuous background [40]. The continuity of h, on the
other hand, is needed to guarantee the continuity of the total energy density
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across the matching hypersurface [41]. In order to adhere to the standard matching
prescriptions at constant energy density, we thus impose

h1�−�1� = h2�−�1�� h′1�−�1� = h′2�−�1�� (7.142)

We also use the following properties of the Hankel functions,

H�2�
� �−x� = −ei��H�1�

� �x��

d
dx

H�2�
� �−x� = ei�� d

dx
H�1�

� �x��
(7.143)

which are useful to express the final result in terms of the Hankel functions
evaluated in x1 ≡ k�1. The continuity of the solution (7.140) then gives

c+H�2�
�2

�x1�+ c−H�1�
�2

�x1� = ei
1H�1�
�1

�x1�� (7.144)

where 
 is a constant phase factor, ei
1 = �−1��1+1ei���1+�1�. The continuity of
h′ provides a second condition which, by using Eq. (7.144), can be written as

c+H ′�2�
�2

�x1�+ c−H ′�1�
�2

�x1� = −ei
1

[
H ′�1�

�1
�x1�+ �1 +�2

x1
H�1�

�1
�x�

]
� (7.145)

where the prime denotes the derivative of H��x� with respect to its argument.
The solution of the system of algebraic equations (7.144) and (7.145), for the

two unknown variables c±, can be simplified by using the Wronskian properties
of the Hankel functions [39],

H�2�
� �x�H ′�1�

� �x�−H ′�2�
� �x�H�1�

� �x� = 4i
�x

� (7.146)

which immediately provides the determinant of the coefficients of the above
algebraic system. The exact result for c± is, finally,

c+ = − i�
4

x1ei
1

[
H�1�

�1
H ′�1�

�2
+H ′�1�

�1
H�1�

�2
+ �1 +�2

x1
H�1�

�1
H�1�

�2

]

x1

�

c− = i�
4

x1ei
1

[
H�2�

�2
H ′�1�

�1
+H ′�2�

�2
H�1�

�1
+ �1 +�2

x1
H�1�

�1
H�2�

�2

]

x1

�

(7.147)

where all the Hankel functions are evaluated in x1 = k�1. One can immediately
check, by repeated application of the Wronskian condition (7.146), and by using
the property �H

�1�
� �x��∗ = H

�2�
� �x∗� holding for all real �, that the Bogoliubov

coefficients satisfy the normalization condition �c+�2 −�c−�2 = 1.
The value of �c−�k��2 represents the expectation number of gravitons produced

in the transition between the two cosmological phases. When inserted into Eq.
(7.132), it determines the associated energy density distribution. The above result,
however, has been obtained using the sudden approximation for the background
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transition at �1, and is thus valid in the limit of low enough frequency modes,
k�1 � 1. In the opposite regime k�1  1, using the large argument limit of the
Hankel functions, one would find from Eq. (7.147) a k-independent result, with
�c−� ∼ 1, which would correspond to an ultraviolet divergence of the spectrum,
��k� ∼ kd+1 for k → �. Such a divergence is due to the fact that the sudden
approximation is inadequate for modes with an energy k much larger than (or
of the order of) the peak of the effective potential, �U��1��1/2 ∼ �−1

1 – namely,
for modes which do not “hit” the potential barrier. For such modes, the mixing
coefficients should be computed by replacing the potential step with a smooth
transition of U���, and one finds that the coefficient c− is exponentially suppressed
as exp�−k�1�, thus avoiding the ultraviolet divergence [14, 19, 20, 38]. Thus, if we
are not interested in a precise calculation of the high-frequency tail of the spectrum,
we may avoid constructing a detailed (and smooth) model of background in the
transition region, limiting ourselves to the frequency band with k�1 � 1.

In this chapter we choose this option, replacing the exponential decay of the
spectrum at high frequency with the sharp cut-off

�c+�k�� � 1� �c−�k�� � 0� k�1  1� (7.148)

In the opposite regime, k�1 � 1, the result (7.147) is valid, and the form of c−
can be simplified using the derivative property of the Hankel functions,

H ′
� = −H�+1�x�+ �

x
H��x�� (7.149)

and the small argument limit (7.141) where, for � �= 0 [39],

p� = 2−�

�1+��
�1+ i cot ��� � q� = − 2�

�1−��
csc�� (7.150)

(the case � = 0 includes a logarithmic term, and will be considered at the end of
this section). Keeping the leading terms for x1 = k�1 � 1 we arrive at

c−�x1� = �+−x
�1−�2
1 +�−+x

−�1+�2
1 +�++x

�1+�2−1
1 +�−−x

1−�1−�2
1 � (7.151)

where

�+− = −�

4
ei
1p∗

�2
�2��1 +�2�q�1

−q�1+1��

�−+ = −�

4
ei
1p�1

�q�2+1 −2q�2
��1 +�2���

�−− = i
�

2
ei
1��1 +�2�p�1

p∗
�2
�

�++ = i
�

4
ei
1�2��1 +�2�q�1

q�2
−q�1

q�2+1 −q�2
q�1+1��

(7.152)
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Table 7.1 Spectral distribution of the Bogoliubov coefficients and of the
graviton energy density as a function of the kinematic parameters of the two

pump fields and of the number d of spatial dimensions

Pump fields zi ∼ ��i Bogoliubov coefficient �c−� Spectral density � ∼ kd+1�c−�2

�1 < 1/2, �2 > 1/2 k�1−�2 kd+1+2�1−2�2

�1 > 1/2, �2 < 1/2 k−�1+�2 kd+1−2�1+2�2

�1 < 1/2, �2 < 1/2 k�1+�2−1 kd−1+2�1+2�2

�1 > 1/2, �2 > 1/2 k1−�1−�2 kd+3−2�1−2�2

It is now evident how the pump-field kinematics (i.e. the explicit values of
�1��2) plays a crucial role in determining the leading k-behavior of c− for x1 � 1,
and then in fixing the final spectral energy distribution ��k� ∼ kd+1�c−�2 (see
Table 7.1). In the next section we will present some typical examples of grav-
iton spectra associated with different inflationary models. It may be instructive,
however, to discuss immediately the particular case in which the pump field of
the second (decelerated) phase evolves linearly in conformal time, so that �2 = 1
(for an isotropic, d = 3 manifold, this means that we are then in the presence of
a radiation-dominated phase). In such a case the energy density of the produced
gravitational radiation, in its final state inside the horizon, exhibits exactly the
same spectral distribution as the primordial metric fluctuations in the inflationary,
super-horizon regime.

In fact, by setting �1 = �, �2 = 1 in Eq. (7.151), we find, to leading order as
x1 → 0,

c−�x1� = �+−x�−1
1 +�−−x−�

1 � (7.153)

and we can distinguish two possibilities: the case � < 1/2, in which the first
term is dominant, and the case � > 1/2, in which the second term is dominant.
Inserting this result into the definition (7.105) we find

��k� ∼ kd+1�c−�k��2 ∼
⎧
⎨

⎩

kd−1+2�� 2� < 1�

kd+1−2�� 2� > 1�
(7.154)

and we reproduce exactly the same spectral distribution as that obtained for
��h�k��2, in the case of super-horizon tensor perturbations (see Eq. (7.101) and
Fig. 7.1). For 2�< 1, and in the absence of contributions from internal dimensions,
one recovers, in particular, the close connection between spectral behavior (in
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frequency) and curvature behavior (in time), already illustrated in Eq. (7.103).
The spectral variable ��k�, on the other hand, is directly measurable (at least in
principle) by a gravity-wave detector, and this explains the claim – made at the
beginning of this chapter – about the possibility of obtaining direct information
on the primordial cosmological dynamics through the study of its gravitational
relics.

Let us finally compute the spectrum in the limiting case in which one of
the two pump fields has a power � = 1/2, corresponding to a vanishing Bessel
index � = 1/2 −� = 0 in Eq. (7.147). We may consider, for instance, the case
�1 = 0, namely �1 = 1/2, which corresponds to a particular example of pre-big
bang kinematics (see Eq. (7.99)). The computation of c− then requires the small
argument expansion of the Hankel function H

�1�
0 , which is given by

H
�1�
0 �x1� � p0 + iq0 ln x1 + ir0x

2
1 ln x1 + s0x

2
1 +· · · � (7.155)

where, in particular,

p0 = 1+ �2i/����− ln 2�� q0 = 2/�� (7.156)

and � = 0�5772 � � � is the Euler–Mascheroni constant. Equation (7.147) then gives,
to leading order as x1 → 0,

c−�x1� = �+ x
1/2−�2
1 ln x1 +�− x

�2−1/2
1 ln x1� (7.157)

where

�+ = −�

2
ei
1�2q0p

∗
�2
� �− = i

�

4
ei
1q0

(
2�2q�2

−q�2+1

)
� (7.158)

This result agrees with Eq. (7.151) for �1 = 1/2, modulo the expected logarithmic
corrections (see also Eq. (7.98)). In the particular case �2 = 1, one recovers the
typical spectrum of the so-called “minimal” pre-big bang models [25, 42],

�c−�2 ∼ x−1
1 ln2 x1� ��k� ∼ kd ln2�k�1�� (7.159)

which will be discussed in more detail in the next section.

7.3 Expected relic gravitons from inflation

The aim of this section is to present an explicit computation of the graviton spectra
predicted by the most typical classes of inflationary models, in view of subsequent
estimates of the experimental sensitivity required for their possible detection. The
maximum expected signal seems to be outside the present operating range of
existing gravitational antennas, but it could be accessible to the advanced versions
of these instruments (hopefully, of near-future implementation), especially in the



288 The cosmic background of relic gravitational waves

case of a growing spectrum, which is indeed typical of string cosmology (see
Section 7.4).

For the purpose of this section it is sufficient to consider a homogeneous
and isotropic cosmological background, without dynamical contributions from
the internal dimensions (i.e. with d = 3, n = 0). Also, to take into account the
temporal evolution of the graviton energy density, it is convenient to adopt as
spectral variable the proper frequency, ��t� = k/a�t�. By using the explicit form
of the critical energy density, �c = 3M2

PH
2�t�, we then obtain from Eqs. (7.105)

and (7.132):

�g��� t� = �4�c−����2
3�2M2

PH
2
� (7.160)

Finally, we use a simple model of background which undergoes a first transition (at
�= −�1) from inflation to radiation-dominated expansion, and a second transition
(at � = �eq) to the final matter-dominated regime (see Fig. 7.3). Where string
cosmology models are concerned we assume that the dilaton field is possibly
dynamical during inflation, and that it becomes frozen (trapped, for instance,
at the minimum of an appropriate potential) during the subsequent decelerated
epochs, consistent with the standard cosmological evolution. For d = 3 and n = 0
the pump field of tensor perturbations will always coincide with the E-frame
scale factor, and its behavior in time during the various phases is summarized in
Fig. 7.3.

We start by considering the standard inflationary scenario, with a pump field de-
scribing a phase of (E-frame) accelerated expansion, �< 0. For the first transition

−η1inflation matterradiation ηeq

(−η)α η η2

keq

k1

k > keq

k < keq

η

Figure 7.3 Schematic view of the simplest, “quasi-realistic” example of infla-
tionary scenario. We have specified, in each phase, the (conformal) time depend-
ence of the pump field z��� ∼ ã���. High-frequency modes with k > keq = �−1

eq
are only affected by the first transition, while lower-frequency modes, k < keq,
are affected by both transitions.
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at � = −�1 we can apply the results of the previous section, and from Eqs. (7.151)
and (7.153) we obtain, for �2 = 1��1 = � < 0,

c−��� = �+−
(

�

�1

)�−1

� (7.161)

where �1 = k1/a, and k1 = �−1
1 . Thus,

�g��� t� = ��+−�2H4
1

3�2M2
PH

2

(a1

a

)4
(

�

�1

)2+2�

� � < �1� (7.162)

where we have explicitly introduced the useful parameter H1 = k1/a1 ≡ �1�t1�,
controlling the curvature scale of the background at the epoch of horizon-crossing
of the cut-off frequency �1. Note that, for a power-law scale factor, the parameter
H1 roughly corresponds to the E-frame curvature scale at the end of the inflationary
period. We can also use the fact that the Universe becomes radiation dominated
at � = −�1, so that

H2
1

(a1

a

)4 = �1

3M2
P

(a1

a

)4 = �r�t�

3M2
P

= �r�t�H
2� (7.163)

where �r�t� = �r/�c is the instantaneous fraction of critical energy density asso-
ciated with the radiation produced at �1. Equation (7.162) can then be rewritten as

�g��� t� = ��+−�2
3�2

(
H1

MP

)2

�r�t�

(
�

�1

)2+2�

� � < �1� t1 < t�

(7.164)
Taking into account that ��+−�2 is only an (�-dependent) numerical factor of
order one we can already deduce, from this expression, the three main primordial
properties of the inflation-generated background of relic gravitons:

(1) the spectral distribution tends to follow the behavior in time of the curvature scale
during the inflationary regime, i.e. the spectrum is flat for de Sitter, � = −1, decreas-
ing for power-inflation, � < −1, and growing for super-inflation, −1 < � < 0 (as
repeatedly stressed also in the previous section);

(2) the energy density scales in time like the radiation energy density, �g ∼ a−4;
(3) the overall intensity is controlled by the value of the curvature scale (in Planck units)

characterizing the background at the end of the inflationary evolution.

We should remember, however, that the spectrum (7.164) is valid for all modes
only during the radiation phase, i.e. before the second background transition at
� = �eq. If we are interested in the full graviton spectrum at the present epoch,
�0 > �eq, we must also take into account the second transition that affects the
lower-frequency modes with k�eq < 1.



290 The cosmic background of relic gravitational waves

To this purpose – and also in view of further applications – it is convenient
to compute the Bogoliubov coefficients for a general case in which the metric
fluctuations asymptotically contain a mixture of positive and negative frequency
modes both before and after the transition. We thus extend the computation of
Section 7.2 by assuming that, at a given time � = �2 > 0, there is a background
transition to a new phase, whose pump field is controlled by the generic power
�3, and is defined by

z��� = MP√
2

(
�+2�1

�1

)�3
(
�2 +2�1

�1

)�2−�3

� 0 < �2 ≤ �� (7.165)

in such a way as to match continuously at �2 with the previous definition (see
Eq. (7.133)).

The canonical solutions describing the evolution of tensor perturbations in the
first, inflationary phase, � ≤ −�1, and in the second, post-inflationary phase,
−�1 ≤ � ≤ �2, are still valid, and are given by Eq. (7.140). Putting d = 3, and
defining the convenient variable

y = k�+2k�1 ≡ x+2x1� (7.166)

we can write such solutions as

h1
k��� = ei��1
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2M2
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)1/2( x
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)�1
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)�2 [
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+H�2�

�2
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−H�1�
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�y�
]
� −�1 ≤ � ≤ �2�

(7.167)

In the third cosmological phase, the solution corresponding to the pump field
(7.165) is

h3
k��� =

(
��1

2M2
P

)1/2( y

x1

)�3
(
y2

x1

)�2−�3 [
c3
+H�2�

�3
�y�+ c3

−H�1�
�3

�y�
]
� �2 ≤ ��

(7.168)
where �3 = 1/2−�3, and y2 = x2 +2x1, with x2 = k�2.

The coefficients c2±, describing the amplification associated with the first back-
ground transition, have been already reported in Eq. (7.147). By eliminating the
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derivatives of the Hankel functions (through Eq. (7.149)), such coefficients can
be conveniently rewritten as

c2
+ =− i�

4
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[
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��1 +�2�H
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H�2�
�2

]

x1

(7.169)

(all functions are evaluated in x1 = k�1). For the computation of the coeffi-
cients c3±, associated with the final phase, we should recall that the process of
graviton production is exponentially suppressed for all modes with high enough
frequency, i.e. x2 = k�2  1. If we are only concerned with an estimate of
the leading contributions to the graviton spectrum we can safely assume that
all modes which do not “hit” the effective potential barrier at �2 are not af-
fected by the transition, so that �c2±�k > k2�� � �c3±�k > k2��, and their spectral
distribution is transmitted almost unchanged from the second to the third cos-
mological phase. Low-frequency modes, with x2 ≤ 1, are instead strongly in-
fluenced by the second transition, and the corresponding coefficients c3± can be
computed in the “sudden” approximation, imposing the continuity of h and h′
at � = �2.

Performing the matching, and exploiting the properties of the Hankel functions,
one arrives at the following expression for the coefficient c3−, which controls the
final number density of produced gravitons:

c3
− = − i�

4
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�3
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(
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+H

�2�
�2+1 + c2
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)
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(
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+ c2

−H�1�
�2

)

y2

]

(7.170)

(all the Hankel functions, except those contained inside c2±, are evaluated at
y2 � 1). This result, in combination with Eq. (7.169), determines the graviton
spectrum for a double transition with generic (but �= 1/2) values of �1��2��3.
In the limit c2− → 0 and c2+ → 1 the solution for h2 acquires the canonical
normalization associated with a vacuum fluctuation spectrum, and one recovers
for c3− the result (7.147) – with the only differences due to a matching performed
at another (positive) value of �.
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Let us now explicitly compute c3− for the simple model in which the second
cosmological phase corresponds to the radiation-dominated regime, so that �2 = 1,
�2 = −1/2, with associated Hankel functions
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(7.171)

The first term multiplying H�2�
�3

in Eq. (7.170) becomes

c2
+H

�2�
1/2�y2�+ c2

−H
�1�
1/2�y2�

= ei
1

(
x1

y2

)1/2
[(

−H
�1�
�1+1 + 2

x1
��1 − 1

2
�H�1�

�1

)

x1

cos�y2 −x1�

+H�1�
�1

�x1� sin�y2 −x1�

]

� (7.172)

For a third phase dominated by dust matter we also have �3 = 2 and �3 = −3/2.
One can then easily check that the contribution of the term multiplying H�2�

�3+1, in
the second part of Eq. (7.170), is sub-leading with respect to the term multiplying
H�2�

�3
, whose explicit form is
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On the other hand, in the limit x1 � x2 � 1, one can use the approximations
y2 � x2, cos�x2 −x1� � 1 and sin�x2 −x1� � x2; comparing, in this limit, the two
previous equations, and summing up all leading terms, one is left with
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(7.174)

One can finally exploit the small argument expansion of the Hankel functions,
identifying �1 with 1/2 −�, and �2 with �eq. The Bogoliubov coefficient for a
mode k undergoing the double transition can then be written as
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c3
−�k� = �� x

−1
eq x

−�1/2−��−1/2
1 � k < keq� (7.175)

Here xeq ≡ k�eq, and �� is a numerical factor (with modulus of order one)
determined by the expansion (7.141):
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(7.176)

We are now in a position to provide the complete energy spectrum for the
graviton production associated with our model of background. Such a spectrum is
characterized by two distinct branches, since the number density of high-frequency
modes (k > keq) is controlled by the Bogoliubov coefficient (7.161), while the
number density of low-frequency modes (k < keq) is controlled by the coefficient
(7.175). Thus,

�c−���� ∼

⎧
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)�−1
� �eq < � < �1�

(
�
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)−1
� �0 < � < �eq

(7.177)

(we have assumed � < 1/2, which is the typical case for the conventional infla-
tionary scenario).

The above spectrum is valid in the frequency band ranging from the upper limit
�1 (beyond which graviton production is exponentially suppressed), to the lower
limit �0 = H0, fixed by the scale of the present Hubble horizon (lower-frequency
modes are still outside the horizon, and are characterized by a different spectrum).
Inserting the Bogoliubov coefficients in Eq. (7.160), using the definition (7.163)
of �r , and absorbing into H2

1 all numerical factors of order one appearing in the
computation of � and c−, we obtain the following result for the graviton energy
density, at the present time t0:
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(7.178)

This spectral distribution applies to the case �< 1/2, but it can be easily extended
to include the case � > 1/2, according to the general result (7.153), simply by
replacing 2+2� with 3−2���, where � = 1/2−�.

There are three important parameters, closely related to inflation, in the above
spectrum: �i� the curvature scale H1, which controls the amplitude of the grav-
iton background; �ii� the kinematic power �, which controls the slope of the
spectrum; and �iii� the cut-off scale �1�t�, which controls the position of the so-
called “end-point” of the spectrum, beyond which the produced radiation becomes
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exponentially small. For the model represented in Fig. 7.3 the present value of
the end-point frequency, �1, is obtained by rescaling �1�t1� ≡ H1 through the
radiation and matter epoch, down to the present time t0. The result (in Planck
units) is

�1�t0�=�1�t1�
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)2/3

MP�

(7.179)
By using the values of H0 and Heq reported in Eqs. (1.78) and (1.79) one obtains

�1�t0� � 4
(

H1

MP

)1/2(�m

0�3

)−1/3

1011Hz� (7.180)

Thus, the transition scale H1 in principle controls not only the intensity of the
spectrum, but also its extension in frequency.

If the kinematical details of the post-inflationary evolution were known, from
t1 down to the present epoch, then the spectrum would contain only two unknown
parameters (H1 and �) carrying the direct imprint of the inflationary epoch. All
other parameters are indeed determined by the subsequent evolution. In the model
of Fig. 7.3, for instance, the two scales �0 and �eq, corresponding to a mode
crossing the Hubble radius today and at the equality epoch, respectively, are
fixed by

�0 = H0 � 3�2×10−18 h Hz�

�eq�t0� = �eq�teq�

(
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a0

)
= Heq
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)2/3

�0�
(7.181)

In that model, also, the radiation which starts dominating the Universe at the
epoch t1 is the same radiation today filling our present Universe. Using the value
reported in Eq. (1.34), we have

�r�t0� � 4×10−5 h−2� (7.182)

and the graviton spectrum (7.178) is then completely determined for any given
value of � and H1.

7.3.1 Phenomenological bounds on the graviton background

For a comparison of the inflationary predictions with the existing phenomenolo-
gical constraints we should note, first of all, that an inflationary model of con-
ventional type is typically characterized by a phase of accelerated expansion with
slightly decreasing (or constant) curvature: in particular, by � = −1 for de Sitter,
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and by � < −1 for power-law inflation (see Chapter 5). The spectrum (7.178)
associated with a phase of de Sitter inflation is thus flat (i.e. “scale-invariant”)
from �eq to �1, and decreasing from �0 to �eq. In the case of power-law in-
flation both branches of the spectrum are decreasing. In any case, the maximum
intensity is reached at the lower end of the spectrum, and it is thus clear that the
most constraining bounds are expected to emerge from large-scale observations,
possibly in the range of the lowest frequency �0.

We must recall, in this respect, the important bound obtained from the present
measurements of the CMB anisotropy. In fact, a cosmic background of relic
gravitational waves perturbs the large-scale homogeneity of the cosmological
metric, and induces a corresponding distortion in the temperature of the cosmic
background of electromagnetic radiation (see the discussion of the next chapter).
One finds, in general, that the temperature fluctuations �!T/T �, induced over a
proper-length scale (a/k), are of the same order of magnitude as the amplitude of
the tensor fluctuations, ��h�, evaluated on the same length scale [16, 17, 18]. At
the level of the present Hubble horizon

�!T/T �H0
∼ ��h�k0 =a0H0

(7.183)

(see Section 8.2 for a precise relation between the multipole expansion of !T/T

and the tensor perturbation spectrum). Large-scale measurements [44, 45], on the
other hand, imply

�!T/T �H0
∼ 10−5� (7.184)

These two conditions can be easily translated into a bound on the graviton
energy density �g present on large scales, by computing the stress tensor "��

associated with the tensor fluctuations. We can conveniently start from the E-frame
action (7.41), written in the case d = 3� n = 0. In the cosmic time gauge we obtain
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ḣ2
A +

(
�hA

a

)2
]
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where the sum ranges over the two polarizations. By averaging over the spatial
coordinates, using the Fourier transform (7.64) and the reality condition h−k = h∗

k,
we obtain
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(7.186)

(see also Section 7.4). Assuming that we are dealing with a stochastic, isotropic
and unpolarized graviton background, we can repeat the same steps as in the
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computation of the spectral amplitude (7.87). Dividing by �c = 3M2
PH

2 we finally
obtain
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from which, at the present time t0,

�g��� t0� = 1
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� (7.188)

Taking into account that scalar metric perturbations also contribute to !T/T (and
are possibly dominant, as we shall discuss in Section 8.2), from the combination
of Eqs. (7.183), (7.184) and (7.188) we can obtain the following upper bound on
the present energy density of the relic graviton background at the Hubble horizon
scale:

h2�g��0� t0� <∼ 10−10� �0 � 10−18 Hz� (7.189)

Using this bound, and the numerical values (7.180) and (7.181), it follows that the
highest allowed graviton spectrum predicted by conventional inflationary models
can be represented as in Fig. 7.4, where we have inserted the de Sitter case,
� = −1, and two examples of power-law inflation, with � = −1�1 and � = −1�2.
Above the cut-off frequency we have assumed that the spectrum is exponentially
suppressed as �g��� = �g��1� exp�−��−�1�/�1�.

It should be noted that the condition (7.189) provides a very stringent constraint
on the final inflation scale H1. Indeed, by using Eq. (7.181) for �eq/�0, and
deducing from Eq. (7.179) the relation
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� (7.190)

–20 –15 –10 –5 0 5 10

log(ω/Hz)

–22.5

–20

–17.5

–15

–12.5

–10

–7.5

lo
g(

Ω
gh

2 )

de Sitter

CMB anisotropy

α = –1

α = –1.1

α = –1.2

Figure 7.4 Typical examples of graviton spectra in standard models of de Sitter
and power-law inflation. The cut-off frequency �1, beyond which the spectrum
is exponentially suppressed, saturates the upper limit (7.193).
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Figure 7.5 Maximal allowed value of the transition scale H1 as a function of
the power �, determining (in conformal time) the rate of inflationary expansion.
The curve is obtained from Eq. (7.191) with h = 0�7 and �m = 0�3.

we can rewrite the isotropy bound for the spectrum (7.178) in the form

(
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Inserting the numerical values H0�Heq and �r , and choosing the typical values
h = 0�7, �m = 0�3, we obtain the upper limit on the curvature scale H1 plotted in
Fig. 7.5. The highest allowed scale corresponds to the case of de Sitter inflation
(� = −1), which implies

H1
<∼ 10−5MP� (7.192)

The bound becomes more and more stringent as � becomes smaller than −1 in
models of power-law inflation.

One may also note that the constraint on the scale H1 induces a corresponding
constraint on the allowed extension in frequency of the spectrum, since �1 is
determined by H1, according to Eq. (7.180). Using Eq. (7.191) one obtains
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(7.193)
This is the reason why steeper spectra are also shorter spectra, as apparent in
Fig. 7.4, where all the spectra are plotted up to the maximal value of �1 allowed
by Eq. (7.193). Assuming �m = 0�3 and h = 0�7, the previous bound is saturated
by log��1/Hz� � 9�3 for � = −1, by log��1/Hz� � 8 for � = −1�1 and by
log��1/Hz� � 6�9 for � = −1�2, as illustrated in Fig. 7.4.

We should finally stress that the hypothesis of saturation of the CMB limit
used in the plots of Fig. 7.4 is not completely ad hoc, being motivated by the
standard inflationary mechanism for producing the observed CMB anisotropy,
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based on the inflationary amplification of the fluctuations of the metric tensor
(see the details in the next chapter). At the Hubble horizon scale one obtains that
the amplitude of scalar and tensor metric perturbations tends to be of comparable
magnitude, so that the graviton spectrum may be expected to be close to the
saturation of the limit (7.189).

This means that the cosmic background of relic gravitons might even have
already been detected, implicitly, through the observations of the large-scale
anisotropy [44, 45]. If this is true, however, the intensity of the tensor background
would be so high, at the Hubble scale, that it should significantly also affect
the polarization properties of the CMB radiation (see for instance [46, 47]). The
planned measurements of the CMB anisotropy should clarify this point in the
near future.

The situation is very different if the relic graviton background is characterized
by a growing spectral distribution, which is typically the case for string cosmology
models [26] like those associated with the pre-big bang [48] and with the ekpyrotic
[49] scenarios (but also in the case of “quintessential inflation”, see e.g. [50]).
A growing spectrum reaches the peak in the high-frequency regime, and seems
to be more accessible (at least in principle) to a possible direct detection by the
existing gravitational antennas.

If the growth is very fast, however, the intensity of the spectrum at low
frequencies is likely to be very small, in particular much smaller than the satura-
tion limit (7.189). This implies that the direct inflationary amplification of tensor
metric fluctuations is not at the level of contributing to the observed large-scale
anisotropy. This is a positive result, on one hand, since it allows evasion of the
stringent limit on the inflationary curvature scale imposed by the CMB anisotropy.
On the other hand, a similar result should also be expected for the spectrum of
the scalar metric perturbations, and this complicates the inflationary explanation
of the observed anisotropy, requiring the introduction of an additional auxiliary
field (the curvaton), as will be discussed in the next chapter.

Before presenting explicit examples of graviton spectra typical of string cosmo-
logy we should recall that, for growing spectra, there are additional phenomenolo-
gical bounds that can constrain the intensity of the relic background at frequency
scales much higher than those relevant to the CMB anisotropy.

A first bound follows from almost a decade of monitoring the radio pulse
arriving from a number of millisecond pulsars: at present, no detectable distortion
of pulsar timing, due to the presence of a background of relic gravitational waves,
has been found. Consistency of these observations requires that the energy density
of the background be small enough, at frequency scales of the order of the inverse
of the observation time: more precisely [51],

h2�g��p� t0� <∼ 10−8� �p � 10−8Hz� (7.194)
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A second bound comes from the standard nucleosynthesis analysis [52]. In order
to avoid too fast an expansion-rate of the Universe at the time of nucleosynthesis
(which would spoil the remarkably accurate predictions of the observed abundance
of light elements), the total energy density of the radiation that dominates the Uni-
verse at that time has to be bounded. This in turn constrains the energy density of
the graviton background: its total energy, integrated over all modes, cannot exceed,
roughly, the energy density of one massless degree of freedom in thermal equilibrium
at the nucleosynthesis epoch (namely, about one-tenth of the total energy density).
Using Eq. (7.182), this gives the following bound on the total integrated spectrum:

h2
∫

d ln��g��� t0� <∼ 0�5×10−5 (7.195)

(see [53] for an accurate computation). This number also provides a crude upper
limit on the peak value of the spectrum, irrespective of its position in frequency.

7.3.2 Primordial gravitons from pre-big bang inflation

In order to present a typical example of a growing spectrum we can start again from
the sketch of background evolution illustrated in Fig. 7.3, considering, however,
an inflationary phase characterized by growing curvature (i.e. considering a phase
of type II inflation, according to the classification of Chapter 5). In this case
the inflationary pump field has a power � > −1, and such a power may even
be positive, in principle. Indeed, the pump field of an isotropic background
corresponds to the E-frame scale factor, and we know that pre-big bang models
are represented in the E-frame by a contracting phase (see Chapter 5), while
ekpyrotic models are contracting even in the string frame [54] (see Chapter 10).

According to our previous results we may expect that a phase of inflation at
growing curvature be associated with a growing graviton spectrum. In the simplest
case of the low-energy, dilaton-dominated pre-big bang evolution, for instance,
the power of the pump field is � = 1/2 (see Eq. (7.99)), and one obtains a spectral
distribution with the “maximal” slope �g ∼ �3 (modulo logarithmic corrections).
The same is true for the so-called kinetic phase (dominated by a scalar modulus)
of the ekpyrotic/cyclic scenario [55] that we will illustrate in Section 10.4. For
all these models, the slope is obviously different in the low-energy “tail” of the
spectrum (� < �eq), which is also affected by the radiation-to-matter transition,
according to Eq. (7.178); for such a rapidly growing spectrum, however, the
amplitude of the low-frequency part is so damped that its particular slope becomes
irrelevant in any realistic phenomenological application.

A model of string cosmology inflation characterized by only one kinemat-
ical power, that remains unchanged as the Universe evolves from an initial
state (possibly approaching the string perturbative vacuum), to a final, radiation-
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dominated state, is probably much too simple to be realistic, however. Indeed, as
discussed in Chapter 6, the transition to the standard cosmological phase is likely
to occur in the high-curvature and strong-coupling regime, where the background
is still characterized by an accelerated evolution, but the kinematics is in general
different from that predicted by the tree-level action.

In order to take this effect into account we consider here a two-phase model of
pre-big bang inflation. In the initial phase, extending in time from � = −� to � =
−�s, the accelerated growth of the curvature and of the dilaton is described by the
solutions of the lowest-order string effective action, with corresponding pump field
z∼ �−��1/2. This low-energy evolution eventually leads to a second, high-curvature
(string) phase, during which the S-frame curvature stays approximately frozen at a
value controlled by the string scale Ms, while the dilaton keeps growing until the
strong-coupling regime g2

s = exp
 ∼ 1 is reached, and the curvature approaches
the string scale also in the Einstein frame, H1 ∼ Ms. This second phases ranges
in time from � = −�s to � = −�1, may include higher-derivative effects, and the
corresponding pump field will be parametrized by a generic power-law behavior,
z ∼ �−���. At the end of this “stringy” phase the Universe is expected to enter the
standard radiation-dominated regime, and to follow all subsequent steps of a standard
cosmological evolution (see Fig. 7.6). Note that the power� characterizing the string
phase is not completely arbitrary for this model, because the graviton pump field,
expressed through the S-frame scale factor as, can be written as z ∼ as exp�−
/2�.
On the other hand, if the S-frame curvature is nearly constant, and the dilaton is
growing for � → 0−, then, in the string phase,

−η1low-energy phase radiationstring phase

(−η)1/2 η

ks

k1

k > ks

k < ks

η
(−η)α

−ηs

Figure 7.6 “Minimal” example of pre-big bang scenario. The S-frame curvature
scale grows at low energies, and stays constant in the string phase. The final
E-frame curvature scale is of the order of the string mass Ms. The string coupling
is small at the beginning of the string phase, gs��s� � 1, and becomes strong
at the inflation-radiation transition, gs��1� ∼ 1. Also illustrated in the figure is
the fact that high-frequency modes (k > ks) are only affected by the second
background transition, while low-frequency modes (k < ks) are affected by both
transitions.
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as ∼ �−��−1� exp�−
/2� ∼ �−���� � > 0�

z ∼ �−��� ⇒ � = �−1�
(7.196)

from which � ≥ −1.
The model of background evolution we have just described is called the “min-

imal” pre-big bang model [27], since it is the simplest example of consistent,
inflationary evolution from the string perturbative vacuum, compatible with the
dynamics of the string effective action. The complete model of the background
includes, of course, the final transition to the matter-dominated epoch. However,
such a phase is not explicitly shown in Fig. 7.6 because we confine ourselves to the
branch � > �eq of the spectrum, i.e. to modes which are not affected by this last
transition. Indeed, as the spectrum is rapidly growing, its lowest-frequency part
is very strongly suppressed and seems to be of little phenomenological relevance.

For the computation of the spectrum we follow the usual procedure, defining
the pump field in the “sudden” approximation,

z��� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�MP/
√

2� ��s/�1�
� �−�/�s�

1/2 � � ≤ −�s�

�MP/
√

2� �−�/�1�
� � −�s ≤ � ≤ −�1�

�MP/
√

2� ���+2�1�/�1� � −�1 ≤ ��

(7.197)

and matching the perturbations h, h′ at −�s and −�1. We obtain a spectrum
with two branches, since modes of high enough frequency (k > ks = �−1

s ) will be
affected only by the second transition, while modes with k < ks will be affected
by both transitions (see Fig. 7.6). We note that the evolution of tensor fluctuations
in the high-curvature regime, �> −�s, should be described by perturbing the full
background equations, possibly including all (higher-derivative) �′ corrections
(see Appendix 7A). The inclusion of such corrections, however, does not change in
a significant, qualitative way the results obtained from the tree-level perturbation
equation [12, 56] (at least until the string-phase curvature stays constant in the
S-frame); this justifies a first estimate of the spectrum in terms of the low-energy
equation (7.56).

For the high-frequency modes with k > ks we can directly apply the result of
Eq. (7.153). Taking into account both possibilities, � > 1/2 and � < 1/2, the
frequency dependence of the energy density, for this branch of the spectrum, can
then be parametrized as

(
�

�1

)4

�c−����2 ∼
(

�

�1

)3−2���
� � = 1

2
−�� �s < � < �1 (7.198)

(in agreement with Eq. (7.154) for d = 3).
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In the case k < ks, on the contrary, we must include the effects of both trans-
itions. The solution of the canonical equation, in the three different phases, is

h1
k��� = ei�/2

(
��s

2M2
P

)1/2(x1

xs

)�

H
�2�
0 �x�� � ≤ −�s�

h2
k��� = ei��

(
��1

2M2
P

)1/2( x

x1

)� [
c2
+H�2�

� �x�+ c2
−H�1�

� �x�
]
� −�s ≤ � ≤ −�1�

(7.199)

h3
k��� =

(
��1

2M2
P

)1/2( y

x1

)−1/2 [
c3
+H

�2�
−1/2�y�+ c3

−H
�1�
−1/2�y�

]
� −�1 ≤ ��

where x = k� and y = k�+2k�1. By matching the solutions at −�s and −�1, and
by exploiting the Wronskian properties and derivative properties of the Hankel
functions, we obtain

c3
− =�

4
x1

[
−H

�2�
−1/2�x1�

(
c2
+ei��H

�1�
�+1 + c2

−e−i��H
�2�
�+1

)

x1

+
(

2�−1
x1

H
�2�
−1/2 −H

�2�
1/2

)

x1

(
c2
+ei��H�1�

� + c2
−e−i��H�2�

�

)

x1

]

(7.200)

where x1 = k�1, and

c2
+ei�� = i�

4
xs

[
−H

�1�
0 H

�2�
�+1 +H�2�

� H
�1�
1 + 2�

xs
H

�1�
0 H�2�

�
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xs

�

c2
−e−i�� = i�

4
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[
−H�1�

� H
�1�
1 +H

�1�
0 H

�1�
�+1 − 2�

xs
H�1�

� H
�1�
0

]

xs

�

(7.201)

where xs = k�s. Notice that in the limit c2+ = 1 and c2− = 0 (in which one neglects
the production of particles induced by the first transition) one precisely recovers
the Bogoliubov coefficient of Eq. (7.169) (modulo a phase factor, due to a different
choice of the initial phase).

Using the exact analytical expression (7.200) one can plot the spectral distri-
bution of gravitons in the various frequency sectors (see for instance [57]). An
approximate, analytical estimate for the frequency range k� ks <k1 can be easily
obtained, however, by recalling the explicit form (7.171) of the Hankel functions
for the special case � = ±1/2, and by exploiting the small argument expansions
(7.141) and (7.155). The final result, to leading order in x1 � 1, xs � 1, is

c3
−�k� = x

−1/2
1

[

�1

(
x1

xs

)−�+1/2

+ ��2 +�3 ln xs�

(
x1

xs

)�−1/2
]

� (7.202)



7.3 Expected relic gravitons from inflation 303

where �1, �2, �3 are numerical coefficients determined by the asymptotic expan-
sion of the Hankel functions:

�1 = 2Aq1� �2 = A�2q1 −4i�p0� �

�3 = 4�Aq0� A = i
�

4
e−ix1

��/2�1/2

2��1+��
�2�−1�q��

(7.203)

The frequency dependence of the energy density for this low-energy branch,
neglecting the small logarithmic corrections, and taking into account that �s <�1,
can then be written as

(
�

�1

)4 ∣
∣c3

−���
∣
∣2 ∼

(
�

�1

)3(�s

�1

)−2��−1/2�
� � < �s� (7.204)

which consistently matches the behavior of the high-frequency branch (7.198) at
the transition scale � = �s.

Putting the two branches together into the spectral energy density (7.160), and
using the definition (7.163) of �r , we can finally write the full graviton spectrum
for this class of minimal pre-big bang models as

�g��� t0� =
(

H1

MP

)2

�r�t0�

(
�

�1

)3−2�1/2−��
� �s < � < �1�

=
(

H1

MP

)2

�r�t0�

(
�s

�1

)−2�1/2−��( �

�1

)3

� �eq < � < �s�

(7.205)

As before, we have absorbed inside the parameter H1 the numerical factors of
order one associated with the computation of the Bogoliubov coefficients. Also,
as in the previous cases, the present value of the cut-off frequency �1�t0� is
determined by H1 and by the post-inflationary evolution. For the simple post-
inflationary scenario of Fig. 7.3, in particular, the result (7.180) is still valid. In this
class of string cosmology models, however, the value of H1 is not an arbitrary
parameter as in the context of the standard inflationary models, but is closely
related to the fundamental string mass scale, H1 � Ms. As a consequence, the end-
point coordinates of the spectrum are basically controlled by the fundamental ratio
between string and Planck mass: using Eqs. (7.180) and (7.182), with �m = 0�3
and h = 0�7, one finds

�1�t0� � 4×1011Hz
(

Ms

MP

)1/2

�

�g��1� t0� � 8×10−5
(

Ms

MP

)2

�

(7.206)
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The most striking difference from the conventional inflationary predictions is
the fast growth in frequency of the spectrum. The low-energy band � < �s, in
particular, is characterized by a nearly thermal (i.e. Rayleigh–Jeans) behavior,
�g ∼ �3, that simulates the low-energy part of the black-body spectrum. At
higher frequencies the slope is still growing, but it is in general flatter, as �g ∼
�3−2�, with � > 0 (see Fig. 7.7). These important spectral properties remain
valid even when the graviton distribution is correctly computed including in the
perturbation equations the required higher-curvature corrections (at least when
they are truncated to first-order in �′ [12, 56], see Appendix 7A).

It should be noted, also, that for the minimal models we are considering the
spectrum associated with the string phase may be flat (in the limiting case in
which � = −1, corresponding to a frozen dilaton), but it cannot be decreasing. A
decreasing spectrum would require 2� = �1−2�� > 3, namely � < −1 or � > 2.
The first possibility is excluded by the assumption of non-decreasing dilaton,
Eq. (7.196)), while the second is excluded by the fact that the cosmological
background would become unstable, as already stressed in Section 7.2 (see, in
particular, the comments following Eq. (7.80)). On the other hand, a decreasing
high-frequency branch of the spectrum would become rapidly inconsistent with
the existing phenomenological upper bounds, given the fixed value of the end-
point of the spectrum (controlled by the ratio Ms/MP according to Eq. (7.206)).
For realistic values of this ratio, Ms ∼ 0�1−0�01MP, consistent with string models
of unified gravitational and gauge interactions [58], the end-point value �g��1�

is in fact automatically compatible with the nucleosynthesis bound (7.195), but is
already quite close to the maximal allowed value, as illustrated in Fig. 7.7.

The spectra plotted in Fig. 7.7 have been obtained from Eqs. (7.205) and (7.206)
using the maximum theoretically expected value, Ms � 0�1MP, and choosing
different values for the two (independent and arbitrary) parameters � and �s. In
particular: � = −1�−0�9�−0�75, and log��s/�1� = −8�−11�−5, respectively.
Above the cut-off frequency we have assumed the usual exponential suppression,
controlled by the factor exp�−��−�1�/�1�. It is clear from the figure that, once
the end-point has been fixed at the string scale, the resulting graviton distribution
(7.205) is fully determined by the two parameters � and �s, which control the
rate of kinematical evolution and the extension in time of the string phase, or
– equivalently – the coordinates of the break-point of the spectrum in the plane
����g .

From a physical point of view such parameters can be related to the value of
the string coupling gs at the time when the S-frame curvature reaches the string
scale, and to the rate of growth of gs during the string phase (see the discussion
of the next chapter). They depend, in principle, on the initial conditions and on
the dynamical details of the high-curvature regime, and thus remain completely
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Figure 7.7 Three examples of spectra for the minimal pre-big bang scen-
ario, corresponding to different values of � �−1�−0�9�−0�75�, and �s/�1
�10−8�10−11�10−5�. For the peak position we have used Eq. (7.206) with Ms =
0�1MP. The thin, dashed line labeled �3 corresponds to a low-energy model
with negligible extension in time of the string phase (i.e. with �s � �1). Also
shown, for comparison, is the scale-invariant spectrum associated with standard
de Sitter inflation, and the three phenomenological bounds imposed by the CMB
anisotropy (7.189), pulsar-timing data (7.194) and nucleosynthesis (7.195).

arbitrary in the context of a minimal model which only fixes the peak value of
the spectrum and its position in frequency. It follows, in particular, that the string
branch of the spectrum could also be extended to arbitrarily small frequency
scales – provided the slope is not too flat, to avoid conflicting with the pulsar and
CMB bounds on the relic intensity at large scales. It should be recalled, also, that
the nucleosynthesis bound (7.195) applies to the total integrated energy density,
and thus becomes more and more stringent as the spectrum flattens and the string
phase lengthens.

The precision attained by the minimal model in fixing the present coordinates of
the end-point of the spectrum might be reduced, however, if we take explicitly into
account that the present values of the spectral parameters are also dependent on
the details of the post-inflationary evolution. The actual peak value, in particular,
could be depressed with respect to the predictions of Eq. (7.206), if the critical
fraction of radiation energy density that we are presently observing has not been
entirely produced at the transition epoch t1, but contains contributions from later
epochs.

This effect can be appropriately illustrated by introducing the phenomenological
parameter �S, representing the fraction of present (black-body) entropy due to all
reheating processes possibly occurring after the end of the string phase. Such a
parameter is defined by [53]

�S = S0 −S1

S0
� (7.207)
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where S0 and S1 are the (thermal) entropies (per unit comoving volume) of the
radiation background at t = t0 and t = t1, respectively. They are defined in terms of
the temperatures T0, T1, and of the numbers n0, n1 of particle species contributing
(with their own statistical weight) to the entropy (see Chapter 1, Eq. (1.67)):

S0 = 2�2

45
n0�a0T0�

3� S1 = 2�2

45
n1�a1T1�

3� (7.208)

Combining the two entropies, and using the definition of �S, we are led to

�1�t0� ≡ H1

(
a1

a0

)
= T0

(
H1

T1

)(
n0

n1

)1/3

�1−�S�1/3 � (7.209)

Let us now assume that the radiation which starts dominating the Universe at
the epoch t1 is produced in a state of thermal equilibrium, so that

H2
1 = �2N1

90M2
P

T 4
1 � (7.210)

according to Eq. (1.60). Dividing by T 2
1 and M2

P, respectively, and combining the
two corresponding equations, we obtain the useful condition

H1

T1
=
(
�2N1

90

)1/4(
H1

MP

)1/2

� (7.211)

which we can insert into Eq. (7.209). Assuming H1 �Ms, N1 � n1 ∼ 103, and using
the standard numerical values associated with the present black-body radiation
(composed of photons and three neutrino types, see Chapter 1),

n0 =∑
b

Nb + 7
8

∑

f

Nf

(
T�

T�

)3

= 2+ 7
8

×6× 4
11

� 3�9�

T0 = T� � 2�3×10−4 eV � 3�5×1011 Hz� (7.212)

we finally obtain

�1�t0� � 1�5
(

Ms

MP

)1/2(103

n1

)1/12

�1−�S�1/3 1011 Hz� (7.213)

In the absence of models providing a detailed (and reliable) description of
the transition from the string to the radiation phase, and allowing a precise
geometric definition of the maximum amplified frequency �1, we can reasonably
identify the end-point of the spectrum with the limiting frequency corresponding
to the production of one graviton per polarization state and per unit phase-space
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volume [53]. In that case �c−��1��2 = 1, and the associated energy density, from
Eqs. (7.160) and (7.213), is

�g��1� t0� = �4
1�t0�

�2�c
� 1�2×10−6 h−2

(
Ms

MP

)2(103

n1

)1/3

�1−�S�4/3 �

(7.214)

In spite of the different definition of the end-point parameters, we find that the
values of �1 and �g��1� that we have obtained are in good agreement with the
previous estimates (7.206), in the limit �S = 0.

If �S �= 0, i.e. if we are in the presence of additional, post-inflationary processes
of radiation production (due to some reheating phase occurring at epochs much
later than t1), then the present peak values of �1 and �g��1� turn out to be
lower than the predictions of the minimal model, because of an effective dilution
(in critical units) of the graviton energy density. Suppose, for instance, that only a
very small fraction (say, 0�1%) of the present black-body entropy is a true relic of
the transition between inflation and the radiation phase. In that case 1−�S = 10−3,
so that – according to Eq. (7.214) – the height of the peak has to be lowered by
four orders of magnitude with respect to the value reported in Fig. 7.7. Even then,
however, the intensity of the graviton background would stay well above the flat,
de Sitter spectrum, which represents the most optimistic prediction of the standard
inflationary scenario. In addition, one should not forget that the above dilution of
the energy density applies to any given primordial graviton background, and then
also to the graviton background produced in the context of standard inflation.

Another possible source of uncertainty about the end-point values of the spec-
trum, in the context of the pre-big bang scenario, arises from the fact that the
fundamental ratio Ms/MP is expected to control the height of the peak, but not
necessarily its position in frequency. There are indeed “non-minimal” models
where the strong correlation between the end-point frequency and the peak of the
spectrum is lost, and the peak may be located at frequency scales much lower
than �1.

In fact, in the minimal scenario illustrated in Fig. 7.6, and corresponding to
the spectrum (7.205), the end of the high-curvature phase coincides with the
freezing of the string coupling parameter g2

s and with the beginning of the standard
radiation era. However, we may also consider a different, non-minimal scenario
in which the coupling is still small at the end of the string phase, g2

s �t1� � 1, so
that the dilaton keeps growing (in a decelerated way) also for t > t1 while the
curvature is already decreasing, and the radiation produced in the transition at
t = t1 becomes dominant only at much later times [27].

The main difference between these two possibilities is that in the non-minimal
case the effective potential appearing in the canonical perturbation equation is
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non-monotonic even before the beginning of the standard radiation epoch: as a
consequence, the highest-frequency modes re-enter inside the horizon during the
intermediate, dilaton-dominated phase which follows the string phase and precedes
the beginning of the radiation era. This modifies the slope of the spectrum in the
high-frequency sector, with the possible appearance of a negative power of �: the
full graviton spectrum may become non-monotonic, and the peak may no longer
be coincident with the end-point [27, 40, 59, 60] (see also [61]).

This is good news, from an experimental point of view, because it suggests
the possibility of a maximum signal even at frequencies much lower than the
gigahertz band, predicted by Eq. (7.206). However, it also provides a warning
against a too naive interpretation (and extrapolation) of possible experimental data,
in view of the complexity of the parameter space of string cosmology models. In
spite of these theoretical uncertainties it is still possible to define, with reasonable
accuracy, the maximal allowed region for the expected graviton background in
the phenomenological plane ����g .

The allowed region is shown in Fig. 7.8 for the frequency range � > 10−4

Hz, that seems to be phenomenologically relevant for the present gravitational
detectors (see next section). The maximal allowed intensity coincides with the
peak (7.206) of the minimal pre-big bang models, evaluated for the theoretical
upper limit of the string-to-Planck mass ratio Ms = 0�1MP. This leads to the border
value

�g
<∼ 10−6h−2� (7.215)

which also includes the small uncertainties associated with the identification
H1 ∼ Ms. This value is automatically compatible with the nucleosynthesis bound
(7.195), even if the spectrum is nearly flat from the gigahertz down to the millihertz
scale. We have also reported in the figure three lines of constant strain density,√
Sh = 10−19�10−23�10−25 Hz−1/2. The strain density, which we shall introduce

in the next section, is an alternative variable for characterizing the intensity of
gravity-wave backgrounds, more convenient for a direct comparison with the
experimental sensitivities of the gravitational antennas.

Also shown in the figure is the scale-invariant de Sitter spectrum, in order to
emphasize the relatively large enhancement (up to eight orders of magnitude) of
the relic background expected in models of pre-big bang inflation, with respect
to that expected in the standard inflationary scenario. Such an enhancement is
basically due to the fact that the standard spectrum is decreasing, the normalization
is imposed at the low-frequency end of the spectrum, and the peak value is
controlled by the anisotropy of the CMB radiation, which imposes (for � ≥ �eq)
�g

<∼ �r�t0��!T/T�2 <∼ 10−14 (see Eq. (7.178)). The pre-big bang spectrum,
on the contrary, is growing, the normalization is imposed at the high-frequency
end of the spectrum, and the peak value is controlled by the string-to-Planck
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Figure 7.8 The allowed region for the relic graviton spectrum is below the
upper border (marked pre-big bang) for models of string cosmology inflation,
and below the lower border for the standard inflationary scenario. The three
dashed lines correspond to three different, constant values of the strain density
(see Eq. (7.224)). The figure also shows the level of sensitivity expected to be
reached through the cross-correlation of two resonant spherical detectors, two
advanced (ground-based) interferometers, and two space-interferometers such as
LISA (see Section 7.4).

mass ratio, which imposes �g
<∼ �r�t0��Ms/MP�

2 <∼ 10−6 (see Eq. (7.205)).
This explains the eight orders of magnitude between the two allowed regions of
Fig. 7.8.

It should be stressed that a blue graviton spectrum may be regarded as a rather
typical prediction of string cosmology. However, such a high level of intensity,
like that obtained in the context of the pre-big bang scenario, is not necessarily
a property of all string cosmology models. We can mention, as an important
counter-example, the case of the ekpyrotic/cyclic scenario where, as in the pre-big
bang case, there are three main cosmological phases: (1) an initial “ekpyrotic”
phase, in which two colliding branes are slowly approaching one another along an
external spatial dimension; (2) a “kinetic” phase, dominated by a modulus scalar
field which determines the interbrane distance, and in which the scale factor is
rapidly contracting, leading the Universe to bounce, and then re-expand; (3) the
standard radiation-dominated phase (see Section 10.4 for a detailed discussion).
The corresponding graviton spectrum is similar, in many respects, to the pre-big
bang spectrum: it is flat at very low frequencies, and growing at high frequencies,
with a monotonic slope. In particular [55]:

�g ∼
⎧
⎨

⎩

�3� �r < � < �end�

�2� �eq < � < �r�

const� � < �eq�

(7.216)

where the frequency scales �r and �end correspond to modes crossing the horizon
at the onset of the radiation era and at the end of the ekpyrotic phase, respectively.
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However, a complete computation of the spectrum, with realistic values of the
parameters, leads us to conclude [55] that the background intensity reaches the
standard inflationary intensity (�g ∼ 10−14) only at the peak of the spectrum,
located around �end ∼ 108 Hz. At lower frequencies the graviton distribution is
suppressed by the quadratic and cubic slope, well below the level of standard de
Sitter inflation.

Stronger (but non-Gaussian) cosmic graviton backgrounds can arise, in a string
cosmology context, from bursts of gravitational waves [62] generated by a cosmic
network of fundamental strings, possibly produced [63] in models of D-brane–
antibrane inflation [64] (see Section 10.5). The intensity of such backgrounds
might be comparable to the maximal intensity predicted by pre-big bang models,
even for relatively small values of the effective tension of the produced strings.
They are thus in principle accessible to the expected sensitivities of near-future
interferometric detectors, as will be discussed in the next section.

Primordial gravitational backgrounds of inflationary origin, generated by mech-
anisms other than the direct amplification of tensor perturbations, can also appear
in the context of the conventional inflationary models. These backgrounds are
possibly due to graviton radiation from cosmic strings and topological defects
[65], from bubble collisions at the end of a first-order phase transition [66],
from parametric resonance of the inflaton oscillations [67], etc. Their intens-
ity can easily exceed the de Sitter bound of Fig. 7.8, but tends to stay lower
than (or at most equal to) the maximal allowed string cosmology level (see for
instance [68]).

We should mention, finally, the possibility of graviton “foregrounds” of as-
trophysical (non-primordial) origin, which are the superposition of gravitational
waves produced by a large number of individual sources. These backgrounds can
be stochastic, and may in principle overcome even the nucleosynthesis limit (as
they are produced later), but in that case they are peaked around a rather narrow
frequency band. In any case, their presence has the important effect of determ-
ining a “fundamental” sensitivity limit for any gravitational antennas looking for
primordial background in the same frequency range [69].

7.4 Sensitivities and cross-correlation of gravitational detectors

The intensity of a cosmic background of gravitational radiation can be paramet-
rized not only by its spectral energy density, �g���, but also by the so-called
“strain density”, Sh���. This second variable is more appropriate for a direct
comparison of the induced signal with the noise power-spectrum of a gravita-
tional detector, and can be conveniently used in order to define the experimental
sensitivity required to detect a given background.
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The precise relation between �g and Sh can be deduced starting from the
quadratic (E-frame) action (7.41) for tensor perturbations, which can be written
in covariant form (and in d = 3) as

��2�S = M2
P

2
1
4

∫
d4x

√−g g����h
j
i ��h

i
j� (7.217)

Decomposing h
j
i into the two physical polarization modes, h

j
i = hA��

A�
j
i ,

A = 1�2, with Tr��A�B� = 2�AB, the variation of the above action with respect
to the unperturbed metric, according to the standard definition (1.3), leads to the
energy-momentum tensor

"�� = M2
P

2

∑

A

[
��hA��hA − 1

2
g�� ���hA�

2
]
� (7.218)

The energy density of a cosmic graviton background, consisting of a stochastic
collection of standing waves of frequency � and wave-number �k/a = �n̂, with
�̂n� = 1, is then obtained by taking the spatial (or ensemble) average of the "0

0
component,

�g = 
"0
0� = M2

P

2

∑

A


ḣ2
A� = M2

P

4

ḣijḣ

ij� (7.219)

(see e.g. [13]), in agreement with the results already presented in Eq. (7.186). In
a quantum field theory context, in which the metric fluctuations are quantized,
the brackets denote the quantum expectation value in a generic n-particle state.

For a better comparison with the experimental variables we now expand the
fluctuations in Fourier modes, introducing explicitly the variable � such that
� = 2��, and working in units h = 1 (i.e., � = 1/2�):

hA��x� t� =
∫ +�

−�
d� hA��x��� e−2�i�t� (7.220)

where hA satisfies the reality condition hA�−�� = h∗
A���. The energy density

becomes

�g = M2
P

2
4�2∑

A

∫ +�

−�
d� d�′ ��′
hA���h

∗
A��

′�� e−2�i��−�′�t� (7.221)

Let us also define, for a stochastic background of gravitational waves (see for
instance [24]),


hA���h
∗
A′��′�� = �AA′���−�′�

1
2
SA
h ������ (7.222)

where SA
h ����� is the so-called one-sided strain density, defined in the positive

frequency range, with dimensions Hz−1. Inserting this definition into Eq. (7.221),
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and summing over polarizations (which gives a factor of 2 for unpolarized back-
grounds with S1

h = S2
h = Sh), we obtain

�g = 4�2M2
P

∫ �

0
d� �2Sh����� ≡

∫
d�g� (7.223)

from which

�g��� t0� = 1
�c

d�g

d ln �
= 4�2���3

3H2
0

Sh������ (7.224)

Numerically,

h2�g��� t0� � 1�28×1045Sh�����
( �

kHz

)3
Hz� (7.225)

The curves Sh = const, therefore, are lines of angular coefficient 3 in the plane
�log�� log�g (see Fig. 7.8).

The strain-density variable Sh is a useful indicator of the minimal level of
instrumental noise of a gravitational antenna required for the successful detection
of a given gravitational background. The instrumental noise, in fact, is described
by the so-called one-sided noise power spectrum, P�����, defined by


n���n∗��′�� = ���−�′�
1
2
P����� (7.226)

(see for instance [24, 70]), where P����� is a real function defined over all positive
frequencies, and n��� is the Fourier component of the noise n�t�. In particular,


n2�t�� =
∫ �

0
d� P������ (7.227)

The comparison of Eqs. (7.226) and (7.222) shows that the signal produced by a
stochastic background of gravitational waves – which manifests itself as an excess
of noise in the gravitational antenna – will in principle be detectable (by a single
instrument) only if Sh > P. The noise power spectrum, P�����, of a given instru-
ment thus determines the minimal intensity of a graviton background detectable
by that instrument. Vice versa, the spectral intensity Sh����� of a graviton back-
ground specifies the maximal noise P����� (i.e. the minimal sensitivity) required
for its possible detection.

We have seen, for instance, that the relic background of cosmic gravitons
produced in the context of the pre-big bang scenario is characterized by the
maximal expected intensity

�max
g � 10−6h−2� (7.228)
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corresponding to the upper border of the allowed region of Fig. 7.8. It follows,
from Eq. (7.224), that the minimal sensitivity required for its possible detection
is [27]

(√
Sh

)min = �−3/2

(
3H2

0

4�2

)1/2 (√
�g

)max
� 2�8×10−26

(
kHz
�

)3/2

Hz−1/2�

(7.229)

It is important to notice that the minimal sensitivity level required to cross the border
of the allowed region grows with the frequency band to which the detector is tuned
– even if such a border is the same at all frequency scales – as clearly illustrated
in Fig. 7.8. As a consequence, detectors working (or planned to work) at lower fre-
quencies are strongly favored, from an experimental point of view, with respect to
high-frequency detectors. Unfortunately, from a theoretical point of view, the prob-
ability of a large background intensity seems to be greater at higher frequencies,
at least in the context of the minimal pre-big bang scenario (see Fig. 7.7).

In any case, the direct detection of a primordial graviton background by means of
a unique gravitational antenna is very unlikely, at present, because of two important
problems.

The first problem is the fact that the sensitivity of presently operating detectors is
rather far from the limiting value (7.229). For the cryogenic, resonant-mass gravita-
tional antennas (ALLEGRO, AURIGA, EXPLORER, NAUTILUS and NIOBE) the
best available sensitivity (see for instance [71] for NAUTILUS) is at present around√
Sh � 3 × 10−22 Hz−1/2, with resonant frequencies in the kHz range (the typical

noise spectrum of a resonant-bar detector is reported in Fig. 7.9). The corresponding
detectable level of �g, from Eq. (7.225), is only h2�g ∼ 102. For the present inter-
ferometric antennas (GEO 600, LIGO, TAMA 300, VIRGO) the best sensitivity of
the first-generation detectors [72, 73] is also around

√
Sh ∼ 10−22 Hz−1/2. Such a

sensitivity, however, is available in a lower frequency range, � ∼ 102 Hz, and thus
corresponds to a lower value of the detectable energy density, h2�g ∼ 10−1.

In all cases we are dealing with sensitivities well above the border of the allowed
region, specified by Eq. (7.228). In order to approach the border we must wait, for
instance, for the second (and higher) generations of interferometric detectors. In
particular, the Advanced LIGO and Enhanced LIGO projects (also called LIGO II
and LIGO III, see [74]), are expected to improve the present LIGO I sensitivity by two
orders of magnitude, thus reaching the borderline (7.228). For a better illustration of
the expected sensitivities we have plotted in Fig. 7.10 the analytical fits [75] of the
noise power spectrum of LIGO I,

P����� = 3
2

10−46
[( �

200 Hz

)−4 +2+2
( �

200 Hz

)2
]

Hz−1� � > 40 Hz�

(7.230)
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Figure 7.9 Typical noise spectral density
√

P (in units Hz−1/2) versus frequency
(in Hz) for the resonant-bar NAUTILUS. The plot refers to the run of the year
2003, and to a bar temperature of 2 K (courtesy of the NAUTILUS group; see also
www.roma1.infn.it/rog).
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Figure 7.10 The square root of the noise power spectrum of Eqs. (7.230), (7.231)
and (7.232). The noise is assumed to go to infinity below the seismic cut-off fre-
quencies at 40 Hz, 25 Hz and 12 Hz, respectively. The dashed line is obtained
from Eq. (7.229) by identifying Sh����� with P�����. It represents the maximal level
of noise possibly compatible with a single-instrument detection of pre-big bang
gravitons.
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of LIGO II,

P����� = 7�9
11

10−48
[( �

110 Hz

)−9/2 + 9
2

+ 9
2

( �

110 Hz

)2
]

Hz−1� � > 25 Hz�

(7.231)
and of LIGO III,

P����� = 2�3
5

10−48
[( �

75 Hz

)−4 +2+2
( �

75 Hz

)2
]

Hz−1� � > 12 Hz�

(7.232)
The infrared cut-off of the above spectra is a seismic cut-off, below which the effect-
ive noise can be treated as infinite. Also shown in Fig. 7.10 is the limiting noise that
should be reached in order to detect (with a single instrument) a graviton background
with �g ≤ 10−6h−2.

It may be interesting to note that such a limit may become easily accessible to
gravitational antennas like the space interferometers of the LISA project (see for
instance [76]), because in space the detectors are not affected by seismic noise, which
is crucial in limiting the sensitivity band of the Earth-based antennas. The goal of
LISA is to reach the sensitivity

√
Sh � 4 × 10−21 Hz−1/2, in the frequency band

from 3 to 10 mHz. The corresponding value of detectable energy density, in this
frequency band, is the remarkably small value h2�g ∼ 10−11, well below the upper
bound (7.228). Another interferometric antenna in space, which should reach the
maximal sensitivity in a frequency band intermediate between LISA and LIGO, is
the so-called DECIGO project [77]. The planned sensitivity is

√
Sh � 10−23 Hz−1/2,

in the frequency band from 0�1 to 1 Hz, which would correspond to h2�g ∼ 10−13.
We should also quote another project, consisting of a “constellation” of four spatial
interferometers (operating in the same range as DECIGO): the so-called “big bang
observer” (BBO), which is presently begin investigated by NASA [78]. All these
space interferometer projects seem to offer promising possibilities for exploring,
with a single detector, a region of parameter space physically relevant for models of
string cosmology inflation.

At higher frequencies there are other interesting projects based on resonant-mass
detectors with spherical (or truncated icosahedron) geometry, such as TIGA [79]
or SFERA [80]. Hollow spheres, pushed to their extreme quantum limit, are also
particularly promising (see for instance [81]), as they could reach a strain sensitivity√
Sh � 3 × 10−24 Hz−1/2 in the kHz frequency range (the resonant frequency can

be tuned, in principle, by varying the radius of the sphere). Finally, there is work
in progress on the possible use of two coupled electromagnetic microwave cavities
as a high-frequency gravitational detector. It seems possible, at present, to reach a
strain sensitivity

√
Sh � 10−20 Hz−1/2 for frequencies in the kHz range [82] (which

is, however, well above the required sensitivity (7.229)).
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As explicitly illustrated by the above examples, the limiting sensitivity (7.229)
would seem to be out of reach for both present and near-future detectors (with the pos-
sible important exception of space interferometers). There is, in addition, a second
difficulty in the case of single-instrument detection, from which even space inter-
ferometers are not free. Even assuming that the required sensitivity is reached, an
unambiguous detection of a stochastic background of primordial gravitational ra-
diation with a single experimental apparatus would require a complete and exact
knowledge of all the intrinsic experimental noises, as well as of all (non-primordial)
gravitational backgrounds of different origin which could interact with the given
detector.

Fortunately, an efficient answer to both difficulties is known. The answer consists
in the search for the background signal not through a single antenna, but through the
cross-correlation of the outputs of two or more antennas [24, 83, 84].

7.4.1 Correlated response of two detectors

This important technique is based on the fact that the generic outputs s1�t� and s2�t�

of two different detectors (where s�t� represents, in practice, the microscopic oscil-
lations of the detector as a function of time), can be decomposed as

s1�2�t� = h1�2�t�+n1�2�t�� (7.233)

where h�t� is the so-called “physical strain”, i.e. the signal induced by the incident
gravitational radiation,whilen�t� represents thenoise.Thenoisecomponentdepends
on both the instrumental properties of the detector and the possible local disturb-
ance. The signal component depends on both the properties of the incident radiation
(intensity, polarization, propagation direction) specified by the metric fluctuation
tensor hij , and the geometrical properties of the antenna itself (shape, orientation)
specified by the so-called “response tensor” Dij (see below).

