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UNDERSTANDING SPACE-TIME

This book presents the history of space-time physics, from Newton
to Einstein, as a philosophical development reflecting our increasing
understanding of the connections between ideas of space and time and
our physical knowledge. It suggests that philosophy’s greatest impact
on physics has come about, less by the influence of philosophical
hypotheses, than by the philosophical analysis of concepts of space,
time, and motion and the roles they play in our assumptions about
physical objects and physical measurements. This way of thinking
leads to new interpretations of the work of Newton and Einstein and
the connections between them. It also offers new ways of looking at
old questions about a-priori knowledge, the physical interpretation
of mathematics, and the nature of conceptual change. Understanding
Space-Time will interest readers in philosophy, history and philosophy
of science, and physics, as well as readers interested in the relations
between physics and philosophy.
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Preface

This book concerns the philosophy of space and time, and its connection
with the evolution of modern physics. As these are already the subjects of
many excellent books and papers – the literature of the “absolute versus
relational” debate – the production of yet another book may seem to require
some excuse. I don’t claim to defend a novel position in that controversy, or
to defend one of the standard positions in a novel way. Still less do I pretend
to offer a comprehensive survey of such positions and how they stand up
in light of the latest developments in physics. My excuse is, rather, that
I hope to address an entirely different set of philosophical problems. The
problems I have in mind certainly have deep connections with the problems
of absolute and relative space, time, and motion, and the roles that they play,
or might play, in the history and future of physics. But they can’t be glossed
by the standard questions on space-time metaphysics: is motion absolute
or relative? Are space and time substantival or relational? Rather, they are
problems concerning how any knowledge of space, time, and motion – or
spatio-temporal relations – is possible in the first place. How do we come to
identify aspects of our physical knowledge as knowledge of space and time?
How do we come to understand features of our experience as indicating
spatio-temporal relations? How do the laws of physics reveal something to
us about the nature of space and time?

I see two compelling reasons to focus on these questions. On the one
hand, I believe it will give us a more illuminating picture of the connection
between the metaphysics of space and time and the development of philos-
ophy in general. Historically, there have been two significant attempts to
integrate the physics and the philosophy of space and time with a general
theory of knowledge: Kant’s critical philosophy, in its attempt to compre-
hend Euclid and Newton within a theory of the synthetic a priori; and
logical positivism, in its attempt to comprehend Einstein within a conven-
tionalist view. These attempts are widely recognized as failures, and I don’t
intend to try to rehabilitate them. But I believe that there is some insight to
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Preface xi

be gained from a better understanding of why they failed; more important,
I hope to show that the task in which they failed – to explain the peculiar
character of theories of space and time, and the peculiar role that they have
played as presuppositions for the empirical theories of physics – is no less
important for us than it was for them, and, moreover, is more nearly within
our grasp. On the other hand, I believe that focusing on these questions
will give us a clearer picture of the history of physics. For, as I hope to show
in the following chapters, the moments when such questions have become
most urgent are precisely the most revolutionary moments in the history of
space-time physics. The great conceptual transformations brought about
by Newton, Einstein, and their fellows simply could not have happened
as they did without profound reflection on these very questions. And our
sense that these transformations were crucial steps forward – that, apart
from increasingly useful theories, they actually yielded deeper understand-
ing of the nature and structure of space-time – has everything to do with
the success of their philosophical work.

This is not an entirely novel idea. Something like it was at the heart of
the positivists’ interpretation of relativity theory: Einstein introduced spe-
cial and general relativity by some “philosophical analysis” of the concepts
of space and time. But this interpretation was based on a rather simplistic
picture of relativity, as well as simplistic notions of what a “philosophical
analysis” could be. Given the inadequacies of the positivists’ attempt to put
relativity into philosophical perspective, it has since appeared easier to see
the relevance of philosophy to physics in simpler terms: as a source of philo-
sophical motivations for physicists, and even of theoretical hypotheses, but
not as a method of scientific analysis. For such motivations and hypotheses,
it would seem, are inescapably subjective, and their objective worth can
only be judged by the empirical success of the theories that they produce.
Einstein thought that anyone who followed the philosophical steps that
he had taken, whatever their scientific background, would be convinced of
the basic principles of special and general relativity. By the later twentieth
century, however, philosophers came to think of those steps as somewhat
arbitrary, and as not very clearly related to the theories that Einstein actu-
ally produced. They had a heuristic value for Einstein, and may have again
for a future theory of space-time. To believe again that such philosophical
arguments could be crucial – not only to the motivation for a theory, but
also to its real significance in our scientific understanding of the world –
we need a more philosophically subtle and historically realistic account of
those arguments, and the peculiar roles that philosophy and physics have
played in them.
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That is what this book aims to provide. It is not distinguished by any
technical arguments or results; it benefits, in that regard, from the tradition
of important works on absolute and relational space-time, such as Sklar
(1977), Friedman (1983), and Earman (1989), that have done so much
to make space-time geometry a familiar part of philosophical discourse.
Nor can it claim to offer a wealth of previously unknown historical detail,
although it does emphasize some historical figures who are rarely considered
in the philosophy of space and time. Instead, this book seeks to present some
fairly familiar developments from a completely unfamiliar perspective, as
part of a remarkably concerted and coherent philosophical effort – an effort
to analyze, from a series of critical philosophical standpoints, the evolving
relationship between our physical assumptions and our knowledge of space
and time. Early twentieth-century philosophers had a difficult time seeing
the history from this perspective, because they saw the philosophy of space
and time as essentially an argument against Newton, that is, as a struggle of
modern epistemology against old-fashioned metaphysics. What this book
attempts to show is that the best philosophy of space and time – the part that
has been decisive in the evolution of physics – has been a connected series
of arguments that began with Newton, arguments about how physics must
define its conceptions of space and time in empirical terms. By viewing the
history in this way, my book proposes to shed some light on other questions
that were puzzling to twentieth-century philosophy of science: above all,
how the transformation of fundamental concepts, like those of space, time,
and motion, can be understood as a rational development.

The most obvious audience for this book, then, would be philosophers
of science with an interest in physics, and physicists with an interest in
the conceptual development and the philosophical significance of their
discipline. But I hope that it will also be of interest to any philosophical
reader who is curious about the role of philosophical analysis as a tool of
scientific inquiry, and about the physical world as an object of philosophical
reflection. On both of these matters, the history of the physics of space and
time is an unparalleled source of insight.

Many people helped me with the writing of this book, but none more
than William Demopoulos, my colleague and friend for nearly two decades.
This book is indebted, not only to my many discussions with him and his
careful reading of every draft, but also to the influence and the model of
his own work on the foundations of mathematics and science.

I also owe a great debt to Michael Friedman, partly because of his constant
guidance and encouragement of this project, but mostly because, like much
of my work, it has deep roots in my philosophical engagement with his.
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I particularly thank Howard Stein and David Malament, who supervised
my graduate studies long ago, and who tried to teach me, by word and
example, what the history and philosophy of science might aspire to. I
hope that they will be able to discern something of their influence in my
work.

It was Laurens Gunnarsen who, with his extraordinary gifts of math-
ematical intuition and patience, guided my very first steps on the path
that eventually led to this book, and imparted to me his love of its subject
matter.

Others who contributed to this book at some stage or other, directly or
indirectly, include: John Bell, Martin Carrier, Darcy Cutler, Mauro Dorato,
Michael Hallett, Ulrich Majer, Paulo Parrini, Miklos Redei, Heinz-Jürgen
Schmidt, George Smith, and Gereon Wolters. My thanks to all of them,
and to everyone who patiently heard my talks at various colloquia over the
past several years, as the ideas for this book were evolving.

I would also like to thank Hilary Gaskin, of Cambridge University Press,
for her early interest in this project and encouragement of it. I thank the
anonymous referees for the Press for their helpful suggestions, and Sarah
Lewis and Anna-Marie Lovett for their editorial efforts. I am also indebted
to Sona Ghosh for her thoughtful and intelligent work on the index.

Most of this book was written while I was a Senior Fellow at the Dibner
Institute for the History of Science and Technology. I will always be grate-
ful to the staff of the Institute, the other Fellows from 2002–2003, and
especially the Acting Director, (again) George Smith, for creating an ideal
intellectual atmosphere in which to pursue this project. I also thank the
Dibner family for their tradition of support for work of this kind. Addi-
tional financial support came from the Social Sciences and Humanities
Research Council of Canada.

I would like to thank my son Christopher and my daughter Sofia, for
giving me the best reasons to undertake this work and all the right encour-
agement to finish it.

Last, and most of all, I would like to thank my wife Zanita. She lived
with this project and supported it from its earliest beginnings; what she has
given to this book, and to me, there will never be space or time enough to
say.





chapter 1

Introduction

Why is there a “philosophy of space and time”? It seems obvious that any
serious study of the nature of space and time, and of our knowledge of
them, must raise questions of metaphysics and epistemology. It also seems
obvious that we should expect to gain some insight into those questions
from physics, which does take the structure of space and time, both on
small and on cosmic scales, as an essential part of its domain. But this
has not always seemed so obvious. That physics has an illuminating, even
authoritative, perspective on these matters was not automatically conceded
by philosophy, as if in recognition of some inherent right. No more did
physics simply acquire that authority as a result of its undoubted empirical
success. Rather, the authority came to physics because physicists – over sev-
eral centuries, in concert with mathematicians and philosophers – engaged
in a profound philosophical project: to understand how concepts of space
and time function in physics, and how these concepts are connected with
ordinary spatial and temporal measurement. Indeed, the empirical success
of physics was itself made possible, in some part, by the achievements of
that philosophical effort, in defining spatio-temporal concepts in empir-
ically meaningful ways, often in defiance of the prevailing philosophical
understanding of those concepts. In other words, the physics of space and
time has not earned its place in philosophy by suggesting empirical answers
to standing philosophical questions about space and time. Instead, it has
succeeded in redefining the questions themselves in its own empirical terms.
The struggle to articulate these definitions, and to re-assess and revise them
in the face of changing empirical circumstances, is the history of the phi-
losophy of space and time from Newton to Einstein.

That history is not usually understood in these terms. More commonly,
it is identified with the history of the “absolute versus relational” question:
are space, time, and motion “absolute” entities that exist in their own right,
or are they merely abstracted from observable relations? Without doubt
this has been an important question, both for physics and for philosophy,
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2 Introduction

and philosophical stances on it have evidently been powerful motivating
principles for physical speculation. For that reason it plays a large role in the
history that I have to tell. But it is not the entire story, or even the central
part. And the tendency to see the history of space-time theories through
the lens of this controversy – a tendency that has prevailed for most of
the past century or more – has therefore clouded our view of that history.
The absolute–relational debate is a cherished example of the influence of
philosophy on the evolution of physics, for it seems to exhibit fundamen-
tal theoretical physics in the aspect of a kind of inductive metaphysics, in
which physical arguments are brought in support of metaphysical ideas,
and vice versa, in an ongoing philosophical dialectic. But the struggle to
define a genuine physics of space and time has involved another sort of
dialectic altogether: not between metaphysical positions, but between our
theory of space and time, as expressed in the laws of physics, and our evolv-
ing knowledge of matter and forces in space and time. The revolutionary
changes in conceptions of space and time, such as those brought about
by Newton and Einstein, were therefore driven by a kind of conceptual
analysis: an analysis of what physics presupposes about space and time, and
of how these presuppositions must confront the changes in our empirical
knowledge and practice.

By overlooking this process of conceptual analysis, we tend to misrep-
resent the historical discussions of space and time by Newton, Einstein,
and others, and the philosophical arguments that they gave; we fail to get a
proper sense of the progressive force of those arguments, as central aspects
of the scientific argument for theoretical change in the face of empirical dis-
covery. But we do not merely cloud the historical picture. We also obscure
the connections between the problems of space and time and some broader
issues in the history of philosophy: the nature and function of a-priori
presuppositions in science, and the rational motivations for conceptual
change in science. To clear away these obscurities is the purpose of my
book.

The revival of metaphysical debate on space and time, over the past
several decades, must be understood as part of the general reaction against
logical positivism in the late twentieth century. The positivist view was
that debate had been largely settled by Einstein: clear-sighted philosophers
had always grasped the relativity of space, time, and motion on epistemo-
logical grounds, and Einstein finally brought their insight to fruition in a
physical theory. From the more recent literature on the absolute–relational
controversy, by contrast, we get a more vivid and realistic picture of the
interaction between physics and philosophy, especially of the diverse ways
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in which purely philosophical convictions have motivated some of the
most revolutionary work in physics. And we see, moreover, how sometimes
the philosophical aims of physicists have been unrealized – how much
divergence there has been between the original philosophical motivations
behind revolutionary theories, and the content and structure of the theo-
ries that were eventually produced. The most familiar example – and the
most damning to the positivists’ neat picture – is the divergence between
Einstein’s vision of a theory of “the relativity of all motion” and general
relativity itself, which turned out to have similarities with Newton’s theory
of absolute space that Einstein found philosophically hard to accept. In
such cases there can be no doubt of the tremendous heuristic power of the
original philosophical ideas, yet they can give rise to theories that seem to
contradict them.

This seemingly mysterious circumstance has a broader significance for
the philosophy of science. A primary preoccupation of the philosophy of
science, since the later twentieth century, has been the question of the ratio-
nality of scientific revolutions, and the commensurability or incommen-
surability of competing conceptual frameworks, a kind of question raised
most forcefully by Kuhn (1970a). As a matter of the history and sociology
of science, it is beyond dispute that there have been, and are, competing
groups within scientific disciplines with competing aims and methods, and
with finite capacities for communication and mutual understanding. As
a matter of philosophy, however, Kuhn introduced the radical claim that
scientific conceptual frameworks are by their very nature incommensurable
with one another. Whatever one thinks of Kuhn’s view, it should be clear
that theories of space and time provided Kuhn with some of the most
vivid examples of profound conceptual shifts – not merely dramatic shifts
in beliefs about the world or even in scientific methods, but in the very
concepts that define the objects of scientific inquiry, the phenomena to be
observed and the magnitudes to be measured. Kuhn emphasized the transi-
tion from Newtonian to relativistic mechanics, for example, less because it
challenged specific traditional beliefs than because it created a conceptual
system within which fundamental concepts of length and time, and with
them force, mass, and acceleration, would have to be revised (Kuhn, 1970a,
p. 102).

This last notion was hardly original with Kuhn. On the contrary, it
was a central point – one might even say, the most fundamental moti-
vating principle – for the logical positivists’ interpretation of Einstein. If
special relativity had appeared to be a merely incremental change from
Newtonian mechanics (or general relativity from special relativity), part of
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a gradual and cumulative development driven by the steady application of
traditional scientific methods, it would have seemed to them completely
without philosophical interest. It was precisely because Einstein had under-
taken a radical revision of fundamental concepts that the logical positivists
saw him as revolutionary for philosophy as well as for science. What dis-
tinguished Kuhn from the logical positivists, especially, was his view of
how and why such conceptual revisions take place. According to Kuhn,
“critical discourse” about the foundations of theories typically takes place
because the prevailing theoretical framework is in crisis: from one side, it
faces an accumulation of anomalies, or “puzzles” that ought to yield to
the framework’s standard methods, but that have somehow resisted being
solved; from the other side, it faces serious competition from a novel alter-
native framework. “It is particularly in times of acknowledged crisis,” Kuhn
wrote, “that scientists have turned to philosophical analysis as a device for
unlocking the riddles of their field,” even though they “have not generally
needed or wanted to be philosophers” (Kuhn, 1970a, p. 88). It was “no
accident,” therefore, that the twentieth-century revolutions against Newto-
nian physics, and indeed Newton’s own conceptual revolution, were “both
preceded and accompanied by fundamental philosophical analyses of the
contemporary research tradition” (Kuhn, 1970a, p. 88). While he acknowl-
edged the creative influence of philosophical analyses, however, Kuhn was
not prepared to admit that a philosophical argument against an existing
theory could furnish any objective argument on behalf of a new rival. Nor
could he acknowledge that such arguments could illuminate the relations
between the theories, or the sense in which the shift from the old to the
new theory might be understood as genuine theoretical progress. Philo-
sophical beliefs, in short, functioned in scientific revolutions as subjective
influences; they might motivate or persuade individual scientists – making
particular theories or lines of research more psychologically accessible or
appealing for scientists of particular philosophical tastes – but could never
provide anything resembling a rational justification for theory change. For
the philosophical arguments for a particular paradigm are always based on
the paradigm itself. “When paradigms enter, as they must, into a debate
about paradigm choice, their role is necessarily circular. Each group uses
its own paradigm to argue in that paradigm’s defense . . . Yet, whatever its
force, the status of the circular argument is only that of persuasion” (Kuhn,
1970a, p. 94). When scientists at a time of crisis “behave like philosophers,”
in Kuhn’s phrase (1970b, p. 6), this is because they are engaging in incon-
clusive “debates about fundamentals” such as are characteristic of philoso-
phy (Kuhn, 1970b, p. 6). The prominence of philosophical considerations
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during revolutionary times merely highlights the lack of any clear method-
ological rules to guide conceptual change.

For the positivists, by contrast, such a revision could have an objective
philosophical ground, as a radical critique of concepts that were epistemo-
logically ill-founded.1 For example, relativity theory was motivated by, and
embodied, an evident progress in the philosophical understanding of space
and time and the ways in which we measure them. The revised concepts
of mass, length, and time were not merely the side-effects of a change in
world view, but, rather, direct expressions of this improved understanding.
So the theory was not only motivated, but also justified, by the philosoph-
ical arguments of Einstein. There could be no question of the rationality
of a conceptual transformation that appeared so clearly to be a kind of
conceptual reform.

From the perspective of the later twentieth century, however, this under-
standing of Einstein’s revolution seemed particularly misguided. On the
one hand, it seemed to exemplify what was wrong with the positivists’
approach to science in general: the simple-minded belief that unobservable
theoretical entities could be eliminated, and that theory could be reduced
to its purely empirical content. On the other hand, it exhibited mistaken
views about the content of general relativity itself. A number of physi-
cists and philosophers quickly noted this discrepancy, and appreciated the
important continuities between general relativity and its predecessors. But
the dominant voices in the emerging discipline of “philosophy of science”
were those of the positivists, especially Reichenbach (1957); as a result,
a proper understanding of the bearing of general relativity on the meta-
physics of space, time, and motion was slow in coming. By the late 1960s,
the elements of a more circumspect viewpoint were in place: that Newton’s
theory of absolute space and time was not a mere metaphysical appendage
to his physics, but had some genuine foundation in the laws of motion; that
general relativity did not “relativize” all motion, but distinguished among
states of motion in radically new ways; and that space-time in general rel-
ativity was in some respects the same sort of metaphysical entity as it had
been in Newtonian mechanics – at the very least, both theories characterize
space-time geometry as an objective physical structure. In short, Einstein’s
work no longer seemed to have settled the absolute–relational controversy
decisively in favor of relationalism. Therefore it no longer seemed to con-
form to the positivists’ picture of it, as an epistemological critique that
eliminated metaphysics from physics; that picture had only displayed their
flawed understanding of the theory, and of the role of theoretical entities
in science.
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If general relativity is separated in this manner from the original philo-
sophical arguments for it, then the arguments are relegated to the status
of mere subjective factors in the development and the acceptance of the
theory. From the point of view of the absolute–relational debate, this is
not a disagreeable outcome. It suggests that a theory of space and time is,
after all, a theory like any other, and that scientists will develop or accept
such a theory for the same kinds of reason as they would any other theory.
The metaphysical questions about space and time may then be translated
into a straightforward form: what does our best current physics say about
space and time? Rightly rejecting the positivists’ view of relationalism as
the inevitable result of progress in epistemology, contemporary literature
views it (and its antithesis) essentially as a metaphysical hypothesis, con-
firmed or not by how well it accords with the best available physical theory.
This new attitude clearly implies that it is not for “the philosophy of space
and time” to judge what might be the best available theory. Physics pre-
sumably has empirical methods for deciding such things, and these are of
the highest philosophical interest – from them, if from anywhere, must
come the answer to Kuhnian concerns about incommensurability – but
the philosophical discussion of space and time may take such decisions for
granted. It is also implied, therefore, that what makes a theory “the best”
has nothing to do with its philosophical implications concerning space
and time. Philosophical “intuitions” might move physicists to prefer one
metaphysical hypothesis to another, and to try (as Einstein did) to create a
theory that accords with it, but the theory itself would have to be judged
on largely empirical grounds. An abstract philosophical argument against
“absolute” structures has no force; what relationalism needs is a theory that
can save the phenomena without them.

This, at any rate, is the implicit philosophical principle of the most
prominent recent literature. (For a contrasting view to which my own view
is indebted, see Friedman, 2002b.) In explicit form it can be traced back
at least as far as Euler, who, indeed, expressed it as clearly as anyone. We
don’t possess, he argued, any principles of metaphysics that we can claim
to know as securely as we know the laws of physics (see Euler, 1748).
Therefore no metaphysical principles can possibly claim the authority to
question the laws of physics; in particular, a conception of space or time
that has a foundation in the laws of motion is inherently secure against
criticisms from metaphysical grounds, which are necessarily less secure and
more controversial than the laws of motion. Euler’s specific target was Leib-
niz’s objections to Newton’s theory of absolute motion, a theory which, as
Euler clearly recognized, rested on physical laws that were considerably
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better founded than anything in Leibnizian metaphysics. But his point was
quite general, and from the point of view of our own contemporary lit-
erature, even too obvious to require any mention. The consensus appears
to be that general metaphysical and epistemological arguments for abso-
lutism or relationalism are of secondary interest, useful for historical and
heuristic purposes. In place of such considerations, there is a general meta-
physical assumption that real entities are just those postulated by the best
current physics, and an epistemological assumption that just those onto-
logical distinctions are meaningful that the best current physics is capable
of making. (The discussions of Einstein’s “hole argument” in the recent
past exhibit these assumptions especially clearly, see Earman, 1989.) So the
debate between relationalism and absolutism (or substantivalism) effec-
tively reduces to the question, which of these positions is best supported by
current physics? Answering this question involves great technical and con-
ceptual challenges, but the question has become, in a philosophical sense,
relatively straightforward.

There can be no doubt that this change is largely for the better. That
discussions of space and time are ultimately accountable to the physics of
space and time is probably beyond dispute, and is in any case (as I hope
will be clear to the reader) a principle that this book shares with most of the
philosophy of physics literature. I do suggest, however, that in the applica-
tion of this principle, the role and significance of philosophical analysis has
been overlooked. And this has created at least three interconnected prob-
lems. First, and most obviously, it encourages a distorted view of the actual
history: instead of seeing the actual philosophical arguments of Newton
and Leibniz in their original context, we forcibly translate them into terms
that will allow us to compare them against current physics. One might
ask, of course, do such positions have any present philosophical inter-
est if they cannot be translated into something relevant to contemporary
physics? Conversely, if what we now call “absolutism,” substantivalism,”
and “relationalism” are of demonstrable relevance to current physics, does
it really matter whether they have any genuine connection with the sides
of an ancient debate? Frankly, it is not the primary purpose of this book –
though it is an indispensable part of my task – to defend historically accurate
interpretations of Newton, Leibniz, and their fellows, and to distinguish
their views carefully from the modern positions. The misinterpretations are
important only because they have distracted our attention from the most
important problems that Newton and Leibniz – along with Kant, Mach,
Poincaré, Einstein, and others – were trying to address. These problems
concerned, not whether space and time are absolute, but how questions about
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space and time are to be framed in the first place. How is objective knowledge
of spatial and temporal relations – let alone of “space itself” or “time itself” –
possible? What does it mean to attribute some particular structure to space
or time? What is the status of the basic principles of geometry – how does
axiomatic geometry become an empirical science? How do concepts such
as absolute space and absolute time acquire some empirical meaning?

Second, by overlooking these questions, we overlook the relevance of
theories of space and time to a broader philosophical question: the nature
and status of a-priori knowledge. The relevant issue is not, as one might
suspect, whether we have some knowledge of space and time that is prior
to all experience. Rather, it is whether, and how, theories of space and time
have functioned as conceptual frameworks, that is, as formal structures
that define physical properties as empirically measurable magnitudes. If
theories of space and time thus function as presuppositions for empirical
inquiry, then the arguments for the theories themselves must be something
other than empirical arguments of the familiar inductive or hypothetico-
deductive sort. In the post-positivist era, it is common to see all theories –
even, for some philosophers, mathematics and logic as well as fundamental
physics – as forming a “man-made fabric which impinges upon experience
only along the edges” (Quine, 1953, p. 42). This suggests that there is only
a difference of degree between abstract theoretical principles and statements
of empirical fact; when “a conflict at the periphery occasions readjustments
in the interior of the field,” there is no principled way to decide which
beliefs ought to be revised. It follows that every principle within the fabric
is to some extent an empirical hypothesis. Whatever the merits of this view,
it hardly helps us to understand the conceptual development of theories
of space and time. For those whose work had the greatest impact on that
development – from Newton and Kant to Poincaré and Einstein – certainly
were convinced that concepts of space and time had a special status, as the
presuppositions required for an intelligible account of matter and forces.
They believed, therefore, that their revolutionary work required explicit
reflection on how the concepts of space, time, and motion must be defined,
in order that questions about the nature of matter and force might become
empirical questions.

This leads us to the third problem, which is the problem of concep-
tual change. If the revolutionary developments in the theory of space and
time involved changes in the meanings of fundamental concepts, then it
will be difficult to meet the challenge posed by Kuhn, and to show that the
acceptance of new theories is a rational scientific choice. Obviously the con-
sequences of Newtonian mechanics, for instance, can be tested empirically
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with great precision. In order even to formulate those consequences for
any real system, however, we first have to accept a series of interpretive
principles: for example, that every acceleration is to be regarded as a mea-
sure of the action of some force. While this principle makes possible the
empirical analysis of motion, it cannot be the object of such an analysis
itself; we cannot perform tests to see whether forces conform to the prin-
ciple, for it is a criterion by which we identify force in the first place. This
is what led Poincaré to characterize the laws of motion as “definitions in
disguise”: they appear to make empirical claims about the nature of force,
but in fact we cannot say what a force is except by stating the laws. The
interpretive character of such principles, in fact, is the key to their role as
a-priori presuppositions. But this raises the question how the introduction
of such principles or, even more, a radical change in them, can be justified
on any scientific grounds. For the logical positivists, interpretive principles
were a matter of conventional choice: a physical theory is a purely for-
mal mathematical structure, and to interpret it is to make some arbitrary
stipulation about how its formal elements are to be “coordinated” with
observation (see Carnap, 1995). In the case of space-time geometry, the
role of stipulations was supposed to be particularly central. For, within a
given geometrical framework, physical magnitudes can be measured empir-
ically, but the framework itself is not fixed until we agree on the meaning
of geometrical magnitudes such as length and time. If this view has few
followers now, it should be remembered that, in the early twentieth cen-
tury, it seemed to have the support of Einstein himself, who sometimes
suggested that special relativity rested on an arbitrary stipulation about
time. Einstein’s great conceptual transformation, on this view, replaced the
ill-defined concepts of Newtonian physics by unequivocal “coordinative
definitions” of simultaneity, length, and time.

If they are arbitrary, however, these stipulations can only be judged by
the success of the framework that they help to define. As Carnap would
put it, such a framework defines a set of “internal questions” and a set
of objective criteria for answering them; whether to adopt or abandon
any given framework is an “external” question that can only be answered
on pragmatic grounds such as overall simplicity and utility (see Carnap,
1956). By those criteria, it would be hard to deny that Newton’s theory or
Einstein’s, in the long run, turned out to be better than what it replaced. But
that sort of judgment is not necessarily straightforward, or even possible, at
the time of a theory’s acceptance; sometimes it is only made possible by the
sustained efforts of those who have accepted the theory from the outset.
This is the kind of historical situation that Kuhn portrayed so convincingly:
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whatever their ultimate success, theories are often accepted while they are
in a somewhat inchoate state, by scientists who have faith but little evidence
that they will succeed in the long run. It would appear, in short, that no
simple methodological rule can justify the decision to interpret the world in
a novel way, even though the benefits of doing so might eventually become
obvious. The logical positivists never faced this difficulty, because, again,
they viewed special and general relativity as inherently progressive, having
finally connected physics with modern insights into the epistemology of
geometry. But in the aftermath of Kuhn, when the positivists’ philosophical
case for relativity is seen as a mere subjective preference – at most, a useful
heuristic principle rather than a rational ground – the difficulty arises again.

Post-positivist philosophy of science does not take problems of interpre-
tation very seriously, because of its rejection of the positivists’ theory of theo-
ries. Instead of seeing a scientific theory as a set of axioms, which depend on
coordinative definitions (or “correspondence rules,” “meaning-postulates,”
etc.) for their connection with experience, contemporary philosophy of sci-
ence typically represents a theory as a model-theoretic structure. Reference
to experience is expressed in the hypothesis that the theory, understood as
a structure, has “the world” as one of its models. As a way of talking about
theories, this “semantic view” has definite merits, some of which will be
discussed (and occasionally exploited) later in this book. But it is not a way
of understanding the physical interpretation of formal structures; on the
contrary, it tends to hide the problem from view.2 By asserting that “the
world is a model of Euclidean geometry,” for example, we are simply taking
for granted what the positivists saw the need to define: what does it mean
for the world to be a model of Euclidean or any other geometry? What
in the world is a straight line or an invariable length? How, in general, are
we to decide which observable objects are to stand for which geometrical
structures?

It should be clear, now, why questions like these have a profound bear-
ing on the three problems I named. They are crucial to understanding the
development of space-time theory, because the most important and historic
philosophical arguments about space, time, and motion – those that have
had the greatest impact on the evolution of physics – have arisen precisely at
times when these questions have become urgent. Addressing them, in such
circumstances, has engaged physics in a profound examination of its own
a-priori presuppositions. In such circumstances, the emerging philosophical
arguments have been, more than mere defenses of metaphysical preference,
agents of conceptual transformation. The problem is to understand how
arguments about the definitions of spatio-temporal concepts – about the
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principles that constitute for us the very objects of scientific study – can
possibly be objective scientific arguments, and how the resulting transfor-
mation can be understood as a deeper insight into the nature of space and
time.

To solve this problem was, arguably, a central aim of Kant’s critical phi-
losophy, and the fate of his attempt is particularly instructive. In his view,
the argument for a fundamental constitutive principle was a transcendental
argument, showing that the principle is a condition of the possibility of
experience; the argument for the Newtonian framework of space and time,
accordingly, was that it was the condition for our understanding of matter,
motion, and force. So Newton’s revolution was justified by the fact that it
articulated, for the first time in the history of science, concepts of space,
time, and causality by which the entire Universe could be understood as
an interacting system. Traditional metaphysics, and even common sense,
by contrast, stood revealed as having only the most confused ideas of these
matters – except to the extent that something like the Newtonian concep-
tions were latent in them. Like the positivists’ interpretation of Einstein,
however, this interpretation of Newton now seems to epitomize the short-
comings of the philosophy that produced it. Kant understood rightly that
the Newtonian principles, as presuppositions of empirical reasoning, could
not themselves be derived by empirical reasoning of the same kind. But he
mistakenly inferred that they are immune from any empirical reasoning –
that they are connected with the fundamental categories of human under-
standing, and hence are both necessary and sufficient for any intelligible
account of our experience. As the later career of Newtonian physics sug-
gests, constitutive principles can be overturned by empirical knowledge.
They cannot be fixed for all time, any more than they can be changed
arbitrarily.

The example of Kant gives us, at least, some idea of what is at stake here.
If we could reconcile the apparently conflicting aspects of the principles of
space-time geometry – that they are constitutive and interpretive, yet some-
how contingent upon our evolving empirical knowledge – we would be on
the way to understanding theoretical interpretation as a rational scientific
process, and radical change of interpretation as (at least sometimes) a kind
of scientific progress. Furthermore, beyond these problems in the philos-
ophy of science, we would gain some insight into a general philosophical
question to which neither Kant nor the positivists had a convincing answer:
why must the metaphysics of space and time answer to physics at all? What
gives physics its authority in these matters? Fortunately, the keys to answer-
ing these questions can be found in the history of physics. To understand
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how the conceptions of space and time have been defined and redefined,
in the emergence of modern physics, we need to re-examine the arguments
by which those definitions were introduced by people such as Newton and
Einstein. The definitions arise, not from arbitrary stipulation, but from
conceptual analysis – from a dialectical engagement with existing ideas of
space and time, revealing their hidden presuppositions and confronting
them with new observation and theory. The radical changes in meaning
are not, as Kuhn suggested, mere side-effects of theory change; they are the
results of deliberate and self-conscious philosophical analysis that are them-
selves the engines of theory change. And their impact on philosophy – their
authority to challenge existing philosophical notions of space and time –
comes from the fact that they confront those notions on philosophical
grounds, and expose their implicit connections with assumptions about
physics.

That, at least, is the history I will present of the theories of space, time,
and motion since Newton. It is not, therefore, another retelling of the
story of the absolute–relational controversy. Rather, it is an account of how
concepts of absolute and relative space, time, and motion have come to
play the parts that they play in physical theory, and the impact that the
construction, refinement, and critical analysis of these concepts has had
on the conceptual development of physics. It is therefore no less than the
story of the movement of physics toward a kind of philosophical maturity –
toward a state of clarity in fundamental concepts, and of self-consciousness
concerning the ways in which fundamental concepts acquire their empirical
meaning.

notes

1. For a similar but more persuasive account of the role of conceptual criticism,
to which my own account is indebted, see Torretti (1989, section 2.5).

2. My discussion follows that of Demopoulos (2003).



chapter 2

Absolute motion and the emergence
of classical mechanics

At a time when the relativity of motion was just beginning to be under-
stood, Newton introduced a theory of absolute motion in absolute space
and time. The controversy that then began has never ceased. What right did
Newton have to explain the observable relative motions by an appeal to these
unobservable entities? What role can such metaphysical hypotheses play in
empirical science? By re-examining Newton’s arguments for his theory, and
understanding its role in the science that he helped to develop, we can see
that these questions are misdirected. Newton’s theory of space and time
was never a mere metaphysical hypothesis. Instead, it was his attempt to
define the concepts presupposed by the new mechanical science – the con-
ceptual framework that made relative motion physically intelligible within
a conception of causal interaction. Rather than an empirically question-
able addition to his scientific work, it was an essential part of his work to
construct an empirical science of motion. Rather than mere metaphysical
baggage carried by an otherwise empirically successful theory, it was insep-
arable from Newton’s effort to define the empirically measurable quantities
of classical mechanics.

2 . 1 new ton and the hi story of the
philosophy of sc ience

The history of Newton’s ideas of space and time was once part of a philo-
sophical justification for general relativity. For much of the twentieth cen-
tury, the standard view of that history was something like this. When
Newton introduced the theory, it was immediately obvious to his wisest
philosophical contemporaries that this was a backward step. The Aris-
totelian conception of the universe as a collection of distinguished places,
to which bodies belonged according to their particular qualities, had given
way to the conception of an infinite, homogeneous Euclidean space; the
conception of types of natural motions, all defined in relation to the resting

13
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Earth, had given way to the recognition that motion is essentially relative,
i.e. is nothing more than the relative displacement of a body relative to
other bodies. The second point had been absolutely essential, in fact, to
overcoming what had otherwise seemed to be good empirical arguments
against any motion of the Earth. Therefore Newton’s ideas of absolute
space and absolute motion represented just the sort of primitive meta-
physical thinking – a kind of reification of abstract objects – from which
physics was now trying to escape, in order to become an empirical science.
Huygens and Leibniz were particularly emphatic in rejecting these ideas.
But Newton, through his notorious “water-bucket” experiment, claimed
to know how to determine true motion dynamically: the centrifugal forces
that arise in the spinning bucket demonstrate that the water is rotating, not
merely relative to its material surroundings (the local frame of reference),
but with respect to space itself. Leibniz and Huygens, along with a few
other philosophers such as Berkeley, could easily see the emptiness of such
an argument, which invoked a mysterious unobservable entity to explain
the observed phenomenon. And they could see the inherent inability of
physics to say anything meaningful about motion without referring it to
observable objects. What they could not see was how to construct a dynam-
ical theory that would avoid the philosophical embarrassments of Newton’s
theory.

That possibility was first envisaged clearly in the nineteenth century by
Mach (1883). Mach’s penetrating epistemological critique of the Newto-
nian conceptions, in particular of the alleged connection between centrifu-
gal force and absolute rotation, went beyond criticizing the epistemologi-
cal shortcomings of Newton’s theory; it showed the way to an alternative
physics in which centrifugal forces, and inertial effects generally, would
depend on the relation of a body to the other masses in the Universe.
Like velocity in Newton’s mechanics, rotation and acceleration in this new
theory would be purely relative.

The task of fashioning these insights into a physical theory was left
for Einstein, who absorbed Mach’s ideas, but who had also absorbed the
nineteenth-century revolution in the foundations of geometry; above all,
Einstein understood the role of convention in connecting spatio-temporal
concepts with empirical observation and measurement. He had already
brought these ideas together in special relativity, giving an empirical defi-
nition to simultaneity and, by the same stroke, revealing the meaningless-
ness of Newtonian absolute simultaneity and absolute time: according to
Einstein’s criterion of simultaneity, simultaneity and time intervals must
depend on the frame of reference. But special relativity had only shown the
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equivalence of uniformly moving frames of reference (inertial frames), and
still maintained the distinction between these and accelerating or rotating
frames. Mach’s arguments showed Einstein that this distinction has no more
epistemological legitimacy than the distinction between uniform motion
and rest. Mach’s idea then found a physical realization in the equivalence
principle: because of the empirical indistinguishability of inertial motion
and free fall in a gravitational field, the distinguished status of inertial
motion and inertial frames could no longer be maintained. Thus the possi-
bility of generalizing the special principle of relativity, from uniform motion
to all states of motion, was realized. Physics had freed itself from the vestigial
traces of Newton’s metaphysics and had finally caught up with philosophy.
A movement that was philosophically inevitable – the “relativization” of
quantities naively thought to be absolute – was finally completed.

2 . 2 the rev i s ion i st v iew

The foregoing is, more or less, the logical positivists’ account of the his-
tory of the philosophy of space and time.1 It faulted Newton not only
for the details of his theory of space and time, but also for misunder-
standings about scientific method, especially about the relation between
theoretical entities and empirical facts. So it was, perhaps, unlikely to sur-
vive the later twentieth century’s dissatisfaction with the positivists’ own
views on scientific theory and evidence. Nor could such an account sur-
vive the emergence, and gradual dissemination among philosophers, of a
correction of the positivists’ interpretation of relativity. Almost from the
advent of general relativity, mathematicians and physicists who understood
it particularly well, especially Weyl (1918, 1927) and Eddington (1918,
1920, 1923), expressed a very different view of the theory from Einstein’s:
not as a theory of the relativity of motion and the equivalence of frames
of reference, but as a theory of the geometrical structure of the world (see
Chapter 4, later). The essential feature of general relativity, on this view, was
not that it eliminates the idea of a privileged coordinate system, but that
it represents the geometry of space-time as a function of the mass–energy
distribution. Therefore space-time is locally similar to the space-time of
special relativity, but globally mutable and inhomogeneous. As a recent
philosopher noted, commenting on some errors of the logical positivists,
general relativity turned out to be “no less absolutistic about space-time
than Newton’s theory was about space” (Coffa, 1991, p. 196).

At the very least, we can identify a common metaphysical princi-
ple uniting general relativity with special relativity and Newton’s theory:
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space-time is an objective geometrical structure that expresses itself in the
phenomena of motion. The theories disagree on which phenomena express
that structure and precisely how; in general relativity the structure has the
radically novel feature of being, not a fixed background, but a dynami-
cal structure whose states depend on the states of the matter and energy
within it. Eddington and Weyl, perhaps especially the latter, were quite
emphatic about the tremendous philosophical significance of general rela-
tivity and of its departures from its predecessors. But what they emphasized
(as we will see later) was clearly something completely different from the
sweeping methodological and epistemological differences claimed by the
positivists.

The geometrical way of thinking about space-time theory, as developed
by Eddington and Weyl, was developed and maintained among specialists
in relativity theory, and by the 1960s had attained a more or less standard
form.2 General relativity, special relativity, and Newtonian space-time could
all be represented in a common mathematical framework, in which space-
time is thought of as a differentiable manifold with geometrical structures
defined by tensor fields; the various theories amount to differing choices
of the tensor fields. But within the philosophy of science this view, and
the weaknesses of the positivists’ view, first came into prominence with the
publication of Stein’s “Newtonian space-time” (1967). Stein’s interpreta-
tion of Newton brought out the historical and philosophical carelessness
of the standard empiricist polemics against absolute space and time. In
doing so, moreover, it revealed the deep connections between Newton’s
ideas about space and time and his dynamical theory. For application of
the laws of dynamics – as understood not only by Newton, but by his
foremost philosophical critics as well – was based on the analysis of par-
ticle trajectories, and so required a spatio-temporal framework that would
suffice for the analysis of trajectories. The crux of Newton’s argument for
absolute space, then, was that this requirement could never be fulfilled
by the Cartesian and relativistic views of space and time favored by his
contemporaries. Therefore, in the literature since Stein’s paper, Newton’s
theory is no longer regarded as a naive metaphysical appendix to his physics.
Instead, it is regarded as a fundamental challenge to relationalism, one that
the relationalists of Newton’s time were very hard pressed to answer, and
with which even relationalists of the present day must reckon. In this man-
ner the absolute–relational controversy, which the positivists thought had
been settled by Einstein, came to life once again.

This rehabilitation of Newton’s philosophy was undoubtedly a change
for the better, and it brought the philosophical debates concerning
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space-time into closer contact with the foundations of physics; it no longer
seemed acceptable to argue against Newton on general epistemological
principles, without regard for the presuppositions about space and time
that may be required by physics. Yet, as we will see, the essential point of
Stein’s paper – and therefore of Newton’s arguments – has not been fully
appreciated. The contemporary literature assumes that Newton was trying
to answer a standing metaphysical question – are space, time, and motion
absolute or relative? – and that he brought physics to bear on this question
much more convincingly than earlier philosophers, especially the logical
positivists, had allowed. What this assumption overlooks is that Newton
did not try to answer that question at all; on the contrary, he did not
even take for granted that such a question was well-posed. For this reason
Newton did not even attempt to show that space, time, and motion are
absolute. His primary aim, instead, was to define “absolute space,” “absolute
time,” and “absolute motion”: to exhibit empirical criteria for applying the
concepts, and to reveal the roles that they play in solving the problems of
mechanics. The crucial secondary aim was to show that the corresponding
concepts defined by his contemporaries, as purely relative notions, were for
any mechanical purpose quite useless.

This interpretation of Newton is still considered eccentric, despite the
prominence of Stein’s paper for nearly four decades; indeed, in the large
body of literature that cites his paper, this crucial aspect of it is rarely
noticed (see DiSalle, 2002a for a more detailed account). But it is amply
supported by the text of Newton’s “Scholium” on space, time, and motion,
and even more by his unpublished De Gravitatione et aequipondio fluido-
rum. In both texts, Newton’s problem is never to justify metaphysical claims
about space, time, and motion, but to define the concepts in a way that
connects them with the laws of physics, and with the empirical practice of
measurement. Accordingly, Newton’s central argument against his contem-
poraries is directed against their definitions. What they attempt to define
as the “philosophical” conception of motion is incoherent with the natural
philosophy that they practice themselves.