For an explicit definition of the signal it is convenient to expand the incident
radiation in plane waves of proper frequency (or energy) � and proper wave-number
�p = �k/a = 2��n̂, where n̂ is a unit vector specifying the propagation direction on
the two-sphere �2. We then define

hij�t� �x� =
∫ +�

−�
d�
∫

�2

d2n̂ hA��� n̂� �
A
ij �̂n�e

2�i��̂n·�x−t�� (7.234)

where each polarization component hA satisfies the reality condition hA��� =
h∗
A�−��. The physical strains h1�2�t�, induced in each of the two antennas, are
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then obtained by projecting the incident radiation onto the response tensor of the
detectors, Dij

1�2, namely,

h1�2�t� =
∫ +�

−�
d�
∫

�2

d2n̂ hA��� n̂� F
A
1�2�̂n� e2�i��̂n·�x1�2−t�� (7.235)

Here �x1�2 are the (known and constant) positions of the centers of mass of the detect-
ors, and

FA
1�2�̂n� = 1

2
�Aij �̂n�D

ij
1�2 (7.236)

are the so-called “pattern functions”. They parametrize, for each antenna, the re-
sponse to a given polarization mode and to a given propagation direction of the
incident radiation, as a function of the spatial orientation of the axes of the detector
[24, 70].

It should be noted that a gravitational antenna may be characterized by more than
one response mode, associated with different response tensors. The response of the
interferometric antennas, for instance, may be described by the so-called differential
mode, represented by the symmetric, trace-free tensor

Dij = uiuj −vivj� (7.237)

where û and v̂ are two unit vectors specifying the directions (not necessarily ortho-
gonal) of the two arms of the interferometer. But there is also the common mode,
represented by the tensor

Dij = uiuj +vivj� (7.238)

The main response of a cylindrical, resonant-bar detector, with axis along the û dir-
ection, is represented by the tensor Dij = uiuj . A spherical, resonant-mass detector
has many response modes: the simplest one, the so-called monopole mode, is rep-
resented by the tensor Dij = �ij . Such a response mode, in particular, is irrelevant
for gravitational radiation described by the traceless field hij , since the correspond-
ing pattern function is vanishing. It may be relevant, however, for representing the
response to a possible scalar (or dilatonic) component of the gravitational radiation,
as we shall see in Chapter 9.

The cross-correlation of the outputs of the two detectors is based on a series of
assumptions, on both the signals h1�2 and the noises n1�2, that we now list in detail.
The two noises are assumed to be statistically uncorrelated [24], namely


n1�t�n2�t
′�� = 0� (7.239)

where the brackets denote ensemble average. This assumption is justified by the fact
that the twodetectorsarealwaysdifferent, inprinciple (even if the type is thesame); in
addition, they are placed at different locations, usually with large spatial separations.
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The noises are also assumed to be statistically independent of the physical strains,
namely,


n1�2�t�h1�2�t
′�� = 0� (7.240)

Finally, we assume we are dealing with the most unfavorable case in which, for each
detector, the noise is much larger in magnitude than the physical strain,

�n1�2�t��  �h1�2�t�� (7.241)

(in theoppositecase, thesignalwouldbeeasilydetectedevenbyasinglegravitational
antenna).

Concerning the signal, one assumes, as already mentioned in this chapter, that
the inflationary amplification of the metric fluctuations produces an unpolarized,
isotropic and stationary background of primordial gravitons, represented by a
stochastic collection of standing waves, whose average energy-density distribu-
tion can be adequately described in terms of the spectral variable Sh, defined by
Eqs. (7.222)–(7.224). In other words, the Fourier amplitudes hA��� n̂� are assumed
to be represented by Gaussian variables satisfying the so-called stochastic conditions


hA��� n̂�� = 0�


hA��� n̂� h
∗
A′��′� n̂′�� = 1

4�
�AA′���−�′��2�̂n� n̂′�

1
2
Sh������

(7.242)

where�2�̂n� n̂′� = ��
−
′���cos�−cos�′� (note that the integration of the second
equation over the angular variables exactly reproduces the definition (7.222) of the
strain density Sh). Using Eq. (7.224) the last equation can be rewritten as


hA��� n̂� h
∗
A′��′� n̂′�� = �AA′���−�′��2�̂n� n̂′�

3H2
0�g���

32�3���3 (7.243)

(in agreement with the notation of [24]).
We are now in a position to present a precise computation of the signal-to-noise

ratio resulting from the cross-correlation of the two detectors. Given the two outputs
s1�2, defined over a total observation time T , we can define an integrated “signal”
S as

S =
∫ T/2

−T/2
dt dt′ s1�t�s2�t

′�Q�t− t′�� (7.244)

Here Q�t� is a real “filter” function, which will be appropriately chosen so as to
maximize the signal-to-noise ratio (SNR), defined by the statistical average as

SNR = 
S�
!S

� !S = (
S2�−
S�2)1/2
� (7.245)
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In order to compute 
S� we start by applying the assumptions (7.239) and (7.240),
which lead to


S� =
∫ T/2

−T/2
dt dt′ 
h1�t�h2�t

′��Q�t− t′�� (7.246)

We expand the strain as in Eq. (7.235), and perform the average using the stochastic
condition (7.242). We obtain


S� = N

8�

∫ T/2

−T/2
dt dt′

∫ +�

−�
d� Sh�����������Q�t− t′� e−2�i��t−t′�� (7.247)

where

���� = 1
N

∑

A

∫

�2

d2n̂ FA
1 �̂n�FA

2 �̂n�e2�i�n̂·��x1−�x2� (7.248)

is the so-called “overlap reduction function” [24, 83, 84], which determines the
signal resulting from the cross-correlation of the two outputs, taking into account
the relative distance and orientation of the two detectors. The constant factor N is
an overall normalization coefficient, which can be conveniently chosen in such a
way that � equals unity for coincident (�x1 = �x2) and coaligned (FA

1 = FA
2 ) detectors.

Assuming that the observation time T is much larger than the time intervals t − t′
over which Q �= 0, we can approximate one of the time integrals of Eq. (7.247) with
the Fourier transform Q��� of Q�t�:

Q��� =
∫ +�

−�
d� Q�t− t′�e−2�i��t−t′�� (7.249)

Replacing Sh with the spectral energy density �g, according to Eq. (7.224), we
finally obtain


S� = 3NTH2
0

32�3

∫ +�

−�
d�
���3 Q������������g������ (7.250)

We now need to compute the variance !S which, for uncorrelated noises much
larger than the physical strain (see Eqs. (7.239)–(7.241)), can be written as

!S2 = 
S2� =
∫ T/2

−T/2
dt dt′ d" d" ′ 
n1�t�n2�t

′�n1�"�n2�"
′�� Q�t− t′�Q�" − " ′��

(7.251)

Since 
n1n2� = 0, the only contribution to the above integral comes from the term

n1�t�n1�"��
n2�t

′�n2�"
′��. The definition (7.226) of the noise power spectrum, on

the other hand, can be inverted to give


n�t�n�"�� = 1
2

∫ +�

−�
d�P�����e−2�i��t−"�� (7.252)
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Inserting the spectral noisesP1�P2 into Eq. (7.251), and using the definition ofQ���,
we obtain

!S2 = 1
4

∫ T/2

−T/2
dt dt′ d" d" ′

∫ +�

−�
d�1 d�2 d� d�′ Q��1�Q��2�P1���P2��

′�

× exp�2�i
[
t��1 −��− t′��1 +�′�+ "��2 +��− " ′��2 −�′�

]
 

= 1
4

∫ +�

−�
d�1 d�2 d� d�′Q��1�Q��2�P1���P2��

′�

×�T ��1 −�����1 +�′����2 +�����2 −�′�� (7.253)

where we have extended the integrals in dt′�d"�d" ′ from −� to +�, assuming as
before that T is much larger than the time intervals over which Q �= 0. Also, we have
defined

�T �f� =
∫ T/2

−T/2
dt e−2�ift = sin��ft�

�f
� (7.254)

The integration over �1, �2, �′, using the reality condition Q�−�� = Q∗���, leads to
the final result

�!S�2 = 
S2� = T

4

∫ +�

−�
d� P1�����P2����� �Q����2 � (7.255)

We can now choose the function Q in such a way as to maximize the ratio

SNR = 
S�
!S

= NT 1/2 6H2
0

32�3

∫ +�
−� d� ���−3Q����������g�����

[∫ +�
−� d� P1�����P2����� �Q����2

]1/2 � (7.256)

We note that the following combination of any two frequency-dependent variables,
A and B,

�A�B� =
∫ +�

−�
d� A∗���B���P1�����P2������ (7.257)

satisfies all the properties of a positive-definite inner product in ordinary Euclidean
space [24]. In terms of such a product, the SNR expression can be rewritten as

�SNR�2 = TN 2

(
3H2

0

16�3

)2
�A�Q�2

�Q�Q�
� (7.258)

where

A = �������g�����
���3P1�����P2����� � (7.259)

Written in terms of a scalar product, it is easy to check that the above ratio can be
maximized by choosing Q proportional to A, i.e. Q = 	A, with 	 a real (arbitrary)
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normalization constant, so that �A�Q�2/�Q�Q� = �A�A�. This “optimal filtering”
prescription then leads to the final result of this cross-correlation analysis:

SNR = N
3H2

0

16�3

[

T
∫ +�

−�
d�

�6

�2������2
g�����

P1�����P2�����

]1/2

� (7.260)

Asclearlyshownbythisexpression, thesignal inducedbyagivencosmicbackground
�g grows with the square root of the correlation time T , and is larger for larger
overlap � and smaller noises P1�P2, of the two detectors.

The important consequence of the above analysis is that the experimental sensit-
ivity of two cross-correlated detectors to a graviton background is greatly improved
with respect to the sensitivity of a single detector. For a quantitative estimate of such
improvement one should first provide a precise definition of the level of signal re-
quired for an unambiguous detection. Following [24] we can say, in particular, that
a stochastic background can be detected, with a detection rate � and a false-alarm
rate �, if

SNR ≥ √
2
(
erfc−12�− erfc−12�

)
� (7.261)

We refer to the existing literature for a complete list of results on the cross-correlation
of all possible pairs of detectors. The level of sensitivity reached by the correlation
of two interferometers, in particular, has been studied in [24, 70, 85]. We recall here
that for an observation time T = 4 months, a detection rate of 0�95%, a false-alarm
rate of 0�05%, and with the noise level of the first generation of interferometers,
the minimum detectable graviton background (with a flat spectrum, �g = const) is
h2�g � 5×10−6, just about at the borderline of the allowed region. With the planned
sensitivities of Advanced LIGO, however, one expects a much better limit [24],

h2�g � 5×10−11� (7.262)

well inside the allowed region.
The cross-correlation between two resonant bars, and between a bar and an inter-

ferometer, has been studied in [86, 87]. The minimum detectable value of�g, in those
cases, is at present [70] h2�g ∼ 10−4 for a flat spectrum, one year of observation
time, at the 90% confidence level. The correlation of the spherical resonant detectors
seems to be more promising, however. Two resonant spheres of 3 m diameter, loc-
atedat thesamesite, could reachasensitivity [88]corresponding toh2�g � 4×10−7.
Also, studies reported in [89] suggest that the correlation of two hollow spheres
could reach h2�g ∼ 10−9. Both predictions are well inside the allowed region (see
Fig. 7.8). Finally, the cross-correlation for the spatial interferometer LISA has been
discussed in [69] by taking into account that, at low frequencies, the sensitivity to a
primordial graviton background is fundamentally limited by the possible presence of
other stochastic backgrounds, of astrophysical origin, generated at much later times.
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A detailed analysis, performed in the case of two identical LISAs, leads to a minimum
detectable background h2�g ∼ 10−12, in the mHz range, for a flat spectrum.

It should be stressed, at this point, that all the numerical results we have reported
have been obtained by assuming that the graviton spectrum is flat (�g = const) in
the whole frequency band where � �= 0 and the noises P1�2 are near the minimum.
In principle, however, the value of SNR depends not only on the intensity but also
on the slope of the graviton spectrum. The expected level of sensitivity to a growing
spectral distribution has been computed in [90, 91] and [60, 92] for a pair of LIGO and
a (virtual) pair of VIRGO interferometers, respectively. The minimum detectable
intensity, in that case, does not seem to present any substantial improvement with
respect to a flat graviton spectrum, apart from a weak frequency dependence, which
tends to enhance the sensitivity at the lower end of the resonant band of the two
detectors.

We conclude this chapter by quoting the best direct experimental upper limit exist-
ing at present on the energy density of a stochastic background of cosmic gravitons,
obtained from the cross-correlated analysis of the data of the two LIGO interfero-
meters [93]:

h2�g
<∼ 8×10−4

( �

100Hz

)�
� h = 0�72� 69 Hz ≤ � ≤ 156 Hz�

(7.263)

valid for a flat (� = 0), quadratic (� = 2) and cubic (� = 3) spectrum, and relative to
an integration time T = 200 hours. The integration time can be easily improved, of
course, and with one year of data at design sensitivity the LIGO detector will reach a
limit several times below the nucleosynthesis bound [93]. We may thus expect that,
in the near future, the cross-correlation of advanced (ground-based) interferometers,
space interferometers, resonant spheres and hollow spheres will be able to explore
(and to set precise constraints on) the parameter space of string cosmology models.



Appendix 7A
Higher-derivative corrections to the

tensor perturbation equations

When the curvature approaches the string scale, string theory predicts the appearance of
higher-derivative (�′) corrections modifying the effective action and the low-energy equa-
tions for the background fields. The equation describing the propagation of tensor metric
fluctuations, on the other hand, is obtained by perturbing to linear order the background
equations deduced from the string effective action, as illustrated in Section 7.1: we should
expect, therefore, that the perturbation equation may also receive �′ corrections for modes
entering the high-curvature regime [12]. In this appendix we illustrate this effect, discussing
an explicit example based on the following four-dimensional, first-order effective action,

S = Stree +S�′ �

Stree = − 1
2	2

s

∫
d4x

√−g e−

[
R+ ��
�2

]
�

S�′ = 1
2	2

s

�′

4

∫
d4x

√−g e−

[
R2

GB − ��
�4
]
�

(7A.1)

where R2
GB = R2 −4R2

�� +R2
���� is the quadratic Gauss–Bonnet invariant. This action was

introduced in Chapter 2, and used in Chapter 6 to describe the evolution of an inflationary
string background in the high-curvature regime (see Eq. (6.12)).

In order to obtain the modified perturbation equation, and to define the canonical variable
appropriate to the quantum normalization of the transverse and traceless part �g�� = h�� of
the metric fluctuations,

��h
�
� = 0� g��h�� = 0� (7A.2)

we need the perturbed form of the action (7A.1) up to terms quadratic in h��:

��2�S =− 1
2	2

s

∫
d4x e−


[

��2��
√−gR�+��2�

(√−gg����
��

)

− �′

4
��2�
(√−gR2

GB

)+ �′

4
��2�
(√−gg����
��
g����
��


)
]

� (7A.3)

We are using the notations of Section 7.1 for ��2�, and we are not perturbing the dilaton
field (�
 = 0), as we are only interested in the pure tensor part of the metric fluctuations
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(scalar, vector and tensor perturbations are decoupled to linear order; see [94] for a similar
computation applied to the case of scalar perturbations).

The perturbative approach is exactly the same as that used in Section 7.1 so that, for
the tree-level part of the action, we can directly apply the result obtained in that section.
Choosing the comoving gauge for both the background metric g�� and the fluctuations h��

(see Eqs. (7.11) and (7.13), respectively), we obtain, from Eq. (7.28),

��2�Stree = − 1
2	2

s

∫
d4xa3e−
Tr

[

hḧ− 1
4
h
�2

a2
h+ 3

4
ḣ2

+4ḣhH +h2

(
3
2
Ḣ +3H2 − 
̇2

4

)]

� (7A.4)

where we have set to zero the contribution of the extra dimensions (n = 0, F = ḃ/b = 0)
and of the potential (V = 0).

This result must be added to the perturbation of the higher-derivative action, ��2�S�′ . Let
us separately compute the various contributions, starting from the simplest one, the quartic
dilaton term: applying Eq. (7.5) we immediately obtain

��2�
[√−g��
�4

]= ��
�4��2�√−g = −1
4
a3
̇4 Tr h2� (7A.5)

In the quadratic Gauss–Bonnet term we have contributions from the perturbations of the
scalar curvature, of the Ricci tensor and of the Riemann tensor. The scalar curvature term
gives

��2��
√−gR2� = R2��2�√−g+2

√−gR��2�R+√−g
(
��1�R

)2
� (7A.6)

The last term, however, is vanishing because of the traceless condition gijhij = 0 (see Eq.
(7.12) for Rij and Eq. (7.23) for ��1�Ri

j). We are left with

��2��
√−gR2� = R2��2�√−g+2

√−gR
(
g����2�R�� +R���

�2�g�� +��1�g����1�R�� �

= −6a3�Ḣ +2H2�Tr
[

2hḧ− h

2
�2

a2
h+8hḣH + 3

2
ḣ2 +h2

(
3
2
Ḣ +3H2

)]

(7A.7)

(we have used the background of Eq. (7.12), and the results (7.4), (7.5), (7.22) and (7.26)
for the metric perturbations to first and second order). Applying the same equations, with
the addition of Eq. (7.23), and noting that ��1�Ri

0 = 0 = ��1�R0
0, we can also immediately

obtain the contribution of the Ricci squared term:

��2��
√−gR�

�R�
�� =R��R

����2�√−g+√−g
(
��1�R�

���1�R�
� +2R����2�R�� �
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−hḣ�12ḢH +24H3�−h2�3Ḣ2 +9ḢH2 +9H4�

]

� (7A.8)
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To complete the perturbation ofR2
GB we now need the contribution of the Riemann squared

term:

��2��
√−gR��

��R��
��� =R2

�����
�2�√−g

+√−g
(
��1�R��

����1�R��
�� +2R��

����2�R��
�� � � (7A.9)

We recall that, in our background, the non-vanishing components of the unperturbed
Riemann tensor are the following:

R0i
0j = �

j
i �Ḣ +H2� = −R0i

j0 = −Ri0
0j�

Rik
jl = H2��

j
i �

l
k −�

j
k�

l
i� = −Rik

lj = −Rki
jl�

(7A.10)

The first-order perturbation of the Riemann tensor,

��1�R���
� = ���

�1���
� +��

���1���
� +��

���1���
� − �� ↔ �� � (7A.11)

using Eq. (7.15) for ��1� , then gives the following non-zero components:
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At second order the perturbed expression is, in general,

��2�R���
� = ���

�2���
� +��1���

���1���
�

+��
���2���

� +��
���2���

� − �� ↔ �� � (7A.13)

Given the unperturbed tensor (7A.10), however, the only components we need for the com-
putation (7A.9) are ��2�R0i

0j and ��2�Rik
jl. Using the previous results for ��1� and ��2� we

obtain

��2�R0i
0j = −1

2
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) (7A.14)

(we have neglected all terms that, after integration by parts, do not contribute to the perturbed
action because of the transversality condition �jh

j
i = 0). Equation (7A.9) then provides
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√−gR��
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+2ḣ
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−hḣ�8HḢ +16H3�−h2
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3Ḣ2 +6ḢH2 +6H4

)
]

� (7A.15)

We are now in a position to present the contribution of the first-order �′ corrections to
the perturbed action (7A.3). Collecting all terms (7A.5), (7A.7), (7A.8) and (7A.15) we are
led to
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2	2
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∫
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Summing up this result to the tree-level result (7A.4) we can eventually integrate by parts
all terms with more than two partial derivatives acting on h, as well as the terms containing
hḣ and hḧ. The result (modulo a total derivative) is
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2	2
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̇ḢH +4
̇H3

)]}

� (7A.17)

The absence of terms with more than two derivatives of h follows from the Euler form of
the higher-curvature corrections to the metric (the Gauss–Bonnet invariant R2

GB). We may
note, also, that all �′ corrections disappear in the limit 
 = const, since in that limit (and
for d = 3) the R2

GB part of the action (7A.1) reduces to a total derivative with no dynamical
contributions.

A last simplification of the perturbed action (7A.17) is due to the vanishing of the coeffi-
cient of the h2 term, thanks to the equations of motion of the unperturbed background (see,
in particular, Eq. (6.20) for d = 3). This leads us to the final result [12]
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and (by varying with respect to h) to the modified tensor perturbation equation,
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generalizing (in d = 3) Eqs. (7.31) and (7.34) obtained by perturbing the tree-level action.
It is convenient, at this point, to decompose the matrixh

j
i into the two physical polarization

modes hA, A = 1�2, associated with the propagation of a tensor (spin-two) wave in four
dimensions. Using conformal time (d� = dt/a) the action (7A.18) can then be written, for
each polarization mode hA, as [12]

��2�S = 1
2

∫
d3x d�

[
z2���2h′2 +y2���h�2h

]
� (7A.20)

where we have omitted the polarization index, and where
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(the prime denotes differentiation with respect to �). By setting � = zh the action becomes

��2�S = 1
2

∫
d3x d�

(
�′2 + y2
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�2

)
(7A.22)

(modulo a total derivative). For each Fourier mode hk we can thus define the variable �k =
zhk, which has the correct canonical dimensions, diagonalizes the kinetic part of the action,
and satisfies a Schrödinger-like evolution equation,

�′′
k + [k2 −Vk���

]
�k = 0� (7A.23)

with effective potential

Vk��� = z′′

z
− k2

z2
�y2 − z2�� (7A.24)

The equations (7A.20)–(7A.24) generalize the canonical formulation of the dynamics of
tensor fluctuations, described at the tree-level by Eqs. (7.46)–(7.50). The higher-curvature
corrections are encoded into the new effective potential (7A.24), which is, in general, k-
dependent because of the two different pump fields (z and y) appearing in the perturbed
action. The difference z �= y also breaks the effective “duality” relating the evolution of the
tensor fluctuation variable and its conjugate momentum (see Section 7.2), and is not peculiar
to the considered model of �′ corrections: similar results are indeed obtained by perturbing
different, extended models, which include both �′ and loop corrections, as shown in [56].

It seems appropriate to devote the last part of this appendix to a brief discussion of
the possible effects of the �′ corrections on the dynamics and the spectrum of the tensor
perturbations. Such effects are more conveniently illustrated by rewriting the canonical
equation (7A.23) as follows:

�′′
k +k2 �1+ c�����k − z′′

z
�k = 0� (7A.25)

where, for our model,
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In the low-curvature regime�′H2 ∼ �′
̇2 � 1 one has c → 0, the corrections to the pump
fields become negligible, z ∼ y ∼ a exp�−
/2�, and Eq. (7A.25) reduces to the tree-level
perturbation equation (7.56). In the high-curvature regime �′H2 ∼ 1 one obtains, instead,
significant corrections to the canonical evolution equation, but such corrections are strongly
model dependent, relying on the specific form of the pump field z��� and the frequency shift
c���.

If, however, the high-curvature phase corresponds to a fixed point of the string cosmology
equations, characterized by 
̇ = x0 = const, H = x1 = const (see Section 6.1), then all the
�′ corrections tend to stabilize to a constant value,

z2 → �2�1−�′x0x1�� y2 → �2�1+�′x2
0�� (7A.27)

where � = �Ms/
√

2�a exp�−
/2� is the tree-level pump field. In this limit the effective
potentialz′′/z reduces to the tree-level form�′′/�, and the frequencyshift becomesaconstant,

c = �′ x0x1 +x2
0

1−�′x0x1

� (7A.28)

Thus, in this case, there is no modification of the evolution of tensor perturbations outside the
horizon, hence no modification of the perturbation spectrum with respect to that computed
without �′ corrections in the perturbation equation. The only effect of the high-curvature
terms, in this case, is a constant shift of the asymptotic amplitude of the fluctuations, due to
a shift of the horizon-crossing scale.

Let us consider, in fact, a phase of high and constant curvature, described for � → 0−
by the pump field ���� ∼ �−���, with � ≤ 1/2, as typical of the string phase discussed in
Section 7.3. Imposing the canonical normalization of the quantum fluctuations at horizon
crossing, ��k�hc = 1/

√
2k (see Section 7.2), and using the modified perturbation equation

(7A.25), one finds, asymptotically, the power spectrum

k3/2��k���� ∼ k
����

�hc

= k�k�√
1+ c�� ∼ k1+�� (7A.29)

The k-dependence is the same as that obtained from the low-energy perturbation equation.
The constant shift of the amplitude (by the factor

√
1+ c) is the same for all modes, and is

typically of order one – unless the denominator of Eq. (7A.28) goes to zero, which would im-
ply a divergence of the perturbation amplitude, signaling a quantum gravitational instability
of the type discussed in [22, 23].

These results are illustrated in Fig. 7.11, where we have plotted a numerical integration
of the system formed by the high-curvature background equations (6.18)–(6.20) (for d = 3)
and by the high-curvature perturbation equations (7A.19). We have compared, for a mode
crossing the horizon in the high-curvature regime, the evolution of the amplitude �hk�t��
obtained from Eq. (7A.19) with the amplitude one would obtain (for the same mode, in the
same background) neglecting the �′ corrections in the perturbation equation, and using Eq.
(7.34) instead of Eq. (7A.19). In both cases the amplitude oscillates inside the horizon, and
the oscillations are damped outside the horizon, as expected. The effect of the �′ corrections,
when they become important near the fixed-point regime (see Fig. 6.2 for the background
evolution), is to induce a shift of the comoving frequency, with a resulting shift of the final
asymptotic amplitude. As long as this shift is of order one, the computations based on the
low-energy perturbation equation provide a valid estimate of the spectrum.

This conclusion should not hide the fact that the�′ corrections, modifying the background
solutions, do also modify the tensor perturbation spectrum with respect to the results obtained
in the small-curvature limit, in which the background is obtained by solving the tree-level
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Figure 7.11 Numerical integration of the tensor perturbation equation (7A.19) in
the high-curvature background of Fig. 6.2, for a tensor mode of comoving frequency
k = 1 (in string units �′ = 1). The initial phase has been normalized in such a way
that hk��i� = 0, ḣk��i� = −1 at �i = −40.

equations. One can easily evaluate such a spectral distortion, in particular, when the �′
corrections are associated with a phase of constant curvature.

Let us consider, for instance, the high-curvature string phase possibly associated with a
fixed point of the effective action, with a metric and dilaton evolution parametrized as in Eq.
(7.196). In the constant-curvature regime the graviton spectrum is determined by the power
� of the tree-level pump field,

�g ∼ �3−2���� � = �− 1
2
� (7A.30)

and the slope is flatter, in general, than the cubic slope �g ∼ �3 characterizing the low-
frequency branch of the spectrum (see the discussion of Section 7.3). The modified slope,
due to the modified background kinematics, is fully controlled by the constant background
parameters 
̇ = x0, H = x1: a simple integration gives for the fixed-point regime,


 ∼ x0t� a ∼ ex1t� (7A.31)

from which, in conformal time,

a��� ∼ 1
�−x1��

� 
��� ∼ −x0

x1

ln�−��� (7A.32)

with a corresponding pump field

z ∼ ae−
/2 ∼ �−��
−1+ x0

2x1 ≡ �−���� (7A.33)

and a corresponding spectral index

3−2��� = 3−�2�−1� = 3−
∣
∣
∣
∣
x0 −3x1

x1

∣
∣
∣
∣ � (7A.34)

This value may range, in principle, from the maximum slope 3−2��� = 3 (i.e. x0 = 3x1),
corresponding to the saturation of the branch-changing condition (6.11), to the minimum
3 − 2��� = 0 (i.e. x0 = 0), corresponding to a frozen-dilaton configuration. In practice,
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however, the range of the spectral distortion may be smaller, depending on the allowed
ranges of x0 and x1. For the class of bouncing models introduced in Section 6.2, for instance,

all allowed fixed points are located between the branch-changing condition 
̇ < 0 and the
bounce condition (6.28), in such a way as to satisfy the condition [56]

−x1 < x0 −3x1 < 0� (7A.35)

The slope (7A.34) is thus constrained by

2 < 3−2��� < 3� (7A.36)

and seems to remain too steep to trigger interesting phenomenological effects at low
frequencies.
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8

Scalar perturbations and the anisotropy of the
CMB radiation

It has been shown in the previous chapter that the amplification of tensor
fluctuations, and the corresponding formation of a cosmic background of relic
gravitational waves, represent important sources of information on the dynamics
of the inflationary Universe. This chapter is devoted to another important aspect
of the inflationary kinematics, related to effects which have already been observed
[1, 2], and whose measurements are becoming more and more accurate [3, 4, 5].

We are referring to the inflationary amplification of the scalar part of the metric
fluctuations, and to the observed temperature anisotropies �T/T of the Cosmic
Microwave Background (CMB) of electromagnetic radiation. Tensor perturbations
can also contribute, in principle, to such an anisotropy. If the tensor spectrum is
growing, however, its contribution turns out to be largely suppressed at the (very
small) frequency scales relevant to the observed anisotropy. If the spectrum is flat
or decreasing, on the contrary, then an observable tensor contribution is possibly
allowed at frequencies near to the present Hubble scale; however, the tensor
contribution tends rapidly to become negligible with respect to the scalar one
as one considers higher-frequency modes, i.e. higher multipoles in the spherical-
harmonic expansion of the temperature anisotropy (see e.g. [6]). We may thus
regard scalar perturbations as in the main responsible for the peak structure (and
the related oscillations) that we are presently observing in the power spectrum
of �T/T .

This chapter will start with a detailed study of the perturbations of the system
of cosmological equations. After introducing in Section 8.1 a gauge-invariant
formulation of the scalar perturbation equations, and discussing the choice of
appropriate gauges, we will compute in Section 8.2 the angular power spectrum
of the temperature anisotropies obtained from a generic initial spectrum of scalar
metric perturbations. It will be shown, in particular, that an adiabatic and scale-
invariant distribution of metric perturbations – like that obtained in the context
of the standard (slow-roll) inflationary scenario – provides the appropriate initial
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conditions for the post-inflationary evolution of the anisotropies, and for the
reproduction of their currently observed structures.

In models of string cosmology inflation the natural implementation of a nearly
flat and adiabatic spectrum of primordial scalar perturbations represents in general
a hard, highly non-trivial problem. There are recent, possibly successful, attempts
[7] based on type IIB superstrings and on the idea of D-brane–anti-D-brane
inflation, which seem to be able to satisfy the conditions of moduli stabilization
[8] and slow-roll inflaton potential (see Section 10.5). Another recent positive
claim concerns the production of a flat, adiabatic spectrum of perturbations during
an early Hagedorn phase in the context of the string-gas cosmology scenario [9],
even without a period of inflation; this approach, however, seems generically
to produce a strongly tilted spectrum, unless in the string phase the dilaton is
fixed at a constant value by some unspecified strong coupling effect [10, 11].
The situation is also confused for the ekpyrotic scenario (see e.g. [12–15], to
mention only a few among the many contributions to the discussion that have
appeared in the literature); not to mention the pre-big bang scenario, where the
produced spectrum of scalar metric perturbations is naturally too steep to be in
direct agreement with the observed anisotropies [16, 17].

In all string theory models there are, however, other fundamental fields that
can be easily amplified with a flat (or nearly flat) primordial spectrum: this may
occur, for instance, to the axion field [18, 19] associated with the fluctuations of
the NS–NS two-form B��. Section 8.3 will be devoted to illustrating the effect,
interesting in itself, by which these exotic, “isocurvature”, primordial fluctuations
can induce a final spectrum of adiabatic and scale-invariant metric perturbations –
the so-called “curvaton mechanism” [20, 21, 22]. This (more indirect) method of
generating the observed CMB anisotropies has been investigated largely in the
context of pre-big bang models [20, 23, 24], and has been shown to differ, in
principle, from the (direct) amplification mechanism of the standard inflationary
scenario by the possible presence of non-Gaussian signatures in the anisotropy
spectrum [25, 26].

8.1 Scalar perturbations in a cosmological background

To discuss the evolution of scalar perturbations we shall consider, throughout this
chapter, a particularly simple (but complete) geometric configuration represented
by a four-dimensional and spatially flat isotropic background, with perfect-fluid
matter and a self-interacting scalar � as sources, described by the following
E-frame action:

S =
∫

d4x
√−g

[
− R

16�G
+ 1

2
���	2 −V��	

]
+Sm�g
�
matter	� (8.1)
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Here Sm describes the matter (fluid) sources, possibly coupled to the scalar
field both intrinsically and as a consequence of the conformal rescaling required
to transform the S-frame action to the diagonal form (8.1) (see Section 2.2).
Separating the contributions of these two couplings, the variation with respect to
the metric and to the scalar field leads, respectively, to the field equations,

G�
� = �2

P

[
T�

� + ����− 1
2
��

����	2 +��
� V

]

 (8.2)

�2�+ V

�
+ 1

2�
�� +T	 = 0 (8.3)

(recall that �2
P = 8�G). Here T�� is the (E-frame) stress tensor obtained from the

matter action, T its trace, and � is the possible E-frame transformation of the
intrinsic scalar charge of the matter fields, already present in the S-frame (see
Eqs. (2.54)–(2.59), where we have redefined � to make explicit the dimension-
ful factor 2� = √

2MP). The combination of the above equations leads to the
generalized conservation law,

��T�
� = 1

2�
�� +T	���� (8.4)

For matter minimally coupled to gravity, evolving along the E-frame geodesic
network, the coupling generated by � + T is absent, and one is left with the
standard equations of general relativity. Such a case can be obtained as the limit
1/2� → 0 of the more general system of equations that we are considering.

Considering homogeneous, isotropic and spatially flat backgrounds it is con-
venient to work in the conformal-time gauge, where

ds2 = a2��	�d�2 −dx2
i 	
 � = ���	
 � = ���	

T�
� = ��
−p�

j
i 	
 � = ���	
 p = p��	�

(8.5)

Then

�00
0 = � 
 �0i

j = ��
j
i 
 �ij

0 = ��ij


R00 = −3� ′
 Rij = �� ′ +2� 2	�ij
 R = − 6
a2

�� ′ +� 2	

(8.6)

where � = a′/a, and the prime denotes differentiation w.r.t. �. The �00	 and
�ij	 components of the Einstein equation (8.2) can be written, respectively, in the
form

6� 2 = 2�2
P

(
�a2 + 1

2
�′2 +Va2

)

 (8.7)

4� ′ +2� 2 = −2�2
P

(
pa2 + 1

2
�′2 −Va2

)
� (8.8)
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The dilaton equation (8.3) gives

�′′ +2��′ + 1
2�

�� +�−3p	a2 +a2 V

�
= 0
 (8.9)

and the conservation equation becomes

�′ +3� ��+p	 = 1
2�

�� +�−3p	�′� (8.10)

Finally, the subtraction of Eq. (8.7) from Eq. (8.8) leads to the useful identity

4�� ′ −� 2	+2�2
P

[
�′2 +a2��+p	

]= 0� (8.11)

It can be easily checked that the above equations correspond to Eqs. (2.60)–(2.63),
written in conformal time, for the case d = 3 and Ṽ = V . It is also important to
stress that the fluid is assumed to be perfect, but not necessarily barotropic, so
that p/� may be time dependent, in general.

We now introduce a linear perturbation of the metric tensor, g�� → g�� +�g��,
where g��	 is the unperturbed metric (8.5) and �g��
xi	 is a small, inhomo-
geneous correction. Also, we decompose �g into components transforming as
irreducible representations of an appropriate isometry group of the unperturbed
background: we use, in particular, the SO�3	 symmetry of the flat spatial sections,
classifying perturbations as scalar, vector and tensor objects with respect to spatial
rotations on a constant-time hypersurface. In a �3 + 1	-dimensional manifold, in
particular, the 10 independent components of the symmetric tensor �g�� will be
decomposed as follows: 2 degrees of freedom (or independent polarization states)
associated with one massless tensor field (represented by a traceless, transverse
tensor); 4 degrees of freedom associated with two massless vector fields (repres-
ented by two divergenceless vectors); and 4 degrees of freedom associated with
four massless scalar fields [27, 28].

With respect to the spatial rotations the component �g00 = A transforms as
a scalar; the components �gi0 = Bi transform as a d = 3 vector, which can be
decomposed into a divergenceless (pure-vector) part Bi, and the gradient of a
scalar, Bi = Bi + iB, iBi = 0; finally, the components �gij = Cij transform as a
symmetric tensor, and may be decomposed into a transverse and traceless (pure-

tensor) part, Cij , plus vectors and scalar contributions: Cij = C1�ij + ijC2 +
�iCj	 +Cij , where iCi = 0. Following the classical notations of [27], we can thus
parametrize the perturbed line-element ds2, expanded to first order, as follows:

ds2 = �g�� +�g��	dx� dx�

= a2�1+2�	d�2 −2a2�iB+Si	dxi d�

−a2 [�1−2�	�ij +2ijE +2�iFj	 −hij

]
dxi dxj
 (8.12)
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where �
�
E
B are scalars, Si
Fi are divergenceless vectors, and hij is a
symmetric, transverse, traceless tensor:

iSi = 0 = iFi
 ih
i
j = 0 = hi

i� (8.13)

It is important to note that, for a manifold with flat spatial sections, this
decomposition of the metric perturbations is valid quite independently of the
number of spatial dimensions: for any value of d the number of independent fields
is the same, and what is varying is only the number of their components. In d

spatial dimensions, in fact, a transverse, traceless tensor field has �d2 −d−2	/2
components, while a divergenceless vector has d − 1 components. Adding the
components of one tensor, two vectors and four scalars one obtains �d2 +3d+2	/2
degrees of freedom, which precisely corresponds to the number of independent
components of the symmetric tensor �g�� in a �d+1	-dimensional manifold.

The decomposition (8.12), with the addition of other fields associated with
the new (internal) degrees of freedom, can be directly extended also to higher-
dimensional manifolds with anisotropic but factorized geometric structure, typical
of the standard Kaluza–Klein scenario. In that case, the classification of perturba-
tions as different irreducible representations of the rotation group is conveniently
referred to the coordinate transformations of the “external” spatial submanifold
[29, 30]. Such a procedure, however, cannot be directly applied to the case of
non-factorized (or “warped”) geometrical structures, like those appearing in the
context of the Randall–Sundrum scenario [31] (see Chaper 10). In that case,
typical of the embedding of a brane in the curved bulk manifold, the metric is as-
sociated with a different isometric structure, and requires a different classification
of the independent components of its perturbations [32].

In the linear approximation, the components of �g�� with different transform-
ation properties satisfy decoupled equations [27], and can be studied separately.
In the presence of an accelerated (inflationary) background evolution, in partic-
ular, tensor metric perturbations are automatically amplified even without any
direct coupling to the sources, as illustrated in the previous chapter; vector metric
perturbations, on the contrary, tend to decay rapidly in the absence of a specific
vector source [27], unless one considers particular models of multi-dimensional
bouncing evolution [33]. In this chapter we concentrate our study on the pure
scalar part of metric perturbations, described in general by the four functions
��
�
E
B�. We set, therefore, �g�� = h��, where

�g00 = h00 = 2a2�


�gi0 = hi0 = −a2iB
 (8.14)

�gij = hij = 2a2���ij − ijE	�
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The contravariant components of the perturbed metric are defined by the condition
of matrix inversion,

�g�� +�g��	�g
�� +�g��	 = ��

�
 (8.15)

which gives, to first order in h, �g�� = −h�� ≡ −g��g��h��. Thus,

�g00 = −h00 = −2�

a2



�gi0 = −hi0 = −iB

a2

 (8.16)

�gij = −hij = − 2
a2

���ij − ijE	�

Finally, the following remark concerning notations is in order: throughout this
chapter the symbol of spatial gradient will simply denote a partial derivative,
quite irrespective of the index position, i.e. i ≡ i = /xi; all geometric factors
related to the raising and lowering of indices in non-Euclidean manifolds will
always be explicitly displayed.

Together with the metric pertubations we must introduce the scalar perturbations
of the matter sources. For the scalar field we set � → �+��, where ����
xi	

represents a small, inhomogeneous perturbation (���� � ���) of the unperturbed
scalar background ���	; for simplicity, we also adopt the notation

�� ≡ �� (8.17)

Other possible gravitational sources will be described hydrodynamically, as per-
fect fluid matter represented by the symmetric, rank-two tensor T��. As in the case
of the metric, the perturbations of T��, classified as scalars with respect to spa-
tial rotations, can be generally expressed in terms of four independent functions.
A first scalar function is associated with �T00; a second one with the gradient
part of the mixed components, �Ti0 ∼ iw; two additional scalar functions are
finally contained inside the spatial components, Tij ∼ A�ij +ij� . The last con-
tribution associated with � , called the “anisotropic stress perturbation” (or “scalar
shear”), introduces however non-diagonal spatial components in the perturbed
energy-momentum tensor, and vanishes in the perfect fluid approximation [27].

For a perfect fluid we have

T�
� = ��+p	u�u� −p��

�
 (8.18)

where u� = �a−1
 	0	 (in the conformal gauge), if the fluid is at rest in the comoving
system of coordinates. The perturbations �T�

� are thus fixed by ��, �p and �u�.
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On the other hand, perturbing the (constant) squared modulus of the four-velocity
vector, we obtain the conditions

�
(
g��u

�u�
)= �g00

a2
+2a�u0 = 0


�
(
g��u�u�

)= �g00 a2 + 2
a
�u0 = 0


(8.19)

from which, using Eqs. (8.14) and (8.16), we find that the velocity perturbation
�u0 is fully determined by the metric perturbation as

�u0 = −�

a

 �u0 = a�� (8.20)

We are left with �ui as the only independent variables, and we can thus parametrize
the scalar component of the velocity perturbations as

�ui = aiw
 (8.21)

where w is the so-called “velocity potential” (we are following the conventions
of [27]; see [34] for a possible alternative definition of the velocity potential). A
direct perturbation of the stress tensor,

�T�
� = ���+�p	u�u� + ��+p	��u�u� +u��u�	−�p��

�
 (8.22)

then provides the relations

�T 0
0 = ��
 �T

j
i = −�p�

j
i 


�Ti
0 = a−1��+p	�ui = ��+p	iw


(8.23)

which, together with Eqs. (8.14)–(8.17), complete the set of scalar variables
describing the perturbations of the homogeneous background (8.5).

8.1.1 Gauge-invariant variables

It is important to stress, at this point, that none of these scalar variables is in general
invariant under the local “gauge” transformation represented by the infinitesimal
coordinate reparametrization,

x� → x̃��x	 = x� +���x	
 (8.24)

and by its inverse, which, to first order in �, can be written as

x��x̃	 = x̃� −���x̃	� (8.25)

Transformations like (8.24) can in general introduce new vector components in
the perturbed metric, even starting with metric perturbations of pure scalar type.
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Let us compute the local, infinitesimal variations induced by such a transform-
ation on the perturbed metric and matter fields. Starting from the metric, and from
the exact tensor-transformation law

g̃���x̃	 = x�

̃x�

x�

̃x�
g���x	
 (8.26)

we compute the Jacobian matrix �x/̃x	 from Eq. (8.25) (to first order in �),
and we expand g�x	 ≡ g�̃x−�	 in Taylor series around x = x̃. We obtain, to first
order,

g̃���x̃	 = (��
� − ���

)
x̃

(
��

� − ��
�
)

x̃

(
g�� −���g��

)

x̃

= g���x̃	−g����
� −g����� −���g��
 (8.27)

where all terms, on the left- and right-hand sides, are computed at the same
space-time position x̃. For a perturbed metric we may replace g by g +h in the
above equation, and we can separate the homogeneous, zeroth-order terms from
the first-order terms (which are in general inhomogeneous), to obtain the local,
infinitesimal transformation of the metric fluctuations:

h�� → h̃�� = h�� −g����
� −g����� −���g��� (8.28)

One can easily check – using the definition of the Christoffel connection – that
the last three terms of this equation can also be written in the (more compact)
covariant form as

h̃�� = h�� −���� −����� (8.29)

Following the same procedure for the scalar field, we expand to first order the
exact scalar-transformation law,

�̃�x̃	 = ��x	 = ��̃x−�	 
 ��x̃	−���x̃	���x̃	� (8.30)

Replacing � by �+�, and separating the homogeneous and inhomogeneous parts,
we are led to the local transformation of the scalar fluctuations:

� → �̃ = � −����� (8.31)

Finally, for the fluid stress tensor we start again from the exact transformation,

T̃�
��x̃	 = x�

̃x�

 x̃�

x�
T�

��x	� (8.32)

Expanding to first order, and separating the inhomogeneous contributions, we
arrive at the local transformations of the perturbed matter sources:

�T�
� → �T̃�

� = �T�
� −���T�

� +T�
���� −T�

����� (8.33)
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Armed with such results, we are now in a position to show that if the spatial

part of the infinitesimal generator �� contains a pure traceless vector part, �
i
,

then the coordinate transformation (8.25) does not preserve the scalar nature of
the initial (metric or matter) perturbation. Suppose in fact that

�� = (�0
 �i
)

 �i = �

i + i�
 i�
i = 0
 (8.34)

and compute the variation of the spatial part of the metric fluctuations, hij → h̃ij .
Using the definition (8.14) of hij , and applying the transformation (8.28), we
obtain

h̃ij = 2a2�ij�� +��0	−2a2ij�E −�	+a2�i�j + j�i	� (8.35)

Besides the transformed scalar variables, � → � +��0 and E → E − �, the
new perturbation h̃ contains a new irreducible vector component generated by �i.
The same happens for the transformation of the mixed components, hi0 → h̃i0.
Note that, in the absence of physical vector sources, this effect can be used to
eliminate some vector components of the perturbations through an appropriate
coordinate transformation (or choice of the gauge).

Another important consequence of the considered transformations – clearly
illustrated by the result (8.35) – is that the variables ��
�
E
B�, used to para-
metrize the scalar part of the metric fluctuations, are not gauge-invariant, not
even with respect to the restricted class of transformations defined by �i = 0 and
specified by two scalar parameters only, �0 and �, such that

� → �̃ = �+�0��
xi	


xi → x̃i = xi + i���
xi	�
(8.36)

However, for such a class of transformations which preserve the scalar nature
of the initial perturbations, it is always possible to define an appropriate set of
variables which are gauge invariant, and which are obtained through a linear
combination of the variables introduced in Eq. (8.14).

Let us apply the general infinitesimal transformations of the metric and matter
variables, Eqs. (8.28), (8.31) and (8.33), to the particular transformation (8.36).
One easily obtains, for the various components,

�̃ = �−��0 −�′0
 �̃ = � +��0


Ẽ = E −�
 B̃ = B+�0 −�′


�̃ = � −�′�0
 �̃� = ��−�′�0


�̃p = �p−p′�0
 w̃ = w−�0�

(8.37)
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The combination B−E′, in particular, transforms as

B̃− Ẽ′ = B−E′ +�0� (8.38)

By exploiting this result, one can immediately introduce a set of new scalar
variables ��, � , X, �, �, W� which are “gauge-invariant” (i.e. which are preserved
by the infinitesimal transformation (8.36)), by defining

� = �+� �B−E′	+ �B−E′	′
 � = � −� �B−E′	


X = � +�′�B−E′	
 � = ��+�′�B−E′	
 (8.39)

� = �p+p′�B−E′	
 W = w+B−E′�

Notice that we have used only two gauge-invariant variables (� and �) to
represent the metric fluctuations since, with an appropriate choice of the arbitrary
parameters � and �0, it is always possible to impose two conditions on the
transformed variables, and to eliminate two of the four components ��
�
E
B�

which were initially present (see below). There is, of course, an infinite number of
different choices of gauge-invariant variables, but the combination presented here
has a particular phenomenological relevance, because the two metric variables
� and � (also called “Bardeen potentials” [35]) are the variables appearing as
direct sources of the anisotropy of the CMB radiation, as we shall see in the
next section. The definitions (8.39) will be used very frequently in the rest of the
chapter, and will play a central role in the discussion of the scalar perturbation
dynamics developed in this section.

It seems appropriate, at this point, to present a list of the most popular
(and useful) gauge choices, often adopted in the specialized literature on scalar
perturbations.

Longitudinal gauge (or conformally Newtonian gauge) fixed by the conditions
E = 0 = B. In this case the two non-zero metric fluctuations automatically coincide
with the Bardeen potentials, � = � and � = � . The system of coordinates turns
out to be completely specified, in this gauge, because the choice E → 0, B → 0
uniquely fixes the parameters �0 and � of Eq. (8.36), without any residual degrees
of freedom.

Synchronous gauge fixed by the conditions � = 0 = B. This choice does not
completely specify the system of coordinates, as it determines �0 and � only
up to arbitrary functions of the spatial coordinates xi [27]. One is left with
residual degrees of freedom which may render the physical interpretation of the
perturbative results difficult in this gauge.
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Uniform-curvature gauge (or spatially flat, or flat-slicing gauge) fixed by the
conditions � = 0 = E. In this case the coordinates are completely fixed, as in the
longitudinal gauge. The alternative denominations, listed in parentheses, are due
to the vanishing (in this gauge) of the perturbation of the extrinsic scalar curvature
of the space-like hypersurfaces, ��gijRij	 = 0. For some models of pre-big bang
inflation, such a gauge (also called the “off-diagonal” gauge, in that context)
has proved useful to get rid of a too fast growth of the metric fluctuations, and
to restore the validity of the linear approximation even when the background is
approaching the high-curvature regime [17].

Comoving gauge, fixed by the conditions B = 0 = �, if the gravitational model
includes a scalar field which is left unperturbed. This choice is also called the
“uniform-dilaton” gauge, with reference to a particular model of scalar source.
If the comoving condition is instead referred to a fluid source, then the gauge
is specified by the conditions B = 0 = w. In any case, these conditions do not
completely fix the system of coordinates (see Eq. (8.37)), and one is left with a
residual gauge freedom as in the synchronous case.

For any given choice of gauge, which reduces from eight to six the number of
independent scalar variables, Eq. (8.39) defines the corresponding gauge-invariant
fluctuations. It is always possible, therefore, to perform the computations in the
more appropriate gauge, and then re-express the final result in gauge-invariant
form using the relations obtained by inverting Eq. (8.39).

As an example of this technique we now show that the Bardeen variable �

is also the “potential” associated with the perturbation of the intrinsic scalar
curvature of the space-like hypersurfaces, both in the longitudinal and in the
uniform-curvature gauge. In the comoving gauge, on the contrary, the corres-
ponding curvature perturbation is associated with another gauge-invariant variable
[36], defined by

�� = � + �

�′ X (8.40)

if the comoving gauge is referred to the scalar field (� = 0), and by

�w = � +�W (8.41)

if the comoving gauge is referred to a fluid (w = 0). The reader should be warned
that other authors denote the curvature perturbation in the comoving gauge by the
� symbol, while in this book we reserve such a symbol to denote the curvature
perturbation in the uniform-density gauge �� = 0 (see below).

To compute the curvature perturbations let us start from the general expression
of the perturbed Christoffel connection, to first order in h��, already presented in
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Eq. (7.7). By applying such an equation to our scalar variables (8.14) and (8.16)
we obtain, to first order:

��00
0 = �′


��i0
0 = i��+�B	


��ij
0 = −ijB−2��ij��+�	−�ij�

′ + ij�2�E +E′	


��00
i = i��+�B+B′	


��0i
j = i

jE′ −�
j
i�

′


��ij
k = ij

kE +�ij
k� −�k

i j� −�k
j i� −�ij�kB�

(8.42)

In the longitudinal gauge we set E = 0 = B, and we note that, for the conformally
flat metric that we are considering, the unperturbed spatial hypersurfaces � =
const are characterized by a Euclidean metric �ij , and thus by a vanishing intrinsic
curvature, �ij

k = 0, R�3	 = 0. The first-order perturbation of the intrinsic Ricci
tensor then gives

�R
�3	
ij = k��ij

k − i��kj
k = (ij +�ij�

2)�
 (8.43)

and the perturbed (intrinsic) scalar curvature is

�R�3	 = gij�R
�3	
ij = − 4

a2
�2�� (8.44)

In the longitudinal gauge, on the other hand, � = � (see Eq. (8.39)), and we can
rewrite the above result in gauge-invariant form as

�R�3	 = − 4
a2

�2�� (8.45)

The Bardeen variable thus completely specifies the curvature perturbation in this
gauge. The same is true for the uniform-curvature gauge: by setting E = 0 = � in
Eq. (8.42), we obtain the following perturbed components of the intrinsic Ricci
tensor and Ricci scalar:

�R
�3	
ij = k��ij

k − i��kj
k = �

(
ij −�ij�

2)B


�R�3	 = gij�R
�3	
ij = 2�

a2
�2B�

(8.46)

In this gauge, on the other hand, �B = −� (see Eq. (8.39)), so that �R�3	 ∼ �2� ,
as before.

Let us now compute the curvature perturbation using the comoving gauge,
setting B = 0 in the perturbed connection (8.42). It turns out that the contributions



346 Scalar perturbations and CMB anisotropy

of E drop from the intrinsic curvature because of mutual cancelations, and one
finds for �R�3	 exactly the result (8.44) obtained in the longitudinal case. For the
comoving gauge, however, the general definitions (8.39) imply

� = � −�E′� (8.47)

So, if the comoving gauge is referred to an unperturbed scalar field, then the
conditions � = 0 = B give E′ = −X/�′, and the curvature perturbation can be
written explicitly in gauge-invariant form as

�R
�3	
� = − 4

a2
�2
(

� + �

�′ X
)

≡ − 4
a2

�2��
 (8.48)

which defines the gauge-invariant potential �� of Eq. (8.40). If, on the contrary,
the comoving gauge is referred to fluid matter, then we have the conditions
w = 0 = B which, inserted into Eq. (8.39), give E′ = −W . Using Eq. (8.47) we
finally obtain

�R�3	
w = − 4

a2
�2 �� +�W	 ≡ − 4

a2
�2�w
 (8.49)

which defines the gauge-invariant potential �w of Eq. (8.41).
It may be important to note that, in the case of fluid sources, there is another

useful gauge corresponding to the choice B = 0 = �� (called the “uniform-density”
gauge). In this case the definitions (8.39) give E′ = −�/�′ which, inserted into
(8.47), leads to � = � +��/�′. This choice defines another gauge-invariant
potential [37], that we shall call here � , related to the curvature perturbation as
follows:

�R�3	
� = − 4

a2
�2
(

� + ��

�′

)
≡ − 4

a2
�2�� (8.50)

The variable � controls the perturbation of the intrinsic scalar curvature on three-
dimensional, space-like hypersurfaces characterized by a uniform distribution
of the energy density (�� = 0); the variables �� and �w define the intrinsic
curvature perturbation on hypersurfaces of uniform dilaton (� = 0) and uniform
fluid velocity (w = 0) distributions, respectively.

Given the differential equations satisfied by � and � (see below), their Fourier
components, in a typical cosmological background, only differ by terms of order
�k��2: thus, the two variables tend to coincide as long as we are considering
long-wavelength perturbations – in particular, when discussing the evolution of
perturbations outside the horizon. From a more substantial point of view, however,
there is an important difference between � and �, due to the fact that � is closely
connected to the canonical variable which diagonalizes the quadratic action for the
scalar perturbations of the system {gravity + matter sources}. This connection can
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be easily illustrated in the simple case in which the matter sources are represented
by a single scalar field.

Consider the Einstein action (8.1) with Sm = 0, perturb the metric and the
scalar field according to Eqs. (8.14)–(8.17), and expand the perturbed action up
to orders h2 and �2, following the same procedure used in Section 7.1 for tensor
perturbations (see [27] for a detailed computation in the scalar perturbation case).
Using the unperturbed background equations (8.7)–(8.11), using the constraint
equations following from the variation of the variables appearing as Lagrange
multipliers in the perturbed action, and neglecting various total-derivative terms,
the quadratic action can be written finally in canonical form as

��2	S = 1
2

∫
d�d3x

(
v′2 +v�2v+ z′′

z
v2
)


 (8.51)

where [38]

v = a� + a�′

�
� = aX + a�′

�
�
 z = a�′

�
(8.52)

(see [30] for a higher-dimensional generalization of the variables v and z to the
case of a perturbed Kaluza–Klein background). The gauge-invariant variable v

thus satisfies the canonical evolution equation,

v′′ −
(

�2 + z′′

z

)
v = 0� (8.53)

Recalling the definition (8.40), we can write

v = z

(
� + �

�′ X
)

≡ z��
 (8.54)

and we see that z plays the role of the “pump field” for the canonical evolution
of the curvature perturbation �� , in close analogy with the relation u = zh

defining the canonical variable for tensor perturbations in Eq. (7.48). Note that
in this chapter we are not assuming M2

P = 2, and that we are using standard units
in which canonical scalar fields have dimensions of mass: thus, the curvature
perturbation variable � is dimensionless, while z and v have the dimensions of
mass appropriate to the canonical normalization, and to the quantization of the
scalar perturbation spectrum.

We should mention, finally, that with a similar procedure one can show that the
same linear combination of � and �W defining �w also leads to the canonical
variable for the scalar perturbations of the gravitating fluid system [39, 40]. In
the fluid case, however, one obtains a pump field zw different from the variable
z of Eq. (8.52) (see below, Eq. (8.118)).
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8.1.2 Scalar perturbation equations

We now need the explicit set of differential equations governing the evolution
of the various scalar variables that we have introduced. Such equations can be
obtained by perturbing, to first order, the background equations (8.2)–(8.4). From
the Einstein equations we obtain

�G�
� = �

(
g��R��

)− 1
2
��

��
(
g��R��

)

≡ −h��R�� +g���R�� − 1
2
��

�

(
−h��R�� +g���R��

)

= �2
P

[
�T�

� −h���� ��+g��
(
�� �� + �� ��

)

−1
2
��

�

(
−h���� ��+2g���� ��

)
+��

�

V

�
�

]
� (8.55)

The perturbation of the dilaton equation provides

−h��
(
���−���

a��
)+g��

(
��� −���

a�� −����
���

)

+2V

�2
� + 1

2�
��� +�T	 = 0
 (8.56)

where �� is a known function of the dilaton perturbation �. Finally, it may be
useful to consider the perturbation of the conservation equation, which gives

��T�
� −���

��T�
� +���

��T�
� −����

�T�
� +����

�T�
�

= 1
2�

��� +�T	 ��+ 1
2�

�� +T	��� (8.57)

The information contained in this last equation can also be retrieved by combining
the perturbed Einstein and dilaton equations.

For extracting the explicit evolution of the various scalar variables we need to
compute, first of all, the perturbed components of the curvature tensor. We are
free to perform the computations in the preferred gauge, with the understanding
that the final result can be re-arranged in gauge-invariant form using the variables
(8.39): we will thus assume – also in view of later applications – that B = 0. The
perturbation of the Ricci tensor, according to our conventions,

�R�� = �����
� +����

����
� +���

�����
� − �� ↔ �	 
 (8.58)
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then provides

�R00 = 3
(
�′′ +��′ +��′)+�2 (�−E′′ −�E′) 


�Ri0 = 2i

(
�′ +��

)



�Rij = ij

[
� −�+E′′ +2�E′ + �2� ′ +4� 2	E

]

−�ij � �′′ +5��′ +��′ −�2�

+ �2� ′ +4� 2	��+�	−��2E′  


(8.59)

from which we obtain the perturbed scalar curvature,

�R = �g��R�� +g���R�� = 2
a2

�2 [−E′′ −3�E′ +�−2�
]

+ 6
a2

[
�′′ +3��′ +��′ +2�� ′ +� 2	�

]
� (8.60)

The perturbed Einstein tensor is finally obtained, in mixed form, as follows:

�G0
0 = 2

�2

a2
�� +�E′	−6

�

a2
��′ +��	


�Gi
0 = 2

a2
i��

′ +��	
 (8.61)

�Gi
j = 1

a2
i

j��−� −E′′ −2�E′	

+ 1
a2

�
j
i � �2�� −�+E′′ +2�E′	

−2�′′ −4��′ −2��′ − �4� ′ +2� 2	 � �

We now have all the required ingredients to write down the various components
of the perturbed system of equations. We can conveniently adopt the longitudinal
gauge, also putting E = 0 in the above equations, since in this gauge all the
remaining scalar variables exactly coincide with their gauge-invariant counter-
parts, i.e. � = �, � = � , � = X, �� = �, �p = �, w = W (see Eq. (8.39) with
E = B = 0). This means that, with the choice E = 0 = B, the perturbed equations
automatically appear in gauge-invariant form.

Let us start with the Einstein equations (8.55). The spatial, off-diagonal com-
ponents �i �= j	 give

ij ��−�	 = 0
 (8.62)

since we have no off-diagonal sources (the so-called “anisotropic stress”) in the
total perturbed energy-momentum tensor, at linear order. Going to momentum
space, and noting that the equation kikj�� −�	 = 0 must hold for each mode
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separately, we must conclude that all Fourier coefficients �k and �k coincide, so
that [27]

� = �� (8.63)

In the six following equations we keep the distinction between the two Bardeen
potentials, to point out explicitly their different contributions to the system of
perturbed equations, for possible applications to models with anisotropic stresses
(where � �= � ). In all subsequent discussions and applications, however, we will
use the constraint (8.63) in order to eliminate � by � everywhere.

The mixed components �i0	 of the Einstein equations give the so-called
“momentum constraint”:

� ′ +�� = �2
P

2

[
�′X +a2��+p	W

]
� (8.64)

The time component �00	 gives the so-called “Hamiltonian constraint”:

�2� −3�� ′ −
(

3� 2 − �2
P

2
�′2
)

� = �2
P

2

[
a2�+�′X′ +a2 V

�
X

]
� (8.65)

The spatial components �ij	, tracing and dividing by 3, give

� ′′ +2�� ′ +��′ − 1
3
�2�� −�	+

(
2� ′ +� 2 + �2

P

2
�′2
)

�

= �2
P

2

[
a2�+�′X′ −a2 V

�
X

]
� (8.66)

The perturbed dilaton equation gives

X′′ +2�X′ −�2X +a2 2V

�2
X = 2��′′ +2��′	�+�′��′ +3� ′	

− a2

2�
��� +�−3�	� (8.67)

Finally, the time component (� = 0) of the perturbed conservation equation (8.57)
leads to

�′ +3� ��+�	− ��+p	�2W −3��+p	� ′ = 1
2�

��� +�−3�	�′

+ 1
2�

�� +�−3p	X′
 (8.68)

while the spatial component (� = i) gives

W ′ +4�W −�+ �′ +p′

�+p
W − �

�+p
= 1

2�

� +�−3p

�+p
X� (8.69)
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The set of equations (8.63)–(8.69) describes in a gauge-invariant way the
evolution of the scalar perturbations of the system {gravity + scalar field +
fluid matter}, around the given homogeneous background (we recall that �� is
assumed to be a known function of the dilaton perturbation, �� = ���X	). Of
these seven equations for the six variables ��
�
X
�
�
W� only five equations
are independent, so that the system has to be closed by the addition of one fur-
ther condition: for instance, by an appropriate “equation of state” � = ���	 for
the fluctuations, which specifies the model of matter we are considering. The
above perturbation equations, moreover, are complemented by the set of back-
ground equations (8.7)–(8.10) and, in particular, by the useful relation (8.11)
by which we can recast the equations in other forms, more convenient for phe-
nomenological applications. In view of such applications we will now separately
discuss the two simplest (and most frequently used) configurations, i.e. the case
in which the gravitational source consists of either a scalar field, or a perfect
fluid, only.

8.1.3 Scalar field source

In this subsection we restrict our attention to the case in which the only other
field appearing in the action, besides the metric, is a scalar field (for instance the
dilaton, minimally coupled to gravity in the low-energy Einstein action). We set
to zero all fluid terms (sources �, p, �
 and fluctuations �, �, W , ��) in the
background and perturbation equations. We also use everywhere the constraint
� = � . This situation can appropriately describe, for instance, a phase of primor-
dial inflationary evolution in which the cosmological dynamics is dominated by
the potential (or kinetic) energy of some cosmic scalar field.

In such a case it is possible to obtain a second-order, decoupled differential
equation for the Bardeen variable � = �, which completely describes (in a gauge-
invariant way) the time evolution of scalar metric perturbations. By subtracting
Eq. (8.65) from (8.66), by eliminating X through the constraint (8.64), and the
potential terms through the background equation (8.9), one is led to the decoupled
equation

� ′′ +2
(
� − �′′

�′

)
� ′ +2

(
� ′ −�

�′′

�′

)
� −�2� = 0
 (8.70)

which can also be written in the useful form

� ′′ +2
�′

�
� ′ −�2� +2

(
� ′ −� 2 +�

�′

�

)
� = 0
 (8.71)



352 Scalar perturbations and CMB anisotropy

where � = a/�′. Introducing the new variable V = �� we can also obtain the
“pseudo-canonical” form

V ′′ −
(

�2 + Z′′

Z

)
V = 0
 (8.72)

where

V = ��
 � = a

�′ 
 Z = �

a�′ = 1
z

(8.73)

(note that this effective “pump field” Z is just the inverse of the field z introduced
in Eq. (8.52)). The equivalence of Eqs. (8.70) and (8.72) can be easily checked by
using the definitions of Z, �, and the background condition (8.11), which implies

2�� 2 −� ′	 = �2
P�′2
 2�� ′ −� ′′ = �2

P�′�′′� (8.74)

It is important to note that Eq. (8.72) describes the classical evolution of
the scalar perturbations, but cannot be used to impose the initial normalization
to a quantum spectrum of vacuum fluctuations since neither � nor V can be
identified with the variable which diagonalizes the perturbed action. For the
quantum normalization of the spectrum we must refer to the canonical variable
v and/or to the curvature perturbation �� , related to v by Eq. (8.54). We should
thus present, at this point, the evolution equation for �� , and the relation between
� and �� .

Supposing that we have not yet diagonalized the action, and that we do not
know the relation v = z�� , where v satisfies the canonical equation (8.53), we
could obtain the equation for �� directly from its definition (8.40), combining the
gauge-invariant equations for � and X. There is, however, a simpler way to reach
the same result, working in the comoving, uniform-dilaton gauge where B = 0 = �,
and where the curvature perturbation simply coincides with the variable �:

�� = � + �

�′ X = � +�E′ + �

�′ �−�′E′	 ≡ �
 (8.75)

according to Eq. (8.39). Let us follow this second approach, as an instructive
exercise of gauge-invariant perturbation theory.

In the comoving, uniform-dilaton gauge we can use the result (8.61) for the
perturbed form of the Einstein tensor, and we set � = 0 in the perturbed Einstein
equation (8.55). The off-diagonal components (i �= j) then give

E′′ +2�E′ +� −� = 0� (8.76)

The mixed components (i0) give

�′ +�� = 0� (8.77)
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The time component (00), using the above equations and the background condition
(8.74), gives

2�2�� +�E′	+2�� 2 −� ′	� = 0� (8.78)

Finally, the diagonal (i = j) components, again using the background, give

�′′ +� �2�′ +�′	+ �� ′ +2� 2	� = 0� (8.79)

Note that only three equations of the above four are independent: the last equation,
for instance, is an identity following from Eq. (8.77).

The decoupled equation for � is now obtained by subtracting (8.78) from
(8.79), by differentiating (8.78) to eliminate E′′, by using (8.76), (8.79), (8.78)
and (8.77) to eliminate �+2�E′, �′, �E′ and �, respectively, and by exploiting
the background conditions (8.74). We obtain

�′′ +2
(
� + �′′

�′ − � ′

�

)
�′ −�2� = 0� (8.80)

Recalling the definition z = a�′/� , and the (gauge-dependent) relation � = �� ,
the above equation can be rewritten in explicit gauge-invariant form as

�′′
� +2

z′

z
�′

� −�2�� = 0
 (8.81)

in full agreement with the evolution equation (8.53) for the canonical variable
v = z�� .

As in the case of the tensor fluctuations, the evolution of the quantum fluc-
tuations of the vacuum is now determined by the canonical normalization of
�� = v/z, and the corresponding spectrum of the Bardeen variable is fixed by
the relation between � and �� . Such a relation is most easily obtained, again, in
the comoving gauge where �� = � and � = � +�E′. Combining Eqs. (8.77)
and (8.78) we have

�′ = −�� = �

� 2 −� ′ �2�� +�E′	
 (8.82)

from which

�′
� = �

� 2 −� ′ �2� = 2�

�2
P�′2 �2� (8.83)

(for the last equality we have used the background condition (8.74)).
This important equation, besides providing the precise relation between the

Fourier spectrum of � and the normalized spectrum of �� , also suggests the
existence of an (approximate) “conservation law”, �′

� 
 0, in the limit in which
��/�′2	�2� → 0. Shifting to the Fourier components one can easily check that
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such a conservation becomes effective on large scales, for long wavelength modes
satisfying �k�	2 � 1, i.e. for modes well “outside the horizon” [27].

It may be noticed, finally, that in the limit �2� = 0 the equation �′
� = 0

becomes exactly equivalent to the equation of motion of � (this means, in other
words, that the result �� 
 const outside the horizon is closely related to the
dynamics of the Bardeen potential). Consider the gauge-invariant definition of
�� which, using the constraint (8.64), can be rewritten as

�� = � + �

�′ X = � + 2

�2
P�′2

(
�� ′ +� 2�

)= � + �� ′ +� 2�

� 2 −� ′ � (8.84)

Differentiating, and imposing �′
� = 0, one obtains

� ′′ +2
(
� − �′′

�′

)
� ′ +2

(
� ′ −�

�′′

�′

)
� = 0
 (8.85)

which exactly coincides with the Bardeen equation (8.70) with �2� = 0.

8.1.4 Perfect fluid source

Suppose now that the matter sources are represented by a perfect fluid, minimally
coupled to gravity. This situation is possibly appropriate to describe the phase of
standard cosmological evolution, where the scalar dilaton/inflaton field is frozen
at a constant value, and its potential energy is negligible. We set to zero all scalar-
field terms, in both the background and perturbation equations, and we look for a
decoupled equation governing the evolution of the Bardeen potential � = �, as
before. By subtracting Eq. (8.65) from (8.66) we obtain

� ′′ +6�� ′ −�2� + �2� ′ +4� 2	� = �2
P

2
a2��−�	� (8.86)

For a more explicit interpretation of the source-term appearing on the right-
hand side of this equation we need, at this point, a better identification of the fluid
model we are considering. For a barotropic fluid, characterized by the equation
of state p/� = ! = const, the pressure perturbation �p is only a function of ��.
However, for more general equations of state p = p��	 (and, in particular, for
the case in which the ratio ! is not a constant), the pressure perturbation may
also depend on the perturbation of the fluid entropy density, �S. We can put, in
general,

�p = c2
s ��+ "�S
 (8.87)

where

c2
s =

(
p

�

)

S=const
= p′

�′ 
 " =
(

p

S

)

�=const
(8.88)
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(we are following the notation of [27]). The first coefficient c2
s can be interpreted,

in the context of relativistic hydrodynamics, as the velocity of sound perturbations.
For a barotropic fluid c2

s = p/� = !, and there are no entropy perturbations.
However, such perturbations appear (and may be important) if we consider a
mixture of non-interacting barotropic fluids. Suppose that the fluid source contains
n non-interacting barotropic components, satisfying the equation of state pi = !�i,
!i = const, i = 1
 � � � 
 n, and call p =∑i pi and � =∑i �i the total pressure and
energy density of the fluid, respectively. The equation of state for this model is
then determined by the (time-dependent) coefficient

! = p

�
=
∑

i !i�i∑
i �i

� (8.89)

The total perturbed pressure is

�p =∑
i

!i��i� (8.90)

The sound-velocity coefficient, using the conservation equation of the various
fluid components, �′

i = −3� ��i +pi	, can be written as

c2
s = p

�
=
∑

i p
′
i∑

i �
′
i

=
∑

i !i�i�1+!i	∑
i �i�1+!i	

� (8.91)

Comparing with (8.87) we obtain

"�S =∑
i

!i��i −
∑

i !i��i +pi	∑
i��i +pi	

∑

i

��i� (8.92)

If we have only one component, then �S = 0. Consider, instead, the realistic
example of a two-component fluid containing a mixture of matter and radiation,
i.e. �1 = �r and �2 = �m. Putting !1 = 1/3 and !2 = 0 in the previous equations
one obtains

! = 1
3

(
1+ �m

�r

)−1


 c2
s = 1

3

(
1+ 3

4
�m

�r

)−1

�= !� (8.93)

The corresponding non-adiabatic contribution to the scalar-perturbation equations,
according to Eq. (8.92), is represented by [27]

"�S = 1
3

(
1+ 4

3
�r

�m

)−1

��r − 1
3

(
1+ 3

4
�m

�r

)−1

��m
 (8.94)

which can be rewritten in the useful form

"�S = c2
s �m

(
3
4

��r

�r

− ��m

�m

)
� (8.95)
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During a phase of standard cosmological evolution, on the other hand, the radiation
is in thermal equilibrium at a proper temperature T , and �r ∼ T 4, so that the
entropy density per non-relativistic particle of the matter fluid is proportional
to T 3/�m ∼ �

3/4
r /�m (see Chapter 1). This gives a fractional entropy-density

perturbation

�s

s
= 3

4
��r

�r

− ��m

�m


 (8.96)

which allows rewriting Eq. (8.95) as "�S = c2
s �m��s/s	, and explains the name

“entropy perturbation” for such a contribution to the scalar fluctuation equations.
In the subsequent discussion we consider a fluid with possible non-adiabatic

sources of perturbations, �S �= 0, and we use the gauge-invariant counterpart of
Eq. (8.87),

� = c2
s�+#
 (8.97)

where # represents the total entropy perturbations. Inserting into the Bardeen
equation (8.86), and using Eq. (8.65) to eliminate �, we arrive at the final equation

� ′′ +3� �1+ c2
s 	�

′ +2� ′� +� 2�1+3c2
s 	� − c2

s �
2� = �2

P

2
a2#� (8.98)

Once this equation is solved, the time evolution of W , � and � turns out to be
uniquely fixed by the other perturbation equations (8.64)–(8.66). Note that a pure
scalar field, with vanishing potential, can also be represented in hydrodynamical
form as a perfect fluid with equation of state p = �. In that case c2

s = ! = 1, the
perturbations are adiabatic (# = 0), and the above equation exactly reduces to
the Bardeen equation (8.70) previously obtained for the scalar field (as can be
checked by using the background equation (8.9)).

As in the case of the scalar field, it is possible to recast the Bardeen equation
in a “pseudo-canonical” form by introducing the variable U defined by

U = 2

�2
P��+p	1/2

� =
√

2a

�P�� 2 −� ′	1/2
�
 (8.99)

where the second equality follows from the background relation

2�� 2 −� ′	 = �2
Pa2��+p	 (8.100)

(see Eq. (8.11)). The Bardeen equation can then be rewritten as

U ′′ −
(

c2
s �

2 + $′′

$

)
U = � 
 (8.101)
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where

$ = �P�

a
[
2�� 2 −� ′	

]1/2 = �P

a

[
�

3��+p	

]1/2


 � = �Pa3#
[
2�� 2 −� ′	

]1/2

(8.102)

(the equivalence of Eqs. (8.98) and (8.101) can be verified by using the defin-
ition c2

s = p′/�′, the fluid conservation equation, and the condition (8.100)). It
must be stressed, however, that U is not the variable representing the canonical
perturbations of the gravitating fluid system, even in the particular case � = 0.

For the canonical normalization of the spectrum one must refer, once again,
to the curvature perturbation, which for a fluid is defined by the gauge-invariant
equation (8.41). Using the momentum constraint (8.64) the curvature perturbation
can be written in various forms:

�w ≡ � +�W = � + 2

�2
P

�� ′ +� 2�

a2��+p	
(8.103)

= � + 2
3
�−1� ′ +�

1+!
(8.104)

= � + �� ′ +� 2�

� 2 −� ′ � (8.105)

The second form (often used in the literature) follows from the first one by putting
p = !�, and using the background equation (8.7). The third one has been obtained
using Eq. (8.100), and is formally identical to the result obtained for a scalar-
field source (see Eq. (8.84)). In any case, differentiating Eq. (8.103), using the
definition c2

s = p′/�′, the fluid conservation equation, and Eq. (8.100), we obtain

�′
w = 2�

�2
Pa2��+p	

[
� ′′ +2�� ′ +3�1+ c2

s 	�� ′ + �1+3c2
s 	�

2�
]
� (8.106)

A quick comparison with the Bardeen equation (8.98) then leads to

�′
w = 2�c2

s

�2
Pa2��+p	

�2� + �

�+p
#

≡ �c2
s

� 2 −� ′ �2� + a2�2
P�

2�� 2 −� ′	
#� (8.107)

We thus recover the approximate conservation of the curvature perturbation
(�′

w 
 0), in the limit in which the sources are adiabatic (# = 0) and the spatial
gradients of the metric fluctuations are negligible (namely, in the case of long
wavelength modes outside the horizon). It is important to note that, in the fluid
case, the presence of entropy perturbations breaks in general the �w conservation,
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and may generate additional curvature perturbations: this effect is the basis of the
“curvaton mechanism” that we will discuss in Section 8.3. In the adiabatic case
the above equation determines the relative normalization of the Bardeen variable
with respect to �w, just like Eq. (8.83) valid for the scalar-field source. The only
difference is represented by the coefficient c2

s which depends on the fluid type,
but which does not affect the k-dependence of the spectrum.

Let us complete our discussion, and the analogy with the scalar-field domin-
ated scenario, by deriving the evolution equation for the curvature perturbation
variable. We work in the gauge comoving with the fluid source, where B = 0 = w

and where, according to the definitions (8.39),

�w = � +�W = � +�E′ +� �−E′	 ≡ �� (8.108)

Using this gauge in the perturbed Einstein equations we obtain, from the (i �= j)
and (i0) components, exactly the same equations, (8.76) and (8.77), as before. The
(00) and (i = j) components lead, respectively, to the following new equations:

2�2�� +�E′	 = �2
Pa2��
 (8.109)

�′′ +� ��′ +2�′	+ �2� ′ +� 2	� = �2
P

2
a2�p� (8.110)

It is also convenient to take into account the conservation equation (8.57). In the
comoving gauge, the � = 0 component gives

��′ +3� ���+�p	+ ��2E′ −3�′	��+p	 = 0
 (8.111)

while the � = i component gives

�p = −��+p	�� (8.112)

Using this last equation, together with the background condition (8.100), we may
recast the spatial equations (8.110) in the form

�′′ +� �2�′ +�′	+ �� ′ +2� 2	� = 0
 (8.113)

which is formally identical to Eq. (8.79) obtained for the scalar-field source. Let
us finally consider the combination of �� and �p which, using Eqs. (8.87) and
(8.112), provides

�2
Pa2�� = �2

Pa2c−2
s ��p− "�S	 = −2c−2

s �� 2 −� ′	�−�2
Pa2c−2

s "�S� (8.114)

This allows us to rewrite the Hamiltonian constraint (8.109) in the form

2c2
s �

2�� +�E′	+2�� 2 −� ′	� = −�2
Pa2"�S
 (8.115)

again reproducing the corresponding relation obtained for the scalar-field source,
Eq. (8.78) (modulo the presence of the sound-velocity coefficient, and of possible
contributions from entropy perturbations).
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The decoupled equation for � = �w is now easily obtained, in this gauge, by
the same appropriate combinations of Eqs. (8.113), (8.115), (8.76) and (8.77), as
in the scalar-field case. One is led to

�′′ +2
(
� − c′

s

cs

)
�′ +

(
2� ′2

�
−� ′′

)
�′

� 2 −� ′ − c2
s �

2� = %
 (8.116)

where

% = �2
P

2�� 2 −� ′	

[
a2"�S

(
� ′ +2�

c′
s

cs
−2� 2

)
− �a2"�S	′

]
(8.117)

represents the total entropy contribution. Recalling that � = �w, and introducing
the pump field

zw = a

[
2�� 2 −� ′	

]1/2

�P�cs
≡ 1

cs$
(8.118)

(see the definition (8.102) for $), the decoupled equation can be finally written,
in fully gauge-invariant form, as

�′′
w +2

z′
w

zw

�′
w − c2

s �
2�w = %� (8.119)

In the absence of entropy perturbations (% = 0) the variable u = zw�w diagonal-
izes the quadratic action for the scalar perturbations of the gravitating fluid system
[27], and satisfies the canonical equation

u′′ −
(

c2
s �

2 + z′′
w

zw

)
u = 0� (8.120)

The presence of the sound coefficient c2
s breaks the symmetry of “dual” inversion

relating the two pump fields zw and $ (for a scalar field, on the contrary, z ≡ Z−1),
but does not affect the canonical normalization of the spectrum.

8.1.5 Generalized comoving gauges

After the separate discussion of the perturbations for the scalar field and the fluid
sources, minimally coupled to gravity, we conclude the section with two important
observations.

The first observation concerns the possibility of describing in a unified manner,
through the hydrodynamical formalism, both the fluid and the scalar-field sources.
A homogeneous scalar field behaves as a fluid, characterized by an effective
energy density and pressure given by

�� = �′2

2a2
+V
 p� = �′2

2a2
−V
 (8.121)
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and the background equations (8.7)–(8.10) can be rewritten in terms of a unique
fluid source, with total stress tensor defined by �T = � + ��, pT = p + p�. In
such a case, however, the comoving gauge can be defined in three different ways,
by referring to the evolution (1) of the total gravitational source, (2) of the fluid
only, (3) of the scalar field only.

(1) In the first case one must consider the total velocity potential wT, defined by

�Ti
0�Tot	 = ��T +pT	iwT = ��+p	iw+ ��� +p�	iw� (8.122)

(see for instance [23]). Here w� is referred to the perturbed energy-momentum
tensor of the scalar field,

�Ti
0��	 = g00�′i� = 1

a2
�′i�
 (8.123)

so that

iw� = a2

�′2 �Ti
0��	 = i�

�′ = i�

a
√

�� +p�

� (8.124)

In the comoving gauge fixed by wT = 0 = B the curvature perturbation, � = �,
takes the explicit form � = � +�WT. On the other hand, the momentum con-
straint (8.64), and the background condition (8.11), can be written, respectively, as

� ′ +�� = �2
P

2
a2��T +pT	WT


�2
P

2
a2��T +pT	 = � 2 −� ′�

(8.125)

We then recover the usual form of the curvature perturbation,

� = � + �� ′ +� 2�

� 2 −� ′ 
 (8.126)

already introduced for the scalar case, Eq. (8.84), and the pure-fluid case,
Eq. (8.105).

(2) If we choose to be “comoving” only with respect to the fluid source, w = 0,
then the curvature perturbation is �= � = � +�W ≡�w. Using the momentum
constraint and the background equations we obtain

�w = � + �� ′ +� 2� − �2
P

2 �X�′

� 2 −� ′ − �2
P

2 �′2
� (8.127)
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(3) Finally, if we choose to be “comoving” with respect to the scalar-field
source, then � = 0, and we get � = � = � +�X/�′ ≡ �� . The momentum
constraint and the background equations then lead to

�� = � + �� ′ +� 2� − �2
P

2 a2��+p	�W

� 2 −� ′ − �2
P

2 a2��+p	
� (8.128)

Note that the two variables �w and �� , defined in the last two equations, are
different from the corresponding objects obtained in the case of pure-fluid sources,
Eq. (8.103), and pure scalar-field sources, Eq. (8.84).

8.1.6 Frame transformations

The second, final observation concerns the transformation properties of the gauge-
invariant variables defined in this section. They are independent, to linear order,
of the choice of the coordinate system on the given space-time manifold; how-
ever, they are not frame independent, in general, even to linear order. It may
be useful, therefore, to compute how such variables are transformed when we
move from the Einstein frame, with metric g�� (used in this chapter), to the
string frame, with metric g̃��. The transformations between the two frames (see
Section 2.2)) are

g̃�� = g�� e�
 ã = a e�/2
 �̃ = �


�̃ = � +�′/2
 T̃�
� = e−2�T�

��
(8.129)

We have used Eqs. (2.64) putting d = 3, and absorbing the factor ��s/�P	 into the
“tilded” variables, with the understanding that units are to be rescaled from the
Planck to the string system. Also, from here to the end of this section, the tilded
symbols will denote S-frame variables (variables without the tilde are instead
referred to the E-frame). The prime will always denote derivation with respect to
the conformal time, which is the same in both frames (see Section 5.2)).

The required transformations of the perturbed variables can be found by noting
that an infinitesimal coordinate transformation acts in the same way in both
frames: as a consequence, gauge-invariant variables can be defined formally in
the same way in each frame. This means that the E-frame definitions presented
in Eqs. (8.39), (8.40), (8.41), � � � can also be interpreted as the definitions of
S-frame gauge-invariant variables, provided both the background (� 
�′
 � � � )
and perturbation (�
�
��
 � � � ) variables are referred to the S-frame metric and
fluid sources. The relations connecting the fluctuations of the two frames are then
obtained by perturbing the transformations (8.129):
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�̃g�� = e���g�� +�g��	 = e��g�� +�g̃��
 ��̃ = �� = �


�T̃�
� = e−2��T�

� −2�T̃�
��

(8.130)

Using the definitions (8.14) and (8.23), valid in both frames, we obtain

�̃ = �+ �

2

 �̃ = � − �

2



Ẽ = E
 B̃ = B


�̃ = �
 w̃ = w

�̃� = e−2���−2��̃
 �̃p = e−2��p−2�p̃�

(8.131)

We may note, in particular, that in the uniform-dilaton gauge (� = 0) all metric
perturbations coincide in the two frames, while the fluid perturbations only differ
by an overall rescaling factor. For the gauge-invariant variables we then obtain,
from their definitions,

�̃ = �+ X

2

 �̃ = � − X

2



X̃ = X
 W̃ = W
 �̃� = ��


�̃ = e−2���−2X�	


�̃ = e−2���−2Xp	


�̃w = �w + 1
2
��′W −X	


�̃ = � − X

2
+
(
� + �′

2

)
�−2X�

�′ −2�′�
�

(8.132)

The gauge-invariant variables X, W , �� , together with the combination � +�,
are thus frame independent. The two Bardeen potentials, on the contrary, are not
separately frame independent.

8.2 The anisotropy spectrum of the CMB radiation

The analysis of the temperature anisotropy of the CMB radiation is, at present,
one of the most efficient tools to extract direct information on the primordial
cosmological dynamics and, more specifically, to formulate precision tests of
the various inflationary models. In this section it will be shown in detail how
to connect the observed anisotropy spectrum with the spectrum of scalar metric
perturbations amplified by inflation.

It will be shown, in particular, that the primordial perturbation spectrum pro-
duced by inflation provides the initial conditions for the evolution of the scalar



8.2 The anisotropy spectrum of the CMB radiation 363

fluctuations during the subsequent standard regime. Such initial conditions, as
we shall see, have a crucial influence on the currently observed structure of our
Universe on large scales. The discussion of this section may thus be divided into
two parts: a first part, concerning the computation of the primordial spectrum of
scalar perturbations produced in a generic inflationary context; and a second part
where, starting from such a spectrum, we evaluate the induced inhomogeneities
and anisotropies that we can observe today in the temperature of the cosmic
radiation background.

For the first computation we consider a model of inflation generated by a cosmic
(inflaton/dilaton/modulus) scalar field. We can thus apply the formalism and the
results presented in the previous section, using the (gauge-invariant) canonical
variable v of Eq. (8.52) to normalize the spectrum of scalar perturbations to the
quantum fluctuations of the vacuum. The evolution of v, for each Fourier mode
k, is governed by the canonical equation

v′′
k +
(

k2 − z′′

z

)
vk = 0
 (8.133)

which is formally the same equation as the tensor-perturbation equation (7.56),
modulo a different definition of the pump field z, given now by z = a�′/� =
a�̇/H (the dot denotes, as usual, the cosmic-time derivative). In the tensor case
one has, instead, z = a.

We assume that the pump field, during inflation, can be parametrized by a
power-law behavior in an appropriate, negative range of conformal-time values,

z = MP√
2

(
− �

�1

)�


 � < 0
 (8.134)

as typical of accelerated backgrounds (see Section 5.1). The equation for the
canonical variable then becomes a Bessel equation,

v′′
k +k2vk − �2 −1/4

�2
vk = 0
 (8.135)

where �2 = ��� − 1	 + 1/4, and the general solution can be given as a linear
combination of two Hankel functions of index � = 1/2−� as in the case of tensor
perturbations (see Chapter 7). Imposing on vk the canonical normalization (7.59),
and the same initial conditions (7.62) used for the tensor variable uk, we are led
to the exact scalar solution

vk = ei$k

(
−��

4

)1/2
H�2	

� �k�	
 (8.136)
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normalized to a vacuum fluctuation spectrum ($k is an arbitrary initial phase). By
using the relation v = z�� we can also immediately write down the solution for
the (normalized) modes of curvature perturbations:

�k = vk

z
= ei$k

MP

(��1

2

)1/2
(

− �

�1

)�

H�2	
� �k�	
 (8.137)

(we have omitted the subscript �, for simplicity). The above expression is form-
ally the same as that obtained for the Fourier modes hk of tensor perturbations
(see Eq. (7.140)), with the important difference that the Bessel index � is now
determined by the time evolution of a�′/� .

Like tensor modes, scalar modes also tend to be amplified as they are stretched
outside the horizon, namely in the limit � → 0− where �k�� � 1 (see the discussion
of Section 7.2). In that regime, the exact solutions can be expanded using the
small argument limit of the Hankel functions, Eqs. (7.141) and (7.150), and we
obtain the following asymptotic form of vk and �k,

vk = ei$k

(
−��

4

)1/2
�p∗

��k�	� − iq��k�	−� 
 (8.138)

�k = vk

z
= ei$k

MP

(��1

2

)1/2
[

−iq��k�1	
−� +p∗

�

(
�

�1

)2�

�k�1	
�

]

� (8.139)

Notice that the curvature perturbation contains a constant and a time-dependent
part, just like the solution for the tensor metric perturbations hk.

Suppose now that the kinematical power satisfies the condition � < 1/2, namely
� > 0 (indeed, as we shall see, � is expected to take values very near to −1,
at least in conventional models of inflation). In such a case the time-dependent
part of the curvature perturbation tends to die off as � → 0−, and �k tends to
stay frozen outside the horizon, with a constant spectral distribution which can
be directly computed from Eq. (8.139),

����k	�2 ≡ k3 ��k�2 ∼ k2+2� ∼ k3−2�� (8.140)

In the frozen case, however, it may be convenient (and it has become customary)
to express the spectrum in terms of the background variables evaluated when
a given comoving scale k crosses the Hubble horizon, i.e. at �k�� = 1. To this
purpose we may simply rewrite the asymptotic amplitude (8.139), for � → 0−, as

�k = −iq�

ei$k

MP

( �

2k

)1/2
�k�1	

� = −iq� ei$k

( �

4k

)1/2 (
z−1)

hc 
 (8.141)
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where the subscript “hc” denotes that the quantity has to be evaluated at ��� = k−1

(we have neglected the time-dependent part of �k as � → 0−). The spectral
distribution thus becomes

����k	� ≡ k3/2 ��k� = q�

(�

4

)1/2
(

k

z

)

hc
= q�

(�

4

)1/2
�z�	−1

hc

= q�

(�

4

)1/2
(

H

a�̇�

)

hc

∼
(

H2

�̇

)

hc

(8.142)

(we have used the assumption of asymptotic power-law evolution, leading to
a� ∼ H−1). This well-known result (see for instance [28]) explicitly shows that
the amplitude of the curvature perturbations tends to be extremely enhanced in
the limit �̇ → 0.

In order to make the k dependence explicit we can now introduce a reference
time scale, �1, with �z�	�1

= �̇1/H
2
1 (we may conveniently refer, for instance,

to the end of the inflationary regime). Using the pump-field evolution (8.134) we
obtain

k3 ��k�2 = �

4
�q��2

(
H2

1

�̇1

)2(
z1�1

z�

)2

hc

= �

4
�q��2

(
H2

1

�̇1

)2(
�1

�

)2+2�

hc
= �

4
�q��2

(
H2

1

�̇1

)2(
k

k1

)3−2�
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where we have defined k1 = �−1
1 . We have thus a spectrum of curvature per-

turbations whose frequency behavior is completely controlled by the pump-field
kinematics, as in the tensor case. The main difference concerns the amplitude,
controlled not only by the background curvature H1, but also by the dilaton kinetic
energy (in Planck units), �̇1. Another difference is due to the power �, which
depends on both the metric and the dilaton kinematics. For � → −1, in particular,
the spectrum tends to be scale-invariant, and it can be easily checked that this is
what happens when the background approaches the regime of slow-roll inflation
described in Section 1.2.

8.2.1 Primordial spectrum and slow-roll inflation

Consider a model where the cosmological dynamics is dominated by a scalar
field which is slow-rolling along the potential V��	, and in which the parameters
&H
�H , defined by Eqs. (1.109), (1.110), are very small and constant, to leading
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order. Let us compute, in this regime, the effective potential z′′/z governing the
evolution of scalar perturbations. Using the cosmic-time coordinate we have

z′′

z
= H

�̇
�az̈+ żȧ	
 (8.144)

where

ż = a�̇�1+ &H −�H	
 z̈ = ȧ�̇�1−2�H + &H	
 (8.145)

to leading order in the slow-roll parameters. Thus

z′′

z
= 2a2H2

(
1+ &H − 3

2
�H

)
= 2

�2

(
1+3&H − 3

2
�H

)

 (8.146)

where we have used Eq. (1.112), which implies aH = −�1+ &H	�−1. The com-
parison with the Bessel equation (8.135) immediately gives us the Bessel index
associated with a phase of slow-roll inflation:

� = 3
2

+2&H −�H
 (8.147)

so that the perturbation spectrum (8.143) becomes

����k	�2 = �

4
�q��2

(
H4

1

�̇2
1

)(
k

k1

)−4&H+2�H

� (8.148)

The corresponding spectral index ns, following the definition conventionally
adopted for scalar perturbations (see for instance [28]), is then

ns = 1+ d ln ����2
d ln k

= 1−4&H +2�H (8.149)

(notice the different convention with respect to the tensor index, Eq. (7.100)).
A flat, Harrison–Zeldovich spectrum, corresponding to ns = 1, is well approx-
imated by the curvature spectrum produced by a phase of slow-roll inflation,
characterized by &H � 1 and �H � 1.

For a specific model of slow-roll potential (for instance, V ∼ ��) the spectral
index at a given scale k can be conveniently parametrized also in terms of the
power � and of the number of e-folds of inflation occurring after that scale has left
the horizon. Let us recall, in fact, that the slow-roll parameters can be expressed
in terms of the slope of the inflaton potential, as illustrated in Chapter 1. Using
in particular Eq. (1.115) one can then rewrite the spectral index as

ns = 1−6&+2� = 1− 6

2�2
P

(
V ′

V

)2

hc
+ 2

�2
P

(
V ′′

V

)

hc
= 1− ���+2	

�2
P�2

hc


 (8.150)
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where we have used V ∼ ��, and where the subscript “hc” denotes the epoch
of horizon exit of the scale we are considering. The value of �hc, on the other
hand, can be eliminated by the above equation in terms of the number of e-folds
Nhc between the epoch of horizon exit and the end of inflation, obtained from
Eq. (1.119) as

�2
P�2

hc 
 2�Nhc (8.151)

(we have assumed �2
hc to be significantly larger than the final value �2

f ). Thus
[41]

ns 
 1− 2+�

2Nhc
� (8.152)

It is interesting to note that Nhc cannot be arbitrarily large, otherwise the given
scale would not be inside the horizon at the present epoch. As a consequence,
models of slow-roll inflation (with � > 0) naturally predict a scalar index (near to
but) significantly smaller than one, in remarkable agreement with the three-year
WMAP data [5], which imply

ns = 0�951+0�015
−0�019 (8.153)

(averaged over all scales).
In the context of models of slow-roll inflation, the same parameters �
Nhc

can be used to express the spectral index of tensor perturbations and the relative
amplitude of the scalar-to-tensor spectrum, for any given fixed scale. In fact,
as already stressed, the evolution of scalar and tensor perturbations is described
by a canonical equation which has the same form but different pump fields:
z = zs = a�̇/H for the scalar, and z = zg = MPa/

√
2 for the tensor canonical

variables (see e.g. Eqs. (8.51) and (8.52) for the scalar case, and Eqs. (7.49)–
(7.51) for the tensor case). By repeating the same computations leading to the
spectrum (8.140) one then finds that the Bessel index � controlling the tensor
spectrum, ��h�k	�2 ∼ k3−2�, is related to the time evolution of the scale factor
(a ∼ �−�	�) by Eq. (8.135), which implies � = 1/2 − �. During the slow-roll
phase, on the other hand, we know that the scale factor has a power � = −1−&H

(see Eq. (1.112)), and we can then express the tensor index as [41]

nT = d ln ��h�k	�2
d ln k

= 3−2� = 2+2� = −2&H 
 − 1

�2
P

(
V ′

V

)2

hc

 − �

2Nhc

(8.154)

(again we have used a power-law potential, V ∼ ��, and the e-folds number Nhc

defined in Eq. (8.151)).
Also, at fixed background, the differences between scalar and tensor spectra

are only due to a different pump field: since the spectrum is determined by the
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pump field at horizon crossing, ���k	�2 ∼ �z�	−2
hc (see Eq. (8.142)), we obtain that

the relative amplitude of the two spectra is controlled by the ratio

r�k	 = ��h�k	�2
����k	�2 =

(
2zs

√
2

aMP

)2

hc

= 8

(
�̇

HMP

)2

hc

(8.155)

(the factor 2 in front of the tensor spectrum is due to the contribution of the two
graviton polarization modes, for unpolarized fluctuations). Using the slow-roll
equations (1.113) for H and �̇, the definition (1.115) of &H , and the parameter
Nhc, we are finally led to the result [41]

r�k	 = 8

�2
P

(
V ′

V

)2

hc

 16&H 
 4�

Nhc
� (8.156)

The important consequence of the above discussion is that, in the context of
slow-roll inflation, the measure of any two of the three parameters ns, nT, r

(at the same given scale k) would allow a determination of � and Nhc, hence
providing direct information on the primordial inflationary dynamics. Conversely,
for any given (model-dependent) value of �, the present results for the spectral
index, Eq. (8.153), can be used to predict the level of tensor contribution to the
primordial spectrum of metric perturbations:

r�k	 
 4�

Nhc
= 8�

2+�
�1−ns	� (8.157)

In particular, for � = 2 (the simplest model of chaotic inflation [42]) one finds
r 
 0�1, which should be detectable by near-future CMB polarization experiments.

Coming back to the dynamical evolution of scalar perturbations in a generic
inflationary background, it must be observed that the knowledge of the super-
horizon spectrum of curvature perturbations also automatically fixes the spectrum
of the Bardeen potential, outside the horizon. Consider in fact Eq. (8.72) for the
pseudo-canonical variable V = �� . Expanding the solution in the regime �k�� � 1
(see e.g. Eq. (7.75)), one obtains, to leading order,

�k = Vk

�
= Z

�

[
Ak +Bk

∫ �

�ex

d�′Z−2��′	
]


 (8.158)

where Ak, Bk are integration constants, and where the variables Z, � have been
defined in Eq. (8.73). We can take, for illustrative purposes, a background in
which the scale factor follows a power-law evolution, a ∼ �−�	�, and in which
the scalar field evolves logarithmically with a power �, namely �P�′ ∼ ��−�	−1

(the slow-roll regime corresponds to the limits � → −1 and � → 0). In such a case
Z/� ∼ �−�	−�1+2�	, while the integral over Z−2 evolves in time as �−�	1+2�.
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It follows that the asymptotic amplitude (8.158) contains a constant and a time-
dependent term, as usual.

We assume that the inflationary geometry is not too different from the de Sitter
(� = −1) solution, so that � < −1/2. As a consequence, the modes �k tend to
be frozen outside the horizon, and the Bardeen spectrum is determined by fixing
its amplitude at horizon crossing. Considering the amplification of the quantum
vacuum fluctuations we can apply Eq. (8.83) to relate �k and the normalized
curvature perturbation �k. We then obtain, at the horizon-crossing scale �k�� = 1,
that ��k	hc 
 ��k	hc, so that, outside the horizon,

����k	�2 = k3 ��k�2 
 ����k	�2 
 �k�� � 1 (8.159)

(the numerical coefficients relating �k and �k can be computed exactly for any
given model of inflation). We then arrive at the important result that the spectrum
of super-horizon fluctuations, amplified by a phase of quasi-de Sitter inflation, is
the same for both the curvature perturbations and the Bardeen potential. Models
of slow-roll inflation thus predict a nearly flat spectrum for both �k and �k.

It may be useful to compare these results with a drastically different situation
arising for some models in a string cosmology context. For models of pre-big bang
inflation, in particular, the spectrum of scalar perturbation tends to be strongly
tilted towards the blue, following the trend of tensor perturbations.

Let us consider, for instance, the class of minimal models already used for the
computation of the tensor perturbation spectrum in Section 7.3. The kinematics,
for an isotropic d = 3 background, is simply parametrized (in the E-frame) by

a��	 ∼ �−�	1/2
 ���	 ∼ −2
√

3 ln a
 z��	 = a�′

�
∼ a��	 (8.160)

(see Eqs. (4.110), (4.111)). The pump field has a power � = 1/2 and this leads,
according to Eq. (8.143), to a cubic slope of the spectrum of curvature perturba-
tions [16],

����k	�2 = k3 ��k�2 ∼
(

H4
1

�̇2
1

)(
k

k1

)3

(8.161)

(modulo logarithmic corrections [17], due to the small argument expansion of
the solutions with Bessel index � = 1/2 −� = 0). The behavior in frequency is
exactly the same as that of the tensor perturbation spectrum, Eq. (7.98): as a
consequence, the amplitude turns out to be highly depressed at low frequencies,
and thus cannot contribute to the observed anisotropy (a possible solution of this
difficulty, for this class of models, is provided by the curvaton mechanism which
will be illustrated in the following section).
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8.2.2 “Conservation” of the Bardeen spectrum

To conclude the discussion about the inflationary amplification of scalar perturba-
tions it is important to show that the amplitude of the Bardeen potential �k, outside
the horizon, is transferred almost unchanged down to the matter-dominated phase:
the final distribution of the various modes in momentum space, in particular,
exactly reproduces their initial distribution. This implies, as we will see in the
second part of this section, that the primordial spectrum of scalar fluctuations is
directly reflected in the anisotropy spectrum that we are presently observing in
the CMB radiation.

For a simplified illustration of this point we assume that the inflationary epoch
is immediately followed by the regime of standard cosmological evolution, during
which the inflaton/dilaton scalar field is frozen (or, in any case, has a negligible
influence on the background dynamics). During the standard evolution the Uni-
verse is dominated by a perfect fluid source, and we can discuss the evolution
of the Bardeen potential by applying the formalism developed in the previous
section, using in particular Eq. (8.98), or the corresponding pseudo-canonical
version, Eq. (8.101). We assume that the standard regime includes a radiation-
dominated stage for �1 ≤ � ≤ �eq, and a matter-dominated stage for �eq ≤ � ≤ �0.
We also assume that the evolution of perturbations is adiabatic, i.e. that # = 0 in
Eqs. (8.98) and (8.101).

In the radiation-dominated epoch we have c2
s = 1/3, and the Bardeen equation

(8.98) can be solved exactly (see for instance [27])). However, if we are only
interested in the evolution of super-horizon modes, it may be instructive to con-
sider the asymptotic expansion of the solution in the regime c2

s k
2�2 � 1. Starting

from Eq. (8.101) one obtains (see also Eqs. (7.75) and (7.76)):
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� ′
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where

F��	 = �2
P�

2a2

 $ = �P�√

2a�� 2 −� ′	1/2
� (8.164)
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The expansion is valid for �1 < � < �eq and for �k�� � 1, and the integration
constants are fixed by the initial conditions at � = �1:

Ak = �k��1	F
−1
1 
 kBk = $2

1

F1

[
� ′

k��1	− F ′
1

F1
�k��1	

]
� (8.165)

Let us insert, as initial conditions at the beginning of the standard evolution,
the frozen amplitude of �k given by the primordial inflationary spectrum, i.e.
�k��1	 = �kr = const, � ′

k��1	 
 0. Also, let us use for the background geometry
the standard radiation-dominated solutions, with a ∼ �/�1, � = �−1. The com-
putation of Ak, Bk, and the integration of the first terms of the above expansion
then gives, to leading order,

�k��	 = �kr
 � ′
k��	 = �kr

(
�1

�2
− 1

�

)
�k�1	

2
 �1 < � < �eq� (8.166)

The same result can be obtained from the exact solution, considering the super-
horizon regime k� � 1.

In the matter-dominated phase (� ≥ �eq) the adiabatic evolution of the scalar
fluctuations is characterized by c2

s = 0, and the background satisfies a = ��/�1	
2,

� = 2/�, 2� ′ +� 2 = 0. The Bardeen equation (8.98) reduces to the exact
equation

� ′′ +3�� ′ = 0
 (8.167)

whose solution can be simply written as

�k��	 = �km + Ck

�5
� (8.168)

The constants �km and Ck can be obtained by matching this solution to the
radiation-dominated solution at �eq. Even without performing the explicit match-
ing, however, the asymptotic amplitude �km can be easily determined also using
the conservation of the curvature perturbations in the super-horizon regime, �′

k =
0. Starting from the definition (8.104), and imposing �w�rad	 = �w�mat	, we
immediately obtain (neglecting the � ′ terms)

3
2
�kr = 5

3
�km� (8.169)

Deep enough in the matter-dominated era (� � �eq) we thus recover, outside
the horizon, the same spectral distribution produced by inflation, with a spectral
amplitude �k��	 = �km 
 �9/10	�kr 
 const [27, 34]. This is the primordial
spectrum to be used for the computation of the anisotropy of the CMB temperature.

A final comment is in order. The computation of the post-inflationary amplitude
of �k, as a function of its initial inflationary amplitude, has been performed by
imposing the continuity of � and � ′ on some given � = const hypersurface. In
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principle, however, there are other possible prescriptions for the computation of
the final spectrum, based on the continuity of different perturbation variables (for
instance, the continuity of � and �′ [43]), and on different spatial hypersurfaces
[44]. In the context of the standard inflationary scenario, where the transition
to the post-inflationary regime corresponds to a transition from accelerated to
decelerated expansion, the choice of the matching prescription has no crucial
influence on the final spectrum of scalar perturbations. The choice may become
crucial if the inflationary kinematics describes accelerated contraction, and the
transition corresponds to a “bounce” of the curvature and of the scale factor, as in
the case of pre-big bang models when they are represented in the Einstein frame
[45], or in the case of ekpyrotic models [46]. In those cases, the final spectrum
of scalar perturbations may strongly depend on the adopted model of transition,
and on the adopted matching prescriptions [47].

For a discussion of these problems we refer the interested reader to the existing
literature (see also Section 10.4). It should be remarked, however, that various
explicit models of smooth bouncing transitions, studied up to now both analyt-
ically and numerically, seem to indicate that the curvature perturbation �k goes
smoothly through the bounce [48, 49, 50], while this is not the case, in gen-
eral, for the Bardeen potential �k. If the detailed background evolution near the
bounce is unknown, and the final spectrum has to be computed by imposing some
matching condition across the bounce, the correct prescription seems to assume
the continuity of � and �′, eventually obtaining the Bardeen spectrum after the
bounce through its general connection to the curvature perturbations.

8.2.3 Sachs–Wolfe effect

We are now ready to start the second part of the discussion, as anticipated at
the beginning of this section. The scalar perturbations of the geometry and of the
matter sources, which exist at the fundamental quantum level and are amplified
by inflation, necessarily destroy the perfect homogeneity and isotropy typical of
the unperturbed cosmological background. We may thus expect that the induced
inhomogeneities may distort, at some level, the thermal spectrum of the CMB
photons, and that such a distortion may be directly computed in terms of the
primordial spectrum of scalar perturbations.

Let us first recall that in the standard cosmological scenario the history of
the cosmic electromagnetic radiation is characterized by two important epochs,
relatively close in time to each other, but significantly different. One is the
epoch of matter–radiation equality, which occurs at a photon temperature Teq 

2 × 104 K�%m/0�3	h2 (see Eq. (1.73)), and corresponds to a redshift parameter
zeq 
 0�7×104�%m/0�3	h2; after equality the energy density of the radiation drops
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below the energy density of non-relativistic particles (baryons and electrons), and
the Universe becomes matter dominated. The other is the epoch of decoupling (or
“last scattering”), which occurs at a photon temperature

Tdec 
 3000 K
 (8.170)

corresponding to zdec 
 1100 (remember that, at large z, T ∼ a−1 ∼ z); after
decoupling the mean-free-path of photons becomes larger than the Hubble radius
H−1, and the Universe becomes transparent to the electromagnetic radiation (see
for instance [51, 52]).

For � > �dec the CMB photons are freely falling along the geodesic paths
of a matter-dominated geometry, and can then transmit down to our epoch the
faithful imprint of all inhomogeneities and anisotropies present on the surface
of last scattering. Here we shall assume that such perturbations are due only to
the primordial fluctuations of the geometry and of the matter sources produced
by inflation, neglecting additional (non-gravitational) contributions, such as those
possibly due to photon interactions with ionized plasma at later epochs. The
distortion of the CMB temperature produced by such primordial perturbations
is described by the so-called Sachs–Wolfe effect [53], which can be derived by
perturbing the trajectory of a photon propagating from the decoupling to the
present epoch, in a matter-dominated, spatially flat background.

Let us start by recalling that the energy (or the frequency) of a photon emitted
at decoupling is redshifted, today, by the factor '0/'dec = adec/a0 = �zdec +1	−1.
The proper temperature of the CMB radiation, on the other hand, is redshifted in
time (as the Universe expands) exactly like the photon frequency (see Eqs. (1.12),
(1.70)). If the redshift suffered by photons is not the same in all directions and in all
space positions, then we may expect similar fluctuations in the cosmic-temperature
field that we are presently observing. In particular, one can characterize these
temperature fluctuations �T/T , along a direction n̂, at the position 	x0, as fractional
perturbations of the redshift parameter, namely,

�T

T
≡ � ln�zdec +1	 = ��'dec/'0	

'dec/'0
=
(

�'

'

)

dec
−
(

�'

'

)

0
≡
[
�'

'

]dec

0
� (8.171)

For the computation of �'/' we can use the standard results for the spectral
shift of periodic signals in a conformally flat Friedman–Robertson–Walker (FRW)
background. A photon of four-momentum p� and proper frequency ', with respect
to a physical observer associated with the velocity field u�, is characterized by
the observable frequency

'�t	 = p�u� = '

a�t	
n̂�û�� (8.172)
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Here n̂� and û� are the vectors associated with the photon momentum and with
the observer velocity in the flat Minkowski space-time conformally related to
the FRW geometry by g�� = a2���. Obviously û�û� = 1 and n̂�n̂� = 0, where
n̂� = �1
 n̂	, and n̂ is the unit tangent vector to the unperturbed (light-like) geodesic
path of the photon in Minkowski space. The previous equation was obtained
by setting p� = p0n̂�, and using the fact that the photon energy is parallelly
transported along the null photon path dxi = n̂id�. In conformal time we have
thus the condition

dp0 = −���
0p� dx� = −��p0 d�+�p0n̂i dxi	 = −2�p0 d�
 (8.173)

which gives p0 = '/a2, or p0 = ' (see also Eq. (1.11)). If we consider, in
particular, a photon emitted at the time �dec and received at the time �0 then,
according to Eq. (8.172), its energy (or frequency) will be characterized by the
unperturbed redshift factor

'dec

'0
= a0

adec

�̂n · û	dec

�̂n · û	0
= Tdec

T0

�̂n · û	dec

�̂n · û	0
� (8.174)

If u0 and udec are both comoving observers of the FRW geometry, then û
�
0 = û

�
dec =

�1
 	0	, and one recovers the standard (unperturbed) result '0/'dec = T0/Tdec (see
Eq. (1.12)).

Let us now perturb the above relation by performing the logarithmic differen-
tiation of both sides of the equation, and using the relation T ∼ �1/4 valid for
radiation in thermal equilibrium. We obtain

[
�'

'

]dec

0
=
[
�T

T

]dec

0
+� �̂n · û	dec

0 = 1
4

[
��r

�r

]dec

0
+� �̂n · û	dec

0 
 (8.175)

where we have also taken into account a possible primordial perturbation of the
photon energy density, ��r �= 0. The other contribution is due to the perturbation
of the world-line of the comoving observer and of the photon geodesic, and is
given by

��̂n�û�	 = �̂n0 + �̂u0 + n̂i�̂ui (8.176)

(we have used n̂0 = 1 = û0, ûi = 0). For the computation of �̂u0 we can use the
normalization of the four-velocity vector, which gives

�����û
�û�	 = 0 = ĥ00 +2�̂u0
 (8.177)

namely �̂u0 = −ĥ00/2. Here we have denoted with ĥ�� the fluctuations of the

Minkowski metric, ��� → ��� + ĥ��, related to the FRW perturbations (8.12)

and (8.14) by the conformal rescaling h�� = a2ĥ��.
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For the computation of �̂n0 we should recall that the vector n̂� = dx�/d" is
parallelly transported along a null Minkowski geodesic, i.e. dn̂�/d" = d2x�/d"2 =
0, where " is an appropriate affine parameter along the geodesics. The perturbed
vector �̂n� thus satisfies the perturbed Minkowski geodesics, i.e.

d
d"

�̂n� +��̂��
�n̂�n̂� = 0
 (8.178)

where

��̂��
� = 1

2
���

(
�ĥ�� + �ĥ�� − �ĥ��

)
� (8.179)

Thus, to first order,

d
d"

�̂n� = −�����ĥ��	̂n
�n̂� + 1

2
��ĥ��	̂n�n̂�

= −��� d
d"

�̂h��n̂
�	+ 1

2
��ĥ��	̂n�n̂�� (8.180)

Integration over d" from the decoupling epoch to t0 gives, for the � = 0
component,

[
�̂n0]dec

0 = −
[
ĥ00 + ĥ0în

i
]dec

0
+ 1

2

∫ dec

0
d" ĥ′

��n̂�n̂�
 (8.181)

where the prime denotes d/d�. Finally, perturbing the conditions n̂�n̂� = 0 and
n̂în

i = 1, we obtain �̂n0 + �̂n0 +��̂nîn
i	 = 0, from which �̂n0 = −�̂n0. Summing

up all contributions, we can then rewrite Eq. (8.175) in the form
[
�'

'

]dec

0
=
[

1
4

��r

�r

+ n̂iiŵ+ 1
2
ĥ00 + ĥ0în

i

]dec

0
− 1

2

∫ dec

0
d" ĥ′

��n̂�n̂�
 (8.182)

where we have expressed the velocity perturbation �̂ui through its velocity
potential ŵ.

It should be observed, at this point, that the metric fluctuations perturbing the
photon trajectory may contain, in general, scalar, vector and tensor components.
The result of Eq. (8.182) can thus be used to evaluate the CMB anisotropies
induced by any type of metric perturbation ĥ. However, as already anticipated,
we mainly concentrate the present discussion on the contribution of pure scalar
perturbations: we can then directly evaluate �'/' in the longitudinal gauge,
E = B = 0, where the fluctuation variables coincide with their gauge-invariant
counterpart, i.e. ĥ00 = 2�, ĥij = 2��ij , ĥ0i = 0, ŵ = W (see Section 8.1). In this
case we obtain

[
�'

'

]dec

0
=
[

1
4
�r

�r

+ n̂ ·�W +�

]dec

0
−
∫ dec

0
d"��′ +� ′	� (8.183)
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We also notice, in view of the multipole expansion to be performed later, that
the perturbation terms evaluated at the present epoch, such as �r�0	 and ��0	,
give a contribution of monopole type, while the present velocity perturbation,
iW�0	, gives a dipolar contribution. The dipole anisotropy, on the other hand,
is dominated by the relative motion between the present local observer and the
cosmic background, an effect which has been observed with good precision,
determining a velocity of 369±2 km/s for the motion of our Solar System with
respect to the CMB rest frame (see for instance [54]). In the subsequent discussion
we will thus neglect, as usual, both the monopole and dipole contributions, with
the understanding that the relevant terms of the multipole expansion will start
from the quadrupole contribution.

The overall temperature anisotropy induced by a primordial background of
scalar perturbations, according to Eq. (8.183), can then be written in final form
as

�T

T
�n̂
 	x0
�0	 =

(
1
4
�r

�r

+ n̂ ·�W +�

)
��dec
 	xdec	+

∫ �0

�dec

d���′ +� ′	��
 	x��		


(8.184)

where 	xdec = 	x��dec	. The perturbations are evaluated along the unperturbed
photon trajectory, which for an observer at 	x0 is given by 	x��	 = 	x0 + n̂��0 −�	

(we have used the conformal time as affine parameter along the geodesic). Thus,
�T/T depends on the spatial directions n̂ along which the radiation is observed,
on the observation time �0, and on the observer position 	x0. The first three terms
in round brackets represent the so-called “ordinary” Sachs–Wolfe (SW) effect,
while the last term represents the “integrated” Sachs–Wolfe (ISW) effect. For a
better comparison with the specialized literature it is useful to note, finally, that
the anisotropy �T/T may be expressed also in terms of a different gauge-invariant
variable for the radiation energy density, which is called D

�r	
g [55], and which is

related to our density parameter by D
�r	
g = �r/�r −4� .

In the case of scalar metric perturbations one has to consider both the ordinary
and the integrated SW effect. For the (transverse and traceless) part of tensor
metric perturbations one obtains from Eq. (8.182) only the integrated contribution,
leading to

�T

T
�n̂
 	x0
�0	 = 1

2

∫ �0

�dec

h′
ij n̂

in̂j��
 	x��		d�
 (8.185)

where ih
i
j = 0 = hi

i. Note, however, that scalar and tensor perturbations can both
(simultaneously) contribute to the observed anisotropy, as we will discuss in the
final part of this section.
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Let us first discuss the scalar contribution (8.184), whose Fourier transform is

�T

T
�̂n
 	k
�0	 =

(
1
4
�r − în · 	kW +�

)
��dec
 	k	 ei	k·̂n��0−�dec	

+
∫ �0

�dec

d���′ +� ′	��
 	k	 ei	k·̂n��0−�	 (8.186)

(we have simplified the notation by calling �r ≡ �r/�r the gauge-invariant density
contrast of the radiation fluid). For the computation of �T/T one thus needs
the Fourier components of the perturbations at the decoupling epoch, during the
matter-dominated era. We are interested, in particular, in the large-scale anisotropy
associated with the modes k that are still outside the horizon at decoupling,
k ≤ kdec = �−1

dec. For such super-horizon modes the Bardeen potential generated by
inflation has been computed in Eq. (8.169). The velocity and density perturbations,
on the other hand, can be computed using the gauge-invariant equations (8.68),
(8.69), which, for an adiabatic and barotropic fluid with ! = p/� = �/� = c2

s =
const, can be written in Fourier space, respectively, as

�′
k + �1+!	k2Wk −3�1+!	� ′

k = 0
 (8.187)

W ′
k + �1−3!	�Wk −�k − !

1+!
�k = 0� (8.188)

We have used the definition �k = �k/�, the unperturbed conservation equation
�′ = −3���1+!	, and the constraint � = � . The solution of the above system
of coupled differential equations requires initial conditions, and we recall here the
two choices of initial conditions that are mainly studied in the current literature.

8.2.4 Adiabatic initial conditions

If the post-inflationary evolution of scalar perturbations is adiabatic, # = 0, it
has been shown that the spectrum of the Bardeen potential outside the horizon,
in the matter-dominated era, is exactly the spectrum inherited from inflation,
characterized by a nearly constant amplitude,

�k��	 
 �k0 = const
 � ′
k 
 0 (8.189)

(see Eq. (8.169)). Using this choice for the Bardeen potential, the system of
equations (8.187) and (8.188) for the matter fluid with ! = 0 reduces to

�′
m = −k2Wm
 W ′

m +�Wm = �k0 (8.190)

(we have omitted the Fourier index k, for simplicity, and we have inserted the
subscript m to keep explicit track of the fact that we are considering matter
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perturbations). In the matter-dominated epoch a ∼ �2, � = 2/�, and the above
equations can be integrated exactly, with solution

Wm = 1
3
��k0
 �m = −1

6
�k�	2�k0 + cm� (8.191)

The integration constant cm can be determined using the Hamiltonian constraint
(8.65), relating � and �m:

−�2k2 +6� 2	�k0 = �2
Pa2�m�m� (8.192)

During the matter-dominated phase �2
Pa2�m = 3� 2 = 12/�2, so that

�m = −1
6
�k�	2�k0 −2�k0� (8.193)

Once Wm and �m have been determined, one can also compute the correspond-
ing perturbations of the radiation fluid. By setting ! = 1/3 in Eqs. (8.187) and
(8.188), with � ′ = 0, one obtains the equations

�′
r = −4

3
k2Wr
 W ′

r = �k0 + 1
4
�r� (8.194)

Their differentiation and combination leads to the decoupled equations

�′′
r + k2

3
�r = −4

3
k2�k0
 W ′′

r + k2

3
Wr = 0
 (8.195)

with general solution

�r = −4�k0 + c1 cos
k√
3
�+ c2 sin

k√
3
�


Wr =
√

3
4k

(
c1 sin

k√
3
�− c2 cos

k√
3
�

) (8.196)

(we have used Eq. (8.194) for W ′). The assumption of adiabatic evolution now
plays a crucial role in the determination of the constants c1 and c2. In fact, for
a perfect fluid composed of matter and radiation, the adiabatic condition implies
�r = �4/3	�m (see Eqs. (8.95) and (8.96)), which implies, in its turn, Wr = Wm, for
long-wavelength modes with k� � 1 (see for instance [55]). Using the previous
solutions for Wm and �m, and imposing the adiabatic conditions (for k� � 1),
namely

�r = 4
3
�m = −8

3
�k0
 Wr = Wm = 1

3
��k0
 (8.197)

one easily obtains c1 = 4�k0/3, c2 = 0. Thus

�r = 4�k0

(
1
3

cos
k√
3
�−1

)
(8.198)
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is the final expression for the density contrast of the radiation fluid during the
matter-dominated era. These oscillations of �r (also called “acoustic oscillations”,
since k�/

√
3 = kcs�, where cs represents the sound velocity during the matter-

dominated era) will play a crucial role in the production of the typical peak
structure observed at smaller scales in the CMB anisotropy.

We are now in a position to evaluate the CMB anisotropy induced by adiabatic
scalar perturbations, by inserting our solutions in the general expression (8.186).
We can neglect the ISW effect as �k = �k 
 const, and we can also neglect (on
large scales) the velocity perturbations kWk, as they are suppressed by the factor
k� with respect to the constant Bardeen mode �k0 (see Eq. (8.197)). Using the
solution (8.198), and the coincidence of � and � in the absence of anisotropic
stresses, we finally obtain

�T

T
�̂n
 	k
�0	 = 1

3
�k0 cos �kcs�dec	 ei	k·̂n��0−�dec	
 (8.199)

which is the usual SW result [53], often concisely expressed as [27, 34, 55]

�T

T
�̂n	 = 1

3
���dec
 	xdec	� (8.200)

Notice that we have introduced the generic notation cs for the sound-velocity
coefficient at the decoupling epoch, to take into account possible deviations (due
to photon–baryon interactions) from the value 1/

√
3 appearing in the simplified

solution (8.198) (see below, in particular the discussion following Fig. 8.1.)

8.2.5 Isocurvature initial conditions

A second, alternative possibility is to assume that the Bardeen potential, at the
beginning of the matter-dominated era, has a negligible amplitude but a non-
negligible first derivative of the amplitude, namely

�k 
 0
 � ′
k 
 const �= 0� (8.201)

In such a case the density and velocity perturbations are also negligible outside the
horizon, and the leading contribution to the temperature anisotropy comes from
the ISW effect. Inside the horizon, however, the integration of Eqs. (8.187) and
(8.188) leads to a density contrast which oscillates in a sinusoidal way, with an
opposite phase with respect to the case of adiabatic oscillations (see Eq. (8.199)).
This behavior, as we shall see in a moment, is not consistent with the peak
structure that we are presently observing in the CMB anisotropy (which seems
to be instead in very good agreement with the adiabatic predictions). In the rest
of this chapter, therefore, we will mainly concentrate our attention on the case of
adiabatic initial conditions (see for instance [55, 34] for more detailed discussions
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of the isocurvature case). It should be stressed, however, that current observations
do not yet exclude the possibility that the total temperature anisotropy is produced
by a mixture of primordial perturbations which are dominated by the adiabatic
component, but which also contain a (small enough) contamination of isocurvature
perturbations [56, 57].

8.2.6 The angular power spectrum

For a direct comparison with observations it is convenient to expand the
n̂-dependence of �T/T in series of spherical harmonic functions, by setting

�T

T
�̂n
 	x0
�0	 =∑

(
m

a(m�	x0
�0	Y(m�̂n	
 (8.202)

where −( ≤ m ≤ (, and ( ranges from 0 to �. As in the case of tensor perturbations
(see Eq. (7.84)) the spectrum is characterized by the two-point correlation function,
which in this case compares the temperature fluctuations along two different
directions, n̂ and n̂′:

��̂n
 n̂′	 =
〈
�T

T
�̂n	

�T

T
�̂n′	

〉
=∑

(
m

∑

(′
m′
�a(ma∗

(′m′ �Y(m�̂n	Y ∗
(′m′ �̂n′	� (8.203)

The brackets denote, as usual, quantum expectation values if scalar perturbations
are quantized, and the coefficients a(m are expressed in terms of annihilation
and creation operators acting on the final “squeezed vacuum” state produced by
inflation [58, 59]. In a classical context the brackets denote a statistical ensemble
average, which can be expressed as a spatial average assuming the validity of the
ergodic hypothesis.

In any case, for an isotropic and stochastic background of scalar fluctuations
we may expect that the product �a(ma∗

(′m′ � depends neither on x0, �0 nor on m,
and that the product vanishes for ( �= (′ and m �= m′ (see also the discussion at
the beginning of Section 7.4 for a stochastic background of tensor fluctuations).
We thus define

�a(ma∗
(′m′ � = �mm′�((′ C(
 (8.204)

where C( are real positive coefficients, determining the so-called “angular power
spectrum”. For these stochastic fluctuations the correlation function (8.203)
becomes

��̂n
 n̂′	 =∑
(
m

C(Y(m�̂n	Y ∗
(m�̂n′	 = 1

4�

∑

(

�2(+1	C(P(�̂n · n̂′	
 (8.205)
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where P( are Legendre polynomials, and we have used the addition theorem of
spherical harmonics,

P(�̂n · n̂′	 = 4�

2(+1

(∑

m=−(

Y(m�̂n	Y ∗
(m�̂n′	 (8.206)

(see for instance [60]). It is now important to derive definite theoretical predictions
for the angular coefficients C(, since the current measurements of the CMB
anisotropy [1–5] directly provide the numerical values of such coefficients.

Let us first consider the simple case of the adiabatic spectrum (8.199), produced
in the context of the standard inflationary scenario. We can apply the well-known
expansion of a plane wave in polar coordinates [60]:

ei	k·̂n��0−�dec	 =∑
(

�2(+1	i(j(�k�0 −k�dec	P(�̂k · n̂	
 (8.207)

where k̂ = 	k/�	k�, and j( are spherical Bessel functions of argument �k�0 −k�dec	.
The spectrum (8.199) can then be rewritten as
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 (8.208)

where

�( = 1
3
�k0 cos �kcs�dec	 �2(+1	j(�k�0 −k�dec	� (8.209)

Performing the spatial average, and using the definition (7.64) of the Fourier
transform, the two-point correlation function (8.203) becomes
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The Legendre polynomials, on the other hand, can be expanded according to
the addition theorem (8.206). Putting d3k = k2 dkd%

k̂
, integrating over the solid

angle d%
k̂

and using the orthonormality of the spherical harmonic functions [60],
∫

d%
k̂
Y(m�̂k	Y ∗

(′m′ �̂k	 = �((′�mm′
 (8.211)

one can rewrite the correlation function as
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Comparing with Eq. (8.205) one finally obtains

C( = 2
�

∫
k2 dk

��(�k	�2
�2(+1	2

� (8.213)

This result for C( is generally valid for any model in which the temperature
anisotropy can be expanded as in (8.208). For the adiabatic fluctuations of the
standard inflationary scenario we can use, in particular, Eq. (8.209), and we obtain

Cadia
( = 2

9�

∫ dk

k
k3 ��k0�2 cos2 �kcs�dec	 j2

( �k�0 −k�dec	� (8.214)

We can also assume for the Bardeen potential a power-law spectrum which,
according to Eqs. (8.148), (8.149) and (8.159), can be parametrized as follows:

k3 ��k0�2 = A2
0

(
k

k0

)ns−1

(8.215)

(for later convenience, we have referred the spectrum to the present horizon
scale k0 = �−1

0 ). In a realistic scenario, which agrees with the observed angular
spectrum, the index ns has to be very close to one, as we shall see in a moment.

Let us first consider the contribution of the comoving scales k for which we can
neglect the cos2 modulation of the Bardeen potential, k � kdec/cs = �cs�dec	

−1,
namely the contribution of those scales which are outside the horizon at the
decoupling epoch. In order to estimate their present range of angular values we
may note that the comoving scale associated with the horizon decreases in time
like �−1. The angular separation corresponding to the horizon at decoupling,
$dec��dec	 = �, is today associated with an angular separation which can be
estimated as $dec��0	 = ���dec/�0	 = ��T0/Tdec	

1/2. We are thus considering
scales corresponding to a present angular separation

$ >∼
$dec√

3
= �

(
T0

3Tdec

)1/2

∼ 3� (8.216)

(we have used Eq. (8.170), and cs = 1/
√

3), i.e. to multipole moments with
( ∼ �/$ <∼ 60.

For such multipole moments, neglecting the cos2 factor, and using the
approximation k�0 −k�dec 
 k�0 ≡ x0, we can analytically integrate Eq. (8.214)
to obtain [61]
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∫ �
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= A2
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9
��3−ns	��(+ns/2−1/2	

23−ns�2�2−ns/2	��(+5/2−ns/2	

 ( <∼ 60 (8.217)
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(a result valid for −3 < ns < 3). The scale-invariant Harrison–Zeldovich spectrum
[62, 63] corresponds to ns = 1 and gives, in particular,

(�(+1	C( =
(

A2
0

9�

)

= const
 ( <∼ 60
 $ >∼ 3�
 (8.218)

in agreement with the observations of the COBE-DMR experiment [1, 2] on
very large angular scales. The COBE measurements of the quadrupole (( = 2)
anisotropy [64],

C2 = �1�09±0�23	×10−10
 (8.219)

can then be used to normalize the amplitude of the primordial scalar spectrum,
A2

0 = 54�C2, and to obtain (indirect) experimental information on the inflation
scale and on the primordial dynamics.

On smaller angular scales, $ ≤ 3�, ( >∼ 60, k >∼ kdec/cs, the cos2 modulation of
the Bardeen spectrum – the so-called “acoustic oscillations” – becomes important,
and the peaks of the cos2 function are mapped into peaks of the C( spectrum.
Consider the integral (8.214), where the cos2 function peaks at values of k = kn

such that kncs�dec = n�, with n = 1
2
 � � � Because of the general behavior of the
spherical Bessel factor j2

( present in the integral, the dominant contribution to C(

comes from values of k such that the argument of j( satisfies k��0 −�dec	 
 (

(otherwise j2
( is strongly suppressed). The peaks of the C( spectrum are thus

determined by the condition

(n 
 kn��0 −�dec	 = n�
�0 −�dec

cs�dec

 n�

�0

cs�dec

 n = 1
2
 � � � (8.220)

Recalling that �0/�dec = �Tdec/T0	
1/2 one can thus predict a first peak at (1 ∼ 180,

and a constant separation of the various peaks, �( ∼ (1. Such an oscillating
behavior of the angular power spectrum is illustrated in Fig. 8.1, where we have
numerically integrated C( from Eq. (8.214) for ns = 1, and we have plotted
(�(+1	C( in units of 2A2

0/9�.
The figure clearly displays the plateau observed by COBE at large scales,

and the subsequent spectral oscillations. It must be stressed, however, that the
integral (8.214) evaluates the anisotropy contribution of scalar perturbations with
k�dec

<∼ 1, and thus cannot be extended to values of ( which are too large with
respect to the decoupling scale. For a complete and realistic description of the
full anisotropy spectrum one must include smaller angular scales, and take into
account two important physical effects which have a significant influence on the
evolution of the scalar perturbations inside the horizon: the so-called “radiation
driving” [65] and the “Silk damping” [66].

A detailed presentation of such effects is outside the purpose of this introductory
discussion, and the interested reader is referred to more specialized publications
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Figure 8.1 The angular power spectrum (�(+1	C( obtained through a numerical
integration of Eq. (8.214) (courtesy of Antonio Marrone).

(see for instance [67, 68]). We only note that radiation driving has the effect of
enhancing the height of the first peaks with respect to the large-scale normalization
fixed by C2, while Silk damping has the effect of suppressing the height of the
subsequent peaks.

For a short illustration of the first effect we may consider the scalar modes that
were already inside the horizon at decoupling, in particular those with k�eq > 1,
re-entering the horizon in the radiation-dominated epoch. By solving exactly
Eq. (8.98) for the Bardeen potential in the radiation era (with adiabatic initial
conditions), one obtains (modulo oscillations) for the sub-horizon modes the
asymptotic behavior �k��	 
 −3�ki/�k�/

√
3	2 (see [27], and also Eq. (8.287)

of the next section). Here �ki is the amplitude of the Bardeen potential at the
beginning of the radiation era. The combination of the Hamiltonian constraint
(8.65) for �r , and of the background equation (8.7) for �r , then leads to

�r ≡ �r

�r


 −2
3
�k�	2�k��	 
 6�ki� (8.221)

These sub-horizon modes thus contribute to the SW effect (8.186) with an amp-
litude �r/4 = �3/2	�ki, to be compared with the amplitude �k0/3 of super-horizon
modes (see Eq. (8.199). Remembering the small shift in the asymptotic amplitude
of the Bardeen potential due to the radiation–matter transition, leading from �ki

to �k0 = �9/10	�ki (see Eq. (8.169)), we can eventually estimate the enhance-
ment factor of the small-scale anisotropies, with respect to the large-scale ones,
as �3/2	�ki/��k0/3	 
 5.

A more precise calculation of such enhancement, which is in principle k-
dependent, can be performed numerically [69] taking into account the velocity
perturbations of the matter fluid, and the perturbations of the Boltzmann equation
describing the photon–baryon interactions (see also [34, 55] for analytical dis-
cussions). The processes of photon diffusion during decoupling (and also earlier,
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Figure 8.2 The measured angular power spectrum (data points), compared with
the theoretical predictions (full curve) of a model based on adiabatic scalar
perturbations (adapted from [76]).

during the so-called “recombination era”) have indeed a crucial influence on the
final height of the anisotropy peaks. These processes, together with the finite
thickness of the last-scattering surface, are also sources of an exponential damping
of the anisotropy oscillations at very high values of ( [66]. The inclusion of all
these effects into a numerical computation of C(, always based on the assumption
of adiabatic initial conditions, eventually leads to a precise prediction for the
height and the position of the peaks of the angular power spectrum which is in
good agreement with all present observations, as illustrated in Fig. 8.2.

The figure shows the data points of WMAP [4] (first year), BOOMERANG
[70], MAXIMA [71], DASI [72], VSA [73], CBI [74] and ACIBAR [75]. The
curve superimposed on the data [76] has been obtained through the numerical
code CMBfast [69], and represents the predictions of an adiabatic model based
on Eq. (8.214), but which takes into account the enhancement due to radiation
driving and small-scale damping. In particular, the plotted curve corresponds to
the following typical choice of the standard cosmological parameters: %) = 0�72,
%K = 0, %mh2 = 0�12, %bh

2 = 0�024 and ns = 1.
In the case of isocurvature initial conditions the predicted anisotropy seems to be

unable to match the observed peak structure. In the isocurvature case the dominant
contribution to �T/T comes from the ISW effect. Expanding in spherical Bessel
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functions the Fourier transform (8.186),
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(we have used � = � ), we obtain
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The coefficients C( are always given by Eq. (8.213), and we are led to the result
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(8.224)

(to be compared with Eq. (8.214)). For isocurvature fluctuations � ′ is constant
outside the horizon (see Eq. (8.201)) but, in the absence of a constant term in the
Bardeen potential, the contribution of � ′ decays rapidly in time inside the horizon,
according to the behavior of � in the matter-dominated era (see Eq. (8.168)). For
super-horizon scales k� > 1 the dominant contribution to the integral then comes
from the horizon-crossing time � = k−1, and we can use the approximation

∫
d�� ′��
 	k	j(�k�0 −k�	 
 ��k �=k−1 j(�k�0	� (8.225)

Assuming that the spectrum of � at horizon crossing is the same as in the adiabatic
case (given in Eq. (8.217)) one then recovers for C( the same integral that controls
the large-scale adiabatic fluctuations, Eq. (8.217), but with the factor �2/9	A2

0
replaced by 8A2

0. It follows that the dependence of the angular spectrum on ns

is identical to that of the adiabatic case, but the contribution to the temperature
anisotropy �T/T is enhanced by a factor 6 (i.e. the coefficients C( are enhanced
by a factor 36).