2 . 3 the sc ient i f ic and philosophical context of
new ton ’s theory

Newton introduced his theory of space and time not in the body of the
Principia, but in a Scholium to the preliminary “Definitions.” This circum-
stance might already warn the reader that Newton is not about to answer
already defined questions about space and time; instead, he is about to set
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aside the terms of the prevailing philosophical discussion of space and time,
and to introduce theoretical concepts of his own.

Although time, space, place, and motion are very familiar to everyone, it must
be noted that these quantities are popularly conceived solely with reference to the
objects of sense perception. And this is the source of certain preconceptions; to
eliminate them it is useful to distinguish these quantities into absolute and relative,
true and apparent, mathematical and common. (Newton, 1726 [1999], p. 408)

As Stein was the first to emphasize (1967), the “preconceptions” Newton
refers to are those of Descartes and his followers. The Cartesian approach
to physics had (at least) two notable aspects whose connections with one
another Newton found extremely problematic. On the one hand, as a pro-
gram for mechanical explanation, Cartesian physics was an extension of
Galileo’s: its basic problem was to explain motion mechanically, and its
fundamental assumption was that a body persists in a simple, uniform
motion until external influences interfere. In Galileo’s case, the assumption
was that “nearly” uniform motions parallel to the Earth’s surface – that is,
circular motions – would persist, so that the rotation of the Earth must be
nearly undetectable by mechanical experiments performed on the Earth;
thus objects seem to fall in a straight line to the center of the Earth, in
spite of the constant rotation, because their continuing horizontal motion
is simply composed with their gravitation toward the Earth. Descartes
and his followers extended this idea to account for all motion in the
Universe, according to the principle that only rectilinear motion persists,
and that every deviation from rectilinear motion – anywhere in the infinite
Euclidean space of the Universe – requires some mechanical explanation.
And a mechanical explanation, for them, necessarily involved the direct
communication of motion from one body to another, by impact; no other
sort of influence of one body on another could possibly be physically intel-
ligible. To mention two of the most familiar examples, light was supposed
to be a pressure propagated instantaneously through a universal medium,
and the motions of the visible planets were supposed to be caused by the
pressure of an unseen fluid that carried them along.

On the other hand, Cartesian physics came with a distinctive philosoph-
ical account of space and motion, an account that had a role to play in the
program for mechanical explanation as well as in the philosophical inter-
pretation of it. For Descartes, space and matter were essentially the same:
material substance has no essential property but extension, and extension
is obviously the essential property of space as well. Therefore, where there
is extension there is also substance, by definition, and it is only our way of
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conceiving them that creates a distinction between the two. Hence
Descartes’ argument for the impossibility of a vacuum: empty space is
impossible by definition, since wherever there is extension there is, by def-
inition, substance. From this principle Descartes derived his mechanical
explanation for planetary motion. Since the identity of space and body
means that the Universe is necessarily full of matter, the only possible
motions are circulations of matter about various centers; therefore the Uni-
verse consists of fluid vortices that carry systems of planets around their
central stars, and systems of satellites around their central planets. More-
over, all such motion must be interpreted, from Descartes’ philosophical
point of view, not as motion with respect to space, but as motion with
respect to the fluid medium. While the vulgar think of motion as “the
action by which a body passes from one place to another,” motion “in
the philosophical sense” must be understood as the body’s “transference
from the vicinity of those bodies contiguous to it to the vicinity of others”
(Descartes, 1983, p. 52). This definition appears to be motivated by the
desire to assign an unequivocal state of motion to everything: there are
“innumerable” motions in every body, depending on what other things we
choose as a standard of reference, but Descartes’ criterion assigns to each
body one motion that is “proper” to it. Among all bodies relative to which a
given body may be said to be moving, those that are immediately contingu-
ous to it have a position that is, at least, unquestionably unique. Therefore
the application of this criterion ought to be free of any ambiguity.

Newton saw that these two collections of principles – the program
for mechanical explanation, and the philosophical account of space and
motion – cannot stand together. The vortex theory explains planetary
motion by assuming that the planets would move in straight lines, but
for the fluid that carries them along, balancing the centrifugal tendency
of each planet against the pressure of the surrounding medium. There-
fore Descartes’ causal account of the motions supports a Copernican or
Keplerian model of the Solar System, sustained by the rotation of the Sun
as it is communicated to the celestial matter. But his philosophical account
of motion allows him to equivocate on the great question of the system of
the world: since the Earth is being carried by the fluid, and does not move
relative to the particles immediately surrounding it, the Earth is “philosoph-
ically” at rest. Thus, Descartes asserts, “I deny the movement of the earth
more carefully than Copernicus, and more truthfully than Tycho” (1983,
3:19). This separation of the philosophical from the causal understanding
of motion is what Newton found most problematic in Descartes’ theory,
and convinced him that natural philosophy could not proceed without
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proper definitions of space, time, and motion. The question addressed by
the Scholium, therefore, is not whether space, time, and motion are “abso-
lute.” It is, rather, how the concepts of space, time, and motion must be
defined in order to provide a coherent basis for dynamics.

2 . 4 the def in it ion of absolute t ime

Newton begins by defining absolute time: “Absolute time, without refer-
ence to anything external, flows uniformly” (1726 [1999], p. 408). Since
this is not a metaphysical claim, but a definition, it makes no sense to ask
the question that is traditionally asked, that is, whether Newton succeeds in
proving it. The appropriate question is, instead, is this a good definition?
Does it actually define any physically meaningful quantity? In fact, two
concepts are involved in Newton’s definition: absolute equality of time
intervals (“uniform flow”), and, less obviously but equally essentially, abso-
lute simultaneity. (See Figure 1.) Both are in fact necessary to the physics
of the Principia – and, indeed, to all of seventeenth-century mechanics.
Absolute simultaneity is the more pervasive concept, underlying as it does
not only physics, but the notions of past, present, and future as understood
at that time (and after, at least until special relativity). Even Leibniz, who
claimed to reject absolute time, never doubted – on the contrary, central
parts of his metaphysics required – the reality of the distinction between
contemporaneous and successive events. In fact this distinction is implicit
in the idea of the spatial order of things at a given instant, and in the
idea of relative motion as the change of spatial distances between bodies
from moment to moment. Within Cartesian physics, absolute simultane-
ity was implicit in the theory that light is the effect of pressure that is
instantaneously propagated through the celestial medium, which implied
that distant events may be perceived simultaneously with their occurrence.
Indeed, the pervasiveness of the concept can be judged from the revolution-
ary character of special relativity: centuries of polemics on the “relativity of
time” scarcely prepared anyone for the relativity of simultaneity.

The more problematic concept, at first glance, appears to be that of
uniform flow. It is far from obvious what objective grounds could exist
for judging that two intervals of time are truly equal. Any measurement
of time intervals is necessarily based on the observation of some motion,
presumably a periodic process; on what ground could we assert that a
certain natural cycle truly repeats itself in equal intervals of time, or that
any clock that we might devise can achieve or even approximate that ideal?
Our ground is, simply, the laws of motion; the distinction between equal
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Figure 1. Newtonian absolute time: the world of space-time is the successive situations of
space (s1, s2, s3, etc.) at successive moments of time (t1, t2, t3, etc.), and there is an

objective measure of the ratios of time intervals (t3 – t2, t2 – t1, etc.).

and unequal time intervals is implicit in the distinction between inertial
motion and motion under the influence of a force. In principle, equable
flow is defined by the first law of motion: equal intervals of time are those
in which a body not subject to forces moves equal distances. This definition
was not given explicitly in these terms until Euler (1748), but it is evident
in Newton’s association of “truly equable motion” with motion that is
“not accelerated or retarded” by any external force or impediment. Physics
therefore provides us with a definition of absolutely equable flow, just
to the extent that it provides us with objective criteria for measuring forces;
the extent to which we can approach Newton’s ideal is just the extent to
which we can account for all the forces acting on a given body. It follows
that the measurement of absolute time implicitly requires all three laws of
motion. For only with the second and third laws do we have the criteria
to distinguish genuine forces from merely apparent ones, and thereby to
determine how closely any given motion approaches the ideal.

The empirical meaning of absolute time, in short, is that it licenses a line
of approximative reasoning: it makes sense of the notion of improving the
measurement of time to any arbitrary degree. In the case of simultaneity,
this amounts to supposing that errors in the synchronization of spatially
separated clocks could be, in principle, made arbitrarily small, or that signals
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informing us of distant events could be arbitrarily fast. In the case of equal
time intervals, it amounts to supposing that a clock may be improved
arbitrarily, yielding an increasingly good approximation to truly “uniform
flow.” In principle, such improvements involve more or less straightforward
applications of the laws of motion, in the precise determination of all the
forces that are at work in any particular physical process. But it was clear to
Newton that any actual motion will likely fall short of the ideal. When we
“correct” the time intervals measured by, say, the Earth’s rotation, we assume
that astronomical motions provide a better approximation to uniformity,
being less subject to external disturbances. So, in effect, we judge the motion
of the Earth by how well it corresponds to astronomical motions, that is, by
how closely the intervals it measures approximate intervals of astronomical
motions. In sum, if the laws of motion are true, they allow us to judge how
well any actual motion realizes the ideal of inertial motion, and so to judge
how well any cyclic motion – any clock – comes to measuring true time.

It should be clear, then, that Newton’s theory of absolute time is
entirely derived from fundamental assumptions shared by the mechanical
philosophy: that there is a genuine physical distinction between inertial and
non-inertial motion, and that there is an unambiguous way of determining
all of the forces involved in every non-inertial case. So the objections raised
against the idea at the time, coming from philosophers who shared these
assumptions uncritically, stood on very questionable ground. In particu-
lar, the classic objections to absolute time raised in the absolute–relational
debate – the Leibnizian indiscernibility arguments – are completely beside
the point of Newton’s discussion. The Leibnizian critique is based on pre-
conceptions of the terms that Newton is using: if Newton is claiming that
time is absolute, he must be implying that time is a substance, and for
Leibniz real substances are, or are composed of, distinct individuals. No
difference could be discernible, however, between our Universe and one in
which all events were arbitrarily shifted forward or backward in time; for
time is only an “order of succession,” not a collection of moments that pos-
sess distinct individual natures. Such a shift would therefore be an empty
distinction between things that are truly indiscernible (Leibniz, 1716,
pp. 404–5). But Newton’s definition does not imply any such distinction:
the only distinctions that Newton’s concept requires are between simulta-
neous and non-simultaneous events, and between equal and unequal time
intervals. As Earman (1989) put it, absolute time is a theory, not of the
ontology of time but of its structure (p. 8).

A more telling objection was the one raised in the nineteenth century,
notably by Neumann (1870) and Mach (1883): if the Newtonian definition



The definition of absolute time 23

of equal times is in fact a definition, it is difficult to see how it can be
anything more than a convention. To use a nineteenth-century example
(see Thomson, 1884, p. 386), consider a fly buzzing about at random;
can we determine objectively that its motion is not uniform? To do so,
we must already have some standard of uniformity in hand. The laws of
motion seem to provide one, insofar as particles that are free of all forces
may be said to move uniformly. But how do we identify the free particles, if
not by their uniform motion? Relative to the reference frame whose origin
coincides with the center of gravity of the fly, the fly’s motion must certainly
appear uniform. From considerations of this sort, Neumann and Mach
concluded that the first law of motion, as stated by Newton, is not really an
empirical statement, since any motion may be conventionally designated as
the uniform standard. According to Mach, we must assign some empirical
content to the law by choosing the most obvious and convenient standard:
we stipulate that equal time intervals are those in which the Earth turns
through equal angles, and that all free particles travel equal distances in
intervals in which the Earth turns through equal angles. According to
Neumann, however, the first does have an empirical content once we apply it
to more than one particle: that one particle moves uniformly is a stipulation,
but it is an empirical claim that some second free particle moves, with respect
to the first, equal distances in equal times. Then we can define equal times
as those in which any two free particles move proportional intervals of
time. Rather than a mere convention, Neumann’s view states as a law of
nature that all free particles will travel in straight lines, and the distances
that they travel will be mutually proportional. (See Figure 2.) Thus his
version expresses what absolute time really means in classical mechanics.

One might suspect, however, that the difference between these two ver-
sions is largely an illusion, and that as far as experience is concerned, they
amount to the same thing. Even if the principle of uniform motion is stated
in Neumann’s form, any practical application of it will involve trying to
find in nature – where, as Newton himself acknowledged, there aren’t any
free particles – some motions against which we can judge the uniformity
of others. Singling out some particular motion might seem to introduce an
element of convention after all. We have to choose the standard, it would
seem, on no other grounds than simplicity and convenience. In the twen-
tieth century, the logical positivists regarded this conclusion as a central
feature of the revolution introduced by general relativity, and as one of the
ways in which Mach was vindicated by Einstein. If we found it sufficiently
simple – to use their famous example – we might designate the heartbeat
of the Dalai Lama as the standard for equal time intervals. If we reject this
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Figure 2. The definition of equal time intervals: either of p1 or p2 may be designated as a
uniform motion by arbitrary stipulation. But it is an empirical claim that, for several

particles pi, pj, pk, the distances traveled are mutually proportional, i.e., that in intervals in
which pi travels equal distances di, pj and pk travel equal distances dj and dk.

choice, it is not because we have any way of determining that the intervals
between beats are objectively unequal; the only reasonable complaint is that
they make for an inconvenient definition of equal times. This inconvenience
would reveal itself in the fact that few if any other motions would be pro-
portional to them in Neumann’s sense, even to some rough approximation.
If the Dalai Lama’s heartbeat were truly an ideal clock, it would have to
be admitted to be the only one; it would be difficult if not impossible to
construct another clock to agree with it, maintaining some approximately
fixed proportion between the heart’s beating and its own. As a result, it
would be difficult to incorporate this measure of time into any simple or
convenient system of laws of motion.

This account undoubtedly has an element of truth. Even if something
like absolute time really exists, any empirical measurement of time requires
the choice of some convenient standard. And if Newton’s account really
is, as I’ve suggested, only a definition, then a certain arbitrariness would
seem to attach to it in any case. But the conventionalist view doesn’t fully
comprehend the connection between the definition of absolute time and
the empirical content of Newton’s laws. For, if the Universe is governed
by those laws, then the correspondence between natural clocks is more
than a matter of convention. In the ideal case, the laws assert that two
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inertially moving bodies, or ideally constructed clocks, will measure pro-
portional intervals; in practice, they assert that the more nearly clocks
approximate the character of ideal clocks, the more nearly they will agree
with one another, and the more nearly the intervals that they measure out
will be mutually proportional. Of course, in the case of a failure to agree,
the conclusion that a clock is not running uniformly could always be evaded
by some hypothesis or other about disturbing factors. From this we could
conclude that the definition of equal times is still a definition, and its
application must involve certain considerations of simplicity after all. The
empirical claim contained in the theory of absolute time, then, is only that
the line of approximation that it licenses will actually work: that time mea-
surement will in fact improve, and our clocks will be in increasingly good
agreement, to the extent that we construct them by correctly applying the
laws of motion. Such clocks, moreover, will agree increasingly well with the
least-perturbed motions found in nature. In a universe that is more or less
obedient to Newton’s laws, the claim (for example) that the rotation of the
Earth is slowing down makes perfect empirical sense.

2 . 5 absolute space and mot ion

We have seen that, despite the philosophical criticism that greeted it and
has followed it for centuries, Newton’s definition of absolute time is no
more than an accurate analysis of what was presupposed concerning time,
in the science of mechanics as Newton and his contemporaries practiced
it. Even more controversy has attended Newton’s conceptions of absolute
space and absolute motion, and, to a great extent, the controversy is similarly
misguided. For, here again, Newton attempts to defend definitions of space
and motion rather than hypotheses about them. In this case, however, much
of the controversy has to do with defects in the definitions themselves. To
understand why, we have to approach these definitions as we approached
the definition of time, and ask what genuine physical quantities Newton’s
analysis successfully defines.

According to Newton’s definition, absolute space is “without regard to
anything external, homogeneous and immovable”; its parts are the “abso-
lute places,” which “all keep given positions in relation to one another
from infinity to infinity,” and “absolute motion” is translation from one
absolute place to another (Newton, 1726 [1999], pp. 408–9). In short,
absolute space is that with respect to which the velocity of every body is
its true velocity. It requires, therefore, that we should be able to say of any
thing whether it occupies the same place from moment to moment. In



26 Absolute motion and the emergence of classical mechanics
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Figure 3. Absolute motion in absolute space: absolute space implies an objective
distinction between motion and rest, i.e., between a family of parallel trajectories F, which
pass through the same spatial positions at successive moments of time, and another family

F ′, which maintain the same mutual distances, but which change spatial positions over
time. Any shift is allowed that would leave the trajectories F at rest and would maintain

the spatial distance d traveled by any member of F ′ in a given interval of time.

other words, it implies that there is a set of trajectories in space-time that
may be distinguished as the histories of particles that remain at rest. (See
Figure 3.)

Just as in the case of absolute time, then, the familiar “indiscernibility”
arguments against absolute space are not relevant to the concept that New-
ton is trying to define. For, if the theory of absolute time can be regarded as
“structural” rather than “ontological,” the theory of absolute space can be
regarded in precisely the same way. The reason why this fact has been diffi-
cult to see, and why absolute space has therefore been the subject of so many
misdirected arguments, has to do with another under-emphasized point of
Stein (1967): Newton’s theory of absolute space concerns the structure, not
of space only, but of space-time. It implies not that “space is absolute” –
whatever that might mean in Leibnizian or any other metaphysical ter-
minology – but that space is connected with time in such a way that states
of motion are well-defined. Arguments from the structure of space, then,
like Leibniz’s indiscernibility arguments, have no force against this theory.
When Leibniz claimed that “space is something absolutely uniform” (1716,
p. 364) – so that our universe is not distinguishable from one in which the
position of every object is shifted in some arbitrary direction, or reflected
from left to right – he was not really posing a relevant objection against
Newton’s theory of absolute space. Instead, he was merely pointing out some
of the characteristic symmetries of Euclidean space that are fully incorpo-
rated into absolute space as Newton defines it. In particular, any shift in
spatial position or direction is permitted as long as it leaves the velocities of
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bodies unchanged. In other words, Newton’s theory only requires that the
difference between motion and rest be respected, but does not in any way
distinguish positions or directions in space. It must be possible to say, of
any body, whether it occupies the same position over time, but which posi-
tion it occupies is irrelevant. The Leibnizian arguments, in effect, confuse
two issues: whether space allows for a distinguished position, and whether
space-time allows for a distinguished velocity. The mere homogeneity of
space, in fact, is completely independent of whether there are dynamically
distinguished states of motion. For one could imagine an inhomogeneous
space, in which it really would make a difference if one shifted everything
to the left, say, into a region of increasing spatial curvature. Yet nothing
could be inferred from that fact about the dynamical states of motion of
bodies; that would require the further assumption of distinguished space-
time trajectories. Of course neither Leibniz, nor anyone else in his time,
could have contemplated the possibility of such a structure for space. But
it does reveal something about his principle that “space is something com-
pletely uniform” that is generally overlooked in philosophical discussions
of it: the principle is both a highly special assumption and, compared to
what he was hoping to prove, extremely restricted.

Newton’s definition of space, then, ought not to be judged against
Leibniz’s conception of substance. Instead it should be judged on its own
terms, according to whether the distinctions that it implies have any empir-
ical meaning. This, of course, is where the well-known difficulties arise.
They arise, moreover, not from general philosophical principles, but from
Newton’s own dynamical theory. If dynamics provided some way to discern
whether a body remains in the same place over time, or to measure its veloc-
ity, then absolute space would be empirically as well-defined as absolute
time. In the seventeenth century, in spite of the currency of the Galilean–
Cartesian principle of inertia, the idea persisted that the natural state of
bodies is rest, and that force is required to maintain them in their motion;
even Leibniz professed the latter principle, for he held that every body has
a certain amount of “moving force” that, even though it is not empirically
discernible, represents the body’s true state of motion (see Leibniz, 1694,
p. 184 and Chapter 3 later). But Newton had thoroughly embraced the
principle of inertia as resistance to change of motion, and of acceleration
as the true measure of force. Therefore he embraced the “Galilean relativ-
ity principle,” that no mechanical experiment could possibly distinguish
a system of bodies in uniform motion from one at rest. Evidently – even
to Newton himself – this implied that no mechanical experiment could
measure the velocity of a body in absolute space.
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Indeed, few of his contemporaries – perhaps none other than Huygens –
understood the Galilean relativity principle as clearly and explicitly as New-
ton. It is expressed at the very outset of the Principia, in Newton’s definition
of the “vis inertiae”:

[A] body exerts this force only during a change of its state, caused by another
force impressed upon it, and the exercise of this force is, depending on viewpoint,
both resistance and impetus: resistance in so far as the body, in order to maintain
its state, strives against the impressed force, and impetus in so far as the same
body, yielding only with difficulty to the force of a resisting obstacle, endeavors
to change the state of that obstacle. Resistance is commonly attributed to resting
bodies and impetus to moving bodies; but motion and rest, in the popular sense
of the term, are distinguished from each other only by point of view, and bodies
commonly regarded as being at rest are not always truly at rest. (Newton, 1726
[1999], pp. 404–5)

In other words, Newton recognizes inertia as a Galilei-invariant quan-
tity, so that impetus and resistance are the same thing seen from different
points of view. On Leibniz’s view, in contrast, the two differ fundamentally;
what Newton here calls “impetus” is the “active” power of changing the
state of motion of another body, while resistance is only a body’s “pas-
sive” power to maintain its own state (Leibniz, 1699, p. 170). So uniform
motion is a state of “activity,” while rest is truly “inertial.” In fact this
distinction persists even in the thought of Kant.3 Newton’s discussion of
inertia stands out as one that truly incorporates the principle of Galilean
relativity.

Even more striking is that Newton derives the relativity principle explic-
itly as a corollary to the laws of motion: “When bodies are enclosed in a
given space, their motions in relation to one another are the same whether
the space is at rest or whether it is moving uniformly straight forward with-
out circular motion” (Newton, 1726 [1999], p. 423). This is because those
motions are determined by the forces of interaction among the bodies,
and, by the second law of motion, these forces are entirely independent
of the velocities of the bodies involved. Mechanics does indeed require, as
Newton claims, a reference frame of places that “all keep given positions in
relation to one another from infinity to infinity.” But the laws of motion
enable us to determine an infinity of such spaces, all in uniform rectilinear
motion relative to each other, and the laws furnish no way of singling out
any one as “immovable space.” (See Figure 4.)

In modern terms, it is easy to explain what Newton should have said
about this situation. A reference frame is the combination of two objects:
a rigid spatial framework (places that “all keep given positions in relation
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Figure 4. Galilean relativity: for any family F1 of places that “all keep given positions in
relation to one another from infinity to infinity,” there is an infinity of other such families

F2, etc., in uniform rectilinear motion relative to F1 and dynamically completely
indistinguishable from it.

to one another from infinity to infinity”) that allows us to describe motion
purely kinematically, without regard to dynamical causes and effects; and
some standard of time so that the motions can be expressed as a function
of time. What Newton’s mechanics requires, then, is an inertial frame: a
reference frame in which bodies not subject to forces move in straight lines
with respect to space and uniformly with respect to time; any acceleration
of a body is proportional to, and in the direction of, an applied force; and
every action corresponds to an equal and opposite reaction. Given one such
frame, evidently, an infinity of others can be determined, each in uniform
rectilinear motion relative to the first. It follows that any two (or more)
inertial frames must be at rest or in uniform motion relative to each other.4

Thus the forces, masses, and accelerations measured in one such frame
will be the same in any other inertial frame, and any body that is rotating
relative to one inertial frame will be rotating with the same velocity relative
to any other. In other words, the shift from one such frame to another is
just a change of perspective that does not alter any physically meaningful
quantity. We can see this in the relations between two inertial frames with
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spatial and temporal coordinates (x, y, z, t) and (x′, y′, z′, t′), the “Galilean
transformations”:

x ′ = x − vt
y ′ = y
z′ = z
t ′ = t

where the x-axis is defined as the direction of relative motion. That the
time coordinate remains unchanged reflects the fact that frames that agree
on force, mass, and acceleration must agree on absolute time. But this
conception of inertial frame, and therefore the solution to the problem
of absolute space, did not emerge until the late nineteenth century (see
Section 4.1 later).5 The spaces referred to in Corollary V are in some
sense equivalent to inertial frames, but conceptually quite different. For
Newton’s corollary does not specify these spaces intrinsically, by the prop-
erties of interactions within them, but extrinsically, by their states of motion
(uniform and rectilinear) with respect to absolute space. To understand the
inertial frame is to understand that its dynamical specification stands on its
own, so to speak; it does not need to be supplemented by a larger space in
which the frame is supposed to move. Newton was trying to articulate the
dynamical conception of motion within a picture of space that was bound
to make it more obscure.

The foregoing explains why, when Newton attempts to distinguish abso-
lute and relative motion by their “properties, causes, and effects,” he can
only succeed partially. What he calls the properties of absolute motion in
absolute space can be defined verbally, but they don’t necessarily correspond
to dynamical properties that are objectively measurable, and that do not
depend on the arbitrary choice of an inertial frame. It is not surprising,
then, that the conceptual analysis by which Newton defines the properties
begins not from physics, but from common experience and discourse; it
shows that the Cartesian definition of motion violates what appears to be
the only reasonable way of thinking and talking about motion. Newton
emphasizes three properties: that bodies at rest are at rest relative to one
another; that parts of a body partake of the motion of the whole; that what-
ever is contained in a given space shares the motion of that space (Newton,
1726 [1999], pp. 411–12). Each of these is violated by motion in the Carte-
sian sense. All the planets, for example, are at rest in their own parts of the
vortex, but they are not at rest relative to one another, and a planet may
churn the vortical fluid by its rotation while its inner parts are considered
to be at rest. Such a definition hardly seems to agree with any sensible use of
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the terms “motion” and “rest.” But from the Cartesian point of view, there
is a ready response to such a challenge: philosophy is simply not bound to
ordinary usage, if it can arrive at a principled understanding of motion that
is better suited to its aims. Descartes does indeed purport to offer such a
principled understanding, insofar as his definition is supposed to provide
a universal definition of motion; as was already noted, every body at every
moment will indeed have one unique motion that is “proper” to it. The
ordinary conception, by contrast, offers no way of discerning which of a
body’s myriad motions is its true motion. If Descartes’ definition violates
common-sense judgments – permitting us to believe, for example, that the
pulp of an orange is at rest when the skin is in motion – this is only one
more example of the ways in which the emergence of modern science must
set common-sense judgments aside.

A proper philosophical response to Descartes, then, can only come from
the causes and effects of motion, for only these provide for a principled
empirical distinction with some foundation in the physics of motion. But
because the empirically measurable causes and effects of motion have to
do with inertia and force, they must respect the Galilean invariance of
inertia and force. Therefore the causes and effects of motion can distinguish
non-uniform motion from uniform motion, but never uniform motion
from rest. So the empirical definition of absolute motion that Newton
actually provides is more restricted than he had intended: he defines absolute
acceleration and absolute rotation, but not absolute motion and rest. For
instance, absolute and relative motion are to be distinguished by “the forces
impressed upon bodies to generate motion” (Newton, 1726 [1999], p. 412).
A body’s relative motion may be changed without the application of any
force; moreover, the forces that do act on a body do not necessarily change
its relative motion, if it happens that the bodies relative to which we are
measuring the motion are being acted upon by the same force. In the
Cartesian case, the Sun’s vortex acts on the Earth without changing its
“motion in the philosophical sense,” since the same particles of the vortex
remain contiguous to the Earth. Newton, in contrast, defines true motion
as that which cannot change without the action of a force, and which must
change when a force is applied. By Newton’s laws, however, a force can
only be determined and measured by the changes it effects in the velocity
of a body, changes that he shows (in the corollaries to the laws of motion)
to be independent of the velocity itself.

Similarly, what Newton defines as the effects of absolute motion –
centrifugal forces, or “the forces of receding from the axis of circular
motion” – distinguish acceleration and rotation from uniform rectilinear
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motion. “For in purely relative circular motion these forces are null, while
in true and absolute circular motion, they are larger or smaller in propor-
tion to the quantity of motion” (Newton, 1726 [1999], p. 412). But they
fail to distinguish uniform motion from rest, since the centrifugal forces
produced in a body that accelerates or rotates correspond, not to change
of place in absolute space, but to change or difference of velocity. The force
experienced by an accelerating body is, again, independent of its initial
velocity. In the case of a uniform and unchanging rotation, the centrifugal
forces depend on the velocity of the rotation, but are independent of any
translation of the rotating body through absolute space, i.e. of the velocity
of the center of gravity of the body. Perhaps Newton assumed that, since
the velocity of rotation is measurable from centrifugal forces, velocity in
general is well-defined. But, as Huygens clearly understood – apparently
alone, in Newton’s time – centrifugal force is a function of a difference
of velocity, namely the difference between the velocities of points on a
rotating body; to take the simplest case, diametrically opposite points on
a rotating disk have opposite velocities. This was Huygens’ explanation
why rotation, even though it involves no change of relative position, is a
species of relative motion. (See Stein, 1967, 1977.) Unfortunately Huygens’
account of rotation lay in an unpublished manuscript, and so Newton’s
understanding of the connection between space and absolute rotation pre-
vailed, at least among those who accepted Newtonian physics, for two
centuries.

In light of these difficulties with Newton’s arguments, it is worth asking
again that familiar question, what did he really accomplish in his famous
“water-bucket experiment”? The experiment itself seems simple enough:
suspend a bucket of water by a rope, and turn the bucket in one direction
until it is “strongly twisted”; then, turn the bucket in the contrary direction
and let the rope untwist. At first the bucket spins rapidly, but gradually the
friction of the spinning bucket communicates its motion to the water. As
that occurs, the centrifugal force increases until the surface of the water
becomes concave and its outer edge climbs the side of the bucket. Stop the
bucket, and the water continues to rotate, and its surface remains concave,
until eventually the water also stops and returns to its initial state (Newton,
1726 [1999], pp. 412–13). Newton is thus drawing attention to the relation
between the dynamical effects of rotation – the centrifugal forces – and
how the rotation must be understood in Cartesian terms. When the bucket
begins to rotate, the water begins to rotate in the Cartesian sense, i.e. relative
to the bodies immediately contiguous to it. But its surface is, initially, flat.
As the water begins to rotate, however, and to exhibit the centrifugal effect,
it gradually achieves the same rotational velocity as the bucket. This means
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that as the dynamical effect is increasing, the motion in the Cartesian sense
is slowing to a halt; when the dynamical effect is greatest, the Cartesian
motion has ceased altogether. Then, when the bucket has stopped, the water
continues to exhibit the dynamical effect, but now is suddenly rotating in
the Cartesian sense once again. In other words, at the beginning and the
end of the experiment, we see the same amount of Cartesian motion, but
not the same dynamical effect, while in the middle of the experiment, the
dynamical effect exists without any Cartesian motion. Newton has shown,
then, that the Cartesian definition of motion has nothing to do with the
salient dynamical feature of rotation, the “endeavor to recede from the
axis of motion,” from which “one can find out and measure the true and
absolute circular motion of the water.”

Therefore, that endeavor does not depend on the change of position of the water
with respect to surrounding bodies, and thus true circular motion cannot be deter-
mined by such changes of position. The truly circular motion of each revolving
body is unique, corresponding to a unique endeavor as its proper and sufficient
effect . . . (Newton, 1726 [1999], p. 413)

In other words, even if the Cartesian definition identifies a single motion
proper to each body, that motion is disconnected from the fundamental
concerns of physics, especially the understanding of dynamical phenomena.
As Newton shows, however, the dynamical phenomena themselves provide
a unique measure of the state of rotation of any body. What is more, Newton
points out that the concept of rotation that he is defining is the very one
that the Cartesians employ, implicitly, in their attempt at a dynamical
understanding of the Solar System. For in the vortex theory,

the individual parts of the heavens [i.e. of the fluid vortex], and the planets that
are relatively at rest in the heavens to which they belong, are truly in motion.
For they change their positions relative to one another (which is not the case
with things that are truly at rest), and as they are carried around together with the
heavens, they participate in the motions of the heavens and, being parts of revolving
wholes, endeavor to recede from the axes of those wholes. (Newton, 1726 [1999],
p. 413)

The crux of Newton’s dynamical argument, then, is that the Cartesian
definition ignores the aspects of motion that are central to Cartesian physics.
It defines a univocal velocity for every body – indeed, every particle – in the
Universe. But it does not offer any physical measure of the accelerations
and rotations that are central to our understanding of the fundamental
causal interactions.

But Newton’s case for absolute rotation goes beyond criticizing Descartes’
peculiar understanding of motion. In a second thought experiment,
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Newton imagines two balls joined by a cord, revolving about their common
center of gravity. Even if no other bodies are visible – even in the complete
absence of any observable relative rotation – we could, he says, discern the
rotation of the system. For “the endeavor of the balls to recede from the
axis of motion could be known from the tension of the cord, and thus
the quantity of circular motion could be computed.” In other words, even
if the system of two balls were entirely alone in the universe, its state of
rotation could be known from the centrifugal forces. “In this way both the
quantity and the direction of this circular motion could be found in any
immense vacuum, where nothing external or sensible existed with which
they could be compared” (Newton, 1726 [1999], p. 414). Where the bucket
experiment was supposed to exhibit the futility of judging motion relative
to contiguous bodies, this experiment is directed against the more general
notion that rotation is relative. It defines a measure of rotation without
reference to any relative standard at all.

This general claim is the one that has traditionally been the most con-
troversial. Most of the controversy, however, has been based on a misun-
derstanding of Newton’s purpose. One might, again, raise the objection
that a sound dynamical definition of rotation cannot by itself provide a
definition of absolute translation in absolute space. But the traditional
objections are not directed to the superfluous character of absolute space,
but to the perceived strangeness in the concept of absolute rotation. Objec-
tions of this sort were brought most forcefully in the arguments of Mach.
Arguing along the same lines as in his criticism of absolute time, Mach
held that every attribution of motion at least tacitly refers the motion to
some physical object. If Newton finds the bucket an inadequate standard
against which to judge the motion of the water, he is tacitly assuming
that the fixed stars provide a better standard. If, furthermore, Newton is
certain that the same centrifugal effects would exist even if the fixed stars
were not present, he is extrapolating far beyond what can be justified by
experience. All that experience can teach us about the laws of motion is
how well they account for motion relative to the fixed stars. An empirically
meaningful statement of the first law of motion, then, would be that a
body not subject to forces moves uniformly, not “absolutely,” but relative
to “sufficiently many, sufficiently large and distant masses” (Mach, 1889,
pp. 218–19).

Mach, at least, may be credited with understanding what Newton was
really claiming. He recognized, that is, that Newton had defined the concept
of rotation that is implicit in the laws of motion; his objection was to
Newton’s understanding the laws as something more than summaries of
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observed regularities. To speak of “absolute” rotation is to grant those laws
an “absolute” status, asserting their general and abstract validity instead
of seeing them for what they are: empirical generalizations about motion
relative to the fixed stars, with the pragmatic and uncertain character that is
typical of such generalizations.6 The serious distortion of Newton’s purpose
came later, and is epitomized by Einstein’s critique. In his argument for
an “extension of the relativity principle,” Einstein offers a now-familiar
thought experiment: consider two spheres S1 and S2, rotating relative to
one another, and suppose that S2 bulges at its equator; how do we explain
this difference? Einstein says,

An answer to this question can be acknowledged as epistemologically satisfying,
only if the thing cited as a reason is an observable fact of experience . . . Newtonian
mechanics gives no satisfactory answer to this question. It states the following: The
laws of mechanics are fully valid in the space R1, with respect to which the body
S1 is at rest, but not in the space R2, with respect to which the body S2 is at rest.
But the privileged Galileian space R1 . . . is a merely fictitious cause, and not an
observable thing. (Einstein, 1916, pp. 8–9)

By this reasoning Einstein concluded that centrifugal and other inertial
effects must be traced to some observable cause, such as the “distant masses,”
in order to remove the “epistemological defect” of absolute rotation. While
this was an important motivation for general relativity, however, it is hardly
an apt criticism of Newton. The objection assumes that Newton has intro-
duced a privileged frame of reference – any of the spaces that are defined
by Corollary V – as a causal explanation of the phenomenon of centrifugal
force. But Newton is not invoking space as a cause at all. The cause of the
centrifugal forces is the true rotation of S1. But how does Newton know
this? As we have already seen, Newton is simply presenting a definition: true
rotations are by definition those that give rise to centrifugal forces. This
is, again, the definition that is implicit in the laws of motion. Einstein’s
assertion about the laws of mechanics should therefore be rewritten: the
laws of mechanics define an objective distinction between the space R1

and the space R2. Mach’s doubt about the status of the laws of motion
is not an unreasonable challenge to this definition, since the definition
is obviously only as well-founded as the laws themselves. What Einstein
called “Mach’s principle,” however – the positive demand that local inertial
effects be explained by long-range interaction – is largely based on a mis-
understanding. It may make sense as an alternative hypothesis to Newton’s
understanding of inertia, but not as a critique of its “epistemological
defects.”
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2 .6 new ton ’s de grav itat ione et aequ ipondio
fluidorum

Einstein’s misinterpretation of Newton expresses a common and continuing
assumption of the absolute–relational debate. Even in discussions that are
sympathetic to Newton’s theory, it is treated as a hypothesis to be defended
by dynamics, rather than as a set of definitions of the concepts implicit
in dynamics. For this reason, Newton’s manuscript De Gravitatione, since
it was introduced to philosophers by Stein (1967), has been seen as an
extremely significant work. In fact it is regarded as having provided some-
thing that the Scholium was lacking. For, on the usual view, the Scholium
had only claimed that centrifugal forces can provide evidence of absolute
rotation. De Gravitatione, however, contains a more general point: that
Descartes’ relativistic account of motion is completely incompatible with
the laws of dynamics, at least as those were understood in the seventeenth
century. For example, if the places and motions of the planets are defined
in the Cartesian sense – that is, with respect to the immediately surround-
ing particles of the vortex – then it will be impossible to define a path for
any planet, and therefore impossible to apply the most basic dynamical
principles. Above all, as Newton emphasizes, it will be impossible to say
of any body that its motion, insofar as it is free of applied forces, must
be rectilinear and uniform. In other words, if it is impossible to define a
privileged set of trajectories, the past and present state of a body will not
suffice to determine its future states. In that case the entire explanatory
program of classical dynamics will be impossible.

It follows that Cartesian motion is not motion, for it has no velocity, no definition,
and there is no space or distance traversed by it. So it is necessary that the definition
of places, and hence of local motion, be referred to some motionless thing such as
extension alone or space insofar as it is seen to be truly distinct from bodies. (Hall
and Hall, 1962, p. 131; see Stein, 1967)

Like the dynamical arguments of the Scholium, this argument infers more
than the dynamics can justify; again, given a space that satisfies Newton’s
requirements for a dynamical description, any space in uniform motion
relative to it will be equally satisfactory. Nonetheless, his argument makes
it clear that dynamics requires a more elaborate spatio-temporal structure
than the Cartesians and other relativists were willing to countenance.

Stein remarked that “if Huygens and Leibniz . . . had been confronted
with the argument of this passage, a clarification would have been forced
that could have promoted appreciably the philosophical discussion of space-
time” (Stein, 1967, p. 186). In fact, no one made such an argument in
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public until the middle of the eighteenth century, when Euler presented a
version of it in his “Reflexions sur l’espace et le temps” (Euler, 1748). Euler
recognized that the Leibnizian theory of space crucially lacks the notion of
sameness of direction over time:

For if space and place were nothing but the relation among co-existing bodies,
what would be the same direction? . . . However bodies may move or change
their mutual situation, that doesn’t prevent us from maintaining a sufficiently
clear idea of a fixed direction that bodies endeavour to follow in their motion,
in spite of the changes that other bodies undergo. From which it is evident that
identity of direction, which is an essential circumstance in the general principles of
motion, is absolutely not to be explicated by the relation or the order of co-existing
bodies. (Euler, 1748, p. 381)

As we will see in the next chapter, at least one Leibnizian was swayed
toward Newton’s view by this argument, namely Kant. But there can be
no doubt of its impact on the philosophical discussion of space-time in the
late twentieth century. When Stein brought this passage to the attention of
philosophers in 1967, the character of the absolute–relational debate was
changed. Stein’s discussion was taken to have shown that, beyond providing
some dynamical evidence for his own theory of absolute motion, Newton
had presented a fundamental challenge to any relationalist view: to provide
a dynamical theory that, without the use of any “absolute” structure –
in particular, without an affine structure of privileged trajectories – can
nonetheless explain and predict actual motions.

In spite of the prominence of De Gravitatione, however, some of its
most important aspects have been largely overlooked. For one thing, it
shows much more explicitly than the Scholium that Newton was not a
“substantivalist,” at least not in the now-standard use of the term. That is,
he did not believe that space and time are substances, or that the points of
space or the moments of time have distinct individual identities. Instead,
he claims, “The parts of duration and space are only understood to be the
same as they really are because of their mutual order and position; nor
do they have any hint of individuality apart from that order and position
which consequently cannot be altered” (Hall and Hall, 1962, p. 126). In
fact, he expresses skepticism about the classical ontology of substance and
accident – the kind of skepticism that would have been foreign to Descartes
and Leibniz, and that only became current in philosophy with the work
of Berkeley. In his attempt to understand the nature of material substance,
Newton rejects the idea of “material substance” as the subject in which
physical properties inhere. Instead, he proposes that a body is constituted by
a collection of properties distributed over a region of space. Like Descartes,
Newton reasons about what God would have to do in order to create such
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a world as we observe; the most natural possibility, Newton suggests, is that
God “endowed” regions of space with the property of impenetrability. This
theory of matter has been taken as confirming Newton’s substantivalism
about space; the principle that God can assign properties of matter to points
of space appears to make the points of space “irreducible objects of first-
order predication,” and therefore individual substances in just the sense
that Leibniz found objectionable. I don’t believe that this interpretation
can be sustained, however. The fact that the collections of properties that
constitute bodies are assumed to be moveable, and to interact with one
another according to the laws of motion, implies that their creation in no
way endows particular parts of space with individuality. On the contrary,
their unhindered mobility effectively requires that the parts of space are
indistinguishable, and receive these collections of properties indifferently.
Provided that their motions obey the laws of motion as we know them, these
collections of properties will be indistinguishable from bodies as we know
them. In this manner, Newton claims, we can replace the “unintelligible”
notion of material substance with an intelligible one (Hall and Hall, 1962,
pp. 139–40).

My point here is not to defend Newton’s theory of material substance.7

Nor is it merely to set the record straight about where Newton’s views
would stand in contemporary debates. Rather, it is to emphasize something
distinctive about Newton’s approach to space-time ontology. For Descartes
or Leibniz, who had relatively settled views on the nature of substance
and other ontological categories, it was important to determine where
space and time stand in relation to these categories. Leibniz, in particular,
underwent a serious intellectual change in his early career, from the quasi-
Aristotelian view of space as a substance to his mature and more familiar
view of space and time as mere “phenomena.” It seemed clear to him,
in any case, that if space and time could not satisfy his conception of
substance, then their existence must be merely ideal. To Newton, in stark
contrast, the traditional philosophical category of substance was not very
well-defined. Indeed, he saw that it was difficult to make sense of the
notion of material substance without appealing to space. Space itself, then,
was neither substance nor accident, but had “its own manner of existing
which fits neither substances nor accidents” – and therefore, to understand
its peculiar manner of existing, he proposed to examine the roles that the
concept of space plays in our actual knowledge of the physical world.