On smaller angular scales the contribution of the isocurvature perturbations is
dominated by the oscillations of the density contrast �r . As already mentioned,
such oscillations are of sinusoidal type, controlled by the integral

∫ dk

k
k3 sin2 �kcs�dec	 j2

( �k�0 −k�dec	� (8.226)

By applying the same arguments as before one then finds that the position and
separation of the various peaks are determined by the condition

(n 
 kn��0 −�dec	 =
(

n+ 1
2

)
�

�0 −�dec

cs�dec

 n = 0
1
2
 � � � (8.227)

The separation �( is the same as that for the adiabatic case, but the position
of the first peak corresponds to a value of ( which is one-half of the adiabatic
result. Such a different prediction is clearly not favored by the observational data
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of Fig. 8.2. In addition, the COBE normalization (8.218), (8.219), imposed on
the isocurvature spectrum (8.224), determines a value of A0 which is smaller (by
a factor 6) with respect to the adiabatic case, with a corresponding suppression
of the height of the first peak, a result which is also not favored by present
observations.

Let us conclude the section with a short discussion of the tensor contribution
to �T/T , determined by the ISW effect according to Eq. (8.185). Projecting hij

onto the two polarization states h+
 h×, and expanding their spatial dependence
into spherical Bessel functions, one obtains the angular power spectrum [77, 6]

CT
( = 2

�

�(+2	!
�(−2	!

∫ dk

k
k3

∣
∣
∣
∣

∫ �0

�dec

d� h′�	k
�	
j(�k�0 −k�	

�k�0 −k�	2

∣
∣
∣
∣

2
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where h is any one of the two polarization modes, and the tensor background is
assumed to be unpolarized. This result is similar to that of the isocurvature integral,
Eq. (8.224), with the only difference due to the factor �k�0 −k�	−2 originating
from the spin-two nature of the gravitational field hij , which induces j(+2 and
j(−2 contributions for any j( term of the multipole expansion (see also [55])

The total CMB anisotropy is given, in principle, by the sum of the scalar and
tensor contributions. It can be easily checked, however, that at small angular
scales the tensor contribution is negligible with respect to the scalar one, quite
independently of the spectral distribution of hk in Fourier space.

During the matter-dominated era the general solution for h�	k
�	 can be written
as the linear combination of a term containing �−3/2J3/2�k�	, and another term
containing �−3/2J−3/2�k�	, where J� are the ordinary Bessel functions (see for
instance the solution of Eq. (7.168), with �3 = −3/2). The leading contribution to
the first derivative h′ is proportional to �−3/2J5/2 so that, using the definitions of
the spherical Bessel functions, j(�x	 = ��/2x	1/2J(+1/2�x	, we can approximate
h′ as follows:

h′�	k
�	 = �k

k�
j2�k�	
 (8.229)

where �k is a constant coefficient. On the other hand, using the properties of j(, it
follows that the dominant contributions to the Fourier integral in Eq. (8.228) come
from the values of k for which the argument of j( approximately coincides with
the Bessel index (. This imposes the two conditions k� 
 2 and k�0 − k� 
 (,
from which ( 
 2��0 −�	/�. The allowed range of � is bounded by the lower
limit � = �dec of the time integral: thus, there are non-negligible contributions to
CT

( only for

( <∼ 2
�0 −�dec

�dec

 2

(
Tdec

T0

)1/2

∼ 63� (8.230)
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In this regime of large angular scales the tensor contribution can be estimated
by noting that the dominant contribution of the mode k to the time integral of Eq.
(8.228) comes from the horizon-crossing epoch, � = k−1. The integral in d� can
thus be approximated by �h�k
�	 �=k−1 j(�x0	x

−2
0 , in a way similar to the case of

isocurvature scalar perturbations. Using for hk the generic spectrum

k3 �hk�2 = A2
T

(
k

k0

)n


 (8.231)

we obtain the result

CT
( = 2A2

T

�

�(+2	!
�(−2	!

∫
dx0 xn−5

0 j2
( �x0	

= A2
T
�(+2	!
�(−2	!

��6−n	��(−2+n/2	

26−n�2�7/2−n	��(+4−n/2	
� (8.232)

In particular, for a scale-invariant (n = 0) spectrum,

(�(+1	CT
( = 8A2

T

15�

(�(+1	

�(−2	�(+3	

 ( < 60
 (8.233)

to be compared with the scalar contribution, Eq. (8.218). Apart from the apparent
singularity at ( = 2 (which is only an artifact of our crude approximation), the
resulting angular spectrum is rather flat in the considered range of scales (as also
confirmed by more accurate numerical computations [6]).

In conclusion, a stochastic background of tensor metric perturbations cannot be
responsible for the peak structure of the CMB anisotropy at small angular scales,
but can contribute to the large-scale “plateau” observed by COBE-DMR, provided
the primordial distribution of tensor perturbations is sufficiently flat. This means
that, in principle, it is possible to obtain interesting constraints on the amplitude
of the tensor spectrum from the large-scale measurements of the CMB anisotropy,
as already stressed in Section 7.3. Comparing the ansatz (8.231) with Eq. (7.188)
one obtains A2

T = 6�2%g�'0
 t0	, and the exact numerical computation of CT
2 in

terms of A2
T – together with the experimental result (8.219) – leads to the precise

formulation of the upper limit presented in Eq. (7.189).
If the slope of the primordial tensor spectrum is too steep, as in the case of

the minimal pre-big bang models illustrated in Section 7.3, then the result (8.232)
cannot be matched to the observed anisotropy distribution. For such models the
peak amplitude of the spectrum is normalized at the string scale, so that the tensor
contribution to the large-scale anisotropy is certainly negligible (see Fig. 7.7).
The same is true for the graviton spectrum of the ekpyrotic scenario, Eq. (7.216).
String cosmology models, with the possible exception of models of D-brane–
antibrane inflation [7], tend to differ from standard models of slow-roll inflation
for the complete absence of tensor contributions to �T/T .
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The presence of tensor fluctuations on large scales cannot be easily distin-
guished from the presence of scalar fluctuations through their direct contribution to
the C( spectrum; however, the presence of a tensor contribution could be detected
through its specific influence on the polarization state of low-( multipoles [78, 79].
Such a possibility will not be discussed here, but we recall that tensor perturbations
should produce a characteristic “curl” component in the polarization of the CMB
radiation, which is absent in the case of a purely scalar background of primordial
perturbations. A missing detection of this polarization state (or upper limits on its
presence), in future measurements of the large-scale anisotropy, could thus rep-
resent an important signal for discriminating among different models of inflation.

8.3 Adiabatic metric perturbations from the string theory axion

Scalar metric perturbations present at the decoupling epoch, characterized by a
nearly constant amplitude (� ′

k 
 0) and a flat enough spectrum (ns 
 1), can be the
source – through the SW effect – of the observed structure of CMB anisotropies.
It has been shown, in the previous section, that models of slow-roll inflation can
easily generate a primordial spectrum of scalar metric perturbations satisfying the
required (adiabatic) properties.

Models of pre-big bang inflation, on the contrary, tend to produce a spectrum
of metric perturbations with a slope too steep to agree with the observed structures
(see Eq. (8.161)). It is true that the end-point normalization of the spectrum, con-
trolled by the string scale, implies that the amplitude of the large-scale fluctuations
is far too small to provide significant contributions to the measured temperature
fluctuations: this avoids embarassing conflict with observational data, but leaves
open the problem of explaining the large-scale anisotropies.

However, a direct inflationary amplification of the metric fluctuations is not the
only mechanism for efficient production of a nearly constant Bardeen potential
at decoupling, characterized by the appropriate large-scale amplitude and spectral
distribution. Another possibility is provided by the so-called “curvaton” mech-
anism [20–24, 80], based on the presence of a scalar (or pseudo-scalar) field
(different from the inflaton) which, during inflation, is amplified with a flat
spectrum, quite independently of the associated spectrum of metric fluctutations.
After inflation such a field becomes massive and eventually decays, leaving a
flat spectrum of curvature perturbations which, in their turn, are associated with
a flat spectrum of metric perturbations described by a Bardeen potential with the
required adiabatic properties. The metric perturbations produced in this way are to
be added to those directly produced by inflation, and may represent the dominant
contribution to the temperature anisotropies if the inflationary amplification of
the Bardeen potential is absent, or negligible.
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Such a mechanism of producing adiabatic scalar metric perturbations is active,
in principle, in all inflationary models containing a self-interacting scalar field
(dubbed “curvaton”), which evolves according to the above description. In this
section it will be shown that, in a string cosmology context, the role of the
curvaton may be played by the Kalb–Ramond axion � , associated by space-time
duality with the four-dimensional component of the NS–NS two-form B�� present
in the low-energy string effective action [20, 23, 24].

The starting point of our discussion is the fact that the fluctuations of this
axion field, amplified by inflation, may be characterized by a scale-invariant
distribution of super-horizon modes, even in models where the corresponding
spectrum of metric perturbations is very steep, as in the context of the pre-big
bang scenario [18, 19]. In that context, the curvaton mechanism thus becomes
a crucial ingredient for the construction of realistic inflationary models able to
include a satisfactory explanation of the large-scale anisotropies.

The four-dimensional components of the NS–NS two-form are described by
the following (dimensionally reduced, S-frame) action

S = 1
2�s2

∫
d4x

√−gs
e−�

12
H���H���
 H��� = �B�� + �B�� + �B��

(8.234)
(throughout this section, we use the subscript “s” to denote the S-frame metric,
related to E-frame metric by Eqs. (2.39) and (2.43)). In the absence of specific
sources, the equations of motion for H��� are automatically satisfied by introdu-
cing the “dual” axion field � , such that

H��� = e�

√−gs
&������� (8.235)

The S-frame action for � is

S = 1
4�2

s

∫
d4x

√−gs e� ����
 (8.236)

with corresponding E-frame action:

S = 1

4�2
P

∫
d4x

√−g e2� ����� (8.237)

If the unperturbed axion background is vanishing, this is also the action for the
axion fluctuations �� . In conformal time, and for a conformally flat metric, we
thus recover for �� the typical action of linear perturbations (see e.g. Eq. (7.46)),

S = 1
2

∫
d�z2��	

(
�� ′2 +���2��

)



z = a√
2

e� = as√
2

e�/2
 (8.238)
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with pump field z, and Schrödinger-like equation for the canonical variable v =
z�� . Notice that the above pump field is dimensionless, since we have absorbed
into the axion field the Planck length present in the E-frame action, � → �/�P.
Throughout this section we always use a canonically normalized axion field, with
dimension one in Planck units.

We assume, as in the case of metric perturbations, that the accelerated evolution
of the pump field during inflation can be parametrized as follows:

z ∼ �−�	�
 � < 1/2
 � → 0−� (8.239)

Solving the canonical equation for �� , normalizing to an initial spectrum of
vacuum fluctuations, using the small argument limit, and repeating exactly the
procedure applied to the case of metric perturbations (see e.g. Section 8.2), one
can easily find that the axion fluctuations tend to be frozen outside the horizon.
Their spectral distribution,

����k	�2 = k3 ���k�2 ∼ k2+2�
 (8.240)

is formally the same as that obtained for tensor metric perturbations, Eq. (7.91),
and curvature perturbations, Eq. (8.140). The axion pump field (8.238) is different,
however, from the E-frame scale factor (which represents the pump field of metric
perturbations). We may thus expect for the axion a different spectrum, possibly
flatter than the metric spectrum, even in models of pre-big bang inflation.

For a simple illustration of this possibility we consider here an example of low-
energy, dilaton-driven anisotropic background, described by the Kasner-like (S-
frame) solution (4.31)–(4.34). We may assume, in particular, that the inflationary
regime is characterized by three accelerated expanding dimensions, with scale
factor as, and by n “internal” contracting dimensions, with scale factors bs

i , i =
1
 � � � 
 n. In conformal time such a solution can be parametrized, for � → 0−, as

as =
(

− �

�1

) �0
1−�0


 bs
i =
(

− �

�1

) �i
1−�0




�d =
∑

i �i +3�0 −1
1−�0

ln
(

− �

�1

)



(8.241)

where the powers �0, �i satisfy the Kasner condition
∑

i

�2
i +3�2

0 = 1� (8.242)

The scalar �d is the higher-dimensional dilaton field appearing in the effective
action before dimensional reduction, and is related to the four-dimensional dilaton
� by
∫

dd+1x
√

−gs
d+1 e−�d =

∫
d4x
√

−gs
4 Vne−�d =

∫
d4x
√

−gs
4 e−�
 (8.243)
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namely by

� = �d − ln Vn = �d −∑
i

ln bs
i = 3�0 −1

1−�0
ln
(

− �

�1

)
� (8.244)

The power-law evolution of the axion pump field, for this background, is given by

z ∼ ase
�/2 = as

(
∏

i

bs
i

)−1/2

e�d/2 ∼ �−�	�


� = 5�0 −1
2�1−�0	

�

(8.245)

It follows, from Eq. (8.240), that the axion spectral index,

n� = 1+ d ln ��� �2
d ln k

= 3+2� = 2
(

1+�0

1−�0

)

 (8.246)

is controlled by the Kasner power �0 of the three-dimensional expanding space. In
particular, a scale-invariant spectrum with n� = 1 can be obtained for �0 = −1/3.

In the special case in which all d = 3+n dimensions are isotropically expanding,
with �0 = �i, the Kasner condition (8.242) implies �0 = −1/

√
d: interestingly

enough, a fully scale-invariant spectrum thus corresponds to d = 9, i.e. just to the
number of spatial dimensions in which critical superstrings consistently propagate.
In the less special case in which the spatial background geometry can be factorized
as the product of two isotropic, maximally symmetric spaces (three-dimensional
and n-dimensional), one has instead �i = � �= �0, with 3�2

0 + n�2 = 1. In this
case the spectral index can be expressed in terms of the parameter r,

r = 1
2

(
V̇n

Vn

)(
V̇3

V3

)−1

= n�

6�0

 (8.247)

measuring the relative time evolution of the internal and external volumes [81]
(the dot denotes differentiation with respect to the S-frame cosmic time ts).
Eliminating � in terms of �0 through the Kasner condition, and replacing �0 with
r in Eq. (8.246), one can then parametrize the deviations of n� from one as the
relative shrinking or expansion of the two spaces.

It should be stressed, at this point, that such a close correspondence between
the kinematics of the background (8.241) and the resulting spectral index is lost
in the case of tensor perturbations and curvature perturbations, which are instead
characterized by a “universal” spectral index, fully independent of the particular
values �0 and �i. For the solution (8.241) the pump field of metric perturbations
coincides with the four-dimensional E-frame scale factor a = as exp�−�/2	 – see
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e.g. Eq. (7.47) for tensor perturbations, and Eq. (8.160) for curvature perturbations.
Therefore,

ase
−�/2 =as

(
∏

i

bs
i

)1/2

e−�d/2 ∼ �−�	�


� = 1
1−�0

[

�0 + 1
2

∑

i

�i −
1
2

(

3�0 +∑
i

�i −1

)]

≡ 1
2
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which always leads to a cubic power spectrum ���2 ∼ k2+2� = k3 (modulo log-
arithmic corrections, see Section 7.2). In this sense, metric fluctuations are
“insensitive” to the kinematical details of this low-energy class of pre-big bang
backgrounds. The dependence of the spectrum on the kinematics reappears, how-
ever, for other types of fluctuations (not only for the axion but also, for in-
stance, for the fluctuations of a background vector field, as will be discussed in
Appendix 8A).

Let us now suppose that the phase of pre-big bang inflation has a kinematics
suitable for the production of a flat (or nearly flat) spectrum of large-scale axion
fluctuations. At the end of inflation, outside the horizon, we are thus left with a
primordial “sea” of scalar perturbations of “isocurvature” type, since the metric
and curvature perturbations – which are also necessarily present as components of
this scalar background – have been amplified with a spectral slope much steeper
than the axion component, and are certainly negligible with respect to the axion
perturbations on super-horizon scales. Such a primordial background of scalar
perturbations may contribute to the CMB anisotropy in two ways.

If the axion is massless, or light enough not only to have “survived” (without
decaying) up to the present time, but also to determine an amplitude of the
quadrupole anisotropy small enough to satisfy the COBE normalization of the
spectrum [82, 83, 84], then the axion perturbations may play the role of “seeds” for
the temperature anisotropies, with a mechanism that will be briefly illustrated in
Appendix 8B. In that case, however, one would obtain an isocurvature contribution
to the anisotropy which, as discussed in Section 8.2, seems to be excluded as the
main source of the observed �T/T .

If, on the contrary, the axion becomes massive after inflation, dominates the
background evolution, and then decays (early enough to avoid disturbing the
standard processes of baryogenesis and/or nucleosynthesis), then the axion fluc-
tuations may produce a spectrum of adiabatic metric perturbations according to
the curvaton mechanism. The conversion of the initial, inflationary spectrum of
massless axion fluctuations into a post-inflationary spectrum of massive fluctu-
ations, and the generation of a final spectrum of adiabatic metric perturbations
(outside the horizon, in the radiation era), is an interesting cosmological effect
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which deserves detailed discussion. In this section we will sketch the main steps
of such a process.

8.3.1 The curvaton mechanism

The crucial ingredient of the curvaton mechanism is the generation of a (non-
perturbative) axion potential V��	 during the post-inflationary phase of radiation-
dominated evolution, and the assumption that the axion emerges from this process,
at some given time �i, in an initial configuration characterized by a non-trivial
background value ���i	 ≡ �i �= 0, displaced from the minimum of the potential.
In the present discussion we also assume that the potential can be approximated
by the quadratic form V = m2�2/2. It should be stressed, in fact, that the Kalb–
Ramond axion we are considering, even if not necessarily identified with the
“invisible” action invoked to solve the strong CP problem [85, 86, 87], is expected
to be gravitationally coupled to photons and to the QCD topological current. The
associated potential is periodic, with a periodicity related to the breaking of the
Peccei–Quinn symmetry down to a discrete symmetry, and to shifting the QCD
vacuum angle by multiples of 2� [88]. The quadratic approximation for V��	 is
valid, therefore, for values of � that are small compared to the periodicity: this is
certainly the case for �i � MP, but we assume it to be valid also for all values of
�i/MP not much larger than one – which is also the appropriate range of values
for a consistent implementation of the curvaton mechanism, as we shall see later.

We start the discussion in the phase of standard, post-inflationary evolution
where, for simplicity, the dilaton is assumed to be already frozen at its present
value, with no effect on the cosmological dynamics. The only important grav-
itational sources are the self-interacting axion and the radiation fluid, and the
unperturbed dynamics is described by the background equations (8.7)–(8.9), with
the dilaton � replaced by the minimally coupled axion � . In particular,

3� 2 = �2
Pa2��r +��	
 (8.249)

2� ′ +� 2 = −�2
Pa2�pr +p�	
 (8.250)

� ′′ +2�� ′ +m2a2� = 0
 (8.251)

where pr = �r/3 and where

�� = 1
2

(
� ′2

a2
+m2�2

)

 p� = 1

2

(
� ′2

a2
−m2�2

)
� (8.252)

The initial configuration, at a given curvature scale Hi
<∼ H1 (where H1 marks

the beginning of the post-inflationary epoch), is assumed to describe a radiation-
dominated Universe and a potential-dominated axion energy, with �� 
 V��i	 =
m2�2

i /2 � H2
i .
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During this initial phase the axion energy density is sub-leading, and the axion
field is slowly rolling along the potential towards the minimum, conventionally
fixed at � = 0. Such a configuration tends to change, however, as the curvature
scale evolves in time towards smaller and smaller values. In particular, the axion
background enters an oscillatory regime as soon as the curvature drops below
the scale ∼ Hm = m (see Eq. (8.251)), and starts dominating the cosmological
evolution at the scale ∼ H���	 = m�P���	 (see Eq. (8.249)), unless it has already
decayed. Because of its gravitational coupling to photons, in fact, the axion
tends to decay into electromagnetic radiation at a rate � = "−1 ∼ m3/M2

P, thus
disappearing from the cosmological scene when the curvature reaches the decay
scale ∼ Hd = � . The detailed history of such an axion–radiation Universe and,
in particular, the temporal hierarchy of the scales Hm, H� , Hd, strongly depend
on the axion mass and on the initial value �i. We may consider, in general, three
distinct possibilities.

(1) Late dominance of the axion, i.e. �P�i � 1. During the initial, radiation-
dominated phase the time variation of the slow-roll axion can be neglected with
respect to the time variation of the curvature (� 
 �i = const, � ′ 
 0), so that the
axion starts oscillating at � = �m when the Universe is still radiation dominated,
since Hm = m > H� . During the oscillating phase we can neglect the friction
term H� ′ in Eq. (8.251), as the time variation of a��	 is much slower than the
variation of ���	, and the axion evolution can be approximately described by the
free equation �̈ +m2� = 0. The kinetic and potential energy terms are thus equal,
on the average, during this phase: �� ′2/a2� = m2��2�. It follows that �p�� = 0,
and the axion behaves like a “dust” fluid, with ���� ∼ a−3. The radiation energy,
on the other hand, is diluted faster (�r ∼ a−4), so that ��/�r grows in time, and
the axion becomes dominant at � = �� when the curvature reaches the scale
H� = m�P�dom. The value of �dom can be computed by using the kinematics
of the radiation-dominated regime, and considering the following ratio of axion
energy densities:

����m	

�����	
= �2

i

�2
dom

=
(

a�

am

)3

=
(

Hm

H�

)3/2

= ��P�dom	−3/2 � (8.253)

This gives �P�dom = ��P�i	
4, or

H� = m��P�i	
4 � (8.254)

The background then remains axion dominated until the axion decays, at a scale
Hd = �2

Pm3. The efficient production of adiabatic metric fluctuations requires, as
we shall see, that the decay occurs after the beginning of the axion-dominated
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epoch, namely for H� > Hd. This is possible, for the case �P�i < 1, if we restrict
consideration to the class of backgrounds satisfying

�m�P	1/2 < �P�i < 1� (8.255)

Note that such a constraint is not so demanding, given the generous lower bounds
on m following from the decay of a gravitationally coupled scalar field [89,
90] – typically, m >∼ 10 TeV, or m�P

>∼ 10−14, to avoid disturbing the standard
nucleosynthesis, i.e. by requiring Hd > HN ∼ �P�1 MeV	2. This leads to a class
of backgrounds with the following temporal ordering of scales: H1 > Hi > Hm >

H� > Hd.
(2) Planck-scale axion, i.e. �P�i ∼ 1. The discussion and the results of the

previous case are valid also for this case, with the only difference that now
Hm = m ∼ m�P�i = H� , so that the beginning of the axion oscillations and of the
axion-dominated phases is nearly simultaneous.

(3) Early dominance of the axion, i.e. �P�i > 1. In this case H� > Hm,
namely the Universe becomes axion dominated before the axion starts oscillating.
Thus, when H = H� , the Universe enters a phase of slow-roll “axionic” inflation,
lasting until the final scale Hf ∼ Hm = m is reached, corresponding to the final
value �P�f ∼ 1 of the axion background. During the slow-roll phase we have
H2 = m2�2

P�2/6 from Eq. (8.249), and �̇ = � ′/a = −m2�/�3H	 from Eq. (8.251)
(since �̈ = 0). Their combination gives

Ḣ

H2
= − 2

��P�	2

 (8.256)

which relates the variation of H and � (in cosmic time). After the inflationary
phase, H <∼ m, the background is dominated by the coherent oscillations of the
axion, which then eventually decays at H = Hd. This scenario corresponds to
H1 > Hi > H� = m�P�i, namely to

1 < �P�i <
Hi

m
<

H1

m

 (8.257)

which is compatible with the above-mentioned limits on the axion mass.
After the above analysis we are now in a position to discuss the evolution of

the coupled system of axion-metric perturbations, in the various types of back-
ground. We first show that the inflation-generated, super-horizon distribution of
isocurvature axion fluctuations, ��k, produces super-horizon metric perturbations,
�k, with the same spectral distribution and with an amplitude which, at the end
of the axion-dominated phase, is always not smaller than the initial amplitude of
the axion fluctuations.

The evolution in time of the perturbations is controlled by the coupled system
of equations (8.63)–(8.69), where the fluid sources describe the cosmic radiation
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and its adiabatic perturbations, p/� = �/� = 1/3, and where the dilaton variables
�, X are replaced by the corresponding axion variables � , �� (with � → � as
we assume that the axion is minimally coupled to the metric). Also, V/� is
replaced by m2� , and 2V/�2 by m2. The initial conditions at � = �i are

����i	 ≡ ��i �= 0
 ���i	 = 0
 W��i	 = 0
 �r��i	 ≡ �r

�r

��i	 = 0


(8.258)

representing isocurvature axion fluctuations. The initial values of the first derivat-
ives are determined by the momentum and Hamiltonian constraints (8.64), (8.65).
In the radiation-dominated phase, in particular, we can set �2

Pa2� = 3� 2�r , and
the conservation equation (8.68) becomes

�′
r = 4� ′ + 4

3
�2W� (8.259)

Thus, in the super-horizon regime where the spatial gradients can be neglected,
�r = 4� , and the Hamiltonian constraint can be rewritten

� ′ +3�� = − �2
P

6� 2

(−� ′2� +� ′�� ′ +m2a2���
)
� (8.260)

At the beginning of the radiation-dominated regime the axion field is slow-
rolling, and we can set � 
 �i = const, neglecting the derivatives � ′. In addition,
for all super-horizon modes ��k, the equation (8.67) for the axion perturbations
is identical to the equation (8.251) for the axion background, since the Bardeen
potential is vanishing (or negligible): as a consequence, the super-horizon axion
perturbations are also slow-rolling, and we can approximate �� ′

k 
 0, ��k 

��k��i	 = const. Equation (8.260) reduces to

� ′ +3�� = − �2
P

6� 2
m2a2�i�� i
 (8.261)

and its direct integration gives

�k��	 = �2
PQ2

42
�i��k��i	

[
1− ��/�i	

4
]

 � > �i
 k� � 1
 (8.262)

where we have defined Q = mai�i. The amplitude of the metric perturbations
is thus monotonically growing (in modulus) during the slow-roll regime. The
duration of this regime, on the other hand, is controlled by the initial value �i.
Let us then separately consider the three cases listed above.

(1) In the case �P�i < 1 the phase of slow-roll ends at the oscillation scale
H = m, namely at the time scale �m such that

(
ai�i

am�m

)
=
(

�i

�m

)2

= mai�i = Q� (8.263)
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The spectral amplitude of the (super-horizon) Bardeen potential, at this time scale,
is given by

�k��m	 = −�2
P

42
�i��k��i	 �P�i < 1
 k� < 1� (8.264)

The amplitude of �k is no longer vanishing, but still small with respect to the
axion perturbations ��k.

In the case we are considering the axion starts oscillating when the Universe is
still radiation dominated: we can thus continue to apply Eq. (8.260) to compute
�k for � > �m (neglecting � with respect to �� in the right-hand side). The
evolution equations for � and �� are still the same, to leading order, outside the
horizon (see Eq. (8.251)), and can be solved exactly [24] in terms of the first-
kind Bessel function, i.e. � ∼ �� ∼ ��/�i	

−1/2J1/4�Q�2/2�2
i 	. In the oscillating

regime (corresponding to the large argument limit of the Bessel function) one
finds, averaging over many oscillations,

�� ′�� ′� ∼ m2a2����� ∼ m2

a
(8.265)

and the integration of Eq. (8.260) gives � ∼ a, so that

�k��	 = �k��m	

(
a

am

)

 k� < 1
 �m < � < �� (8.266)

(we have neglected, for simplicity, the average symbol).
This behavior of � is valid until the axion-dominance scale H� , determined

by Eq. (8.254). In the oscillating regime, on the other hand, � ∼ a−3/2, so that
a�/am = ��i/�dom	2/3 = ��P�i	

−2. At the beginning of the axion-dominated phase
the spectral amplitude of the Bardeen potential is then given by

�k���	 = &1

�i
��k��i	
 �P�i < 1
 k� < 1
 (8.267)

where &1 is a dimensionless numerical coefficient with modulus of order one.
This (approximate) analytical result is in agreement with numerical integrations
of the exact perturbation equations [24].

(2) In the case in which �P�i ∼ 1 the time scales �m and �� are nearly
coincident, but the previous arguments are still valid, and lead to the result

�k���	 = &2�P ��k��i	
 �P�i ∼ 1
 k� < 1
 (8.268)

where &2 is another numerical coefficient with modulus of order one.
(3) Finally, we have the case �P�i > 1. In this case the amplification of the

Bardeen potential during the initial, radiation-dominated phase, is still described
by Eq. (8.262). The radiation phase, however, ends before the beginning of
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the oscillating regime, since the axion becomes dominant at the scale H� ≡
�a���	−1 = m�P�i. The corresponding time scale is determined by the condition

(
ai�i

a���

)
=
(

�i

��

)2

= mai�i�P�i = Q�P�i
 (8.269)

and the associated amplitude of the Bardeen potential is, according to Eq. (8.262),

�k���	 = − 1
42

��k��i	

�i

 �P�i > 1
 k� < 1� (8.270)

This amplitude is still small with respect to the axion perturbations ��k, but the
growth of the Bardeen potential continues during the subsequent phase of slow-
roll inflation. This effect can be evaluated by using Eq. (8.85), which describes the
super-horizon evolution of � in a phase dominated by a scalar field. Neglecting
second time derivatives (because of the slow-rolling regime) we get, in cosmic
time,

H�̇ +2Ḣ� = 0
 (8.271)

namely

�k��	 ∼ H−2 ∼ �−2 (8.272)

(we have used the background equation (8.249), which implies 3H2 = �2
P�� 


�2
Pm2�2/2). Taking into account this further growth, and noticing that inflation

starts with �P����	 = �P�i and ends with �P���m	 ∼ 1, the resulting amplitude
of the Bardeen potential, at the beginning of the oscillating phase (� = �m), is
given by

�k��m	 = �2���	

�2��m	
�k���	 = &3�

2
P�i��k��i	
 �P�i > 1
 k� < 1


(8.273)

where &3 is a dimensionless coefficient with modulus of order one.
In the subsequent phase dominated by the oscillating axion, and common to

the three classes of backgrounds that we are considering, the amplitude of the
Bardeen potential simply oscillates around the value determined by the preceding
evolution, without further amplification (as shown by analytical and numerical
integrations of the perturbation equations [23, 24]). The amplitude �k, which
we have computed in the various cases, may thus be transferred (practically
unchanged) down to the axion-decay scale �d. The final result can be written in
compact form, inclusive of all the three classes of backgrounds, by setting

��k��d	� = �P ���k��i	�f��i	
 f��i	 = c1

�P�i
+ c2 + c3 �P�i� (8.274)
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One may note that f��i	 is approximately invariant under the transformation
�P�i → ��P�i	

−1 and, as a consequence, has a minimum of order one around
�P�i = 1. A numerical integration (from �i to �d) of the coupled perturbation
equations for different values of �i, and a fit of the final value ��k� with the
above form of f��i	, leads, in particular, to the following numerical values for
the ci coefficients [24]:

c1 
 0�25
 c2 
 −0�01
 c3 
 0�13� (8.275)

The obtained spectrum of scalar metric perturbations is thus fully determined
by the primordial spectrum of axion perturbations ��k��i	, present outside the
horizon during the initial radiation-dominated phase. At that time the axion fluc-
tuations are still relativistic (the mass can be neglected for � < �m), and the axion
spectrum can be computed from the action (8.238), and from the corresponding
canonical equation

�z��k	
′′ +
(

k2 − z′′

z

)
�z��k	 = 0� (8.276)

We consider the usual transition at � = −�1 between inflation and the standard
radiation phase with frozen dilaton, so that we can exploit the results of the
analysis already performed for tensor fluctuations in Section 7.2.

In particular, we can parametrize the axion pump field as in Eq. (7.133), where
now we set d = 3 and �2 = 1 (after the transition, the pump field (8.238) simply
coincides with the E-frame scale factor). The exact solution for the massless
(canonically normalized) axion fluctuations in the radiation era is then obtained
from Eq. (7.140) as

�P��k��	 = 1

aMP

√
k

[
c+�k	e−i�k�+2k�1	 + c−�k	ei�k�+2k�1	

]

 � > �1�

(8.277)

The Bogoliubov coefficients c±�k	 are fixed by the matching conditions at � =
−�1, and are given by Eq. (7.147) with �2 = −1/2. Considering the regime
k�1 � k� � 1 we can use the small argument limit of the Hankel functions to
obtain

�c+� 
 �c−�
 e−ik�1c+ 
 −c−eik�1 � (8.278)

Also, from Eq. (7.153), one finds �c−� ∼ �k/k1	
�−1 (we are assuming, as usual,

� < 1/2). This leads to the following frozen spectrum of super-horizon axion
fluctuations

�Pk3/2 ���k� 
 2k�1

a1MP�
�c−�k	 sin�k�+k�1	� 
 H1

MP

(
k

k1

)�+1




k� < 1
 k < k1
 (8.279)
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where we have absorbed all numerical factors of order one into the transition
scale H1 = k1/a1, determined by the high-frequency cut-off k1 = �−1

1 . This axion
spectrum is valid at the initial epoch �i, and is the source of the Bardeen spectrum
according to Eq. (8.274):

k3��k��d	�2 = f 2��i	

(
H1

MP

)2( k

k1

)n�−1


 k < k1 (8.280)

(we have reintroduced the spectral index n� = 3 + 2�, determined by the kin-
ematics of the solution Eq. (8.246)).

An important comment is in order, at this point, concerning the possible gen-
eralization of the previous expression to include the case in which the axion is
still sub-dominant at the decay epoch �d. This is possible for �P�i < 1, while
for �P�i > 1 this option is impossible, at least for realistic values of the decay
rate satisfying �/m ∼ �m/MP	2 < 1. Let us thus consider the case Hd > H� ,
corresponding to the condition

�P�i < �m�P	1/2 < 1
 (8.281)

complementary to the condition (8.255) used in the previous discussion. In such
a case the axion background, at the decay epoch, has an amplitude given by

�d = �i

(
am

ad

)3/2

rad
= �i

(
Hd

Hm

)3/4


 �i�m�P	3/2
 (8.282)

and the corresponding energy density, in critical units, can be estimated as

%� = �2
P

3H2
d

����d	 = �2
P

3H2
d

m2�2
d 
 �P

m
�2

i � (8.283)

Note that this density always satisfies the bound %� < 1, thanks to the condition
(8.281). The amplitude of the Bardeen potential at the decay scale can now be
determined by applying Eqs. (8.264) and (8.266) as before, but taking into account
that the amplification of �k ceases at the scale �d. Thus

�k��d	 = �k��m	

(
ad

am

)

rad
= &1

�P�i

m
��k��i	 
 &1%�

�i
��k��i	 (8.284)

(when %� ∼ 1 one recovers the result (8.267)). Taking into account the case
%� < 1 we can thus rewrite the final amplitude of the Bardeen potential at �d as
in Eq. (8.274), but with f��i	 replaced by f��i	, where

f��i	 = c1
%�

�P�i
+ c2 + c3 �P�i� (8.285)
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The important consequence of this modification is a possible suppression of the
metric perturbation spectrum (8.280) (at fixed H1): the spectrum could have a
minimum not at f��i	 ∼ 1, but at

f��i	 ∼ %�

�P�i
= �i

m
� 1� (8.286)

Axion models satisfying this property can match the large-scale normalization of
the spectrum even with values of H1/MP much larger than in the case f��i	 ∼ 1.

Too small values of �i/m (i.e. values of %� too far from one), however,
tend to enhance the possible “non-Gaussian” properties of the scalar perturbation
spectrum [25, 26]: in particular, such properties become dominant when the
amplitude of the axion background and of its fluctuations are of comparable
magnitude, � ∼ �� . On the other hand, no significant deviation from Gaussianity
has been definitely detected (up to now) in the observed CMB anisotropy, so
that the possible non-Gaussianity of the primordial scalar background has to be
small enough to be compatible with present observations [91]. We thus restrict
the following discussion to the case %� = 1, using the Bardeen spectrum (8.280)
with the function f��i	 of Eq. (8.274).

Such a spectrum has to be transferred from the end of the axion-dominated
phase, � = �d, down to the subsequent radiation- and matter-dominated epochs.
To this purpose, we have to match the constant Bardeen potential prior to decay,
Eq. (8.274), to the solution of Eq. (8.98) describing the evolution of � in the
radiation era. The general exact solution (for c2

s = 1/3 and # = 0) in the radiation
era can be written as [27]

�k��	 = 1
�3

�B1�x cosx− sin x	+B2�x sin x+ cosx	 


x = k√
3
�
 �s ≤ � ≤ �eq
 (8.287)

where B1 and B2 are integration constants to be determined by the matching of
� and � ′ at �d:

�k��d	 = �k0
 � ′
k��d	 = 0
 (8.288)

and where �k0 is the constant amplitude of Eq. (8.274) (we have assumed a
sudden transition). For super-horizon modes this gives

B1 = −3
(√

3/k
)3

�k0
 B2 
 0
 (8.289)

so that

�k��	 = 3�k��d	

(
sin x

x3
− cosx

x2

)

 k� � 1
 �s ≤ � ≤ �eq
 (8.290)
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is the final result for the axion-induced Bardeen potential in the radiation era.
This estimate is confirmed by accurate numerical integrations [23, 24], taking
into account the damping of the oscillations of the axion background for a more
realistic description of its decay.

The scalar metric perturbations that we have obtained provide the starting point
for the subsequent evolution of the CMB temperature fluctuations, and for the
formation of their oscillatory pattern. It is thus important to note that, according to
Eq. (8.290), super-horizon modes with x � 1 satisfy the conditions �k 
 �k0 =
const and � ′

k 
 0 not only at �d, but also during the whole radiation phase (and
during the subsequent matter-dominated evolution). This means that we are given
“adiabatic” initial conditions (see Section 8.2) just as in the case of the standard
inflationary scenario, in spite of the fact that � has not been directly amplified
from the vacuum during inflation, but has been generated by the axion during the
post-inflationary evolution.

We can then repeat the computation of the CMB anisotropy exactly as done
in the previous section for the case of adiabatic perturbations: in particular, Eq.
(8.280) gives the primordial Bardeen spectrum to be inserted into the SW effect,
and the observations may be faithfully reproduced provided the axion index
n� is sufficiently near to one. The only possible difference is a (small) non-
Gaussian component, present if %� < 1 (i.e. if �i is small enough, as pointed out
in the preceding discussion). In this context, the parameters H1 and n� of the
Bardeen spectrum depend on the details of the inflationary regime, and the large-
scale normalization of the spectrum may impose important phenomenological
constraints on the class of models that we are considering.

8.3.2 Normalization of the Bardeen spectrum

Let us consider the quadrupole coefficient C2 obtained from the large-scale ex-
pression (8.217) of the angular power spectrum. Using the Bardeen potential
(8.280) as the source of the ordinary SW effect we obtain

C2 = �2
n�

f 2��i	

(
H1

MP

)2('0

'1

)n�−1




�2
n�

= 2n�

72
��3−n�	��3/2+n�/2	

�2�2−n�/2	��9/2−n�/2	



(8.291)

where '1 = k1/a0 is, as usual, the present value of the (proper) cut-off frequency,
and '0 = k0/a0 is the proper frequency crossing today the Hubble radius H0. The
value of C2 depends explicitly on H1
 n�
�i and also, implicitly, on the axion
mass m.
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In fact, the computation of the cut-off parameter '1 requires the rescaling of the
transition scale H1 down to the present epoch, and thus depends on the kinematics
(as well as on the duration) of the axion-dominated phase. In particular,

'1�t0	 =

⎧
⎪⎨

⎪⎩

H1

(
a1
a�

)

rad

(
a�

ad

)

mat

(
ad

aeq

)

rad

(
aeq

a0

)

mat

 �P�i ≤ 1


H1

(
a1
a�

)

rad

(
a�

am

)

inf

(
am

ad

)

mat

(
ad

aeq

)

rad

(
aeq

a0

)

mat

 �P�i ≥ 1


(8.292)

where we have considered the two possible types of post-big bang history. Repla-
cing the ratios of scale factors with ratios of Hubble scales, and using Eq. (1.79)
for H0 and Heq, one obtains (for %m = 0�3 and h = 0�7)

'1

'0
= H1a1

H0a0



⎧
⎪⎨

⎪⎩

1029
(

H1
MP

)1/2 (
mMP

�2
i

)1/3

 �P�i ≤ 1
 �8�293	

1029
(

�iH1

M2
P

)1/2 (
m
MP

)1/3
Z−1

� 
 �P�i ≥ 1
 �8�294	

where Z� = am/a� denotes the expansion factor associated with the axion-
dominated phase of slow-roll inflation. The result of the COBE measurements for
C2, Eq. (8.219), thus imposes the bounds

10−29�n�−1	�2
n�

f 2��i	

(
H1

MP

) 5−n�
2
(

�i

MP

) 2
3 �n�−1	( m

MP

) 1−n�
3 
 10−10


�P�i ≤ 1
 (8.295)

10−29�n�−1	�2
n�

f 2��i	Z
n�−1
�

(
H1

MP

) 5−n�
2
(

�i

MP

) 1−n�
2
(

m

MP

) 1−n�
3 
 10−10


�P�i ≥ 1� (8.296)

More precise constraints can be obtained if we do not fix the values of %m and
h, and include them among the arbitrary parameters.

In order to discuss the allowed region in the four-dimensional parameter space,
spanned by �H1
 n�
m
�i�, we first note that the above two constraints have to
be supplemented, respectively, by the conditions (8.255) and (8.257), required for
the consistency of the corresponding classes of backgrounds. Both constraints are
to be intersected with the experimentally allowed range of the spectral index,

0�932 <∼ n�
<∼ 0�966 (8.297)

(see Eq. (8.153)). In addition, we must take into account the (conservative)
nucleosynthesis bound on the axion mass, m�P ≥ 10−14, required to avoid a too-
late axion decay which could destroy the light nuclei already formed [89, 90];
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however, it may be noted that for n� 
 1 the coefficient C2 is almost insensitive
to the value of m, according to Eqs. (8.295) and (8.296).

Finally, there is a further constraint to be imposed on Z� in the case �P�i > 1,
since we are implicitly assuming that there is no contribution to C2 arising from
scalar metric perturbations directly amplified from the vacuum, during the phase
of axion-dominated inflation. This means, roughly, that the proper frequency of
a mode crossing the horizon at the beginning of inflation, '� , has to be larger
than the frequency scale re-entering the horizon at decoupling, i.e. '��t0	 =
H�a�/a0 > 'dec�t0	 = Hdecadec/a0. This gives the constraint

Z�
<∼ 1028�P�i

(
m

MP

)5/6


 (8.298)

to be added to Eq. (8.257) for �P�i > 1.
We refer to the literature for a detailed study of the region of parameter space

determined by the intersection of all constraints [24]. Here we note that a fully
scale-invariant spectrum (n� = 1) is consistent with the COBE normalization
provided that

�1f��i	H1 
 10−5MP� (8.299)

More generally, for n� varying in the restricted range (8.297), the allowed values
of H1 and �i are illustrated in Fig. 8.3. In the figure we have plotted the conditions
(8.295) and (8.296) for the two limiting values of n� , using Eq. (8.275) for
f��i	, and using the exponential parametrization Z� = exp

[
��2

P�2
i −1	/4

]
for the

expansion factor of a phase of slow-roll inflation with quadratic potential (see Eq.
(1.123)). Also, we have plotted the two cases m = 10−3MP (bold solid curves)
and m = 10−14MP (dashed curves), for a concrete illustration of the very weak –
practically unappreciable – mass dependence of the results in the given range of
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Figure 8.3 Allowed values of H1 as a function of �i, for n� = 0�932 and n� = 0�966.
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the spectral index. Finally, we have truncated the plot at �P�i 
 10, since higher
values of �i would imply a violation of the constraint (8.298).

The curves plotted in Fig. 8.3 might suggest that, given some reasonable
assumption about the axion amplitude �i (for instance, �P�i ∼ 1), one could
directly interpret a measure of n� as a measure of the inflation scale H1. In the
class of string cosmology models that we are considering, on the other hand,
we may expect, generally, H1 ∼ Ms: thus, one might think of “weighing the
string mass with the CMB data” [92]. However, as a warning against a too
enthusiastic application of CMB observations – more generally, against a too
naive extrapolation of low-energy data to determine high-energy parameters –
let us conclude this section by showing that even the knowledge of all the three
parameters m, n� and �i might be not enough for a complete determination of H1.

Consider, for instance, a non-minimal inflationary scenario in which the primor-
dial spectrum of relativistic axion fluctuations has two branches: a low-frequency
branch, which is flat enough to match large-scale observations, and a high-
frequency branch which is steeper, and which matches the string scale normal-
ization at the end-point of the spectrum. In such a context, the axion spectrum
(8.279) has to be replaced by

�2
Pk3 ���k�2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
H1

MP

)2( k

k1

)n�−1+�


 ks < k < k1


(
H1

MP

)2(ks

k1

)n�−1+�( k

ks

)n�−1


 k < ks


(8.300)

where ks is the break scale, and the power � > 0 parametrizes the deviations of the
high-frequency branch with respect to the spectral behavior at lower frequencies.
Examples of backgrounds producing such a spectrum in the context of the pre-big
bang scenario have been presented, for instance, in [84].

The computation of C2, in this case, leads to the result

C2 = �2
n�

f 2��i	

(
H1

MP

)2('0

'1

)n�−1('s

'1

)�


 10−10
 (8.301)

to be compared with Eq. (8.291). It is then clear that the steeper and/or the longer
the high-frequency branch of the spectrum, the larger the suppression at low-
frequency scales, and the wider the range of values of H1 matching the measured
anisotropies. We have new dimensions in parameter space, spanned by ks and �,
and the scale H1 is no longer determined by a measure of n� , contrary to the
indications of Fig. 8.3.

It follows, in particular, that the allowed values of the inflation scale H1 can
be higher than those illustrated in Fig. 8.3 – and thus more consonant with the
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Figure 8.4 Relation between � and n� for different values of H1/MP, ranging
from 10−1 to 10−4 (bold curves). The allowed range of n� is within the vertical
dashed lines.

usual expectation H1 ∼ Ms ∼ 0�1MP – but still in agreement with the experimental
results on n� . For a flat spectrum, Eq. (8.299) is indeed replaced by

�1f��i	H1 
 10−5MP

(
'1

's

)�/2

� (8.302)

For a more general spectrum, with n� �= 1, the relation between n� and � imposed
by the normalization condition (8.301) is illustrated in Fig. 8.4, for various values
of H1/MP. We have used the “natural” value �P�i = 1, and we have set m�P =
10−9 (but the curves remain stable even if we change m by various orders
of magnitude). Finally, we have identified 's with the equality scale 'eq =
Heqaeq/a0, in such a way that the flat branch of the spectrum contains all modes
relevant to the CMB anisotropies. With these assumptions, the new factor '1/'s

appearing in Eq. (8.301) can be estimated as follows:

'1
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= '1

'eq
= H1

Heq
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rad
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)

mat
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MP

)1/2( m

MP

)1/3

�

(8.303)
As clearly shown in Fig. 8.4, even a small departure from the minimal spectrum

(8.279) may be enough to make the scale H1 = 0�1MP compatible with the
measured values of C2 and n� . On the other hand, no deviation at all is needed
if, for some dynamical mechanism (see e.g. [93]), the scale of string cosmology
inflation is lowered down to the GUT level H1 
 10−3MP.



Appendix 8A
Photon–dilaton interactions and cosmic

magnetic fields

A long and fast enough period of primordial inflation can amplify not only the scalar
and tensor components of the metric fluctuations, but also the fluctuations of any other
field coupled to the accelerated evolution of the background. Interesting examples are
the quantum fluctuations of the axion background, analyzed in Section 8.3, and the
fluctuations of the electromagnetic (e.m.) field, which will be discussed here. Just as
metric fluctuations may act as “seeds” for the CMB anisotropy, it will be shown here that
the e.m. fluctuations of the vacuum, appropriately amplified in a string cosmology context,
can provide the required seeds for the cosmic magnetic fields observed on galactic (and
intergalactic) scales.

The origin of such cosmic fields (with coherence scale >∼ 10 kpc, and typical strength
∼ 10−6 gauss) is still, to a large extent, an open astrophysical problem (see for instance
[94, 95]). Almost all mechanisms able to generate large-scale fields, such as the galactic
“dynamo” [96, 97], require the presence of primordial seed fields, large enough to
trigger the subsequent e.m. amplification. The inflationary amplification of the quantum
fluctuations could represent, in principle, the most natural origin of these primordial seed
fields, as first pointed out in [98]. The minimal coupling of the e.m. field to the geometry of
a four-dimensional manifold, described by the Maxwell Lagrangian

√−gg��g��F��F��,
is, however, conformally invariant. As a consequence, there is no amplification of e.m.
fluctuations propagating in a conformally flat metric background, which is typically the
case for the standard inflationary scenario.

There are various possibilities to avoid this conclusion, at least in principle. One may
assume, for instance, that the geometry is not exactly conformally flat [99] (a typical
example is the case of a higher-dimensional, factorized geometry [100]), or that the
conformal invariance of the photon–graviton interaction is broken (for instance by non-
minimal couplings to the curvature [98], or by quantum trace-anomaly effects [101], or by
more exotic “trans-Planckian” effects [102]). Alternatively, one may consider additional,
non-conformally invariant couplings of the photon to other background fields such as the
inflaton [103], the axion [104], the dilaton [105, 106], charged scalar fields [107, 108],
supersymmetric vector fields [109] or graviphotons [110].

The analysis of this appendix concentrates on the possibility offered by the direct
coupling of the photon to the dilaton, typical of the string cosmology scenario. In such
a case the e.m. fluctuations may remain minimally and conformally coupled to the four-
dimensional geometry, and the amplification is driven by the time evolution of the dilaton
background. This mechanism can be efficient enough to produce the required magnetic
seeds directly from the vacuum, as will be explicitly illustrated in this appendix with an
example based on a class of models of pre-big bang inflation [105, 106].

408
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We start from the general form of the S-frame, tree-level action for the effective
interactions of the dilaton with the four-dimensional e.m. field F��:

S = −1
4

∫
d4x

√−g f�bi	 e−&�d F��F
�� (8A.1)

(we are using string units 2�2
s = 1). Here �d is the dilaton appearing in the higher-

dimensional action, and the coupling function f�bi	 explicitly represents the possible
dynamical contribution of the internal moduli fields bi, i = 1
 � � � 
 n, after reduction from
D = 4+n to four dimensions. Finally, & is a model-dependent constant parametrizing the
strength of the photon–dilaton coupling in the higher-dimensional action. For instance,
& = 1
1/2 for the heterotic and type I superstring models, respectively, if the e.m. U�1	
symmetry is identified as a component of the non-Abelian gauge symmetry appearing
in the 10-dimensional effective action (see Eqs. (3B.110) and (3B.87)). The value of &
could be different if the e.m. field were identified, after dimensional reduction, with a
one-form present in the R–R or NS–NS sector of other superstring models (see Appendix
3B); in that case, the coupling to the internal moduli would also be different [111].

The example we discuss refers to the simple case in which f�bi	 always corresponds
to the volume factor of the n-dimensional internal manifold, f�bi	 = Vn ≡∏n

i=1 bi, so that
different string models will be characterized by different values of & only. After all, when
the internal moduli are stabilized, the coupling function f�bi	 becomes trivial, and the only
relevant parameter is &. In any case, different values of & amount to different rescaling of
the photon–dilaton coupling, and may have significant impact on cosmological processes
where large variations of the dilaton field, for long periods of time, may occur.

If the unperturbed e.m. background is vanishing (A� = 0) the action (8A.1) may be
directly interpreted as the quadratic action for the first-order e.m. perturbations �A�, with
F�� = ��A� −��A�. Since we are considering free radiation in a spatially flat geometry
it is convenient to adopt for the metric the conformal-time gauge, g�� = a2��	���, and to
impose on the fluctuations the radiation gauge, defined by �A0 = 0 = i�Ai. After partial
integration the action (8A.1) becomes, in these gauges,

S = 1
2

∫
d�z2

!��	
[
��A′

i	
2 +�Ai�

2�Ai

]



z! =
(

n∏

i=1

bi

)1/2

e−&�d/2
 (8A.2)

and can be recast in canonical form by using the variable �i = z!�Ai. For each polarization
mode �i we then recover the usual, Schrödinger-like equation

�′′
i − [�2 +U��	

]
�i = 0


�i = z!�Ai
 U = z′′
!/z!
 (8A.3)

describing the evolution of the canonically normalized e.m. fluctuations. This equation
is formally the same as the canonical equation (7.50) for tensor perturbations, with the
only difference that now the pump field z! is fully determined by the dilaton and by the
internal moduli fields, according to Eq. (8A.2). The complete absence of coupling to the
four-dimensional geometry follows from the conformal invariance of the action (8A.1),
and implies that in a frozen (� = const) or decoupled (& = 0) dilaton background the
amplification of the e.m. fluctuations is possibly induced only by the internal moduli, if
they are time dependent.
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For a simple example of magnetic seed production we consider here the “minimal”
model of pre-big bang inflation already used in Section 7.3 for the discussion of graviton
production (see Fig. 7.6). The initial, low-energy dilaton-driven phase is described by the
exact solution (8.241)–(8.244) and we obtain, for the photon pump field,

z! ∼ �−�	&′√3/2
 &′ =
∑

i �i − &�
∑

i �i +3�0 −1	√
3�1−�0	


 � ≤ −�s (8A.4)

(note that &′ = & when the internal dimensions are frozen, i.e. when �i = 0 and �0 =
−1/

√
3). In the subsequent discussion we consider, for simplicity, an isotropic internal

geometry, so that �i can be eliminated everywhere in terms of �0 through the Kasner
condition (8.242). Also, for consistency with a realistic scenario in which the Universe
evolves from the higher-dimensional perturbative vacuum towards the four-dimensional
strong coupling regime, we should take into account that the internal dimensions are
shrinking (�i > 0), and that the four-dimensional coupling, controlled by � = �d − ln Vn =
� −∑i ln bi, is growing (�0 < 1/3). The intersection with the Kasner condition then
defines the following allowed ranges of values for �0 and �i:

−1/
√

3 ≤ �0 < 1/3
 0 ≤ �i ≤ 1/
√

n� (8A.5)

For a direct application to superstrings we also assume n = 6 everywhere in the subsequent
discussion.

In the second, high-curvature phase we assume that the internal dimensions are frozen
and we obtain, according to Eq. (7.196),

z! = e−&�/2 ∼ �−�	&�
 −�s ≤ � ≤ −�1� (8A.6)

Finally, z! = const during the radiation-dominated, post-big bang phase � ≥ −�1, where
the dilaton is also frozen, the effective potential U is vanishing, and the Fourier compon-
ents of the canonical field oscillate with constant amplitude determined by the Bogoliubov
coefficients c±�k	:

�i�k	 = 1√
2k

[
ci

+�k	e−ik� + ci
−�k	e+ik�

]
� (8A.7)

The computation of c± can be performed exactly as in Chapter 7, solving the canonical
equation in the dilaton and string phases in terms of Hankel functions, with Bessel indices

� = �1− &′√3	/2
 � = �1−2&�	/2
 (8A.8)

respectively, and matching the solutions at �s and �1. The presence of two transition
scales produces two branches in the spectrum, as illustrated in Fig. 7.6. Higher-frequency
modes (k > ks = �−1

s ) are affected only by the transition at �1: by imposing the canonical
normalization at � → −� we can then apply the results of Eq. (7.151) with �1 = &� and
�2 = 0. Taking into account the leading terms, for both &� > 1/2 and &� < 1/2, we obtain
that the production of high-frequency photons from the vacuum, for each polarization
mode, is controlled by the following Bogoliubov coefficient:

�c−�'	�2 ∼
(

'

'1

)−2���−1


 's < ' < '1 (8A.9)

(to be compared with the corresponding result (7.198) for the graviton spectrum). We
omit, for simplicity, the polarization index.
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Lower-frequency modes, with k < ks, are affected by both background transitions. The
first matching at �s provides the intermediate transition coefficients

c2
+ei$ = i

�

4
xs

[
−H�1	

� H
�2	
�+1 +H

�1	
�+1H

�2	
� + 2

xs

��−�	H�1	
� H�2	

�

]

xs




c2
−e−i$ = i

�

4
xs

[
−H

�1	
�+1H

�1	
� +H�1	

� H
�1	
�+1 − 2

xs

��−�	H�1	
� H�1	

�

]

xs




(8A.10)

where all the Hankel functions are evaluated at xs = k�s (the phase $ is a real parameter
depending on the initial normalization). The above coefficients can be directly obtained
from Eq. (7.201) by replacing the Bessel indices 0 and � with � and �, respectively. The
second matching at �1 leads to the final Bogoliubov coefficient

c3
− = �

4
x1

[
(
c2

+ei$H�1	
� + c2

−e−i$H�2	
�

)(
2
�+1

x1

H
�2	
1/2 −H

�2	
3/2

)

−H
�2	
1/2

(
c2

+ei$H
�1	
�+1 + c2

−e−i$H
�2	
�+1

)
]

x1

(8A.11)

(all the Hankel functions are evaluated at x1 = k�1, except those contained inside c2
±).

This coefficient can also be obtained from the corresponding result for the graviton
spectrum, Eq. (7.200), with the obvious replacement � → � and −1/2 → 1/2 (the second
replacement is due to the fact that, in the radiation era, the graviton pump field leads
to a Bessel index 1/2 − 1 = −1/2; the photon pump field, on the contrary, is constant,
and the Bessel index is 1/2 −0 = 1/2). The approximated estimate of the mean number
of photons produced is then obtained by considering the limit k � ks � k1, and using
the small-argument expansion of the Hankel functions. This gives, to leading order in
x1 � xs � 1,

�c−�'	�2 ∼
(

'

'1

)−1(
'

's

)−2���(
'1

's

)2���

 ' < 's (8A.12)

(modulo a real coefficient of order one). This branch of the spectrum matches continuously
to the high-frequency branch (8A.9) at ' = 's.

We now insert the two results (8A.9) and (8A.12) into the spectral energy density
(7.160), using the definition (7.163) for the radiation density %r�t	, and absorbing into
H1 all numerical factors of order one arising from the computation of c− (as in the case
of the graviton spectrum). The full energy density spectrum of the e.m. fluctuations can
be written in final form as follows:

%!�'
 t0	 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

%r�t0	

(
H1

MP

)2(
'

'1

)3−�2&�−1�

 's < ' < '1


%r�t0	

(
H1

MP

)2(
's

'1

)3−�2&�−1�(
'

's

)3−�&′√3−1�

 ' < 's�

(8A.13)

This result is valid for & > 0, since for & = 0 there is no amplification of the fluctuations
during the string phase, when the internal dimensions are frozen. Comparing with the
similar expression (7.205) for the graviton spectrum, and remembering that � = 1 +�
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for the given class of inflationary backgrounds, one can obtain (for any value of &) a
close correspondence between the spectral distribution of the produced photons and the
produced gravitons (see [112] for the case & = 1, and [113] for the case & = 1/2).

Let us now impose the condition that the radiation produced contains a magnetic
component strong enough to seed the cosmic magnetic fields BG, of microgauss strength,
currently observed on a galactic scale. We must require that the amplified e.m. fluctuations
be coherent and large enough, over a proper length scale that today roughly corresponds
to the megaparsec scale, as first pointed out in [98]. For a conservative estimate of the
required field strength [98] we can then assume the existence of the standard galactic
dynamo mechanism, operating since the epoch of structure formation, and characterized by
an amplification factor ∼1013; also, we can take into account the additional amplification
(∼104) due to magnetic flux conservation in the collapse of the galactic structure from
the Mpc to the 10 kpc scale. We obtain, in this way, the lower bound Bs/BG

>∼ 10−17, i.e.
Bs

>∼ 10−23 gauss, on the present amplitude of the magnetic seeds at the Mpc scale; the
identification of the seeds with the inflationary spectrum of e.m. fluctuations eventually
leads to the condition [98]

B2
s �'G
 t0	

B2
G�t0	


 �!�'G
 t0	

�r�t0	
= %!�'G
 t0	

%r�t0	
>∼ 10−34
 'G = �1 Mpc	−1 ∼ 10−14 Hz�

(8A.14)

We have used the approximate equality of the present energy density associated with the
galactic magnetic field (BG ∼ 10−6 gauss) and the energy density of the CMB radiation.

This lower bound on %! has to be complemented by a competing upper bound,
since the energy density stored in the amplified fluctuations cannot be too large – to
avoid destroying the large-scale homogeneity of the cosmological background, and to be
consistent with the linearized treatment of the fluctuations as small perturbations, with
negligible backreaction. This imposes the stringent, model-independent constraint [105,
112]

%!�'
 t	 ≤ %r�t	
 (8A.15)

to be satisfied at all times, for all frequency scales of the amplified spectrum. Remarkably
enough, both conditions (8A.14) and (8A.15) can be satisfied, without fine-tuning, in a
wide region of the parameter space spanned by the variables �'1
's
�
H1
�0
 &�.

In order to illustrate this possibility we can first express the parameter � in terms of the
ratio between the value of the string coupling at the beginning and at the end of the high-
curvature phase – following Eq. (7.196) – as gs/g1 = ��1/�s	

�; next, we can relate the
break-point frequency 's to the time duration of the string phase, using the redshift factor
zs = �s/�1 = '1/'s. In this way we can express the photon spectrum (and the related
constraints) through a new, but equivalent, set of parameters, �zs
 gs
 g1
H1
�0
 &�. These
new variables are more convenient from a phenomenological point of view because, in
the minimal string cosmology scenario that we are considering, the transition scale is
controlled by the string mass scale, H1 
 Ms, and the final value of the string coupling
is also fixed [114], at a value quite close to the presently expected value g1 
 Ms/MP
(remember that the dilaton is assumed to be frozen during the subsequent standard
evolution).

In the following discussion we keep g1 and H1 fixed at these typical values, assuming,
in particular, Ms = 0�1MP, consistent with string models of unified gravitational and
gauge interactions [115]. The number of free parameters thus reduces to four, with the
two variables �zs
 gs� parametrizing the details of the background evolution, and the other
two variables ��0
 &� parametrizing the strength of the photon coupling to the inflationary
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background. We plot the allowed regions in the plane �zs
 gs� at different, constant values
of �0 and &, chosen appropriately for the e.m. spectrum. For practical purposes we work
with a decimal logarithmic scale, introducing the variables

x = log zs = log
(

'1

's

)
> 0


y = log
(

gs

g1

)
= −� log zs = −�x < 0� (8A.16)

In terms of these variables we can rewrite the photon spectrum as

%!

%r

�'
 t	 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g2
1

(
'

'1

)3−�1+2&y/x�

 10−x <

'

'1

< 1


g2
1

(
'

'1

)3−�1−&′√3�
10−x�1−&′√3�+�x+2&y�


'

'1

< 10−x


(8A.17)

where g1 and '1 are both determined by Ms as

g1 = Ms

MP


 '1 = 4×g
1/2
1 1011Hz (8A.18)

(see Eq. (7.206)).
In order to impose the homogeneity condition (8A.15) let us first note that the low-

frequency branch of the spectrum (8A.13), controlled by &′, is always growing for the
values of �0
�i included in the range (8A.5), and for all & varying from 0 to 1. The high-
frequency (string) branch of the spectrum, on the contrary, is growing for y > −�2x/&	,
and decreasing for y < −�2x/&	.

In the first case the peak of the spectrum is localized at ' = '1, and the homogeneity
condition requires g2

1 < 1 (which is always satisfied by our choice g1 = 0�1). In the second
case the peak is at ' = 's = 10−x'1, and the spectrum is marginally compatible with the
homogeneity condition, which requires y > −�2x/&	+ &−1 logg1. In that case, however,
one should take into account also the slightly more stringent (but model-dependent)
bound %!

<∼ 0�1%r – following from the presence of strong magnetic fields at the
nucleosynthesis epoch [116] – which implies y > −�2x/&	+&−1�logg1 +1	. For g1 = 0�1
such a condition pratically rules out a decreasing photon spectrum. We thus restrict our
subsequent discussion to the case of a monotonically growing spectrum, satisfying the
constraint

−2x

&
< y < 0� (8A.19)

We are left with the seed condition (8A.14), for which we must separately consider
the two cases 'G < 's and 's < 'G < '1. We impose the seed condition on the spectrum
(8A.17), plotting in the �x
 y� plane the allowed region determined by the intersection with
Eq. (8A.19). We consider the particular cases of the heterotic (& = 1) and type I (& = 1/2)
superstring models, and four different pairs of values of the parameters ��0
�i	, to take
into explicit account the effects of the internal dynamics on the low-energy branch of the
spectrum. The resulting allowed regions, labeled by “photons”, are reported in Fig. 8.5,
where we have marked with a bold border the simplest case in which the extra dimensions
are frozen, �0 = −1/

√
3, �i = 0, and with a dashed border the cases corresponding to the

other pairs of values of ��0
�i	. We have chosen, respectively, the pairs �−1/3
1/3	,
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Figure 8.5 Allowed regions determined by the conditions (8A.14) and (8A.19)
imposed on the photon spectrum (8A.17), and by the conditions (8A.20), (8A.21)
and (8A.22) imposed on the graviton spectrum (7.205). We have fixed H1 =
Ms = 0�1MP, g1 = 0�1 and n = 6. The photon regions are plotted for the two
cases & = 1 and & = 1/2, and for appropriate values of �0 and �i, illustrating the
maximal and minimal extension of the allowed region in the case of a non-trivial
evolution of the moduli fields (dashed lines).

�0
1/
√

6	, �1/3
1/3	 for & = 1, and �−0�568
0�072	, �−1/3
1/3	, �0�063
0�406	 for
& = 1/2, where the numerical values of �0 and �i have been selected so as to span the
allowed region from its maximal to its minimal extension, compatible with the range of
variations of the parameters �0 and �i given in Eq. (8A.5) (with n = 6).

Also plotted in Fig. 8.5, for comparison, are the regions of parameter space compat-
ible with a detectable production of cosmic gravitons, in the same class of inflationary
backgrounds. The graviton spectrum %g�'
 t	 of Eq. (7.205), produced in the context
of the “minimal” pre-big bang scenario, depends in fact only on the four parameters
�'s
'1
�
H1�, and with the choice g1 = Ms/MP = 0�1 it can be rewritten in terms of
the two independent variables x and y, exactly like the photon spectrum (8A.17). As
already stressed in Section 7.3, such a spectrum is monotonically growing even at high
frequency, because of the condition 0 < � ≤ 3, which implies, in the �x
 y� plane,

−3x < y < 0� (8A.20)

As a consequence, it is thus automatically consistent with the homogeneity and nuc-
leosynthesis conditions imposed on the peak value of the spectrum. If we require, in
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addition, that the graviton background be strong enough to be detectable by Advanced
LIGO,

h2%g�'L
 t0	 >∼ 10−11
 'L = 102 Hz (8A.21)

(see Section 7.4), and weak enough to be compatible with the pulsar limit

h2%g�'P
 t0	 <∼ 10−8
 'P = 10−8 Hz (8A.22)

(see Section 7.3), we obtain the allowed regions marked by the thin lines, and labeled
“gravitons”, in Fig. 8.5. There are two regions because of the absolute value present in
the slope of the spectrum (7.205): the upper region corresponds to � = �−1 < 1/2, the
lower one to � = �−1 > 1/2.

Two comments are now in order. The first concerns the possibility of obtaining an
efficient seed production, even in the context of the minimal scenario considered here,
for both & = 1 and & = 1/2. In both cases, however, the efficiency of the mechanism
requires a small enough value of the dilaton at the beginning of the string phase, and a
long enough duration of the string phase [105]. Otherwise the amplified fluctuations are
too weak to seed the galactic dynamo.

The second comment concerns the overlap of the graviton and photon regions [113]. As
clearly illustrated in Fig. 8.5, efficient production of seeds for the cosmic magnetic fields
is in principle compatible with the associated production of a cosmic graviton background
detectable by Advanced LIGO if & = 1/2 (as for type I superstrings), and incompatible
if & = 1 (as for heterotic superstrings). This may give us direct experimental information
on the possible primordial strength of the photon–dilaton coupling, and on the choice of
superstring model most appropriate to the early cosmological evolution.

Let us suppose, for instance, that further studies and observations of cosmic magnetic
fields may give us direct independent confirmation of the expected seed production,
exactly as predicted in a string cosmology context: a future detection of cosmic gravitons
by the next generation of gravitational antennas will thus provide support in favour of
type I models, while the absence of detection (at the same sensitivity level) should be
interpreted as more in favor of the heterotic model of coupling. Such an argument cannot
be applied, however, to cosmological models where photons are decoupled from the
dilaton, since the amplification due to the internal moduli is in general too small to be
effective (see however [100]).

It should be noted, also, that the extension of the low-energy (dilaton) part of the
e.m. allowed regions is rather strongly dependent on the values of �0 and �i. A precise
experimental determination of the spectrum of the e.m. fluctuations may thus, in principle,
open a direct window on the primordial dynamics of the extra dimensions (see also [111]
for previous studies on higher-dimensional modifications of the photon spectrum).

A final remark concerns the fact that the photon spectrum is in general flatter than
the corresponding spectrum of metric perturbations, suggesting the possible role of e.m.
fluctuations as seeds for an isocurvature component of the observed CMB anisotropy
[83]. A more appropriate candidate for this purpose is, however, a massless axion field,
as will be discussed in Appendix 8B.



Appendix 8B
Seeds for the CMB anisotropy

The metric fluctuations, sources of the CMB anisotropy through the SW effect (see Sec-
tion 8.2), can be produced by inflation in two ways: either directly, through the parametric
amplification of the quantum fluctuations of the metric tensor, or indirectly, through an
auxiliary field whose fluctuations are amplified with an appropriate (nearly flat) spec-
trum. In this second case there are two possible mechanisms of indirect production: �i	
the so-called “curvaton” mechanism (illustrated in Section 8.3), in which the background
component ��� of the auxiliary field is non-zero, becomes dominant and then decays,
leaving a flat spectrum of adiabatic metric perturbations; �ii	 the so-called “seed” mech-
anism [117], in which the background component of the auxiliary field is vanishing,
��� = 0, but its fluctuations contribute as quadratic sources to the metric perturbation
equations, generating a final spectrum of isocurvature metric fluctuations.

In view of the constraints obtained from current observations, the seed mechanism may
at most provide a sub-dominant contribution to the total CMB anisotropy, which seems
to be largely dominated by the contributions of adiabatic metric perturbations [56, 57].
The seed mechanism, however, is interesting in itself, and typical of the string cosmology
scenario where there are, in principle, many background fields in the ground state of the
effective action. In the example presented in this appendix, the role of seeds is played by
the axion fluctuations �� , amplified with a flat spectrum (as in the curvaton scenario),
but with a vanishing background even in the post-inflationary era.

In the curvaton mechanism, generation of the metric perturbations is triggered by the
axion fluctuations present at the beginning of the radiation era, but the subsequent amp-
lification of the Bardeen potential is mainly due to the presence of the axion background.
As a consequence, the final Bardeen spectrum (outside the horizon, in the matter era),
only depends on the initial post-inflationary spectrum of relativistic axion fluctuations.
In the seed mechanism the amplification of the metric perturbations is continuously
controlled by the evolution of the axion perturbations, and the final Bardeen spectrum
at decoupling is determined by the final spectrum of axion fluctuations in the matter-
dominated era.

The present discussion concentrates on the case of massless axion fluctuations [82, 83]
(but the seed mechanism can be implemented also in the massive case [84], provided the
seeds are light enough to survive down to the present epoch). In such a case there is no
need for non-relativistic corrections to the axion spectrum, and the evolution of the axion
fluctuations is always governed by Eq. (8.276); we must take into account, however,
that for low-frequency modes (k < keq = �−1

eq ) there is a further amplification due to the
background transition at �eq, as discussed in Section 7.3 for the graviton case.

416
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The final axion spectrum thus has two branches, and can be obtained from the corres-
ponding spectrum of tensor perturbations, Eq. (7.178), simply by replacing the graviton
spectral index 2 + 2� = 3 − 2��� with the axion spectral index 3 − 2��� = n� − 1, where
the values of � and n� are those given in Eqs. (8.240) and (8.246). For the high-frequency
branch of the axion spectrum it is possible that � 
 3/2 (i.e. n� 
 1), with an appropriate
model of background evolution (see Section 8.3). For the low-frequency sector, which is
the one relevant to our discussion, the spectrum is given by

%��'
�	 = g2
1%r��	

(
'

'1

)3−2���(
'

'eq

)−2


 ' < 'eq
 �eq < �� (8B.1)

We have defined g1 = H1/MP, and we have used %r = �H1/H	2�a1/a	4 to denote, as
usual, the critical fraction of radiation energy density.

We now have to compute the Bardeen spectrum induced by these axionic seeds, and the
corresponding (indirect) contribution to the CMB anisotropy. We start by assuming that
there is no (appreciable) direct amplification of the metric perturbations during inflation,
so that � = 0 = � outside the horizon, at the beginning of the matter-dominated era.
The amplification of super-horizon metric perturbations is fully “seeded” by the axion
sources which generate � ′ �= 0, and thus contribute to the temperature anisotropy with
isocurvature initial conditions. As a consequence, the large-scale amplitude of �T/T will
be controlled by the spectrum of the Bardeen potential at horizon crossing, �k�� = k−1	,
according to Eqs. (8.224) and (8.225).

A quick estimate of the Bardeen spectrum can be obtained by including the seed
source into the general, gauge-invariant perturbation equations (8.62)–(8.69), and neg-
lecting the adiabatic contributions of the perturbed matter sources. From the �i �= j	, �i0	
and �00	 components of the scalar perturbation equations one obtains, respectively, the
conditions

i
j��−�	 = �2

Pa
2"

j
i 
 (8B.2)

i��
′ +��	 = �2

P

2
a2"0

i 
 (8B.3)

�2� −3� �� ′ +��	 = �2
P

2
a2"0

0 
 (8B.4)

where "�
� is the stress tensor associated with the axion fluctuations:

"�
� = ����	����	− 1

2
��

�����	����	� (8B.5)

Moving to momentum space, it is convenient to define the set of seed variables f�
 fv
 f�

such that

a2"
j
i = kik

jf�
 i �= j


a2"0
i = ikifv
 a2"0

0 = f��
(8B.6)

From Eq. (8B.2), and from the combination of Eqs. (8B.3) and (8B.4), we then obtain
the relations

� −� = �2
Pf�
 (8B.7)

−k2� = �2
P

2

(
f� +3�fv

)
(8B.8)
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(we have omitted, for simplicity, the Fourier index k). The combination � +�, appearing
in the ISW effect (see Eq. (8.186)), is then given by

� +� = −�2
P

k2

(
k2f� +f� +3�fv

)
� (8B.9)

In the case of massless axions, the application of Eqs. (8B.5) and (8B.6) at horizon
crossing (k� = 1) leads to

(
k2f�

)
hc

∼ (f�

)
hc

∼ �kfv	hc (8B.10)

(as confirmed by an explicit computation of "�� in terms of the exact solution for �� in
the matter-dominated era [82, 83]). Thus,

��k +�k�hc ∼ �2
P

k2

∣
∣f�

∣
∣
hc

= �2
P

(
a2��

k2

)

hc


 (8B.11)

where �� = "0
0 . At horizon crossing, on the other hand, �k/a	hc = 'hc = H , so that

we can explicitly insert the critical density in the previous equation, since ��P/'	2
hc ∼

G/H2 ∼ �−1
c . One is then naturally led to the conclusion that the spectrum of the Bardeen

potentials, at horizon crossing, is directly controlled by the spectral energy density of the
axion fluctuations (in critical units) as follows:

k3/2 ��k +�k�hc ∼ �%�	hc � (8B.12)

The precise relation between the Bardeen spectrum and the energy spectrum of the
axion seeds is to be determined, of course, by computing the Fourier transform of the
two-point correlation function of both sides of Eq. (8B.9). The two-point correlation of
the left-hand side is given by

��+��x
 x′	 ≡ ���x +�x	��x′ +�x′	� =
∫ d3k

�2�k	3
ei	k·�	x−	x′	 ���+��k	�2 
 (8B.13)

and the usual interpretation of the correlation brackets as a spatial average (see Eqs.
(7.84)–(7.86)) leads to the spectral amplitude ���+� � = k3/2 ��k +�k�. The correlation
of the right-hand side requires instead the computation of the two-point function for
the components of the seed stress tensor, �"�

��x	"�
��x′	�, which becomes a four-point

function when explicitly expressed through the fluctuating field �� .
Let us consider, for instance, the correlation associated with the energy density term,

f� = a2�� . The two-point function is

���x
 x′	 = �����x	−����	����x′	−����	� = ����x	���x′	�− �����	2 
 (8B.14)

where, from Eq. (8B.5),

�� = 1
2a2

(
�� ′2 +��2

i

)
(8B.15)

(for simplicity, we denote spatial gradients with a spatial index, i.e. ��i ≡ i���	). We
have subtracted the term ����, since we are correlating the fluctuations of a quadratic
variable with non-zero average value ���� �= 0 (unlike the linear fluctuations � , �� ,
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which are represented by stochastic variables with zero expectation value). The various
terms to be computed are then the following:

��x
x′	 = ��� ′2�x	�� ′2�x′	�− ���� ′2�	2
 (8B.16)

�ij�x
 x′	 = ���2
i �x	��2

j �x
′	�−���2

i ����2
j �
 (8B.17)

�i�x
 x′	 = ��� ′2�x	��2
i �x

′	�−��� ′2����2
i �� (8B.18)

For the explicit computation it is convenient to observe that the spatial correlation of
a generic variable A�x	,

�A�x	A�x+ r	� =
∫

d3x
∫ d3k

�2�	3

d3k′

�2�	3
ei	k·	xei	k′ ·�	x+	r	AkAk′

=
∫ d3k

�2�	3
d3k′ �3�k+k′	ei	k′ ·	rAkAk′ =

∫ d3k

�2�	3
e−i	k·	r �Ak�2 (8B.19)

(we have used the reality condition A−k = A∗
k, and the definition (7.64) of Fourier

transform), can also be obtained by replacing the spatial average procedure, V−1
∫

d3x,
with an appropriate average prescription for the Fourier components:

�AkA
∗
k′ � = �2�	3

V
�3�k−k′	�Ak�2
 (8B.20)

namely

�A�x	A�x+ r	� ≡ V
∫ d3k

�2�	3

d3k′

�2�	3
ei	k·	xei	k′ ·�	x+	r	�AkAk′ �� (8B.21)

Thus, the spatial averages required by the computations of the correlation func-
tions (8B.16)–(8B.18) can be automatically accounted for by imposing the so-called
“stochastic” conditions on the fluctuation variables,

��� ′
k�� ′∗

k′ � = �2�	3

V
�3�k−k′	��� ′

k�2
 (8B.22)

���i�k	��∗
j �k

′	� = kikj

�2�	3

V
�3�k−k′	���k�2
 (8B.23)

��� ′�k	��∗
i �k

′	� = −���i�k	�� ′∗�k′	� = −iki

�2�	3

V
�3�k−k′	��� ′

k��k��
(8B.24)

We present here an explicit example by performing a detailed computation of the
correlation function ��x
x′	 of Eq. (8B.16) (see [83] for the other contributions to �� ,
and for the correlation of the other components of "��). Let us start with the mean value
��� ′2�. Using Eq. (8B.22) we obtain

��� ′2� = V
∫ d3k

�2�	3

d3k′

�2�	3
��� ′

k�� ′
k′ �ei�k+k′	·x =

∫ d3k

�2�	3
��� ′

k�2
 (8B.25)

where the integrand is a convolution of Fourier transforms, since

��� ′
k�2 = √

V
∫

d3x
∫ d3p

�2�	3

d3q

�2�	3
e−ik·xei�p+q	·x�� ′

p�� ′
q
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= √
V
∫ d3p

�2�	3
�� ′

p�� ′
k−p� (8B.26)

The four-point part of Eq. (8B.16), on the other hand, can be written as follows:

��� ′2�x	�� ′2�x′	� = V
∫ d3k

�2�	3

d3k′

�2�	3
��� ′2

k �� ′2
k′ �ei�k·x+k′ ·x′	

= V 2
∫ d3k

�2�	3

d3k′

�2�	3

d3p

�2�	3

d3q

�2�	3

��� ′
p�� ′

k−p�� ′
q�� ′

k′−q�ei�k·x+k′ ·x′	� (8B.27)

Decomposing the four-point bracket as

��� ′
p�� ′

k−p���� ′
q�� ′

k′−q�+��� ′
p�� ′

q���� ′
k−p�� ′

k′−q�+��� ′
p�� ′

k′−q���� ′
k−p�� ′

q�

(8B.28)

and using the stochastic condition (8B.22), one finds that the first term exactly reproduces
(and cancels) the quadratic average ���� ′2�	2, while the contribution of the other two
terms is identical, so that

��x
x′	 = 2
∫ d3k

�2�	3
eik·�x−x′	

∫ d3p

�2�	3
��� ′

p�2��� ′
k−p�2� (8B.29)

With similar computations we can also express the other correlation functions as
convolutions of the Fourier transforms ��k and �� ′

k:

�ij�x
 x′	 = 2
∫ d3k

�2�	3
eik·�x−x′	

∫ d3p

�2�	3
pipj���p�2�ki −pi	�kj −pj	���k−p�2


�i�x
 x′	 = −2
∫ d3k

�2�	3
eik·�x−x′	

∫ d3p

�2�	3
pi�ki −pi	���p�� ′

p���� ′
k−p��k−p�

(8B.30)

(no sum over i
 j). Summing all contributions one then obtains, for the correlation of �� ,

���x
 x′	 = 1
a4

�f�
�x
 x′	 = 1

4a4

[

��x
x′	+2
∑

i

�i�x
 x′	+∑
ij

�ij�x
 x′	

]

= 1
2a4

∫ d3k

�2�k	3
eik·�x−x′	k3

∫ d3p

�2�	3
F��k
p	
 (8B.31)

where

F��k
p	 =��� ′
p�2��� ′

k−p�2 +�	p · �	k− 	p	�2���p�2���k−p�2

−2	p · �	k− 	p	���p�� ′
p����k−p�� ′

k−p�� (8B.32)

The comparison of this result with the left-hand side correlation (8B.13) immediately
gives the contribution of f� to the Bardeen spectrum:

k3��k +�k�2 = �4
P

k4

k3

2

∫ d3p

�2�	3
F��k
p	� (8B.33)
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To complete our computation we now need the explicit solution for the axion fluctu-
ations ��k��	 in the matter-dominated era. We need, in particular, the whole spectrum
(not only the super-horizon sector k� < 1, and not only the low-frequency branch k < keq),
since the convolutions are performed by integrating over all modes, from zero to the
high-frequency cut-off k1.

We solve the canonical equation (8.276) by assuming the simplest model of background
evolution, characterized by a first transition from the inflation phase to the radiation phase
at � = −�1, and by a second transition from the radiation phase to the matter phase at
� = �eq (the same background as used in Section 7.3 to discuss graviton production). The
axion pump field (8.238) can be parametrized as

z1 = 1√
2

(
− �

�1

)�


 � ≤ −�1


z2 = 1√
2

(
�+2�1

�1

)

 −�1 ≤ � ≤ �eq


z3 = 1√
2

(
�+2�1

�1

)2(�eq +2�1

�1

)−1


 �eq ≤ ��

(8B.34)

The exact solution for the axion perturbations, normalized to an initial spectrum of
quantum fluctuations of the vacuum, can then be obtained directly from the corresponding
solution for tensor perturbations, Eqs. (7.167) and (7.168), with the obvious replacement
�1 = �, �2 = 1, �3 = 2, namely �1 = � = 1/2−�, �2 = −1/2, �3 = −3/2:

��1
k��	 = ei$

(��1

2

)1/2
(

x

x1

)�

H�2	
� �x	
 � ≤ −�1


��2
k��	 =

(��1

2

)1/2
(

y

x1

)−1/2 [
c2

+H
�2	
−1/2�y	+ c2

−H
�1	
−1/2�y	

]

 −�1 ≤ � ≤ �eq


��3
k��	 =

(��1

2

)1/2
(

y

x1

)−3/2(yeq

x1

)[
c3

+H
�2	
−3/2�y	+ c3

−H
�1	
−3/2�y	

]

 �eq ≤ ��

(8B.35)

We recall that x = k�, y = x+ 2x1, x1 = k�1, yeq = xeq + 2x1, and that the Bogoliubov
coefficients c2

±, c3
± are to be determined by matching the solutions at � = −�1 and

� = �eq.
We can separately evaluate the two branches of the axion spectrum, starting from the

high-frequency modes k � keq = �−1
eq which are only affected by the first background

transition. For such modes c2
± = c3

±, and for c2
± we can apply the general result (7.169).

Using the explicit form (7.171) of H
�1
2	
±1/2, and the small argument limit x1 � 1, we obtain

the relation

c2
+�k	e−ix1 = −c2

−�k	eix1 = ��x
−���−1/2
1 
 (8B.36)

where �� is a complex number (with modulus of order one) determined by the coefficients
of the Hankel expansion (see also Eq. (8.278)). Inserting the coefficients c2

± = c3
± into
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the general solution for ��3
k, and using for H

�1
2	
−3/2�y	 the large argument approximation of

Eq. (7.137), we eventually obtain the high-frequency fluctuations in the form

��k��	 
 c�k	

a
√

k
sin k�
 �eq < �
 keq < k < k1
 (8B.37)

where

�c�k	� ∼ �k/k1	
−���−1/2
 (8B.38)

modulo a numerical factor of order one. We have used the scale factor of the matter-
dominated era, normalized as in Eq. (8B.34).

For the low-frequency solutions, k < keq, we must take into account also the second
background transitions, so that the coefficients c3

± are determined by the matching of
��2

k and ��3
k at � = �eq. The result of such a computation, for a generic background

kinematics, has already been presented in Eq. (7.170). The application to our particular
background leads to the exact result

c3
− =− i

(�yeq

8

)1/2 [
−iH�2	

−3/2�yeq	
(
c2

+e−iyeq − c2
−eiyeq

)

+ (c2
+e−iyeq + c2

−eiyeq
)
(√

2
�yeq

e−iyeq + 2
yeq

H
�2	
−3/2�yeq	

)]




c3
+ =− i

(�yeq

8

)1/2 [
iH�1	

−3/2�yeq	
(
c2

+e−iyeq − c2
−eiyeq

)

− (c2
+e−iyeq + c2

−eiyeq
)
(√

2
�yeq

eiyeq + 2
yeq

H
�1	
−3/2�yeq	

)]

�

(8B.39)

Let us now use the relation (8B.36), and keep only the leading terms for x1 � xeq � 1.
Taking into account the explicit coefficients (7.150) of the small argument expansion of
H−3/2 (in particular, using the relation p−3/2 = p∗

−3/2), we are led to

c3
−�k	 = −c3

−�k	 = !�x
−���−1/2
1 x−1

eq 
 (8B.40)

where !� is a numerical factor determined by the Hankel expansion.
By inserting these coefficients into Eq. (8B.35) we can finally distinguish, in the low-

frequency branch k�eq < 1 of the solution, the modes which are already inside the horizon
(k� > 1), from the modes which are still outside (k� < 1). In the first case the large
argument limit of H

�1
2	
−3/2 leads to

��k��	 
 c�k	

a
√

k

(
k

keq

)−1

sin k�
 �eq < �
 k < keq
 k� > 1� (8B.41)

In the second case, the small argument limit of H
�1
2	
−3/2 leads to

��k��	 
 c�k	

a
√

k

(
k

keq

)−1

�k�	2
 �eq < �
 k < keq
 k� < 1� (8B.42)

The three branches (8B.37), (8B.41) and (8B.42) completely specify the axion spectrum,
and can be used to compute the convolution (8B.31), and its contribution to the Bardeen
potential (8B.33).
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Following the same procedure for the other axion contributions appearing on the
right-hand side of Eq. (8B.9), and evaluating the final spectrum at horizon crossing,
one finally obtains the result anticipated by Eq. (8B.12) (see [82, 83] for a detailed
computation). The axion energy spectrum, on the other hand, is given in Eq. (8B.1) where,
in the matter-dominated era, %r��	 = �aeq/a	 = ��eq/�	. At horizon crossing we have
%r�hc	 = �k�eq	

2 = �'/'eq	
2, so that the resulting (axion-induced) Bardeen spectrum

can be written as

k3 ��k +�k�2hc ∼ �%�	2
hc = g4

1

(
'

'1

)6−4���
� (8B.43)

The corresponding isocurvature contribution to the angular power spectrum, according to
Eqs. (8.224) and (8.225), is then

C iso
( 
 2

�

∫ dk

k
k3 ��k +�k�2hc j2

( �k�0	


 2
�

g4
1

(
'0

'1

)ns−1 ∫
dx0 x

ns−2
0 j2

( �x0	


 g4
1

(
'0

'1

)ns−1
��3−ns	��(+ns/2−1/2	

23−ns�2�2−ns/2	��(+5/2−ns/2	

 (8B.44)

where we have set x0 = k�0 = '/'0, ns − 1 = 6 − 4���, and we have used the result
(8.217).

At very large scales, the COBE normalization (8.219) imposes the important constraint

C2 = 8�2
ns

(
H1

MP

)4(
'0

'1

)ns−1


 10−10
 (8B.45)

where �ns
is the same n-dependent coefficient of Eq. (8.291) appearing in the context of

the curvaton mechanism (note, however, that in the curvaton case C2 is proportional to
the second power of the ratio H1/MP). Given the very large value of the ratio '1/'0 ∼
�H1/MP	

1/21029 (see Eqs. (7.180), (7.181)), it is clear that a very small, positive tilt
ns > 1 of the relativistic axion spectrum may be enough to make compatible the previous
constraint even with minimal models of string cosmology inflation [82, 83, 92], where
H1 ∼ Ms ∼ �10−1 −10−2	MP.

Unfortunately, however, the seed mechanism has difficulties in reproducing, by itself,
the observed peak structure of the CMB anisotropy at smaller angular scales, even taking
into account non-minimal models with a break in the axion spectrum [119], and even
adjusting other cosmological parameters [120]. Such a mechanism may thus contribute, at
most, to a small fraction of the total observed temperature anisotropy. Nevertheless, it may
be important to stress that the metric fluctuations �k induced by the seeds are quadratic
functions of a Gaussian stochastic variable ��k, and are thus intrinsically non-Gaussian.
The seed mechanism may then represent a possible interesting source of non-Gaussianity,
to be confronted with present [91] and future analyses of the statistical properties of the
anisotropy spectrum.
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9

Dilaton phenomenology

The dilaton field is an essential component of all superstring models, and thus of
the cosmological scenarios based on the string effective action. In particular, as
shown in the previous chapters, the dilaton may control the inflationary dynamics
and play a fundamental role in the generation of the primordial spectra of quantum
fluctuations amplified by inflation. Also, it is the dilaton which controls the
intensity of the various coupling strengths, and which may drive the Universe
towards a phase of strong coupling possibly preceding the standard decelerated
evolution. Thus, we can say that the dilaton (together with the other moduli fields,
associated with the dynamics of the extra dimensions) is one of the most typical
ingredients of models of string cosmology inflation, and is the basis of the main
differences between the string models and the standard inflationary models based
on the general relativistic equations.

In the post-inflationary epochs we may expect that the dilaton, like the other
moduli fields, tends to approach a stabilized configuration either under the action
of an appropriate potential (attracting it to a local minimum), or simply as a con-
sequence of the standard, radiation-dominated dynamics: the low-energy string
cosmology equations admit in fact asymptotic, radiation-dominated solutions at
constant dilaton (see Eq. (4.58), and the discussion of Section 6.2). The dilaton,
at this point, would seem to disappear from the cosmological scene (or, at least,
to reject the primary role played at earlier epochs). In this chapter it will be
shown, instead, that the phase of standard cosmological evolution (and, in par-
ticular, our present epoch) might also be characterized by an interesting dilaton
phenomenology. We will discuss, in particular, two possible effects.

The first effect concerns the amplification of the quantum fluctuations of the
dilaton background – in other words, the quantum production of dilaton pairs
from the vacuum – under the action of the inflationary Universe. Depending on
the mass acquired by the dilaton after inflation, the cosmic dilaton background
produced in this way could survive until the present epoch, and could be accessible

428
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to direct detection by gravitational antennas of appropriate sensitivity, as will be
discussed in Sections 9.1 and 9.2.

The second effect concerns the dilaton background itself, quite irrespective of
its possible fluctuations. The freezing (and/or the sub-dominant contribution to the
cosmological dynamics) of the dilaton during the radiation era might correspond
only to a temporary “hibernation” of this field: the dilaton could “wake up” after
the equilibrium epoch, possibly driving our Universe towards a phase of late-time
accelerated expansion. Various aspects of such a dilatonic dark energy scenario,
including the possible strong coupling to some exotic dark matter component, and
the corresponding impact on the cosmic coincidence problem, will be discussed
in Section 9.3.

9.1 Spectral intensity of a massive dilaton background

As already stressed in the previous chapters, the low-energy string effective action
contains (even to lowest order) at least two fundamental bosonic fields: a tensor
field, the metric g��, and a scalar field, the dilaton �. The dilaton controls the
effective strength of all gauge couplings [1] in the context of “grand-unified”
models of all fundamental interactions, and can also be geometrically interpreted
as the effective “radius” of the eleventh dimension [2] in the M-theory context (see
Appendix 3B). Quite independently of its possible interpretation, the dilaton is
present in all (super)string models as the scalar partner of the graviton associated
with the conformal invariance of the world-sheet action (see Chapter 3 for a
detailed discussion).

During inflation, the accelerated evolution of the cosmological background
induces a parametric amplification of the transverse and traceless tensor part
h�� = �g�� of the metric perturbations. As discussed in Chapter 7 such an effect
can be described as a process of graviton production from the vacuum, with the
consequent formation of a cosmic background of relic gravitons. In the same way,
as we shall see in this chapter, a phase of inflation also parametrically amplifies
the fluctuations � = �� of the scalar dilaton background, thus producing pairs of
dilatons, and eventually forming a cosmic background of relic dilatons [3, 4].

The amplifications of tensor and scalar waves are very similar processes, con-
ceptually: from a technical point of view, however, there are two important
differences. The first difference is due to the fact that the dilaton fluctuations � are
tightly coupled to the scalar perturbations of the metric and the other gravitational
sources (unlike the tensor fluctuations h��, which are completely decoupled, to
linear order). This might, in principle, differentiate the graviton and dilaton spectra
even at a primordial level.
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The second difference is due to the fact that dilatons, unlike gravitons, could
become massive in the course of the standard post-inflationary evolution. Indeed,
the dilaton should acquire a mass according to standard models of supersymmetry
breaking [5]. Also, the dilaton must acquire a mass (in order to avoid long-
range violations of the equivalence principle) if it is non-universally coupled with
gravitational strength to standard macroscopic matter [6, 7]. The induced mass
may substantially modify the primordial spectrum in the non-relativistic regime.

For a general computation of the dilaton spectrum we should then start from the
full coupled system of scalar perturbation equations, which includes the two metric
variables (for instance ��	 in the longitudinal gauge), the dilaton variable �, and
the fluid variables �
��p�w. Such a system has been already written in gauge-
invariant form in Eqs. (8.62)–(8.67). A complete computation requires, however,
not only the exact solution of such coupled equations, but also the diagonalization
of the perturbed (quadratic) action for the full system of perturbation variables: this
is a necessary step to obtain the correct canonical variable, and to normalize the
initial amplitude of the perturbations to the quantum fluctuations of the vacuum.
The analytical approach to such a program is in general quite complicated, and
only approximate solutions are presently available (see for instance [8]) for the
full, general system of equations.

An exact solution can be easily obtained, however, if we limit ourselves to
a simplified picture in which there are no matter sources in the initial, dilaton-
dominated inflationary phase (T�� = 0 = �T��), and if we assume that the sub-
sequent radiation-dominated phase, for � > −�1, is characterized by adiabatic
fluid perturbations (with � = 3�, � = 0), with the dilaton frozen at the minimum
of its potential (�′ = 0 = �′′, �V/�� = 0). In that case the canonical variable
for the initial gravi-dilaton system is known, and is given by the gauge-invariant
variable v = z� already introduced in Eqs. (8.51)–(8.54). Also, in the subsequent
radiation-dominated era, the gauge-invariant dilaton perturbation X turns out to
be decoupled from the other (metric and matter) scalar perturbations (see Eqs.
(8.64)–(8.67)), and the canonical variable X = aX satisfies the free evolution
equation

X
′′
k + �k2 +m2a2�Xk = 0� (9.1)

We have denoted with m2 = �2V/��2 the possible mass term induced by the
potential in Eq. (8.67).

We assume that the induced mass is small enough in string units (m � Ms)
so that, soon after the transition to the radiation era, the high-frequency sector of
the spectrum contains relativistic modes with proper momentum p = k/a � m.
For such modes we can neglect the mass term, and we can match the normalized
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solution for the variable vk in the initial inflationary phase (given in Eq. (8.136),
and valid for � < −�1) to the free oscillating solutions of Eq. (9.1),

Xk = 1√
2k

[
c+�k�e−ik� + c−�k�eik�

]
� � ≥ −�1� (9.2)

A direct computation then leads to the Bogoliubov coefficients

c±�k� = ±c�k�e∓ix1� �c�k�� 	 x
−���−1/2
1 � (9.3)

where x1 ≡ k�1 = k/k1, so that

Xk = Xk

a
	 c�k�

a
√
k

sin k� (9.4)

(see also the analogous computation of Appendix 8B for the relativistic axions,
Eqs. (8B.36)–(8B.38)). The corresponding energy density distribution, in critical
units, for the relativistic fluctuations re-entering the horizon during the radiation
era, is then given by

�� = 1

c

d
��k�

d ln k
= k3

2a2
c

(�X′
k�2 +k2�Xk�2

)

∼
(
k

a

)4

�c�k��2 ∼ p3−2���� peq < p < p1� m < p� (9.5)

where p = k/a is the proper momentum of the mode k.
It is important to stress that the Bessel index � = 1/2 −�, determining the

power of the dilaton spectrum, is fixed by the pump field z = a�′/� ∼ �−���

associated with the evolution of the canonical scalar variable during inflation. We
have seen in Chapter 8 that during the dilaton-dominated phase z evolves in time
exactly as the E-frame scale factor, i.e. like the pump field of tensor perturbations.
As a consequence, the parameters � and � are the same for gravitons and dilatons,
and we recover for the relativistic dilaton fluctuations exactly the same spectrum
as that of tensor metric perturbations [4].

For the class of minimal pre-big bang models discussed in Section 7.3 one
finds �� ∼ p3 ln2p. More generally, if we want to take into account the possible
modifications due to the high-curvature and strong coupling regime, we may para-
metrize the high-frequency branch of the dilaton spectrum with a slope parameter
� as follows:

���p� t� = g2
1

(
H1

H

)2 (a1

a

)4
(
p

p1

)�

� m < p < p1 (9.6)

(we have set g1 = H1/MP, and we have absorbed all numerical factors of order
one inside the parameter H1). For typical string cosmology models the slope
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is growing, 0 ≤ � ≤ 3, but the precise value of � is strongly model dependent.
Finally, the cut-off scale p1 = k1/a	H1a1/a may be expected to be controlled by
the string scale (H1 ∼Ms), as in the case of scalar and tensor metric perturbations.

The slope of the spectrum is the same as that one would obtain for gravitons,
in the same class of inflationary backgrounds. There is, however, a difference in
the dilaton spectrum due to the fact that we cannot identify proper momentum p

and proper energy � in Eq. (9.6) since, in general, we are dealing with massive
particles with �2 = p2 +m2. It should be noted, also, that the spectrum (9.6)
cannot be extrapolated down to momentum scales re-entering the horizon after
equality (i.e. for p < peq = keq/a), since in the matter-dominated era (where
3� = �, in general) the dilaton fluctuations are no longer decoupled from scalar
metric and matter perturbations, even if the dilaton background remains frozen at
the minimum of the potential (see Eq. (8.67)).

Let us now consider the spectrum of the non-relativistic modes with
p = k/a � m. Even if the mass is very small, and negligible at the beginning of
the radiation era (m < k/a1), the proper momentum p = k/a�t� is continuously
redshifted with respect to the mass in the course of the subsequent evolution,
so that all modes tend to approach the non-relativistic regime. For the exact
computation of the massive-mode spectrum, on the other hand, we should obtain
exact solutions of the canonical equation (9.1) with the mass term included, and
impose their matching to the corresponding (massless) inflationary solution (see
below).

A quick estimate of the non-relativistic spectrum can be obtained, however,
by noting that the number density of the dilatons produced (parametrized by the
Bogoliubov coefficient c�k�) is determined by the asymptotic amplitude of the
oscillating solutions inside the horizon. For modes becoming non-relativistic well
inside the horizon, at a time scale tnr such that p�tnr� ∼ m � H�tnr�, the number
of produced dilatons remains the same as in the relativistic case, and the only
effect of the mass is a simple rescaling of the energy density,

�rel
� → �nr

� =
(
m

p

)
�rel

� � (9.7)

according to the definition of �� . Using the relativistic dilaton spectrum (9.6),
and the definition p1 = H1a1/a, one immediately obtains

���p� t� = g2
1

(
m

H1

)(
H1

H

)2 (a1

a

)3
(
p

p1

)�−1

� pm < p < m� (9.8)

The validity range of this spectrum is limited by the momentum scale pm of a
mode that becomes non-relativistic just at the time it re-enters the horizon, such
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that pm�tnr�=m=H�tnr�. Such a limiting scale is thus related to the cut-off scale
p1 by [3, 4]

pm
p1

= manr

H1a1
= m

H1

√
H1

Hnr
=
√

m

H1
� (9.9)

Lower momentum scales, p < pm, become non-relativistic when they are still
outside the horizon, i.e. at a time tnr such that p�tnr�∼m�H�tnr�. For such modes
the final energy distribution turns out to be determined by the background kin-
ematics at the time of their horizon exit (because of the freezing of the fluctuations
and of their conjugate momentum, see Section 7.2). The effective number dens-
ity of non-relativistic dilatons, in this case, is determined by the continuity of
the spectrum at p = pm [9], in such a way that �� has the same momentum
dependence as in the absence of mass �∼ �p/p1�

��, and a time dependence of
non-relativistic type (
� ∼ a−3). One then obtains the spectrum

���p� t� = g2
1

(
m

H1

)1/2(H1

H

)2 (a1

a

)3
(
p

p1

)�

� p < pm� (9.10)

The three branches (9.6), (9.8) and (9.10) parametrize the full spectrum of
massive dilatons re-entering the horizon during the radiation era, for the simple
model of inflationary background that we are considering. It may be useful to
note, for further applications, that the non-relativistic sector of the spectrum stays
constant in time during the matter-dominated era. For t > teq we have

(
H1

H

)2 (a1

a

)3 =
(
H1

Heq

)2(
a1

aeq

)3

=
(
H1

Heq

)1/2

� (9.11)

and we can then express the above spectrum at the present time t0 as follows:

���p� t0� = g2
1 �r�t0�

(
p

p1

)�

� m < p < p1�

= g2
1

(
m2

H1Heq

)1/2(
p

p1

)�−1

� pm < p < m�

= g2
1

(
m

Heq

)1/2(
p

p1

)�

� peq < p < pm� (9.12)

At this point, two important comments are in order. The first is that we have
applied the non-relativistic corrections to a single relativistic branch, with slope
parameter �. The procedure can be easily extended, however, to a more general
case in which there are two (or more) branches in the relativistic sector of the
spectrum: a possible example of this scenario is provided by pre-big bang models
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with a long enough high-curvature phase, modifying the slope of the spectrum
above some given scale p = ps. In such a case, the non-relativistic corrections
will affect only the lower, or also the higher, frequency bands of the spectrum
depending on whether m< ps or m> ps, respectively.

The second comment concerns the validity of the dilaton spectrum (9.12),
obtained by a simple kinematic rescaling of the spectral distribution computed in
the radiation era. This procedure is justified provided the high-frequency modes
p>peq are consistently described by the free equation (9.1) also after the equality,
i.e. when the Universe enters the phase of matter domination. During this phase,
however, the dilaton perturbation equation might be modified because of two
possible effects (see Eq. (8.67)): �i� a running dilaton (�′ = 0 =�′′), shifted away
from the minimum of its potential, and �ii� a coupling to the matter perturbations
�
 and � . Both effects depend on the quantum loop corrections which become
operative in the strong coupling regime, as will be discussed in detail later. We
only anticipate here that the coupling to the matter energy density tends to be
diluted in time, but the direct coupling to the dilaton charge density of the dark
matter could remain strong, and even grow in time, as we shall see in Section 9.3.
These effects could modify the dilaton spectrum (9.12), distorting it from a faithful
picture of the primordial inflationary dynamics. For such reasons, in the following
discussion, we will always treat the spectral index � as a pure phenomenological
parameter with arbitrary (model-dependent) values.

The results obtained for the non-relativistic sector of the spectrum can be
confirmed by solving exactly the equation for the massive dilaton fluctuations in
the radiation era. Using the explicit behavior of the scale factor (a/a1 = �/�1 =
a1H1�), we rewrite Eq. (9.1) in the form

X
′′
k + �k2 +�2�2�Xk = 0� � = mH1a

2
1� (9.13)

and we note that the general solution, with m = 0, may be given in terms of
the parabolic cylinder functions [10]. For our applications it is convenient to
distinguish, as before, modes becoming non-relativistic inside (k>km) and outside
(k < km) the horizon, where km = k1�m/H1�

1/2 is the limiting scale of Eq. (9.9).
We consider the two cases separately [11].

(1) In the case k > km we first rewrite Eq. (9.13) as

d2Xk

dx2
+
(
x2

4
−b

)
Xk = 0� (9.14)

where

x = �2��1/2�� b = − k2

2�
� (9.15)
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and give its general solution in terms of the Weber cylinder functions [10]
W�b�x� as

Xk = AW�b�x�+BW�b�−x�� (9.16)

The integration constants A and B can be fixed by imposing that this solution
reduces to the normalized massless solution (9.4) in the relativistic limit in which

p2

m2
= k2

m2a2
= k2

�2�2
= −4b

x2
� 1� (9.17)

In this limit, since we are considering modes becoming non-relativistic inside the
horizon, we also have

k2

k2
m

= k2H1

k2
1m

= k2

H1ma2
1

= k2

�
∼ �−b� � 1� (9.18)

so that we can approximate the W functions for large values of �b� and moderate
values of x. Using the corresponding W expansion [10] one then recovers the
relativistic solution (9.4) provided A = 0 and B = c�k��−1/4, corresponding to
the particular exact solution

Xk = c�k�

�1/4
W�b�−x�� (9.19)

Expanding this normalized solution in the opposite limit x2 � 4�b� we are led to
the explicit form of the non-relativistic fluctuations inside the horizon:

Xk = Xk

a
	 c�k�

a
√
ma

sin
(ma�

2

)
� k > km (9.20)

(we have used the definition (9.13) of �, to set x2/4 = ma�/2 = m/�2H�).
Comparison with the relativistic solution (9.4), and with the associated energy
distribution (9.5), finally gives the rescaling 
nr

� �k� = �ma/k�
rel
� �k�, which leads

to the non-relativistic branch (9.8) of the dilaton spectrum.
(2) The other case k < km corresponds to modes that become non-relativistic

when they are still outside the horizon. For such modes �b�< 1, so that we cannot
use the large �b� expansion of the Weber functions: it is more convenient, in this
case, to rewrite the general solution of Eq. (9.14) in the form

Xk = Ay1�b� x�+By2�b� x�� (9.21)

where y1 and y2 are the even and odd parts of the parabolic cylinder functions
[10]. The matching to the massless solution (9.4), in the relativistic limit x → 0,
now gives A = 0 and

Xk =
(

k

2�

)1/2

c�k� y2�b� x�� (9.22)



436 Dilaton phenomenology

In the non-relativistic limit x2 � �b�, on the contrary, it is possible to use the
Weber expansion [10],

y2�b� x� ∼ W�b�x�−W�b�−x� ∼ 1√
x

sin
(
x2

4

)
� (9.23)

to obtain

Xk = Xk

a
	 c�k�

a
√
ma

(
k

k1

)1/2(H1

m

)1/4

sin
(ma�

2

)
� k < km� (9.24)

A comparison with the complementary branch (9.20) of the non-relativistic solu-
tion then leads to the relation


��k < km� 	
(
H1

m

)1/2( p

p1

)

��k > km�� (9.25)

from which one easily recovers the lowest energy branch (9.10) of the dilaton
spectrum.

It should be mentioned, as a final comment, that this last result for the non-
relativistic spectrum is only valid if the dilaton becomes massive before the
limiting scale pm crosses the horizon. More precisely, calling Tm the temperature
scale at which the mass turns on, and calling pT the momentum mode re-entering
the horizon just at the same epoch, we can say that the spectrum (9.10) is valid
for pm < pT . In the opposite case (pm > pT ) the role of transition-scale separating
modes that become non-relativistic inside and outside the horizon is played by
pT , and the lowest frequency branch (9.10) of the spectrum has to be replaced
by [9]

���p� t� = g2
1

(
m2

H1HT

)1/2(
H1

H

)2 (a1

a

)3
(
p

p1

)�

� p < pT � pT < pm

(9.26)

(obtained by a continuous match to the branch (9.8), which now extends down to
the lower limit p = pT ). Here HT is the curvature scale at the time the mode pT
crosses the horizon, i.e. HT = kT/aT = apT/aT . For HT = m one is led back to
the result (9.10).

In any case, the overall effect of the non-relativistic corrections is to enhance
the amplitude of the low-energy part of the dilaton spectrum, as clearly illustrated
in Fig. 9.1 where we have plotted the spectrum (9.12) for the two cases �= 2 and
� = 1/2. It is important to note that, even if the relativistic part of the spectrum
is growing (� > 0), the non-relativistic part may contain a flat (or decreasing)
branch if � ≤ 1. Also, if the slope is flat enough (i.e. � < 1), and the branch
pm < p <m is sufficiently extended, then the spectrum may be peaked not at the
cut-off frequency p1 but at the intermediate frequency pm (we will come back to
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Figure 9.1 Examples of dilaton spectra with non-relativistic corrections. The
spectrum (9.12) is plotted for the two cases � = 2 (lower curve) and � = 1/2
(upper curve).

this point at the end of this section). Finally, if the mass is larger than the present
value of the cut-off scale p1, namely if

m> p1�t0� = k1

a0
= H1a1

a0
∼ g

1/2
1 1011 Hz ∼

(
H1

MP

)1/2

10−4 eV (9.27)

(we have used Eq. (7.180)), then all modes are today non-relativistic, so that the
massless branch (9.6) disappears from the dilaton spectrum (in other words, the
branch (9.8) extends from pm to p1).

9.1.1 Dilaton mass and couplings

For the simple example of inflationary scenario considered in this section, the
final amplitude of the dilaton spectum �� turns out to be controlled by two
parameters: the inflation scale (in Planck units) g1 = H1/MP, and the dilaton
mass m. Assuming H1 ∼ Ms, and taking into account also the non-relativistic
branch of the spectrum, the question: How strong is the relic background today?
may thus be rephrased as: How large is the dilaton mass?

It would be interesting, from a phenomenological point of view, to have a mass
small enough to avoid dilaton decay before the present epoch, so that the prim-
ordial background would be still around us, and accessible, in principle, to direct
detection. Given the dilaton decay rate into two photons, �d ∼m3/M2

P, associated
with a decay scale Hd = �d, the present existence of a relic dilaton background
is guaranteed by the condition Hd <H0, which imposes on the mass a first upper
bound m <∼ 102 MeV. Also, as we shall see in Section 9.2, a cosmic dilaton
background may resonantly interact with the present gravitational antennas only
in the case of very small masses. The amplitude of the non-relativistic sector of
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the spectrum, however, grows with the mass of the dilaton, so that large enough
masses are required to make the background detectable, in principle. The precise
value of the mass thus represents a crucial parameter for the phenomenology of
the relic dilaton background.

From the theoretical side, unfortunately, it is fair to say that there is no compel-
ling prediction on the value of m: the effective form and value of V���, even at the
present epoch, are largely unknown and model dependent. From the phenomen-
ological side, however, we know that the allowed values of the mass are strictly
correlated with the strength of the coupling to ordinary macroscopic matter.

With reference to this point we recall that in all string theory models the matter
fields are coupled not only to the metric but also to the dilaton field. This implies
that a matter distribution is associated, in general, with a dilaton charge density
 (see Eq. (2.12)), and that the matter stress tensor is not separately conserved
in the presence of an external gravi-dilaton background. There are macroscopic
forces generated by the gradients of the metric and of the dilaton field, according
to the generalized conservation equation (2.19),

��T
�� = 

2
���� (9.28)

which can also be rewritten as

���
√−gT���+√−g ���

�T�� = 1
2
√−g ���� (9.29)

It follows that the equation of motion of a test particle is no longer a geodesic,
as can be checked by integrating Eq. (9.29) over the (space-like) t = const
hypersurface �:

∫

�
d3x′ �i�

√−g T�i�+ d
dt

∫

�
d3x′√−g T�0�x′�+

∫

�
d3x′√−g ���

��x′�T���x′�

= 1
2

∫

�
d3x′√−g �x′�����x′�� (9.30)

Assuming that the energy-momentum and charge distributions, T�� and  , are
non-zero only inside a narrow “world-tube”, centered around the world-line x����

of the center of mass of the test body, we can use the Gauss theorem for the first
integral of Eq. (9.30), and we can expand the external fields � and �� around
x����, applying the so-called “multipole expansion”,

���
��x′� = ���

��x�+ �x′� −x�������
��x�+· · · �

����x
′� = ����x�+ �x′� −x��������x�+· · · � (9.31)
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In the point-particle (or “pole-particle” [12]) approximation, we can neglect all
possible internal “momenta” of the test body, limiting ourselves to the zeroth-order
terms:

d
dt

∫

�
d3x′√−g T�0�x′�+���

��x����
∫

�
d3x′√−g T���x′�

= 1
2
����x����

∫

�
d3x′√−g �x′�� (9.32)

In this approximation, and in the limit in which the radius of the world-tube shrinks
to zero, x′� → x����, we can define the usual gravitational “current density”, T��,
and the dilaton charge density,  , as follows:

T���x′� = p�p�√−gp0
�3�x′ −x�����

1
2
�x′� = q

m2

√−gp0
�3�x′ −x����� (9.33)

Here p� = mu� = mdx�/d�, while q represents the dilaton charge per unit of
gravitational mass [13], i.e. the relative intensity of scalar to tensor forces. The
integration of Eq. (9.32), multiplied by p0/m2 = m−1�dt/d��, eventually leads to
the generalized (non-geodesic) equation of motion

du�

d�
+���

�u�u� = q���� (9.34)

This equation, in combination with the dilaton equation of motion obtained
from the string effective action, clearly implies that strong dilaton couplings
(i.e. scalar charges q ≥ 1) must be associated with a sufficiently large value
of the dilaton mass: in that case the effective range of the scalar macroscopic
forces has to be sufficiently small, to avoid contradictions with the standard
gravitational phenomenology [14] (see also [15] for a recent compilation of bounds
on deviations from Newtonian gravity at small distances). Small enough couplings
with q � 1, on the contrary, may be compatible also with long-range forces,
i.e. with small dilaton masses. In the discussion of the phenomenological bounds
on the mass we are thus led to the related question: How strong is the dilaton
coupling?

For a more precise formulation of this question we should note, first of all,
that the coupling of the dilaton to the fundamental quark and lepton fields (build-
ing up macroscopic matter) is described by an effective action which should
also include all the dilaton loop corrections, at least in the regime of moder-
ately strong coupling (gs ∼ 1), which seems typical of our present cosmological
state. The effective coupling may thus depend also on the level of approx-
imation adopted, i.e. on the order of the truncated perturbative expansion. In
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such a context, however, it is always possible to give a convenient, frame-
independent definition of the scalar charge by expressing the effective interaction
Lagrangian in terms of the canonical fields diagonalizing the kinetic part of
the action [4]. Such an action can be written, in general, as follows (see also
Section 3.2):

S = 1
2�2

s

∫
d4x

√−g
[−ZR���R−Z��������

2 −V���

+Zi
k�����	i�

2 −M2
i Z

i
m���	

2
i � � (9.35)

We have used, for simplicity, a scalar model of fundamental matter fields 	i, and
we have called Z the dilaton “form factors” due to the loop corrections. All fields
��	i are dimensionless, and the loop corrections are referred to the fundamental
S-frame metric appearing in the sigma model action (as clearly stressed by the
presence of the string length parameter �s, controlling all dimensional factors of
the above Lagrangian).

In the given frame, the effective masses (mi) and dilaton couplings (gi) of the
fields 	i can be computed by introducing the rescaled variables 	̂i which restore
the canonical form of the kinetic energy terms in the matter action, and have
canonical dimensions

	̂i = Ms�Z
i
k�

1/2	i� (9.36)

The matter action becomes

Sm = 1
2

∫
d4x

√−g
[
��	̂i�

2 −�2
i ���	̂

2
i

]
�

�2
i ��� = M2

i Z
i
m�Z

i
k�

−1� (9.37)

modulo higher-order, derivative interactions between � and 	i. Assuming that �
is stabilized by its potential V , we expand the interaction Lagrangian −�2

i 	̂
2
i /2

around the value of � which extremizes the potential (and which can always be
assumed to coincide with � = 0, after a trivial shift):

Li��� 	̂i� ≡ −1
2
�2
i ���	̂

2
i = −1

2
m2

i 	̂
2
i −gi � 	̂2

i +���2�+· · · � (9.38)

This expansion defines the low-energy masses and couplings, respectively, as

m2
i = [

�2
i ���

]
�=0 = M2

i

[
Zi
m�Z

i
k�

−1]
�=0 � (9.39)

gi =
1
2

(
��2

i

��

)

�=0
= m2

i

2

[
�

��
ln�2

i

]

�=0
� (9.40)
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with corresponding dimensionless dilaton charge

qi =
gi

m2
i

= 1
2

[
�

��
ln
(
Zi
m

Zi
k

)]

�=0

� (9.41)

The coupling defined in this way, however, turns out to be strongly frame
dependent (like the coupling appearing in Eq. (9.33)). Consider, for instance, a
pure Brans–Dicke model of scalar-tensor gravity, corresponding to an S-frame
action (9.35) with no-dilaton couplings to the 	̂i fields, i.e. ��Z

i
k = 0 = ��Z

i
m.

The corresponding dilaton charge (9.41) is vanishing in the S-frame, but it is
non-vanishing, in general, in other frames, where Z̃i

m = Z̃i
k, and ��Z̃

i
k = 0 = ��Z̃

i
m.

Such a frame dependence of the coupling is due to the fact that, in a generic
frame, the field � and the metric are non-trivially mixed through the Z� and
ZR coupling functions, in such a way that the charge (9.41) actually controls the
matter couplings not to the pure scalar part, but to a mixture of scalar and tensor
parts of the gravi-dilaton field.

A frame-independent definition of the coupling can thus be given only when
the full kinetic part of the action (9.35) – including the gravi-dilaton sec-
tor – is diagonalized [4, 6], and the action is given in terms of the canonical
scalar fields �̂, 	̂i, and of the canonical (E-frame) metric ĝ��, defined by the
rescaling

ĝ�� =
(
�P

�s

)2

g�� ZR� (9.42)

Applying to the action (9.35) the transformation rules (2.39)–(2.42) (with d = 3
and 	 = − lnZR), one easily finds that the full diagonalized action takes the
form

S =
∫

d4x
√−g

[

− R̂

2�2
P

+ 1
2
��̂�̂�2 − V̂ + 1

2
��̂	̂i�

2 − 1
2
�̂i��̂�	̂

2
i

]

� (9.43)

Here R̂ = R�̂g�, �̂ = ��̂g�, and

d�̂
d�

= MP

[
3
2

(
d

d�
lnZR

)2

− Z�

ZR

]1/2

�

V̂ = 1
2
�2

s

�4
P

Z−2
R V�

	̂i = MP

(
Zi
k

ZR

)
	i�

�̂2
i = M2

i

(
�s

�P

)2 Zi
m

Zi
kZR

�

(9.44)
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We can now expand, as before, the interaction term �̂2
i around the value �̂ = 0

to obtain the effective masses,

m̂2
i = �̂2

i �0� = M2
i

(
�s

�P

)2 [ Zi
m

Zi
kZR

]

�̂=0

� (9.45)

and couplings,

ĝi =
1
2

(
��̂2

i

��̂

)

�̂=0

= m̂2
i

2

(
d�

d�̂

)

�̂=0

(
�

��
ln �̂2

i

)

�̂=0
� (9.46)

with corresponding (frame-independent) dilaton charge per unit mass,

q̂i =
ĝi
m̂i

= m̂i

2

(
d�

d�̂

)

�̂=0

[
�

��
ln
(

Zi
m

Zi
kZR

)]

�̂=0

� (9.47)

In the weak coupling limit we have ZR 	 Z� 	 exp�−��, so that the factor

m̂i

2
d�

d�̂
	 1√

2

m̂i

MP
= √

4�Gm̂i (9.48)

reduces (in our units) to the standard, dimensionless “gravitational charge” (ap-
pearing, for instance, in the Poisson equation for the Newton potential �N: �2�N =
4�G
). One then finds, in the weak coupling limit, that the frame-independent
dilaton charge q̂ deviates from the standard gravitational charge by the dimen-
sionless factor

qi ≡
q̂i

m̂i

√
4�G

	 1+
[
�

��
ln
(
Zi
m

Zi
k

)]

�=0

� (9.49)

For a pure Brans–Dicke model, in particular, qi = 1. For a generic string theory
model, however, the coupling factors qi tend to deviate from 1 in a non-universal
way, as the value of qi depends on the form factors Zi, which are in principle
different for different fields. The previous question about the strength of the
dilaton coupling can then be formulated, more precisely, as follows: How large
is q? There are two possible (alternative) theoretical scenarios.

The more conventional scenario, based on the fact that the loop corrections
determining the dilaton coupling are the same as those determining the effective
mass of the given particle, suggests a rather large dilaton charge (qi ∼ 40−50)
for the confinement-generated components of the hadronic masses [6, 7], and a
smaller charge, of gravitational intensity (qi ∼ 1) for the leptonic masses (see also
[16]). If this is the case, the total dilaton charge of a macroscopic body tends to
be large (in gravitational units), and composition dependent.

Consider a body of total mass M , composed of B baryons of mass mb and
dilaton charge q̂b, and of Z electrons of mass me and dilaton charge q̂e. Assuming
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Z ∼ B, and using me � mb, q̂e � q̂b, one obtains that the total charge per unit
mass is given by

q̂ =
∑

i mîqi∑
i mi

	 B

M
mb q̂b =

(
B

�

)
q̂b� (9.50)

where � = M/mb is the mass of the body in units of baryonic masses. Since
B/� ∼ 1, the total dilaton charge of the macroscopic body, in gravitational units,
turns out to be controlled by the large coupling of the baryons, q ∼ qb � 1. Also,
since the factor B/� depends on the internal (nuclear) structure of the body, the
effective coupling q̂ turns out to be composition dependent, with variations which
are typically of order

�q̂

q̂
= �

(
B

�

)
∼ 10−3� (9.51)

across different types of ordinary matter. We know, on the other hand, that a large
and composition-dependent component of the gravitational force is excluded by
present experimental tests, down to the millimeter scale [14, 15]. It follows that
the range of the dilaton force has to be smaller than this scale of distance, i.e. that
the dilaton mass has to satisfy the phenomenological bound m >∼ 10−4 eV.

This bound can be relaxed, however, according to a second, alternative scenario
in which the dilaton coupling to the fundamental matter fields is universal to a
very high degree of accuracy (namely, it is the same for all fields, to higher orders
in the loop expansion), and in which the combined loop corrections are fine-tuned
to produce a highly suppressed (q � 1) dilaton charge [17, 18]. In that case the
dilaton force may be a long-range one, and the associated dilaton mass may be
arbitrarily small, or even zero (actually, if the coupling is small but non-zero, a
small but finite mass is expected to be generated by radiative corrections, as will
be discussed in the next section).

In any case, the precise measurements of the effective gravitational forces over
a wide range of distances provide exclusion plots in the �m�q2� plane, and thus
define the presently allowed values of the dilaton mass, for any given theoretical
prediction of the coupling strength (see [14] for a comprehensive compilation of
bounds on possible “Yukawa” deviations from Newtonian gravity). Thus, we can
discuss the phenomenology of the relic dilaton background by taking into account
two alternative possibilities: �i� (heavy) massive dilatons, gravitationally (or more
strongly) coupled to macroscopic matter; �ii� very light (or massless) dilatons,
universally and weakly coupled to matter. In the rest of this chapter we will focus
our attention on this second (phenomenologically more interesting) possibility,
assuming that the dilaton is arbitrarily light and correspondingly weakly coupled
(relaxing, however, the assumption of universal dilaton interactions, which seems
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to be rather unnatural in a string theory context). A detailed discussion of the
strongly coupled, heavy dilaton case may be found in [4, 19, 20].

9.1.2 Light and weakly coupled dilatons

We assume, first of all, that the dilatons are light enough to have not yet decayed
(i.e. m <∼ 102 MeV), and that the relic background is still available, at least in
principle, to a direct experimental observation. The amplitude of this background
depends on m, and a larger mass (compatible with the phenomenological bounds)
corresponds to a stronger background of non-relativistic dilatons. For the range
of parameters that we are considering, the most constraining upper bound on the
mass comes from the observed critical density [4, 19, 20]: the total energy density
of the background, integrated over all modes, has to be sub-critical,

h2
∫ p1

0
d�lnp����p� t� < 1� (9.52)

at all times, to avoid a Universe over-dominated by dilatons. Now, the interesting
question becomes: Which value of mass does correspond to the strongest, non-
relativistic dilaton background, with almost critical intensity? The answer depends
on the shape of the dilaton spectrum. There are two alternative possibilities for a
cosmic background dominated by the non-relativistic branch of the spectrum (see
Fig. 9.2).

(1) The first possibility corresponds to the case m>p1�t0� and �≥ 1, in which
all modes are presently non-relativistic (see Eq. (9.27)), and the spectrum (9.12)
is peaked at p = p1. The critical density bound (9.52) can then be approximated
by the condition ���p1� < 1, which implies

m<

(
HeqM

4
P

H3
1

)1/2

� (9.53)
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Figure 9.2 Two possible examples of dilaton spectra dominated by non-
relativistic modes: the case m> p1 and � ≥ 1 (left panel), and the case m< p1,
0 < � < 1 (right panel).



9.2 Interaction with gravitational antennas 445

This bound, for H1 ∼ Ms ∼ 0�1MP, is saturated by a dilaton mass m ∼ 102 eV.
If � < 1 the bound is relaxed, but the mass is still constrained to be in the range
m> p1�t0� ∼ g

1/2
1 10−4 eV, which is still too large for a resonant interaction with

present gravitational detectors (as we shall see in Section 9.2).
(2) The second, phenomenologically more interesting, possibility, is the case in

which m< p1�t0� and the spectrum (9.12) is flat enough (� < 1) to be dominated
by the non-relativistic branch peaked at p= pm = p1�m/H1�

1/2 (see Fig. 9.2). The
critical density can now be approximated by the condition ���pm� < 1, which
implies

m<
(
HeqM

4
PH

�−4
1

) 1
�+1

� (9.54)

For H1 ∼ Ms and � → 0, this bound can be saturated by masses as small as

m ∼ Heq

(
MP

Ms

)4

∼ 10−23 eV� (9.55)

In this second case the dilaton mass could be in the appropriate range for
a resonant interaction with the present gravitational antennas (see the next sec-
tion), and a new, interesting possibility emerges: the weakness of the coupling,
required for the phenomenological consistency of long-range interactions, could
be compensated by a large (i.e. near-to-critical) intensity of the non-relativistic
background.

This is to be contrasted with the case of the (relativistic) graviton background,
which is coupled to matter (and then to the detectors) with gravitational strength,
but which has an amplitude constrained by the nucleosynthesis bound (7.195).
Since this bound only applies to the massless (or relativistic) part of the primordial
cosmic backgrounds, it is possible, in principle, to envisage a situation in which
the peak values of the graviton and of the dilaton backgrounds satisfy the condition

h2�rel
g �t0� <∼ 10−6 � h2�nr

� �t0� <∼ 1� (9.56)

If this is the case, it may be appropriate to discuss the possible response of the
gravitational antennas not only to a cosmic background of relic gravitons, but also
to a relic background of massive, non-relativistic dilatons. Such a discussion will
be the object of the next section.

9.2 Interaction with gravitational antennas

The interaction of a cosmic dilaton background with a gravitational antenna is
governed by the so-called equation of “geodesic deviation”, which is the basis
of the operation mechanism of all detectors of gravitational radiation. Such an
equation is obtained (see for instance [21]) starting from the world-lines of two
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neighbouring test particles, x���� and x′����, with identical scalar charges q, and
with a space-like separation parametrized by the infinitesimal vector ��, i.e.

x′���� = x����+������ ��ẋ� = 0 (9.57)

(the dot denotes derivation with respect to the proper time �). In the presence of
gravi-dilaton interactions each world-line satisfies the equation of motion (9.34)
so that, to first order in ��,

ẍ′� = ẍ� + �̈� = −���
��x′��ẋ�ẋ� +2ẋa�̇��+q����x′�� (9.58)

Expanding the external fields as in Eq. (9.31), and using the equation of motion
for x�, we obtain, to first order,

�̈� = −2���
��x�ẋ��̇� −�������

��x�ẋaẋ� +q�����
���x�� (9.59)

Shifting to covariant derivatives, on the other hand, we have

D��

D�
= �̇� +��


�ẋ��
�

D2��

D�2
= d

d�

(
�̇� +��


�ẋ��

)

+���
�
(
�̇� +��


�ẋ��

)
ẋ��

(9.60)

In this last equation we can eliminate �̈� through Eq. (9.59), and ẍ� through the
equation of motion for x����. We can thus rewrite the accelerated variation of
the separation vector �� in the compact, covariant form,

D2��

D�2
+R���

���ẋ�ẋ� = q�����
��� (9.61)

which represents the scalar–tensor generalization [13] of the standard equation of
geodesic deviation obtained in the theory of general relativity.

The Riemann term appearing in this equation describes the usual coupling of
a point-like test particle to the second derivatives of the metric background, and
is obtained from the geodesic part of the equation of motion. The term on the
right-hand side describes a new coupling to the second derivatives of the dilaton
background, induced by the scalar charge of the test body. A gravitational detector
can thus interact with the cosmic background of dilaton radiation in two ways:

(1) indirectly, through the geodesic coupling of the gravitational charge of the detector to
the scalar part of the metric fluctuations induced by the dilaton, and contained inside
the Riemann tensor [22, 23, 24];

(2) directly, through the non-geodesic coupling of the gravitational charge of the detector
to the gradients of the dilaton background itself [13, 25].

The indirect (or geodesic) coupling is characterized by a gravitational strength
(q = 1), but the corresponding amplitude of the scalar background is expected to
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be strongly suppressed (in critical units � � 1), at least in the case of primordial
relic radiation. The direct (or non-geodesic) coupling may be characterized by
a much higher background amplitude (� <∼ 1), but the corresponding coupling
strength has to be weaker (q � 1), since we are considering long-range dilaton
interactions (see the discussion of the previous section).

The generalized equation of geodesic deviation (9.61) provides the basic starting
point for the computation of the so-called “pattern functions” F�̂n�, describing the
response of a detector as a function of the direction n̂ of the incident radiation.
For a background of massive scalar waves, like the dilaton background we are
considering, the pattern functions are in general different from those of the tensor
graviton background studied in Section 7.4. The differences, as we shall see in
this section, are due not only to the presence of the new non-geodesic coupling,
but also to the possible longitudinal polarizations present in the massive radiation
background.

The ideal response of a gravitational detector can be schematically represented
by considering a mechanical system of two test masses, which at rest are separated
by a proper (space-like) distance L� = const. By setting �� = L�+ ����, where
 � represents the infinitesimal displacements induced by the incident radiation,
the relative acceleration of the two masses, in the non-relativistic and weak field
limit, is given by Eq. (9.61) as

 ̈i = −LkRk00
i +qLk�k�

i� ≡ −LkMk
i� (9.62)

Here Mij is the total (scalar-tensor) stress tensor describing the “tidal” forces
associated with the equation of geodesic deviation. For its computation we have
to take into account that the “electric” components of the Riemann tensor (Rk00

i)
may include both scalar and tensor contributions from the fluctuations of the
metric background. Working in the weak field approximation we can neglect the
gradients of the local, static gravi-dilaton field at the detector position, considering
only the perturbations induced by the incident radiation: we can then compute Mij

by expanding � = �0 +��, �0 = const, and by considering the linear perturba-
tions of the Minkowski metric, using e.g. Eq. (8.12) with a2 = 1. The perturbed
components of the Christoffel connection have been given in Eq. (7.15) for the
tensor part, and in Eq. (8.42) for the scalar part of the fluctuations. The final
result can be easily expressed in terms of the gauge-invariant Bardeen potentials
!�" , and of the dilaton fluctuation X, defined in Eq. (8.39), as follows:

Mij = �Ri00j −q�i�jX = −1
2
ḧij + �i�j!−�ij"̈ −q�i�jX� (9.63)

This result, inserted into Eq. (9.62), directly provides the relative acceleration of
the two test masses responding to the given scalar-tensor fluctuations.
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A realistic gravitational antenna, however, may be characterized by a more
general, tensor-like geometrical structure, different from the simple vector-like
structure associated with a pair of test masses. In the general case, the physical
strain h�t� induced by external radiation is to be computed by projecting Mij onto
the tensor Dij specifying the geometrical configuration and the spatial orientation
of the arms of the detector (see Section 7.4). It is convenient, for this purpose, to
adopt for Mij a Fourier expansion, taking into account that tensor fluctuations are
massless, and can be expanded into frequency modes hij��� n̂�, with � =E�p�= p,
as in Eq. (7.234); scalar fluctuations, on the contrary, are possibly massive, and
can be expanded into momentum modes as X�p� n̂�, with � =E�p�= �p2 +m2�1/2

(here, as in Section 7.4, we are using “unconventional” units in which h = 1,
i.e. � = 1/2�, for an easier comparison with experimental variables). We then
expand the dilaton field as

X = 1
2

∫ �

−�
dp
∫

�2

d2n̂
[
X�p� n̂� e2�i�p̂n·�x−Et� +X∗�p� n̂� e−2�i�p̂n·�x−Et�

]
� (9.64)

and the same for ! and " . The unit vector n̂ specifies the propagation direction
on the two-sphere �2, so that for m → 0, p → E = �, we exactly recover the
gravity-wave expansion (7.234). The tidal stress tensor (9.63) thus becomes

Mij = 1
2

∫ �

−�
dp
∫

�2

d2n̂ �2�E�2

[
1
2
#AijhA +�ij" −ninj!

+ m2

E2
ninj!+q

p2

E2
ninjX

]

e2�i�p̂n·�x−Et� +h�c�� (9.65)

where #Aij is the transverse, traceless polarization tensor of the (spin-two) gravita-
tional radiation (we have used the relation p2 = E2 −m2 for the ! component of
the scalar fluctuations).