This brings us to the other largely overlooked aspect of De Gravita-
tione. Even more clearly than the Scholium, it shows that Newton was
fundamentally concerned with the definition of space and motion, and
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that his fundamental argument against Descartes was a dialectical one,
exposing the concepts of space and motion that are actually at work in
Cartesian physics. In particular, Newton shows that there are in effect two
“philosophical” definitions of motion at work in Descartes’ physics: one is
the aforementioned “motion in the philosophical sense,” and the other is
motion as it is understood in natural philosophy, that is, in the causal expla-
nation of motion. Descartes calls the latter “motion in the vulgar sense,”
since it is referred to space or “generic extension” rather than to contiguous
bodies. But it is clearly this latter sort of motion that makes a real difference
to any physical and causal account of the planetary system. In Descartes’
own account, the motion of the planets and comets in the vortex of the
Sun is determined by the balance of their centrifugal tendencies against
the pressure of the ambient fluid. Therefore natural philosophy ought to
ignore the irrelevant conception of motion, and to adopt that conception
that it requires to make physical sense of the phenomena. “And since the
whirling of the comet around the Sun in his philosophical sense does not
cause a tendency to recede from the center, which a gyration in the vulgar
sense can do, surely motion in the vulgar sense should be acknowledged,
rather than the philosophical” (Hall and Hall, 1962, p. 125). Given the
general stridency of De Gravitatione’s attack on Descartes, the modesty of
his language here is striking. He does not claim to have proven that motion
is absolute, but only to have replaced a worthless definition with a sound
one.

2 . 7 the new tonian program

If this interpretation of Newton is correct – as the texts of the Scholium and
De Gravitatione seem to show beyond any doubt – it is important to reflect
on why the traditional interpretation has persisted, particularly in the body
of recent literature that rejects the positivists’ account and acknowledges the
influence of Stein. I see two chief reasons for this. First, we have inherited the
absolute–relational debate, so to speak, from a tradition going all the way
back to the Leibniz–Clark correspondence. Newton’s Scholium, despite its
original intent, has unquestionably played a major part in this controversy,
and greater philosophers than ourselves have mistaken its definitions for
outlandish metaphysical claims. Not merely the weight of tradition, but
also a sense of the intrinsic interest of the questions involved – not only
for the history of philosophy, but for the present and future of physics –
understandably encourages the tendency to see Newton’s arguments only
as possible moves in this debate.
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Second, and perhaps more important, is our understanding of Newton’s
metaphysical concerns, and their intimate connections with his views on
theology as well as physics. If we grant that Newton was only defending
definitions, it might seem that we are divorcing his theory of space and
time from his profound beliefs about the real world, and making him out
to be some kind of precursor of logical positivism – interested only in
defining a useful conceptual framework, rather than in understanding the
real arena in which God and human beings, as well as matter and forces,
exist and act. That his arguments concern definitions, rather than making
metaphysical claims, might seem incompatible with what seems to be an
incontrovertible fact, namely, that Newton’s views of space and time are
essential to the ontological basis for his theory – part of his understanding
of how the world really is.

This incompatibility is only apparent. It comes from the assumption
that such definitions are arbitrary, as the positivists suggested, and adopted
because of the simplicity and general usefulness of the conceptual frame-
work in which they occur; it overlooks the fact that Newton’s definitions
emerge from a conceptual analysis. Newton undoubtedly believed in a
world of real things, including God as well as material objects, things
whose real causal interactions are governed by the laws of nature, whatever
those might be. He therefore attempted to define space, time, and motion
in such a way that this picture of the world might make sense – that is,
not to stipulate the character of space and time, but to discover, by anal-
ysis of what we do know about the world, how they must be defined in
order to make sense of such a world. In other words, in laying down
these definitions Newton was not merely proposing a possible concep-
tual framework, but trying to identify the necessary framework, i.e. the
concepts necessarily presupposed by mechanics as he and his contempo-
raries understood it. The fact that his attempt was not entirely success-
ful – that, in the case of absolute space, he introduced a concept that was
superfluous to mechanics – does not change the essential character of his
argument: it is in fact a kind of transcendental argument, seeking to discover
the conditions of the possibility of natural philosophy as practiced in his
time.

This is an aspect of Newton’s approach that his contemporary critics,
the mechanical philosophers, never understood. The mechanists supposed
that they had a similarly powerful argument for their program for physical
explanation, in which all interaction was to be reduced to the exchange of
momentum by direct impact. From their point of view, the reduction of
interaction to impact was a condition of the possibility of understanding
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it at all. But this is an entirely different sort of argument from Newton’s
“transcendental” argument. As Newton and his followers (especially Cotes)
emphasized, the mechanistic theory is no presupposition of scientific rea-
soning about motion; as the Principia itself shows to the contrary, the
laws of motion could be successfully applied completely independently
of any assumptions about the ultimate physical basis of interaction. As
Newton emphasized, we have no philosophical insight into the physical
basis of impact, but only some empirical rules that it appears to follow.
Indeed, as far as the underlying nature of the interaction is concerned –
what it is in the “essential” properties of bodies that makes the interaction
possible – we know as little in the case of impact as in the case of grav-
itational attraction. And we know even less regarding the universality of
the rules of impact: “the argument from phenomena will be even stronger
for universal gravity than for the impenetrability of bodies, for which, of
course, we have not a single experiment, and not even an observation, in
the case of the heavenly bodies” (Newton, 1726 [1999], p. 796). This is
an extremely significant remark, one whose significance was, arguably, not
really appreciated by any of Newton’s philosophical readers before Kant
(see Chapter 3). For it concerns the entire post-Aristotelian understand-
ing of motion, as something subject to universal laws rather than to two
separate sets of laws, one for celestial and one for sublunary bodies; it
reminds the reader that the argument for universal gravitation is the first
real application of the laws of motion to the celestial realm. Rather than a
departure from the program of modern physics, universal gravitation was,
for the seventeenth century and a long time after, the only evidence that
modern physics had the explanatory scope that the mechanists claimed for
it.

If interaction by impact seems pre-eminently intelligible, then, it is not
because we have penetrated into its inner essence. Rather, it is because we
have brought its observable characteristics under the control of mathemat-
ical laws. Far from being a transcendental condition on physical inquiry,
then, the mechanistic principle is inescapably hypothetical: it amounts
to a hypothesis about the ultimate outcome of inquiry, but is in no way
a precondition for the inquiry itself. On the basis of such a hypothesis,
one might feel dissatisfied with a theory that fails to provide a mecha-
nistic model, as Huygens, Leibniz, and their followers were dissatisfied
with universal gravitation. But this dissatisfaction acquires its force more
from a subjective hypothesis about the ultimate nature of reality, than
from any inherent defect in the Newtonian program. Compared with
the mechanical philosophy, that program is inherently more modest in its
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presuppositions – necessarily so, since its presuppositions are less restrictive
than those of the mechanists concerning what form physical interaction
must take. For in the Newtonian view, any interaction is physically intel-
ligible as long as, and just to the extent that, it conforms to the laws of
motion. The distinctive feature of Newton’s program is precisely the careful
separation of what physical inquiry must presuppose, in order to bring the
actual motions within the grasp of the laws of nature, and what can be left
open as an empirical question.

Newton did not share Leibniz’s confidence in the power of metaphysics
to grasp the reality underlying the physical world. Nor, of course, was he
able to anticipate Kant’s Copernican turn, and so to abandon the aim
of comprehending things as they are in themselves. And he was hardly
in a position to anticipate Carnap and the logical positivists, and to treat
physics as merely a convenient conceptual framework founded on arbitrary
definitions. But he did have a remarkably clear and self-conscious belief
that, if there is to be any knowledge of space and time as they are in
themselves, it must come from the ways in which the concepts of space
and time function in our empirical knowledge. Newton shared with the
mechanical philosophers the idea that, in the new science, the concepts
of space and time, motion and causality, were explicated in novel ways.
Where he parted from his contemporaries was in his belief that these novel
explications came from the science itself – that their authority rested, not
on their conformity to epistemological and metaphysical principles with
which mechanists wanted to associate science, but on the roles that they
play in the laws of science. What must be the nature of space and time,
in order for the world to be as it appears to be, and to follow the natural
laws that it appears to follow? This is Newton’s question. For this reason,
his view of space and time is not hypothetical in the way that Leibniz’s is.
Newton’s theory is not, in other words, a hypothesis about the nature of
space and time, like the hypothesis that they are mere phenomena deriving
from an underlying world of monads and their perceptions. If Newton has
a fundamental hypothesis, it is, rather, that the world is really governed by
the laws of physics as then understood – by Leibniz and Huygens as well
as by himself. This is why his arguments must be dialectical arguments,
whose premises are only the common knowledge and assumptions of all
serious physicists in his time.

Given all of these considerations, Newton’s task now seems to have
been a relatively straightforward one. That is, his readers evidently did
not need to be persuaded of the fundamental principles of physics; they
only needed to confront the incompatibility between those principles and
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their philosophical ideas about space, time, and motion. It is instructive
to compare this situation to that of Galileo, attempting to persuade his
readers to adopt such principles in the first place – that is, to abandon the
Aristotelian conception of natural motion, and to accept something like
the Newtonian principle of inertia. This situation appears, at least at first
glance, to be a much better example of a Kuhnian conflict of paradigms:
Galileo is attempting to persuade his readers, not merely to abandon some
particular principle, but to think of a fundamental concept in an entirely
new way. Again, this would seem to be the kind of argument that Kuhn
would have said is “necessarily circular” (Kuhn, 1970a, p. 94), precisely
because it advocates a definition rather than a proposition that can be
assessed by normal scientific means. But Galileo’s argument, we can see, has
essentially the same dialectical structure as Newton’s. Without satisfying
the canons of normal science in Kuhn’s sense, then, Galileo’s argument
nonetheless has an objective impact on the Aristotelian conception, for it
throws an objective light on the relations between the professed doctrines
of the Aristotelians and the assumptions that tacitly guide their empirical
practice.

The classical arguments against the motion of the Earth appeared to have
a sound basis in the theory of natural motion, which rested on the division
of motions into natural and violent: heavy bodies naturally fall directly
toward the center of the Earth, light bodies naturally rise from the center,
and bodies that are neither heavy nor light – the celestial bodies, made
of the “fifth element” rather than the earthly elements – revolve around
the center. It would follow that, if a stone were dropped from a tower, it
would naturally seek the center of the Earth. If the Earth were rotating,
a stone dropped from a tower would fall behind the tower, continuing
its vertical fall to the Earth as the tower continued horizontally. But, as
Galileo pointed out, the vertical fall of the stone is not a fact, but an
interpretation: if the Earth is at rest, the fall is vertical, but if the Earth is
rotating, then the actual motion must be composed of its vertical motion
and the horizontal motion that it shares with the Earth and the tower. So
the argument from the vertical motion of the stone, by itself, is circular;
its force depends on another assumption, namely that motions cannot be
composed in the way that Galileo suggests, because it is impossible for
the horizontal motion to persist without an external cause (Galileo, 1632
[1996], pp. 149–51). The Aristotelian theory explains the phenomena of
motion, then, by categorizing them according to the various essences of
bodies, and the essence of a heavy body is manifestly incompatible with
the persistence of horizontal motion.
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This fairly obvious point about Aristotle’s theory helps us to identify
exactly where Galileo’s theory demanded a crucial change of perspective.
From Galileo’s perspective, a conception of natural motion is the foun-
dation for an explanatory theory. As such it raises a characteristic type of
question, namely about why any particular motion deviates from its nat-
ural motion in just the way, and to just the degree, that it does. The most
familiar example is Galileo’s explanation of the motion of a projectile as
the composition of its gravitational free-fall and the inertial motion that
persists after the moment of projection. At one level, then, such a theory
of natural motion defines the basis for a quantitative theory of the violent
motions and the forces that produce them; it provides the general form
of any explanation in precise mathematical terms. And one might offer a
plausible Kuhnian argument that such a fundamental change of perspective
could never be justified on rational grounds. For the kind of explanation
that Galileo’s method promises is simply not an Aristotelian concern; the
very appeal to this promise, as an advantage over the older view, marks a
change in the very nature of science – a change in epistemic standards that
inevitably results in a clash of incommensurable views.8

But Galileo is also arguing at a deeper conceptual level that is independent
of the requirements of a quantitative theory of motion (which he himself, in
any case, had not fully developed). He is arguing that the traditional concept
of natural motion, as it is applied even in pre-theoretic practice, does not
quite make sense – or, rather, that the Aristotelian way of making sense of it,
as a philosophical concept, is incoherent with the practice of applying the
concept in some very familiar circumstances.9 In ordinary experiences of
relative motion, Galileo points out, empirically sound judgments are those
that ignore the Aristotelian conception, and implicitly assume that motion
naturally persists when an applied force has ceased to work. When a rider
on horseback wishes to throw a javelin in the air and catch it again, he does
not try to allow for the velocity of the horse; instead of throwing ahead of
himself, he must throw directly upwards just as if he were at rest (Galileo,
1632 [1996], p. 165). When a shooter wishes to hit a moving target, he
does not attempt to “lead” the target, but instead “follows” the target with
the barrel of the gun, implicitly knowing that the motion imparted by the
moving barrel will be simply composed with the motion imparted by the
powder charge (Galileo, 1632 [1996], p. 187). It never occurs to travelers
on a smoothly moving ship to drop a stone from the mast, to test the theory
of the persistence of motion, but no more does it occur to them to try to
compensate for the velocity of the ship in their own ordinary movements
(Galileo, 1632 [1996], pp. 195–7). From all of these examples, it appears
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that the concept of motion is not one that can be fully analyzed without
considering its application to states of relative motion. When Galileo does
consider its use in these contexts, he uncovers an implicit notion of the
persistence of motion, and of the composition of horizontal and falling
motions, that conflicts with what is explicitly professed.

As is widely known, Galileo was not advocating, nor evidently did he
grasp very clearly, the precise association of force with change of momen-
tum or the precise “Galilean principle of relativity” as we understand it.
These arose from the combined work of Huygens, Newton, and others.
This should not be surprising, given that the conceptual analysis that he
undertakes does not begin, as it did for Newton, from a body of precise
experimental knowledge in which the new conception of force – including
the principle of action and reaction as well as the precise principle of inertia –
was applied in quantitative detail. Rather, the starting point of Galileo’s
analysis was only a body of commonplace, little-controlled, essentially pre-
systematic experiences of motion near and parallel to the surface of the
Earth. It is therefore only appropriate that Galileo’s conception of inertia
implies the persistence of uniform circular motion; that is a reasonable
extrapolation from the kind of experience that he is attempting to analyze.
For the conclusions that we can draw from experience of this sort are not
sensitive to differences that would appear on a larger scale, i.e. between
uniform rectilinear motion and motion parallel to the Earth’s surface. Yet
from this starting point, a familiar experience such as the motion of a pro-
jectile becomes a well-defined problem of mathematical physics, namely,
to derive the actual path of the projectile as a composition of its natural
inertial motion with the accelerated motion produced by gravity.

Unlike Newton, then, Galileo had to defend a novel starting point, and
to show that the new definition of natural motion was not as alien to com-
mon sense as Aristotelian philosophy had made it seem. The use of the
dialogue form, then – at least as far as this definition is concerned – was
no mere literary device or rhetorical move on Galileo’s part. It reflects his
profound understanding of the way in which his new definition emerged
from ordinary experience of motion and force, and, consequently, of the
fact that any objective justification for it must be dialectical in character.
Moreover, it reflects a deep insight into the nature of dialectic itself. Plato
thought that the mathematical sciences must fix a starting point arbitrarily,
so that their principles must always be ultimately hypothetical, and their
certainty relative. Dialectic was held to be a process unique to philosophy,
in which, instead of setting down basic principles for the purpose of deduc-
tive argument, we might “ascend” to the truly fundamental principles by
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another sort of argument altogether (see Republic, Book VI). By its means,
we were supposed to be able to “recollect” what is present in the mind
but obscured by experience, namely the Forms, which constitute the gen-
uine reality underlying the confusing appearances. Galileo also intended
his dialectical argument to arrive at a fundamental principle, and explicitly
compared it to Platonic recollection of something that we already know
(Galileo, 1632 [1996], pp. 200–6). But for Galileo, what we “recollect” in
the process is not some notion that transcends our ordinary experience, but
the concept that implicitly guides our experience – even when our system-
atic, reflective interpretation of such a concept is something else altogether.
In this respect it is perhaps a more self-conscious account of dialectic than
that of Plato, who represented dialectic as an approach to the transcendent,
but whose practical application of it – like Galileo’s – usually appealed
to common empirical knowledge and practice. It is no accident that both
Plato and Galileo commonly appealed to the experience and practice of
artisans and other practical people; this was in fact the pre-eminent source
of knowledge that is systematic but not explicitly formulated nor, therefore,
seen clearly in its relation to our more explicit philosophical or scientific
beliefs. This is why it is just the sort of knowledge whose “recollection” can
eventually lead us to revise our more explicit beliefs.

The dialectical way of arguing that Newton used, then, had an estab-
lished use in the unfolding of the “scientific revolution.” Apart from the
familiar rhetoric in favor of drastic methodological change – the demands
for more experiment and observation, for inductive methods, for more
precise quantitative reasoning, and so on, that we usually associate with
the advocates of early modern science – the transformation of science in
the seventeenth century required a defense of certain drastic conceptual
changes. To the later twentieth century, it seemed that any such defense
must have been a circular argument: first, because it was difficult to see
how it could have been the kind of inductive or hypothetico-deductive
argument that the rhetoric of the scientific revolution claimed to rely on;
and second, because it was hard to see how a more philosophical sort of
argument could convey anything more than the subjective philosophical
preferences of its author (see Kuhn, 1970b, p. 6). That is, it seemed impos-
sible to represent such arguments as empirical and scientific, and therefore
to represent them as making any significant contribution to the rational
motivation for a drastic conceptual change. But once we recognize the
dialectical dimension of conceptual arguments like those of Galileo and
Newton, we are in a better position to appreciate their empirical dimen-
sion. They introduce novel concepts by a dialectical form of conceptual
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analysis, which demands some reflection on concepts that are used unre-
flectively in established empirical and scientific practices; they overcome
traditional resistance by revealing that the novel concepts, in some latent
form, are already in use in the best scientific reasoning of the time. As we
can see from Newton’s arguments about space and time, and about the
limitations of the mechanical philosophy, this sort of conceptual analysis
is fairly typical of his philosophical engagements with his contemporaries.
He defends what appear to be his most radical notions, by revealing their
basis in principles that his opponents already accept and use in their own
reasoning.

2 . 8 “to exhib it the sy stem of the world”

The ultimate object of Newton’s dialectical argument – “the aim for which
I composed” the Principia – is to resolve the question of “the frame of the
system of the world.” And the thrust of the argument is that the accepted
principles of mechanics contain, implicitly, a definition of true motion by
which the question is radically transformed. To Leibniz, for example, the
question was transformed by the philosophical insight that motion is purely
phenomenal and relative: the question therefore has no objective answer,
and we can do no more than choose the simplest hypothesis about which
body is at rest. But the latter is not a completely novel idea; Copernicus
himself may be said to have endorsed a similar view, when he offered only
plausible arguments for placing the Sun in the center, invoking only the
simplicity that this choice introduces into the structure of the system and
astronomical calculations. Arguably, it was even present already in Ptolemy,
whose arguments are essentially of the same form as Copernicus’ – unsur-
prisingly, since Copernicus’ defense of his hypothesis is closely modeled on
Ptolemy’s. But Newton’s argument leaves no room for a hypothesis about
the structure of the system; the only hypotheses are that the planetary sys-
tem is a system of masses that interact according to the laws of motion, and
that their relative motions are more or less as agreed upon by astronomers.
Specifically, he is willing to assume that the planets, other than the Earth,
orbit the Sun in conformity with Kepler’s second and third laws; that the
known satellites orbit their respective planets by the same laws. Then, by
the laws of motion and their corollaries, he is able to deduce properties of
the central forces, and eventually to compare the masses of those bodies
that have satellites. In thus setting out the problem, Newton carefully leaves
open the question whether the Earth orbits the Sun, or the Sun the Earth:
his Phenomenon 4 states, “The periodic times of the five primary planets
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and of either the sun about the earth or the earth about the sun – the fixed
stars being at rest – are as the 3/2 powers of their mean distances from the
sun (Newton, 1726 [1999], p. 800).

But these fairly uncontroversial premises lead to an unequivocal result.
For now the outstanding philosophical questions about motion have been
redefined as empirical questions. The great question of the day – what
is really at rest in the planetary system? – now has to be understood as
a question about the center of gravity; since only the center of gravity is
unaffected by the interactions of the bodies in the system, we can only
ask which of the bodies remains closest to the center of gravity. Therefore,
Ptolemy, Copernicus, Tycho, and Kepler are all wrong; neither the Earth
nor the Sun is at rest in the center. And it is not merely that the question
that they asked has been changed into an empirical one, rather than one
to be answered by the most plausible hypothesis; the answer turns out to
be an entirely contingent one, depending on the relative masses and their
distances. Newton acknowledges that Kepler’s view is closest to the truth: “if
that body toward which other bodies gravitate most had to be placed in the
center . . . that privilege would have to be conceded to the sun” (Newton,
1726 [1999], p. 817). Yet it is clear from Newton’s reasoning that only the
peculiar arrangement of the system – with most of its mass contained in
the Sun – permits one of the traditional views to be even approximately
correct. If the masses were more evenly balanced, the traditional question
might make no sense at all.

If we return to the problem of absolute space, we can now see that the
question, “is space absolute?” is not well-posed; the proper question is,
does absolute space, as Newton had defined it at the outset, have some
legitimate function in his program of explanation, like the functions of
absolute time, absolute acceleration, and absolute rotation? The answer
is clearly negative. But we can see from his account of the Solar System
how thoroughly Newton grasped this fact. The theory of absolute space,
simply put, has no role to play in his program. This is not merely a rational
reconstruction; Newton himself explained that his program “to collect the
true motions from their causes, effects, and apparent differences” has no
use for the distinction between uniform motion and rest. For that program
turns on identifying the center of mass for a system of interacting bodies
and the forces of interaction among these bodies. By Corollary V to the laws
of motion, that determination is completely independent of the velocity of
the center of mass. Moreover, Corollary VI implies that it is independent
even of the acceleration of the center, provided that the force causing the
acceleration acts equally, and in parallel directions, on all parts of the system.
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There are two kinds of application of this principle. One is the analysis of
sub-systems within the Solar System, namely individual planets with their
satellites, in which it is assumed that the action of the Sun on the parts
of the system (say, on Jupiter and each of its moons) is so nearly equal
and parallel that it may be neglected altogether, and the system treated
as if it were isolated and moving inertially. Another is the study of the
Solar System as a whole, which is independent of any acceleration of the
system as a whole. Newton thus recognizes that his solution to the “frame
of the system of the world” is extremely restricted: it can say nothing
about whether the entire system is at rest, uniformly moving, or even
uniformly accelerating under the influence of some yet-unknown external
force.

It may be alleged that the sun and planets are impelled by some other force equally
and in the direction of parallel lines; but by such a force (by Cor. VI of the Laws of
Motion) no change would happen in the situation of the planets to one another,
nor any sensible effect follow; but our business is with the causes of sensible effects.
Let us, therefore, neglect every such force as imaginary and precarious, and of no
use in the phenomena of the heavens . . . (Newton, 1729 [1962], p. 2:558)

Newton’s recognition of this fact reveals that his idea of determining the
true motions, or “solving the frame of the system of the world,” is free of
any delusions about determining the velocities of bodies in absolute space.

Thus what Newton really means by “true motion,” in his program to
“determine the true motions,” is precisely analogous to what he means by
true time: it is an extrapolation from an empirically well-defined process
of approximative reasoning. The ideal is a complete dynamical account of
the accelerations in any system of bodies, in which every acceleration of
every body in the system is part of an action–reaction pair involving some
other body within the system; from these interactions the masses, and the
position of the center of mass, will be known. The ideal case is therefore a
system in which the true accelerations are known, and the absolute velocity
of the center of mass is unknowable and irrelevant. (Again, by Corollary
VI even the true accelerations need not be known, since the accelerations
within the system may be composed with accelerations originating outside
the system – provided that they affect all bodies in the system equally –
without affecting the dynamical account of the system; this means that the
“ideal” ideal case, in which we know the true accelerations, must be the case
in which all bodies in the universe are comprehended in a single system, for
only then is the possibility of an outside influence finally eliminated. But
this is an aspect of the theory whose implications were only understood
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much later, as we will see in subsequent chapters.) In the practical case,
Newton’s approach starts from the orbit of a single point mass around a
spherically symmetric central mass, and promises that the transition from
this simple model to the actual motions of the Solar System will yield an
increasingly accurate explanation of irregular motions of its members by
their mutual perturbations.

Fulfilling this promise – to a reasonable degree of approximation – was
not as straightforward as it may seem in retrospect. While Newton did pro-
vide a remarkably accurate account of the motions of the Solar System,
he was unable to account for the orbit of the Moon and the anoma-
lous motions of Jupiter and Saturn; these problems were only solved,
respectively, by Clairaut in 1749 and Laplace in 1785 (see Wilson, 2002).
Moreover, beyond celestial mechanics, important classes of motion eluded
Newton’s grasp entirely, especially fluid dynamics and rigid body motion.
Careful historians have emphasized, therefore, that what we now think
of as Newtonian mechanics, as a comprehensive mathematical theory of
motion and force, was completed only by the combined efforts of Clairaut,
Euler, D’Alembert, Lagrange, and Laplace. [As Truesdell has expressed it,
“what physicists today call Newtonian mechanics has little direct relation to
Newton’s own work, but is rather a combination of Euler’s mechanics with
Lagrange’s” (Truesdell, 1967, p. 252).]10 This work involved, moreover,
a radical transformation in mathematical methods, from Newton’s syn-
thetic method to the analytic methods championed and developed by the
Continental mathematicians – including, of course, Leibniz – without
which the problems of rigid bodies and fluids, as well as the recalcitrant
planetary motions, could hardly have yielded to Newton’s laws. So the path
from Newton’s Principia to the science of “Newtonian mechanics” took
nearly a century of difficult mathematical work. Nonetheless, there was lit-
tle doubt (at least after Leibniz) that this work presupposed the Newtonian
framework of space and time – that it must do so, because its fundamental
task is to comprehend forces through the changes that they cause in states
of motion.

It is significant that it was Euler who, in this time, most clearly articulated
the presuppositions about space and time that lay behind all of this work in
mechanics. For Euler was among the most sympathetic to Leibniz’s meta-
physical views: he was suspicious of action at a distance, and throughout his
life he continued to hope for a workable vortex theory to replace the the-
ory of attraction. At the same time, however, he understood that Leibniz’s
views of space and time could never be reconciled with the project of phys-
ical explanation in which he, along with the other great successors of both
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Newton and Leibniz, was engaged. How did Euler come to this critical view
of Leibniz, despite his sympathy for some of the central Leibnizian ideas?
At least part of the explanation is evident: he combined elements of the
Leibnizian metaphysics with a central element of the Newtonian method-
ology. Euler was willing to grant that matters on which Leibniz had taken
a-priori positions – based on his metaphysical understanding of substance,
causality, and “the nature of body” – were better seen as empirical questions.
The merits of Newton’s theory of attraction, in particular, must depend
on whether the theory can deal with the unsolved problems of celestial
motion. And the question of absolute and relative motion must depend on
whether physics has the empirical means to distinguish them. What physics
can tell us about motion, on empirical grounds, is our sole guide to what
metaphysics can tell us about space and time. In other words, Euler saw the
difference between the elements of Newton’s theory that were, so to speak,
idiosyncratically Newtonian – above all the idea that universal gravitation
is the sole force at work in the Solar System – and those that represented the
common basis of all work in mechanics as then understood, especially the
laws of motion and their underlying framework of space and time. Thus
he acknowledged the distinction between the physical hypotheses that one
might prefer, pursue, and evaluate within the general framework of mechan-
ics, and the conceptual framework without which such hypotheses could
not even be intelligible.

It is true that, in the hands of Euler et al., the treatment of motion
and forces took on a fundamentally different form, moving from New-
ton’s intuitive geometrical representation to the analytical representation,
and the predominance of variational and conservation principles. But it is
important not to allow this transformation to obscure the underlying con-
tinuity, as indeed Euler and his contemporaries clearly understood. For the
mechanics developed in the eighteenth century, by mathematical methods
that were largely Leibnizian in origin, is still Newtonian in its fundamental
principle regarding space and time: that bodies, or systems of bodies, have a
privileged way of evolving from a given state to a future state, and that this
evolution embodies the idea of a privileged trajectory in space-time. In fact
the most serious challenge to this general picture finally came, not from
a relational theory of space and time, but from a completely unexpected
direction: from the theory of the microstructure of matter, in which spatio-
temporal order gives way to structures of another sort altogether, structures
better characterized as algebraic or logical rather than spatio-temporal. The
challenge, in other words, came not from “general relativity,” in which
space-time trajectories play the same kind of fundamental role that they
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play in the Newtonian theory, but from quantum mechanics, in which the
very idea of a trajectory is called into question.

2 . 9 new ton ’s accompl i shment

Did Newton succeed in proving that space, time, and motion are “absolute”?
From any reasonable empiricist standpoint, he could not possibly have
proven this. Whatever he might have shown could only be established in
the context of Newton’s laws of motion, and so, in order to establish any
conception of space and time, he would have had to establish these very
laws – a task that he himself recognized was impossible, since laws as we
know them could always turn out to be “liable to exceptions” (Newton,
1726 [1999], p. 796), and his entire procedure could have to give way to
some “truer” method of philosophizing (Newton, 1726 [1999], p. 383).
As we have seen, however, he never attempted to prove any such thing.
What he was in fact trying to prove, he did prove to a great extent: that his
contemporaries, sharing as they did his fundamental dynamical assump-
tions, had no standing to criticize his conceptions of space and time, or
to propose a more relativist view. For the mechanical philosophers, then,
there were only three legitimate ways to resist Newton’s dialectical argu-
ment. One would be to acknowledge it, but to insist upon its limitations:
it doesn’t prove, after all, everything that Newton had wished to prove.
For it supports absolute time and absolute acceleration, but not absolute
velocity and absolute space. Therefore it points to the need for a weaker
structure than absolute space. But, again, no one in the seventeenth cen-
tury was in any position to identify such a structure, and the unpublished
remarks of Huygens on rotation are the closest approach to this problem
until the late nineteenth century. A second way is to argue that, since the
laws of motion do presuppose something like the Newtonian conception
of space, time, and motion, they ought to be replaced by laws that don’t
presuppose any such thing. This alternative, too, was naturally beyond the
conceptual horizons of the mechanical philosophers, and was first clearly
expressed in the nineteenth century by Mach. The third way is, therefore,
the only one truly available to someone like Leibniz: to maintain that no
matter what spatio-temporal concepts might be required by physics, the
authority to pronounce upon the true nature of space, time, and motion
ultimately belongs to metaphysics, which can understand space and time on
its own independent grounds. As we will see in the next chapter, even this
possibility was not brought to fruition by Leibnizian metaphysics, and,
indeed, its failure in this regard turned out to play a central role in the
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general downfall of Leibnizian metaphysics in the course of the eighteenth
century.

To acknowledge the force of Newton’s arguments against his contem-
poraries, then, is not to claim that they could finally settle the absolute–
relational controversy. After all, no argument from classical mechanics could
ever rule out the possibility that a “relational” theory of motion might be
constructed that is empirically successful, even as successful as Newton’s
theory. But we can point to a lasting philosophical accomplishment of
Newton’s work. He showed that the philosophical understanding of space
and time has to start, not from general philosophical principles, but from
a critical analysis of what we presuppose in our observation and reasoning
about the physics of motion. The eventual overthrow of Newton’s theory
was made possible by the further pursuit, in a different theoretical and
empirical context, of the same kind of analysis.

notes

1. The most strident assertion of this view can be found in Reichenbach (1924).
2. In addition to Weyl (1918) and Eddington (1923), see, for example, Fock

(1959), Synge (1960), Trautman (1965, 1966), Misner et al. (1973) or Ehlers
(1973a, b).

3. Kant held that inertia is strictly the “inactivity” of matter, and that this inactiv-
ity alone cannot be the cause of resistance, for “nothing can resist a motion but
the opposite motion of another, never the other’s rest” (Kant, 1786 [1911],
p. 551). See also Chapter 3, later.

4. For further discussion of the origin and philosophical significance of the con-
cept of inertial frame, see DiSalle (1990, 2002d).

5. The four-dimensional affine space that expresses this same structure, “New-
tonian space-time,” is discussed in Stein (1967).

6. This interpretation of Mach’s arguments is defended in DiSalle (2002c), to
which the reader is referred for further discussion of the context of Mach’s
work, and its implications for twentieth-century philosophy of physics.

7. For an extended discussion of this question and its place within Newton’s
metaphysics in general, see Stein (2002).

8. This is a Kuhnian claim that I concede here for purposes of argument, but
that is in fact quite unhistorical. While it is true that Galileo’s standard of
physical explanation is incommensurable with Aristotle’s, it is certainly not
a revolutionary departure from the prevailing standards of sixteenth-century
mechanics. In fact the precise quantitative explanation of motion – especially
projectile motion – was already an important preoccupation of the impetus
theorists who preceded Galileo. So the change in scientific criteria is a more
gradual one than the Kuhnian model of “paradigm shift” suggests.

9. It is worth pointing out that Kuhn noted something like this feature of Galileo’s
reasoning, in his discussion of some of Galileo’s thought experiments. “In
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short, if his sort of thought-experiment is to be effective, it must allow those
who perform or study it to employ concepts in the same ways they have been
employed before. Only if that condition is met can the thought-experiment
confront its audience with unanticipated consequences of their normal con-
ceptual operations” (Kuhn, 1977, p. 252). But evidently Kuhn did not con-
sider this issue in the context in which it is considered here, as illustrating the
possibility of non-circular arguments for new conceptual frameworks.

10. For further discussion of Newton’s eighteenth-century successors, and their
work on the completion of Newtonian celestial mechanics, see Wilson (2002).
The present account is also heavily influenced by Smith (2003a, b).



chapter 3

Empiricism and a priorism from Kant to Poincaré

Newton presented not only a theory of absolute space and time, but a philo-
sophical approach to the analysis of space and time quite unlike anything
contemplated by his contemporaries. It cannot be viewed as a complete
philosophical account of space and time, however, because it treats space
and time solely from the perspective of classical mechanics – that is, as
concepts implicitly presupposed by the classical mechanical understand-
ing of causality and force. A philosophically thorough treatment of the
problem would embrace, not only the implicit metaphysics of physics, but
the general epistemological problem of space and time and the ways in
which physics, and human knowledge generally, have some access to them.
In other words, the step beyond what Newton accomplished required an
attack on what later became known as “the problem of physical geometry.”
The revolutionary development of space-time geometry in the twentieth
century, in both special and general relativity, is only the most spectacular
of the many far-reaching consequences of this philosophical effort.

As we saw, Newton’s theory was forced into confrontation with the
most prominent general philosophical accounts of space and time, namely
those of Descartes and Leibniz. But its rejoinder to them was only that
those philosophical views could not be reconciled with their own views
of physics. Undoubtedly this was a compelling argument as far as it goes,
one which neither Descartes nor Leibniz was in a position to answer on
its own terms. On the assumption that physics describes the real world –
more precisely, that the physical conception of force as contained in the
laws of motion truly captures the metaphysical nature of causality – that
the physical account of forces captures the true nature of causal interaction
among things – there could be no question of the authority of physics to
speak to the fundamental nature of space and time, and no question of the
force of Newton’s arguments. But if metaphysics had any claim to deeper
knowledge than physics, penetrating to the inner nature of things beyond
the ken of empirical science, then arguments like Newton’s would be easy

55
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to evade. One could simply retreat from the sensible to the intelligible
world: “absolute” space, time, and motion, as understood in Newtonian
physics, could be viewed as mere phenomena with no basis in the world of
intelligible things and their intelligible causal relations.

The first requirement for a complete empiricist picture, therefore, was a
critique of the pretensions of metaphysics. Newton, as we saw, took some
essential steps in this direction, criticizing the mechanists’ narrow meta-
physical conception of causality. But it was Kant who, over the course of
his career, subjected both Leibnizian metaphysics and Newtonian physics to
the most systematic critical analysis. He argued that the former offered only
an illusory promise of transcendent knowledge, while the latter offered a
genuine metaphysics of nature, in which space and time were the basis for an
objective understanding of force and motion. The Leibnizian metaphysics,
in contrast, involved a confused conception of transcendent knowledge,
an illusion that force and motion could be understood as purely meta-
physical concepts independently of their representation in space and time.
The only intelligible conceptual basis for a genuine metaphysics of force
and motion, then, lay in Newtonian physics itself, in the representation
of force as determined by spatial and temporal relations among masses.
More generally, Kant’s account of space – whatever its defects – showed
that our knowledge of space is inseparable from our means of representing
it to ourselves in experience. That is why this chapter on the development
of physical geometry, a nineteenth-century movement that represents the
overthrow of Kantianism, must begin with Kant himself.

3 . 1 a new approach to the metaphys ic s of nature

The history of Kant’s philosophy of science, and the role it played in
the development of the critical philosophy, have been well documented
by others. How it relates to the themes of this book, however, and to
the ongoing concerns of the philosophy of space and time, deserves some
further discussion. Two questions are particularly worth considering. How
did Kant understand the role of absolute space in Newtonian physics? And
how was this understanding, in turn, connected with his general project
for the reform of metaphysics?

As Friedman has convincingly argued, Kant’s analysis of Newtonian
physics – throughout his career, but especially in the critical period – was
remarkably insightful, even “a model of fruitful philosophical engagement
with the sciences” (Friedman, 1992, p. xii). His insights concern, not only
the philosophical implications of Newton’s theory, but also its philosophical
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foundations, that is, the relation between its principles and the principles
of metaphysics. Now, this second issue might be regarded in either of two
ways. On the one hand, one might think of physics and metaphysics as
competing sources of claims about the world: as the example of Newton
and Leibniz clearly shows, both disciplines make claims – about the nature
of space and time, motion and force, substance and causality – that may
be fundamentally at odds. As we saw, the ultimate source of philosophical
dispute may be the disagreement about which set of principles has the
better claim to truth. On the other hand, one might think that physics
requires a foundation in metaphysics; in that case, its principles have to
be seen as superficial or uncertain, or both, until they can be shown to
be derivable from deeper metaphysical principles. The two possibilities
are evidently not quite mutually exclusive, but the second one, at least,
entertains the possibility that the principles of physics may be taken at face
value – even if physics itself is in no position to comprehend their deeper
significance, or the sources from which they arise. That is to say, the second
view acknowledges a kind of independence for physics, even a right to
establish its own results by its own methods, but reserves for metaphysics
the understanding of why these principles are true. The first view is best
exemplified by Descartes and Leibniz, who felt free to reject ideas of Galileo
and Newton that had no other basis than empirical evidence; the second is
exemplified by Euler, who held that the empirically established principles
of Newtonian physics were principles with which metaphysics must come
to terms. It was also the view of the early (pre-critical) Kant, first in his
Leibnizian–Wolffian phase, and then in his gradual turning away from
the Leibnizian–Wolffian metaphysics; this is hardly surprising, since Kant’s
turn was directly and crucially influenced by Euler, and arose from his
efforts to reconcile the Leibnizian tradition with Newtonian physics.

There is a third alternative, however, not so easily characterized, but
absolutely decisive for understanding the progress of Kant’s philosophy,
his grasp of the Newtonian revolution, and that revolution in itself. It
concerns not so much the metaphysical principles that may be seen as
grounds or consequences of physical principles, but, rather, the nature of
the right that physics can claim to address metaphysical issues at all. It
concerns, that is, the question of what claim the mathematical–physical
picture of the universe has to genuine intelligibility. It is a view of physics,
in its Newtonian form at least, as being in dialectical engagement with the
metaphysical tradition. Rather than being a source of alternative views from
outside metaphysics – to be refuted, absorbed, or derived from metaphysical
first principles – Newtonian physics is in itself a philosophical critique of
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metaphysics as traditionally practiced. This general viewpoint was already
suggested by Newton himself, as we saw in the previous chapter. But it was
Kant who developed and applied it in detail, and who made it the means
of transforming philosophy as definitively as Newton had transformed
physics.

The mechanical philosophy, as part of the tradition that Kant referred
to as “dogmatic” metaphysics, claimed to present, at least, an intelligible
picture of the Universe and the fundamental principles that govern it; it
claimed to reduce every natural process to characteristic kinds of entity and
interaction that were clearly understandable in mechanical terms. Thus the
mechanical philosophy claimed to have created a standpoint from which
the intelligibility of physics in general could be judged. The rejection of
universal gravitation, by philosophers in this tradition, is only the most
familiar example of this general claim. It was a conception of intelligibility
that Kant himself had shared in his earlier works, and that lies behind his
pre-critical notion of an “intelligible world.” How Kant came to abandon
this notion, and to reconsider the distinction between the noumenal and
phenomenal worlds in general, is a familiar aspect of the history of the
critical philosophy. More recently, the role that Kant’s grasp of Newto-
nian physics plays in this history has been explained by Friedman (1992).
I would only suggest that we view this development in a slightly differ-
ent perspective, one that promises some further insight into the nature of
Kant’s break with tradition, as well as of the lasting relevance of his work.
Kant’s rejection of the mechanists’ metaphysics was more than a side-effect
of his general rejection of dogmatism. Yet is not enough to say, instead, that
Newtonian physics provided intellectual stimulus and telling examples for
that transformation in Kant’s thought. To understand Kant’s development
completely, we have to understand how, in his view, the Newtonian rev-
olution in natural philosophy had succeeded, and what was the nature of
its success. For Kant, it was more than a scientific revolution whose impli-
cations changed metaphysics irrevocably. The Newtonian revolution was
itself a revolution in metaphysics.

If this point has been hard to see since the later twentieth century, it
is probably because of the prevailing interest in the question of scientific
rationality, especially the rationality of scientific revolutions. At least since
the major works of Popper and Kuhn, debates within the philosophy of
science have focused on how, or whether, scientists change their theoretical
convictions by some rational process. On the assumptions of such debates,
all of the epistemic authority of science depends upon our ability to exhibit
a scientific method for theory-choice that is both exemplary of rationality,
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and true to the historical and present practice of science. Unless we can
do this, we will be unable to distinguish science from any other human
“belief system.” For Kant, however, the problem of rationality was not a
pressing one. This is not because he took the rationality of science for
granted without question; rather, it was because he saw the question of the
epistemic authority of science in altogether different terms. For the question
that he was trying to answer, rationality was completely insufficient.