We now assume that the dilaton is the only source of scalar metric perturbations
so that, in the absence of anisotropic stresses, ! = " (see Section 8.1). Intro-
ducing the transverse and longitudinal projections of the scalar stresses, defined
respectively by

Tij = �ij −ninj� Lij = ninj� (9.66)

the tidal stress tensor can then be rewritten as

Mij = 1
2

∫ �

−�
dp
∫

�2

d2n̂ �2�E�2

[
1
2
#AijhA +

(
Tij +

m2

E2
Lij

)
" +q

p2

E2
LijX

]

× e2�i�p̂n·�x−Et� +h�c� (9.67)
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Finally, we define Mij = −F̈ij , so as to make explicit the second derivatives
appearing in the components of the tidal tensor. Projecting onto Dij , and separating
the physical strain h=DijFij into tensor, scalar geodesic and scalar non-geodesic
parts, we eventually obtain

h�t� = 1
2

∫ �

−�
dp
∫

�2

d2n̂

[

FA�̂n�hA�p� n̂�+F geo�̂n�"�p� n̂�+F ng�̂n�X�p� n̂�

]

× e2�i�p̂n·�x−Et� +h�c�� (9.68)

with the following antenna-pattern functions,

FA = 1
2
Dij#Aij� (9.69)

F geo = Dij

(
Tij +

m2

E2
Lij

)
� (9.70)

F ng = q
p2

E2
DijLij� (9.71)

Note that FA exactly coincides with the tensor pattern function already introduced
in Section 7.4.

An important difference from the case of pure tensor radiation is that the scalar
component of the radiation background also contributes to the response of the
detector with its longitudinal polarization states. Such a longitudinal contribution
is present even in the ultrarelativistic limit m → 0, p → E, because of the direct
coupling (9.71). In the opposite, non-relativistic limit p→ 0, E →m, the geodesic
strain tends to become isotropic, Tij + �m/E�2Lij → �ij , while the non-geodesic
one becomes sub-leading.

9.2.1 Pattern functions for interferometric detectors

For a concrete illustration of the important differences between scalar and tensor
pattern functions we consider here an interferometric model of a gravitational
antenna, whose arms are aligned along the orthogonal unit vectors û and v̂. As
already mentioned in Section 7.4, the response of an interferometric detector can
be described in terms of two tensors: the so-called “differential mode”, Dij−, and
the “common mode”, Dij

+, defined by [27]

D
ij
± = uivj ±viuj� (9.72)
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The theoretical and experimental analyses of the response to tensor gravitational
radiation are usually concentrated on the differential mode, not only for practical
motivations (the common mode is, in general, much more “noisy”), but also
because the common mode is “blind” to one of the two tensor polarization states,
as we shall see below. In the case of massive scalar radiation and longitudinal
polarization states both modes may provide, in principle, an efficient response
(modulo technical difficulties possibly associated with the higher level of noise
present in D

ij
+).

To illustrate the response of the different modes of the interferometer to the
different polarization states we may consider a convenient reference frame in
which û and v̂ are coaligned with the x1 and x2 axes, respectively, and in which
the propagation direction of a generic incident wave, associated with the unit
vector n̂, is specified by the polar and azimuthal angles � and $, respectively (see
Fig. 9.3). Thus, in this frame

û = �1�0�0�� v̂ = �0�1�0�� n̂ = �sin $ cos�� sin $ sin�� cos$�� (9.73)

For an explicit representation of the tensor polarizations, #Aij , we also introduce
two unit vectors x̂ and ŷ orthogonal to n̂ and to each other (see Fig. 9.3), with
components

x̂ = �sin��− cos��0�� ŷ = �cos$ cos�� cos$ sin��− sin $�� (9.74)

In terms of these transverse vectors, the two independent (traceless, symmet-
ric) “plus” and “cross” tensor polarization states (see Section 7.1) can then be
parametrized as [27]

#
�+�
ij = xixj −yiyj� #

�×�
ij = xiyj +yixj� (9.75)

x

y

z

u

n

v

ϕ

θ

Figure 9.3 Relative orientation of the axes û, v̂ of the detector and the propaga-
tion direction n̂ of the incident radiation. The plane orthogonal to n̂ is spanned
by the unit vectors x̂ and ŷ.
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where

x2
i = y2

i = 1� xiyi = xini = yini = 0� (9.76)

We are now in a position to compute the antenna pattern functions for the
different polarizations of the incident radiation, and for the two modes of the
interferometer. We start with the differential mode Dij−, considering separately
scalar and tensor polarization states. For the scalar part we find the same pattern
function (modulo a sign) for both transverse and longitudinal modes,

FT
− �̂n� ≡ Dij

−Tij = �uiuj −vivj���ij −ninj� = −�uiuj −vivj�ninj

= −FL
− �̂n� ≡ −Dij

−Lij = − sin2 $ cos 2�� (9.77)

as a consequence of the fact that the response tensor is traceless, Dij−�ij = 0. For
the tensor part we obtain

F�+�
− �̂n� ≡ Dij

−#
�+�
ij = �uiuj −vivj��xixj −yiyj� = −�1+ cos2 $� cos 2��

(9.78)

F�×�
− �̂n� ≡ Dij

−#
�×�
ij = �uiuj −vivj��xiyj +yixj� = 2 cos$ sin 2�� (9.79)

The different responses of the differential mode to the scalar and tensor parts of
the incident radiation are illustrated in Fig. 9.4.

The pattern functions for the common mode D
ij
+ can be computed exactly

with the same procedure. For the scalar component we separate transverse and
longitudinal polarizations and we obtain, respectively,

FT
+ �̂n� ≡ D

ij
+Tij = �uiuj +vivj���ij −ninj� = 1+ cos2 $� (9.80)

FL
+ �̂n� ≡ D

ij
+Lij = �uiuj +vivj�ninj = sin2 $� (9.81)

y
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z

Figure 9.4 Parametric plots of the antenna pattern functions for the differential
mode of an interferometer. The left panel illustrates the response to scalar
radiation, according to Eq. (9.77); the central and right panels to tensor radiation,
according to Eqs. (9.78) and (9.79), respectively.
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Figure 9.5 Parametric plots of the antenna pattern functions for the common
mode of an interferometer. The left panel illustrates the response to the transverse
scalar polarization, according to Eq. (9.80); the right panel to the longitudinal
scalar polarization and to the “plus” tensor polarization, according to Eqs. (9.81)
and (9.82), respectively.

For the tensor part we find that the response to the “plus” polarization state, #�+�
ij ,

is the same as the response to scalar longitudinal radiation, while there is no
response to the “cross” polarization:

F
�+�
+ �̂n� ≡ D

ij
+#

�+�
ij = �uiuj +vivj��xixj −yiyj� = sin2 $� (9.82)

F
�×�
+ �̂n� ≡ D

ij
+#

�×�
ij = �uiuj +vivj��xiyj +yixj� = 0� (9.83)

The angular response of the common mode is illustrated in Fig. 9.5.

9.2.2 Signal-to-noise ratio

The rest of this chapter will be devoted to discussing the response of the interfer-
ometric antennas to a stochastic background of scalar radiation (see Section 7.4
for the discussion of the tensor component). Once the physical strain, Eq. (9.68),
and the pattern functions, Eqs. (9.70), (9.71), are defined, the computation of
the signal-to-noise ratio (SNR) proceeds as in the tensor case. One correlates
the outputs si�t� = hi�t�+ni�t�, i = 1�2, of two independent detectors, assuming
that the noises ni are statistically independent and much larger than the physical
strains hi (see Eqs. (7.239)–(7.241)). The relic dilaton background is assumed to
be a stochastic collection of massive scalar waves, isotropic and stationary [27],
satisfying the average conditions
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�X�p� n̂�� = 0�

�X�p� n̂�X�p′� n̂′�� = 0 = �X∗�p� n̂�X∗�p′� n̂′��� (9.84)

�X�p� n̂�X∗�p′� n̂′�� = ��p−p′�
1

4�
�2�̂n� n̂′�

1
2
S��p��

(equivalent to quantum expectation values on an n-particle state if the scalar
field is quantized). Similar conditions apply also to the metric scalar background
"�p� n̂�.

The dilaton strain density S��p� has been normalized as in the case of tensor
fluctuations (see Eq. (7.242)), and can be computed in terms of the spectral energy
density ��� starting from the stress tensor of the free (canonically normalized)
dilaton fluctuations,

��� = M2
P

2

[
��X��X− 1

2
g����X�

2 + m2

2
X2
]
� (9.85)

The energy density of a stochastic background of massive standing waves is given
by the stochastic average (or quantum expectation value) of the �0

0 component,


� = ��0
0� = M2

P

4
�Ẋ2 + ��iX�

2 +m2X2�� (9.86)

Expanding the dilaton fluctuations as in Eq. (9.64), using the conditions (9.84),
and the overall background isotropy, we obtain

m2�X2� = m2

2

∫ �

0
dpS��p��

���iX�2� = �2��2

2

∫ �

0
dpS��p�p

2 (9.87)

�Ẋ2� = �2��2

2

∫ �

0
dpS��p�E

2�

namely


� = M2
P

4
4�2

∫ �

0
dpS��p�E

2�p�� (9.88)

from which, in units of critical energy density 
c = 3H2
0M

2
P,

S��p� = 1

�2M2
PE

2

d
�
dp

= 3H2
0

�2�p�E2
���p�� (9.89)

A similar equation relates the strain density of scalar metric perturbations, S	,
to the associated energy density spectrum, �	. In the massless case p = E = �,
one recovers the corresponding relation for a stochastic graviton background,
Eq. (7.224), modulo the numerical factor 1/4. This factor is due to the fact that
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the graviton spectrum �g��� contains, for a given Sg���, the contribution of two
polarization states, each of them associated with two possible helicity configura-
tions, ±2.

We can now correlate the outputs si of the two detectors over a given obser-
vation time T , using an appropriate “filter function” Q�t� (to be chosen in such a
way as to optimize SNR). One first obtains

�S� =
∫ T/2

−T/2
dt dt′ �h1�t�h2�t

′��Q�t− t′�� (9.90)

exactly as in the case of a tensor background, Eq. (7.246). The scalar strains hi may
contain in general both the geodesic and non-geodesic contributions, according to
Eq. (9.68): in order to correlate the signals, however, the two contributions have
to be discussed separately. In the subsequent computations we will consider, in
particular, the direct (non-geodesic) coupling of the dilaton fluctuations, producing
the following strains at the detector positions �xi (i = 1�2):

hi�t� = 1
2

∫ �

−�
dp
∫

�2

d2n̂
[
F

ng
i �̂n�X�p� n̂� e2�i�p̂n·�xi−Et� +h�c�

]
� (9.91)

The computation of the geodesic contribution proceeds in the same way, with the
obvious replacements F ng → F geo and X → " .

Inserting the above expansion into Eq. (9.90), using the stochastic average
conditions, and the reality of the Fi�̂n� functions, one is led to

�S� = 1
4

∫ T/2

−T/2
dt dt′

∫ +�

−�
dE′ Q�E′�

∫ +�

−�
dp
∫

�2

d2n̂
S��p�

8�
F

ng
1 �̂n� F

ng
2 �̂n�

× e2�ip̂n·��x
[
e−2�i�E+E′��t−t′� + e2�i�E−E′��t−t′�

]
�

(9.92)

where ��x = �x1 −�x2 is the spatial separation of the two detectors, and Q�E� is the
Fourier transform of the filter function,

Q�t− t′� =
∫ +�

−�
dEQ�E�e−2�iE�t−t′�� (9.93)

Finally, F ng
i are generic non-geodesic pattern functions referred to the response

tensor Dij of a generic antenna. Their angular integration defines, as in the tensor
case, the “overlap reduction function”,

%�p� = 1
N

∫

�2

d2n̂ F
ng
1 �̂n� F

ng
2 �̂n� e2�ip̂n·��x� (9.94)

which modulates the correlated signal �S� according to the relative orientation
and separation of the two detectors (the normalization factor N can be chosen in
such a way that % = 1 for coincident and coaligned detectors).
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In order to compute the time integrals we assume that the observation time T

is much larger than the typical time intervals over which Q = 0. We can thus
approximate the integral over dt′ by extending the limits to ±�, as in the case
of tensor radiation: this leads to the delta functions ��E−E′� and ��E+E′�. The
integrations over dE′ and dt then become trivial, and we obtain

�S� = NT

16�

∫ +�

−�
dp%�p�Q�E�p��S��p�

= NT
3H2

0

16�3

∫ +�

−�
dp

�p�E2
%�p�Q�E�p�����p�� (9.95)

where we have assumed Q�E� = Q�−E� (i.e. Q�t− t′� = Q�t′ − t�). Switching
to the frequency domain, and setting E = � = �p2 +m2�1/2, dp = ��/p�d�, the
momentum integral becomes an integral over all frequencies ��� ≥ m, and can be
rewritten as

�S� = NT
3H2

0

16�3

∫ +�

−�
d�

���2 −m2�
%
(√

�2 −m2
)
Q�����

(√
�2 −m2

)

× &$��−m�+$�−�−m�� � (9.96)

where $ is the Heaviside step function. In the limit m→ 0 one recovers the result
(7.250) relative to the case of tensor gravitational radiation (modulo a numerical
factor due to polarization differences). Besides this formal analogy, however,
there are important differences due to the spectral energy density of the cosmic
background, ���p�, and to the different pattern functions.

The computation of the variance, �S2 = �S2�−�S�2, is identical to the com-
putation already performed for the tensor radiation background (see Eq. (7.255)),
and will not be repeated here. Using the inner product defined in Eq. (7.257) we
can then write the SNR as

�SNR�2 = �S�2

��S�2
= T

(
3NH2

0

8�3

)2
�Q�A�2

�Q�Q�
� (9.97)

where

A =
%
(√

�2 −m2
)
��

(√
�2 −m2

)

��� (�2 −m2
)
P1�����P2�����

&$��−m�+$�−�−m�� � (9.98)

As in the graviton case the value of SNR is maximized by the optimal filtering
choice, corresponding to Q = �A. Using this choice, and switching to an integral
over the positive momentum domain, we are led to the final result [26]
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SNR = 3N
√
TH2

0

8�3
�A�A�1/2

= 3NH2
0

8�3

[

2T
∫ �

0

dp
p3 �p2 +m2�3/2

%2�p��2
��p�

P1�
√
p2 +m2�P2�

√
p2 +m2�

]1/2

�

(9.99)

By replacing F
ng
i with F

geo
i in the overlap function (9.94), and ���p� with �	�p�,

one can also immediately obtain the corresponding SNR for the geodesic strain
associated with scalar metric perturbations. These results are valid for all types
of detectors, i.e. for any given form of the response tensor Dij appearing in the
definition of the pattern functions.

9.2.3 Non-relativistic backgrounds

Apart from the different spectrum of the relic radiation background, the obtained
signal-to-noise ratio differs from the previous result (7.260) in two main respects:
�i� the overlap function %�p�, defined in terms of the scalar pattern functions
(9.70) and (9.71), and �ii� the presence of the mass in the argument of the noise
power spectra Pi. As already stressed, the scalar strains hi are different from those
induced by the tensor (spin-two) radiation because of the different polarization
states; in addition, as we shall now discuss, the mass dependence of the noise has
an important impact on the resonant response of the detector.

In a typical power spectrum, Pi���, the minimum level of noise is reached
around a (rather narrow) frequency band �0 (see for instance Figs. 7.9 and 7.10).
Outside this band the noise diverges, Pi → �, and the signal becomes negligible,
SNR → 0. As � = �p2 +m2�1/2 there are, in principle, three possibilities.

(1) If m � �0 then the noise is always outside the sensitivity band (i.e. far from the
minimum), since Pi�

√
p2 +m2� � Pi��0� for all modes p. The induced signal is

expected to be negligible for both the relativistic and non-relativistic branches of the
spectrum.

(2) If m � �0 then the sensitivity band of the detector may overlap with the relativistic
branch of the scalar spectrum, for those modes with p ∼ � ∼ �0. The non-relativistic
branch p < m always corresponds to a very high noise, Pi�m� � Pi��0�, and to a
negligible signal.

(3) If m ∼ �0 the noise stays at a minimum for the whole non-relativistic branch of the
scalar spectrum, since Pi��� 	 Pi�m� ∼ Pi��0� for all modes with 0 ≤ p <∼ m. The
relativistic sector p � m, on the contrary, corresponds to a high noise, Pi � P��0�,
and to a negligible signal.

Therefore, it is possible to obtain a resonant response even to a massive, non-
relativistic background of scalar particles, provided their mass lies within the
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frequency range of maximal sensitivity of the two detectors [25, 26]. For the
presently operating, Earth-based, gravitational antennas the resonant band may
vary from the 1 Hz to the 1 kHz range: the maximal sensitivity to a non-relativistic
background is thus in the mass range

10−15 eV <∼ m <∼ 10−12 eV� (9.100)

The rest of this section will be devoted to discussing the detector response to
a non-relativistic scalar background; in the relativistic case we can neglect the
mass everywhere in Eq. (9.99), and the subsequent analysis is exactly the same
as that performed for a background of tensor radiation in Section 7.4, except for
the different polarization states of the scalar particles.

Present studies on the detection of cosmic scalar backgrounds concern both
interferometric [25, 26, 28] and spherical (resonant-mass) [29] detectors. Here we
start by considering the interaction of a scalar background with the differential
mode of an interferometer, described by the response tensor Dij− (the interaction
with the common mode D

ij
+ will be discussed in Appendix 9A). For such a mode

the detector tensor is traceless, Dij−�ij = 0, so that the geodesic and non-geodesic
pattern functions (9.70) and (9.71) turn out to be proportional, namely

F geo
− = −

(p
E

)2
Dij

−Lij�

F ng
− = −qF geo

− = −q
(p
E

)2
F rel

− �

(9.101)

where we have called F rel− the pattern function of a relativistic scalar mode with
p = E. This relation also shows that the response to non-relativistic modes is
strongly suppressed with respect to the relativistic response, because of the factor
p/E � 1. The overlap function, in particular, is quadratic in F , so that

%nr�p� =
(p
E

)4
%rel�p� 	

( p
m

)4
%rel�p�� p�m� (9.102)

Such a suppression, however, may become ineffective if the scalar spectrum is
peaked at p = m. If, in addition, the peak intensity approaches the limiting value
saturating the critical density bound, �� ∼ 1, then the experimental detection
may become compatible with both the expected sensitivities of present (and
advanced) interferometers, and the present experimental limits on the dilaton
coupling strength [25, 26].

In order to illustrate this interesting possibility, let us consider the simplified
situation in which the non-relativistic dilaton spectrum is peaked at p = m, and
interacts with two identical interferometers with spectral noises P1 = P2 = P,
dilaton charges q1 = q2 = q, ideally arranged in the setup of maximal overlap in
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which % = 1 for the relativistic branch of the spectrum (the associated normal-
ization factor is then N = 4�/15, as computed in [24, 26]). The non-geodesic
response to a non-relativistic background is thus governed by the overlap factor
%ng = q2�p/m�4, while in the geodesic case we have the same expression with
q = 1 (see Eq. (9.101)). Assuming that the SNR integral (9.99) is dominated by
the peak value of the dilaton spectrum, �� = �m at p = m, the condition of
detectable signal, SNR > 1, can be expressed as

√
2T

q2H2
0

10�2

�m

m5/2P�m�
>∼ 1� (9.103)

namely as

m5/2P�m� <∼ 10−33 Hz3/2
(

T

4×107 s

)1/2

q2h2�m� (9.104)

We can eventually consider, as a possible realistic example of available interfero-
metric sensitivity, the noise power spectrum of LIGO, illustrated in Fig. 7.10 for
the present and advanced generations. The intersection of that power spectrum
with the condition (9.104) provides a rough estimate of the mass values possibly
compatible with detection, for the given class of relic dilaton backgrounds.

The allowed mass window depends on the relic intensity �m and on the strength
q of the dilaton coupling. Large couplings (q2 ∼ 1), associated with the range of
very small masses that we are considering, can only refer to the indirect (geodesic)
response of the interferometer to the spectrum of scalar metric perturbations
induced by the dilaton. In that case, however, the background intensity is expected
to be much smaller than the limiting value �m ∼ 1. In the case of direct (non-
geodesic) coupling to the detectors, the background intensity can be higher, but
the scalar charge has to be appropriately suppressed to avoid contradictions with
known gravitational phenomenology. In particular, in the relevant mass range of
Eq. (9.100), the existing phenomenological bounds [14] can be parametrized as
follows:

logq2 <∼
{ −7� 1 Hz <∼ m <∼ 10 Hz�

−7+ log�m/10 Hz�� 10 Hz <∼ m <∼ 1 kHz�
(9.105)

for universal dilaton interactions, and

logq2 <∼
{ −8� 1 Hz <∼ m <∼ 10 Hz�

−8+ log�m/10 Hz�� 10 Hz <∼ m <∼ 1 kHz�
(9.106)

for composition-dependent dilaton interactions.
For a common discussion of the geodesic and non-geodesic case we can use as

free parameter the factor q2h2�m appearing in Eq. (9.104), taking into account for
q2 the limits (9.105) and (9.106). The condition (9.104) of detectable background,
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Figure 9.6 Noise power spectrum of the three LIGO generations (bold curves),
compared with the condition (9.104) of detectable background (dashed lines),
plotted at various fixed values of the parameter q2h2�m ranging from 10−10

to 10−5.

at various fixed values of the parameter q2h2�m, is then compared in Fig. 9.6
with the spectral noises of the three LIGO generations, Eqs. (7.230)–(7.232), for
T = 4 × 107 s. The allowed region of the plane �m�P�m�� corresponding to a
detectable background is placed above the bold noise curves and below the dashed
lines, representing the upper limit (9.104) for different values of q2h2�m. This
limit may be interpreted either as a constraint on the intensity �m of a background
geodesically coupled (q2 = 1) to the detector, or as a limit on the non-geodesic
coupling strength q2 of a scalar background of given energy density �m.

Quite independently of the possible interpretation, the main message of Fig. 9.6
is that the sensitivity of the next-generation interferometers is (in principle) already
sufficient to detect a cosmic background of non-relativistic scalar particles, even
in the case of very weak coupling to macroscopic matter, provided their density is
sufficiently close to the critical one, and the mass is within the resonant frequency
band of the antennas. The approximate results of this qualitative discussion have
been confirmed by a more accurate numerical analysis [26] which takes into
account the real parameters of the LIGO pair of interferometers: the analysis has
been performed by parametrizing the non-relativistic dilaton spectrum as

���p� = �m

( p
m

)�
� p ≤ m� 0 ≤ � ≤ 3� (9.107)

and integrating numerically Eq. (9.99), using for q2 the values saturating the
bounds (9.105) and (9.106).

Concerning the value of the dilaton mass, it is perhaps worth stressing that the
very small value required for a resonant response of the detectors might be not
so unrealistic if we consider a mass generated by the perturbative mechanism of
radiative corrections. For a scalar field, gravitationally coupled (with dimensionless
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strength q) to fermions of mass Mf , there are in fact quantum loop corrections
to the mass of order qMf�'/MP�, where'/MP is the cut-off scale (typically 1 TeV)
in Planck units (see for instance [30]). The dilaton coupling to ordinary baryonic
matter (with Mf ∼ 1 GeV) thus induces a mass

m ∼ q 10−6 eV
(

'

1 Tev

)(
Mf

1 Gev

)
� (9.108)

Assuming that this is the dominant contribution to the dilaton mass, it turns out
(perhaps surprisingly) that a value of q smaller than, but not very far from, the
present upper limits (9.106) may be compatible with the preferred mass range
(9.100).

It should be noted, finally, that the assumption of a non-relativistic peak at
p = m (used to obtain the result (9.104)) cannot be applied to the “minimal”
spectrum (9.12) when it is peaked at p= pm = p1�m/H1�

1/2: the condition pm =m

would imply, in fact, m ∼ 10−8 (eV2/MP), well below the resonant frequency
band (9.100). If, on the contrary, the mass does lie in the required range, then
the amplitude of the spectrum (9.12) at p = m is always well below its possible
maximal intensity (see Fig. 9.1), and this strongly disfavors its possible detection
[26].

9.2.4 Signal enhancement for flat spectra

The presence of a peak at p=m was previously assumed to compensate the strong
suppression factor p/m which characterizes the response of the differential mode
to non-relativistic radiation. Such a suppression is closely related to the fact that
Dij− is traceless, and may be absent for other response modes and/or for different
gravitational detectors: there is no such suppression, for instance, for the common
mode of an interferometer [28] (see Appendix 9A), and for the monopole mode
of a resonant spherical detector [29].

This last case is characterized by the trivial response tensor Dij
0 = �ij , so that

D
ij
0 Tij = 2, Dij

0 Lij = 1. As a consequence, both the geodesic and non-geodesic
pattern functions are isotropic:

F
geo
0 = 2p2 +3m2

p2 +m2
� F

ng
0 = q

p2

p2 +m2
� (9.109)

The non-relativistic response is still suppressed for non-geodesic interactions,
while the suppression disappears in the geodesic case (actually, there is an en-
hancement factor 3/2 with respect to the relativistic modes with m = 0). The
corresponding geodesic overlap function, for two spheres with spatial separation
��x1 − �x2� = d, is then given by Eq. (9.94) as
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%�p� = 15
4�

∫

�s

d2n̂
(
F

geo
0

)2
e2i�p̂n·��x1−�x2�

= 15
2�

(
2p2 +3m2

p2 +m2

)2
sin�2�pd�

pd
(9.110)

(we have chosen the same normalization factor as in the interferometric case, for
an easier comparison). In the limit p → 0 we thus obtain % → 135 and we find,
as a first result, that the value of SNR is greatly enhanced (by a fixed amount)
with respect to the correlation of the differential modes of two interferometers, in
particular if the spectrum is not peaked at p = m.

The fact that % tends to a constant in the infrared limit p → 0 has, however, a
second important consequence if the non-relativistic scalar spectrum is sufficiently
flat. According to Eq. (9.99), the SNR is proportional to the integral

�SNR�2 ∼ T
∫ p1

0
dp

%2�p��2�p�

p3E3P1�E�P2�E�
� (9.111)

where we can assume that the spectral distribution ��p� is a power-law function
of p, with an ultraviolet cut-off at p= p1. In the massless case (p=E) this integral
is always convergent, even in the infrared limit because, when p = E → 0, the
physical strains are produced outside the sensitivity band of the detectors, where
the noises shoot up to infinity, Pi�E� → �. For m = 0, on the contrary, one finds
that in the infrared limit the noises stay frozen at the frequency scale fixed by the
mass of the scalar background,

Pi�E� → Pi�m� = const� p → 0� (9.112)

and the behavior of the integral depends on %�p� and ��p�.
For the differential mode of two interferometers the overlap function contains

the suppression factor %2 ∼ �p/m�8, which may be reasonably expected to force
the integral to be convergent in the limit p→ 0 (modulo spectra with dramatically
strong infrared divergences). For the monopole modes of two spherical detectors,
however, %�p�→ %0 = const, when p→ 0. For the non-relativistic sector (p<m),
and for a generic power-law spectrum, �∼ p�, we then find that the SNR integral
is dominated by the infrared limit, and we obtain

�SNR�2 ∼ T%2
0

m3P1P2

[
p2��−1�

]m

0
� (9.113)

i.e. the integral diverges for all spectra (even blue, � > 0) with � < 1! This would
seem to imply an infinite signal for the geodesic response of two spherical detectors
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interacting with a flat enough massive scalar spectrum, quite independently of
the level of instrumental noise and of the absolute intensity of the background.

This infrared divergence is unphysical, of course, and can be removed by
taking into account that the observation time T is not infinite, and is therefore
associated with a minimum (non-zero) resolvable frequency interval, defined by
the condition �� = �E >∼ T−1. For p → 0, on the other hand, E 	 m+p2/2m,
so that the uncertainty condition defines a minimum momentum scale [29]

p >∼ pmin =
(

2m
T

)1/2

� (9.114)

acting as infrared cut-off and regularizing the momentum integral. Indeed, modes
with p < pmin cannot be resolved by instruments working during a finite time
interval T , and must be included in the constant background over which scalar
perturbations propagate, without contributing to the signal. The lower limit p = 0
in Eq. (9.113) has thus to be replaced by p = pmin, and this implies a modified
dependence of SNR on the integration time T in the case of flat enough spectra:

SNR ∼ T 1/2
[
p�−1

]m

pmin

∼
{
T 1/2� � > 1�

T 1−�/2� � < 1
(9.115)

(for � = 1 there is only an unimportant logarithmic correction to the standard
time dependence T 1/2). The modification depends on whether the integral is
dominated (or not) by its lower limit, and disappears in the case of a massless
background.

Such an anomalous (and, in particular, faster) growth of SNR with T , for
� < 1, may produce an important enhancement of the sensitivity of resonant
spherical detectors to a cosmic background of non-relativistic scalar particles. For
a quantitative illustration of this effect we compute here the minimum detectable
non-relativistic background geodesically interacting with the monopole mode of
two cross-correlated spheres.

We consider, for simplicity, a background characterized by the spectrum
(9.107), using the geodesic overlap function (9.110) for two identical (P1 = P2 =
P) and coincident (d = 0) detectors [29]. By imposing on Eq. (9.99) the detect-
ability condition SNR >∼ 5, we obtain, for the two cases � = 3/2 and � = 1/2,
respectively,

h2�m
>∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

10−5

(
SNR

5

)(
T

107 s

)−1/2(
P

10−46 Hz−1

)( m

3×103 Hz

)5/2
� � = 3/2�

10−8

(
SNR

5

)(
T

107 s

)−3/4(
P

10−46 Hz−1

)( m

3×103 Hz

)9/4
� � = 1/2

(9.116)
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(the result for � = 3/2 also applies to all spectra with � > 1). We have used, as
reference values, a typical observation time ∼1 year, and the minimum (expected)
noise density of a resonant sphere [31, 32] in the frequency band �0 = 3 × 103

Hz. We have also assumed that the scalar mass is in the same frequency range,
otherwise, for m � �0, the infrared cut-off (9.114) becomes ineffective, since the
low-energy part of the integral is suppressed by the very high instrumental noise.
What should be noted in the above result (besides the remarkable sensitivity
to scalar backgrounds with energy density well below the critical limit) is the
greatly enhanced sensitivity to backgrounds with spectral index � < 1, at fixed
observation time T , fixed spectral noise P, and fixed scalar mass m.

It should be mentioned, as a final remark, that spherical-mass detectors
(unlike interferometers) may offer the interesting possibility of tuning the res-
onant frequency over a rather wide range [31, 32, 33], thus opening up the
sensitivity bandwidth. Scanning the corresponding mass window may lead to
important information on the presence of massive, ultra-light scalar backgrounds
of primordial origin, and provide unique constraints on minimal and non-minimal
string cosmology models of inflation.

9.3 Dilaton dark energy and late-time acceleration

According to the standard scenario, the cosmological phase subsequent to the
radiation-dominated era (including also the present epoch) should be domin-
ated by a non-relativistic and incoherent (p = 0) distribution of cosmic matter,
and thus characterized by a decelerated expansion (ȧ > 0, ä < 0), according to
Eqs. (1.25). Assuming a negligible spatial curvature, as predicted by inflation (and
as confirmed by recent observations, see e.g. [34]), one can then deduce from
the Einstein equation (1.26) a present matter density of critical order, 
m�t0� =

c�t0� = 3M2

PH
2
0 ∼ 10−29 g/cm3. The difficulty that only a tiny fraction (about

1%) of this energy density turns out to be optically visible – the so-called “missing
mass” problem (see e.g. [35]) – can be easily solved by assuming that the present
Universe is dominated on large scales by some non-baryonic (and possibly exotic)
“dark-matter” component. The possible composition (WIMPS, axions, neutrali-
nos, � � �) and properties of such dark-matter fluid have been under active study for
more than two decades (see for instance [36]).

As already pointed out in Chapter 1, this standard picture has been challenged
by a series of recent observations, primarily by the study of the Hubble diagram of
Type Ia Supernovae (SNIa) [37, 38]: the optimal fit of their luminosity distance–
redshift distribution seems to require a model in which our present Universe
undergoes a phase of accelerated expansion, ä > 0, and is thus dominated by
a cosmic component with negative pressure (with p < −
/3, according to the
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Einstein equations), dubbed “dark energy”. Recent data of SNIa at z > 1 [39],
as well as more extended analyses including data from CMB anisotropies, large-
scale structure and Hubble space telescope [40, 41], seem to confirm that the
pressureless dark-matter component is only a minority fraction of the present
critical density: 0�22 <∼ �m

<∼ 0�35. The remaining, dominating contribution
1−�m should come from the dark-energy component which, if represented as a
barotropic perfect fluid, may be characterized by an equation of state p/
 = w

with −1�38 <∼ w <∼ −0�82 (see also Section 1.1 for more recent measurements).
The present large-scale observations are thus perfectly compatible, in principle,

with a Universe dominated by a cosmological constant ', which, as stressed
in Section 1.1, is dynamically equivalent to a perfect fluid with equation of
state p/
 = −1. This simplest explanation of the observational data is affected,
however, by two important conceptual difficulties. The first one concerns a “nat-
uralness” (or fine-tuning) problem: why is '∼ 
c�t0��M4

P so small with respect
to the (apparently) most natural particle physics prediction ' ∼ M4

P? The second
difficulty concerns a problem of “cosmic coincidence”: why are the dark-energy
density ' and the dark-matter density 
m�t� of the same order just at the present
epoch t = t0? After all, the value of ' is frozen at a constant, while 
�t� is running
as a−3, and may intersect the value of ' at one given epoch only.

The problems just mentioned could be solved, or at least alleviated, in the
context of a less-trivial scenario in which the dark-energy density is not a constant,
and its variation in time is connected, in some way, to the variation of the dark-
matter density. This idea is the basis of the scenario of quintessence [42–45], in
which the role of the cosmic dark energy is played by a scalar field �, slow-rolling
along an appropriate self-interaction potential. Choosing, for instance, V��� ∼
�−�, � > 0 one can obtain the so-called “tracking” solutions [46, 47] in which
the effective equation of state of the scalar field changes in time, following the
background evolution: the effective pressure, in particular, may become negative
as the Universe transforms from radiation- to matter-dominated, so that the scalar
potential energy is doomed to become critical at late enough times, V��� ∼ 
c,
quite irrespective of the given initial conditions.

In such a context, however, the dark-energy density 
� ∼ V��� ∼ H2, and the
dark-matter density 
m ∼ a−3, have asymptotically different time dependence,
and the cosmic coincidence can hardly be explained. A possible solution to this
problem can be obtained either by including an appropriate bulk viscosity term
into the dark-matter stress tensor [48, 49], or by introducing a direct (and strong
enough) non-minimal gravitational coupling between 
� and 
m, as proposed
in models of “coupled quintessence” [50, 51, 52]. The aim of this section is to
show that the string theory dilaton may provide a natural implementation of the
coupled quintessence scenario, provided the cosmological run of the dilaton does
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not stop after entering the strong coupling regime exp� >∼ 1. We consider, in
particular, the scenario in which the dilaton keeps rolling to plus infinity along
an exponentially suppressed (non-perturbative) potential [53], and in which the
limit � → � is characterized by the asymptotic saturation of all the dilaton loop
corrections [54], in such a way that they approach a finite limit as t → �.

It should be noted that in this case a unique fundamental field, the dilaton, might
be responsible for both the primordial (high-energy) inflationary phase and the
present cosmic acceleration, occurring at an exceedingly lower curvature scale: the
situation is similar to what happens in the context of the cyclic/ekpyrotic scenario
[55], where a single modulus field, the interbrane distance, controls the primordial
phase of brane collision and the present large-scale acceleration (see Section 10.4).
The dilaton model that we will consider here is not cyclic, unlike the scenario
illustrated in Section 10.4; the model, however, could be easily extended to
become cyclic, through a suitable modification of the effective potential producing
a bounce of the dilaton motion in the strong coupling regime, and preparing the
Universe for a new, future, pre-big bang phase (see the discussion at the end of
Section 10.4).

9.3.1 Saturation of the loop corrections

In order to illustrate such a dilaton dark-energy scenario let us consider again
the S-frame string effective action (9.35): we are working to lowest order in
�′ (as we are interested in the late-time, small-curvature regime), but we are
including the dilaton-dependent quantum loop corrections (possibly to all orders),
together with a non-perturbative potential Ṽ ���. We rewrite Eq. (9.35), for later
convenience, as follows:

S = − 1
2�2

s

∫
d4x

√
−g̃

[
e−	���R̃+Z�����̃��2 +2�2

s Ṽ ���
]
+Sm�̃g��� matter��

(9.117)

where the tilde is to remind us that we are using the S-frame variables, and
	����Z��� are the dilaton “form factors” due to the loop corrections (other
corrections are included inside the potential and the matter action Sm). In the weak
coupling limit � → −� we have exp�−	� = Z = exp�−��, and we recover the
lowest-order string effective action with the possible addition of an instantonically
suppressed potential, Ṽ ∼ exp&− exp�−���.

In the opposite, strong “bare coupling” limit �→ � we assume the validity of
an asymptotic Taylor expansion in inverse powers of the bare coupling constant
g2

s = exp���, following the spirit of the “induced gravity” models where the
gravitational and gauge couplings saturate at small (finite) values because of the
very large number N of fundamental gauge bosons entering the loop corrections
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[53, 54]. Applying this assumption to the loop form factors, to the potential and
to the scalar dilaton charge q��� (controlling the ratio of the charge density ̃ to
the energy density 
̃ of a homogeneous gravtational source), we set, for � → �,

e−	��� = c2
1 +b1e−� +��e−2���

Z��� = −c2
2 +b2 e−� +��e−2���

Ṽ ��� = V0e−� +��e−2���

q��� = q0 +��e−2��

(9.118)

(see also Eqs. (3.55)).
A few comments on the coefficients of the above expansion are in order. The

dimensionless coefficients c2
1 and c2

2 are typically of order N ∼ 102, because of
their quantum loop origin, and because of the large dimensions of the GUT gauge
groups. We note, in particular, that c2

1 asymptotically controls the fundamental
ratio between the string and the Planck scale, c2

1 = ��s/�P�
2 (see Eq. (3.56)), and

which is expected, indeed, to be a number of the above order. The coefficients
b1 and b2, on the contrary, are dimensionless numbers of order one. The mass
scale V0, being of non-perturbative origin, should be related to the string scale in
a typically instantonic way, namely,

V0 = M4
s e−4/��GUT� (9.119)

where �GUT 	 1/25 is the asymptotic value of the GUT gauge coupling, and
� is some model-dependent loop coefficient. Finally, the asymptotic value q0

of the dilaton charge is strongly dependent on the considered type of matter
field: we may expect, for a small dilaton mass, that q0 	 0 (corresponding to an
exponential suppression of the dilaton coupling) for electromagnetic radiation and
ordinary macroscopic matter (such as baryons), in order to avoid unacceptably
large deviations from the standard gravitational phenomenology. For the (possibly
more exotic) dark-matter components, however, there is no phenomenological
need for such suppression, and the asymptotic charge q0 could be non-zero, and
even large, in principle. If this is the case we are led to interesting, late-time
deviations from the standard cosmological scenario.

For a simple discussion of such deviations let us include in the matter sources a
radiation fluid, with 
̃= 3̃p, a pressureless baryon-matter component, 
̃b, and the
usual dark-matter component 
̃m. Considering a homogeneous, conformally flat
metric background we can then write the cosmological equations for the action
(9.117) using, for instance, the cosmic-time gauge. For the purposes of this section
it will be convenient to concentrate our discussion on the transformed E-frame
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equations, defined by the conformal rescaling g̃�� = c2
1 g�� exp	���. The various

cosmological variables are transformed as follows (see also Section 2.2):

ã = c1a e	/2� d̃t = c1dt e	/2� V = c4
1Ṽ e2	�


 = c2
1
̃ e2	� p = c2

1p̃ e2	  = c2
1̃ e2	�

(9.120)

In units 2�2
P = 1, and in the cosmic-time gauge, we can then write the E-frame

gravitational equations in the form

6H2 = 
r +
b +
m +
��

4Ḣ +6H2 = −
r
3

−p��
(9.121)

where


� = k2���

2
�̇2 +V� p� = k2���

2
�̇2 −V�

k2��� = 3	′2 −2e	Z

(9.122)

(the prime denotes differentiation with respect to �, the dot with respect to
the E-frame cosmic time t). We assume that the dilaton charge densities of the
baryon and radiation fluids can be safely neglected, r = 0 = b, and we call
q��� = m/
m the dilaton charge of the (homogeneous) dark-matter component.
The transformed (E-frame) equation for the dilaton field then takes the form

k2��̈+3H�̇�+kk′�̇2 +V ′ + 1
2

[
	′
b + �	′ +q�
m

]= 0� (9.123)

The combination of Eqs. (9.121) and (9.123) leads to the separate energy-
conservation equation of the various fluid components:


̇r +4H
r = 0� (9.124)


̇b +3H
b − 1
2
�̇	′
b = 0� (9.125)


̇m +3H
m − 1
2
�̇
(
	′ +q

)

m = 0� (9.126)

Finally, using the definitions of 
� and p�, we can also rewrite the dilaton
equation in fluidodynamical form,


̇� +3H�
� +p��+
1
2
�̇
[
	′
b + (	′ +q

)

m
]= 0� (9.127)

It is important to note, at this point, that this system of coupled equations
contains two types of dilaton coupling to the dust matter sources 
b and 
m. A first
coupling is controlled by the loop form factor 	′, and is doomed to an exponential
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decay since, according to the asymptotic expansion (9.118), 	′ 	 c−2
1 exp�−��

for � → �. The other type of coupling is induced by the dilaton charge, and
is only active for the dark-matter component 
m: this coupling, on the contrary,
tends to grow with �, approaching the constant asymptotic value q0. A detailed
analysis of the above coupled equations [53] shows that in a realistic cosmological
scenario the effects of the dilaton charge (as well as those of the dilaton potential)
may become important only at late enough epochs, when the Universe has already
entered the matter-dominated regime. This means, in our context, that an efficient
scenario of coupled quintessence must be a “two-phases” scenario, in which the
dark-matter component evolves from an initial regime of weak and growing dilaton
coupling, to a final regime in which the coupling is strong and asymptotically
constant. For a qualitative illustration of such a background evolution let us
now consider in some detail the behavior of the various cosmological components.

First of all we note that in the initial radiation-dominated phase, soon after
inflation, no modification of the standard cosmological evolution is to be expected.
Indeed, 
r is decoupled from the dilaton (see Eq. (9.124)), and since 
m, 
b and
V are initially negligible in the standard scenario, then 
� ∼ a−6 (according to
Eq. (9.127)), so that the dilaton components also rapidly become negligible (even
starting from an initial configuration with 
� ∼ 
r ). Such a fast dilution of 
�
cannot continue, however, for the whole radiation-dominated phase because at
late enough time, as soon as 
� drops below 
m, the dilaton coupling 
m�̇	

′
becomes important and tends to “damp” the evolution of �: the dilaton then
enters a “focusing” regime in which its energy density evolves as 
� ∼ a−2,
tending to approach the higher values of 
r and 
m (see [53] for a detailed
discussion).

This effect stops at the equality epoch so that, at the beginning of the phase
dominated by the dark-matter component, we can assume that 
� is still sub-
dominant (as well as 
b) with respect to 
m, and that q��� and V��� are also
negligible. However, the (weak) coupling between 
� and 
m, due to 	′, is
responsible for a “dragging” effect producing the same time evolution for the dark-
matter and the dark-energy densities, 
� ∼ 
m, together with a slight modification
of the standard behavior 
m ∼ a−3.

9.3.2 The dragging and freezing regimes

For an explicit, analytic description of the dragging regime we can note, according
to the asymptotic expansion (9.118), that the loop coefficient k��� tends to a
constant for �→ �, i.e. k→ √

2c2/c1; in this limit we can thus rewrite the dilaton
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and dark-matter equations (9.123) and (9.126) in terms of the rescaled variable

�̂ = k� (associated with a canonical kinetic term ˙̂
�

2
/2), respectively as follows:

¨̂
�+3H ˙̂

�+ #

2

m = 0� (9.128)


̇m +3H
m − #

2

m

˙̂
� = 0� (9.129)

Here # = 	′/k 	 e−�/�
√

2c1c2� � 1 is the small (loop-induced) coupling para-

meter. Neglecting its time dependence with respect to H and ˙̂
� (for small enough

time intervals), one easily finds that Eqs. (9.128) and (9.121) are solved by

˙̂
� = −2#H� (9.130)

so that, from Eq. (9.129),


m ∼ a−�3+#2� ∼ H2 ∼ ˙̂
�

2
∼ 
��

a ∼ t2/�3+#2��

(9.131)

The (fully kinetic) dilaton dark energy 
� is thus “dragged” along by the dark
matter density. Because of this dragging (and even for a sub-dominant 
�)
the background evolution slightly deviates from the typical behavior of a dust-
dominated Universe, in which 
 ∼ a−3, a ∼ t2/3. The cosmological expansion,
however, remains decelerated.

We must now take into account that, as time goes on, the coupling parameter
#=	′/k tends to zero, while the dilaton charge grows, and tends to be stabilized at
the constant value q0. The Universe approaches, asymptotically, a late-time regime
in which baryons (as well as radiation, and any other component of ordinary
macroscopic matter) are decoupled from the dilaton, while dark matter becomes
strongly coupled with a charge q0. (We are considering here, for simplicity, a
model with a unique type of exotic dark-matter component; but the discussion can
be easily generalized to the case of multicomponent dark matter, with different
dilaton charges for the different components.) Eventually, when the dilaton poten-
tial (9.118) comes into play, the Universe enters an asymptotic “freezing” phase
in which the ratio 
m/
� becomes frozen at a final value, controlled by q0 and
by the leading loop coefficients c1 and c2. Interestingly enough, such a final
configuration is accelerated, provided q0 > 1.

For a convenient description of this asymptotic regime we can again use the
canonical dilaton variable �̂= k�, in such a way that the dark-matter and dilaton
equations, (9.126) and (9.127), can be written in the form


̇m +3H
m − q0

2k

m

˙̂
� = 0� (9.132)



470 Dilaton phenomenology


̇� +6H
k + q0

2k

m

˙̂
� = 0� (9.133)

We have defined


k =
˙̂
�

2

2
� 
� = 
k +
V � 
V = V��̂� = V̂0e−�̂/k� (9.134)

according to Eqs. (9.118) and (9.120). The two equations for 
� and 
m, together
with the gravitational equations (9.121) (with 
r = 0 = 
b), can be satisfied by
an asymptotic configuration in which 
m, 
�, V and H2 scale in time in the
same way, so that the critical fractions of dark-matter energy density, �m =

m/6H2, potential energy density, �V = V/6H2, and kinetic energy density,

�k = ˙̂
�

2
/�12H2�, are also separately constant.

Let us look, in fact, for solutions with frozen dark-matter over dark-energy
ratio, characterized by the conditions


̇m

m

= 
̇�


�
�


̇m

m

= 
̇V

V

� (9.135)

The first condition, using the conservation equations (9.132) and (9.133), and the
Einstein equations (9.121) rewritten in the form

1 = �m +�� = �m +�k +�V� (9.136)

leads to
˙̂
�

H
= 6k

q0
��V −�k�� (9.137)

The second condition, also using the explicit form of the potential energy (9.134),
leads to

˙̂
�

H
= 6k

q0 +2
� (9.138)

Their combination gives

�V = �k + q0

q0 +2
� (9.139)

Expressing ˙̂
� through �k we can rewrite Eq. (9.138) as

�
1/2
k =

˙̂
�√
12H

=
√

3k
q0 +2

� (9.140)
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This completely fixes the constant (asymptotic) critical fractions of dark-energy
and dark-matter density,

�k = 3k2

�q0 +2�2
� �V = 3k2 +q0�q0 +2�

�q0 +2�2
�

�� = �k +�V� �m = 1−���

(9.141)

and the constant, asymptotic dark-energy equation of state,

w = p�


�
= �k −�V

�k +�V

= − q0�q0 +2�
6k2 +q0�q0 +2�

� (9.142)

The behavior of �� and w, as a function of the charge q0 and of the loop parameter
k = √

2c2/c1, is illustrated in Fig. 9.7 in a range of parameters corresponding to
realistic values of the dark-energy density and of its equation of state. Assuming
that the present Universe is already inside the asymptotic freezing regime, a fit
of the observed values of ����w� could then provide direct information on the
leading asymptotic parameters of the string effective action (9.117).
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Figure 9.7 Plot of the curves �� = const (bold curves) and w = const (dashed
curves), for the solutions (9.141) and (9.142). The dark-energy density �� ranges
from 0�4 to 1, the equation of state from w = −0�4 to w = −0�99.
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The explicit time dependence of the asymptotic solution can be determined by
using the Einstein equation (9.121) for Ḣ , rewritten in the form

1+ 2Ḣ
3H2

= �V −�k� (9.143)

from which
ä

aH2
= 1+ Ḣ

H2
= 3

2
��V −�k�−

1
2

= q0 −1
q0 +2

� (9.144)

A double integration of Ḣ then gives

a ∼ t�q0+2�/3� H ∼ a−3/�q0+2�� (9.145)

from which


m ∼
˙̂
�

2

2
∼ V̂0 e−�̂/k ∼ H2 ∼ a−6/�q0+2�� (9.146)

Finally, the integration of ˙̂
� in Eq. (9.138) leads to

� = �0 +2k ln t� (9.147)

It is important to stress that, according to Eq. (9.144), the above solution describes
accelerated expansion provided that q0 > 1, as previously anticipated. The case
q0 < −2 would also correspond to a positive acceleration (of super-inflationary
type, with Ḣ > 0, see Chapter 5), describing a background evolving towards a
“big rip” singularity [56]: however, such a possibility is to be excluded in our
context, as it would imply �m < 0 (see Eqs. (9.141)).

9.3.3 A numerical example

A global representation of the modified cosmological evolution, illustrating the
smooth transition from the initial radiation phase to the intermediate dragging
phase and to the final, asymptotic freezing regime, can be obtained by performing
numerical integrations of the string cosmology equations (9.121)–(9.127), using an
appropriate parametrization of the loop form factors. For our illustrative purpose
we adopt here the expansion (9.118) truncated to first order in g−2

s = exp�−��,
setting b1 = b2 = 1, c2

1 = 100 and c2
2 = 30. We also model the asymptotic rise of

the dilaton coupling to dark matter with the function

q��� = q0
eq0�

c2 + eq0�
� (9.148)

where we set c2 = 150 and q0 = 2�5.
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Finally, we must specify the explicit form of the dilaton potential. In agreement
with its non-perturbative origin, and with the assumption of asymptotic exponen-
tial suppression in the strong bare-coupling limit � → �, the simplest choice for
the S-frame potential is a difference of exponential terms like this,

Ṽ ��� = m2
V

(
e−�1e−� − e−�2e−�

)
� 0 < �1 < �2� (9.149)

which leads to the large-� behavior of Eq. (9.118), with V0 = m2
V ��2 −�1�. In

the E-frame, taking into account the rescaling (9.120), the potential becomes (in
units M2

P = 2)

V��� = c4
1m

2
V

e2�

�b1 + c2
1e��2

(
e−�1e−� − e−�2e−�

)
� (9.150)

We fix �1 = 0�1, �2 = 0�2 and c2
1mV = 10−3Heq. This last choice, which implies

mV ∼ H0, is crucial to obtain a realistic scenario in which the Universe starts
accelerating at a phenomenologically acceptable epoch [53]. Note that, given the
instantonic relation (9.119) between the amplitude of the potential and the funda-
mental string scale, a value of � slightly smaller than the coefficient of the QCD
beta function is enough to move mV from the QCD scale down to the Hubble
scale, as already stressed in [53]. This should not hide, however, the fine-tuning
required to adjust very precisely the amplitude of the potential, and which seems
to be common to all quintessence scenarios characterized by a running scalar
field. We will comment on this point further at the end of this section.

We now have all the ingredients for the numerical integration of Eqs. (9.124)–
(9.127) determining the time evolution of 
r , 
b, 
m, 
�. Using the first equation
(9.121) as a constraint on the set of initial data, and imposing the initial conditions

�i = 
ri, 
mi = 10−20
ri, 
bi = 7 × 10−21
ri, �i = −2, at the initial scale Hi =
1040Heq, we obtain the result illustrated in Fig. 9.8.

The figure clearly displays, at early times in the radiation era, the presence
of the focusing effect by which the (till sub-dominant) dilaton energy density
tends to approach the energy density of the other cosmological components. In
the subsequent dragging phase, the dilaton (kinetic-dominated) energy closely
follows the evolution of the dark-matter density. In the final freezing phase, the
dilaton potential comes into play, and the dilaton and dark-matter energy densities
become closely tied together, with a ratio fixed forever at a number of order one.
For the particular values of q0� c1 and c2 of our numerical example, the asymptotic
configuration corresponds to the critical fractions �� = 0�73 and �m = 0�27, with
a dark-energy equation of state w = −0�76.

It seems appropriate to conclude the present discussion by listing the main
properties of the dilaton model presented in this section, in order to stress the
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Figure 9.8 Time evolution (on a logarithmic scale) of the energy densities of
the various gravitational sources. Note that, at late enough times, baryons and
radiation become uncoupled to the dilaton, and thus obey the standard scaling
behavior 
r ∼ a−4, 
b ∼ a−3.

possible phenomenological differences with other models of quintessential dark
energy.

(1) A first point, which is in common with all models of coupled quintessence
[50, 51, 52], is that the coincidence problem – if not solved – is at least relaxed,
because the (dilaton) dark-energy density and the dark-matter density are of the
same order not only today, but also in the future (forever), and possibly (for a
significant amount of time) also in the past, depending on the beginning of the
freezing epoch (i.e. on the specific amplitude V0 of the potential).

(2) A second, important point (also evident in Fig. 9.8) concerns the faster
dilution in time of baryons with respect to dark matter, because of their weaker
coupling to the dilaton. This effect is maximal in the final accelerated phase,
where the baryon-to-dark-matter ratio decreases in time as


b

m

∼ a−3q0/�2+q0�� (9.151)

This effect, together with an early enough beginning of the accelerated regime,
could explain why the fraction of baryons today is so small (∼10−2) in critical
units. Experimental information on the past value of the ratio 
b/
m, compared
with its present value, would immediately provide a direct and unambiguous test
of this class of models.

(3) A third point concerns the beginning of the cosmic acceleration, which
is in principle allowed to start at earlier epochs than in models of uncoupled
quintessence with fixed equation of state.

Consider the Einstein equations for a two-component cosmological model with
dark matter, 
m, and (uncoupled) dark energy, 
Q, as the only relevant gravita-
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Figure 9.9 The redshift scale marking the beginning of the accelerated epoch,
zacc, in models of uncoupled dark energy and constant equation of state w, for
various possible values of the present dark-matter density �0
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tional sources:

6H2 = 
m +
Q�

4Ḣ +6H2 = −pQ = −w
Q�
(9.152)

Here w = pQ/
Q is a constant parameter ranging, say, from −1/3 to −4/3. In
such a context 
m ∼ a−3 is diluted faster than 
Q ∼ a−3�1+w�. So, even if today 
Q
dominates and the expansion is accelerated (ä/a = Ḣ +H2 > 0), at early enough
times the Universe was dominated by 
m, and the expansion was decelerated. In
particular, the acceleration switches off at the scale aacc such that

(
ä

aH2

)

acc
= 1+

(
Ḣ

H2

)

acc

= − 1
12H2

[

m + �1+3w�
Q

]
acc = 0� (9.153)

Using the present critical fractions �0
m = 
0

m/6H2
0 and �0

Q = 1 −�0
m, the above

condition can be rewritten as

�0
m

(
aacc

a0

)−3

= �1+3w�
(
�0

m −1
)(aacc

a0

)−3�1+w�

� (9.154)

and fixes the beginning of the acceleration at the relative redshift scale

zacc = a0

aacc
−1 =

[
�1+3w�

(
�0

m −1
�0

m

)]−1/3w

−1� (9.155)

One can then easily check that zacc
<∼ 1 for realistic (i.e. observationally compat-

ible) values of �0
m and w, as clearly illustrated in Fig. 9.9.

For the model of dark energy illustrated in this section the dilaton-dominated,
accelerated phase is characterized by an acceleration parameter ä/aH2, which is
constant (see Eq. (9.144)), as 
� and 
m scale in time in the same way. Therefore,
the beginning of the acceleration regime is not determined by the present value of
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the dark-matter density. The past extension of the accelerated phase is constrained,
instead, by the present fraction of baryon energy density, �b, which grows with
respect to �m and �� as we go back in time, tending to become dominant. Even
with this bound, however, we are left with the possibility of a very early beginning
of the accelerated phase, zacc � 1, given the very tiny present value of �b.

More stringent constraints on the initial scale zacc, for the model we are con-
sidering, can be obtained by combining present experimental information on the
so-called density contrast 8 (characterizing the level of dark-matter fluctuations
over the distance scale of 8 Mpc) with current SNIa observations. One obtains
[57] that an early beginning of the dilaton-dominated epoch is allowed up to
zacc = 3�5 (for the best fit of the data), and up to zacc

<∼ 5 within one stand-
ard sigma deviation. Such results provide important experimental information on
the allowed scale of the non-perturbative dilaton potential, as well as on other
parameters of the string effective action [57]. A value of zacc significantly larger
than one seems to be compatible even with the recently discovered, high-redshift
supernovae [39], and with the possibility that our present cosmological state is
approaching (but is not fully coincident with) the asymptotic freezing regime. In
this last case, the present cosmological configuration may contain a significant
(even if non-dominant) fraction of dark matter uncoupled to the dilaton [58].
Type Ia supernovae of the SNLS dataset [59] are also consistent with an early
beginning of the acceleration of zacc � 3 and higher [60].

Another important property of this dilaton model is that, in contrast with other
quintessential models, the dark-energy density is always characterized by a “con-
ventional” equation of state satisfying w = p�/
� ≥ −1 (see Eq. (9.142)). As a
consequence, the accelerated expansion is always associated with a decreasing
curvature state with Ḣ = −3q0H

2/�2 + q0� ≤ 0, according to Eq. (9.144). This
excludes the possibility of “phantom” gravitational sources [61] with superneg-
ative equation of state, w < −1, and the possible occurrence of future “big rip”
singularities. Such a conclusion is valid also for a more general classe of mod-
els in which the leading asymptotic term of the dilaton potential is of the form
V0 exp�−���, with � = 1 [62] (the condition Ḣ > 0, in particular, turns out to be
always incompatible with the requirement �m > 0).

Let us conclude with a further comment on the asymptotic amplitude of the
nonperturbative dilaton potential. Consider, for instance, the explicit form (9.150)
used in our numerical example, and recall that for a realistic scenario the amplitude
of the potential must correspond to an effective dilaton mass roughly of the order
of the present Hubble scale, m ∼ mV ∼ 10−5Heq ∼ H0. This is a fine-tuning
problem which seems to affect all presently known models of quintessence,
and which requires, for the dilaton potential, suitable protection against possible
contributions to the mass induced by the radiative corrections.
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For the dilaton, the coupling with charge q to ordinary baryonic matter generates
the mass term given in Eq. (9.108). The condition m<∼ H0 thus requires fine-tuning
of the baryon–dilaton coupling,

q <∼ 10−27
(

1 Tev
'

)(
1 GeV
Mf

)

� (9.156)

which, by the way, seems to exclude the possible resonant interaction of a relic
dilaton background with the gravitational detectors (according to the discussion
of Section 9.2). Conversely, the coupling with strength q ∼ 1 to a possible non-
baryonic (but fermionic) dark-matter component, as required by models of coupled
quintessence, would seem to imply a fine-tuning to extremely low values of the
fermionic mass Mf .

This conclusion may be avoided, however, if the dilaton is exponentially
coupled to the fermions [30], and the dilaton charge is related to the potential
slope of the (canonically normalized) dilaton field �̂ by q0 = 1/k. This possibility
does not seem to be excluded, at least from a phenomenological point of view,
according to the results illustrated in Fig. 9.7. Also, this possibility seems to be
supported by a recently proposed argument based on the AdS/CFT correspond-
ence [63], suggesting that scalar masses comparable to the cosmological curvature
scale (m ∼ H0) could be safe from radiative corrections.



Appendix 9A
The common mode of interferometric detectors

The expression (9.99) for the signal-to-noise ratio is valid, in general, for any given
overlap functions %�p�, computed in terms of two arbitrary pattern functions according
to the definition (9.94). In Section 9.2 we have considered the overlap between the
differential mode Dij

− of two interferometers, and the overlap between the monopole mode
D

ij
0 of two resonant spheres. We have also stressed, however, that the interferometric

antennas can efficiently respond to a stochastic background of scalar radiation through
their common mode D

ij
+ (see Fig. 9.5). In this appendix we will discuss the possible

advantages of the common mode (with respect to the differential one) for the detection
of a non-relativistic background of scalar particles.

We start by considering the “mixed” configuration in which one correlates the com-
mon mode of one interferometer with the differential mode of another (or even the
same) interferometer. In such a case, the results for the overlap function are strongly
dependent on the relative geometric arrangement of the two detectors. In particular,
if the arms of the two interferometers have exactly the same angular separation, the
mixed overlap is identically vanishing in the case of co-planar detectors, quite inde-
pendently of the relative distance and arm orientation [28]. The overlap is vanishing
also for detectors lying on two parallel planes, separated by an arbitrary distance. The
overlap may be non-zero, however, if the angular separation of the arms is differ-
ent for the two interferometers, even for co-planar detectors and for vanishing spatial
separation, ��x = 0.

In order to illustrate this possibility we consider here an experimental setup in which
the arms of the first interferometer û1 and v̂1 are orthogonal in the polar plane of Fig. 9.3,
while the arms û2 and v̂2 of the second interferometer have angular separation � in the
same plane, with the arm û2 coincident and coaligned with û1:

û1 = û2 = �1�0�0�� v̂2 = �cos�� sin��0�� v̂1 = �0�1�0� (9A.1)

(see Fig. 9.10). Note that such an experimental configuration could be simply realized,
in principle, by adding a third, non-orthogonal arm to existing interferometers.

We now have to compute the scalar pattern functions for the differential and common
modes of the two interferometers. Let us first concentrate on their geodesic response,
described by Eq. (9.70). For the first, orthogonal interferometer we can directly exploit
the results of Eqs. (9.77), (9.80) and (9.81), to obtain
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Figure 9.10 Example of two co-planar interferometers with vanishing spatial
separation and different angular separation of their arms.
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geo
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E

)2
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E

)2
sin2 $�

(9A.2)

For the second, non-orthogonal interferometer, we obtain instead from the definition
(9.70) an �-dependent response:

F
geo
2− ��� = −

( p
E

)2
sin2 $

(
cos 2� sin2 �− sin 2� sin� cos�

)
�

F
geo
2+ ��� = 2−

( p
E

)2
sin2 $

(
1+ cos 2� cos2 �+ sin 2� sin� cos�

)
�

(9A.3)

Let us compute the mixed overlap function between differential and common modes,
according to Eq. (9.94) at ��x = 0. The result is identically zero, independently of �, if
we overlap the common mode of the orthogonal interferometer, F1+, with the differential
mode of the non-orthogonal one, F2−. In the opposite case (i.e. overlapping F1− with F2+)
we obtain, instead, a non-zero result:

%
geo
−+�p����x=0 = 1

N

∫

�2

d2n̂ F
geo
1− �p� n̂�F

geo
2+ �p� n̂��� = 16�

15N

( p
E

)4
cos2 �� (9A.4)

However, in this case we also find a strong suppression for the response to non-relativistic
radiation, since the function %�p� is controlled by the same factor �p/E�4 which char-
acterizes the overlap of two differential modes (see Eq. (9.102)). Similar results can
be obtained by considering the mixed overlap of the non-geodesic response of the two
detectors [28].

Another possible configuration with a non-zero mixed-overlap function is the config-
uration in which the arms of the interferometers do not lie on parallel planes, even if the
angular separation of the arms is the same, and even if the spatial separation of the two
central stations tends to zero.

For a simple illustration of this possibility we may consider the limiting case in which
both interferometers are centered at the origin of the same reference frame: the arms of
the first interferometer, û1 and v̂1, are aligned along the x and y axes, respectively, while
the arms of the second interferometer, û2 and v̂2, are aligned along y and z, respectively.
The two arms v̂1 and û2 are coaligned and coincident (see Fig. 9.11). The computation
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Figure 9.11 Example of two interferometers with vanishing spatial separation,
orthogonal arms and non-zero mixed overlap function.

of the mixed, geodesic overlap function, for such a configuration, leads to the result

%
geo
+−�p��x=0 = 1

N

∫

�2

d2n̂ F
geo
1+ F

geo
2− = �

N

( p
E

)2
(

2− 7
15

p2

E2

)
� (9A.5)

The response to non-relativistic radiation is still suppressed, but the suppression is lower
than in previous cases for the infrared sector of the scalar spectrum: indeed, for p → 0,
the overlap goes to zero as �p/E�2, instead of �p/E�4. For the non-geodesic response one
finds a non-zero mixed overlap with the standard (i.e. quartic) non-relativistic suppression
[28].

Another substantial improvement of the non-relativistic signal can be obtained if we
compute the overlap function taking into account the common mode of both interfero-
meters. In that case, one finds that the overlap is non-zero even if the interferometers are
co-planar, and their arms have the same angular separation. Considering such a simplified
configuration, computing the pattern functions F

geo
+ �F

ng
+ from the definitions (9.70) and

(9.71) for a generic spatial separation ���x� = d, and using the integral representation of
the spherical Bessel functions, one obtains the following overlap functions:

%
ng
+ �p� = 1

N

∫

�2

d2n̂ F
ng
1+ F

ng
2+ e2i�n̂·��x

= q1q2

4�
N

( p
E

)4
[
j0�x�−

2
x
j1�x�+

3
x2

j2�x�

]
� (9A.6)
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(9A.7)
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Here x = 2�pd, and j0� j1� j2 are spherical Bessel functions, satisfying

j0�x� = sin x
x

�

j1�x� = j0�x�

x
− cosx� (9A.8)

jl+1�x� = 2l+1
x

jl�x�− jl−1�x�� l ≥ 1�

We may note that, for co-planar interferometers, the overlap %+ is independent of the
relative orientation of their axes, thanks to the rotational symmetry of F+ with respect to
the polar angle �.

If we now consider the non-relativistic limit p → 0 we can easily check that the non-
geodesic overlap %

ng
+ goes to zero as �p/E�4, exactly as in the case of two differential

modes, Eq. (9.102). The geodesic overlap function, however, goes to a constant,

p → 0 =⇒ %
geo
+ �p� → 16�

N
= const� (9A.9)

as in the case of two resonant spheres (see Eq. (9.110)). We may thus repeat exactly the
discussion presented in Section 9.2 for the monopole response tensor of a sphere: not
only is the suppression of the non-relativistic modes avoided, but also, and primarily, the
dependence of SNR on the observation time T is modified, according to Eq. (9.115), if
the scalar background has a flat enough spectrum.

The cross-correlated response of the common mode of two interferometers, geodesic-
ally interacting with a (flat enough) cosmic background of non-relativistic scalar particles,
may produce a signal-to-noise ratio growing with T faster than at the standard rate T 1/2.
By extending the observation time it becomes possible, in principle, to enhance the signal
associated with the scalar background with respect to the corresponding one produced by
the differential mode, possibly compensating the higher level of noise expected to affect
the experimental analyses of the common mode data.
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10

Elements of brane cosmology

We have shown, in Chapter 3, that the quantum consistency of string theory
requires a higher-dimensional target manifold, with D = 9 + 1 (superstrings) or
D = 10 + 1 (M-theory) space-time dimensions (see in particular Appendix 3B).
In our present Universe, however, only four space-time dimensions seem to be
accessible to direct observations and measurements. For a possible identification
of the target manifold of string theory with the space-time in which we live, we
should thus explain why D−4 spatial dimensions turn out to be invisible (at least
to present technological investigation).