The preoccupation with rationality was as much a part of Kant’s con-
text as it is of ours, though of course the problem was understood quite
differently. For the Leibnizian tradition in metaphysics, in which Kant
himself had been schooled, the grounds for rational belief in the princi-
ples of physics was a central question. The answer was supposed to come
from a “metaphysics of nature,” or a foundation of accepted metaphysical
principles on which physics could be built; the rational grounds for belief
in physics was to be that its principles could be logically derived from this
metaphysical foundation. Leibniz’s distinction between the “kingdom of
final causes” and the “kingdom of efficient causes” implied that it was the
former whose principles could be certainly known, derived from the laws
of non-contradiction and sufficient reason; there was accordingly just as
much truth in the laws of efficient causation – that is, the laws of motion
as understood by the mechanical philosophy – as could accrue to them
from their basis in the laws of metaphysics. What Kant called the dispute
between “the metaphysicians” and “the geometers” concerned, in large part,
whether the methods of mathematical physics, as they were then beginning
to be understood, could justify belief in principles that went against what
metaphysics claimed to know on deeper rational grounds.

Kant eventually realized, however, that despite the claim to a rational
foundation, metaphysics had not produced any principles that could com-
mand the kind of universal assent enjoyed by the laws of physics. Meta-
physics looked to mathematics as a model of epistemic certainty, but gener-
ally assumed that the certainty of mathematics was secured by its inherent
rationalism, as embodied in its deductive method. Kant saw, however, that
metaphysics already had – quite literally – more rationality than it knew
what to do with; he saw that mathematical physics, in contrast, had some-
thing in addition to rationality that made it a source of clear a-priori prin-
ciples instead of endless, aimless disputes. It was wrongheaded to expect to
achieve the success of the exact sciences, merely by imitating their deductive
structure. For metaphysics had shown, throughout its history, that it could
be completely rational without ceasing to be completely subjective as well.
What was lacking, then, was a way to be sure that its starting point was not
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arbitrary. This sort of assurance is precisely what distinguished the exact sci-
ences. Mathematics, and mathematical physics, have no arbitrary elements
because their fundamental concepts have not been in dispute: unlike those
of metaphysics, the fundamental concepts of the mathematical sciences are
constructed under rigid and objective constraints, constraints imposed by
the nature of sensible intuition (Kant, 1764 [1911], pp. 276–8).

If this is true, however, it does not make sense to say that these concepts
have, or need to have, a foundation in some prior privileged discipline, such
as “the metaphysics of nature” or even “transcendental philosophy.” When
Kant criticizes physics for its lack of a genuine foundation – when he criti-
cizes physicists for merely “postulating” laws without bothering to seek their
a-priori sources – it is easy to get the misleading impression that a deduction
from deeper premises is in order. Then the physical laws’ relation to meta-
physics would be like the relation of, say, Kepler’s ellipse law to the principles
of physics: we might demand to know, not merely that they are true, but why
they are true, and the answer we might demand would be an explanation
of the fundamental metaphysical principle from which they follow. This
was the attitude underlying Leibniz’s program to explain the laws of the
“kingdom of efficient causes” – the world of interacting bodies as described
by physics – by deriving them from the laws of “the kingdom of final
causes,” or the world of monads. But such a view, however natural it might
have seemed to Kant in his pre-critical “dogmatic” period, could hardly
be coherent with Kant’s transcendental philosophy. The power of physics
to construct an intelligible conception of the world means that physics is
not a consequence of the metaphysics of nature. Quite simply, it is the
metaphysics of nature. The metaphysical concepts that occur in physics –
body, force, motion, space, time – become intelligible to us precisely, and
only, as they are constructed by physics itself; physics provides us with
the only intelligible notions we have on these matters. In other words, the
mathematical sciences do describe an intelligible world, and, because of
their empirical method of constructing fundamental concepts, that world
is the sensible world itself.

3 . 2 kant ’s turn from le ibn iz to new ton

Kant’s conception of physics and its true relation to metaphysics, as just
sketched, defines the setting in which we must interpret his ideas about
absolute space and time. As was noted in the previous chapter, Kant had
started from a Leibnizian view of the world as constituted of monads, and
consequently a relationalist view of space; he was moved in the direction
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of Newton’s view largely by his reading of Euler.1 Evidently Kant was
impressed by the argument cited in Chapter 2, that dynamics must assume
certain aspects of space and time – above all, the idea of a privileged state
of uniform motion – that cannot be squared with Leibniz’s relational-
ism. From Euler, Kant also learned of the apparent contradiction within
Leibniz’s picture: if space is reducible to spatial relations, and motion there-
fore to change of relative position, what sense can be made of Leibniz’s
dynamical notion of force? How can the idea of force as a genuine metaphys-
ical quantity be reconciled with the relativity of motion? Leibniz himself
occasionally juxtaposed these notions, apparently unaware of the conflict
that others saw quite clearly. To Huygens, for example, he wrote, “But you
will not deny, I think, that each [body in a group of interacting bodies]
does truly have a certain degree of motion, or, if you wish, of force, in spite
of the equivalence of these hypotheses about their motion” (Leibniz, 1694,
p. 184). Even in his correspondence with Clarke, in the course of his most
detailed arguments for the relativity of motion, Leibniz acknowledged that
“there is a difference between an absolute true motion of a body, and a
simple relative change of its situation with respect to another body. For
when the immediate cause of the change is in the body, that body is truly
in motion” (Leibniz, 1716, p. 404). As Euler put it, “Therefore I am least
afraid of those philosophers who reduce everything to relations, since they
themselves attribute so much to motion that they regard moving force as
something substantial” (Euler, 1765, 2:79).

Yet there could be a proper Leibnizian reply to such objections, even if
Leibniz did not appreciate the force of the challenge well enough to make it.
He might answer, simply, that they represent a confusion of physics with the
metaphysics of nature. Force, as Leibniz understood it, is a quantity with a
metaphysical foundation in the internal state of a monad; it is an expression
of monadic appetition, the “striving” of the monad toward a future state of
existence. The metaphysical reality of such quantity must be understood
completely independently of phenomenal space and time; it represents that
aspect of physics that is “more than geometry can determine,” because it
concerns the inner activity of substances, rather than their phenomenal
interactions. The latter, after all, are merely apparent in Leibniz’s system,
merely a confused human way of seeing the pre-established harmony that
brings their actions into correspondence with one another, without any
genuine mutual influence. This concept of force thus provides the phe-
nomenal world of interacting bodies with a foundation in the intelligible
world of “windowless” substances. If that is true, it cannot make sense to
criticize or to revise the metaphysical foundation because of what might
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appear to be the case in its phenomenal reflection. Nor can the existence
of an intensive, metaphysical quantity of force in the metaphysical world
justify granting absolute reality to motion, space, or time as understood on
the purely phenomenal level of empirical science.

Even if this argument was never put forward explicitly in these terms,
it helps us to understand why Kant, when he took up the subject of space
himself, was not content with Euler’s defense of absolute space. Instead,
in “Concerning the ultimate ground of the differentiation of directions
in space” (Kant, 1768 [1911]), he was eager to confront the Leibnizian
position on more general philosophical grounds. He sought to show that
Leibniz’s relationalism was incompatible not merely with physics, but also
with a more general feature of space that can be exhibited without any ref-
erence to the special assumptions of physics. Thus he would “provide, not
engineers, as Euler had in mind, but geometers themselves with a convinc-
ing ground, with the evidence to which they are accustomed, for claiming
the actuality of their absolute space” (Kant, 1768 [1911], p. 378). This
would be an appropriate sort of argument to make against a disciple of
Leibniz, since Leibniz held the certainty of geometry to be beyond ques-
tion, and even claimed that its principles could ultimately be deduced from
logical identities. If the argument were to succeed, it would not only vindi-
cate “the geometers” – including the followers of Newton’s “mathematical
principles of natural philosophy” – against “the German philosophers” who
followed Leibniz. It would also help to establish just the sort of connection
between the intelligible and the sensible – between fundamental truths
of reason and the space of our immediate experience – on which a true
metaphysical account of space could be built.

The 1768 paper presents Kant’s well-known argument from incongruent
counterparts: pairs such as the right and left hand represent equal objects
from the point of view of their (Leibnizian) internal spatial relations, yet
they are incongruent in the sense that they cannot be superimposed on
one another; the fundamental difference between them concerns not the
spatial relations among their parts, but their relations to space itself. This
argument is undoubtedly the most commented-on of all Kant’s arguments
about absolute space,2 and it is not difficult to see why. More than any other
discussion of Kant’s, it has the general form of a gambit in the absolute–
relational debate: it attempts to exhibit a known phenomenon that the
relationalist view cannot account for, and whose explanation appears to
require the existence of absolute space. But, whatever its intrinsic merits,
there are two good reasons not to take the 1768 argument seriously as a
discussion of absolute space, at least as far as the themes of this book are
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concerned. One is that, in his critical phase, Kant would no longer admit
that either the Newtonian or the Leibnizian side could possibly be correct;
both are founded in dogmatic metaphysics. Even in 1770, in the Inaugural
Dissertation, Kant would no longer wish to defend the thesis that “Absolute
space, independently of the existence of all matter and as itself the first
ground of the possibility of the composition of all matter, has a reality of its
own” (Kant, 1768 [1911], 2:378). From 1770, Kant came to think of space
and time as the forms of inner and outer intuition. There was no question
of the absolute reality of space and time once they were acknowledged to be
“subjective and ideal,” aspects of our own sensibility; the Newtonians and
the Leibnizians, therefore, shared the delusion that space and time belonged
to things in themselves – in the Newtonian case, as themselves real things,
and in the Leibnizian case, as founded in relations of real things. That is to
say, they were both working within the “dogmatic” tradition from which
Kant had finally escaped. To the extent that Kant discusses incongruent
counterparts at all in his critical period, he does not associate them with
the problem of absolute space, but with the problem of spatial intuition, in
particular with the claim that there is an intuitive representation of space
that cannot be reduced to concepts (e.g. Kant, 1783, section 13). In the
setting of Kant’s critical project, the question cannot be whether a particular
metaphysical view of space can explain particular phenomena; the question
is, rather, what assumptions about space are conditions of the possibility
of experience.

The other reason to discount incongruent counterparts is less obvious,
perhaps, but more important. Their existence is simply irrelevant to the
question of absolute space: their existence is a question concerning only
the structure of three-dimensional space, whereas absolute space is, as we
have seen, a theory of space-time. Like Leibnizian arguments about spatial
reflections and translations, then, Kant’s arguments have nothing to say
about the way in which space is connected through time. We could know
certainly that the distinction between left and right is an inherent feature
of the natural world, without getting any insight at all into whether any
of the claims in Newton’s Scholium are true. In short, the discussion of
incongruent counterparts is the part of Kant’s writing that most directly
touches on the “absolute–relational” debate in its traditional sense. At the
same time, however, and for the same reason, it is the least insightful of
Kant’s discussions of absolute space – the one furthest removed from the
essential issues concerning Newton’s concept of absolute space, namely,
the role it is supposed to play in physics, and its interconnections with the
concepts of mass and force. Such an assessment is, of course, obvious from
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the point of view of this book, but it was Kant’s assessment as well: his most
advanced discussion of absolute space, in the Metaphysische Anfangsgründe
der Naturwissenschaft (1786 [1911]), focuses on its relation to the concept
of absolute motion, and on the relation of both concepts to the applica-
tion of Newton’s laws. In contrast to the 1768 argument, the later dis-
cussion contains insights into the implications of Newton’s theory, both
for physics and for metaphysics, that are only beginning to be noticed.3 It
reflects Kant’s later awareness that, after all, physics does have an answer to
Leibniz’s metaphysical objections: the metaphysical concepts underlying
the sensible world first become intelligible, themselves, in the framework
of Newtonian physics.

3 . 3 kant, le ibn iz , and the conceptual foundat ions
of sc ience

Kant’s concern about the arbitrariness of metaphysical concepts began
well before his critical turn, at least as early as the “Prize Essay” of 1764.
The problem, he thought, lay in the method by which those concepts are
defined. Metaphysics must proceed by the analysis of concepts about which
people have some vague associations, but no precise definition. Mathemati-
cal definitions, by contrast, are synthetic, arrived at simply by the construc-
tion of the object, either in imagination or on paper; they are therefore
constrained by the laws of our own sensible intuition (Kant, 1764 [1911],
pp. 276–7). As a result, there can be no doubt about whether a mathe-
matical definition captures what it is intended to capture, or about which
objects fall under it. But metaphysical definitions are always subject to
such a doubt, for there is no established way to determine whether such a
definition contains everything that is proper to the concept to be defined.
What considerations, after all, could assure us that a metaphysical defini-
tion captures some pre-existing meaning, rather than merely assigning one
arbitrarily? Therefore the philosophical analysis of a concept such as God
or substance can never come to a certain or universally satisfying end. If
mathematics mistakenly tries to define a concept by analysis, no harm is
done, since mathematical reasoning will require that the concept be con-
structed in any case, and it is the constructed concept that will matter
to the reasoning. But if metaphysics tries to define by synthesis, in the
absence of the constraints imposed by sensible intuition, the likely result is
a concept that is nothing more than an arbitrary invention – like the Leib-
nizian monad (Kant, 1764 [1911], p. 77). A philosophical system built on
such concepts inevitably has the character of a mere hypothesis. Leibniz
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himself, on occasion, went so far as to admit the hypothetical character
of his system,4 though he generally claimed to have derived it from first
principles. As far as Kant was concerned, however, Newtonian science had
dispensed with hypothetical foundations, and metaphysics could not claim
universal assent until it had done likewise.

It is true that Kant’s view of mathematical concepts was, like other cen-
tral parts of the critical philosophy, undermined by the progress of the
nineteenth century. The rigorization of analysis, beginning with the work
of Bolzano (1817), provided a clear example of what Kant had held to
be impossible: the construction of mathematical concepts, especially of
infinity and continuity, “by means of mere concepts” and without appeal
to intuition. His belief that intuition was indispensable, as many com-
mentators have pointed out, only reflected the limitations of logic as he
understood it. But this development does not undermine his critique of the
Leibnizian tradition. On the contrary, it reveals how crucially important
that critique was for the further development of mathematics. If Kant erred
in thinking that mathematical reasoning must appeal to intuitive construc-
tions, he was correct in thinking that mathematicians did in fact rely on
intuition – even mathematicians who, like Leibniz, imagined that their
grasp of mathematics, and the foundation of its truth, were purely intellec-
tual. Nineteenth-century philosophers could not have purged mathematical
reasoning of intuitive steps, surely, had they remained under the Leibnizian
illusion that there were none.

Because this illusion was so pervasive, and so much rested upon it, the
consequences of its exposure were profound. As Kant pointed out, Leibniz’s
view could provide no basis for the truth of geometry, or of any part of
mathematics. On the one hand, as Kant noted, geometrical proof requires
appeal to construction and, therefore, the validity of Euclidean theorems
is in doubt without some use of intuition. On the other hand, the very
existence of the objects of geometry has no other basis than intuition. To
the first point, Leibniz could claim to have an answer in the “universal
characteristic”: the need for constructive proof, in that case, would appear
to be a sign of the inadequacy of our tools for the logical organization of
knowledge. Of course Leibniz never succeeded in providing an adequate
tool, but he could be excused (and was eventually vindicated) for believing
that such a thing was possible. To the second point, however, it is not clear
what sort of answer Leibniz could have been able to give. If geometry con-
cerned the relations among “things in themselves,” then, as Kant frequently
emphasized, the truth of its principles would always be incapable of verifi-
cation, and therefore in doubt (A40/B56); the idea that geometry concerns
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merely empirical relations was, evidently, not an available alternative
for Leibniz. Furthermore, even if the “universal characteristic” could capture
the logical form of geometrical arguments, it could never justify the claim
that geometrical statements are necessarily true of the objects to which they
refer – a claim that Leibniz believed as surely as Kant did. Leibniz rested
the truth of geometry, as of every science that is necessary and universal, on
the fact that its principles could ultimately be reduced to logical identities.
Therefore he did not see what Kant saw, namely, that even if such a reduc-
tion were possible, it would come at the cost of geometry’s reference to any
real object. On this point it was Kant’s view that was vindicated in the nine-
teenth century, indirectly, since the logical apparatus that made it possible
to understand geometry as a logical structure, and different geometries as
intertranslatable structures, involved the separation of the structure from
content (see Nagel, 1939).

3 . 4 kant on absolute space 5

To understand Kant’s rejection of the Leibnizian view of space, then,
it is insufficient – and possibly counterproductive – to connect it with
his efforts in the traditional absolute–relational debate. Instead, we have
to see it in connection with the more general problems of philosophy,
and so to grasp its connection with Kant’s more general critique of the
Leibnizian approach to metaphysics. His mature concern was not to estab-
lish one of two opposing metaphysical positions, but, rather, to understand
how metaphysics in general can know what it is talking about – more
precisely, how metaphysics might, like the mathematical sciences, define
its fundamental concepts in such a way that they are no longer matters
of subjective opinion and controversy, but acknowledged as universal and
necessary. This represents a completely changed view of the nature and pur-
pose of a philosophical “system.” Where Leibniz’s system was quite clearly
a hypothesis meant to “make sense of” the world, providing it not only
with an origin and structure but also with meaning and purpose, Kant’s
metaphysical system is meant only to capture the concepts without which
it would be impossible to think of a world at all. The former, perhaps, best
corresponds to the familiar use of the phrase “philosophical system,” but as
Kant realized – and this is arguably the fundamental distinction between
pre- and post-Kantian philosophy, even if it is not always respected – such
systems are irretrievably subjective or even arbitrary. This fundamental
change in philosophy, moreover, mirrors the change in science from the
mechanical philosophy to the Newtonian “mathematical” philosophy. The
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principles of the mechanical philosophy, though represented as the only
hope for an intelligible picture of nature, are in the end only hypothe-
ses about the ultimate nature of physical interaction, and therefore they
do have something of the arbitrariness of philosophical hypotheses. But
Newton’s mathematical principles represent (for the eighteenth century,
at least) the general conditions under which any causal interaction can
be comprehended under natural laws. Kant’s analysis of absolute space,
accordingly, is an effort to clarify its place within the system of Newtonian
principles. Though the effort did not completely succeed, the analysis of
Newtonian physics placed its relation to metaphysics, and the nature of
metaphysics in general, in an exceptionally revealing light.

To spell out Kant’s account of absolute space is not without difficulty, and
commentators have differed widely, not merely on the usual subtleties of
interpretation – as they do regarding all aspects of Kant’s philosophy – but
even on what, if anything, the account actually says. Earman, for example,
finds Kant’s position inconsistent, and seems to despair of making any sense
of it (Earman, 1989, pp. 76–8). Undoubtedly Kant, like most philosophers
before the late nineteenth century, had some trouble reconciling the only
reasonable position on absolute space – that it is superfluous to Newtonian
physics – with the only reasonable position on rotation and acceleration –
that they are essential parts of the theory. As we have seen, in spite of the
fact that Kant’s transcendental idealism compelled him to reject Newton’s
view as surely as Leibniz’s, he found it impossible to dispense with absolute
space. Before condemning the inconsistency, however, it is worth recalling
that Kant’s transcendental idealism was also an empirical realism and that
“this [empirical] reality of space and time leaves the certainty of our experi-
ential knowledge untouched: for we are just as certain of it, whether these
forms necessarily depend on the things themselves or only on our intu-
ition of them” (A39/B56). It might be said, then, that instead of creating
an inherent difficulty for his assessment of absolute space, Kant’s transcen-
dental idealism sets aside the ontological controversy, and leaves him free to
consider absolute space only insofar as it has a certain function in Newton’s
dynamical theory. As a result, his account of absolute space brings out some
aspects of it that were not made explicit enough by Newton, and that tend
to be obscured within the terms of the “absolute–relational” controversy.

On the most common way of approaching the subject, in the terms of
the absolute–relational debate, the role of absolute space is summed up in
the claim that “absolute motion is a species of relative motion” (see Sklar,
1977, p. 229; Earman, 1989, p. 13), i.e., that absolute motion means
motion “relative to” space rather than to the material environment; on
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that interpretation, the theory of absolute space asserts that we cannot
understand the dynamical effects of motion if we refer it to visible bodies,
and so we explain the effects by referring motion to absolute space. In these
terms, absolute space comes across as an extremely dubious notion. Indeed,
part of the puzzlement of the relationalist is provoked by the very notion that
something unobservable has any possible value as a reference frame. For the
same reason, it would seem that the only possible defense of absolute space is
that it represents a kind of “inference to the best explanation” (see Earman,
1989, pp. 63–4), an unobservable “theoretical entity” postulated for its
potential explanatory power. As we already noted, this was certainly not
the position of Newton, whose arguments for absolute motion and absolute
space were not hypothetico-deductive. But Kant went much further, and
analyzed more explicitly the special position that absolute space occupies
in relation to the ontology of Newtonian physics. Though not without its
own genuine obscurities, his account does help us to see the matter in the
proper light.

From Kant’s perspective, it is obvious from the start that absolute space,
since it is no object of experience, cannot serve as a relative space. Instead,
absolute space has the function of a rule for considering the interactions
among bodies.

Absolute space is therefore necessary, not as a concept of an actual object, but as
an idea that is supposed to serve as a rule for considering all motion within it
as merely relative, and all motion and rest must be reduced to absolute space, if
the appearance of the same is to to be transformed into a determinate concept of
experience (which unites all appearances). (Kant, 1786 [1911], p. 560)

That is, the motions of bodies are not imagined to be “referred to” abso-
lute space; rather, they are subjected to a dynamical analysis, in whatever
reference frame we might find practical, and thereby “reduced to” absolute
space. Therefore it is no objection to absolute space that we cannot use
it directly as a measure of velocity. Its place in physics depends only on
whether we can attach some physical meaning to the concept of absolute
velocity, by exhibiting some dynamical reasoning by which it can be said
to be known. And while this cannot be done for the velocity of a body
in empty space, it does seem to be possible for the velocities of a pair of
interacting bodies. For, while their relative velocity may be grasped from
any number of equivalent points of view, there is a privileged point of view
from which their velocities are truly equal and opposite, namely the frame of
reference in which their center of mass is at rest: in that case their two veloc-
ities “destroy one another in absolute space,” and the interaction between
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them is thus “reduced to absolute space” (Kant, 1786 [1911], p. 545). Thus
“there is no absolute motion” in the sense that a body’s motion has no objec-
tive meaning in relation to space alone. But a body does have an absolute
power to communicate motion to another body, when the two interact
in accord with Newton’s third law, and this constitutes its true state of
motion.

This analysis has a limitation of which Kant was very well aware. The
“absolute” velocities determined in this way are only the bodies’ velocities
relative to their center of mass frame. That frame itself, however, must be
considered as moving relative to other centers of mass. Therefore the analysis
may be said to be a reduction, not to absolute space, but to a particular
privileged frame of reference. It might appear that in acknowledging this,
Kant has implicitly acknowledged the equivalence of all inertial frames,
and thereby avoided the error in Newton’s conception of absolute space.
But this is not quite true. If no actual center of mass frame is privileged
over all others as being absolutely at rest, it is not because in Kant’s account
they are all equivalent descriptions of motion. Rather, it is because they
are all necessarily partial; each system of masses must be understood as
included within a still larger system of masses, as the Earth and Moon in
the Solar System, the Solar System in the Galaxy, and so on. Its motion is
deemed “reduced to absolute space” because the analysis of motion in such
frames is supposed to lead, in the ideal limit, to a single frame in which all
interactions in the Universe are to be comprehended.

We saw that Newton had expressed his awareness of this difficulty in his
application of Corollary VI to the Solar System: if the entire system could be
accelerated by external forces without our knowing it, then the accelerations
of all the bodies in the system, as determined by their mutual interactions,
could hardly be known to be their true accelerations. But Kant saw the sig-
nificance of this fact to a degree that was not surpassed until the advent of
general relativity.6 In other words, Kant noted something about Newton’s
celestial mechanics that was not fully appreciated until it was considered
by Einstein: the idea of true acceleration is, practically speaking, nearly as
questionable as the idea of true velocity.7 The only difference is that we
actually can conceive of that ideal limit of a universal center of mass frame,
without violating the relativity principle that is inherent in Newtonian
mechanics. Yet Kant himself did not fully embrace the Newtonian relativ-
ity principle, since, in his view, the ideal limit is one in which the abso-
lute velocities are known, not merely one in which the true accelerations
are known. The most we can say is that absolute space, for Kant, has the
same abstract function as an inertial frame. It is understood, as it were,
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“functionally,” as the frame in which the true quantity of motion is known,
at least provisionally. The reason for understanding such a frame as abso-
lute space has something to do with the role played by intuition: the true
frame of reference is one in which the true motions can be constructed in
intuition, or represented to intuition. That is, if such a frame really could
be identified, a body’s observed velocity relative to it would necessarily
constitute its true velocity.

For Kant, this aspect of absolute space reveals the essential inadequacy
of the Leibnizian point of view. It is not merely, as Euler had already sug-
gested, that Leibniz’s account of moving forces attributes a kind of reality
to motion that seems inconsistent with the relativity of motion and space.
For that would be merely a kind of hypothetico-deductive difficulty, in the
sense referred to earlier. It would be a difficulty, in other words, of reconcil-
ing a metaphysical hypothesis with the actual content of physics. The more
serious difficulty is within Leibniz’s metaphysics itself. The very concept of
force that Leibniz employs has no meaning – or, more precisely, it has no
meaning but what it acquires by being constructed within the framework
of absolute space. A Leibnizian might still try to defend the idea that the
metaphysical concept of force is independent of any such connection with
the physical concept. But that is tantamount to abandoning a crucial part of
the broader Leibnizian program: namely, the construction of a metaphysi-
cal foundation for physics. For that part of the program, at least, depended
on articulating a connection between the metaphysical concept of force and
the physical concept. The physical concept, however, is explicated as the
power to generate motion; the moving force of one object is no other than
its power to change the motion of another. Thus Leibniz, though he refers
to it as a kind of intensive magnitude, has no other account of what mov-
ing force is than as what determines the action of one body on another.
Therefore Kant points out that it has only one clear representation as a
quantity: namely, as the power to generate a given velocity in a given space.
It has an objective representation only when this quantity is constructed
as part of an interaction, satisfying Newton’s third law and therefore, in
Kant’s sense, “reduced to absolute space.” In other words, motion belongs
to the group of fundamental concepts for which Leibniz had thought to
provide a purely metaphysical understanding, but whose definition is pos-
sible only within the framework of space and time. Leibniz’s wish to see it as
a kind of intensive magnitude is ultimately illusory.8 The flaw in Cartesian
physics, acccording to Leibniz, was the attempt to reduce body to exten-
sion alone; the Cartesians thus ignored the connection between motion
and force, which is something “more than geometry can determine.” But,
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as Kant’s analysis shows, force in Leibniz’s sense is something that cannot
be comprehended, or even represented, independently of geometry.

From Kant’s perspective, the reason for emphasizing these confusions
on Leibniz’s part is not simply to score philosophical points at his expense.
Rather, it is to emphasize the limitations of Leibnizian metaphysics, in
particular its incompatibility with the newly developed science of mechan-
ics. And Kant’s point goes far beyond the one made by Euler, and shared
by himself in his pre-critical period – that is, that the established laws of
physics illuminate the nature of space and time more than the doubtful
conjectures of metaphysics. Kant is arguing that physics, in its Newto-
nian form, has arrived at clear concepts of space, time, motion, and force,
where metaphysics has only been mired in confusion. It is not an attempt
to judge between competing metaphysical hypotheses, according to their
conformity with the facts of physics. It is, rather, the recognition of physics
in its transcendental role, as the source of constructive definitions for meta-
physical concepts.

This last point sheds some light on Kant’s objections to Newton, and
his complaint about physicists’ willingness merely to postulate fundamen-
tal laws, without taking any interest in the laws’ “a priori sources” (Kant,
1786 [1911], p. 472). As we have seen, it is not true that Newton was
content to regard absolute space, and the laws of physics generally, as mere
hypotheses. In fact the arguments that he presented may be characterized
as transcendental arguments of a sort. The concept of absolute motion, he
argued, was implicitly assumed in Cartesian physics, and was in a sense a
“condition of the possibility” of Cartesian reasoning about the motions of
the Solar System and their physical causes. But this is a kind of “relatively”
transcendental argument: the concept is necessary, relative to a certain
well-established practice of scientific reasoning about a certain kind of phe-
nomenon. Kant, instead, argues that the Newtonian concept, and the laws
of motion, are “absolutely” transcendental. They are the only basis on which
the concept of causality can be applied to the Universe at large. They are the
only basis, indeed, on which the phenomena of the heavens can be grasped
as something more than mere appearances – as the appearances of genuine
physical objects that stand in objective geometrical and causal relations.

The foregoing helps us to understand why Kant would have regarded
universal gravitation in such a different way from Newton, as something
that is “essential to matter” in just the sense that Newton always resisted (see
Friedman, 1990). To Newton, the laws of motion provided the necessary
and sufficient framework for understanding the interactions of bodies in
space and time; gravitation was in no sense part of this framework, but
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was a kind of interaction that could be “deduced from the phenomena,” as
soon as the phenomena are interpreted within that framework. Questions
about its properties, such as whether it acts immediately at a distance or
by propagation through some medium, were open empirical questions,
just as gravity itself was an answer to an empirical question about the
nature of the interplanetary force. But in Kant’s view, gravitation played
a much more fundamental, even a transcendental role, as something that
is indispensable to our understanding of matter and motion in general.9

It is only by means of universal gravitation, considered as an immediate
action at a distance, that Newton is able to consider the planetary system
as something approximating an inertial frame, for it is only through the
gravitational interaction that any estimate of the masses involved – and
hence of the center of mass – is possible. But this is only an instance of
a more general circumstance, namely, that it is only through gravitation
that the principle of causality can be applied to the celestial bodies. Kant
had some reason, then, to think that gravitation was something more than
merely an empirical fact discovered within the Newtonian framework, and
in fact was more closely tied to the basic principles of the framework than
Newton realized. Just how closely tied, of course, is something that would
eventually become clear with general relativity, through the understanding
that gravity could not be separated from inertia.

3 . 5 helmholtz and the emp ir ic i st cr it ique of kant

It seems obvious that Kant’s view of space as the a-priori form of outer intu-
ition was overturned, in the course of the nineteenth century, by empiricist
views of space and geometry. It should be clear from the foregoing discus-
sion, however, that this is a somewhat simplistic and misleading picture.
The very distinguishing feature of Kant’s view, in regard to the earlier
tradition in metaphysics, is its empiricism; his chief objection to the Leib-
nizian view of mathematics and science was its claim to knowledge of
an intelligible world, through concepts whose only genuine content is that
which they acquire from sensible intuition. Kant’s empiricism in this regard
was fairly radical, in fact, given the pervasiveness, even among empiricist
philosophers such as Hume, of the assumption that mathematics is purely
formal. It would be more illuminating, therefore, to distinguish among
some empiricist tendencies that challenged Kant’s peculiar form of empiri-
cism, and its conception of the synthetic a priori. The most straightforward
challenge came from an inductivist standpoint like that of Mill (1843):10

the principles of geometry are held to be inductive generalizations from
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the practice, over many generations of human beings, of ordinary spatial
measurement. The axioms of geometry, on this view, acquire their aura of
certainty from the innumerable instances in which they have been con-
firmed by experience. It is quite understandable that after the twentieth
century, when general relativity gave prominence to the idea of measur-
ing the curvature of space and testing Euclidean geometry, this inductivist
account would appear to have been the most important breakthrough.

Yet the inductivist account was not the view that decisively defeated
Kant. The most important reason was, simply, that it could not account
for the features of geometry that were central to Kant’s theory. Given the
imprecision of ordinary experience and judgment, it seems hardly plausible
that the accumulation of experience could have yielded the principles of
geometry, in the precise form in which we know and trust them. This gen-
eral consideration, which Plato had urged in some form long before Kant,
only gained support from nineteenth-century advances in the psychology
of perception, particularly the awareness of the divergence between the
space of visual perception and the space described by Euclidean geometry.
The kind of empiricism that provided a plausible alternative to Kant was
one that acknowledged the force of his argument, and so recognized the
principles of geometry as somehow practical and ideal at the same time.
This meant that the principles themselves could not be seen as inductive
generalizations, but did not rule out the possibility that their empirical
origins could be revealed.

Kant’s theory was the starting point for Helmholtz’s work on the empir-
ical origins of geometry. He did not attempt to deny that geometrical prin-
ciples have the peculiar dual character identified by Kant, as both empirical
and formal – as one might say, both synthetic and a priori. Instead, he
took this as an empirical fact requiring an empirical explanation. Under-
standing the possibility of non-Euclidean geometry, in particular, required
a clear understanding of why Euclidean geometry seemed to provide such
a compelling picture of actual space. By the middle of the nineteenth cen-
tury, it was obvious that non-Euclidean geometries were mathematically
possible, their propositions provable from their axioms by the same con-
structive means as in Euclidean geometry. Therefore Kant’s own position
was strictly impossible: Euclidean geometry was not the unique framework
in which the objects of geometry could be constructed, or geometrical
propositions rigorously proven. It did seem possible to retreat, however, to
the position that Euclidean geometry was distinguished from other geome-
tries that were merely mathematically possible by the fact that it could
be “visualized” or “imagined.” This raised again, in a different form, the
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question about science and metaphysics that had arisen between Kant and
Leibniz: on what grounds can philosophy address the nature of space on its
own, independently of mathematics and physics? Or, what authority can
be claimed by the mathematics or the physics of space in order to criticize
a philosophical account of spatial intuition?

An answer to these questions was, arguably, Helmholtz’s most important
philosophical contribution. His insight was that in the context of philo-
sophical discussion, the relevant concepts had never been carefully defined.
In order to judge whether non-Euclidean geometry is really impossible to
“intuit” or to “visualize,” we need to understand in what sense any geom-
etry may be said to be visualizable. Therefore Helmholtz gave a general
definition:

By the much abused expression “to represent to oneself [sich vorstellen]”, or “to
be able to imagine [sich denken] how something takes place”, I understand – and
I don’t see how one could understand anything else thereby, without giving up all
the sense of the expression – that one could depict the series of sense-impressions
that one would have if such a thing took place in a particular case. (Helmholtz,
1870, p. 8)

The philosophical significance of this definition has often been remarked
upon.11 It is easy to understand why it would later appear to the logical
positivists as a model of epistemological analysis, for it seems to reduce the
meaning of a theoretical concept to its true “empirical content.” While this
gloss has a grain of truth, it overlooks the character of the definition as a
conceptual analysis. Helmholtz did not purport to translate the concept of
“imagination” into some sort of observation language. Nor did he merely
propose to stipulate an interpretation of the term “to imagine” that would
enable him to discuss the possibility of non-Euclidean geometry. Rather, he
tried to capture the way in which the concepts are actually used, whenever
they really are used in an empirically meaningful way. In order to understand
whether it is possible to imagine that space is curved, Helmholtz sought
to make precise just what is meant by the claim that we can imagine a
flat space, or any spatial structure at all. Helmholtz’s analysis therefore has
something of the dialectical function that we have noted in earlier cases,
intended to overcome the prevailing opinion by exhibiting and critically
analyzing the implicit assumptions on which it is based.

The philosophical character of this argument suggests two further points.
One is that Kant himself, by binding the empirical content of geometry to
the possibility of elementary constructions, prevented any recourse from
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this argument in the direction of some supra-empirical, transcendent basis
for Euclidean geometry. If the elementary constructions are open to a
further analysis along the lines proposed by Helmholtz, then the content
of geometry itself will have been completely explained. To claim that there
was some other kind of foundation for geometry, merely in order to resist
Helmholtz’s constructive argument for non-Euclidean geometry, would
not be a defense of a Kantian position at all. For then the central Kantian
argument against Newtonians and Leibnizians would be negated; the doubt
would be created again, whether our procedures for proving geometrical
propositions are revealing the true nature of things, and so whether the
propositions are truly necessary and universal.

The second point is that, as an argument against the Kantian posi-
tion on its own terms, Helmholtz’s is something entirely distinct from the
sort of psychological argument that he directed against the nativist the-
ory of perception.12 On the nativist theory, awareness of the structure of
space arose from the immediately spatial character of our visual sensations;
Helmholtz’s critique was an empirical study of the relations between visual
stimuli and perceptual judgments, to reveal the degree to which spatial
awareness must be gradually acquired, and spatial judgments must depend
on “unconscious” inductive inferences from experience. In short, the aim of
that critique was simply to show that spatial knowledge is not innate. But
such a critique would have little force against the Kantian view, which was
equally opposed to nativism: space for Kant was not given in the content of
sensation, as the nativist view suggested, but, again, belonged to the form
of sensibility. The concept of space is

acquired, not, indeed, by abstraction from the sensing of objects (for sensation
gives the matter and not the form of human cognition) but from the very action
of the mind, which coordinates what is sensed by it . . . Nor is there anything
innate here except the law of the mind, according to which it joins together in
a fixed manner the sense-impressions made by the presence of an object (Kant,
1770, p. 400)

In other words, to give an empirical explanation of Kant’s view is not to
explain any innate capacity to sense spatial localization. It is to explain how
the “successive synthesis of the productive imagination in the generation
of figures” comes to follow certain laws, and how it is that the applica-
tion of those laws comes to conform to Euclidean geometry. So, at least,
Helmholtz interpreted Kant’s view of geometry as concerning the form of
outer intuition:
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By that he appears to mean, not merely that this form that is given a priori has the
character of a purely formal scheme, in itself devoid of any content, and into which
any arbitrary empirical content would fit. Rather, he appears also to include in the
schema certain details, whose effect is precisely that only content that is restricted
in a certain lawlike way can enter it, and become intuitable for us. (Helmholtz,
1870, p. 4)

Thus, while it was undoubtedly influenced by his empirical–psychological
study of spatial perception, then, Helmholtz’s account of “imagination”
is not such a study. Rather, it is a philosophical analysis of the assump-
tions upon which the Kantian “productive imagination” implicitly relies.
Instead of trying to reduce our geometrical intuitions to inductive general-
izations, Helmholtz’s analysis reveals their dependence on deeper assump-
tions which, themselves, arise from empirical conditions – “the facts which
lie at the foundations of geometry.”

The results of Helmholtz’s analysis are now relatively familiar topics
of philosophical discussion.13 The empirical sources of our knowledge of
space, he found, are the propagation of light rays and the motions of rigid
bodies; these provide us with the notions of straight line and congruence
that underlie both our intuitive sense of direction, distance, and size, and
our geometrical sense of the possibility of Euclidean constructions. In the
case of light rays, the connection seems straightforward enough. Our abil-
ity to “imagine” the production of straight lines in arbitrary directions for
arbitrary distances, and so to represent to ourselves the Euclidean propo-
sitions involving straight lines, arises from our experience of light rays,
or, more precisely, of treating lines of sight as straight lines. Experience
of this kind begins practically at birth, as we learn by trial and error to
reach for objects in our visual field, or to shield our eyes from light. If it
seems evident, for example, that two straight lines cannot enclose a space,
or that a given pair of lines must intersect if extended sufficiently, this is
because we have well-established expectations about the relations between
lines of sight and motions of observable bodies. Our “productive imagina-
tion” behaves according to rules because it exploits our familiarity with a
stable regularity of nature. On this basis, Helmholtz could defend the intu-
itive plausibility of non-Euclidean geometry: if our sense that the world
is Euclidean depends on the behavior of light rays as the physical coun-
terparts of straight lines, then we can picture a non-Euclidean world by
picturing light rays that behave like the straight lines of a non-Euclidean
space. For example, we can predict the visual sensations that we would
have if two lines could indeed enclose a space, since in certain cases we
could see “through” an obstacle to some object lying behind it.14 We can
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even produce such sensations, using lenses that refract light in such a way
that they strike the eye as if they had followed the straightest lines of a
curved space. Our Euclidean expectations would cause us to misjudge the
distances of objects in our visual field, but we would quickly develop a new
pattern of expectations and judge correctly (Helmholtz, 1870, p. 27). In
short, as long as light travels on the straightest lines of space, it is a straight-
forward matter to arrive at a visual picture of a non-Euclidean world. And
this means that our knowledge of geometry, Euclidean or non-Euclidean,
involves an adjustment to conditions in the physical world.

The case of rigid bodies involves a subtler and perhaps deeper connection
between geometry and experience. With only the image of an external
world, provided by the incidence of light on the retina, we could never
grasp the extension of space in three dimensions as we do, much less its
geometrical properties; moreover, blind persons do develop a conception
of the extent and the structure of space. From the first point it follows that
light rays are not sufficient for our grasp of the extension of space, and from
the second it follows that they are not necessary. What is most urgently
required is the notion of displacement, arising from the possibility of freely
moving the body – and therefore our point of view – between arbitrary
positions in space. Like retinal images, the sensations of motion (muscular
innervation) were objects of Helmholtz’s special psychological study, both
for movements of the body and for movements of the eyes to bring retinal
images into focus. But the true foundation of Helmholtz’s account was,
here again, not an empirical investigation but a conceptual analysis, in a
straightforward sense recently captured by Demopoulos: “the practice of
recovering a central feature of a concept in use by revealing the assumptions
on which our use of the concept depends” (2000, p. 220). The notion to
be analyzed was the notion of space itself: what is it in our experience
that we identify as the experience of space? More precisely, among the
innumerable changes that we observe in our sensory environment, how
do we come to distinguish certain changes as changes of spatial relation?
Kant, having identified the necessity of spatial relations as the condition
of the possibility of other kinds of relation, was content to take the former
for granted. But Helmholtz saw the possibility of a further analysis. His
question turned out to have a strikingly simple answer: spatial changes
are just those that we can bring about by our own willful action; the
movements that effect spatial changes can be done, undone, and combined
arbitrarily (Helmholtz, 1878, pp. 225–7). In fact these are just the features
of spatial displacements that allow us to treat them as forming a group,
the “group of rigid motions.” Poincaré’s group-theoretic account of space
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(Poincaré, 1902, pp. 76–91) is only a psychologically more detailed, and
mathematically more precise, articulation of Helmholtz’s brief analysis. The
same analysis, moreover, formed the basis of Klein’s “Erlangen” program
for the general classification of geometries by the groups of transformations
that preserve their fundamental invariants (see Klein, 1872). In this way
spatial geometry came to be seen as a special case of the general theory of
structures and their automorphisms (structure-preserving maps).15

From an epistemological perspective, there is another striking implica-
tion of Helmholtz’s analysis: the group structure of spatial displacements
is a crucial part of what permits us to distinguish space from time. The
possibility of changing position and, to all appearances, returning again to
the former position – restoring the sensible world to its former state, as
it would seem – fosters our sense that space is completely independent of
time. Even when we’ve accepted the motion of the Earth, and therefore
the impossibility of returning to the same absolute position in space, the
mere possibility of cancelling out changes in relative position indicates the
independence of space. Of course such operations take time, and eventually
it would become evident that the role played by time could not be set aside
after all. But the group structure, implicit in the apparent existence of an
inverse for every spatial displacement, allows us to think that this elapse of
time is completely incidental.

Together, then, the concepts of the rigid body and the line of sight (the
light ray) provide the geometrical notions of congruence and straightness
with whatever intuitive content they actually have. By the same token,
they provide the principles of geometry with a basis in empirical fact.
Helmholtz was able to formulate this idea as a mathematical proposi-
tion, and so show that the assumption of free mobility is sufficient to
derive the existence of a Pythagorean metric for space (Helmholtz, 1868).
Riemann (1867) had already shown that the Euclidean metric implies free
mobility, but Helmholtz’s proof, in the opposite direction, was intended
to be more epistemologically suggestive; it expresses more directly the idea
that free mobility is the physical source of our geometrical knowledge.16

It has been rightly noted that Helmholtz speaks simplistically of “the
facts that lie at the foundations of geometry” (see Helmholtz, 1868),
whereas Riemann refers more circumspectly to “the hypotheses.” In this
way Riemann indicated his awareness that the rigid body and the light ray
are to a certain extent idealizations, accurate enough in familiar circum-
stances but likely to break down in application to “the immeasurably large”
or “the immeasurably small.” There can be no doubt that, in comparison
with Riemann’s profound and general conception of space – the basis of
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modern differential geometry – Helmholtz’s view appears extremely narrow
(see Stein, 1977). In Helmholtz’s defense it may be said that he was not
merely taking for granted physical concepts that he might have questioned.
He was also trying to emphasize, in opposition to Kant, that the conditions
of the possibility of geometry include not only the constraints upon our
own sensibility – the form of outer intuition – but also the material con-
straints imposed by the world. That is a world in which there are bodies
that we may treat as approximately rigid, and in which the propagation
of light is lawful enough for accurate judgments of direction and distance.
In other words, the empirical nature of geometry appears not only in the
possibility of non-Euclidean geometry, as a possible outcome of empirical
measurements of curvature, but in our ability to conceive of a world in
which geometry as we know it would not be possible at all.

3 . 6 the convent ional i st cr it ique of
helmholtz ’s emp ir ic i sm

Helmholtz provided a convincing argument that geometry has a founda-
tion in empirical fact: our conceptions of space originate from the physical
possibility of free mobility, and our ability to imagine and to perform geo-
metrical constructions is contingent on certain regularities that hold to
some good approximation. Yet Helmholtz’s empiricist view, in retrospect,
appeared to have overlooked some peculiar features of geometrical prin-
ciples. Supposing that the principles of geometry are in some way tied to
the empirical facts, can we conclude that they are therefore, as Helmholtz
thought, empirical principles? The question is not whether they are, instead,
hypotheses, as suggested by Riemann; their peculiarity does not lie in the
fact that they are rough approximations or subject to eventual revision. On
the contrary, it lies in the fact that, despite their seemingly factual content,
there is something about them that appears to place them beyond empir-
ical control. Helmholtz seemed to think it a matter of fact that there are
bodies that may be moved about without change of shape or dimension.
But if a body failed to satisfy this condition, how would we determine this
empirically? Only by comparing it with another body that we suppose has
remained rigid. Similarly, how would we know empirically that light failed
to travel in a straight line? Only by comparing it with some physical object
or process that we suppose is truly straight. In either case, we are at the
beginning of an infinite regress, at every stage comparing one physical pro-
cess to another that is supposed to have the desired property. The natural
conclusion was drawn explicitly by Poincaré: the principles that Helmholtz
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alleges to be facts are in reality “definitions in disguise.” That light travels
in a straight line is a definition of the straight line, not an empirical claim
about light. That certain bodies remain congruent to themselves under cer-
tain motions is not an empirical fact about those bodies, but a definition
of congruence. Such principles, therefore, cannot be arrived at by induc-
tive arguments. As Poincaré pointed out, their subject matter is the way in
which certain concepts are to be applied. Therefore they can only be fixed
by stipulation.

Poincaré’s conventionalism is the subject of a large literature,17 to which
this discussion can only add a few important points. One is that, in spite
of himself, as it were, Helmholtz already took note of this curious aspect
of the principles of geometry. For one thing, he raised the possibility that a
neo-Kantian might defend Kantianism against his arguments by regarding
the concept of rigid body as a “transcendental concept, formed indepen-
dently of actual experience.” In that case, the principles of geometry would
be immune to empirical refutation, because “one would have to decide
according to them alone whether any given natural body is to be regarded
as rigid” (Helmholtz, 1870, p. 30). In other words, Helmholtz’s argument
would be evaded, non-Euclidean geometry would be empirically impos-
sible, if we were certain that only those bodies were rigid whose behavior
conformed to the principles of Euclidean geometry. In fact a version of
this idea was put forward by Hugo Dingler in the early twentieth century,
as part of a general criticism of Helmholtz’s view. According to Dingler,
Euclidean geometry is presupposed in the construction of our measuring
instruments and so has a privileged status, unassailable by any results that
we might obtain by manipulating those instruments (see Dingler, 1934,
also Carrier, 1994). As Helmholtz noted, however, such a response would
involve a serious departure from Kant. For then the principles of geometry
would no longer be synthetic a priori, but only analytic. That would defeat
the central point of Kant’s account of geometry. To Helmholtz, the reso-
lution was fairly straightforward: the principles of geometry are synthetic,
but their empirical content comes from the principles of mechanics and
optics.

We can see in other remarks by Helmholtz, however, some recogni-
tion that this simple answer masks some complications. The principles of
mechanics and optics cannot settle the question of geometry in the way that
Helmholtz suggested, if they themselves invoke the principles of geome-
try. If we know that light travels in a straight line, or that our measuring
instruments move without changing their dimensions, then we can deter-
mine the geometry of space by experiment, but, as we have already seen,
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we could not be said to know such principles by experience. In fact what
we do know from experience, on these points, Helmholtz knew better than
anyone: not only that there are motions that we can distinguish as spatial
displacements, but also that a line of sight between two places corresponds
to the direction of shortest motion between them. That a line of sight
represents the straight line of geometry is an obvious interpretation, but it
is still a kind of interpretation. Helmholtz even seems to suggest as much,
when he raises the question of distinguishing facts from definitions in the
foundations of geometry:

In my opinion this question is not so easy to answer, for in geometry we deal
constantly with ideal structures, whose corporeal representation in the actual world
is always only an approximation to the requirements of the concept, and we first
decide whether a body is rigid, its sides flat and its edges straight, by means of
those same propositions whose factual correctness the examination is supposed to
prove. (Helmholtz, 1868, p. 618)

This applies most conspicuously to the case of the light ray and the rigid
body, but more pointedly to that of the rigid body because of its insepa-
rability from the notion of congruence. Hence any attempt to define the
empirical meaning of the principle of rigid motion has to appeal to con-
gruence, and vice versa: “we have no criterion for the rigidity of bodies
and spatial forms except that, when juxtaposed to one another at any time,
in any place, and after any rotation, they always exhibit the same congru-
ences as before” (Helmholtz, 1870, p. 29). Regarding the Euclidean postu-
lates, Helmholtz clearly recognized that to use them as criteria for rigidity
and straightness, for example, would amount to treating them as analytic
instead of synthetic. But the principle of free mobility evidently poses the
same problem, and Helmholtz left it for others (especially Poincaré) to
make the problem explicit. In short, as we saw in the case of absolute time,
the principle of free mobility plays the role of a definition. Its empirical
content is therefore a kind of general expectation, namely, that for various
methods of measurement, the better they approximate a certain ideal of
rigidity the better they will agree with one another.

Indeed, one might gather from Helmholtz’s remarks that this defini-
tional character is pervasive in the principles of mathematics. His paper on
the foundations of arithmetic sets out to treat arithmetic as he had treated
geometry, that is, as a formal science developed from empirical principles.
In other words, it would appear, arithmetic is to be traced to its empirical
foundations just as geometry had been; we might expect him to identify
the physical facts that underlie our practices of counting and measurement.
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But if this was difficult to accomplish in the case of geometry – if, as we
saw, the apparently physical principle of free mobility was hard to repre-
sent as a straightforward empirical principle – it was still more difficult for
the principles of arithmetic. Helmholtz acknowledged this explicitly in his
analysis of arithmetical principles. Concerning the axioms of arithmetic,
Helmholtz writes, “The first axiom – ‘If two magnitudes are both alike with
a third, they are equal to each other’ – is therefore not a law with objective
significance; it only determines which physical relations we may recognize
as equality” (1887, p. 380). Then, in defining “physical connections” that
represent the addition of physical magnitudes, Helmholtz states even more
explicitly that he is not dealing with ordinary empirical laws: “we should
not wonder if the axioms of addition are verified in the course of nature,
since we recognize as addition only those physical connections which sat-
isfy the axioms of addition” (1887, p. 384). If this is true, then arithmetic,
like geometry, is not derived from facts of experience. Rather, it consists
in the application of certain concepts to experience, or, more precisely, the
search in experience for instances of those concepts. This by itself is by
no means a novel idea on Helmholtz’s part. The notion that mathematical
concepts, instead of being derivable from experience, are criteria by which
phenomenal objects are judged, or ideals to which they are compared –
goes back at least to Plato. What is novel is the implication that the con-
cepts are first defined by the axioms in which they appear, so that they do
in fact function as disguised definitions. Only Helmholtz does not appear
to have appreciated the significance of this fact for his original empiricist
aims. Consequently he appears not to have noticed that the principles of
mathematics emerge now as analytic principles, rather than as the synthetic
a-posteriori principles that he had thought to exhibit. In the case of geome-
try, the very possibility of such an interpretation was discounted because the
laws of mechanics, he assumed, provided the factual grounds for a choice
among possible geometries.

This last point is the lesson Helmholtz draws from his celebrated
examples of non-Euclidean spaces. If we observe the reflections of our-
selves, and of the movements of our measuring instruments, in a spherical
mirror – then as now a popular garden ornament – we would find that
what we think of as rigid motions produce systematic distortions of size
and shape, and our straight lines would be reflected as curves (Helmholtz,
1870, pp. 24–5). Yet objects that we found to be congruent would also be
congruent on the sphere; since all bodies would be equally distorted, the
coincidences of our measuring rods with the objects that we measure would
not be disturbed. If we could imagine inhabitants of this spherical world,
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attempting geometrical measurements, we must admit that the distortions
that we observe would be completely imperceptible to them, and that –
because all geometrical coincidences would be preserved – the bodies that
look distorted to us must look rigid to them. Moreover, our world would
necessarily appear to them a distorted reflection of theirs. “And . . . if the
men of the two worlds could converse together, then neither would be able
to convince the other that he had the true, and the other the distorted
situation” (Helmholtz, 1870, p. 25).

From the perspective of the twentieth century, Helmholtz’s argument
has been read as showing the “relativity of geometry”: it shows that there
can be completely incompatible alternative descriptions of the same situ-
ation, and no principled way of choosing among them (see, for example,
Van Fraassen, 1989). Helmholtz’s thought experiment is also an obvious
ancestor of Einstein’s view, that our empirical knowledge of geometry con-
sists entirely of “verifications of . . . meetings of the material points of
our measuring instruments with other material points” (Einstein, 1916,
p. 14). Since whatever pairs of objects are congruent in a picture must be
congruent in its distorted image, the “point-coincidences” determined by
such congruences are the only facts agreed upon from both perspectives,
the only facts that are verifiable independently of one’s choice of perspec-
tive. For Helmholtz, however, the lesson does not concern relativity at all.
Rather, it concerns the inseparability of geometry from mechanics. We
could not dispute the views of the sphere inhabitants without appealing to
“mechanical considerations” – that is, we can argue with them only on the
assumption that we share a common world of mechanical laws, so that we
can determine which picture expresses the true spatial dispositions of bod-
ies and light rays, and which picture is only a distorted image. The issue of
relativity arises between completely different worlds, not between different
descriptions of the same world; since the latter must by hypothesis have
a single set of physical laws, its geometry must be a matter of empirical
fact. Physicists who live in the same world, unlike those regarding each
other from outside as in the example, will inevitably find a common way
to determine its physical laws.

As Poincaré’s considerations reveal, however, such a conclusion involves
some question-begging. The sphere dwellers might agree to resolve our
differences on mechanical grounds, yet reject our interpretation of the
fundamental relations between geometry and mechanics, and thereby reject
our understanding of basic geometrical concepts. If they insist that light in
their world is traveling on straight lines, or that their measuring instruments
are the truly rigid bodies, how then shall we convince them otherwise?
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In short, their conception of geometry, like ours, must depend on what
physical objects they take to be rigid, and what paths they take to be straight.
This is no mere artifact of Helmholtz’s example, with two disconnected
worlds; it is not impossible to imagine a physics developed in our own world,
but from a different starting point and along independent lines, with (for
whatever reason) different conceptions of which bodies are appropriate
measuring instruments; the adherents of that view would have trouble
convincing us of any empirical facts about space. It follows that neither
their position nor ours could have any firmer ground than the neo-Kantian
view that Helmholtz had proposed. Either the principles of geometry, or
the definition of the fundamental geometrical quantities, must be set down
a priori. If the former, then which bodies are truly rigid or which paths
straight becomes a matter for empirical investigation – for the truly rigid
bodies and the truly straight lines will be those that accord with the chosen
geometry. If the latter, then the comportment of bodies and straight lines
will reveal the geometry of themselves.

This brings us to the second important point about Poincaré’s conven-
tionalism. Whether he was right to say that these a-priori principles are
only conventions, and even what he really meant by saying so, are perhaps
open to question. But his identification of these principles, and of their
roles in our conceptions of space and time, must be accounted a genuine
philosophical discovery. One may speak of a-priori principles, in physics at
least, as if they might originate as empirical principles, and have the status
of a priori conferred upon them by our act – as if an empirical generaliza-
tion might be, as Poincaré put it, “exalted” to become a postulate.18 But
the essence of Poincaré’s view is not that we can agree to treat empirical
principles as “absolute” and unrevisable, or to treat approximately verified
principles as exactly true. It is, rather, that some of the most important
principles that we take to be empirical simply are not – that they are, by
their very form and content, “definitions in disguise.” The concepts about
which they seem to inform us are in fact defined for us by those very princi-
ples. The principles therefore do not make assertions about actual states of
affairs. Rather, they establish how particular concepts are to be empirically
interpreted. This is not merely a fact about geometry, but is true of any
science that applies mathematical structures to experience, including theo-
retical physics in general. That force is proportional to acceleration cannot
be, in itself, true or false, unless we assume that there is something prior to
Newton’s physics that gives us an independent definition of force; the func-
tion of this principle in the Newtonian framework is to fix the meaning of
the concept of force, by associating it with a measureable feature of a body’s
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motion. We could hardly say that force seems to be nearly proportional to
acceleration, and that we have adopted the convention that it is exactly so;
we know that it is exactly so because Newton’s law imposes this definition
as the measure of force. Any imprecision, in the measure of a particular
force from a given acceleration, only requires us – by definition – to seek
out forces contributed by yet-unnoticed bodies. Poincaré’s analysis, then,
in the best philosophical tradition, uncovers a subtle philosophical error:
mistaking a definition for an empirical principle, through a failure to see
the assumptions on which the content and the application of the principle
really depend.

Poincaré made this most clear in his exchange with Bertrand Russell over
the foundations of geometry (Russell, 1897, 1899; Poincaré, 1899a, b).19

On Russell’s account, propositions are meaningful just to the extent that
their constituents are understood, and the meaningfulness of geometrical
principles depends on our independent grasp of the primitive terms that
occur in them. As Poincaré showed, however, a proposition like “bodies can
be moved in space without change of shape” is not telling us something new
about a previously understood conception of shape; rather, this proposition
is partly constitutive of any understanding of “shape” that we have. The real
purport of the statement is that “in order for measurement to be possible, it
is necessary that figures be susceptible of certain movements, and that there
be a certain thing that will not be altered by those movements and that we
will call ‘shape’” (Poincaré, 1899a, p. 259). For Russell, shape is just the sort
of “indefinable” basic term of which we have an unanalyzable, immediate
grasp, and asking for a definition of it is like asking for “the spelling of
the letter A” (Russell, 1899, p. 701). For Poincaré, that allegedly immediate
grasp may be relevant to the psychology of the individual. But it cannot
help us to understand how a concept functions within a coherent system of
principles, so that two persons who may not associate the same immediate
intuition with a concept can nonetheless reason with it in accord with
one another. That requires that both apply the same systematic criteria to
recognize instances of the concept, and those are given only by the principle
that constitutes its implicit definition. This has two notable consequences:
that the vague intuitive notion can be made precise by articulation of
the principle that is implicitly assumed in our use of it; and that such a
principle, once isolated, allows us to treat the subject as a formal one that
is independent of intuition altogether.

In retrospect, this view accords with Kant’s much more than Russell’s
does, despite the latter’s emphasis on intuitive self-evidence. Kant’s shares
with Poincaré’s an essential anti-psychologistic emphasis; in both cases, it
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is formal principles that render intuition a source of systematic knowl-
edge. Arguably, the “form of intuition” shares that emphasis not only with
Poincaré’s view, but also with Plato’s explanation of geometry through the
theory of forms. All of these acknowledge that what we are immediately
given in intuition – misleading appearances, badly drawn diagrams, inac-
curate estimates – is inadequate to the demands of geometry for a precise
conception of space. Since we evidently do have such a conception, its
foundation must be something beyond what is given, something “called to
mind” by the given but with a conceptual component, an element of uni-
versality and necessity, that transcends what is given. Plato supposed that
this must come from intuitions of another sort, given to a purely intellectual
faculty. But Kant saw the difficulties of this supposition, and saw that the
formal principles, rather than being themselves objects of intuitive knowl-
edge, must somehow order the combination and the “successive synthesis”
of sensible intuitions. So these transcendental principles, conditions under
which intuitions can provide objective knowledge of relations in space, can-
not transcend the intuitions whose order they constitute. It was Poincaré
who understood that if there is such an order, or “form of intuition,” it
must be implicit in the concepts that we impose upon intuition. Those
concepts are implicit in the rules that guide our intuitive practice.

It is true, as we have seen, that Helmholtz glimpsed this possibility, if
somewhat dimly. But he never saw quite clearly enough its implications
for the empiricist view that he was advancing. With Poincaré, we see the
explicit realization that principles such as the principle of free mobility,
and other fundamental constitutive principles, belong to a distinctive type.
Though stated in the grammatical form of synthetic propositions, they are
really interpretive principles that assign meaning to particular concepts.
And this is why they have that aura of necessity that Kant emphasized,
and even Helmholtz had acknowledged. But, as Coffa expressed Poincaré’s
view, “convention, semantically interpreted, is merely the opposite side of
necessity. In the range of meanings, what appears conventional from the
outside is what appears necessary from the inside” (Coffa, 1991, p. 139).
What protects such principles from revision is not their apodeictic certainty,
but our decision to treat them as unrevisable.

3 . 7 the l im its of po incar é ’s convent ional i sm

Poincaré’s account of the foundations of geometry seems to imply a thor-
oughgoing relativity of space and of spatial knowledge. Where Helmholtz
had stubbornly held on to some form of empiricism, for example in his
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account of the spherical mirror, Poincaré saw that such an implication could
not be avoided. It was he who pointed out that as far as empirical facts are
concerned, there is no distinction at all between the world as we think we
know it and one with completely distorted metrical relations – provided
only that everything is equally distorted, and that all coincidences are pre-
served between material points. Thus Poincaré explicitly anticipated what
the logical positivists would call “the relativity of geometry” (see Schlick,
1917, chapter 3). What we learn directly from intuition is only which bod-
ies appear to coincide, and any further knowledge of geometrical relations is
possible only if certain conventions are imposed. In this way Poincaré took
the criticism of Kant a large step beyond Helmholtz. There, the point had
been that the intuitive–constructive basis of geometry is actually weaker
than Kant had required, that is, too weak to single out Euclidean geometry
among the geometries of constant curvature. Poincaré pointed out that the
underlying principle even of this general class of geometries, the principle of
free mobility, has a quantitative content that goes beyond simple intuition;
a truly intuitive geometry must be still more general, eliminating even the
simple requirement of free mobility, and including only what is accessible
to direct intuitive verification, without physical (metrical or quantitative)
assumptions. This is why Poincaré thought that the only truly intuitive
geometry was analysis situs, in which only topological distinctions matter
and measurement is out of the question (Poincaré, 1913).

But the difference between Poincaré’s view and its twentieth-century
successor is significant and illuminating. In the context of general relativity,
as understood by Einstein and Schlick, the relativity of geometry has an
immediate significance for metrical geometry: the underlying “amorphous”
space is represented by an arbitrary Riemannian manifold, assumed to have
no more intrinsic structure than its differentiable structure (see Chapter 4,
later). Physical structure, more precisely the metrical structure that is to play
the role of the gravitational field, is imposed by two stipulations: first, that
special relativity holds in the infinitely small, i.e. at any point the metric
is Minkowskian; second, that over finite regions, the metric depends on
the mass distribution in accord with Einstein’s equation. From Poincaré’s
insight into the epistemology of geometry, it seemed, one could infer that
space is in itself an empty notion that must get its physical content by our
decision.

In Poincaré’s view, however, such a space is essentially pre-geometrical
or, perhaps more precisely, non-geometrical. The only geometry it can be
assumed to have is “intuitive” geometry in Poincaré’s peculiar sense, which
is not really geometry at all. What Poincaré thought of as genuine geometry
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concerns a much more restricted kind of space, the space whose properties
we come to know by way of the group of congruence transformations:
“Geometry is merely the knowledge of the mutual relations of these trans-
formations, or to use mathematical language, the study of the group formed
by these transformations, that is, the group of motions of solid bodies”
(Poincaré, 1902, p. 99). This definition evidently admits only a special
case of Riemannian geometry in general, that is, again, only the geometries
of constant curvature. The reason for this was that to Poincaré, all other
possible geometries were analytic rather than synthetic: because the prin-
ciple of free mobility does not apply, they are not knowable by classical
geometrical constructions. They are objects of mathematical study as for-
mal systems, but not susceptible of empirical interpretation as structures
for space. Intuition, then, remained as central to space for Poincaré as it
had been for Kant, at least to the extent that, for both of them, the intu-
itive constructive procedures were conditions of the possibility of spatial
knowledge.20

This last point sheds some further light on the nature and limits of
Poincaré’s conventionalism. At least as far as the physical content of geom-
etry is concerned, he was not really a conventionalist at all; unlike the
positivists who drew encouragement from his remarks, he did not view
spatial geometry as inherently empty formalism. The content of geometry
was not imposed by convention, but revealed by the conceptual analysis
that identified it with our experience of free mobility. Poincaré’s conven-
tionalism arises, in fact, precisely from the way in which the content of
geometry is fixed. The principle of free mobility, again, only establishes
that space has one of the geometries of constant curvature. To Helmholtz,
it seemed obvious that we could appeal to physics for an empirical deci-
sion among these; to Poincaré, such an appeal is inherently conventional,
because it involves principles that are inherently extrinsic to the concept of
space. Any principle we might adopt, such as that light travels in a straight
line, must be a dynamical principle, i.e. a principle involving time as well
as space. Helmholtz or Riemann might object, at this point, that the laws
of physics have some claim to authority in these matters, since geometry
is in the end dependent on mechanical assumptions. For Poincaré, the
dependence was in the other direction: physics could not even begin – its
basic dynamical principles could not even be formulated – unless a spatial
geometry was already given (see Friedman, 1999b).

This appears to be an obvious fact about Newtonian mechanics, which
had always taken for granted a background Euclidean space against which
basic quantities such as position and velocity could be defined. In Poincaré’s
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view, it was only an instance of a more general fact about the mathemati-
cal sciences, namely that they stand in a kind of hierarchy of dependence
(see Friedman, 1999b). Physics could not begin to define its concepts
except against an assumed background of geometry; geometry required an
assumed background of arithmetic; arithmetic in turn required the back-
ground of a general theory of magnitude, and so on. There could be no
question of a principle of physics determining the nature of spatial geom-
etry, any more than a principle of geometry could determine the nature
of arithmetic; in either case it is impossible, because the former principle
implicitly takes the latter for granted. At the level of geometry, it happens
that the defining principle (free mobility) is insufficient to determine the
structure completely, beyond the fact that it must be of constant curvature.
Mathematicians had established that Newtonian physics could be com-
patible with non-Euclidean spaces of constant curvature, but, as Poincaré
recognized, this only confirmed the impossibility of appealing to physics
for a decision. In order to proceed from geometry to physics, then, some
convention must be adopted that must borrow from physics itself. That
this curious fact might turn out to undermine the ordering of Poincaré’s
hierarchy does not seem to have occurred to him – even after it happened,
when the electrodynamics of moving bodies led to a new understanding of
spatial geometry (see Chapter 4, later).

Poincaré’s view makes an instructive comparison with Riemann’s (1867).
Where the conceptual analysis of Poincaré and Helmholtz made free mobil-
ity the fundamental defining principle of spatial geometry, Riemann’s
analysis identified a much more general conception of space as a “multiply-
extended manifold,” a notion that might apply to any collection of elements
that could be specified as “locations” with respect to some number of con-
tinuously varying magnitudes. He identified the metric of a space as a
function of these locations – the differentials of the coordinates in each of
the several dimensions – and some arbitrary and variable coefficients, in an
expression for the infinitesimal distance ds2 that is now fairly familiar:

ds 2 =
∑
μ,ν

gμνdxμdx ν

This is not the place for an extended survey of the subject,21 but we can
see that in the three-dimensional case, the differentials form the matrix

⎛
⎝

dx 1dx 1 dx 1dx 2 dx 1dx 3

dx 2dx 1 dx 2dx 2 dx 2dx 3

dx 3dx 1 dx 3dx 2 dx 3dx 3

⎞
⎠
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and the coefficients form the matrix⎛
⎝

g 11 g 12 g 13

g 21 g 22 g 23

g 31 g 32 g 33

⎞
⎠

Then it is easy enough to see that the infinitesimal Euclidean (Pythagorean)
metric

ds 2 = dx 2 + dy 2 + dz 2

is just the special case of a Riemannian metric in which the matrix gμν has
the form ⎛

⎝
1 0 0
0 1 0
0 0 1

⎞
⎠

that is, where gμν = 1 where μ = ν, and gμν = 0 where μ �= ν. It is
also easy to see how different values for the coefficients gμν determine an
infinite variety of metrical structures, homogeneous and inhomogeneous,
including, most notably, the space-time structures of general relativity in
which gμν depends on the distribution of mass.

Again, Poincaré knew Riemann’s work well, and both of them under-
stood that the concept of physical space involved severely restricting the
more general conception. But for Riemann, as for Helmholtz, the con-
dition of free mobility was a restriction that rested on special empirical
assumptions; even more than Helmholtz, Riemann emphasized that the
idea of a rigid body is one that physical objects can only approximate.
More important, instead of proposing to adopt the convention that there
are rigid motions, Riemann pointed out that the advance of physics would
lead us to more exact notions at smaller (or possibly very large) scales. In
other words, the principle of free mobility was not for Riemann a condition
of the possibility of physical geometry, but an assumption that we rely upon
provisionally, until we gain some deeper insight into the nature of bodies
and their microscopic interactions. Then the concepts of rigid body and
light ray may well be inapplicable, and the idea that space must be homo-
geneous – the entire picture of space as founded in a group of isometries –
may prove to be a drastic over-simplification. Riemann’s philosophical
position, then, was a more sophisticated and forward-looking version of
Helmholtz’s empiricism, on which physics was acknowledged to be the
source of our geometrical knowledge, and therefore authoritative over it;
only Riemann imagined that physics itself might call into question the
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concepts it had furnished for geometry, and eventually place geometrical
reasoning on an entirely new foundation. Evidently it was this philosophi-
cal attitude, as well as the mathematical formalism that he introduced, that
made Riemann seem like an anticipator of twentieth-century physics.

The empiricist view, then, was that dynamical principles – principles
involving time as well as space – could force revision of the spatial geome-
try that had been originally assumed in their development. We might say
that this view acknowledges the possibility, at least, that space-time is more
fundamental than space. On Poincaré’s hierarchical view, in contrast, such
a revision would not make sense. It would appear that special and general
relativity confirmed the empiricists, since radical changes in geometry were
motivated by considerations of electrodynamics and gravitation, respec-
tively. In one sense, however, this is a slight exaggeration. In fact Einstein
did not force the revision of spatial geometry directly, through any breaking
down of the concepts of rigid body or light ray; rather, he inferred from
the “gross” behavior of light and bodies that there were difficulties in our
conception of space and time together – in the conception of simultaneity,
or the separation of space and time, and in the conception of inertia, or the
notion of a privileged trajectory in space and time. Inhomogeneous spatial
geometry entered into general relativity only as the projection upon space
of an inhomogeneous spatio-temporal geometry; for example, spatial cur-
vature near the Sun, as revealed by the bending of starlight, emerged from
the theory that light travels on the geodesics of a curved space-time. But
Riemann’s empiricism acknowledged, at least, that spatial geometry could
not be isolated from the future development of physics. For Poincaré, this
isolation was an important part of what defined the role of geometry in
physics.

The privileged status accorded to space, and the difficulties associated
with it, define Poincaré’s approach to the problems of absolute space and
absolute motion (Poincaré, 1902, pp. 135–42). He certainly defends the
“relativity of space” against the notion of absolute space. But his reasons
for rejecting it have to do, not with the dynamical equivalence of states of
motion – which involves space and time together – but with the proper-
ties of space alone. The relativity of space follows from the homogeneity
of space that is embodied in the group of rigid motions, since the sym-
metries of Euclidean space (or any space of constant curvature) make it
impossible to single out privileged positions in space. As we noted in
Chapter 2, however, Newtonian absolute space fully respects the spatial
symmetries of Euclidean geometry; what it does not respect are the spatio-
temporal symmetries of Newton’s own mechanics, the Galilean group of
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transformations, which make it impossible to single out the same position
at different times. In other words, Poincaré has repeated the classical rela-
tionalist confusion, between the question of a privileged position in space
and that of a privileged velocity in space and time. Absolute space per-
mits the latter but not the former, while, properly understood, Newtonian
mechanics permits neither. Yet in spite of his convictions about relativity,
Poincaré acknowledges that the phenomena of centrifugal force do distin-
guish rotation from non-rotation. He therefore concludes that we need the
“fiction” of an absolute space, even with distinguished positions, as some-
thing to which rotation can be referred. Physicists are obliged to live with
the philosophical embarrassment of absolute space in order to make sense of
dynamics.

It would be pointless to criticize Poincaré for maintaining the need for
absolute space, even though he maintained it well after the concept of iner-
tial frame had become fairly well known (see Section 4.1 later). It is only
worth noting the difficulty in which he is placed by his conception of space
and its relation to physics. Because he thinks of space as completely charac-
terized by the group of rigid motions, and therefore inherently “relative,”
Poincaré is not in a position to consider absolute space as part of a spatio-
temporal structure that is revealed by the laws of motion. So, he wrongly
concludes that by making spatio-temporal distinctions among states of
motion, the laws of motion violate the relativity of space. To introduce
absolute space into physics, in order to explain such distinctions, is to adopt
the “fiction” that this structure is the sort of real thing with respect to which
we can speak of relative motion – much as, in electrodynamics, Poincaré
was content to adopt the “fiction” of an ether as the medium in which
electromagnetic waves propagate, and as the reference frame with respect
to which their true velocity is defined. Superficially this view would appear
to resemble Kant’s, insofar as the compelling epistemological arguments
against absolute space – arguments founded in the very nature of space and
the means by which we come to know it – have to be set aside because of
the conundrum posed by absolute rotation; neither Kant nor Poincaré saw
beyond the space of intuition, to the possibility of a spatio-temporal struc-
ture that would solve the conundrum and yet respect the relativity of space.
But Kant’s solution is, in fact, much more abstract than Poincaré’s, and so
much more in keeping with Newtonian mechanics. As we saw earlier, Kant
did not simply impose absolute space as a privileged relative space for the
explanation of absolute motion; rather, he viewed it as the end-point of the
dynamical analysis of relative motion. In short, in Kant’s approach absolute
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space has much the same role as an inertial frame in the modern approach
to Newtonian mechanics, as a frame constructed by the identification of
true accelerations and forces in the interactions of a system of bodies; the
modern approach merely acknowledges that we have identified an infin-
ity of equivalent spaces whenever we have identified one. Absolute space,
then, on Kant’s account, rests not on an explanatory hypothesis or fiction,
but on a conception of true motion as something that we can determine
by a constructive process. In Poincaré’s approach, however, it is a kind of
reification of an abstract idea, a metaphysical embarrassment that we can
countenance only by not taking it seriously as an objective feature of the
physical world. The harmony between the concept of space and the theory
of dynamics that Kant had sought to articulate, and that finally emerged
with the concept of inertial frame, was not visible from a perspective
according to which the concept of space was so completely independent of
physics.

Understanding this aspect of Poincaré’s thinking helps us to understand
another aspect that has been much remarked upon, namely, his conviction
that physics would always be founded on Euclidean geometry, and that
physicists would always prefer to adjust the laws of physics rather than
to adopt a non-Euclidean geometry. This seems to be, at best, a careless
sociological prediction, especially since he continued to make it even after
special relativity had been developed; at worst, it exhibits a degree of narrow-
mindedness that seems remarkable in a mathematician who contributed
so much to the understanding of non-Euclidean geometry. It is tempt-
ing to blame this puzzling conviction on his conventionalism. And there
is some justice in doing so: if some convention about geometry must be
adopted before physics can begin, then physicists have the right to choose
the simplest geometry, which is undoubtedly Euclid’s. Any complications
that might arise as they try to maintain it in all circumstances must be
seen as mere inconveniences, costs that must be weighed against the cost of
adopting a more complex convention. Poincaré obviously disagreed with
Kant that there is a unique given framework for geometry, but he agreed
with the Kantian principle that, by its very nature as a general framework,
Euclidean geometry was inherently capable of embracing every possible
phenomenon, and that the problem of explaining away what might seem
to be non-Euclidean relations was just part of the scientific task that any
such framework imposes. This is no different from the manner in which
Newtonian mechanics imposes the task of explaining away anything that
seems to be an unbalanced force, by discovering some previously unknown
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mass that is interacting with whatever system we are studying. Only some
form of a priorism, it would seem, would permit such a confidence, and
the version of a priorism that lay behind Poincaré’s confidence was conven-
tionalism.

Yet we might also expect that conventionalism, by itself, would encourage
a more casual attitude toward the changing of geometrical frameworks, a
recognition that a judgment of convenience is probably provisional and
likely to be revised under the pressure of new circumstances. Poincaré
himself eventually spoke of special relativity and Newtonian mechanics
in direct comparison, as two possible conventions regarding the group of
spatio-temporal transformations, either of which can be defended on some
pragmatic grounds or other. But he continued to maintain that physicists
would ultimately stay with the older convention. More lies behind this
conviction than just conventionalism; it is Poincaré’s particular kind of
conventionalism, combined with his particular view of the privileged status
of space. The theory of space will not be overturned by principles of physics,
because space is exhaustively defined for us as a pre-physical notion, and
because, therefore, the transition from geometry to physics must always
introduce extraneous elements into the concept of space. That geometry
had always involved such elements, and that our changing understanding
of those elements and their implications for geometry was essential to the
growth of geometry as a science, was an empiricist conviction that Poincaré
never took to heart.

3 . 8 the n ineteenth-century achievement

The nineteenth century, then, developed a remarkable degree of insight
into the foundations of empirical geometry, starting from Kant’s con-
ception of it as expressing the structure of spatial intuition, and even-
tually revealing its dependence upon physical assumptions about the dis-
positions of bodies and light rays. In the process they developed a new
understanding of the a-priori aspect of geometry, showing it to be neither
synthetic nor analytic in Kant’s narrow sense; its principles were neither syn-
thetic statements about real states of affairs, nor mere analyses of what was
“contained in” particular geometrical concepts. Indeed, this very notion
of the analytic, as Kant understood it, was inadequate to account for con-
cepts that are implicitly defined by the axioms of a theory; for the somewhat
vague question of what elements are contained in a given concept, one could
now substitute the question of how the concept functions within a given
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framework of principles. But this question suggests that such a concept has
no foundation beyond its role in an arbitrary formal structure, whereas the
analyses of Helmholtz and Poincaré suggested something more than that:
that the principles of physical geometry revealed the way in which certain
concepts function as criteria in the organization of our experience, making
our pre-systematic notions – e.g. of spatial displacement – the basis for a
systematic knowledge of space as a mathematical structure. By virtue of
that function they had to be considered a priori rather than empirical, but
their dependence on contingent features of the world, and on our ability
to recognize and exploit them, meant that they could not be imposed by
arbitrary convention. In a certain sense they could be said to be discovered:
not as directly revealed by empirical evidence, but as implicitly guiding a
set of pre-systematic empirical practices. The association of geometry with
rigid bodies arose, in other words, not by any conventional choice, but by
the conceptual analysis of our empirical knowledge of space.

The impact of the nineteenth-century accomplishment was obscured,
I think, by its bond with an intuitive picture of space and time, that is,
with a conception of space as separate from time, and of spatial measure-
ment as defined by intuitively obvious procedures. In effect, this work
was confined by the original post-Kantian project, of accounting for the
intuitive–constructive picture of geometry by an analysis of its empirical
roots. Riemann’s approach, it is true, stood outside of these confines, based
as it was on a far more general conception of space, of which the set of intu-
itively constructible spaces represented an extremely special case. In doing
so he went as far as possible toward abstracting a general conception of space
from any possible intuitive picture of it, which must then be seen as result-
ing from the imposition of very special assumptions about measurement
upon this general conception. And he raised the possibility that the intu-
itive picture, or, more precisely, the principles assumed by measurement,
are merely rough approximations to the principles that really do determine
the geometry of space. But this was only a partial emancipation from the
intuitive picture, since it represented the latter as an approximation to a
more accurate picture. A complete emancipation was required only when
physical geometry had to confront dynamical principles – spatio-temporal
principles – that called into question the very notion of space, as something
independent of and separable from time. The task for the twentieth cen-
tury was to find, for unintuitive or counterintuitive principles taken from
electrodynamics and gravitation, a connection with space-time geometry
that was as direct and revealing as the connection between rigid motion
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and spatial geometry. We will see in the next chapter how this task was
eventually completed.
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chapter 4

The origins and significance of relativity theory

General relativity once seemed to be philosophically clear. Physics, accord-
ing to the logical positivists, had come together with the leading ideas of
epistemology, metaphysics, and the foundations of geometry into a single
coherent picture – something that had not happened since the philosophy of
Kant. In Kant’s case, however, what united Newtonian physics, Euclidean
geometry, and the critical philosophy was a naive conception of mathe-
matics as a creature of sensible intuition. That conception was, as we saw,
overthrown by nineteenth-century ideas: the emergence of non-Euclidean
geometry, the rise of conventionalism, and, in general, the separation of
formal mathematics from intuition. To the positivists, general relativity
was no more or less than the synthesis of these post-Kantian ideas with an
empiricist view of science.

The positivists’ notion now seems to be as naive as Kant’s. But this is not
because they were utterly misguided about the philosophical significance
of relativity. Rather, it was because they misunderstood the philosophi-
cal relations between relativity and what came before it. They could not
fully understand the nature of the radical change that Einstein effected,
as long as they failed to appreciate the essential philosophical continu-
ities between his theories and those of Newton. They could not see a
satisfactory alternative to Kant’s theory of the synthetic a priori, as long
as they were fixed on the idea of arbitrary convention. Nor could they
make much progress on either of these problems as long as they mis-
understood the fundamental role that conceptual analysis had played in
articulating a reasonable empiricist view of geometry. This chapter, then,
does not attempt a complete historical account of all of the develop-
ments leading to special and general relativity (which, in any case, oth-
ers have already done successfully).1 Instead, it aims at a new account
of Einstein’s philosophical arguments for special and general relativity, by
placing them in their proper context: first, in relation to the philosophical
history recounted in the previous chapters, and second, in relation to the
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general questions about philosophy and space-time physics that this book
attempts to address.

4 . 1 the philosophical background
to spec ial rel at iv it y

The conception of physical geometry that emerged by the end of the nine-
teenth century, one might say, resulted from the emergence of the problem
of interpretation. Once it was possible to think of a multiplicity of possible
geometries as formal structures, it became possible to question the ways in
which the formal structures may be applied to experience, and to see the
necessity for reflection – and possibly a conventional decision – on which
aspects of experience represent aspects of geometrical structure. For Kant,
there could be no uninterpreted, purely formal geometry, as the intuitive
interpretation was the condition of the possibility of any geometry at all.
Even for Helmholtz, geometry was defined as the science of the displace-
ments of rigid bodies, and had no need of interpretation. Conventionalism
seemed to be the natural consequence of understanding geometry in far
more abstract terms than Helmholtz’s or Kant’s, as a theory of a much more
general class of purely formal structures.

It was not obvious, however, that this new understanding of geometry
should have any special implications for physics. A comparable revolution
in physics would require, first, some reason to question the principles of
classical physics; second, some reason to think that the problems of physics
concerned its most general and basic presuppositions, namely its implicit
conceptions of geometry, space, and time. That Einstein saw just such
a connection, between the difficulties of theoretical physics and its assump-
tions about the measurement of space and time, was no fortuitous accident.
Nor did it arise from an inexplicable flash of insight. To understand it fully,
we need to examine Einstein’s philosophical engagement with the prevail-
ing physics of his time. This involves taking Einstein, to a certain extent, at
his word: he claimed on many occasions that the philosophical arguments
with which he introduced his theories corresponded to the ways in which he
arrived at the theories himself. The challenge of this approach is to recon-
struct his philosophical arguments in a way that makes them seem plausi-
ble. If we could do this, we would make some important progress beyond
the logical positivists, who represented those arguments rather unconvinc-
ingly as applications of simplistic epistemological rules. We might also
begin to answer the challenge posed by Kuhn, by showing that Einstein’s
arguments against the Newtonian views were not circular ones that took
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his own view for granted. Rather, they began with the spatio-temporal
presuppositions of the Newtonian views, and showed how their inade-
quacies revealed the principles on which an entirely new theory could be
built.

It is sometimes said that special relativity overthrew the concepts of
absolute space and time. This is only half true; by the time Einstein began
his work on electrodynamics, the concept of inertial frame was already
widely known, and absolute space was already widely understood to be
superfluous (see DiSalle, 1991). Thomson (1884) introduced the notions
of “reference-frame” and “reference-dial-traveller,” i.e. a spatial frame and
a temporal standard relative to which motion may be measured, so that
the laws of motion may be stated thus: for any system of particles moving
anyhow, there exists a frame and a time-scale with respect to which every
acceleration is proportional to and in the direction of an applied force, and
every such force belongs to an action–reaction pair. Moreover, any frame in
uniform rectilinear motion relative to such a frame is also an inertial frame.
Independently, Lange (1885) offered an essentially equivalent conception,
the “inertial system” and “inertial time-scale,” and Lange’s version (and
terminology) was more prominently discussed in the German-language
literature that Einstein might have read. It was especially emphasized by
Mach, in the second (1889) and later editions of Die Mechanik.2

How much Einstein absorbed of all of these discussions is not clear.
It is clear, however, that by 1905 he must have thought it completely
uncontroversial that mechanics has no need of absolute space, but needs
only “a coordinate system in which the equations of mechanics are valid”
(1905, p. 892); by the relativity principle, any system that is in uniform
motion relative to such a system is physically equivalent to it. The only
question was whether electrodynamics stood in violation of this relativity
principle, by treating electromagnetic processes as waves propagating with
a definite velocity in a stationary medium, the ether. Central supporters
of the ether theory, such as Maxwell, asserted that the relativity principle
was still upheld: the velocity of light relative to the ether is, after all, still
a relative velocity (Maxwell, 1877, p. 35). Therefore one might maintain
the equivalence of inertial frames, while acknowledging that one subset of
them happens to represent the rest-frame of a certain physical object whose
states determine electromagnetic phenomena. At the same time, Lorentz
and his contemporaries confronted the peculiar fact that motion relative
to the ether is impossible to detect: the effects of such motion on the
relative velocity of light had been calculated, and the Michelson–Morley
experiment was sensitive enough to produce the effects of the motion of
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the Earth through the ether, but no effects were detected (then or since).
Lorentz explained this null result by the contraction of all objects, including
our measuring apparatus, in proportion to their velocity relative to the ether.
For Einstein, however, rest in the ether was tantamount to absolute rest, and
the extension of the relativity principle to electrodynamics was therefore an
open problem. The apparent indistinguishability of the ether frame meant
that the problem was urgent as well.