There are two possible approaches to this problem. The first one assumes
that the extra D− 4 dimensions are compact, and that their proper volume is
stabilized at an extremely small length scale Lc, which may become accessible
to direct exploration only with processes of proper energy E >∼ L−1

c . In the
simplest (and older) version of the so-called Kaluza–Klein scenario [1, 2], for
instance, the compactification scale of the extra dimensions is controlled by
the coupling constant appearing in the gravitational action: one then naturally
obtains a compactification volume of Planckian (or stringy) size (L−1

c ∼ MP),
certainly inaccessible to present direct observation. What is required, however,
from a phenomenological point of view, is a compactification scale not necessarily
Planckian, but simply compatible with the present explorable energy range, say
L−1

c
>∼ 1 TeV. This observation has recently led to the formulation of models

with “large extra dimensions” [3, 4], which might alleviate the hierarchy problems
arising from the huge difference between the gravitational scale, MP, and the scale
of electroweak interactions, MW, and which are currently under active study (see
e.g. [5]).

For a simple illustration of this possibility we may consider the gravi-dilaton
string effective action in D = 4+n space-time dimensions:

S = − 1
2�D−2

s

∫
dDx

√�gD� e−� [RD+gAB�A��B�
]

(10.1)
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(throughout this chapter, capital roman indices will run from 0 to D−1). Accord-
ing to the Kaluza–Klein scenario we can factorize the higher-dimensional space-
time as �4 ×�n, denoting with x�, �= 0� � � � �3 the coordinates on �4, and ya,
a= 1� � � � n the coordinates on the extra-dimensional manifold �n, supposed to be
Ricci flat (Rab = 0). For the purpose of our discussion it will be enough to suppose
that all fields (g��� � � � ) are independent of the extra spatial coordinates ya, and
that �n is a (globally flat) n-dimensional torus � n. The complete D-dimensional
metric gAB can then be conveniently parametrized as follows [6],

gAB =
(
g�� +fabA

a
�A

b
v Ab�fab

fabA
b
� fab

)
� (10.2)

where the n	n+1
/2 scalar fields fab	x
 associated with the (symmetric) metric
tensor of �n are four-dimensional “moduli” fields describing the “shape” of
the torus, and Aa�	x
 are n Abelian vector fields associated with the process
of dimensional reduction. One finds, with this parametrization, that det gAB =
det g�� det fab; also, computing the connection and the Ricci scalar RD, and
substituting into Eq. (10.1), one is led (after integration by parts) to the following
factorized action:

S = − 1

2�2+n
s

∫
dny

√�f �
∫

d4x
√�g� e−�

[

R4	g
−
1
4
g����f

ab��fab

+g����

(
�− ln

√�f �
)
��

(
�− ln

√�f �
)

+ 1
4
fabG

a
��G

b��

]

� (10.3)

Here f = det fab, g = det g��, Ga
�� = ��A

a
� − ��A

a
� and R4	g
 is the four-

dimensional scalar curvature for the metric g��.
Apart from the additional scalar-vector terms induced by the process of

dimensional reduction, the relevant term for the present discussion is the factor
Vn = ∫

dny
√�f �, which is nothing but the proper (finite) volume of the extra-

dimensional space. From the comparison of the tensor part of the action (10.3)
with the four-dimensional Einstein action,

−M2
P

2

∫
d4x

√�g�R4	g
� (10.4)

we are thus led to relate the effective gravitational coupling and the extra-
dimensional volume as follows:

M2+n
s Vn = g2

sM
2
P� (10.5)

where g2
s = exp�. For a typical “stringy” size of the compactified dimensions,

Vn ∼ M−n
s , one then finds the usual tree-level relation connecting string and

Planck mass, Ms ∼ gsMP.
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However, as clearly shown by the above equation, even much larger compactific-
ation volumes (Vn � M−n

s ) are compatible with the standard phenomenology (i.e.
with gs ∼ 0�1 and MP ∼ 1018 GeV), provided the mass scale Ms appearing in the
higher-dimensional action (10.1) is much smaller than Planckian. Let us consider,
for instance, an isotropic volume, and setVn = Lnc : one then obtains, from Eq. (10.5),

Lc =M−1
s

(
gsMP

Ms

)2/n

� 2×10−17cm 1028/n
(

1 Tev
Ms

)1+2/n( gsMP

1017 Gev

)
�

(10.6)

Thus, in the presence of at least two extra dimensions (n ≥ 2), a string scale Ms

as small as the TeV scale is already compatible with tests of Newtonian gravity at
short distances, which are presently limiting the possible size of extra dimensions
to Lc

<∼ 0�1 mm (see e.g. [7]). Conversely, any given upper bound on Lc implies
(through Eq. (10.5)) a phenomenological lower bound on the allowed values ofMs.

A second, and probably more drastic, explanation of the invisibility of the
extra spatial dimensions does not rely on their small-scale compactification, but
is based on the possibility that the standard fundamental interactions – which are
our tools to explore the surrounding space-time – may propagate only through
a four-dimensional “slice” (spanned by the propagation of a three-dimensional
extended object, or 3-brane) of the higher-dimensional space-time (also called
“bulk” manifold). This is the so-called “brane-world” scenario [8], which has
recently found strong support in a superstring theory context where the gauge
fields associated with the ends of open strings, satisfying Dirichlet boundary
conditions, are indeed localized on p-dimensional hypersurfaces, or Dp-branes
(see Appendix 3B). There is a difficulty in this approach due to the fact that closed
strings and gravitational interactions can propagate equally through all spatial
dimensions, without feeling the effects of preferred hypersurfaces. This problem,
however, could be resolved by the so-called Randall–Sundrum (RS) mechanism
[9], or by other related mechanisms [10], able to explain (at least for some special
backgrounds) why even gravity should be localized on the brane representing our
Universe (or in its nearest neighborhood).

This chapter will concentrate on the possible cosmological applications of the
brane-world scenario which, in view of the many and deep string theory motiva-
tions, are fully entitled to be included in a book devoted to the basic aspects of string
cosmology. After discussing in Section 10.1 the modifications to the Einstein equa-
tions required to describe the effective gravitational dynamics on the brane and, in
Section 10.2, the possible “confinement” of the long-range part of the gravitational
interaction, we will briefly illustrate three possible types of cosmological scenarios.

In Section 10.3 we will introduce the so-called “brane-world cosmology”,
where inflation can be implemented through conventional sources localized on the
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brane, but interacting through modified gravitational equations. Section 10.4 will
be devoted to the so-called “ekpyrotic” scenario [11, 12], which tries to evade the
necessity of a primordial inflationary expansion, solving the standard cosmological
problems through the collision of two branes; a possible generalization of this
scenario, leading to a cyclic model of the Universe [13, 14], will also be briefly
discussed. Finally, in Section 10.5, we will present a model of inflation based on
the interaction of two Dirichlet branes [15] (in particular, with opposite charges
of the R–R fields [16, 17]), where the interbrane distance plays the role of the
inflaton field, and is governed by an effective potential which may be flat enough
to sustain a phase of slow-roll inflation [18].

10.1 Effective gravity on the brane

Let us suppose that our Universe can be represented as a 	p+ 1
-dimensional
hypersurface � spanned by the time evolution of a p-brane (i.e. a p-dimensional
extended object), embedded in a D-dimensional bulk manifold with one extra
spatial dimension (i.e. D= p+2). The effective equations determining the grav-
itational field on the brane then depend on both the bulk gravitational equations
and the so-called Israel junction conditions [19, 20], controlling the matching of
the metric and its first derivative across the brane. Such matching conditions can
be obtained in two ways, either treating the codimension-one hypersurface � as
a “domain wall” splitting the bulk hypervolume into two distinct regions [21],
or inserting the brane as a dynamical source of the bulk gravity equations, and
performing a covariant Gauss–Codacci projection [22].

In the first case the junction conditions are directly obtained from the action as
field equations for the extrinsic curvature of the brane. In this case, in fact, the
“world-hypersurface” � swept by the time evolution of the 	D− 2
-brane splits
the bulk manifold into two regions �±, with boundaries ��± at infinity and �±
on the two sides of the brane (see Fig. 10.1). The gravitational action (including
the Gibbons–Hawking boundary terms) can then be decomposed as follows:

S =
∫

�+
dDx

√�g�
(

− R

2�D−2
+Lbulk

)
+
∫

�−
dDx

√�g�
(

− R

2�D−2
+Lbulk

)

+ 1
2�D−2

∫

��+
dD−1x

√�h�K+ 1
2�D−2

∫

��−
dD−1x

√�h�K

+ 1
2�D−2

∫

�+
dD−1

√�h�K+ 1
2�D−2

∫

�−
dD−1

√�h�K

−
∫

�
dD−1

√�h�Lbrane� (10.7)
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Ω – Ω +

Σ – Σ +

∂Ω +∂Ω –

Figure 10.1 Splitting of the D-dimensional bulk manifold into the two domains
�±, separated by the 	D−1
-dimensional hypersurface � swept by the brane.

Here � is some fundamental length scale governing the strength of the gravitational
bulk interactions (possibly, but not necessarily, identified with the phenomenolo-
gical Planck scale �P); Lbulk and Lbrane are the Lagrangian densities for the matter
fields present in the bulk and confined on the brane, respectively, including a
possible bulk cosmological constant and the tension of the brane (and entering
the action with the opposite sign, to follow standard conventions). The first line
of the above equation gives the standard Einstein action (we are working, for
simplicity, in the E-frame), the second line gives the boundary terms at spatial
infinity, and the third line gives the boundary terms on the brane, where h and
K are, respectively, the determinant of the induced metric hAB on the boundary,
and the trace of its intrinsic curvature KAB. In terms of the space-like unit vector
nA, normal to the boundary, h and K are defined by

hAB = gAB +nAnB� KAB = hA
ChB

D�CnD� (10.8)

where

gABn
AnB = −1� hABn

B = 0� KABn
B = 0� (10.9)

The last two conditions tell us that both the induced metric and the extrinsic
curvature are tangential to the boundary, and in particular to �, as they describe
geometric properties of the space-time manifold at the brane (space-time) position.

Let us vary the action (10.7) with respect to the bulk metric gAB, by observing
that the vector nA also depends on the metric through the normalization (10.9),
whose variation implies

�nA = −1
2
nAn

MnN�gMN � (10.10)

Using the standard result (2.6) for the variation of the Einstein action, and summing
up all contributions, one finds that all boundary terms of the type �A�g

MN are
canceled by the variation of the Gibbons–Hawking action (see Chapter 2), on both
the boundaries ��± at infinity and the two sides �± of the brane. The variation
of
√�h�K, however, also provides a boundary contribution which is proportional

to the extrinsic curvature, and which is vanishing on ��±, but not necessarily
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vanishing on �±. Thus, the stationarity of the action (10.7), in general, imposes
the condition [21]

�S = 1
2

∫

�+
dDx

√�g�
(
−GAB +�D−2 T bulk

AB

)
�gAB

+ 1
2

∫

�−
dDx

√�g�
(
−GAB +�D−2 T bulk

AB

)
�gAB

−
∫

�+
dD−1

√�h� 	KAB −hABK
�g
AB

+
∫

�−
dD−1

√�h� 	KAB −hABK
�g
AB

+ �D−2

2

∫

�
dD−1

√�h�T brane
AB �gAB = 0� (10.11)

We have multiplied by �D−2, and we have applied the usual definition (1.3) of the
energy-momentum tensor associated with the matter Lagrangian. Note, however,
that T

brane
AB has been defined on �, and has dimensions �MD−1�, while T bulk

AB has
dimensions �MD� (we use an overline to distinguish this brane tensor from the
stress tensor of the brane covariantly defined with respect to the whole bulk
manifold, see below). The difference in sign between the two boundary terms on
�± is due to the opposite orientation of the normal vector on the two sides of the
hypersurface.

We have thus obtained two sets of equations valid, respectively, on the brane
and on the bulk exterior to the brane. On the portion of bulk manifold defined by
the union of the subspaces �+ and �− we have the standard Einstein equations,

	GAB
� = �D−2
(
T bulk
AB

)

�
� �=�+ ∪�−� (10.12)

On the hypersurface � which separates the two domains we obtain an additional
condition,

	KAB −hABK
�+ − 	KAB −hABK
�− = �D−2
(
T

brane
AB

)

�
� (10.13)

controlling the possible discontinuity of the first derivative of the metric tensor
across the brane, and determining the difference in the extrinsic curvature on the
two sides of � in terms of the gravitational energy density located on the brane.
Tracing with respect to the induced metric hAB, using Eqs. (10.8) and (10.9), we
obtain

	2−D
	K+ −K−
= �D−2 T
brane

� (10.14)
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and we can then rewrite Eq. (10.13) in the form usually adopted to express the
Israel junction conditions:

K+
AB −K−

AB = �D−2

(

TAB − T

D−2
hAB

)brane

� (10.15)

where K±
AB =KAB��± . If the model we are considering is Z2 symmetric, with the

position of the brane as the fixed point of the symmetry, then K+
AB = −K−

AB ≡
KAB, and the extrinsic curvature of the brane is fully determined by its energy
momentum tensor as follows [22],

KAB = �D−2

2

(

TAB − T

D−2
hAB

)brane

� (10.16)

10.1.1 Covariant projection on the brane

We now present an alternative procedure to obtain the Israel junction conditions,
based on a covariant approach in which the energy-momentum of the brane
also acts directly as a source of the gravitational equations. This approach is
convenient, in particular, to obtain the modified equations describing the total
effective gravitational forces experienced by observers living on the brane, but
which are also affected by the gravitational field present in the bulk, outside the
brane.

We start with an action defined in the whole bulk manifold,

S =
∫

�
dDx

√�g�
(

− R

2�D−2
+Lbulk

)
+Sbrane� (10.17)

where Sbrane is the action of the brane and all possible gravitational sources living
on it. Such an action can be parametrized, as before, in Nambu–Goto form using
the induced metric hAB (the last term of Eq. (10.7)), or in Polyakov form,

Sbrane = −
∫

�
dDx′

∫

�
dD−1 �D	x′ −X	



√���Lbrane

×
[
���

�XA

��
�XB

��
gAB	X
− 	D−3


] (10.18)

where XA = XA	
 are functions describing the parametric embedding of the
brane into the bulk manifold, � are the coordinates spanning the hypersurface
� swept by the brane (obviously, Greek indices run from 0 to D− 2) and ���
is the intrinsic metric on the brane, acting as an auxiliary field (see for instance
[23]). For the purpose of this section the explicit form of Lbrane is not import-
ant: it is sufficient to observe that the variation with respect to the metric gAB
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provides a covariant contribution to the bulk gravitational equations, leading to
the conventional Einstein form,

GAB = �D−2
(
T bulk
AB +T brane

AB

)
� (10.19)

where we have assumed that the boundary terms at infinity are canceled by the
variation of an appropriate Gibbons–Hawking action. (See [24, 25] for explicit
cosmological applications of the covariant Polyakov form of the brane action.)

The above equations are covariantly defined over the whole manifold spanned
by the bulk coordinates xA, but we should recall that the energy-momentum
density of the brane has a distributional form, being strictly localized on a 	D−1
-
dimensional hypersurface through the Dirac delta function. Suppose, for instance,
that the only gravitational contribution of the brane is generated by its tension,
so that Lbrane = �D−1/2 = const, where � is the typical mass scale of the brane.
The functional differentiation of the Polyakov action with respect to gAB	x
 then
leads to the energy-momentum tensor

T brane
AB 	x
= 2

√�g	x
�
�Sbrane

�gAB	x


= �D−1

√�g	x
�
∫

�
dD−1

√������ �XA
��

�XB
��

�D	x−X	

� (10.20)

Note that T brane
AB has dimensions �MD�, and is thus dimensionally homogeneous

with T bulk
AB , different from the tensor T

brane
AB of Eq. (10.11) defined only on �.

Outside the brane (xA 
= XA) Eq. (10.19) coincides with the previous equation
(10.12). In order to obtain the junction conditions (10.15) we have to project
the bulk equations (10.19) on the world-hypersurface �, matching all terms
which are discontinuous across it. Here projecting means, more precisely, that all
D-dimensional geometric objects (Riemann tensor, Ricci tensor, scalar curvature,
…) appearing in the gravitational equations have to be expressed in terms of the
corresponding 	D−1
-dimensional objects defined intrinsically on �; in addition,
the bulk indices of all covariant objects have to be contracted with the induced
metric tensor hBA, in such a way as to result tangential to � [22].

It is convenient, for this purpose, to trace the Einstein equations in order to
eliminate the scalar curvature: we obtain

R= −2�D−2

D−2

(
T bulk +T brane

)
� (10.21)

and

RAB = �D−2
(
TAB − T

D−2
gAB

)bulk

+�D−2
(
TAB − T

D−2
gAB

)brane

� (10.22)
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The contraction with the induced metric then gives

RMN h
M
A h

N
B =�D−2

(
TMN h

M
A h

N
B − T

D−2
hAB

)bulk

+�D−2
(
TAB − T

D−2
hAB

)brane

� (10.23)

where we have used the property hMA hMB = hAB, following from the definition
(10.8); also, we have used the fact that T brane

AB is confined on the brane, i.e.
tangential to �, so that T brane

AB nB = 0 (like the induced metric and the extrinsic
curvature, see Eq. (10.9)).

In order to express the bulk objects in terms of the intrinsic geometric objects
of the brane we can use the Gauss equation [22], relating the bulk Riemann tensor
RABCD to the 	D− 1
-dimensional intrinsic Riemann tensor defined on �, and
constructed with the induced metric hAB (let us call it R�ABCD	h
):

R�ABCD	h
= RMNPQ h
M
A h

N
B h

P
Ch

Q
D−KADKBC +KACKBD� (10.24)

The contraction with gAD gives the corresponding relations between the Ricci
tensors,

R�BC	h
= RNP h
N
B h

P
C +RMNPQ h

N
B h

P
Cn

MnQ−KKBC +KACKB
A� (10.25)

Finally, the application of a useful geometric identity (see e.g. [26]) allows us to
rewrite the second term on the right-hand side of this equation in terms of the
extrinsic curvature and of its covariant derivatives, and we are led to

RMN h
M
A h

N
B = R�AB	h
+nM�MKAB +KMB�An

M +KAM�Bn
M

−2KAMKB
M +KKAB�

(10.26)

Note that R�AB	h
 is symmetric and tangential to �, i.e. R�AB	h
n
B = 0.

We are now in a position to obtain the junction conditions by inserting the above
relation into Eq. (10.23), integrating all terms of the equation along the normal
direction nAdxA from −� to +� across the position of �, and then performing
the limit � → 0 [26]. We observe that all intrinsic brane quantities (such as the
induced metric hAB, the Ricci tensor R�AB, the brane stress tensor, etc.) do have, of
course, the same value on either side of �: thus, they give no contribution to this
integration procedure, unless they are characterized by a singular distribution at
�= 0 (i.e. on �), like T brane

AB (see e.g. Eq. (10.20)). Extrinsic quantities (like KAB)
may have different values on the two sides of �, thus generating a (step-like)
discontinuity across it: such a discontinuity does not contribute after performing
the integration and the limiting procedure, but the normal derivative of such a
discontinuity gives a divergent contribution on � which survives the integration
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procedure, and which has to be matched to the delta-function contribution of
T brane
AB .
Assuming that T bulk

AB is non-singularly distributed over the whole bulk (and thus
on �), and that the intrinsic curvature of � is also non-singular, the only singular
contribution of Eq. (10.23) – beside that of T brane

AB – may come from the normal
derivative of the extrinsic curvature, nM�MKAB, appearing on the right-hand side
of Eq. (10.26). Integrating such a term along the normal direction from −� to +�,
and performing the limit � → 0, we obtain the extrinsic curvature evaluated on
the two opposite sides of �, and we are eventually led to the condition

K+
AB −K−

AB = �D−2

(

TAB − T

D−2
hAB

)brane

� (10.27)

where T
brane
AB (with dimensions �MD−1�) is the finite part of T brane

AB , defined on �
according to Eq. (10.11). This equation exactly coincides with the Israel junction
condition (10.15).

In view of our subsequent cosmological applications it is now convenient to
project on � the gravitational equations in the standard Einstein form (10.19). We
again contract the Ricci tensor (10.25) with gBC , to obtain a relation between the
bulk scalar curvature R and the instrinsic curvature R� of the brane,

R� = R+2RAB n
AnB −K2 +KA

BKB
A� (10.28)

Projecting the bulk Einstein tensor, GMNh
M
A h

N
B , and combining Eqs. (10.25) and

(10.28), we can then express the intrinsic Einstein tensor on � as follows.

G�
AB	h
≡ R�AB − 1

2
hABR

� =GMNh
M
A h

N
B −hABRMNn

MnN

−KKAB +KMBKA
M + 1

2
	K2 −KM

NKN
M
hAB +RMNPQ h

N
Ah

P
Bn

MnQ�

(10.29)

Before using the Einstein equations (to eliminate the bulk variables GMN , RMN )
it is convenient to rewrite the last term of the above equation by decomposing
the Riemann tensor into its Weyl, Ricci and scalar components, according to the
well-known relation which, in D dimensions, takes the form [27]

RMNPQ = CMNPQ− 2
D−2

(
RM�PgQ�N −RN�PgQ�M

)

+ 2R
	D−1
	D−2


gM�PgQ�N (10.30)
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(CABCD is the Weyl tensor). Using the property of the induced metric we obtain

RMNPQh
N
Ah

P
Bn

MnQ = EAB − 1
D−2

RMNh
M
A h

N
B + 1

D−2
RMNn

MnNhAB

+ R

	D−1
	D−2

hAB� (10.31)

where

EAB = CMNPQ h
N
Ah

P
Bn

MnQ (10.32)

is a symmetric and trace-free tensor, EA
A = 0, by virtue of the Weyl tensor

symmetries.
Let us now insert this last expression into Eq. (10.29), and eliminate everywhere

the bulk Einstein tensorGMN through the Einstein equations (10.19), the bulk Ricci
tensor RMN through the equivalent form (10.22), and the bulk scalar through Eq.
(10.21). We should note, however, that Eqs. (10.29) and (10.31) are valid on the
bulk (on the two sides of the world-hypersurface �), and are to be evaluated on �
with a limiting procedure. Thus, when using the bulk equations for GMN , RMN and
R we have to drop the contribution of T brane

AB which is sharply localized on �, and
vanishing outside it. Summing up all similar terms we finally obtain the equation

G�
AB =

(
D−3
D−2

)
�D−2

[
TMNh

M
A h

N
B −hAB

(
TMNn

MnN + T

D−1

)]bulk

+EAB +SAB� (10.33)

where

SAB = −KKAB +KMBKA
M + 1

2
hAB

(
K2 −KM

NKN
M
)
� (10.34)

and which generalizes to the D-dimensional case previous results obtained in
D = 5 [22, 26].

The gravitational contribution of the brane, in this equation, is fully con-
tained inside the extrinsic curvature terms, related to T

brane
AB by the Israel junction

conditions. In order to make this contribution explicit let us consider a simple
brane-world scenario in which the hypersurface � is sitting at the fixed point of
the Z2 symmetry, and then its extrinsic curvature is determined by the energy-
momentum tensor of the brane according to Eq. (10.16). The source tensor SAB
can thus be expressed as follows:

SAB ≡ SAB	T
brane


=
(
�D−2

2

)2
[

TMBTA
M − T

D−2
TAB

− 1
2
hAB

(

TM
N
TN

M − T
2

D−2

)]brane

� (10.35)
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We should recall now that T
brane
AB may contain, in general, a contribution due to

the tension �D−1 (acting as a vacuum energy density, or cosmological constant,
on the brane), and another contribution due to the energy-momentum density of
other matter fields possibly present (and localized) on the brane [28, 29]. We can
thus split the brane contribution as follows:

T
brane
AB = �D−1hAB + �AB� (10.36)

where �AB represents the contribution of all matter sources contained in Lbrane

and strictly confined on � (of course, �AB has to be tangential to the brane, i.e.
�ABn

B = 0). From Eq. (10.35) we then obtain

SAB	T
brane


=
(
D−3
D−2

)
�D−1

(
�D−2

2

)2

�AB + 1
2

(
D−3
D−2

)(
�D−1�D−2

2

)2

hAB

+SAB	�
� (10.37)

where SAB	�
 is given exactly by the expression (10.35) with T
brane
AB replaced by

�AB. Note that all terms of this equation have dimensions �L−2�, thus consistently
matching the dimensions of the Einstein tensor in Eq. (10.33).

Inserting this result into Eq. (10.33), and noting that all terms are tangential to
� (i.e. they have vanishing contraction with the normal vector nA), we can rewrite
the final equations using Greek indices, ranging from 0 toD−2. We want to stress,
in this way, that such equations describe the effective gravitational dynamics
localized on the brane, dimensionally reduced from the higher-dimensional bulk
interactions. The result is

G�
�� =

(
D−3
D−2

)
�D−1

(
�D−2

2

)2

���+ 1
2

(
D−3
D−2

)(
�D−1�D−2

2

)2

h��

+
(
D−3
D−2

)
�D−2

[
T��h

�
�h

�
�−h��

(
TMNn

MnN + T

D−1

)]bulk

+
(
�D−2

2

)2 [
��

����− �

D−2
���− 1

2
h��

(
��

���
�− �2

D−2

)]

+E��� (10.38)

where E�� is defined in Eq. (10.32). This result clearly shows that there are three
types of corrections to the standard Einstein equations with cosmological terms
(corresponding to the first line of the above equation): 	i
 corrections due to the
possible presence of bulk matter (second line), 	ii
 corrections quadratic in the
brane stress tensor (third line), possibly important in the high-density regime, and
	iii
 corrections due to the curvature of the bulk geometry (fourth line).

Two final remarks are in order. The first concerns the coefficient of the term
linear in ���, representing the effective gravitational coupling constant appearing
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in the low-energy Einstein equations (and thus determining the phenomenological
Planck length of the brane):

8�Gbrane ≡ �D−3
P =

(
D−3
D−2

)
�D−1

(
�D−2

2

)2

� (10.39)

This effective coupling is controlled by the bulk gravitational scale � and by the
brane-tension scale �, but there is no explicit volume factor (compare with Eq.
(10.5)) since, in this case, there are no compactified dimensions. Nevertheless,
also in this case, it is possible to reproduce the standard value of the Planck length
�P even starting from a very different (in particular, much larger) value of the
higher-dimensional gravitational scale �, by an appropriate tuning of the tension
of the brane.

The second remark concerns the fact that Eq. (10.38) describes the gravitational
field on the brane, but its complete solution needs information also about the bulk
gravitational field, in order to determine the Weyl contribution E�� appearing
as a non-local source to an observer confined on the brane [26]. This means, in
other words, that the evolution of the gravitational field (and, in particular, of its
perturbations) cannot be completely determined from initial conditions set solely
on the brane, but requires a fully higher-dimensional analysis [30].

The cosmological applications of the modified gravitational equations (10.38)
will be discussed in the following sections.

10.2 Warped geometry and localization of gravity

This section is devoted to a simple but important example which illustrates how
the bulk geometry may affect the gravitational interaction on the brane. It will
be shown, in particular, that an appropriate bulk curvature can force the massless
component of the gravitational fluctuations to be confined on the brane, thus
generating long-range gravitational forces which are insensitive to the presence
of extra spatial dimensions normal to the brane [9]. This effect is of crucial phe-
nomenological importance, since in string theory the mechanism of localization
of gauge fields on the brane cannot be directly applied to the gravitational field,
which is free to propagate along all bulk directions.

Our discussion will be concentrated on a particular exact solution of the gen-
eralized gravitational equations introduced in the previous section, describing a
flat Minkowski brane embedded in an anti-de Sitter (AdS) bulk, and will proceed
with the study of tensor metric perturbations around this background solution. We
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start by considering a model described by the action (10.17) in which the only
gravitational source in the bulk is a cosmological constant,

Lbulk = − �

�D−2
� (10.40)

and the only gravitational source on the brane is its tension, so that Sbrane coincides
with Eq. (10.18) with

Lbrane = �D−1

2
� (10.41)

The variation of the action with respect to gAB provides the following bulk Einstein
equations,

GA
B =��BA+ �D−2�D−1

√�g�
∫

�
dD−1

√��������XA��XB�D	x−X
� (10.42)

where ��X
A ≡ �XA/�� (see also Eq. (10.20)). The variation with respect to XA

gives the equations governing the evolution of the brane in the bulk space-time,

��

[√��������XBgAB	x

]

x=X	

= 1

2

[√��������XM��X
N�A gMN	x


]

x=X	

(10.43)

(analogous to the string equations of motion for the Polyakov action, see Eq.
(3.7)). Finally, the variation with respect to ��� gives

��X
A��XA− 1

2

(
�����X

A��XA

)
��� + 1

2
	D−3
��� = 0� (10.44)

from which, tracing with respect to �, we obtain ��X
A��XA = D− 1, and we

arrive at the identification of ��� with the induced metric

��� = ��X
A��X

BgAB ≡ h��� (10.45)

We may note, incidentally, that inserting this result into the Polyakov action
(10.18) we exactly recover the Nambu–Goto form of the brane action,

Sbrane = −�D−1
∫

�
dD−1

√�h� � (10.46)

We now look for particular solutions of the above equations in which the bulk
metric is conformally flat, gAB = f 2	z
�AB, with a conformal factor f	z
 which
only depends on the coordinate z normal to the brane, and in which the (globally
flat) brane is rigidly fixed at z= 0, and described by the trivial embedding

XA	
= �A�
�� A= 0� � � � �D−2�

XD−1 ≡ z= 0� (10.47)
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We also impose that the solution be symmetric under z → −z reflections, so
that f = f	�z�
. We thus consider a Z2-even, higher-dimensional background
characterized by the following “warped” geometrical structure,

ds2 = f 2	�z�
 (��� dx� dx� −dz2) � (10.48)

different from the “factorized” geometrical structure typical of the Kaluza–Klein
scenario, in which the dimensionally reduced metric is translationally invariant
along the extra spatial dimensions.

For the chosen type of background the induced metric (10.45) reduces to
��� = f 2���, and the brane equation (10.43) turns out to be identically satisfied.
Also, for the metric (10.48), we find the following non-vanishing components of
the connection,

�zz
z = f ′

f
≡ F� ���

z = F ���� �z�
� = F ���� (10.49)

and of the Ricci tensor,

R�� = [
F ′ + 	D−2
F 2]���� Rzz = −	D−1
F ′� (10.50)

where the prime denotes differentiation with respect to z. Their combination leads
to the Einstein tensor,

G�
� = − 1

f 2

[
	D−2
F ′ + 1

2
	D−2
	D−3
F 2

]
����

Gz
z = − 1

2f 2
	D−1
	D−2
F 2�

(10.51)

Inserting these results into the Einstein equation (10.42) we obtain, from the
component normal and tangential to the brane, respectively, the equations

−1
2
	D−1
	D−2
F 2 =�f 2� (10.52)

−	D−2
F ′ − 1
2
	D−2
	D−3
F 2 =�f 2 +�D−2�D−1f�	z
� (10.53)

To solve this system of equations we must recall that the warp function f de-
pends on the modulus of z, so that the second derivatives of f contain the
derivative of the sign function, which generates a delta-function contribution also
on the left-hand side of Eq. (10.53): we have thus to match separately the finite
part of the equation and the coefficients of the singular contributions at z = 0.
We obtain, in this way, two conditions: one determining the functional form of the
warp factor, the other imposing a consistency relation between the brane tension
and the bulk cosmological constant.
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Let us put f = f	�z�
, and define

y ≡ �z� = z sign�z�= z��	z
−�	−z
�≡ z�	z
�

f ′ = df
dy
y′ = df

dy
�	z
�

(10.54)

where � is the Heaviside step function. From Eq. (10.52) we obtain
(

df
dy

)2

= − 2�
	D−1
	D−2


f 4� (10.55)

which admits a real solution provided �< 0. Assuming that the bulk cosmological
constant is negative, and integrating, we are led to the particular exact solution

f	�z�
= 	1+k�z�
−1 � k=
[ −2�
	D−1
	D−2


]1/2

� (10.56)

which inserted into the metric (10.48) describes an anti-de Sitter bulk geometry,
in the conformally flat parametrization.

We have still to satisfy the other Einstein equation (10.53), which contains the
explicit contribution of the brane. We observe that using the following properties
of the sign function,

y′ = �� �2 = 1� �′ = 2�	z
� (10.57)

we can rewrite Eq. (10.53) in terms of y as

−	D−2
	D−5

2f 2

(
df
dy

)2

− 	D−2

f

d2f

dy2
−2

	D−2

f

df
dy

�	z


=�f 2 +�D−2�D−1f�	z
� (10.58)

Inserting the solution (10.56) one then finds that the finite part of this equation
is identically satisfied, while the coefficients of the terms containing the delta-
function are exactly matched provided we impose the condition

1
2
�D−2�D−1 = 	D−2
k≡

[−2	D−2
�
	D−1


]1/2

� (10.59)

relating the tension of the brane to the curvature scale of the AdS bulk
geometry [9].

It is important to note that precisely this condition is responsible for the flat
geometry of the brane: this condition implies that the intrinsic vacuum energy of
the brane (due to its tension) is canceled by an opposite contribution generated
by the bulk cosmological constant (a mechanism of “off-loading” gravity from
the brane to the bulk, see [31]).
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The above condition can also be directly deduced from the effective equation
(10.38) projected on the brane, presented in the previous section. For a conformally
flat metric, in fact, the Weyl term is vanishing (EAB = 0, see e.g. [26]); also,
��� = 0, as there are no matter sources on the brane. We are thus left with only
the contribution of the brane tension and the bulk cosmological constant, which
is associated with the bulk stress tensor

�D−2 T bulk
AB =�gAB (10.60)

(see Eq. (10.42)). Inserting this contribution into Eq. (10.38), and summing up
all non-vanishing terms, we find that the brane geometry is compatible with a
Ricci-flat metric (satisfying G�

�� = 0) provided the following condition holds,

1
2

(
D−3
D−2

)(
�D−1�D−2

2

)2

+ D−3
D−1

�= 0� (10.61)

exactly equivalent to the previous equation (10.59). Note that, besides the flat
Minkowski metric, this condition is also compatible with less trivial (for instance,
Kasner-like [25]) vacuum geometries on the brane.

It shoud be stressed, also, that the same condition relates the tension mass scale
to the effective renormalized coupling strength of gravity on the brane. Such a
coupling strength, in fact, can be obtained from the gravitational part of the bulk
action (10.17), computing the bulk scalar curvature R for a perturbed metric g̃��
which includes the tensor fluctuations on the brane, namely for

ds2 = f 2	�z�
 (g̃�� dx� dx� −dz2) � (10.62)

As we shall see in more detail below, the part of the action quadratic in g̃ defines
an effective action for the (weak-field) gravity on the brane which is of the general
form

− 1
2�D−2

∫
dzfDf−2

∫
dD−1x

√�̃g�RD−1	̃g
� (10.63)

where the factor fD comes from the determinant
√�g� of the D-dimensional

metric tensor gAB, and the factor f−2 comes from the inverse metric gAB (required
for the computation of the scalar curvature, see Eqs. (10.50) and (10.51)). For
the solution (10.56), in particular, the z-dependence of the above action can be
integrated exactly,

∫ +�

−�
dzfD−2 =

∫ +�

−�
dz 	1+k�z�
2−D = 2

k	D−3

� (10.64)

and the comparison with the Einstein action on the brane,

− 1

2�D−3
P

∫
dD−1x

√�gD−1�RD−1� (10.65)
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leads immediately to the effective coupling constant

�D−3
P = k

2
	D−3
�D−2� (10.66)

with k given in Eq. (10.59). For D = 5, for instance, one obtains the usual RS
definition [9] of the Planck scale on the brane, �2

P = k�3. Finally, using Eq.
(10.59) relating k to the tension of the brane, one obtains

�D−3
P =

(
D−3
D−2

)
�D−1

(
�D−2

2

)2

� (10.67)

which exactly reproduces the effective gravitational constant (10.39), follow-
ing from the covariant projection of the Einstein equations on the brane. This
confirms the equivalence of the two approaches, but also shows that the full,
higher-dimensional approach is required for a complete analysis of the bulk
geometry.

Let us now discuss in more detail the dynamics of tensor fluctuations on the
brane. We start by perturbing the bulk metric at fixed brane position, introducing
the expansion

gAB → gAB +�gAB� �gAB ≡ hAB� �XA = 0� (10.68)

and then compute the perturbations of the total action (10.17) up to terms
quadratic in the first-order fluctuations hAB. We are interested, in particular, in
the transverse and traceless part of the metric fluctuations on the brane, h��,
which in the linear approximations are decoupled from other (scalar and extra-
dimensional) components of �gAB. The perturbed configuration we study is thus
characterized by

hzA = 0� h�� = h��	x
�� z
� g��h�� = 0 = ��h��� (10.69)

For the computation of the perturbed, quadratic action we may follow the
standard procedure already introduced in Chapter 7, applying it to the unperturbed
metric background (10.48). After using the unperturbed background equations we
thus obtain (see in particular Eq. (7.23))

�	2
S = − 1
8�D−2

∫
dDx

√�g�h���A�Ah��

= − 1
8�D−2

∫
dDxfD−2 [h���h�� −h�� h

′′�
� − 	D−2
Fh�� h

′�
�

]
� (10.70)
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where � ≡ �2
t −�2

i is the usual d’Alembert operator in flat Minkowski space. Integ-
rating by parts, and tracing over the spin-two polarization tensor (see Section 7.1),
the action for each polarization mode hA	t� x

i� z
 can be written in the form

�	2
S = 1
4�D−2

∫
dz
∫

dD−1x fD−2
(
ḣ2 +h�2h−h′2

)
� (10.71)

where the dot denotes differentiation with respect to t, and �2 = �ij�i�j is the
usual Laplace operator on the 	D− 2
-dimensional Euclidean sections of the
brane (we have omitted, for simplicity, the polarization index). The variation with
respect to h finally provides the vacuum propagation equation for the weak-field
gravitational perturbations:

�h−h′′ − 	D−2
Fh′ = 0� (10.72)

This equation differs from the free wave equation in the Minkowski space of the
brane, since the gravitational fluctuations are coupled to the AdS bulk geometry
through the gradients of the warp factor.

To solve this equation we note that the bulk and the brane coordinates can be
separated by setting

h	x�� z
=∑

m

vm	x
�
�m	z
� (10.73)

where the new variables v and � satisfy the eigenvalue equations

�vm = −m2vm�

�′′
m+ 	D−2
F�′

m ≡ f 2−D (fD−2�′
m

)′ = −m2�m

(10.74)

(for the continuous part of the eigenvalue spectrum the sum of Eq. (10.73) is
clearly replaced by the integration over m). We note, also, that the term with the
first derivative present in the second equation can be eliminated by introducing
the variable

�̂m =
(
fD−2

�

)1/2

�m� (10.75)

where the constant factor �−1/2 has been inserted for later convenience. In terms of
�̂, the second equation then takes the form of a one-dimensional Schrödinger-like
equation,

�̂′′
m+ [m2 −V	z


]
�̂m = 0� (10.76)

with effective potential

V	z
= D	D−2

4

k2

	1+k�z�
2
− k	D−2

	1+k�z�
 �	z
� (10.77)
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This potential has the so-called “volcano-like” shape, since the first term of the
potential has a peak at z = 0, but in correspondence with it there is a negative
delta function, like the crater of a volcano.

As is well known from elementary quantum mechanics, the one-dimensional
Schrödinger equation with an attractive delta-function potential −�	z
 admits one
bound state only, with a square-integrable function which is localized around the
position of the potential at z= 0. The bound state, in our context, is represented
by the massless mode solution of Eq. (10.76). For m = 0 the equation has the
Z2-even solution

�̂0 = c0f
	D−2
/2� (10.78)

which is normalizable (with respect to inner products with measure dz, as in
conventional one-dimensional quantum mechanics), even for an infinite extension
of the coordinate z normal to the brane:

∫
dz
∣
∣
∣�̂0	z


∣
∣
∣
2 =

∫ +�

−�
dz

c2
0

	1+k�z�
D−2
= 2c2

0

k	D−3

<�� (10.79)

Thus, the massless components of the metric fluctuations are localized on the
brane at z= 0, not because the extra dimensions are compactified on a volume of
very small size (as in the standard Kaluza–Klein scenario), but because the bulk
curvature (due in this case to the AdS geometry) forces such fluctuations to be
peaked around the brane position.

Concerning the normalization condition we note, finally, that �̂0	z
 defined as
in Eq. (10.75) has the correct canonical dimensions to belong to the space L2 of
square-integrable functions with measure dz. The orthonormality condition can
be equivalently expressed in terms of �m, however, using inner products with
measure fD−2dz/� (see Eq. (10.75)):

∫ dz
�
fD−2�m�n = �	m�n
� (10.80)

where �	m�n
 denotes the Kronecker symbol for the discrete part of the spectrum,
and the Dirac delta function for the continuous part. In any case, with this
normalization, we obtain from Eq. (10.79) c0 = �k	D−3
/2�1/2, so that

�0 = c0�
1/2 =

[
	D−3
k�

2

]1/2

= const� (10.81)

Besides the massless mode �0, the metric fluctuations also contain massive
components �m – solutions of Eq. (10.76) with m 
= 0 – which are not localized on
the brane, and are characterized by a continuous spectrum which extends over all
positive values of m, up to infinity. To obtain these solutions we may follow that
standard quantum-mechanical treatment of the delta-function potential: looking
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for Z2-even solutions, �̂m = �̂m	�z�
, and using Eqs. (10.54) and (10.57), we first
rewrite Eq. (10.76) as

d2�̂m
dy2

+2�	z

d�̂m
dy

+ [m2 −V	z

]
�̂m = 0� (10.82)

Outside the origin (z 
= 0) we have thus the equation

d2�̂m
dy2

+
[
m2 − D	D−2


4
k2

	1+ky
2

]
�̂m = 0� (10.83)

whose general exact solution can be written as a combination of Bessel functions
[32] of index � = 	D−1
/2, and argument m	1+ky
/k=m/fk,

�̂m = f−1/2
[
AmJD−1

2

(
m

kf

)
+BmYD−1

2

(
m

kf

)]
� (10.84)

Imposing that this solution be valid also at z= 0, and equating the coefficients of
the delta-function terms, we obtain the additional condition

2
d�̂m
dy

	0
+k	D−2
 �̂m	0
= 0� (10.85)

which provides a relation between the two integration constants Am and Bm,

Bm = −Am
J	D−3
/2	m/k


Y	D−3
/2	m/k

� (10.86)

The general solution can thus be rewritten as follows:

�̂m = cm f
−1/2

[
YD−3

2

(m
k

)
JD−1

2

(
m

kf

)
− JD−3

2

(m
k

)
YD−1

2

(
m

kf

)]
� (10.87)

and the overall constant factor cm is finally fixed by the orthonormality condition
(10.80), which leads to

cm =
(m

2k

)1/2 [
J2
D−3

2

(m
k

)
+Y 2

D−3
2

(m
k

)]−1/2
(10.88)

(see also [33]).
These massive modes form a continuous spectrum of solutions in the interval

0<m≤ +�, and are asymptotically oscillating for z→ ±�, so that they cannot
be localized on the brane as in the case of the massless fluctuations. We may
thus expect that such massive components may induce short-range gravitational
corrections which “feel” the presence of the extra spatial dimensions exterior to
the brane, and which are thus directly affected by their geometrical properties.

For a quantitative estimation of such corrections we need the effective grav-
itational coupling of the massive fluctuations, which can be obtained from the
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canonical form of the action (10.71), and from the relative canonical normaliza-
tion of �0 and �m. Inserting the expansion (10.73) in the action we note, first of
all, that the first derivatives with respect to z can be eliminated (modulo a total
derivative) by virtue of the second equation (10.74), which implies

∫
dzfD−2h′2 = ∑

m�n

vmvn

∫
dzfD−2�′

m�
′
n

= ∑

m�n

vmvn

∫
dz
[

d
dz

(
fD−2�m�

′
n

)−�m
(
fD−2�′

n

)′
]

= ∑

m�n

vmvn

∫
dzfD−2m2�m�n� (10.89)

Integrating over z, and using the orthormality condition (10.80), we are then led
to a dimensionally reduced action which contains only the components vm	x
 of
the fluctuations,

�	2
S =∑

m

�	2
Sm =∑

m

1
4�D−3

∫
dD−1x

(
v̇2
m+vm�

2vm−m2v2
m

)
� (10.90)

where the symbol
∑

m denotes that the contribution of the massless mode m= 0
has to be summed to the integral (from 0 to �) over the continuous spectrum of
the massive mode contributions. Finally, introducing the fields hm which represent
the effective gravitational fluctuations on the brane,

hm	x
�
≡ �hm	x

�� z
�z=0 = vm	x
�
�m	0
� (10.91)

we obtain the effective action

�	2
S =∑

m

1
4�D−3�2

m	0


∫
dD−1x

(
ḣ

2

m+hm�
2hm−m2h

2
m

)
� (10.92)

which defines the canonical variables for the effective gravitational interaction on
the brane,

um	x
�
= hm	x

�


	2�D−3
1/2�m	0

� (10.93)

Comparison with the canonical form of the tensor fluctuation components (see
for instance Chapter 7, Eqs. (7.49) and (7.51)) leads immediately to defining the
effective coupling for a generic mode hm:

�D−3
P 	m
≡ �D−3�2

m	0
� (10.94)

For the massless mode, using the solution (10.81), we thus recover the relation
(10.66) defining the phenomenological Planck scale of the brane,

�D−3
P ≡ 8�GD−1 ≡ �D−3

P 	0
= k

2
	D−3
�D−2� (10.95)
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which is the typical scale of long-range gravitational interactions (see also Eqs.
(10.67) and (10.39)). For the massive modes, instead, the effective coupling is
mass dependent: using the relation �m	0
 = √

� �̂	0
, and the solution (10.87)
and (10.88), we obtain

�D−3
P 	m
≡ 8�GD−1	m
= �D−2F 2

(m
k

)
� (10.96)

where (x ≡m/k)

F 2	x
=
(x

2

)
[
YD−3

2
	x
 JD−1

2
	x
− JD−3

2
	x
YD−1

2
	x

]2

J2
D−3

2
	x
+Y 2

D−3
2
	x


� (10.97)

This gives the effective coupling parameter of the mode hm in the infinitesimal
mass interval between m and m+dm.

10.2.1 Short-range corrections

We are now in a position to provide a precise estimate of the contribution of the
massive modes to the effective gravitational interaction on the brane. We consider
a simple, but instructive, example corresponding to the static field produced by a
point-like source of mass M confined on the brane, with energy density �	x�� z
=
M�d−1	x
�	z
. For a more direct comparison with standard phenomenology we
choose the realistic case of a 3-brane, spanning a 	3 + 1
-dimensional world-
hypervolume which can be identified with the four-dimensional space-time in
which we live, and which is assumed to be embedded in a D= 5 bulk manifold.

We start by recalling that, in the flat Minkowski space of the brane, the quadratic
action (10.92) is generated by the contribution of the perturbed Ricci tensor
(see Eq. (7.23)), and its variation leads to the usual (apart from the mass term)
linearized form of the Einstein equations in flat space: for a generic component
���, and a generic mode m, of the weak-field fluctuations h on the brane, they
read

−1
2

(
�+m2)h

��

m = �2
P	m


(
��� − 1

2
����

)
� (10.98)

where we have used the definition (10.94) of the canonical coupling to the matter
stress tensor. In the static limit � → −�2, �i

j → 0, � = ������ → �0
0 = �, and

h
00
m → 2 m, where  m is the effective gravitational potential generated by the

mode m on the brane. The 	00
 component of Eq. (10.98) then gives the equation

	−�2 +m2
 m	x
= −1
2
�2

P	m
�	x
� (10.99)
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which controls the contribution of the generic mode m to the static gravitational
potential.

The solution to this equation can be easily obtained, for a generic source, using
the static limit of the retarded Green function, i.e. by setting

 m = − 1
4�

∫
d3x′�m	x�x′


1
2
�2

P	m
�	x
′
� (10.100)

where �m	x�x
′
 satisfies

	−�2 +m2
�m	x�x
′
= 4� �3	x−x′
� (10.101)

Thus, Fourier transforming,

�m	x�x
′
= 4�

∫ d3p

	2�
3

eip·	x−x′


p2 +m2
� (10.102)

For the massless mode one then obtains, using polar coordinates,

�0	x� x
′
= 2

�

∫ �

0
dp

sinp��x− �x′�
p��x− �x′� = 1

��x− �x′� � (10.103)

so that, from Eq. (10.100), and for a point-like source �	x
=M�3	x
,

 0 = − �2
P

8�

∫
d3x′ �	x′


��x− �x′� = −GM

r
� (10.104)

where r = ��x�. For the massive modes one obtains, in the same way,

�m	x�x
′
= 2

�

∫ �

0
dp

p2

p2 +m2

sinp��x− �x′�
p��x− �x′� = e−m��x−�x′ �

��x− �x′� � (10.105)

and

 m = −�2
P	m


8�

∫
d3x′ e−m��x−�x′ �

��x− �x′� �	x
′
= −�2

P	m


8�
Me−mr

r
� (10.106)

The total static field produced by the source is finally given by the sum of all
(massless and massive) contributions, namely by

 =∑

m

 m =  0 +
∫ �

0
dm m

= −GM

r

[
1+ 1

8�G

∫ �

0
dm�2

P	m
 e−mr
]
� (10.107)

where we have to take into account them-dependence of the effective gravitational
coupling, specified by Eqs. (10.96) and (10.97). For an approximate analytical
estimate, the above integral can be evaluated using for �P	m
 the expression
obtained in the small-argument limit m → 0 of the Bessel functions (indeed, at



508 Elements of brane cosmology

the long distances typical of the weak-field limit, the dominant contribution to
the integral comes from the small-mass regime). From the definition (10.97) of
F	x
 one has, in general,

lim
x→0

F 2	x
�
(x

2

)D−4
�−2

(
D−3

2

)
� (10.108)

where � is the Euler function. In this regime, and for D = 5,

�2
P	m
= m�3

2k
= m

2k2
8�G� (10.109)

where we have used the definitions (10.96) and (10.97). The effective potential
thus becomes

 = −GM

r

(
1+ 1

2k2

∫ �

0
dmm e−mr

)

= −GM

r

(
1+ 1

2k2r2

)
� (10.110)

It is important to note that the higher-dimensional corrections come into play
only at a distance which is sufficiently small with respect to the bulk curvature
scale [34], namely for <∼ k−1, where k−1 is the curvature radius of the bulk AdS
geometry external to the brane. At large enough distances the gravitational in-
teraction experienced on the brane is thus effectively four-dimensional, quite
irrespective of the compactification of the extra dimensions. These results can be
directly extended also to cases in which the unperturbed geometry of the brane
is described by Ricci flat solutions different from the trivial Minkowski metric,
such as the warped Kasner metric discussed in [25].

10.3 Brane-world cosmology

In the previous section we have analyzed a geometric configuration describing a
p-brane embedded in a 	p+ 2
-dimensional bulk manifold, with the tension of
the brane and the bulk cosmological constant as the only gravitational sources. In
this section we will study more realistic configurations in which the brane repres-
enting our Universe also contains other conventional sources, contributing to the
geometry through linear and quadratic terms according to the generalized Einstein
equations (10.38). We will also consider the so-called “induced gravity” terms,
possibly produced (via quantum loop corrections [35, 36, 37]) by the matter local-
ized on the brane, and we will briefly discuss the associated cosmological effects,
possibly obtained even if the brane is embedded in a flat bulk space-time [10].

Even without induced-gravity terms the brane-world scenario requires important
modifications of the standard cosmological equations [38, 39], as can be easily
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deduced from the effective equations (10.38). Let us consider, for simplicity, a
cosmological constant � as the only source of the bulk stress tensor, defined as
in Eq. (10.60). Inserting such a contribution into Eq. (10.38), the gravitational
equations on the brane can be written as

G�� = �D−3
P ���+�D−1h��+E��

+
(
�D−2

2

)2 [
��

����− �

D−2
���− 1

2
h��

(
��

���
�− �2

D−2

)]
�

(10.111)

Here �D−3
P ≡ 8�GD−1 is the effective gravitational coupling (related to the brane

tension by Eq. (10.67)); �D−2 is the coupling scale of D-dimensional bulk gravity
(see Eq. (10.17)); finally, �D−1 is the total effective vacuum energy density of
the brane,

�D−1 = 1
2

(
D−3
D−2

)(
�D−1�D−2

2

)2

+ D−3
D−1

�

≡ 1
2
�D−1�D−3

P + D−3
D−1

� (10.112)

(see also Eq. (10.61)), including the contributions of the tension and the bulk
cosmological constant. Assuming the validity of the local conservation equation
for the matter stress tensor,

����
� = 0� (10.113)

(following from the absence of bulk matter contributions, see e.g. [26]), we
then obtain from the Bianchi identity (��G�

� = 0) and the metricity condition
(��h�� = 0) a useful “conservation equation” relating the Weyl contribution E��
to the quadratic source term [22]:

��E�
� =

(
�D−2

2

)2 [
��

�
(
����

�−����
�
)− 1

D−2

(
��

����− ����
)]
�

(10.114)

We look for homogeneous, isotropic and spatially flat metric solutions on the
brane, assuming that the stress tensor ��� represents a barotropic, perfect fluid
source. We can thus set, in the cosmic-time gauge,

h�� = diag
(
1�−a2	t
 �ij

)

��
� = diag

(
��−p�ji

)
�

p

�
= � = const�

(10.115)
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To obtain the explicit components of Eq. (10.111), however, we must also discuss
the possible form of the term E��, sourced by the bulk Weyl tensor, which in
general is left undetermined by the local energy-momentum distribution of the
sources localized on the brane. To the brane-bounded observer the tensor E��,
being traceless, may be interpreted as the effective stress tensor of some radiation
fluid, also called “dark radiation” [40]. Such a tensor may in general contain an
anisotropic part, whose evolution cannot be determined from initial conditions
set solely on the brane [26]. To be consistent with a homogeneous and isotropic
metric h��, however, such an anisotropic part has to vanish, as well as the velocity
of the effective Weyl fluid in the comoving frame of the metric (10.115): thus, in
our particular case, we can write E�� in the comoving form

E�
� = diag

(
�W�−pW�

j
i

)
� pW = �W

D−2
� (10.116)

On the other hand, if ��� describes a homogeneous perfect fluid separately
conserved according to Eq. (10.113), one can easily check that the right-hand side
of Eq. (10.114) is identically vanishing in the background (10.115). It follows
that E�� is also separately conserved, ��E�

� = 0, and that the energy density of
the dark radiation fluid can be given in the form

�W = �0

aD−1
� (10.117)

where �0 is an integration constant determined by the properties of the bulk
geometry.

We can now provide the explicit form of all the independent components of
Eq. (10.111). Let us first evaluate the quadratic contribution S��	�
, whose time
and space components are reduced, respectively, to

S0
0 = 1

2

(
D−3
D−2

)(
�D−2

2

)2

�2�

Si
j = −

(
D−3
D−2

)(
�D−2

2

)2

�
(
p+ �

2

)
�
j
i �

(10.118)

The 	00
 component of Eq. (10.111) then gives the modified Friedman equation

1
2
	D−2
	D−3
H2 =�D−1 + C

aD−1
+�D−3

P �

(
1+ �

2�D−1

)
� (10.119)

where we have used Eq. (10.117) for the dark-radiation contribution (C is a
constant fixed by the initial density of the Weyl fluid on the brane), and we have
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also used the definition (10.67) of the gravitational coupling �D−3
P . The spatial

components 	i= j
 of Eq. (10.111) give the second cosmological equation,

	D−3
Ḣ+ 1
2
	D−2
	D−3
H2 =�D−1 − C

	D−2
aD−1

−�D−3
P

[
p+ �

�D−1

(
p+ �

2

)]
� (10.120)

The combination of these two equations, and the application of the dark-radiation
conservation equation,

�̇W + 	D−1
H�W = 0� (10.121)

leads consistently to the local conservation equation of the matter fluid on the
brane,

�̇+ 	D−2
H	p+�
= 0� (10.122)

in agreement with the assumption (10.113).
The cosmological system we are considering is thus characterized by the usual

conservation equations of the matter sources, but the dynamical evolution of the
geometry is governed by equations which differ from the standard ones in two
respects: 	i
 the contribution of the Weyl radiation, 	ii
 the corrections quadratic
in the energy density of the matter sources. Such modified equations can also be
interpreted as equations describing the motion of the brane through a static but
curved bulk [41], whose geometry is of the Schwarzschild–anti-de Sitter (SAdS)
type (this is no longer true, however, when the bulk contains a scalar dilaton field
[42]). Indeed, in the absence of dilaton sources, the SAdS geometry is the most
general static and vacuum bulk geometry compatible with an FRW metric on the
brane [43], with the mass of the bulk black hole which is directly related to the
integration constant C appearing in the cosmological equations.

In the case C = 0 the black hole disappears, and we obtain a configuration
describing an FRW brane embedded in a pure AdS geometry. Since the bulk
cosmological constant � is negative, we can also assume that its contribution
exactly cancels the energy density associated with the tension of the brane, as in
the case of the RS background of Eqs. (10.56) and (10.59) – and as advocated
by the proposed “self-tuning” mechanism [44, 45], by which the brane solutions
might naturally seek out fixed points with small values of their vacuum energy
density.

If we consider, in particular, an AdS bulk geometry satisfying the RS tuning
condition (10.59) or (10.61), then C = 0, �D−1 = 0, and the simplified system
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of equations (10.119)–(10.122) can be solved analytically. Using the barotropic
equation of state p/�= � one obtains, for the scale factor [38, 39],

a∼ t1/q
(

1+ qt

2t0

)1/q

� (10.123)

where

q = 	D−2
	1+�
�
1
t0

=
[

�D−3
P �D−1

	D−2
	D−3


]1/2

� (10.124)

Using Eq. (10.67) for �d−3
P , and Eq. (10.61) for �, one finds that the parameter

t−1
0 exactly coincides with the curvature scale of the AdS background,

1
t0

=
[ −2�
	D−1
	D−2


]1/2

≡ k� (10.125)

namely with the parameter k of the warped RS metric (see Eq. (10.56)), which
separates the regime of higher-dimensional bulk gravity from the regime of stand-
ard Einstein gravity on the brane. The solution (10.123), in particular, provides
a smooth interpolation between an early phase (t � t0) at high energy density
(�� �D−1), in which the Friedman equation is dominated by the �2 contribution
and the evolution is unconventional (a∼ t1/q), and a late-time phase (t � t0) at
low energy density and standard Friedman evolution, a∼ t2/q.

The corrections to the standard cosmological evolution, induced by the mod-
ified gravitational equations on the brane, may be confronted by the existing
phenomenological constraints, in order to extract information on the allowed val-
ues of the parameters �, � and � (see for instance [46, 47]). A modified evolution,
in particular, may be acceptable provided it is not in contrast with the standard
nucleosynthesis scenario: this means that the possible corrections to the standard
cosmological equations may come into play only at earlier epochs (i.e. at higher
densities) with respect to the typical scale of nucleosynthesis. This provides a
constraint on the quadratic corrections of Eq. (10.119), which implies a lower
limit on the tension of the brane,

�D−1 >∼ �Nuc ∼ 	1 MeV
D−1 � (10.126)

The tension, on the other hand, is related to the Planck scale �P by Eq. (10.67).
Using the phenomenological value �P ∼ 	1018 GeV
−1 we can then obtain a bound
on the effective coupling scale � of bulk gravity,

�2−D >∼ 	1 MeV
	D−1
/2 �
	3−D
/2
P � (10.127)
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or, in terms of the mass scales MP = �−1
P , M = �−1,

M

MP

>∼
(

1 MeV
MP

) D−1
2	D−2
 ∼ 10− 21	D−1


2	D−2
 � (10.128)

For the phenomenological case of a 3-brane embedded in a D= 5 bulk manifold
we find, in particular, the lower limit

M >∼ 10−14MP ∼ 10 Tev� (10.129)

compatible with present phenomenology.
Much more stringent constraints on M , for the case in which the fine-tuning

relation �D−1 = 0 is valid, arise however from small-scale gravity experiments
[7], which imply

k−1 <∼ 0�1 mm (10.130)

(for the consistency of the experimental results with the model prediction
(10.110)). Using Eq. (10.66), connecting the bulk and brane curvature scale in
the RS scenario, one immediately obtains

(
�

�P

)D−2
<∼

2
D−3

(
0�1 mm
�P

)
� (10.131)

which implies
M

MP

>∼ 10− 30
D−2 � (10.132)

Thus, M >∼ 105 TeV in D = 5.
Another firm observational constraint concerns the possible presence of the

isotropic Weyl contribution (10.116): the energy density �W, behaving as massless
radiation, has to satisfy the nucleosynthesis constraint [47]. We should recall that
any “non-standard” degree of freedom contributing to the gravitational sources
at the nucleosynthesis epoch cannot exceed, roughly, about one-tenth of the total
energy density dominating the Universe at that epoch (see Chapter 7). This gives
�W/�r <∼ 0�1 at t = tNuc and implies, in critical units at the present epoch,

h2�W	t0
= h2�W

�c
	t0
 <∼ 10−5 (10.133)

(see Eq. (1.34)).

10.3.1 Inflation on the brane

If we relax the assumption �D−1 = 0, detuning the tension from the RS value
(10.61) (or, equivalently, introducing on the brane a perfect fluid with equation
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of state p= −�= const, �> 0), we can obtain inflationary solutions on the brane
driven by a positive cosmological constant �D−1.

We illustrate this possibility by assuming, for simplicity, that there are no
matter sources either in the bulk (T bulk

AB = 0) or in the brane (��� = 0), and that
the only gravitational sources are the cosmological constant � and the tension
�D−1, whose combination produces a vacuum energy density �D−1, according
to Eq. (10.112). We are then left with the same set of equations (10.40)–(10.47)
already considered in Section 10.2 when discussing the RS background; in this
case, however, we look for a more general solution representing a de Sitter brane,
described by the metric

ds2 = f 2	�z�
 (g�� dx� dx� −dz2) � (10.134)

where

g�� = diag
(
1�−e2H0t�ij

)
� H0 = const (10.135)

(for H0 → 0 one has g�� → ���, and one is led back to the RS background
(10.48)).

For this metric background the induced metric (specified by the embedding
equations (10.47)) is given by ��� = �A��

B
� gAB = f 2g��, and the equations of

motion of the brane are trivially satisfied. The connection for the metric (10.134)
has non-vanishing components

���
z = Fg��� �zA

B = F�BA�

�0i
j =H0 �i

j� �ij
0 =H0e2H0t �ij�

(10.136)

where F = f ′/f and f ′ = df/dz. The Einstein tensor is then given by

Gz
z = − 1

2f 2
	D−1
	D−2


(
F 2 −H2

0

)
�

G�
� = − 1

f 2

[
	D−2
F ′ + 1

2
	D−2
	D−3


(
F 2 −H2

0

)]
����

(10.137)

and the components of the Einstein equations (10.42) normal and parallel to the
brane reduce, respectively, to

−	D−1
	D−2

(
F 2 −H2

0

)= 2�f 2� (10.138)

−	D−2
F ′ − 1
2
	D−2
	D−3


(
F 2 −H2

0

)=�f 2 +�D−2�D−1f�	z
�

(10.139)

They differ from the previous equations (10.52) and (10.53) only by the presence
of the constant contribution H2

0 .
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The integration of these equations can be performed following the same
procedure used in the case of the Minkowski brane, setting �z� = y = z�	z
, and
applying the relations (10.54). Equation (10.138) can then be rewitten as

(
df
dy

)2

= f 2 (H2
0 +k2f 2) � k2 = −2�

	D−1
	D−2

> 0� (10.140)

where the bulk curvature scale k is defined exactly as before in Eq. (10.56).
This equation can be easily integrated, and we choose the particular exact
solution

f	�z�
= H0

k sinh
[
H0

(
y+k−1

)] � (10.141)

which for H0 → 0 reduces to the previous solution (10.56).
We now have to satisfy the second Einstein equation (10.139), which we rewrite

in terms of y as

−2
	D−2


f

df
dy

�	z
+ 	D−2

f 2

(
df
dy

)2

− 	D−2

f

d2f

dy2

− 1
2
	D−2
	D−3


[
1
f 2

(
df
dy

)2

−H2
0

]

=�f 2 +�D−2�D−1f�	z
� (10.142)

Inserting the solution (10.141) we find that the finite part of this equation (z 
= 0)
is identically satisfied. Imposing the solution to be valid also at z= 0 we have to
match the coefficients of the delta functions,

−2	D−2

df
dy
	0
= �D−2�D−1f 2	0
� (10.143)

and we obtain the condition
1
2
�D−2�D−1 = k	D−2
 cosh

(
H0

k

)
� (10.144)

which determines the de Sitter scale H0 in terms of the background parameters
�, � and �.

For the Minkowski brane with H0 = 0 we recover the RS condition (10.59)
which is equivalent to a vanishing cosmological constant on the brane, Eq. (10.61).
For H0 
= 0 we can use in the above condition the definition (10.112) of the
brane cosmological constant �D−1. Using also the definition (10.140) of k2 we
obtain

�D−1 =
(
D−3
D−2

)
�

[
1− cosh2

(
H0

k

)]

= −
(
D−3
D−2

)
� sinh2

(
H0

k

)
� (10.145)
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which is positive for � < 0, and which quantifies the detuning of the vacuum
energy density versus the de Sitter curvature scale H0 of the brane.

The linear evolution of tensor metric perturbations on the de Sitter brane can
be studied analytically, since the tensor perturbation equation can be separated
in the variables x� and z, as in the case of the Minkowski brane. The effective
potential for the evolution along z is still characterized by the typical volcano-
like shape which localizes the massless mode on the brane, and guarantees the
correct “confined” behavior of long-range gravitational interactions. However,
the potential goes asymptotically to the constant non-zero value 9H2

0/4, and the
tensor fluctuation spectrum is thus characterized by a “mass gap”, !m= 3H0/2,
separating the zero mode from the continuous sector of the massive fluctuations
[48]. This modifies the spectrum of gravitational radiation produced during the
phase of de Sitter inflation on the brane, enhancing the amplitude of the graviton
background if inflation occurs at energies higher than the bulk curvature scale
[49], i.e. if H0 � k. A similar effect (but with a different origin) also occurs in
models where the accelerated evolution of the brane is described by an anisotropic
Kasner geometry [25].

More realistic models of brane inflation can be realized by including in the
energy-momentum tensor ��� a scalar field, self-interacting through an appropriate
slow-roll potential [50]. One then finds, interestingly enough, that the high-energy
corrections to the gravitational equations tend to assist the inflationary process,
with respect to the same process occurring in the absence of extra dimensions
normal to the brane [51].

For a simple illustration of this effect we may consider the modified cosmolo-
gical equations (10.119) and (10.120) with C = 0 and �D−1 = 0, restricted to the
realistic case of a 3-brane embedded in a D = 5 bulk manifold. We also assume
that the only matter source on the brane is a self-interacting scalar field, which in
the homogeneous and isotropic limit may be treated as a perfect fluid with energy
density � = �̇2/2 +V and pressure �̇2/2 −V . Eliminating H2 in Eq. (10.120)
through Eq. (10.119) we obtain the following system of cosmological equations:

3H2 = �2
P

(
�̇2

2
+V

)[

1+ 1
2�4

(
�̇2

2
+V

)]

�

2Ḣ = −�2
P�̇

2

[

1+ 1
�4

(
�̇2

2
+V

)]

�

(10.146)

to which we can add the conservation equation (10.122), which for a scalar field
takes the form

�̈+3H�̇+V ′ = 0 (10.147)

(the prime denotes differentiation with respect to �).
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In the regime where the slow-roll approximation is valid, i.e. �̇2 � V ,
Ḣ � H2, �̈ � H�̇ (see Section 1.2), the previous three equations reduce,
respectively, to

3H2 = �2
PV

[
1+ V

2�4

]
� (10.148)

2Ḣ = −�2
P�̇

2
[

1+ V

�4

]
� (10.149)

3H�̇= −V ′� (10.150)

The terms in square brackets represent the brane-world corrections to the stand-
ard Einstein equations, which become negligible in the limit V � �4. Differ-
entiating Eq. (10.148) with respect to �, and dividing by 6H2, we obtain the
relation

H ′

H
= V ′

2V

[
1+V/�4

1+V/2�4

]
� (10.151)

which will be useful for our subsequent discussion. We can also rewrite
Eq. (10.149) using Ḣ =H ′�̇, to obtain

2H ′ = −�2
P�̇

[
1+ V

�4

]
� (10.152)

The last two equations generalize, respectively, Eqs. (1.114) and (1.107) obtained
in the context of the standard inflationary scenario.