Einstein made it clear from the beginning that the solution would require
some analysis of fundamental concepts. According to the logical positivists,
this meant an “epistemological analysis of the concept of time”: epistemol-
ogy requires an account of the empirical meaning of the concept, and
physics provides a process – light signaling – that enables us to define
the concept in empirical terms. So the revolutionary significance of spe-
cial relativity lay in this: Newtonian physics had an abstract conception of
“absolute” simultaneity, but no physical definition of it; Einstein saw the
need for a “coordinative definition” by which simultaneous events could
be identified. He therefore supplied the need by introducing an essentially
arbitrary stipulation, that when a light signal is propagated from a point
A and reflected at B, the time of propagation from A to B is the same
as the time from B to A. Thus a vague and “metaphysical” conception of
simultaneity is replaced by one that is empirically meaningful, through the
act of stipulating what its empirical meaning shall be.

It should not be difficult, then, to understand why Einstein’s account
of simultaneity seemed to encourage a verificationist account of mean-
ing. Evidently he had given an analysis of the concept that was, at the same
time, a rule for verifying that two events are in fact simultaneous. Moreover,
Einstein’s own language sometimes suggested that he viewed the matter in
just this light. His 1905 paper asserts that “a mathematical description [of
the motion of a material point] has no physical meaning unless we are quite
clear as to what we understand by ‘time,’” and goes on to consider pos-
sible empirical methods of synchronization. He elaborates in his popular
account of relativity: “The concept of simultaneity does not exist for the
physicist until he has the possibility of discovering whether it is fulfilled in
an actual case. We thus require a definition of simultaneity such that this
definition supplies us with a method by means of which, in the present case,
he can decide by experiment whether the two lightning-strokes occurred
simultaneously” (Einstein, 1917, p. 22). Reichenbach drew the lesson most
explicitly: “The physicist who wanted to understand the Michelson exper-
iment had to commit himself to a philosophy for which the meaning of
a statement is reducible to its verifiability, that is, he had to adopt the
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verifiability theory of meaning if he wanted to escape a maze of ambiguous
questions and gratuitous complications” (Reichenbach, 1949, pp. 290–1).

If the concept of simultaneity is to be defined by its means of verification,
the question arises just how the means ought to be determined. Einstein
himself often suggested that it was a matter of conventional choice. In 1905
he asserts that a “common time” for different observers can be defined only
if we “establish by definition that the ‘time’ required by light to travel from
A to B equals the ‘time’ it requires to travel from B to A” (Einstein, 1905,
p. 894). But he gives no explicit justification for the use of light signals
in particular. And in later remarks, he speaks as if the isotropy of light
propagation, and its use in time measurement, is fixed by an arbitrary
stipulation. In his popular exposition of his work (1917), he considers a
possible objection to his principle: how can we test the hypothesis that the
speed of light is isotropic, unless we already have a way of measuring time?
The answer is that the principle is only a definition. “Only one requirement
is to be set for the definition of simultaneity: that in every real case it provide
an empirical decision about whether the concept to be defined applies or
not”; that light takes the same amount of time to travel in both directions
“is neither a supposition nor a hypothesis, but a stipulation that I can make
according to my own free discretion, in order to achieve a definition of
simultaneity” (Einstein, 1917, p. 15). In his Princeton lectures (1922), he
raises the question why light propagation should play such a central role
in his theory, and gives no more answer than that “It is immaterial what
kind of processes one chooses for such a definition of time,” except that it
is “advantageous . . . to choose only those processes concerning which we
know something certain” (Einstein, 1922, pp. 28–9).

Remarks like these may be taken to suggest that, after all, the positivists’
view of the origins of special relativity was very near the truth. Whatever
attempt we might make to justify the theory on inductive grounds, and
however well such an attempt might succeed – in order to show that it
is simply better confirmed than its predecessors – Einstein saw himself as
investigating the meanings of fundamental concepts, and as linking their
meanings to the empirical procedures that determine their application.
Moreover, he noted the element of arbitrary convention in the choice of
criteria. It is not surprising that he should have done so. After all, he
claimed to have been profoundly influenced by Poincaré’s writings. Nor is
it surprising that his account of his own reasoning should resemble that of
the positivists, since that reasoning was just what their account of science
was attempting to capture. In short, it is clear that in Einstein’s mind, the
problems of electrodynamics were connected with the a-priori principles
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of physics, that is, with the concepts of spatial and temporal measure-
ment from which the empirical study of physics must begin. He suggests
as much in his 1905 paper: “The theory that is to be developed rests –
like all electrodynamics – on the kinematics of the rigid body, since the
assertions of any such theory concern the relationships between rigid bodies
(systems of coordinates), clocks, and electromagnetic processes. Insufficient
consideration of this circumstance lies at the root of the difficulties which
the electrodynamics of moving bodies presently has to struggle” (Einstein,
1905, p. 892). The question is whether, in interpreting Einstein in this way,
we are compelled to accept the arbitrariness of his starting point. Einstein
deduced the Lorentz transformations from the invariance of the velocity of
light, but, of course, the argument can go in the opposite direction: instead
of explaining the seeming contraction by the invariance of the velocity of
light, we can explain the seeming invariance of the velocity of light by the
real contraction of our measuring devices. The logical relation between the
two principles cannot by itself determine that one or the other deserves to
be regarded as more fundamental. Lorentz’s theory, no less than Einstein’s,
might be regarded as a “natural” (as opposed to an artificial or ad hoc)
way to explain the Michelson–Morley results without resorting to arbitrary
hypotheses. As Lorentz himself said in describing the aim of his theory,

Surely this course of inventing special hypotheses for each new experimental result
is somewhat artificial. It would be more satisfactory if it were possible to show
by means of certain fundamental assumptions and without neglecting terms of
one order of magnitude or another, that many electromagnetic actions are entirely
independent of the motion of the system . . . The only restriction as regards the
velocity will be that it be less than that of light. (Lorentz, 1904, p. 13)

Such a remark suggests that Lorentz had some of the same methodological
concerns that we typically attribute to Einstein, and therefore casts doubt on
the notion that Einstein’s approach was superior on general methodological
principles. The essential argument against Lorentz lies elsewhere, in the
analysis of simultaneity.

4 . 2 e inste in ’s analys i s of s imultane it y

The starting point of Einstein’s argument is well known: “Maxwell’s elec-
trodynamics . . . in its application to moving bodies, leads to asymme-
tries which do not appear to be attached to the phenomena” (Einstein,
1905, p. 891). For example, a phenomenon that depends only on the rel-
ative motion of a conductor and a magnet – the production of an electric
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current – is represented by the theory in two completely different ways,
depending on whether the conductor or the magnet is taken to be at rest.
Assuming that the conductor is at rest, there is an electric field in the vicinity
of the magnet; assuming that the magnet is at rest, there is an electromo-
tive force in the conductor. But the measurable magnitude – the current –
is the same in both cases, as long as the relative motions are the same.
If the Michelson–Morley experiment had no great influence on Einstein’s
thinking, it is doubtless because, as Einstein himself suggests, it was only an
additional example of the kind of empirical symmetry that had concerned
him already on independent grounds.

At first glance, this problem may appear to be no more or less serious
than the problem of absolute space in Newton’s theory, and the analogous
asymmetry between absolute space and uniformly moving frames. By the
same token it may seem as if eliminating the asymmetry were no more
difficult or serious than asserting the equivalence of all Newtonian inertial
frames and thereby eliminating absolute space. For these reasons it might
be tempting to assert a straightforward methodological justification for spe-
cial relativity, as merely eliminating a theoretical distinction that makes no
difference. Yet the asymmetries that Einstein notes are considerably more
serious. On the one hand, the theoretical asymmetry is a kind of ontological
asymmetry, in which, depending on what is taken to be at rest, a different
sort of field is said to exist. One might see a similar ontological asymmetry
in the case of absolute space. But there it was clear even to Newton that,
however absolute space may be bound up with his general metaphysical
picture, it could be completely disregarded in our conception of the phys-
ical entities and processes at work in a Newtonian world: the ontology of
bodies moving under the influence of accelerative forces does not require
any distinction between uniform motion and rest. So the elimination of
the distinction, and of absolute space, in no way disturbed the fundamental
physical concepts of Newton’s theory. On the contrary, it merely brought
the theory of space and time into complete harmony with those concepts.
In the electrodynamical case, the asymmetry is essential to the conception
of electromagnetic forces as mediated by waves in the ether. Eliminating
that asymmetry seemed, as Einstein noted, to involve us in a contradic-
tion, namely between the Galilean principle of relativity (the “relativity
postulate”) and the principle that the velocity of light is independent of the
motion of the source (the “light postulate”). In retrospect, we have been
convinced by Einstein that this is only an apparent contradiction. But it
is entirely genuine if we presuppose a framework of concepts about space,
time, and electrodynamics that seemed perfectly reasonable to presuppose
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at the time. So Einstein faced a twofold task of philosophical analysis: first,
to determine precisely what it was, in the accepted framework of assump-
tions, that the contradiction rested upon; and only then, to discern the
basis on which an alternative could be constructed. The alternative, too,
had a twofold burden: not only to construct a framework in which the con-
tradiction would not arise, but also to show that the fundamental concepts
of this framework were well-defined in a way that the previous concepts
were not. For, without an argument for the second point, Einstein could
only make the subjective argument, that his hypothesis could explain the
same phenomena as Lorentz’s in a more “natural” way. To his own mind,
at least, he was doing something more than this.

What seems natural within the Lorentz theory is that velocity is relative;
even the “true” velocity of light is only its velocity relative to a particular
material system. Thus the invariance of the velocity of light makes no
sense, and the apparent invariance, as revealed by the Michelson–Morley
experiment, is a phenomenon to be explained. In fact, within the broader
Newtonian framework – methodological as well as spatio-temporal – such
a phenomenon must be interpreted more or less along Lorentz’s lines, i.e., as
providing information about the presence of some distorting force or other.
Hence Lorentz’s quite plausible comment on the contraction hypothesis,
that, “we shall have to admit that it is by no means far-fetched, as soon as
we assume that molecular forces are also transmitted through the ether, like
the electric and magnetic forces of which we are able at the present time
to make this assertion definitely . . . Now, since the form and dimension
of a solid body are ultimately conditioned by the intensity of molecular
actions, there cannot fail to be a change of dimensions as well” (Lorentz
1895, p. 6).

Einstein eventually argues that this entire project of explanation rests
on questionable grounds, namely, on assumptions about space and time
that have not been sufficiently examined. But this is not, as was afterwards
claimed by the positivists, because the Newtonian framework altogether
lacks a coordinative definition of simultaneity. Rather, it is that the coordi-
native definitions that do exist have a very problematic status. His argument
starts by taking for granted an inertial system, or “a system of coordinates
in which the equations of mechanics hold good (i.e. to first approxima-
tion)” (Einstein, 1905, p. 892). But this starting point is quickly revealed
to be ironic. The equations of mechanics concern the motions of a material
point relative to such a coordinate system. But before we can describe the
motions of a material point, we need to define what we mean by time. And
if we cannot take for granted the kinematical description of motion yet,
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then we cannot take for granted the inertial coordinate system either; both
stand in need of a definition of time. This is something quite different
from the problem of having to accept the equations of motion “to first
approximation,” with the expectation of small revisions to the equations
as the analysis proceeds. The problem is, rather, that the starting point
simply cannot be taken at face value, because we have not defined its basic
terms. Hence Einstein’s attack on the notion of simultaneity is essentially
a dialectical one.

This account of the problem may not seem plausible at first. In principle –
and in spite of the criticisms of the positivists – there is a perfectly good
definition of a Newtonian inertial frame, and a perfectly good definition of
simultaneity. As we have already seen, Newton’s conception of simultaneity
is instantiated by the instantaneous propagation of gravitational force; in
principle, it ought to be possible to know something immediately about
spatially distant states of affairs. That there is no practical application of
this criterion does not, by itself, justify the claim that absolute simultaneity
had no empirical meaning, and that Einstein had provided a coordina-
tive definition of simultaneity where none had existed before. It would be
reasonable to suspect, indeed, that light signals could provide a kind of
stand-in for an infinitely fast signal, as long as we can take into account
the travel time of the light signals, or of any signal whose velocity is known
and reasonably constant – though electromagnetic waves apparently stand
alone in this regard. This situation, and its significance for the classical view
of space and time – or, more precisely, its seeming lack of significance –
was articulated very clearly by James Thomson. He appears to have been
the first to remark that the measurement of distance involves

the difficulty as to imperfection of our means of ascertaining or specifying, or clearly
idealizing, simultaneity at distant places. For this we do commonly use signals by
sound, by light, by electricity, by connecting wires or bars, and by various other
means. The time required in the transmission of the signal involves an imperfection
in human powers of ascertaining simultaneity of occurrences at distant places. It
seems, however, probably not to involve any difficulty of idealizing or imagining
the existence of simultaneity. Probably it may not be felt to involve any difficulty
comparable to that of attempting to form a distinct notion of identity of place at
successive times in unmarked space. (Thomson, 1884, p. 380)

This passage states remarkably clearly what is at stake with the notion of
simultaneity: the very idea of a kinematical frame of reference. For even
the measurement of spatial distance presupposes the ability to determine
simultaneous events. The passage also makes clear how natural it was, at the
time, to assume that the dependence of simultaneity on signal propagation
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poses no special problem of principle. As late as 1910, Simon Newcombe
saw it in purely practical terms: “Were it possible by any system of signals
to compare with absolute precision the times at two different stations, the
speed [of light] could be determined by finding how long was required for
light to pass from one station to another at the greatest visible distance. But
this is impracticable, because no natural agent is under our control by which
a signal could be communicated with a velocity greater than that of light”
(Newcombe, 1910, p. 623). In other words, this problem of dependence
was noted long before it appeared to give rise to a problem of relativity.

It is quite unfair, then, to suppose that Newtonian physicists did not
appreciate the role of the concept of simultaneity within the Newtonian
system, nor the need to attach some physical meaning to it. Nonetheless,
in order to understand the force of Einstein’s challenge, we must under-
stand on what precarious ground the Newtonian concept of simultaneity
really stood – and why the entire conceptual system was thereby at stake.
Again, the best possible instantiation of absolute simultaneity was universal
gravitation. From the law of velocity-addition, it is true, one could deduce
the possibility of particles accelerated to arbitrarily high velocities. But the
only known case of instantaneous propagation, even in theory, is gravita-
tion. Yet gravitational signaling is, obviously, not a constitutive principle
of the Newtonian framework; in fact it was discovered by “reasoning from
phenomena,” according to Newton, a kind of reasoning that necessarily
takes the Newtonian spatio-temporal framework for granted. In particular,
interpreting the Solar System as a dynamical system already presupposes
that we can measure the relative distances of the planets, their satellites,
and the Sun, as well as their angular positions relative to the fixed stars.
All of this presupposes the theoretical possibility, at least, of determining
simultaneous events. Our ability to determine all of these circumstances,
however, depends on a physical process – light signaling – that is not only
finitely propagating, but also essentially extraneous to the Newtonian the-
ory. The latter is not necessarily a problem in itself; on the contrary, it
might be seen as an advantage to have an observational technique that does
not rely upon the theory being tested. But it does reveal rather starkly how
the Newtonian approach to celestial mechanics begins with no criterion
of simultaneity other than the “intuitive” criterion of visual perception,
namely light signaling.

With a physical picture of the Solar System in hand, the role of light
in establishing the background framework may be set aside. Indeed, the
framework now permits the empirical study of light propagation as a process
unfolding within this framework. A familiar example is the estimate of
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the speed of light from the delays in the eclipses of Jupiter’s moons; by
observing how the timing of the delays depends on the relative positions
of the Earth and Jupiter, Ole Roemer was able to calculate the time of light
propagation from Jupiter and to reach a remarkably accurate result. Such
a calculation begins, in effect, from the assumption that certain events
are objectively simultaneous even though they appear to us successively.
It assumes, moreover, that the relative velocity of Jupiter and the Earth is
small enough (relative to the speed of light) to ignore. In other words,
the visual criterion of simultaneity is revealed, in this development, to
be only a kind of stand-in for an instantaneously propagating signal, the
kind of signal that gravity represents but does not provide for any practical
purpose. The criterion can be assumed to be perfectly adequate for a system
of bodies that are relatively at rest (when we correct for different distances),
and approximately accurate for systems where the relative velocities are
negligible. And one could reasonably expect that, if the relative velocities
became too great to be neglected, the criterion could still be applied by
applying the Newtonian rule of velocity-addition.

Absolute simultaneity, then, is an abstraction from the empirical practice
of determining simultaneity by signals, an abstraction that involves either
neglecting the time involved in signaling, when it is sufficiently small, or
extrapolating that any measurable time delay may be accounted for. This
process of extrapolation exemplifies Newton’s view of absolute time as a
measurable quantity – that is, his construction of absolute simultaneity
and equal time intervals as concepts to which we can expect to arrive
at increasingly good approximations. It is precisely this expectation that
turns out to be so precarious. If the velocity of light turns out not to obey
the classical addition law, then this entire line of approximative reasoning
is fatally undermined. If that is true, then the other supposed instantia-
tion of absolute simultaneity – universal gravitation – becomes essentially
hypothetical. This does not mean that gravity no longer instantiates absolute
simultaneity, or that the latter is no longer a meaningful concept. It does
mean, however, that the concept is no longer integrated systematically with
our account of its physical measurement; the gravitational definition now
stands on its own, no longer connected with the empirical definition by a
series of approximative steps.

This is not a conclusion to which we are forced by the Michelson–Morley
experiment. Indeed, to someone intent on interpreting that experiment,
such as Lorentz, simultaneity might not appear to be in question at all. We
noted that the unexpected null result of the experiment, from Lorentz’s
point of view, must be seen as providing information about the influence
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of some unknown factors. Lorentz himself suggested that the results reveal
an effect of motion through the ether on intermolecular forces, and that
this effect produces the contraction of moving objects. In fact this is prob-
ably the only reasonable approach to take if the underlying conceptions of
simultaneity, length, and time are not questioned. Einstein, however, was
not primarily concerned with interpreting the Michelson–Morley exper-
iment. Rather, he was concerned with understanding why no electrody-
namical processes seem to distinguish between uniform motion and rest,
even in cases where the theoretical treatment of them explicitly appeals to
absolute velocities. If this phenomenon is contradictory, then he had to
expose exactly what it contradicts. Therefore he saw the need to exam-
ine the assumptions about spatial and temporal measurement from which
the contradiction arises. It is contradictory for the laws of electrodynamics
to respect the relativity principle, if the relativity group of physics is the
Galilean group, whose invariants include mass, acceleration, length, and
time – and therefore simultaneity – but cannot include a velocity. But if
the underlying spatio-temporal concepts are ill-defined, then the relativity
principle itself has to be defined in completely different terms.

This is why the “Kinematical Part” of Einstein’s 1905 paper begins just
as it does, by arguing that the concept of a Galilean coordinate system,
taken for granted in the Galilean principle of relativity, cannot be accepted
without an adequate definition of time. It is in the context of this argument
that the definition of simultaneity by light signals emerges, not merely as
convenient, but as uniquely satisfying the requirements imposed by the
nature of the problem. Einstein’s series of proposed definitions – includ-
ing seemingly naı̈ve references to “the hands of my watch” and the like –
have an apparently “operationalist” aspect that has often been remarked
upon. But Einstein’s discussion does not really invoke a truly operationalist
view. The requirements of the problem are theoretical as well as practical,
and the assumptions that eventually go into the definition involve both
empirical facts and the theoretical structure of Maxwell’s electrodynamics.
In fact Einstein proceeds through a brief series of possible operations for
determining simultaneity, each time showing that theoretical requirements
make the proposed definition inadequate, until he arrives at the one that
is satisfactory. It is not really an exaggeration, indeed, to say that Einstein’s
analysis aims to arrive at a definition of “absolute” simultaneity, and in
something like the sense intended by Newton. This is not to suggest that
he imposes in advance the Newtonian condition that which events are
simultaneous shall not depend on the state of motion of the observer. But
he seeks a criterion of simultaneity that is independent of position and
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motion, that has a foundation in physical laws that are independent of any
observer, and that makes simultaneity a symmetric and transitive relation.
It is a kind of Socratic irony that the criterion of simultaneity that even-
tually satisfies these requirements, and so deserves to be called “absolute”
in this special sense, finally makes the relation of simultaneity a relative
one.

Einstein begins by proposing two practical procedures, each of which
supplies an “operational” criterion of simultaneity: to define “time” by
“the position of the small hand of my watch,” and to coordinate the time
of every event with a watch at a fixed location, by the time at which a
light signal from each event reaches the watch. The first obviously fails
to meet the requirement of defining simultaneity for distant events; the
second meets that requirement, but “has the disadvantage that it is not
independent of the standpoint of the observer” (Einstein, 1905, p. 893).
Thus each of these proposed criteria fails the theoretical requirements in
some way. But then Einstein introduces his final criterion: a common
time for points A and B can be defined when we “establish by definition
that the ‘time’ required by light to travel from A to B equals the ‘time’ it
requires to travel from B to A” (Einstein, 1905, p. 894). Placing “time”
in quotation marks emphasizes the fact that we are not to associate some
pre-theoretical or intuitive meaning with the concept; again, if there were
a principled way to do that, Einstein’s statement could be an empirical
claim rather than a definition. But this evidently is a definition, and one
that evidently does satisfy Einstein’s requirements. It exploits the invari-
ance of Maxwell’s equations as a foundation for an objective theoretical
concept.

At this point in the argument, the true significance of the empirical facts,
including the null results of the Michelson–Morely experiment, need not
be assumed to be known. Whatever its true significance – it is not yet
ruled out that this is the effect of a universal contraction of bodies moving
through the ether – the apparent invariance of the speed of light guaran-
tees that light signaling will satisfy Einstein’s requirements for an adequate
definition of simultaneity. Whether it uniquely satisfies them is another
question altogether, and one that could never be answered conclusively;
no argument of Einstein’s could prove that there is nothing in the world
that travels faster than light, or no more appropriate signal for determining
simultaneity. But it is clear, at least, that the general demand that Einstein
articulated later – “that in every real case it provide an empirical decision
about whether the concept to be defined applies or not” – is satisfied, and,
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moreover, that its satisfaction involves much more than specifying an oper-
ation. In fact it involves specifying the place of the definition within our
systematic knowledge of physical laws. The Newtonian definition, as we
saw, is deeply embedded in the entire framework of Newtonian mechan-
ics and gravitation theory. But its connection with empirical criteria was
always somewhat tenuous, and, again, dependent on assumptions extra-
neous to the Newtonian program. Once that connection was called into
question, by unexpected facts about light propagation, Einstein’s defini-
tion stands as an implicit challenge to the Newtonian conception of time:
what physical principles can define simultaneity for observers in relative
motion?

So baldly stated, and taken by itself, this challenge might have appeared
to invoke the positivists’ verificationist account of meaning. Now that we
have considered the conceptual analysis leading to it, and its theoretical
dimension, we can see that it is considerably more complicated and inter-
esting than the positivists took it to be. It cannot be characterized as “an
epistemological analysis of time” in some general sense, demanding an
empirical account of “what we mean by simultaneity.” In fact Einstein’s
analysis does not question what we ordinarily mean by time, since the most
common way of identifying simultaneous events is by observing them at
the same time; once the velocity of light is acknowledged to be finite, it
is a minor matter of error-correction to adjust this criterion for the dif-
ferent distances at which events take place. What Einstein does question
is the relation of this common-sense notion to our systematic knowledge
of physics, and the peculiar status it acquires in the contemporary state
of physics. On the one hand, because of the apparent failure of velocity-
addition, Newtonian physics no longer provides a theoretical context that
connects the common-sense criterion with the “absolute” conception. On
the other hand, and for the same reason, the invariance properties of elec-
trodynamics place this criterion in a peculiar “absolute” position – standing
on its own, rather than as a local or slow-moving approximation to some
more fundamental criterion. In other words, we could say that Einstein’s
analysis respected the intuitive criterion of simultaneity, but recognized for
the first time that it had been disconnected from the intuitive theory of
simultaneity. On the intuitive theory, it was supposed to be an objective
fact whether any two events happened at the same moment, or successively
(and in which order). But it turned out to be only a shaky theoretical edi-
fice, after all, that had connected ordinary judgments of simultaneity with
the absolute distinction of past, present, and future.
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4 . 3 from spec ial rel at iv it y to the “postul ate
of the absolute world”

Special relativity can be thought of as the theory that the fundamental
symmetry group of space-time is not given by the Galilean transformations,
but by the Lorentz transformations

x ′ = x − vt√
1 − v2/c 2

y ′ = y
z′ = z

t ′ = t − vx/c 2

√
1 − v2/c 2

In 1908, Minkowski developed what is now the most familiar representa-
tion of the special theory, as a four-dimensional geometry with an indefinite
metric – that is, as the “absolute” space-time structure underlying the rel-
ativity of space and time individually. As in Newtonian space-time (see
Stein, 1967), “the world” is a four-dimensional affine space, and inertial
trajectories are the geodesics of this space. But there is no invariant way
to decompose it into sets of simultaneous events. The invariance of the
velocity of light corresponds to the invariant metrical interval of the four-
dimensional pseudo-Euclidean space; simultaneous events relative to an
inertial observer’s frame of reference are represented by the hyperplane
orthogonal to the observer’s worldline. It follows that there is no objec-
tive division of the world, at any moment, into past, present, and future
– indeed, no moment at all, except as a given point on the worldline of a
given observer. Instead there is, at any point, a “future light-cone” whose
surface represents all the events accessible from that point by a light signal,
and whose interior represents all the events accessible by any material parti-
cle moving slower than light, along with a corresponding “past light-cone”
of events from which the given point may be reached. (See Figure 5.) The
set of events at a given interval from a given point is not, as in Euclidean
space, a sphere with that point at its center, but a three-dimensional “hyper-
boloid of revolution” – except that, because of the peculiar invariance of
light propagation, all events on the light-cone lie at a null interval from its
origin, and the path of a light ray is orthogonal to itself. All the peculiar
features of special relativity, regarding the comparison of length and time
in different inertial frames, can be easily derived from the features of this
geometrical structure.3
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Figure 5. The causal structure of Minkowski space-time: space-time at any point p is
divided by the “light-cone” into regions that are accessible or inaccessible by any causal

influence (i.e. any signal traveling at or less than the speed of light).

For our discussion, the interest of this structure lies in Minkowski’s
account of its origins and significance. We might simply regard it as the
application of a convenient, pre-existing mathematical formalism to a new
physical theory – an instance of what Minkowski called the typical “staircase
wit” of mathematics, easily capturing the mathematical essence of a new
theory after physics has done all the difficult work (Minkowski, 1909,
p. 105). Once we see that the invariant quantity in Einstein’s theory is a
spatio-temporal quantity, the speed of light in vacuo, c, we can represent
the rate, time, and distance in a given coordinate system by

c 2t2 = x 2 + y 2 + z2

and in a relatively moving frame by

c 2t ′2 = x ′2 + y ′2 + z′2

Then it is evident that we can represent the invariance of the speed of light
by the expression

c 2t2 − x 2 − y 2 − z2 = c 2t ′2 − x ′2 − y ′2
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To Minkowski, thoroughly schooled in Klein’s approach to geometry as a
theory of structure and automorphisms, it might have seemed obvious that
either side of this last expression “looks like” the expression for a metric
in four dimensions; this is only slightly obscured by the presence of c,
which may be trivially set at unity, and the fact that the coefficients for
the spatial and temporal parts of the expression are opposite in sign. We
can even make it look exactly like a Euclidean metric in four dimensions,
x 2 + y 2 + z2 + t2, by setting c = 1 and t = −i c t . But these are merely
mathematical facts. What Minkowski emphasized, above and beyond these
facts, was that special relativity had arisen from a conceptual analysis of
the role of time in electrodynamics, and that the new space-time structure
arose from a further conceptual analysis of what Einstein had revealed about
the nature of time.

As we noted already, Einstein’s theory can be regarded as nothing more
than an alternative hypothesis to Lorentz’s, starting by “raising to the status
of a postulate” what Lorentz hoped to explain away as a mere appear-
ance. One might then, as many have with good reason, defend Einstein’s
view as more simple, more “natural,” or in better accord with some other
methodological canon. But for Minkowski, such an approach would blur
a fundamental distinction between the two theories. Einstein has shown,
Minkowski writes, that the relativity postulate “is not an artificial hypothe-
sis, but rather a novel understanding of the time-concept that is forced upon
us by the appearances” (Minkowski, 1908, p. 56). It is Lorentz’s theory that
involves a hypothesis, in order to explain the differences of local time for
electrons in relative motion; Einstein’s theory arises from the analysis of
this difference of local time in relation to the concept of simultaneity, and
shows that this empirical fact reveals something about the nature of time
in general.

Lorentz called the t ′ combination of x and t the local time of the uniformly
moving electron, and applied a physical construction of this concept, for the better
understanding of the hypothesis of contraction. But to have recognized clearly that
the time of the one electron is just as good as that of the other, that is, that t and
t ′ are to be treated equally, was first the merit of A. Einstein. (Minkowski, 1909,
p. 107)

The recognition of this equivalence, and of its fundamental character, is
what makes the analogy between the four-dimensional Minkowski struc-
ture and spatial geometry something more than a mere formal analogy. The
group of spatial displacements defines the structure of space in the obvi-
ous way that Poincaré had articulated, and, as long as this structure could
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be considered entirely independently of dynamics, the spatial structure
could be regarded as the basis of physical geometry. But that independence
assumed the independence of space from time, as implied in the assump-
tion of absolute simultaneity. By recognizing the relativity of time, Einstein
had raised the spatio-temporal displacements, the Lorentz transformations,
to a privileged status that the spatial displacements could no longer legit-
imately claim – because, unlike the Galilean transformations, the Lorentz
transformations implied that spatial geometry was no longer a fundamen-
tal invariant. The physically objective quantities must be expressed as the
invariants of a four-dimensional structure.

[We] are bound to admit that it is in four dimensions that the relations being
considered here first reveal their inner essence in full simplicity, but on a three-
dimensional space previously imposed upon us they cast only an extremely com-
plicated projection. (Minkowski, 1909, p. 110)

Einstein’s 1905 paper only states the true spatio-temporal relations in a
form bound by the limits of spatial intuition.

This is the background for one of Minkowski’s most familiar remarks,
that “the relativity-postulate” is a “feeble” and inappropriate name for
Einstein’s idea:

Insofar as the postulate comes to mean that only the four-dimensional world in
space and time is given by the phenomena, but that the projection in time and
space may still be undertaken with a certain freedom, I would rather give this
claim the name, the postulate of the absolute world (or, briefly, the world-postulate).
(Minkowski, 1909, p. 107)

It is perhaps too easy, and certainly not uncommon, to overstate the signif-
icance of this “world-postulate” and what Minkowski meant by it. Einstein
had stated a principle of relativity for electrodynamics, and derived the
transformations that relate the various perspectives of possible observers.
If Minkowski described the geometry of the unified “absolute world” that
underlies all of these relative perspectives and this group of transforma-
tions, should we say that he has explained the Einsteinian relations? To do
so would be, at the very least, a loose way of speaking. Minkowski space-
time is not presented as a deeper sort of reality underlying the phenomena
described by Einstein, explaining them as, say, the kinetic theory of gases
explains the phenomena described by the ideal gas law. A more careful
assertion would be one that acknowledged, at least, that a very different
kind of explanation is at work. Minkowski space-time has been described
as providing a “structural explanation” (see Hughes, 1987): the phenom-
ena are to be explained by the fact that the world is a model of a certain



116 The origins and significance of relativity theory

structure. But then in this case, the explanation would have to be that the
world conforms to Einstein’s relativity principle because it is a model of
Minkowski space-time. Then the seemingly explanatory character of such
a statement is quite misleading. For Minkowski’s structure is in fact only
the expression of Einstein’s theory in other terms, namely the expression of
a “three plus one”-dimensional theory in four-dimensional terms. In order
to explain the physical meaning of the Minkowski structure, we could do
little more than make the same assertion in reverse: the world has that struc-
ture because the laws of electromagnetic propagation are the fundamental
invariants, that is, because Einstein’s theory is true. Consider, once again,
the example of ordinary spatial geometry: if we know that there is a group
of rigid displacements that preserves the Pythagorean interval, do we really
explain this by saying that the world is a model of Euclidean space? Clearly
not: to say that such relations exist among real objects is only to restate the
claim that real space is Euclidean. As we saw in Chapter 3, understanding
the content of geometrical claims in this way was the great philosophical
achievement of Helmholtz and Poincaré, and the beginning of the modern
understanding of physical geometry in general.

Yet, from another perspective, just this trivial non-explanation is of the
highest importance. First of all, it is a fairly obvious point that the mere rep-
resentation of Einstein’s theory in a different form is not without physical
significance. Alternative formulations of the same theory, though they are
by hypothesis equivalent, are not equivalent for all intents and purposes:
for the purpose of seeing how the theory may relate to other theories, or
even of pursuing entirely new theoretical directions, it is clear that alter-
native formulations may be suggestive or fruitful in quite different ways.
The history of physics offers many familiar examples of this, and it is a
familiar enough topic of philosophical discussion; one obvious example is
Minkowski space-time itself, for it is hard to imagine how general relativity
could have developed from special relativity had the latter not been recast
in four-dimensional terms. Also crucial, for the eventual development of
general relativity, was the reformulation of Newton’s law of gravitation in
Poisson’s equation for the gravitational potential. The physical significance
of both of these reformulations first came to light with the representa-
tion of gravity as space-time curvature. We can certainly think of this
representation as an explanation of a sort, provided that we don’t confuse
understanding a theory from a different viewpoint with deriving it from
some deeper ontological ground.

For our purposes, however, Minkowski’s account does have a deeper
though perhaps less obvious significance. For it reveals just how simple and
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direct is the connection between the structures of space and time and the
assumptions we make about physics. The claim at the heart of Minkowski’s
analysis is, at the same time, extremely far-reaching and extremely modest:
it is the claim that a world in which special relativity is true, simply, is a
world with a particular space-time structure. This is something completely
different from the superficially similar claim of Poincaré, that Lorentz’s
theory can be represented by the group of isometries of a four-dimensional
pseudo-Euclidean space (Poincaré, 1905). The difference is analogous to
the difference between Lorentz’s account of the Lorentz transformations, as
expressing the relations between moving and resting electrodynamical sys-
tems, and Einstein’s account of them as expressing a fundamental symmetry
of the laws of physics. In Poincaré’s analysis, the spatio-temporal structure
expressed by the Lorentz group is not “the structure of space and time”; the
structure of space and time must already be determined – by conventional
choice – before the analysis of electrodynamics can even begin. A dialecti-
cal argument like Einstein’s, in which electrodynamics provides a critique
of the assumptions about space and time on which electrodynamics itself
had been built, was, as we have seen, beyond Poincaré’s conception. For
Minkowski, however, it was Einstein’s argument that revealed the origin
and significance of this four-dimensional structure. It represents not merely
a convenient way to think about electrodynamics, but how we must think
about it, in light of Einstein’s analysis of simultaneity; what we have learned
from Einstein is that this structure represents what we actually know about
space and time. The connection between the space-time structure and our
knowledge of dynamics is just as direct and immediate as that between the
structure of Euclidean space and our knowledge of spatial displacements,
even though it is much more remote from intuition. In sum, the “postulate
of the absolute world” is not the explanation for what Einstein had regarded
as merely relative; the world-postulate is simply a better name than “theory
of relativity” for what Einstein’s theory actually says.

It might appear, then, that the theory of space-time as introduced by
Minkowski is somewhat superficial, in comparison to the deep ontological
questions that we are tempted to ask about it. This peculiar superficiality
of space-time theory is something that Einstein came close to articulating,
when he designated special and general relativity as “principle theories.”
Most physical theories, he explained, are “constructive”: “They attempt
to build up a picture of the more complex phenomena out of the mate-
rials of a relatively simple formal scheme,” as the kinetic theory of gases
explains their gross behavior by “the hypothesis of molecular motion.” Prin-
ciple theories, in contrast, begin from elements that are “not hypothetically
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constructed but empirically discovered ones, general characteristics of natu-
ral processes, principles that give rise to mathematically formulated criteria
which the separate processes or the theoretical representations of them
have to satisfy” (Einstein, 1919, p. 228). In other words, it is the con-
structive theories that seek to explain phenomenal regularities by appeal to
underlying entities, mechanisms, or processes that are hidden from view.
Therefore they cannot avoid being at least partly hypothetical. Principle
theories, meanwhile, do not postulate something behind the phenomena,
but merely describe the structural constraints that the phenomena actually
do exhibit. Lorentz’s theory, for example, takes the Lorentz symmetry as a
phenomenon to be explained by a constructive theory, namely the theory of
the Lorentz contraction, which must ultimately have some molecular basis
along the lines suggested earlier. Special relativity, by contrast, identifies the
Lorentz symmetry as a general structural constraint that is obeyed by all
physical interactions, and that itself cannot be explained in the same sense –
it is, in short, a defining principle for an explanatory framework, within
which it would make no sense to demand such an explanation for the
framework itself. This is why the attempt to explain it must always appear
to be circular. Suppose that we purport to explain the constancy of the
velocity of light by the claim that space-time has the Minkowski structure;
how, then, do we explicate the meaning of the claim, except by repeating
that the symmetry group of space-time is one in which the velocity of light
is invariant?

It is not surprising that this should be the case. It is only the four-
dimensional version of the circularity in defining inertial frames in special
relativity: light propagates with the same velocity in any inertial frame,
but inertial frames are (by definition) those in which light propagates with
the same velocity. In this case as in the Newtonian case, the circle does
not indicate a logical defect, but only the fact that we are dealing with a
definition, or a principle of interpretation. In the absence of any means of
determining simultaneity independently of light signals, we have no means
of setting out a spatial frame of reference, or of measuring time intervals
in some objective way. So, as Einstein’s analysis had shown, our theoretical
principles regarding the propagation of light are playing a constitutive role
in our spatial and temporal measurement that, for various reasons, we had
always been able to overlook or at least under-emphasize. Thus the prop-
agation of light is not something that we can objectively measure within a
privileged frame, but part of the interpretation of our concept of an inertial
frame. Its role is no different from the role that force and acceleration had
played in the definition of a Newtonian inertial frame, except that in that
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case simultaneity, length, and time had been taken for granted as something
entirely independent of the physical principles being invoked. In each case,
physical principles determine an interpretation for the concept of inertial
frame, which otherwise has no physical content at all. It was therefore
somewhat careless of Einstein to say that principle theories are “empirically
discovered, general characteristics of natural processes” – as if the principles
of special relativity, for example, were merely inductive generalizations. It is
true that Einstein regarded the symmetries of electrodynamics as “inherent
in the phenomena.” But those symmetries by themselves do not constitute
special relativity; rather it was Einstein’s recognition that they offer the only
reasonable definition of an inertial frame. In such a manner, principle the-
ories impose an interpretation upon nature that the search for constructive
theories can then take for granted. The reluctance to acknowledge this,
naturally felt by the scientific empiricist, stems from the belief that such an
imposition must be arbitrary; the only remedy for that is an appreciation
of the reasoning, clearly exhibited by Minkowski and Einstein, that draws
such an interpretation from the empirical facts.

Einstein never developed his typology of theories beyond a general
sketch, and its connection with theories of space and time was never
made very clear. Recently, Flores (1999) suggested a way of sharpening
the distinction, by considering the peculiar functional relation that exists
between principle and constructive theories: principle theories provide a
framework for asking empirical questions about physical interactions in
general; a constructive theory is developed under the general constraints
of a given framework, which permit arguments from empirical evidence
about what kinds of physical interaction are at work. For this reason
Flores proposed calling them “framework theories” and “interaction theo-
ries.” This way of making the distinction highlights something that was less
than clear to Einstein, namely, that what distinguishes special and general
relativity as principle theories is not merely a characteristic of a “theory
of theories” or “second-level” constraint on how particular laws are to be
formulated (see Earman, 1989, p. 155). In fact it is a general character-
istic of theories of space and time. This includes Newton’s own theory:
Newtonian space-time, as characterized by the Galilean symmetry group,
does indeed define a set of general constraints that all physical laws must
obey; it thus defines a general framework for inquiry, that is, a framework
within which we can investigate forces of nature such as gravity. In just this
way Newton himself had inferred characteristics of gravity, and its iden-
tity with interplanetary attraction, from the characteristics of the planetary
motions.
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By not fully appreciating this distinction, Einstein missed a crucial aspect
of Newton’s theory and its relation to special general relativity. Newton’s
theory is not, any more than special relativity, a hypothesis about some real-
ity underlying the phenomena. Just because it is a theory of space and time,
it shares with Einstein’s theories the characteristic of being a framework for
the interpretation of phenomena, not a kind of mechanism or hypothesis
to explain them as Einstein had argued in 1916. Indeed, Newton expressed
his own clear recognition of this fact in his distinction between “active”
and “passive” principles (1704 [1952], pp. 397–401). The passive princi-
ples are the laws of motion: they define the general characteristics of mass
and force, and so define general constraints on the form that any physi-
cal interaction may take. Taking these principles for granted, along with
their consequences for all possible systems (the propositions that Newton
derives from the laws in Book I), we can then discover the active principles
by empirical reasoning. For these are just the forces of nature, which explain
how, within the constraints imposed by the laws, particular systems of par-
ticles (like bodies bound by their cohesion, or the Solar System bound by
universal gravitation) can come to be and to be stable. In Newton’s case,
recognizing this distinction was part of recognizing the inadequacy of the
mechanists’ program for explanation; by ruling out any kind of interac-
tion other than impact, the mechanists had ruled out just that method
of investigation that the laws of motion had uniquely made possible, and
that had made the existence and the nature of active forces a tractable
empirical question. Moreover, as Kant had seen even more clearly than
Newton, it was by making this distinction that the laws of motion had
imposed a conception of causality on the phenomenal world, that is, a set
of rules determining when and how the behavior of bodies requires a causal
explanation. In short, what is definitive of special and general relativity as
principle theories is equally definitive of Newton’s theory, and definitive of
the role that space-time structure plays in physical theories like Newton’s
and Einstein’s. Relativity is no less a space-time theory than Newtonian
space-time, and Newtonian space-time is no less a “theory of theories” than
relativity. That is simply a reflection of the peculiar status of space and time
in the world of classical – non-quantum – physics.

4 .4 the philosophical mot ivat ions
for general rel at iv it y

The transition from special to general relativity, as has been noted, had a
number of philosophical motivations that no longer seem compelling. The
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philosophical defense of the relativity of motion, and of the “epistemolog-
ical defects” of Newtonian mechanics and special relativity – any theory
that restricts the relativity of motion to a special class of reference frames –
involved some confusions about epistemology and, as we saw in Chapter 2,
about what the earlier theories were really saying about space and time
and their roles in physics. If we consider general relativity from a purely
methodological perspective, as a theory to be judged by its consequences
rather than by its motivations, none of this matters particularly; the theory
is merely a hypothesis about space-time, and of no special philosophi-
cal interest except insofar as its success might support some metaphysical
hypothesis. But if we look more carefully at its philosophical origins, we
can see that, along with the somewhat misguided epistemological motiva-
tions, there really was a philosophical foundation, a compelling and fruitful
conceptual analysis of the sort that gave rise to special relativity. By seeing
this we will see that, after all, there is a particular philosophical significance
to the argument for general relativity, though it does not lie precisely where
the logical positivists, or even Einstein, had looked for it. It was not the
general epistemological critique of distinctions between states of motion,
but the dialectical engagement with the specific way in which Newtonian
physics had made those distinctions, that yielded the basis for a new theory
of space-time.

The first step to seeing this is to revisit the notion of a “general relativity
of motion,” and to see what this philosophical standpoint means, or fails to
mean, for the construction of a theory of physical geometry. The demand
for general relativity, or “the extension of the relativity principle to arbitrary
coordinate systems,” was assimilated by philosophers more or less as Ein-
stein had first put it forward. The very meaning of the concept of motion, if
there is one, must rest on change of relations to observable bodies. It would
appear to follow that any theory that purports to distinguish different states
of motion otherwise than relatively has, therefore, an inherent “epistemo-
logical defect.” But until general relativity, the only empirically successful
physical theories were defective in just this way. Newtonian mechanics did
distinguish absolute rotation and acceleration, and so postulated a privi-
leged class of reference frames in which rotation, along with force, mass,
and acceleration, are invariant quantities. Special relativity offered a new
conception of what is invariant – the speed of light – while “relativizing”
simultaneity, length, and time, but in doing so it inevitably maintained
the notion of a privileged class of reference frames and therefore preserved
the epistemological defect. As we saw, Newton’s contemporaries Huygens
and Leibniz were credited with recognizing the defect, but had no serious
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proposals to overcome it; Mach, in the late nineteenth century, envisaged
a genuine physical theory that would embrace the relativity of motion, but
he was not able to contribute more than a visionary suggestion. It was only
Einstein who found a way to realize the epistemological idea in physics.
“Mach’s principle” was originally a mere speculation that inertial effects
might arise not from a body’s absolute state of motion in space, but from
its relation to the rest of the masses in the universe; Einstein had given
physical content to this speculation, in the principle that the distribution
of masses determines the local inertial behavior of moving particles.

Both of these theoretical steps were supposed to arise from the equiva-
lence principle. It is not too much to say, indeed, that, independently of the
equivalence principle, the idea of “generalizing” relativity of motion had
no particular physical content. From the equivalence of gravitational and
inertial mass, Einstein alone discerned that the distinct status of the inertial
frame was fatally compromised. Galileo had proposed that all bodies fall
with the same acceleration in the same gravitational field, and Newton had
verified this principle to great accuracy; as Einstein knew, Eötvös had veri-
fied this with even greater accuracy as recently as 1895. But it follows that,
in a local frame of reference, gravity will be impossible to distinguish from
inertia. Suppose that the frame is a box at rest in a gravitational field where
the characteristic acceleration is g; the downward accelerations of bodies –
their weights toward the floor – will be the same as their inertial resistance
to acceleration, if the box were accelerated upwards at the rate −g. Or, if
the box is freely falling in a (sufficiently uniform) gravitational field, then
every body in it will fall at the same rate, and to the observer falling with
them, they will appear to have no acceleration at all; the frame under the
influence of gravity will be indistinguishable from one that is acted on by
no forces at all. For contrast, consider the behavior of magnetic bodies in
an analogous situation: the observer could determine whether the frame
was at rest in the magnetic field or accelerating upwards, by observing the
behavior of a non-magnetic body such as a piece of wood. Since its inertia
alone would determine its behavior, it would follow an inertial trajectory
that could be distinguished from trajectories determined by the magnetic
field. Only gravity has the characteristic that it cannot be distinguished
from inertia. As Einstein later put it,

If there were to exist just one single thing that falls in the gravitational field
differently from all the other things, then with its help the observer could recognize
that he is in a gravitational field and is falling in it. If such a thing does not exist,
however – as experience has shown with great precision – then the observer lacks
any objective ground on which to consider himself as falling in a gravitational field.
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Rather, he has the right to consider his state as one of rest and his surroundings as
field-free with respect to gravitation . . . The experimental fact that the acceleration
of fall is independent of the material is therefore a powerful argument that the
relativity postulate has to be extended to coordinate systems which, relative to
each other, are in non-uniform motion. (Einstein, 1920, p. 233)

From the collapse of the classical distinction between inertial and non-
inertial frames, it seemed to follow immediately that the Lorentz invariance
of special relativity must be replaced by a wider invariance group. The laws
of physics must take the same form, not in a privileged class of coordinate
systems, but in all possible coordinate systems; they must be generally
covariant.

These philosophical motivations for a new physics are, evidently, destruc-
tive. By themselves, that is, they offer reasons to reject distinctions made
by earlier theories, without suggesting any basis on which a new theory
might be built, for example, a principle on which to construct the theory
of non-Euclidean space-time geometry that we take general relativity to be.
In the case of the special theory, the relativity principle was at the same
time an invariance principle that constituted the metrical foundation for
the Minkowski geometry. But these arguments for a general theory, even
if they are persuasive in themselves, do not define a geometrical structure
in the same straightforward way. The crucial link between the relativity of
motion and non-Euclidean geometry was supposed to come from Einstein’s
thought experiment involving a rotating disc. If a disc rotates, special rela-
tivity implies that a measuring stick that rotates with it must be contracted
in the dimension parallel to its velocity; since the velocity is greater as one
approaches the edge of the disc, the increasing contraction of the stick will
cause the lengths it measures to seem greater. As a result, to the observer
at rest relative to the disc, the Euclidean relation between the diameter of
the disc and its circumference will be disturbed; the co-moving observer
must think that the geometry of the disc is non-Euclidean. That is, there
will be an arbitrary choice to be made about the state of motion of the
disc: either it is rotating and the stick is contracting, or it is at rest and has
a non-Euclidean geometry. As Friedman (2002a) points out, this exam-
ple enabled Einstein to see the possibility of representing physical fields
through non-Euclidean geometry.4 But it says nothing specific about how
Euclidean geometry might represent the gravitational field.

Taken together, then, Einstein’s general philosophical arguments, both
destructive and constructive, fall short of motivating the general theory
of relativity as we know it. We have already seen why the epistemological
arguments against absolute rotation are misguided, even if it were true that
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general relativity had done away with any notion of a privileged state of
motion; in fact, the theory preserves the idea of privileged state, in the spe-
cial status accorded to gravitational free-fall. In effect, this fact only makes
the prospect of “generalizing relativity” seem even more remote. Moreover,
as Kretschmann first pointed out (1917) and Einstein came to realize soon
after, the requirement of general covariance does not really amount to a
destructive criticism of earlier theories. Instead, it can be satisfied by any
theory that can be expressed in a coordinate-independent form, and this
includes Newtonian space-time theory and special relativity; though the
ultimate philosophical significance of general covariance is still a matter of
controversy,5 it became clear early on that, at least in the form that Einstein
gave it, it had no inherent physical content. This is doubtless why Ein-
stein retreated from the position that general covariance requires general
relativity – and the general relativity of motion – to a somewhat weaker
principle: that, among all generally covariant theories, we ought to prefer
one that is most simply expressed in a generally covariant version. “The
eminent heuristic significance of the general principle of relativity,” he
eventually concluded, “lies in the fact that it leads to the search for those
systems of equations which are in their generally covariant formulation
the simplest ones possible” (Einstein, 1949, p. 69). Special relativity and
Newtonian mechanics may be generally covariant, but they can also be
expressed equally (or more) simply by means of equivalence classes of priv-
ileged coordinate systems; general relativity has no such representation,
and therefore is in this very narrow sense “singled out” by the requirement
of general covariance. Yet this, too, is by itself a dubious reason to prefer
general relativity. The other theories have privileged classes of coordinate
systems because they have non-trivial global symmetries – that is, because
they take space-time to be flat. General relativity, in contrast, has no sym-
metry group because it takes space-time to be non-uniformly curved. So,
instead of a group of isometries, a general-relativistic space-time has only
the automorphisms of the manifold itself, the functions that preserve the
differentiable structure of the manifold. The a-priori philosophical pref-
erence for the theory that is simplest in its generally covariant form is,
in effect, a philosophical prejudice against flat space-time. Therefore, in
its philosophical spirit, such a preference seems to go against the entire
tradition in physical geometry by which space-time curvature came to be
understood as an empirical matter. From an empiricist perspective on phys-
ical geometry, if we prefer theories that are “only” generally covariant over
those that have more restrictive invariances, it ought to be because we have
empirical grounds for doubting that there are any global symmetries.
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In sum, then, Einstein’s general epistemological arguments for a general
relativity of motion do little to help us understand the general theory of
relativity, the theory that gravity is an expression of space-time curvature.
What we need to understand is how Einstein derived a constructive prin-
ciple for the new theory from his reflections on the equivalence principle.
The epistemological arguments, as we saw, emphasized the need for a radi-
cal philosophical departure from earlier theories. But the discussions of the
equivalence principle begin from the Newtonian theory of gravity, and the
Newtonian method of distinguishing gravity from inertia. They uncover
the empirical knowledge of the gravitational field that the theory is implic-
itly based on, and they separate the theory’s implicit constructive principle –
the principle underlying the construction of a Newtonian inertial frame –
from the larger theoretical context in which Newton’s theory had placed
it. In this respect the argument for general relativity resembles the argu-
ment for special relativity, which had separated the empirical application
of the concept of simultaneity from the theoretical context of Newtonian
mechanics. In the case of general relativity, too, Einstein finds the basis
for a new theory precisely in the old theory’s practice of spatio-temporal
measurement. Contrary to what Kuhn’s analysis would lead one to expect,
the argument for the new paradigm begins from inside the old.

To understand this point, we only need to reconsider the Newtonian
procedure for determining the motions of the Solar System. It starts from
a kinematical description of the motions, that is, a description of the accel-
erations of all the planets relative to the fixed stars. No assumption need
be made about which planets are truly in motion. Neither must we assume
anything about the motions of the stars, as long as they may be taken to
be at rest relative to each other. That suffices to allow the determination of
orbital parameters in a relatively theory-independent setting. Then, with
this description in hand, we can introduce the dynamical theory in order to
extract information about the forces at work within the system. By apply-
ing the laws of motion, their corollaries, and all the propositions proved
from these in Book I of Principia, we can reason from the accelerations to
the forces needed to produce them. In particular, we can reason from the
characteristics of the orbits to the centers of those orbits, and from there to
the forces needed to produce those orbits. This crucially involves the law of
action and reaction, for otherwise it would be impossible to break down the
total acceleration of any planet into the components contributed by par-
ticular other planets; the Earth’s acceleration, for example, is the sum of its
accelerations toward all the other planets, and each individual component
of the total acceleration is part of an action–reaction pair involving some
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other planet. Only this assumption allows us to determine whether any fur-
ther acceleration is at work, from some force whose source is unobservable
or outside the system.

When we understand the mutual interactions among the planets, we are
in a position to estimate their relative masses. In Newton’s case, this was
necessarily restricted to the planets with satellites, because only in those
cases could he compare the accelerations they determine at given distances
and so deduce the differences in mass. By this reasoning he estimated the
ratios of the Sun’s mass to those of Jupiter (1067 to 1), Saturn (3021 to 1),
and the Earth, and was able to calculate that the center of mass of the
entire Solar System would never be more than one solar diameter from the
center of the Sun. Having found the center of mass, we have in princi-
ple determined an inertial frame: by Corollary IV to the laws of motion,
the center of mass will be at rest or moving uniformly in a straight line.
That is, the mutual actions of the bodies in the system will not change the
state of motion of the center of mass. And having determined an inertial
frame, we are in a position to say that the accelerations relative to the center
of mass frame are the true accelerations.

One might suspect that there is some arbitrariness in this procedure,
because of the hypothesis that the stars are a suitable frame of reference.
But that is not really a hypothesis in the important sense – that is, it
is not something that the procedure must simply take for granted as its
basis. Rather, it is at most a kind of working hypothesis, for the dynamical
reasoning can always lead to its rejection: if we don’t succeed in resolving
accelerations relative to the stars to their dynamical components, then we
must infer that the stars are not a suitable frame after all. If we choose the
Earth to be at rest, for example, we find that such a dynamical analysis
does not succeed, for we discover accelerations (Coriolis and centrifugal
effects) that do not belong to action–reaction pairs, and must be attributed
to the state of motion of the reference frame itself. What seems like a basic
presupposition for such a process is, instead, a mere starting point that itself
undergoes a critical analysis as the investigation proceeds; this is another
aspect of the situation that really does deserve to be called dialectical. In
short, whether the fixed stars are a suitable frame is considered an empirical
question in this analysis, answered by the success of the analysis itself.
This situation is not affected by the criticisms of Mach; Mach himself
acknowledged that such a process of analysis had taken place, and had led to
the enlargement of the frame of reference for physics from a small, nearly flat
region, to the Earth itself, and finally to the fixed stars in the hands of Galileo
and Newton (Mach, 1889, p. 215). For Mach, however, once Newton had
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discovered the interdependence of interactions and accelerations relative to
the fixed stars, the analysis could go no further. That accelerations relative
to the fixed stars follow Newton’s rules is an empirical claim, and any
extrapolation beyond it would be empty metaphysics. For Newton, in
sharp contrast, this was just a step in the application of a universal law,
and therefore the beginning of a process that must be completely open-
ended.

The real arbitrariness in this procedure stems not from the initial choice
of a reference frame, but from the peculiar nature of gravitation. For the
dynamical reasoning just outlined involves separating the purely inertial
component of every accelerated motion from components of acceleration
due to gravity. If we could not do this, we would be in no position to
say that the center of mass of a system of bodies moves uniformly, or that
accelerations relative to that center are true accelerations. Yet this is precisely
what the equivalence principle prevents us from doing. Because gravity acts
equally on all bodies, a system of bodies that is falling in a gravitational
field will be indistinguishable from one that is moving uniformly, and
therefore the accelerations relative to the center of mass, as determined by
the Newtonian analysis, cannot be known to be the true accelerations. We
have already seen, of course, that Newton was aware of this situation, having
inferred it himself from Corollary VI. Having exploited it for the analysis of
Jupiter and its moons, to show that the analysis does not depend on whether
the center of mass of that system is in inertial or freely falling motion, he
could hardly have missed the application to the entire Solar System that
he remarked upon in The System of the World (see Chapter 2, earlier). (See
Figure 6.) He could, however, treat it as a merely practical limitation. If
the true accelerations of Jupiter and its moons can only be studied in the
context of the entire Solar System, then the true acceleration of the Solar
System itself can only be studied within a still more encompassing system,
and so on. This series can only come to an end when we can be confident
that all matter in the Universe has been included in one dynamical system;
in that case, the law of action and reaction will eliminate the possibility
of a further acceleration of the system’s center of mass, for by hypothesis
there will be nothing with which the system might be interacting. As Kant
pointed out, this implies that Newton’s own notion of determining “the
true motions,” by a dynamical analysis of the forces at work, represents an
ideal limit of scientific inquiry (see above and Chapter 3, earlier).

Newton’s idea of determining true motion, then, like that of absolute
simultaneity, has to be regarded not as an empirical procedure, but as
an abstraction from the empirical procedure. More precisely, the notion
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Figure 6. Newton’s Corollary VI: the system of Jupiter and its moons can be treated as
an inertial system, since all the gravitational accelerations toward the Sun are (given the

immense distance from the Sun) very nearly equal and parallel, though in fact they
gradually converge toward the center of the Sun.

of determining the true acceleration abstracts the empirical procedure of
determining acceleration relative to the local center of mass – as Newton
accomplished for the Solar System and its sub-systems – from any empirical
circumstances in which it might practically be carried out. It makes implicit
use of what became the equivalence principle, by exploiting the universality
of free-fall together with Corollary VI, but it does not, as Einstein often
noted, incorporate it into the structure of the theory. It is simply a matter of
fact that, among the forces of nature, there is one that behaves like the sort
of force described in Corollary VI, affecting all bodies in such a way that
its very existence can be practically ignored for certain kinds of dynamical
problem. It is also simply a matter of fact that it is only this force that
allows us to study the interactions of the planets, to acquire any estimate of
their masses, and so to have any hope of determining a dynamical frame of
reference – of solving “the frame of the system of the world.” We need not
infer from this, as Kant did, that the existence of the gravitational force is
a synthetic a-priori principle. But we might infer, as Einstein did, that the
tasks of identifying inertial motion and measuring the local gravitational
field are intimately bound together in a way that the Newtonian framework
does not quite express.
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Indeed, it was probably impossible to express this connection between
inertia and gravitation until it could be represented in the framework of
space-time. In that context, the Newtonian program is to comprehend
every space-time trajectory as a deviation from a space-time geodesic; the
center of mass of any isolated dynamical system must follow a space-time
geodesic, and the curved trajectories of its parts must be comprehended as
accelerations relative to the center of mass, and explained by their mutual
interactions. By the equivalence principle, however, a free-fall trajectory
will be indistinguishable from a geodesic. Therefore the acceleration of
a falling body relative to the local center of mass may be, for all we are
able to determine, merely a relative acceleration of two free-fall trajectories.
The contradiction that Einstein identified – that two frames that may
be regarded as inertial nonetheless have relative accelerations – cannot
be resolved except in the setting of space-time geometry; only through
the identification of the gravitational field with the space-time metric can
we represent the objective structure underlying the perspectives of these
frames. (See Figure 7.) This is a significant difference from the case in
special relativity, where the “three plus one”-dimensional representation –
Einstein’s 1905 account, in short – adequately represents the theory, even
if Minkowski space-time puts it in a much clearer perspective. This is
because all inertial frames are related by the Lorentz symmetry group, so that
the symmetry group itself expresses the structure of space-time, whether
we choose to see it in those terms or not. Where the inertial frames are
relatively accelerated, and their acceleration depends on the distribution of
mass, there is no symmetry group, and so no way of simply representing the
theory by its “relativity principle.” It is plausible to say that special relativity
is “about” the equivalence of a certain class of frames, instead of speaking
about the structure of space-time, because the equivalence of those frames
defines the structure of the theory, and simultaneously defines a structure
for space-time. But knowing that freely falling frames are equivalent to one
another tells us, at most, the local structure of space-time; to the extent
that special relativity is locally approximately true in those frames, we can
say that the space-time is locally Minkowskian. To know something of the
larger-scale structure of space-time, and its dependence on the distribution
of matter, we need to know how to interpret the relative accelerations of
the local inertial frames, in such a way that they serve as measurements of
the space-time curvature.

It is helpful to see this problem from what might be called, very loosely
and somewhat facetiously, a Hegelian perspective. The equivalence princi-
ple obliges us to confront what appears to be, within the framework of flat
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Figure 7. Free-fall as an indicator of space-time curvature: the local inertial frames F1 and
F2 are in general not inertial relative to one another, since they may converge or diverge.
This relative acceleration is a measure of space-time curvature, just as the convergence of

geodesics (e.g. lines of longitude) on the Earth exhibits the curvature of the Earth’s
surface.

space-time, a contradictory situation: different local inertial frames sepa-
rately satisfy empirical criteria for being inertial frames, yet are non-inertial
relative to one another. In some sense this circumstance must undoubt-
edly undermine the distinct status of the classical inertial frame, but it
is not immediately obvious how and why. Einstein thought that this cir-
cumstance supported the “extension of the relativity principle,” in part
because of his way of thinking about coordinate systems in general; if the
class of privileged frames cannot be distinguished from falling frames, then
the restricted relativity principle has to be extended to include all possi-
ble coordinate systems in all possible states of motion. But to do so is to
set aside the lesson of the equivalence principle, that is, the very peculiar
character of free-fall and its peculiar relation to inertial motion. The “gen-
eral relativity of motion” that results is then something like what Hegel
referred to as “the night in which all cows are black,” the reconciliation
of differences simply by blurring them. In a genuine dialectical resolution,
however, those very differences would be revealed as telling us something
about the more comprehensive reality, the larger view of which they repre-
sent limited local perspectives. There is a direct analogy between this case
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and that of local perspectives on the surface of the Earth. On the one hand,
there is everywhere a privileged vertical direction, a direction that locally
satisfies empirical criteria for being vertical. On the other hand, however,
it will be observed that the directions thus identified at different places,
e.g. by the directions of particular stars at particular times, are not vertical
relative to one another. It might seem philosophically reasonable to adopt
therefore a kind of relativity principle regarding direction. Yet there is some
insight to be gained from the contradiction, if we can only see that there is
a larger perspective in which each of these locally privileged directions has
a natural place, and its locally privileged character makes sense as a limited
perspective on something larger. What needs to be recognized, in short, is
the spherical shape of the Earth and the convergence of all vertical lines on
its center. In the same way, the inertial character of reference frames that
are non-inertial relative to each other, as implied by the equivalence prin-
ciple, must be seen as revealing something about the larger-scale structure
on which they provide seemingly conflicting perspectives. This can only
come about if instead of thinking about inertial frames and what they tell us
about the relativity of motion, we think about inertial trajectories and what
their divergences tell us about the curvature of space-time. Contrary to the
spirit of the “general relativity of motion,” the general theory of relativity
itself requires us to acknowledge the uniqueness of free-fall trajectories, and
to understand what it reveals about the larger structure of space-time.

4 . 5 the construct ion of curved space -t ime

This last question appears to receive little emphasis in Einstein’s fundamen-
tal paper, in comparison with the destructive epistemological arguments
that we have considered. But it is, in fact, the crucial point in Einstein’s
reasoning: its answer determines the application of the “generally covariant
formalism,” the geometry of curved space-time, to the physics of grav-
itation. On its answer, indeed, both the physical significance of general
covariance and the geometrical significance of the equivalence principle
entirely rest. What needs to be established is that the physical uniqueness
of free-fall corresponds to a unique element in the geometrical formalism.
From the retrospective of the logical positivists, again, this would require
the setting down of an arbitrary stipulation, coordinating geometry and
physics or, specifically, coordinating the geodesic of space-time with the tra-
jectory of a falling body. But from Einstein’s perspective, the link between
the two is not presented as a stipulation at all. Rather, it is presented as a
kind of discovery, at once physical and mathematical, that what is distinct



132 The origins and significance of relativity theory

about free-fall corresponds to what is distinct about geodesic trajectories:
the only objectively distinguishable state of motion corresponds to the only
geometrically distinctive path in a generally covariant geometry (Einstein,
1916, pp. 29–30; 41–2). In other words, free-fall motion satisfies objec-
tive empirical criteria for a privileged state of motion, just as the geodesic
satisfies an objective mathematical criterion that does not depend on the
choice of coordinates. We can choose a coordinate system in which a given
free-fall motion is not rectilinear and uniform, and therefore introduce
a gravitational field as the cause of its (relatively) non-geodesic motion.
But this only shows that the Newtonian gravitational field is essentially
arbitrary. As we saw, in the Newtonian procedure, no actual measurement
of gravitational acceleration can ever really measure the deviation from a
geodesic in flat space-time – that is, the measurement is never the absolute
acceleration in Newton’s sense, but the relative acceleration of trajectories
that may both be regarded as freely falling. Thus the objective empirical
facts are the characteristics of the free-fall trajectories themselves, and the
objective (covariant) geometrical fact is the mutual divergence of their local
coordinate systems.

It should be clear from the foregoing, then, that general covariance
expresses an interesting physical fact only in conjunction with the equiv-
alence principle. In order to identify a Newtonian inertial frame, and to
identify the gravitational accelerations of bodies with respect to that frame,
we have to determine its center of mass. But since its center of mass, again,
may be itself in gravitational free-fall, the accelerations that we measure
are in fact only relative accelerations, that is, accelerations of certain freely
falling bodies relative to some other free-fall trajectory. Therefore the deter-
mination of a Newtonian inertial frame is essentially an arbitrary choice
of coordinates – an arbitrary decision that a certain free-fall trajectory is
really a Newtonian inertial motion, and an arbitrary decision that its par-
ticular coordinate system really is an inertial frame. By a similar analysis,
we can see the arbitrariness in the Newtonian field equation, that is, the
Poisson equation relating the gravitational potential to the mass density.
For the gravitational potential itself is empirically measurable only as rela-
tive acceleration – the tidal accelerations of a given system of falling bodies.
Since these accelerations will be independent of the state of motion of the
entire system, the magnitude of the gravitational potential is always a mat-
ter of arbitrary choice; its value evidently depends on our initial stipulation
of a coordinate system. Even if the Newtonian theory can be expressed
in a generally covariant form, the equivalence principle implies that its
most fundamental theoretical quantities are – not in virtue of the theory’s
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mathematical form, but in empirical fact – coordinate-dependent. So, taken
together with the equivalence principle, the demand for general covariance
does have some direct physical significance after all. To grasp its signifi-
cance, we first had to grasp that it arises, not from a general epistemological
fact about spatio-temporal measurement, but from physical facts about the
gravitational field and the ways in which we are capable of measuring it.

The decisive part of Einstein’s argument, then, is not the epistemological
critique directed against the Newtonian idea of motion. Rather, it is the
conceptual analysis directed against the Newtonian distinction between
inertial and gravitational motion, and against the Newtonian procedure
for determining the action of gravitational forces. The analysis shows that
the Newtonian approach does contain an implicit distinction between the
objective and the arbitrary quantities, but one that is not really captured
by the physical principles by which Newton defines the concept of a grav-
itational field. For that definition rests on the distinction between inertial
and forced motion that is implicit in the laws of motion: gravity causes
a deviation from the privileged trajectory, or geodesic of flat space-time.
But, as Einstein’s arguments show, that is not the conception of a privi-
leged trajectory that is actually in use in the analysis of any real system;
the one that Newton exploits is just the one that Einstein derives from
the equivalence principle, that is, the trajectory of the center of mass of
an isolated system that may as well be freely falling. So the relative accel-
eration that is measured is never that of a falling trajectory relative to a
uniform rectilinear trajectory, but that of one falling trajectory relative to
another. It would hardly make sense, then, to say that Einstein is arbitrarily
coordinating a type of observable motion with the geometrical notion of a
geodesic. Rather, he has found the conception of geodesic that is implicit
in our actual knowledge and practice.

Characterizing Einstein’s conceptual analysis in this way might seem
to bring it closer to Mach’s analysis of inertia. For, according to Mach,
our actual practice of measuring the interactions among the planets always
depended implicitly on their accelerations relative to the fixed stars, and
so a genuine analysis of the concept of inertia must be one that reduces
its meaning to this empirical and practical basis (see Chapter 2, earlier).
Newton’s understanding of the dynamical analysis, as we observed, involved
an abstraction from every empirical case in which it might be carried out,
so that absolutely any material circumstances – including a body rotating in
an otherwise empty universe – could be seen as a special case of the universal
laws that define inertia and force. Properly understood, Mach’s fundamental
objection was just to this abstract view: our actual knowledge, he insisted,
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was limited to the link between interactions and motions relative to the
fixed stars. While Mach did not really have a theory of the origins of inertia,
he saw the mere possibility of such a theory as a good enough reason to reject
an abstraction like Newton’s; the seeming compatibility of all our evidence
with such a theory just as well as with Newton’s offered a further reason. But
Einstein’s approach is not really Machian in this sense. For his approach,
too, involves an abstraction from the empirical characteristics of motion
relative to the fixed stars. The crucial distinction is that, where Newton
considered what the system we are acquainted with has in common with
an ideal, truly isolated system, Einstein’s abstraction involves considering
what this system has in common with every local system that may be
treated as freely falling. His application of the equivalence principle thus
identifies the universal distinguishing feature of freely falling local systems:
that they satisfy all the empirical criteria for being inertial systems, without
being integrable into any single global inertial system. Precisely this non-
integrability enables the comparison of inertial frames to reveal something
about the structure of the gravitational field. Where Newton’s abstraction
had the function of separating gravity from inertia, Einstein’s abstraction
reveals their underlying unity.

From this analysis, the step to space-time curvature is remarkably simple.
The relative behavior of geodesics is, simply, a defining characteristic of
the curvature of a space: in a flat space, geodesics do not exhibit relative
acceleration (“geodesic deviation”), whereas in a curved space, the relative
acceleration of geodesic trajectories provides a measure of the curvature, as
expressed mathematically in Riemann’s curvature tensor. The identification
of curvature with gravity follows more or less automatically: the geodesic
deviation is measured by the relative acceleration of falling bodies, which,
as we just saw, is our empirical measure of the gravitational field. The
search for field equations, relating the space-time metric to the distribution
of matter and energy, was historically a difficult and involved one,6 but
the fundamental idea is now almost obvious. For once we re-assess the
Newtonian field equation in light of the unity of inertia and gravity, we
know that the empirical basis of the equation is just the relation between
mass distribution and the relative accelerations of falling bodies; and once
we learn to interpret the latter as geodesic deviation, we understand that
the real content of the field equation must be the relation between mass
distribution and space-time curvature. As Einstein put it, once we know
that local inertial frames are relatively accelerated, so that “we are no longer
able by a suitable coordinate-choice to make the special theory of relativity
valid in a finite region, we will have to hold fast to the conception that



The construction of curved space-time 135

the gμν describe the gravitational field” (1916, p. 17). What had seemed
to be a contradiction, then, is now resolved: the apparently incompatible
viewpoints of different inertial coordinate systems are just local perspectives
on a space-time that is curved on a larger scale. The divergence between
the coordinate systems is, instead of an irreconcilable conflict, a precise
quantitative measure of the space-time curvature.

From the foregoing we can see that the essential point of general rel-
ativity, the identity of gravitation with space-time curvature, is entirely
independent of special relativity. And this is why Newton’s theory of
gravitation, within a space-time framework defined by absolute simul-
taneity and Euclidean spatial geometry, can be formulated as a theory in
which falling bodies follow the geodesics of a curved affine structure (see
Trautman, 1965; Malament, 1986; Stachel, 2002c). Therefore, to call
Einstein’s argument a conceptual analysis might seem to imply that he
was revealing something that was there all along in Newton’s theory, and
that only the lack of mathematical formalism prevented Newtonians from
seeing. But this would be to ignore the contingency of conceptual analysis
on the evolution of physical theory and observation. The indistinguishabil-
ity of inertial motion and free-fall does not necessarily undermine the global
determination of space-time geometry; it does so only on the assumption
that there are no physical phenomena independent of gravitation that might
serve to measure the background space-time geometry. It is not self-evident
in Newtonian physics, for example, that light rays must be subject to grav-
itational forces, or, therefore, that electromagnetic phenomena must be
subject to Corollary VI just as mechanical phenomena are. In principle,
electromagnetic or other phenomena might exhibit a background geomet-
rical structure that is distinguishable from the gravitational field; we might
then be able to measure the acceleration of a freely falling particle relative
to some other trajectory that is not dependent on gravity – just as we can,
in fact, measure the acceleration of a particle in a magnetic field relative
to the inertial trajectory of a body that is not affected by magnetism. For
this reason, it was a crucial step in Einstein’s reasoning to extend the equiv-
alence principle to all physical interactions: “But this view of ours [i.e. of
the equivalence of a system K at rest in a homogeneous gravitational field,
and a system K′ that is uniformly accelerating] will not have any deeper
significance unless the systems K and K′ are equivalent with respect to all
physical processes, that is, unless the laws of nature with respect to K are in
entire agreement with those with respect to K′” (Einstein, 1911, p. 101).
The confirmation of general relativity by the deflection of starlight, in the
celebrated eclipse observations of 1919, was so important precisely because
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it argued that light is, after all, subject to the equivalence principle: that is,
the paths of light rays cannot be used to separate the gravitational field from
some flat background geometry. Therefore this argument had, just at that
stage in the development of physics, a certain force that it could not have
had much earlier. So Einstein’s conceptual analysis is not analysis in Kant’s
sense, that is, analysis of what is contained in a fixed concept; nor is it the
mere reduction of the concept to its supposed observational consequences.
It is, instead, an analysis of the evolving role that the concept plays in an
evolving body of theory and practice.

Thus general relativity does not, after all, reduce the concept of motion
to purely observable relations, or blur the distinctions among different
states of motion. Instead, it begins from the local inertial system as a priv-
ileged frame of reference, and the seeming paradox that different inertial
systems may be relatively accelerated. But the theory unites the perspectives
of different inertial systems in a more comprehensive framework, in which
their mutual differences reveal the structure of space-time on a larger scale.
Einstein’s argument for the theory, therefore, follows the dialectical pat-
tern that we noted in his argument for special relativity. Like the passage
from Newtonian space-time to special relativity, the passage from special
to general relativity begins with a measurement procedure that makes per-
fect sense according to the old theory, but whose application in frames
of reference in certain states of relative motion leads to surprising results.
The procedure for identifying the Newtonian gravitational field is essen-
tially carried over unchanged into the new theory; the radical change comes
from the recognition that it can be carried out even in frames of reference
that are relatively accelerated – i.e. that the criteria for an inertial frame can
be satisfied even in frames that are accelerated relative to one another. As
in 1905, there is an apparent contradiction here whose resolution requires
us to reintepret the basic concepts of the theory.

In at least one sense, however, the resolution to which it leads is less
radical than that of special relativity. The passage to special relativity reveals
that what had been thought to be absolute has turned out to be relative;
the precise meaning of this is that the symmetry group of space-time has
changed, so that certain quantities that were invariant in the old theory are
frame-dependent in the new, and vice versa. The “relativization” that occurs
in the passage to general relativity cannot be described in such precise terms.
Because local inertial frames are likely to be relatively accelerated, they don’t
stand in the same simple relation to one another that characterizes inertial
frames in Newtonian and special-relativistic space-time; the shift from one
to another cannot be a rigid displacement of space-time, as it would be if
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the frames were determined by a symmetry group. This is the true content
of Einstein’s remarks about the need to “free oneself of the belief that
coordinates must have an immediate metrical significance” (1949, p. 66);
we have to free ourselves of the a-priori conviction that coordinate systems
directly express the possibility of rigid spatial and temporal displacements,
and that coordinate transformations correspond to such displacements in
the simple and direct way that they did in flat space-time. In short, inertial
frames in general relativity have the same structure, locally, as in special
relativity; what has changed is their relation to one another. Special relativity,
in relation to Newtonian mechanics, meant a change in the structure of the
inertial frames: something that was supposed to be true in all inertial frames
(e.g. that certain events are simultaneous) turned out to be dependent on
the choice of frame, whereas all frames would now agree on something
(the velocity of light) that could not possibly have been an invariant of the
old structure. General relativity, in relation to special relativity, implies
that what is true in an inertial frame is true only locally – which is to
say that there really are no inertial frames, even if certain fairly small regions
of space-time may be hard to distinguish from inertial frames. Instead of
saying that what was absolute turns out to be relative, then, we should
say that what was global turns out to be local. It is somewhat misleading,
then, to infer from the equivalence principle that “the relativity postulate
has to be extended to coordinate systems which, relative to each other,
are in non-uniform motion.” If this is in one sense an extension of the
relativity principle, it is in another sense a restriction of it: it implies that
the equivalence of local inertial frames – just because they are local – can
no longer be seen as defining a symmetry of space-time.

4 .6 general rel at iv it y and “world- structure”

Emphasizing the conceptual analysis occasioned by the equivalence princi-
ple, as the essential part of Einstein’s reasoning, gives us some insight into
the emergence of general relativity as a constructive theory of space-time
geometry, rather than as a somewhat questionable philosophical critique of
older theories. Just for that reason, however, the foregoing account might
seem unhistorical. It might appear merely to separate, from the confusing
jumble of Einstein’s philosophical motivations, the ideas that best conform
to our present understanding of general relativity. But my aim has not been
to isolate what now seems the most reasonable foundation for Einstein’s
theory. Rather, I have tried to understand how Einstein’s jumble of moti-
vations gave rise to an empirical theory, one that made the structure of
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space-time a matter of empirical investigation. Such an understanding is
further vindicated by the fact that, in Einstein’s own time, it was shared
by those who understood the theory particularly clearly – that is, those
who gave the theory the mathematical form that expressed its physical
content most clearly, and that played the most influential role in its wider
assimilation. As Minkowski had done with special relativity, Eddington
and Weyl, within a few years of the advent of general relativity, presented
both the mathematical formalism and the physical content of the the-
ory, in the first perspicuous and comprehensive texts on the theory (Weyl,
1918; Eddington, 1920). These works noted the epistemological criticism
of earlier theories that had been such an important part of Einstein’s pre-
sentation, but they did not especially emphasize it, or identify it as the
special philosophical import of general relativity. Instead, they presented
general relativity in a manner that made its continuity with its predeces-
sors much easier to see. In this way they revealed general relativity as a
theory, not of relativity, but of “world-structure” – the dynamical struc-
ture that unified the physics of gravitation with the geometry of space and
time.

This view has never been fully assimilated in the familiar philosophical
debates concerning space and time. Or, more precisely, the debate has only
considered the very broadest aspect of such a view, that it is a generally
realistic interpretation of space-time structure – a view that, more than the
positivists had realized, deserves to be taken seriously as a possible and even
plausible view of the metaphysics of general relativity. But the emphasis on
“world-structure” was more than a metaphysical position or hypothesis. It
rested on an understanding of our knowledge of space and time, in partic-
ular the relation between physical geometry and our empirical assumptions
about physics, that illuminated the structure and the significance of general
relativity in a way that other philosophical interpretations did not. In doing
so it brought Minkowski’s approach to physical geometry into harmony
with a dynamical view of space-time. To say this is not to insist upon a
particular interpretation of general relativity.7 It is merely to acknowledge
that this approach to the theory answered certain questions about it –
especially, how it stands in relation to earlier theories, and precisely what
it asserts about the nature of space, time, and motion – that the more
prominent interpretation tended to obscure.

Weyl’s Raum-Zeit-Materie (1918) presented Newtonian physics, electro-
dynamics, special relativity, and general relativity within a general mathe-
matical framework that, at the same time, placed their philosophical rela-
tions in a coherent perspective for the very first time. The progression from
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Newton’s theory to Einstein’s, as Weyl presents it, is not primarily a move-
ment from naı̈ve absolutism to relativism, or the gradual erasure of every
trace of “physical objectivity” from space-time, but a deepening under-
standing of world-geometry and its relations with the dynamical proper-
ties of matter. While he shared in the general enthusiasm for Einstein’s
“relativistic” philosophical viewpoint and seemed to take Mach’s princi-
ple fairly seriously, he also emphasized that such a general epistemological
viewpoint, by itself, offered little insight to the structure of the theory. For
Weyl, the true significance of general relativity lay in “the assumption that
the World-metric is not given a priori, but the quadratic groundform is to
be determined by matter through generally invariant laws” (Weyl, 1918,
pp. 180–1). The requirement of general covariance he regarded as “essen-
tially mathematical” rather than as expressing the physical content of the
theory; thus the “essential kernel,” he thought, was to be found “less in the
requirement of general invariance than in this principle [that gravitation
is a mode of expression of the metric field]” (Weyl, 1918, p. 181). He
could not, therefore, regard Mach’s principle as Einstein (at first) and the
logical positivists did,8 as merely the physical application of an undeniable
epistemological principle; it has to be seen as a physical hypothesis about
the source of centrifugal effects and, moreover, one that is only partly com-
patible with the true content of the new theory. Thus he pointed out that
the phenomena associated with “absolute rotation” are “in part an effect
of the fixed stars, relative to which the rotation takes place” – adding in
a footnote, “In part, because the mass-distribution in the world does not
uniquely determine the metric field . . .” (Weyl, 1918, pp. 175–6). In other
words, the metrical field has a certain independence of the distribution of
matter, and therefore the states of motion of bodies with respect to the field
have a corresponding independence of the distribution of matter; general
relativity thus does not fulfill the Machian aim of reducing all motion to
the relative motion of observable bodies.

Later, in his survey article, Philosophie der Mathematik und der Naturwis-
senschaften (Weyl, 1927), he went much further in criticizing the Machian
emphasis on the relativity of motion, even stating explicitly that it is a
hindrance to the understanding of Einstein’s theory:

Incidentally, according to the general relativity-postulate, without any basis in a
world structure, the concept of relative motion of several bodies is left hanging in
the air just as much as the concept of absolute motion of a single body . . . Thus
a solution of the problem consistent with the tendency of Huyghens and Mach,
which seeks to eliminate the world-structure, is impossible. (Weyl, 1927, p. 74)
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This passage makes a point that the relationalist tradition, from Newton’s
time through the nineteenth century, had largely ignored: that the relative
motions are not purely phenomenal, and therefore are not epistemologi-
cally privileged over geometrical structure. On the contrary, the description
of spatial relations, and their changes over time, presupposes a degree of
geometrical structure just as the description of absolute motion does. More-
over, from the standpoint of special relativity, the presuppositions underly-
ing relative motion seem questionable and naı̈ve. Only on the assumption
of absolute simultaneity can we even identify the situation of bodies, in
the sense of Leibniz or Mach, in order to measure how it changes over
time. Thus some conception of world-structure underlies any attempt to
understand motion, even those that claim to reduce motion to observable
relations.

The philosophical problem for physics is therefore not to eliminate the
world-structure by reducing it to some epistemologically sound founda-
tion – as if it were nothing but an empty metaphysical abstraction from the
objective empirical relations. The problem, rather, is to grasp the nature of
the world-structure through the physical phenomena that reveal it. What
had made the structure seem otherworldly, “metaphysical” in the pejora-
tive sense, was the Newtonian assumption that such a structure could stand
apart from all physical interactions, determining their course without being
affected by them in any way. What was “unsatisfying” was that “something
that has such powerful effects as inertia . . . is supposed to be only a rigid
geometrical property of the world, fixed once and for all . . . Therefore
the solution is given as soon as we are resolved to acknowledge the inertial
structure as something real, that not only exerts effects upon matter but also
suffers such effects” (Weyl, 1927, p. 74). The structure that reveals itself in
the motions of falling bodies is, at the same time, in an interaction with
bodies that reveals itself in the dynamics of the gravitational field. Where
Einstein had seen general relativity as taking away “the last remainder of
physical objectivity” from space and time (1916, p. 13), Weyl sees it as
granting space-time geometry the same kind of reality that we grant to
every other physical field.