We can now calculate the typical parameters of a model of slow-roll inflation,
applying the standard definitions but using the above modified equations. Con-
sider, for instance, the parameter �H defined in Eq. (1.109). Putting Ḣ = H ′�̇,
using Eq. (10.152) for �̇ and Eq. (10.151) for H ′, we obtain

�H = − Ḣ

H2
= −H ′�̇

H2
= 2

�2
P

H ′2

H2

[
1+ V

�4

]−1

= 1

2�2
P

(
V ′

V

)2 [ 1+V/�4

	1+V/2�4
2

]
� (10.153)

Let us now compute �H , defined by Eq. (1.110). Differentiating Eq. (10.152)
with respect to t to obtain �̈, dividing by H�̇, differentiating Eq. (10.151) with
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respect to � to obtain H ′′, and combining the two results, we obtain, to leading
order,

�H = − �̈

H�̇
= −�H +��

�= 1

�2
P

(
V ′′

V

)[
1

1+V/2�4

]
�

(10.154)

We may note that at inflation scales sufficiently low with respect to the tension
of the brane, V ��4, the parameters �H and � reduce to the form (1.115) obtained
in the standard inflationary context. In the opposite limit V ��4 we have, instead,

�H → 1

2�2
P

(
V ′

V

)2 4�4

V
� 1

2�2
P

(
V ′

V

)2

�

�→ 1

�2
P

(
V ′′

V

)
2�4

V
� 1

�2
P

(
V ′′

V

)
�

(10.155)

The slow-roll parameters are thus strongly suppressed, at high enough energy
scales, by the brane-induced corrections, and this can make inflation possible on
the brane even with potentials that would be too steep in a standard cosmolo-
gical context. We can say, in this sense, that brane-world effects ease slow-roll
inflation.

The modified gravitational equations of the brane also improve the efficiency of
the inflationary expansion by modifying the relation between the inflaton potential
and the number of e-folds N	t
 between a given time t and the end of inflation tf ,

N	t
= ln
af

a	t

=
∫ tf

t
H dt� (10.156)

In fact, dividing Eq. (10.148) by Eq. (10.150) we obtain, in the slow-roll approx-
imation,

N	t
=
∫ �f

�

H

�̇
d�= �2

P

∫ �

�f

V

V ′

[
1+ V

2�4

]
d�� (10.157)

to be compared with the standard result (1.119). The brane-world corrections thus
increase the effective Hubble factor, yielding more inflation for the same given
initial values of the inflaton field – or, equivalently, the same inflation for a
smaller initial value of the inflaton.

The predictions of models of brane-world inflation may be compared with
present observations, and with the phenomenological predictions of other classes
of inflationary models, by studying the perturbations of the coupled brane–bulk
system. We will not perform such an analysis here, referring the interested reader
to the existing literature (see for instance [26] for a detailed introduction to the
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various aspects of this problem). We wish to remark, however, that a complete
study of the amplification and propagation of the background fluctuations neces-
sarily requires a higher-dimensional approach based on the full bulk equations: the
brane point of view, although instructive in some cases, is not sufficient in gen-
eral, since brane and bulk perturbations are coupled. We may recall, for instance,
that the anisotropic part of the Weyl stress tensor projected on the brane is van-
ishing when the induced metric is homogeneous and isotropic: these symmetry
properties of the background are lost, however, when the metric is perturbed, and
an associated fluctuation of the Weyl tensor is generated even in the bulk, outside
the brane.

10.3.2 Induced gravity on the brane

The cosmological examples that we have discussed, up to this point, were based on
the simplest model of brane-world gravity in which the gravitational dynamics of
the bulk is simply projected down to the brane: in this case, the forces experienced
by the brane-bound observer are simply the “shadows” of more fundamental
interactions taking place in the bulk manifold.

This scenario, however, can be generalized in various ways, and an inter-
esting (and possibly phenomenologically important) generalization concerns the
introduction in the brane action of the scalar contribution of its intrinsic scalar
curvature, RD−1	h
. This contribution may be induced, in general, by the quantum
corrections [35, 36, 37] to the coupling of bulk gravity to the matter fields liv-
ing on the brane. Irrespective of the possible (quantum or geometric) origin of
this new term, it implies that the Einstein tensor of the brane plays the role
of a new effective source of bulk gravity, thus providing (as noted in [52]) an
unexpected realization of the old proposal of Lorentz and Levi-Civita of using
the Einstein tensor defined on three-dimensional spatial sections as the energy
momentum tensor of the gravitational field in four dimensions. The important con-
sequence of this generalization, for the cosmological applications of this chapter,
is that it may lead the Universe to a late-time regime of “self-accelerated” ex-
pansion [53, 54], without introducing any cosmological constant or dark-energy
field.

For a brief discussion of this model we can again start from the general action
(10.17), working however in the complete absence of bulk sources, and thus
setting Lbulk = 0 (we also eliminate the cosmological constant � which was a
basic ingredient of the previous models characterized by bulk AdS geometry). The
model still contains a codimension-one brane, described by the action (10.18).
The brane is tensionless, �= 0, but contains matter sources and, in addition, an
induced gravity term represented by the intrinsic Ricci scalar constructed with the
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induced metric, RD−1	h
, and with an effective coupling scale that we call �P.
Thus,

Lbrane = 1
2

(
RD−1

2�D−3
P

−Lmatter

)
� (10.158)

Using the Nambu–Goto form of the brane action, and inserting this Lagrangian
into Eq. (10.17), we are led to the action

S = − 1
2�D−2

∫

�
dDx

√�g�R+
∫

�
dD−1

√�h�
(
Lmatter −

RD−1

2�D−3
P

)
� (10.159)

The effective interaction on the brane is thus described by Eq. (10.38), where
� = 0, T bulk

�� = 0, and where the intrinsic stress tensor ��� – defined by varying
Lbrane with respect to the induced metric – contains the “true” energy-momentum
tensor of the matter sources (t��), obtained from the variation of Lmatter, and
the Einstein tensor intrinsic to the brane (G�

��), obtained from the variation of
RD−1:

��� = t�� − 1

�D−3
P

G�
��� (10.160)

We have assumed that the boundary terms arising from the variation are canceled
by an appropriate Gibbons–Hawking action, defined in terms of the extrinsic
curvature of the brane. Inserting these sources into Eq. (10.38) we thus obtain the
dimensionally reduced field equations:

G�
� = E�

�+S�
�	t
+

(
1

�D−3
P

)2

S�
�	G


+ 1

�D−3
P

(
�D−2

2

)2
[

− t�
�G�

�−G�
�t�

�+ 1
D−2

(
tG�

�+Gt�
�
)

+�a
� t�

�G�
�− tG

D−2
���

]

� (10.161)

where E�� is the Weyl stress tensor (10.32), S��	t
 and S��	G
 are given by
the quadratic expressions (10.35) computed with t�� and G��, respectively, and
G= −	D−3
R/2 is the trace of the Einstein tensor of the brane (we have omitted
the superscript � on G�� everywhere). We note that the above equation can also
be directly obtained from Eq. (10.111) omitting the cosmological term and the
term linear in ���, and using for ��� the expression (10.160).

Let us now look for solutions characterized by a trivially flat bulk geo-
metry, by a conformally flat cosmological metric on the brane (as in
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Eq. (10.115)), and by a perfect fluid stress tensor t��. We can thus set, for this
background,

E�
� = 0�

t�
� = diag

(
��−p�ji

)
�

G�
� = diag

(
�G�−pG �ji

)
�

(10.162)

where

�G = 1
2
	D−2
	D−3
H2�

pG = −	D−3
Ḣ− 1
2
	D−2
	D−3
H2�

(10.163)

are the effective energy density and pressure due to the intrinsic curvature of the
brane. The total stress tensor of the effective gravitational sources localized on
the brane can thus be written as

��
� = diag

[
�− �G

�D−3
P

�−
(
p− pG

�D−3
P

)
�
j
i

]
� (10.164)

For this homogeneous and isotropic regime we can then obtain the modified
cosmological equations directly from Eqs. (10.119) and (10.120) by setting to
zero C, �D−1, and the terms linear in � and p, and by inserting into the quadratic
source terms (10.118) the components of the generalized stress tensor (10.164).
We obtain

1
2
	D−2
	D−3
H2 = 1

2

(
D−3
D−2

)(
�D−2

2

)2(
�− �G

�D−3
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� (10.165)
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We may add to this system the conservation equation of the matter fluid, ��t�
� =

0, which takes the form (10.122), and which is still valid thanks to the Bianchi
identity ��G�

� = 0.
For the phenomenological applications the modified Friedman equation

(10.165) can be conveniently rewritten as

1
2
	D−3
H2 = r2

c

[
�D−3

P

D−2
�− 1

2
	D−3
H2

]2

� (10.167)
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where

r2
c = 1

2
	D−3


(
�D−2

2�D−3
P

)2

(10.168)

is a crossover length scale, typical of this model. Solving for H2, the above
equation can be finally rewritten in the useful form [53]

1
2
	D−3
H2 =

[(
8�GD−1

D−2
�+ 1

4r2
c

)1/2

± 1
2rc

]2

� (10.169)

where 8�GD−1 ≡ �D−3
P is the effective gravitational coupling defining the Planck

scale on the brane. This form of the modified Friedman equation clearly shows
how the length scale rc, controlled by the ratio of the bulk and brane gravitational
couplings, determines the transition between the regime of higher-dimensional
gravity and effective gravity confined on the brane.

In this model, in particular, the effects of the bulk corrections are the opposite
of those produced in models of brane-world cosmology considered before, in
the sense that such effects become important in the regime of sufficiently low
energy scales: one recovers the standard form of the Friedman equation only if
the density is large enough with respect to r−2

c , namely for

8�GD−1 �r
2
c � 1� (10.170)

The possible application of this model to the most recent cosmological stages
seems to require a parameter rc not much smaller than the present Hubble ra-
dius, rc

>∼ H−1
0 , which imposes strong constraints on the bulk gravity scale.

Nevertheless, it should be stressed that the model provides a remarkably simple
and explicit example showing that brane gravity, in an appropriate regime, may
become completely insensitive to the presence of extra spatial dimensions, even
if such dimensions are non-compact (actually, infinitely extended), and even flat
(different from the “warped” backgrounds discussed in the previous examples).

The higher-dimensional effects of bulk gravity, in this model, become important
in the limit of small enough densities, 8�GD−1 �r

2
c � 1. In this regime, the

modified cosmological solutions are characterized by two branches, depending
on the choice of sign in Eq. (10.169). Choosing the − sign, and expanding the
equation for �→ 0, we recover the behavior H2 ∼ �2 typical of the high-energy
limit of previous models (see Eq. (10.119)). Choosing the + sign we find, instead,
that for � → 0 the system evolves towards a phase of asymptotic accelerated
expansion at constant curvature, H2 ∼ r−2

c = const [54]. This model thus naturally
contains a phase of late-time cosmic acceleration, without adding exotic sources
or a cosmological constant on the brane (thus implementing a “self-acceleration”



10.4 Ekpyrotic and cyclic scenario 523

scenario). The validity of this branch of the cosmological solution, however, has
been challenged by the possible presence of ghost instability [55, 56].

10.4 Ekpyrotic and cyclic scenario

In the cosmological models illustrated in the previous sections our Universe is
identified with a brane embedded in a higher-dimensional (possibly curved, and
not necessarily compact) bulk space-time. The bulk, however, might contain two
(or more) branes, and these branes could interact among themselves, move through
the bulk, and eventually collide. The scattering of the brane representing our
Universe with another brane might simulate the “big bang” marking the origin of
the phase of standard cosmological evolution. The so-called “ekpyrotic scenario”
[11, 12, 57] tries to explain in this way the presence of the cosmic radiation
background and its temperature anisotropies, proposing a model heavily based on
the process of brane collision without resorting to a phase of standard inflationary
expansion.

The scenario is inspired by the M-theory model of Horawa and Witten [58, 59,
60], based on E8 ×E8 heterotic superstring theory, in which there are two 3-branes
at the boundaries of an effectively five-dimensional bulk manifold [61, 62] (the
remaining six spatial dimensions are compactified on a Calabi–Yau manifold, at a
scale which is at least one order of magnitude smaller). The bulk possibly contains
other floating branes, free to move along the fifth dimension, and eventually to
collide with the boundary branes [11]. Alternatively, the two boundary branes may
collide against each other [12, 57], in which case the size of the extra dimension
orthogonal to the brane (controlled by the strength of the string coupling in the
M-theory context) shrinks to zero before the collision, and then bounces back
to increase again when the boundary branes separate after the collision. With an
appropriate effective potential, controlling the dynamics of the interbrane distance
modulus, the two branes could keep separating and colliding an (almost) infinite
number of times, thus implementing the so-called “cyclic scenario” [13, 14, 63].

The action of the ekpyrotic scenario, if we neglect the presence of the six
“internal” dimensions compactified on a smaller scale, can be written as the action
of a model of brane-world cosmology in which there are two (or more) 3-branes
embedded in a D = 5 bulk manifold, but with two main differences: 	i
 the bulk
action is not the Einstein action but the action of M-theory, containing additional
fields interacting with the branes besides gravity; 	ii
 a suitable potential energy
term, Sinteraction, has to be added to describe the interbrane interaction, to control
their evolution and their possible scattering. Thus,

S = Shet +
∑

i

Sibrane +Sinteraction� (10.171)
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Let us consider here, for simplicity, the simplest non-trivial background of
five-dimensional heterotic M-theory in which we set to zero all fields except those
which are directly coupled to the 3-branes. We are thus left with the graviton, the
dilaton, and a four-form gauge potential AABCD, leading to the following E-frame
action:

Shet = − 1
2�3

∫

�5

d5x
√�g�

(
R− 1

2
�A��

A�− e2�

5! F
2
ABCDE

)
� (10.172)

where F5 = dA4 is the five-form field strength. The brane action can be written as

Sibrane = −
∫

�i

d4

[
√�hi�

(
3�i
�3

e−�−Limatter

)

− �����

4! ��X
A
i ��X

B
i ��X

C
i ��X

D
i AABCD

]

� (10.173)

where �i/�
3 is the tension of the ith brane (we are following the conventions

of [11]), hi�� is the induced metric, and XA
i 	
 are the functions describing its

embedding. The tension coefficients satisfy the condition
∑

i �i = 0, as explained
in [64]. Finally, Limatter describes the matter fields (and radiation) produced on the
branes by the collision process (the so-called “ekpyrosis”), starting from an initial
configuration in which all branes (except for quantum fluctuations) are empty.

The initial configuration of the ekpyrotic scenario is obtained by considering the
limit in which the interaction among the branes is negligible, Sinteraction � 0, and
the system approaches the highly symmetric (and supersymmetric) Bogolmon’y–
Prasad–Sommerfeld (BPS) state in which the branes are flat, parallel and static,
described by the trivial embedding

XA
i 	
= 	�� yi
 � (10.174)

The coordinate y parametrizes the fifth dimension orthogonal to the brane, and yi
specifies the initial brane position. Here we consider the case in which there are
only two boundary branes, initially located at y1 = 0 and y2 = Y , and with tension
coefficients �1 = −�2 = −�, with � > 0: we thus concentrate on the second
version of the ekpyrotic scenario [12, 57], where no role is played by the bulk
branes. For the given initial configuration the equations of motion for the metric
and the other background fields of the action (10.171) are satisfied by the following
BPS solution [61]:

ds2 =D	y

[
N 2 dt2 −A2 dx2

i −B2D3	y
dy2] �

F0123y = −�A3NB−1D−2	y
� e� = BD3	y
� (10.175)

D	y
= �y+C�
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where 0 ≤ y≤ Y , and N�A�B�C and Y are constants. Note that the proper volume
of the bulk is growing with D	y
 as we move from the first boundary at y = 0 to
the second one at y = Y , and that for C > 0 the singularity D = 0 does not fall
between the boundary branes.

We now have to specify Sinteraction, which is required to shift the system away
from the initial static vacuum, and which may be expected to be generated by
supersymmetry-breaking (non-perturbative) M-theory interactions between the
3-branes (possibly mediated by the exchange of wrapped 2-branes). Such an
interaction should depend on the interbrane distance along y: in this model,
however, the fifth dimension normal to the brane (and to the other six dimensions
rolled up in the Calabu–Yau threefolds) corresponds to the eleventh dimension of
the full M-theory framework. Thus, the modulus controlling its size corresponds
to the tree-level coupling g2

s = exp�, as evident from Eq. (10.175) (see also the
discussion at the end of Appendix 3B). As a consequence, the interaction between
the boundary branes should vanish as they approach each other and the fifth
dimension shrinks to zero.

As the exact form of the brane interaction predicted by the full, higher-
dimensional M-theory is unknown, the proposal of the ekpyrotic scenario is to
specify such an interaction in the so-called “moduli space approximation”. In
this approximation, appropriate to the slow-motion regime, the evolution of the
bulk+brane system is described as an evolution in the vacuum space spanned
by the variation of the integration constants of the BPS solution (10.175). These
constants (N�A�B�C�Y ) are thus promoted to moduli functions depending on the
space-time coordinates orthogonal to y (and thus only on time for a homogeneous,
isotropic, spatially flat background). This generalized background is inserted into
the action (10.171), where the explicit dependence on y (contained in D) can
be factorized, and easily integrated away (see [11] for a detailed calculation).
One thus arrives at an effective four-dimensional action where one finally adds
a covariant potential V , a function of the interbrane distance Y , which should be
eventually computable from heterotic M-theory.

The model is reduced, in this way, to the study of a four-dimensional cosmolo-
gical system containing a (non-canonical) scalar field (the modulus Y ), minimally
coupled to gravity. It seems possible to apply the standard methods of scalar-field
inflation, with the interbrane separation playing a role similar to that of the in-
flaton during slow-roll inflation. A possible effective potential for the attractive
interbrane interaction has been parametrized in exponential form as follows [11]:

V	Y
= −f	Y
V0 e−cY � (10.176)

where V0 and c are positive constants, and the function f modulates the amplitude
of the potential imposing f	Y
= 0 for Y = 0, and f	Y
� 1 everywhere else (but
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also power potentials, satisfying VV ′′ � V ′2, may be acceptable for a successful
scenario). With this potential, the solutions describing the phase in which the
two branes approach each other, before the collision, are associated with the
shrinking of the scale factor of the effective four-dimensional geometry (see
below, Eq. (10.181)): one obtains, in this context, an epoch of pre-big bang
evolution characterized (even in the S-frame [12]) by isotropic contraction and
decreasing dilaton (as the fifth dimension shrinks to zero), to be contrasted with
the duality-motivated phase of pre-big bang evolution characterized by expansion
and growing dilaton (see Fig. 4.3 and the subsequent discussion).

The crucial aspect of this scenario is the collision and rebound of the two
boundary branes, and the passage of the system through the singular point y = 0.
In the context of a four-dimensional geometric description the model must contain
a bounce not only of the curvature, but also of the scale factor (from big crunch
to big bang [12]), for the production of a post-collision state approaching the
standard cosmological configuration. From a phenomenological point of view
one has then to face the important problem of matching perturbations across the
bounce, to obtain the spectrum of primordial perturbations produced by the phase
of ekpyrotic (pre-collision) evolution. From a more fundamental/theoretical point
of view, however, there is also the problem of providing a correct description of
the passage of the system through y = 0.

This second problem is similar, in various respects, to the “graceful exit” prob-
lem of the pre-big bang scenario (see Chapter 6), with the possible simplification
that the ekpyrotic bounce occurs in the perturbative regime g2

s → 0 (but not
necessarily at small curvature), and a possible complication due to the fact that
there is no fundamental frame where the evolution of the ekpyrotic scale factor
is monotonic (like the S-frame of the pre-big bang scenario). We refer the reader
to the literature for a deepened discussion [12, 65, 66, 67], but we stress here that
it is possible, in principle, for the transverse dimension to collapse to a point and
then re-expand without the curvature and the energy density (of the matter created
on the brane) becoming singular [68]. However, the energy density created on
one of the two branes has to be negative – a condition which is reminiscent of
the anisotropic, regular solutions with � < 0 also found in the context of the
low-energy equations of the pre-big bang scenario (see Appendix 4B).

The most relevant problem is probably the phenomenological one concern-
ing the predictions for the primordial spectrum of scalar perturbations produced
by the quantum fluctuations of the interbrane distance (which in the effect-
ive, four-dimensional version of the model are treated as the fluctuations of a
scalar inflaton field). The main differences from the standard inflationary scen-
ario are that the phase of fast accelerated expansion is replaced by a regime of
slow contraction (preceding the collision), and that the transition to the standard
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radiation-dominated era is accompanied by a (possibly singular) bounce of the
scale factor.

The first difference does not represent a real difficulty, as the system of cosmo-
logical perturbation equations can be treated in a standard way quite irrespective
of the given background kinematics (see Chapter 8). The true problem comes
from the second difference, since to date, and to the best of my knowledge, there
is no unambiguous, strongly motivated and universally accepted prescription for
matching the solutions of the perturbation equations across a singular hypersur-
face where the scale factor vanishes. On the other hand, the spectral distributions
inherited by the various fluctuation variables in the final (post-bounce) expanding
regime, and directly imprinting the present CMB fluctuations, do strongly depend
on the chosen matching conditions (see e.g. [69, 70]).

In the context of the ekpyrotic scenario it has been shown that, with the choice
of a sufficiently flat potential V	Y
, and the matching of suitable variables which
remain finite across the bounce, it is possible to obtain a final spectrum of scalar
metric perturbations which is nearly scale invariant [57, 71, 72]. Such a choice
of matching prescriptions, however, is not supported by analytical and numerical
computations of the perturbations in smooth models of bouncing [73, 74], where
the background singularity is regularized by appropriate repulsive effects near the
crossover point a → 0, so that it becomes possible to follow the evolution of
perturbations throughout their cosmological history. Such computations, actually,
seem to disprove the ekpyrotic prescriptions, in the sense that they support a
smooth crossover of the bounce of the curvature perturbations variable �, and
not of the Bardeen potential " , as assumed in the ekpyrotic scenario (where
the singularity a → 0 is not smoothed out by regularizing high-energy correc-
tions). This seems to denote that the singular nature of the bounce might play a
fundamental role in obtaining the correct phenomenological predictions for the
ekpyrotic scenario. (See, however, [75] for recent progress on a new mechanism
of entropy-generated curvature perturbations.)

A generalization of the ekpyrotic model has recently led to the formulation of
the so-called “cyclic” scenario [13, 14, 63], where the attraction, the collision and
the subsequent separation of the Horawa–Witten boundary branes repeat cyclically
to infinity (or at least for 1030 times, if the entropy produced in a cycle is not
lost, and accumulates, eventually to saturate the entropy bound associated with
the de Sitter horizon [76]). This cyclic picture completes the ekpyrotic model,
in the sense that it includes, after the brane collision, a late-time phase of slow,
accelerated expansion (similar to that we are presently experiencing), with the
function of smoothing, flattening and emptying the branes, as well as diluting the
produced entropy, thus preparing the highly symmetric and vacuum BPS state
which represents the initial configuration of a new, forthcoming ekpyrotic stage.
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V(φ)

big crunch ← ekpyrotic contraction ← quintessence ↵

Vend

V0

φ 0

φ
φend

↑ big bang → kinetic expansion → standard regime

Figure 10.2 Qualitative behavior of the effective potential representing the inter-
brane interaction of the ekpyrotic scenario, as a function of the distance modulus
� (appropriately shifted in such a way that the attraction begins at �= 0). Also
shown in the picture are the main stages of the cyclic scenario – corresponding
to the phases of V	�
 – for the post-bounce regime with � growing (upper line),
and the pre-bounce regime with � decreasing (lower line).

A concrete realization of the cyclic scenario has been proposed, up to now,
only in an effective four-dimensional context, “inspired” by heterotic M-theory,
but not yet “derived” from it. Such a model can be simply represented by a
scalar field �, minimally coupled to gravity according to the standard equations
of general relativity,

3H2 = 8�G
(
�̇2

2 +V
)
� (10.177)

3
ä

a
= −8�G

(
�̇2

2 −V
)

(10.178)

(see Eqs. (1.25) and (1.26) with a scalar field as source), and self-interacting
through the potential V	�
, whose qualitative behavior is illustrated in
Fig. 10.2.

The potential approaches a small, positive constant value as � → +�, has a
steep, exponential fall down to a negative minimum Vend < 0 for intermediate
� in the range �end < � < 0, and then increases again, approaching zero from
negative values as � → −�. The modulus field �, which controls the inter-
brane distance of the underlying ekpyrotic scenario, is rolling back and forth
through this potential (which represents the energy associated with the ekpyrotic
interactions between the branes); in particular, � varies between a maximum
positive value �0, corresponding to the maximum elongation of the ekpyrotic
system along the y axis, and a minimum �= −�, corresponding to the collision
point at y = 0.
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As the modulus ranges from �0 to −� and back to �0, the system undergoes
various stages of cosmic evolution, which can be easily represented in analytical
form assuming for the potential the following simple approximation [63]:

V	�
= V0

(
1− e−c�/MP

)
�	�−�end
� (10.179)

Here c is a dimensionless coeffcient, large enough for the model to reproduce
an acceptable (i.e. flat enough) spectrum of scalar perturbations [13, 14]; V0 is a
constant energy density, set roughly equal to the present vacuum energy density
(no explanation is attempted of such a small number, but the fine-tuning of V0

is a common problem of all quintessential models based on a running scalar
field, see Section 9.3). Finally, the damping of the potential for � < �end has
been approximated by the Heaviside step function, for computational convenience
(more realistically, one might also assume that, for � → −�, the potential is
instantonically suppressed as exp	−�/g2

s 
 = exp�−� exp	−�
�, as done in the
plot of Fig. 10.2).

With the above potential, the Einstein equations can be easily solved during the
various stages of evolution, and one obtains the cosmological phases illustrated
below, and summarized in Fig. 10.2.

(1) Let us start with the modulus nearly stationary around its maximum value
���0 > 0, a configuration which should roughly correspond to the present epoch
in which the Universe expands at an accelerated rate, dominated by the potential
energy V	�
 acting as dark energy (�̇2 � V0):

H2 ∼ V0 � const� a∼ eHt� 0 <� <∼ �0� (10.180)

After reaching the maximum � starts rolling very slowly towards decreasing
values (because of the slope of the potential), but its kinetic energy is still
negligible with respect to V , and the Universe stays in a state of accelerated
expansion identical to that of standard slow-roll inflation, except that the expansion
rate is exceedingly slower (∼ H0 ∼ 10−61MP), and the corresponding time scale
exceedingly longer. This phase has the virtue of producing an efficient dilution
of all cosmic relics (matter, radiation, entropy) associated with the preceding big
bang (i.e. brane collision). As � approaches zero V decreases, while the kinetic
energy grows and starts to become comparable to the potential energy, so that the
acceleration stops (see Eq. (10.178)), but the Universe continues to expand, even
if damped by the potential when it drops below zero.

(2) When V becomes sufficiently negative, the total (kinetic plus potential)
energy of the modulus hits zero, and the Universe becomes momentarily static,
H = 0 (see Eq. (10.177)). On the other hand, ä < 0 from Eq. (10.178), so that
the Universe enters a phase of slow contraction dominated by a combination of
scalar kinetic and potential energy density. In this regime the constant part of
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the potential (10.179) can be neglected, and one is led to a potential of the form
(10.176), just typical of the (previously discussed) ekpyrotic picture. From the
Einstein equations one then obtains the scaling solution

a∼ 	−t
2/c2
� �∼ 2

c
ln	−t
�

t < tend < 0� �end <�< 0�
(10.181)

describing contraction and decreasing dilaton, and valid for �> �end.
(3) When � drops below �end the potential energy is rapidly switched off,

and the ekpyrotic phase enters a regime of fast, kinetic-dominated contraction
described by the solution

a∼ 	−t
1/3� �∼
√

2
3

ln	−t
�
tend < t < 0� −�<�< �end�

(10.182)

lasting until the brane collision at t = 0, � = −�. This solution describes the
accelerated contraction also obtained in the E-frame representation of the vacuum,
dilaton-dominated solution of the pre-big bang scenario (see Section 4.2), with
the difference that here the dilaton is decreasing.

(4) At the big crunch/big bang collision, matter and radiation are generated
on the brane representing our Universe, which starts expanding driven by the
kinetic energy of the modulus field, which gets a kick at the bounce and re-
verses its direction of motion. The background evolution is still described by the
kinetic-dominated solution (10.182), but t is now increasing in the positive range
0 < t <�, so that a and � are also growing.

(5) As the Universe expands, the kinetic energy of the modulus is redshifted
as �̇2 ∼ a−6, so that the radiation (�r ∼ a−4) and matter (�m ∼ a−3) produced at
the bounce are doomed to become dominant, and the Universe eventually enters
the phase of standard cosmological evolution,

a∼ t1/2� �∼ �r� tr < t < tm�

a∼ t2/3� �∼ �m� tm < t < t0�
(10.183)

During this phase the motion of � is rapidly damped, and the modulus tends
to converge towards its maximum value, to stop around this value in a nearly
stationary state with V � V0, and then to turn back, evolving very slowly towards
negative values. As soon as �m drops below V0 the Universe undergoes the
transition to the phase of late-time slow-roll/dark-energy inflation, and the cycle
begins anew.

A detailed study of scalar perturbations in this scenario [57, 71, 72] suggests
that the fluctuation spectrum of the modulus � produced during the ekpyrotic
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phase may be transformed into a (nearly) scale-invariant and adiabatic spectrum
of primordial metric fluctuations in the post-bounce, expanding phase (see also the
alternative mechanism recently proposed in [74a]). Such a spectrum is expected to
be virtually indistinguishable from that generated by a conventional inflationary
mode, even if the physical mechanisms are very different in the two cases. Thus,
one might wonder whether the cyclic scenario can be observationally discrimin-
ated by other models of inflation. The answer is yes, thanks to the differences
arising in the spectrum of tensor metric perturbations.

In fact, as discussed in Chapter 7, conventional (e.g. slow-roll) models of in-
flation predict a flat (or slightly red) spectrum of primordial gravitational waves,
which could substantially contribute to the low multipoles of the large-scale CMB
anisotropy, and/or cause distinct signals in the CMB polarization (see the dis-
cussions of Sections 7.3 and 8.2). In the cyclic scenario, on the contrary, the
produced background of cosmic gravitational waves [63] is strongly suppressed
at the low-frequency scales relevant to the CMB anisotropy (see Eq. (7.216)),
and unable to produce detectable signals. Thus, near-future astrophysical ob-
servations (to be performed, for instance, by the Planck satellite) might help
in discriminating between the cyclic/ekpyrotic and the conventional inflationary
scenarios.

It should be stressed, however, that the complete absence of detectable signals,
induced by tensor perturbations on the large-scale CMB anisotropy, is not pecu-
liar to the ekpyrotic picture but is also typical of other string cosmology models
of inflation, such as the minimal pre-big bang models illustrated in Section 7.3.
Thus, it is fair to say that the search for direct/indirect effects of the primordial
gravitational radiation on the CMB radiation may be a crucial test for distinguish-
ing conventional models of inflation from string theory based models of the early
Universe, but not for distinguishing between different string cosmology models,
in general.

For what concerns the ekpyrotic and pre-big bang scenarios, however, a clear
observational discrimination could follow from direct measurements of the prim-
ordial gravitational radiation at the frequency scales typical of the present detect-
ors. Indeed, as discussed in Sections 7.3 and 7.4, the relic background produced
by pre-big bang models is, in principle, high enough to fall within the sensit-
ivity range of (near-future) advanced detectors, while the ekpyrotic background
is not.

Thus, a combined non-observation of tensor polarization effects on the CMB
radiation and non-observation of relic gravitons by advanced detectors would be
in favor of the ekpyrotic/cyclic scenario. Conversely, a combined non-observation
of polarization effects and a direct observation of relic gravitons would be more
in favor of the pre-big bang scenario. We recall, for comparison, that the expected
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signature of conventional inflationary models is a combined observation of tensor
polarization effects and non-observation of the relic background. Near-future,
cross-correlated observations of the electromagnetic and gravitational relic radi-
ation backgrounds will thus give us important (and surprising?) information on
our past cosmological history.

We conclude this section with a comment concerning the generalization of the
ekpyrotic scenario to its extended, cyclic version. Such an extension is possible
because in the ekpyrotic case, unlike in models of standard inflation, the big bang
is not regarded as a very special, unique and singular event marking the beginning
of everything (including space-time), but only as a transition (even if of dramatic
importance, in various respects) between two different cosmological regimes, thus
representing only one of the many stages of the full cosmological history. It is
possible, therefore, that the same process is repeated whenever the appropriate
initial conditions are reproduced.

The same conceptual approach – i.e. the big bang as a cosmological transition
– also underlies the self-dual pre-big bang scenario, illustrated in Chapter 4. In
that case, the pre-big bang phase marks the transition between two duality-related
cosmological regimes, and is expected to be a (high-energy but) smooth and
regular process, self-produced by the gravi-dilaton dynamics and, in principle,
reproducible. Also in that case, therefore, we could speculate about a possible
cyclic extension of the pre-big bang scenario: instead of a cyclic alternation of
the phases of attraction and separation of two branes one would find a cyclic
alternation of the phase of standard cosmological evolution and of its string theory
dual.

For a more specific understanding of the possible cyclic extension of the pre-big
bang scenario we should recall, at this point, that the rhythmic series of cycles,
in the ekpyrotic case, is due to the fact that the distance modulus � is traveling
back and forth between the two ends � = �0 and � = −�, across a suitable
potential. In particular, � is decreasing in the pre-collision phase, and growing
in the post-collision phase. In the model of self-dual evolution the modulus is
the dilaton, which evolves however in a monotonic way: it grows from −�
during the pre-big bang phase, and keeps growing (or becomes asymptotically
frozen) even in the subsequent post-big bang regime. To implement a cyclic
scenario (i.e. to reproduce the initial conditions, and prepare the system for a
new big bang transition) the Universe should eventually exit from the late-time
phase of standard (or quintessential, see Section 8.3) evolution. Thus, the dilaton
should start decreasing, to lead the system back to the perturbative regime, at the
beginning of the self-dual cycle.

An obvious possibility, in order to achieve the bounce back of the dilaton in the
post-big bang regime, is the addition to the action of a suitable, duality-breaking,
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effective potential (as suggested by the example of the ekpyrotic scenario). Inter-
estingly enough, however, a post-big bang configuration with an asymptotically
decreasing dilaton can also be obtained by considering a higher-dimensional, an-
isotropic background in which the final decelerated expansion of the “external”
dimensions is accompanied by the decelerated contraction of at least one “internal”
dimension (see Eq. (4B.55)).

This suggests that a cyclic pre-big bang scenario should contain extra spatial
dimensions undergoing a contracting phase, as in the ekpyrotic case. In that case,
a cyclic alternation of duality-related anisotropic phases could even exchange, at
each cycle, the expanding and contracting dimensions among themselves. In fact,
this is what happens at the pre- to post-big bang transition in the example described
by the analytical and numerical solutions presented in [77]: the simultaneous sign
inversion of ȧi for the various scale factors seems to be typical of anisotropic
backgrounds characterized by a smooth bounce transition in the context of the
low-energy string cosmology equations (see also the regular and bouncing boosted
Milne background illustrated in Fig. 4.6).

10.5 Brane–antibrane inflation

In the ekpyrotic model of the previous section the branes are “domain walls” of
a manifold with topology �10 ×S1/Z2, and represent the space-time boundaries
located at the fixed points of the orbifold S1/Z2. Our Universe (factorized as
�4 ×CY6, where CY is a Calabi–Yau manifold) is identified with one of these
branes, and the standard cosmological phase is reproduced as a consequence of the
collision of the two branes (without any previous epoch of standard inflationary
expansion).

Besides the topological branes, generally present in higher-dimensional models
of gravity, string theory contains another class of higher-dimensional extended
objects, the so-called Dirichlet branes (or Dp-branes, where p is the dimensionality
of their spatial extension). They are peculiar to string theory, being related to the
choice of particular boundary conditions in the open string equations of motion
(see Eq. (3A.27) and the subsequent discussion). From a geometric point of view
they are associated with 	p+ 1
-dimensional hypersurfaces �, spanned by the
ends of open Dirichlet strings which are strictly confined on � and cannot move
along the transverse D− 	p+ 1
 directions. As the ends of open strings may
carry non-Abelian charges, it follows that a Dp-brane might be a good candidate
to represent a “world” in which the standard gauge interactions are localized
in p+ 1 space-time dimensions, and are insensitive to any other “transverse”
direction. In a superstring theory context these branes play a fundamental role
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in type I and type II models [78], and in establishing duality relations between
different supersymmetric configurations.

An important property of Dp-branes is that they are coupled not only to gravity
but also to the antisymmetric fields of the R–R sector, and the combined action
of all their couplings generates an effective interaction among Dp-branes which
can be easily computed at large distances. It turns out, in particular, that the net
interaction is attractive if two identical branes have opposite R–R charges [16, 17],
namely if they represent a configuration of a Dp-brane and an anti-Dp-brane (or
Dp-brane). Given such a pair of parallel branes, separated by a finite space-like
distance, they will tend to approach each other moving through the bulk, and
accelerating as they come closer and closer along the transverse direction (say,
the fifth dimension).

On the other hand, as pointed out in Section 10.3, the motion in the bulk
through a warped geometry may correspond to an expansion of the effective
cosmological metric on the brane, and an accelerated motion may correspond
to accelerated expansion, i.e. to inflation: the mechanism of brane–antibrane
attraction has thus stimulated the study of models of Dp−Dp-brane inflation [16,
17, 79] (see also [80] for a detailed introduction). In these models the accelerated
evolution of the four-dimensional geometry is driven by the effective potential
which controls the interbrane interaction, and which is a scalar function of the
interbrane distance: one obtains, in this way, dimensionally reduced cosmological
equations where the distance modulus plays the role of the inflaton. The qualitative
picture is reminiscent of the ekpyrotic scenario (see Section 10.4), but the physics
is very different, as the brane–antibrane interaction induces inflationary expansion
(instead of ekpyrotic contraction).

For a brief discussion of this promising inflationary scenario we start by recall-
ing that the interaction between two identical Dp-branes, characterized initially
by a vacuum, static, supersymmetric BPS configuration, is identically vanishing:
the gravi-dilaton attraction is compensated for by an opposite repulsion due to
the exchange of R–R fields. More precisely, the computation of the interaction
amplitude between the branes – due to the tree-level exchange of bulk closed
strings or, equivalently, to the one-loop exchange of open strings (see for instance
[78, 80]) – leads to an exact cancelation between the contributions of the R–R and
NS–NS sectors, because of the highly supersymmetric state of the system. Thus,
the system is and remains static (unless one introduces additional non-perturbative
interactions, as in the case of the ekpyrotic scenario [11]).

One way to avoid this conclusion is to consider a less symmetric configuration
in which supersymmetry is broken, and the axion, the dilaton and the R–R fields
become massive, while gravity remains long-ranged. In that case the previous
cancelation of forces no longer holds, and a non-zero interaction potential develops



10.5 Brane–antibrane inflation 535

which is generally attractive and which, at large distances compared with the
string length, should take the form [15]

V	Y
��+ k

Y n−2

(

1+∑
NS

e−mNSY −∑
R

e−mRY

)

� (10.184)

Here � is a constant vacuum contribution due to the tension of the two branes,
k is a model-dependent constant, Y is the separation of the branes, and n is the
number of transverse dimensions (for instance, n = 6 for a D3-brane embedded
in the D = 10 bulk space-time of superstring theory).

In the massless (supersymmetric) limit the coefficients in round brackets (i.e.
the total contribution of the R–R and NS–NS sectors) sum to zero, and the
Y -dependent part of the potential vanishes. But when the fields are massive
the form of the potential may be appropriate (i.e. sufficiently flat) to lead to
inflation, and to satisfy naturally the slow-roll conditions [15]. However, the
explicit computation of the potential requires a specific model of supersymmetry
breaking (not supplied in [15]); also, the potential has to be completed by the
addition of string corrections which appear when Y ∼ �s, and which are expected
to be important to describe the end of inflation and the regime of brane collision.

Another (probably more promising) possibility for developing a complete model
of Dp-brane inflation is based on the interactions of a brane–antibrane pair. Their
mutual interaction is non-zero because, for the Dp−Dp pair, the forces due to the
exchange of NS–NS fields remain attractive, while those due to the R–R sector
change sign, and the two contributions add to give naturally a non-zero attractive
interaction [16, 17].

The effective potential for the brane–antibrane system can be computed per-
turbatively, starting from the action

S = Sbulk +SDp
+SDp

� (10.185)

where the 10-dimensional bulk action is specified by the choice of the superstring
model, and the 	p+ 1
-dimensional brane action, with p ≥ 3, is obtained by
expanding the DBI action (6.52):

SDp
= −

∫

�
dp+1

√��� (Tp+· · · ) � (10.186)

where the ellipsis denotes other possible fields interacting with the brane. Here
Tp ∼ �

−	p+1

s exp	−�/2
 is the tension of the Dp-brane, and the metric �i�� =

��X
A
i ��X

B
i gAB is specified by the embedding functions XA

i 	
 (conventions:
Greek indices run from 0 to p, and the subscript i = 1�2 refers to Dp and Dp,
respectively).
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Assuming the branes to be parallel we set

XA
i = 	��Xm

i 
� (10.187)

where Xm
i are the coordinates of the brane positions along the transverse directions

(m�n= p+ 1� p+ 2� � � � �9); we can then separate the relative transverse motion
of the branes, parametrized by Ym = 	Xm

1 −Xm
2 
, by the motion of their center of

mass, parametrized by X
m = 	Xm

1 +Xm
2 
, by setting

Xm
1 = 1

2
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� Xm
2 = 1

2
	X

m−Ym
� (10.188)

The computation of ��� then gives
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(10.189)

where h�� = �A��
B
� gAB, and we have assumed that the bulk metric has a block

structure, choosing a frame where g�n = 0.
We are interested, in particular, in the relative transverse motion of the branes,

i.e. in the dynamics of the modulus Ym. Inserting the above results into the action
(10.186), summing the two brane actions, and expanding

√��� to the lowest
non-trivial order in powers of ��Y

m, we obtain

SDp
+SDp

= −
∫

dp+1
√�h�Tp

(
2+ 1

4
h����Y

m��Y
ngmn+· · ·

)
� (10.190)

where h= deth��. The above action specifies the kinetic term for the moduli Ym,
and can be used to fix their canonical normalization (see below).

To compute the interaction potential we assume, for simplicity, that the brane–
antibrane system is initially sitting in a highly symmetric BPS configuration, and
we choose a frame with one spatial axis oriented along the direction normal to
the brane, so that Ym = 	Y�0�0� � � � 
. Let us also assume, for the moment, that
the geometry is flat along the transverse directions, so that gmn = −�mn, and

��Y
m��Y ngmn = −��Y��Y� (10.191)

The calculation of the one-loop amplitude for the open string exchange between
Dp and Dp, in the limit of large separations Y � �s, then leads to the effective
(Coulomb-like) potential [16, 17]:

VD−D = −e��8
sT

2
p

�

Y n−2
� (10.192)
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where e��8
s ≡ 8�G10 is the effective gravitational coupling appearing in the

10-dimensional bulk action, n= 10− 	p+1
 is the number of spatial dimensions
transverse to the brane, and � is a dimensionless number of order one (which can
be computed exactly as a function of n). We may also note that, for a system of
D3-branes, e��8

sT
2
p ∼ 1, since T3 ∼ g−1

S 	�′
−2 ∼ e−�/2�−4
s .

We are now in the position of completing the action (10.190) by adding the
above interaction term, and integrating over the p− 3 extra spatial dimensions
in order to obtain a four-dimensional effective action. We assume that the p−3
“parallel” dimensions (along the brane) and the n “orthogonal” directions (trans-
verse to the brane) are compact (even if not necessarily small), and that the moduli
describing their shape and size (as well as the dilaton modulus) have been stabil-
ized by some appropriate mechanism (see the discussion at the end of the section).
In this case we can treat Tp	�
 and the volume of the space parallel, V�, and
orthogonal, V⊥, to the brane, as constant parameters: the volumes, in particular,
can be expressed in terms of their typical length scales, r� and r⊥, respectively, as

V� = r
p−3
� � V⊥ = rn⊥� n= 9−p� (10.193)

Note that these parameters are not independent, for consistency with the four-
dimensional mass scale MP to which the volumes are related by the process of
dimensional reduction. They must satisfy the constraint (10.5) which, in this case,
reduces to

e�M2
P =M8

s V⊥V�� (10.194)

Inserting the interaction (10.192), integrating over the parallel dimensions, and
normalizing the kinetic term in canonical form, we obtain from Eq. (10.190) the
following dimensionally reduced effective action,

S =
∫

d4
√�g�

[
1
2
��� �
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]
� (10.195)

where

� =
(
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2

)1/2

Y� V	�
= A−B�2−n� (10.196)

and

A= 2TpV��

B = � e��8
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pV�
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2
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/2

�
(10.197)

We have thus introduced a canonical scalar field, self-interacting, and minimally
coupled to gravity, and we can now study its possible ability to sustain a phase of
long and efficient inflation. The situation is strongly reminiscent of a brane-world
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cosmological scenario with the inflaton scalar field localized on the brane (see
Section 10.3), but with two important differences.

The first is that the scalar field has a precise physical/geometric identification
as the distance modulus of the pair Dp–Dp. As a consequence, its properties –
in particular, the slope and the amplitude of its potential – cannot be arbitrarily
prescribed, but are to be computed from the given string theory model. The
second difference is that the present scenario, as also noted in [17], permits two
possible interpretations and applications. The scalar field action (10.195) may be
regarded either as an effective gravitational source for the dimensionally reduced
bulk action (obtained by integrating over all six compact dimensions), or as a
gravitational source localized on the brane which contains our four-dimensional
Universe. In this second case, however, the gravitational equations on the brane
should be obtained by projecting the bulk gravitational equations and imposing
the appropriate junction conditions, as discussed in Section 10.1.

In the first case, one can instead directly apply the standard Einstein equations
with the scalar field as an inflaton source. One then finds that is not easy for the
obtained potential, in the model of background we have considered, to satisfy the
conditions of slow-roll inflation. The computation of the slow-roll parameter �
(see Section 1.2) gives, in fact,

�≡ M2
P

V

�2V

��2
� −�	n−1
	n−2


(r⊥
Y

)n
� (10.198)

where we have used the definitions (10.196) and (10.197), and the constraint
(10.194). The brane–antibrane potential (10.192), on the other hand, is valid for
transverse separations which are larger than the string length �s, but which cannot
be larger than the proper size of the compact transverse dimensions, i.e. Y <∼ r⊥.
Thus, the slow-roll condition ��� � 1 would require � � 1, which cannot be
satisfied by any realistic string theory model, as string theory implies �∼ 1 for a
pair Dp–Dp of interacting BPS branes [80].

A possible solution to this problem has been suggested in [16] for the case in
which the compact transverse manifold is topologically an n-dimensional torus,
with uniform circumference of size r⊥. When the antibrane is separated by a
distance Y ∼ r⊥ one must include in the interbrane potential the contributions
of all the topological “images” of the other brane, forming the n-dimensional
lattice 	R/Z
n. Each contribution gives a term of the form (10.192), and the total
effective interaction is obtained by summing over all the lattice sites occupied by
the brane images. The resulting potential is quartic in the displacement z of the
antibrane from the center of the hypercubic cell of the lattice, and can satisfy the
required slow-roll conditions as long as the interbrane separation remains in the
range Y ∼ r⊥.
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When Y � r⊥ inflation stops since there are no longer contributions from the
lattice images, and the potential reduces to the form (10.196). The interaction,
however, remains attractive, so that the system Dp–Dp keeps collapsing. When
the limiting separation Y ∼ �s is reached, the large distance approximation breaks
down, and the potential acquires corrections due to the exchange of an open string
state, T , which has a tachyonic mass for Y < �s [81]. Including such a tachyon
condensate, the interaction then takes the approximate (short distance) form,

V	T�Y
∼ 1
�2

s

(
Y 2

�2
s

−1
)
T 2 + c T 4 +· · · (10.199)

(where c is a constant), which should be appropriate to describe the final process
of brane–antibrane collision/annihilation. Remarkably, the above potential (as a
function of T and Y ) is precisely of the form required by the so-called models
of “hybrid” inflation [82], which automatically include a mechanism to exit from
the inflationary phase.

Using the physics of Dp–Dp interactions, string theory seems thus to be able
to suggest a complete and satisfactory model of standard inflation, in which the
inflaton potential naturally evolves from the initial slow-roll regime (associated
with a period of weak brane attraction) to the final hybrid regime (associated with
tachyonic instability and brane annihilation). The considered model, however,
contains a major assumption concerning the stabilization of the dilaton and of the
volume moduli of the compact dimensions. In addition, the slow-roll condition is
satisfied for special initial conditions, and for a special choice of the topology of
the transverse dimensions.

A different possibility to ensure the validity of the slow-roll approximation,
in the context of Dp–Dp interactions, is based on the presence of a warped bulk
geometry [18]. There are various valid motivations for choosing such a configur-
ation: for instance, a warped geometry may also help in stabilizing moduli, thus
avoiding the main difficulty mentioned above. Furthermore, a warped compac-
tification of the extra dimensions naturally admits solutions with D3-branes and
D3-branes transverse to the six compact dimensions [83], thus providing a natural
arena for the mechanism of brane–antibrane inflation.

The influence of a warped geometry on the effective interaction of the Dp−Dp

pair has been studied in detail for the case of a five-dimensional AdS bulk manifold
[18], where the D3-brane is held fixed in the asymptotic regime of small proper
volumes of the AdS5 background, while the D3-brane is free to move through the
curved bulk, driven by the attractive force towards the D3-brane. The resulting
effective potential describing this interaction is much flatter than the potential
between the same brane-antibrane pair in flat (compact) space.
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y0

y1

ymax

y

D3

D3

mobile brane

fixed 
antibrane

Figure 10.3 Schematic view of the warped background (10.200). The mobile
Dp-brane is attracted towards the fixed Dp-brane located at the infrared end y0.

For an illustration of this possibility we start by assuming that no other moduli,
or the effects which stabilize them, interfere with the relative motion of the
two branes (unfortunately this assumption cannot be easily satisfied, as we shall
discuss later). Also, we consider a 10-dimensional background solution of the type
IIB superstring action which, in a suitable region of the target space manifold,
can be approximated by the factorized background AdS5 ×�5, where �5 is
a five-dimensional Einstein space of constant curvature. We use for AdS5 the
convenient parametrization

ds2 = y2

R2

(
dt2 −dx2

i

)− R2

y2
dy2� (10.200)

where the coordinate y parametrizes the fifth dimension, and R−1 is the AdS
curvature scale (assumed to be sufficiently small, i.e. R � �s, for the validity
of a perturbative analysis of the background based on the low-energy effective
action [18]).

Let us suppose, finally, that the solution (10.200) is valid for y0 ≤ y ≤ ymax: for
y > ymax the background is expected to evolve smoothly into a different (Calabi–
Yau) type of compactification, while for y ∼ y0 the AdS geometry is expected to
have a smooth tip of finite size (as in the case of the Klebanov–Strasser solution
[84]), which can be modeled by cutting off the coordinate y at some minimum
value y0. The “warp factor” 	y/R
2 – representing the effective gravitational
redshift (due to the bulk curvature) of the four-dimensional space-time sections
spanned by the coordinates 	t� xi
 – thus decreases with y down to the minimum
value y0 � R associated with the fixed position of the Dp-brane, which is placed
just at the “infrared” end of the background (see Fig. 10.3).

In order to specify the brane dynamics we call y1 the position of the brane
mobile along the fifth dimension, assuming y1 � y0. The interbrane distance is
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then Y = y1 −y0 � y1. The kinetic term is again of the type (10.190), with p= 3 and
Y replaced by y1. The attractive potential, taking into account that for p= 3 there
are n= 6 dimensions transverse to the brane, will behave as V	Y
∼ −Y−4 ∼ −y−4

1 ,
according to Eq. (10.192). The computation of V	Y
, however, must take into
account that the interaction takes place in the curved background described by the
metric (10.200): the energy density to be inserted into the action has to be written
in a covariant form. This prescription has two consequences: 	i
 the coordinate
distance has to be replaced by the proper distance, y1 → y1

√−gyy = y1	R/y
;
	ii
 the scalar potential must become a scalar density, V → V

√−g = V	y/R
4.
As a consequence, the effective interaction energy experienced by the Dp-brane
located at y0 will take the form

V	y1� y0
� −
(y0

R

)8 1

y4
1

� (10.201)

The strong suppression factor 	y0/R

8 � 1 is what makes this potential easily

compatible with the slow-roll condition, as we shall see in a moment.
A more precise computation of the interbrane potential can be performedd by

evaluating the perturbation of the background produced by the brane located at
y = y1, and then computing the resulting energy of the antibrane fixed at y = y0

in this perturbed background. We sketch here the main steps of this procedure,
referring to the original paper [18] for further details.

We start by recalling that, in the background we are considering, the curvature
of the 10-dimensional space-time AdS5 ×�5 is sourced by the stress tensor of a
five-form field strength, F5 = dA4, and that the complete set of background fields
can be parametrized in terms of a scalar function h	y
 as follows:

ds2
10 = h−1/2	y


(
dt2 −dx2

i

)−h1/2	y


(
dy2 + y2

R2
gab dza dzb

)
�

F01234 = �yh
−1� A0123 = h−1�

(10.202)

Here gab is the metric on �5, spanned by the coordinates za, a= 5�6� � � � �9, and
h satisfies the equation �2

6h = 0, where �2
6 is the covariant Laplace operator of

the six-dimensional space with metric

ds2
6 = dy2 + y2

R2
gab dza dzb� (10.203)

The unperturbed background is described by the exact solution h0	y
= 	R/y
4,
which leads to the metric (10.200). The perturbation sourced by a D3-brane
transverse to the directions spanned by the coordinates �y� za�, and localized
at the origin of the �5 coordinates, i.e. at y = y1, za = 0 = const, can still
be parametrized in the form (10.202), by setting h = h0 + h1. One then finds
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that h1 must satisfy the source equation �6h1 = c�	y− y1
�
5	z
, where c is a

constant depending on the tension T3. The solution of this equation [18] is given
by h1 = 	2�2T3y

4
1


−1, so that the perturbed background (including the D3-brane
contribution), is described by the total warp factor

h	y
= h0 +h1 = R4

y4
+ 1

2�2T3y
4
1

� (10.204)

Let us now consider the interaction of the D3-brane with this perturbed back-
ground. The total antibrane action is given by the DBI action (10.186), which
describes the interaction with the metric, plus the Chern–Simons action which
describes the interaction with the four-form potential A4 [78]. As the antibrane
is fixed at y = y0 there is no kinetic term and we have, for p = 3, that

√−� =
h−1	y0
= A0123	y0
, so that

SD3
= SDBI +SCS = −T3

∫
d4x

√−� −T3

∫
A0123 dt d3x

= −2T3

∫
d4xh−1	y0
� (10.205)

The D3-brane has the same tension but opposite five-form charge: thus, there is
an exact cancelation between the two interaction terms above, and we are left
with the kinetic term only (see Eq. (10.190)):

SD3
= SDBI +SCS = T3

∫
d4x

1
4
��y1 �

�y1� (10.206)

Expanding h−1	y0
 for y0 � y1 (and, of course, for T3R
4 � 1), and summing SD3

,
SD3

, we obtain for the brane system the following four-dimensional effective action:

S =
∫

d4x

[
T3

4
��y1 �

�y1 −2T3

(y0

R

)4 + 1
�2

(y0

R

)8 1

y4
1

]

(10.207)

(note that the attractive interaction term is in agreement with the previous estimate
(10.98)).

Defining, as before, the canonical field � = y1	T3/2
1/2, we are led eventually
to the warped potential

V	�
= 2T3

(y0

R

)4
[

1− T3

8�2

(y0

R

)4
�−4

]
� (10.208)

differing from the previous result obtained in flat transverse space for the large
suppression factor 	y0/R


4 of the second term with respect to the constant part
of the potential (compare with Eq. (10.197)). The most restrictive slow-roll para-
meter, in this case, is given by

�= M2
P

V

�2V

��2
� − 5

2�2
M2

PT3

(y0

R

)4
�−6� (10.209)
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On the other hand, the number of e-folds between a given time t and the end of
inflation tf , according to Eq. (1.119), is given by

N =
∫ tf

t
H dt = 1

M2
P

∫ �

�f

V

V ′ d� � �2

3M2
PT3

(
R

y0

)4

�6� (10.210)

It follows that ��� � N−1, and that a sufficiently large number of e-folds (say,
N >∼ 60) automatically guarantees the condition ��� � 1 for the slow-roll approx-
imation to be valid.

Brane–antibrane interactions in a warped background thus seem to provide a
promising scenario for the formulation of efficient models of slow-roll inflation.
The example we have discussed, however, was based on a crucial assumption:
the stabilization of all the moduli (except y) of the compactification manifold.
As discussed in [18], this is a highly non-trivial issue. For instance, if one
applies the stabilization mechanism illustrated in [85], one finds that generic
volume-stabilizing superpotentials also generate a large mass term for the inflaton
field, making inflation impossible. In more general models, the (non-perturbative)
stabilizing superpotential could depend on both the volume modulus and the
inflaton (i.e. the interbrane distance modulus). If such a dependence is generic,
however, inflation does not occur, as shown in [18].

In spite of these difficulties it is possible to find “non-generic” examples where
inflation is possible, but then the inflationary predictions are strongly dependent
on the details of the stabilization mechanism. However, the degree of fine-tuning
required to implement slow-roll inflation, in these examples, seems to be low (of
order 1%), and particularly acceptable in models of eternal inflation characterized
by indefinitely large and ever growing volume of the inflationary domain [18].
Furthermore, in view of the many possible existing realizations of string theory
at low energies (also called string theory “vacua” [86]), most of which are largely
in contrast with standard phenomenology, one could even argue that all string
theory realizations not leading to inflation should be discarded, because they are
incompatible with the Universe in which we live (thus adapting to cosmology the
proposed anthropic approach to the “landscape” problem of string theory [87]).

We can say, in summary, that the physics of branes has produced (and is still
producing) novel approaches to the picture of a multi-dimensional Universe, new
interesting ideas in the field of primordial cosmology and, in particular, new
possible schemes for the realization of the inflationary scenario. It also seems
fair to say, however, that brane cosmology, and brane inflation above all, are
probably still in their infancy: many points need clarification, and many problems
are still to be solved. Thus, let me exhort the reader not to be scared of the present
difficulties, and to address the large existing literature for a deeper study of this
field (which, after the initial “explosion” at the end of the last century, is now
evolving at a constant and continuous rate).
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After all, brane cosmology models – in various ways and at various levels –
are all deeply rooted in string theory, which is at present our best candidate for
a unified theory of all fundamental interactions. Thus, brane cosmology offers
us two possibilities. On one hand, through a top-down approach, it gives string
theory the opportunity to formulate phenomenological predictions, to be directly
compared with present (or near-future) observations. On the other hand, through
a bottom-up approach, and through the input of observational data more and more
abundant and accurate, it stimulates a more and more detailed study of string
theory, boosting the understanding of many obscure aspects still present in this
theory.
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longitudinal, 343
superconformal, 106
synchronous, 3, 134, 256, 343
uniform-curvature, 344
uniform-density, 346
uniform-dilaton, 344, 352

Gauss theorem, 40
geodesic

completeness, 224
convergence, 24
coupling, 446, 457, 461, 479–480
deviation, 445–447
equation, 3
null, 4, 5, 374, 375
observer, 3

Gibbons–Hawking boundary term, 41, 487–488
graceful exit, 224–225, 526
gravitational antennas

cross-correlated response, 318–321
noise power spectrum, 312–315
optimal filtering, 320–321, 455
overlap reduction function, 319, 454
pattern function, 316–317
response tensor, 317
signal-to-noise ratio (SNR), 320–321

gravitino, see Rarita–Swinger field

horizon
event, 5–6, 202–204
particle, 5–6

Hubble
horizon, 202–204, 207
parameter, xv
radius, 2, 202–204
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induced gravity on the brane, 519–522
inflation

chaotic, 30
de Sitter, 25–26, 31–32, 195
e-fold parameter, 29, 367, 368
minimal duration, 23–24
power-law, 29, 195
slow-roll, 26–30, 366–368
super-inflation, 196

interferometric detectors
common mode, 449, 480–481
differential mode, 449, 457–459
enhanced response of the common mode, 480–481
overlap of common and differential modes,

478–480
pattern functions for scalar–tensor radiation,

459–452
response to a non-relativistic scalar background,

456–459
SNR for scalar radiation, 454–456

Israel junction conditions, 490, 493

Kalb–Ramond axion, 43, 390
Kaluza–Klein scenario, 484–485
Kasner solution, 142

level-matching condition, 102, 113–114, 126, 133
local Lorentz symmetry, 56
luminosity distance, 12–14, 463

Majorana spinor, 105–106, 116, 124, 129
metric

Bianchi-I type, 134, 199, 214
conformally flat, 4
de Sitter, 25–26, 31–32
homogeneous Bianchi models, 152–153, 171–173
Milne, 168
Robertson–Walker, 3–6
warped geometry, 498, 514
world-sheet, 74–75

M-theory, 129, 210, 213, 429, 523

Neveu–Schwarz
boundary conditions, 108–111
two-form, 42–44, 157, 171, 390

non-Abelian duality, 171–173
non-geodesic coupling, 446, 457, 480
non-local

action, 174
general covariant equations, 175–177
duality-invariant equations, 178–180

normal modes, 254
nucleosynthesis, 299, 304, 308
numerical solutions

background with �′ corrections, 220, 223
background with �′ and loop corrections, 230
perturbations with �′ corrections, 329
background with coupled dark energy, 472–474

O(d,d) symmetry
with sources, 161–165
without sources, 157–160

open bosonic string
Dirichlet and Neuman boundary conditions, 95
energy spectrum, 100–101
massless level, 101
Virasoro constraints, 96

perfect fluid
barotropic, 7
entropy density, 16, 18
mixture, 8, 355
stress tensor, 7, 134
thermal equilbrium, 14–16

Planck
epoch, 20, 207–208
length, mass, xiv–xv, 204–207

pre-big bang
inflation, 196, 202, 207–208
minimal models, 299–301, 410
scenario, 138–140, 146–148

problem
cosmic coincidence, 464, 474
cosmological constant, 464
flatness, 20–21
horizon, 21–22, 204, 206
landscape, 543
missing mass, 463
trans-Planckian, 34, 206–207

pulsars, 298

quintessence, see dark energy

Ramond boundary conditions, 108–111
Randall–Sundrum (RS) model, see warped geometry
Rarita–Swinger field, 104, 106, 119–120, 123, 128,

129
regular exact solutions

anisotropic with fluid sources, 181–182
isotropic with non-local potential, 182–184
isotropic with non-local potential and fluid

sources, 185–188
anisotropic with non-local potential and fluid

sources, 190–191
via-duality transformations, 168–171

relic dilatons
non-relativistic spectrum, 432–436
phenomenological bounds, 444–445
relativistic spectrum, 430–431

relic gravitational waves
from an ekpyrotic phase, 309–310
from inflation, 287–289, 293–294
from pre-big bang inflation, 301–303, 305
phenomenological upper limits, 295–299
stochastic average, 311–312, 318

Sachs–Wolfe effect
integrated, 376
scalar perturbations, 373–376
tensor perturbations, 376

scalar perturbations
canonical variable and evolution equations, 347
entropy perturbations, 355–356
frame transformations, 361–362
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gauge-invariant variables, 343–344, 346
linearized equations of motion, 348–350
local infinitesimal transformations, 340–342
perfect fluid source, 356–359
perturbed connection, 345
perturbed Einstein tensor, 349
perturbed metric, 337–339
perturbed Ricci tensor, 348–349
perturbed scalar and fluid sources, 339–340, 348
perturbed scalar curvature, 345–346
primordial spectrum, 363–365
pump field, 347
scalar field source, 351–354
spectral index, 366
super-horizon Bardeen spectrum, 368–369,

370–372
scale-factor duality

higher-order extension, 221
with sources, 142–144
without sources, 136–138

seed mechanism
induced Bardeen spectrum, 418–420, 423
quadratic sources of metric perturbations, 417–418

self-duality, 139, 146–148, 182, 186, 189, 204,
222

shifted
dilaton, 136–137, 140, 158, 174
variables, 143, 161, 179

singularity
big bang, 19
big rip, 11, 198, 476
curvature, 224
initial, 30–34
sudden, 11

spherical resonant detector
monopole mode, 460
pattern and overlap functions, 460–461
enhanced response, 461–463

squeezed state, 280–281
squeezing operator, 279–280
strain density

tensor perturbations, 310–312
dilaton perturbations, 453–454

string
�′ parameter, see length
coupling, 37, 85–87, 142, 147–148, 210–213
equations of motion and constraints, 74, 92–93,

see also under closed bosonic string and open
bosonic string

length, xiv–xv, 37, 39
mass, xiv–xv, 39, 303–304, 307
perturbative vacuum, 147–148, 244, 246,

248
string frame

action, 38, 45, 199
equations, 43

string-gas cosmology, 233–235
strong coupling corrections

action, 228–229, 440
equations of motion, 229
saturation, 90, 225, 465–466

sudden approximation, 282, 285

supergravity, 129
superstrings

closed spectrum, 113–115
GSO projection, 116–117
heterotic model, 124–128
open spectrum, 113
super-Virasoro constraints, 107–108,

110–111
type IIA and type IIB models, 117–120
type I model, 121–124
world-sheet supersymmetry, 104–106

tachyon, 101, 102, 115, 539
target space duality, 132–134, 231
T-duality, see under target space duality
tensor

energy-momentum, 2, 40
extrinsic curvature, 488
Ricci, xiv, 7, 44, 135, 498
Riemann, xiv
Lanczos, 63, 69
Weyl, 493–494

tensor perturbations
canonical normalization, 264–266
canonical variable and evolution equations,

263
conjugate momentum, 266
frame-independence, 261–262
graviton production, 281, 283–287
linearized equations of motion, 260
parametric amplification, 269–270
perturbed action, 259
perturbed action with �′ corrections, 326
perturbed connection, 257, 258
perturbed Gauss–Bonnet invariant, 324–326
perturbed metric, 255–256
perturbed Ricci tensor, 257, 258
polarization, 262–263
power spectrum, see spectral amplitude
pump field, 263
spectral amplitude, 271–273
spectral energy density, 276
spectral index, 274–275
super-horizon expansion, 268–269

third quantization, 247
tidal stress tensor, 447–448
time

conformal, 4, 155–156, 197, 260, 336,
374

cosmic, 3, 194, 201, 260
reversal, 136, 138

vector–spinor, see Rarita–Swinger field
viscosity coefficient, 166

warped geometry
de Sitter brane in AdS bulk, 514–515
localization of gravity on the brane,

502–505
Minkowski brane in AdS bulk, 497–499
short-range gravitational corrections,

506–508
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Weyl invariance, see conformal invariance
Wheeler–De Witt (WDW) equation

differential representation, 240–241
duality and operator ordering, 245–246
scattering processes in minisuperspace, 247–248

Wheeler–De Witt (WDW) wave function
antitunneling solutions, 248–249

free solutions, 241–242
tunneling solutions, 243–244

winding
number, 132–133
modes, 213, 232–233, 234–235

Z2 symmetry, 490, 494
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