Evidently, then, Weyl’s philosophical perspective on general relativity was
very similar to Minkowski’s on special relativity: he was convinced that the
philosophical emphasis on relativity as a general epistemological principle,
and the emphasis on equivalence of coordinate systems as a physical princi-
ple, only obscured the underlying geometrical structure that is the theory’s
true content. Like Minkowski, he did much to translate the talk of coordi-
nate systems and transformations into a coherent mathematical account of
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that underlying structure. But what interests us most for the present is his
discussion of how we come to know the structure of space-time, or more
precisely, how we come to understand certain characteristic phenomena as
having some kind of geometrical significance. It is in this discussion that
another kind of kinship with Minkowski emerges, for Weyl defends a very
similar view of the direct relationship between geometry and its physical
interpretation. The relationship begins from the most elementary ideas that
we form about the events that we experience:

One already attributes a definite structure to the four-dimensional extensive
medium of the external world, if one believes in a division of the universe into an
absolute space and an absolute time, in the sense that it is objectively meaningful
to say of any two separate events, narrowly localized in space-time, that they are
happening at the same place (at different times) or at the same time (at different
places). (Weyl, 1927, p. 65)

When we begin to introduce quantitative considerations regarding length
or duration, we implicitly introduce a more complicated structure: “One
attributes to the world a metrical structure when one assumes that the
equality of time-intervals and congruence of spatial figures have an objec-
tive meaning” (Weyl, 1927, p. 66). There is a natural interpretation of
spatio-temporal structure, then, because assumptions about the structure
are implicit in the way that we make certain fundamental empirical dis-
tinctions.

With the introduction of dynamical laws, we come to understand
another kind of structure, the inertial structure. “The experiences which
prove the dynamical inequivalence of different states of motion teach us
that the world bears a structure” (Weyl, 1927, p. 70), namely the affine
structure of space-time. According to Weyl, Newton had rightly recognized
this connection, but “this inertial structure was not correctly interpreted by
the concept of absolute space” (Weyl, 1927, p. 70), because where absolute
space rests on the distinction between motion and rest, the meaningful
distinction (see Chapter 2, earlier) is between uniform motion and acceler-
ation. There are three points of interest in Weyl’s remarks about Newton.
First, in contrast to Einstein and the logical positivists, he does not object
to Newton’s belief that dynamics can tell us something about the objective
nature of space and time; he only criticizes the concept of absolute space as
the wrong way of characterizing the structure. Second, as we noted above,
his only general philosophical objection to the reality of inertial structure,
and to the claim that we can grasp it through inertial forces, is that the
classical notion removed the structure from all interaction with physical
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fields. Third, these remarks make even more explicit how Weyl regards the
problem of interpreting geometrical structure: we do not choose an inter-
pretation for an abstract mathematical structure, but we try to interpret
characteristic physical phenomena through a conception of geometrical
structure – as, for example, absolute space was an (inadequate) attempt to
interpret the evident dynamical distinction between uniform and acceler-
ated motion. Weyl was convinced, as we noted, that there were a-priori
philosophical reasons for preferring an inertial structure that is dynamical
rather than absolutely fixed. But the true justification for accepting such a
structure is that it interprets for us the motions of falling bodies: if these are
indistinguishable from geodesic motions, then the dynamics of the grav-
itational field – its dependence on the distribution of matter – reveals to
us the dynamics of the affine structure of space-time. Or, in other words,
if freely falling frames behave like inertial frames, then inertial frames are
purely local, and the dynamics of the gravitational field is expressed by the
divergences among different inertial frames. Minkowski’s and Newton’s
space-times – flat space-times that allow for a privileged class of global iner-
tial frames – take no account of the dynamical relation that is revealed by
free-fall, and so they attempt to impose on all of space-time a framework
that can only be applied to the smallest regions. In order to understand
the significance of the identity of inertia and gravitation, in sum, we need
to see that it directs us to interpret free-fall trajectories as revealing the
world-structure on a larger scale.

Weyl’s understanding of general relativity, and, more broadly, of the
connection between physical phenomena and geometrical structure, had a
direct influence on Eddington (1918). That influence is particularly obvi-
ous from the philosophical discussions of the theory that he wrote for
non-specialist readers, in Space, Time, and Gravitation (1920). For our
purposes, however, what is most relevant and most revealing is the case
he presented to physicists for general relativity as an empirical physical
theory – as the kind of theory in which physicists could have the kind
of confidence that they had in Newton’s theory of gravity, the kind of
theory whose connection with empirical evidence could be made evident,
despite the unfamiliar and bizarre-sounding mathematical framework in
which it was expressed. This case became best known, and most influen-
tial, through the text, The Mathematical Theory of Relativity (1923). But in
1918 – before the historic eclipse expedition to measure the deflection of
light by the Sun – Eddington presented a “Report on the relativity theory
of gravitation” to the Physical Society of London (Eddington, 1918). Here
we can see especially clearly that, for Eddington, an inseparable part of
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the scientific case for the theory was a philosophical argument about our
knowledge of space and time. If the interpretation of gravity as space-time
curvature was to make any sense, Eddington apparently recognized, the
question of space-time curvature itself would have to be made sense of as
an empirical question; space-time geometry would have to be understood
as a matter for objective measurement. In contrast to Einstein’s view of
space and time as lacking “physical objectivity,” and of space-time coordi-
nates as lacking “direct metrical significance,” Eddington tried to articulate
the sense in which coordinate systems and their application really do tell
us something physically meaningful about the nature of space and time.
This task required more than exhibiting a spectacular predictive success of
the theory, such as the light-bending result; it required a compelling argu-
ment that the basic concepts of curved space-time geometry correspond to
measurable physical magnitudes.

There are, to be sure, passages in which Eddington seems to embrace
the epistemological view of Einstein, and in particular Einstein’s view of
what can be regarded as a measurable physical magnitude; he suggests that
the equivalence principle furnishes the means of extending relativity in just
the way that Einstein suggested, so that only local relations are observable,
and a gravitational field may be “transformed away” by a suitable choice of
coordinates.

It will be seen that this principle of equivalence is a natural generalization of the
principle of relativity. An occupant of the projectile [in a gravitational field] can only
observe the relations of the bodies inside to himself and to each other. The supposed
absolute acceleration of the projectile is just as irrelevant to the phenomena as
uniform translation is. The mathematical space-scaffolding of Galilean axes, from
which we measure it, has no real significance. (Eddington, 1918, p. 20)

Eddington emphasizes, however, the “limitation of the Principle of Equiv-
alence,” namely that to transform away a gravitational field is only possible
for an infinitesimal region of space-time. Of course, Einstein frequently
made this point (e.g. 1916, p. 41; 1922, pp. 63–4). But Eddington gives
more emphasis to what this limitation implies for our knowledge of space
and time – more precisely, for our ability to determine the structure of
space and time by empirical measurement.

. . . [For] an infinitesimal region the gravitational force and the force due to a
transformation correspond; but we cannot find any transformation which will
remove the gravitational field throughout a finite region. It is like trying to paste
a flat piece of paper on a sphere, the paper can be applied at any point, but as
you go away from the point you soon come to a misfit . . . The impossibility of
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transforming away a gravitational field is, of course, an experimental property; so
that, in spite of the principle of equivalence, there is at least one means of making
an experimental decision.

Space-time in which there is no gravitational field which cannot be transformed
away is called homaloidal . . . Our space is not like that, though we believe that
at great distances from all gravitating matter it tends toward this condition as a
limit. (Eddington, 1918, p. 22)

Eddington is pointing out the fact, also emphasized by Einstein, that the
local character of inertial frames makes for discrepancies between the iner-
tial coordinates defined at different points at space-time; this is just another
way of saying that local inertial frames can be in non-uniform motion rel-
ative to one another, and the coordinate system of one cannot be extended
to embrace that of another, as one would expect to be able to do in flat
space-time. For in flat space-time every local inertial frame is extendible
into a global frame, with respect to which every other local inertial frame
remains an inertial frame. But Eddington is also arguing that this discrep-
ancy between local inertial frames, properly understood, reveals something
objective about the underlying structure of space-time, namely its non-
homaloidal character.

This way of thinking leads Eddington to quite a different view from
Einstein’s of the relation between general relativity and the Newtonian
view of space and time – and the relation between general covariance and
“general relativity” in the broader philosophical sense. The difference is
expressed sharply in Eddington’s discussion of absolute space, and why and
to what extent it is rejected by general relativity:

Although we deny absolute space, in the sense that we regard all space-time frame-
works in which we can locate natural phenomena as on the same footing, yet we
admit that space – the whole group of possible spaces – may have some absolute
properties. It may, for instance, be homaloidal or non-homaloidal . . . You cannot
use the same coordinates for describing both kinds of space, any more than you
can use rectangular coordinates on the surface of a sphere; that is, in fact, the
geometrical interpretation of the difference. (Eddington, 1918, p. 23)

The question of “absoluteness,” it would seem, is not for Eddington an
ontological question of the sort that has historically been framed in the
terms of the “absolute–relational” debate. It is a question of the empirical
constraints on the kind of mathematical structure we may impose upon
the world: the absolute properties of space-time are the recalcitrant prop-
erties that we confront when we wish to coordinatize it in a particular way.
Einstein’s remark that coordinates have no “immediate metrical signifi-
cance,” interpreted from Eddington’s point of view, means that we can no
longer extrapolate from a local coordinate system to the global structure of
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Figure 8. Coordinates in homaloidal and non-homaloidal spaces: the rectangular
coordinate system {x, y} can be “pasted” on to the plane P without distortion. But on

the arbitrarily curved manifold M, no extended coordinate system can be smoothly
applied; the spaces at distinct points p1 and p2 will have to be coordinatized in distinct

local pieces or coordinate “patches” c1 and c2, which will in general be disoriented
relative to one another.

space-time, or even to a finite region of space-time – not because space-time
now has a different ontological status, but simply because it is curved. (See
Figure 8.) So the physical interpretation of space-time geometry no longer
corresponds to the idealized physical interpretation of coordinate systems,
in which they were taken to be simply definable by the rigid displacement
of rods and the uniform motion of clocks. Those physical processes are
characteristic of flat spaces and space-times, but are ruled out by the pres-
ence of curvature. Even though coordinates are arbitrary, therefore, how
and whether we may impose them depends on the physical characteristics
of space-time, and hence is a matter of empirical fact.

The question of the arbitrariness of coordinates is closely related to the
question of the arbitrariness of the gravitational field. Here again, however,
Eddington had a compelling philosophical argument that there is a non-
arbitrary feature of the world at stake. He certainly acknowledged the
convenient practice of speaking of the metric tensor as the gravitational
field, and the metric coefficients gμν as “gravitational potentials”:

The double aspect of these coefficients, g11 &c., should be noted. (1) They express
the metrical properties of the co-ordinates. This is the official standpoint of the
principle of relativity, which scarcely recognizes the term “force.” (2) They express
the potentials of a field of force. This is the unofficial interpretation which we
use when we want to translate our results in terms of more familiar conceptions.
(Eddington, 1918, p. 23)
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But he did offer what amounts to a philosophical defense of the first inter-
pretation over the second. To understand this, it may be illuminating
first to consider some critical remarks of Russell’s on the matter. Com-
paring Eddington’s view to Whitehead’s defense of Euclidean geometry,
Russell wrote: “Whereas Eddington seems to regard it as necessary to adopt
Einstein’s variable space, Whitehead regards it as necessary to reject it. For
my part, I do not see why we should agree with either view: the mat-
ter seems to be one of convenience in the interpretation of formulae”
(Russell, 1927, p. 78). As we have already seen, something like Russell’s
view was a central point in the logical positivist’s interpretation of general
relativity.

But Eddington in 1918 placed this issue in a rather different philosophi-
cal context. If we choose the geometrical over the force-field interpretation
of gravity, it might seem as if we are hypothesizing about the nature of an
unseen reality, in the face of facts that are compatible with both (or, in fact,
any number of ) hypotheses. But that would be a misunderstanding of the
nature of spatio-temporal measurement, and its relation to the structure of
space and time – as if the measurements were supposed to have any bearing
at all on some metaphysical reality that is hidden behind them. Eddington’s
analysis bears quoting at some length:

The reader may not unnaturally suspect that there is an admixture of metaphysics in
a theory which thus reduces the gravitational field to a modification of the metrical
properties of space and time. This suspicion, however, is a complete misapprehen-
sion, due to the confusion of space, as we have defined it, with some transcendental
and philosophical space. There is nothing metaphysical in the statement that under
certain circumstances the measured circumference of a circle is less than π times
the measured diameter; it is purely a matter for experiment. We have simply been
studying the way in which physical measures of length and time fit together – just
as Maxwell’s equations describe how electrical and magnetic forces fit together.
The trouble is that we have inherited a preconceived idea of the way in which
measures, if “true,” ought to fit. But the relativity standpoint is that we do not
know, and do not care, whether the measures under discussion are “true” or not;
and we certainly ought not to be accused of metaphysical speculation, since we
confine ourselves to the geometry of measures which are strictly practical, if not
strictly practicable. (Eddington, 1918, p. 29)

It would be easy to misread these remarks, as dissociating geometrical mea-
surement from any concern with the real nature of space and time, that
is, as a kind of positivistic dismissal of metaphysics. Their actual intent,
however, is merely to question the existence of any distinction between
“true” geometrical structure and the kind of structure that can conceivably



General relativity and “world-structure” 147

be the object of our measurements. As long as we are not confused about
such a distinction, the curvature of space-time is as much a matter of
empirical measurement as ordinary spatial geometry ever was. More pre-
cisely, it is as measurable as the strength of the gravitational field ever was
in the Newtonian setting, and measurable by the very same phenomena
that we thought had been measuring the gravitational field – because,
from the equivalence principle, we understand the relative accelerations of
falling bodies as the relative divergence of local inertial frames. If there is
another “true” geometrical structure underlying this one, in other words,
the equivalence principle assures us that we can know nothing about
it.

Eddington’s discussion really addresses a more general problem con-
cerning the relation between physics and ordinary experience, one closely
analogous to the one faced by Helmholtz and his contemporaries concern-
ing spatial geometry: namely, to justify construing some particular class
of physical processes as standards for geometrical measurement. But the
problem is transformed in the setting of a dynamical and variable space-
time geometry. It is obvious enough that, especially in the case of general
relativity, physics has separated the concept of space-time from our simple
spatial “intuitions” about it. This has created a false impression, however,
that in doing so physics has introduced strange hypotheses about the nature
of space and time – and, therefore, that common sense has the right to ask
whether space and time could really be as physics says they are. What this
way of thinking overlooks is that relativity has not merely proposed to
replace the intuitive notions of space and time with difficult theoretical
notions. Rather, general relativity has subjected the intuitive notions to
a kind of philosophical critique, and, in successive stages, brought them
into closer harmony with physical knowledge of space-time measurement.
The question that then emerges is, does common sense – even the com-
mon sense of the Newtonian physicist – have any clear conception of the
structure of space-time independently of the measurements that physical
laws make possible? In the nineteenth century, the question was whether
we could form an empirical conception of spatial geometry other than the
one exhibited by the dispositions of rigid bodies; after general relativity, the
question was whether we could define a dynamical reference frame – and
thereby identify the geodesics of space-time – other than by comparing the
accelerations of falling bodies.

It is remarkable enough that, at a time when the dominant view of
general relativity was Einstein’s “Machian” view – and decades before
any other view made its way into the mainstream of the philosophy of
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science – Weyl and Eddington brought to light both the mathematical
structure of the theory, and its true philosophical relationship with its
predecessors. Indeed, by doing the former as perspicuously as they did,
they could hardly help doing the latter: it was obvious that Newtonian
space-time, special relativity, and general relativity involved differing con-
ceptions of the geometrical structure of the world, and of the physical
processes that define it for us, rather than fundamentally differing views of
the epistemology of geometry. Moreover, the work of Weyl and Eddington
reveals the continuity between general relativity and its predecessors, not
only from the metaphysical, but from a methodological point of view: as
a theory of space-time structure as something that is empirically measur-
able. The logical positivists thought that the fundamental issue of space-
time measurement was addressed by their discussion of point coincidences;
further specification was left as a matter for convenient stipulations. But
obviously the information that one might get from point coincidences
hardly suffices to answer the kind of question that physics normally asks
about the phenomena that general relativity is supposed to address: how
are motions determined by physical fields? How is the motion of a planet
determined by the mass of the Sun? How does the theoretical concept of
curvature correspond to any measurable magnitude? So the importance of
the “world-structure” view was not what it may have contributed to our
understanding of the objective reality or “absoluteness” of space-time in the
sense that is concerned in the absolute–relational debate. Its importance
lay in recognizing questions about the structure of space-time as empiri-
cal questions. General relativity had not made the structure of space-time
any less objective than it had ever been; rather, it revealed how the struc-
ture is contingent on empirical circumstances in ways that had never been
imagined.

This discussion of Weyl and Eddington, and on their particular ways of
representing and disseminating the content of general relativity, does not
purport to be a thorough account of the acceptance of general relativity.
Nor does it purport to establish their “world-structural” point of view as
the correct or even as the dominant interpretation of general relativity. It is
true that their view was maintained and advanced by notable figures such
as Synge (1960), and that it later attained a degree of pre-eminence through
classic geometrical accounts of relativity such as Misner et al. (1973) and
Hawking and Ellis (1973). But that would surely not suffice to show that the
“paradigm-shift” to general relativity was primarily driven by philosophical
arguments like the ones I have presented. For my purposes, however, it is
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not really necessary to make such a case. In fact, the idea of a paradigm-shift
to general relativity is in itself something of an exaggeration; the theoretical
physics community as a whole seems to have maintained a certain reserve
toward the theory for many decades, doubtless because of the paucity of
very compelling empirical applications (see Eisenstadt, 1989). That reserve
was much broken down by the extraordinary developments in empirical
tests of general relativity beginning in the 1960s (see Will, 1993), but it
would still be an exaggeration to say that Einstein’s theory is the framework,
in Kuhn’s sense, that determines how physicists think about space, time,
and gravitation. The expectation that the theory is only provisional, to be
replaced eventually by a quantum theory of gravity, is too widespread for
such a characterization to make much sense.

My aim, instead, here as in the earlier chapters, has been to make a
philosophical point about the nature of conceptual transformation in the
physics of space and time. A study like this one could hardly hope to
answer the broader historical question, whether all or most of those who
accepted general relativity were motivated by arguments like the ones I
have presented. I have focused, therefore, on a more restricted set of philo-
sophical questions: did Einstein have, after all, a legitimate philosophical
argument for the theory? Was it a non-circular argument, that is, an argu-
ment that took the Newtonian theory as its starting point rather than (as
Kuhn would suggest) assuming general relativity itself as its fundamental
premise? Could it be recognized as such, not merely in hindsight, but by
Einstein’s own contemporaries? In other words, could such an argument
justify a reconsideration of the fundamental structure of space-time, and
exhibit a clear sense in which the reconsidered view really constitutes a
deeper understanding of the phenomena that the old theory claimed to
explain? I think that the foregoing account of Einstein’s reasoning, and
the discussion of Eddington and Weyl, suffice to answer these questions
affirmatively.

4 .7 the philosophical s ign ificance
of general rel at iv it y

In retrospect, the insistence on the relativity of motion, by Mach, Einstein,
and their philosophical sympathizers, recalls the mechanical philosophers’
insistence on reducing interaction to impact. On the one hand, in both
cases a collection of philosophical ideas, both epistemological and meta-
physical, provided a powerful motivation to free physics from certain
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traditional bonds, and to construct novel theories. On the other hand,
the philosophical ideas themselves, in both cases, involved certain mis-
conceptions. Under the guise of a sound methodological stricture against
unintelligible “occult” causes, the mechanical philosophy proposed a purely
hypothetical and, from the Newtonian point of view, more or less arbi-
trary restriction of all physical interaction to contact forces. Under the
guise of a philosophical critique of an existing theory, on the grounds
that it violates principles of empiricism and causal intelligibility, the rela-
tivist program really offered a metaphysical hypothesis: that the principle
of inertia, as understood in Newtonian mechanics and special relativity,
will prove to be reducible to some deeper kind of interaction that has
not been hitherto understood. As in the case of the mechanists’ demand
for a mechanical model to explain the phenomena of universal gravita-
tion, the mere possibility of imagining such a theory does not constitute
a legitimate philosophical argument against the existing theory.9 No more
can the preference for the purportedly deeper theory claim some objective
epistemological ground, since the theory is necessarily a speculative one,
whereas the theory under attack – in this case, the principle of a priv-
ileged state of inertial motion – has empirically well-defined criteria of
application. If anything, the problem was more acute for Einstein than for
the mechanists since, Einstein’s philosophical objections notwithstanding,
he actually did succeed in defining a privileged state of motion through
his application of the equivalence principle. For it was Einstein himself,
after all, who identified the equivalence principle as the basis for a new
definition of the space-time geodesic, and thereby an interpretation of the
gravitational potential as an expression of the curvature of space-time. That
this space-time theory emerged in spite of Einstein’s philosophical objec-
tions, apparently, does not need to be explained by an appeal to some
sort of mysterious physical intuition on Einstein’s part. Rather, this cir-
cumstance exhibits Einstein’s careful attention to the empirical meanings
of the fundamental concepts that he employed – more precisely, to the
empirical criteria for their application – and how little distracted his atten-
tion was from these problems, even by his most questionable philosophical
ideas.

When we understand both the insufficiency of Einstein’s preliminary
philosophical motivations for the general theory of relativity, and the con-
structive significance of the equivalence principle, we can begin to under-
stand how it is possible for Einstein to have created a theory that is so
much at variance with his motives – how the theory turned out to have
philosophical implications that disturbed him, and that were left for others



The philosophical significance of general relativity 151

to articulate clearly. The situation recalls a remark of Kant’s, concerning
synthetic and analytic definitions, and why the mathematical sciences have
no use for analytic definitions:

The general definition of similarity is of no concern whatever to the geometer. It
is a fortunate thing for mathematics that, even though the geometer occasionally
gets involved in the business of furnishing analytic definitions as a result of a false
conception of his task, in fact nothing is actually inferred from such definitions,
or, at any rate, the immediate inferences which he draws ultimately constitute the
mathematical definition itself. Otherwise this science would be liable to exactly
the same unfortunate discord as philosophy itself. (Kant, 1764, p. 277)

Einstein tried, on the basis of epistemological considerations borrowed
from Mach, to articulate a general definition of motion as something purely
relational, and of inertia as a kind of interaction with the contents of the
universe at large. But the actual product of Einstein’s reasoning – the general
theory of relativity, the theory of curved space-time geometry – was not
seriously affected by these considerations on the nature of motion, because
the structure of the theory was determined in the end by a kind of synthetic
principle, the theory of geodesic motion as the motion of freely falling
bodies. This principle ensured the connection between the gravitational
field and the curvature of space-time, and no amount of confusion about
the theory’s philosophical significance, or its relation to the ideas of Newton
or Mach, could prevent the theory from developing as an empirical theory
of physical geometry.

notes

1. See, for example, Stachel (2002a, 2002b), among other articles in Stachel
(2002d).

2. For some further discussion of the development of the concept of inertial frame,
see DiSalle (1990, 2002d). Regarding this development in relation to Mach,
and Mach’s critique of Newtonian mechanics, see DiSalle (2002c).

3. This is evidently an extremely brief and inadequate sketch of the geometry of
Minkowski space-time. For a more detailed account see (for example) Geroch
(1978), Taylor and Wheeler (1978).

4. In addition to Friedman (2002a), see Stachel (1989a) and Torretti (1983).
5. See Earman (1989, chapter 5) and Belot and Earman (2001).
6. For informative discussions of the historical development, see Stachel (1989b,

2002b) and Norton (1989a, b).
7. For a discussion of some of the serious interpretive issues that arise in the context

of contemporary physics, particularly in connection with quantum theories of
gravity, see Belot and Earman (2001).
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8. In the literature of the philosophy of science, in fact, the serious re-assessment
of Mach’s view only began in the late 1960s, with works such as Stein (1967,
1977). See also DiSalle (2002b).

9. For further discussion of this issue, and the use of Machian ideas in twentieth-
century and contemporary physics, see DiSalle (2002b). For some alternative
views see, e.g., Barbour and Pfister (1995).



chapter 5

Conclusion

5 . 1 s pace and t ime in the hi story of phys ic s

In the history of modern physics, space and time have after all played some-
thing like the role attributed to them by Kant. Not as forms of intuition:
this was only incidentally the case, in a context where the geometry of space
and the intuitive means of knowing about space seemed inseparable from
one another. In that context, the processes of “representing to ourselves” in
the productive imagination and of conceptualizing the relative situations
of physical things appeared to be seamlessly connected. That is, the infi-
nite Euclidean space in which physics treated the positions and motions
of bodies was the most straightforward extension of the space in which
we move, grasp our relation to our immediate surroundings, and situate
our spatial point of view. But they have played the quasi-Kantian role of
a framework that enables physics to constructively define its fundamental
concepts of force and causality, by giving physics the means to construct
such concepts as measurable theoretical quantities. The familiar and vague
notion of force, through the work of Galileo, Huygens, Newton, and others,
became a physical concept with a constructive spatio-temporal definition,
one that did not really violate the common notion – even if it seemed
to at first – but that rendered it a powerful tool of physical investigation,
and thereby made the discovery of physical forces a clear and attainable
goal. The connection with intuition was transformed by the recognition
that intuition itself borrowed its self-evidence from elementary physical
principles, principles so familiar as to be relied upon almost completely
unconsciously. Then the true weak point of Kant’s view was revealed: that
the intuitive picture of space depended on principles that are physical and
contingent, so that it could no longer be thought of as apodeictically certain
or beyond revision; space could therefore no longer be a fixed framework
for physics, but became something about which physics could eventually
reveal surprising facts. Yet none of this fundamentally changed the role of
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space and time as a framework for the construction of physical magnitudes
with empirical measures, and for the posing of questions about force and
causality as empirical questions. The framework remained indispensable
to the scientific approach to nature in general, as Kant had aptly put it,
“not as a pupil ready to accept whatever the teacher should recite, but as
a judge compelling a witness to answer the questions that he sets” (Kant,
1787 [1956], p. Bxiii).

With the emergence of the notion of space-time, the connection with
intuition may be said to have been dissolved altogether. The difference
was not merely that physical principles could provide novel empirical facts
about the nature of space, but that physics could cause us to reconsider
the very principles by which we define spatial and temporal measure-
ment. For the simple principle of rigid displacement that it had shared
with spatial intuition, physics would substitute dynamical principles with
no self-evident intuitive counterpart. Einstein’s definition of simultaneity
accorded well with the intuitive use of the concept, but to acknowledge it
as the fundamental definition, rather than as just a practical substitute for
absolute simultaneity, was to separate the objective features of space-time
from everything that made spatial measurement seem intuitively evident.
The laws of electrodynamics, essentially spatio-temporal in character, took
precedence over the pre-theoretical notion of rigid spatial displacement,
which consequently could reveal only a “complicated projection” of invari-
ant geometrical relations on some arbitrary inertial frame. In retrospect, it
emerged that it was only a simplistic assumption about simultaneity that
made spatial relations appear so intuitively obvious in the first place. Yet
even so the basic role of the spatio-temporal framework was not so radi-
cally transformed. Space-time, rather than space, was the framework within
which physical magnitudes were to be constructed, and were understood
as objectively meaningful to the extent that they corresponded to invariant
features of the space-time structure.

Evidently this situation was altered by the emergence of general relativity;
objective physical magnitudes evidently could not be defined as the invari-
ants of a structure that would not, in general, have any large-scale sym-
metries. Yet it is important not to exaggerate the difference. The locally
Minkowskian character of space-time implies that, at least at small scales
and for short-range interactions, space-time remains a framework that
allows for the construction of physical magnitudes and constrains the
behavior of physical forces; the fact that gravitational effects may be set
aside in such contexts means that this function of the space-time structure
is, to a great degree, independent of the inhomogeneity of space-time at
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larger scales. That is only a straightforward application of the equivalence
principle: it expresses in geometrical terms the fact that sufficiently small
falling frames may be treated as inertial. It is a bizarre feature, perhaps, that
a structure that plays this quasi-Kantian role, as the geometrical “form”
within which the content of physical notions is defined, should also be a
dynamical feature of the world, a field whose structure and evolution are
determined by the contingent distribution of matter and energy. But it was,
arguably, already bizarre in special relativity, that the geometry of space-time
should turn out to depend upon a contingent fact about electromagnetic
radiation; perhaps it was already bizarre about Newtonian mechanics, that
acceleration of all things should emerge as the defining feature of force and
therefore of the inertial structure of space-time. In fact what makes such
developments seem bizarre is the older Kantian viewpoint, from which it
seemed that such a form could be given to us prior to any physical prin-
ciple, and from which the real interdependence of geometrical form and
physical content was so difficult to see. Once that interdependence came
to light, with the nineteenth-century recognition of the physical assump-
tions underlying geometrical intuition, a kind of dialectical engagement of
physics and geometry began in earnest; its theoretical consequences have
been incredibly far-reaching, and its end is nowhere in sight.

It will be clear now, I hope, from all that has been said, that the talk of
dialectic is quite straightforward and unassuming, implying nothing par-
ticularly Hegelian – especially, nothing about the philosophical necessity or
the historical inevitability of any of the developments I have discussed. On
the contrary, what is dialectical about the history is also entirely contingent:
for the revolutions we have considered, what has overthrown a given the-
ory of space and time has been, not the “seeds of its own destruction” that
it has carried internally, but the confrontation with unexpected contin-
gent facts – facts which, on careful analysis, could be seen to undermine
the concepts on which the theory had staked an entire spatio-temporal
framework. The contradictions occur because it is the nature of such
theories – as Newton often suggested, by word and example – to extrap-
olate far beyond the empirical evidence that originally motivated them,
and so to expose themselves to contradictions that arise from unexpected
empirical circumstances. Analyses like Einstein’s, as we saw, of simultaneity
and free-fall, might have been undertaken earlier. But at earlier stages in
the development of physics, they could hardly have forced a re-evaluation
of fundamental concepts; at the time when Einstein undertook those anal-
yses, it was the current state of empirical knowledge that made them as
consequential as they were. They took the form that they did, not because
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of the nature of theories, or of coordinative definitions, but because of the
contingent nature of electromagnetism and gravity.

I have emphasized a dialectical element, then, chiefly because it seems to
capture the peculiar combination of philosophical and empirical analysis
by which novel space-time theories have emerged. Again, Kant and the
logical positivists were right in a certain limited sense; the kind of a-priori
principle that goes to constitute a spatio-temporal framework cannot be
the same as an empirical principle, and cannot be justified by the usual
sort of empirical or inductive argument – since empirical arguments, in the
usual sense, must take such principles for granted. Indeed, this is part of
their nature as principles for the interpretation of empirical facts. By their
ways of understanding the interpretive character of the principles, however,
both Kant and the positivists prevented themselves from seeing the role of
contingent and empirical motivations. For Kant, the principles of Euclidean
geometry and Newtonian physics were both necessary and sufficient for
any understanding of physical phenomena as a genuine “world” of things
in genuine physical interaction; there could be no contingent fact that
could not be grasped within that framework. For the positivists, since
interpretation required some arbitrary imposition of empirical content on
a purely formal scheme, contingency could be appealed to only for the sake
of pragmatic arguments about different possible conventions. One could
say that in a different world, Newton’s might have been a simpler and more
useful space-time theory than Einstein’s, but one could say little more than
that. Along these lines, then, there was little hope of doing justice to the
kind of argument that actually led Einstein to the theory, and enabled him
to make a principled case for it to his contemporaries. The Newtonian
principles could not be disproven by empirical or logical considerations
alone, because they functioned as definitions of basic concepts rather than
as empirical claims. Therefore they could confront the empirical facts, not
inductively, but only dialectically.

Seeing the dialectical aspect of the arguments, moreover, illuminates the
sense in which the history of space-time theory has been largely a progressive
development. Kuhn and the positivists were undoubtedly right to deny that
the changes have been cumulative: given the radical conceptual transforma-
tions they have required, the successive theories can hardly be called mere
additions to existing knowledge. But for the positivists this meant that the
new theories met epistemological standards that the older ones had failed,
while for Kuhn it meant that the theories were altogether incommensurable.
Neither view puts the historical development in its proper philosophical
light. The kind of progress that each theory has offered, we have seen, is an
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enlargement of perspective: a philosophical analysis of existing conceptions
and their empirical foundations, and a more comprehensive viewpoint from
which those conceptions are revealed to be local and incomplete. Special
relativity “contains” Newtonian space-time, for example, not merely by
making the same predictions in a limiting case, but by revealing that what
passes for absolute simultaneity is in fact a narrow and relative conception,
mistakenly extended from a particular frame of reference to every inertial
frame. Similarly, the argument for general relativity reveals the conception
of inertial frame to be a purely local one, mistakenly extended to the global
structure of space-time. As a result of such conceptual changes, physicists
might well consider themselves to be living in a different “world.” But the
path to that world begins with a conceptual analysis of geometrical concepts
in the familiar world, and ends in a perspective from which the familiar
concepts have a natural place within a more comprehensive framework,
in which facts that had seemed contradictory now form a coherent whole.
The result of such a transformation is, simply, a deeper understanding of
the nature of space and time.

This account makes it possible, finally, to rehabilitate a central idea of
the logical positivists: that there were philosophical arguments for special
and general relativity, and that creating the theories was as much a work
of philosophical analysis as of scientific discovery. In the form that the
logical positivists gave it, that idea was discredited, because it seemed to
rest on extremely simplistic philosophical notions regarding metaphysics,
meaning, and the relation between theory and observation. But now we
can see that the philosophical analysis of space and time has been, at least in
the cases that matter, something more subtle than the mere application of
epistemological strictures or slogans. Despite the delusions of philosophers
and scientists of having purely epistemological or metaphysical insights
into the nature of space, time, and motion, philosophy is not an indepen-
dent source of knowledge of space-time; our ability to conceive of or to
reason about space has always depended on principles borrowed, explic-
itly or implicitly, from physics. But this is not to say that physics simply
provides answers to philosophical questions from its own resources, or that
philosophy has to content itself with accepting them. Rather, it says that,
at certain critical points in its history, the fundamental problems of physics
have to do with the ways in which fundamental concepts are defined. In
those circumstances, the pursuit of physics in accord with those concepts
evidently has not resolved the underlying problems. These are the times at
which philosophical analysis has become an unavoidable task for physics
itself.
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5 . 2 on phys ical theory and interpretat ion

This book suggests an alternative, not only to the logical positivists’ account
of the history of physics, but also to their view of the nature of theories.
It suggests that the picture of scientific theories as uninterpreted formal
systems, linked to experience by arbitrary stipulations, involves some deep
misunderstandings about the nature of interpretive principles – and, there-
fore, of the nature and evolution of scientific theories. It is natural that
subsequent philosophers should have sought some other way of under-
standing the connections between physical theories and the phenomena
that they are supposed to explain. But the post-positivist tendency in the
philosophy of science has been not to seek a better account of the interpre-
tation of scientific theories, but to set aside the problem of interpretation
altogether. On the “semantic view of theories,” a physical theory is not
considered “syntactically” as an axiomatic system combined with a set of
interpretive rules (such as the “coordinative definitions” emphasized by
the logical positivists). Rather, it is considered in the now-familiar model-
theoretic terms, that is, as a structure with a set of models. The genuine
differences between the “semantic view” and the positivists’ view have to
do with the differences between semantic and syntactic conceptions of
structure in general – not with any philosophical difference concerning
the way in which a structure can be applied to experience. That a given
structure has “the world” as one of its models is typically represented as
an “empirical hypothesis.” The meaning of this claim is not an object of
any serious philosophical scrutiny; it is simply taken for granted that the
structure has a natural or “intended” interpretation. But it is no less true on
the semantic view than on the syntactic view that, say, Euclidean geometry
might just as well be the structure of a universe of “tables, chairs, and beer
mugs”; hence either the claim that “the world” has that structure is an
entirely trivial one, or some serious examination of the meaning of that
claim is urgently required (see Demopoulos, 2003). Indeed, it is not merely
the issues surrounding conventionalism, but any number of other issues
that are still taken seriously in the philosophy of science – issues of real-
ism and antirealism, objectivism and relativism, and the general question
of the rationality of science itself – that require some discussion of how
scientific theories, more than other symbolic interpretive frameworks or
“belief-systems” or “ways of knowing,” can manage to make meaningful
claims about the nature of things.

It was not without reason, then, that philosophers such as Kant and the
logical positivists hoped that, given a persuasive account of how science
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generates meaningful statements, issues regarding ontology and rationality
could fade into insignificance. Convinced that science was not inherently
more rational than other intellectual pursuits, especially metaphysics, and
was no better able to discern the real ontology (the nature of “things in
themselves”) underlying the phenomenal world, they credited mathemati-
cal physics with a just sense of these limitations, and an implicit grasp of the
need to impose some structure on the phenomena – an understanding that
the phenomena only constitute a “world” to the extent that we can frame
them in some systematic interconnection. It was implicitly understood that
science could not address previously defined metaphysical questions, or any
purely philosophical question about “what there is,” because general meta-
physics had never posed such questions in any answerable form. For that
reason metaphysics was doomed to endless controversy between answers
that could claim no more than a subjective plausibility. Physics, meanwhile
had imposed a conception on the phenomenal world in virtue of which
“what there is” could become an empirical question. For Kant, what exists
is what can be situated in the framework of Euclidean space and Newtonian
time, and can be seen to stand in causal interrelationships according to the
causal principles defined by Newtonian physics. Traditional metaphysics
might dispute the right of physics to restrict the question in this way, but it
had no convincing alternative way of specifying the question – at least, none
that did not implicitly borrow some of its essential content from assump-
tions about space and time. This is why the status of space and time could
not be, for Kant, the sort of ontological issue it was for the Newtonians and
Leibnizians, or became in the later twentieth century. It was an issue con-
cerning physics’ need for a framework within which concepts of substance,
force, and causality could be physically meaningful, and play essential roles
in a true metaphysics of nature. It was an issue for transcendental analysis,
not for the endless debate between rival metaphysical hypotheses.

For the logical positivists, the framework that Kant had thought both
sufficient and necessary was revealed to be neither: newer physical theo-
ries could comprehend phenomena for which the Newtonian framework
was inadequate, and the multiplicity of possible such theories meant that
there could be no question of necessity. On the contrary, the assignment
of an interpretive framework to the phenomena involved a degree of arbi-
trariness that Kant, for whom the intuitive interpretation of geometry was
unique and beyond doubt, could not have imagined. Hence the resort
to conventionalism, and the conviction that the adoption of any partic-
ular interpretive framework must be a matter for pragmatic negotiation
rather than theoretical reasoning. Yet their approach to metaphysics and
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ontology was, in spirit, the same. Frameworks might be arbitrary, but, at
least, within their confines, questions about the existence, the nature, and
the interconnections of physical things could be so posed that empirical
evidence could, in principle, answer them. Outside of such a framework,
however, such questions could have no real meaning at all, and indeed
were properly understood as pseudo-questions. Unless it was restricted to
the internal ontology fixed by some interpretive framework, metaphysics
could only mean a kind of hopeless effort: the effort to answer questions like
“what there is,” in a context removed from all possible logical or empirical
means of answering it. For the positivists as for Kant, in short, true sci-
ence was distinguished not by rationality, or by rational insight into what
lies behind the phenomena, but by knowing what it is talking about –
by knowing what questions it can meaningfully ask, and knowing how
to judge whether it has found an answer. Kant and the positivists thus
extended a thought that was always part of classical empiricism, for exam-
ple in the thought of Berkeley and Hume: that traditional metaphysical
controversy takes the question “what is real and what is illusion?,” which
makes sense in a certain empirical context, and tries to ask it in a setting in
which it makes no sense at all, as a question about the empirical world as
a whole – “does the world as it appears resemble the world as it really is?”
So traditional metaphysics failed to see that the empirical world itself is the
only framework within which such questions can be meaningfully posed.
But Kant and the positivists saw that the formal principles of science, and
especially the principles of space and time, play a more essential role in
defining that framework than Berkeley or Hume had ever imagined.

In fact it is not too much to say that the division between structure and
interpretation is, in itself, the greatest obstacle to a clear understanding
of the way in which physical theories confront the world of experience.
When we ask how the principles of a theory are to be interpreted, or how
the structure associated with a theory is to be interpreted, we have already
lost sight of the genuine content of those principles. For the principles are
not, after all, purely formal principles in need of interpretation; rather, they
are themselves principles of interpretation. Newton’s laws, for example, do
not constitute an empty formal structure; rather they constitute an inter-
pretation of the phenomena of motion – more precisely, they constitute a
program to interpret all accelerations as revealing the interplay of forces.
This is not changed by the fact that we can present the laws in a seem-
ingly abstract way, without considering any particular physical situations
or genuine empirical cases. Such a presentation may be “sterile,” as Newton
says of the proofs in Book I of the Principia (1726 [1999], p. 793), but it
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does not yield an uninterpreted calculus. On the contrary, it is merely the
demonstration of the laws’ interpretive scope and power – a demonstration
of everything that may follow from interpreting accelerations in this way.
What follows, above all, is that every acceleration we observe may, at least
in principle, reveal something about the nature, the origins, and especially
the magnitudes of the physical forces at work.

Einstein’s definition of simultaneity, similarly, is not a coordinative def-
inition for some mathematical object; it is, rather, an interpretation of
simultaneity, an attempt to articulate a conception of simultaneity that
reveals its empirical meaning. That empirical meaning, moreover, is not
merely its translation in an “observation language” or its operational defi-
nition, but its interconnections with the empirical principles that we rely
upon in theoretical physics. Einstein’s use of the equivalence principle is
not merely a coordinative definition for the geodesics of an arbitrary Rie-
mannian manifold; it is an interpretation of the geodesics of space-time.
The question that it begins with is not, what physical significance should
we attach to this mathematical object, the geodesic? The question is, rather,
how can we distinguish any given motion as a geodesic of space-time? Or,
how can we complete the Newtonian project of decomposing an accelerated
motion into its inertial and gravitational parts? This interpretive aspect of
the laws of physics is the source of their a-priori and seemingly unrevisable
character; their actual revisability reflects what a stringent requirement it is
upon such a theory, that it be capable of bringing the relevant phenomena
within its interpretive grasp. Kant had understood this latter point, but
the prospect of revision was one that he did not take seriously – precisely
because he understood that Newton’s was the only set of principles that had
ever provided an interpretation of motions in this stringent sense of the
term, and he was unable to conceive of phenomena that those principles
could not eventually grasp.

All of this suggests that there is a great deal of truth in the remark
that modern physics, under the influence of Newton, has had to create
“its own theory of measurement” (Smith, 2003a). But for the physics of
space and time, perhaps this point should be stated even more strongly:
in a certain sense, space-time physics is its theory of measurement; it is
a program to interpret certain characteristic phenomena as measurements
of fundamental dynamical quantities, and then, to interpret mathematical
relations among the quantities as expressing physical relations among the
phenomena. I don’t believe that this last point is affected by the possibility
that, in our own time, research into quantum gravity is likely to yield a
replacement for general relativity – not only that, but a theory in which
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space-time theory as Newton and Einstein understood it will no longer be
fundamental, and some other kind of structure will play the fundamental
role in that theory that space-time has played up to now. If philosophers and
physicists are to make philosophical sense of such a structure, surely they
will require a clear understanding – clearer, at any rate, than twentieth-
century philosophy of science was able to achieve – of what the role of
space-time structure really was, and how it functioned as a framework for
other physical objects, interactions, and processes. I hope that this book
has been a step toward that understanding.
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